

Mastering PHP Design Patterns

Develop robust and reusable code using a multitude of
design patterns for PHP 7

Junade Ali

BIRMINGHAM - MUMBAI

Mastering PHP Design Patterns

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016

Production reference: 1230916

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-713-0

www.packtpub.com

http://www.packtpub.com

Credits

Author

Junade Ali

Copy Editor

Safis Editing

Reviewer

Sworup Shakya

Project Coordinator

Suzanne Coutinho

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Tejal Daruwale Soni

Content Development Editor

Nikhil Borkar

Production Coordinator

Aparna Bhagat

Technical Editor

Hussain Kanchwala

Cover Work

Aparna Bhagat

About the Author
Junade Ali was a technical lead at some of the UK's leading digital agencies and has also
worked using PHP in mission-critical road-safety systems. He loves pushing PHP to its
innovative limits. Having started his career as a web development apprentice, he still
remains engaged in the academic computer science community.

Junade, an avid contributor to the PHP community, has also spoken at PHPTek and the
Lead Developer Conference. In addition to this, Junade was interviewed by Cal Evans for
Voices of the ElePHPant, and he has appeared on the PHP Roundtable. In this spirit, Junade
is proud of his local PHP user group: PHPWarks. Currently, Junade works at CloudFlare as
a polymath, and helps make the Internet more secure and faster.

Outside of development, Junade has an interest in law and political campaigns and is a
published author on constitutional law.

About the Reviewer
Sworup Shakya has worked as a web developer for more than ten years. He started his
career as a Flash ActionScript developer, before moving on to ASP.NET MVC, and finally to
PHP. During his time as a developer, Sworup worked extensively with frameworks, be it
ASP.NET MVC or AngularJS or Laravel. However, while he was working as an
ActionScript developer, he had to create one, which gave him knowledge of design patterns
and OOP concepts that has helped him improve in order to be able to work on the
frameworks he had to work on later.

Sworup received his Bachelor of Information Technology degree from Purbanchal
University in Nepal. He currently works with Zimris Technologies Nepal Pvt. Ltd., a
subsidiary of Zimris, LLC, as a senior developer.

Sworup likes to keep on top of the current technologies, keeping an eye on StackOverflow,
Laracasts forums, and occasional podcasts. He posts on these mediums whenever he can
and is looking to start a technical blog documenting his experiences at h t t p : / / s w o r u p . c o m .

n p /. You can reach him at sworup.shakya@gmail.com.

I would like to thank Suzanne Coutinho, Francina Pinto and Chaitanya Nair of Packt Publishing for
giving me this opportunity and helping me through the review process. I would like to thank my
friends, family and colleagues for their unconditional support.

http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
http://www.sworup.com.np
mailto:sworup.shakya@gmail.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w . p a c k t p u b . c o m / m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Table of Contents
Chapter 1: Why "Good PHP Developer" Isnt an Oxymoron 8

Coding style – the PSR standards 11
Revising object-oriented programming 11

Polymorphism 11
Traits (multiple inheritance) 16
Scalar type hints 19
Limiting debug access to private/protected properties 21

Setting up the environment with Composer 23
The Gang of Four (GoF) 26

Creational design patterns 27
Dependency injection 27

Structural design patterns 28
Behavioral design patterns 28
Architectural patterns 28

Summary 29

Chapter 2: Anti-Patterns 30

Why anti-patterns matter 31
Not invented here syndrome 34

Third-party dependencies with Composer 36
God objects 40
Environment variables in PHP source 43
Singletons (and why you should be using dependency injection) 44

Dependency injection 45
Database as IPC 45
Auto-increment database IDs 46
Cronjob imitating service 47
Software in place of architecture 47
Interface Bloat 49
Cart before the horse 51
Separation of development and operations 52
Excessive separation of development responsibilities 52
Error suppression operator 53
Blind faith 54
Sequential coupling 55

[ii]

The big rewrite 58
Automated tests 59
Service splitting 60
Perfectly staged migrations 61

Tester-Driven Development 62
Bloated optimization 62

Analysis paralysis 63
Bikeshedding 63
Premature optimization 63

Uneducated manager syndrome 64
Wrong rocky foundations 64
Long methods 65
Magic numbers 70
Summary 70

Chapter 3: Creational Design Patterns 72

Software design process 72
Simple Factory 74
Factory Method 78
Abstract Factory pattern 82
Lazy initialization 90
Builder pattern 93
Prototype pattern 97
Summary 102

Chapter 4: Structural Design Patterns 103

Agile software architecture 104
Decorator 105
Adapter 108

Class Adapter 108
Object Adapter 110

FlyWeight 113
Composite 117
Bridge 120
Proxy pattern 123
Facade 127
Summary 130

Chapter 5: Behavioral Design Patterns 132

Personality traits for passionate programmers 133
Observer pattern (SplObserver/SplSubject) 135

[iii]

Iterators 139
IteratorAggregate 139
Iterator 141
The many iterators of PHP 142

Generators 143
Template Method design pattern 148
Chain of Responsibility 152
Strategy design pattern 159
Specification design pattern 163
Scheduled Task pattern 167
Summary 168

Chapter 6: Architectural Patterns 170

Model-View-Controller (MVC) 170
Service-oriented architecture 172
Microservices 173
Asynchronous queueing 177

Message Queue pattern (Getting started with RabbitMQ) 177
Publish-Subscriber pattern 187

Summary 191

Chapter 7: Refactoring 192

What is refactoring? 192
Test, test, and test again 193
Code smells 194

Long methods and duplicated code 195
Large class 197
Replacing complex logical statements and switch statements with
polymorphism or the Strategy Pattern 198
Duplicating code following a single control structure 200
Long Parameter List and primitive obsession 200
Indecent exposure 203
Feature envy 204
Inappropriate intimacy 206
Deeply nested statements 206
Remove assignments to parameters 207
Comments 208
Encapsulating Composite with Builder 208
Replacing hard-coded notifications with Observer 209
Replacing one/many distinctions with Composite 209

[iv]

Separate versions with Adapters 210
What do I tell my manager? 210
Summary 211

Chapter 8: How to Write Better Code 212

Nature of a HTTP request 212
RESTful API design 231

Stateless nature 231
Versioning 231
Filtering 232
Sorting 232
Searching 232
Limiting fields 233
Returning new fields 233

When in doubt – KISS 233
Software development life cycle 234
On Scrum, and real Agility 235
You need to sack people sometimes 237
Lean project management 239
YAGNI and defering decisions 239
Monitoring 240
Tests fight legacy 241
Behavior-Driven Development 243
Summary 250

Index 252

Preface
Have you ever been to a PHP conference? If not, I’d highly recommend it, it is the closest
you can get to a living and breathing PHP community. A few weeks ago, I flew from
London to St. Louis, Misouri, to speak at php[tek] (the PHP conference run by
php[architect]). After the conference, there was a small tradition within the PHP community
known as WurstCon. Essentially, hundreds of PHP conference attendees cram themselves
into a small hot dog shop and host a hot dog convention, often to the complete surprise of
the staff there. Likewise, community nights at PHP events are the warmest and most
accepting community occasions you’ll ever run into; the PHP community is surely one that
other development language communities envy.

As of PHP 7, the PHP project has changed dramatically; but what I love, remains strong.
The warmth you will feel at any PHP conference, the openness in the documentation, and
adoption in the language. Yes, there are practices that are undoubtedly bad within PHP
itself; however, think of what the PHP community has recently achieved, ranging from
PHPUnit to Composer. Throughout this book, bear in mind the improvements in PHP 7, a
few of which I’ll share with you. The trajectory of the project is now certainly upwards, and
let’s not forget that this wasn’t always true. The PHP community has learned its lessons
from the past, whilst the language maintains the flexibility to write what is bad.

This book will seek to impart strong software engineering skills to you with the focus on
implementing them in PHP. At the time of publishing this book, there is a certain void and
a necessity for this kind of material. This book seeks to be the lighthouse that will not only
demonstrate software design theory, but also seek to impart practical information of real
value to improve the quality and maintainability of the code you write. This book leaves no
stone unturned throughout the software development cycle and will seek to confront the
reasons as to why the majority of software projects fail whilst also addressing design,
redesign, and safeguard effective code.

This book goes beyond traditional design patterns as envisaged by the Gang of Four and
details the practices that passionate PHP developers need to be successful as software
engineers or leads on detailed PHP projects. This book will introduce you to the core
knowledge required to understand project management techniques, why the majority
software development projects fail, and why you can make yours a success.

Preface

[2]

Originally, I gave thought to writing a book on PHP when Mandi Rose, who I worked with
previously, suggested I put together a book on the practices I’ve learned with PHP.
Needless to say, at the time that suggestion was made, the best of my career was
undoubtedly ahead of me; when the opportunity actually arose to write something like this,
I felt I had learned dramatically more as time progressed. By no means should you see this
book as the be-all and end-all of PHP practices; instead, you should use it to increase your
knowledge base on PHP, but by no means limit it to this. In this book, I aim to give
something, however small, back to the PHP community; after reading this book, I would
encourage you to get stuck in and share what you’ve learned with others.

Later in this book, I will advocate Extreme Programming as a methodology and courage as
a key value of this methodology. I will ask you to bear in mind the explanation of courage
in The Values of Extreme Programming: “We will tell the truth about progress and
estimates. We don't document excuses for failure because we plan to succeed. We don't fear
anything because no one ever works alone. We will adapt to changes whenever they
happen.” This is, of course, some key advice we should all follow and seek to genuinely
understand risks instead of cowering behind them. For many of us, the code we write
during parts of our career is the highest expression of our labor. Indeed, the late nights
turning into early mornings we spend debugging and developing are what ultimately allow
us to demonstrate the fruits of our labor. In essence, as software engineers, the code we
write defines who we are, as such we should be open to constantly refining and refactoring
our processes, which is what this book aims to support you in doing. I am incredibly
honored that you chose to allow me to help you to reach this end.

What this book covers
Chapter 1, Why "Good PHP Developer" Isn't an Oxymoron, introduces the concept of design
patterns as recurring solutions to commonly arising problems.

Chapter 2, Anti-Patterns, introduces how patterns can lead to decidedly negative
consequences.

Chapter 3, Creational Design Patterns, discusses Gang of Four design patterns, namely those
surrounding object creation.

Chapter 4, Structural Design Patterns, covers how multiple classes and objects can be
combined to deliver a clearer interface.

Preface

[3]

Chapter 5, Behavioral Design Patterns, explains how to increase the flexibility of
communication between objects by identifying patterns that can help with communication
between them.

Chapter 6, Architectural Patterns, revolves around resolving common issues related to the
architecture of a web application/system, potentially outside the code base itself.

Chapter 7, Refactoring, shows how to redesign code that has already been written to
improve maintainability.

Chapter 8, How to Write Better Code, covers a range of concepts that haven’t been discussed
elsewhere, and it also concludes with some advice for developers.

What you need for this book
An installation of PHP 7 will serve you well throughout this book. You should be prepared
to alter your development environment as needed throughout this book; we will address
the installation of various tools as we encounter them.

This book is not for the despairingly hostile or those who are passively antagonistic to
approaching new software engineering principles. It is not for those who seek to be lone
warriors, either. When altering a given code base, you must seek to improve the code of the
entire code base and everyone who works on it. You must be willing to take personal
responsibility of the code you write and not blame external factors. Code maintainability
cannot be improved unilaterally on shared code bases; you must write your code with the
intention of maintaining code quality for those who maintain it after you. Additionally, seek
to go into this book with the mindset of being able to share what you’ve learned, whether it
is with those in your teams, your user groups, or the larger PHP community. In other
words, approach this book with the end in mind; approach this book with the stated aim of
improving your code and those in the code base you maintain.

Who this book is for
This book is certainly aimed at the PHP developer looking to learn about the complete set of
skills needed to be a software engineer, in particular, some lessons from software design;
this book will seek to educate you on how your code can be made more extensible and
easier to develop on. This book seeks to take your code beyond just being a bag of functions
and classes, instead preferring well-designed, well-written, and well-tested code.

Preface

[4]

You will need a working knowledge of PHP and enough to build an application, but by no
means do you have to be a total expert at everything in PHP; a working knowledge of the
basics of software engineering will certainly give you a heads up.

You must encounter this book with an open mind and a willingness to have your
preconceptions about software development challenged. This book will confront some
truths about how you may be failing personally as a developer; it is vital that you approach
this book with a willingness to take these principles onboard.

This book presents a set of software development patterns and principles that you can
adopt. It is vital that you understand where these patterns should and shouldn’t be applied;
this will be explained throughout the book, especially in the last chapter.

A key tenet of reading this book is understanding what PHP is for and what it isn’t. I expect
you to enter this book understanding what problems you expect PHP to solve and what
you expect to use other software development languages to solve.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
index.php file now yields this result".

A block of code is set as follows:

<?php

abstract class Notifier
{
 protected $to;

 public function __construct(string $to)
 {
 $this->to = $to;
 }

 abstract public function validateTo(): bool;

 abstract public function sendNotification(): string;

}

Preface

[5]

Any command-line input or output is written as follows:

echo $richard->hasPaws;

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "direct your web browser to
your chosen web server and you should see Hello world! pop up on screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

mailto:feedback@packtpub.com
https://www.packtpub.com/books/info/packt/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / M a s t e r i n g - P H P - D e s i g n - P a t t e r n s /. We also have other code bundles from our
rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /.
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/Mastering-PHP-Design-Patterns/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[7]

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Why "Good PHP Developer"

Isnt an Oxymoron
Back in 2010, MailChimp published a post on their blog, entitled Ewww, You Use PHP? In
this blog post, they described the horror when they explained their choice of PHP to
developers who consider the phrase good PHP programmer an oxymoron. In their rebuttal
they argued that their PHP wasn't your grandfathers PHP and that they use a sophisticated
framework. I tend to judge the quality of PHP on the basis of, not only how it functions, but
how secure it is and how it is architected. This book focuses on ideas of how you should
architect your code. The design of software allows for developers to ease the extension of
the code beyond its original purpose, in a bug-free and elegant fashion.

As Martin Fowler put it:

“Any fool can write code that a computer can understand. Good programmers write code
that humans can understand.”

This isn't just limited to code style, but how developers architect and structure their code.
I've encountered many developers with their noses constantly stuck in the documentation,
copying and pasting bits of code until it works; hacking snippets together until it works.
Moreover, I far too often see the software development process rapidly deteriorate as
developers ever more tightly couple their classes with functions of ever increasing length.

Software engineers mustn't just code software; they must know how to design it. Indeed
often a good software engineer, when interviewing other software engineers will ask
questions about the design of the code itself. It is trivial to get a piece of code that will
execute, and it is also benign to question a developer as to whether strtolower or
str2lower is the correct name of a function (for the record, it's strtolower). Knowing the
difference between a class and an object doesn't make you a competent developer; a better
interview question would, for example, be how one could apply subtype polymorphism to

Why "Good PHP Developer" Isnt an Oxymoron

[9]

a real software development challenge. Failure to assess software design skills dumbs down
an interview and results in there being no way to differentiate between those who are good
at it, and those who aren't. These advanced topics will be discussed throughout this book,
by learning these tactics, you will better understand what the right questions to ask are
when discussing software architecture.

Moxie Marlinspike once tweeted the following:

“As a software developer, I envy writers, musicians, and filmmakers. Unlike software,
when they create something it is really done, forever”.

When developing software, we mustn't forget we are authors, not just of instructions for a
machine, but we are also authoring something that we later expect others to extend upon.
Therefore, our code mustn't just be targeted at machines, but humans also. Code isn't just
poetry for a machine, it should be poetry for humans also.

This is, of course, better said than done. In PHP, this may be found especially difficult given
the freedom PHP offers developers on how they may architect and structure their code. By
the very nature of freedom, it may be both used and abused, so it is true with the freedom
offered in PHP.

Therefore, it is increasingly important that developers understand proper software design
practices to ensure their code maintains the long term maintainability. Indeed, another key
skill lies in refactoring code, improving the design of existing code to make it easier to extend
in the long term.

Technical debt, the eventual consequence of poor system design, is something that I've
found comes with the career of a PHP developer. This has been true for me whether it has
been dealing with systems that provide advanced functionality or simple websites. It
usually arises because a developer elects to implement a bad design for a variety of reasons;
this is when adding functionality to an existing codebase or taking poor design decisions
during the initial construction of software. Refactoring can help us address these issues.

SensioLabs (the creators of the Symfony framework) have a tool called Insight that allows
developers to calculate the technical debt in their own code. In 2011, they did an evaluation
of technical debt in various projects using this tool; rather unsurprisingly they found that
WordPress 4.1 topped the chart of all platforms they evaluated with them claiming it would
take 20.1 years to resolve the technical debt that the project contains.

Why "Good PHP Developer" Isnt an Oxymoron

[10]

Those familiar with the WordPress core may not be surprised by this, but this issue of
course is not only associated to WordPress. In my career of working with PHP, from
working with security critical cryptography systems to working with systems that work
with mission critical embedded systems, dealing with technical debt comes with the job.
Dealing with technical debt is not something to be ashamed of for a PHP developer, indeed
some may consider it courageous. Dealing with technical debt is no easy task, especially in
the face of an ever more demanding user base, client, or project manager; constantly
demanding more functionality without being familiar with the technical debt the project
has associated to it.

I recently e-mailed the PHP Internals group as to whether they should consider deprecating
the error suppression operator @. When any PHP function is prepended by an @ symbol, the
function will suppress an error returned by it. This can be brutal, especially where that
function renders a fatal error that stops the execution of the script, making debugging a
tough task. If the error is suppressed, the script may fail to execute without providing
developers a reason as to why this is. Usage of this operator may be described as an anti-
pattern in some situations, something we will cover in Chapter 4, Structural Design Patterns.

Despite the fact that no one objected to the fact that there were better ways of handling
errors (try/catch, proper validation) than abusing the error suppression operator and
that deprecation should be an eventual aim of PHP, it is the case that some functions return
needless warnings even though they already have a success/failure value. This means that
due to technical debt in the PHP core itself, this operator cannot be deprecated until a lot of
other prerequisite work is done. In the meantime, it is down to developers to decide the best
methodologies of handling errors. Until the inherent problem of unnecessary error
reporting is addressed, this operator cannot be deprecated. Therefore, it is down to
developers to be educated as to the proper methodologies that should be used to address
error handling and not to constantly resort to using an @ symbol.

Fundamentally, technical debt slows down development of a project and often leads to code
being deployed that is broken as developers try and work on a fragile project.

When starting a new project, never be afraid to discuss architecture as architecture meetings
are vital to developer collaboration; as one Scrum Master I've worked with said in the face
of criticism that “meetings are a great alternative to work”, he said “meetings are
work…how much work would you be doing without meetings?”.

In the rest of this chapter, we will cover the following points:

Coding style – the PSR standards
Revising object-oriented programming
Setting up the environment with Composer

Why "Good PHP Developer" Isnt an Oxymoron

[11]

Who are the Gang of Four?

Coding style – the PSR standards
When it comes to coding style, I would like to introduce you to the PSR standards created
by the PHP Framework Interop Group. Namely, the two standards that apply to coding
standards are PSR-1 (Basic Coding Style) and PSR-2 (Coding Style Guide). In addition to
this, there are PSR standards that cover additional areas, for example, as of today; the PSR-4
standard is the most up-to-date autoloading standard published by the group. You can find
out more about the standards at h t t p : / / w w w . p h p - f i g . o r g /.

Coding style being used to enforce consistency throughout a code base is something I
strongly believe in. It does make a difference to your code readability throughout a project.
It is especially important when you are starting a project (chances are you may be reading
this book to find out how to do that right) as your coding style determines the style the
developers following you in working on this project will adopt. Using a global standard
such as PSR-1 or PSR-2 means that developers can easily switch between projects without
having to reconfigure their code style in their IDE. Good code style can make formatting
errors easier to spot. Needless to say that coding styles will develop as time progresses, to
date I elect to work with the PSR standards.

I am a strong believer in the phrase: always code as if the guy who ends up maintaining your code
will be a violent psychopath who knows where you live. It isn't known who wrote this phrase
originally, but it's widely thought that it could have been John Woods or potentially Martin
Golding.

I would strongly recommend familiarizing yourself with these standards before proceeding
in this book.

Revising object-oriented programming
Object-oriented programming is more than just classes and objects; it's a whole
programming paradigm based around objects (data structures) that contain data fields and
methods. It is essential to understand this; using classes to organize a bunch of unrelated
methods together is not object orientation.

Assuming you're aware of classes (and how to instantiate them), allow me to remind you of
a few different bits and pieces.

http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/
http://www.php-fig.org/

Why "Good PHP Developer" Isnt an Oxymoron

[12]

Polymorphism
Polymorphism is a fairly long word for a fairly simple concept. Essentially, polymorphism
means the same interface is used with a different underlying code. So multiple classes could
have a draw function, each accepting the same arguments, but at an underlying level, the
code is implemented differently.

In this section, I would like to talk about Subtype Polymorphism in particular (also known
as Subtyping or Inclusion Polymorphism).

Let's say we have animals as our supertype; our subtypes may well be cats, dogs, and
sheep.

In PHP, interfaces allow you to define a set of functionality that a class that implements it
must contain, as of PHP 7 you can also use scalar type hints to define the return types we
expect.

So for example, suppose we defined the following interface:

interface Animal
{
 public function eat(string $food) : bool;

 public function talk(bool $shout) : string;
}

We could then implement this interface in our own class, as follows:

class Cat implements Animal {
}

If we were to run this code without defining the classes we would get an error message as
follows:

Class Cat contains 2 abstract methods and must therefore be declared
abstract or implement the remaining methods (Animal::eat, Animal::talk)

Essentially, we are required to implement the methods we defined in our interface, so now
let's go ahead and create a class that implements these methods:

class Cat implements Animal
{
 public function eat(string $food): bool
 {
 if ($food === "tuna") {
 return true;
 } else {

Why "Good PHP Developer" Isnt an Oxymoron

[13]

 return false;
 }
 }

 public function talk(bool $shout): string
 {
 if ($shout === true) {
 return "MEOW!";
 } else {
 return "Meow.";
 }
 }
}

Now that we've implemented these methods, we can then just instantiate the class we are
after and use the functions contained in it:

$felix = new Cat();
echo $felix->talk(false);

So where does polymorphism come into this? Suppose we had another class for a dog:

class Dog implements Animal
{
 public function eat(string $food): bool
 {
 if (($food === "dog food") || ($food === "meat")) {
 return true;
 } else {
 return false;
 }
 }

 public function talk(bool $shout): string
 {
 if ($shout === true) {
 return "WOOF!";
 } else {
 return "Woof woof.";
 }
 }
}

Now let's suppose we have multiple different types of animals in a pets array:

$pets = array(
 'felix' => new Cat(),
 'oscar' => new Dog(),

Why "Good PHP Developer" Isnt an Oxymoron

[14]

 'snowflake' => new Cat()
);

We can now actually go ahead and loop through all these pets individually in order to run
the talk function. We don't care about the type of pet because the talk method that is
implemented in every class we get is by virtue of us having extended the Animals interface.

So let's suppose we wanted to have all our animals run the talk method. We could just use
the following code:

foreach ($pets as $pet) {
 echo $pet->talk(false);
}

No need for unnecessary switch/case blocks in order to wrap around our classes, we just
use software design to make things easier for us in the long-term.

Abstract classes work in a similar way, except for the fact that abstract classes can contain
functionality where interfaces cannot.

It is important to note that any class that defines one or more abstract classes must also be
defined as abstract. You cannot have a normal class defining abstract methods, but you can
have normal methods in abstract classes. Let's start off by refactoring our interface to be an
abstract class:

abstract class Animal
{
 abstract public function eat(string $food) : bool;

 abstract public function talk(bool $shout) : string;

 public function walk(int $speed): bool {
 if ($speed > 0) {
 return true;
 } else {
 return false;
 }
 }
}

You might have noticed that I have also added a walk method as an ordinary, non-abstract
method; this is a standard method that can be used or extended by any classes that inherit
the parent abstract class. They already have their implementation.

Note that it is impossible to instantiate an abstract class (much like it's not possible to
instantiate an interface). Instead, we must extend it.

Why "Good PHP Developer" Isnt an Oxymoron

[15]

So, in our Cat class let's remove the following:

class Cat implements Animal

We will replace it with the following code:

class Cat extends Animal

That's all we need to refactor in order to get classes to extend the Animal abstract class. We
must implement the abstract functions in the classes as we outlined for the interfaces, plus
we can use the ordinary functions without needing to implement them:

$whiskers = new Cat();
$whiskers->walk(1);

As of PHP 5.4 it has also become possible to instantiate a class and access a property of it in
one system. PHP.net advertised it as: Class member access on instantiation has been added, e.g.
(new Foo)->bar(). You can also do it with individual properties, for example, (new
Cat)->legs. In our example, we can use it as follows:

(new \IcyApril\ChapterOne\Cat())->walk(1);

Just to recap a few other points about how PHP implemented OOP, the final keyword
before a class declaration or indeed a function declaration means that you cannot override
such classes or functions after they've been defined.

So, let's try extending a class we have named as final:

final class Animal
{
 public function walk()
 {
 return "walking...";
 }
}

class Cat extends Animal
{
}

This results in the following output:

Fatal error: Class Cat may not inherit from final class (Animal)

Similarly, let's do the same except at a function level:

class Animal
{

Why "Good PHP Developer" Isnt an Oxymoron

[16]

 final public function walk()
 {
 return "walking...";
 }
}

class Cat extends Animal
{
 public function walk () {
 return "walking with tail wagging...";
 }
}

This results in the following output:

Fatal error: Cannot override final method Animal::walk()

Traits (multiple inheritance)
Traits were introduced in PHP as a mechanism for introducing Horizontal Reuse. PHP
conventionally acts as a single inheritance language, because of the fact that you can't
inherit more than one class into a script.

Traditional multiple inheritance is a controversial process that is often looked down upon
by software engineers.

Let me give you an example of using Traits first hand; let's define an abstract Animal class
that we want to extend into another class:

class Animal
{
 public function walk()
 {
 return "walking...";
 }
}

class Cat extends Animal
{
 public function walk () {
 return "walking with tail wagging...";
 }
}

Why "Good PHP Developer" Isnt an Oxymoron

[17]

So now let's suppose we have a function to name our class, but we don't want it to apply to
all our classes that extend the Animal class, we want it to apply to certain classes
irrespective of whether they inherit the properties of the abstract Animal class or not.

So we've defined our functions like so:

function setFirstName(string $name): bool
{
 $this->firstName = $name;
 return true;
}

function setLastName(string $name): bool
{
 $this->lastName = $name;
 return true;
}

The problem now is that there is no place we can put them without using Horizontal Reuse,
apart from copying and pasting different bits of code or resorting to using conditional
inheritance. This is where Traits come to the rescue; let's start off by wrapping these
methods in a Trait called Name:

trait Name
{
 function setFirstName(string $name): bool
 {
 $this->firstName = $name;
 return true;
 }

 function setLastName(string $name): bool
 {
 $this->lastName = $name;
 return true;
 }
}

So now that we've defined our Trait, we can just tell PHP to use it in our Cat class:

class Cat extends Animal
{
 use Name;

 public function walk()
 {
 return "walking with tail wagging...";

Why "Good PHP Developer" Isnt an Oxymoron

[18]

 }
}

Notice the use of the Name statement? That's where the magic happens. Now you can call
the functions in that Trait without any problems:

$whiskers = new Cat();
$whiskers->setFirstName('Paul');
echo $whiskers->firstName;

All put together, the new code block looks as follows:

trait Name
{
 function setFirstName(string $name): bool
 {
 $this->firstName = $name;
 return true;
 }

 function setLastName(string $name): bool
 {
 $this->lastName = $name;
 return true;
 }
}

class Animal
{
 public function walk()
 {
 return "walking...";
 }
}

class Cat extends Animal
{
 use Name;

 public function walk()
 {
 return "walking with tail wagging...";
 }
}

$whiskers = new Cat();
$whiskers->setFirstName('Paul');
echo $whiskers->firstName;

Why "Good PHP Developer" Isnt an Oxymoron

[19]

Scalar type hints
Let me take this opportunity to introduce you to a PHP 7 concept known as scalar type
hinting; it allows you to define the return types (yes, I know this isn't strictly under the
scope of OOP; deal with it).

Let's define a function, as follows:

function addNumbers (int $a, int $b): int
{
 return $a + $b;
}

Let's take a look at this function; firstly you will notice that before each of the arguments we
define the type of variable we want to receive; in this case, it's int (or integer). Next up,
you'll notice there's a bit of code after the function definition : int, which defines our
return type so our function can only receive an integer.

If you don't provide the right type of variable as a function argument or don't return the
right type of the variable from the function; you will get a TypeError exception. In strict
mode, PHP will also throw a TypeError exception in the event that strict mode is enabled
and you also provide the incorrect number of arguments.

It is also possible in PHP to define strict_types; let me explain why you might want to
do this. Without strict_types, PHP will attempt to automatically convert a variable to
the defined type in very limited circumstances. For example, if you pass a string containing
solely numbers it will be converted to an integer, a string that's non-numeric, however, will
result in a TypeError exception. Once you enable strict_types this all changes, you can
no longer have this automatic casting behavior.

Taking our previous example, without strict_types, you could do the following:

echo addNumbers(5, "5.0");

Trying it again after enabling strict_types, you will find that PHP throws a TypeError
exception.

This configuration only applies on an individual file basis, putting it before you include
other files will not result in this configuration being inherited to those files. There are
multiple benefits of why PHP chose to go down this route; they are listed very clearly in
version 0.5.3 of the RFC that implemented scalar type hints called PHP RFC: Scalar Type
Declarations. You can read about it by going to h t t p : / / w w w . w i k i . p h p . n e t (the wiki, not
the main PHP website) and searching for scalar_type_hints_v5.

http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net
http://www.wiki.php.net

Why "Good PHP Developer" Isnt an Oxymoron

[20]

In order to enable it, make sure you put this as the very first statement in your PHP script:

declare(strict_types=1);

This will not work unless you define strict_types as the very first statement in a PHP
script; no other usages of this definition are permitted. Indeed, if you try to define it later
on, your script PHP will throw a fatal error.

Of course, in the interests of the rage-induced PHP core fanatic reading this book in its
coffee stained form, I should mention that there are other valid types that can be used in
type hinting. For example, PHP 5.1.0 introduced this with arrays and PHP 5.0.0 introduced
the ability for a developer to do this with their own classes.

Let me give you a quick example of how this would work in practice, suppose we had an
Address class:

class Address
{
 public $firstLine;
 public $postcode;
 public $country;

 public function __construct(string $firstLine, string $postcode, string
$country)
 {
 $this->firstLine = $firstLine;
 $this->postcode = $postcode;
 $this->country = $country;
 }
}

We can then type the hint of the Address class that we inject into a Customer class:

class Customer
{
 public $name;
 public $address;

 public function __construct($name, Address $address)
 {
 $this->name = $name;
 $this->address = $address;
 }
}

Why "Good PHP Developer" Isnt an Oxymoron

[21]

And this is how it all can come together:

$address = new Address('10 Downing Street', 'SW1A 2AA', 'UK');
$customer = new Customer('Davey Cameron', $address);
var_dump($customer);

Limiting debug access to private/protected
properties
If you define a class which contains private or protected variables, you will notice an odd
behavior if you were to var_dump the object of that class. You will notice that when you
wrap the object in a var_dump it reveals all variables; be they protected, private, or public.

PHP treats var_dump as an internal debugging function, meaning all data becomes visible.

Fortunately, there is a workaround for this. PHP 5.6 introduced the __debugInfo magic
method. Functions in classes preceded by a double underscore represent magic methods
and have special functionality associated with them. Every time you try to var_dump an
object that has the __debugInfo magic method set, the var_dump will be overridden with
the result of that function call instead.

Let me show you how this works in practice, let's start by defining a class:

class Bear {
 private $hasPaws = true;
}

Let's instantiate this class:

$richard = new Bear();

Now, if we were to try and access the private variable that is hasPaws, we would get a fatal
error:

echo $richard->hasPaws;

The preceding call would result in the following fatal error being thrown:

Fatal error: Cannot access private property Bear::$hasPaws

That is the expected output, we don't want a private property visible outside its object.
That being said, if we wrap the object with a var_dump as follows:

var_dump($richard);

Why "Good PHP Developer" Isnt an Oxymoron

[22]

We would then get the following output:

object(Bear)#1 (1) {
 ["hasPaws":"Bear":private]=>
 bool(true)
}

As you can see, our private property is marked as private, but nevertheless it is visible.
So how would we go about preventing this?

So, let's redefine our class as follows:

class Bear {
 private $hasPaws = true;
 public function __debugInfo () {
 return call_user_func('get_object_vars', $this);
 }
}

Now, after we instantiate our class and var_dump the resulting object, we get the following
output:

object(Bear)#1 (0) {
}

The script all put together looks like this now, you will notice I've added an extra public
property called growls, which I have set to true:

<?php
class Bear {
 private $hasPaws = true;
 public $growls = true;
 public function __debugInfo () {
 return call_user_func('get_object_vars', $this);
 }
}
$richard = new Bear();
var_dump($richard);

If we were to var_dump this script (with both public and private property to play with),
we would get the following output:

object(Bear)#1 (1) {
 ["growls"]=>
 bool(true)
}

Why "Good PHP Developer" Isnt an Oxymoron

[23]

As you can see, only the public property is visible. So what is the moral of the story from
this little experiment? Firstly, that var_dumps exposes private and protected properties
inside objects, and secondly, that this behavior can be overridden.

Setting up the environment with Composer
Composer is a dependency manager for PHP, strongly inspired by Node's NPM and
Bundler. It has now become integral to multiple PHP projects, including Laravel and
Symfony. Why it is useful for us, however, is that it contains autoload functionality that is
compliant with the PSR-0 and PSR-4 standards. You can download and install Composer
from h t t p : / / g e t c o m p o s e r . o r g.

In order to install Composer globally on Mac OS X or Linux, first you can
run the installer:
curl -sS https://getcomposer.org/installer | php

And then you can move Composer to install it globally:
mv composer.phar /usr/local/bin/composer

If the command preceding fails due to a permissions issue, rerun the
command except putting sudo at the very start. You'll be asked to enter
your password after you type the command, just enter it and hit Enter.
Once you've installed Composer by following the preceding steps, you can
run it simply by running the composer command.
In order to install Composer on Windows it is easiest to just run the
installer on the Composer website; currently you can find it at:
https://getcomposer.org/Composer-Setup.exe.
Composer is fairly easy to update, just run this command:
Composer self-update

Composer works by using the configuration in a file called composer.json, where you can
outline external dependencies and your autoloading style. Once Composer has installed
dependencies listed in this file, it writes a composer.lock file that details the exact
versions it has installed. When using version control it is important that you commit this file
(alongside the composer.json file), don't add it to your .gitignore file if you're on Git.
This is very important because the lock file details the exact version of a package that was
installed at a particular time in your version control system. You can, however, exclude a
directory called vendor, I'll explain what that does later.

http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
http://getcomposer.org
https://getcomposer.org/Composer-Setup.exe

Why "Good PHP Developer" Isnt an Oxymoron

[24]

Let's start off by creating a file called composer.json in our project directory. This file is
structured in JSON, so let me just remind you of how JSON works:

JSON consists of key/value pairs of data, think of it like a set of variables being
defined in a file
A key value pair is comma separated, for example, "key" : "value"
Curly brackets hold objects
Square brackets hold arrays
Multiple pieces of data must be comma separated, without leaving a trailing
comma at the end of the data
Keys and values that include strings must be wrapped in quotes
A backslash \ is the escape key

So now we can add the following markup to the composer.json file:

{
 "autoload": {
 "psr-4": {
 "IcyApril\\ChapterOne": "src/"
 }
 }
}

So let me explain what this file does; it tells Composer to autoload everything in the src/
directory into the IcyApril\ChapterOne namespace using the PSR-4 standard.

So, the next step is to create our src directory where we include the code we want to
autoload. Done that? Right, now let's open up our command line and move into the
directory where we've put our composer.json file.

In order to install everything in the composer.json file in your project just run the
composer install command. For subsequent updates, the composer update command
will update to the latest versions of all dependencies as defined in composer.json. If you
don't want to do this, though, there is an alternative; running the composer dump-
autoload command will solely regenerate the list of the PSR-0/PSR-4 classes that need to
be included in the project (for example, you add, delete, or rename some of your classes).

Now let me cover how you will actually go about creating a class. So, let's create an src
directory in our project and in that src directory create a new class called Book. You can do
this by creating a file called Book.php. In that file, add something like this:

<?php
namespace IcyApril\ChapterOne;

Why "Good PHP Developer" Isnt an Oxymoron

[25]

class Book
{
 public function __construct()
 {
 echo "Hello world!";
 }
}

This is a standard class, except we're just defining a constructor that will echo Hello
world! when the class is instantiated.

As you may have noticed, we've followed a few naming conventions; firstly, the PSR-1
standard declares that class names must be declared in StudlyCaps. PSR-2 has a few extra
requirements; to name a few: four spaces instead of a tab, one blank space after a
namespace or use declarations, and placing brackets on new lines. It's definitely worth
taking the time to read these standards if you haven't already. You might not agree with
every standard, you might have a subjective preference to how you format your own code;
my advice is to put these preferences aside for the greater good. Having code that is
standardized by means of utilizing the PSR standards offers great advantages when
collaborating on common code bases. The benefit of having an external standard, built by
an organization such as the PHP-FIG group, is that you have your configuration pre-built
into your IDE (for example, PHPStorm supports PSR-1/PSR-2 out of the box). Not only
this but, when it comes to formatting arguments you have a concrete impartial document
that outlines how things should be done, which is great for stopping religious code
formatting arguments during code reviews.

Now that we've created the class we can go ahead and run the composer dump-autoload
command in order to refresh our autoloader script.

So, we've configured our Composer autoloader and we've also got a test class to play
around with, but the next question is how we can implement this. So, let's go ahead and
implement this. In the same directory where we've implemented our composer.json file,
let's add our index.php file.

The line after you put in your PHP opening tag, we need to pull in our autoloader script:

require_once('vendor/autoload.php');

Then we can instantiate our Book class:

new \IcyApril\ChapterOne\Book();

Set up your web server, point your document root to the folder we created, direct your web
browser to your chosen web server and you should see Hello world! pop up on screen.
Now you can take apart the code and play around with it.

Why "Good PHP Developer" Isnt an Oxymoron

[26]

The completed code sample is available alongside this book, so you can open it up and play
around with it directly from there, just in case you need any help debugging your code.

Whether your classes are abstract classes or mere interfaces, when autoloading we treat
them all as classes.

The Gang of Four (GoF)
The architect Christopher Alexander, who mentioned how patterns can be used to address
common design issues, originally documented the concept. The idea came about from
Alexander; he proposes that design issues can be documented rigorously, alongside their
proposed solution. Design patterns have most notably been applied to resolving
architectural issues in software design.

In Christopher Alexander's own words:

“The elements of this language are entities called patterns. Each pattern describes a
problem that occurs over and over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice.”

Alexander wrote his own book, predating the Gang of Four called, A Pattern Language. In
this book, Alexander created his own language, he coined the phrase pattern language to
describe this; this language was formed from the building blocks of Architectural patterns.
By utilizing these Architectural patterns the book proposes that ordinary people can use
this language as a framework to improve their neighborhoods and towns.

One such pattern that is documented in the book is Pattern 12, known as the Community of
7000; the book documents this pattern by stating the following:

“Individuals have no effective voice in any community of more than 5,000-10,000 persons.”

By using problems such as this one with their documented solution; the book ultimately
forms patterns, these patterns seek to act as the building blocks for making communities
better.

As I mentioned, Alexander predated the Gang of Four; but his work was essential for
sowing the seeds for software design patterns.

Now, let's turn directly on to the authors known as The Gang of Four.

Why "Good PHP Developer" Isnt an Oxymoron

[27]

Nope, we're not referring to the 1981 defectors from the British Labour party or an English
post-punk band; but we are talking about the authors of a book called Design Patterns:
Elements of Reusable Object-Oriented Software. This book has been highly influential in the
realm of software development and is well known in the software engineering field.

In the first chapter of the book, the authors discuss object-oriented software development
from their own personal experience; this includes arguing how software developers should
program for an interface and not an implementation. This leads to code ultimately utilizing
central functions of object-oriented programming.

It is a common misconception that the book contains only four design patterns, this isn't
true; it covers 23 design patterns from three fundamental categories.

Let's cover what these categories are:

Creational
Structural
Behavioral

So let's break each one of these down.

Creational design patterns
Creational design patterns concern the creation of objects themselves. Basic instantiation of
classes without using a design pattern can result in needless complexity, but also in
significant design problems.

The main usage of Creational design patterns is to separate the instantiation of a class from
the usage of that instance. Failure to use Creational design patterns can mean your code is
harder to understand and test.

Dependency injection
Dependency injection is the process whereby you can actually input dependencies that
your application needs directly into the object itself.

John Munsch left an answer on Stack Overflow called Dependency injection for five year olds,
this answer was republished in the book Mark Seeman's Dependency Injection in .NET:

Why "Good PHP Developer" Isnt an Oxymoron

[28]

When you go and get things out of the refrigerator for yourself, you can
cause problems. You might leave the door open, you might get something
Mommy or Daddy doesn't want you to have. You might even be looking
for something we don't even have or which has expired.

What you should be doing is stating a need, “I need something to drink
with lunch,” and then we will make sure you have something when you
sit down to eat.

When writing a class, it's natural to use other dependencies; perhaps a database model
class. So with dependency injection, instead of a class having its database model created in
itself, you can create it outside that object and inject it in. In short, we separate our client's
behavior from our client's dependencies.

When thinking of dependency injection, let's outline the four separate roles involved:

The service to be injected
The client that depends on the service being injected
The interface that determines how the client can use the service
The injector that is responsible for instantiating the service and injecting it into
the client

Structural design patterns
Structural design patterns are fairly easy to explain, they act as interconnectors between
entities. It serves as a blueprint for how basic classes can be combined to form bigger
entities, all Structural design patterns involve the interconnections between objects.

Behavioral design patterns
Behavioral design patterns work to explain how objects interact with each other; how they
can send messages between each of the objects and how you can divide the steps of various
tasks up among classes.

Structural patterns describe the static architecture of a design; Behavioral patterns are more
fluid and describe a flowing process.

Why "Good PHP Developer" Isnt an Oxymoron

[29]

Architectural patterns
This is not strictly a design pattern (but the Gang of Four didn't cover Architectural patterns
in their book); but it is incredibly relevant for PHP developers due to the web-oriented
nature of PHP. Architectural patterns address various different constraints in computer
systems through addressing performance limitations, high availability, and also
minimization of business risk.

Most developers will be familiar with the Model-View-Controller architecture when it
comes to web frameworks, more recently other architectures have started to emerge; for
example, a microservices architecture works by a set of RESTful APIs that are independent
and interconnected. Some people believe microservices move problems from the software
development layer to the systems architecture layer. The opposite of microservices often
referred to as a monolithic architecture, is where all the code is together in one application.

Summary
In this chapter, we revised some PHP principles, including OOP principles. We also revised
some PHP syntax basics. We have seen how you can use Composer for dependency
management in PHP. In addition to this, we also discussed PSR standards and how you can
implement them in your own code to make your code more readable by others, and also
comply with some other important standards (be they autoloading or HTTP messaging).
Finally, we introduced design patterns and the Gang of Four with the history behind design
patterns.

2
Anti-Patterns

Here's where we start on anti-patterns; before you get your hopes up thinking I'm about to
tell you something amazing that will wonderfully streamline your code without using
design patterns, I won't be doing that here (did I mention I'm great at crushing hopes and
dreams?). Anti-patterns are, in short, things you don't want in your code.

Speaking of crushing hopes and dreams, should you ever have a junior developer, anti-
patterns are also a great way of teaching methodologies that should be equally avoided.
Learning anti-patterns also can boost the effectiveness of code reviews; instead of debating
code quality on the basis of personal opinions, you can have an external source to consult
on code quality.

Anti-patterns constitute a terrible method of resolving a recurring problem that is usually
ineffective and risks being highly counterproductive. They can then create technical debt as
developers must later struggle to refactor to resolve the initial problems but hopefully use a
more resilient design pattern.

We all have encountered Spaghetti Code; one contract developer I worked with exclaimed
to an ever more demanding product owner in the face of high technical debt: “There is so
much spaghetti I might as well open a restaurant!” Spaghetti Code is where the control
structure of a program is barely comprehensible as it is so tangled and over-complicated
and it may be described as an anti-pattern. One of the major criticisms in PHP 5.3.0 was the
implementation of goto operators in the language. Indeed, those critiquing their
implementation claimed goto operators would provide yet another excuse for more
Spaghetti Code in PHP.

Gotos were highly controversial in PHP, with someone even going as far to report it as a
bug, stating: “PHP 5.3 includes goto. This is a problem. Seriously, PHP has made it this far
without goto, why turn the language into a public menace?”

Anti-Patterns

[31]

In addition to this, the submitter of the bug report listed the expected result as: “the world
will end” and the actual result being “the world ended”. Despite this, goto operators in PHP
are heavily restricted so you can't just jump in and out of functions. Some people also argue
that they are useful in finite state machines (essentially something with a binary output
based on multiple inputs), but this is also controversial; so I shall allow you to make your
own judgments about them.

You may well have experienced copy and paste programming, where whole blocks of code
are copied and pasted in a program; this is yet another example of bad software design. In
reality, developers should be designing their software to create generic solutions to
problems instead of copying, refactoring, and pasting bits of code to fit a situation.

I will introduce this chapter with a section on why learning anti-patterns is important.
During this chapter, I will discuss not only traditional anti-pattern-related software
design but also anti-pattern-related web infrastructure and management styles. In addition
to this, I want to discuss some PHP-specific anti-patterns, or flaws in PHP, which you may
need to compensate for in your own code.

This book contains a dedicated chapter on refactoring towards the end; if the process of
refactoring is of interest to you, this chapter will help lay the foundations of the ideas you
might want to start thinking about; in addition to this, the chapters specific to design
patterns may help you realize the code you might be eventually aiming for. In the chapter
dedicated to refactoring, we will also cover some code smells, which can help you discover
anti-patterns in codebases you're maintaining.

Why anti-patterns matter
Most programmers come from a background of adopting some form of anti-pattern until
eventually realizing how it doesn't scale or doesn't work well. When I was 17 and in my
first job as an apprentice developer, I would be whisked down to London Monday-to-
Friday, somehow compressing my suit and my totally black clothing into a surprisingly
miniscule suitcase, and would learn about software development. On Fridays, we were
often released for a half-day at 12:00 but I would pre-book my company train tickets in the
afternoon so I would spend my time in fast-food restaurants or coffee shops working on
simple projects. Every week, when I came back and tried to scale one of these solutions I
would realize new scalability issues and code quality issues. Of course, I had done
development before, but these were largely dealing with either brand new incredibly short
programming tasks, using pre-made frameworks or dealing with legacy code where the
architecture had already been done (or, as I now realize, butchered with a severely blunt
knife). This learning process of scaling my own code was great; I rapidly taught myself how
to design software better. As humans, we often don't know enough about a topic to know

Anti-Patterns

[32]

how little we know (something incredibly true I've found with those who manage software
developers but has never written any code themselves); while bearing this in mind, we
should remember we are never above learning from our own mistakes. While this is
incredibly important, teaching ourselves documented anti-patterns is also vital in order to
learn from others mistakes.

I was once the technical lead and mentor for a developer who had the most down-right
brutal treatment from learning from his mistakes. In the first appraisal I had with this
developer, I was told by my HR counterpart that every time he'd made a mistake both the
previous technical and HR leads dragged him into a meeting room to go through a formal
disciplinary process. Both of these people had incredibly limited technical knowledge and
also were completely incompetent at managing developers (so much so that they were the
type of people who lived in their own bubble, clueless of how people worked in more
successful environments and largely stuck in dead-end careers without the knowledge to
ever do anything meaningful in their careers). By the time they left, this poor developers
confidence had been crushed to such a point that he had no real career ambition in web and
wasn't keen to learn. There's nothing wrong with being happy in your position. As a former
boss of mine once said after I told him something incredibly personal, “ultimately, all that
matters is that you're happy”. Yes, it takes a lot of people to make the world go round, but
as soon as you put yourself in a position where you are either mentoring or managing other
developers you have an obligation to keep yourself ahead of the game. If you are a
manager, you should know how to do your job effectively. The best people managers I've
had have been those that possess a wealth of knowledge, keeping up to date with the latest
and greatest in management methodologies the same way I like to keep up to date with the
latest and greatest in the PHP core and community. Throughout the course of writing this
book, my knowledge of project and people management has improved, but it still has a
long way to go, and therefore I'd not take a job with such line management responsibilities
without educating myself first. At the company I worked at, where there was effectively
bullying as a management strategy, I once mentioned this to the head of department who
responded by saying “we're not saying it's the best way of doing it”; if that's true, surely
something should be done to fix this, for the sake of the business! This wasn't true in the
entire business; other departments had a very different attitude, and indeed, the Technical
Director once gave a tech talk about this very topic and the importance of knowing that you
don't know. The CEO of the company started a similar conversation with me, saying how
he knew he didn't know. Old practices die hard, but at least they have started sailing on the
winds of change.

Anti-Patterns

[33]

So other than ranting (I do love a good rant), why am I talking about this? My point is that
your attitude matters. One of my favorite quotes on this subject is that “if you treat your
developers like idiots, they will soon become idiots”. Let me extend upon this by saying
this:

Bad performance in students is often a reflection of bad performance from
teachers.
Everyone makes mistakes, mistakes getting out control is the fault of idiotic
behavior from managers, not developers.
Idiots attract idiots. If you are an idiot in your body of subject knowledge, you
will in turn likely recruit more idiots.
If you operate a regime of fear in your workplace, you are an idiot and scared of
being found out.
If you don't know how little you know and you don't seek to effectively cure your
own ignorance, you are an idiot.
If you treat your developers like idiots, you are an idiot.

In short, learn how little you know and grow. It sounds brutal, but it's the truth. We are all
ignorant, we cannot know everything. Effectively utilizing our own knowledge in
association with the knowledge of others is vital to success. Recognizing our own ignorance
is key to this. For example, last year I decided that my knowledge in fundamental computer
science wasn't broad enough to cope with my own demand for it, or the demands of those I
mentored; therefore, I decided to go off and do a part-time master's degree in computer
science. The learning process has been great and taught me about fields in computer science
I didn't know existed before.

Some software developers use other people's work, and yes, WordPress or Drupal
development can give you a happy and productive career, but you will find the building
and architecting things for yourself to be a great learning experience. Having worked in a
traditional engineering environment, I have been won over to the view that a firm
theoretical background in computer science is hugely beneficial for software engineers.
Indeed, the body of knowledge required to understand the fundamentals of computer
science is actually quite easy to pick up. Of course, in many ways, I am preaching to the
converted; if you are reading this book you presumably understand the need for a deeper
theoretical computer science knowledge base, but please don't read this book and stop
actively learning. Continue to have a plan to progress your knowledge, seek to improve the
information stored in that piece of protein that resides in our skulls.

Anti-Patterns

[34]

It is often said that “in the land of the blind, the one-eyed man is king“; smaller development
teams may often lack the basics when it comes to good software development (perhaps out
of lack of necessity), and indeed, some larger development environments who become stuck
in the past may end up in the same situation. In this regard, knowledge just becomes more
precious and it becomes equally important for developers to be educated about software
development.

Anti-patterns aren't just something your team can be taught to avoid; good software
development needs a firm understanding of not only the programming language but also a
theoretical understanding of software development is key.

Finally, let me just steal this quote from an article on SourceMaking:

“Architecture-driven software development is the most effective approach to building
systems. Architecture-driven approaches are superior to requirements-driven, document-
driven, and methodology-driven approaches. Projects often succeed in spite of
methodology, not because of it.”

Rant(s) over. Let's cover some anti-patterns.

Not invented here syndrome
Cryptography can teach us a very important lesson about software; this is especially true
about Kerckhoffs's principle. The principle states this:

“A cryptosystem should be secure even if everything about the system, except the key, is
public knowledge.”

This was reformulated by Claude Shannon in a form known as Shannon's Maxim:

“One ought to design systems under the assumption that the enemy will immediately gain
full familiarity with them”.

In layman's terms, in order to have a secure system, it shouldn't be secure just because no
one knows how it's been implemented (“security through obscurity”). If you were to secure
your money through obscurity, you'd bury it under a tree and hope no one would find it.
Whereas, when you use a real security mechanism, such as putting your money in a safe in
a bank, you can have every detail about the security system as public information, but
providing the security system is truly secure, you would really only have to keep the key to
the safe secret and every other detail could be public knowledge. If someone was to find the
key to your safe, you only need change the combination, whereas if someone actually found
where your money was buried under a tree, you would actually have to dig up the money

Anti-Patterns

[35]

and find somewhere else to put it.

Security that is only done through obscurity is a bad idea (that said, it's not always a bad
idea). As you may be aware, when you store a password in a database you should use a
one-way cryptographic algorithm known as a hashing algorithm to ensure that if the
database is stolen no one can ever use the data in the database to find the user's original
password. Of course, in reality, you shouldn't just hash a password, you should salt it and
use an algorithm such as PBKDF2 or BCrypt, but this book isn't about password security.

The reality of the situation, however, is that sometimes, when developers actually do bother
to hash passwords, they decide to create their own password hashing functions, functions
that are easily reversible and are only secured by the obscurity of someone not knowing the
algorithm. This is a perfect example of not invented here (NIH) syndrome; instead of a
developer using a well-created password hashing library that is highly respected, they
decide to create their own, pretending they are a cryptographer without understanding the
security implications of such a decision.

Thankfully, PHP now makes it painlessly easy to hash your passwords; the
password_hash function and password_verify function make this really easy with the
password_needs_rehash function even telling you when the hash needs to be
recalculated. Nevertheless, I digress.

So what actually is NIH syndrome? NIH syndrome is where a false sense of pride in an
organization or individual developers own ability leads them to build their own solution
instead of adopting superior third-party solutions. Reinventing the wheel isn't only costly,
unnecessary, and can add needless overhead in maintenance; it can also be horribly
insecure.

That said, where solutions are closed source and locked down, then it might be a good idea
to avoid them. Doing so would also avoid vendor lock-in and restrictions on business
flexibility.

NIH syndrome relies on the existing solutions being good and living up to expectations.
Using third-party libraries is no excuse not to review their code quality.

Contributing to open source solutions is a great way to alleviate these issues. Room for
improvement on an existing library? Fork it, propose an amendment to be merged in. No
library that does the functionality you're after? Then you might want to consider writing
your own library and publishing it.

Anti-Patterns

[36]

I will finish this section by saying that the world has become heterogeneous; people are no
longer looking for one technology stack to answer all their prayers; people are nowadays
after the best tool for the job. It's worth thinking how you can utilize this fact for your own
benefit.

Third-party dependencies with Composer
Composer makes it really easy to manage third-party dependencies. In Chapter 1, Why
“Good PHP Developer” Isn't an Oxymoron, I briefly described how you can use Composer for
autoloading. Big deal, autoloading has been supported as a core function since PHP 5.1.2,
but the great thing about Composer is that you can also use it for dependency management.
Composer can effectively go and fetch the dependencies you need using the version
constraints you specify.

Let's start off the with the following composer.json file:

{
 "autoload": {
 "psr-4": {
 "IcyApril\\ChapterOne": "src/"
 }
 }
}

So let's pull in a dependency:

{
 "autoload": {
 "psr-4": {
 "IcyApril\\ChapterOne": "src/"
 }
 },
 "require": {
 "guzzlehttp/guzzle": "^6.1"
 }
}

Note that all we've done is add a require parameter where we specify which software we
want. No manually pasting files into your project or root, or using sub-modules in Git, for
that matter!

In this case, we pulled in Guzzle, an HTTP library for PHP.

Anti-Patterns

[37]

Composer by default queries repositories from a central repository called Packergist, which
aggregates packages you can install from their various version control systems (such as
GitHub, BitBucket, or another repository host). If you like, Packergist acts as a kind of
phone book that connects the requests for packages from Composer to code repositories.

That said, it's not just Packergist repositories that Composer supports. In the spirit of being
open source, it supports repositories from a range of VCS systems (such as Git/SVN)
regardless of where they are hosted.

Let's take the followingcomposer.json file:

{
 "autoload": {
 "psr-4": {
 "IcyApril\\ChapterTwo": "src/"
 }
 }
}

Let me demonstrate how you can include a repository from BitBucket without it being on
Packergist:

{
 "autoload": {
 "psr-4": {
 "IcyApril\\ChapterOne": "src/"
 }
 },
 "require": {
 "IcyApril/my-private-repo": "dev-master"
 },
 "repositories": [
 {
 "type": "vcs",
 "url": "git@bitbucket.org:IcyApril/my-private-repo.git"
 }
]
}

It's that easy! You literally just specify the repository you want to pull in from and
Composer does the rest. It's just as easy with other version control systems:

{
 "autoload": {
 "psr-4": {
 "IcyApril\\ChapterOne": "src/"
 }

Anti-Patterns

[38]

 },
 "require": {
 "IcyApril/myLibrary": "@dev"
 },
 "repositories": [
 {
 "type": "vcs",
 "url": "http://svn.example.com/path/to/myLibrary"
 }
]
}

Rather cheekily, Composer can even support PEAR PHP repositories:

{
 "autoload": {
 "psr-4": {
 "IcyApril\\ChapterOne": "src/"
 }
 },
 "require": {
 "pear-pear2.php.net/PEAR2_Text_Markdown": "*",
 "pear-pear2/PEAR2_HTTP_Request": "*"
 },
 "repositories": [
 {
 "type": "pear",
 "url": "https://pear2.php.net"
 }
]
}

In order to update the dependencies after you've made changes to your composer.json
file, just run composer update.

Note that you can't update external dependencies using just composer dump-autoload.
The reason for this is that dump-autoload will solely update the class map of your
autoloader. It will essentially update the list of classes it needs to autoload; it won't go and
pull in new dependencies.

Anti-Patterns

[39]

Occasionally, when using Composer and pulling in dependencies, Git may say you need to
generate a GitHub authentication key. This is because if you have Git installed on your local
machine, Composer will go ahead and pull in dependencies by cloning then via a version
control system; however, occasionally, if it's clinging repositories from GitHub, you might
come up against its rate limit. If this happens there is no need to panic. Composer will give
you instructions on how to actually go ahead and get an API key so you can proceed
without rate limiting.

An easy way to get around this issue is simply to generate a local SSH key and then put
your public key into your GitHub account. That way, when you clone from GitHub to your
local machine you won't face any rate limitations and you won't need to bother setting up
an API key either.

In order to generate an SSH key on a Linux/Mac OS X machine, you can just use run the
ssh-keygen command, which will create a public and private key you can use for SSH
authentication, including with Github or BitBucket. These keys will (usually) be stored in
the ~/.ssh directory, noting the tilde (~ represents your home directory). Therefore, in
order to get your key printed out into your Terminal window, run the cat
~/.ssh/id_rsa.pub command. Note that the .pub suffix indicates that id_rsa.pub is
your public key that you can publically share. You must not share your private key, which
is usually named just id_rsa. On Windows, you can use a GUI tool known as PuttyGen to
generate public and private keys.

Once you've got your public and private keys, you can simply put them in GitHub by
visiting the GitHub website and going to the SSH Keys page in the settings menu, paste in
your key, and save it.

For subsequent updates, composer update will update to the latest versions of all
dependencies as defined in composer.json. If you don't want to do this, though, there is
an alternative; running Composer dump-autoload will solely regenerate the list of the
PSR-0/PSR-4 classes that need to be included in the project (for example, you add, delete, or
rename some of your classes).

Composer also supports private repositories, allowing you to effectively manage code reuse
across multiple projects. Another key benefit is how Composer automatically generates a
lock file that you can commit in with your projects. This allows you to effectively manage
exactly which precise version of a dependency was installed at a particular point in time
when you make a commit using your version control system.

Anti-Patterns

[40]

Composer makes it easy and effective to manage third-party dependencies. Some crucial
libraries are already available via Composer, such as PHPUnit, but there are also some
other great libraries to make your life easier. Two of my favorite database libraries on
Composer are Eloquent (a database ORM system from Laravel that you can find at
illuminate/database) and Phinx (a database migration/seeding system that you can find
at robmorgan/phinx). In addition to this, there are some great SDKs for various APIs that
are available from Packergist (Google publishes some of its SDKs, and there are also some
more specific ones, such as the Twilio SDK for sending SMS messages from your PHP app).

Composer allows you to specify dependencies for particular environments; suppose you
only want to pull in PHPUnit on your development environments…that's not a problem!

God objects
God objects are a tempting consequence of bad software design and also badly
implemented object orientation.

Essentially, a God object is an object with either too many methods or too many properties;
essentially, it's a class that knows too much or does too much. The God object soon becomes
tightly coupled to (referenced by) lots of other bits of code in the application.

So what's actually wrong with this? Well, in short, when you have one bit of code tied into
every single other bit of code, you quickly find a maintenance disaster. If you adjust the
logic for a method in a God object for one use case, you might find it having unintended
consequences for another element.

In computer science, it is often a good idea to adopt a divide and conquer strategy. Often,
big problems are just a set of little problems. By solving this set of little problems you can
rapidly solve the overall problem. Objects should typically be self-contained; they should
only know problems about themselves and also should only solve one set of problems, its
own problems. Anything that isn't relevant to this aim doesn't belong in that class.

It can be argued that objects relating to physical objects should be instantiated, while those
that don't should be abstract classes.

Anti-Patterns

[41]

The flip side to God objects being an anti-pattern is when developing embedded systems.
Embedded systems are used to process data on anything from a calculator to LED signage;
they are small chips that are essentially self-contained computers and quite low cost. In this
use case, with restricted computational power you can often find that programming
elegance and maintainability become peripheral concerns. Slight performance increase and
centralization of control can be more important, meaning using God objects can be
somewhat sensible. Fortunately, PHP is incredibly seldom used to program embedded
systems, so you are incredibly unlikely to find yourself in this particular situation.

The most effective way of dealing with these classes is to split them into separate classes
manually.

Another anti-pattern, called Fear of Adding Classes, can also play a part in this, along with
failing to mitigating it. This is where developers are reluctant to create necessary classes.

So, here's an example of a God class:

<?php
class God
{
 public function getTime(): int
 {
 return time();
 }

 public function getYesterdayDate(): string
 {
 return date("F j, Y", time() - 60 * 60 * 24);
 }

 public function getDaysInMonth(): int
 {
 return cal_days_in_month(CAL_GREGORIAN, date('m'), date('Y'));
 }

 public function isCacheWritable(): bool
 {
 return is_writable(CACHE_FILE);
 }

 public function writeToCache($data): bool
 {
 return (file_put_contents(CACHE_FILE, $data) !== false);
 }

 public function whatIsThisClass(): string
 {

Anti-Patterns

[42]

 return "Pure technical debt in the form of a God Class.";
 }
}

So, as you can see that in this class, we've basically combined lots of irrelevant methods. In
order to fix this, we can split this class up into two sub-classes, one being a Watch class and
the other being a CacheManager class.

Here is the Watch class; this class is simply intended to show us the time in various
formats:

<?php

class Watch
{
 public function getTime(): int
 {
 return time();
 }

 public function getYesterdayDate(): string
 {
 return date("F j, Y", time() - 60 * 60 * 24);
 }

 public function getDaysInMonth(): int
 {
 return cal_days_in_month(CAL_GREGORIAN, date('m'), date('Y'));
 }
}

And here is the CacheManager class; this class separates all the cache's functionality so it is
entirely separate from the Watch class:

<?php
class CacheManager
{
 public function isCacheWritable(): bool
 {
 return is_writable(CACHE_FILE);
 }

 public function writeToCache($data): bool
 {
 return (file_put_contents(CACHE_FILE, $data) !== false);
 }
}

Anti-Patterns

[43]

Environment variables in PHP source
Far too often you come across a project on GitHub and you notice that the original
developer has left in a config.php file that contains (in the best case) useless database
information or (in the worst case) incredibly important API keys.

When these files aren't accidentally versioned they are often shoved in a .gitignore file
with a sample file attached for developers to amend as they need. One example of a
platform that does this is WordPress.

There are some minor improvements to this, such as putting core configuration in an XML
file that is buried in some obscure document with plenty of irrelevant configuration.

I've found that there tend to be two good ways of managing environment variables in PHP.
The first method involves putting them in a file on your root folder in a format such as
YML and reading these variables as required.

The second way, which I personally prefer, is a method implemented by a library known as
dotenv. Essentially, what happens is there is a .env file is created and put in the room of
your project. In order to read configuration from this file, you just need to call the env()
function. You can then add this file to your .gitignore file so that when you push from
your development environment and pull to various other server configurations this process
is made easier. In addition to this, you can specify environment variables at the web server
level, thus ensuring an additional level of security and also making management far easier.

So, for example, if my .env file had a DB_HOST property, then I can access it using
env('DB_HOST');.

If you do go down the dotenv route, be sure to make sure that your .env is not publically
visible from the document root. Either keep it out of your public HTTP directory (for
example, in the level above), or restrict access to it at a web server level (for example,
restrict permissions, or if you're using Apache, use your .htaccess file to limit access to it).

At the time of writing, you can require this library by simply running the following
command:

composer require vlucas/phpdotenv

Soft Code may often also be an anti-pattern that is adopted by using configuration files.
This is where you start putting business logic in configuration files instead of source code;
therefore, it is worth reminding yourself to consider when something really needs to be
configuration oriented.

Anti-Patterns

[44]

Singletons (and why you should be using
dependency injection)
Singletons are classes which can only be instantiated once. You can effectively only have
one object per Singleton class in an application. If you've never heard of Singletons before
you may jump into the air thinking “Yes! I have a million and one use cases for this!” Well,
please don't. Singletons are just terrible and can be effectively avoided.

So, a Singleton class in PHP looks something like this:

<?php

class Singleton
{

 private static $instance;

 public static function getInstance()
 {
 if (null === static::$instance) {
 static::$instance = new static();
 }

 return static::$instance;
 }

 protected function __construct()
 {
 }

 private function __clone()
 {
 }

 private function __wakeup()
 {
 }
}

Anti-Patterns

[45]

So here are the reasons why this should be avoided:

They are inherently tightly coupled meaning they are difficult to test, for example
using unit tests. They even maintain their state throughout the life cycle of the
application.
They violate the Single Responsibility Principle by controlling their own creation
and life cycle.
Fundamentally, it results in you hiding the dependencies of your application in a
global instance. You can no longer effectively follow your dependencies around
your code as you can't follow where they are injected as function arguments.
They make it ineffective to find the dependency chain should you need to
analyze it.

That said, some people argue they can be a valid solution to resource contention (where you
need to only have a single instance of a resource and you need to manage that single
resource).

Dependency injection
Dependency injection is the antidote to Singletons. So, suppose you have a class that is
called Transaction. As a constructor of the class, it accepts parameters called
$creditCardNumber and $clientID, so therefore we can construct the object as follows:

$order = new Transaction('1234 5678 9012 3456', 26);

Using dependency injection, we would instead pass in objects of $creditCard and
$client which would be instances of classes for the credit card and client. If you are using
an ORM, this could be a database model class:

$order = new Transaction($clientCreditCard, $client);

Database as IPC
At the time of writing, I'm currently over the Atlantic, on my way from London to San
Francisco, which is probably a good thing as it means my neck is decisively out of the reach
of some previous developers I've worked with.

Anti-Patterns

[46]

Let me clear this up for you; your database isn't a message queuing system. You don't use it
schedule jobs or queue up tasks to be completed. If you need something to do that, use a
queuing system. Your database is for data…the clue is in the name; don't shove temporary
messages in there.

There are many reasons why this is a bad idea. One major issue is the fact that in databases
there is no real way to not enforce a policy by which you can guarantee that a double-read
will not occur, and that is by utilizing row locks. This in turn, results in processes (either
incoming out outgoing) being blocked, which in turn results in processing only being able
to be done in a serial fashion.

Furthermore, in order to check if there is any work to do you end up essentially counting
the rows of data in the database to see if there is work to do; you run this on a continuous
basis. MySQL doesn't support push notifications; unlike PostgreSQL it doesn't have the
NOTIFY command to pair with a LISTEN channel.

Also note that when you merge a job queue with a database table that stores real data, you
also invalidate the cache every time you complete a job and update a flag, in turn making
MySQL far slower.

In short, it results in your database performing worse and can force it to slow critical
messages to a standstill. You must be careful not to turn your database into a job queue by
having this functionality sneak up on you; instead, use the database exclusively for data,
and bear this in mind when extending your database.

RabbitMQ provides an open source queuing system with some great PHP SDKs.

Auto-increment database IDs
Database auto-increment is something I find incredibly frustrating; pretty much every
PHP/MySQL beginner tutorial teaches people to do this, but you really shouldn't.

I have got experience trying to shard auto-increment database IDs, and it's messy. Let's
suppose you shard the database so the dataset over two database servers…how on earth
can you expect someone to scale auto-increment IDs?

MySQL now even features a UUID function, allowing you to generate good IDs with strong
entropy, meaning it also features a higher theoretical limit than auto-increment triggers on
tables with an int data type.

In order to use the UUID function, the database table should ideally be a CHAR(20).

Anti-Patterns

[47]

Cronjob imitating service
This one is a personal hatred of mine. A developer needs a service to run indefinitely, so
they just enable a cronjob that never ends, or simply have a cronjob that operates incredibly
frequently (such as once every few seconds).

A cronjob is a scheduled job that will run at a predetermined time. It's not something that
operates services for you. Not only is this messy from an architectural perspective, but it
scales horribly and becomes terrible to monitor.

A constantly processing task should be treated as a daemon and not as something that runs
on the basis of a cronjob.

Monit is a tool in Linux systems that allows you to imitate services.

You can install Monit using the apt-get command:

sudo apt-get install monit

Once Monit is installed, you can add processes to its configuration file:

sudo nano /etc/monit/monitrc

Monit can then be started by running the monit command. It also has a status command
so you can verify it is still running:

monit
monit status

You can learn more about Monit and find out how to configure it at h t t p : / / w w w . m m o n i t . c o

m. It is a highly valuable tool for every DevOps focused developer to have in their armory.

Software in place of architecture
Often, developers will seek to rectify a system's architectural issues at the software
development level. While this has use cases, I am a huge fan of seeking to avoid this
practice where it is not necessary. Moving issues from the software architecture layer to the
infrastructure layer has its advantages.

http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com
http://www.mmonit.com

Anti-Patterns

[48]

For example, suppose you need to proxy a request for a particular URL endpoint off to
another server. I believe this is best done at the web server level as opposed to writing a
PHP proxy script. Apache and Nginx can both handle reverse proxying, but writing a
library to do this may mean you come up against several unheard issues. Have you thought
you that you'll handle HTTP PUT/DELETE requests? What about error handling? Assuming
you nail your library, what about performance? Can a PHP proxy script really be faster than
a web server level proxy, utilizing a web server written in a low-level systems engineering
language? Surely one or two lines in your web server configuration is far easier to
implement that an entire proxy script in PHP?

Here's an example of just how easy it is to create a proxy in a VirtualHost. The following
configuration as an Apache VirtualHost will allow you to reroute everything from
test.local/api to api.local (it's even easier in Nginx):

<VirtualHost *:80>
 ServerName test.local
 DocumentRoot /var/www/html/
 ProxyPass /api http://api.local
 ProxyPassReverse /api http://api.local
</VirtualHost>

This is far easier to maintain than thousands of lines of code in a PHP library that imitates
something that is already available in the ProxyPass Apache module.

I've heard a criticism of microservices that they seek to move problems from the software
development layer to the infrastructure layer, but are we really saying that that's always a
bad thing?

Yes, software developers have a vested interest in doing things at the software development
layer, but it is often worth educating yourself about the functionality you have available
higher up the chain and seeing if that can rectify any issues you are having.

Think in terms of Occam's razor: the shortest solution is often the best, as it is translated
literally “more things should not be used than are necessary.”

Anti-Patterns

[49]

Interface Bloat
I have come across multiple instances of people thinking they're doing great architecture
but it turns out their efforts turn out to be counterproductive. Interface Bloat is a common
consequence of this.

Once, when I discussed the importance of Interfaces when doing polymorphism in PHP
with a Scrum Master, he responded by telling me about an environment he once worked in
where there was an engineer who spent months developing interfaces and thought he was
doing brilliant architecture work. Unfortunately, it turns out he wasn't doing great
infrastructure work, he was guilty of implementing Interface Bloat.

Interface Bloat is, as the name suggests, is where an Interface is excessively bloated. An
interface can be so bloated that it becomes practically impossible for a class to be
implemented any other way.

Interfaces should be used sparingly; do you actually need an interface if the class is only
ever going to be implemented once and once alone (and realistically, no one is never going
to need to tamper with such code?). If so, you might want to consider avoiding an interface
in such a situation.

Interfaces should not be used as a means of testing unit functionality. In that situation you
really should be using unit testing, for example, via PHPUnit. Even so, unit testing should
test how a unit functions as opposed to being used as a tool to ensure no one edits your
code.

So, let me draw you to one implementation of Interface Bloat. Let's take a look at the
Pheanstalk interface class in the Pheanstalk open source library (note I have stripped the
comments to make it more readable):

<?php

namespace Pheanstalk;

interface PheanstalkInterface
{
 const DEFAULT_PORT = 11300;
 const DEFAULT_DELAY = 0;
 const DEFAULT_PRIORITY = 1024;
 const DEFAULT_TTR = 60;
 const DEFAULT_TUBE = 'default';
 public function setConnection(Connection $connection);
 public function getConnection();
 public function bury($job, $priority = self::DEFAULT_PRIORITY);
 public function delete($job);

Anti-Patterns

[50]

 public function ignore($tube);
 public function kick($max);
 public function kickJob($job);
 public function listTubes();
 public function listTubesWatched($askServer = false);
 public function listTubeUsed($askServer = false);
 public function pauseTube($tube, $delay);
 public function resumeTube($tube);
 public function peek($jobId);
 public function peekReady($tube = null);
 public function peekDelayed($tube = null);
 public function peekBuried($tube = null);
 public function put($data, $priority = self::DEFAULT_PRIORITY, $delay =
self::DEFAULT_DELAY, $ttr = self::DEFAULT_TTR);
 public function putInTube($tube, $data, $priority =
self::DEFAULT_PRIORITY, $delay = self::DEFAULT_DELAY, $ttr =
self::DEFAULT_TTR);
 public function release($job, $priority = self::DEFAULT_PRIORITY,
$delay = self::DEFAULT_DELAY);
 public function reserve($timeout = null);
 public function reserveFromTube($tube, $timeout = null);
 public function statsJob($job);
 public function statsTube($tube);
 public function stats();
 public function touch($job);
 public function useTube($tube);
 public function watch($tube);
 public function watchOnly($tube);
}

Yuck! Notice how even constants have been put in the implement, the one thing you might
actually want to change. Clearly, this is an interface for a class that can only be
implemented one way, making the Interface useless.

Interfaces provide a great degree of structure when writing object-oriented code; once
implemented, they act as the guarantor that the methods in an interface have been
implemented in a class that implements it.

However, like most good things, it can be a double-edged sword. Someone once gave me an
incredibly naive argument against architecture design; they cited one of their previous co-
workers who spent months simply writing incredibly detailed Interfaces and thought it was
great architecture. In fact, he was committing Interface Bloat.

Interfaces should not be a way of enforcing implementation; indeed, there are examples of
interfaces that result in someone being faced with the problem of not ever actually being
able to implement an interface into a class any other way.

Anti-Patterns

[51]

Interfaces shouldn't contain thousands of methods that reference internal operations of the
class. They should be lightweight and considered a way of guaranteeing that when
something is queried that it is definitely there.

There is an anti-pattern known as the swiss army knife (or kitchen sink) around the idea
that people try to design interfaces to fit every possible use case of a class. This can cause
debugging, documentation and maintenance difficulties.

Cart before the horse
Like most developers, I occasionally get bemused by some project management strategies;
putting the cart before the horse is no exception.

Putting the cart before the horse is an anti-pattern under which features that never need to
be built are architected, thus wasting time. The particular setting this annoys me is in
technical meetings discussing a long-term technical plan where a project manager will
discuss a feature and immediately demand the technical details of how this feature could be
implemented.

Firstly, it's important to note that good developers should go away and have research time
to come up with a solution. A developer is only made stronger by the ability to research
their intended solution, to break out with their development team, to look online for other
people facing similar issues, and then to come back with a unified, well-architected
solution.

I spoke at the inaugural Lead Developer conference in London, and there was one quote
that stood out to me from listening to others talking at the event. It was reused from an
African proverb, but is especially true in software engineering contexts:

“If you want to go fast, go alone. If you want to go far, go together”.

Having spoken to managing directors and CEOs of various companies, they like to have a
broad balance of personalities on their board of directors. A chief financial officer (CFO)
may well be a ruthless perfectionist, only satisfied once all their figures are drop-dead
perfect, whereas a chief operations officer may well be a fierce pragmatist when it comes to
delivering on time. Such can be true in development teams; having a broad input of
specialisms and personalities proposing ideas that are battled out to come up with a well-
rounded solution can be beneficial for large decisions where a sole developer alone cannot
be expected to make the decisions. Yes, you might want a filter or even say that only a small
subsection of the development team may be relevant for one particular decision, but on the
whole, your developers need the resources and time to make architectural decisions.

Anti-Patterns

[52]

Furthermore, the best place to make such architectural decisions is when they are most
relevant, when it is necessary that they should be made.

Flat Earthers are people who believe that the earth is a flat disc. When confronted with the
concept of gravity, they instead claim gravity doesn't exist and state that this flat earth is
instead simply moving upwards in space at a speed of 9.8 m/s. Confronted with further
scientific theories they instead create their own illogically pieced together view of how the
physical universe exists. Of course, such a theory is ridiculous. My point here is that you
should base your decisions on sound computer science (e.g. published RFCs) instead of
creating your own computer science on an ad-hoc basis.

Separation of development and operations
I have encountered development environments where developers are expressly forbidden
from doing anything at all operational, where traditional development structure is
relentlessly battered by the 21st-century web environment. There were caged job roles; you
were either a developer or you looked after hosting. They had separate budgets, despite the
fact both departments had a clear common destiny.

The result of this kind of setup was that developers and operations technicians never shared
knowledge. By combining development and operations (DevOps, if you will) there is not
only an effective boost in the quality of the work delivered through a shared knowledge
base, but efficiency increases by empowering developers.

In the example I gave, when a site hosted on a company server was hacked or vandalized,
all operations would do was restore from a backup. Combining development efforts into
this mix not only resulted in vulnerabilities being patched, but also effective measures being
put into hosting environments to rectify these issues (be they brute-force plugins or web
application firewalls).

Excessive separation of development
responsibilities
Development responsibilities being split too blatantly can be detrimental to a team.

Some separation is necessary. For example, teams working with Internet of Things (IoT)
platforms cannot be expected to maintain a strong electronics engineering knowledge and a
strong frontend web development knowledge. That said, developers should be expected to
learn other skills they encounter and this can be assisted by encouraging knowledge

Anti-Patterns

[53]

sharing. Having multi-disciplined team members is not a business disadvantage, indeed it
is an advantage.

Error suppression operator
The error suppression operator in PHP is a very dangerous tool indeed. Simply by putting
an at symbol, @, in front of a statement, you can suppress any errors that result from it,
including fatal errors that stop the execution of a script.

Unfortunately, this cannot necessarily be deprecated yet in PHP; having spoken to those in
the PHP internals group, it is the case that there is a whole lot of prerequisite work that
would need to be done first as some PHP functions do not have companion error functions
to yield the error in the execution of a PHP script. As a result of this, the only way to show a
non-fatal error that does not necessarily stop the execution of a script is to catch the error
that is thrown during the operation of that particular function

The PHP core unfortunately, contains a considerable amount of technical debt in and of
itself. Unfortunately, one thing that a good PHP developer should be good at is spotting
technical debt in the PHP core itself. Indeed, Facebook tried to bypass this problem by
rewriting the PHP core themselves and calling it Hak; I shall leave you to decide on
whether you should consider adopting it or not.

One feature I have quite enjoyed in developing in Go (a systems language written by
Google) is the fact you can do multiple return types (for example, you can return two values
from one function). This has the added benefit of meaning that instead of having a
companion function that will return the error message you can simply return any errors in a
single function call.

Another thing I do like in Go is the fact that all warnings are treated as errors. You assign a
variable, then don't use it? The program will fail to run (unless you assign a variable to an
underscore, _, which is a null assignment operator meaning the variable will not be stored
anywhere). Treating warnings as errors has the result of meaning that when a developer
encounters an error, they know it's serious.

So yes, PHP can learn a lot from languages such as Go, but fundamentally, it is clear that
there is also a lot of work that already needs to be done on the PHP core, and in addition to
this, the PHP community may well need a culture shift to being more open and less
political. PHP RFC: Adopt Code Of Conduct proposed that PHP should adopt a Code of
Practice. Needless to say, if this is adopted in some form the PHP community should
benefit.

Anti-Patterns

[54]

Turning back to the issue at hand, error suppression operators should be avoided unless
strictly necessary in the interest of making debugging far easier for developers.

Blind faith
Once when I was around 11 years old I was sitting in a physics lesson with a limited
quantity of protractors and we were slowly passing them around in order to draw an angle.
Being the devious short cutter that I was at such a young age, I decided not to wait and just
trace a drawing someone else made. This was to the horror of my physics teacher at the
time who stopped dead in his tracks and shouted “NO! PHYSICS IS ABOUT ACCURACY!”

He had a point and this is something that is also very true in the programming world.

To avoid blind faith, you should be aware of the following mistakes:

Failure to check return types
Failure to check your data models
Assuming data within your database is correct or is in the format you expect it to
be

Let's take this to a more extreme level; take this code:

<?php

$isAdmin = false;
extract($_GET);

if ($isAdmin === true) {
 echo "Hey ".$name."; here, have some secret information!";
}

In the preceding code, there are two key mistakes. The first mistake is that we're directly
extracting GET variables; we're importing remotely defined variables into the current
symbol table, effectively allowing anyone to override any variables defined before the
extract.

Also, there is obviously an XSS vulnerability in that we are returning a GET variable without
sanitizing it.

So here's how we can make it better:

<?php

Anti-Patterns

[55]

$isAdmin = false;

if ($isAdmin === true) {
 echo "Hey ".htmlspecialchars($_GET['name'])."; here, have some secret
information!";
}

Sequential coupling
Sequential coupling is where you create a class that has methods that must be called in a
particular order. Method names that start with init, begin, or start may be indicative of
this behavior; this may be indicative of an anti-pattern depending on the context.
Sometimes, engineers use cars to explain abstract concepts, here I'll do the same.

For example, take the following class:

<?php

class BadCar
{
 private $started = false;
 private $speed = 0;

 private $topSpeed = 125;

 /**
 * Starts car.
 * @return bool
 */
 public function startCar(): bool
 {
 $this->started = true;

 return $this->started;
 }

 /**
 * Changes speed, increments by 1 if $accelerate is true, else decrease
by 1.
 * @param $accelerate
 * @return bool
 * @throws Exception
 */
 public function changeSpeed(bool $accelerate): bool
 {
 if ($this->started !== true) {

Anti-Patterns

[56]

 throw new Exception('Car not started.');
 }

 if ($accelerate == true) {
 if ($this->speed > $this->topSpeed) {
 return false;
 } else {
 $this->speed++;
 return true;
 }
 } else {
 if ($this->speed <= 0) {
 return false;
 } else {
 $this->speed--;
 return true;
 }
 }
 }

 /**
 * Stops car.
 * @return bool
 * @throws Exception
 */
 public function stopCar(): bool
 {
 if ($this->started !== true) {
 throw new Exception('Car not started.');
 }

 $this->started = false;

 return true;
 }
}

As you may note, we have to run the startCar function before we can use any of the other
functions, or an exception is thrown. Really, if you try to accelerate a car that is not started,
it shouldn't do anything, but for the sake of argument I've changed it so that the car will
simply start first. In the next example of stopping the car, I have changed the class so that
the method will return false if you try to stop the car without it running first:

<?php
class GoodCar
{
 private $started = false;

Anti-Patterns

[57]

 private $speed = 0;

 private $topSpeed = 125;

 /**
 * Starts car.
 * @return bool
 */
 public function startCar(): bool
 {
 $this->started = true;

 return $this->started;
 }

 /**
 * Changes speed, increments by 1 if $accelerate is true, else decrease
by 1.
 * @param bool $accelerate
 * @return bool
 */
 public function changeSpeed(bool $accelerate): bool
 {
 if ($this->started !== true) {
 $this->startCar();
 }

 if ($accelerate == true) {
 if ($this->speed > $this->topSpeed) {
 return false;
 } else {
 $this->speed++;
 return true;
 }
 } else {
 if ($this->speed <= 0) {
 return false;
 } else {
 $this->speed--;
 return true;
 }
 }
 }

 /**
 * Stops car.
 * @return bool
 */

Anti-Patterns

[58]

 public function stopCar(): bool
 {
 if ($this->started !== true) {
 return false;
 }

 $this->started = false;

 return true;
 }
}

The big rewrite
One temptation of developers is to rewrite an entire codebase. There are pros and cons for
you to decide, and yes, it is often harder to read existing code than it is to write new code;
but please do bear in mind that rewrites take time and can be hugely costly for your
business.

Always bear in mind that the sum of your technical debt from any one project can never be
greater than starting the project from scratch.

Maiz Lulkin wrote the following in a brilliant blog post:

“The problem of big rewrites is that they are a technical solution to a cultural problem.”

Big rewrites are horribly inefficient, especially when you simply cannot guarantee that
developers will know any better now. Architecting the new system and migrating the data
inside the deadlines can be a tall order.

In addition to this, deploying the big rewrite can be hugely problematic; deploying such a
change to the entire codebase of an application can be lethal. Try to deploy code regularly in
frequent intervals. Try to change one thing at a time.

Your software that exists is your existing specification. By building a rewrite, you are
building code on the basis of legacy code.

Fortunately, there is an alternative; rapidly improving your current code base in cycles.
There are three primary steps you can take to improve your code base:

Tests (unit tests, behavioral tests, and so on)
Service splitting
Perfectly staged migrations

Anti-Patterns

[59]

There is a chapter in this book dedicated to refactoring and how we can alter the design of
legacy code.

Automated tests
You need tests; yes, automated tests can be slow to write, but they are crucial for ensuring
things don't break when you rewrite or refactor them.

It is also mission-critical that your tests and development occur on an environment that is as
close to production as possible. Small changes in web server software or database
permissions can have disastrous consequences.

Using an automated deployment system such as Vagrant with Puppet or Docker can be a
great solution.

When doing unit tests with PHPUnit and Composer, you can just include it in your
composer.json file to pull it in:

{
 "autoload": {
 "psr-4": {
 "IcyApril\\Example": "src/"
 }
 },
 "require": {
 "illuminate/database": "*",
 "phpunit/phpunit": "*",
 "robmorgan/phinx": "*"
 }
}

In addition to this, a phpunit.xml file may also be useful so that PHPUnit knows where
the tests are, but also where the Composer autoloader is (so it can go ahead and pull in
classes):

<?xml version="1.0" encoding="UTF-8"?>
<phpunit colors="true" bootstrap="./vendor/autoload.php">
 <testsuites>
 <testsuite name="Application Test Suite">
 <directory>./tests/</directory>
 </testsuite>
 </testsuites>
</phpunit>

Anti-Patterns

[60]

You can then write tests as you normally would in PHPUnit, for example:

<?php
class App extends PHPUnit_Framework_TestCase
{
 public function testApp()
 {
$this->assertTrue(true);
 }
}

Except, of course, you have the added benefit of being able to pull in PHP classes in your
autoloader as you need them.

Not all tests need to be unit tests. Writing external test scripts to test APIs can be beneficial
too. A tool called Selenium (h t t p : / / w w w . s e l e n i u m h q . o r g) can even help you with
browser automation.

Service splitting
Splitting your monolith into small independent loosely coupled services is a great way to
reduce technical debt.

Large monolith applications which have technical debt rooting right into the core of the
application can be problematic to deal with. Building on top of such unstable foundations
can be tough to split up later. There is a solution, however; by building new functionality as
independent services you can effectively build on a new core with a stable foundation,
diverging from your old weak infrastructure. You can then intercommunicate this with the
old monolith and such new services using a RESTful structure.

This structure allows you to continue developing new functionality while migrating to a
new microservices architecture.

Martin Fowler proposed a system known as Branch by Abstraction, which allows you to
make the large-scale change to systems in a gradual way, which allows you to continue to
release while change is still being conducted.

The first step is to capture the interaction between one section of client code and its
supplier; we can then change that section of the code so it all inter-communicates via an
abstraction layer.

We then do this for interactions with the supplier. As we do this, we take the opportunity to
improve unit test coverage. Once a supplier isn't in use at all, we can migrate the clients
over to use the supplier instead and delete the old supplier.

http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.seleniumhq.org

Anti-Patterns

[61]

Perfectly staged migrations
Splitting your monolith into small independent loosely coupled services is a great way to
reduce technical debt, but in this process, you clearly add extra burden to the architectural
level.

When migrating data or hosting environments, you might come across difficulties in this
process. This is particularly true when the deployment process isn't repeated and is unique
for each deployment (such as in environments that don't use Continuous Integration).

Using container technology such as Docker can allow you to better perform rapid
application deployments, allowing you to deploy faster while also increasing portability
and simplifying maintenance. Some people may find other technologies, such as Vagrant,
more beneficial for them; regardless, there is a common factor in all these technologies:
infrastructure as code.

Infrastructure as code is the process of managing and provisioning computing
infrastructure through code instead of interactive configuration tools; however, what we are
after here is even more basic than this. What we want is to be able to stage and test
migrations of any kind before the fact and re-run the exact process when we perform the
migration.

By scripting migrations, you can test them beforehand just like code. You can be sure when
it's done on a live server instead of a staging server there's a reduced chance of any
mistakes.

In addition to this, the migrations can later be used to reverse engineer the process should a
factor in the deployment cause problems later, or so the justifications for decisions can be
seen. It essentially acts as an artifact for the software deployment process.

Where possible, as many resources as possible should be available during this process; this
includes those deploying the code, developers who put the project together, and in extreme
cases, a communications individual to keep clients up to date. Those resources allow rapid
debugging of those issues, but it is vital that an individual deploying the code takes the lead
and orchestrates when these resources are required in order to prevent distractions.

Working to a formal pre-planned routine, while also allowing room to correct any issues,
can often help make deployments as painless as possible.

Anti-Patterns

[62]

Tester-Driven Development
This is a tongue-in-cheek reference to Test-Driven Development (TDD). TDD is a software
development strategy largely revolving around using development tests to drive
implementation towards fulfilling the requirements.

Tester-Driven Development, however, is where the requirements are the shortcut and it
becomes the case that the software team starts specifying the requirements through bug
reports. Tester-Driven Development can also be referred to as Bug-Driven Development as
it essentially results in bug reports being used to specify actions and features that
developers should implement.

For example, a developer builds a tool to export data from a database to a spreadsheet. It
works perfectly, but a tester still comes back and raises a ticket saying that there is a bug in
the product; they say that it doesn't contain the ability to export to PDF. If this wasn't in the
requirements it shouldn't be raised as a bug. And yes, you should have requirements.

QA teams and testers exist to verify that software meets the requirements. They do not exist
to specify the requirements themselves.

Bloated optimization
Often, developers may trip over themselves trying to optimize their code or their design
artifacts to a ridiculous extent, often before their code even performs basic functions, or
even before any code has been created at all. This can rapidly perform issues in production.

In this section, I wish to discuss three anti-patterns specifically relating to this topic:

Analysis paralysis
Bikeshedding
Premature optimization

Anti-Patterns

[63]

Analysis paralysis
In short, this is where a strategy is over-analyzed to the point where progress is slowed
down, or even stopped entirely in extreme cases. Not only can such solutions become
obsolete rapidly, they can be made in under-educated circumstances, for example, in a
meeting where an over-analytic boss tries to dig too deep into detail in advance without
allowing their developers to actually do some research.

Over-analyzing a problem and seeking a perfect solution upfront just does not work;
programmers should seek to refine their solution, not come up with the refined solution up
front.

Bikeshedding
Essentially, this is where analysis paralysis can occur on the basis of some very trivial
decisions, for example, the color of a log in page. The only fix that's required is to not waste
time on trivial decisions. Avoid design by committee where possible as the majority of
people, regardless of how good they think their design skills are, are largely incompetent at
design.

Premature optimization
In this section, so far, I've largely beaten up project managers; no time to beat up
developers. Often, developers will seek to optimize their code prematurely without having
educated data-led conclusions to drive where and when optimizations should be made.

Writing clean and readable code is your first priority; then you can use some great profiling
tools to determine where your bottlenecks are. XDebug and New Relic are just some of the
tools that are good at this.

That said, there are some cases where optimization must be done, particularly on some long
computational tasks where it can be mission-critical to reduce something from O(N2) time
to O(N). This said, most simple PHP web apps will have no real need to use this
consideration.

Anti-Patterns

[64]

Uneducated manager syndrome
Has your manager ever built a web app themselves? I find that this is a fairly important
characteristic for a manager to have. The same way a junior doctor will report to a doctor
who has been through the process of being a junior doctor themselves, or a teacher will
report to a head teacher who themselves has been a teacher, a software developer should
report to someone who has been through that process themselves.

Obviously, in small teams (for example, a small design house that does web development
on the side), an engineering manager might not be strictly necessary. This works well where
managers do understand the need to defer decisions to the programmers where necessary.
However, as soon as things scale up, there needs to be structure.

Decisions such as who to hire, who to fire, how to address technical debt, which elements
need most focus, and so on, need to be taken by developers; in addition to this, they
sometimes mustn't be taken democratically because doing so would result in design by
committee. In this instance, an engineering manager is required.

In large scale teams, there should always be a developer who spends more than 90% of their
time not writing code.

I will take this a step further; a web engineering manager shouldn't just have a technical
background, they should have a web background. Developing a Java application developer
can be wholly different to building a PHP web application, and such an engineering
manager should accordingly have an understanding of such a discipline by having some
web experience (though it doesn't necessarily have to be in one particular language).

Wrong rocky foundations
The SensioLabs Insight tool was used to evaluate technical debt within various projects, and
they evaluated and published the responses. SensioLabs responded on their blog saying
that the results didn't account for project age or project size, but nevertheless it does show
the technical debt you're up against in using some frameworks as foundations:

Anti-Patterns

[65]

Don't get me wrong: WordPress is a great CMS; yes, it has some quirks in the core and
comes from the days before OOP, but it's a great blogging platform. You ordinarily
shouldn't be fiddling with it's core code, so you don't need to worry about it. By no means
should you write your own blogging platform or CMS, but at the same time, WordPress
isn't the right problem for building a marketing asset system or an insurance quote
generator (yes, both are real projects I have been asked to do in WordPress initially).

In short: use the best foundations for your task.

Long methods
Methods can be overly complicated in some instances with PHP; for example, in the
following class I have intentionally left out some meaningful comments and also made the
constructor excessively long:

<?php
class TaxiMeter
{
 const MIN_RATE = 2.50;
 const secondsInDay = 60 * 60 * 24;
 const MILE_RATE = 0.2;

Anti-Patterns

[66]

 private $timeOfDay;
 private $baseRate;
 private $miles;
 private $dob;

 /**
 * TaxiMeter constructor.
 * @param int $timeOfDay
 * @param float $baseRate
 * @param string $driverDateOfBirth
 * @throws Exception
 */
 public function __construct(int $timeOfDay, float $baseRate, string
$driverDateOfBirth)
 {
 if ($timeOfDay > self::SECONDS_IN_DAY) {
 throw new Exception('There can only be ' . self::SECONDS_IN_DAY . '
seconds in a day.');
 } else if ($timeOfDay < 0) {
 throw new Exception('Value cannot be negative.');
 } else {
 $this->timeOfDay = $timeOfDay;
 }

 if ($baseRate < self::MIN_RATE) {
 throw new Exception('Base rate below minimum.');
 } else {
 $this->baseRate = $baseRate;
 }

 $dateArr = explode('/', $driverDateOfBirth);
 if (count($dateArr) == 3) {
 if ((checkdate($dateArr[0], $dateArr[1], $dateArr[2])) !== true) {
 throw new Exception('Invalid date, please use mm/dd/yyyy.');
 }
 } else {
 throw new Exception('Invalid date formatting, please use simple
mm/dd/yyyy.');
 }
 $this->dob = $driverDateOfBirth;

 $this->miles = 0;

 }

 /**
 * @param int $miles

Anti-Patterns

[67]

 * @return bool
 */
 public function addMilage(int $miles): bool
 {
 $this->miles += $miles;
 return true;
 }

 /**
 * @return float
 * @throws Exception
 */
 public function getRate(): float
 {
 $dynamicRate = $this->miles * self::MILE_RATE;

 $totalRate = $dynamicRate + $this->baseRate;

 if (is_numeric($totalRate)) {
 return $totalRate;
 } else {
 throw new Exception('Invalid rate output.');
 }
 }
}

Now, let's make just two small changes; let's extract some of our methods into their own
functions and let's add some DocBlock comments. This is still by no means perfect, but note
the difference that is made:

<?php

class TaxiMeter
{
 const MIN_RATE = 2.50;
 const SECONDS_IN_DAY = 60 * 60 * 24;
 const MILE_RATE = 0.2;

 private $timeOfDay;
 private $baseRate;
 private $miles;

 /**
 * TaxiMeter constructor.
 * @param int $timeOfDay
 * @param float $baseRate
 * @param string $driverDateOfBirth
 * @throws Exception

Anti-Patterns

[68]

 */
 public function __construct(int $timeOfDay, float $baseRate, string
$driverDateOfBirth)
 {
 $this->setTimeOfDay($timeOfDay);

 $this->setBaseRate($baseRate);

 $this->validateDriverDateOfBirth($driverDateOfBirth);

 $this->miles = 0;

 }

 /**
 * Set timeOfDay class variable.
 * Only providing it doesn't exceed the maximum seconds in a day (const
secondsInDay) and is greater than 0.
 * @param $timeOfDay
 * @return bool
 * @throws Exception
 */
 private function setTimeOfDay($timeOfDay): bool
 {
 if ($timeOfDay > self::SECONDS_IN_DAY) {
 throw new Exception('There can only be ' . self::SECONDS_IN_DAY . '
seconds in a day.');
 } else if ($timeOfDay < 0) {
 throw new Exception('Value cannot be negative.');
 } else {
 $this->timeOfDay = $timeOfDay;
 return true;
 }
 }

 /**
 * Sets the base rate variable providing it's over the MIN_RATE class
constant.
 * @param $baseRate
 * @return bool
 * @throws Exception
 */
 private function setBaseRate($baseRate): bool
 {
 if ($baseRate < self::MIN_RATE) {
 throw new Exception('Base rate below minimum.');
 } else {
 $this->baseRate = $baseRate;

Anti-Patterns

[69]

 return true;
 }
 }

 /**
 * Validates
 * @param $driverDateOfBirth
 * @return bool
 * @throws Exception
 */
 private function validateDriverDateOfBirth($driverDateOfBirth): bool
 {
 $dateArr = explode('/', $driverDateOfBirth);
 if (count($dateArr) == 3) {
 if ((checkdate($dateArr[0], $dateArr[1], $dateArr[2])) !== true) {
 throw new Exception('Invalid date, please use mm/dd/yyyy.');
 }
 } else {
 throw new Exception('Invalid date formatting, please use simple
mm/dd/yyyy.');
 }

 return true;
 }

 /**
 * Adds given milage to the milage class variable.
 * @param int $miles
 * @return bool
 */
 public function addMilage(int $miles): bool
 {
 $this->miles += $miles;
 return true;
 }

 /**
 * Calculates rate of trip.
 * Times class constant mileRate against the current milage in miles
class variables and adds the base rate.
 * @return float
 * @throws Exception
 */
 public function getRate(): float
 {
 $dynamicRate = $this->miles * self::MILE_RATE;

 $totalRate = $dynamicRate + $this->baseRate;

Anti-Patterns

[70]

 if (is_numeric($totalRate)) {
 return $totalRate;
 } else {
 throw new Exception('Invalid rate output.');
 }
 }
}

Long methods are an indicator of code smell; they refer to a symptom in the code that may
have its origins in a deeper problem. Other examples include duplicate code and contrived
complexity (using advanced design patterns where a simpler approach would suffice).

Magic numbers
Note how in the preceding example I always put my constant numeric variables in class
constants, as opposed to directly putting them in the code itself:

 const minRate = 2.50;
 const secondsInDay = 60 * 60 * 24;
 const mileRate = 0.2;

The reason I did this was to avoid an anti-pattern known as magic numbers or unnamed
numerical constants. Using class constants makes code easier to read, understand, and
maintain; and of course, under the PSR standards, they should be declared in uppercase,
separated by underscores.

Summary
In this chapter we covered some fundamental anti-patterns for you to avoid; some were
architectural, some were PHP-related, and others were at the management layer.

Fundamentally, anti-patterns result in technical debt. By technical debt, we are talking
about code that is so hard to extend that it becomes harder to make changes to later on.

Here's a list of things I want you to do to fix this:

Plan before you start coding
Make comments, and add a comment where the purpose of your code isn't
immediately apparent
Make sure your code has structure
Try to avoid putting too much code in one method

Anti-Patterns

[71]

Use DocBlocking
Use common sense approaches to PHP

In this chapter, we have learned some common design issues that can lead to severe
problems; these principles can help you prevent sizable issues later on. Writing code to
scale is an important factor of design. At its core, this requires understanding the
constraints. Using proper strategies for inter-process communication can help your service
scale while writing loosely coupled code can increase code reuse and debugging. Finally,
when it comes to deploying this awesome code, automated testing and Perfectly Staged
Migrations can make sure this goes off without a hitch.

In the next chapters, we will move on to covering some design patterns (presumably, what
you've been waiting for).

If you are interested in learning about how to improve the design of an existing codebase,
you might find the dedicated chapter on refactoring in this book particularly interesting;
but it's worth reading up on the other design patterns first in order to gain an
understanding of the patterns we are trying to refactor towards.

3
Creational Design Patterns

Creational design patterns are one of the three types of design pattern commonly associated
with the Gang of Four; they are design patterns that concern object creation mechanisms.

Instantiating objects or basic class creation on their own, without controlling this process,
can result in design problems or simply add additional complexity to the process.

In this chapter, we will cover the following topics:

The software design process
Simple Factory
Factory Method
Abstract Factory pattern
Lazy initialization
Builder pattern
Prototype pattern

Before we learn about Creational design patterns, let's talk a little about the architectural
process.

Software design process
Software Engineering Body of Knowledge is a book published by the IEEE often known as the
SWEBoK, and it summarizes the generally accepted body of knowledge for the entire field
of software engineering.

Creational Design Patterns

[73]

In this book, it is stated that the definition of software design is as follows:

“The process of defining the architecture, components, interfaces, and other characteristics
of a system or component” and “the result of [that] process”.

Specifically, software design can be split into two levels of hierarchy:

Architectural design, describing how software is split into its composite
components
Detailed design, describing the specifics of each component in sufficient detail as
to describe its component.

A component is a part of a software solution, with interfaces reaching off the component as
both required interfaces (things the software requires to function) and provided interfaces
(things the software provides to other components).

These two design processes (Architectural design and Detailed design) should result in a set
of models and artifacts that record major decisions, with an explanation of why non-trivial
decisions have been made. In the future, developers may then readily reference these
documents in order to work out the rationale behind architectural decisions, making code
more maintainable by ensuring decisions are thought through, and that thought process is
passed down.

The first of these processes, Architectural design, can be fairly creative and engaging for an
entire group. The outcome of this process, however you choose to do it, should be a
component diagram that interconnects components together by their interfaces.

This process usually can favor groups of general developers instead of tiger teams. Tiger
teams are usually small groups of a specialist in a particular domain of product knowledge,
who come together in a time-boxed environment to address a particular issue under the
chairmanship of an architect. Often, especially where legacy is involved, such design efforts
may require a wide body of knowledge to extract the necessary architectural constraints.

This said, in order to prevent the process turning into the design by committee or mob rule
there are some ground rules that you might want to follow: have an architect chair the
meeting and work from the component level diagram without drilling any further. It often
helps to mock up a component diagram before the meeting and to edit it as needed in the
meeting itself, which helps ensure the team remains on track to correcting the diagram
without drilling into the hows.

Creational Design Patterns

[74]

In one environment I have been in, there was a very detailed engineer who was head of the
engineering team; he insisted on doing architecture by immediately drilling into the detail
of components, which would rapidly leave the process disintegrated and unorganized; he
would be starting meetings in meetings on the fly. Building component diagrams in these
architecture meetings proved vital in keeping order in the meetings and ensuring both
operational matters and Detailed design matters were not engaged with too early.
Operational matters of how and where something is hosted is not usually within the remit
of software engineering unless it directly has to alter how software is created.

The next step is Detailed design; this explains how a component is constructed. Design
patterns used in construction, class diagrams and the necessary external resources can all be
decided at this point. Some Detailed design work will be done at the construction level,
regardless of how good the design is, software developers will need to make minor changes
to the design to either add more detail or to flesh out some oversights in the architecture
process. The process that is prior to this design must simply specify the component in
sufficient detail to facilitate its construction and allow developers to not have to consider
the architecture in too much detail. Developers should be developing code from artifacts
that are closely related to the code (for example, Detailed designs) as opposed to coding
from high-level requirements, designs, or plans.

As an aside, let's remember that unit tests can form part of the design (for example, when
utilizing Test-Driven Development), with each unit test specifying a design element
(classes, methods, and specific behavior). While it simply isn't realistic (though some will
claim it is) to reverse engineer the code into the design artifacts; it is possible to represent
architecture as code, if you will; unit tests are one such way of achieving this.

As mentioned earlier in this book, design patterns provide a crucial role in software design;
they allow the design of more complicated bits of software without re-inventing the wheel.

Right; now to Creational design patterns.

Simple Factory
What is a factory? Let's imagine you order a new car; the dealer sends your order off to the
factory and the factory builds your car. Your car is sent to you in its assembled form and
you don't need to care about how it was made.

Creational Design Patterns

[75]

Similarly, a software factory produces objects for you. The factory takes your request,
assembles the object using the constructor and gives them back to you to use. One of these
types of Factory pattern is known as the Simple Factory. Let me show you how it works.

Firstly, we define an abstract class, which we want to extend with other classes:

<?php

abstract class Notifier
{
 protected $to;

 public function __construct(string $to)
 {
 $this->to = $to;
 }

 abstract public function validateTo(): bool;

 abstract public function sendNotification(): string;

}

This class serves to allow us to have common methods and define whatever common
functionality we want all the classes we build in our factory to have in common. We could
also use interfaces instead of abstract classes for the implementation without defining any
functionality whatsoever.

Using this interface, we can build two notifiers, SMS and Email.

The SMS notifier is as follows in the SMS.php file:

<?php

class SMS extends Notifier
{
 public function validateTo(): bool
 {
 $pattern = '/^(\+44\s?7\d{3}|\(?07\d{3}\)?)\s?\d{3}\s?\d{3}$/';
 $isPhone = preg_match($pattern, $this->to);

 return $isPhone ? true : false;

 }

 public function sendNotification(): string
 {

Creational Design Patterns

[76]

 if ($this->validateTo() === false) {
 throw new Exception("Invalid phone number.");
 }

 $notificationType = get_class($this);
 return "This is a " . $notificationType . " to " . $this->to . ".";
 }
}

Similarly, let's put out Email notifier in the Email.php file:

<?php

class Email extends Notifier
{

 private $from;

 public function __construct($to, $from)
 {
 parent::__construct($to);

 if (isset($from)) {
 $this->from = $from;
 } else {
 $this->from = "Anonymous";
 }
 }

 public function validateTo(): bool
 {
 $isEmail = filter_var($this->to, FILTER_VALIDATE_EMAIL);

 return $isEmail ? true : false;

 }

 public function sendNotification(): string
 {
 if ($this->validateTo() === false) {
 throw new Exception("Invalid email address.");
 }

 $notificationType = get_class($this);
 return "This is a " . $notificationType . " to " . $this->to . " from "
. $this->from . ".";
 }
}

Creational Design Patterns

[77]

We can build our factory as follows:

<?php

class NotifierFactory
{
 public static function getNotifier($notifier, $to)
 {

 if (empty($notifier)) {
 throw new Exception("No notifier passed.");
 }

 switch ($notifier) {
 case 'SMS':
 return new SMS($to);
 break;
 case 'Email':
 return new Email($to, 'Junade');
 break;
 default:
 throw new Exception("Notifier invalid.");
 break;
 }
 }
}

While we would ordinarily use Composer to do autoloading, in order to demonstrate how
simple this method is, I will manually include the dependencies; so without further ado,
here's our demo:

<?php

require_once('Notifier.php');
require_once('NotifierFactory.php');

require_once('SMS.php');
$mobile = NotifierFactory::getNotifier("SMS", "07111111111");
echo $mobile->sendNotification();

require_once('Email.php');
$email = NotifierFactory::getNotifier("Email", "test@example.com");
echo $email->sendNotification();

Creational Design Patterns

[78]

We should get an output like this:

Factory Method
The Factory Method differs from the ordinary Simple Factory on the basis that instead of us
having one factory, we can have many.

So why would you want to do this? Well, in order to understand this, we must look to the
open/closed principle (OCP). Bertrand Meyer is usually associated with having originated
the term open/closed principle in his book, Object-oriented Software Construction. Meyer stated
the following:

“software entities (classes, modules, functions, etc.) should be open for extension, but closed
for modification”

Where a software entity needs to be extended, this should be possible without modifying its
source code. Those of you who are familiar with the SOLID (single responsibility, open-
closed, Liskov substitution, interface segregation and dependency inversion) principles
of object-oriented software may already have heard of this principle.

The Factory Method allows you to group certain classes together and deal with them by
means of an individual factory for a group of classes. If you want to add another group, you
can just add another factory.

So now, how do we do this? Well, essentially we are going to create an interface for each
factory (or an abstract method for that matter); we then implement that interface into any
other factories we want to build.

Creational Design Patterns

[79]

So let's clone our Simple Factory demo; what we're going to do is make our
NotifierFactory become an interface. Then we can rebuild factories to have one factory
for electronic notifications (e-mail or SMS) and we can then implement our interface to
create, say, a postal courier notifier factory.

So let's start off by creating the interface in the NotifierFactory.php file:

<?php

interface NotifierFactory
{
 public static function getNotifier($notifier, $to);
}

Now let's build our ElectronicNotifierFactory that implements our
NotifierFactory interface:

<?php

class ElectronicNotifierFactory implements NotifierFactory
{
 public static function getNotifier($notifier, $to)
 {

 if (empty($notifier)) {
 throw new Exception("No notifier passed.");
 }

 switch ($notifier) {
 case 'SMS':
 return new SMS($to);
 break;
 case 'Email':
 return new Email($to, 'Junade');
 break;
 default:
 throw new Exception("Notifier invalid.");
 break;
 }
 }
}

We can now refactor our index.php to use the new factory we have made:

<?php

require_once('Notifier.php');

Creational Design Patterns

[80]

require_once('NotifierFactory.php');
require_once('ElectronicNotifierFactory.php');

require_once('SMS.php');
$mobile = ElectronicNotifierFactory::getNotifier("SMS", "07111111111");
echo $mobile->sendNotification();

echo "\n";

require_once('Email.php');
$email = ElectronicNotifierFactory::getNotifier("Email",
"test@example.com");
echo $email->sendNotification();

This now gives the same output as before:

This is a SMS to 07111111111.
This is a Email to test@example.com from Junade.

However, the benefit now is that we can now add a new type of notifier without ever
needing to open the factory at all, so let's add a new notifier for postal communications:

<?php

class Post extends Notifier
{
 public function validateTo(): bool
 {
 $address = explode(',', $this->to);
 if (count($address) !== 2) {
 return false;
 }

 return true;
 }

 public function sendNotification(): string
 {

 if ($this->validateTo() === false) {
 throw new Exception("Invalid address.");
 }

 $notificationType = get_class($this);
 return "This is a " . $notificationType . " to " . $this->to . ".";
 }
}

Creational Design Patterns

[81]

Then we can introduce the CourierNotifierFactory:

<?php

class CourierNotifierFactory implements NotifierFactory
{
 public static function getNotifier($notifier, $to)
 {

 if (empty($notifier)) {
 throw new Exception("No notifier passed.");
 }

 switch ($notifier) {
 case 'Post':
 return new Post($to);
 break;
 default:
 throw new Exception("Notifier invalid.");
 break;
 }
 }
}

Finally, we can now amend our index.php file to include this new format:

<?php

require_once('Notifier.php');
require_once('NotifierFactory.php');
require_once('ElectronicNotifierFactory.php');

require_once('SMS.php');
$mobile = ElectronicNotifierFactory::getNotifier("SMS", "07111111111");
echo $mobile->sendNotification();

echo "\n";

require_once('Email.php');
$email = ElectronicNotifierFactory::getNotifier("Email",
"test@example.com");
echo $email->sendNotification();

echo "\n";

require_once('CourierNotifierFactory.php');

require_once('Post.php');

Creational Design Patterns

[82]

$post = CourierNotifierFactory::getNotifier("Post", "10 Downing Street,
SW1A 2AA");
echo $post->sendNotification();

The index.php file now yields this result:

In production, you would generally put your notifiers in a different namespace alongside
having your Factories in a different namespace.

Abstract Factory pattern
First, if you've done any background reading before approaching this book, you will have
heard the phrase concrete class. What does this mean? Well, simply put, it is the opposite of
an abstract class; it is a class you can instantiate to make an object.

An Abstract Factory consists of the following classes: an Abstract Factory, Concrete Factory,
Abstract Product, Concrete Product, and our client.

In the Factory pattern, we produced implementations of a particular interface (for example,
notifier was our interface and e-mail, SMS and post were our implementations). With an
Abstract Factory pattern, we will create implementations of a factory interface, with every
factory knowing how to create their products.

Suppose we have two toy factories, one in San Francisco and one in London. They both
know how to create both company's products for both locations.

Creational Design Patterns

[83]

With this in mind, our ToyFactory interface looks like this:

<?php

interface ToyFactory {
 function makeMaze();
 function makePuzzle();
}

Now that this is done, we can build our San Francisco toy factory (SFToyFactory) to serve
as our Concrete Factory:

<?php

class SFToyFactory implements ToyFactory
{
 private $location = "San Francisco";

 public function makeMaze()
 {
 return new Toys\SFMazeToy();
 }

 public function makePuzzle()
 {
 return new Toys\SFPuzzleToy;
 }
}

Now we can add our British toy factory (UKToyFactory):

<?php

class UKToyFactory implements ToyFactory
{
 private $location = "United Kingdom";

 public function makeMaze()
 {
 return new Toys\UKMazeToy;
 }

 public function makePuzzle()
 {
 return new Toys\UKPuzzleToy;
 }
}

Creational Design Patterns

[84]

As you notice, we are creating various toys within the Toys namespace, so now we can put
together our abstract methods for our toys. Let's start with our Toy class. Every toy will
eventually extend this class:

<?php

namespace Toys;

abstract class Toy
{
 abstract public function getSize(): int;
 abstract public function getPictureName(): string;
}

Now, for the two types of toy we declared in our ToyFactory interface at the start (maze
and puzzle), we can declare their abstract methods, starting with our Maze class:

<?php

namespace Toys;

abstract class MazeToy extends Toy
{
 private $type = "Maze";
}

Now let's do our Puzzle class:

<?php

namespace Toys;

abstract class PuzzleToy extends Toy
{
 private $type = "Puzzle";
}

Now it's time for our concrete classes, so let's start with our implementations for San
Francisco.

Creational Design Patterns

[85]

The code for SFMazeToy is as follows:

<?php

namespace Toys;

class SFMazeToy extends MazeToy
{
 private $size;
 private $pictureName;

 public function __construct()
 {
 $this->size = 9;
 $this->pictureName = "San Francisco Maze";
 }

 public function getSize(): int
 {
 return $this->size;
 }

 public function getPictureName(): string
 {
 return $this->pictureName;
 }
}

And here's the code for the SFPuzzleToy class, a different implementation to the Maze toy'
class:

<?php

namespace Toys;

class SFPuzzleToy extends PuzzleToy
{
 private $size;
 private $pictureName;

 public function __construct()
 {
 $rand = rand(1, 3);

 switch ($rand) {
 case 1:

Creational Design Patterns

[86]

 $this->size = 3;
 break;
 case 2:
 $this->size = 6;
 break;
 case 3:
 $this->size = 9;
 break;
 }

 $this->pictureName = "San Francisco Puzzle";
 }

 public
 function getSize(): int
 {
 return $this->size;
 }

 public function getPictureName(): string
 {
 return $this->pictureName;
 }
}

We can now finish this off with our implementations for the British factory.

Let's start off by making one for the maze toy, UKMazeToy.php:

<?php

namespace Toys;

class UKMazeToy extends Toy
{
 private $size;
 private $pictureName;

 public function __construct()
 {
 $this->size = 9;
 $this->pictureName = "London Maze";
 }

 public function getSize(): int
 {
 return $this->size;

Creational Design Patterns

[87]

 }

 public function getPictureName(): string
 {
 return $this->pictureName;
 }
}

And let's make a class for the puzzle toy too, UKPuzzleToy.php:

<?php

namespace Toys;

class UKPuzzleToy extends PuzzleToy
{
 private $size;
 private $pictureName;

 public function __construct()
 {
 $rand = rand(1, 2);

 switch ($rand) {
 case 1:
 $this->size = 3;
 break;
 case 2:
 $this->size = 9;
 break;
 }

 $this->pictureName = "London Puzzle";
 }

 public
 function getSize(): int
 {
 return $this->size;
 }

 public
 function getPictureName(): string
 {
 return $this->pictureName;
 }
}

Creational Design Patterns

[88]

Now; let's put this all together in our index.php file:

<?php

require_once('ToyFactory.php');
require_once('Toys/Toy.php');
require_once('Toys/MazeToy.php');
require_once('Toys/PuzzleToy.php');

require_once('SFToyFactory.php');
require_once('Toys/SFMazeToy.php');
require_once('Toys/SFPuzzleToy.php');

$sanFraciscoFactory = new SFToyFactory();
var_dump($sanFraciscoFactory->makeMaze());
echo "\n";
var_dump($sanFraciscoFactory->makePuzzle());
echo "\n";

require_once('UKToyFactory.php');
require_once('Toys/UKMazeToy.php');
require_once('Toys/UKPuzzleToy.php');

$britishToyFactory = new UKToyFactory();
var_dump($britishToyFactory->makeMaze());
echo "\n";
var_dump($britishToyFactory->makePuzzle());
echo "\n";

The output, if you run the given code, should look like the output shown in the following
screenshot:

Creational Design Patterns

[89]

Now, suppose we want to add a new factory with a new set of products (for, say, New
York), we simply add the toys NYMazeToy and the NYPuzzleToy, we could then create a
new Factory called NYToyFactory (implementing the ToyFactory interface) and we
would be done.

Now, the downsides of this class emerge when you need to add new product classes; the
Abstract Factory needs updating, which violates the interface segregation principle. So it
doesn't strictly meet the SOLID principles if you are going to need to add new product
classes.

This design pattern can take some time to fully appreciate, so be sure to fiddle around with
the source code and see what you can do with it.

Creational Design Patterns

[90]

Lazy initialization
Slappy Joe's burgers is a high quality restaurant where burgers are priced after they are
made using the exact weight of the meat that was used. Unfortunately, due to the level of
creation time, it would be a massive drain on resources for them to make every single type
of burger before they are ordered.

Instead of having every type of burger ready for someone to order, when someone orders
the burger, it is made (if it isn't already) and they are charged the price for it.

The Burger.php class is structured like this:

<?php
class Burger
{
 private $cheese;
 private $chips;
 private $price;

 public function __construct(bool $cheese, bool $chips)
 {
 $this->cheese = $cheese;
 $this->chips = $chips;

 $this->price = rand(1, 2.50) + ($cheese ? 0.5 : 0) + ($chips ? 1 : 0);
 }

 public function getPrice(): int
 {
 return $this->price;
 }
}

Note that the price of the burger is only calculated after it is instantiated, meaning the
customer can't be charged until it is made. The other function in the class simply returns the
price of the burger.

Instead of instantiating from the Burger class directly, a lazy initialization class called
BurgerLazyLoader.php is made, this class stores a list of instances of each burger that has
been made; if a burger is requested that isn't made, it will make it. Alternatively, if a burger
of a particular configuration already exists, that burger is returned.

Creational Design Patterns

[91]

Here is the LazyLoader class which instantiates Burger objects as needed:

<?php
class BurgerLazyLoader
{
 private static $instances = array();

 public static function getBurger(bool $cheese, bool $chips): Burger
 {
 if (!isset(self::$instances[$cheese . $chips])) {
 self::$instances[$cheese . $chips] = new Burger($cheese, $chips);
 }

 return self::$instances[$cheese . $chips];
 }

 public static function getBurgerCount(): int
 {
 return count(self::$instances);
 }
}

The only other function added is the getBurgerCount function that returns a count of all
the instances in the instances the LazyLoader has.

So let's wrap all of this together in our index.php file:

<?php

require_once('Burger.php');
require_once('BurgerLazyLoader.php');

$burger = BurgerLazyLoader::getBurger(true, true);
echo "Burger with cheese and fries costs: £".$burger->getPrice();

echo "\n";
echo "Instances in lazy loader: ".BurgerLazyLoader::getBurgerCount();
echo "\n";

$burger = BurgerLazyLoader::getBurger(true, false);
echo "Burger with cheese and no fries costs: £".$burger->getPrice();

echo "\n";
echo "Instances in lazy loader: ".BurgerLazyLoader::getBurgerCount();
echo "\n";

$burger = BurgerLazyLoader::getBurger(true, true);
echo "Burger with cheese and fries costs: £".$burger->getPrice();

Creational Design Patterns

[92]

echo "\n";
echo "Instances in lazy loader: ".BurgerLazyLoader::getBurgerCount();
echo "\n";

We then get an output like this:

Given how the prices are random, you will notice the figures will be different, but the prices
for the burger with cheese and fries remains the same the first and last time you call it. The
instance is only created once; moreover, it is only created when it is needed, instead of
being instantiated whenever it is wanted.

Hypothetical burger shop aside, this Creational pattern can have some great uses when you
need it, such as when you need to delay the construction of an object from a class. This is
often used when the constructor is an expensive or time-consuming operation.

If an object isn't already able to be used, one is created in a just-in-time fashion.

Creational Design Patterns

[93]

Builder pattern
When we reviewed the Factory design patterns, we saw how they were useful for enabling
polymorphism. The crucial differentiation between Factory patterns and the Builder pattern
is that the Builder pattern solely has the aim of resolving one anti-pattern and does not seek
to perform polymorphism. The anti-pattern in question is the Telescoping Constructor.

The Telescoping Constructor problem is essentially where the count of arguments a
constructor contains grows to an extent where it becomes impractical to use or even
impractical to know which order the arguments go in.

Let's suppose we have a Pizza class as follows, it essentially contains a constructor and a
show function which details the size and toppings of the pizza. The class looks like this:

<?php

class Pizza
{

 private $size;
 private $cheese;
 private $pepperoni;
 private $bacon;

 public function __construct($size, $cheese, $pepperoni, $bacon)
 {
 $this->size = $size;
 $this->cheese = $cheese;
 $this->pepperoni = $pepperoni;
 $this->bacon = $bacon;
 }

 public function show()
 {
 $recipe = $this->size . " inch pizza with the following toppings: ";
 $recipe .= $this->cheese ? "cheese, " : "";
 $recipe .= $this->pepperoni ? "pepperoni, " : "";
 $recipe .= $this->bacon ? "bacon, " : "";

 return $recipe;
 }

}

Creational Design Patterns

[94]

Notice how many parameters the constructor contains, it literally contains the size and then
every single topping. We can do better than this. In fact, let's aim to construct the pizza by
adding all our parameters to a builder object that we can then use to create the pizza. This is
what we're aiming for:

$pizzaRecipe = (new PizzaBuilder(9))
 ->cheese(true)
 ->pepperoni(true)
 ->bacon(true)
 ->build();

$order = new Pizza($pizzaRecipe);

This isn't too hard to do; in fact you might even find it to be one of the easier design
patterns we learn here. Let's first start by making a builder for our pizza, let's name this
class PizzaBuilder:

<?php

class PizzaBuilder
{
 public $size;
 public $cheese;
 public $pepperoni;
 public $bacon;

 public function __construct(int $size)
 {
 $this->size = $size;
 }

 public function cheese(bool $present): PizzaBuilder
 {
 $this->cheese = $present;
 return $this;
 }

 public function pepperoni(bool $present): PizzaBuilder
 {
 $this->pepperoni = $present;
 return $this;
 }

 public function bacon(bool $present): PizzaBuilder
 {
 $this->bacon = $present;
 return $this;

Creational Design Patterns

[95]

 }

 public function build()
 {
 return $this;
 }
}

This class isn't too hard to understand, we have a constructor that sets the size, and for each
additional topping we want to add we can then just call the relevant topping method with
the parameter set to true or false accordingly. If the topping method isn't called, the topping
in question isn't set as a parameter.

Finally, we have a build method, which can be called to run any last minute logic to
organize data before it's sent into the constructor of the Pizza class. This said, I often don't
like to do this, as this can be considered sequential coupling if methods need to be in a
particular order and this would intrinsically defeat one purpose of us making a builder to
do tasks like this.

For this reason, every topping method also returns the object that they are creating,
allowing the output of any function to directly be injected into whatever class we want to
use it to construct.

Next, let's adapt our Pizza class to utilize this builder:

<?php

class Pizza
{

 private $size;
 private $cheese;
 private $pepperoni;
 private $bacon;

 public function __construct(PizzaBuilder $builder)
 {
 $this->size = $builder->size;
 $this->cheese = $builder->cheese;
 $this->pepperoni = $builder->pepperoni;
 $this->bacon = $builder->bacon;
 }

 public function show()
 {
 $recipe = $this->size . " inch pizza with the following toppings: ";
 $recipe .= $this->cheese ? "cheese, " : "";

Creational Design Patterns

[96]

 $recipe .= $this->pepperoni ? "pepperoni, " : "";
 $recipe .= $this->bacon ? "bacon, " : "";

 return $recipe;
 }

}

It's quite straightforward for a constructor; we just access the public properties in the
builder as and when they're needed.

Note that we can add additional validation of the data provided from the builder in the
constructor here, though you can also add validation when you're setting the methods in
the builder, depending on the type of logic required.

Now we can put all this together in our index.php file:

<?php

require_once('Pizza.php');
require_once('PizzaBuilder.php');

$pizzaRecipe = (new PizzaBuilder(9))
 ->cheese(true)
 ->pepperoni(true)
 ->bacon(true)
 ->build();

$order = new Pizza($pizzaRecipe);
echo $order->show();

The output we should get looks something like this:

Creational Design Patterns

[97]

The Builder design pattern is incredibly easy to adopt but can save a lot of headaches when
constructing objects.

The disadvantage of this method is the need for a separate Builder for every single class;
this is the cost for such control over the object construction process.

Above this, the Builder design pattern allows you to vary the constructor variables and also
provides for good encapsulation of the code that constructs an object itself. Like all design
patterns, it's down to you to decide where it's most appropriate to use each one in your
code.

Traditionally, key-value arrays were often used in substitution of Builder classes. Builder
classes however, give you far more control over the construction process.

There's one other thing I should mention; here, we just referenced the methods using our
index.php method; often, the methods we run there are placed in a class that can be
referred to as the Director class.

Above this, you can also consider applying an interface to implement in your Builder if
your Builder is going to have a lot of logic in.

Prototype pattern
The Prototype design pattern allows us to effectively duplicate objects while minimizing the
performance impacts of having to re-instantiate an object.

You may have heard of prototypal languages if you've worked with JavaScript. In such
languages, you work by cloning prototypal objects to create new objects; in turn, there is a
reduced cost for creating new objects.

We have, so far, extensively discussed the use of the __construct magic method, but we
haven't touched on the __clone magic method. The __clone magic method is what's
run before an object is cloned (if possible); the method cannot be called directly and takes
no parameters.

You might find it useful to use the __clone method when using this design pattern; that
said, you might not need it depending on your use-case.

It's very important to remember that when we clone an object, the __construct function is
not re-run. The object has already been constructed so PHP sees no reason to re-run it, so it's
worth avoiding putting meaningful logic here when using this design pattern for this very
reason.

Creational Design Patterns

[98]

Let's start off by defining a basic Student class:

<?php

class Student
{
 public $name;
 public $year;
 public $grade;

 public function setName(string $name)
 {
 $this->name = $name;
 }

 public function setYear(int $year)
 {
 $this->year = $year;
 }

 public function setGrade(string $grade)
 {
 $this->grade = $grade;
 }

}

Now let's start building our index.php file, starting by including our Student.php class
file:

require_once('Student.php');

We can then create an instance of this class, set the various variables, and then var_dump
the contents of the object so we can debug the details inside the object to see how it's
working:

$prototypeStudent = new Student();
$prototypeStudent->setName('Dave');
$prototypeStudent->setYear(2);
$prototypeStudent->setGrade('A*');

var_dump($prototypeStudent);

Creational Design Patterns

[99]

The output of this script looks like this:

So far, so good; we've essentially declared a basic class and set various properties. For our
next challenge, let's clone this script. We can do this by adding the following lines to our
index.php file:

$theLesserChild = clone $prototypeStudent;
$theLesserChild->setName('Mike');
$theLesserChild->setGrade('B');

var_dump($theLesserChild);

What does this look like? Well, take a look:

Creational Design Patterns

[100]

So that seems straightforward enough; we've cloned an object and successfully changed the
properties of that object. Our initial object, the prototype, has now been put into use by
cloning it to build a new student.

And yes, we can do this again, as follows:

$theChildProdigy = clone $prototypeStudent;
$theChildProdigy->setName('Bob');
$theChildProdigy->setYear(3);
$theChildProdigy->setGrade('A');

But we can also do better; by using anonymous functions, otherwise known as closures, we
can actually add extra methods dynamically to this object.

Let's define an anonymous function for our object:

$theChildProdigy->danceSkills = "Outstanding";
$theChildProdigy->dance = function (string $style) {
 return "Dancing $style style.";
};

Finally, let's echo out both a var_dump of the newly cloned object, but let's also execute the
dance function we've just created:

var_dump($theChildProdigy);
var_dump($theChildProdigy->dance->__invoke('Pogo'));

You'll notice that in fact, we've had to use an __invoke magic method to call the
anonymous function. This method is called when a script tries to call an object as a function;
it is vital when calling anonymous functions in classes variables.

This is due to the fact that PHP class properties and methods are both in separate
namespaces; in order to execute closures that are in class variables you either need to use
__invoke; first, assign it to a class variable, use call_user_func, or use the __call
magic method.

In this case, we just use the __invoke method.

Creational Design Patterns

[101]

Therefore, the output of the script looks like this:

Notice that our function ran at the very bottom?

The completed index.php file, therefore looks like this:

<?php

require_once('Student.php');

$prototypeStudent = new Student();
$prototypeStudent->setName('Dave');
$prototypeStudent->setYear(2);
$prototypeStudent->setGrade('A*');

var_dump($prototypeStudent);

$theLesserChild = clone $prototypeStudent;

Creational Design Patterns

[102]

$theLesserChild->setName('Mike');
$theLesserChild->setGrade('B');

var_dump($theLesserChild);

$theChildProdigy = clone $prototypeStudent;
$theChildProdigy->setName('Bob');
$theChildProdigy->setYear(3);
$theChildProdigy->setGrade('A');

$theChildProdigy->danceSkills = "Outstanding";
$theChildProdigy->dance = function (string $style) {
 return "Dancing $style style.";
};

var_dump($theChildProdigy);
var_dump($theChildProdigy->dance->__invoke('Pogo'));

There are a few good use cases for this; suppose you want to perform transactions. You can
take an object, clone it, and then replace the original if all the queries were successful and
commit that cloned object to the database in place of the original.

It is a very useful and lightweight way to clone an object where you know that cloned object
needs the same or nearly the same, contents as its parent object.

Summary
In this chapter, we started learning some critical PHP design patterns related to the creation
of objects. We learned about various different Factory design patterns and how they can
make your code more inline with common standards. We also covered how the Builder
design pattern can help you avoid excessive arguments in your constructors. We also
learned about lazy instantiation and how it can help your code be more efficient. Finally, we
learned about how we can duplicate objects from prototype objects using the Prototype
design pattern.

Continuing on with design patterns, in the next chapter we will talk about Structural design
patterns.

4
Structural Design Patterns

Structural design patterns provide different ways to create class structure; for example, this
can be how we use encapsulation to create bigger objects from smaller ones. They exist to
ease the design by allowing us to identify simple ways to realize these relationships
between entities.

In the last chapter, we covered how creational patterns can be used to determine how
objects should be created; with structural patterns, we can determine the structure and
relationship between classes.

After a brief note on Agile software architecture, in this chapter we will cover the following
topics:

Decorator pattern
Class Adapter pattern
Object Adapter pattern
Flyweight pattern
Composite pattern
Bridge pattern
Proxy pattern
Facade pattern

Structural Design Patterns

[104]

Agile software architecture
Many organizations are leaning towards adopting an Agile form of project management.
This bring about new concerns for the role of an architect; indeed, some view Agile and
architecture to be in conflict. Two of the original signatories to the Agile manifesto, Martin
Fowler and Robert Cecil Martin, have been vocally opposed to this idea. Indeed, Fowler is
clear in clarifying the fact that while the Agile manifesto is hostile to large upfront design
(such as the type you see in Prince2), Agile does not reject upfront design itself.

The computer scientist, Allen Holub, has a similar view. Agile focuses on doing things that
are important for delivering software that is useful to the user, ahead of software that is
merely useful for the salesman. In order for software to be of use in the long term it must be
adaptable, extendable, and maintainable.

Fowler also has a vision for an architect within software development teams. Citing the fact
that irreversible software is likely to give the most headaches later, this is where
architectural decisions must lie. Above this, he claims that the role of an architect should be
to seek to make these decisions reversible, thus mitigating the issue altogether.

During many large-scale software deployments, the phrase we are at the point of no return
may be used. After the point of no return, it becomes unfeasible to revert the deployment to
its original state. Software has its own point of no return, when it becomes the fact that
software is harder to rewrite then it is to simply rebuild. While software may not reach the
worst case of this point of no return, climbing up on the maintainability difficulty poses
business difficulties.

Fowler also states that, in many cases, software architects do not even check that the
software matches its original design. Through pair-programming with an architect, and
indeed, the architect reviewing the code changes (that is, the pull requests), they can gain an
understanding in order to provide feedback to the developer and also mitigate further
technical debt.

In this book you may notice the lack of UML; that's because here I don't see UML as
necessary. I mean, we are all speaking in PHP, right? You might find UML useful in your
teams, though.

The process of architecture usually results in a deliverable; we call that deliverable an
artifact. In Agile teams, those artifacts may be developed in an evolutionary way, rather
than being an upfront product, but nevertheless it is perfectly possible to do architecture in
an Agile setting.

Structural Design Patterns

[105]

Indeed, I would argue that architecture makes working in an Agile environment far easier.
When programming to an interface or an abstract layer it is far easier to replace classes; in
an Agile environment, requirements may change, meaning a class may need to be replaced.
Software is only useful insofar as it is useful to the end client. Agile can help with this, but
in order to be Agile, your code must be adaptive. Having great architecture is critical to this
end.

When we write code, we should write code defensively. The adversary, however, isn't an
enemy, it is ourselves. One of the quickest ways to degrade reliable code is by editing it to
be weak.

Decorator
A Decorator is simply what adds additional functionality to an individual class without
affecting the behavior of other objects from the same class.

The Single Responsibility Principle, simply put by Robert C. Martin (who I introduced at
the start of this chapter), is that a class should have only one reason to change.

The principle states that every module or class should have a single responsibility and that
responsibility should be entirely encapsulated by that class. All services of the class should
align with that responsibility. Martin summarized this by defining the responsibility as
follows:

“a charge assigned to a unique actor to signify its accountabilities concerning a unique
business task”.

By using the Decorator design pattern, we are able to ensure that functionality is divided
between classes with unique areas of concern, thus adhering to the Single Responsibility
Principle.

Let's start off by declaring our Book interface. This is what we expect our Books to be able to
produce:

<?php

interface Book
{
 public function __construct(string $title, string $author, string
$contents);

 public function getTitle(): string;

Structural Design Patterns

[106]

 public function getAuthor(): string;

 public function getContents(): string;
}

Then we can declare our EBook.php class. This is the class we will be decorating with our
PrintBook class:

<?php

class EBook implements Book
{

 public $title;
 public $author;
 public $contents;

 public function __construct(string $title, string $author, string
$contents)
 {
 $this->title = $title;
 $this->author = $author;
 $this->contents = $contents;
 }

 public function getTitle(): string
 {
 return $this->contents;
 }

 public function getAuthor(): string
 {
 return $this->author;
 }

 public function getContents(): string
 {
 return $this->contents;
 }
}

Now we can declare our PrintBook class. This is what we're using to decorate the EBook
class:

<?php

class PrintBook implements Book
{

Structural Design Patterns

[107]

 public $eBook;

 public function __construct(string $title, string $author, string
$contents)
 {
 $this->eBook = new EBook($title, $author, $contents);
 }

 public function getTitle(): string
 {
 return $this->eBook->getTitle();
 }

 public function getAuthor(): string
 {
 return $this->eBook->getAuthor();
 }

 public function getContents(): string
 {
 return $this->eBook->getContents();
 }

 public function getText(): string
 {
 $contents = $this->eBook->getTitle() . " by " .
$this->eBook->getAuthor();
 $contents .= "\n";
 $contents .= $this->eBook->getContents();

 return $contents;
 }
}

So now let's test all this with our index.php file:

<?php

require_once('Book.php');
require_once('EBook.php');
$PHPBook = new EBook("Mastering PHP Design Patterns", "Junade Ali", "Some
contents.");

require_once('PrintBook.php');
$PHPBook = new PrintBook("Mastering PHP Design Patterns", "Junade Ali",
"Some contents.");
echo $PHPBook->getText();

Structural Design Patterns

[108]

The output looks like this:

Some contents. by Junade Ali
Some contents.

Adapter
There are two types of Adapter pattern. I have a clear preference for Object Adapters over
Class Adapters where possible; I will explain this in detail later.

The Adapter pattern allows an existing class to be used with an interface that it doesn't
match. It is often used to allow existing classes to work with others without needing to alter
their source code.

This can be quite useful in a polymorphic setting where you are using third-party libraries,
each with their own interface.

Fundamentally, an Adapter helps two incompatible interfaces work together. Otherwise
incompatible classes can be made to work together by converting the interface of one class
into an interface expected by the clients.

Class Adapter
In a Class Adapter, we use inheritance to create an adapter. A class (the adapter) can inherit
another (the adaptee); using standard inheritance we are able to add additional
functionality to the adaptee.

Let's suppose we have an ATM class, in our ATM.php file:

<?php

class ATM
{
 private $balance;

 public function __construct(float $balance)
 {
 $this->balance = $balance;
 }

 public function withdraw(float $amount): float
 {
 if ($this->reduceBalance($amount) === true) {

Structural Design Patterns

[109]

 return $amount;
 } else {
 throw new Exception("Couldn't withdraw money.");
 }
 }

 protected function reduceBalance(float $amount): bool
 {
 if ($amount >= $this->balance) {
 return false;
 }

 $this->balance = ($this->balance - $amount);
 return true;
 }

 public function getBalance(): float
 {
 return $this->balance;
 }
}

Let's create our ATMWithPhoneTopUp.php to form our adapter:

<?php

class ATMWithPhoneTopUp extends ATM
{
 public function getTopUp(float $amount, int $time): string
 {
 if ($this->reduceBalance($amount) === true) {
 return $this->generateTopUpCode($amount, $time);
 } else {
 throw new Exception("Couldn't withdraw money.");
 }
 }

 private function generateTopUpCode(float $amount, int $time): string
 {
 return $amount . $time . rand(0, 10000);
 }
}

Let's wrap this all together in an index.php file:

<?php

require_once('ATM.php');

Structural Design Patterns

[110]

$atm = new ATM(500.00);
$atm->withdraw(50);
echo $atm->getBalance();
echo "\n";

require_once('ATMWithPhoneTopUp.php');

$adaptedATM = new ATMWithPhoneTopUp(500.00);
echo "Top-up code: " . $adaptedATM->getTopUp(50, time());
echo "\n";
echo $adaptedATM->getBalance();

Now that we have adapted our initial ATM class to yield top-up codes, we can now utilize
this new top-up functionality. The output of all this is as follows:

450
Top-up code: 5014606939121598
450

Note that if we wanted to adapt to multiple adaptees, this would be difficult in PHP.

In PHP, multiple inheritance isn't possible, unless you are working with Traits. In this case,
we can only adapt one class to match the interface of another.

The other key architectural reason for us not using this approach is that it is often good
design to prefer composition over inheritance (as described by the Composite Reuse
Principle).

In order to explore this principle in more detail, we need to take a look at Object Adapters.

Object Adapter
The Composite Reuse Principle states that classes should achieve polymorphic behavior
and code reuse by their composition.

By applying this principle, classes should contain instances of other classes when they want
to implement a particular piece of functionality, as opposed to inheriting the functionality
from a base or parent class.

For this reason, the Gang of Four stated the following:

“Favor 'object composition' over 'class inheritance'.”

Structural Design Patterns

[111]

Why is this principle so vital? Consider our last example, where we used class inheritance;
in such a case, there is no formal guarantee that our adapter would match the interface we
want it to. What if the parent class exposed a function we didn't want the adapter to?
Composition gives us more control.

By using composition over inheritance, we are able to better support the polymorphic
behavior that is so vital in object-oriented programming.

Let's suppose we have a class to generate an insurance premium. It provides a monthly
premium and an annual premium depending on how the customer wants to pay their
premium. By paying annually, the customer gets a saving equivalent to half a month:

<?php

class Insurance
{
 private $limit;
 private $excess;

 public function __construct(float $limit, float $excess)
 {
 if ($excess >= $limit) {
 throw New Exception('Excess must be less than premium.');
 }

 $this->limit = $limit;
 $this->excess = $excess;
 }

 public function monthlyPremium(): float
 {
 return ($this->limit-$this->excess)/200;
 }

 public function annualPremium(): float
 {
 return $this->monthlyPremium()*11.5;
 }
}

Let's suppose a market comparison tool polymorphically uses classes such as the one
mentioned earlier to actually go ahead and calculate insurance quotes from multiple
different vendors; they use this interface to do this:

<?php

interface MarketCompare

Structural Design Patterns

[112]

{
 public function __construct(float $limit, float $excess);
 public function getAnnualPremium();
 public function getMonthlyPremium();
}

Accordingly, we can use this interface to build an Object Adapter to ensure our Insurance
class, our premium generator, matches the interface that the market comparison tool is
expecting:

<?php

class InsuranceMarketCompare implements MarketCompare
{
 private $premium;

 public function __construct(float $limit, float $excess)
 {
 $this->premium = new Insurance($limit, $excess);
 }

 public function getAnnualPremium(): float
 {
 return $this->premium->annualPremium();
 }

 public function getMonthlyPremium(): float
 {
 return $this->premium->monthlyPremium();
 }
}

Note how the class actually goes ahead and instantiates its own class for what it's trying to
adapt.

The adapter then stores this class in a private variable. We then use this object in the
private variable to proxy requests.

An Adapter, both a Class Adapter and an Object Adapter, should act as glue code. What I
mean by that is that adapters shouldn't perform any calculations or computation, they
merely act as a proxy between incompatible interfaces.

It is standard practice to keep logic out of our glue code and leave the logic down to the
code that we are adapting. If, in doing this, we come up against the Single Responsibility
Principle, we need to adapt another class.

Structural Design Patterns

[113]

As I mentioned earlier, adapting multiple classes isn't really possible in a Class Adapter, so
you'd either have to wrap such logic in a Trait or we would need to use an Object Adapter,
such as the one we're discussing here.

Let's try out this adapter. We'll do so by writing the following index.php file to see if our
new class matches the expected interface:

<?php

require_once('Insurance.php');

$quote = new Insurance(10000, 250);
echo $quote->monthlyPremium();
echo "\n";

require_once('MarketCompare.php');
require_once('InsuranceMarketCompare.php');

$quote = new InsuranceMarketCompare(10000, 250);
echo $quote->getMonthlyPremium();
echo "\n";
echo $quote->getAnnualPremium();

The output should look something like this:

48.75
48.75
560.625

The key drawback of this method, compared to the Class Adapter method, is that we must
implement common methods, even if those methods are merely forwarding methods.

FlyWeight
Like in real life, not all objects are easy to create, and some can take up excessive amounts of
memory. The FlyWeight design pattern can help us minimize memory usage by sharing as
much data as possible with similar objects.

This design pattern has limited use in most PHP applications, but it is still worth knowing it
for the odd situation where it is incredibly useful.

Structural Design Patterns

[114]

Suppose we have a Shape interface with a draw method:

<?php

interface Shape
{
 public function draw();
}

Let's create a Circle class that implements this interface. When implementing this, we
build the ability to set the location of a circle with X and Y co-ordinates. We also create the
ability to set the circle's radius and draw it (print out this information). Note how the color
characteristic is set outside the class.

There's a very important reason for this. In our example, the color is state-independent; it is
an intrinsic part of the circle. The location and size of the circle are, however, state-
dependent and are therefore extrinsic. The extrinsic state information is passed to the
FlyWeight object when its functions are needed; the intrinsic options, however, are
independent of each process of the FlyWeight. This will make more sense when we cover
how this factory is made.

This is the important information:

Extrinsic: State belongs to the external context of the object and is input into the
object when it's used.
Intrinsic: State that naturally belongs to the object and therefore should be
permanent, immutable (internal), or context-free.

With this in mind, let's put together an implementation of our Shape interface. Here's our
Circle class:

<?php

class Circle implements Shape
{

 private $colour;
 private $x;
 private $y;
 private $radius;

 public function __construct(string $colour)
 {
 $this->colour = $colour;
 }

Structural Design Patterns

[115]

 public function setX(int $x)
 {
 $this->x = $x;
 }

 public function setY(int $y)
 {
 $this->y = $y;
 }

 public function setRadius(int $radius)
 {
 $this->radius = $radius;
 }

 public function draw()
 {
 echo "Drawing circle which is " . $this->colour . " at [" . $this->x .
", " . $this->y . "] of radius " . $this->radius . ".";
 echo "\n";
 }
}

With this, we can now build our ShapeFactory, which actually implements the FlyWeight
pattern. An object with the color of our choice is instantiated when it's needed, and is then
stored for later use:

<?php

class ShapeFactory
{
 private $shapeMap = array();

 public function getCircle(string $colour)
 {
 $circle = 'Circle' . '_' . $colour;

 if (!isset($this->shapeMap[$circle])) {
 echo "Creating a ".$colour." circle.";
 echo "\n";
 $this->shapeMap[$circle] = new Circle($colour);
 }

 return $this->shapeMap[$circle];
 }
}

Let's demonstrate how this works in our index.php file.

Structural Design Patterns

[116]

In order for this to work, we create 100 objects with random colors, in a random location:

require_once('Shape.php');
require_once('Circle.php');
require_once('ShapeFactory.php');

$colours = array('red', 'blue', 'green', 'black', 'white', 'orange');

$factory = new ShapeFactory();

for ($i = 0; $i < 100; $i++) {
 $randomColour = $colours[array_rand($colours)];

 $circle = $factory->getCircle($randomColour);
 $circle->setX(rand(0, 100));
 $circle->setY(rand(0, 100));
 $circle->setRadius(100);

 $circle->draw();
}

Now, let's take a look at the output. You can see we've drawn 100 circles, but we have only
needed to instantiate a handful of circles as we are caching objects of the same color for later
use:

Creating a green circle.
Drawing circle which is green at [29, 26] of radius 100.
Creating a black circle.
Drawing circle which is black at [17, 64] of radius 100.
Drawing circle which is black at [81, 86] of radius 100.
Drawing circle which is black at [0, 73] of radius 100.
Creating a red circle.
Drawing circle which is red at [10, 15] of radius 100.
Drawing circle which is red at [70, 79] of radius 100.
Drawing circle which is red at [13, 78] of radius 100.
Drawing circle which is green at [78, 27] of radius 100.
Creating a blue circle.
Drawing circle which is blue at [38, 11] of radius 100.
Creating a orange circle.
Drawing circle which is orange at [43, 57] of radius 100.
Drawing circle which is blue at [58, 65] of radius 100.
Drawing circle which is orange at [75, 67] of radius 100.
Drawing circle which is green at [92, 59] of radius 100.
Drawing circle which is blue at [53, 3] of radius 100.
Drawing circle which is black at [14, 33] of radius 100.
Creating a white circle.
Drawing circle which is white at [84, 46] of radius 100.
Drawing circle which is green at [49, 61] of radius 100.

Structural Design Patterns

[117]

Drawing circle which is orange at [57, 44] of radius 100.
Drawing circle which is orange at [64, 33] of radius 100.
Drawing circle which is white at [42, 74] of radius 100.
Drawing circle which is green at [5, 91] of radius 100.
Drawing circle which is white at [87, 36] of radius 100.
Drawing circle which is red at [74, 94] of radius 100.
Drawing circle which is black at [19, 6] of radius 100.
Drawing circle which is orange at [70, 83] of radius 100.
Drawing circle which is green at [74, 64] of radius 100.
Drawing circle which is white at [89, 21] of radius 100.
Drawing circle which is red at [25, 23] of radius 100.
Drawing circle which is blue at [68, 96] of radius 100.
Drawing circle which is green at [74, 6] of radius 100.

You may have noticed something here. The way I'm storing the cache of the FlyWeight
object that we are reusing is by concatenating the Circle_ and the color, for example
Circle_green. Obviously, this works in this use case, but there is a better way of doing this; in
PHP, it is actually possible to get a unique ID for a given object. We'll cover this in the next
pattern.

Composite
Imagine an audio system consisting of individual songs and also playlists of songs. Yes,
playlists consist of songs, but we want both to be treated individually. Both are types of
music, both can be played.

The Composite design pattern can help here; it allows us to ignore the differences between
compositions of objects and individual objects. It allows us to treat both with identical or
nearly-identical code.

Let's put together a little example; a song is our example of a leaf, with playlists being
composites. Music is our abstraction of playlists and songs; therefore, we can call this our
component. The client of all this is our index.php file.

By not discriminating between leaf-nodes and branches, our code becomes less complex
and therefore less error prone.

Let's start by defining an interface for our Music:

<?php

interface Music
{
 public function play();

Structural Design Patterns

[118]

}

Now let's put together some implementations, starting with our Song class:

<?php

class Song implements Music
{
 public $id;
 public $name;

 public function __construct(string $name)
 {
 $this->id = uniqid();
 $this->name = $name;
 }

 public function play()
 {
 printf("Playing song #%s, %s.\n", $this->id, $this->name);
 }
}

Now we can start to put together our Playlist class. In this example, you may notice I set
the key in the songs array using a function called spl_object_hash. This function is an
absolutely blessing when dealing with arrays of objects.

What this function does is return a unique hash for each object which remains consistent so
long as the object is not destroyed, regardless of what properties of the class are changed. It
provides a stable way of addressing arbitrary objects. Once the object is destroyed, the hash
can then be reused for other objects.

The contents of the object are not hashed by this function; it merely acts to show the internal
handle and the hander table pointer. This means that if you alter the properties of an object,
the hash will not change. This said, it does not guarantee uniqueness. If an object is
destroyed and one of the same class is immediately created afterwards you will get the
same hash as PHP will reuse the same internal handle after the first class has been
dereferenced and destroyed.

This will be true, as PHP can use the internal handle:

var_dump(spl_object_hash(new stdClass()) === spl_object_hash(new
stdClass()));

Structural Design Patterns

[119]

However, this will be false, as PHP must create a new handler:

$object = new StdClass();
var_dump(spl_object_hash($object) === spl_object_hash(new stdClass()));

Now let's return to our Playlist class. Let's implement our Music interface with it; so,
here's the class:

<?php

class Playlist implements Music
{
 private $songs = array();

 public function addSong(Music $content): bool
 {
 $this->songs[spl_object_hash($content)] = $content;
 return true;
 }

 public function removeItem(Music $content): bool
 {
 unset($this->songs[spl_object_hash($content)]);
 return true;
 }

 public function play()
 {
 foreach ($this->songs as $content) {
 $content->play();
 }
 }
}

Now let's put this all together in our index.php file. What we're doing here is creating
some song objects, some of which we will assign to a playlist using their addSong function.

Because playlists are implemented in the same way as songs, we can even use the addSong
function with other playlists (in this case, it may be better for us to rename the addSong
function addMusic).

Then we play the parent playlist. This plays the child playlists and in turn plays all the
songs in those playlists as well:

<?php

require_once('Music.php');

Structural Design Patterns

[120]

require_once('Playlist.php');
require_once('Song.php');

$songOne = new Song('Lost In Stereo');
$songTwo = new Song('Running From Lions');
$songThree = new Song('Guts');
$playlistOne = new Playlist();
$playlistTwo = new Playlist();
$playlistThree = new Playlist();
$playlistTwo->addSong($songOne);
$playlistTwo->addSong($songTwo);
$playlistThree->addSong($songThree);
$playlistOne->addSong($playlistTwo);
$playlistOne->addSong($playlistThree);
$playlistOne->play();

When we run this script, we can see the expected output:

Playing song #57106d5adb364, Lost In Stereo.
Playing song #57106d5adb63a, Running From Lions.
Playing song #57106d5adb654, Guts.

Bridge
The Bridge pattern can be quite straightforward; it effectively allows us to decouple an
abstraction from an implementation so the two can vary independently.

When classes vary frequently, bridging an interface and a concrete class allows developers
to vary their classes with greater ease.

Let's propose a generic messenger interface that has the ability to send some form of
message, Messenger.php:

<?php

interface Messenger
{
 public function send($body);
}

One specific implementation of this interface is an InstantMessenger application,
InstantMessenger.php:

<?php

class InstantMessenger implements Messenger

Structural Design Patterns

[121]

{
 public function send($body)
 {
 echo "InstantMessenger: " . $body;
 }
}

Similarly, we can do the same with an SMS application, SMS.php:

<?php

class SMS implements Messenger
{
 public function send($body)
 {
 echo "SMS: " . $body;
 }
}

We can now create an interface for the physical device, the transmitter, if you will,
Transmitter.php:

<?php

interface Transmitter
{
 public function setSender(Messenger $sender);

 public function send($body);
}

We can decouple a transmitter from the devices that implement its methods by using a
Device class. The Device class bridges the Transmitter interface to the physical device,
Device.php:

<?php

abstract class Device implements Transmitter
{
 protected $sender;

 public function setSender(Messenger $sender)
 {
 $this->sender = $sender;
 }
}

Structural Design Patterns

[122]

So let's put together a concrete class to represent a phone, Phone.php:

<?php

class Phone extends Device
{
 public function send($body)
 {
 $body .= "\n\n Sent from a phone.";

 return $this->sender->send($body);
 }
}

And let's do the same for a Tablet. Tablet.php is:

<?php

class Tablet extends Device
{
 public function send($body)
 {
 $body .= "\n\n Sent from a Tablet.";

 return $this->sender->send($body);
 }
}

Finally, let's wrap this all together in an index.php file:

<?php

require_once('Transmitter.php');
require_once('Device.php');
require_once('Phone.php');
require_once('Tablet.php');

require_once('Messenger.php');
require_once('SMS.php');
require_once('InstantMessenger.php');

$phone = new Phone();
$phone->setSender(new SMS());

$phone->send("Hello there!");

Structural Design Patterns

[123]

The output of this is as follows:

SMS: Hello there!

 Sent from a phone.

Proxy pattern
Proxy is a class that is merely an interface to something else. It may be an interface to
anything; from being a network connection, a file, a large object in memory, or any other
resource that is too difficult to duplicate.

In our example here, we will simply be creating a simple proxy to forward to one of two
objects depending on how the proxy is instantiated.

Accessing a simple Proxy class allows the client to access both feeders for cats and dogs
from one object, depending on whether it's been instantiated.

Let's start off by defining an interface for our AnimalFeeder:

<?php

namespace IcyApril\PetShop;

interface AnimalFeeder
{
 public function __construct(string $petName);

 public function dropFood(int $hungerLevel, bool $water = false): string;

 public function displayFood(int $hungerLevel): string;
}

We can then define two animal feeders for a cat and a dog:

<?php

namespace IcyApril\PetShop\AnimalFeeders;

use IcyApril\PetShop\AnimalFeeder;

class Cat implements AnimalFeeder
{
 public function __construct(string $petName)
 {

Structural Design Patterns

[124]

 $this->petName = $petName;
 }

 public function dropFood(int $hungerLevel, bool $water = false): string
 {
 return $this->selectFood($hungerLevel) . ($water ? ' with water' : '');
 }

 public function displayFood(int $hungerLevel): string
 {
 return $this->selectFood($hungerLevel);
 }

 protected function selectFood(int $hungerLevel): string
 {
 switch ($hungerLevel) {
 case 0:
 return 'lamb';
 break;
 case 1:
 return 'chicken';
 break;
 case 3:
 return 'tuna';
 break;
 }
 }
}

And here's our dog AnimalFeeder:

<?php

namespace IcyApril\PetShop\AnimalFeeders;

class Dog
{

 public function __construct(string $petName)
 {
 if (strlen($petName) > 10) {
 throw new \Exception('Name too long.');
 }

 $this->petName = $petName;
 }

Structural Design Patterns

[125]

 public function dropFood(int $hungerLevel, bool $water = false): string
 {
 return $this->selectFood($hungerLevel) . ($water ? ' with water' : '');
 }

 public function displayFood(int $hungerLevel): string
 {
 return $this->selectFood($hungerLevel);
 }

 protected function selectFood(int $hungerLevel): string
 {
 if ($hungerLevel == 3) {
 return "chicken and vegetables";
 } elseif (date('H') < 10) {
 return "turkey and beef";
 } else {
 return "chicken and rice";
 }
 }
}

With this defined, we can now make our proxy class, a class that essentially uses the
constructor to decipher what kind of class it needs to instantiate, then redirects all function
calls to this class. In order to redirect function calls, the __call magic method is used.

This looks something like this:

<?php

namespace IcyApril\PetShop;

class AnimalFeederProxy
{
 protected $instance;

 public function __construct(string $feeder, string $name)
 {
 $class = __NAMESPACE__ . '\\AnimalFeeders' . $feeder;
 $this->instance = new $class($name);
 }

 public function __call($name, $arguments)
 {
 return call_user_func_array([$this->instance, $name], $arguments);
 }
}

Structural Design Patterns

[126]

You might have noticed that we have to manually create the class in the constructor with
the namespace. We do this using the __NAMESPACE__ magic constant to find the current
namespace, then concatenating it onto the specific sub-namespace where the classes are.
Note that we have to escape the \ using another \ in order to allow us to specify the
namespace without PHP interpreting \ as an escape character.

Let's build our index.php file and utilize the proxy class to build objects:

<?php

require_once('AnimalFeeder.php');
require_once('AnimalFeederProxy.php');

require_once('AnimalFeeders/Cat.php');
$felix = new \IcyApril\PetShop\AnimalFeederProxy('Cat', 'Felix');
echo $felix->displayFood(1);
echo "\n";
echo $felix->dropFood(1, true);
echo "\n";

require_once('AnimalFeeders/Dog.php');
$brian = new \IcyApril\PetShop\AnimalFeederProxy('Dog', 'Brian');
echo $brian->displayFood(1);
echo "\n";
echo $brian->dropFood(1, true);

The output is as follows:

chicken
chicken with water
turkey and beef
turkey and beef with water

So how can you use this in reality? Suppose you got a record out of the database that
contained an object that detailed the animal type and name; you could just pass this object
to the constructor of the Proxy class and use that as a mechanism to create your classes.

In practice, this has a great use case when it comes to supporting resource-hungry objects
that you don't necessarily want to instantiate unless they are really required by the client;
the same can be true of resource-hungry network connections and other types of resource.

Structural Design Patterns

[127]

Facade
Facade (also known as Façade) design patterns are a curious thing; they essentially act as a
simple interface to a complex system. A Facade design pattern works providing a single
class that in itself instantiates other classes and provides a simple interface to use those
functions.

A warning when using such pattern is that, as classes are instantiated within the Facade,
you are essentially tightly coupling the classes that it utilizes. There are cases where you
want this, but there are cases where you do not. Where do you do not want this behavior,
you are better suited to using dependency injection.

I have found this to be useful when wrapping a set of poor APIs into a single unified API. It
reduces external dependencies, allowing complexity to be internalized; this process can
make your code more readable.

I shall demonstrate this pattern in a crude example, but this will effectively make the
mechanism obvious.

Let me propose three classes for a toy factory.

Manufacturer (the factory building the toy) is a simple class that is instantiated with the
capacity of how many toys to build at a time:

<?php

class Manufacturer
{
 private $capacity;

 public function __construct(int $capacity)
 {
 $this->capacity = $capacity;
 }

 public function build(): string
 {
 return uniqid();
 }
}

Structural Design Patterns

[128]

Post class (the shipping courier) is a simple function that dispatches the toy from the
factory:

<?php

class Post
{
 private $sender;

 public function __construct(string $sender)
 {
 $this->sender = $sender;
 }

 public function dispatch(string $item, string $to): bool
 {
 if (strlen($item) !== 13) {
 return false;
 }

 if (empty($to)) {
 return false;
 }

 return true;
 }
}

An SMS class informs the client that their toy has been dispatched from the factory:

<?php

class SMS
{
 private $from;

 public function __construct(string $from)
 {
 $this->from = $from;
 }

 public function send(string $to, string $message): bool
 {
 if (empty($to)) {
 return false;
 }

 if (strlen($message) === 0) {

Structural Design Patterns

[129]

 return false;
 }

 echo $to . " received message: " . $message;
 return true;
 }
}

Here is our ToyFactory class, which acts as a Facade to link together all these classes and
allow operations to happen sequentially:

<?php

class ToyShop
{
 private $courier;
 private $manufacturer;
 private $sms;

 public function __construct(String $factoryAdress, String $contactNumber,
int $capacity)
 {
 $this->courier = new Post($factoryAdress);
 $this->sms = new SMS($contactNumber);
 $this->manufacturer = new Manufacturer($capacity);
 }

 public function processOrder(string $address, $phone)
 {
 $item = $this->manufacturer->build();
 $this->courier->dispatch($item, $address);
 $this->sms->send($phone, "Your order has been shipped.");
 }
}

And finally, we can wrap all this together in our index.php file:

<?php

require_once('Manufacturer.php');
require_once('Post.php');
require_once('SMS.php');
require_once('ToyShop.php');

$childrensToyFactory = new ToyShop('1 Factory Lane, Oxfordshire',
'07999999999', 5);
$childrensToyFactory->processOrder('8 Midsummer Boulevard', '07123456789');

Structural Design Patterns

[130]

Once we run this code, we see the message from our SMS class showing the text message
was sent:

In other situations, where the various classes were loosely coupled together, we may find it
better to use dependency injection. By injecting objects that perform various actions into the
ToyFactory class we can benefit from making testing easier by being able to inject fake
classes that the ToyFactory class can manipulate.

Personally, I am a huge believer in making code as easily testable as possible; hence why I
don't like this approach.

Summary
This chapter extended the design patterns we started to learn in the previous chapter by
introducing structural design patterns.

To this end, we learned some critical patterns to ease the software design process; these
patterns identify a simple way to realize the relationships between different entities:

We learned about the Decorator, how to wrap classes to add additional behavior
to them, and critically, we learned how this can help us comply with the Single
Responsibility Principle.
We learned about Class and Object Adapters, and the difference between them.
The critical takeaway here is the arguments for why we may choose composition
over inheritance.
We reviewed the FlyWeight design pattern, which can help us perform certain
processes in a memory-efficient manner.
We learned how the Composite design pattern can help us treat compositions of
objects the same as individual objects.

Structural Design Patterns

[131]

We covered the Bridge design pattern, which lets us decouple our abstraction
from its implementation, allowing the two to vary independently.
We covered how the Proxy design pattern can function as an interface to another
class and how we can use this as a forwarding agent.
Finally, we learned how the Facade design pattern can be used to provide a
simple interface to a complex system.

In the next chapter, we will wrap up our design patterns section by talking about
Behavioral patterns, ready to touch on Architectural patterns.

5
Behavioral Design Patterns

Behavioral design patterns are all about the communication between objects.

Bearing in mind the Single Responsibility Principle, it is vital that classes only encapsulate
one responsibility. Given this, there is clearly a necessity to allow objects to communicate.

By using Behavioral design patterns, we are able to increase the flexibility by which we
conduct these communications.

In this chapter, we'll cover the following patterns:

Observer pattern (SplObserver/SplSubject)
Iterator
The many Iterators of PHP
Generators
Template pattern
Chain of Responsibility pattern
Strategy pattern
Specification pattern
Scheduled Task pattern

Behavioral Design Patterns

[133]

Personality traits for passionate
programmers
Before we start talking about Behavioral design patterns, let's talk about your behavior as a
developer. Earlier in this book I've talked about how often development failures emerge as
a result of bad management practices.

Let's imagine two scenarios:

A company introduces Scrum as a methodology (or another Agile methodology
that is lacking in technical knowledge), without their code being agile enough to
withstand code. In these scenarios, when a code is added, it is often botched into
place and it will almost certainly be the case that the code takes far longer to
implement than it would without technical debt. This leads to a slow
development speed.
Alternatively, a company follows a strictly pre-defined process and that
methodology is set in stone. These processes are often unjustifiable but
developers often follow them as they aren't educated in better processes, don't
want to enter a bureaucratic dispute to alter them, or may even fear disciplinary
action for attempting to improve a process.

In both these scenarios, a poor process is at the heart of the problem. Even when you're not
dealing with a legacy project, this can become a problem due to the change of requirements
throughout a property. A good property of software is the ability to change and, indeed,
change the design of the software itself (we'll discuss this in the final chapter on
refactoring).

Alastair Cockburn identified that software developers don't often fit into a pre-defined
production-line process. Humans are unpredictable, and when they are the key actor in any
given process, the process also becomes unpredictable. Humans are open to error and don't
act perfectly in a pre-defined process when there is as much room for error as there is in
software development. Fundamentally, this is why people must come before processes, as
stated in the Agile manifesto. The developers must come before the process.

Some of those in management positions want to buy something called Agile. They'll hire a
consultant who fails to understand how software development can really be made a
success, and instead, implements a ridiculous process as part of a cash cow operation to sell
Agile. I believe that Scrum is the worst example of this (in part because of the number of
inaccurate courses and pseudo-qualifications), but no doubt other Agile processes can be
used as cash cows.

Behavioral Design Patterns

[134]

I have repeatedly come into contact with managers or Scrum Masters who claim that Scrum
says we should do … or Agile says we should do …. This is mentally illogical and should be
avoided. When you make this statement you are fundamentally not understanding that an
Agile methodology is based on the principle of agility, and as such, people must come
above processes.

Let's review the first scenario again. Note that the dispute largely emerges from a lack of
development quality instead of project management processes. Scrum fails to implement
development processes and as a result, projects attempted through Scrum may often fail.

Extreme Programming (XP) contains these development rules, which Scrum lacks. Here are
some examples:

Coding standards (in PHP, you may choose the PSR standards we discussed in
earlier chapters)
Write the unit test first and the code should be written so it passes the test
All production code is pair-programmed
A dedicated integration server with only one pair integration code at a time with
code being integrated frequently
Use collective ownership; no part of the codebase is off limits to another
developer

This is all completed against a backdrop of fixing XP when it breaks, making improving the
process a regular part of development.

Introducing technical standards and development rules requires both a pre-existing
knowledge of development with a passion for learning more; for this, a logical and
evidence-driven thought process is vital. These are all critical elements of being a great
software engineer.

Pair-programming must not become an effort in mentoring, it mustn't be a student-teacher
relationship; both developers must be willing to put forward ideas and have such ideas
criticized. Indeed, it is vital to be able to learn from each other.

In an Agile relationship, everyone must be willing to understand and contribute to the
planning process, as such communication is a vital skill. Similarly, respect for each other is
key; everyone from customers to developers deserves respect. Developers must be
courageous in many ways, not least being truthful about progress and estimation while
crucially also adapting to change. We must seek to understand the feedback we receive
before addressing or dismissing it.

Behavioral Design Patterns

[135]

These skills aren't merely toggles or switches, they are open-ended skills and knowledge
bases that we must seek to maintain and exercise. Things go wrong; through the use of
feedback, we are able to ensure our code is of a sufficiently high quality before it is
deployed.

Observer pattern (SplObserver/SplSubject)
The Observer design pattern essentially allows an object (the subject) to maintain a list of
observers that are automatically notified when the state of the that object changes.

This pattern applies a one-to-many dependency between objects; there is always one subject
that updates many observers.

The Gang of Four originally identified that this pattern was particularly applicable in cases
where an abstraction has two aspects, with one dependent on the other. In addition to this,
it is very useful when a change to object requires changes to the others and you don't know
how many other objects need to be changed. Finally, this pattern is also incredibly useful
when an object should notify other objects without making assumptions about what those
objects are, thus making this pattern great for loosely coupling this relationship.

PHP provides a very useful interface called SplObserver and SplSubject. These
interfaces provide the template for implementing the Observer design pattern while not
actually implementing any functionality.

In essence, when we implement this pattern we allow an unlimited amount of objects to
observe events in the subjects.

By calling an attach method in the subject object, we can attach an observer to the
subject. When a change occurs in the subject, the subject's notify method can iterate
through the observers and call their update method polymorphically.

We are also able to call an un-notify method in the subject which will allow us to stop an
observer object from observing a subject object.

Given this, the Subject class contains methods to attach and detach observers from itself,
the class also contains a notify method to update the observers that are looking at it.
Therefore, PHP's SplSubject interface is as follows:

interface SplSubject {
 public function attach (SplObserver $observer);
 public function detach (SplObserver $observer);
 public function notify ();

Behavioral Design Patterns

[136]

}

Compared to this, our SplObserver interface looks even more simple; it merely needs to
implement a single method that allows the subjects to update the observers:

interface SplObserver {
 public function update (SplSubject $subject);
}

Now, let's see how we can implement these two interfaces to implement this design pattern.
In this example, we will have a news feed class that will update various readers that are
reading the classes.

Let's define our Feed class, which will implement the SplSubject interface:

<?php

class Feed implements SplSubject
{
 private $name;
 private $observers = array();
 private $content;

 public function __construct($name)
 {
 $this->name = $name;
 }

 public function attach(SplObserver $observer)
 {
 $observerHash = spl_object_hash($observer);
 $this->observers[$observerHash] = $observer;
 }

 public function detach(SplObserver $observer)
 {
 $observerHash = spl_object_hash($observer);
 unset($this->observers[$observerHash]);
 }

 public function breakOutNews($content)
 {
 $this->content = $content;
 $this->notify();
 }

 public function getContent()
 {

Behavioral Design Patterns

[137]

 return $this->content . " on ". $this->name . ".";
 }

 public function notify()
 {
 foreach ($this->observers as $value) {
 $value->update($this);
 }
 }
}

The implementation we covered is, overall, quite simple. Notice how it's using the
spl_object_hash function that we explored previously in this book to allow us to easily
detach objects. By using the hash as the key for the array we are able to rapidly find a given
object without needing to do it.

Now we can define our Reader class, which will implement the SplObserver interface:

<?php

class Reader implements SplObserver
{
 private $name;

 public function __construct($name)
 {
 $this->name = $name;
 }

 public function update(SplSubject $subject)
 {
 echo $this->name . ' is reading the article ' . $subject->getContent()
. ' ';
 }
}

Let's wrap all this together in our index.php file as follows:

<?php

require_once('Feed.php');
require_once('Reader.php');

$newspaper = new Feed('Junade.com');

$allen = new Reader('Mark');
$jim = new Reader('Lily');
$linda = new Reader('Caitlin');

Behavioral Design Patterns

[138]

//add reader
$newspaper->attach($allen);
$newspaper->attach($jim);
$newspaper->attach($linda);

//remove reader
$newspaper->detach($linda);

//set break outs
$newspaper->breakOutNews('PHP Design Patterns');

In this script, we firstly instantiate a feed with three readers. We attach all of them, then
detach one. Finally, we send a new alert, which produces the following output:

The main advantage of this design pattern surrounds the loosely coupled nature of the
relationships between the observers and the subjects. There is greater modularity, as
subjects and observers can independently vary. In addition to this, we can add as many
observers as we want, providing as many pieces of functionality as we're after. This
extensibility and customization is often the reason this design pattern is applied in the
context of view for an application and is also often implemented in Model-View-Controller
(MVC) frameworks.

The disadvantages of using this pattern come when we need to debug this whole thing;
flow control can become difficult as observers don't know about each other. In addition to
this, there is an update overhead, which can make memory management difficult when
dealing with particularly large observers.

Remember that this design pattern is solely for use within one program, it's not designed
for inter-process communication or a messaging system. Later in this book, we'll cover how
you can use Messaging patterns to describe how different parts of a message parsing
system interconnect when we want to allow intercommunication between different
processes, and not just different classes within one process.

Behavioral Design Patterns

[139]

Iterators
The Iterator design pattern is where an iterator is used to traverse a container. In PHP, a
class is traversable using the foreach construct if it ultimately inherits the Traversable
interface. Unfortunately, this is an abstract base interface, you can't implement it alone
(unless you're writing in the PHP core itself). Instead, you must instead implement
interfaces called Iterator or IteratorAggregate. By implementing either of these
interfaces you make a class iterable and traversable using foreach.

Iterator and IteratorAggregate interfaces are very similar, except the
IteratorAggregate interface creates an external iterator. IteratorAggregate as an
interface only requires outlines one method, getIterator. This method has to return an
instance of the ArrayIterator interface.

IteratorAggregate
Let's suppose we want to create an implementation of this interface, which will iterate
through various times.

Firstly, let's start off with a basic implementation of the IternatorAggregate class to
understand how it works:

<?php

class timeIterator implements IteratorAggregate {

 public function getIterator()
 {
 return new ArrayIterator(array(
 'property1' => 1,
 'property2' => 2,
 'property4' => 3
));
 }
}

Behavioral Design Patterns

[140]

We can iterate through this class as follows:

<?php

$time = new timeIterator;

foreach($time as $key => $value) {
 var_dump($key, $value);
 echo "n";
}

The output of this is as follows:

I've modified this script so that it takes a time value and calculates various values either
side and makes them iterable:

<?php

class timeIterator implements IteratorAggregate
{

 public function __construct(int $time)
 {
 $this->weekAgo = $time - 604800;
 $this->yesterday = $time - 86400;
 $this->now = $time;
 $this->tomorrow = $time + 86400;
 $this->nextWeek = $time + 604800;
 }

 public function getIterator()
 {

Behavioral Design Patterns

[141]

 return new ArrayIterator($this);
 }
}

$time = new timeIterator(time());

foreach ($time as $key => $value) {
 var_dump($key, $value);
 echo "n";
}

The output of this script is as follows:

Iterator
Let's suppose we want to create an implementation of this interface that will iterate through
various times.

Behavioral Design Patterns

[142]

The many iterators of PHP
Previously, we've explored some functions in the SPL (Standard PHP Library), which is a
collection of interfaces and classes that exist to solve common problems. Given this aim,
they share a common aim with design patterns, but they both aim to solve these problems
in different ways. No external libraries are needed to build this extension and compile in
PHP 7; indeed, you can't even disable it.

As part of this library, there are a lot of iterators in the SPL. You can find a list of them in
the documentation at h t t p : / / p h p . n e t / m a n u a l / e n / s p l . i t e r a t o r s . p h p.

Here's a list of some of these iterators to give you an idea of what you can utilize them for:

AppendIterator
ArrayIterator
CachingIterator
CallbackFilterIterator
DirectoryIterator
EmptyIterator
FilesystemIterator
FilterIterator
GlobIterator
InfiniteIterator
IteratorIterator
LimitIterator
MultipleIterator
NoRewindIterator
ParentIterator
RecursiveArrayIterator
RecursiveCachingIterator
RecursiveCallbackFilterIterator
RecursiveDirectoryIterator
RecursiveFilterIterator
RecursiveIteratorIterator
RecursiveRegexIterator
RecursiveTreeIterator
RegexIterator

http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php
http://php.net/manual/en/spl.iterators.php

Behavioral Design Patterns

[143]

Generators
PHP has a great mechanism to create iterators in a compact fashion. This type of iterator
comes with some severe limitations; they are forward only and cannot be rewound. Indeed,
even to simply start an iterator from the start, you must rebuild the generator. In essence,
this is a forward-only iterator.

A function that uses the yield keyword instead of the return keyword. This will act in the
same way as a return statement, but it will not stop the execution of that function. A
generator function can yield data as many times as you please.

When you populate an array with values, those values must be stored in memory which can
cause you to exceed your PHP memory limit or require a significant amount of processing
time for the generator. When you put the logic in a generator function, that overhead does
not exist. The generator function may merely yield as many results as it needs; there's no
need to prepopulate an array first.

Here is a simple generator that will var_dump a string stating, the generator has started.
The function will then generate the first five square numbers while also outputting their
place in the series with var_dump . It will then finally indicate the generator has ended:

<?php
function squaredNumbers()
{
 var_dump("Generator starts.");
 for ($i = 0; $i < 5; ++$i) {
 var_dump($i . " in series.");
 yield pow($i, 2);
 }
 var_dump("Generator ends.");
}

foreach (squaredNumbers() as $number) {
 var_dump($number);
}

Behavioral Design Patterns

[144]

The second part of this script loops through this function and runs a var_dump string on
each number. The output of this is as follows:

Let's amend this function slightly.

It is very important to note that if you add a return type to the variable, you can only
declare a return type of Generator, Iterator or Traversable, integer.

Here is the code:

<?php
function squaredNumbers(int $start, int $end): Generator
{
 for ($i = $start; $i <= $end; ++$i) {
 yield pow($i, 2);
 }
}

foreach (squaredNumbers(1, 5) as $number) {
 var_dump($number);
}

Behavioral Design Patterns

[145]

The result of this is as follows:

What if we want to yield a key as well as a value? Well, this is fairly easy.

There's something else to mention about generators to those who used them in PHP 5: in
PHP 5, when you want to simultaneously yield a variable while setting it to a variable, you
must wrap the yield statement in brackets. This restriction does not exist in PHP 7.

This works in PHP 5 and 7:

$data = (yield $value);

This only works in PHP 7:

$data = yield $value;

Let's suppose we want to amend our generator so that it yields a key-value result. Here's
what the code looks like:

<?php

function squaredNumbers(int $start, int $end): Generator
{
 for ($i = $start; $i <= $end; ++$i) {
 yield $i => pow($i, 2);
 }
}

foreach (squaredNumbers(1, 5) as $key => $number) {
 var_dump([$key, $number]);
}

Behavioral Design Patterns

[146]

When we test this, we will var_dump a two-dimensional array containing a key-value store
of whatever the generator has yielded in a given iteration.

Here is the output:

Just a few other tips, a yield statement with no variable (like the one shown in the succeding
command) will simply yield null:

 yield;

You may also use yield from which will yield the inner values of any given generator.

Behavioral Design Patterns

[147]

Let's suppose we have an array of two values:

[1, 2]

When we use yield from to yield an array of two values we get the inner values of the
array. Let me demonstrate this:

<?php

function innerGenerator()
{
 yield from [1, 2];
}

foreach (innerGenerator() as $number) {
 var_dump($number);
}

This will display the following output:

However, now let's alter this script so that it uses yield instead of yield from:

<?php

function innerGenerator()
{
 yield [1, 2];
}

foreach (innerGenerator() as $number) {
 var_dump($number);
}

Behavioral Design Patterns

[148]

We will now see that instead of merely just the inner values of the array, we get the outer
container too:

Template Method design pattern
The Template Method design pattern is used to create a group of subclasses that have to
execute a similar group of behaviors.

This design pattern consists of a Template Method, which is an abstract class. Concrete
subclasses can override the methods within the abstract class. The Template Method
consists of a skeleton of an algorithm; the subclasses can use overriding to change the
concrete behavior of the algorithm.

As such, this is an incredibly simple design pattern to use; it encourages loose coupling
while also controlling at what points subclassing is permitted. Thus, it is more fine-grained
than simple polymorphic behavior.

Consider the following abstraction of a Pasta class:

<?php

abstract class Pasta
{
 public function __construct(bool $cheese = true)
 {
 $this->cheese = $cheese;
 }

Behavioral Design Patterns

[149]

 public function cook()
 {

 var_dump('Cooked pasta.');

 $this->boilPasta();
 $this->addSauce();
 $this->addMeat();

 if ($this->cheese) {
 $this->addCheese();
 }
 }

 public function boilPasta(): bool
 {
 return true;
 }

 public abstract function addSauce(): bool;

 public abstract function addMeat(): bool;

 public abstract function addCheese(): bool;

}

There is a simple constructor for whether the pasta should contain cheese or not, and a
cook function that runs the cooking algorithm.

Note that the functions to add various ingredients are abstracted away; in subclasses, we
implement these methods with the required behavior.

Suppose we want to make meatball pasta. We can implement this abstract class as follows:

<?php

class MeatballPasta extends Pasta
{

 public function addSauce(): bool
 {
 var_dump("Added tomato sauce");

 return true;
 }

Behavioral Design Patterns

[150]

 public function addMeat(): bool
 {
 var_dump("Added meatballs.");

 return true;

 }

 public function addCheese(): bool
 {
 var_dump("Added cheese.");

 return true;
 }

}

We can sample this code using the following script in our index.php file:

<?php

require_once('Pasta.php');
require_once('MeatballPasta.php');

var_dump("Meatball pasta");
$dish = new MeatballPasta(true);
$dish->cook();

Thanks to all the var_dump variables in the various functions displaying various status
messages, we can see an output like this:

Now, suppose we want to make a vegan recipe instead. We can utilize the same abstraction
in a different context.

Behavioral Design Patterns

[151]

This time when it comes to adding meat or cheese, those functions do nothing; they can
return false or a null value:

<?php

class VeganPasta extends Pasta
{

 public function addSauce(): bool
 {
 var_dump("Added tomato sauce");

 return true;
 }

 public function addMeat(): bool
 {
 return false;
 }

 public function addCheese(): bool
 {
 return false;
 }

}

Let's amend our index.php file to represent this behavior:

<?php

require_once('Pasta.php');
require_once('MeatballPasta.php');

var_dump("Meatball pasta");
$dish = new MeatballPasta(true);
$dish->cook();

var_dump("");
var_dump("Vegan pasta");
require_once('VeganPasta.php');

$dish = new VeganPasta(true);
$dish->cook();

Behavioral Design Patterns

[152]

The output is as follows:

This design pattern is simple and easy to work with, but it fundamentally allows you to
abstract your algorithm design and delegate that responsibility to subclasses where you
want to.

Chain of Responsibility
Suppose we have a group of objects that together are meant to solve a problem. When one
object can't solve a problem, we want the object to send the task to a different object in a
given chain. This is what the Chain of Responsibility design pattern is used for.

In order to get this to work, we need a handler, which will be our Chain interface. The
various objects in the chain will all implement this Chain interface.

Let's start with a simple example; an associate can purchase an asset for less than $100, a
manager can purchase something for less than $500.

Behavioral Design Patterns

[153]

Our abstraction for the Purchaser interface looks like this:

<?php

interface Purchaser
{
 public function setNextPurchaser(Purchaser $nextPurchaser): bool;

 public function buy($price): bool;
}

Our first implementation is the Associate class. Quite simply, we implement the
setNextPurchaser function so that it will set the nextPurchaser class property to the
next object in the chain.

When we call the buy function, if the price is within range, the associate will purchase it. If
not, the next purchaser in the chain will purchase it:

<?php

class AssociatePurchaser implements Purchaser
{
 public function setNextPurchaser(Purchaser $nextPurchaser): bool
 {
 $this->nextPurchaser = $nextPurchaser;
 return true;
 }

 public function buy($price): bool
 {
 if ($price < 100) {
 var_dump("Associate purchased");
 return true;
 } else {
 if (isset($this->nextPurchaser)) {
 reurn $this->nextPurchaser->buy($price);
 } else {
 var_dump("Could not buy");
 return false;
 }
 }
 }
}

Behavioral Design Patterns

[154]

Our Manager class is exactly the same; we just allow the manager to purchase assets which
are under $500. In reality, when you apply this pattern you wouldn't just duplicate a class
as your class would have different logic; this example is just an incredibly simple
implementation.

Here's the code:

<?php

class ManagerPurchaser implements Purchaser
{
 public function setNextPurchaser(Purchaser $nextPurchaser): bool
 {
 $this->nextPurchaser = $nextPurchaser;
 return true;
 }

 public function buy($price): bool
 {
 if ($price < 500) {
 var_dump("Associate purchased");
 return true;
 } else {
 if (isset($this->nextPurchaser)) {
 return $this->nextPurchaser->buy($price);
 } else {
 var_dump("Could not buy");
 return false;
 }
 }
 }
}

Let's run a basic purchase from an associate in our index.php file.

Firstly, here's the code we put in our index.php file:

<?php

require_once('Purchaser.php');
require_once('AssociatePurchaser.php');

$associate = new AssociatePurchaser();

$associate->buy(50);

Behavioral Design Patterns

[155]

The output of all of this is as follows:

Next, let's test our Manager class. We'll amend our purchase price in our index.php
file and also add our Manager class to the chain.

Here's our amended index.php:

<?php

require_once('Purchaser.php');
require_once('AssociatePurchaser.php');
require_once('ManagerPurchaser.php');

$associate = new AssociatePurchaser();
$manager = new ManagerPurchaser();

$associate->setNextPurchaser($manager);

$associate->buy(400);

This has the following output:

Behavioral Design Patterns

[156]

Let's see what happens if we alter the price such that the purchase will fail.

We change the final line on our index.php file so the purchase price is now $600:

<?php

require_once('Purchaser.php');
require_once('AssociatePurchaser.php');
require_once('ManagerPurchaser.php');

$associate = new AssociatePurchaser();
$manager = new ManagerPurchaser();

$associate->setNextPurchaser($manager);

$associate->buy(600);

This has the following output:

We can now extend this script. Let's add DirectorPurchaser and BoardPurchaser so
we can make purchases at a higher cost.

We'll create a DirectorPurchaser who can buy under $10,000.

This class is as follows:

<?php

class DirectorPurchaser implements Purchaser
{
 public function setNextPurchaser(Purchaser $nextPurchaser): bool
 {

Behavioral Design Patterns

[157]

 $this->nextPurchaser = $nextPurchaser;
 return true;
 }

 public function buy($price): bool
 {
 if ($price < 10000) {
 var_dump("Director purchased");
 return true;
 } else {
 if (isset($this->nextPurchaser)) {
 return $this->nextPurchaser->buy($price);
 } else {
 var_dump("Could not buy");
 return false;
 }
 }
 }
}

Let's do the same for a BoardPurchaser class who can purchase below $100,000:

<?php

class BoardPurchaser implements Purchaser
{
 public function setNextPurchaser(Purchaser $nextPurchaser): bool
 {
 $this->nextPurchaser = $nextPurchaser;
 return true;
 }

 public function buy($price): bool
 {
 if ($price < 100000) {
 var_dump("Board purchased");
 return true;
 } else {
 if (isset($this->nextPurchaser)) {
 return $this->nextPurchaser->buy($price);
 } else {
 var_dump("Could not buy");
 return false;
 }
 }
 }
}

Behavioral Design Patterns

[158]

Now we can update our index.php script to require the new classes, instantiate them, and
then bind everything together in a chain. Finally, we'll attempt to run a purchase by calling
the first in the chain.

Here's the script:

<?php

require_once('Purchaser.php');
require_once('AssociatePurchaser.php');
require_once('ManagerPurchaser.php');
require_once('DirectorPurchaser.php');
require_once('BoardPurchaser.php');

$associate = new AssociatePurchaser();
$manager = new ManagerPurchaser();
$director = new DirectorPurchaser();
$board = new BoardPurchaser();

$associate->setNextPurchaser($manager);
$manager->setNextPurchaser($director);
$director->setNextPurchaser($board);

$associate->buy(11000);

Here's the output of this script:

Behavioral Design Patterns

[159]

This allows us to traverse a chain of objects to process data. This is particularly useful when
dealing with tree data structures (for example, an XML tree). This can act in a launch-and-
leave manner where we can lower the overhead of handling iterating through the chain.

Moreover, the chain is loosely coupled, data is passed through a chain until it is processed.
Any object can be chained to any other object in any order.

Strategy design pattern
The Strategy design pattern exists to allow us to alter the behavior of an object at runtime.

Let's suppose we have a class that will raise a number to a power, but at runtime we want
to alter whether we square or cube a number.

Let's start off by defining an interface a function that will raise a number to a given power:

<?php

interface Power
{
 public function raise(int $number): int;
}

We can accordingly define classes to Square and also Cube a given number by
implementing the interface.

Here's our Square class:

<?php

class Square implements Power
{
 public function raise(int $number): int
 {
 return pow($number, 2);
 }
}

And let's define our Cube class:

<?php

class Cube implements Power
{
 public function raise(int $number): int

Behavioral Design Patterns

[160]

 {
 return pow($number, 3);
 }
}

We can now build a class that will essentially use one of these classes to process a number.

Here's the class:

<?php

class RaiseNumber
{
 public function __construct(Power $strategy)
 {
 $this->strategy = $strategy;
 }

 public function raise(int $number)
 {
 return $this->strategy->raise($number);
 }
}

Now we can demonstrate this whole setup using an index.php file:

<?php

require_once('Power.php');
require_once('Square.php');
require_once('Cube.php');
require_once('RaiseNumber.php');

$processor = new RaiseNumber(new Square());

var_dump($processor->raise(5));

The output is as expected, 52 is 25.

Behavioral Design Patterns

[161]

Here's the output:

We can swap the Square object with the Cube object in our index.php file:

<?php

require_once('Power.php');
require_once('Square.php');
require_once('Cube.php');
require_once('RaiseNumber.php');

$processor = new RaiseNumber(new Cube());

var_dump($processor->raise(5));

Here's the output of the updated script:

Behavioral Design Patterns

[162]

So far so good; but the reason that this is great is the fact that we can dynamically add logic
that actually changes the operation of the class.

Here's a rather crude demonstration of all this:

<?php

require_once('Power.php');
require_once('Square.php');
require_once('Cube.php');
require_once('RaiseNumber.php');

if (isset($_GET['n'])) {
 $number = $_GET['n'];
} else {
 $number = 0;
}

if ($number < 5) {
 $power = new Cube();
} else {
 $power = new Square();
}

$processor = new RaiseNumber($power);

var_dump($processor->raise($number));

So just to demonstrate this, let's run the script with the nGET variable set to 4, which should
cube the number 4, giving an output of 64:

Behavioral Design Patterns

[163]

Now if we pass through the number 6, we expect the script to square the number 6, giving
an output of 36:

In this design pattern, we have done a lot:

We defined a family of algorithms, bound by one common interface
These algorithms are interchangeable; they can be swapped in and out without
affecting the client implementation
We encapsulated each algorithm within a class

Now we can vary the algorithm independently from the clients that use it.

Specification design pattern
The Specification design pattern is incredibly powerful. Here, I will attempt to provide a
high-level overview of it, but there is plenty to explore; I highly recommend the paper
Specifications by Eric Evans and Martin Fowler if you are interested in learning more.

This design pattern is used to codify business rules that state something about an object.
They tell us whether an object satisfies some business criteria or not.

We can use them in the following ways:

To make assertions about an object, for validation
To fetch a selection of objects from a given collection
To specify how an object can be created by building to order

Behavioral Design Patterns

[164]

In this example, we're going to build Specification to query

Let's take the following objects:

<?php

$workers = array();

$workers['A'] = new StdClass();
$workers['A']->title = "Developer";
$workers['A']->department = "Engineering";
$workers['A']->salary = 50000;

$workers['B'] = new StdClass();
$workers['B']->title = "Data Analyst";
$workers['B']->department = "Engineering";
$workers['B']->salary = 30000;

$workers['C'] = new StdClass();
$workers['C']->title = "Personal Assistant";
$workers['C']->department = "CEO";
$workers['C']->salary = 25000;

The workers array will look like this if we var_dump it:
array(3) {
 ["A"]=>
 object(stdClass)#1 (3) {
 ["title"]=>
 string(9) "Developer"
 ["department"]=>
 string(11) "Engineering"
 ["salary"]=>
 int(50000)
 }
 ["B"]=>
 object(stdClass)#2 (3) {
 ["title"]=>
 string(12) "Data Analyst"
 ["department"]=>
 string(11) "Engineering"
 ["salary"]=>
 int(30000)
 }
 ["C"]=>
 object(stdClass)#3 (3) {
 ["title"]=>
 string(18) "Personal Assistant"
 ["department"]=>

Behavioral Design Patterns

[165]

 string(3) "CEO"
 ["salary"]=>
 int(25000)
 }
}

Let's kick things off with an EmployeeSpecification interface; this is the interface that all
our specifications will need to implement. Be sure to replace StdClass with the type of
object you're dealing with (for example, employee, or the name of the class you instantiated
the object from).

Here's the code:

<?php

interface EmployeeSpecification
{
 public function isSatisfiedBy(StdClass $customer): bool;
}

It's time to write an implementation called EmployeeIsEngineer:

<?php

class EmployeeIsEngineer implements EmployeeSpecification
{
 public function isSatisfiedBy(StdClass $customer): bool
 {
 if ($customer->department === "Engineering") {
 return true;
 }
 return false;
 }
}

We can then iterate through our workers to check which ones meet the criteria we outlined:

$isEngineer = new EmployeeIsEngineer();

foreach ($workers as $id => $worker) {
 if ($isEngineer->isSatisfiedBy($worker)) {
 var_dump($id);
 }
}

Behavioral Design Patterns

[166]

Let's put this all together in our index.php file:

<?php

require_once('EmployeeSpecification.php');
require_once('EmployeeIsEngineer.php');

$workers = array();

$workers['A'] = new StdClass();
$workers['A']->title = "Developer";
$workers['A']->department = "Engineering";
$workers['A']->salary = 50000;

$workers['B'] = new StdClass();
$workers['B']->title = "Data Analyst";
$workers['B']->department = "Engineering";
$workers['B']->salary = 30000;

$workers['C'] = new StdClass();
$workers['C']->title = "Personal Assistant";
$workers['C']->department = "CEO";
$workers['C']->salary = 25000;

$isEngineer = new EmployeeIsEngineer();

foreach ($workers as $id => $worker) {
 if ($isEngineer->isSatisfiedBy($worker)) {
 var_dump($id);
 }
}

Here's the output of this script:

Behavioral Design Patterns

[167]

Composite Specifications allow you to combine specifications. By using the AND, NOT,
OR and NOR operators you are able to build their respective functions into different
specification classes.

Similarly, you can also fetch objects using a specification.

This code gets more complicated as you go further, but you understand the gist. Indeed, the
paper by Eric Evans and Martin Fowler I mentioned at the start of the section goes into
some far more complicated arrangements.

Either way, this design pattern fundamentally allows us to encapsulate business logic to
state something about an object. It is an incredibly powerful design pattern and I would
highly encourage studying it more deeply.

Scheduled Task pattern
A scheduled task fundamentally consists of three things: the task itself, the jobs that do the
scheduling by defining when the task that is being run and when it is permitted to run, and
finally, the job registry that executes this job.

Commonly, these are implemented by using cron on Linux servers. You add a line to the
configuration file using the following configuration syntax:

 # ┌───────────── min (0 - 59)
 # │ ┌────────────── hour (0 - 23)
 # │ │ ┌─────────────── day of month (1 - 31)
 # │ │ │ ┌──────────────── month (1 - 12)
 # │ │ │ │ ┌───────────────── day of week (0 - 6) (0 to 6
are Sunday to
 # │ │ │ │ │ Saturday, or use names; 7 is also
Sunday)
 # │ │ │ │ │
 # │ │ │ │ │
 # * * * * * command to execute

You can ordinarily edit the cron file by running crontab -e in the command line. You can
schedule any Linux command using this pattern. Here's a cronjob that will run a PHP script
at 20:00 (8 PM) every day:

0 20 * * * /usr/bin/php /opt/test.php

Behavioral Design Patterns

[168]

These are very simple to run to implement, but here are some guidelines to help guide you
when you create them:

Don't expose your cronjobs to the Internet.
When you run the task, the task shouldn't check the criteria as to whether it needs
to run or not. This test should be outside the task.
The task should only do the scheduled activity it's intended to do and not
perform any other purpose.
Beware of the Database-as-IPC pattern we discussed in Chapter 7, Refactoring.

You can put whatever you want in the task (within reason). You may find an asynchronous
execution the best route. Icicle is a great PHP library for performing async behavior. You
can find the documentation online at https://icicle.io/.

Where our task needs several tasks to be done in a specific order, you may benefit from
using the Composite design pattern we discussed in the Structural design patterns section
and calling a single task that uses this pattern to call other tasks using this pattern.

Summary
In this chapter, we've covered some patterns that identify common communication patterns
between objects.

We covered how the Observer pattern can be used to update observers on the status of a
given subject. Additionally, we learned how the standard PHP library contains
functionality that can help us with this.

We then went on to cover how we can implement iterators in many different ways in PHP,
using various interfaces in the PHP core alongside utilizing the generator function.

We went on to discuss how the Template pattern can define an algorithm skeleton that we
can dynamically adapt in a more stringent way than standard polymorphism. We covered
the Chain of Responsibility pattern, which allows us link together objects in a chain to
execute various functionality. The Strategy pattern taught us how we can alter behavior of
code at runtime. I then introduced the basics of the Specification pattern and how advanced
the functionality in it is. Finally, we revised the Scheduled Task pattern and how it can be
implemented using cron on Linux.

https://icicle.io/
https://icicle.io/

Behavioral Design Patterns

[169]

These design patterns are some of the most critical ones for developers. Communication
between objects is vital in many projects and these patterns can really aid us in this
communication.

In the next chapter, we'll look at Architectural patterns and how these can help you with the
software architecture tasks that arise and how these can help you address the broader
software engineering challenges you may face (though they may not be technically
considered design patterns themselves).

6
Architectural Patterns

Architectural patterns, sometimes referred to as an architectural style, provide solutions to
recurring problems in software architecture.

Though similar to software design patterns, they have a broader scope, addressing various
issues in software engineering as opposed to simply the development of software itself.

In this chapter we will cover the following topics:

Model-View-Controller (MVC)
Service-oriented architecture
Microservices
Asynchronous queuing
Message Queue pattern

Model-View-Controller (MVC)
MVC is the most common type of Architectural pattern that PHP developers encounter.
Fundamentally, MVC is an Architectural pattern for implementing user interfaces.

It largely works around the following methodology:

Model: This supplies the data to the application, whether it's from a MySQL
database or any other data store.
Controller: A Controller is essentially where the business logic is. The Controller
handles whatever queries the View provides, using the Model to assist it in this
behavior.
View: The actual content that is supplied to the end-user. This commonly is an
HTML template.

Architectural Patterns

[171]

Business logic for one interaction isn't strictly separated from another interaction. There is
no formal separation between the different classes of an application.

It is critical to consider that the MVC pattern is principally a UI pattern, so it doesn't scale
well throughout an application. That said, the rendering of UIs is increasingly being done
via JavaScript applications, a single page JavaScript HTML app that simply consumes a
RESTful APIs.

If you're using JavaScript, you may use a framework such as Backbone.js (Model-View-
Presenter), React.js, or Angular to communicate with your backend APIs, though this will of
course, require a JavaScript enabled web browser, which some of us can take for granted
from our users.

In the event you exist in an environment where you cannot use a JavaScript app and must
instead serve rendered HTML, it often is a good idea for your MVC app to simply consume
a REST API. The REST API performs all the business logic, but the rendering of markup is
done in the MVC app. Although this increases complexity, it offers a greater separation of
responsibilities and as a result, you don't have HTML being merged with core business
logic. That said, even within this REST API you need some form of separation of concerns,
you need to be able to separate, the rendering of the markup from the actual business logic.

A key element to choosing an Architectural pattern suitable for an app is whether the
complexity is appropriate for the size of the app. Thus, choosing an MVC framework
should also be based on the complexity of the app itself and its intended complexity later
on.

Given the growth of infrastructure as code, it is possible to deploy the infrastructure of
multiple web services in an entirely orchestrated fashion. Indeed, using containerization
technology such as Docker, it is possible to deploy multiple architectures (such as an MVC
application with a separate API service) with little overhead (no need to spin up a new
server for each service).

Separation of concerns is a vital trait when developing great architectures, which includes
separating UI from business logic.

Architectural Patterns

[172]

When thinking in terms of an MVC pattern, it is important to remember the interactions as
follows:

The Model stores data, which is retrieved according to the query put by the
Model and displayed by the View
The View generates outputs based on changes to the Model
The Controller sends the command to update the Model's state; it can also update
the View associated to it to alter how a given Model is presented

Or, it is commonly expressed using the following diagram:

Don't use an MVC framework for the sake of using one, understand why they exist and
where they can fit well into a use case. Remember that when you take on a bloated
framework with lots of functionality, you are taking responsibility for maintaining the
whole thing going forward.

Pulling in the components as you need them (that is, through Composer) is a far more
practical approach to developing software with considerable business logic.

Service-oriented architecture
Service-oriented architectures largely consist of business logic in services that communicate
with data repositories.

These services can be derived in different forms to build applications. These applications
adopt these services in different formats to build various applications. Consider the services
as Lego blocks that can be put together to build an application in a given format.

Architectural Patterns

[173]

This description is rather crude; let me clarify further:

Boundaries for services are explicit (they may separate web services on different
domains, and so on.)
Services can inter-communicate using a common communication protocol (for
example all use RESTful APIs)
Services are autonomous (they are decoupled and not related to another service
in any way)
The message processing mechanism and the schema are understandable by every
other microservice (and therefore are often the same), but the programming
environment can be different

Service-oriented architectures are inherently distributed, thus they can have higher up-front
complexity than other architectures.

Microservices
A microservices architecture can be considered a subset of service-oriented architectures.

Fundamentally, microservices form complex applications by composing them of small
independent process which intercommunicate over a language-agnostic API that makes
each services accessible to each other. Microservices can be individually deployed as
services.

In microservices, the business logic is separated into self-contained loosely-coupled
services. A key tenet of microservices is that each database should have their own database,
which is vital to ensure that the microservices do not become tightly coupled to each other.

By reducing the complexity of a single service, we can aim to reduce the amount of points at
which this service will fail. In theory, by having a single service comply with the Single
Responsibility Principle, it is easier to debug and reduce chances of failure in our
application as a whole.

In computer science, the CAP theorem dictates that it is impossible to guarantee
consistency, availability, and partition tolerance concurrently in a given distributed
computer system.

Architectural Patterns

[174]

Imagine two distributed databases both containing the e-mail address of a user. If we want
to update this e-mail address, there is no way we can do so in a way that is instantaneously
available across both databases with the e-mail consistently updated at the same time while
not bringing the two datasets back together. In a distributed system we would have to
either delay the access to the data to validate the data is consistent or present a non-updated
copy of the data.

This makes traditional database transaction difficult. Thus, the best way to address data
handling in a microservices architecture is to use an eventually consistent, event-driven
architecture.

Each service publishes an event whenever there is a change, and other services may
subscribe to this. When an event is received, the data is accordingly updated. Thus, the
application is able to maintain data consistency across multiple services without needing to
use distributed transactions.

In order to see how such an architecture for inter-process communication can be
implemented for communication between microservices, please see the Message Queue
pattern (Getting started with RabbitMQ) section in this chapter.

In this situation, one simple way to mitigate against this restriction is simply by using a
time verification system in order to verify the data is consistent. Thus, we surrender
availability for consistency and partition tolerance.

If you can foresee this as a problem in a given microservices architecture, it is often best to
group the services that need to satisfy the CAP theorem together into a single service.

Let's consider a pizza delivery web application that consists of the following microservices:

User
Deals
Recipe
Cart
Billing
Payments
Restaurant
Delivery
Pizza
Reviews
Frontend microservice

Architectural Patterns

[175]

In this example, we could have the following user journey:

The user is authenticated using the User microservice.1.
The user can select offers using the Deals microservice.2.
The user selects the pizza they want to order using the Recipe microservice.3.
Selected pizza(s) are added to the cart using the Cart microservice.4.
Billing credentials optimated through the Billing microservice.5.
The user pays using the Payments microservice.6.
The order is sent to the restaurant using the Restaurant microservice.7.
When the Restaurant has cooked the food, the Delivery microservice sends a8.
driver to collect the food and deliver it.
Once the Delivery microservice indicates the food has been delivered, the user is9.
invited to complete a review using the Review microservice (which notifies the
user using the User microservice).
The web front of this is wrapped together using the Frontend microservice.10.

The Frontend microservice can simply be a microservice that consumes the other
microservices and presents the content to the web frontend. This frontend may
communicate with the other microservices over REST, perhaps implemented in a JavaScript
client in the browser, or a PHP app that merely acts as a consumer of other microservice
APIs.

Either way, it is often a good idea to place a gateway between the frontend consumer of
your API and the backend. This allows us to put some middleware before communication
to microservices is ascertained; for example, we can use the gateway to query the User
microservice to check that a user is authorized before allowing access to the Cart
microservice.

If you're using JavaScript to communicate directly with the microservices, you may find
cross-origin issues when your web frontend tries to communicate with microservices on
different hostnames/ports; a microservice gateway can help prevent this by putting the
gateway on the same origin as the web frontend itself.

Architectural Patterns

[176]

In exchange for this convenience of a gateway, you'll likely feel the drawbacks in terms of
the fact that you will have another system to worry about and additional response time
(though you can add caching at the gateway level should you want to improve performance
there).

Given the addition of a gateway, our architecture could now look something like this:

Increasingly emerging in PHP are micro-frameworks such as Lumen, Silex, and Slim; these
are API-oriented frameworks that make it easy to build microservices to support our
applications. That said, you may often be better to adopt an even more lightweight
approach and merely pull in the components you require through Composer as and when
you need them.

Remember that adding another technology or framework adds additional complexity to
your overall situation. Think not only of the technical reasons of implementing a new
solution but also how this will benefit the customer and the architecture. Microservices
aren't an excuse to add unnecessary complexity: Keep It Simple, Stupid.

Architectural Patterns

[177]

Asynchronous queueing
Message queues provide an asynchronous communication protocol. In an asynchronous
communication protocol, the sender and the receiver need not interact with the message
queue simultaneously.

Typical HTTP, on the other hand, is a synchronous communication protocol, meaning that
the client is blocked until the operation is completed.

Consider this; you call someone on the phone, then you wait for the phone to ring and the
person you talk to listens to whatever you have to say then and there. At the end of the
communication you say goodbye and that is acknowledged by someone on the other end
saying goodbye back. This can be considered synchronous as you don't do anything until
you get a response from the person you're communicating with to end the communication.

However, if you were to send a text message to someone instead, after you send that
message you can go off and do whatever behavior you please; you can receive a message in
return to the one you sent when they want to communicate back to you. While someone is
drafting the response to send back, you can go off and do whatever you want. While you
don't communicate directly with the sender, you do still maintain synchronous
communication with your phone, which notifies you when you get a new message (or
simply check your phone every few minutes); but the communication with the other party
itself is asynchronous. Neither party needs to know anything about the other party, they
just merely are looking out for their own text messages in order to communicate with each
other.

Message Queue pattern (Getting started with
RabbitMQ)
RabbitMQ is a message broker; it accepts and forwards messages. Here, let's configure it so
that we can send messages from one PHP script to another.

Imagine we are giving a package to a courier in order for them to give to the client;
RabbitMQ is the courier, while the scripts are the individuals receiving and sending the
packages respectively.

As the first step, let's install RabbitMQ; I'm going to demonstrate this on an Ubuntu 14.04
system.

Architectural Patterns

[178]

To start with, we need to add the RabbitMQ APT repository to our
/etc/apt/sources.list.d folder. This can fortunately be actioned with a command, like
this:

echo 'deb http://www.rabbitmq.com/debian/ testing main' | sudo tee
/etc/apt/sources.list.d/rabbitmq.list

Note that the repository may be liable to change; if it does, you can find the latest details at
h t t p s : / / w w w . r a b b i t m q . c o m / i n s t a l l - d e b i a n . h t m l.

We can optionally also add the RabbitMQ public key to the trusted key list to avoid any
warnings indicating packages are unsigned when we install or upgrade the packages
through the apt command:

wget -O- https://www.rabbitmq.com/rabbitmq-release-signing-key.asc | sudo
apt-key add -

So far, so good:

Next, let's just run an apt-get update command to fetch the packages from the new
repository we've included. After this is done we can get around to installing the package we
need using the apt-get install rabbitmq-server command:

https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html
https://www.rabbitmq.com/install-debian.html

Architectural Patterns

[179]

Be sure to accept the various prompts when asked:

Architectural Patterns

[180]

After installation, you may run rabbitmqctl status to check the status of the application
to check it's running OK:

Let's make our lives easier for a second. We can use a web GUI to manage RabbitMQ;
simply run the following command:

rabbitmq-plugins enable rabbitmq_management

Architectural Patterns

[181]

We can now see an admin interface at <your server IP here>:15672:

But before we can log in, we're going to have to create some login credentials. In order to do
this we're going to have to head back to the command line.

Firstly, we'll need to set a new account with a username of junade and a password of
insecurepassword:

rabbitmqctl add_user junade insecurepassword

Then we can add some admin privileges:

rabbitmqctl set_user_tags junade administrator
rabbitmqctl set_permissions -p / junade ".*" ".*" ".*"

Returning to the login page, we can now see our cool admin interface after we enter in these
credentials:

Architectural Patterns

[182]

This is the web interface for the RabbitMQ service, accessible through our web browser

Now we can test what we've installed. Let's start off by writing a composer.json file for
this new project:

{
 "require": {
 "php-amqplib/php-amqplib": "2.5.*"
 }
}

RabbitMQ uses the advanced message queuing protocol (AMQP), which is why we're
installing a PHP library that will essentially help us communicate with it over this protocol.

Next up, we can write some code to send a message using the RabbitMQ message broker
we just installed:

This assumes the port is 5672 and the install is on localhost, which may change
depending on your circumstances.

Architectural Patterns

[183]

Let's write a little PHP script to utilize this:

<?php

require_once(__DIR__ . '/vendor/autoload.php');
use PhpAmqpLib\Connection\AMQPStreamConnection;
use PhpAmqpLib\Message\AMQPMessage;

$connection = new AMQPStreamConnection('localhost', 5672, 'junade',
'insecurepassword');
$channel = $connection->channel();

$channel->queue_declare(
 'sayHello', // queue name
 false, // passive
 true, // durable
 false, // exclusive
 false // autodelete
);

$msg = new AMQPMessage("Hello world!");

$channel->basic_publish(
 $msg, // message
 '', // exchange
 'sayHello' // routing key
);

$channel->close();
$connection->close();

echo "Sent hello world message." . PHP_EOL;

So let's break this down a little bit. In the first few lines, we just include the library from the
Composer autoload and state which namespaces we're going to use. When we
instantiate the AMQPStreamConnection object we actually connect to the message broker;
we can then create a new channel object that we then use to declare a new queue on. We
declare a queue by calling the queue_declare message. The durable option allows
messages to survive reboots in RabbitMQ. Finally, we just go ahead and send out our
message.

Let's now run this script:

php send.php

Architectural Patterns

[184]

The output of this looks like this:

If you now go to the web interface for RabbitMQ, click the queues tab and toggle the Get
Message(s) dialog; you should be able to pull in the message we just sent to the broker:

Using this web page in the interface, we can extract messages from the queue so we can look at their contents

Architectural Patterns

[185]

Of course, this is just half the story. We now need to actually retrieve this message using
another app.

Let's write a receive.php script:

<?php

require_once(__DIR__ . '/vendor/autoload.php');
use PhpAmqpLib\Connection\AMQPStreamConnection;
use PhpAmqpLib\Message\AMQPMessage;

$connection = new AMQPStreamConnection('localhost', 5672, 'junade',
'insecurepassword');
$channel = $connection->channel();

$channel->queue_declare(
 'sayHello', // queue name
 false, // passive
 false, // durable
 false, // exclusive
 false // autodelete
);

$callback = function ($msg) {
 echo "Received: " . $msg->body . PHP_EOL;
};

$channel->basic_consume(
 'sayHello', // queue
 '', // consumer tag
 false, // no local
 true, // no ack
 false, // exclusive
 false, // no wait
 $callback // callback
);

while (count($channel->callbacks)) {
 $channel->wait();
}

Note that the first few lines are identical to our sending script; we even re-declare the queue
in case this receive script is run before the send.php script is run.

Architectural Patterns

[186]

Let's run our receive.php script:

In another bash Terminal, let's run the send.php script a few times:

Accordingly, in the receive.php Terminal tab, we can now see we've received the
messages we've been sending:

Architectural Patterns

[187]

The RabbitMQ documentation uses the following diagram to describe the basic accepting
and forwarding of messages:

Publish-Subscriber pattern
The Publish-Subscriber pattern (or Pub/Sub for short) is a design pattern whereby messages
aren't directly sent from publisher to subscribers; instead, publishers push out the message
without any knowledge.

In RabbitMQ, the producer never sends any messages directly to the queue. Quite often, the
producer doesn't even know if the message will end up in a queue at all. Instead, the
producer must send messages to an exchange. It receives messages from producers then
pushes them out to queues.

The consumer is the application that will receive the messages.

The exchange must be told exactly how to handle a given message, and which queue(s) it
should be appended to. These rules are defined by the exchange type.

The RabbitMQ documentation describes a Publish-Subscriber relationship (connecting the
publisher, exchange, queue, and consumer) as follows:

A direct exchange type delivers messages based on a routing key. It can be used both for
one-to-one and one-to-many forms of routing, but it is best suited to a one-to-one
relationship.

A fanout exchange type routes messages to all queues that are bound to it and the routing
key is completely ignored. Effectively, you cannot differentiate between which workers
messages will be distributed to based on the routing key.

Architectural Patterns

[188]

A topic exchange type works by routing messages to one or many queues on the basis of a
messaging routing queue and the pattern that was used to bind a queue to an exchange.
This exchange has the potential to work well when are multiple consumers/applications
that want to choose the type of messages they want to receive, usually in a many-to-many
relationship.

The headers exchange type is commonly used to route on a set of attributes that are better
expressed in message headers than the routing queue. Instead of using routing keys, the
attributes to the route are based on the headers attribute.

In order to test a Pub/Sub queue, we will be using the following scripts. They are similar to
the one in the example earlier, except I have modified them so that they use exchanges.
Here is our send.php file:

<?php

require_once(__DIR__ . '/vendor/autoload.php');
use PhpAmqpLib\Connection\AMQPStreamConnection;
use PhpAmqpLib\Message\AMQPMessage;

$connection = new AMQPStreamConnection('localhost', 5672, 'junade',
'insecurepassword');
$channel = $connection->channel();

$channel->exchange_declare(
 'helloHello', // exchange
 'fanout', // exchange type
 false, // passive
 false, // durable
 false // auto-delete
);

$msg = new AMQPMessage("Hello world!");

$channel->basic_publish(
 $msg, // message
 'helloHello' // exchange
);

$channel->close();
$connection->close();

echo "Sent hello world message." . PHP_EOL;

Architectural Patterns

[189]

Here is our receive.php file. Like before, I have modified this script so that it also uses
exchanges:

<?php

require_once(__DIR__ . '/vendor/autoload.php');
use PhpAmqpLib\Connection\AMQPStreamConnection;
use PhpAmqpLib\Message\AMQPMessage;

$connection = new AMQPStreamConnection('localhost', 5672, 'junade',
'insecurepassword');
$channel = $connection->channel();

$channel->exchange_declare(
 'helloHello', // exchange
 'fanout', // exchange type
 false, // passive
 false, // durable
 false // auto-delete
);

$callback = function ($msg) {
 echo "Received: " . $msg->body . PHP_EOL;
};

list($queueName, ,) = $channel->queue_declare("", false, false, true,
false);

$channel->queue_bind($queueName, 'helloHello');

$channel->basic_consume($queueName, '', false, true, false, false,
$callback);

while (count($channel->callbacks)) {
 $channel->wait();
}

$channel->close();
$connection->close();

Now, let's test these scripts. We'll first need to have our receive.php script running, then
we can send messages across using our send.php script.

Architectural Patterns

[190]

First, let's trigger our receive.php script so that it starts running:

After this is complete we can then move on to sending messages by running our send.php
script:

Architectural Patterns

[191]

This will now populate our Terminal running receive.php with the following
information:

Summary
In this chapter, we learned about Architectural patterns. Starting with MVC, we learned the
benefits and challenges of using UI frameworks and discussed how we can decouple our UI
from our business logic in a stricter fashion.

We then moved onto SOA and learned how this compared to microservices and where such
architectures make sense, given the challenges distributed systems pose.

Finally, we did an in-depth tour of queuing systems, where they are appropriate, and how
you can implement them in RabbitMQ.

In the next, and then the final chapter, we'll cover the best practice use conditions of
Architectural patterns.

7
Refactoring

Throughout this book I have largely focused on using design patterns to address new code
that you write; this is critical, it is vital that developers don't write the new legacy,
improving your own code is vital before critiquing the code of others. Developers must first
seek to understand how to code before they themselves may refactor code effectively.

This chapter shall be heavily based on Refactoring: Improving the Design of Existing Code by
Martin Fowler et al alongside Refactoring To Patterns by Joshua Kerievsky. I would highly
recommend reading these books if you are interested in learning more about this subject.

What is refactoring?
A key theme in refactoring code is addressing issues within the internal structure of code
while not altering the external behavior of the program being refactored. In some cases, this
can mean introducing internal structure where it previously wasn't intentional or thought
about before.

Refactoring as a process improves the design of code after it is written. While design is a
critical phase of the software engineering process, it is often disregarded (not least in PHP);
in addition to this, maintaining the structure of code over the long-term requires a
continued understanding of the design of software. If a developer takes up a project
without understanding how it was originally designed, they may develop upon it in a very
crude fashion.

In Extreme Programming (XP), a phrase known as Refactor Mercilessly is used, it is self-
explanatory. In XP, refactoring is proposed as a mechanism to keep software design as
simple as possible and to avoid needless complexity. As is stated in the rules of XP: Make
sure everything is expressed once and only once. In the end it takes less time to produce a system that
is well groomed.

Refactoring

[193]

A key tenet of refactoring is finding the software design as if it is something to be
discovered instead of being created upfront. When developing a system, we can use
development as a mechanism of finding a good design solution. By using refactoring, we
are able to ensure that a system stays good as systems are developed, thus we are able to
keep technical debt down.

Refactoring isn't always possible, you may occasionally encounter black-box systems which
you cannot alter, indeed you may even need to encapsulate a system in order to rewrite it.
There are, however, many cases in which we can simply refactor code to improve the
design.

Test, test, and test again
There is no way around this, in order to refactor code, you need a solid set of tests.
Refactoring code may well reduce the chances of introducing bugs, but changing the design
of code introduces a significant amount of chances to introduce new bugs.

Unintended side-effects will occur during refactoring, where classes are tightly coupled,
you may well find making a minor change to one function leading to a negative side-effect
in a completely separate class.

Good refactoring effects require good tests. There is simply no way around this.

In addition to this, from a more political standpoint, some companies which have
encountered the bad effects of repetitively bad refactoring efforts may become reluctant to
refactor code; ensuring there are good tests in place allows the company to ensure a
refactoring effort won't break functionality.

In this chapter I will demonstrate refactoring efforts which should be accompanied with
testing efforts using unit tests, in the next (and final) chapter of this book, I will discuss
behavioral tests (for use in BDD). Unit tests are the best mechanism developers have for
testing a given unit of code; unit tests complement code structure, prove methods do what
they should, and test interaction between units of code; in this sense, they are the best form
of testing at the disposal of a developer in a refactoring effort. Behavioral tests however are
there to test the behavior of code, thus are useful in order to demonstrate an application can
successfully complete a given form of behavior.

Refactoring

[194]

Every seasoned developer will have memories of painful debugging tasks; sometimes long
into the night. Let's think about how most developers work on a day-to-day basis. They
don't code all the time, some of their time is spent around designing code while a
considerable amount of time is spent debugging code they've already written. Having self-
testing code can rapidly reduce this burden.

Test-Driven Development centers around a methodology of writing a test before writing
functionality, indeed the code should match the test.

When testing classes, be sure to test the public interface of the class; indeed, PHPUnit will
not allow you to test private or protected methods under ordinary usage.

Code smells
Code smells are essentially bits of bad practice that make your code needlessly harder to
understand, bad code may be refactored away using the techniques expressed in this
chapter. Code smells can usually violate somewhat fundamental software design principles
and accordingly, can negatively impact design quality of the overall code.

Martin Fowler defined code smell by stating the following:

“a code smell is a surface indication that usually corresponds to a deeper problem in the
system”.

At the start of this book we discussed the term technical debt, in this sense, code smells can
contribute to technical debt as a whole.

Code smell may not necessarily constitute a bug, it won't stop the execution of a program,
but it can aid the process of introducing bugs later on and make it harder to refactor code to
an appropriate design.

Let's cover some fundamental code smells that you may encounter when dealing with
legacy PHP projects.

We will address some code smells and how to address them in quite simplistic ways, but
now let us consider some slightly more significant, recurring patterns and how these can be
addressed by applying design patterns in order to simplify the maintenance of code going
forward.

Refactoring

[195]

Here we will specifically talk about refactoring to patterns, in some cases, you may benefit
from refactoring from patterns when it simplifies the design of the code. The recurring
theme in this chapter surrounds how the design of code lives throughout the development
life cycle of the code, it isn't merely discarded after an arbitrary design phase.

Patterns can be used to communicate intention, they can serve as the language between
developers; this is why knowing and continuing to use a large body of patterns is vital
throughout the career of a software engineer.

Many more of these approaches are available in the book Refactoring To Patterns, here I have
handpicked the ones most appropriate to PHP developers.

Long methods and duplicated code
Duplicated code is a very common code smell. Developers will frequently copy and paste
code instead of using an appropriate control structure for their application. If the same
control structure is in more than one place, your code will benefit by merging the two
structures into one.

If duplicated code is identical, you can use the extract method. So what is the extract
method? In essence, the extract method is merely removing business logic that is vested in
long functions into smaller functions.

Let's imagine a dice class, once the dice is rolled it will return a random number between 1
and 6 in Roman numerals.

The Legacy class can look like this:

class LegacyDice
{
 public function roll(): string
 {
 $rand = rand(1, 6);
 // Switch statement to convert a number between 1 and 6 to a Roman
Numeral.
 switch ($rand) {
 case 5:
 $randString = "V";
 break;
 case 6:
 $randString = "VI";
 break;
 default:
 $randString = str_repeat("I", $rand);

Refactoring

[196]

 break;
 }

 return $randString;
 }
}

Let's extract the method to convert a random number into a Roman numeral and put it into
a separate function:

class Dice
{
 /**
 * Roll the dice.
 * @return string
 */
 public function roll(): string
 {
 $rand = rand(1, 6);

 return $this->numberToRomanNumeral($rand);
 }

 /**
 * Convert a number between 1 and 6 to a Roman Numeral.
 *
 * @param int $number
 *
 * @return string
 * @throws Exception
 */
 public function numberToRomanNumeral(int $number): string
 {
 if (($number < 1) || ($number > 6)) {
 throw new Exception('Number out of range.');
 }

 switch ($number) {
 case 5:
 $randString = "V";
 break;
 case 6:
 $randString = "VI";
 break;
 default:
 $randString = str_repeat("I", $number);
 break;
 }

Refactoring

[197]

 return $randString;
 }
}

There are merely two changes we have made to the original code block, we have separated
out that function which performs Roman numeral conversion and put it in a separate
function. We have replaced that inline comment with a DocBlock for the function itself.

This approach can be used for duplication, if it exists in more than one place (and is
identical), we simply call a single function instead of having the code duplicated across
multiple places.

If the code is in unrelated classes, see where it logically fits (in either of the classes or a
separate class) and extract it there.

Earlier in this book, we have already discussed the need to keep functions small. This is
absolutely vital for ensuring your code is readable in the long term.

I frequently see developers comment blocks of code within functions; instead, why not
break out these methods into their own functions? Readable documentation may then be
added through DocBlocks. Thus, the extract method we are using here to address
duplicated code can have a much simpler use; breaking up long methods.

Solutions to various business problems are far easier shared when dealing with smaller
methods.

Large class
Large classes often emerge as a violation of the Single Responsibility Principle. Does the
class you are dealing with, at a given point in time, have only one reason to change? A class
should only have responsibility over a single part of the functionality, furthermore, that
class should entirely encapsulate that responsibility.

Dividing up the class into multiple classes by extracting methods which don't narrowly
align to single responsibility is an easy and effective way to help mitigate this code smell.

Refactoring

[198]

Replacing complex logical statements and switch
statements with polymorphism or the Strategy
Pattern
Switch statements (or endlessly large if statements, for that matter) can largely be removed
by using polymorphic behavior; I have described polymorphism in the early chapters of
this book and it provides a far more elegant way of dealing with computational problems
than using switch statements.

Suppose you were switching on a country code; US or GB, instead of switching in such a
fashion, by using polymorphism you can run the same method.

Where polymorphic behavior is not possible (for example, where there isn't a common
interface), in some cases you may even benefit by replacing type code with strategy;
effectively you are able to consolidate the multiple switch statements into merely injecting a
class into the constructor of a client which will handle the relation to the individual classes
itself.

For example; let's suppose we have an Output interface, this interface is implemented by
various other classes that contain a load method. This load method allows us to inject an
array and we get back some data in the format we requested. These classes are incredibly
crude implementations of that behavior:

interface Output
{
 public function load(array $data);
}

class Serial implements Output
{
 public function load(array $data)
 {
 return serialize($data);
 }
}

class JSON implements Output
{
 public function load(array $data)
 {
 return json_encode($data);
 }
}

Refactoring

[199]

class XML implements Output
{
 public function load(array $data)
 {
 return xmlrpc_encode($data);
 }
}

At the time fo writing, PHP still deems the xmlrpc_encode function to be
experimental, for this reason, I would advise against its use in production.
It's just here purely for demonstration purposes (in order to keep the code
short).

An incredibly crude implementation with a switch statement could be as follows:

$client = "JSON";

switch ($client) {
 case "Serial":
 $client = new Serial();
 break;
 case "JSON":
 $client = new JSON();
 break;
 case "XML":
 $client = new XML();
 break;
}

echo $client->load(array(1, 2));

But clearly we can do a lot by, instead, implementing a client that will allow us to inject an
Output class into a Client and accordingly allow us to receive the output. Such a class
may look like this:

class OutputClient
{
 private $output;

 public function __construct(Output $outputType)
 {
 $this->output = $outputType;
 }

 public function loadOutput(array $data)
 {
 return $this->output->load($data);

Refactoring

[200]

 }
}

We can now utilize this client in a very simple fashion:

$client = new OutputClient(new JSON());
echo $client->loadOutput(array(1, 2));

Duplicating code following a single control
structure
I won't reiterate here how the Template design pattern works, but what I want to explain is
that it can be used to help eliminate duplicate code.

The Template design pattern I demonstrated earlier in this book allowed us to effectively
abstract away the structure of a program, we then just populated the methods specific to an
implementation. This can help us reduce code duplication by avoiding repeating a single
control structure over and over.

Long Parameter List and primitive obsession
Primitive obsession is where developers over-use primitive data types instead of using
objects.

PHP supports eight primitive types; this group can further be subdivided into scalar types,
compound types, and special types.

Scalar types are the data types which hold a single value. You can recognize them if you ask
yourself “can this value be on a scale?” A number can be on a scale from X to Y and a
Boolean could be on a scale from false to true. Here are some examples of scalar types:

Boolean
Integer
Float
String

Refactoring

[201]

Compound types consist of a set of scalar values:

Array
Object

Special types are as follows:

Resource (references an external resource)
NULL

Suppose we have a simple Salary calculator class, it takes an employee's base salary,
commission rate, and pension rate; after this data is sent, the calculate method can be
used to input the amount of sales they have made to calculate their total salary:

class Salary
{
 private $baseSalary;
 private $commission = 0;
 private $pension = 0;

 public function __construct(float $baseSalary, float $commission, float
$pension)
 {
 $this->baseSalary = $baseSalary;
 $this->commission = $commission;
 $this->pension = $pension;
 }

 public function calculate(float $sales): float
 {
 $base = $this->baseSalary;
 $commission = $this->commission * $sales;
 $deducation = $base * $this->pension;

 return $commission + $base - $deducation;
 }
}

Note how long that constructor is. Yes, we could use the Builder pattern to create an object
which we can then inject into the constructor, but in this case, we are able to specifically
abstract away the complicated information. In this case, if we were to move the employee
information to a separate class we could ensure better compliance with the Single
Responsibility Principle.

Refactoring

[202]

The first step is to separate out the responsibilities of the class so that we can separate the
responsibilities of the class:

class Employee
{
 private $name;
 private $baseSalary;
 private $commission = 0;
 private $pension = 0;

 public function __construct(string $name, float $baseSalary)
 {
 $this->name = $name;
 $this->baseSalary = $baseSalary;
 }

 public function getBaseSalary(): float
 {
 return $this->baseSalary;
 }

 public function setCommission(float $percentage)
 {
 $this->commission = $percentage;
 }

 public function getCommission(): float
 {
 return $this->commission;
 }

 public function setPension(float $rate)
 {
 $this->pension = $rate;
 }

 public function getPension(): float
 {
 return $this->commission;
 }
}

From this point, we can simplify the constructor of our Salary class so that it only needs to
input the Employee object for us to be able to use the class:

class Salary
{
 private $employee;

Refactoring

[203]

 public function __construct(Employee $employee)
 {
 $this->employee = $employee;
 }

 public function calculate(float $sales): float
 {
 $base = $this->employee->getBaseSalary();
 $commission = $this->employee->getCommission() * $sales;
 $deducation = $base * $this->employee->getPension();

 return $commission + $base - $deducation;
 }
}

Indecent exposure
Let's suppose we have a Human class as follows:

class Human
{
 public $name;
 public $dateOfBirth;
 public $height;
 public $weight;
}

We are able to set the values as we please, with no validation and no unified way of getting
information. What's so wrong with this? Well, in object orientation, the principle of
encapsulation is vital; we hide data. In other words, our data should never be made visible
without the owning object knowing it.

Instead, we substitute all the public data variables with private ones. In addition to this
we add appropriate methods to get and set the data:

class Human
{
 private $name;
 private $dateOfBirth;
 private $height;
 private $weight;

 public function __construct(string $name, double $dateOfBirth)
 {
 $this->name = $name;
 $this->dateOfBirth = $dateOfBirth;

Refactoring

[204]

 }

 public function setWeight(double $weight)
 {
 $this->weight = $weight;
 }

 public function getWeight(): double
 {
 return $this->weight;
 }

 public function setHeight(double $height)
 {
 $this->height = $height;
 }

 public function getHeight(): double
 {
 return $this->height;
 }
}

Be sure to ensure that setters and getters are logical and are not there merely because a class
property exists. After this is complete you will need to go through your application and
substitute any direct access to variables so that they go through the appropriate methods
first.

This has, however, now exposed another code smell; feature envy.

Feature envy
Loosely, feature envy is where we don't get an object to do calculation of its own properties
and instead offset that to another class.

So in the previous example we had our own Salary calculator class, as follows:

class Salary
{
 private $employee;

 public function __construct(Employee $employee)
 {
 $this->employee = $employee;
 }

Refactoring

[205]

 public function calculate(float $sales): float
 {
 $base = $this->employee->getBaseSalary();
 $commission = $this->employee->getCommission() * $sales;
 $deducation = $base * $this->employee->getPension();

 return $commission + $base - $deducation;
 }
}

Instead let's take a look at implementing this function into the Employee class itself, as a
result we can also disregard the unnecessary getters and keep our properties rightfully
internalized:

class Employee
{
 private $name;
 private $baseSalary;
 private $commission = 0;
 private $pension = 0;

 public function __construct(string $name, float $baseSalary)
 {
 $this->name = $name;
 $this->baseSalary = $baseSalary;
 }

 public function setCommission(float $percentage)
 {
 $this->commission = $percentage;
 }

 public function setPension(float $rate)
 {
 $this->pension = $rate;
 }

 public function calculate(float $sales): float
 {
 $base = $this->baseSalary;
 $commission = $this->commission * $sales;
 $deducation = $base * $this->pension;

 return $commission + $base - $deducation;
 }
}

Refactoring

[206]

Inappropriate intimacy
This may frequently occur with inheritance; Martin Fowler elegantly puts it as follows:

“Subclasses are always going to know more about their parents than their parents would
like them to know.”

More generally; when a field is used more in another class than the class itself, we can use
the move field method to create a field in a new class, then redirect users of that field to the
new class.

We can combine this with the move method, whereby we place a function in the class that
uses it most and remove it from the original class, if that isn't possible we can get away with
simply referencing the function in the new class.

Deeply nested statements
Nested if statements are messy and ugly. This causes spaghetti logic that is difficult to
follow; instead use inline function calls.

Starting from the inner-most code block, seek to extract that code into its own function
where it can live happily. In Chapter 1, Why “Good PHP Developer” Isn't an Oxymoron we
discussed how this can be achieved with an example, but if you're refactoring frequently
you might want to consider investing in a tool which can help you with this.

Here's a tip for the PHPStorm users among us: there is a lovely little option within the
Refactor menu that can do this for you automatically. Simply highlight the code block you
wish to extract, go to Refactor in the menu bar then click Extract>Method. A dialog will
then pop up allowing you to configure how you want the refactoring to run:

Refactoring

[207]

Remove assignments to parameters
Try to avoid setting a parameter in the body of a function:

class Before
{
 function deductTax(float $salary, float $rate): float
 {
 $salary = $salary * $rate;

 return $salary;
 }
}

Refactoring

[208]

This can be done correctly by setting an internal parameter instead:

class After
{
 function deductTax(float $salary, float $rate): float
 {
 $netSalary = $salary * $rate;

 return $netSalary;
 }
}

By doing such behavior we are able to easily identify and extract repetitive code going
forward, in addition to this it allows easier code replacement when maintaining this code
later.

This is a simple tweak which allows us to identify what particular parameters in our code
are doing.

Comments
Comments aren't a code smell per-se, in many cases, comments are hugely beneficial. As
Martin Fowler states:

“In our olfactory analogy, comments aren't a bad smell; indeed they are a sweet smell.”

However, Fowler goes on to demonstrate how comments may be used as the deodorant to
hide code smells. When you find yourself commenting code blocks within functions you
can find a good opportunity to use the extract method.

If a comment is hiding a bad smell, refactor the smell away and you will soon find the
original comment being superfluous. This isn't an excuse not to DocBlock your function or
needlessly go on a hunt for code comments, but it is important to remember that specific
comments may become useless when you refactor a design to be far more simplistic.

Encapsulating Composite with Builder
As discussed earlier in this book, the Builder design pattern can work by us taking a long
set of arguments and turning them into a single object which we can then throw into the
constructor of another class.

Refactoring

[209]

For example, we have a class called APIBuilder, this builder class can then itself be
instantiated with the API key and secret of the API, but once it's instantiated as an object,
we can simply pass the entire object into the constructor of another class.

So far, so good; but we can use this Builder pattern to encapsulate the Composite pattern.
We effectively just create a Builder to create our items. By doing this we have greater
control with a single class offering us an opportunity to navigate and alter the entire tree
structure of the Composite family.

Replacing hard-coded notifications with Observer
Hard-coded notifications are usually where two classes are tightly coupled together in
order for one to be able to notify the other. Instead, by using the SplObserver and
SplSubject interfaces, the Observer can update the subject using a far more pluggable.
After implementing an update method in the Observer, the subject merely needs to
implement the Subject interface:

SplSubject {
 /* Methods */
 abstract public void attach (SplObserver $observer)
 abstract public void detach (SplObserver $observer)
 abstract public void notify (void)
}

The resulting architecture is a far more pluggable notification system which is not tightly
coupled.

Replacing one/many distinctions with Composite
Where we have separate logic for handing individuals to groups, we can consolidate these
using the Composite pattern. This is a pattern we have covered earlier this book; in order to
consolidate to this pattern, a developer needs only alter their code so that one class can
handle both forms of data.

In order to achieve this, we must first ensure both the distinctions implement the same
interface.

Refactoring

[210]

When I initially demonstrated this pattern, I wrote about how this pattern can be used to
address treating a single song and a playlist as one. Suppose our Music interface is purely
the following:

interface Music
{
 public function play();
}

The critical task is just ensuring that this interface is abided by for both the one and the
many distinctions. Both your Song class and your Playlist class must implement the
Music interface. This is fundamentally what allows us to treat both with the behavior.

Separate versions with Adapters
I won't dwell on Adapters for long due to how thoroughly I covered them earlier in this
book, but I just want you to consider that they can be used for supporting different versions
of APIs.

Be sure not to wrap code together in the same class for multiple API versions instead, you
can abstract these differences from version-to-version to an Adapter. When using this
approach, I would urge you to initially attempt to use an encapsulation approach rather
than an inheritance-based approach as this will provide greater freedom going forward.

What do I tell my manager?
Refactoring and then adding functionality can often be faster than simply adding the
functionality while adding value to the existing code base. Many good managers, who
properly understand software and how it is developed will understand this.

Of course there are managers who are clueless about what software actually is, they are
often driven solely by deadlines and may be reluctant to learn more about their subject
field. I am talking about the horror story developers I have mentioned earlier in this book.
Sometimes, Scrum Masters are also guilty of this, due to the fact they may not be able to
relate to the entire software development life cycle.

Refactoring

[211]

As Martin Fowler himself put it:

“Of course, many people say they are driven by quality but are more driven by schedule. In
these cases I give my more controversial advice: Don't tell!”

Managers who don't properly understand technical processes may be intent on delivering
on the basis of how rapidly software can be produced; refactoring can prove to be the most
rapid way of helping produce software. It provides an efficient and thorough way to get up
to speed with a project and allows us to smooth the process of injecting in new
functionality.

We will discuss management and how projects can be effectively managed in the next
chapter of this book.

Summary
In this chapter, we've discussed some methods of refactoring code to ensure the design is
always of a good quality. By refactoring code, we can gain a greater understanding of our
code base and future-proof it for the additional functionality that we add to the software.

Simplification and breaking down the problems you face are two of the best fundamental
tools you can use when refactoring code.

If you are using a CI environment, having PHP Mess Detector (PHPMD) running on that
environment can also help you code better.

In the next chapter, I will discuss how we can use design patterns appropriately, starting off
with a quick lesson on developing APIs in the context of a network.

8
How to Write Better Code

This is the final chapter in this book. We've discussed a lot of patterns, but in this final
chapter I want us to discuss how these patterns can be applied.

I want us here to talk about the bigger picture about how our code fits together, and what
the key takeaways are for us to write great code.

In addition to this, I would like to discuss where patterns are suited to our application in the
development phase.

In this chapter, we'll cover the following points:

The nature of an HTTP request
RESTful API design
Keep It Simple, Stupid
Software development life cycle and engineering practices
The importance of testing
A light introduction to BDD

Nature of a HTTP request
Many developers find HTTP requests are abstracted away from them; indeed, many PHP
developers will never need to understand how an HTTP request actually works under the
hood.

PHP developers often work with HTTP networks when developing. Indeed, PHP contains
some core functions that are great when working with HTTP communication.

How to Write Better Code

[213]

Let's take a look at an HTTP request at a high-level using a tool called curl. The curl is
essentially a command-line tool that allows us to simulate network requests. It allows you
to simulate the transfer of data using various protocols.

The name of cURL originally stood for see URL.

The curl projects produce both the libcurl and curl command line tool. Libcurl is a
library that PHP supports, allowing you to connect and communicate over a list of
protocols in PHP, providing your installation has it installed.

In this case, however, we will be using the command-line tool to simulate requests.

Let's start off by making a simple curl request to a given website, as follows:

curl https://junade.com

Depending on the site you query in the command you will notice that the Terminal output
is blank:

What's going on here? In order to find out, we need to dig a little further.

You can use the -v argument in the curl command so we see a verbose output of what's
going on:

curl -v http://junade.com

How to Write Better Code

[214]

This output of this is substantially different:

With this output we can see the headers that are sent and the headers that are received.

The block starting with asterisks * indicates the connection being established. We can see
how curl has rebuilt the URL so it is correct (containing a forward slash at the end), then
resolved the IP address of the server (in my case, an IPv6 address), and then finally
established the connection to the web server:

* Rebuilt URL to: http://junade.com/
* Trying 2400:cb00:2048:1::6810:f005...
* Connected to junade.com (::1) port 80 (#0)

The hostname is turned into an IP address by querying the DNS server; we'll go into more
detail about this later on. But at this point, it is important to remember that, after this point,
the connection to the server is established using an IP address.

How to Write Better Code

[215]

If we were to get rid of the forward slash at the end, we can actually see that in the first line,
rebuilding the URL will disappear, as it will already be in the correct format before we even
make the request:

Next let's look at the succeeding lines the asterisks. We see the outbound headers in the
greater than signs >.

These headers look like this:

> GET / HTTP/1.1
> Host: junade.com
> User-Agent: curl/7.43.0
> Accept: */*
>

So the first message we see is the request method GET, followed by the endpoint / and the
protocol HTTP/1.1.

Next, we see the Host header, which tells us the domain name of the server and can also
contain the TCP port number on which the server is listening, but this is often amended if
the port is standard for the service requested. Why is this needed, though? Suppose a server
contains many VirtualHosts; this is what actually allows the server to determine between
VirtualHosts using the header. VirtualHosting essentially allows a server to host more than
one domain name. In order to do this, we need this header; when a server sees a HTTP
request coming in they won't see the header.

How to Write Better Code

[216]

Remember when I said a connection is established using an IP address? This Host header is
what allows us to send through that hostname variable indicating what an IP address is.

Next, we see the User-Agent header, indicating what browser the client is using; our
User-Agent header in this request indicates we are sending our HTTP request using curl
command. Remember not to trust any HTTP headers from the client, as they can be
manipulated to contain whatever data a malicious adversary wants to put into them. They
can contain everything from a fake browser identifier to a SQL injection.

Finally, the Accept header indicates the Content-Type headers that are acceptable for the
response. Here, we see a wildcard acceptance, indicating we are happy to receive whatever
the server is sending us. In other cases, we can use Accept: text/plain to indicate that
we want to see plaintext, or Accept:application/json for JSON. We can even specify if
we want to receive a PNG image by using Accept: image/png.

There are various parameters that can also be sent to over an Accept header; for example,
we can request HTML using a UTF-8 charset with Accept: text/html; charset=UTF-8.

At a basic level, the syntax that is permissible in this header looks like this:

top-level type name / subtype name [; parameters]

The server can indicate the content type being returned to the user using a Content-Type
header in the response. So the server can send a header back to the end user as follows:

Content-Type: text/html; charset=utf-8

Moving onto the topic of the response, let's take a look at the response. These are prefixed
with <:

< HTTP/1.1 301 Moved Permanently
< Date: Sun, 10 Jul 2016 18:23:22 GMT
< Transfer-Encoding: chunked
< Connection: keep-alive
< Set-Cookie: __cfduid=d45c9e013b12286fe4e443702f3ec15f31468175002;
expires=Mon, 10-Jul-17 18:23:22 GMT; path=/; domain=.junade.com; HttpOnly
< Location: https://junade.com/
< Server: cloudflare-nginx
< CF-RAY: 2c060be42065346a-LHR
<

So the first thing we get in the response indicating the format and the status code. HTTP/1.1
indicates that we are receiving a HTTP/1.1 response, and a 301 Moved Permanently
message indicates a permanent redirect. Accordingly, we also receive a Location:
https://junade.com/ header, which tells us where to go next.

How to Write Better Code

[217]

The Server header indicates the signature of the web server that is supplying our request.
It could be Apache or Nginx; in this case, it's the modified version of Nginx that CloudFlare
use for their network.

The Set-Cookie header is used to indicate what cookies the browser should set; the standard
for this is in a document known as RFC 6265.

RFC stands for Request for Comments; there are a number of types of RFC. Standards
Track RFCs are those intending to become Internet Standards (STDs), whereas
Informational RFCs can be anything. There are a number of other types of RFC, such as
Experimental, Best Current Practice, Historic, and even an Unknown RFC type for those
where the status is unclear if they were to be published today.

The Transfer-Encoding header indicates the encoding used to transfer the entity to the
user, which could be anything from chunked even to something such as gzip, which is a
compressed entity.

Interestingly, the HTTP/2 protocol that was published in RFC 7540 in May 2015 actually
allows header compression. Nowadays, we send more in header data than was originally
transmitted when the HTTP/1 protocol was created (the original HTTP protocol didn't even
contain a Host header!).

The Connection header provides control options for the connection. It allows the sender to
specify the options that are desired for the current connection. Finally, the Date header
indicates the date and time when the message was sent.

Consider this: can an HTTP request/response contain more than one of the same header of
the name?

Yes, this is particularly useful in some headers, such as the Link header. This header is used
to perform HTTP/2 Server Push; Server Push allows the server to push requests to the client
before they are requested. One asset can be specified per header; therefore, multiple headers
are needed to push multiple assets.

This is something we can do in PHP. Take the following header function call in PHP:

header("Link: <{$uri}>; rel=preload; as=image", false);

While the first argument is the string of the actual header we're sending, the second
argument (false) states that we don't want to replace a previous header of the same,
instead we want to send this one as well but not replace it. By setting this flag to true we
instead state that we want to override the previous header; this is the default option if the
flag isn't specified at all.

How to Write Better Code

[218]

Finally, when the request is closed you will see a final asterisk indicating the connection
was closed:

* Connection #0 to host junade.com left intact

Typically, this will become below the body if there is one. In this request, there wasn't one
as it was merely a redirect.

I now make a curl request to where that Location header is pointing using the following
command:

curl -v https://junade.com/

You will now notice that the connection close message came after the end of the HTML
body:

Let's now try exploring a few HTTP methods. In REST APIs you will frequently use GET,
POST, PUT, and DELETE; but first we'll start by exploring two others, HEAD and OPTIONS.

How to Write Better Code

[219]

An HTTP OPTIONS request details which requests methods you can use on a given
endpoint. It provides information about which communication options are available to that
particular endpoint.

Let me demonstrate this. I'm going to be using a service called HTTPBin, which allows me
to make requests to over curl to get some responses back from a real server.

Here's an OPTIONS request I'm making using curl:

curl -v -X OPTIONS https://httpbin.org/get

The -X option allows us to specify a particular HTTP request type instead of just defaulting
to curl.

Let's see what this looks like once executed:

How to Write Better Code

[220]

Firstly, you'll notice that, given the request is over HTTP, you will see some extra
information in the asterisk; this information contains the TLS certificate information that is
used to encrypt the connection.

Take a look at the following line:

TLS 1.2 connection using TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS 1.2 indicates the version of transport layer security we're dealing with; the second
part, which states TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, indicates the cipher suite
for the connection.

The cipher suite starts by detailing that we're dealing with TLS. ECDHE_RSA indicates that
the key exchange is done using elliptic curve Diffie-Hellman. The key exchange essentially
allows the encryption keys to be transmitted securely. By using elliptic curve cryptography,
a particular key can be shared, which can then be used to encrypt data later on. ECDHE_RSA
means that we use elliptic curve Diffie-Hellman to share a key based on an RSA key that the
server has gotten. There are a number of other key exchange algorithms; for example,
ECDH_ECDSA uses Fixed ECDH with ECDSA-signed certificates.

The access-control prefixed headers are used for a mechanism called CORS, which
essentially allows JavaScript to make cross-origin API requests; let's not worry about this
here.

The header we do need to worry about with an OPTIONS request is the Allow header. This
details what request methods we're allowed to submit back to that particular endpoint.

Therefore, this is the request we get when we query the /get endpoint:

< Allow: HEAD, OPTIONS, GET

Note that the endpoint I use here uses the /get endpoint. Instead, let's make another
OPTIONS request to the /post endpoint using the following curl request:

curl -v -X OPTIONS https://httpbin.org/post

How to Write Better Code

[221]

This is the response we get back:

You'll notice that the Allow header now contains POST and OPTIONS. Also note that the
HEAD option has gone.

You'll soon find out that a HEAD request is very similar to a GET request except without a
message body. It merely returns the headers of a HTTP request but not the body of a
request. Thus, it allows you to get the meta information about an entity without needing to
get the complete response.

Let's make a HEAD request to a /get endpoint:

curl -I -X HEAD https://httpbin.org/get

How to Write Better Code

[222]

Instead of using the -v (verbose) option in this request, I'm using the -I option, which will
merely get the HTTP header. This is well suited to making an HTTP request using the HEAD
option:

As you can see, we get the type of the response in the Content-Type header. Alongside
this, you'll get the length of the request in the Content-Length header. The length is
measured in octets (8 bits); you might think that is is the same as a byte, but a byte is not
necessarily 8 bits on all architectures.

There are a number of other headers that can be sent to express meta information. This may
include standard headers or non-standard headers to express other information that you
can't express in standardized RFC-backed headers.

HTTP ETags (entity tags) are a mechanism that provide cache validation. You can use them
in the context of RESTful APIs for optimistic concurrency control; this basically allows
multiple requests to complete without needing to interfere with each other. This is quite an
advanced API concept, so I won't go into too much detail here.

Note that in both our HTTP HEAD and OPTIONS request we both got 200 OK header
messages. A 200 status code indicates a successful HTTP request.

There are many different types of status code. They are categorized as follows:

1xx messages: Informational
2xx messages: Success
3xx messages: Redirect
4xx messages: Client Error

How to Write Better Code

[223]

5xx messages: Server Error

An informational header could be a 101 response, which indicates the client is switching
protocols and the server has agreed to do so. You probably won't encounter informational
header messages if you're developing RESTful APIs; these are most likely things that will be
sent by the web server, which is abstracted away from you as a developer.

Correct use of the other HTTP status codes is vital for correct development of a API,
particularly one that is RESTful.

Success status codes aren't just limited to a 200 OK message; 201 Created indicates a request
has been fulfilled that has created a new resource. This is particularly useful when a PUT
request is made to create a new resource or using POST to create a subsidiary resource. 202
Accepted indicates a request has been accepted for processing but processing has not been
completed, which is useful in a distributed system. 204 No Content indicates the server
has processed the request and is not returning any information; a 205 Reset Content
header does the same but asks the requester to reset their document view. These are just a
few 200's messages; there are obviously many more.

Redirection messages include 301 Moved Permanently, which we showed in our first
curl example, whereas 302 Found can be used for more temporary redirects. Again, there
are other message codes.

Client error codes include the infamous 404 Not Found message when a resource cannot
be found. Alongside this, we have 401 Unauthorized when authentication is required but
not provided, 403 Forbidden is where a server refuses to respond to a request at all (for
example, incorrect permissions). 405 Method Not Allowed allows us to deny requests on
the basis of them being submitted using an invalid request method, which is, again, very
useful for RESTful APIs. 405 Not Acceptable is a response where the server cannot
generate a response in accordance with the Accept header sent to it. Again, there are
numerous other 4xx HTTP codes.

HTTP code 451 indicates a request is unavailable for legal reasons. The
code chosen after Fahrenheit 451, a novel named after the author claimed
451 Fahrenheit was the auto-ignition temperature of paper.

Finally, Server Errors allow the server to indicate they failed to fulfill a request that was
apparently valid. These messages included the 500 Internal Server Error, which is a
generic error message given when an unexpected condition is encountered.

How to Write Better Code

[224]

Let's now look at making a GET request. The curl, by default will make a GET request if we
don't specify any data to send or a particular method:

curl -v https://httpbin.org/get

We can also specify that we want a GET request:

curl -v -X GET https://httpbin.org/get

The output of this is as follows:

How to Write Better Code

[225]

Here, you can see we get the same headers as we did in the HEAD request, with the addition
of a body; some JSON data of whatever resource we're trying to access.

There we get a 200 Success message, but let's make a HTTP request to an endpoint that
doesn't exist so we can trigger a 404 message:

As you can see, we get a header stating 404 NOT FOUND instead of our usual 200 OK
message.

How to Write Better Code

[226]

HTTP 404 responses can also come without a body:

While GET requests merely show an existing resource, POST requests allow us to modify
and update a resource. PUT requests instead allow us to create a new resource or override
one, but specifically at a given endpoint.

What's the difference? PUT is idempotent, while POST is not idempotent. A PUT is like
setting a variable, $x = 3. You can do it over and over again, but the output is the same, $x
is 3.

POST is, instead, a lot like running $x++; it causes a change that is not idempotent, the same
way as $x++ can't be repeated over and over to give the same exact variable. POST updates
a resource, adds a subsidiary resource, or causes a change. PUT is instead used when you
know the URL you want to create.

POST can be used to create when you know the URL of the factory that creates the resource
for you.

So, for example, if the endpoint/user wants to generate a user account with a unique ID, we
would use this:

POST /user

How to Write Better Code

[227]

But if we wanted to create a user account at a particular endpoint, we would use PUT:

PUT /user/tom

Similarly, if we want to overwrite tom at the given endpoint, we can put another PUT
request there:

PUT /user/tom

But suppose we don't know Tom's endpoint; instead, we just want to PUT to an endpoint
with a user ID argument and some information will be updated:

POST /user

Hopefully that makes sense!

Now let's take a look at a givenHTTP POST request.

We can create a request using URL encoded data:

curl --data "user=tom&manager=bob" https://httpbin.org/post

Note that if we specify data but not a request type in curl it will default to POST.

If we execute this, you can see the Content-Type is x-www-form-urlencoded:

How to Write Better Code

[228]

However, we can also submit JSON data to the endpoint if the API allows us to and accepts
that format:

curl -H "Content-Type: application/json" -X POST -d
'{"user":"tom","manager":"bob"}' https://httpbin.org/post

This provides the following output, noting the Content-Type is now JSON instead of x-
www-form-urlencoded form it was before:

We can now make a HTTP request using PUT by sending the same data to the /put
endpoint:

curl -H "Content-Type: application/json" -X PUT -d
'{"user":"tom","manager":"bob"}' https://httpbin.org/put

How to Write Better Code

[229]

Let's change the request type over to PUT:

Let's make the same request to a DELETE endpoint using the following curl request (in this
example, we will submit data):

curl -H "Content-Type: application/json" -X DELETE -d '{"user":"tom"}'
https://httpbin.org/delete

How to Write Better Code

[230]

This has the following output:

In the real world, you might not necessarily need to submit back any information related to
the fact we've just deleted a resource (that's what DELETE is for). Instead, we may simply
want to submit a 204 No Content message. Typically, I would not pass a message back.

HTTP/2 at a high level maintains this request structure. Remember that most HTTP/2
implementations require TLS (h2) and most browsers do not support HTTP/2 over cleartext
(h2c), even though it is de facto possible in the RFC standard. If using HTTP/2 you
realistically need TLS encryption on the request.

Woo! That was a mouthful, but that is everything you will need to know about an HTTP
request, at a very high level. We didn't go into network detail, but this understanding is
necessary for API architecture.

Now that we have a good understanding of HTTP requests and the methods used in HTTP
communication, we can move on to understanding what makes an API RESTful.

How to Write Better Code

[231]

RESTful API design
Many developers use and build REST APIs without understanding what makes them
RESTful. So what actually is REpresentational State Transfer? Moreover, why is it important
that an API is RESTful?

There are some key architectural constraints to an API being RESTful, the first of these is
being stateless in nature.

Stateless nature
RESTful APIs are stateless; the client's context is not stored on the server between requests.

Suppose you create a basic PHP app that has login functionality. After validating the user
credentials that are put into the login form, you may then go ahead and use a session to
store a state of the logged in user as they proceed to their next state to carry out the next
task.

This is unacceptable when it comes to a REST API; REST is a stateless protocol. The ST in
REST stand for State Transfer; the state of a request should be transferred around rather than
merely stored on the server. By transferring sessions instead of storing them you avoid
having sticky sessions or session affinity.

In order for this to be implemented well the HTTP request happens in total isolation.
Everything the server needs to carry out a GET, POST, PUT, or DELETE request is in the
HTTP request itself. The server never relies on information from a previous request.

What are the benefits of doing this? Well, firstly it scales so much better; the most obvious
benefit is that you don't need to store sessions on the server at all. This comes with
additional functionalities too, when you put your API webservers behind a load balancer.

Clustering is difficult; clustering a web server with states either means you need to have
sticky load balancing or you need to have a common store when it comes to sessions.

Versioning
Version your API, you will need to make changes and you don't want them breaking your
client implementations. This can be done either using headers or in a URL itself. For
example instead of /api/resource.json, you can have space for a version tag such as
/api/v1/resource.json.

How to Write Better Code

[232]

You can also implement the HTTP Accept header to perform this behavior or even put in
place your own header. The client could send a request with the API-Version header set to
2 and the server will know to communicate to the client using version 2 of the API.

Filtering
Using a parameter query, we can filter a given by using a parameter. If we're dealing with
an ordering system on the /orders endpoint, it is fairly easy to implement basic filtering.

Here, we filter for open orders using the state parameter:

GET /orders?state=open

Sorting
We can also add a sort parameter to sort by field. The sort field in turn contains a list of
comma separated columns to sort on; the first in the list is the highest sort priority. In order
to negatively sort you prefix a column with a negative sign -

GET /tickets?sort=-amount: sort orders by descending order of amount
(highest first).
GET /tickets?sort=-amount,created_at: sort orders by descending order
of amount (highest first). Within those amounts (with orders of equal amounts),
older orders are listed first.

Searching
We can then search using a simple parameter that applies a search query that can then be
routed through a search service (for example, ElasticSearch).

Suppose we want to search orders for the phrase refund, we can define a field for search
queries:

GET /orders?q=refund

How to Write Better Code

[233]

Limiting fields
Additionally, using a fields parameter we can query for specific fields:

GET /orders?fields=amount,created_at,customer_name,shipping_address

Returning new fields
A PUT, POST, or PATCH can change other criteria than the fields we update. This might be
new timestamps or newly generated IDs. Accordingly, we should return the new resource
representation on update.

In a POST request that has created a resource, you can send an HTTP 201 CREATED message
back, alongside a Location header that points to the resource.

When in doubt – KISS
KISS is an acronym for Keep it simple, stupid.

The KISS principle states that most systems work best if they are kept simple rather than
complicated. Throughout your programming journey, it is vital that this principle in mind.

Deciding to write a program with some predefined design patterns is often a poor idea.
Code should never be forced into patterns. While writing code for a design pattern may
work for a Hello World demonstration pattern, it doesn't usually work well the other way
around.

Design patterns exist to resolve common recurring problems in code. It is vital they are used
to address problems and not implemented where no such problems actually exist. By
keeping your code as simple as possible and reducing the complexity of the overall
program you are able to reduce the chance of failure.

The British Computer Society has published advice called Senior Management in IT Projects
demonstrating that it is vital that the project, people, benefit, complexity, and progress are
all thoroughly understood; beyond this, it is vital the project is fully understood upfront.
Why is the project being completed? What are the risks? What is the recovery mechanism
should the project derail?

Complex systems must handle errors gracefully to be robust. Redundancy must be
balanced with complexity.

How to Write Better Code

[234]

Software development life cycle
This chart is an open source diagram that describes the steps of software development:

There are many different types of process to produce software, but all must contain the
steps shown in the chart as they are fundamental to the software engineering process.

While nowadays it almost universally agreed that waterfall software engineering
methodologies are no longer fit for purpose, the Agile counterparts that replace it still
require some design (albeit smaller and more iterative) alongside strong testing practices.

It is vital that software development is not seen through a microscope and it's seen in the
broader vision of software engineering.

How to Write Better Code

[235]

On Scrum, and real Agility
Scrum is an iterative software development framework that claims to be Agile, based on the
process published by the Scrum Alliance. It is graphed out as follows:

Many of us see the disasters left by the Certified Scrum Masters within software
development teams, who largely use Agile as a buzzword to deliver some simply inane
processes for writing software.

The Agile manifesto starts with the words, individuals and interactions over processes and tools.
Scrum is a process, and a tightly defined process at that. Scrum is often implemented in a
way where the development process is emphasized over the team. If there is one takeaway
from this section, remember the phrase people over processes. If you choose to implement
Scrum, you must be willing to adapt and change its processes to cope with change.

The whole point of Agile is to be agile; we want to adapt to changing requirements rapidly.
We want flexibility, we don't want a tightly defined process that restricts us from adapting
to rapidly changing requirements.

Filling in a time sheet, a purchase order, and dealing with bureaucratic governance
processes do not help put software in customers' hands, so it has to be made as light as
possible if it cannot go.

Time sheets are the perfect idea of something that is entirely wasteful. They are simply used
to monitor developer performance, though in some those in management will pretend they
have some magical agile benefit. They certainly will not help you make better software
estimations, in any regard; Agile environments should seek to use projections over
predictions.

How to Write Better Code

[236]

I've seen Scrum Masters who endlessly repeat the quote: no battle plan ever survives contact
with the enemy; while simultaneously enforcing rigid prediction schemes.

Accurate predictions are an oxymoron in the real world. You can't predict accurately for
things that aren't certain, and in almost all cases, developers won't know the systems they
are dealing with fully enough. Moreover, they don't know their own personal efficiency
from day to day; it just can't be foreseen accurately.

I've even encountered environments where these strict predictions (often not even made by
the developers themselves) are enforced by strict disciplinary procedures.

Reducing complexity by dividing problems and addressing them in small chunks is great
practice; reducing your huge teams of programmers into smaller teams is also amazing
practice.

Between the systems that developers are building in these small teams (commonly known
as tribes), a system architect is often needed to ensure there is consistency between the
teams.

Spotify use this tribe architecture to develop software; indeed, I would highly recommend
reading the paper Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds by Henrik
Kniberg and Anders Ivarsson.

This system architect ensures there is consistency between all the different services that are
built.

Turning to specifically Scrum, Scrum is an Agile process. The Scrum Guide (yes, it is even a
trademark) defines the rules of Scrum in a 16-page document.

Agile, however, contains many different processes alongside many other methodologies;
Agile is a very broad knowledge base.

Scrum Masters like to pretend Agile happens in an isolated environment in a development
team. This is far from the truth; the entire organization structure plays into Scrum.

Extreme Programming (XP) is a very broad process and it is largely understood the
interactions between these processes. By cherry-picking these processes, you end up with
an ineffective process; this is why Scrum struggles.

How to Write Better Code

[237]

Requirements change; this includes them changing mid-Sprint. When Scrum Masters insist
on no changes after a Sprint has started, which leaves the team more ineffective to respond
to real change.

When developing in an Agile mechanism, we must remember that our software must be
resilient enough to cope with the ever-changing requirements (resulting in ever-changing
software design). Your software architecture must be able to cope with the stress of change.
It is therefore vital that developers also understand and engage with the technical processes
required to achieve software resilient enough to cope with the pace of change.

Companies that can't be flexible and respond to change are less effective than those who
can; accordingly, they have a significant edge in the business world. When picking a
company, them being Agile is not merely about the quality of the job you do but it is also
vital to your job security.

My message is simple here; take technical practices seriously when implementing a process,
and remember not to blindly follow obscene processes as it can harm an entire business.

Developers shouldn't be treated like children. If they can't code or write bad code they can't
continue to be employed as developers.

In essence, in order to manage risk, it's best to look at your backlog and use historical
progress to create projections as to where your project will be. The role of the manager
should be to take away obstacles that stop developers doing their jobs.

Finally, if you ever are in a team with a Scrum Master with a terrible understanding of
software development (and Agile for that matter), remind them strongly that people must
come above process and that true agility is aided by code that can withstand the stresses of
change.

Scrum Masters will sometimes will argue that Agile means no upfront design. This is
untrue, Agile means no big upfront design.

You need to sack people sometimes
I have worked in development environments where managers are too scared to sack, they
either just torture developers by punishing them for a job they evidently can't do by trying
to put perverse restrictions on development teams or let them wreak havoc on the
development processes.

How to Write Better Code

[238]

Talented developers get disillusioned by the production of bad code or the unequal skill-
basis. Other developers get away with poor code when they are often forced into a
maintenance nightmare. Faced with the prospect of a maintenance nightmare (or in all
likelihood, an increasing maintenance nightmare), they then resign.

Alternatively, the restrictive work conditions imposed to compensate for bad developers
disillusion talented developers. Sick of being treated like idiots (because the other
developers are idiots), they then take a job offer at a far better firm that offers them far
better career prospects, and a better working environment with happier, more talented staff.
They accept this offer as the company they are moving to will probably also have better
business prospects and better compensation alongside happier engineers in a better work
environment.

There is one more extreme to this scenario; the business gains such an adverse reputation
they cannot hire permanent developers; they then pay exorbitant fees for expensive contract
developers while taking chances on their skillsets. While hemorrhaging money on contract
developers, the business out of desperation will then probably pick up anyone who is
willing to work on these projects. Interviewers of these developers will probably have not
asked the right questions for the systems they will be building, leading to a big gamble on
the quality of contractors being hired. The company decreases its chances of hiring good
permanent staff, and the business enters tailspin as the company's demise gets worse. I have
seen this exact scenario multiple times; each time the company has faced a slow and painful
recession. If you are ever invited to work for a company which is similar to this, I strongly
advise you to look elsewhere, unless you truly believe you are able to bring reform to such
an organization.

If you ever take a management job in an organization such as this, ensure you have the
powers to make meaningful change, the powers to hire the right people and fire the wrong
people. If not, your tenure at such an organization will merely be spent trying to shift the
deckchairs while suffering from a high staff churn rate.

Talented staff can be trusted; those passionate about what they are doing will not need
restrictions to prevent them from slacking off.

If there are talented staff who can't perform their duties, it is highly unlikely your
developers are merely slackers; you need to remove the bureaucratic processes that are
restrictions to development.

Compulsively performing rituals that add nothing to putting software in users' hands adds
nothing of value to the development team.

How to Write Better Code

[239]

Lean project management
Lean project management allows you to regularly deliver business value without being
based on lists of requirements, features, and functions.

The book The Machine That Changed the World was based on the Massachusetts Institute of
Technology's $5 million 5-year study on the automotive industry, making the term lean
production world famous.

This book proposed the following principles of lean:

Identify customers and specify values
Identify and map the value stream
Create flow by eliminating waste
Respond to customer pull
Persue perfection

From this, there are the following Lean Principles when it comes to software development,
which are largely based on the manufacturing principles of lean production:

Eliminate waste
Amplify learning
Decide as late as possible
Deliver as fast as possible
Empower the team
Build integrity in
See the whole

Good architecture through reusable components, automated deployments, and good
architecture can all assist in attaining this goal.

YAGNI and defering decisions
You aren't going to need it – you don't need to add functionality until it's necessary. Only add
things that are vital to the success of your project. You probably won't need a lot of
functionality for the first version of your web app; it's best to defer this until necessary.

How to Write Better Code

[240]

By deferring unnecessary functionality, you are able to keep your software design as simple
as it needs to be. This helps you cope with the pace of change. Later in the software
development process you will be more educated regarding the requirements, and more
importantly, your client will have a more precise projection as to where they want the
product to head.

When you make decisions on software later, you have more data and more education. Some
decisions have to be made upfront, but if you can defer them, that's often a good idea.

Monitoring
Monitoring systems become critical as you scale. Effective monitoring can drastically ease
the maintenance of services.

Having spoken to multiple experts in this field, this is the advice I have collected on the
subject:

Choose your key statistics carefully. Users don't care if your machine is low on
CPU but they do care if your API is slow.
Use aggregators; think about services, not machines. If you have more than a
handful of machines, you should treat them as an amorphous blob.
Avoid the Wall of Graphs. They are slow and it's information overload for a
human. Each dashboard should have five graphs with no more than five lines per
graphs.
Quantiles aren't aggregable, they're hard to get meaningful information from.
However, averages are easy to reason. A response time of 10 ms in the first
quartile isn't really useful as information, but a 400 ms average response time
shows a clear problem that needs to be addressed.
In addition to this, averages are far easier to calculate than quantiles. They are
computationally easy, and especially useful as soon as you need scale the
monitoring system.
Monitoring has a cost. Consider whether the resources are really worth it. Is a 1
second monitoring frequency really better than 10 second monitoring? Is the cost
worth it? Monitoring isn't free, it has a computational cost.
That said, the Nyquist-Shannon sampling theorem demonstrates that if you
sample every 20 seconds you can't reconstruct patterns at 10 seconds apart. Let's
suppose there is a service that is crashing or reducing the speed of your computer
system every 10 seconds – it can't be detected. Bear this in mind throughout your
data analysis process.

How to Write Better Code

[241]

Correlation not causation – beware of conformation bias. Be sure to achieve a
formal relationship of what is causing a particular issue before doing anything
drastic.
Both logs and metrics are good. Logs let you figure out details, metrics give you
the high level.
Have a way to deal with non-critical alerts. What do you do with all those 404
errors in your web server log files?
Remember the KISS principle mentioned earlier; keep your monitoring as simple
as possible.

Tests fight legacy
Automated tests are the best tool to fight legacy code.

By having automated tests such as unit tests or behavioral tests, you are able to refactor
legacy code effectively with confidence that little can be broken.

Badly written systems often consist of tightly coupled functions. One change to a function
in one class may well break a function in a completely different class, leading to a domino
effect of more classes being broken until the entire application is broken.

In order to decouple classes and follow practices such as the Single Responsibility Principle,
refactoring must be carried out. Any refactoring effort must be sure not to break code
elsewhere in an application.

This brings us onto the topic of test coverage: is it a truly meaningful figure?

Alberto Savoia answered this question best in an amusing anecdote he placed online on
artima.com; let's take a read:

Early one morning, a programmer asked the great master: “I am ready to write some unit
tests. What code coverage should I aim for?”
The great master replied: “Don't worry about coverage, just write some good tests.”
The programmer smiled, bowed, and left.
…
Later that day, a second programmer asked the same question. The great master pointed at
a pot of boiling water and said: “How many grains of rice should I put in that pot?”
The programmer, looking puzzled, replied: “How can I possibly tell you? It depends on how
many people you need to feed, how hungry they are, what other food you are serving, how
much rice you have available, and so on.”

How to Write Better Code

[242]

“Exactly,” said the great master.
The second programmer smiled, bowed, and left.
…
Toward the end of the day, a third programmer came and asked the same question about
code coverage.
“Eighty percent and no less!” Replied the master in a stern voice, pounding his fist on the
table.
The third programmer smiled, bowed, and left.
…
After this last reply, a young apprentice approached the great master:
“Great master, today I overheard you answer the same question about code coverage with
three different answers. Why?”
The great master stood up from his chair: “Come get some fresh tea with me and let's talk
about it.”
After they filled their cups with smoking hot green tea, the great master began to answer:
“The first programmer is new and just getting started with testing. Right now he has a lot
of code and no tests. He has a long way to go; focusing on code coverage at this time would
be depressing and quite useless. He's better off just getting used to writing and running
some tests. He can worry about coverage later.”
“The second programmer, on the other hand, is quite experienced both at programming and
testing. When I replied by asking her how many grains of rice I should put in a pot, I
helped her realize that the amount of testing necessary depends on a number of factors, and
she knows those factors better than I do – it's her code after all. There is no single, simple,
answer, and she's smart enough to handle the truth and work with that.”
“I see,” said the young apprentice, “but if there is no single simple answer, then why did
you answer the third programmer 'Eighty percent and no less'?”
The great master laughed so hard and loud that his belly, evidence that he drank more than
just green tea, flopped up and down.
“The third programmer wants only simple answers – even when there are no simple
answers … and then does not follow them anyway.”
The young apprentice and the grizzled great master finished drinking their tea in
contemplative silence.

Alberto is portraying a simple message: focusing on having as much business logic and
functionality is the best way forward. Test coverage is not something you should follow an
arbitrary figure for.

There are things which it makes sense not to test, and there are different logical paths even
of code that has already been tested.

How to Write Better Code

[243]

Moreover, in distributed systems the communication between APIs or systems can be what
breaks the system. In distributed architectures, testing code may not be enough. Strong
monitoring systems become vital. Infrastructure as code to ensure consistent deployments
and upgrades comes to the foreground. Moreover, achieving loosely coupled services and
proper inter-process communication is more beneficial to the overall architecture than some
unit tests.

There is an alternative approach to Test-Driven Development (TDD). Behavior-Driven
Development (BDD) provides us a different mechanism of testing our code; let's discuss it.

Behavior-Driven Development
BDD works by implementing tests using human-readable stories.

Cucumber is a tool that implements a BDD workflow by using human-readable feature files
written in plain English language, for example:

Feature: Log in to site.
 In order to see my profile
 As a user
 I need to log-in to the site.

Scenario: Logs in to the site
 Given I am on "/"
 When I follow "Log In"
 And I fill in "Username" with "admin"
 And I fill in "Password" with "test"
 And I press "Log in"
 Then I should see "Log out"
 And I should see "My account"

Now, this section is going to be an incredibly simple exploration of Behat to pique your
curiosity. If you want to learn more, please head to h t t p : / / w w w . b e h a t . o r g.

The Behat guide contains an example of a user story for the ls command. It's quite a
respectable example, so here it is:

Feature: ls
 In order to see the directory structure
 As a UNIX user
 I need to be able to list the current directory's contents

 Scenario: List 2 files in a directory
 Given I am in a directory "test"

http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org
http://www.behat.org

How to Write Better Code

[244]

 And I have a file named "foo"
 And I have a file named "bar"
 When I run "ls"
 Then I should get:
 """
 bar
 foo
 """

In order to install Behat, you can amend your composer.json file so that it is required in
your development environments:

{
 "require-dev": {
 "behat/behat": "~2.5"
 },
 "config": {
 "bin-dir": "bin/"
 }
}

This will install Behat version 2.5, there is also Behat version 3, which contains a whole suite
of new features without losing too much backward compatibility. That said, many projects
out there are still utilizing Behat 2.

Then you can run Behat using the following command:

bin/behat

We get the following output:

How to Write Better Code

[245]

By using the init flag we can then create a features directory with some basic information
to get us started:

Accordingly, let's write our feature/ls.feature file with the following feature and
scenario, as follows:

How to Write Better Code

[246]

If we now run Behat we'll find the following output:

Behat accordingly returns some code snippets so we can implement the undefined steps:

 /**
 * @Given /^I am in a directory "([^"]*)"$/
 */
 public function iAmInADirectory($arg1)
 {
 throw new PendingException();
 }

 /**
 * @Given /^I have a file named "([^"]*)"$/
 */
 public function iHaveAFileNamed($arg1)

How to Write Better Code

[247]

 {
 throw new PendingException();
 }

 /**
 * @When /^I run "([^"]*)"$/
 */
 public function iRun($arg1)
 {
 throw new PendingException();
 }

 /**
 * @Then /^I should get:$/
 */
 public function iShouldGet(PyStringNode $string)
 {
 throw new PendingException();
 }

Now, in the feature directory that was created for us is a bootstrap folder that contains a
FeatureContext.php file. Within this file, you will be able to find the body of your class:

How to Write Better Code

[248]

You may have noticed this block in the class body. We can put the generated methods here:

//
// Place your definition and hook methods here:
//
// /**
// * @Given /^I have done something with "([^"]*)"$/
// */
// public function iHaveDoneSomethingWith($argument)
// {
// doSomethingWith($argument);
// }
//

I've done this as follows:

How to Write Better Code

[249]

You may notice the body is full of PendingException messages. We need to replace these
bodies with the actual functionality; fortunately, the Behat documentation contains
functions with these methods populated:

 /** @Given /^I am in a directory "([^"]*)"$/ */
 public function iAmInADirectory($dir)
 {
 if (!file_exists($dir)) {
 mkdir($dir);
 }
 chdir($dir);
 }

 /** @Given /^I have a file named "([^"]*)"$/ */
 public function iHaveAFileNamed($file)
 {
 touch($file);
 }

 /** @When /^I run "([^"]*)"$/ */
 public function iRun($command)
 {
 exec($command, $output);
 $this->output = trim(implode("\n", $output));
 }

 /** @Then /^I should get:$/ */
 public function iShouldGet(PyStringNode $string)
 {
 if ((string) $string !== $this->output) {
 throw new Exception(
 "Actual output is:\n" . $this->output
);
 }
 }

How to Write Better Code

[250]

Now we can run Behat and we should see our scenario and its various steps completed:

By using Mink with Behat we are able to accordingly use Selenium to run browser tests.
Selenium will spin up a browser using Mink and we can then run Behat tests in the
browser.

Summary
In this chapter, I've sought to tie up some loose ends. We've discussed some of the
networking side of web development by learning about HTTP. In addition to this, we've
learned about how RESTful APIs can be effectively designed.

This book is now coming to an end; let's revisit some core values that make our code great:

Favor composition over inheritance
Avoid repetitive coding (the DRY principle means Don't Repeat Yourself)
Keep It Simple, Stupid
Don't use design patterns just for using design patterns, introduce design
patterns when you identify a recurring issue that they can solve
Abstraction is awesome, interfaces help you abstract
Write code in line with good standards

How to Write Better Code

[251]

Separate responsibilities throughout your code
Use dependency management and dependency injection; Composer is now
available
Tests save development time; they are critical for any refactoring effort and
reduce breakages

Thank you for making it through this book; this book is a collection of my rants about
software development; having had an incredibly diverse career, there are many lessons I
have learned brutally and lot of eyesore code I have had to refactor. I have seen some of the
worst, but also been a part of some of the most exciting PHP projects around. I hope in this
book I have been able to share some of my experiences in this field.

It is easy for developers to hide themselves away from the reality of development; there are
few people who know best practices when it comes to software design and architecture, and
a very limited set of those choose PHP as their development language of choice.

For many of us, the code we produce is more than a hobby or a job, it is the limit of our
expression as software engineers. Accordingly, writing it in a poetic, expressive, and a
lasting fashion is our duty.

Think about the code you would love to maintain; that is the code you have a duty to
produce. Minimalism, reducing complexity, and separating concerns are key to achieving
this.

Computer science may be grounded in mathematics and theorems, but our code sits above
this. By utilizing the basis of a Turing complete language we are able to write code that is
creative and functional.

This locates software engineering in an odd vacuum compared to many other disciplines;
while being very metricized, it also must be appealing to humans. I hope this book has
helped you achieve these ends.

Index

A
abstract classes 14
Abstract Factory pattern 82, 84, 87, 89
Adapter pattern
 about 108
 Class Adapter 108
 Object Adapter 110, 111, 113
Adapters
 used, for separating versions 210
advanced messaging queuing protocol (AMPQ)

182

Agile 235, 237
Agile software architecture 104, 105
anti-patterns
 about 30
 cart before the horse 51
 God objects 40, 41
 need for 31
 not invented here (NIH) syndrome 34
 Soft Code 43
architectural patterns
 about 29
 asynchronous queueing 177
 microservices 173
 Model-View-Controller (MVC) 170
 service-oriented architecture 172
architecture-driven software development 34
asynchronous queueing 177
auto-increment database IDs 46
automated tests 241

B
Behat
 installing 244
 reference 243
 running 244, 245, 246, 249, 250

Behavior-Driven Development 243
Behavioral design patterns
 about 28, 132
 Chain of Responsibility 152, 153, 154, 155, 156
 Iterator 139
 Observer 135
 Scheduled Task 167, 168
 Specification 163, 166
 Strategy 159, 161, 163
 Template Method 148, 152
behavioral tests 193
big rewrite 58
blind faith
 avoiding 54
bloated optimization
 about 62
 analysis paralysis 63
 bikeshedding 63
 premature optimization 63
Branch by Abstraction 60
Bridge pattern 120, 122
Bug-Driven Development 62
Builder design pattern
 about 93, 95
 Composite, encapsulating with 208

C
CAP theorem 173
cart before the horse anti-pattern 51
Chain of Responsibility design pattern 152, 153,

154, 155, 156
Class Adapter 108
client error codes 223
clustering 231
code smells
 about 194
 assignments, removing to parameters 207

[253]

 code, duplicating following single control
structure 200

 comments 208
 complex logical statements, replacing with

polymorphism or Strategy Pattern 198
 deeply nested statements 206
 duplicated code 195
 feature envy 204
 inappropriate intimacy 206
 indecent exposure 203
 large class 197
 long methods 195
 long parameter list 200
 primitive obsession 200
 switch statements, replacing with polymorphism

or Strategy Pattern 198
code
 refactoring 193
coding style 11
Composer
 about 23
 environment, setting up with 23, 24
 reference 23
 third-party dependencies, managing with 36, 37,

38, 40
Composite pattern 117, 119
Composite Reuse Principle 110, 111
Composite
 encapsulating, with Builder design pattern 209
 one/many distinctions, replacing with 209
Controller 170
CORS 220
creational design patterns 27, 72
cronjob 47
cryptography 34
cryptosystem 34
curl 213
current code base, improving in cycles
 about 58
 automated tests 59, 60
 perfectly staged migrations 61
 service splitting 60

D
database
 as IPC 45
debug access
 limiting, to private/protected properties 21
Decorator pattern 105
defering decisions 239, 240
dependency injection 27, 45
design patterns
 architectural 29
 behavioral 28
 creational 27
 structural 28
development responsibilities
 excessive separation 52
development, and operations
 separating 52

E
environment variables
 in PHP source 43
environment
 setting up, with Composer 23, 24
error suppression operator 53
extract method 195
Extreme Programming (XP)
 about 192, 236
 development rules 134

F
Facade pattern 127, 129, 130
factory 74
Factory Method 78, 79
FlyWeight pattern
 about 113, 115
 extrinsic state 114
 intrinsic state 114
Frontend microservice 175

G
Gang of Four (GoF) 26
generators 143, 144, 145, 146
GET request
 making 224

[254]

God class
 example 41
God objects 40, 41
Gotos 30

H
Hak 53
hard-coded notifications
 replacing, with Observer 209
hashing algorithm 35
HTTP 404 responses 226
HTTP ETags (entity tags) 222
HTTP POST request 227
HTTP request
 about 212, 213, 214, 215, 219, 220
 making, HEAD option used 222
 making, to endpoint 225
HTTP response 221

I
informational header 223
infrastructure as code process 61
Insight 9
Interface Bloat
 about 49
 implementing 49, 50
Internet of Things (IoT) platforms 52
Iterator pattern
 about 139
 IteratorAggregate interface, implementing 139,

140

iterators, SPL
 reference 142

J
JSON
 working 24

K
Kerckhoffs's principle 34
KISS principle (Keep it simple, stupid) 233
kitchen sink 51

L
lazy initialization 90, 91
Lean project management 239
legacy code
 tests fight 241
long methods 65, 67

M
magic numbers 70
Message Queue pattern 177, 178, 179, 180
microservices 173
Model 170
Model-View-Controller (MVC)
 about 138, 170
 considerations 172
Monit
 about 47
 reference 47
monitoring 240

N
not invented here (NIH) syndrome 35

O
Object Adapter 110, 111, 113
object-oriented programming
 about 11
 polymorphism 12, 13, 14
 traits 16
Observer pattern
 about 135
 hard-coded notifications, replacing with 209
one/many distinctions
 replacing, with Composite 209

P
Packergist 37
pair-programming 134
personality traits
 for passionate programmers 133
PHP 135
PHP source
 environment variables 43
pizza delivery web application 174

[255]

polymorphism 12, 13, 14
POST request 226
Prototype pattern 97
Proxy pattern 123
proxy
 creating, in Virtualhost 48
PSR standards
 about 11
 reference 11
Publish-Subscriber pattern 187
Publish-Subscriber relationship
 direct exchange 187
 fanout exchange 187
 headers exchange 188
 topic exchange 188
PUT request 229
PuttyGen 39

R
RabbitMQ
 about 46, 177
 reference 178
redirection messages 223
refactoring 192
Request for Comments (RFCs) 217
REST 231
REST API 171
RESTful API design
 about 231
 fields, limiting 233
 filtering 232
 new fields, returning 233
 searching 232
 sorting 232
 stateless nature 231
 versioning 231, 232
RFC 6265 217

S
sacking 237
scalar type hints 19
Scheduled Task pattern 167, 168
Scrum 235, 237
Scrum Guide 236
Scrum Masters 134, 236

Selenium
 reference 60
SensioLabs 64
SensioLabs Insight tool 64
sequential coupling 55, 56
server error code 223
service-oriented architecture 172
Shannon's Maxim 34
Simple Factory 75, 77
Single Responsibility Principle 105
Singletons
 about 44
 dependency injection 45
Soft Code 43
software design process 73
software development life cycle 234
Software Engineering Body of Knowledge

(SWEBoK) 72
SOLID principle 78
Spaghetti Code 30
Specification design pattern 163, 166
SPL (Standard PHP Library) 142
Sprint 237
status code 222
Strategy design pattern 159, 161, 163
structural design patterns
 about 28, 103
 Adapter 108
 Bridge 120, 122
 Composite 117, 119
 Decorator 105
 Facade 127, 129, 130
 FlyWeight 113, 115
 Proxy 123
success status code 223
swiss army knife 51

T
Template Method design pattern 148, 151, 152
Test-Driven Development (TDD) 62, 194
Tester-Driven Development 62
third-party dependencies
 managing, with Composer 36, 37, 38, 39
time sheets 235
traits 16

U
uneducated manager syndrome 64
unit tests 193
unnamed numerical constants 70
UUID function 46

V
View 170

VirtualHost
 proxy, creating in 48

W
WordPress 65
wrong rocky foundations 64

Y
YAGNI 239, 240

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Why "Good PHP Developer" Isnt an Oxymoron
	Coding style – the PSR standards
	Revising object-oriented programming
	Polymorphism
	Traits (multiple inheritance)
	Scalar type hints
	Limiting debug access to private/protected properties

	Setting up the environment with Composer
	The Gang of Four (GoF)
	Creational design patterns
	Dependency injection

	Structural design patterns
	Behavioral design patterns
	Architectural patterns

	Summary

	Chapter 2: Anti-Patterns
	Why anti-patterns matter
	Not invented here syndrome
	Third-party dependencies with Composer

	God objects
	Environment variables in PHP source
	Singletons (and why you should be using dependency injection)
	Dependency injection

	Database as IPC
	Auto-increment database IDs
	Cronjob imitating service
	Software in place of architecture
	Interface Bloat
	Cart before the horse
	Separation of development and operations
	Excessive separation of development responsibilities
	Error suppression operator
	Blind faith
	Sequential coupling
	The big rewrite
	Automated tests
	Service splitting
	Perfectly staged migrations

	Tester-Driven Development
	Bloated optimization
	Analysis paralysis
	Bikeshedding
	Premature optimization

	Uneducated manager syndrome
	Wrong rocky foundations
	Long methods
	Magic numbers
	Summary

	Chapter 3: Creational Design Patterns
	Software design process
	Simple Factory
	Factory Method
	Abstract Factory pattern
	Lazy initialization
	Builder pattern
	Prototype pattern
	Summary

	Chapter 4: Structural Design Patterns
	Agile software architecture
	Decorator
	Adapter
	Class Adapter
	Object Adapter

	FlyWeight
	Composite
	Bridge
	Proxy pattern
	Facade
	Summary

	Chapter 5: Behavioral Design Patterns
	Personality traits for passionate programmers
	Observer pattern (SplObserver/SplSubject)
	Iterators
	IteratorAggregate
	Iterator
	The many iterators of PHP

	Generators
	Template Method design pattern
	Chain of Responsibility
	Strategy design pattern
	Specification design pattern
	Scheduled Task pattern
	Summary

	Chapter 6: Architectural Patterns
	Model-View-Controller (MVC)
	Service-oriented architecture
	Microservices
	Asynchronous queueing
	Message Queue pattern (Getting started with RabbitMQ)
	Publish-Subscriber pattern

	Summary

	Chapter 7: Refactoring
	What is refactoring?
	Test, test, and test again
	Code smells
	Long methods and duplicated code
	Large class
	Replacing complex logical statements and switch statements with polymorphism or the Strategy Pattern
	Duplicating code following a single control structure
	Long Parameter List and primitive obsession
	Indecent exposure
	Feature envy
	Inappropriate intimacy
	Deeply nested statements
	Remove assignments to parameters
	Comments
	Encapsulating Composite with Builder
	Replacing hard-coded notifications with Observer
	Replacing one/many distinctions with Composite
	Separate versions with Adapters

	What do I tell my manager?
	Summary

	Chapter 8: How to Write Better Code
	Nature of a HTTP request
	RESTful API design
	Stateless nature
	Versioning
	Filtering
	Sorting
	Searching
	Limiting fields
	Returning new fields

	When in doubt – KISS
	Software development life cycle
	On Scrum, and real Agility
	You need to sack people sometimes
	Lean project management
	YAGNI and defering decisions
	Monitoring
	Tests fight legacy
	Behavior-Driven Development
	Summary

	Index

