

Persistence in PHP with
Doctrine ORM

Build a model layer of your PHP applications
successfully, using Doctrine ORM

Kévin Dunglas

BIRMINGHAM - MUMBAI

Persistence in PHP with Doctrine ORM

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1111213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-410-4

www.packtpub.com

Cover Image by Gagandeep Sharma (er.gagansharma@gmail.com)

Credits

Author
Kévin Dunglas

Reviewers
Kirill Chebunin

Stefan Kleff

Adam Prager

Chris Woodford

Acquisition Editor
Harsha Bharwani

Lead Technical Editor
Vaibhav Pawar

Technical Editors
Nadeem N. Bagban

Venu Manthena

Sebastian Rodrigues

Copy Editors
Alisha Aranha

Sarang Chari

Deepa Nambiar

Gladson Monteiro

Shambhavi Pai

Kirti Pai

Project Coordinator
Ankita Goenka

Proofreader
Bernadette Watkins

Indexer
Tejal Daruwale

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Kévin Dunglas is the co-founder and CEO of La Coopérative des Tilleuls,
a French IT company specializing in e-commerce, owned and managed by its
workers themselves. He is also a software architect who works for a lot of companies,
including Ubisoft and SensioLabs (creator of Symfony), as an external contractor. He
contributes to open source software (especially Symfony, JavaScript, and Ubuntu
ecosystems) and has been writing a technical blog for more than 10 years.

About the Reviewers

Kirill Chebunin is a software engineer specializing in server-side web
development. His main interests lie in the field of systems with complex
background logic. He has been working as the head of a PHP development
department, building different enterprises, and billing and analytics systems
for the last two years. But his real passion is for open source projects and their
communities. Kirill's talks can be found in Russian and Ukrainian PHP conferences,
and his commits are presented in Composer, Doctrine, and Symfony projects. You
can always see his current interests at Github (https://github.com/chebba) and
SlideShare (http://www.slideshare.net/chebba).

Stefan Kleff has been developing web applications for over 12 years at various
positions in various companies. He holds degrees from the University of Applied
Sciences in Iserlohn, as well as the Hasso Plattner Institute of Computer Science. In
a cooperation class with Stanford University, he acquired practical knowledge of
Design Thinking. Stefan is an active contributor to the Doctrine project and Zend
Framework 2. Currently, he is working as a Project Manager at webXells GmbH and
is the co-founder of goalio UG in Potsdam, Germany.

Adam Prager is a full stack web application developer who has created many
data-heavy business management applications in the areas of Customer Relationship
Management (CRM), Enterprise Resource Planning (ERP), and Laboratory
Information Management System (LIMS). He is a big believer in the value and
power of open source software, and contributes to projects such as Doctrine and
Symfony regularly on Github. He has published numerous Symfony bundles and
jQuery plugins of his own. Adam currently works for Netlife in Hungary. Netlife is a
Consulting and IT services company, which provides web application development
services using the latest technologies, and complete business solutions based on SAP
consulting. As a diverse end-to-end IT solutions provider, Netlife offers a range of
expertise aimed at assisting customers to compete successfully in the ever changing
IT industry. They provide long term solutions with a focus on quality. They have
excellent domain expertise in SAP, CRM, custom web application development, and
user experience design.

Chris Woodford is a web software consultant and entrepreneur based in Toronto,
Canada. He has been working with modern web technologies (Ruby, nodeJS, and
PHP) for over 10 years, with a focus on solving tough problems. In his spare time, he
co-runs a small record label, Hypaethral Records (http://hypaethralrecords.com)
and tours the world with his band TITAN (http://titanslays.com).

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Getting Started with Doctrine 2 5

Prerequisites 7
Understanding the concepts behind Doctrine 8
Creating a project structure 10
Installing Composer 11
Installing Doctrine 11
Bootstrapping the app 13
Using Doctrine's Entity Manager 14
Configuring Doctrine command-line tools 16
Summary 17

Chapter 2: Entities and Mapping Information 19
Creating the Entity class 20
Generating getters and setters 21
Mapping with Doctrine annotations 22

Knowing about the @Entity annotation 22
Understanding the @Table, @Index, and
@UniqueConstraint annotations 22
Diving into the @Column annotation 23
Knowing about the @Id and @GeneratedValue annotations 24
Using other annotations 25

Understanding Doctrine Mapping Types 25
Creating the database schema 26
Installing Data fixtures 28
Creating a simple UI 30

Listing posts 31
Creating and editing posts 33

Table of Contents

[ii]

Deleting posts 37
Summary 38

Chapter 3: Associations 39
Getting started with the Doctrine associations 39
Understanding the @ManyToOne and @OneToMany
annotations with the comment system 40

Creating the Comment entity class (owning side) 41
Adding the inverse side to the Post entity class 43
Updating the database schema 45
Adding fixtures for the comments 46
Listing and creating comments 47
Updating the index 51

Understanding the @ManyToMany annotation with tags 52
Creating the Tag entity class (inverse side) 52
Updating the Post entity class (owning side) 54
Updating the schema again 56
Creating tag fixtures 56
Managing the tags of a post 58

Summary 59
Chapter 4: Building Queries 61

Understanding DQL 61
Using the entity repositories 63

Creating custom entity repositories 64
Getting started with Query Builder 65
Filtering by tag 69
Counting comments 71
Summary 73

Chapter 5: Going Further 75
Implementing inheritance 75

Using Mapped Superclasses 76
Using Single Table Inheritance 82
Using Class Table Inheritance 84

Getting started with events 86
Lifecycle callbacks 87
Knowing about event listeners and event subscribers 89

Writing native queries 92
The NativeQuery class 92
Doctrine DBAL 94

Summary 96
Index 97

Preface
Doctrine 2 has become the most popular modern persistence system for PHP. It
is distributed with the standard edition of the Symfony2 framework, can be used
standalone in any PHP project and integrates very well with Zend Framework 2,
CodeIgniter, or Laravel. It is efficient, automatically abstracts popular database
managing systems, supports PHP 5.3 features (including namespaces), is installable
through Composer, and has an extensively tested quality code base.

Doctrine's ORM library allows easy persisting and retrieving of PHP object graph,
without writing any SQL query by hand. It also provides a powerful object-oriented
SQL-like query language called DQL, a database schema generator tool, an event
system, and much more.

To discover this must-have library, we will together build a typical small, blog engine.

What this book covers
Chapter 1, Getting Started with Doctrine 2, explains how to install Common, DBAL,
and ORM libraries through Composer, get our first entity manager, and configure
command-line tools after presenting the project we built throughout the book (the
architecture of Doctrine and the configuration of the development environment).

Chapter 2, Entities and Mapping Information, introduces the concept of Doctrine entities.
We will create a first entity, map it to the database with annotations, generate the
database schema, create data fixtures, and, finally, lay the foundation of the user
interface of the blog.

Chapter 3, Associations, explains how to handle associations between the PHP objects
and the ORM. We will create new entities, detail one-to-one, one-to-many, and
many-to-many associations, generate the underlying database schema, create data
fixtures and use associations in the user interface.

Preface

[2]

Chapter 4, Building Queries, creates entity repositories and helps understand how to
use the query builder for generating DQL queries and retrieving entities. We will
also take a look at aggregate functions.

Chapter 5, Going Further, will take a look at the advanced features of Doctrine. We
will see different ways in which Doctrine can manage object inheritance, play with
entity lifecycle events, and create native SQL queries.

What you need for this book
To execute examples of this book, you just need PHP 5.4+ a text editor, or a PHP IDE,
and your favorite browser.

Who this book is for
Readers should have a good knowledge of object-oriented programming, PHP
(including features introduced in PHP 5.3 and 5.4), and general database concepts.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, and user input are shown as follows:
"The NativeQuery class allows you to execute native SQL queries and to get
their results as Doctrine entities."

A block of code is set as follows:

 /**
 * Adds comment
 *
 * @param Comment $comment
 * @return Post
 */
 public function addComment(Comment $comment)
 {
 $this->comments[] = $comment;
 $comment->setPost($this);

 return $this;
 }

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 /**
 * Adds comment
 *
 * @param Comment $comment
 * @return Post
 */
 public function addComment(Comment $comment)
 {
 $this->comments[] = $comment;
 $comment->setPost($this);

 return $this;
 }

Any command-line input or output is written as follows:

php bin/load-fixtures.php

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"The following text must be printed in the terminal: ATTENTION: This operation
should not be executed in a production environment."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
Doctrine 2

The Doctrine project is a collection of libraries providing utilities to ease data
persistence in PHP applications. It makes it possible to create complex model layers
in no time that will be compatible with popular DBMS, including SQLite, MySQL, and
PostgreSQL. To discover and understand Doctrine, we will create a small blog from
scratch throughout this book that will mainly use the following Doctrine components:

• Common provides utilities that are not in the PHP standard library
including a class autoloader, an annotations parser, collections structures,
and a cache system.

• Database Abstraction Layer (DBAL) exposes a unique interface to access
popular DBMS. Its API is similar to PDO (and PDO is used when possible).
The DBAL component is also able to execute the same SQL query on
different DBMS by internally rewriting the query to use specific constructs
and emulate missing features.

• Object Relational Mapper (ORM) allows accessing and managing relational
database tables and rows through an object-oriented API. Thanks to it, we
will directly manipulate PHP objects, and it will transparently generate SQL
queries to populate, persist, update, and delete them. It is built on top of
DBAL and will be the main topic of this book.

For more information on PHP Data Objects and the data-access
abstraction layer provided by PHP, refer to the following link:
http://php.net/manual/en/book.pdo.php

Getting Started With Doctrine 2

[6]

To learn Doctrine, we will build together a tiny blog engine with advanced features
such as the following:

• Posts list, creation, editing, and deletion
• Comments
• Tag filtering
• Profiles for author of posts and comments
• Statistics
• Data fixtures

The following is a screenshot of the blog:

Chapter 1

[7]

In this chapter, we will learn about the following topics:

• Understanding concepts behind Doctrine
• Creating the project's structure
• Installing Composer
• Installing Doctrine ORM, DBAL, and Common through Compose
• Bootstrapping the app
• Using Doctrine's Entity Manager
• Configuring Doctrine command-line tools

Prerequisites
To follow this tutorial, we need a proper CLI installation of PHP 5.4 or superior.
We will also use the curl command to download the Composer archive and the
SQLite 3 client.

For further information about PHP CLI, curl, and SQLite, refer
to the following links: http://www.php.net/manual/en/
features.commandline.php, http://curl.haxx.se,
and http://www.sqlite.org

In the examples, we will use the PHP built-in web server and SQLite as DBMS.
Doctrine is a pure PHP library. It is compatible with any web server supporting PHP,
but is not limited to Apache and Nginx. Of course, it can also be used in applications
that are not intended to run on web servers, such as command-line tools. On the
database side, SQLite, MySQL, PostgreSQL, Oracle, and Microsoft SQL Server are
officially supported.

Thanks to the DBAL component, our blog should work fine with all these DBMS. It
has been tested with SQLite and MySQL.

The Doctrine project also provides Object Document Mappers (ODM) for NoSQL
databases including MongoDB, CouchDB, PHPCR, and OrientDB. These topics are
not covered in this book.

Do not hesitate to consult the Doctrine documentation
specified in the following link while reading this book:
http://www.doctrine-project.org

Getting Started With Doctrine 2

[8]

Understanding the concepts behind
Doctrine
Doctrine ORM implements Data Mapper and Unit of Work design patterns.

The Data Mapper is a layer designed to synchronize data stored in database with
their related objects of the domain layer. In other words, it does the following:

• Inserts and updates rows in the database from data held by object properties
• Deletes rows in the database when related entities are marked for deletion
• Hydrates in-memory objects with data retrieved from the database

For more information about the Data Mapper and Unit of Work design
patterns, you can refer to the following links: http://martinfowler.
com/eaaCatalog/dataMapper.html and http://martinfowler.
com/eaaCatalog/unitOfWork.html

In the Doctrine terminology, a Data Mapper is called an Entity Manager. Entities are
plain old PHP objects of the domain layer.

Thanks to the Entity Manager, they don't have to be aware that they will be stored
in a database. In fact, they don't need to be aware of the existence of the Entity
Manager itself. This design pattern allows reusing entity classes regardless of the
persistence system.

For performance and data consistency, the Entity Manager does not sync entities
with the database each time they are modified. The Unit of Work design pattern
is used to keep the states of objects managed by the Data Mapper. Database
synchronization happens only when requested by a call to the flush() method of
the Entity Manager and is done in a transaction (if something goes wrong while
synchronizing entities to the database, the database will be rolled back to its state
prior to the synchronization attempt).

Imagine an entity with a public $name property. Imagine the following code
being executed:

 $myEntity->name = 'My name';
 $myEntity->name = 'Kévin';
 $entityManager->flush($myEntity);

Thanks to the implementation of the Unit of Work design pattern, only one SQL
query similar to the following will be issued by Doctrine:

 UPDATE MyEntity SET name='Kévin' WHERE id=1312;

Chapter 1

[9]

The query is similar because, for performance reasons, Doctrine
uses prepared statements.

We will finish the theory part with a short overview of the Entity Manager methods
and their related entity states.

The following is an extract of a class diagram representing an entity and its
Entity Manager:

EntityManager

Database

MyEntity

+ attribute1
+ attribute2

+ find()
+ persist()
+ remove()
+ flush()

• The find() method hydrates and returns an entity of the type passed
in the first parameter having the second parameter as an identifier. Data
is retrieved from the database through a SELECT query. The state of this
returned entity is managed. It means that when the flush() method is
called, changes made to it will be synced to the database. The find()
method is a convenience method that internally uses an entity repository
to retrieve data from the database and hydrate the entity. The state of the
managed entities can be changed to detached by calling the detach()
method. Modifications made to the detached entity will not be synced to the
database (even when the flush() method is called) until its state is set back
to managed with a call to the merge() method.

The start of Chapter 3, Associations, will be dedicated to
entity repositories.

• The persist() method tells Doctrine to set the state of the entity passed in
parameter as managed. This is only useful for entities that have not been
synced at least one time to the database (the default state of a newly created
object is new) because entities hydrated from existing data automatically
have the managed state.

Getting Started With Doctrine 2

[10]

• The remove() method sets the state of the passed in entity to removed. Data
related to this entity will be effectively removed from the database with a
DELETE SQL query the next time the flush() method is called.

• The flush() method syncs data of entities with managed and removed
states to the database. Doctrine will issue INSERT, UPDATE, and DELETE SQL
queries for the sync. Before that call, all changes are only in-memory and are
never synchronized to the database.

Doctrine's Entity Manager has a lot of other useful methods documented
on the Doctrine website, http://www.doctrine-project.org/api/
orm/2.4/class-Doctrine.ORM.EntityManager.html.

This is abstract for now, but we will understand better how the Entity Manager
works with numerous examples throughout the book.

Creating a project structure
The following is the folder structure of our app:

• blog/: App root created earlier
• bin/: Specific command line tools of our blog app
• config/: Configuration files of our app
• data/: The SQLite database will be stored here
• src/: All PHP classes we write will be here
• vendor/: This is where Composer (see the following section) stores all

downloaded dependencies including the source code of Doctrine
• bin/: This is a command-line tool provided by dependencies installed

with Composer
• web/: This is the public directory that contains PHP pages and assets such as

images, CSS, and JavaScript files

We must create all these directories except the vendor/ one that will be
automatically generated later.

Chapter 1

[11]

Installing Composer
As with most modern PHP libraries, Doctrine is available through Composer, a
powerful dependency manager. A PEAR channel is also available.

For more information on Composer and Pear packages, please refer
to the respective links as follows: http://getcomposer.org
and http://pear.doctrine-project.org

The following steps should be performed to install Composer:

1. The first step to install Doctrine ORM is to grab a copy of the latest
Composer version.

2. Open your preferred terminal, go to the blog/ directory (the root of our
project), and type the following command to install Composer:
 curl -sS https://getcomposer.org/installer | php

A new file called composer.phar has been downloaded in the directory.
This is a self-contained archive of Composer.

3. Now type the following command:
 php composer.phar

If everything is OK, all available commands are listed. Your Composer
installation is up and running!

Installing Doctrine
The following steps should be performed to install Doctrine:

1. To install Doctrine, we need to create a file called composer.json in our
new blog directory. It lists dependencies of our project as shown in the
following code:
{
 "name": "myname/blog",
 "type": "project",
 "description": "My small blog to play with Doctrine",

 "require": {

Getting Started With Doctrine 2

[12]

 "doctrine/orm": "2.4.*"
 },

 "autoload": {
 "psr-0": { "": "src/" }
 }
}

This standard JSON file will be parsed by Composer to download and install
all dependencies specified. Once installed, Composer will load all classes of
these libraries automatically.
The name, type, and description attributes are optional but it's a good
practice to always fill them. They provide general information about the
project we are working on.
The more interesting part of this composer.json file is the require field.
In order to get it installed by Composer, all libraries used by our app must
be listed here. A lot of PHP libraries are available on Packagist, the default
Composer package repository. Of course, it's the case of Doctrine projects.

For more information on Packagist, go through the following
link: https://packagist.org/

We indicate that we need the latest minor release of the 2.4 branch of
Doctrine ORM. You can set a major or minor version here, and even more
complicated things.

For more information on a package version, you can refer to
the following link: http://getcomposer.org/doc/01-
basic-usage.md#package-versions

The autoload field is here to tell Composer to automatically load classes of
our app. We will put our specific code in a directory called src/. Our files
and classes will follow the PSR-0 namespacing and file-naming standard.

PHP Specification Requests are attempts to improve
interoperability of PHP applications and libraries. They
are available at http://www.php-fig.org/.

Chapter 1

[13]

2. It's time to use Composer to install the ORM. Run the following command:
 php composer.phar install

New files appear in the vendor/ directory. Doctrine ORM has been installed,
and Composer was smart enough to get all its dependencies, including
Doctrine DBAL and Doctrine Common.
A composer.lock file has also been created. It contains exact versions of
installed libraries. This is useful for deploying applications. Thanks to this
file, when running the install command, Composer will be able to retrieve
the same versions that have been used in the development.
Doctrine is now properly installed. Easy, isn't it?

3. To update libraries when there are new releases in the 2.4 branch, we just
need to type the following command:
 php composer.phar update

Bootstrapping the app
The following steps need to be performed for bootstrapping the app:

1. Create a new file called config/config.php that will contain configuration
parameters of our app as shown in the following code:
 <?php

 // App configuration
 $dbParams = [
 'driver' => 'pdo_sqlite',
 'path' => __DIR__.'/../data/blog.db'
];

 // Dev mode?
 $dev = true;

The Doctrine configuration parameters are stored in the $dbParams array. We
will use a SQLite Database called blog.db stored in the data/ directory. If
you want to use MySQL or any other DBMS, it's here that you will configure
the driver to use, the database name, and the access credentials.

Getting Started With Doctrine 2

[14]

The following is a sample configuration to use MySQL instead of SQLite:
$dbParams = [
 'driver' => 'pdo_mysql',
 'host' => '127.0.0.1',
 'dbname' => 'blog',
 'user' => 'root',
 'password' => ''
];

Config keys are self-explanatory.

If the $dev variable is true, some optimizations will be disabled to ease
debugging. Disabling the dev mode allows Doctrine to put a lot of data such
as metadata in powerful caches to increase overall performances of the app.

It requires cache driver installation and extra configuration,
which is available at http://docs.doctrine-project.
org/en/latest/reference/caching.html.

2. Next, we need a way to bootstrap our app. Create a file called bootstrap.
php in the src/ directory. This file will load everything we need as given in
the following code:
 <?php

 require_once __DIR__.'/../vendor/autoload.php';
 require_once __DIR__.'/../config/config.php';

The first line requires the Composer autoloader. It allows you to automatically
load the Doctrine's classes, the project's classes (that will be in the src/
directory), and any class of a library installed with Composer.
The second line imports the configuration file of the app. The project
structure is created and the initialization process of the app is done.
We are ready to start using Doctrine.

Using Doctrine's Entity Manager
The principle of an ORM is to manage data stored in a relational database through an
object-oriented API. We learned about its underlying concepts earlier in this chapter.

Each entity class is mapped to the related database table. Properties of the entity
class are mapped to the table's columns.

Chapter 1

[15]

So, the rows of a database table are represented in the PHP app by a collection
of entities.

Doctrine ORM is able to retrieve data from the database and to populate entities with
them. This process is called hydration.

Instead of entities, Doctrine can populate PHP arrays in different manners
(with the object graph, with a rectangular result set, and so on). It is also
possible to create custom hydrators by referring to the following link:
http://docs.doctrine-project.org/en/latest/reference/
dql-doctrine-query-language.html#hydration-modes

As we have learned with the Data Mapper design pattern, it also does the inverse
job: it persists data held by entities to database.

We will play a lot with entities later.

Doctrine comes with the following files to map entities to tables:

• Annotations in comment blocks that embed directly in the entities
• XML configuration files
• YAML configuration files
• Plain PHP files

Annotations are fairly recent in the PHP world (they are popular in Java) but they
are already widely used by Doctrine and Symfony communities. The advantages
of this method are great readability and maintenance facility because mapping
information is next to the PHP code. Putting mapping information directly in the
code can also be a drawback in some contexts, especially for big projects that use
several persistence systems.

We will use the annotation method in this book, but other methods are described
in the Doctrine documentation. We will return to them in Chapter 2, Entities and
Mapping Information.

In the next chapter, Chapter 2, Entities and Mapping Information, we will discover that
Doctrine is smart enough to use mapping information to automatically create the
related database schema.

For now, we will focus on retrieving an Entity Manager. As entities are retrieved,
persisted, updated, and removed through it, this is the entry point of Doctrine ORM.

Getting Started With Doctrine 2

[16]

Edit the src/bootstrap.php file to retrieve a Doctrine's Entity Manager. Add the
following code at the end of this file:

 $entitiesPath = array(__DIR__.'/Blog/Entity');
 $config = Setup::createAnnotationMetadataConfiguration
 ($entitiesPath, $dev);
 $entityManager = EntityManager::create($dbParams, $config);

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The $entitiesPath property contains the list of paths to directories storing entity
classes. We already mentioned that our app will follow the PSR-0 namespacing
convention. The \Blog folder will be the root namespace and entity classes will be
in the \Blog\Entity folder.

A Doctrine configuration is created to use annotations for mapping information and
to be able to locate the blog's entities that we'll create.

A new EntityManager is created and configured to use our database and
Doctrine settings.

For simplicity, we create a unique Entity Manager that will be used across the
application. For real-world apps, you should take a look at the Dependency
Injection design pattern.

Find more on Dependency Injection pattern at the following link:
http://en.wikipedia.org/wiki/Dependency_injection

Configuring Doctrine command-line tools
The Doctrine library is bundled with some useful command line tools. They provide
many helpful features, including, but not limited to the ability to create database
schema from entity mappings.

Composer has installed Doctrine's command line tools in the vendor/bin/ directory.
But before being able to use them, a bit of configuration must be done. Command
line tools internally use an Entity Manager. We need to tell them how to retrieve it.

Chapter 1

[17]

Here, we just need to create one more file called cli-config.php in the config/
directory as follows:

 <?php

// Doctrine CLI configuration file

use Doctrine\ORM\Tools\Console\ConsoleRunner;

require_once __DIR__.'/../src/bootstrap.php';

return ConsoleRunner::createHelperSet($entityManager);

Thanks to the Doctrine's conventions, the file will be automatically detected and used
by the Doctrine CLI.

Command line tools will look for a file called cli-config.php
in the current directory and in the config/ directory.

This file just gets a new Entity Manager using the utility class we've created earlier
and configures the Doctrine CLI to use it.

Type the following command to get a list of available Doctrine commands:

 php vendor/bin/doctrine.php

Summary
In this chapter, we discovered the fundamentals of Doctrine. We now know what
entities and Entity Managers are, we have installed Doctrine with the Composer
dependency manager, we created the skeleton of our blog app, and we managed to
get the command line tools up and running.

In the next chapter, we will create our first entity class, discover a lot of annotations
to map it to the database, generate the database schema, and start dealing with
entities. By the end of the next chapter, the post system of our blog will be working!

Entities and Mapping
Information

In the previous chapter, we discovered the concepts behind Doctrine, we learned
how to use Composer to install it, we set up the Doctrine Command Line Tools and
we dived into the Entity Manager.

In this chapter, we will cover the following topics:

• Creating our first entity class
• Mapping it to its related database table and columns with annotations
• Using a command helper provided by Doctrine to automatically generate the

database schema
• Creating some fixtures data and dealing with the Entity Manager to display

our data in a web user interface

Because we are building a blog, our main entity class will be called Post, as shown in
the following figure:

Post

id : int
title : string
body : string
publicationDate : \DateTime

Entities and Mapping Information

[20]

Our Post entity class has the following four properties:

• id: The unique identifier of the post across the database table (and the blog)
• title: The post's title
• body: The post's body
• publicationDate: The date of publication of the post

Creating the Entity class
As explained in Chapter 1, Getting Started with Doctrine 2, a Doctrine entity is just a
PHP object that will be saved in the database. Doctrine annotations are added in the
PHP DocBlock comments of the Entity class properties. Annotations are used by
Doctrine to map the object to the related database's table and properties to columns.

The original purpose of DocBlocks is integrating technical
documentation directly in the source code. The most popular
documentation generator that parses DocBlocks is phpDocumentator
which is available on this website: http://www.phpdoc.org.

Each entity, once persisted through Doctrine, will be related to a row of the
database's table.

Create a new file Post.php containing our entity class in the src/Blog/Entity/
location with the following code:

 <?php

 namespace Blog\Entity;

 use Doctrine\ORM\Mapping\Entity;
 use Doctrine\ORM\Mapping\Table;
 use Doctrine\ORM\Mapping\Index;
 use Doctrine\ORM\Mapping\Id;
 use Doctrine\ORM\Mapping\GeneratedValue;
 use Doctrine\ORM\Mapping\Column;

 /**
 * Blog Post entity
 *
 * @Entity
 * @Table(indexes={

Chapter 2

[21]

 * @Index(name="publication_date_idx",
 columns="publicationDate")
 * })
 */
 class Post
 {
 /**
 * @var int
 *
 * @Id
 * @GeneratedValue
 * @Column(type="integer")
 */
 protected $id;
 /**
 * @var string
 *
 * @Column(type="string")
 */
 protected $title;
 /**
 * @var string
 *
 * @Column(type="text")
 */
 protected $body;
 /**
 * @var \DateTime
 *
 * @Column(type="datetime")
 */
 protected $publicationDate;
 }

Generating getters and setters
Doctrine command-line tools that we configured in Chapter 1, Getting Started with
Doctrine 2, include a useful command that generates getter and setter methods of an
Entity class for us. We will use it to save us from having to write those of the Post class.

Run the following command to generate getters and setters of all entity classes of
the application:

 php vendor/bin/doctrine.php orm:generate:entities src/

Entities and Mapping Information

[22]

If you have several entities and don't want to generate getters
and setters for all of them, use the filter option with the
orm:generate:entities command.

Mapping with Doctrine annotations
Post is a simple class with four properties. The setter for $id isn't actually generated.
Doctrine populates the $id instance variable directly in the entity hydration phase.
We will see later how we delegate the ID generation to the DBMS.

Doctrine annotations are imported from the \Doctrine\ORM\Mapping namespace with
use statements. They are used in DocBlocks to add mapping information to the class
and its properties. DocBlocks are just a special kind of comment starting with /**.

Knowing about the @Entity annotation
The @Entity annotation is used in the class-level DocBlock to specify that this class
is an entity class.

The most important attribute of this annotation is repositoryClass. It allows
specifying a custom entity repository class. We will learn about entity repositories,
including how to make a custom one, in Chapter 4, Building Queries.

Understanding the @Table, @Index, and
@UniqueConstraint annotations
The @Table annotation is optional. It can be used to add some mapping information
to the table related to the entity class.

The related database table name is default to the entity class name. Here, it is Post. It
can be changed using the name attribute of the annotation. This is a good practice to
let Doctrine automatically generate the table and column names but it can be useful
to change them to match a preexisting schema.

As you can see, we use the @Table annotation to create indexes on the underlying
table. To do that, we use an attribute called indexes that contains a list of indexes.
Each index is defined by an @Index annotation. Each @Index must contain the
following two attributes:

• name: The name of the index
• columns: The list of indexed columns

Chapter 2

[23]

For the Post entity class, we create an index on the publicationDate column called
publication_date_idx.

The last optional attribute of the @Table annotation is uniqueConstraints
(not used here). It allows creating SQL level unique constraints on columns
and groups of columns. Its syntax is similar to @Index:name to name the
constraint and columns to specify the columns on which it applies the constraints.

This attribute is only used by the schema generator. Even if the uniqueConstraints
attribute is used, Doctrine will not automatically check that a value is unique across
a table. The underlying DBMS will do this, but it can lead to DBMS level SQL errors.
If we want to enforce uniqueness of data, we should perform a check prior to saving
new data.

Diving into the @Column annotation
Each property is mapped to a database column thanks to the @Column annotation.

The name of the mapped database column defaults to the property name but can
be changed with the name parameter. As for table names, it's better to let Doctrine
generate names by itself.

As in the case of table names, column names will default to entity class
property names (Camel case if the PSR style is correctly followed).
Doctrine also comes with an underscore naming strategy (for instance,
the database table related to a class called MyEntity will be my_entity)
and it is possible to write custom strategies.
Learn more about this in the Doctrine documentation: http://
docs.doctrine-project.org/en/latest/reference/
namingstrategy.html

If a property is not marked with the @Column annotation, Doctrine will ignore it.

Its type attribute indicates the Doctrine Mapping Type of the column (see next
section). It is the only required attribute of this annotation.

This annotation supports some more attributes. Like for every other annotation, the
full list of supported attributes is available in the Doctrine documentation. The most
important attributes are as follows:

• unique: If true, the value of this column must be unique across the related
database table

• nullable: If false, the value can be NULL. By default, columns cannot
be NULL.

Entities and Mapping Information

[24]

• length: The length of the column for values of the string type
• scale: The scale for columns for values of the decimal type
• precision: The precision for columns for values of the decimal type

As for @Table, Doctrine does not use attributes of the @Column annotation to validate
data. These attributes are only used for the mapping and to generate the database
schema. Nothing more. For security and user experience reasons, you must validate
every piece of data provided by users. This book does not cover this topic. If you do
not want to handle data validation manually, try the Symfony Validator Component
from http://symfony.com/components/Validator.

It's also possible to use lifecycle events (see Chapter 5, Going Further) to
handle data validation: http://docs.doctrine-project.org/
projects/doctrine-orm/en/latest/cookbook/validation-
of-entities.html

Knowing about the @Id and @GeneratedValue
annotations
The $id property is a bit special. This is a column mapped to an integer, but this is
mainly the unique identifier of our object.

Through the @Id annotation, this column will be used as the primary key of the table.

By default, it is the responsibility of the developer to ensure that the value of
this property is unique across the table. Almost all DBMSs provide mechanisms
to automatically increment an identifier at the insertion of a new row. The
@GeneratedValue annotation takes advantage of this. When a property is marked
with @GeneratedValue, Doctrine will delegate the generation of the identifier to the
underlying DBMS.

Other ID generation strategies are available at http://docs.
doctrine-project.org/en/latest/reference/basic-
mapping.html#identifier-generation-strategies.

Doctrine also supports composite primary keys. Just add an @Id annotation to all
columns of your composite primary key.

We will study another example using a unique string as identifier in
Chapter 3, Associations.

Chapter 2

[25]

Using other annotations
A lot of Doctrine mapping annotations exist. We will use some new annotations in
Chapter 3, Associations to create relations between entities.

The full list of available annotation is given in the Doctrine documentation at
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/
reference/annotations-reference.html.

Understanding Doctrine Mapping Types
Doctrine Mapping Types used in the @Column annotation are neither SQL types nor
PHP types but they are mapped to both. For instance, the Doctrine text type will be
casted to the string PHP type in the entity and stored in a database column with the
CLOB type.

The following is a correspondence table for Doctrine Mapping Type of PHP type and
SQL type:

Doctrine Mapping Type PHP Type SQL Type
string string VARCHAR

integer integer INT

smallint integer SMALLINT

bigint string BIGINT

boolean boolean BOOLEAN

decimal double DECIMAL

date \DateTime DATETIME

time \DateTime TIME

datetime \DateTime DATETIME or TIMESTAMP
text string CLOB

object object using the
serialize() and
unserialize() methods

CLOB

array array using serialize()
and unserialize()
methods

CLOB

float double FLOAT (double precision)
simple_array array using implode() and

explode()

Values cannot contain
comma.

CLOB

Entities and Mapping Information

[26]

Doctrine Mapping Type PHP Type SQL Type
json_array object using json_

encode() and json_
decode() methods

CLOB

guid string GUID or UUID if supported
by the DBMS, VARCHAR
either

blob resource stream (see
http://www.php.net/
manual/en/language.
types.resource.php)

BLOB

Keep in mind that we can create custom types. To learn more about
this, refer to: http://docs.doctrine-project.org/en/
latest/cookbook/custom-mapping-types.html

Creating the database schema
Doctrine is smart enough to generate the database schema corresponding to the
entity mapping information.

It's a good practice to always design entities first and to generate
the related database schema after that.

To do this, we will again use Command-Line Tools installed in the first chapter. Type
this command in the root directory of our project:

 php vendor/bin/doctrine.php orm:schema-tool:create

The following text must be printed in the terminal:

ATTENTION: This operation should not be executed in a production
environment.

Creating database schema...

Database schema created successfully!

Chapter 2

[27]

A new table called Post has been created in the database. You can use the SQLite
client to show the structure of the generated table:

 sqlite3 data/blog.db ".schema Post"

It should return the following query:

 CREATE TABLE Post (id INTEGER NOT NULL, title VARCHAR(255) NOT
 NULL, body CLOB NOT NULL, publicationDate DATETIME NOT NULL,
 PRIMARY KEY(id));
 CREATE INDEX publication_date_idx ON Post (publicationDate);

The following screenshot is the structure of the table Post:

Doctrine is also able to generate the schema for MySQL and other supported DBMS.
If we configure our app to use a MySQL server as a DBMS and we run the same
command, the generated table will look similar to the following screenshot:

Entities and Mapping Information

[28]

Installing Data fixtures
Fixtures are fake data that allow testing of an app without having to do the tedious
task of manually creating data after each install. They are useful for automated testing
processes and make it easier for a new developer to start working on our projects.

Any application should be covered with automated tests. The blog app
we are building is covered by Behat (http://behat.org/) tests. They
are provided in downloads available on the Packt website.

Doctrine has an extension called Data Fixtures that ease fixtures creation. We will
install it and use it to create some fake blog posts.

Type this command in the root of the project to install Doctrine Data Fixtures
through Composer:

 php composer.phar require doctrine/data-fixtures:1.0.*

The first step to using Doctrine Data Fixtures is to create a fixture class. Create a file
called LoadPostData.php in the src/Blog/DataFixtures directory as shown in the
following code:

 <?php

 namespace Blog\DataFixtures;

 use Blog\Entity\Post;
 use Doctrine\Common\DataFixtures\FixtureInterface;
 use Doctrine\Common\Persistence\ObjectManager;

 /**
 * Post fixtures
 */
 class LoadPostData implements FixtureInterface
 {
 /**
 * Number of posts to add
 */
 const NUMBER_OF_POSTS = 10;

 /**
 * {@inheritDoc}
 */
 public function load(ObjectManager $manager)
 {

Chapter 2

[29]

 for ($i = 1; $i <= self::NUMBER_OF_POSTS; $i++) {
 $post = new Post();
 $post
 setTitle(sprintf('Blog post number %d', $i))
 setBody(<<<EOT
 Lorem ipsum dolor sit amet, consectetur
 adipiscing elit.EOT
)
 setPublicationDate(new \DateTime(sprintf('-%d
 days', self::NUMBER_OF_POSTS - $i)))
 ;

 $manager->persist($post);
 }

 $manager->flush();
 }
}

This LoadPostData class contains the logic to create fake data. It creates ten blog
posts with a generated title, a date of publication, and a text body.

The LoadPostData class implements the load()method defined in the \Doctrine\
Common\DataFixtures\FixtureInterface directory. This method takes in
parameters for an EntityManager instance:

• Some reminders of Chapter 1, Getting Started with Doctrine 2: Calls to
EntityManager::persist() sets the state of each new entity to managed

• The call to the flush() method, at the end of the process, will make Doctrine
execute INSERT queries to effectively save data in the database

We still need to create a loader for our fixtures class. Create a file called
load-fixtures.php in the bin/ directory of your project with the following code:

 <?php

 require_once __DIR__.'/../src/bootstrap.php';

 use Doctrine\Common\DataFixtures\Loader;
 use Doctrine\Common\DataFixtures\Purger\ORMPurger;
 use Doctrine\Common\DataFixtures\Executor\ORMExecutor;

 $loader = new Loader();

Entities and Mapping Information

[30]

 $loader->loadFromDirectory(__DIR__.'/../src/Blog/DataFixtures');

 $purger = new ORMPurger();
 $executor = new ORMExecutor($entityManager, $purger);
 $executor->execute($loader->getFixtures());

In this utility, we initialize our app and get an Entity Manager as explained in
Chapter 1, Getting Started with Doctrine 2. Then, we instantiate the fixtures loader
provided by Doctrine Data Fixtures and tell it where to find our fixtures files.

We only have the LoadPostData class for now but we will create additional fixtures
in the next chapters.

The ORMExecutor method is instanced and executed. It uses ORMPurger to erase
existing data from the database. Then it populates the database with our fixtures.

Run the following command in the root directory of our project to load our fixtures:

 php bin/load-fixtures.php

Our fixtures have been inserted in the database. Note that every time you run this
command, all data in the database is permanently deleted.

Check that our database has been populated with the following command:

 sqlite3 data/blog.db "SELECT * FROM Post;"

You should see ten rows similar to the following:

1|Blog post number 1|Lorem ipsum dolor sit amet, consectetur adipiscing
elit.|2013-11-08 20:01:13

2|Blog post number 2|Lorem ipsum dolor sit amet, consectetur adipiscing
elit.|2013-11-09 20:01:13

Creating a simple UI
We will create a simple UI to deal with our posts. This interface will let us create,
retrieve, update, and delete a blog post. You may have already guessed that we will
use the Entity Manager to do that.

Chapter 2

[31]

For concision and to focus on the Doctrine part, this UI will have many drawbacks.
It should not be used in any kind of production or public server. The primary concerns are
as follows:

• Not secure at all: Everyone can access everything, as there is no
authentication system, no data validation, and no CSRF protection

• Badly designed: There is no separation of concerns, no use of an MVC-like
pattern, no REST architecture, no object-oriented code, and so on.

And of course this will be… graphically minimalistic!

• Cross Site Request Forgery (CSRF): http://en.wikipedia.org/wiki/
Cross-site_request_forgery

• Separation of concerns: http://en.wikipedia.org/wiki/Separation_of_
concerns

• Model-View-Controller (MVC) meta-pattern: http://en.wikipedia.org/
wiki/Model-view-controller

• Representational state transfer (REST): http://en.wikipedia.org/wiki/
Representational_state_transfer

For real-world apps, you should take a look at Symfony, a powerful framework that
includes Doctrine and a ton of features (the validation component already presented,
a form framework, a template engine, an internationalization system, and so on):
http://symfony.com/

Listing posts
That being said, create the page that lists posts in the web/index.php file with the
following code:

 <?php

 /**
 * Lists all blog posts
 */

 require_once __DIR__.'/../src/bootstrap.php';

 /** @var $posts \Blog\Entity\Post[] Retrieve the list of all
 blog posts */
 $posts = $entityManager->getRepository('Blog\Entity\Post')-
 >findAll();

Entities and Mapping Information

[32]

 ?>

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8">
 <title>My blog</title>
 </head>
 <body>
 <h1>My blog</h1>

 <?php foreach ($posts as $post): ?>
 <article>
 <h1>
 <?=htmlspecialchars($post->getTitle())?>
 </h1>
 Date of publication: <?=$post->getPublicationDate()-
 >format('Y-m-d H:i:s')?>

 <p>
 <?=nl2br(htmlspecialchars($post->getBody()))?>
 </p>

 <a href="edit-post.php?id=<?=$post-
 >getId()?>">Edit this post

 <a href="delete-post.php?id=<?=$post-
 >getId()?>">Delete this post

 </article>
 <?php endforeach ?>
 <?php if (empty($posts)): ?>
 <p>
 No post, for now!
 </p>
 <?php endif ?>

 Create a new post

 </html>

Chapter 2

[33]

This first file is the main page of the blog. It lists all posts and display links to pages
for creating, updating, or deleting posts.

After the app initialization, we get an EntityManager using the code we have
written to configure Command-Line Tools in the first chapter.

We use this EntityManager to retrieve the repository of our \Blog\Entity\Post
entities. For now, we use the default entity repository provided by Doctrine. We will
learn more about them in Chapter 4, Building Queries. This default repository provides a
findAll() method that retrieves a collection of all entities hydrated from the database.

A Collection interface is similar to a regular PHP array (with
some enhancements). This class is part of Doctrine Common:
http://www.doctrine-project.org/api/common/2.4/
class-Doctrine.Common.Collections.Collection.html

When calling it, Doctrine will query the database to find all rows of the Post table
and populate a collection of \Blog\Entity\Post objects with the retrieved data.
This collection is assigned to the $posts variable.

To browse this page, run the following command in the root directory of your project:

 php -S localhost:8000 -t web/

This runs the built-in PHP webserver. Go to http://localhost:8000 in your
favorite web browser, and you'll see our ten fake posts.

If it does not work, be sure that your PHP version is at least 5.4.

Creating and editing posts
It's time to create a page to add new blog posts. This same page will also allow
editing an existing post. Put it in the web/edit-post.php file as shown in the
following code:

 <?php

 /**
 * Creates or edits a blog post

Entities and Mapping Information

[34]

 */

 use Blog\Entity\Post;

 require_once __DIR__.'/../src/bootstrap.php';

 // Retrieve the blog post if an id parameter exists
 if (isset ($_GET['id'])) {
 /** @var Post $post The post to edit */
 $post = $entityManager->find('Blog\Entity\Post',
 $_GET['id']);

 if (!$post) {
 throw new \Exception('Post not found');
 }
}

 // Create or update the blog post
 if ('POST' === $_SERVER['REQUEST_METHOD']) {
 // Create a new post if a post has not been retrieved and set
 its date of publication
 if (!isset ($post)) {
 $post = new Post();
 // Manage the entity
 $entityManager->persist($post);

 $post->setPublicationDate(new \DateTime());
 }

 $post
 ->setTitle($_POST['title'])
 ->setBody($_POST['body'])
 ;

 // Flush changes to the database
 $entityManager->flush();

 // Redirect to the index
 header('Location: index.php');
 exit;
}

 /** @var string Page title */

Chapter 2

[35]

 $pageTitle = isset ($post) ? sprintf('Edit post #%d', $post-
 >getId()) : 'Create a new post';
 ?>

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8">
 <title><?=$pageTitle?> - My blog</title>
 </head>
 <body>
 <h1>
 <?=$pageTitle?>
 </h1>

 <form method="POST">
 <label>
 Title
 <input type="text" name="title" value="<?=isset
 ($post) ? htmlspecialchars($post->getTitle()) : ''?>"
 maxlength="255" required>
 </label>

 <label>
 Body
 <textarea name="body" cols="20" rows="10"
 required><?=isset ($post) ? htmlspecialchars($post-
 >getBody()) : ''?></textarea>
 </label>

 <input type="submit">
 </form>

 Back to the index

This page is a bit trickier:

• When called with an id parameter in the URL, it works on the Post entity
with the given ID

A best practice would be to use slugs instead of identifiers.
They hide an application's internals, can be memorized by
humans, and are better for Search Engine Optimization:
http://en.wikipedia.org/wiki/Slug_(publishing).

Entities and Mapping Information

[36]

• With no id parameter, it instantiates a new Post entity
• When called with the GET HTTP method, it displays a form populated with

the current data of the Post in the case of an edit
• When called with the Post HTTP method (when the form is submitted), it

creates or updates a Post entity, then redirects to the homepage of the blog

If an ID is provided through the URL, the find() method of the Entity Manager is
used to retrieve the entity stored in the database with this ID. Doctrine queries the
database and hydrates the entity for us.

If no Post with this ID is found, the NULL value is assigned to the $post variable
instead of an instance of \Blog\Entity\Post. To avoid further errors, we throw
an exception if this is the case. To find out more about PHP exceptions, refer to the
website http://php.net/manual/en/language.exceptions.php.

Then, we call the persist() method of the Entity Manager with our new entity as
a parameter. As explained in Chapter 1, Getting Started with Doctrine 2, this call to the
persist() method sets the state of the entity to managed. It is necessary only for new
entities because entities retrieved through Doctrine already have the managed state.

Next, we set the publication date of our newly created object. Thanks to the
Doctrine mapping system, we just need to pass a \DateTime instance to the
setPublicationDate() method and the ORM will convert it to the format
needed by the DBMS for us (refer to the type correspondence table).

We also set the $title and $body properties using the fluent interface of getters and
setters generated previously.

If you don't know about fluent interface, read the following article:
http://martinfowler.com/bliki/FluentInterface.html

When the call to the flush() method occurs, the Entity Manager tells Doctrine to
synchronize all managed entities to the database. In this case, only our Post entity
is managed. If it's a new entity, an INSERT SQL statement will be generated. If it's an
existing entity, an UPDATE statement will be sent to the DBMS.

By default, Doctrine automatically wraps all operations done when the
EntityManager::flush() method is called in a transaction. If an error
occurs, the database state is restored as it was before the flush call (rollback).

Chapter 2

[37]

This is usually the best option, but if you have specific needs, this auto-commit mode
can be deactivated. This can be referred to at http://docs.doctrine-project.
org/en/latest/reference/transactions-and-concurrency.html.

Deleting posts
Let's create a page to delete posts in the web/delete-post.php file:

 <?php

 /**
 * Deletes a blog post
 */

 require_once __DIR__.'/../src/bootstrap.php';

 /** @var Post The post to delete */
 $post = $entityManager->find('Blog\Entity\Post', $_GET['id']);
 if (!$post) {
 throw new \Exception('Post not found');
 }

 // Delete the entity and flush
 $entityManager->remove($post);
 $entityManager->flush();

 // Redirects to the index
 header('Location: index.php');
 exit;

We retrieve the post we want to delete using the ID parameter in the URL. We tell
Doctrine to schedule it for removal with the call to the EntityManager::remove()
method. After this call, the state of the entity is removed. When the flush() method
is called, Doctrine executes a DELETE SQL query to remove data from the database.

Note that after the call to the flush() method and the deletion
from the database, the entity still exists in memory.

Entities and Mapping Information

[38]

Summary
We now have a minimal but working blog app! Thanks to Doctrine, persisting,
retrieving, and removing data to a database has never been so easy.

We have learned how to use annotations to map entity classes to database tables
and rows, we generated a database schema without typing a line of SQL, we created
fixtures and we used the Entity Manager to synchronize data with the database.

In the next chapter, we will learn how to map and manage One-To-One,
One-To-Many/Many-To-One, and Many-To-Many associations between entities.

Associations
In the previous chapter, we learned how to use Doctrine annotations to add
mapping information to an entity class. We used code and database schema
generators provided by Doctrine command-line tools, and we created a minimalist
blog software that uses an EntityManager class to create, update, delete, and display
blog posts.

In the third chapter, we will learn how to handle associations between entities
through the following topics:

• Getting started with the Doctrine associations
• Understanding the @ManyToOne and @OneToMany annotations with the

comment system
• Understanding the @ManyToMany annotation with tags

Getting started with the Doctrine
associations
We will specify Doctrine associations, such as other mapping information, using
annotations (other methods such as XML and YAML configuration files are also
supported. See Chapter 2, Entities and Mapping Information). Doctrine supports the
following association types:

• One-To-One: One entity is linked to one entity
• Many-To-One: Several entities are linked to one entity (only available for

bidirectional associations and always the inverse side of a One-To-Many
association)

• One-To-Many: One entity is linked to several entities
• Many-To-Many: Several entities are linked to several entities

Associations

[40]

An association can be unidirectional or bidirectional. Unidirectional associations
only have an owning side while bidirectional associations have both an owning
side and an inverse side. In other words they can be explained as follows:

• A unidirectional association can be used in only one way: related entities
are retrievable from the main entities. For example, a user has associated
addresses. Addresses can be retrieved from the user, but the user cannot
be retrieved from an address.

• A bidirectional association can be used in two ways: related entities are
retrievable from main entities, and main entities are retrievable from related
entities. For example, a user has associated orders. Orders can be retrieved
from the user, and the user can be retrieved from an order.

Doctrine only manages the owning side of an association. This means that you
always need to set the owning side; otherwise, if you only set the inverse side
of an association, it will not be persisted with by the EntityManager class.

There is an easy way to identify the side of a bidirectional association. The owning
side must have an inversedBy attribute, and the inverse side must have a mappedBy
attribute. These attributes refer to the related entity class.

By default, One-To-One and Many-To-One associations are persisted with at the
SQL level using a column storing the related ID and a foreign key. Many-To-Many
associations always use an association table.

The names of columns and tables (if applicable) are generated automatically by
Doctrine. Names can be changed using the @JoinColumn annotation, and the
use of an association table can be forced with the @JoinTable annotation.

Understanding the @ManyToOne and
@OneToMany annotations with the
comment system
Let's start with the comments. Visitors to our blog should be able to react to our
posts. We have to create a new Comment Doctrine entity type storing the reader's
comments. Comment entities will be linked to one Post entity. One post can have
many comments, and one comment is associated with a sole post.

The following E-R diagram represents the MySQL schema that will be generated
using mapping information:

Chapter 3

[41]

Creating the Comment entity class
(owning side)
The Comment entity has the following four properties:

• id: This is a unique identifier of the comment
• body: This represents the comment's text
• publicationDate: This is the date of publication of the comment
• post_id: This represents the post related to the comment

Here is the first code snippet of the Comment entity, containing annotated properties.
It must be placed in the Comment.php file at the src/Blog/Entity/ location.

<?php

namespace Blog\Entity;

use Doctrine\ORM\Mapping\Entity;
use Doctrine\ORM\Mapping\Id;
use Doctrine\ORM\Mapping\GeneratedValue;
use Doctrine\ORM\Mapping\Column;
use Doctrine\ORM\Mapping\ManyToOne;

/**
 * Comment entity
 *
 * @Entity
 */
class Comment

Associations

[42]

{
 /**
 * @var int
 *
 * @Id
 * @GeneratedValue
 * @Column(type="integer")
 */
 protected $id;
 /**
 * @var string
 *
 * @Column(type="text")
 */
 protected $body;
 /**
 * @var \DateTime
 *
 * @Column(type="datetime")
 */
 protected $publicationDate;
 /**
 * @var Post
 *
 * @ManyToOne(targetEntity="Post", inversedBy="comments")
 */
 protected $post;
}

This entity class is similar to the Post entity class created in Chapter 2, Entities and
Mapping Information. We use the @ManyToOne annotation to create a Many-To-One
association between the Comment and Post entities. The related entity class is specified
using the targetEntity attribute. This attribute is mandatory for every association.

To be able to retrieve comments directly from the Post entity, this association must
be bidirectional. The inversedBy attribute marks this association as bidirectional
and indicates the property of the Post entity class that owns the inverse side of this
association. Here, this is the $comments property of Post.

As for every entity class with private or protected properties, the
Comment class must expose getters and setters to access them.
We will generate getters and setters for every entity class of our app
later in this chapter.

Chapter 3

[43]

Adding the inverse side to the Post entity class
Now, we need to modify the Post entity class to add the inverse side of this
association. The following steps need to be performed:

1. Open the Post.php file at the src/Blog/Entity/ location, and add the use
statements from the previous code snippet:
 use Doctrine\ORM\Mapping\OneToMany;
 use Doctrine\Common\Collections\ArrayCollection;

2. Add the $comments property as shown in the following code snippet:
 /**
 * @var Comment[]
 *
 * @OneToMany(targetEntity="Comment", mappedBy="post")
 */
 protected $comments;

3. Add its initialization code in the constructor as shown in the next
code snippet:
 /**
 * Initializes collections
 */
 public function __construct()
 {
 $this->comments = new ArrayCollection();
 }

4. Use the entity generator provided by Doctrine command-line tools to create
getters and setters of the properties we have just added to the Comment and
Post classes:
php vendor/bin/doctrine.php orm:generate:entities src/

5. In the generated addComment() method, add the highlighted line of the
following code snippet to automatically set the owning side of the association:
 public function addComment(\Blog\Entity\Comment
 $comments)
 {
 $this->comments[] = $comments;
 $comments->setPost($this);

 return $this;
 }

Associations

[44]

The $comments property holds the collection of comments associated with the Post
entity. We use the @OneToMany annotation to mark this property as the inverse side
of the association, defined earlier in the $post property of Comment. We have already
explained the targetEntity attribute. The mappedBy attribute is an equivalent of the
inversedBy attribute for the inverse side of an association. It indicates the property
of the related entity class owning the other side of the association.

To allow Doctrine to manage the collection of elements properly, a special class
provided by the Doctrine Common component must be used. The $comments
property of the Post entity is initialized in the constructor as an instance of
Doctrine\Common\Collections\ArrayCollection. ArrayCollection implements
the Doctrine\Common\Collections\Collection interface. This will enable
Doctrine to populate and manage the collection.

Doctrine Collection class implements the Countable, IteratorAggregate, and
ArrayAccess interfaces (these interfaces are predefined in PHP or in the SPL). With
that, Doctrine collections can be used like the standard PHP arrays and iterated
transparently in the foreach loops.

More information about predefined interfaces and interfaces
provided by the Standard PHP Library (SPL) can be found in the
following PHP manual:
http://php.net/manual/en/reserved.interfaces.php
and http://php.net/manual/en/spl.interfaces.php

The addComment() and removeComment() methods generated by Doctrine
command-line tools demonstrate the ways to use the methods of a Doctrine
Collection class to add and remove items.

The full list of available methods is documented on the Doctrine
website as follows:
http://docs.doctrine-project.org/en/latest/
reference/working-with-associations.html

Another important thing, as already explained, is that Doctrine only manages
the owning side of an association. This is why we call the setPost() method of
the Comment entity in the addComment() method. This allows persisting with an
association from the inverse side.

Chapter 3

[45]

This works only if the change-tracking policy of the entity is Deferred
Implicit (This is the case by default). The deferred implicit policy is the
most convenient one to use but can have negative effects on performance.
Again, refer to the Doctrine documentation at the following website to
learn more about the different change-tracking policies that can be used:
http://docs.doctrine-project.org/en/latest/reference/
change-tracking-policies.html

In a moment, we will update our UI to add the comment feature. First the database
schema must be updated.

Updating the database schema
As with other annotations, Doctrine is able to automatically create the columns and
foreign keys needed to store associations at the SQL layer. Run the orm:schema-
tool:update command again bundled with the command-line tools as follows:

php vendor/bin/doctrine.php orm:schema-tool:update --force

Doctrine will automatically detect changes done to the mapping and will update
the SQL schema accordingly. The --force flag can be added to effectively
execute queries.

The orm:schema-tool:update command must not be used in
production. It can permanently delete data (when columns are dropped
for instance). Instead, the Doctrine Migrations library should be used
to properly handle complicated migrations. Even if this library is not
considered stable yet, it is very convenient. We can find this library at
the following website:
http://docs.doctrine-project.org/projects/doctrine-
migrations/en/latest/reference/introduction.html

Associations

[46]

Adding fixtures for the comments
As for posts, we will create some fixtures for the comments. Create a new file,
LoadCommentData.php in the src/Blog/DataFixtures/ location. The next code
snippet is used for this purpose:

<?php

namespace Blog\DataFixtures;

use Blog\Entity\Comment;
use Doctrine\Common\DataFixtures\DependentFixtureInterface;
use Doctrine\Common\DataFixtures\Doctrine;
use Doctrine\Common\DataFixtures\FixtureInterface;
use Doctrine\Common\Persistence\ObjectManager;

/**
 * Comment fixtures
 */
class LoadCommentData implements FixtureInterface,
DependentFixtureInterface
{
 /**
 * Number of comments to add by post
 */
 const NUMBER_OF_COMMENTS_BY_POST = 5;

 /**
 * {@inheritDoc}
 */
 public function load(ObjectManager $manager)
 {
 $posts = $manager->getRepository('Blog\Entity\Post')-
 >findAll();

 foreach ($posts as $post) {
 for ($i = 1; $i <= self::NUMBER_OF_COMMENTS_BY_POST;
 $i++) {
 $comment = new Comment();
 $comment
 ->setBody(<<<EOT
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
EOT
)
 ->setPublicationDate(new \DateTime(sprintf('-%d

Chapter 3

[47]

days', self::NUMBER_OF_COMMENTS_BY_POST - $i)))
 ->setPost($post)
 ;

 $manager->persist($comment);
 }
 }

 $manager->flush();
 }

 /**
 * {@inheritDoc}
 */
 public function getDependencies()
 {
 return ['Blog\DataFixtures\LoadPostData'];
 }
}

We use the EntityManager class to retrieve the Post entity repository, and then
we use this repository to retrieve all the posts. We add five comments to each
post. This data fixture class implements the Doctrine\Common\DataFixtures\
DependentFixtureInterface interface (the getDependencies() method). It
tells the data loader to load LoadPostData first because this data fixture class is
dependent on it.

Listing and creating comments
It's time to update the UI. Create a file, view-post.php in the web/ location.
This page displays a single post with all its comments and a form to add a
new comment, and handles the comment creation.

The code to retrieve the post and handle the comment creation is as follows:

<?php

/**
 * View a blog post
 */

use Blog\Entity\Comment;

require_once __DIR__ . '/../src/bootstrap.php';

Associations

[48]

/** @var \Blog\Entity\Post $post The post to edit */
$post = $entityManager->find('Blog\Entity\Post', $_GET['id']);

if (!$post) {
 throw new \Exception('Post not found');
}

// Add a comment
if ('POST' === $_SERVER['REQUEST_METHOD']) {
 $comment = new Comment();
 $comment
 ->setBody($_POST['body'])
 ->setPublicationDate(new \DateTime())
 ->setPost($post)
 ;

 $entityManager->persist($comment);
 $entityManager->flush();

 header(sprintf('Location: view-post.php?id=%d', $post-
 >getId()));
 exit;
}
?>

As you can see, managing simple associations with Doctrine is easy. Setting a
relation is as simple as calling a setter with the entity to the link in the parameter.
Related entities are accessible using getters. The code to display details of the post,
associated comments, and a form to publish a new comment (put it at the bottom of
the same file) is as follows:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title><?=htmlspecialchars($post->getTitle())?> - My blog</title>
</head>
<body>

<article>
 <h1>
 <?=htmlspecialchars($post->getTitle())?>

Chapter 3

[49]

 </h1>
 Date of publication: <?=$post->getPublicationDate()-
 >format('Y-m-d H:i:s')?>
 <p>
 <?=nl2br(htmlspecialchars($post->getBody()))?>
 </p>
 <?php if (count($post->getComments())): ?>
 <h2>Comments</h2>

 <?php foreach ($post->getComments() as $comment): ?>
 <article>
 <?=$comment->getPublicationDate()->format('Y-m-d
 H:i:s')?>

 <p><?=htmlspecialchars($comment->getBody())?></p>

 <a href="delete-comment.php?id=<?=$comment-
 >getId()?>">Delete this comment
 </article>
 <?php endforeach ?>
 <?php endif ?>

 <form method="POST">
 <h2>Post a comment</h2>

 <label>
 Comment
 <textarea name="body"></textarea>
 </label>

 <input type="submit">
 </form>
</article>

Back to the index

By default, Doctrine lazyloads the associated entities. It means that, in our example,
Doctrine sends a first query to the DBMS to retrieve the post and then another to
retrieve associated comments when getComments() is called. The benefit is that the
query to retrieve the associated comments is never executed if the getComments()
method is not called. But when the associated comments are always fetched, this is
a useless overhead.

Associations

[50]

To make the lazyloading feature work, Doctrine internally wraps the
entities into proxy classes. Proxy classes are responsible for getting the
data of associated entities not already loaded from the database, when
requested. Some details about that can be found at:
http://docs.doctrine-project.org/en/latest/reference/
working-with-objects.html#entity-object-graph-
traversal

We can change this behavior by setting a fetch attribute on the association
annotation. This attribute can take the following values:

• EAGER: The related entities are generally fetched in the first query using a
SQL join.

• LAZY: The related entities are fetched only if requested with another SQL
query. This is the default value.

• EXTRA_LAZY: This allows performing some operations such as counting on
collections that are not already fetched without loading the entire collection
in the memory. To learn more about this topic, consult the following tutorial:
http://docs.doctrine-project.org/en/latest/tutorials/extra-
lazy-associations.html

Another way to eagerload the related entities is to use the Doctrine Query Builder
to customize the generated request. We will demonstrate the power of the Query
Builder in Chapter 4, Building Queries.

By deleting comments in the view-post.php page, we have created a link allowing
the deletion of comments. The code to put in the delete-comment.php file in the
web/ location to make this feature work is as follows:

<?php

/**
 * Deletes a comment
 */

require_once __DIR__ . '/../src/bootstrap.php';

Chapter 3

[51]

/** @var Comment $comment The comment to delete */
$comment = $entityManager->find('Blog\Entity\Comment', $_GET['id']);

if (!$comment) {
 throw new \Exception('Comment not found');
}

// Delete the entity and flush
$entityManager->remove($comment);
$entityManager->flush();

// Redirect to the blog post
header(sprintf('Location: view-post.php?id=%d', $comment-
>getPost()->getId()));
exit;

This file is very similar to the delete-post.php file in the web/ location created
in Chapter 1, Getting Started with Doctrine 2. It retrieves the repository through the
EntityManager class, uses it to retrieve the comment to delete, calls remove(), and
persists with the change to DBMS with flush().

Updating the index
Update the index.php file in the web/ location to create a link to the new, detailed
post view as shown in the following code:

 <h1>
 <?=htmlspecialchars($post->getTitle())?>
 </h1>

To make our comment feature ready, replace the preceding code with the
following code:

 <h1>
 <a href="view-post.php?id=<?=$post->getId()?>">
 <?=htmlspecialchars($post->getTitle())?>

 </h1>

Associations

[52]

Understanding the @ManyToMany
annotation with tags
Tags group posts by topics. A tag contains several posts, and a post has several tags.
This is a Many-To-Many bidirectional association. Doctrine manages transparently
the association table needed to store Many-To-Many relations at the SQL level. The
MySQL schema that will be generated is shown in the following screenshot:

Creating the Tag entity class (inverse side)
The Tag entity class has only two properties:

• name: This is the name of the tag, it is unique, and is the identifier of the entity
• posts: This is the collection of posts associated with this tag

The following are the steps to create the Tag entity class:

1. Create a Tag.php file in the src/Blog/Entity/ location that contains the
entity class using the following code snippet:
<?php

namespace Blog\Entity;

use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\ORM\Mapping\Entity;
use Doctrine\ORM\Mapping\Column;
use Doctrine\ORM\Mapping\Id;
use Doctrine\ORM\Mapping\ManyToMany;

/**
 * Tag entity
 *
 * @Entity

Chapter 3

[53]

 */
class Tag
{
 /**
 * @var string
 *
 * @Id
 * @Column(type="string")
 */
 protected $name;
 /**
 * @var Post[]
 *
 * @ManyToMany(targetEntity="Post", mappedBy="tags")
 */
 protected $posts;

 /**
 * Initializes collection
 */
 public function __construct()
 {
 $this->posts = new ArrayCollection();
 }

 /**
 * String representation
 *
 * @return string
 */
 public function __toString()
 {
 return $this->getName();
 }
}

2. Generate getters and setters using the following command:
php vendor/bin/doctrine.php orm:generate:entities src/

3. Add the following line of code to set the owning side of the association after
$this->posts[] = $posts; in the addPost() method:
$posts->addTag($this);

Associations

[54]

The property $name is the identifier of the Tag entity. Unlike the Post and Comment
entities, its value is not automatically generated by DBMS; it's the name of the tag.
That's why the @GeneratedValue annotation is not used here. The name of the tag
must be unique and must be set by the application.

The @ManyToMany annotation is used to mark the association. The meanings of
the targetEntity and mappedBy attributes are the same as for the @OneToMany
annotation. The @ManyToMany annotation accepts a mappedBy attribute for the inverse
side and inversedBy for the owning side. The owning side of this association is on
the Post entity. As for any Doctrine collection, the $posts property is initialized in
the constructor. We also create a __toString() method returning the name of the
tag to be able to cast instances of Tag to the string.

The __toString() magic method allows us to convert an object to
a string. For more details we can refer to the following link:
http://www.php.net/manual/en/language.oop5.magic.
php#object.tostring

Updating the Post entity class (owning side)
Modify the Post.php file in the src/Blog/Entity/ location to add the owning side
of the association using the following steps:

1. Add the following use statements:
use Doctrine\ORM\Mapping\ManyToMany;
use Doctrine\ORM\Mapping\JoinTable;
use Doctrine\ORM\Mapping\JoinColumn;

2. Add the mapped property using the following code snippet:
 /**
 * @var Tag[]
 *
 * @ManyToMany(targetEntity="Tag", inversedBy="posts",
 fetch="EAGER", cascade={"persist"}, orphanRemoval=true)
 * @JoinTable(
 * inverseJoinColumns={@JoinColumn(name="tag_name",
 referencedColumnName="name")}
 *)
 */
 protected $tags;

Chapter 3

[55]

3. Initialize the property in the constructor as shown in the following code snippet:
 public function __construct()
 {
 // …
 $this->tags = new ArrayCollection();
 }

4. To generate getters and setters, you can use the following command:
php vendor/bin/doctrine.php orm:generate:entities src/

Two new attributes of the @ManyToMany annotation are introduced here, that is,
cascade and orphanRemoval.

By default, the associated entities are not automatically set to the managed state
when the main entity is set. This must be done manually with a call to the persist()
method of the EntityManager class for each associated entity. If the cascade
attribute is used with persist as value, the related entities will be automatically
persisted with when the main entity is persisted with.

Here, the related tags will be persisted with when the Post entity is persisted with.
The cascade attribute can take other values, the most useful of which is remove.
When remove is used, the related entities will be deleted when the main entity
is deleted.

The CASCADE operations are handled in memory by Object Relational Mapper
(ORM). They are not equivalent to the SQL DELETE CASCADE operations and can use
a lot of memory. They should be used with parsimony to preserve the performance
of the application.

The SQL DELETE CASCADE operations can be added through the onDelete attribute
of the @JoinColumn annotation.

With the orphanRemoval attribute set to true, Doctrine will automatically delete the
entities not linked with the main entity anymore. If the Tag entity is removed from
the $tags collection of a Post entity, and this Post entity was the only one linked to
the Tag entity, the Tag entity will be permanently deleted.

The fetch attribute has already been explained earlier in the chapter. With the EAGER
value, it tells Doctrine to automatically retrieve the related tags with a JOIN query
when the posts are retrieved. This is useful in the context of our app because the tags
of the Post entity are displayed every time the post is displayed.

Because the identifier of Tag is not marked with the @GeneratedValue annotation,
Doctrine will not be able to guess it. The @JoinTable and @JoinColumn annotations
are here to override the default behavior.

Associations

[56]

We set a custom JOIN column with @JoinColumn for the tag-related side of the
association (inverse side) through the inverseJoinColumns attribute of @JoinTable.
The referencedColumnName attribute of @JoinColumn tells Doctrine to look for
the $name property (instead of $id by default) for the identifier of Tag. The name
attribute sets the name of the column holding the identifier of Tag in the SQL level
association table to tag_name (instead of tag_id by default).

Updating the schema again
It's time to update the SQL schema again to match our changes. We use the following
command on the command line:

php vendor/bin/doctrine.php orm:schema-tool:update --force

Creating tag fixtures
Create a LoadTagData.php file at src/Blog/DataFixtures/, which contains tag
fixtures using the following code snippet:

<?php

namespace Blog\DataFixtures;

use Blog\Entity\Tag;
use Doctrine\Common\DataFixtures\DependentFixtureInterface;
use Doctrine\Common\DataFixtures\Doctrine;
use Doctrine\Common\DataFixtures\FixtureInterface;
use Doctrine\Common\Persistence\ObjectManager;

/**
 * Tag fixtures
 */
class LoadTagData implements FixtureInterface,
DependentFixtureInterface
{
 /**
 * Number of comments to add by post
 */
 const NUMBER_OF_TAGS = 5;

Chapter 3

[57]

 /**
 * {@inheritDoc}
 */
 public function load(ObjectManager $manager)
 {
 $tags = [];
 for ($i = 1; $i <= self::NUMBER_OF_TAGS; $i++) {
 $tag = new Tag();
 $tag->setName(sprintf("tag%d", $i));

 $tags[] = $tag;
 }

 $posts = $manager->getRepository('Blog\Entity\Post')-
 >findAll();

 $tagsToAdd = 1;
 foreach ($posts as $post) {
 for ($j = 0; $j < $tagsToAdd; $j++) {
 $post->addTag($tags[$j]);
 }

 $tagsToAdd = $tagsToAdd % 5 + 1;
 }

 $manager->flush();
 }

 /**
 * {@inheritDoc}
 */
 public function getDependencies()
 {
 return ['Blog\DataFixtures\LoadPostData'];
 }
}

Thanks to the persist attribute, we can add tags to posts without manually
persisting with them.

After the fixtures, we have to update the UI.

Associations

[58]

Managing the tags of a post
Edit the edit-post.php file at the web/ location, and add the code to manage the
tags with the following steps:

1. Add the following use statement at the top of the file:
use Blog\Entity\Tag;

2. Find the following code snippet:
 $post
 ->setTitle($_POST['title'])
 ->setBody($_POST['body'])
 ;

3. Add this code after to extract and manage the submitted tags:
 $newTags = [];
 foreach (explode(',', $_POST['tags']) as $tagName) {
 $trimmedTagName = trim($tagName);
 $tag = $entityManager->find('Blog\Entity\Tag',
 $trimmedTagName);
 if (!$tag) {
 $tag = new Tag();
 $tag->setName($trimmedTagName);
 }

 $newTags[] = $tag;
 }

 // Removes unused tags
 foreach (array_diff($post->getTags()->toArray(),
 $newTags) as $tag) {
 $post->removeTag($tag);
 }

 // Adds new tags
 foreach (array_diff($newTags, $post->getTags()-
 >toArray()) as $tag) {
 $post->addTag($tag);
 }

4. Find the following code snippet:
 <label>
 Body
 <textarea name="body" cols="20" rows="10"
 required><?=isset ($post) ? htmlspecialchars($post-

Chapter 3

[59]

 >getBody()) : ''?></textarea>
 </label>

5. Add the following form widget after to display and update the tags:
 <label>
 Tags
 <input type="text" name="tags" value="<?=isset
 ($post) ? htmlspecialchars(implode(', ', $post-
 >getTags()->toArray())) : ''?>" required>
 </label>

Each tag name is extracted from the submitted string. The corresponding Tag entity
is retrieved from the repository or created if not found.

Thanks to its toArray() method, the tag collection of the Post object is converted to
a standard PHP array.

The standard array_diff() function is used to identify removed and added
Tag objects. The arguments of array_diff() must be arrays of objects that can
be converted to a string. It is okay here because our Tag class implements the
__toString() magic method.

Deleted tags are removed through the Post::removeTag() function, and new tags
are added through Post::addTag().

Thanks to the CASCADE attribute defined in the Post entity class, we don't need to
persist individually with each new tag.

In the template, the tag list is transformed to a string following the pattern
"tagname1, tagname2, tagname3".

Summary
In this chapter, we have learned how to manage all types of associations
supported by the Doctrine ORM. We learned about unidirectional and bidirectional
associations and the concept of owning side and inverse side. We also used what we
have learned in previous chapters, especially the EntityManager class, the fixture
loader, and generators.

In the next chapter, we will learn how to create complex queries with DQL and
Query Builder.

Thanks to them, we will create lists of posts grouped by their tags. We will also take
a look at the aggregate functions.

Building Queries
In the previous chapter, we added commenting and tagging support to our blog
software. Although it works fine, some of the features can be enhanced.

In this chapter, we will leverage some very important parts of Doctrine: Doctrine
Query Language (DQL), entity repositories, and the Query Builder. We will cover
the following aspects in this chapter:

• Optimizing the Comment feature
• Creating a page to filter the posts with the help of tags
• Displaying the number of comments of a post on the home page

Understanding DQL
DQL is the acronym of Doctrine Query Language. It's a domain-specific language that
is very similar to SQL, but is not SQL. Instead of querying the database tables and
rows, DQL is designed to query the object model's entities and mapped properties.

DQL is inspired by and similar to HQL, the query language of Hibernate,
a popular ORM for Java. For more details you can visit this website:
http://www.hibernate.org/.

Learn more about domain-specific languages at:
http://en.wikipedia.org/wiki/Domain-specific_language

To better understand what it means, let's run our first DQL query.

Building Queries

[62]

Doctrine command-line tools are as genuine as a Swiss Army knife. They include a
command called orm:run-dql that runs the DQL query and displays it's result. Use
it to retrieve title and all the comments of the post with 1 as an identifier:

php vendor/bin/doctrine.php orm:run-dql "SELECT p.title, c.body
FROM Blog\Entity\Post p JOIN p.comments c WHERE p.id=1"

It looks like a SQL query, but it's definitely not a SQL query. Examine the FROM and
the JOIN clauses; they contain the following aspects:

• A fully qualified entity class name is used in the FROM clause as the root
of the query

• All the Comment entities associated with the selected Post entities are joined,
thanks to the presence of the comments property of the Post entity class in
the JOIN clause

As you can see, data from the entities associated with the main entity can be requested
in an object-oriented way. Properties holding the associations (on the owning or the
inverse side) can be used in the JOIN clause.

Despite some limitations (especially in the field of subqueries), which we will
see how to get around in Chapter 5, Going Further, DQL is a powerful and flexible
language to retrieve object graphs. Internally, Doctrine parses the DQL queries,
generates and executes them through Database Abstraction Layer (DBAL)
corresponding to the SQL queries, and hydrates the data structures with results.

Until now, we only used Doctrine to retrieve the PHP objects. Doctrine
is able to hydrate other types of data structures, especially arrays and
basic types. It's also possible to write custom hydrators to populate any
data structure.
If you look closely at the return of the previous call of orm:run-dql,
you'll see that it's an array, and not an object graph, that has been
hydrated.
As with all the topics covered in this book, more information about
built-in hydration modes and custom hydrators is available in the
Doctrine documentation on the following website:
http://docs.doctrine-project.org/en/latest/reference/
dql-doctrine-query-language.html#hydration-modes

Chapter 4

[63]

Using the entity repositories
Entity repositories are classes responsible for accessing and managing entities. Just
like entities are related to the database rows, entity repositories are related to the
database tables.

We have already used default entity repositories provided by Doctrine to retrieve
the entities in the previous chapters. All the DQL queries should be written in the
entity repository related to the entity type they retrieve. It hides the ORM from other
components of the application and makes it easier to re-use, refactor, and optimize
the queries.

Doctrine entity repositories are an implementation of the Table Data
Gateway design pattern. For more details, visit the following website:
http://martinfowler.com/eaaCatalog/tableDataGateway.
html

A base repository, available for every entity, provides useful methods for managing
the entities in the following manner:

• find($id): It returns the entity with $id as an identifier or null

It is used internally by the find() method of the Entity
Managers. We used this shortcut many times in the
previous chapters.

• findAll(): It retrieves an array that contains all the entities in this repository
• findBy(['property1' => 'value', 'property2' => 1], ['property3'

=> 'DESC', 'property4' => 'ASC']): It retrieves an array that contains
entities matching all the criteria passed in the first parameter and ordered by
the second parameter

• findOneBy(['property1' => 'value', 'property2' => 1]): It is similar
to findBy() but retrieves only the first entity or null if none of the entities
match the criteria

Building Queries

[64]

Entity repositories also provide shortcut methods that allow a single
property to filter entities. They follow this pattern: findBy*() and
findOneBy*().
For instance, calling findByTitle('My title') is equivalent to
calling findBy(['title' => 'My title']).
This feature uses the magical __call() PHP method. For more details
visit the following website:
http://php.net/manual/en/language.oop5.overloading.
php#object.call

As seen in Chapter 3, Associations, these shortcut methods don't join the related
entities unless we add a fetch="EAGER" attribute to the association annotation
in the entity class. Another SQL query will be issued if (and only if) a related
entity (or a collection of entities) is requested through a method call.

In our blog app, we want to display comments in the detailed post view, but
it is not necessary to fetch them from the list of posts. Eager loading through the
fetch attribute is not a good choice for the list, and Lazy loading slows down the
detailed view.

A solution to this would be to create a custom repository with extra methods for
executing our own queries. We will write a custom method that collates comments
in the detailed view.

Creating custom entity repositories
Custom entity repositories are classes extending the base entity repository class
provided by Doctrine. They are designed to receive custom methods that run the
DQL queries.

As usual, we will use the mapping information to tell Doctrine to use a
custom repository class. This is the role of the repositoryClass attribute
of the @Entity annotation.

Kindly perform the following steps to create a custom entity repository:

1. Reopen the Post.php file at the src/Blog/Entity/ location and add a
repositoryClass attribute to the existing @Entity annotation like the
following line of code:
@Entity(repositoryClass="PostRepository")

Chapter 4

[65]

2. Doctrine command-line tools also provide an entity repository generator.
Type the following command to use it:
php vendor/bin/doctrine.php orm:generate:repositories src/

3. Open this new empty custom repository, which we just generated in the
PostRepository.phpPostRepository.php file, at the src/Blog/Entity/
location. Add the following method for retrieving the posts and comments:
 /**
 * Finds a post with its comments
 *
 * @param int $id
 * @return Post
 */
 public function findWithComments($id)
 {
 return $this
 ->createQueryBuilder('p')
 ->addSelect('c')
 ->leftJoin('p.comments', 'c')
 ->where('p.id = :id')
 ->orderBy('c.publicationDate', 'ASC')
 ->setParameter('id', $id)
 ->getQuery()
 ->getOneOrNullResult()
 ;
 }

Our custom repository extends the default entity repository provided by Doctrine.
The standard methods, described earlier in the chapter, are still available.

Getting started with Query Builder
QueryBuilder is an object designed to help build the DQL queries through a PHP
API with a fluent interface (to find out more about fluent interfaces, see Chapter 2,
Entities and Mapping Information). It allows us to retrieve the generated DQL queries
through the getDql() method (useful for debugging) or directly use the Query object
(provided by Doctrine).

Building Queries

[66]

To increase performance, QueryBuilder caches the generated DQL
queries and manages an internal state.
The full API and states of the DQL query are documented on the
following website:
http://docs.doctrine-project.org/projects/doctrine-
orm/en/latest/reference/query-builder.html

We will give an in-depth explanation of the findWithComments() method that we
created in the PostRepository class.

Firstly, a QueryBuilder instance is created with the createQueryBuilder() method
inherited from the base entity repository. The QueryBuilder instance takes a string
as a parameter. This string will be used as an alias of the main entity class. By
default, all the fields of the main entity class are selected and no other clauses except
SELECT and FROM are populated.

The leftJoin() call creates a JOIN clause that retrieves comments associated with
the posts. Its first argument is the property to join and its second is the alias; these
will be used in the query for the joined entity class (here, the letter c will be used as
an alias for the Comment class).

Unless the SQL JOIN clause is used, the DQL query automatically
fetches the entities associated with the main entity. There is no
need for keywords like ON or USING. Doctrine automatically knows
whether a join table or a foreign-key column must be used.

The addSelect() call appends comment data to the SELECT clause. The alias of the
entity class is used to retrieve all the fields (this is similar to the * operator in SQL).
As in the first DQL query of this chapter, specific fields can be retrieved with the
notation alias.propertyName.

You guessed it, the call to the where() method sets the WHERE part of the query.

Under the hood, Doctrine uses prepared SQL statements. They are more efficient
than the standard SQL queries.

The id parameter will be populated by the value set by the call to setParameter().

Thanks again to prepared statements and this setParameter() method, SQL
Injection attacks are automatically avoided.

Chapter 4

[67]

SQL Injection Attacks are a way to execute malicious SQL queries using
user inputs that have not escaped. Let's take the following example of a
bad DQL query to check if a user has a specific role:

$query = $entityManager->createQuery('SELECT ur FROM
UserRole ur WHERE ur.username = "' . $username . '" AND
ur.role = "' . $role . '"');
$hasRole = count($query->getResult());

This DQL query will be translated into SQL by Doctrine. If someone types
the following username:
" OR "a"="a

the SQL code contained in the string will be injected and the query will
always return some results. The attacker has now gained access to a
private area.

The proper way should be to use the following code:
$query = $entityManager->createQuery("SELECT ur FROM
UserRole WHERE username = :username and role = :role");
$query->setParameters([
 'username' => $username,
 'role' => $role

]);
$hasRole = count($query->getResult());

Thanks to prepared statements, special characters (like quotes) contained
in the username are not dangerous, and this snippet will work as
expected.

The orderBy() call generates an ORDER BY clause that orders results as per the
publication date of the comments, older first.

Most SQL instructions also have an object-oriented equivalent
in DQL. The most common join types can be made using
DQL; they generally have the same name.

The getQuery() call tells the Query Builder to generate the DQL query (if needed,
it will get the query from its cache if possible), to instantiate a Doctrine Query object,
and to populate it with the generated DQL query.

This generated DQL query will be as follows:

SELECT p, c FROM Blog\Entity\Post p LEFT JOIN p.comments c WHERE
p.id = :id ORDER BY c.publicationDate ASC

Building Queries

[68]

The Query object exposes another useful method for the purpose of debugging:
getSql(). As its name implies, getSql() returns the SQL query corresponding
to the DQL query, which Doctrine will run on DBMS. For our DQL query, the
underlying SQL query is as follows:

SELECT p0_.id AS id0, p0_.title AS title1, p0_.body AS body2,
p0_.publicationDate AS publicationDate3, c1_.id AS id4, c1_.body
AS body5, c1_.publicationDate AS publicationDate6, c1_.post_id AS
post_id7 FROM Post p0_ LEFT JOIN Comment c1_ ON p0_.id =
c1_.post_id WHERE p0_.id = ? ORDER BY c1_.publicationDate ASC

The getOneOrNullResult() method executes it, retrieves the first result, and returns
it as a Post entity instance (this method returns null if no result is found).

Like the QueryBuilder object, the Query object manages an internal
state to generate the underlying SQL query only when necessary.
Performance is something to be very careful about while using
Doctrine. When set in production mode (see Chapter 1, Getting Started
with Doctrine 2), ORM is able to cache the generated queries (DQL
through the QueryBuilder objects, SQL through the Query objects)
and results of the queries.
ORM must be configured to use one of the blazing, fast, supported
systems (APC, Memcache, XCache, or Redis) as shown on the
following website:
http://docs.doctrine-project.org/en/latest/
reference/caching.html

We still need to update the view layer to take care of our new findWithComments()
method.

Open the view-post.php file at the web/location, where you will find the following
code snippet:

$post = $entityManager->getRepository('Blog\Entity\Post')->find
($_GET['id']);

Replace the preceding line of code with the following code snippet:

$post = $entityManager->getRepository('Blog\Entity\Post')-
>findWithComments($_GET['id']);

Chapter 4

[69]

Filtering by tag
To discover a more advanced use of the QueryBuilder and DQL, we will create a list
of posts having one or more tags.

Tag filtering is good for Search Engine Optimization and allows the readers to easily
find the content they are interested in. We will build a system that is able to list posts
that have several tags in common; for example, all the posts tagged with Doctrine
and Symfony.

To filter our posts using tags kindly perform the following steps:

1. Add another method to our custom PostRepository class (src/Blog/
Entity/PostRepository.php) using the following code:
 /**
 * Finds posts having tags
 *
 * @param string[] $tagNames
 * @return Post[]
 */
 public function findHavingTags(array $tagNames)
 {
 return $queryBuilder = $this
 ->createQueryBuilder('p')
 ->addSelect('t')
 ->join('p.tags', 't')
 ->where('t.name IN (:tagNames)')
 ->groupBy('p.id')
 ->having('COUNT(t.name) >= :numberOfTags')
 ->setParameter('tagNames', $tagNames)
 ->setParameter('numberOfTags',
 count($tagNames))
 ->getQuery()
 ->getResult()
 ;
 }

This method is a bit more complex. It takes in a parameter as an array of tag
names and returns an array of posts that has all these tags.
The query deserves some explanation, which is as follows:

 ° The main entity class (automatically set by the inherited
createQueryBuilder() method) is Post and its alias is the letter p.

 ° We join the associated tags through a JOIN clause; the Tag class is
aliased by t.

Building Queries

[70]

 ° Thanks to where() being called, we retrieve only the posts tagged
by one of the tags passed in the parameter. We use an awesome
feature of Doctrine that allows us to directly use an array as a
query parameter.

 ° Results of where() are grouped by id with the call to groupBy().
 ° We use the aggregate function COUNT() in the HAVING clause to filter

the posts that are tagged by some tags of the $tagNames array, but
not all of them.

2. Edit the index.php file in web/ to use our new method. Here, you will find
the following code:
/** @var $posts \Blog\Entity\Post[] Retrieve the list of
all blog posts */
$posts = $entityManager->getRepository('Blog\Entity\Post')-
>findAll();

And replace the preceding code with the next code snippet:
$repository = $entityManager-
>getRepository('Blog\Entity\Post');
/** @var $posts \Blog\Entity\Post[] Retrieve the list of
all blog posts */
$posts = isset($_GET['tags']) ? $repository-
>findHavingTags($_GET['tags']) : $repository->findAll();

Now, when a GET parameter called tags exists in the URL, it is used to filter
posts. Better, if several comma-separated tags are passed in, only posts with
all these tags will be displayed.

3. Type http://localhost:8000/index.php?tags=tag4,tag5 in your
favorite browser. Thanks to the fixtures we have created in the previous
chapter, posts 5 and 10 should be listed.

4. In the same file, find the following code:
 <p>
 <?=nl2br(htmlspecialchars($post->getBody()))?>
 </p>

And add the list of tags as follows:

 <?php foreach ($post->getTags() as $tag): ?>

 <a href="index.php?tags=<?=urlencode($tag)?>"><?=h
tmlspecialchars($tag)?>

 <?php endforeach ?>

Chapter 4

[71]

A smart list of tags with links to the tag page is displayed. You can copy this code
and then paste it in the view-post.php file in the web/ location; or better, don't repeat
yourself: create a small helper function to display the tags.

Counting comments
We still need to make some cosmetic changes. Posts with a lot of comments interest
many readers. It would be better if the number of comments for each post was
available directly from the list page. Doctrine can populate an array containing the
result of the call to an aggregate function as the first row and hydrated entities as
the second.

Add the following method, for retrieving posts with the associated comments, to the
PostRepository class:

 /**
 * Finds posts with comment count
 *
 * @return array
 */
 public function findWithCommentCount()
 {
 return $this
 ->createQueryBuilder('p')
 ->leftJoin('p.comments', 'c')
 ->addSelect('COUNT(c.id)')
 ->groupBy('p.id')
 ->getQuery()
 ->getResult()
 ;
 }

Thanks to the GROUP BY clause and the call to addSelect(), this method will
return a two-dimensional array instead of an array of the Post entities. Arrays
in the returned array contain two values, which are as follows:

• Our Post entity at the first index
• The result of the COUNT() function of DQL (the number of comments) at the

second index

Building Queries

[72]

In the index.php file at the web/ location, find the following code:

 $posts = $repository->findHavingTags(explode(',',
 $_GET['tags']));
} else {
 $posts = $repository->findAll();
}

And replace the preceding code with the following code to use our new method:

 $results = $repository->findHavingTags(explode(',',
 $_GET['tags']));
} else {
 $results = $repository->findWithCommentCount();
}

To match the new structure returned by findWithCommentCount(), find the
following code:

<?php foreach ($posts as $post): ?>

And replace the preceding code with the next code snippet:

<?php
 foreach ($results as $result):
 $post = $result[0];
 $commentCount = $result[1];
?>

As seen previously, the use of a custom hydrator is a better practice
while handling such cases.
You should also take a look at Custom AST Walker as shown on the
following website:
http://docs.doctrine-project.org/en/latest/cookbook/
dql-custom-walkers.html

Find the following code snippet:

<?php if (empty($posts)): ?>

And replace the preceding code with the next code snippet:

<?php if (empty($results)): ?>

Chapter 4

[73]

It's time to display the number of comments. Insert the following code after the
tag list:

 <?php if ($commentCount == 0): ?>
 Be the first to comment this post.
 <?php elseif ($commentCount == 1): ?>
 One comment
 <?php else: ?>
 <?= $commentCount ?> comments
 <?php endif ?>

As the index.php file at the web/ location also uses the findHavingTags() method
to display the list of tagged articles, we need to update this method too. This is done
using the following code:

 // …
 ->addSelect('t')
 ->addSelect('COUNT(c.id)')
 ->leftJoin('p.comments', 'c')
 // …

Summary
In this chapter, we have learned about DQL, its differences from SQL, and its Query
Builder. We also learned about the concept of entity repositories and how to create
custom ones.

Even if there is a lot more to learn from these topics and from Doctrine in general,
our knowledge should be sufficient to start developing complete and complex
applications using Doctrine as a persistent system.

In Chapter 5, Going Further, the last chapter of this book, we will go a step further
and cover some more advanced topics, including how to handle inheritance, how
to make native SQL queries, and the basics of the event system.

Going Further
In previous chapters we learned the basics of the Doctrine ORM. We are now able to
create complex domain classes, generate underlying SQL tables, load data fixtures,
and execute advanced queries. We know everything we need to know to develop the
model layer of small web applications.

The library, however, provides more advanced features. In this chapter we
will briefly cover various topics not addressed previously: inheritance, lifecycle
callbacks, and native queries.

Implementing inheritance
Like all object-oriented programming languages, PHP is designed on top of the
inheritance concept; however, relational databases are not. This is the common
problem when mapping classes to tables.

The Doctrine ORM provides the following three ways to achieve inheritance:

• Mapped Superclasses
• Single Table Inheritance
• Class Table Inheritance

To learn about them, we will create three implementations of the same model, that is,
for content authors.

Both posts and comments have authors. Authors must have a name and an e-mail
address. Posts' authors (and only them) can also have an optional biography.

To represent this, we will create two classes: PostAuthor and CommentAuthor.
They both extend an abstract Author class. Each Comment entity is linked to a
CommentAuthor class and each Post entity to a PostAuthor class.

Going Further

[76]

Using Mapped Superclasses
Mapped Superclasses are simple PHP classes that share mapped properties used
by their descendant entities. Mapped Superclasses are not entities themselves.
They are extended by entities.

Mapped Superclasses are never directly persisted to the database. They are not
retrievable through the query builder and cannot be the inverse-side of an association.

They are like any other PHP class extended by entities, except that they can hold
properties that will be persisted by their descendants.

This type of inheritance is not well suited for this use case.
Single Table Inheritance is better here.

1. Start by creating the Mapped Superclass. Create a new abstract class called
Author in the Author.php file at the location src/Blog/Entity/as shown in
the following code:
 <?php

 namespace Blog\Entity;

 use Doctrine\ORM\Mapping\MappedSuperclass;
 use Doctrine\ORM\Mapping\Id;
 use Doctrine\ORM\Mapping\GeneratedValue;
 use Doctrine\ORM\Mapping\Column;

 /**
 * Author superclass
 *
 * @MappedSuperclass
 */
 abstract class Author
{
 /**
 * @var int
 *
 * @Id
 * @GeneratedValue
 * @Column(type="integer")
 */
 protected $id;
 /**

Chapter 5

[77]

 * @var string
 *
 * @Column(type="string")
 */
 protected $name;
 /**
 * @var string
 *
 * @Column(type="string")
 */
 protected $email;
}

Thanks to the @MappedSuperclass annotation, the mapped properties of the
Author class inherited by PostAuthor and CommentAuthor classes will be
taken into account by Doctrine.

2. Write getters for all the properties and setters for all except the $id instance.

At the time of writing, Doctrine Command-Line Tools were not able
to generate getters and setters for a Mapped Superclass and suffered
a bug when generating getters and setters for child classes.

3. Create a PostAuthor.php file in the same directory that contains the
PostAuthor class as shown in the following code:
<?php

namespace Blog\Entity;

use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\ORM\Mapping\Entity;
use Doctrine\ORM\Mapping\OneToMany;
use Doctrine\ORM\Mapping\Column;

/**
 * Post author entity
 *
 * @Entity
 */
class PostAuthor extends Author
{
 /**
 * @var string
 *

Going Further

[78]

 * @Column(type="text", nullable=true)
 */
 protected $bio;
 /**
 * @var Post[]
 *
 * @OneToMany(targetEntity="Post", mappedBy="postAuthor")
 */
 protected $posts;

 /**
 * Initializes collections
 */
 public function __construct()
 {
 $this->posts = new ArrayCollection();
 }
}

The PostAuthor entity class extends the Author Mapped Superclass.
PostAuthor holds specific data of posts' authors: a bio property and
a One-To-Many association to posts.
At the database level, a table called PostAuthor will be created with
all the columns defined with the @Column annotation in Author and
PostAuthor classes.

4. Write getters and setters for this class.
5. To make this association work, we need to add the code of the owning-side

of the association to the src/Blog/Entity/Post.php file. To do this, add the
following property:
 /**
 * @var PostAuthor
 *
 * @ManyToOne(targetEntity="PostAuthor", inversedBy="posts")
 */
 protected $author;

6. You guessed it! Write the getter and setter for the preceding property.

Chapter 5

[79]

7. Now create a file called CommentAuthor.php in the same directory
containing the CommentAuthor entity class as shown in the following code:
 <?php

 namespace Blog\Entity;

 use Doctrine\ORM\Mapping\Entity;

 /**
 * Comment author entity
 *
 * @Entity
 */
 class CommentAuthor extends Author
{
 /**
 * @var Comment[]
 *
 * @OneToMany(targetEntity="Comment",
mappedBy="commentAuthor")
 */
 protected $comments;
}

This entity class is very similar to the PostAuthor class, except that its
association is related to Comment instead of Post, and it doesn't have
a bio property.
Another table called CommentAuthor will be created in the database.
This table will be completely independent of the PostAuthor table.

8. Write the getter and setter for the same property after adding the
preceding code.

9. We also need to add the owning-side of the association. Open the src/Blog/
Entity/Comment.php file and add the following properties:
 /**
 * @var CommentAuthor
 *
 * @ManyToOne(targetEntity="CommentAuthor",
 inversedBy="comments")
 */
 protected $author;

Going Further

[80]

10. After you've completed the previous step, add the getter and setter.
11. To understand how this type of inheritance is handled by Doctrine, and to

test our code, we will create a fixture by inserting sample data in the src/
DataFixtures/LoadAuthorData.php file as shown by the following code:
<?php

namespace Blog\DataFixtures;

use Blog\Entity\Comment;
use Blog\Entity\CommentAuthor;
use Blog\Entity\Post;
use Blog\Entity\PostAuthor;
use Doctrine\Common\DataFixtures\Doctrine;
use Doctrine\Common\DataFixtures\FixtureInterface;
use Doctrine\Common\Persistence\ObjectManager;

/**
 * Author fixtures
 */
class LoadAuthorData implements FixtureInterface
{
 /**
 * {@inheritDoc}
 */
 public function load(ObjectManager $manager)
 {
 $postAuthor = new PostAuthor();
 $postAuthor->setName('George Abitbol');
 $postAuthor->setEmail('gabitbol@example.com');
 $postAuthor->setBio('L\'homme le plus classe du monde');

 $manager->persist($postAuthor);

 $post = new Post();
 $post->setTitle('My post');
 $post->setBody('Lorem ipsum');
 $post->setPublicationDate(new \DateTime());
 $post->setauthor($postAuthor);

 $manager->persist($post);

 $commentAuthor = new CommentAuthor();
 $commentAuthor->setName('Kévin Dunglas');

Chapter 5

[81]

 $commentAuthor->setEmail('dunglas@gmail.com');

 $manager->persist($commentAuthor);

 $comment = new Comment();
 $comment->setBody('My comment');
 $comment->setAuthor($commentAuthor);
 $comment->setPublicationDate(new \DateTime());

 $post->addComment($comment);
 $manager->persist($comment);

 $manager->flush();
 }
}

This fixture creates instances of Post, PostAuthor, Comment, and
CommentAuthor and then persists them to the database.

12. Update the following schema:
 php vendor/bin/doctrine orm:schema-tool:update --force

The following ER diagram represents the schema that will be generated on
using MySQL as DBMS:

Going Further

[82]

Even if the PostAuthor and CommentAuthor classes both inherit from the
Author Mapped Superclass, their corresponding SQL schemas do not share
anything and are not related.

13. Then load the fixtures with the following command:
 php bin/load-fixtures.php

14. Use the SQLite client to show the inserted content in each table with the
following command:
 sqlite3 data/blog.db "SELECT * FROM PostAuthor; SELECT *
 FROM CommentAuthor;"

After the preceding steps George's and my details should appear as follows:
1|L'homme le plus classe du monde|George Abitbol|gabitbol@example.
com
1|Kévin Dunglas|dunglas@gmail.com

For practice, the UI of the author feature is used. An example is
provided in the bonus code sample available on the Packt website.

Using Single Table Inheritance
With Single Table Inheritance, data of all the classes of the hierarchy will be
stored in the same database table. A column for every property of every child
class will be created.

This mapping strategy suits very well for a simple type of hierarchy and performs
well while querying both the same and different types of entities.

To change from Mapped Super Class to Single Table Inheritance, we will just make
some modifications to the classes we just created:

1. Open the src/Blog/Entity/Author.php file and find the following snippet:
 use Doctrine\ORM\Mapping\MappedSuperclass;
 use Doctrine\ORM\Mapping\Id;
 use Doctrine\ORM\Mapping\GeneratedValue;
 use Doctrine\ORM\Mapping\Column;

 /**
 * Author mapped superclass
 *
 * @MappedSuperclass

Chapter 5

[83]

2. Replace the preceding snippet with the following snippet:
 use Doctrine\ORM\Mapping\Entity;
 use Doctrine\ORM\Mapping\InheritanceType;
 use Doctrine\ORM\Mapping\Id;
 use Doctrine\ORM\Mapping\GeneratedValue;
 use Doctrine\ORM\Mapping\Column;

 /**
 * Author superclass
 *
 * @Entity
 * @InheritanceType("SINGLE_TABLE")

3. Update the schema and load the fixtures again with the following queries:
 php vendor/bin/doctrine orm:schema-tool:update --force

 php bin/load-fixtures.php

The following screenshot is the ER diagram for the Single Table Inheritance type:

Going Further

[84]

Data of both PostAuthor and CommentAuthor entities is now persisted in a unique
database table called Author.

The entity type is identified in the table, thanks to a discriminator column added,
and automatically managed, by Doctrine.

By default, this discriminator column is called dtype and the Doctrine type
string. These values can be overridden thanks to the @DiscriminatorColumn
annotation. This annotation should be used on the entity class marked with the @
InheritanceType annotation (here, the Author class).

The value stored in this column is used by Doctrine to determine the type of entity
class to hydrate for a given database row. It defaults to the name of the entity class
(not fully qualified) in lowercase. The used value for each entity class can also be
overridden by adding an annotation on the parent entity class: @DiscriminatorMap.

All these annotations and the Single Table Inheritance type are documented at:

http://docs.doctrine-project.org/en/latest/reference/inheritance-
mapping.html#single-table-inheritance

To look at the data we have inserted in the Author table with our fixtures, run the
following command:

 sqlite3 data/blog.db "SELECT * FROM Author"

The result should be as follows:

1|Kévin Dunglas|dunglas@gmail.com|commentauthor|

2|George Abitbol|gabitbol@example.com|postauthor|L'homme le plus classe
du monde

Using Class Table Inheritance
The last strategy provided by Doctrine is the Class Table Inheritance. Data of each
class of the hierarchy is stored in a specific database table. All the tables of the
hierarchy are joined during the data retrieval time.

Because of the massive use of joins, this strategy is less efficient than Single Table
Inheritance, especially with Big Data. The more descendant classes you add, the
more joins are needed to retrieve data, and the slower the querying.

Chapter 5

[85]

But because every entity class of the hierarchy is mapped to its own table, this
strategy also allows great flexibility. Creating or modifying an entity class only
affects its directly related database table. In cases where performance is not a
priority and the data model is complex, this type of inheritance can be a solution
to limit or avoid complex, and even risky, migrations.

As for Single Table Inheritance, we just need to make minor changes to create our
Author data model using Class Table Inheritance with the following steps:

1. Open the src/Blog/Entity/Author.php file and find the following
@InheritanceType annotation we added to use Single Table Inheritance:
 * @InheritanceType("SINGLE_TABLE")

2. Replace the argument SINGLE_TABLE by the following argument:
 * @InheritanceType("JOINED")

3. Update the schema and load the fixtures, again with the following query:
 php vendor/bin/doctrine orm:schema-tool:update --force

 php bin/load-fixtures.php

The following ER diagram represents the generated schema, again
using MySQL:

Going Further

[86]

The Author table contains shared data between PostAuthor and
CommentAuthor entity classes. These child classes only hold their specific
data. Their id columns are foreign keys referencing the id column of the
Author table. This allows data linking because the ID in a table storing data
of descendant classes is the same as the ID in the table storing data of the
top class.
As for Single Table Inheritance, a discriminator column allows Doctrine to
identify the entity class corresponding to the database table's rows. Their
default names and values are the same. They can also be overridden through
@DicriminatorColumn and @DicriminatorMap annotations on the topmost
entity class of the hierarchy (here, Author).

Class Table Inheritance allows referencing the topmost class
of a hierarchy in associations, but the loading feature will not
work anymore.

For further information about Class Table Inheritance, refer to the
documentation available at http://docs.doctrine-project.org/
en/latest/reference/inheritance-mapping.html#class-table-
inheritance.

4. To show data we have inserted with fixtures in the Author, CommentAuthor
and PostAuthor tables, run the following query with the SQLite client:
 sqlite3 data/blog.db "SELECT * FROM Author; SELECT * FROM
 PostAuthor; SELECT * FROM CommentAuthor;"

The following is the expected result:
 1|Kévin Dunglas|dunglas@gmail.com|commentauthor
 2|George Abitbol|gabitbol@example.com|postauthor
 2|L'homme le plus classe du monde
 1

Getting started with events
The Doctrine Common component comes with a built-in event system. It allows
dispatching and subscribing to custom events, but its main purpose is to manage
entity-related events.

Chapter 5

[87]

In Chapter 1, Getting Started with Doctrine 2, we learned about entity managers,
entity states, and Unit Of Work. Entity Managers (and their underlying UnitOfWork
objects) dispatch events when the state of the entity changes and when data is stored,
updated, and removed from the database. They are called lifecycle events.

Doctrine also emits some events not directly related to the
entity lifecycle.

Doctrine ORM provides the following bunch of lifecycle events:

• preRemove: This event occurs when the state of the entity is set to removed
• postRemove: This event occurs after the removal of an entity's data from

the database
• prePersist: This event occurs when the state of the entity passes from new

to managed
• postPersist: This event occurs after the INSERT SQL query has been executed
• preUpdate: This event occurs before the UPDATE SQL query
• postUpdate: This event occurs after the UPDATE SQL query
• postLoad: This event occurs after the load or the refresh of the entity in the

EntityManager

The full documentation of events (including the non-lifecycle
one) on Doctrine ORM is available in the online documentation
at http://docs.doctrine-project.org/en/latest/
reference/events.html.

Lifecycle callbacks
Lifecycle callbacks are the easiest way to use these events. They allow executing
methods directly defined in entity classes when the lifecycle event occurs.

In our blog, we store the date of the publication of posts and comments. Thanks to
lifecycle callbacks and to the prePersist event, it's possible to automatically set this
date the first time an entity is passed through the persist() method of its Entity
Manager (when the state goes from new to managed):

1. Open the Post.php file in the src/Blog/Entity/ folder and the Comment.
php file in the src/Blog/Entity/ folder.

Going Further

[88]

2. Add the following use statements to both the files:
 use Doctrine\ORM\Mapping\HasLifecycleCallbacks;
 use Doctrine\ORM\Mapping\PrePersist;

3. Add the @HasLifecycleCallbacks annotations next to @Entity to both the
files. This enables lifecycle callbacks in these two entity classes.

4. Then, add the following method to both the files, setting the publication date
when the prePersist event occurs:
 /**
 * Sets publication date to now at persist time
 *
 * @PrePersist
 */
 public function setPublicationDateOnPrePersist()
 {
 if (!$this->publicationDate) {
 $this->publicationDate = new \DateTime();
 }
 }

This method is executed when a Comment or Post entity is passed through
the persist() method of an entity manager. It sets the publicationDate
property to the current time if it has not been already done.

These callback methods can take an optional argument, allowing
access to the EntityManager and UnitOfWork (giving access to
the underlying changeset) objects related to the entity which can be
referenced at:
http://docs.doctrine-project.org/en/latest/
reference/events.html#lifecycle-callbacks-event-
argument

Thanks to this tweak, we can remove calls using setPublicationDate()
methods in web/view-post.php and web/edit-post.php.

A popular library you should try is Gediminas Morkevičius
DoctrineExtensions. It contains many useful behaviors for
Doctrine, including, but not limited to, timestamps, translations, soft
delete, and nested sets. The Doctrine extensions can be found at:
https://github.com/l3pp4rd/DoctrineExtensions

Chapter 5

[89]

Knowing about event listeners and event
subscribers
Doctrine provides more powerful ways to deal with events: event subscribers and
event listeners. Unlike lifecycle callbacks that are defined directly in entity classes,
both must be defined in external classes. We will take a quick look at them.

The main difference between listeners and subscribers is that listeners are attached to
an event, and subscribers register themselves to events.

Let's create a listener that will strip some French insults from published comments in
the src/Blog/Event/InsultEventListener.php file:

<?php

namespace Blog\Event;

use Blog\Entity\Comment;
use Doctrine\Common\Persistence\Event\LifecycleEventArgs;

/**
 * Censors French insults in comments
 */
class InsultEventListener
{
 /**
 * Censors on the prePersist event
 *
 * @param LifecycleEventArgs $args
 */
 public function prePersist(LifecycleEventArgs $args)
 {
 $entity = $args->getObject();

 if ($entity instanceof Comment) {
 // Use a black list instead, or better don't do that,
 it's useless
 $entity->setBody(str_ireplace(['connard',
 'lenancker'], 'censored', $entity->getBody()));
 }
 }
}

Going Further

[90]

And now, we will create an event subscriber that will send an e-mail
to a post author when a comment is posted in the src/Blog/Event/
MailAuthorOnCommentEventSubscriber.php file, as shown in the following code:

<?php

namespace Blog\Event;

use Doctrine\Common\EventSubscriber;
use Doctrine\ORM\Event\LifecycleEventArgs;
use Doctrine\ORM\Events;
use Blog\Entity\Comment;

/**
 * Mails a post author when a new comment is published
 */
class MailAuthorOnCommentEventSubscriber implements EventSubscriber
{

 /**
 * {@inheritDoc}
 */
 public function getSubscribedEvents()
 {
 return [Events::postPersist];
 }

 /**
 * Mails the Post's author when a new Comment is published
 *
 * @param LifecycleEventArgs $args
 */
 public function postPersist(LifecycleEventArgs $args)
 {
 $entity = $args->getObject();

 if ($entity instanceof Comment) {
 if ($entity->getPost()->getAuthor() && $entity-
 >getAuthor()) {
 mail(
 $entity->getPost()->getAuthor()->getEmail(),
 'New comment!',
 sprintf('%s published a new comment on your
 post %s', $entity->getAuthor()->getName(),
 $entity->getPost()->getTitle())

Chapter 5

[91]

);
 }
 }

 }
}

Events' listener and subscriber methods' names must match the name of the events
they want to catch. The entity related to the event and it's entity manager are
available through the $args parameter. In our examples, we only used the entity.

Events' listeners and subscribers are only called when the event they have subscribed
to is dispatched, whatever the type of entity. It's their responsibility to filter entities
by type. This is why we use the instanceof keyword to check whether entities are
of the type Comment.

Unlike event listeners, event subscribers must implement the EventSubscriber
interface. The getSubscribedEvents()method must return an array of events to
listen to.

The last step is to register these events' listeners and subscribers through an Event
Manager. Unlike for lifecycle callbacks, this is not handled automatically.

Open the src/bootstrap.php file and add the following use statements:

 use Doctrine\ORM\Events;
 use Doctrine\Common\EventManager;
 use Blog\Event\InsultEventListener;
 use Blog\Event\MailAuthorOnCommentEventSubscriber;

Then find the following line of code:

 $entityManager = EntityManager::create($dbParams, $config,
 $eventManager);

Replace the preceding line with the following code snippet:

$eventManager = new EventManager();
$eventManager->addEventListener([Events::prePersist], new
 InsultEventListener());
$eventManager->addEventSubscriber(new
 MailAuthorOnCommentEventSubscriber());

 $entityManager = EntityManager::create($dbParams, $config,
 $eventManager);

Going Further

[92]

We instantiate an Event Manager, and we register our listener and our subscriber.
For the listener, we need to tell for which events it should be called. The subscriber
registers itself to events it is interested in.

The Event Manager object must be linked to the entity manager when it is created;
this is why it is passed as the third argument of the EntityManager::create()
static method (see Chapter 1, Getting Started with Doctrine 2).

Writing native queries
In the previous chapter, we learned how to create DQL queries through the
QueryBuilder. But DQL has some limitations (that is, queries cannot contain
subqueries in FROM and JOIN clauses), and sometimes you want to use specific
features of your DBMS (that is, MySQL full-text search). In such cases you need
to write native SQL queries.

The NativeQuery class
The NativeQuery class allows you to execute native SQL queries and to get their
results as Doctrine entities. Only SELECT queries are supported.

To experiment with this feature, we will create a new command that displays the
100 most recent comments. This can be useful to moderate them.

Create a file containing this new command called last-comments.php in the
bin/ directory of the app.

<?php

require_once __DIR__.'/../src/bootstrap.php';

use Doctrine\ORM\Query\ResultSetMappingBuilder;

const NUMBER_OF_RESULTS = 100;

 $resultSetMappingBuilder = new
 ResultSetMappingBuilder($entityManager);
 $resultSetMappingBuilder-
 >addRootEntityFromClassMetadata('Blog\Entity\Comment', 'c');
 $resultSetMappingBuilder->addJoinedEntityFromClassMetadata(
 'Blog\Entity\Post',
 'p',
 'c',
 'post',
 [

Chapter 5

[93]

 'id' => 'post_id',
 'body' => 'post_body',
 'publicationDate' => 'post_publication_date',
 'author_id' => 'post_author_id'
])
 ;

 $sql = <<<SQL
 SELECT id, publicationDate, body, post_id
 FROM Comment
 ORDER BY publicationDate DESC
 LIMIT :limit
 SQL;

 $query = $entityManager->createNativeQuery($sql,
 $resultSetMappingBuilder);
 $query->setParameter('limit', NUMBER_OF_RESULTS);
 $comments = $query->getResult();

 foreach ($comments as $comment) {
 echo sprintf('Comment #%s%s', $comment->getId(), PHP_EOL);
 echo sprintf('Post #%s%s', $comment->getPost()->getId(),
 PHP_EOL);
 echo sprintf('Date of publication: %s%s', $comment-
 >getPublicationDate()->format('r'), PHP_EOL);
 echo sprintf('Body: %s%s', $comment->getBody(), PHP_EOL);
 echo PHP_EOL;
}

The ResultSetMappingBuilder class is designed to map SQL query results to
Doctrine entities. The call to its addRootEntityFromClassMetadata() method
specifies the main entity class that will be hydrated (first parameter) as well as its
internal alias (second parameter). Here it is Comment.

The addJoinedEntityFromClassMetadata() method permits you to populate an
association of the root entity. The first parameter is the entity class. The second is
the internal alias of this entity. The third is the internal alias of its parent entity. The
fourth is the name of the relation in its parent entity class. And the last is an array of
mappings between an entity's properties and SQL query aliases.

This last parameter is useful when SQL column names don't match entity's
property names. Here, we use it to populate the id property of the related
post with the post_id column of the Comment table.

Going Further

[94]

Both Comment and Post database tables have columns called body, publication_
date, and author_id. To get around this conflict, we map the Post entity properties
respectively to post_body, post_publication_date, and post_author_id
columns. You noticed that the SQL query doesn't return these columns. This is not a
problem; they will be ignored.

The createNativeQuery() method of the EntityManager takes the SQL query and
the ResultSetMappingBuilder as parameters. Like DQL queries, SQL queries can use
named parameters. They will automatically escape to prevent SQL injection attacks.

Thanks to NativeQuery and ResultSetMappingBuilder classes, the result of the
query is a collection of Comment entities (partially hydrated) with their related Post
entity (having only the id property hydrated).

Run the following code to see the last 100 comments:

 php bin/list-comments.php

Doctrine DBAL
Doctrine provides an even lower level way to issue native SQL queries. You can
retrieve the underlying DBAL connection through the EntityManager and use
it directly.

This is useful to execute native UPDATE and DELETE queries and to retrieve data that
is not intended to populate entities. Of course, do that only if you have a good reason
or use DQL's SELECT, UPDATE, or DELETE queries instead.

To illustrate native queries through DBAL, we will create another command that
displays some simple stats about our blog.

As they don't use any DBMS-specific query, this command should
be executed through ORM. Native queries are used here only to
illustrate this feature.

Chapter 5

[95]

Create a file for this new command called stats.php in the bin/ directory with the
following code:

<?php

require_once __DIR__.'/../src/bootstrap.php';

$sql = <<<SQL
SELECT
 COUNT(id) AS nb,
 MAX(publicationDate) AS latest
FROM Post
UNION
SELECT
 COUNT(id),
 MAX(publicationDate)
FROM Comment
SQL;

$query = $entityManager->getConnection()->query($sql);
$result = $query->fetchAll();

 echo sprintf('Number of posts: %d%s', $result[0]['nb'],
 PHP_EOL);
 echo sprintf('Last post: %s%s', $result[0]['latest'], PHP_EOL);
 echo sprintf('Number of comments: %d%s', $result[1]['nb'],
 PHP_EOL);
 echo sprintf('Last comment: %s%s', $result[1]['latest'],
 PHP_EOL);

We use the EntityManager to retrieve the underlying Doctrine\DBAL\Connection
with the getConnection() method. DBAL's Connection is just a thin wrapper
around PDO and its API is very similar. We use it to compute the total number and
the last publication date of posts and comments.

To show them, run the following command:

 php bin/stats.php

Going Further

[96]

Summary
The last chapter was a quick overview of some advanced features of Doctrine:
handling Inheritance though Mapped Superclass, Single Table Inheritance, and Class
Table Inheritance; the Doctrine event system including lifecycle callbacks, listeners,
and subscribers; and finally how to unleash the power of the underlying DBMS for
specific use cases with native queries.

Throughout this book, we have learned how to use the Doctrine ORM to create
a stable model layer in our PHP applications. We are now familiar with concepts
behind Doctrine components and we are able to smartly use its ORM. We also
looked at the most powerful (but also complex) features, including entity managers
and entity states, mapping information, associations, DQL, hydration, inheritance,
events, and native queries. There is still a lot to learn, and many of these topics
deserve a dedicated book of their own.

Again, the online documentation of the Doctrine project (available at http://www.
doctrine-project.org/) is comprehensive and full of advanced examples.

Recall for the last time that to use Doctrine efficiently in production, a cache system
(APC, Memcache, and Reddis), depending on your needs and of what is available on
your server platform, must be used.

One last thing, Doctrine is free and open source software welcoming your
contributions: bug reports and fixes, documentation, and adding new features.

Index
Symbols
@Column annotation 23-25
@DiscriminatorColumn annotation 84
@DiscriminatorMap annotation 84
@Entity annotation 22
@GeneratedValue annotation 24
@Id annotation 24
@Index annotation 22
@InheritanceType annotation 84
@JoinColumn annotation 40
@JoinTable annotation 40
@ManyToMany annotation, with tags 52
@ManyToOne annotation, with comment

system 40
@OneToMany annotation, with comment

system 40
@Table annotation 22
@UniqueConstraint annotation 23

A
addComment() method 44
addJoinedEntityFromClassMetadata()

method 93
addRootEntityFromClassMetadata()

method 93
app

bootstrapping 13, 14
folder structure 10

association types, Doctrine
Many-To-Many 39
Many-To-One 39
One-To-One 39

B
Behat

URL 28
bidirectional association 40

C
CASCADE operations 55
Class Table Inheritance

about 84
using 84-86

command line tools, Doctrine
configuring 16, 17

Comment entity class
creating 41, 42
properties 41

comments
about 40
counting 71-73
creating 47-51
fixtures, adding for 46, 47
listing 47-51

comment system
Comment entity class, creating 41, 42
comments, creating 47-51
comments, listing 47-51
database schema, updating 45
fixtures, adding for comments 46, 47
index, updating 51
inverse side, adding to Post entity

class 43, 44
Common 5
Composer

about 10

[98]

installing 11
composer.json file 12
createNativeQuery() method 94
createQueryBuilder() method 66
CSRF

URL 31
curl

about 7
URL 7

custom entity repositories
about 64
creating 64, 65

D
Database Abstraction Layer. See DBAL
database schema

creating 26, 27
Data Fixtures

about 28
installing 28, 29

Data Mapper 8
DBAL 5, 62, 94, 95
DELETE CASCADE operations 55
Dependency Injection pattern

URL 16
detach() method 9
discriminator column 84
DocBlocks 20
Doctrine

association types 39, 40
Entity Manager, using 14, 16
installing 11-13
learning 6
mapping types 25
prerequisites 7
URL, for documentation 7, 23

Doctrine annotations
@Column annotation 23, 24
@Entity annotation 22
@GeneratedValue annotation 24
@Id annotation 24
@Index annotation 22
@Table annotation 22
@UniqueConstraint annotation 23
mapping with 22

Doctrine ORM
URL, for documentation 87

Doctrine project 5
Doctrine Query Language. See DQL
domain-specific languages

about 61
URL 61

DQL 61
DQL query

running 62

E
Entity Manager

about 8
using 14, 16

EntityManager class 40
entity repositories

about 9, 63
using 63, 64

event listeners 89, 91
events

about 86
lifecycle callbacks 87, 88

event subscribers
about 89
creating 90, 91

F
find() method 9, 63
findWithCommentCount() method 72
findWithComments() method 66, 68
fixtures

about 28
adding, for comments 46, 47

flush() method 8, 9, 29

G
getOneOrNullResult() method 68
getters

generating 21

H
Hibernate

about 61
URL 61

HQL 61

[99]

I
inheritance

implementing 75
inheritance implementation

Class Table Inheritance, using 78-86
Mapped Superclasses, using 76, 77
Single Table Inheritance, using 82-84

installation, Composer 11
installation, Data Fixtures 28-30
installation, Doctrine 11-13
install command 13
inverse side

adding, to Post entity class 43, 44

L
lifecycle callbacks 87, 88
lifecycle events, Doctrine ORM

postLoad 87
postPersist 87
postRemove 87
postUpdate 87
prePersist 87
preRemove 87
preUpdate 87

LoadPostData class 29

M
Many-To-Many association 39
Many-To-One association 39
Mapped Superclasses

about 76
using 76-82

mapping types, Doctrine 25

N
native queries

DBAL 94, 95
NativeQuery class 92, 93
writing 92

NativeQuery class 92, 93

O
Object Document Mappers (ODM) 7

Object Relational Mapper (ORM) 5, 55
One-To-One association 39

P
Packagist 12
PDO 5
persist() method 9
PHP CLI

URL 7
PHP Data Objects

URL 5
phpDocumentator 20
PHP Specification Request

URL 12
Post entity class

about 19
creating 20
inverse side, adding to 43, 44
properties 20
updating 54-56

postLoad event 87
postPersist event 87
postRemove event 87
posts

creating 33
deleting 37
editing 33
listing 31, 33
tags, managing of 58, 59

postUpdate event 87
prePersist event 87
preRemove event 87
preUpdate event 87

Q
QueryBuilder

about 65
starting 66-68

R
removeComment() method 44
remove() method 10
REST

URL 31

[100]

S
separation of concerns

URL 31
setters

generating 21
Single Table Inheritance

about 82
using 82-84

SQLite
URL 7

Symfony 69
Symfony Validator Component

URL 24

T
Tag entity class

creating, steps 52-54
properties 52

tag filtering 69

tag fixtures
creating 56, 57

tags
about 52
managing, of posts 58, 59
Post entity class, updating 54-56
schema, updating 56
Tag entity class, creating 52, 53
tag fixtures, creating 56, 57
used, for filtering posts 69, 70

U
unidirectional association 40
Unit of Work design pattern 8
user interface

creating 30
page creation, for creating posts 33, 36, 37
page creation, for deleting posts 37
page creation, for editing posts 33, 36, 37
page creation, for listing posts 31, 33

Thank you for buying
Persistence in PHP with Doctrine ORM

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning FuelPHP for Effective
PHP Development
ISBN: 978-1-78216-036-6 Paperback: 104 pages

Use the flexible FuelPHP framework to quickly and
effectively create PHP applications

1. Scaffold with oil - the FuelPHP
command-line tool

2. Build an administration quickly and effectively

3. Create your own project using FuelPHP

Instant PhpStorm Starter
ISBN: 978-1-84969-394-3 Paperback: 86 pages

Learn professional PHP development with PhpStorm

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Learn PHPStorm from scratch, from
downloading to installation with no prior
knowledge required

3. Enter, modify, and inspect the source code
with as much automation as possible

4. Simple, full of easy-to-follow procedures
and intuitive illustrations, this book will set
you speedily on the right track

Please check www.PacktPub.com for information on our titles

Symfony 1.3 Web Application
Development
ISBN: 978-1-84719-456-5 Paperback: 228 pages

Design, develop, and deploy feature-rich,
high-performance PHP web applications using
the Symfony framework

1. Create powerful web applications
by leveraging the power of this
Model-View-Controller-based framework

2. Covers all the new features of version
1.3 – many exciting plug-ins for you

3. Learn by doing without getting into too much
theoretical detail – create a "real-life" milkshake
store application

Expert PHP 5 Tools
ISBN: 978-1-84719-838-9 Paperback: 468 pages

Proven enterprise development tools and best
practices for designing, coding, testing, and
deploying PHP applications

1. Best practices for designing, coding, testing,
and deploying PHP applications – all the
information in one book

2. Learn to write unit tests and practice
test-driven development from an expert

3. Set up a professional development environment
with integrated debugging capabilities

4. Develop your own coding standard and enforce
it automatically

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Getting Started with Doctrine 2
	Prerequisites
	Understanding the concepts behind Doctrine
	Creating a project structure
	Installing Composer
	Installing Doctrine
	Bootstrapping the app
	Using Doctrine's Entity Manager
	Configuring Doctrine command-line tools
	Summary

	Chapter 2:Entities and Mapping Information
	Creating the Entity class
	Generating getters and setters
	Mapping with Doctrine annotations
	Knowing about the @Entity annotation
	Understanding the @Table, @Index, and
@UniqueConstraint annotations
	Diving into the @Column annotation
	Knowing about the @Id and @GeneratedValue annotations
	Using other annotations

	Understanding Doctrine Mapping Types
	Creating the database schema
	Installing Data fixtures
	Creating a simple UI
	Listing posts
	Creating and editing posts
	Deleting posts

	Summary

	Chapter 3:Associations
	Getting started with the Doctrine associations
	Understanding the @ManyToOne and @OneToMany annotations with the comment system
	Creating the Comment entity class
(owning side)
	Adding the inverse side to the Post entity class
	Updating the database schema
	Adding fixtures for the comments
	Listing and creating comments
	Updating the index

	Understanding the @ManyToMany annotation with tags
	Creating the Tag entity class (inverse side)
	Updating the Post entity class (owning side)
	Updating the schema again
	Creating tag fixtures
	Managing the tags of a post

	Summary

	Chapter 4:Building Queries
	Understanding DQL
	Using the entity repositories
	Creating custom entity repositories

	Getting started with Query Builder
	Filtering by tag
	Counting comments
	Summary

	Chapter 5:Going Further
	Implementing inheritance
	Using Mapped Superclasses
	Using Single Table Inheritance
	Using Class Table Inheritance

	Getting started with events
	Lifecycle callbacks
	Knowing about event listeners and event subscribers

	Writing native queries
	The NativeQuery class
	Doctrine DBAL

	Summary

	Index

