

 PHP

 Learn PHP & mySQL With Ultimate Zero to Hero Programming Crash Course for Beginners

 Paul Madoff

 Zero to Hero

 Table of Contents

 Introduction

 Chapter 1: Why Use a Database for Your Website

 Chapter 2: Introduction to PHP

 Chapter 3: Setting Up the Database

 Chapter 4: Interesting and Useful Tips for PHP Language

 Chapter 5: Displaying Data

 Chapter 6: More Output

 Chapter 7: Single Records and Error Trapping

 Chapter 8: Updating and Deleting

 Chapter 9: Finishing the Script

 Chapter 10: Common PHP and mySQL Development Mistakes to Avoid

 Conclusion

 Check Out Other Books by ‘ZERO to HERO’

 Bonus: FREE PHP Course!

 Introduction

 We want to thank you and congratulate you for downloading the book, “PHP: Learn PHP & MySQL with Ultimate Zero to Hero Programming Crash Course for Beginners”.

 This book contains proven steps and strategies on how to use PHP with MySQL to interact with your website databases.

 Throughout this eBook, you will learn the basics of using PHP and MySQL in tandem. You will find a lot of examples that can help speed up your learning process.

 For one, you will learn how to create an internet-based contact management program that you can use to store names, addresses, and other contact info. You will learn how to update records and search through the database. You can even send emails (not for purposes of spamming or sending unsolicited emails) to the contacts in the database. Once you have created this system, you should be equipped to go on and create virtually any type of database-enabled website that you want.

 You will also learn the common mistakes that PHP and MySQL developers make so you can avoid them once you start writing your own scripts.

 Thanks again for downloading this book, I hope you enjoy it!

 Chapter 1: Why Use a Database for Your Website

 A lot of people aspire to learn scripting languages such as PHP primarily because of the capability of the said languages to interact with databases. This book will teach you how you can use PHP with MySQL to store information in cyberspace, and incorporate the same in your website. However, before you can learn to work with MySQL databases, you need to have a basic knowledge in using PHP. The next chapter is devoted to the basics of PHP, in case you are not yet familiar with the language. You may skip it if you feel confident about your PHP programming skill level.

 Using a Database for Your Website

 You will be surprised that your website can benefit a lot from using a database. There is a wide array of things that interacting a website with a database can do. It can be as simple as displaying a list to running your entire website from a database. Following are some examples of applications where PHP can be used together with MySQL:

 Banner Rotation – On a website that maintains numerous banners, a PHP script is used to call a banner at random to display to the site visitor. The script also monitors the number of times a particular banner is viewed. With some minor editing, it can also be used to track clicks. All you have to do to add, replace, or edit the banners is to modify the database and the PHP script will then be able to select the correct banners for the various pages on the website.

 Databases – Obviously, the best example is a website that gets all the information it provides from a database like Script Avenue. Only a few scripts is needed to run the site. These scripts are used to obtain all the information from a big database. One script can access the various script categories just by modifying the URL to access another area of the database.

 Forums – PHP and MySQL are used to run a huge number of message boards or forums on the net as this is proven to be more efficient than other methods to create a page for every message. It likewise offers a lot of options. Just by changing one script, every page in the forum is updated.

 Websites – If your website is sizeable, and you want some changes in the design, updating and uploading all the pages can take a considerable amount of time. By using PHP and MySQL, all it would take may be just a PHP script or two that will access a MySQL database and get all the information needed to update the pages. Simply put, updating an entire website’s design may only require changing one page.

 What You Need

 Basically, there are only three things that you need in order to run PHP scripts that will access MySQL databases.

 Webserver – This can either be on a web host or your own computer. Although most webservers would work with PHP/MySQL, Apache is highly recommended for use. It is also free.

 Installed PHP on the Server – If your server does not have PHP pre-installed, you can download it from PHP.net for free, and install it; or you can request your webhost to do the installation for you. If you do not know how to check if PHP is already installed in your server, you can learn a way to check it later in this chapter.

 Installed MySQL – This is the database software. Although you can use other database types such as Oracle and SQL, this tutorial will only focus on MySQL. Most of the commands that will be used here will work on SQL databases, anyway. MySQL is free to download form the MySQL website. If you’re not sure whether you already have the database software installed, again, you will learn a way to check it later.

 If you can’t install PHP/MySQL or your webhost doesn’t allow it, it is best to find a webhost that supports the software.

 How to Test if PHP and MySQL Are Already Installed

 You can test both PHP and MySQL by opening a text editor and typing in:

 <?

 Phpinfo()

 ?>

 and saving it as phpinfo.php.

 Next, upload the file to your web space and view it in your browser. If PHP is installed, a huge page containing all your PHP installation details will appear. Scroll down through all the information and you should find a section on MySQL that will tell you whether it is installed or not.

 Managing Your Databases

 While all database admin options can be performed using PHP scripts, it is highly recommended that you install a copy of PHPMyAdmin on your webserver. It includes an excellent set of free scripts that offers an admin option for you MySQL database/s. You can add, edit, remove, view, and backup your database with it. It is particularly useful when troubleshooting your database.

 Chapter 2: Introduction to PHP

 PHP Basics

 It was not so long ago when only a few people attempted to master or even just to perform scripting on the net. Recently, however, when the number of people who are building their own websites has grown by leaps and bounds, learning and using scripting languages have become of primary importance. Because of this, easier to learn scripting languages have become available. Among these languages, PHP is considered as one of the most powerful and easiest to use.

 What Is PHP?

 PHP is the acronym for Hypertext Preprocessor, and is categorized as a server-side programming language. This simply means that the scripts created using PHP are run on your webserver, and not on the visitor’s browser. This way, there are no compatibility issues to worry about. Compared to languages like Java and Peri (CGI), PHP is newer, but it is fast becoming among the most popular scripting languages on the net.

 Why Opt for PHP?

 Now, you may be thinking out loud why in the world you should learn a scripting language, and why PHP among all others. First, learning, or at the very least, understanding a scripting language helps open up a lot of possibilities for your website. While you can easily download ready-made scripts online, these are usually incorporated with ads for the author. In some cases, they do not deliver the exact results that you want. If you have a basic knowledge of a scripting language, you can create your own or edit pre-made scripts easily.

 Including scripts on your site, gives you the flexibility to add numerous interactive features like guest books, feedback forms, counters, message boards, and even the more advanced features such as content management systems, portal systems, and advertising managers, among others. With all these useful features on your site, it will exude a more professional demeanor. In addition, if you intend to work or get projects in the website development industry, knowledge in a scripting language will give you a decided advantage.

 What You Need

 As previously mentioned, PHP is categorized as a server-side scripting language. As such, although users do not have to install the programming software on their computer, PHP must be installed on your webhost, so it is important to make sure that it is part of the package that you sign up for. You can check if your server already has PHP installed by using the method given in the preceding chapter.

 Writing PHP Scripts

 Pretty soon, you will learn that writing PHP scripts is quite simple. You do not need to buy or install any special software. All you need is a text editor such as Notepad in Windows. Just run the editor and you are good to go. You can immediately create your very first PHP script.

 Declaring PHP

 Scripts written in PHP are always enclosed in a pair of PHP tags. This will let your server know that the information to parse as PHP is between the tags. There are three different forms of writing scripts, and these are:

 <?

 Insert PHP code here

 ?>

 <?php

 Insert PHP code here

 php?>

 <script language="php">

 Insert PHP code here

 </script>

 All these script forms work exactly in the same manner, but for this particular PHP/MySQL tutorial for beginners, the first option will be used. There is no earth-shaking reason for this, except that the author is most comfortable with it. You can use any form that suits you, however. Just make sure that you start and end your codes with matching tags. For instance, you cannot start a code with <?php and then end it with a </script>.

 Your Very First PHP Script

 Now, it’s time to write your first PHP script. Let us start with something very basic. What it will do is simply to print out all the info about PHP on your webserver. Open your text editor and type the following code:

 <?

 phpinfo();

 ?>

 You will notice that the script consists of just one line of code. “phpinfo” is a standard function in PHP that will command the server to have a standard information table printed out to contain pertinent information on the server’s setup.

 Another thing that you should take note of in the example above, which is very important, is that a semicolon ends the line of code. You should not forget to end your lines with a semicolon as missing it will result to an error. This is true for most other programming and scripting languages.

 Finishing and Testing Your Scripts

 At this point, you have already finished your script. The next step is to save it with the filename phpinfo.php, and then upload it to your webserver in the usual way. Using your web browser, go to the script’s URL. You know that your script worked, and if you have PHP installed in the server if you get a full page containing all the information on the PHP installed on your server.

 If a blank page appears instead, this is an indication that your script does not work. In this case, you may have mistyped the code. It is also possible, although it is highly unlikely, that your server does not support the function; highly unlikely because the author has yet to encounter a server that doesn’t support it.

 You will know that your server does not have an installed PHP if, instead of displaying a page, you are given a message to download the file. When this happens, it’s either time to look for a webhost or request your current hosting service provider to install PHP.

 Keep the script as you may need it for future reference.

 To summarize what we have discussed so far: you have learned some of PHP’s advantages as a scripting language and you have learned how to check if it is installed in your server. In the succeeding sections of this chapter, you will learn how to display information in the browser as well as how you can use variables in your scripts to hold information.

 Printing Text

 It is actually quite simple to print out the text in your PHP scripts. Like almost everything else that you have learned, and will learn, about the language, you can do things in various different ways. For this section, we will mainly be using “print.” The command print allows you to output variables, text, or a combination of both so they will be displayed on the computer screen.

 Print is used in the following manner:

 print("Hi guys!");

 In the line of code above, the command print gives the instructions on what to do. The brackets contain the information or words to be printed. Because the intention is to output text, the text it is likewise enclosed in quotation marks; AND, note that like almost every other lines of code in PHP scripts, a semicolon is used to end the line.

 To complete the script, you have to enclose it in the standard PHP tags, thus it should appear this way:

 <?

 print("Hi guys!");

 ?>

 Running the code will display

 Hi guys!

 on the screen.

 Variables

 Like in most other programming/scripting languages, you can define variables in PHP, which offers several types of variables. “String is the most common type of variable. It can hold numbers and text. Strings always follow a $ sign. Here is how you assign text values to a string in a PHP script:

 $welcome_text = "Hi and welcome to our website.";

 You should easily understand this line of code by now. The text enclosed in quotation marks is assigned to the string. There are a few rules about using strings that you should keep in mind, though.

 For one, strings are case-sensitive; thus, $Welcome_Text and $welcome_text are two different strings. Although strings may contain numbers, letters, and underscores, they can only begin with letters, not numbers or underscores. Also, when you assign a number to a string, you need not enclose it in quotes. For example:

 $user_id = 754

 This code is acceptable.

 Outputting Variables

 The same code used when displaying text on the screen is also used when displaying variables, though in a slightly different format. The following script will display the information stored in the variable.

 <?

 $welcome_text = "Hi and welcome to our website.";

 print($welcome_text);

 ?>

 Note that the only significant difference is that quotation marks are not necessary when printing a variable.

 Formatting Your Text

 You may be thinking that the outputs from the PHP scripts you have thus far created are boring. Well, you are right. After all, all programs you have created just require output using the default font of your browser. Because PHP is, as you have learned before, a server-side language, the code has already been executed even before it gets to the browser. Only the output from the code is sent.

 In the example above, the browser will only receive:

 Hi and welcome to our website.

 You can make things a bit interesting, though, by using HTML to format your text, meaning you can incorporate standard HTML markup in your codes and strings. There is one problem, though. Since a lot of HTML tags require the use of the “ sign, it may have a conflict with the quotation marks you use in printing your text. You must therefore make it clear in the script what quotes to use (those used to enclose the output) and which ones to ignore (those in the HTML code.)

 In the following example, we’ll change the text font to Verdana in red. Following is the code that is normally used.

 Note that the code has four quotation marks which will confuse the script. To resolve the issue, use a backslash before every quotation mark to prompt the PHP script to ignore them. The code would thus appear as:

 Now, you can incorporate the code in your print statement

 print("Hi and welcome to our website.");

 The browser will then display:

 Hi and welcome to our website.

 This is because the browser only received the code:

 Hi and welcome to our website.

 Don’t worry if, at this point, you find outputting HTML code difficult. Later, you will learn another way to do this that is a little bit easier.

 Chapter 3: Setting Up the Database

 Before you can actually begin building scripts for your database, you need to have a database first where you can store information into, and read/access from. In this chapter, you will learn how to create a MySQL database and make it ready for the data. You will also learn how to create a contacts management database.

 Database Construction

 Databases in MySQL use a standard setup. This includes a database that contains tables. Each table is separate and distinct, and is made up of records. Records, in turn, are comprised of fields.

 Logins and Databases

 The MySQL setup process may differ between hosts. However, it will always require having a database name, username, and password. All these information are needed when logging in to the database.

 If you have installed PHPMyAdmin or something similar, you can simply login to it with your username and password. Otherwise, you must create all your database admin scripts using PHP.

 Creating a Table

 Without a table, you cannot do anything with your database. A table is the particular section of your database where related information is stored. When creating a table, you will set up the various fields that the table will use. A well-designed and constructed database is important as just one may be sufficient to provide nearly all of the websites data needs.

 With PHPMyAdmin, creating tables is easy and simple. All you have to do is type the table name, choose the number of fields, and press the button. The setup screen will then appear where you need to create all the fields that the database will use. If you’re using PHP scripts in creating your database, everything – the entire creation and setup process – can be performed using just one command.

 Fields

 There is a wide selection of fields and attributes provided by MySQL, and these will be discussed in this section.

 	
 Field Type

 	
 Description

 	
 TINYINT

 	
 Small Integer Number

 	
 SMALLINT

 	
 Small Integer Num.

 	
 MEDIUMINT

 	
 Integer Num.

 	
 INT

 	
 Integer Num.

 	
 TEXT

 	
 Text

 There are many other available fields that you can use. You can search online for all the allowed field types.

 Creating a Table Using PHP

 Creating a table is a bit more difficult with PHP compared to MySQL. Following is the accepted format:

 CREATE TABLE tablename {

 Fields

 }

 You define the fields this way:

 fieldname type(length) extra info,

 Remember not to put a comma after the last field you enter. More examples will be given in the succeeding chapters.

 The Contacts Database

 This type of database will store the contact information of the people you include in your database. You can edit the information and it can be viewed on the net. Following are some sample fields you can use.

 	
 Name

 	
 Type

 	
 Length

 	
 Description

 	
 id

 	
 INT

 	
 8

 	
 Unique identifier for every record

 	
 first

 	
 VARCHAR

 	
 16

 	
 Person's first name

 	
 last

 	
 VARCHAR

 	
 16

 	
 Person's last name

 	
 phone

 	
 VARCHAR

 	
 18

 	
 Person's telephone number

 	
 fax

 	
 VARCHAR

 	
 18

 	
 person's fax number

 	
 mobile

 	
 VARCHAR

 	
 18

 	
 person's mobile phone number

 	
 email

 	
 VARCHAR

 	
 25

 	
 person's e-mail address

 	
 web

 	
 VARCHAR

 	
 25

 	
 person's web address

 If you notice, VARCHAR fields are used for fax/phone numbers although they may be made up of numbers. Although you can use INT fields, using VARCHAR will allow you to input spaces and dashes in the field, and textual numbers (like 1800-CORPORATION). There should be no problems since you won’t be initiating calls from the web.

 Note that the id field will be set to auto_increment (under extra in PHPMyAdmin), and it will be used as the PRIMARY, UNIQUE, and INDEX field. This means the field must be unique since it will be the primary and index field or field identifier. When set to auto_increment, the next number will be assigned whenever a new record is added, even if you don’t specify an id.

 When you are using a management program such as PHPMyAdmin, you can start creating a table you can name “contacts.”

 Creating a Table in PHP

 Use the following code to create the table in PHP. Parts of the code that we have not covered yet will be explained later in this chapter.

 [image: Picture1.png]

 Input the database, Your MySQL username and password in the proper positions in the first 3 lines of the code above.

 Chapter 4: Interesting and Useful Tips for PHP Language

 In the previous chapters, you have created the database that you will use for this book. In the succeeding sections, you will learn how to make your database more useful by inserting some information that you will need.

 Connecting to the Database

 Before you can proceed, you first have to connect to your MySQL database, which is very important because if you aren’t connected, the database will not execute the commands you issue. A good practice when using a database is to provide the database name, your username, and password first. This way, when you need to make changes to any of them in the future, you will only need to modify the affected line. This is how you do it:

 [image: Picture6.png]

 If you are worried about security if you keep your user info in the file, there is nothing to worry about. It is generally safe. The user will not be able to see the source code since PHP processes the code before it sends the instructions to the browser.

 The next step is to give the command that will initiate connection to the database:

 mysql_connect(localhost,$username,$password);

 The line of code instructs PHP to connect to the ‘localhost’ database server. This means the server you site is running on uses one, and unless your webhost says otherwise, use localhost. Now, if you are provided with a specific server address like sql.myserver.com, use it instead of local host. Don’t forget to enclose it in quotes. This is how your code should appear:

 $username="username";

 $password="password";

 $database=" sql.myserver.com ";

 Before, we proceed to working with the database, you have to learn one more command which is:

 mysql_close();

 This command is very important because it closes your connection to your database server. Although your script will still be executed even without the close command, you may encounter problems with the webhost, especially if there are numerous open MySQL connections. It is therefore sound practice to make sure that this line is always included once you are done giving all the commands to the particular database you are using. This will help ensure that the server will run well.

 Selecting the Database

 Once you have established connection with the database server, the next step is to select the database you intend to use. Make sure that your username has access to this particular database. The appropriate command is:

 @mysql_select_db($database) or die("Unable to select database");

 This command instructs PHP to connect to a database stored in your previously set up variable $database. If no connection can be established, execution of the script will be stopped and the system will output the message:

 Unable to select database

 In the previous code we wrote, the “or die” portion is ideal to have because it provides some semblance of error control, although it is not really essential.

 Executing Commands

 After connecting to the server and selecting the database you wish to work with, you can now start executing commands on the database server.

 You can execute commands in two ways. First is to simply input the command in PHP. You can use this if there are no expected results from the operation. Second is have the command defined as a variable. Doing this will set the variable up with the expected results of the operation.

 For purposes of this tutorial, we will be using the first method because we do not expect any response from the server. Here’s how the command should be written:

 mysql_query($query);

 This command form is very useful since you can repeat it again and again without having to learn new commands. All you have to do is to replace the variable.

 Inserting Data

 For this section, we will go back to the contacts database we created earlier. Let us add the first bit of information to the database:

 First: Jim

 Last: Doe

 Phone: 01134 567899

 Mobile: 00111 222333

 Fax: 02234 567811

 E-mail: jimdoe@abcdenet.com

 Web: http://www.abcdenet.com

 These will all be included in a single command:

 $query = "INSERT INTO contacts VALUES ('','Jim','Doe','01134 567899','00111 222333','02234 567811','jimdoe@gabcdenet.com','http://www.abcdenet.com')";

 Initially, you may find all these confusing. Don’t worry, though as we will be discussing everything in this section.

 The

 $query=

 is included as we want to assign value to the variable $query.

 Next, the part that says

 INSERT INTO contacts VALUES

 is very easy to understand. It simply instructs PHP to insert values enclosed in parenthesis into the contacts table. The items in the parenthesis are the information to add. The fields are used in order, and the information between quotes will be inserted. For instance,

 Jim

 will be inserted into the field named ‘first’ which is the 2nd field in the table.

 Notice that there is no value inserted into the 1st field in the table, id. Remember that this field acts as an index field, meaning no two records in the table will bear the same id. Thus, when the database was created, the id filed was set to auto_increment. Once no value is assigned to it, the record will automatically assume the next number in the series. Unless a starting number is specified, the first record will get id 1.

 In the next chapter, we will discuss the commands to execute when using variables and forms to add information, and displaying information in the database.

 Chapter 5: Displaying Data

 Previously, you have set up a database table and added some info into it. Now, let us learn how you can generate the input pages your table, as well as how you can display the entire content.

 HTML Input

 Using HTML to input data is very similar to inserting data using PHP scripts. The advantage, though of using HTML is that you don’t have to modify the code for every bit of information you wish to input. You can likewise allow users to enter their own data.

 The code below will display an HTML page containing textboxes where appropriate details must be entered:

 [image: Picture8.png]

 This page can be formatted and you can apply other changes to it. What we have created is a simple form just to get you going. You will next have to modify the script we previously wrote. Instead of info to input in the database, we will now use variables.

 [image: Picture1-1.png]

 Save the script as insert.php. This way, the HTML form can call it. It will work because, rather than having the data entered locally, the same will be inputted to the form and held in variables that are passed on to the PHP.

 You can likewise opt to add a message to the script to confirm the data input. You can brush up on your PHP skills if you don’t know yet how to do it, as this requires some basic PHP coding.

 Outputting Data

 Your table should by now contain at least single record, maybe a lot more, and you are probably itching to learn how to output the information using PHP. Before proceeding, however, you must be familiar with how loops work in PHP as these are used in this book to output data.

 The very first command you need to issue is a query that should look like this:

 SELECT * FROM contacts

 This basic MySQL command tells PHP to select all records in the table named contacts. Because we expect an output when the command is executed, a variable must be associated to the results:

 [image: Picture5.png]

 For this particular case, the entire database content is now stored in the special array that is named $result. In order to output the data, you must first assign every item as a separate variable. This is a tw0-stage process that involves counting rows and setting up the loop.

 Counting Rows

 Just before going through the entire data in the result variable, you first have to identify the exact number of rows present. Sure, you can always include this in the code, but this isn’t a recommended solution because you would have to change the entire script each time a new row is created or added. You can use the following command, instead:

 $num=mysql_numrows($result);

 This assigns the count of rows saved in $result to $num. You can then use it in a loop to generate all the information and send it as an output screen.

 How to Setup the Loop

 Now, you need to set up a loop that will take each of the results row and print the stored data. Through the $num you defined earlier, you can very easily loop through each of the rows. $i in the code below represents the repetitions the loop is made to run. It is likewise used to ensure that the loop ends once the results’ end is reached so errors can be avoided.

 $i=0;

 while ($i < $num) {

 CODE

 $i++;

 }

 This basic PHP loop executes the code at the right number of times. At every pass, $i will assume a value higher than the previous pass. This is quite useful as the variable can be used to instruct the script as to which particular line of the results to read. Because the first line of the MySQL output has the value of 0, the script will be correctly executed.

 Assigning Data to Variables

 The final section of the script is to assign a variable to each bit of data. Here is the proper code to use for this purpose:

 [image: Picture7.png]

 Take every piece of data from the database individually, then use the following code:

 [image: Picture2.png]

 At this point, there is no need to get the id field, though it can be done, since it is not required in the output page we are currently working on.

 Combining the Script

 You can now create an entire script to send the data as output. Note that the following script does not have a formatted output.

 [image: Picture3.png]

 In the next part of this tutorial, you will learn how to format your data output, as well as how you can select various data from the database.

 Chapter 6: More Output

 In the previous chapters, you have learned how to create tables and databases, and insert and display the information contained in the database. In this chapter, you will learn other ways on how you can display and output the information contained in the database.

 Formatting Output

 You now know how to output a list containing all the names and info of people maintained in your database. The output you got, however, was very basic, and would not be of any good use to your working website. This problem can be addressed by formatting the output, and displaying it in table format.

 Formatting your output is not really complicated. All you have to do is to create a code using PHP to output HTML. Just make sure to include the variables in their respective spaces. One of the easiest methods to achieve this is close your PHP tag, and then normally entering the HTML. Once you get to a variable, include it using the following code:

 <? echo $variablename; ?>

 in the appropriate position in your script.

 Likewise, you can use the PHP loop for repeating the necessary code and including it as part of a bigger table. For instance, you can use a part of the code from previous lessons that was intended to loop and output the contents of the database. You can modify the format to display the results in one larger table.

 [image: Picture4.png]

 The code will generate table headers, and then add one extra row for every record in the table. It will format the data as it is sent for output.

 If you are familiar with PHP and HTML, which you should be by now, you will find it self-explanatory. However, the last two lines in the table will still be explained. For instance:

 <a href="mailto:<? echo $email; ?>">E-mail

 This exemplifies one of the advantages of using PHP in including MySQL data as it can be used to output portions of your code and create fully dynamic pages.

 Selecting Bits of Data

 Aside from showing the entire database, PHP can also be utilized to select single or individual records, or those that match certain criteria. You can do this by using a SELECT query variation. To show the entire table, use the query

 SELECT * FROM contacts

 If you want to choose only those who have the first name “Jim,” you can use the following query code:

 SELECT * FROM contacts WHERE first='john'

 Just like other MySQL queries, the code reads like plain English, similar to how you would choose records based on a particular database field. Likewise, you have to option to select more than a single field just by adding more sections in the query:

 field='value'

 While we will not dwell deeper about this topic in this section of the eBook, you can use variables to provide the database criteria. If you are creating a search form, for example, you can get the last name of the person you want to search for and store the value in a variable named $searchlast. You can then execute the script that follows:

 $query="SELECT * FROM contacts WHERE last='$searchlast'";

 $result=mysql_query($query);

 Note that at the end of the 1st line you can find a ‘ that is followed by a ‘ prior to the semicolon.

 Security

 It is important to remember that you need to be very careful when you use the above-given technique. This is because in the absence of proper security measures, it would be quite easy for anyone to access the data on your database server, or even effect changes to your database. This can happen if the user is able to set the variable to a value that will edit the SQL string generated in a way that will serve their own purpose. We will not go into deeper discussion of this matter, but if you want more information, you can search for sites that provide more detailed information. Just type “sql injection attack” on your search engine.

 Simply put, this is one security hole that is very easy to address, although it requires some work. Always make sure to check input data for any invalid characters, and utilize the built-in functions in PHP to get rid of HTML code, control characters, and other unnecessary characters. Again, you can refer to other online sources for more information on this topic.

 Chapter 7: Single Records and Error Trapping

 In the previous chapters, you have learned how to take database data and how to display the same on the screen. For this chapter, we will be covering the final aspect of displaying data, selecting individual pieces of data, and preventing errors from happening as you output data.

 Error Trapping

 When you output all the info contained in the database, it is highly unlikely that you will find no data at all, although it is a possibility when you allow record updating and deleting. Fortunately, if you are using PHP and MySQL, you have an easy option that you can use to get around this issue.

 $num=mysql_numrows($result);

 $result stores the database query result (similar to selecting all available records). As previously explained, this code will assign a value to $num, which corresponds to the number of result rows (which, in turn, was employed in a loop in previous sections of this tutorial). You can thus create a simple error trapping script with the use of an IF statement:

 if ($num==0) {

 echo "The database does not contain any contacts ";

 } else {

 Output Loop

 }

 You can make the script more user-friendly by expanding on it. For instance, you can provide a link to your “Add Data” page if there are no existing contacts.

 Ordering Data

 You have the option not only to output information based on the field contents, you can likewise order your output based on a particular field. An example would be to list the results in alphabetical order. The default output from your queries is a list based on the id filed, starting from 1 going upwards. You can, however, sort the results based on any field you prefer.

 A good example of a useful sorting order would be to list all users alphabetically based on the last names. If you are not familiar with how standard databases work, this is simply sorting the list in ascending order – from A to Z. For numeric lists, ascending order means displaying from 1 onwards. Descending order, on the other hand will display from Z to A, or 10 to 1. You can use the following query to perform this task:

 SELECT * FROM contacts ORDER BY last ASC

 To sort the list in descending order, you can use DESC.

 Other uses of Sorting and mysql_numrows

 The value you assign to $num serves a very important purpose because aside from loops and error trapping, it has a lot of other applications. For example, you can give instructions to print out just the 5 records that were last added to the database. Initially, the results will be listed in a sort order based on the id field. This means that the record with the newest id will be added last. The result that you want is a list sorted in descending order.

 You may find a list of names sorted from the latest addition to the oldest; however, the script is not limited to displaying only the last 5. You can do this by setting your loop to run only up to 5, instead of the value of $num. Because the loop will run only 5 times, it follows that only 5 records will be in the output.

 Prior to this, it is very important to make sure that $num previously had a value that is more than 5. Once you run the loop for 5 times, and the existing number of rows is less than 5, say only 3, this would result to an error. The solution is very easy to perform, though, and the script that follows is a good example of what you need to achieve:

 if ($num>5) {

 $to=5;

 }else{

 $to=$num;

 }

 $i=0;

 while ($i < $to) {

 REST OF CODE

 The script will check if there are at least five rows in the table. If this condition is met, the loop will then be set to repeat 5 times. In case there is less than the set number of 5, the loop will still run the required repetitions in outputting the entire database.

 The id Field

 You may recall that at the start of this eBook, specifically when the process of creating a database was covered, a numerical field named id was included. This particular field was set up as auto_increment, and as the primary field. It was already explained what makes this field unique in the entire database table. In the succeeding sections, further explanation will be provided as to how the field can be used in selecting individual records from the database.

 Selecting a Particular Record

 You have previously learned how you can select a record from the table based on particular values contained in specified fields using the following code:

 SELECT * FROM contacts WHERE field='value'

 This time, we will use the unique id field to select any record from the table, to wit:

 SELECT * FROM contacts WHERE id='$id'

 id is the variable that holds the number of a particular record. As it is, it may seem useless, but there are specific instances when you will find it very useful. For instance, if you need to have website that is dynamically generated and run through data from a database using just one PHP script, you can create a code that will incorporate database data in the design. Next, you can select a particular page and outputting it by using the id field. You even have the option to use the URL of the page to specify which record you want. For Example:

 http://www.yourwebsite.com/news/items.php?item=1969

 The PHP script will then look for the record with the id value that corresponds to $item; in this case it is the record with id field 1969.

 Links for Single or Individual Records

 This method of selecting a record by using the URL can be further expanded by dynamically generating the URL. Sure, it sounds a little complicated, but don’t worry as we will discuss it in further detail. We will be creating a contacts script where you will learn how to make an update page that allows users to update or modify contact details.

 This can be done by including another column in the output that contains an update link. The link will direct the user to a specific page where he can update the record. Selecting the particular record in this page will be possible by including:

 ?id=$id

 Once the record’s id, as well as the other related information is obtained, you can now output it from the database. The code will generate a link that has the record’s id value stored in it. On the update page, a code will be provided and made available for selection.

 Chapter 8: Updating and Deleting

 By this time, you already know how to input data into the MySQL database, view the data, and select which particular info you like to see. In this chapter, you will learn how you can perform the last two actions – updating the database, as well as deleting previously maintained records from the database.

 The Update Script

 Creating links for every record to direct to the update script was discussed in the previous chapter. When you use the variable $id, you send links that would transfer the appropriate id to the script so it can then update the values in the database. This can help you write the update script that will be comprised of two sections.

 How to Display the Update Page

 Remember the individual/single record selection discussed previously? The initial part of the update script will include something similar, but has a little bit of HTML added to it so it can be more functional. But first, you have to connect to the database and choose the appropriate record.

 [image: Picture9.png]

 In the script, the ‘Space for Code’ is where the update page code will go, which is actually merely a type of output format using HTML.

 [image: Picture10.png]

 Note that the code is intended to send a standard form output, but rather than showing blank boxes similar to the form we used for inserting new records, this output already contains the latest information from the table. Thus, it is a lot more effective when used as an update script.

 Updating the Database

 The second and final stage of the script is updating the database. The required operation is very simple, and merely involves adding a new database query.

 [image: Picture11.png]

 The query instructs the database to have the contacts table updated where the id value is equal to the stored value in the variable $ud_id. In the form we used in previous sections, (you will notice that it was set as the value of the id we are trying to update) and assigned the specified values to the subsequent fields (set using the same form we used previously).

 You can then incorporate the following query into a simple code:

 [image: Picture12.png]

 The code will update the table and provide confirmation to the user.

 Deleting Records

 The last area of the contact table that we need to create is the page that will be used to delete or remove records. Similar to the Update page, this particular page must receive a record id that is sent in the URL. For example:

 delete.php?id=9

 This code is similar as the one used in updating the database, but with a slight variation in the MySQL query. Instead of using the UPDATE query, the right code to use is:

 DELETE FROM contacts WHERE id='$id'

 The code will then be utilized with the confirmation and connection code like the one above.

 Loops

 Now seems to be the most appropriate time to discuss another important application of loops in a database. Other than using a loop to obtain info from databases just like what we have done previously, you can likewise use a loop to perform queries. For instance, if you want to modify all records in the table, and have all records bearing the last name “Doe”, contain the website www.doe.com,

 [image: Picture13.png]

 You are learning fast if you notice that the same task can be done using a faster and easier method such as:

 $query1="UPDATE contacts SET web='http://www.doe.com' WHERE last='Doe'";

 This way, a loop is not necessary.

 Chapter 9: Finishing the Script

 Through the entire course of this eBook, we have discussed how you can use PHP to work with a MySQL database, as well as how you can use the simple and more common commands available at your disposal. Likewise, we have covered the necessary procedures in creating a simple contacts management system that showed you a number of options available for you to use. In this chapter, we will discuss several MySQL tips, and we will come up with a final version of your PHP script.

 Saving Time

 If you have been observing and keeping what we have been doing in mind, you will notice that when you create complex scripts that work with databases, among the most common things that we are doing is to connect to a database. If you say we can actually save a lot of time if we create either a connection file or a username/password file and have it ready to use anytime, you are absolutely correct. One great example for this type of file would be to create one that is aptly named

 dbinfo.inc.php

 and including the following info in the script:

 [image: Picture14.png]

 Just replace the appropriate parts, and then in your PHP files, you can use the following script:

 include("dbinfo.inc.php");

 or

 include("/full/path/to/file/dbinfo.inc.php");

 in the beginning, after which you can use the $database, $username, and $password variables for the rest of your codes without the finding the need to have them defined each and every time. Likewise, if in the future you have to modify the information, like if you transfer to a new web host, you only have to edit one file.

 The same principle can be used when connecting to a database. You just have to put the appropriate connection code in the saved file, but be sure to always close the connection in each script; otherwise, issues with your MySQL server may arise.

 Searching

 You can perform a limited type of searching on your database through a built-in function in MySQL. To do this operation, you have to use the LIKE function this way:

 [image: Picture16.png]

 The command LIKE, to explain a bit further, instructs the database to perform the “searching” feature. The % signs (or percent signs) indicate that they can be replaced by any other data. The $string variable, meanwhile, will hold the search string. Any number or word can take its place. For example:

 LIKE '%guitar%'

 This will output all the rows that contain guitar in the field that was specified.

 In the same manner, you can make do without one of the % signs. This way, you can specify the string position. This is how you do it:

 LIKE 'guitar%'

 This will output only the rows where the field begins specifically with guitar. Thus:

 The guitar is next to the table

 will not appear.

 Summary

 To sum up everything we have covered thus far, you should, at this point, know the basics of programming in PHP and MySQL in creating database-enabled programs and websites. You know that being able to use databases with the web provides you with a wide array of things to do that can give your website a big boost. You can make your website a lot more powerful. You can also save a lot of time in updating your site, as well as allow user interaction to gain more feedback, and a lot more.

 Chapter 10: Common PHP and MySQL Development Mistakes to Avoid

 According to the definition given by Wikipedia, LAMP is a free and open source software intended to be a solution stack. The acronym represents the initial letters of the words Linux (an operating system), Apache (an HTTP server), and MySQL (a database software), and any one among PHP, Python, or Perl. These are the prime components you need in building and setting up a viable general purpose webserver.

 From that very definition, it is obvious that the database is a basic component of almost all web applications. These include even the development of static websites that use different CMS software like WordPress, Drupal, and Joomla. All these platforms have a backend database that they use to store static information and content. If you are a user of PHP, Python, or Perl, then it is almost certain that MySQL is likewise an important part of the development process.

 PHP is very easy. Now, is it an advantage or a disadvantage?

 As a scripting language, one of PHP’s biggest strengths has been its user-friendliness and ease of use. Any entry-level or aspiring programmer who is lucky enough to have some background of C Language and has a good understanding of HTML/JavaScript/CSS can get a good head start in programming using PHP. However, this same advantage does not guaranty an efficient and successful completion of projects. After all, to be successful, what is important are stability, sustainability, reliability, and fail safeness.

 For you to come up with a reliable and stable code, as well as building a robust, dependable, and solid database, it would take a certain level of expertise, and this will only come with experience, practice, and learning from your mistakes.

 Having said that, here are the 10 most common pitfalls that often befall a lot of PHP and MySQL developers, which you are well-advised to avoid:

 1.Opting for the Wrong Storage Engine: InnoDB vs. MyISAM

 There are numerous storage engine options that MySQL offers; however, the most popular among them are InnoDB and MyISAM.

 The default storage engine is MyISAM that is based on the ancient version of the ISAM storage engine that is currently no longer available. Every table in MyISAM is stored in three files on disk.

 •<tablename> frm – this stores the table format or structure

 •<tablename> MYD – this stores table data

 •<tablename> MYD – this holds table index info

 On the other hand, InnoDB is a high-performance, highly reliable MySQL storage engine. Beginning with MySQL ver. 5.5, InnoDB is the default storage engine, and is classified as ACID compliant. ACID stands for atomicity, consistency, isolation, and durability.

 MyISAM employs table level locking, while InnoDB utilizes row-level-locking. In this case, table-level-locking can pose as a vital performance bottleneck when numerous writes to the table are simultaneously being done.

 Among PHP developers, there is a common tendency to select MyISAM over InnoDB mainly because they deem that the former is much easier to use compared to the latter.

 2.Failure to Encrypt the Password Field

 Again, this is a very common propensity of PHP programmers to have their passwords stored in in a string without utilizing any type of encryption function/algorithm like MD5 or base_64. This makes things a lot easier for hackers to employ SQL injections. You must therefore always store your password field as MD5(password) since MD5 is not reversible, and even the DBA himself cannot view the password. Although the DBA can always reset it through a simple UPDATE query, the point is that the password field information is exposed neither to the DBA or the programmer.

 3.Failure to Validate User Inputs

 Sure, it is very difficult to blindly trust user inputs. Thus, you need to validate each and every string using server-side codes. Don’t rely on JavaScript, either. Here is a very simple example of an SQL injection attack script that works just fine.

 [image: Picture15.png]

 To penetrate it, a hacker will just enter “admin'; –” in the field provided for the username, and the query will appear something like this:

 SELECT userid FROM usertable WHERE username=’admin';

 The hacker may be easily logged in as “admin”, but he must know the correct password since it is commented outside of the SQL.

 4.Use of * in SELECT Queries

 Do not use * to return a column in queries – not now, not ever! Whenever possible, specify explicitly the columns that you want. If all the columns that are referenced (selected and filtered) in the query exist as na index (aka covering index), there is no need for the database to touch the table. Everything can be resolved simply by scanning only the index. When you select all columns, you take away this option from the optimizer. Likewise, selecting a fewer number of columns can speed up the results.

 5.Use of the Wrong Data Types

 There’s a wide range of string, numeric and time data types offered by MySQL. Exert some effort and a little thought when choosing which particular data type to use for a field.

 If you intend to store Boolean value such as 1 or 0 in an INTEGER field, instead of using INTEGER (10), use TINYIN (3) instead.

 On the other hand, if you need to store one-character values such as “T” or “F”, or A, B, C, etc., then you can go for CHAR(1), instead of using VARCHAR.

 Now, if you need to store a date value, use a DATE, TIMESTAMP, or DATETIME field. You will only complicate your SQL queries by using a STRING or INTEGER field; it can also result to errors. TIMESTAMP likewise allows you to set default values as CURRENT_TIMESTAMP. Remember, however, that only a single TIMESTAMP field can carry a CURRENT_TIMESTAMP default value.

 6.Over- or Under-Indexing

 Indexes (or indices), as a rule of thumb, must be applied to all columns that are named in a SELECT query’s WHERE clause.

 For instance, assume that there is a user table that has a numeric id (primary key) as well as an email ad. While logging in, MySQL must be able to find the correct ID simply by searching for an email address. With proper indexing, MySQL is able to use a speedy search algorithm to quickly find the email – instantly. If there is no index, MySQL will go the long trek of checking every record in the current sequence until it finds the right address.

 It can be quite tempting to add an index to each column. Keep in mind, however that indexes are regenerated each time an UPDATE or INSERT command is executed on the table. This can adversely affect performance, so add indexes only when necessary.

 7.Properly Opening and Closing Database Connections

 Among all errors cited in this chapter, this is probably the most common mistake brought about by the laziness in many PHP and MySQL developers.

 Basically, there are three most popular ways in connecting to MySQL via PHP:

 •PDO

 •mysql_connect

 •mysql_pconnect

 Both mysql_pconnect and mysql_connect have been depreciated as of the arrival of PHP 5.5.0, and are likely going to be removed in the not so distant future. PDO therefore remains as the only viable options for developers and programmers.

 If you prefer to use mysql_connect, it is important to make sure that you close all connections properly to prevent receiving “too many connections” error messages. In a way, mysql_pconnect is safer to use, but since both these methods have already been depreciated, it is high time for you to move on and start using PDO for your current and future applications, regardless of whether it is a new system or a legacy system.

 8.Failure to Optimize Queries

 Approximately 99% of all performance issues in PHP are due to the database (aka not optimized SQL queries). A single bad SQL query is capable of doing a significant amount of damage to your web application. The EXPLAIN statement in MySQL can be of help - somewhat. In addition, you will also have to turn on very slow query and error logs in your DB server in order to understand which of your queries are poorly performing, and which queries are causing the errors that you have to promptly resolve.

 9.Preferring PHP over MySQL

 Most newbies to LAMP tend to prefer solving problems using PHP codes, instead of writing an efficiently-working MySQL query.

 For example, in solving a problem involving the computation of average values based on given attribute values, inexperienced PHP programmers would resort to computing the average using the PHP loop function. There is a much better way to do this, which is to use the built-in AVG() function in MySQL.

 It is a mistake to run an SQL query inside a loop. Instead, using a single query, obtain the required records; and then use the WHILE loop to process the information.

 10.Not Using UTF-8

 For internationalization purposes, UTF- 8 has been proven to be vital. Although PHP won’t properly support it until the release of PHP ver. 6.0, you cannot avoid setting your MySQL character sets to conform to UTF-8. The importance of internationalization can be seen from the fact that other than the US, UK, Australia, and some parts of Asia, the rest of the world prefers using their native language over English.

 Likewise, never forget to regularly back-up your database to make sure that your applications are failsafe, as far as data security is concerned.

 It may be true that MySQL is the most prevalent database used by LAMP developers, as well as by other open-source technology programmers including Groovy, Python, and Ruby, among others. However, there are other options aside from MySQL. The closest competitors are probably Firebird and PostgreSQL. Oracle offers 10g Express, while Microsoft has SQL Server Express. Both are free versions of bigger enterprise editions. For embedded or smaller applications, SQLite may be a good option. With the arrival of the new NOSQL era, other options like Couch DB and MongoDB are emerging for huge data volumes.

 Conclusion

 Thank you again for downloading this book!

 I hope this book was able to help you to learn the basics in creating scripts in PHP with MySQL.

 The next step is to practice and apply what you have learned from this book. Create useful scripts that will interact with the database in your website and make full use of the stored information you can extract.

 Finally, if you enjoyed this book, then I’d like to ask you for a favor, would you be kind enough to leave a review for this book on Amazon? It’d be greatly appreciated!

 Thank you and good luck!

 Check Out Other Books by ‘ZERO to HERO’

 Below you’ll find some of our other popular books that are popular on Amazon and Kindle as well. Simply click on the links below to check them out. Alternatively, you can visit my author page on Amazon to see other work done by me.

 Programming Languages

 •HTML: Learn HTML Programming With Ultimate Zero to Hero Programming Crash Course for Beginners

 •PHP: Learn PHP & mySQL Programming With Ultimate Zero to Hero Programming Crash Course for Beginners

 •R: Learn R Programming With Ultimate Zero to Hero Programming Crash Course for Beginners

 •Ruby: Learn Ruby Programming With Ultimate Zero to Hero Programming Crash Course for Beginners

 •Java: Learn Java Programming With Ultimate Zero to Hero Programming Crash Course for Beginners

 •Python: Learn Python Programming With Ultimate Zero to Hero Programming Crash Course for Beginners

 * BONUS *: FREE PHP Course!

 I know how important it is to implement what you learn, or even learn by taking action. As my “Thank You” for downloading this book I provide you with FREE PHP course where more than 900k students are enrolled! With this course you will learn and use more of PHP programming language, a widespread language that powers sites like Facebook

 So what are you waiting for? Click here to get started now!

 Or go to: http://bit.ly/1O14r5G

 We want you to succeed in your goal to mastering PHP! Please make use of this course, it will help you a lot!

 © Copyright 2014 by Zero to Hero - All rights reserved.

 This document is geared towards providing exact and reliable information in regards to the topic and issue covered. The publication is sold with the idea that the publisher is not required to render accounting, officially permitted, or otherwise, qualified services. If advice is necessary, legal or professional, a practiced individual in the profession should be ordered.

 - From a Declaration of Principles which was accepted and approved equally by a Committee of the American Bar Association and a Committee of Publishers and Associations.

 In no way is it legal to reproduce, duplicate, or transmit any part of this document in either electronic means or in printed format. Recording of this publication is strictly prohibited and any storage of this document is not allowed unless with written permission from the publisher. All rights reserved.

 The information provided herein is stated to be truthful and consistent, in that any liability, in terms of inattention or otherwise, by any usage or abuse of any policies, processes, or directions contained within is the solitary and utter responsibility of the recipient reader. Under no circumstances will any legal responsibility or blame be held against the publisher for any reparation, damages, or monetary loss due to the information herein, either directly or indirectly.

 Respective authors own all copyrights not held by the publisher.

 The information herein is offered for informational purposes solely, and is universal as so. The presentation of the information is without contract or any type of guarantee assurance.

 The trademarks that are used are without any consent, and the publication of the trademark is without permission or backing by the trademark owner. All trademarks and brands within this book are for clarifying purposes only and are the owned by the owners themselves, not affiliated with this document.

OEBPS/Images/00011.jpeg
<form actiol
<input type:
echo $id; ?>">

First Name: <input type="text" name="ud_first"
value="<? echo $first; ?>">

Last Name: <input type="text" name="ud_last"
value="<? echo $last; ?>">

Phone Number: <input type="text"
name="ud_phone" value="<? echo $phone;
?>"><hr>

Mobile Number: <input type="text"
name="ud_mobile" value="<? echo $mobile;
?>">

Fax Number: <input type="text" name="ud_fax"
value="<? echo $fax; ?>">

E-mail Address: <input type="text"
name="ud_email" value="<? echo $email;
?>">

Web Address: <input type="text"
name="ud_web" value="<? echo Sweb; ?>">

<input type="Submit" value="Update">

</form>

updated.php" metho
dden" name="ud_i

"post">
value="<?

OEBPS/Images/00010.jpeg
<$id=$_GET['id'];

Susername="username";
$Spassword="password";
Sdatabase="your_database";
mysql_connect(localhost,$Susername,$password);

Squery=" SELECT * FROM contacts WHERE
id="$id";

Sresult=mysql_query($query);
$Snum=mysql_numrows($result);
mysql_close();

$i=0;

while ($i < Snum) {
Sfirst=mysql_result($result,$i,"first");
Slast=mysql_result(Sresult,$i,"last");
Sphone=mysql_result($result,$i,"phone");
Smobile=mysql_result(Sresult,Si,"mobile");
Sfax=mysql_result($result,$i,"fax");
Semail=mysql_result($result,$i,"ema
Sweb=mysql_result($result,$i,"web");

Space For Code

++5i;

}

OEBPS/Images/00013.jpeg
$ud_id=$_POST['ud_id"];
Sud_first=5_POST['ud_first'];
Sud_last=5_POST['ud_last'];
Sud_phone=$_POST['ud_phone'];
Sud_mobile=$_POST['ud_mobile'];
Sud_fax=$_POST['ud_fax'];
Sud_email=5_POST['ud_email'];
Sud_web=$_POST['ud_web'];

Susername="username";

Spassword="password";
Sdatabase="your_database";
mysql_connect(localhost,Susername, $password);

Squery="UPDATE contacts SET first="Sud_first',
last="Sud_last', phone='Sud_phone',
mobile="'Sud_mobile', fax="Sud_fax',
email='Sud_email', web='Sud_web' WHERE
id="Sud_id";

mysql_query($query);

echo "Record Updated";

mysql_close();

OEBPS/Images/00012.jpeg
<$Squery = "UPDATE contacts SET first = 'Sud_first',
last = 'Sud_last', phone = 'Sud_phone', mobile =
'Sud_mobile', fax = 'Sud_fax', email = 'Sud_email',
web = 'Sud_web' WHERE id = 'Sud_id";

OEBPS/Images/00015.jpeg
<?
Susername="databaseusername";
Spassword="databasepassword";

Sdatabase="databasename";
>

OEBPS/Images/00014.jpeg
Standard Database Connection Code

Squery=" SELECT * FROM contacts WHERE
last="Smith"";
Sresult=mysql_query(Squery);
Snum=mysql_numrows($result);

$i=0;

while (Si < Snum) {
Sid=mysql_result(Sresult,$i,"id");
Squery1="UPDATE contacts SET
web="http://www.smith.com' WHERE id='$id"";
mysql_query($query);

++5i;

}

mysql_close();

OEBPS/Images/cover.jpeg
LERD TO HEROD

————————————e®——
Learn PHP & mySQL With Ultimate
Zero to Hero Programming Crash
Course for Beginners

Do 50;«
ewven code
bro?
o
oo™

PAUL MADOFF

OEBPS/Images/EPUB LOGO3.jpg

OEBPS/Images/00017.jpeg
Susername = $_POST["name"];
Spassword = $_POST["password"];

$sql = "SELECT userid FROM usertable WHERE username='Susername' AND password='$password';";

OEBPS/Images/00016.jpeg
SELECT * FROM tablename WHERE fieldname LIKE '%$string%'

OEBPS/Images/00002.jpeg
Susername="username";
Spassword="password";
Sdatabase=" sql.myserver.com ";

OEBPS/Images/00001.jpeg
<?

Suser="username";
Spassword="password";
Sdatabase="database";
mysql_connect(localhost,Suser,Spassword);
@mysql_select_db(Sdatabase) or die(
"Unable to select database");
Squery="CREATE TABLE contacts (id int(8) NOT
NULL auto_increment,first varchar(16) NOT
NULL,last varchar(16) NOT NULL,phone
varchar(18) NOT NULL,mobile varchar(18)
NOT NULL,fax varchar(18) NOT NULL,email
varchar(25) NOT NULL,web varchar(25) NOT
NULL,PRIMARY KEY (id),UNIQUE id (id),KEY
id_2 (id))";

mysql_query($Squery);

mysql_close();

?>

OEBPS/Images/00004.jpeg
£7

Susername="username';
Spassword="password";
Sdatabase="your_database";

Sfirst=S_POST['first'];
Slast=S$_POST['last'];
Sphone=$_POST['phone'];
Smobile=S_POST['mobile'];
Sfax=S_POST['fax'];
Semail=S_POST['email'];
Sweb=S$_POST['web'];

mysql_connect(localhost,Susername,Spassword);
@mysql_select_db(Sdatabase) or die("Unable to
select database");

Squery = "INSERT INTO contacts VALUES
(",'Sfirst','Slast’,'Sphone’,'Smobile’,'Sfax’,'Semail’,'Swe
b)";

mysql_query(Squery);

mysql_close();
>

OEBPS/Images/00003.jpeg
<form action="insert.php" method="post">

First Name: <input type="text" name="first">

Last Name: <input type="text" name="last">

Phone: <input type="text" name="phone">

Mobile: <input type="text" name="mobile">

Fax: <input type="text" name="fax">

E-mail: <input type="text" name="email">

Web: <input type="text" name="web">

<input type="Submit">

</form>

OEBPS/Images/00006.jpeg
$Svariable=mysq_result(Sresult,Si,"fieldname");

OEBPS/Images/00005.jpeg
Squery="SELECT * FROM contacts";
Sresult=mysql_query(Squery);

OEBPS/Images/00008.jpeg
<?

$username="username";
$password="password";
$database="your_database";

mysql_connect(localhost,$username,$password);
@mysql_select_db($database) or die("Unable to select
database");

$query="SELECT * FROM contacts";

$result=mysql_query($query);
$num=mysql_numrows(S$result);
mysql_close();

echo "<center>Database
Output</center>

";

$i=o;
while ($i < $num) {

$first=mysql_result(S$result,$i,"first");
$last=mysql_result(S$result,$i,"last");
$phone=mysql_result($result,$i,"phone");
$mobile=mysql_result($result,$i,"mobile");
$fax=mysql_result($result,$i,"fax");
$email=mysql_result($result,$i,"email");
$web=mysql_result($result,$i,"web");

echo "$first $last
Phone: $phone
Mobile:
$mobile
Fax: $fax
E-mail: $email
Web:
$web
<hr>
";

$i++;

b

2>

OEBPS/Images/00007.jpeg
Sfirst=mysql_result(Sresult,Si,"first");
Slast=mysq|_result(Sresult,Si,"last");
Sphone=mysq|l_result(Sresult,Si,"phone");
Smobile=mysql_result(Sresult,Si,"mobile");
Sfax=mysql_result(Sresult,Si,"fax");
Semail=mysq|_result(Sresult,Si,"email");
Sweb=mysql_result(Sresult,Si,"web");

OEBPS/Images/00009.jpeg
<table border="0"cellspacing="2"
cellpadding="2">

<tr>

<th> <font face="Arial, Helvetica, sans-
serif'>Namex</th>

<th> <font face="Arial, Helvetica, sans-
serif'>Phone </th>

<th> <font face="Arial, Helvetica, sans-
serif'>Mobile< /font></th>

<th> <font face="Arial, Helvetica, sans-
serif'>Fax </th>

<th> E-
mail</th>

<th> <font face="Arial, Helvetica, sans-
serif'>Website< /font></th>

</tr>

<?
$i=0;
while ($i < $num) {

$first=mysql_result($result,$i,"first");
slast=mysql_result($result,$i,"last");
$phone=mysql_result($result,$i,"phone");
$mobile=mysql_result($result,$i, "mobile");
Sfax=mysql_result(Sresult,$i,"fax");
Semail=mysql_result(Sresult,i,"email");
$web=mysql_result($result,$i, "web");

2

<tr>
<td> <?
echo $first." ".$last; 2> </td>

<td><?
echo $phone; 2> </td>

<td><?
echo $mobile; 2> </td>

<td> <?
echo $fax; 2> </td>

<td><a
href="mailto: <?echo $email; ?>">E-
mail</td>

<td> <a
href="<?echo $web;
2>">Website</td>

</tr>

<?
$it++;

}

echo "</table>";

