

 [image: First Edition]

 Real World Haskell

Bryan O’Sullivan

John Goerzen

Donald Bruce Stewart

[image: image with no caption]

Beijing • Boston • Farnham • Sebastopol • Tokyo

Dedication

To Cian, Ruairi, and Shannon, for the love and joy they
 bring.
—Bryan

For my wife, Terah, with thanks for all her love, encouragement,
 and support.
—John

To Suzie, for her love and support.
—Don

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596514983/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

Have We Got a Deal for You!

Haskell is a deep language; we think
 learning it is a hugely rewarding experience. We will focus on three
 elements as we explain why. The first is novelty:
 we invite you to think about programming from a different and valuable
 perspective. The second is power: we’ll show you
 how to create software that is short, fast, and safe. Lastly, we offer
 you a lot of enjoyment: the pleasure of applying
 beautiful programming techniques to solve real problems.
Novelty

Haskell is most likely quite different
 from any language you’ve ever used before. Compared to the usual set
 of concepts in a programmer’s mental toolbox, functional programming
 offers us a profoundly different way to think about software.
In Haskell, we deemphasize code that
 modifies data. Instead, we focus on functions that take immutable
 values as input and produce new values as output. Given the same
 inputs, these functions always return the same results. This is a core
 idea behind functional programming.
Along with not modifying data, our Haskell
 functions usually don’t talk to the external world; we call these
 functions pure. We make a strong distinction
 between pure code and the parts of our programs that read or write
 files, communicate over network connections, or make robot arms move.
 This makes it easier to organize, reason about, and test our
 programs.
We abandon some ideas that might seem
 fundamental, such as having a for loop built into the
 language. We have other, more flexible, ways to perform repetitive
 tasks.
Even the way in which we evaluate
 expressions is different in Haskell. We defer every computation until
 its result is actually needed—Haskell is a lazy
 language. Laziness is not merely a matter of moving work around, it
 profoundly affects how we write programs.

Power

Throughout this book, we will show you how
 Haskell’s alternatives to the features of traditional languages are
 powerful and flexible and lead to reliable code. Haskell is positively
 crammed full of cutting-edge ideas about how to create great
 software.
Since pure code has no dealings with the
 outside world, and the data it works with is never modified, the kind
 of nasty surprise in which one piece of code invisibly corrupts data
 used by another is very rare. Whatever context we use a pure function
 in, the function will behave consistently.
Pure code is easier to test than code that
 deals with the outside world. When a function responds only to its
 visible inputs, we can easily state properties of its behavior that
 should always be true. We can automatically test that those properties
 hold for a huge body of random inputs, and when our tests pass, we
 move on. We still use traditional techniques to test code that must
 interact with files, networks, or exotic hardware. Since there is much
 less of this impure code than we would find in a traditional language,
 we gain much more assurance that our software is solid.
Lazy evaluation has some spooky effects.
 Let’s say we want to find the k least-valued
 elements of an unsorted list. In a traditional language, the obvious
 approach would be to sort the list and take the first
 k elements, but this is expensive. For
 efficiency, we would instead write a special function that takes these
 values in one pass, and that would have to perform some moderately
 complex bookkeeping. In Haskell, the sort-then-take approach actually
 performs well: laziness ensures that the list will only be sorted
 enough to find the k minimal elements.
Better yet, our Haskell code that operates
 so efficiently is tiny and uses standard library functions:
-- file: ch00/KMinima.hs
-- lines beginning with "--" are comments.

minima k xs = take k (sort xs)
It can take a while to develop an
 intuitive feel for when lazy evaluation is important, but when we
 exploit it, the resulting code is often clean, brief, and
 efficient.
As the preceding example shows, an
 important aspect of Haskell’s power lies in the compactness of the
 code we write. Compared to working in popular traditional languages,
 when we develop in Haskell we often write much less code, in
 substantially less time and with fewer bugs.

Enjoyment

We believe that it is easy to pick up the
 basics of Haskell programming and that you will be able to
 successfully write small programs within a matter of hours or
 days.
Since effective programming in Haskell
 differs greatly from other languages, you should expect that mastering
 both the language itself and functional programming techniques will
 require plenty of thought and practice.
Harking back to our own days of getting
 started with Haskell, the good news is that the fun begins early: it’s
 simply an entertaining challenge to dig into a new language— in which
 so many commonplace ideas are different or missing—and to figure out
 how to write simple programs.
For us, the initial pleasure lasted as our
 experience grew and our understanding deepened. In other languages,
 it’s difficult to see any connection between science and the
 nuts-and-bolts of programming. In Haskell, we have imported some ideas
 from abstract mathematics and put them to work. Even better, we find
 that not only are these ideas easy to pick up, but they also have a
 practical payoff in helping us to write more compact, reusable
 code.
Furthermore, we won’t be putting any
 “brick walls” in your way. There are no especially
 difficult or gruesome techniques in this book that you must master in
 order to be able to program effectively.
That being said, Haskell is a rigorous
 language: it will make you perform more of your thinking up front. It
 can take a little while to adjust to debugging much of your code
 before you ever run it, in response to the compiler telling you that
 something about your program does not make sense. Even with years of
 experience, we remain astonished and pleased by how often our Haskell
 programs simply work on the first try, once we fix those compilation
 errors.

What to Expect from This Book

We started this project because a growing
 number of people are using Haskell to solve everyday problems. Because
 Haskell has its roots in academia, few of the Haskell books that
 currently exist focus on the problems and techniques of the typical
 programming that we’re interested in.
With this book, we want to show you how to
 use functional programming and Haskell to solve realistic problems. We
 take a hands-on approach: every chapter contains dozens of code samples,
 and many contain complete applications. Here are a few examples of the
 libraries, techniques, and tools that we’ll show you how to
 develop:
	Create an application that downloads
 podcast episodes from the Internet and stores its history in an SQL
 database.

	Test your code in an intuitive and
 powerful way. Describe properties that ought to be true, and then
 let the QuickCheck library generate test cases automatically.

	Take a grainy phone camera snapshot of a
 barcode and turn it into an identifier that you can use to query a
 library or bookseller’s website.

	Write code that thrives on the Web.
 Exchange data with servers and clients written in other languages
 using JSON notation. Develop a concurrent link checker.

A Little Bit About You

What will you need to know before reading
 this book? We expect that you already know how to program, but if
 you’ve never used a functional language, that’s fine.
No matter what your level of experience
 is, we tried to anticipate your needs; we go out of our way to explain
 new and potentially tricky ideas in depth, usually with examples and
 images to drive our points home.
As a new Haskell programmer, you’ll
 inevitably start out writing quite a bit of code by hand for which you
 could have used a library function or programming technique, had you
 just known of its existence. We packed this book with information to
 help you get up to speed as quickly as possible.
Of course, there will always be a few
 bumps along the road. If you start out anticipating an occasional
 surprise or difficulty along with the fun stuff, you will have the
 best experience. Any rough patches you might hit won’t last
 long.
As you become a more seasoned Haskell
 programmer, the way that you write code will change. Indeed, over the
 course of this book, the way that we present code will evolve, as we
 move from the basics of the language to increasingly powerful and
 productive features and techniques.

What to Expect from Haskell

Haskell is a general-purpose programming
 language. It was designed without any application niche in mind.
 Although it takes a strong stand on how programs should be written, it
 does not favor one problem domain over others.
While at its core, the language encourages a
 pure, lazy style of functional programming, this is the
 default, not the only option. Haskell also supports
 the more traditional models of procedural code and strict evaluation.
 Additionally, although the focus of the language is squarely on writing
 statically typed programs, it is possible (though rarely seen) to write
 Haskell code in a dynamically typed manner.
Compared to Traditional Static Languages

Languages that use simple static type
 systems have been the mainstay of the programming world for decades.
 Haskell is statically typed, but its notion of what types are for and
 what we can do with them is much more flexible and powerful than
 traditional languages. Types make a major contribution to the brevity,
 clarity, and efficiency of Haskell programs.
Although powerful, Haskell’s type system
 is often also unobtrusive. If we omit explicit type information, a
 Haskell compiler will automatically infer the type of an expression or
 function. Compared to traditional static languages, to which we must
 spoon-feed large amounts of type information, the combination of power
 and inference in Haskell’s type system significantly reduces the
 clutter and redundancy of our code.
Several of Haskell’s other features
 combine to further increase the amount of work we can fit into a
 screenful of text. This brings improvements in development time and
 agility; we can create reliable code quickly and easily refactor it in
 response to changing requirements.
Sometimes, Haskell programs may run more
 slowly than similar programs written in C or C++. For most of the code
 we write, Haskell’s large advantages in productivity and reliability
 outweigh any small performance disadvantage.
Multicore processors are now ubiquitous,
 but they remain notoriously difficult to program using traditional
 techniques. Haskell provides unique technologies to make multicore programming more tractable. It
 supports parallel programming, software transactional memory for
 reliable concurrency, and it scales to hundreds of thousands of
 concurrent threads.

Compared to Modern Dynamic Languages

Over the past decade, dynamically typed,
 interpreted languages have become increasingly popular. They offer
 substantial benefits in developer productivity. Although this often
 comes at the cost of a huge performance hit, for many programming
 tasks productivity trumps performance, or performance isn’t a
 significant factor in any case.
Brevity is one area in which Haskell and
 dynamically typed languages perform similarly: in each case, we write
 much less code to solve a problem than in a traditional language.
 Programs are often around the same size in dynamically typed languages
 and Haskell.
When we consider runtime performance,
 Haskell almost always has a huge advantage. Code compiled by the
 Glasgow Haskell Compiler (GHC) is typically between 20 to 60 times
 faster than code run through a dynamic language’s interpreter.
 GHC also provides an
 interpreter, so you can run scripts without compiling them.
Another big difference between dynamically
 typed languages and Haskell lies in their philosophies around types. A
 major reason for the popularity of dynamically typed languages is that
 only rarely do we need to explicitly mention types. Through automatic
 type inference, Haskell offers the same advantage.
Beyond this surface similarity, the
 differences run deep. In a dynamically typed language, we can create constructs that
 are difficult to express in a statically typed language. However, the
 same is true in reverse: with a type system as powerful as Haskell’s,
 we can structure a program in a way that would be unmanageable or
 infeasible in a dynamically typed language.
It’s important to recognize that each of
 these approaches involves trade-offs. Very briefly put, the Haskell
 perspective emphasizes safety, while the dynamically typed outlook
 favors flexibility. If someone had already discovered one way of
 thinking about types that was always best, we imagine that everyone
 would know about it by now.
Of course, we, the authors, have our own
 opinions about which trade-offs are more beneficial. Two of us have
 years of experience programming in dynamically typed languages. We
 love working with them; we still use them every day; but usually, we
 prefer Haskell.

Haskell in Industry and Open Source

Here are just a few examples of large
 software systems that have been created in Haskell. Some of these are
 open source, while others are proprietary products:
	ASIC and FPGA design software (Lava,
 products from Bluespec, Inc.)

	Music composition software
 (Haskore)

	Compilers and compiler-related tools
 (most notably GHC)

	Distributed revision control
 (Darcs)

	Web middleware (HAppS, products from
 Galois, Inc.)

The following is a sample of some of the
 companies using Haskell in late 2008, taken from the Haskell
 wiki:
	ABN AMRO
	An international bank. It uses Haskell in investment
 banking, in order to measure the counterparty risk on portfolios
 of financial derivatives.

	Anygma
	A startup company. It develops multimedia content creation
 tools using Haskell.

	Amgen
	A biotech company. It creates mathematical models and
 other complex applications in Haskell.

	Bluespec
	An ASIC and FPGA design software vendor. Its products are
 developed in Haskell, and the chip design languages that its
 products provide are influenced by Haskell.

	Eaton
	Uses Haskell for the design and verification of hydraulic
 hybrid vehicle systems.

Compilation, Debugging, and Performance Analysis

For practical work, almost as important as
 a language itself is the ecosystem of libraries and tools around it.
 Haskell has a strong showing in this area.
The most widely used compiler,
 GHC, has been actively
 developed for over 15 years and provides a mature and stable set of
 features:
	Compiles to efficient native code on
 all major modern operating systems and CPU architectures

	Easy deployment of compiled binaries,
 unencumbered by licensing restrictions

	Code coverage analysis

	Detailed profiling of performance and
 memory usage

	Thorough documentation

	Massively scalable support for
 concurrent and multicore programming

	Interactive interpreter and
 debugger

Bundled and Third-Party Libraries

The GHC compiler ships with a collection of
 useful libraries. Here are a few of the common programming needs that
 these libraries address:
	File I/O and filesystem traversal and
 manipulation

	Network client and server
 programming

	Regular expressions and parsing

	Concurrent programming

	Automated testing

	Sound and graphics

The Hackage package database is the
 Haskell community’s collection of open source libraries and
 applications. Most libraries published on Hackage are licensed under
 liberal terms that permit both commercial and open source use. Some of
 the areas covered by these open source libraries include the
 following:
	Interfaces to all major open source
 and commercial databases

	XML, HTML, and XQuery
 processing

	Network and web client and server
 development

	Desktop GUIs, including cross-platform
 toolkits

	Support for Unicode and other text
 encodings

A Brief Sketch of Haskell’s History

The development of Haskell is rooted in
 mathematics and computer science research.
Prehistory

A few decades before modern computers were
 invented, the mathematician Alonzo Church developed a language called
 lambda calculus. He intended it as a tool for
 investigating the foundations of mathematics. The first person to
 realize the practical connection between programming and lambda
 calculus was John McCarthy, who created Lisp in 1958.
During the 1960s, computer scientists
 began to recognize and study the importance of lambda calculus. Peter
 Landin and Christopher Strachey developed ideas about the foundations
 of programming languages: how to reason about what they do
 (operational semantics) and how to understand what they mean
 (denotational semantics).
In the early 1970s, Robin Milner created a
 more rigorous functional programming language named
 ML. While ML was developed to help with automated
 proofs of mathematical theorems, it gained a following for more
 general computing tasks.
The 1970s also saw the emergence of lazy
 evaluation as a novel strategy. David Turner developed SASL and KRC,
 while Rod Burstall and John Darlington developed NPL and Hope. NPL,
 KRC, and ML influenced the development of several more languages in
 the 1980s, including Lazy ML, Clean, and Miranda.

Early Antiquity

By the late 1980s, the efforts of
 researchers working on lazy functional languages were scattered across
 more than a dozen languages. Concerned by this diffusion of effort, a
 number of researchers decided to form a committee to design a common
 language. After three years of work, the committee published the
 Haskell 1.0 specification in 1990. It named the language after Haskell
 Curry, an influential logician.
Many people are rightfully suspicious of
 “design by committee,” but the output of the Haskell committee is a
 beautiful example of the best work a committee can do. They produced
 an elegant, considered language design and succeeded in unifying the
 fractured efforts of their research community. Of the thicket of lazy
 functional languages that existed in 1990, only Haskell is still
 actively used.
Since its publication in 1990, the Haskell
 language standard has seen five revisions, most recently in 1998. A
 number of Haskell implementations have been written, and several are
 still actively developed.
During the 1990s, Haskell served two main
 purposes. On one side, it gave language researchers a stable language
 in which to experiment with making lazy functional programs run efficiently and on the
 other side researchers explored how to construct programs using lazy
 functional techniques, and still others used it as a teaching language.

The Modern Era

While these basic explorations of the
 1990s proceeded, Haskell remained firmly an academic affair. The
 informal slogan of those inside the community was to “avoid success at
 all costs.” Few outsiders had heard of the language at all. Indeed,
 functional programming as a field was quite obscure.
During this time, the mainstream
 programming world experimented with relatively small tweaks, from
 programming in C, to C++, to Java. Meanwhile, on the fringes,
 programmers were beginning to tinker with new, more dynamic languages.
 Guido van Rossum designed Python; Larry Wall created Perl; and
 Yukihiro Matsumoto developed Ruby.
As these newer languages began to seep
 into wider use, they spread some crucial ideas. The first was that
 programmers are not merely capable of working in expressive languages;
 in fact, they flourish. The second was in part a byproduct of the
 rapid growth in raw computing power of that era: it’s often smart to
 sacrifice some execution performance in exchange for a big increase in
 programmer productivity. Finally, several of these languages borrowed
 from functional programming.
Over the past half decade, Haskell has
 successfully escaped from academia, buoyed in part by the visibility
 of Python, Ruby, and even JavaScript. The language now has a vibrant
 and fast-growing culture of open source and commercial users, and
 researchers continue to use it to push the boundaries of performance
 and expressiveness.

Helpful Resources

As you work with Haskell, you’re sure to
 have questions and want more information about things. The following
 paragraphs describe some Internet resources where you can look up
 information and interact with other Haskell programmers.
Reference Material

	The Haskell Hierarchical Libraries reference
	Provides the documentation for the standard library that
 comes with your compiler. This is one of the most valuable
 online assets for Haskell programmers.

	Haskell 98 Report
	Describes the Haskell 98 language standard.

	GHC Users’s Guide
	Contains detailed documentation on the extensions
 supported by GHC, as
 well as some GHC-specific features.

	Hoogle and Hayoo
	Haskell API search engines. They can search for functions
 by name or type.

Applications and Libraries

If you’re looking for a Haskell library to
 use for a particular task or an application written in Haskell, check
 out the following resources:
	The Haskell community
	Maintains a central repository of open source Haskell
 libraries called Hackage. It lets you
 search for software to download, or browse its collection by
 category.

	The Haskell
 wiki
	Contains a section dedicated to information about
 particular Haskell libraries.

The Haskell Community

There are a number of ways you can get in
 touch with other Haskell programmers, in order to ask questions, learn
 what other people are talking about, and simply do some social
 networking with your peers:
	The first stop on your search for
 community resources should be the Haskell website. This page
 contains the most current links to various communities and
 information, as well as a huge and actively maintained
 wiki.

	Haskellers use a number of mailing
 lists for topical discussions. Of these, the most
 generally interesting is named haskell-cafe. It has a
 relaxed, friendly atmosphere, where professionals and academics
 rub shoulders with casual hackers and beginners.

	For real-time chat, the Haskell IRC
 channel, named #haskell, is large and lively.
 Like haskell-cafe, the atmosphere stays friendly and
 helpful in spite of the huge number of concurrent users.

	There are many local user groups,
 meetups, academic workshops, and the like; there is a list of the
 known user groups and workshops.

	The Haskell Weekly News is
 a very-nearly-weekly summary of activities in the Haskell
 community. You can find pointers to interesting mailing list
 discussions, new software releases, and similar things.

	The Haskell Communities and
 Activities Report collects information about people that
 use Haskell and what they’re doing with it. It’s been running for
 years, so it provides a good way to peer into Haskell’s
 past.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant
 width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally
 by the user.

	Constant width
 italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books does
 require permission. Answering a question by citing this book and quoting
 example code does not require permission. Incorporating a significant
 amount of example code from this book into your product’s documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Real World Haskell, by Bryan O’Sullivan, John
 Goerzen, and Don Stewart. Copyright 2009 Bryan O’Sullivan, John Goerzen,
 and Donald Stewart, 978-0-596-51498-3.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596514983

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network,
 see our website at:
	http://www.oreilly.com

Acknowledgments

This book would not exist without the
 Haskell community: an anarchic, hopeful cabal of artists, theoreticians
 and engineers, who for 20 years have worked to create a better, bug-free
 programming world. The people of the Haskell community are unique in
 their combination of friendliness and intellectual depth.
We wish to thank our editor, Mike Loukides,
 and the production team at O’Reilly for all of their advice and
 assistance.
Bryan

I had a great deal of fun working with
 John and Don. Their independence, good nature, and formidable talent
 made the writing process remarkably smooth.
Simon Peyton Jones took a chance on a
 college student who emailed him out of the blue in early 1994.
 Interning for him over that summer remains a highlight of my professional life. With his generosity,
 boundless energy, and drive to collaborate, he inspires the whole
 Haskell community.
My children, Cian and Ruairi, always stood ready to
 help me to unwind with wonderful, madcap, little-boy games.
Finally, of course, I owe a great debt to my wife,
 Shannon, for her love, wisdom, and support during the long gestation
 of this book.

John

I am so glad to be able to work with Bryan and Don on
 this project. The depth of their Haskell knowledge and experience is
 amazing. I enjoyed finally being able to have the three of us sit down
 in the same room—over a year after we started writing.
My 2-year-old Jacob, who decided that it would be fun to use a
 keyboard too and was always eager to have me take a break from the
 computer and help him make some fun typing noises on a 50-year-old
 Underwood typewriter.
Most importantly, I wouldn’t have ever been involved in this
 project without the love, support, and encouragement from my wife,
 Terah.

Don

Before all else, I’d like to thank my amazing
 coconspirators, John and Bryan, for encouragement, advice, and
 motivation.
My colleagues at Galois, Inc., who daily wield
 Haskell in the real world, provided regular feedback and war stories
 and helped ensure a steady supply of espresso.
My Ph.D. supervisor, Manuel Chakravarty, and the PLS
 research group, who provided encouragement, vision, and energy and
 showed me that a rigorous, foundational approach to programming can
 make the impossible happen.
And, finally, thanks to Suzie, for her insight,
 patience, and love.

Thank You to Our Reviewers

We developed this book in the open, posting drafts of
 chapters to our website as we completed them. Readers then submitted
 feedback using a web application that we developed. By the time we
 finished writing the book, about 800 people had submitted over 7,500
 comments—an astounding figure.
We deeply appreciate the time that so many people
 volunteered to help us to improve our book. Their encouragement and
 enthusiasm over the 15 months we spent writing made the process a
 pleasure.
The breadth and depth of the comments we received
 have profoundly improved the quality of this book. Nevertheless, all
 errors and omissions are, of course, ours.
The following people each contributed over 1% of the
 total number of review comments that we received. We would like to
 thank them for their care in providing us with so much detailed
 feedback:
Alex Stangl, Andrew Bromage, Brent Yorgey, Bruce
 Turner, Calvin Smith, David Teller, Henry Lenzi, Jay Scott, John
 Dorsey, Justin Dressel, Lauri Pesonen, Lennart Augustsson, Luc
 Duponcheel, Matt Hellige, Michael T. Richter, Peter McLain, Rob
 deFriesse, Rüdiger Hanke, Tim Chevalier, Tim Stewart, William N.
 Halchin.
We are also grateful to the people below, each of
 whom contributed at least 0.2% of all comments:
Achim Schneider, Adam Jones, Alexander Semenov,
 Andrew Wagner, Arnar Birgisson, Arthur van Leeuwen, Bartek Cwikłowski,
 Bas Kok, Ben Franksen, Björn Buckwalter, Brian Brunswick, Bryn Keller,
 Chris Holliday, Chris Smith, Dan Scott, Dan Weston, Daniel Larsson,
 Davide Marchignoli, Derek Elkins, Dirk Ullrich, Doug Kirk, Douglas
 Silas, Emmanuel Delaborde, Eric Lavigne, Erik Haugen, Erik Jones, Fred
 Ross, Geoff King, George Moschovitis, Hans van Thiel, Ionut Artarisi,
 Isaac Dupree, Isaac Freeman, Jared Updike, Joe Thornber, Joeri van
 Eekelen, Joey Hess, Johan Tibell, John Lenz, Josef Svenningsson,
 Joseph Garvin, Josh Szepietowski, Justin Bailey, Kai Gellien, Kevin
 Watters, Konrad Hinsen, Lally Singh, Lee Duhem, Luke Palmer, Magnus
 Therning, Marc DeRosa, Marcus Eskilsson, Mark Lee Smith, Matthew
 Danish, Matthew Manela, Michael Vanier, Mike Brauwerman, Neil
 Mitchell, Nick Seow, Pat Rondon, Raynor Vliegendhart, Richard Smith,
 Runar Bjarnason, Ryan W. Porter, Salvatore Insalaco, Sean Brewer,
 Sebastian Sylvan, Sebastien Bocq, Sengan Baring-Gould, Serge Le
 Huitouze, Shahbaz Chaudhary, Shawn M Moore, Tom Tschetter, Valery V.
 Vorotyntsev, Will Newton, Wolfgang Meyer, Wouter Swierstra.
We would like to acknowledge the following people,
 many of whom submitted a number of comments:
Aaron Hall, Abhishek Dasgupta, Adam Copp, Adam
 Langley, Adam Warrington, Adam Winiecki, Aditya Mahajan, Adolfo
 Builes, Al Hoang, Alan Hawkins, Albert Brown, Alec Berryman, Alejandro
 Dubrovsky, Alex Hirzel, Alex Rudnick, Alex Young, Alexander Battisti,
 Alexander Macdonald, Alexander Strange, Alf Richter, Alistair Bayley,
 Allan Clark, Allan Erskine, Allen Gooch, Andre Nathan, Andreas
 Bernstein, Andreas Schropp,
 Andrei Formiga, Andrew Butterfield, Andrew Calleja, Andrew Rimes,
 Andrew The, Andy Carson, Andy Payne, Angelos Sphyris, Ankur Sethi,
 António Pedro Cunha, Anthony Moralez, Antoine Hersen, Antoine Latter,
 Antoine S., Antonio Cangiano,
 Antonio Piccolboni, Antonios Antoniadis, Antonis Antoniadis, Aristotle
 Pagaltzis, Arjen van Schie,
 Artyom Shalkhakov, Ash Logan, Austin Seipp, Avik Das, Avinash Meetoo,
 BVK Chaitanya, Babu Srinivasan, Barry Gaunt, Bas van Dijk, Ben
 Burdette, Ben Ellis, Ben Moseley, Ben Sinclair, Benedikt Huber,
 Benjamin Terry, Benoit Jauvin-Girard, Bernie Pope, Björn Edström, Bob
 Holness, Bobby Moretti, Boyd Adamson, Brad Ediger, Bradley
 Unterrheiner, Brendan J. Overdiep, Brendan Macmillan, Brett Morgan,
 Brian Bloniarz, Brian Lewis, Brian Palmer, Brice Lin, C Russell, Cale
 Gibbard, Carlos Aya, Chad Scherrer, Chaddaï Fouché, Chance Coble,
 Charles Krohn, Charlie Paucard, Chen Yufei, Cheng Wei, Chip Grandits,
 Chris Ball, Chris Brew, Chris Czub, Chris Gallagher, Chris Jenkins,
 Chris Kuklewicz, Chris Wright, Christian Lasarczyk, Christian Vest Hansen,
 Christophe Poucet, Chung-chieh Shan, Conal Elliott, Conor McBride,
 Conrad Parker, Cosmo Kastemaa, Creighton Hogg, Crutcher Dunnavant,
 Curtis Warren, D Hardman, Dafydd Harries, Dale Jordan, Dan Doel, Dan
 Dyer, Dan Grover, Dan Orias, Dan Schmidt, Dan Zwell, Daniel Chicayban
 Bastos, Daniel Karch, Daniel Lyons, Daniel Patterson, Daniel Wagner,
 Daniil Elovkov, Danny Yoo, Darren Mutz, Darrin Thompson, Dave Bayer,
 Dave Hinton, Dave Leimbach, Dave Peterson, Dave Ward, David Altenburg,
 David B. Wildgoose, David Carter, David Einstein, David Ellis, David
 Fox, David Frey, David Goodlad, David Mathers, David McBride, David
 Sabel, Dean Pucsek, Denis Bueno, Denis Volk, Devin Mullins, Diego
 Moya, Dino Morelli, Dirk Markert, Dmitry Astapov, Dougal Stanton, Dr
 Bean, Drew Smathers, Duane Johnson, Durward McDonell, E. Jones, Edwin
 DeNicholas, Emre Sevinc, Eric Aguiar, Eric Frey, Eric Kidd, Eric Kow,
 Eric Schwartz, Erik Hesselink, Erling Alf, Eruc Frey, Eugene
 Grigoriev, Eugene Kirpichov, Evan Farrer, Evan Klitzke, Evan Martin,
 Fawzi Mohamed, Filippo Tampieri, Florent Becker, Frank Berthold, Fred
 Rotbart, Frederick Ross,
 Friedrich Dominicus, Gal Amram, Ganesh Sittampalam, Gen Zhang,
 Geoffrey King, George Bunyan, George Rogers, German Vidal, Gilson
 Silveira, Gleb Alexeyev, Glenn Ehrlich, Graham Fawcett, Graham Lowe,
 Greg Bacon, Greg Chrystall, Greg Steuck, Grzegorz Chrupała, Guillaume
 Marceau, Haggai Eran, Harald Armin Massa, Henning Hasemann, Henry
 Laxen, Hitesh Jasani, Howard B. Golden, Ilmari Vacklin, Imam Tashdid
 ul Alam, Ivan Lazar Miljenovic, Ivan Miljenovic, J. Pablo Fernández,
 J.A. Zaratiegui, Jaap Weel, Jacques Richer, Jake McArthur, Jake
 Poznanski, Jakub Kotowski, Jakub Labath, James Cunningham, James
 Smith, Jamie Brandon, Jan Sabbe, Jared Roberts, Jason Dusek, Jason F,
 Jason Kikel, Jason Mobarak, Jason Morton, Jason Rogers, Jeff Balogh, Jeff
 Caldwell, Jeff Petkau, Jeffrey Bolden, Jeremy Crosbie, Jeremy Fitzhardinge, Jeremy
 O’Donoghue, Jeroen Pulles, Jim Apple, Jim Crayne, Jim Snow, Joan
 Jiménez, Joe Fredette, Joe Healy, Joel Lathrop, Joeri Samson, Johannes
 Laire, John Cowan, John Doe, John Hamilton, John Hornbeck, John Lien,
 John Stracke, Jonathan Guitton, Joseph Bruce, Joseph H. Buehler, Josh
 Goldfoot, Josh Lee, Josh Stone, Judah Jacobson, Justin George, Justin
 Goguen, Kamal Al-Marhubi, Kamil Dworakowski, Keegan Carruthers-Smith,
 Keith Fahlgren, Keith Willoughby, Ken Allen, Ken Shirriff, Kent Hunter, Kevin
 Hely, Kevin Scaldeferri, Kingdon Barrett, Kristjan Kannike, Kurt Jung,
 Lanny Ripple, Laurentiu Nicola, Laurie Cheers, Lennart Kolmodin, Liam Groener, Lin Sun, Lionel
 Barret de Nazaris, Loup Vaillant, Luke Plant, Lutz Donnerhacke,
 Maarten Hazewinkel, Malcolm Reynolds, Marco Piccioni, Mark Hahnenberg, Mark Woodward, Marko Tosic,
 Markus Schnell, Martijn van Egdom, Martin Bayer, Martin DeMello,
 Martin Dybdal, Martin Geisler, Martin Grabmueller, Matúš Tejišcák,
 Mathew Manela, Matt Brandt, Matt Russell, Matt Trinneer, Matti Niemenmaa, Matti Nykänen, Max Cantor,
 Maxime Henrion, Michael Albert, Michael Brauwerman, Michael Campbell, Michael
 Chermside, Michael Cook, Michael Dougherty, Michael Feathers, Michael
 Grinder, Michael Kagalenko, Michael Kaplan, Michael Orlitzky, Michael Smith, Michael Stone,
 Michael Walter, Michel Salim, Mikael Vejdemo Johansson, Mike Coleman, Mike
 Depot, Mike Tremoulet, Mike Vanier, Mirko Rahn, Miron Brezuleanu,
 Morten Andersen, Nathan Bronson,
 Nathan Stien, Naveen Nathan, Neil Bartlett, Neil Whitaker, Nick
 Gibson, Nick Messenger, Nick Okasinski, Nicola Paolucci, Nicolas
 Frisby, Niels Aan de Brugh, Niels Holmgaard Andersen, Nima Negahban, Olaf Leidinger, Oleg Anashkin,
 Oleg Dopertchouk, Oleg Taykalo, Oliver Charles, Olivier Boudry, Omar
 Antolín Camarena, Parnell Flynn, Patrick Carlisle, Paul Brown, Paul
 Delhanty, Paul Johnson, Paul Lotti, Paul Moore, Paul Stanley, Paulo
 Tanimoto, Per Vognsen, Pete
 Kazmier, Peter Aarestad, Peter Ipacs, Peter Kovaliov, Peter Merel,
 Peter Seibel, Peter Sumskas, Phil Armstrong, Philip Armstrong, Philip
 Craig, Philip Neustrom, Philip Turnbull, Piers Harding, Piet Delport,
 Pragya Agarwal, Raúl Gutiérrez, Rafael Alemida, Rajesh Krishnan, Ralph
 Glass, Rauli Ruohonen, Ravi
 Nanavati, Raymond Pasco, Reid Barton, Reto Kramer, Reza Ziaei, Rhys
 Ulerich, Ricardo Herrmann,
 Richard Harris, Richard Warburton, Rick van Hattem, Rob Grainger,
 Robbie Kop, Rogan Creswick, Roman Gonzalez, Rory Winston, Ruediger Hanke, Rusty Mellinger, Ryan
 Grant, Ryan Ingram, Ryan Janzen, Ryan Kaulakis, Ryan Stutsman, Ryan T. Mulligan, S Pai, Sam
 Lee, Sandy Nicholson, Scott Brickner, Scott Rankin, Scott Ribe, Sean
 Cross, Sean Leather, Sergei Trofimovich, Sergio Urinovsky, Seth Gordon, Seth Tisue, Shawn Boyette, Simon
 Brenner, Simon Farnsworth, Simon Marlow, Simon Meier, Simon Morgan,
 Sriram Srinivasan, Stefan Aeschbacher, Stefan Muenzel, Stephan Friedrichs, Stephan Nies,
 Stephan-A. Posselt, Stephyn Butcher, Steven Ashley, Stuart Dootson,
 Terry Michaels, Thomas Cellerier, Thomas Fuhrmann, Thomas Hunger, Thomas M. DuBuisson, Thomas
 Moertel, Thomas Schilling,
 Thorsten Seitz, Tibor Simic, Tilo Wiklund, Tim Clark, Tim Eves, Tim
 Massingham, Tim Rakowski, Tim
 Wiess, Timo B. Hübel, Timothy Fitz, Tom Moertel, Tomáš Janoušek, Tony
 Colston, Travis B. Hartwell,
 Tristan Allwood, Tristan Seligmann, Tristram Brelstaff, Vesa Kaihlavirta, Victor Nazarov, Ville Aine,
 Vincent Foley, Vipul Ved Prakash, Vlad Skvortsov, Vojtech Fried, Wei
 Cheng, Wei Hu, Will Barrett, Will Farr, Will Leinweber, Will Robertson, Will Thompson, Wirt Wolff,
 Wolfgang Jeltsch, Yuval Kogman, Zach Kozatek, Zachary Smestad, Zohar
 Kelrich.
Finally, we wish to thank those readers who submitted
 over 800 comments anonymously.

Chapter 1. Getting Started

As you read the early chapters of this book,
 keep in mind that we will sometimes introduce ideas in restricted, simplified
 form. Haskell is a deep language, and presenting every aspect of a given
 subject all at once is likely to prove overwhelming. As we build a solid
 foundation in Haskell, we will expand upon these initial
 explanations.
Your Haskell Environment

Haskell is a language with many implementations, two of which are
 widely used. Hugs is an interpreter that is primarily used for teaching. For
 real applications, the Glasgow Haskell Compiler (GHC) is much more popular. Compared to Hugs, GHC is more suited to “real
 work”: it compiles to native code, supports parallel execution,
 and provides useful performance analysis and debugging tools. For these
 reasons, GHC is the Haskell
 implementation that we will be using throughout this book.
GHC has three
 main components:
	ghc
	An optimizing compiler that generates fast native code

	ghci
	An interactive interpreter and debugger

	runghc
	A program for running Haskell programs as scripts, without needing to compile
 them first

How we refer to the components of GHC
When we discuss the GHC system as a whole, we will refer to
 it as GHC. If we are
 talking about a specific command, we will mention ghc, ghci, or runghc by name.

We assume that you’re using at least version 6.8.2 of
 GHC, which was released in
 2007. Many of our examples will work unmodified with older versions.
 However, we recommend using the newest version
 available for your platform. If you’re using Windows or Mac OS X, you
 can get started easily and quickly using a prebuilt installer. To obtain
 a copy of GHC for these
 platforms, visit the GHC download page and look for the
 list of binary packages and installers.
Many Linux distributors and providers of BSD and other
 Unix variants make custom binary packages of GHC available. Because these are built
 specifically for each environment, they are much easier to install and
 use than the generic binary packages that are available from the
 GHC download page. You can
 find a list of distributions that custom build GHC at the GHC page distribution
 packages.
For more detailed information about how to
 install GHC on a variety of
 popular platforms, we’ve provided some instructions in Appendix A.

Getting Started with ghci, the Interpreter

The interactive interpreter for
 GHC is a program named
 ghci. It lets us enter and evaluate
 Haskell expressions, explore modules, and debug our code. If you are
 familiar with Python or Ruby, ghci is
 somewhat similar to python and
 irb, the interactive Python and Ruby
 interpreters.
The ghci command has a narrow focus
We typically cannot copy some code out of
 a Haskell source file and paste it into ghci. This does not have a significant
 effect on debugging pieces of code, but it can initially be surprising
 if you are used to, say, the interactive Python interpreter.

On Unix-like systems, we run ghci as a command in a shell window. On
 Windows, it’s available via the Start menu. For example, if you install
 the program using the GHC
 installer on Windows XP, you should go to All Programs, then GHC; you
 will see ghci in the list. (See Windows for a screenshot.)
When we run ghci, it displays a startup banner, followed
 by a Prelude> prompt. Here, we’re
 showing version 6.8.3 on a Linux box:
$ ghci
GHCi, version 6.8.3: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
Prelude>
The word Prelude in the prompt
 indicates that Prelude, a standard
 library of useful functions, is loaded and ready to use. When we load
 other modules or source files, they will show up in the prompt,
 too.
Getting help
If you enter :? at the ghci prompt, it
 will print a long help message.

The Prelude module is sometimes referred to as “the standard
 prelude” because its contents are defined by the Haskell 98
 standard. Usually, it’s simply shortened to “the
 prelude.”
About the ghci prompt
The prompt displayed by ghci changes frequently depending on what
 modules we have loaded. It can often grow long enough to leave little
 visual room on a single line for our input.
For brevity and consistency, we replaced
 ghci’s default prompts throughout
 this book with the prompt string ghci>.
If you want to do this
 yourself, use ghci’s
 :set prompt directive, as follows:
Prelude> :set prompt "ghci> "
ghci>

The Prelude is always
 implicitly available; we don’t need to take any actions to use the
 types, values, or functions it defines. To use definitions from other
 modules, we must load them into ghci,
 using the :module
 command:
ghci> :module + Data.Ratio
We can now use the functionality of the
 Data.Ratio module, which lets us work with rational numbers
 (fractions).

Basic Interaction: Using ghci as a Calculator

In addition to providing a convenient interface for testing
 code fragments, ghci can function as
 a readily accessible desktop calculator. We can easily express any
 calculator operation in ghci and, as
 an added bonus, we can add more complex operations as we become more
 familiar with Haskell. Even using the interpreter in this simple way can
 help us to become more comfortable with how Haskell works.
Simple Arithmetic

We can immediately start entering expressions, in order to see what ghci will do with them. Basic arithmetic
 works similarly to languages such as C and Python—we write expressions in infix form, where an operator
 appears between its operands:
ghci> 2 + 2
4
ghci> 31337 * 101
3165037
ghci> 7.0 / 2.0
3.5
The infix style of writing an expression
 is just a convenience; we can also write an expression in
 prefix form, where the operator precedes its arguments. To do this,
 we must enclose the operator in parentheses:
ghci> 2 + 2
4
ghci> (+) 2 2
4
As these expressions imply, Haskell has a notion of
 integers and floating-point numbers. Integers can be arbitrarily
 large. Here, (^) provides
 integer exponentiation:
ghci> 313 ^ 15
27112218957718876716220410905036741257

An Arithmetic Quirk: Writing Negative Numbers

Haskell presents us with one peculiarity in how we must write
 numbers: it’s often necessary to enclose a negative number in
 parentheses. This affects us as soon as we move beyond the simplest
 expressions.
We’ll start by writing a negative
 number:
ghci> -3
-3

The - used in the preceding
 code is a unary operator. In other words, we didn’t write the
 single number “-3”; we wrote the number “3”
 and applied the operator - to it. The -
 operator is Haskell’s only unary operator, and we cannot mix it with
 infix operators:
ghci> 2 + -3

<interactive>:1:0:
 precedence parsing error
 cannot mix `(+)' [infixl 6] and prefix `-' [infixl 6] in the same infix
 expression

If we want to use the unary minus near an
 infix operator, we must wrap the expression that it applies to in
 parentheses:
ghci> 2 + (-3)
-1
ghci> 3 + (-(13 * 37))
-478
This avoids a parsing ambiguity. When we
 apply a function in Haskell, we write the name of the function,
 followed by its argument—for example, f 3. If we did not
 need to wrap a negative number in parentheses, we would have two
 profoundly different ways to read f-3: it could be either
 “apply the function f to the number -3,” or “subtract the number 3
 from the variable f.”
Most of the time, we can omit
 whitespace (“blank” characters such as space and tab)
 from expressions, and Haskell will parse them as we intended. But not
 always. Here is an expression that works:
ghci> 2*3
6

And here is one that seems similar to the
 previous problematic negative number example, but that results in a
 different error message:
ghci> 2*-3

<interactive>:1:1: Not in scope: `*-'

Here, the Haskell implementation is reading *- as a single operator. Haskell lets us
 define new operators (a subject that we will return to later), but we
 haven’t defined *-. Once again, a
 few parentheses get us and ghci
 looking at the expression in the same way:
ghci> 2*(-3)
-6

Compared to other languages, this unusual treatment of
 negative numbers might seem annoying, but it represents a reasoned
 trade-off. Haskell lets us define new operators at any time. This is
 not some kind of esoteric language feature; we will see quite a few
 user-defined operators in the chapters ahead. The language designers
 chose to accept a slightly cumbersome syntax for negative numbers in
 exchange for this expressive power.

Boolean Logic, Operators, and Value Comparisons

The values of Boolean logic in Haskell are True
 and False. The capitalization of
 these names is important. The language uses C-influenced operators for
 working with Boolean values: (&&) is logical “and”,
 and (||) is logical
 “or”:
ghci> True && False
False
ghci> False || True
True
While some programming languages treat
 the number zero as synonymous with False, Haskell does not, nor does it
 consider a nonzero value to be True:
ghci> True && 1

<interactive>:1:8:
 No instance for (Num Bool)
 arising from the literal `1' at <interactive>:1:8
 Possible fix: add an instance declaration for (Num Bool)
 In the second argument of `(&&)', namely `1'
 In the expression: True && 1
 In the definition of `it': it = True && 1

Once again, we are faced with a
 substantial-looking error message. In brief, it tells us that the
 Boolean type, Bool, is not a member of the family of
 numeric types, Num. The error message is rather long
 because ghci is pointing out the
 location of the problem and hinting at a possible change we could make
 that might fix it.
Here is a more detailed breakdown of the
 error message:
	No instance for (Num
 Bool)
	Tells us that ghci is
 trying to treat the numeric value 1 as having a
 Bool type, but it cannot

	arising from the literal
 '1'
	Indicates that it was our use of the number 1
 that caused the problem

	In the definition of
 'it'
	Refers to a ghci
 shortcut that we will revisit in a few pages

Remain fearless in the face of error messages
We have an important point to make
 here, which we will repeat throughout the early sections of this
 book. If you run into problems or error messages that you do not yet
 understand, don’t panic. Early on, all you have
 to do is figure out enough to make progress on a problem. As you
 acquire experience, you will find it easier to understand parts of
 error messages that initially seem obscure.
The numerous error messages have a
 purpose: they actually help us write correct code by making us
 perform some amount of debugging “up front,” before we ever run a program. If you come from a
 background of working with more permissive languages, this may come
 as something of a shock. Bear with us.

Most of Haskell’s comparison operators
 are similar to those used in C and the many languages it has influenced:
ghci> 1 == 1
True
ghci> 2 < 3
True
ghci> 4 >= 3.99
True
One operator that differs from its C
 counterpart is “is not equal to”. In C, this is written
 as !=. In Haskell, we write (/=), which resembles the ≠ notation used
 in mathematics:
ghci> 2 /= 3
True

Also, where C-like languages often use
 ! for logical negation, Haskell
 uses the not function:
ghci> not True
False

Operator Precedence and Associativity

Like written algebra and other programming languages that use infix
 operators, Haskell has a notion of operator precedence. We can use
 parentheses to explicitly group parts of an expression, and precedence
 allows us to omit a few parentheses. For example, the multiplication
 operator has a higher precedence than the addition operator, so
 Haskell treats the following two expressions as equivalent:
ghci> 1 + (4 * 4)
17
ghci> 1 + 4 * 4
17
Haskell assigns numeric precedence values
 to operators, with 1 being the lowest precedence and 9 the highest. A
 higher-precedence operator is applied before a lower-precedence operator. We can use ghci to inspect the precedence levels of
 individual operators, using ghci’s
 :info command:
ghci> :info (+)
class (Eq a, Show a) => Num a where
 (+) :: a -> a -> a
 ...
 	-- Defined in GHC.Num
infixl 6 +
ghci> :info (*)
class (Eq a, Show a) => Num a where
 ...
 (*) :: a -> a -> a
 ...
 	-- Defined in GHC.Num
infixl 7 *
The information we seek is in the line
 infixl 6 +, which indicates that
 the (+) operator has a precedence
 of 6. (We will explain the other output in a later chapter.) infixl 7 * tells us that the (*) operator has a precedence of 7. Since
 (*) has a higher precedence than
 (+), we can now see why 1 +
 4 * 4 is evaluated as 1 + (4 * 4), and not
 (1 + 4) * 4.
Haskell also defines
 associativity of operators. This determines
 whether an expression containing multiple uses of an operator is
 evaluated from left to right or right to left. The (+) and (*) operators are left associative, which
 is represented as infixl in the preceding ghci output. A right associative operator is
 displayed with infixr:
ghci> :info (^)
(^) :: (Num a, Integral b) => a -> b -> a 	-- Defined in GHC.Real
infixr 8 ^

The combination of precedence and
 associativity rules are usually referred to as
 fixity rules.

Undefined Values, and Introducing Variables

Haskell’s Prelude, the
 standard library we mentioned earlier, defines at least one well-known
 mathematical constant for us:
ghci> pi
3.141592653589793

But its coverage of mathematical constants is not
 comprehensive, as we can quickly see. Let us look for Euler’s number,
 e:
ghci> e

<interactive>:1:0: Not in scope: `e'

Oh well. We have to define it
 ourselves.
Don’t worry about the error message
If the not in
 scope error message seems a little daunting, do not worry.
 All it means is that there is no variable defined with the name
 e.

Using ghci’s
 let construct, we can make a temporary definition of e
 ourselves:
ghci> let e = exp 1
This is an application of the exponential
 function, exp, and our first
 example of applying a function in Haskell. While languages such as
 Python require parentheses around the arguments to a function, Haskell
 does not.
With e defined, we can
 now use it in arithmetic expressions. The (^) exponentiation operator that we introduced earlier can only raise a number to
 an integer power. To use a floating-point number as the exponent, we
 use the (**) exponentiation
 operator:
ghci> (e ** pi) - pi
19.99909997918947

This syntax is ghci-specific
The syntax for let that ghci accepts is not the same as we would
 use at the “top level” of a normal Haskell program. We
 will see the normal syntax in Introducing Local Variables.

Dealing with Precedence and Associativity Rules

It is sometimes better to leave at least some
 parentheses in place, even when Haskell allows us to omit them. Their
 presence can help future readers (including ourselves) to understand
 what we intended.
Even more importantly, complex expressions that rely
 completely on operator precedence are notorious sources of bugs. A
 compiler and a human can easily end up with different notions of what
 even a short, parenthesis-free expression is supposed to do.
There is no need to remember all of the
 precedence and associativity rules numbers: it is simpler to add
 parentheses if you are unsure.

Command-Line Editing in ghci

On most systems, ghci has
 some amount of command-line editing ability. In case you are not
 familiar with command-line editing, it’s a huge time saver. The basics
 are common to both Unix-like and Windows systems. Pressing the up arrow
 key on your keyboard recalls the last line of input you entered;
 pressing up repeatedly cycles through earlier lines of input. You can
 use the left and right arrow keys to move around inside a line of input.
 On Unix (but not Windows, unfortunately), the Tab key completes
 partially entered identifiers.
Where to look for more information
We’ve barely scratched the surface of
 command-line editing here. Since you can work more effectively if
 you’re familiar with the capabilities of your command-line editing
 system, you might find it useful to do some further reading.
On Unix-like systems, ghci uses the GNU
 readline library, which is powerful and customizable. On Windows,
 ghci’s command-line editing capabilities are provided by the doskey command.

Lists

A list is surrounded by square brackets; the elements are separated by
 commas:
ghci> [1, 2, 3]
[1,2,3]

Commas are separators, not terminators
Some languages permit the last element in a list to be
 followed by an optional trailing comma before a closing bracket, but
 Haskell doesn’t allow this. If you leave in a trailing comma (e.g.,
 [1,2,]), you’ll get a parse error.

A list can be of any length. An empty list is written
 []:
ghci> []
[]
ghci> ["foo", "bar", "baz", "quux", "fnord", "xyzzy"]
["foo","bar","baz","quux","fnord","xyzzy"]
All elements of a list must be of the same type. Here,
 we violate this rule. Our list starts with two Bool values,
 but ends with a string:
ghci> [True, False, "testing"]

<interactive>:1:14:
 Couldn't match expected type `Bool' against inferred type `[Char]'
 In the expression: "testing"
 In the expression: [True, False, "testing"]
 In the definition of `it': it = [True, False, "testing"]

Once again, ghci’s
 error message is verbose, but it’s simply telling us that there is no
 way to turn the string into a Boolean value, so the list expression
 isn’t properly typed.
If we write a series of elements using
 enumeration notation, Haskell will fill in the contents of the list for us:
ghci> [1..10]
[1,2,3,4,5,6,7,8,9,10]

Here, the .. characters denote an enumeration. We can only
 use this notation for types whose elements we can enumerate. It makes no
 sense for text strings, for instance—there is not any sensible, general
 way to enumerate ["foo".."quux"].
By the way, notice that the preceding use
 of range notation gives us a closed interval; the
 list contains both endpoints.
When we write an enumeration, we can
 optionally specify the size of the step to use by providing the first
 two elements, followed by the value at which to stop generating the
 enumeration:
ghci> [1.0,1.25..2.0]
[1.0,1.25,1.5,1.75,2.0]
ghci> [1,4..15]
[1,4,7,10,13]
ghci> [10,9..1]
[10,9,8,7,6,5,4,3,2,1]
In the second case, the list is quite
 sensibly missing the endpoint of the enumeration, because it isn’t an
 element of the series we defined.
We can omit the endpoint of an enumeration.
 If a type doesn’t have a natural “upper bound,” this will
 produce values indefinitely. For example, if you type [1..] at the ghci prompt, you’ll have to interrupt or kill
 ghci to stop it from printing an
 infinite succession of ever-larger numbers. If you are tempted to do
 this, hit Ctrl-C to halt the enumeration. We will find later on that
 infinite lists are often useful in Haskell.
Beware of enumerating floating-point numbers
Here’s a nonintuitive bit of behavior:
ghci> [1.0..1.8]
[1.0,2.0]

Behind the scenes, to avoid
 floating-point roundoff problems, the Haskell implementation
 enumerates from 1.0 to 1.8+0.5.
Using enumeration notation over
 floating-point numbers can pack more than a few surprises, so if you
 use it at all, be careful. Floating-point behavior is quirky in all
 programming languages; there is nothing unique to Haskell here.

Operators on Lists

There are two ubiquitous operators for
 working with lists. We concatenate two lists using the (++) operator:
ghci> [3,1,3] ++ [3,7]
[3,1,3,3,7]
ghci> [] ++ [False,True] ++ [True]
[False,True,True]
More basic is the (:) operator, which adds an element to the
 front of a list (this is pronounced “cons” [short for
 “construct”]):
ghci> 1 : [2,3]
[1,2,3]
ghci> 1 : []
[1]
You might be tempted to try writing
 [1,2]:3 to add an element to the end of a list, but
 ghci will reject this with an error
 message, because the first argument of (:) must be an element, and the second must
 be a list.

Strings and Characters

If you know a language such as Perl or C, you’ll find
 Haskell’s notations for strings familiar.
A text string is surrounded by double quotes:
ghci> "This is a string."
"This is a string."

As in many languages, we can represent hard-to-see characters by
 “escaping” them. Haskell’s escape characters and escaping
 rules follow the widely used conventions established by the C language. For
 example, '\n' denotes a
 newline character, and '\t' is a tab
 character. For complete details, see Appendix B.
ghci> putStrLn "Here's a newline -->\n<-- See?"
Here's a newline -->
<-- See?

The putStrLn
 function prints a string.
Haskell makes a distinction between single
 characters and text strings. A single character is enclosed in single
 quotes:
ghci> 'a'
'a'

In fact, a text string is simply a list of
 individual characters. Here’s a painful way to write a short string,
 which ghci gives back to us in a more familiar form:
ghci> let a = ['l', 'o', 't', 's', ' ', 'o', 'f', ' ', 'w', 'o', 'r', 'k']
ghci> a
"lots of work"
ghci> a == "lots of work"
True
The empty string is written "", and is a synonym for
 []:
ghci> "" == []
True

Since a string is a list of characters, we can use the
 regular list operators to construct new strings:
ghci> 'a':"bc"
"abc"
ghci> "foo" ++ "bar"
"foobar"

First Steps with Types

While we’ve talked a little about types already, our interactions with ghci have so far been free of much
 type-related thinking. We haven’t told ghci what types we’ve been using, and it’s
 mostly been willing to accept our input.
Haskell requires type names to start with
 an uppercase letter, and variable names must start with a lowercase
 letter. Bear this in mind as you read on; it makes it much easier to
 follow the names.
The first thing we can do to start
 exploring the world of types is to get ghci to tell us more about what it’s doing.
 ghci has a command, :set, that lets us change a few of its default behaviors. We can tell
 it to print more type information as follows:
ghci> :set +t
ghci> 'c'
'c'
it :: Char
ghci> "foo"
"foo"
it :: [Char]
What the +t does is tell
 ghci to print the type of an
 expression after the expression. That cryptic it in the output can be very
 useful: it’s actually the name of a special variable, in which ghci stores the result of the last expression
 we evaluated. (This isn’t a Haskell language feature; it’s specific to
 ghci alone.) Let’s break down the
 meaning of the last line of ghci
 output:
	It tells us about the special variable
 it.

	We can read text of the form x ::
 y as meaning “the expression x has the type y.”

	Here, the expression “it”
 has the type [Char]. (The name String
 is often used instead of [Char]. It is
 simply a synonym for [Char].)

The Joy of it
That it variable is a handy ghci shortcut. It lets us use the result of
 the expression we just evaluated in a new expression:
ghci> "foo"
"foo"
it :: [Char]
ghci> it ++ "bar"
"foobar"
it :: [Char]
When evaluating an expression, ghci won’t change the value of
 it if the evaluation fails. This lets you write
 potentially bogus expressions with something of a safety net:
ghci> it
"foobar"
it :: [Char]
ghci> it ++ 3

<interactive>:1:6:
 No instance for (Num [Char])
 arising from the literal `3' at <interactive>:1:6
 Possible fix: add an instance declaration for (Num [Char])
 In the second argument of `(++)', namely `3'
 In the expression: it ++ 3
 In the definition of `it': it = it ++ 3
ghci> it
"foobar"
it :: [Char]
ghci> it ++ "baz"
"foobarbaz"
it :: [Char]
When we couple it with liberal use of the
 arrow keys to recall and edit the last expression we typed, we gain a
 decent way to experiment interactively: the cost of mistakes is very
 low. Take advantage of the opportunity to make cheap, plentiful
 mistakes when you’re exploring the language!

Here are a few more of Haskell’s names for types, from
 expressions of the sort that we’ve already seen:
ghci> 7 ^ 80
40536215597144386832065866109016673800875222251012083746192454448001
it :: Integer

Haskell’s integer type is named Integer.
 The size of an Integer value is bounded only by
 your system’s memory capacity.
Rational numbers don’t look quite the same as integers.
 To construct a rational number, we use the (%)
 operator. The numerator is on the left, the denominator on the
 right:
ghci> :m +Data.Ratio
ghci> 11 % 29
11%29
it :: Ratio Integer
For convenience, ghci lets us abbreviate many commands, so we
 can write :m instead of
 :module to load a module.
Notice there are two words on the
 righthand side of the :: in the preceding code. We can read
 this as a “Ratio of Integer.” We might guess that a Ratio
 must have values of type Integer as both numerator and
 denominator. Sure enough, if we try to construct a Ratio
 where the numerator and denominator are of different types or of the
 same nonintegral type, ghci
 complains:
ghci> 3.14 % 8

<interactive>:1:0:
 Ambiguous type variable `t' in the constraints:
 `Integral t' arising from a use of `%' at <interactive>:1:0-7
 `Fractional t'
 arising from the literal `3.14' at <interactive>:1:0-3
 Probable fix: add a type signature that fixes these type variable(s)
ghci> 1.2 % 3.4

<interactive>:1:0:
 Ambiguous type variable `t' in the constraints:
 `Integral t' arising from a use of `%' at <interactive>:1:0-8
 `Fractional t'
 arising from the literal `3.4' at <interactive>:1:6-8
 Probable fix: add a type signature that fixes these type variable(s)
Although it is initially useful to have
 :set +t giving us type
 information for every expression we enter, this is a facility we will
 quickly outgrow. After a while, we will often know what type we expect
 an expression to have. We can turn off the extra type information at any time, using the
 :unset command:
ghci> :unset +t
ghci> 2
2
Even with this facility turned off, we can
 still get that type information easily when we need it, using another
 ghci command:
ghci> :type 'a'
'a' :: Char
ghci> "foo"
"foo"
ghci> :type it
it :: [Char]
The :type command will print type information for any expression we give it
 (including it, as we see here). It won’t actually
 evaluate the expression; it checks only its type and prints that.
Why are the types reported for these two
 expressions different?
ghci> 3 + 2
5
ghci> :type it
it :: Integer
ghci> :type 3 + 2
3 + 2 :: (Num t) => t
Haskell has several numeric types. For
 example, a literal number such as 1
 could, depending on the context in which it appears, be an integer or a
 floating-point value. When we force ghci to evaluate the expression 3 +
 2, it has to choose a type so that it can print the value, and it
 defaults to Integer. In the second case, we ask ghci to print the type of the expression
 without actually evaluating it, so it does not have to be so specific.
 It answers, in effect, “its type is numeric.” We will see more of this
 style of type annotation in Chapter 6.

A Simple Program

Let’s take a small leap ahead and write a
 small program that counts the number of lines in its input. Don’t expect
 to understand this yet—it’s just fun to get our hands dirty. In a text
 editor, enter the following code into a file, and save it as WC.hs:
-- file: ch01/WC.hs
-- lines beginning with "--" are comments.

main = interact wordCount
 where wordCount input = show (length (lines input)) ++ "\n"
Find or create a text file; let’s call it
 quux.txt:[1]
$ cat quux.txt
Teignmouth, England
Paris, France
Ulm, Germany
Auxerre, France
Brunswick, Germany
Beaumont-en-Auge, France
Ryazan, Russia
From a shell or command prompt, run the
 following command:
$ runghc WC < quux.txt
7
We have successfully written a simple
 program that interacts with the real world! In the chapters that follow,
 we will continue to fill the gaps in our understanding until we can
 write programs of our own.
Exercises
	Enter the following expressions into ghci. What are their types?
	5 + 8

	3 * 5 + 8

	2 + 4

	(+) 2 4

	sqrt 16

	succ 6

	succ 7

	pred 9

	pred 8

	sin (pi / 2)

	truncate pi

	round 3.5

	round 3.4

	floor 3.7

	ceiling 3.3

	From ghci, type
 :? to print some help.
 Define a variable, such as let x = 1, and then type
 :show bindings. What do you see?

	The words function
 breaks a string up into a list of words. Modify the WC.hs example in order to count the
 number of words in a file.

	Modify the WC.hs
 example again, in order to print the number of characters in a
 file.

[1] Incidentally, what do these cities
 have in common?

Chapter 2. Types and Functions

Why Care About Types?

Every expression and function in Haskell has a
 type. For example, the value True has the type Bool, while the
 value "foo" has the type
 String. The type of a value indicates that it shares
 certain properties with other values of the same type. For example, we
 can add numbers and concatenate lists; these are properties of those
 types. We say an expression has type X, or is of type X.
Before we launch into a deeper discussion
 of Haskell’s type system, let’s talk about why we should care about
 types at all—what are they even for? At the lowest
 level, a computer is concerned with bytes, with barely any additional
 structure. What a type system gives us is abstraction. A type adds meaning
 to plain bytes: it lets us say “these bytes are text,”
 “those bytes are an airline reservation,” and so on.
 Usually, a type system goes beyond this to prevent us from accidentally
 mixing up types. For example, a type system usually won’t let us treat a
 hotel reservation as a car rental receipt.
The benefit of introducing abstraction is
 that it lets us forget or ignore low-level details. If I know that a
 value in my program is a string, I don’t have to know the intimate
 details of how strings are implemented. I can just assume that my string
 is going to behave like all the other strings I’ve worked with.
What makes type systems interesting is that
 they’re not all equal. In fact, different type systems are often not
 even concerned with the same kinds of problems. A programming language’s
 type system deeply colors the way we think and write code in that
 language.
Haskell’s type system allows us to think at
 a very abstract level, and it permits us to write concise, powerful
 programs.

Haskell’s Type System

There are three interesting aspects to
 types in Haskell: they are strong, they are
 static, and they can be automatically
 inferred. Let’s talk in more detail about each of
 these ideas. When possible, we’ll present similarities between concepts
 from Haskell’s type system and related ideas in other languages. We’ll
 also touch on the respective strengths and weaknesses of each of these
 properties.
Strong Types

When we say that Haskell has a strong
 type system, we mean that the type system guarantees that a program
 cannot contain certain kinds of errors. These errors come from trying
 to write expressions that don’t make sense, such as using an integer
 as a function. For instance, if a function expects to work with
 integers and we pass it a string, a Haskell compiler will reject
 this.
We call an expression that obeys a
 language’s type rules well typed. An expression that
 disobeys the type rules is ill typed, and it will
 cause a type error.
Another aspect of Haskell’s view of
 strong typing is that it will not automatically coerce values from one type to another. (Coercion is
 also known as casting or conversion.) For example, a C compiler will
 automatically and silently coerce a value of type int
 into a float on our behalf if a function expects a
 parameter of type float, but a Haskell compiler will
 raise a compilation error in a similar situation. We must explicitly
 coerce types by applying coercion functions.
Strong typing does occasionally make it
 more difficult to write certain kinds of code. For example, a classic
 way to write low-level code in the C language is to be given a byte
 array and cast it to treat the bytes as if they’re really a
 complicated data structure. This is very efficient, since it doesn’t
 require us to copy the bytes around. Haskell’s type system does not
 allow this sort of coercion. In order to get the same structured view
 of the data, we would need to do some copying, which would cost a
 little in performance.
The huge benefit of strong typing is that
 it catches real bugs in our code before they can cause problems. For
 example, in a strongly typed language, we can’t accidentally use a
 string where an integer is expected.
Weaker and Stronger Types
It is useful to be aware that many
 language communities have their own definitions of a strong type.
 Nevertheless, we will speak briefly and in broad terms about the
 notion of strength in type systems.
In academic computer science, the
 meanings of strong and
 weak have a narrowly technical meaning.
 Strength refers to how permissive a type system is, whereas a weaker type system treats
 more expressions as valid than a stronger type system does.
For example, in Perl, the expression
 "foo" + 2 evaluates to the number 2, but the expression
 "13foo" + 2 evaluates to the number 15. Haskell rejects
 both expressions as invalid, because the (+) operator requires both of its
 operands to be numeric. Because Perl’s type system is more
 permissive than Haskell’s, we say that it is weaker under this
 narrow technical interpretation.
The fireworks around type systems have
 their roots in ordinary English, where people attach notions of
 value to the words “weak” and
 “strong”—we usually think of strength as better than
 weakness. Many more programmers speak plain English than academic
 jargon, and quite often academics really are
 throwing brickbats at whatever type system doesn’t suit their fancy.
 The result is often that popular Internet pastime, a flame
 war.

Static Types

Having a static type
 system means that the compiler knows the type of every value
 and expression at compile time, before any code is executed. A Haskell
 compiler or interpreter will detect when we try to use expressions
 whose types don’t match, and reject our code with an error message
 before we run it:
ghci> True && "false"

<interactive>:1:8:
 Couldn't match expected type `Bool' against inferred type `[Char]'
 In the second argument of `(&&)', namely `"false"'
 In the expression: True && "false"
 In the definition of `it': it = True && "false"

We’ve seen this kind of error message
 before. The compiler has inferred that the type of the expression
 "false" is [Char]. The
 (&&) operator requires
 each of its operands to be of type Bool, and its left
 operand indeed has this type. Since the actual type of "false" does not match the required type,
 the compiler rejects this expression as ill typed.
Static typing can occasionally make it
 difficult to write some useful kinds of code. In languages such as
 Python, duck typing is common, where an object acts enough like another to be used as
 a substitute for it.[2] Fortunately, Haskell’s system of
 typeclasses, which we will cover in Chapter 6,
 provides almost all of the benefits of dynamic typing, in a safe and
 convenient form. Haskell has some support for programming with truly
 dynamic types, though it is not quite as easy as it is in a language
 that wholeheartedly embraces the notion.
Haskell’s combination of strong and
 static typing makes it impossible for type errors to occur at runtime.
 While this means that we need to do a little more thinking up front,
 it also eliminates many simple errors that can otherwise be devilishly
 hard to find. It’s a truism within the Haskell community that once
 code compiles, it’s more likely to work correctly than in other
 languages. (Perhaps a more realistic way of putting this is that
 Haskell code often has fewer trivial bugs.)
Programs written in dynamically typed
 languages require large suites of tests to give some assurance that
 simple type errors cannot occur. Test suites cannot offer complete
 coverage: some common tasks, such as refactoring a program to make it
 more modular, can introduce new type errors that a test suite may not
 expose.
In Haskell, the compiler proves the
 absence of type errors for us: a Haskell program that compiles will
 not suffer from type errors when it runs. Refactoring is usually a
 matter of moving code around, and then recompiling and tidying up a
 few times until the compiler gives us the “all
 clear.”
A helpful analogy to understand the
 value of static typing is to look at it as putting pieces into a
 jigsaw puzzle. In Haskell, if a piece has the wrong shape, it simply
 won’t fit. In a dynamically typed language, all the pieces are 1×1
 squares and always fit, so you have to constantly examine the
 resulting picture and check (through testing) whether it’s
 correct.

Type Inference

Finally, a Haskell compiler can automatically deduce the types of
 almost[3] all expressions in a program. This process is known as
 type inference. Haskell allows us to explicitly
 declare the type of any value, but the presence of type inference
 means that this is almost always optional, not something we are
 required to do.

What to Expect from the Type System

Our exploration of the major capabilities
 and benefits of Haskell’s type system will span a number of chapters.
 Early on, you may find Haskell’s types to be a chore to deal
 with.
For example, instead of simply writing some
 code and running it to see if it works as you might expect in Python or
 Ruby, you’ll first need to make sure that your program passes the
 scrutiny of the type checker. Why stick with the learning curve?
While strong, static typing makes Haskell
 safe, type inference makes it concise. The result is potent: we end up
 with a language that’s safer than popular statically typed languages and
 often more expressive than dynamically typed languages. This is a strong
 claim to make, and we will back it up with evidence throughout the
 book.
Fixing type errors may initially feel like
 more work than using a dynamic language. It might help to look at this
 as moving much of your debugging up front. The
 compiler shows you many of the logical flaws in your code, instead of
 leaving you to stumble across problems at runtime.
Furthermore, because Haskell can infer the
 types of your expressions and functions, you gain the benefits of static
 typing without the added burden of “finger
 typing” imposed by less powerful statically typed languages. In
 other languages, the type system serves the needs of the compiler. In
 Haskell, it serves you. The trade-off is that you
 have to learn to work within the framework it provides.
We will introduce new uses of Haskell’s
 types throughout this book to help us write and test practical code. As
 a result, the complete picture of why the type system is worthwhile will
 emerge gradually. While each step should justify itself, the whole will
 end up greater than the sum of its parts.

Some Common Basic Types

In First Steps with Types, we
 introduced a few types. Here are several more of the most common base
 types:
	A Char value
	Represents a Unicode character.

	A Bool value
	Represents a value in Boolean logic. The possible values of
 type Bool are True and
 False.

	The Int type
	Used for signed, fixed-width integer values. The exact range
 of values represented as Int depends on the system’s
 longest “native” integer: on a 32-bit machine, an
 Int is usually 32 bits wide, while on a 64-bit
 machine, it is usually 64 bits wide. The Haskell standard
 guarantees only that an Int is wider than 28 bits.
 (Numeric types exist that are exactly 8, 16, and so on bits wide,
 in signed and unsigned flavors; we’ll get to those later.)

	An Integer value
	A signed integer of unbounded size. Integers
 are not used as often as Ints, because they are more
 expensive both in performance and space consumption. On the other
 hand, Integer computations do not silently overflow,
 so they give more reliably correct answers.

	Values of type Double
	Used for floating-point numbers. A Double
 value is typically 64 bits wide and uses the system’s native
 floating-point representation. (A narrower type,
 Float, also exists, but its use is discouraged;
 Haskell compiler writers concentrate more on making
 Double efficient, so Float is much
 slower.)

We have already briefly seen Haskell’s
 notation for types earlier in First Steps with Types. When we
 write a type explicitly, we use the notation expression ::
 MyType to say that expression has the
 type MyType. If we omit the :: and the type
 that follows, a Haskell compiler will infer the type of the
 expression:
ghci> :type 'a'
'a' :: Char
ghci> 'a' :: Char
'a'
ghci> [1,2,3] :: Int

<interactive>:1:0:
 Couldn't match expected type `Int' against inferred type `[a]'
 In the expression: [1, 2, 3] :: Int
 In the definition of `it': it = [1, 2, 3] :: Int
The combination of :: and the
 type after it is called a type signature.

Function Application

Now that we’ve had our fill of data types
 for a while, let’s turn our attention to working with some of the types
 we’ve seen, using functions.
To apply a function in Haskell, we write the name of the
 function followed by its arguments:
ghci> odd 3
True
ghci> odd 6
False
We don’t use parentheses or commas to group
 or separate the arguments to a function; merely writing the name of the
 function, followed by each argument in turn, is enough. As an example,
 let’s apply the compare function,
 which takes two arguments:
ghci> compare 2 3
LT
ghci> compare 3 3
EQ
ghci> compare 3 2
GT
If you’re used to function call syntax in
 other languages, this notation can take a little getting used to, but
 it’s simple and uniform.
Function application has higher precedence
 than using operators, so the following two expressions have the same
 meaning:
ghci> (compare 2 3) == LT
True
ghci> compare 2 3 == LT
True
The parentheses in the preceding code don’t
 do any harm, but they add some visual noise. Sometimes, however, we
 must use parentheses to indicate how we want a
 complicated expression to be parsed:
ghci> compare (sqrt 3) (sqrt 6)
LT

This applies compare to the results of applying sqrt
 3 and sqrt 6, respectively. If we omit the
 parentheses, it looks like we are trying to pass four arguments to
 compare, instead of the two it
 accepts.

Useful Composite Data Types: Lists and Tuples

A composite data type is constructed from other types. The most common
 composite data types in Haskell are lists and tuples.
We’ve already seen the list type mentioned
 earlier in the Strings and Characters, where we found that
 Haskell represents a text string as a list of Char values,
 and that the type “list of Char” is written
 [Char].
The head function returns the first element of a list:
ghci> head [1,2,3,4]
1
ghci> head ['a','b','c']
'a'
Its counterpart, tail, returns all but the head of a list:
ghci> tail [1,2,3,4]
[2,3,4]
ghci> tail [2,3,4]
[3,4]
ghci> tail [True,False]
[False]
ghci> tail "list"
"ist"
ghci> tail []
*** Exception: Prelude.tail: empty list
As you can see, we can apply head and tail to lists of different types. Applying
 head to a [Char] value
 returns a Char value, while applying it to a
 [Bool] value returns a Bool value. The
 head function doesn’t care what
 type of list it deals with.
Because the values in a list can have any
 type, we call the list type
 polymorphic.[4] When we want to write a polymorphic type, we use a
 type variable, which must begin with a lowercase letter. A type variable is a
 placeholder, where we’ll eventually substitute a real type.
We can write the type “list of
 a” by enclosing the type variable
 in square brackets: [a]. This amounts to
 saying, “I don’t care what type I have; I can make a list with
 it.”
Distinguishing type names and type variables
We can now see why a type name must start
 with an uppercase letter: it makes it distinct from a type variable,
 which must start with a lowercase letter.

When we talk about a list with values of a
 specific type, we substitute that type for our type variable. So, for
 example, the type [Int] is a list of values of type
 Int, because we substituted Int for a. Similarly, the type
 [MyPersonalType] is a list of values of type
 MyPersonalType. We can perform this substitution
 recursively, too: [[Int]] is a list of values of type
 [Int], i.e., a list of lists of Int.
ghci> :type [[True],[False,False]]
[[True],[False,False]] :: [[Bool]]

The type of this expression is a list of
 lists of Bool.
Lists are special
Lists are the bread and butter of Haskell
 collections. In an imperative language, we might perform a task many
 times by iterating through a loop. This is something that we often do
 in Haskell by traversing a list, either by recursing or using a
 function that recurses for us. Lists are the easiest stepping stone
 into the idea that we can use data to structure our program and its
 control flow. We’ll be spending a lot more time discussing lists in
 Chapter 4.

A tuple is a fixed-size collection of
 values, where each value can have a different type. This distinguishes
 them from a list, which can have any length, but whose elements must all
 have the same type.
To help understand the difference, let’s
 say we want to track two pieces of information about a book: its year of
 publication—a number—and its a title—a string. We can’t keep both of
 these pieces of information in a list, because they have different
 types. Instead, we use a tuple:
ghci> (1964, "Labyrinths")
(1964,"Labyrinths")

We write a tuple by enclosing its elements
 in parentheses and separating them with commas. We use the same notation for writing its
 type:
ghci> :type (True, "hello")
(True, "hello") :: (Bool, [Char])
ghci> (4, ['a', 'm'], (16, True))
(4,"am",(16,True))
There’s a special type, (),
 that acts as a tuple of zero elements. This type has only one
 value, which is also written (). Both the type and the
 value are usually pronounced “unit.” If you are familiar
 with C, () is somewhat similar to void.
Haskell doesn’t have a notion of a
 one-element tuple. Tuples are often referred to using the number of
 elements as a prefix. A 2-tuple has two elements and is usually
 called a pair. A 3-tuple (sometimes
 called a triple) has three elements; a 5-tuple has
 five; and so on. In practice, working with tuples that contain more than
 a handful of elements makes code unwieldy, so tuples of more than a few
 elements are rarely used.
A tuple’s type represents the number,
 positions, and types of its elements. This means that tuples containing
 different numbers or types of elements have distinct types, as do tuples
 whose types appear in different orders:
ghci> :type (False, 'a')
(False, 'a') :: (Bool, Char)
ghci> :type ('a', False)
('a', False) :: (Char, Bool)
In this example, the expression
 (False, 'a') has the type (Bool, Char), which
 is distinct from the type of ('a', False). Even though the
 number of elements and their types is the same, these two types are
 distinct because the positions of the element types are
 different:
ghci> :type (False, 'a', 'b')
(False, 'a', 'b') :: (Bool, Char, Char)

This type, (Bool, Char, Char),
 is distinct from (Bool, Char) because it contains three
 elements, not two.
We often use tuples to return multiple
 values from a function. We can also use them any time we need a
 fixed-size collection of values, if the circumstances don’t require a
 custom container type.
Exercise
	What are the types of the following expressions?
	False

	(["foo", "bar"],
 'a')

	[(True, []), (False,
 [['a']])]

Functions over Lists and Tuples

Our discussion of lists and tuples mentioned how we can
 construct them but little about how we do anything with them afterwards.
 So far we have only been introduced to two list functions, head and tail.
Two related list functions, take and drop, take two arguments. Given a number n and a
 list, take returns the first
 n elements of the list, while drop returns all but the
 first n elements of the list. (As these functions
 take two arguments, notice that we separate each function and its
 arguments using whitespace.)
ghci> take 2 [1,2,3,4,5]
[1,2]
ghci> drop 3 [1,2,3,4,5]
[4,5]
For tuples, the fst and snd functions return the first and second element of a pair,
 respectively:
ghci> fst (1,'a')
1
ghci> snd (1,'a')
'a'
If your background is in any of a number of
 other languages, each of these may look like an application of a
 function to two arguments. Under Haskell’s convention for function
 application, each one is an application of a function to a single
 pair.
Haskell tuples aren’t immutable lists
If you are coming from the Python world, you’ll probably be used to lists
 and tuples being almost interchangeable. Although the elements of a
 Python tuple are immutable, it can be indexed and iterated over using
 the same methods as a list. This isn’t the case in Haskell, so don’t
 try to carry that idea with you into unfamiliar linguistic
 territory.
As an illustration, take a look at the
 type signatures of fst and
 snd: they’re defined
 only for pairs and can’t be used with tuples of
 other sizes. Haskell’s type system makes it tricky to write a
 generalized “get the second element from any tuple, no matter
 how wide” function.

Passing an Expression to a Function

In Haskell, function application is left-associative. This is best
 illustrated by example: the expression a b c d is
 equivalent to (((a b) c) d). If we want to use one
 expression as an argument to another, we have to use explicit
 parentheses to tell the parser what we really mean. Here’s an
 example:
ghci> head (drop 4 "azerty")
't'

We can read this as “pass the expression
 drop 4
 "azerty" as the argument to head.”
 If we were to leave out the parentheses, the offending expression
 would be similar to passing three arguments to head. Compilation would fail with a type
 error, as head requires a single
 argument, a list.

Function Types and Purity

Let’s take a look at a function’s type:
ghci> :type lines
lines :: String -> [String]

We can read the ->
 as “to,” which loosely translates to
 “returns.” The signature as a whole thus reads as
 “lines has the type
 String to list-of-String”. Let’s try
 applying the function:
ghci> lines "the quick\nbrown fox\njumps"
["the quick","brown fox","jumps"]

The lines function
 splits a string on line boundaries. Notice that its type
 signature gives us a hint as to what the function might actually do: it
 takes one String, and returns many. This is an incredibly
 valuable property of types in a functional language.
A side effect
 introduces a dependency between the global state of the system and
 the behavior of a function. For example, let’s step away from Haskell
 for a moment and think about an imperative programming language.
 Consider a function that reads and returns the value of a global
 variable. If some other code can modify that global variable, then the
 result of a particular application of our function depends on the
 current value of the global variable. The function has a side effect,
 even though it never modifies the variable itself.
Side effects are essentially invisible
 inputs to, or outputs from, functions. In Haskell, the default is for
 functions to not have side effects: the result of a
 function depends only on the inputs that we explicitly provide. We call
 these functions pure; functions with side effects are impure.
If a function has side effects, we can tell
 by reading its type signature—the type of the function’s result will
 begin with IO:
ghci> :type readFile
readFile :: FilePath -> IO String

Haskell’s type system prevents us from
 accidentally mixing pure and impure code.

Haskell Source Files, and Writing Simple Functions

Now that we know how to apply functions, it’s time we turned
 our attention to writing them. While we can write functions in ghci, it’s not a good environment for this. It
 accepts only a highly restricted subset of Haskell—most importantly, the
 syntax it uses for defining functions is not the same as we use in a
 Haskell source file.[5] Instead, we’ll finally break down and create a source
 file.
Haskell source files are usually identified with a suffix of .hs. A simple function definition is to open
 up a file named add.hs and add
 these contents to it:
-- file: ch03/add.hs
add a b = a + b
On the lefthand side of the = is the name of the function, followed by the
 arguments to the function. On the righthand side is the body of the
 function. With our source file saved, we can load it into ghci, and use our new add function straightaway (the prompt that
 ghci displays will change after you
 load your file):
ghci> :load add.hs
[1 of 1] Compiling Main (add.hs, interpreted)
Ok, modules loaded: Main.
ghci> add 1 2
3
What if ghci cannot find your source file?
When you run ghci, it may not be able to find your source
 file. It will search for source files in whatever directory it was
 run. If this is not the directory that your source file is actually
 in, you can use ghci’s
 :cd command to change its working directory:
ghci> :cd /tmp
Alternatively, you can provide the path
 to your Haskell source file as the argument to :load.
 This path can be either absolute or relative to ghci’s current directory.

When we apply add to the values 1 and 2,
 the variables a and b on the
 lefthand side of our definition are given (or “bound to”)
 the values 1 and 2, so the result is the expression 1 +
 2.
Haskell doesn’t have a return keyword, because a function is a single expression, not a sequence of
 statements. The value of the expression is the result of the function.
 (Haskell does have a function called return, but we won’t discuss it for a while;
 it has a different meaning than in imperative languages.)
When you see an = symbol in Haskell code, it represents
 “meaning”—the name on the left is defined to be the
 expression on the right.
Just What Is a Variable, Anyway?

In Haskell, a variable provides a way to give a name to an expression. Once a
 variable is bound to (i.e., associated with)
 a particular expression, its value does not change: we can always use
 the name of the variable instead of writing out the expression, and we
 will get the same result either way.
If you’re used to imperative programming
 languages, you’re likely to think of a variable as a way of
 identifying a memory location (or some
 equivalent) that can hold different values at different times. In an
 imperative language, we can change a variable’s value at any time, so
 that examining the memory location repeatedly can potentially give
 different results each time.
The critical difference between these two
 notions of a variable is that in Haskell, once we’ve bound a variable
 to an expression, we know that we can always substitute it for that
 expression, because it will not change. In an imperative language,
 this notion of substitutability does not hold.
For example, if we run the following
 tiny Python script, it will print the number 11:
x = 10
x = 11
value of x is now 11
print x
In contrast, trying the equivalent in
 Haskell results in an error:
-- file: ch02/Assign.hs
x = 10
x = 11
We cannot assign a value to
 x twice:
ghci> :load Assign
[1 of 1] Compiling Main (Assign.hs, interpreted)

Assign.hs:4:0:
 Multiple declarations of `Main.x'
 Declared at: Assign.hs:3:0
 Assign.hs:4:0
Failed, modules loaded: none.

Conditional Evaluation

Like many other languages, Haskell has an if expression. Let’s see it in action;
 then we’ll explain what’s going on. As an example, we’ll write our own
 version of the standard drop
 function. Before we begin, let’s probe a little into how drop behaves, so we can replicate its
 behavior:
ghci> drop 2 "foobar"
"obar"
ghci> drop 4 "foobar"
"ar"
ghci> drop 4 [1,2]
[]
ghci> drop 0 [1,2]
[1,2]
ghci> drop 7 []
[]
ghci> drop (-2) "foo"
"foo"
From this code, it seems that drop returns the original list if the
 number to remove is less than or equal to zero. Otherwise, it removes
 elements until it either runs out or reaches the given number. Here’s
 a myDrop function that has the
 same behavior, and that uses Haskell’s if expression to
 decide what to do. The following null function below checks whether a list
 is empty:
-- file: ch02/myDrop.hs
myDrop n xs = if n <= 0 || null xs
 then xs
 else myDrop (n - 1) (tail xs)
In Haskell, indentation is important: it
 continues an existing definition, instead of
 starting a new one. Don’t omit the indentation!
You might wonder where the variable name
 xs comes from in the Haskell function. This is a
 common naming pattern for lists. You can read the s as a
 suffix, so the name is essentially “plural of x.”
Let’s save our Haskell function in a file named
 myDrop.hs, then load it into
 ghci:
ghci> :load myDrop.hs
[1 of 1] Compiling Main (myDrop.hs, interpreted)
Ok, modules loaded: Main.
ghci> myDrop 2 "foobar"
"obar"
ghci> myDrop 4 "foobar"
"ar"
ghci> myDrop 4 [1,2]
[]
ghci> myDrop 0 [1,2]
[1,2]
ghci> myDrop 7 []
[]
ghci> myDrop (-2) "foo"
"foo"
Now that we’ve seen myDrop in action, let’s return to the
 source code and look at all the novelties we’ve introduced.
First of all, we have introduced
 --, the beginning of a single-line comment. This comment
 extends to the end of the line.
Next is the if keyword
 itself. It introduces an expression that has three components:
	An expression of type
 Bool, immediately following the if. We refer to this as a predicate.

	A then keyword, followed
 by another expression. This expression will be used as the value
 of the if expression if the
 predicate evaluates to True.

	An else keyword,
 followed by another expression. This expression will
 be used as the value of the if
 expression if the predicate evaluates to
 False.

We’ll refer to the expressions that
 follow the then and else keywords as
 “branches.” The branches must have the same types; the
 if expression will also have this
 type. An expression such as if True then 1 else "foo" has
 different types for its branches, so it is ill typed and a compiler or
 interpreter will reject it.
Recall that Haskell is an
 expression-oriented language. In an imperative language, it can make
 sense to omit the else branch from an if,
 because we’re working with statements, not expressions.
 However, when we’re working with expressions, an if that
 was missing an else wouldn’t have a result or type if the
 predicate evaluated to False, so
 it would be nonsensical.
Our predicate contains a few more
 novelties. The null
 function indicates whether a list is empty, while the (||) operator performs a logical “or” of its
 Bool-typed arguments:
ghci> :type null
null :: [a] -> Bool
ghci> :type (||)
(||) :: Bool -> Bool -> Bool
Operators are not special
Notice that we were able to find the
 type of (||) by wrapping it in
 parentheses. The (||) operator isn’t built into the
 language; it’s an ordinary function.
The (||) operator “short
 circuits”: if its left operand evaluates to
 True, it doesn’t evaluate its right operand. In most
 languages, short-circuit evaluation requires special support, but
 not in Haskell. We’ll see why shortly.

Next, our function applies itself
 recursively. This is our first example of recursion, which we’ll talk
 about in some detail soon.
Finally, our if expression spans several
 lines. We align the then and else branches
 under the if for neatness. So long as we use some
 indentation, the exact amount is not important. If we wish, we can
 write the entire expression on a single line:
-- file: ch02/myDrop.hs
myDropX n xs = if n <= 0 || null xs then xs else myDropX (n - 1) (tail xs)
The length of this version makes it more
 difficult to read. We will usually break an if expression across several lines to keep
 the predicate and each of the branches easier to follow.
For comparison, here is a Python
 equivalent of the Haskell myDrop.
 The two are structured similarly—each decrements a counter while
 removing an element from the head of the list:
def myDrop(n, elts):
 while n > 0 and elts:
 n = n - 1
 elts = elts[1:]
 return elts

Understanding Evaluation by Example

In our description of myDrop, we have so far focused on surface
 features. We need to go deeper and develop a useful mental model of how
 function application works. To do this, we’ll first work through a few
 simple examples, until we can walk through the evaluation of the
 expression myDrop 2 "abcd".
We’ve talked a lot about substituting an
 expression for a variable, and we’ll make use of this capability here.
 Our procedure will involve rewriting expressions over and over,
 substituting expressions for variables until we reach a final result.
 This would be a good time to fetch a pencil and paper, so you can follow
 our descriptions by trying them yourself.
Lazy Evaluation

We will begin by looking at the definition of a simple, nonrecursive
 function:
-- file: ch02/RoundToEven.hs
isOdd n = mod n 2 == 1
Here, mod is the standard modulo function. The
 first big step to understanding how evaluation works in Haskell is
 figuring out the result of evaluating the expression isOdd (1 +
 2).
Before we explain how evaluation proceeds
 in Haskell, let us recap the sort of evaluation strategy more familiar
 languages use. First, evaluate the subexpression 1 + 2,
 to give 3. Then apply the isOdd function with n
 bound to 3. Finally, evaluate mod 3 2 to
 give 1, and 1 == 1 to give
 True.
In a language that uses
 strict evaluation, the arguments to a function are evaluated before the
 function is applied. Haskell chooses another path:
 nonstrict evaluation.
In Haskell, the subexpression 1 +
 2 is not reduced to the value
 3. Instead, we create a “promise” that when
 the value of the expression isOdd (1 + 2) is needed,
 we’ll be able to compute it. The record that we use to track an
 unevaluated expression is referred to as a thunk. This is
 all that happens: we create a thunk and defer the
 actual evaluation until it’s really needed. If the result of this
 expression is never subsequently used, we will not compute its value
 at all.
Nonstrict evaluation is often referred to
 as lazy evaluation.[6]

A More Involved Example

Let us now look at the evaluation of the
 expression myDrop 2 "abcd", where we use print to ensure that it will be
 evaluated:
ghci> print (myDrop 2 "abcd")
"cd"

Our first step is to attempt to apply
 print, which needs its argument
 to be evaluated. To do that, we apply the function myDrop to the values 2 and
 "abcd". We bind the variable n to the
 value 2, and xs to
 "abcd". If we substitute these values into myDrop’s predicate, we get the following
 expression:
ghci> :type 2 <= 0 || null "abcd"
2 <= 0 || null "abcd" :: Bool

We then evaluate enough of the predicate
 to find out what its value is. This requires that we evaluate the
 (||) expression. To determine its value, the (||) operator needs to examine the value of
 its left operand first:
ghci> 2 <= 0
False

Substituting that value into the
 (||) expression leads to the
 following expression:
ghci> :type False || null "abcd"
False || null "abcd" :: Bool

If the left operand had evaluated to
 True, (||) would not need to evaluate its right
 operand, since it could not affect the result of the expression. Since
 it evaluates to False, (||) must evaluate the right
 operand:
ghci> null "abcd"
False

We now substitute this value back into
 the (||) expression. Since both
 operands evaluate to False, the
 (||) expression does too, and
 thus the predicate evaluates to False:
ghci> False || False
False

This causes the if expression’s else branch to
 be evaluated. This branch contains a recursive application of
 myDrop.
Short-circuiting for free
Many languages need to treat the
 logical-or operator specially so that it short-circuits if its left
 operand evaluates to True. In Haskell, (||) is an ordinary function: nonstrict
 evaluation builds this capability into the language.
In Haskell, we can easily define a new function
 that short-circuits:
-- file: ch02/shortCircuit.hs
newOr a b = if a then a else b
If we write an expression such as newOr True
 (length [1..] > 0), it will not evaluate its second
 argument. (This is just as well: that expression tries to compute
 the length of an infinite list. If it were evaluated, it would hang
 ghci, looping infinitely until we
 killed it.)
Were we to write a comparable function in, say,
 Python, strict evaluation would bite us: both arguments would be
 evaluated before being passed to newOr, and we would not be able to avoid
 the infinite loop on the second argument.

Recursion

When we apply myDrop
 recursively, n is bound to the thunk 2 -
 1, and xs is bound to tail
 "abcd".
We’re now evaluating myDrop from the beginning again. We
 substitute the new values of n and
 xs into the predicate:
ghci> :type (2 - 1) <= 0 || null (tail "abcd")
(2 - 1) <= 0 || null (tail "abcd") :: Bool

Here’s a condensed version of the
 evaluation of the left operand:
ghci> :type (2 - 1) <= 0
(2 - 1) <= 0 :: Bool
ghci> 2 - 1
1
ghci> 1 <= 0
False
As we should now expect, we didn’t
 evaluate the expression 2 - 1 until we needed its value.
 We also evaluate the right operand lazily, deferring tail "abcd" until we need its
 value:
ghci> :type null (tail "abcd")
null (tail "abcd") :: Bool
ghci> tail "abcd"
"bcd"
ghci> null "bcd"
False
The predicate again evaluates to False, causing the else branch
 to be evaluated once more.
Because we’ve had to evaluate the
 expressions for n and xs to
 evaluate the predicate, we now know that in this application of
 myDrop, n has
 the value 1 and xs has the value
 "bcd".

Ending the Recursion

In the next recursive application of
 myDrop, we bind
 n to 1 - 1 and xs
 to tail "bcd":
ghci> :type (1 - 1) <= 0 || null (tail "bcd")
(1 - 1) <= 0 || null (tail "bcd") :: Bool

Once again, (||) needs to evaluate its left operand
 first:
ghci> :type (1 - 1) <= 0
(1 - 1) <= 0 :: Bool
ghci> 1 - 1
0
ghci> 0 <= 0
True
Finally, this expression evaluates to
 True!
ghci> True || null (tail "bcd")
True

Because the right operand cannot affect
 the result of (||), it is not
 evaluated, and the result of the predicate is True. This causes us to evaluate the
 then branch:
ghci> :type tail "bcd"
tail "bcd" :: [Char]

Returning from the Recursion

Remember, we’re now inside our second
 recursive application of myDrop.
 This application evaluates to tail "bcd". We return from
 the application of the function, substituting this expression for
 myDrop (1 - 1) (tail "bcd") to become the
 result of this application:
ghci> myDrop (1 - 1) (tail "bcd") == tail "bcd"
True

We then return from the first recursive
 application, substituting the result of the second recursive
 application for myDrop (2 - 1) (tail "abcd") to become
 the result of this application:
ghci> myDrop (2 - 1) (tail "abcd") == tail "bcd"
True

Finally, we return from our original
 application, substituting the result of the first recursive
 application:
ghci> myDrop 2 "abcd" == tail "bcd"
True

Notice that as we return from each
 successive recursive application, none of them needs to evaluate the
 expression tail "bcd": the final result of evaluating the
 original expression is a thunk. The thunk is only evaluated when
 ghci needs to print it.
ghci> myDrop 2 "abcd"
"cd"
ghci> tail "bcd"
"cd"

What Have We Learned?

We have established several
 important points:
	It makes sense to use substitution
 and rewriting to understand the evaluation of a Haskell
 expression.

	Laziness leads us to defer evaluation
 until we need a value and to evaluate just enough of an expression
 to establish its value.

	The result of applying a function may
 be a thunk (a deferred expression).

Polymorphism in Haskell

When we introduced lists, we mentioned that the list type is
 polymorphic. We’ll talk about Haskell’s polymorphism in more detail
 here.
If we want to fetch the last element of a
 list, we use the last function.
 The value that it returns must have the same type as the elements of the
 list, but last operates in the same
 way no matter what type those elements actually are:
ghci> last [1,2,3,4,5]
5
ghci> last "baz"
'z'
To capture this idea, its type signature
 contains a type variable:
ghci> :type last
last :: [a] -> a

Here, a is
 the type variable. We can read the signature as “takes a list, all of
 whose elements have some type a, and returns a value of the same type
 a.”
Identifying a type variable
Type variables always start with a
 lowercase letter. You can always tell a type variable from a normal
 variable by context, because the languages of types and functions are
 separate: type variables live in type signatures, and regular
 variables live in normal expressions.
It’s common Haskell practice to keep the
 names of type variables very short. One letter is overwhelmingly
 common; longer names show up infrequently. Type signatures are usually
 brief; we gain more in readability by keeping names short than we
 would by making them descriptive.

When a function has type variables in its signature,
 indicating that some of its arguments can be of any type, we call the
 function polymorphic.
When we want to apply last to, say, a list of Char,
 the compiler substitutes Char for each a throughout the type signature. This gives us the
 type of last with an input of
 [Char] as [Char] -> Char.
This kind of polymorphism is called
 parametric polymorphism. The choice of naming is easy to understand by analogy:
 just as a function can have parameters that we can later bind to real
 values, a Haskell type can have parameters that we can later bind to
 other types.
A little nomenclature
If a type contains type parameters, we
 say that it is a parameterized type, or a polymorphic type. If a
 function or value’s type contains type parameters, we call it
 polymorphic.

When we see a parameterized type, we’ve
 already noted that the code doesn’t care what the actual type is.
 However, we can make a stronger statement: it has no way to
 find out what the real type is, or to manipulate a value of
 that type. It can’t create a value; neither can it inspect one. All it
 can do is treat it as a fully abstract “black box.” We’ll
 cover one reason that this is important soon.
Parametric polymorphism is the most visible
 kind of polymorphism that Haskell supports. Haskell’s parametric
 polymorphism directly influenced the design of the generic facilities of
 the Java and C# languages. A parameterized type in Haskell is similar to
 a type variable in Java generics. C++ templates also bear a resemblance
 to parametric polymorphism.
To make it clearer how Haskell’s
 polymorphism differs from other languages, here are a few forms of
 polymorphism that are common in other languages, but not present in
 Haskell.
In mainstream object-oriented languages,
 subtype polymorphism is more widespread than parametric polymorphism. The
 subclassing mechanisms of C++ and Java give them subtype polymorphism. A
 base class defines a set of behaviors that its subclasses can modify and
 extend. Since Haskell isn’t an object-oriented language, it doesn’t
 provide subtype polymorphism.
Also common is
 coercion polymorphism, which allows a value of one type to be implicitly
 converted into a value of another type. Many languages provide some form
 of coercion polymorphism; one example is automatic conversion between
 integers and floating-point numbers. Haskell deliberately avoids even
 this kind of simple automatic coercion.
This is not the whole story of polymorphism
 in Haskell. We’ll return to the subject in Chapter 6.
Reasoning About Polymorphic Functions

In Function Types and Purity we
 talked about figuring out the behavior of a function based on its type
 signature. We can apply the same kind of reasoning to polymorphic
 functions. Let’s look again at fst:
ghci> :type fst
fst :: (a, b) -> a

First of all, notice that its argument
 contains two type variables, a and
 b, signifying that the elements of the
 tuple can be of different types.
The result type of fst is a. We’ve already
 mentioned that parametric polymorphism makes the real type
 inaccessible. fst doesn’t have
 enough information to construct a value of type a, nor can it turn an a into a b. So
 the only possible valid behavior (omitting
 infinite loops or crashes) it can have is to return the first element
 of the pair.

Further Reading

There is a deep mathematical sense in which any nonpathological
 function of type (a,b) -> a must do exactly what
 fst does. Moreover, this line of
 reasoning extends to more complicated polymorphic functions. The paper
 “Theorems for free” by Philip Wadler (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9875)
 covers this procedure in depth.

The Type of a Function of More Than One Argument

So far, we haven’t looked much at
 signatures for functions that take more than one argument. We’ve already
 used a few such functions; let’s look at the signature of one, take:
ghci> :type take
take :: Int -> [a] -> [a]

It’s pretty clear that there’s something
 going on with an Int and some lists, but why are there two -> symbols in the signature? Haskell groups
 this chain of arrows from right to left; that is, -> is
 right-associative. If we introduce parentheses, we can make it clearer how this
 type signature is interpreted:
-- file: ch02/Take.hs
take :: Int -> ([a] -> [a])
From this, it looks like we ought to read
 the type signature as a function that takes one argument, an
 Int, and returns another function. That other function also
 takes one argument, a list, and returns a list of the same type as its
 result.
This is correct, but it’s not easy to see
 what its consequences might be. We’ll return to this topic in Partial Function Application and Currying, once we’ve spent a bit of time writing
 functions. For now, we can treat the type following the last
 -> as being the function’s return type, and the
 preceding types to be those of the function’s arguments.
We can now write a type signature for the
 myDrop function that we defined
 earlier:
-- file: ch02/myDrop.hs
myDrop :: Int -> [a] -> [a]
Exercises
	Haskell provides a standard function, last :: [a]
 -> a, that returns the last element of a list. From
 reading the type alone, what are the possible valid behaviors
 (omitting crashes and infinite loops) that this function could
 have? What are a few things that this function clearly cannot
 do?

	Write a function, lastButOne, that returns the element before the
 last.

	Load your lastButOne
 function into ghci and try it
 out on lists of different lengths. What happens when you pass it a
 list that’s too short?

Why the Fuss over Purity?

Few programming languages go as far as Haskell in insisting that purity
 should be the default. This choice has profound and valuable
 consequences.
Because the result of applying a pure
 function can only depend on its arguments, we can often get a strong
 hint of what a pure function does by simply reading its name and
 understanding its type signature. As an example, let’s look at not:
ghci> :type not
not :: Bool -> Bool

Even if we don’t know the name of this
 function, its signature alone limits the possible valid behaviors it
 could have:
	Ignore its argument and always return
 either True or False.

	Return its argument unmodified.

	Negate its argument.

We also know that this function
 cannot do some things: access
 files, talk to the network, and tell what time it is.
Purity makes the job of understanding code
 easier. The behavior of a pure function does not depend on the value of
 a global variable, or the contents of a database, or the state of a
 network connection. Pure code is inherently modular: every function is
 self-contained and has a well-defined interface.
A nonobvious consequence of purity being
 the default is that working with impure code becomes easier.
 Haskell encourages a style of programming in which we separate code that
 must have side effects from code that doesn’t need
 side effects. In this style, impure code tends to be simple, with the
 “heavy lifting” performed in pure code.
Much of the risk in software lies in
 talking to the outside world, be it coping with bad or missing data or
 handling malicious attacks. Because Haskell’s type system tells us
 exactly which parts of our code have side effects, we can be
 appropriately on guard. Because our favored coding style keeps impure
 code isolated and simple, our “attack surface” is
 small.

Conclusion

In this chapter, we’ve had a whirlwind
 overview of Haskell’s type system and much of its syntax. We’ve read
 about the most common types and discovered how to write simple
 functions. We’ve been introduced to polymorphism, conditional
 expressions, purity, and lazy evaluation.
This all amounts to a lot of information to absorb. In
 Chapter 3, we’ll build on this basic knowledge to
 further enhance our understanding of Haskell.

[2] “If it walks like a duck, and
 quacks like a duck, then let’s call it a duck.”

[3] Occasionally, we need to give the
 compiler a little information to help it make a choice in
 understanding our code.

[4] We’ll talk more about polymorphism in
 Polymorphism in Haskell.

[5] The environment in which ghci operates is called the
 IO monad. In Chapter 7, we will cover the
 IO monad in depth, and the seemingly arbitrary
 restrictions that ghci places on
 us will make more sense.

[6] The terms “nonstrict” and
 “lazy” have slightly different technical meanings,
 but we won’t go into the details of the distinction here.

Chapter 3. Defining Types, Streamlining Functions

Defining a New Data Type

Although lists and tuples are useful, we’ll often want to
 construct new data types of our own. This allows us to add structure to
 the values in our programs. Instead of using an anonymous tuple, we can
 give a collection of related values a name and a distinct type. Defining
 our own types also improves the type safety of our code: Haskell will
 not allow us to accidentally mix values of two types that are
 structurally similar but have different names.
For motivation, we’ll consider a few kinds
 of data that a small online bookstore might need to manage. We won’t
 make any attempt at complete or realistic data definitions, but at least
 we’re tying them to the real world.
We define a new data type using the data keyword:
-- file: ch03/BookStore.hs
data BookInfo = Book Int String [String]
 deriving (Show)
BookInfo after the
 data keyword is the name of our new type. We call
 BookInfo a type constructor.
 Once we define a type, we will use its type constructor to
 refer to it. As we’ve already mentioned, a type name, and hence a type
 constructor, must start with a capital letter.
The Book that follows is the name of
 the value constructor (sometimes called
 a data constructor). We use this to create a value of the
 BookInfo type. A value constructor’s name must also start
 with a capital letter.
After Book, the
 Int, String, and [String] that
 follow are the components of the type. A
 component serves the same purpose in Haskell as a field in a structure or class would in another language: it’s a
 “slot” where we keep a value. (We’ll often refer to
 components as fields.)
In this example, the Int
 represents a book’s identifier (e.g., in a stock database), String
 represents its title, and [String] represents the names of
 its authors.
To make the link to a concept we’ve already
 seen, the BookInfo type contains the same components as a
 3-tuple of type (Int, String, [String]), but it has a
 distinct type. We can’t accidentally (or deliberately) use one in a
 context where the other is expected. For instance, a bookstore is also
 likely to carry magazines:
-- file: ch03/BookStore.hs
data MagazineInfo = Magazine Int String [String]
 deriving (Show)
Even though this MagazineInfo type has the
 same structure as our BookInfo type, Haskell treats the
 types as distinct because their type and value constructors have
 different names.
Deriving what?
We’ll explain the full meaning of
 deriving (Show) later, in Show. For now, it’s enough to know
 that we need to tack this onto a type declaration so that ghci will automatically know how to print a
 value of this type.

We can create a new value of type
 BookInfo by treating Book as a function and applying it with
 arguments of types Int, String, and
 [String]:
-- file: ch03/BookStore.hs
myInfo = Book 9780135072455 "Algebra of Programming"
 ["Richard Bird", "Oege de Moor"]
Once we define a type, we can experiment
 with it in ghci. We begin by
 using the :load command to load our source file:
ghci> :load BookStore
[1 of 1] Compiling Main (BookStore.hs, interpreted)
Ok, modules loaded: Main.

Remember the myInfo variable that we
 defined in our source file? Here it is:
ghci> myInfo
Book 9780135072455 "Algebra of Programming" ["Richard Bird","Oege de Moor"]
ghci> :type myInfo
myInfo :: BookInfo
We can construct new values interactively
 in ghci, too:
ghci> Book 0 "The Book of Imaginary Beings" ["Jorge Luis Borges"]
Book 0 "The Book of Imaginary Beings" ["Jorge Luis Borges"]

The ghci
 command :type lets us see what
 the type of an expression is:
ghci> :type Book 1 "Cosmicomics" ["Italo Calvino"]
Book 1 "Cosmicomics" ["Italo Calvino"] :: BookInfo

Remember that if we want to define a new variable
 inside ghci, the syntax is slightly
 different from that of a Haskell source file—we need to put a let in front:
ghci> let cities = Book 173 "Use of Weapons" ["Iain M. Banks"]
To find out more about a type, we can use some of
 ghci’s browsing capabilities. The
 :info command gets ghci to tell us everything it knows about a
 name:
ghci> :info BookInfo
data BookInfo = Book Int String [String]
 	-- Defined at BookStore.hs:4:5-12
instance Show BookInfo -- Defined at BookStore.hs:4:5-12

We can also find out why we use Book to construct a new value of type
 BookInfo:
ghci> :type Book
Book :: Int -> String -> [String] -> BookInfo

We can treat a value constructor as just
 another function—one that happens to create and return a new value of
 the type we desire.
Naming Types and Values

When we introduced the type BookInfo, we
 deliberately chose to give the type constructor BookInfo
 a different name from the value constructor Book, purely
 to make it obvious which was which.
However, in Haskell, the names of types
 and values are independent of each other. We use a type constructor
 (i.e., the type’s name) only in a type declaration or a type
 signature. We use a value constructor only in actual code. Because
 these uses are distinct, there is no ambiguity if we give a type
 constructor and a value constructor the same name. If we are writing a
 type signature, we must be referring to a type constructor. If we are
 writing an expression, we must be using the value constructor:
-- file: ch03/BookStore.hs
-- We will introduce the CustomerID type shortly.

data BookReview = BookReview BookInfo CustomerID String
This definition says that the type named
 BookReview has a value constructor that is also named
 BookReview.
Not only is it legal
 for a value constructor to have the same name as its type constructor,
 it’s normal. You’ll see this all the time in
 regular Haskell code.

Type Synonyms

We can introduce a synonym for an
 existing type at any time, in order to give a type a more descriptive
 name. For example, the String in our
 BookReview type doesn’t tell us what the string is for, but
 we can clarify this:
-- file: ch03/BookStore.hs
type CustomerID = Int
type ReviewBody = String

data BetterReview = BetterReview BookInfo CustomerID ReviewBody
The type
 keyword introduces a type synonym. The new name is on the left of
 the =, with the existing name on the right. The two names
 identify the same type, so type synonyms are purely
 for making code more readable.
We can also use a type synonym to create a
 shorter name for a verbose type:
-- file: ch03/BookStore.hs
type BookRecord = (BookInfo, BookReview)
This states that we can use BookRecord as a synonym for the tuple
 (BookInfo, BookReview). A
 type synonym creates only a new name that refers to an existing
 type.[7] We still use the same value constructors to create a value
 of the type.

Algebraic Data Types

The familiar Bool is the simplest common example of a category of type called
 an algebraic data type. An algebraic data type can
 have more than one value constructor:
-- file: ch03/Bool.hs
data Bool = False | True
The Bool type has two value constructors,
 True and False. Each value constructor is
 separated in the definition by a | character, which
 we can read as “or”—we can construct a Bool
 that has the value True, or the value False.
 When a type has more than one value constructor, they are usually
 referred to as alternatives or
 cases. We can use any one of the alternatives to create a value of
 that type.
A note about naming
Although the phrase “algebraic data
 type” is long, we’re being careful to avoid using the
 acronym “ADT,” which is already widely
 understood to stand for “abstract data
 type.” Since Haskell supports both algebraic and abstract data
 types, we’ll be explicit and avoid the acronym entirely.

Each of an algebraic data type’s value constructors can
 take zero or more arguments. As an example, here’s one way we might
 represent billing information:
-- file: ch03/BookStore.hs
type CardHolder = String
type CardNumber = String
type Address = [String]

data BillingInfo = CreditCard CardNumber CardHolder Address
 | CashOnDelivery
 | Invoice CustomerID
 deriving (Show)
Here, we’re saying that we support three ways to bill
 our customers. If they want to pay by credit card, they must supply a
 card number, the holder’s name, and the holder’s billing address as
 arguments to the CreditCard value constructor.
 Alternatively, they can pay the person who delivers their shipment.
 Since we don’t need to store any extra information about this, we
 specify no arguments for the CashOnDelivery constructor.
 Finally, we can send an invoice to the specified customer, in which
 case, we need her CustomerID as an argument to the
 Invoice constructor.
When we use a value constructor to create a
 value of type BillingInfo, we must supply the arguments
 that it requires:
ghci> :type CreditCard
CreditCard :: CardNumber -> CardHolder -> Address -> BillingInfo
ghci> CreditCard "2901650221064486" "Thomas Gradgrind" ["Dickens", "England"]
CreditCard "2901650221064486" "Thomas Gradgrind" ["Dickens","England"]
ghci> :type it
it :: BillingInfo
ghci> Invoice

<interactive>:1:0:
 No instance for (Show (CustomerID -> BillingInfo))
 arising from a use of `print' at <interactive>:1:0-6
 Possible fix:
 add an instance declaration for (Show (CustomerID -> BillingInfo))
 In the expression: print it
 In a stmt of a 'do' expression: print it

The No instance error message arose because we did not supply an argument to the
 Invoice constructor. As a result, we were trying to print
 the Invoice constructor itself. That constructor requires
 an argument and returns a value, so it is a function. We cannot print
 functions in Haskell, which is ultimately why the interpreter
 complained.
Tuples, Algebraic Data Types, and When to Use Each

There is some overlap between tuples and user-defined
 algebraic data types. If we want, we can represent our
 BookInfo type from earlier as an (Int, String,
 [String]) tuple:
ghci> Book 2 "The Wealth of Networks" ["Yochai Benkler"]
Book 2 "The Wealth of Networks" ["Yochai Benkler"]
ghci> (2, "The Wealth of Networks", ["Yochai Benkler"])
(2,"The Wealth of Networks",["Yochai Benkler"])
Algebraic data types allow us to
 distinguish between otherwise identical pieces of information. Two tuples with elements of
 the same type are structurally identical, so they have the same
 type:
-- file: ch03/Distinction.hs
a = ("Porpoise", "Grey")
b = ("Table", "Oak")
Since they have different names, two algebraic data
 types have distinct types even if they are otherwise structurally
 equivalent:
-- file: ch03/Distinction.hs
data Cetacean = Cetacean String String
data Furniture = Furniture String String

c = Cetacean "Porpoise" "Grey"
d = Furniture "Table" "Oak"
This lets us bring the type system to bear in writing
 programs with fewer bugs. With the tuples we just defined, we could
 conceivably pass a description of a whale to a function expecting a
 chair, and the type system could not help us. With the algebraic data
 types, there is no such possibility of confusion.
Here is a more subtle example. Consider the following
 representations of a two-dimensional
 vector:
-- file: ch03/AlgebraicVector.hs
-- x and y coordinates or lengths.
data Cartesian2D = Cartesian2D Double Double
 deriving (Eq, Show)

-- Angle and distance (magnitude).
data Polar2D = Polar2D Double Double
 deriving (Eq, Show)
The Cartesian and polar forms use the
 same types for their two elements. However, the
 meanings of the elements are different. Because
 Cartesian2D and Polar2D are distinct types,
 the type system will not let us accidentally use a
 Cartesian2D value where a Polar2D is
 expected, or vice versa.
ghci> Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2

<interactive>:1:33:
 Couldn't match expected type `Cartesian2D'
 against inferred type `Polar2D'
 In the second argument of `(==)', namely `Polar2D (pi / 4) 2'
 In the expression:
 Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2
 In the definition of `it':
 it = Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2

The (==) operator requires its arguments to have the same type.
Comparing for equality
Notice that in the
 deriving clause for our vector types, we added another
 word, Eq. This causes the Haskell implementation to
 generate code that lets us compare the values for equality.

If we use tuples to represent these
 values, we could quickly land ourselves in hot water by mixing the two
 representations inappropriately:
ghci> (1, 2) == (1, 2)
True

The type system can’t rescue us here: as
 far as it’s concerned, we’re comparing two (Double,
 Double) pairs, which is a perfectly valid thing to do. Indeed,
 we cannot tell by inspection which of these values is supposed to be
 polar or Cartesian, but (1,2) has a different meaning in
 each representation.
There is no hard and fast rule for
 deciding when it’s better to use a tuple or a distinct data type, but
 here’s a rule of thumb. If you’re using compound values widely in your
 code (as almost all nontrivial programs do), adding data declarations will benefit you in both
 type safety and readability. For smaller, localized uses, a tuple is
 usually fine.

Analogues to Algebraic Data Types in Other Languages

Algebraic data types provide a single powerful way to
 describe data types. Other languages often need several different
 features to achieve the same degree of expressiveness. Here are some
 analogues from C and C++, which might make what we can do with
 algebraic data types and how they relate to concepts that might be
 more familiar or easier to understand.
The structure

With just one constructor, an algebraic data type is similar to a tuple: it
 groups related values together into a compound value. It corresponds
 to a struct in C or C++, and its components correspond
 to the fields of a struct. Here’s a C equivalent of the BookInfo type that we defined
 earlier:
struct book_info {
 int id;
 char *name;
 char **authors;
};
The main difference between the two is
 that the fields in the Haskell type are anonymous and positional:
-- file: ch03/BookStore.hs
data BookInfo = Book Int String [String]
 deriving (Show)
By positional, we
 mean that the section number is in the first field of the Haskell
 type and the title is in the second. We refer to them by location,
 not by name.
Later in this chapter in Pattern Matching, we’ll see how to access the fields of
 a BookInfo value. In Record Syntax, also in this chapter, we’ll introduce
 an alternate syntax for defining data types that looks a little more
 C-like.

The enumeration

Algebraic data types also serve where we’d use an enum in C
 or C++ to represent a range of symbolic values. Such algebraic data
 types are sometimes referred to as enumeration
 types. Here’s an example from C:
enum roygbiv {
 red,
 orange,
 yellow,
 green,
 blue,
 indigo,
 violet,
};
And here’s a Haskell equivalent:
-- file: ch03/Roygbiv.hs

data Roygbiv = Red
 | Orange
 | Yellow
 | Green
 | Blue
 | Indigo
 | Violet
 deriving (Eq, Show)
We can try these out in ghci:
ghci> :type Yellow
Yellow :: Roygbiv
ghci> :type Red
Red :: Roygbiv
ghci> Red == Yellow
False
ghci> Green == Green
True
In C, the elements of an
 enum are integers. We can use an integer in a context
 where an enum is expected and vice versa—a C compiler
 will automatically convert values between the two types. This can be
 a source of nasty bugs. In Haskell, this kind of problem does not
 occur. For example, we cannot use a Roygbiv value where
 an Int is expected:
ghci> take 3 "foobar"
"foo"
ghci> take Red "foobar"

<interactive>:1:5:
 Couldn't match expected type `Int' against inferred type `Roygbiv'
 In the first argument of `take', namely `Red'
 In the expression: take Red "foobar"
 In the definition of `it': it = take Red "foobar"

The discriminated union

If an algebraic data type has multiple alternatives, we can think of it as
 similar to a union in C or C++. A big difference
 between the two is that a union doesn’t tell us which alternative is
 actually present; we have to explicitly and manually track which
 alternative we’re using, usually in another field of an enclosing
 struct. This means that unions can be sources of nasty bugs, where
 our notion of which alternative we should be using is
 incorrect:
enum shape_type {
 shape_circle,
 shape_poly,
};

struct circle {
 struct vector centre;
 float radius;
};

struct poly {
 size_t num_vertices;
 struct vector *vertices;
};

struct shape
{
 enum shape_type type;
 union {
	struct circle circle;
	struct poly poly;
 } shape;
};
In this example, the union
 can contain valid data for either a struct circle or a
 struct poly. We have to use the enum
 shape_type by hand to indicate which kind of value is
 currently stored in the union.
The Haskell version of this code is
 both dramatically shorter and safer than the C equivalent:
-- file: ch03/ShapeUnion.hs
type Vector = (Double, Double)

data Shape = Circle Vector Double
 | Poly [Vector]
If we create a Shape value using the
 Circle constructor, the fact that we created a
 Circle is stored. When we later use a
 Circle, we can’t accidentally treat it as a
 Square. We will see why in the next section Pattern Matching.
A few notes
After reading the preceding sections,
 it should now be clear that all of the data
 types that we define with the data keyword are
 algebraic data types. Some may have just one alternative, while
 others have several, but they’re all using the same
 machinery.

Pattern Matching

Now that we’ve seen how to construct values with algebraic
 data types, let’s discuss how we work with these values. If we have a
 value of some type, there are two things we would like to be able to
 do:
	If the type has more than one value
 constructor, we need to be able to tell which value constructor was
 used to create the value.

	If the value constructor has data
 components, we need to be able to extract those values.

Haskell has a simple, but tremendously
 useful, pattern matching facility that lets us do
 both of these things.
A pattern lets us look inside a value and
 bind variables to the data it contains. Here’s an example of pattern
 matching in action on a Bool value; we’re going to
 reproduce the not function:
-- file: ch03/add.hs
myNot True = False
myNot False = True
It might seem that we have two functions
 named myNot here, but Haskell lets
 us define a function as a series of equations:
 these two clauses are defining the behavior of the same function for
 different patterns of input. On each line, the patterns are the items
 following the function name, up until the = sign.
To understand how pattern matching works,
 let’s step through an example—say, myNot False.
When we apply myNot, the Haskell runtime checks the value
 we supply against the value constructor in the first pattern. This does
 not match, so it tries against the second pattern. That match succeeds,
 so it uses the righthand side of that equation as the result of the
 function application.
Here is a slightly more extended example. This function
 adds together the elements of a list:
-- file: ch03/add.hs
sumList (x:xs) = x + sumList xs
sumList [] = 0
Let us step through the evaluation of sumList
 [1,2]. The list notation [1,2] is shorthand for the
 expression (1:(2:[])). We begin by trying to match the
 pattern in the first equation of the definition of sumList.
 In the (x:xs) pattern, the : is the familiar list constructor, (:). We are now using it to match against a value, not to
 construct one. The value (1:(2:[])) was constructed with
 (:), so the constructor in the value matches the
 constructor in the pattern. We say that the pattern
 matches or that the match
 succeeds.
The variables x and
 xs are now “bound to” the constructor’s
 arguments, so x is given the value 1,
 and xs the value 2:[].
The expression we are now evaluating is
 1 + sumList (2:[]). We must recursively apply sumList to the value 2:[]. Once
 again, this was constructed using (:), so the match
 succeeds. In our recursive application of sumList, x is now bound to
 2, and xs to [].
We are now evaluating 1 + (2 +
 sumList []). In this recursive application of sumList, the value we are matching against is
 []. The value’s constructor does not match the constructor
 in the first pattern, so we skip this equation. Instead, we “fall
 through” to the next pattern, which matches. The righthand side
 of this equation is thus chosen as the result of this
 application.
The result of sumList [1,2] is
 thus 1 + (2 + (0)), or 3.
Ordering is important
As we already mentioned, a Haskell implementation
 checks patterns for matches in the order in which we specify them in
 our equations. Matching proceeds from top to bottom and stops at the
 first success. Equations that are below a successful match have no
 effect.

As a final note, there is a standard
 function, sum, that performs this
 sum-of-a-list for us. Our sumList
 is purely for illustration.
Construction and Deconstruction

Let’s step back and take a look at the relationship between
 constructing a value and pattern matching on it.
We apply a value constructor to build a
 value. The expression Book 9 "Close Calls" ["John Long"]
 applies the Book constructor to
 the values 9, "Close Calls", and
 ["John Long"] in order to produce a new value of type
 BookInfo.
When we pattern match against the
 Book constructor, we
 reverse the construction process. First of all,
 we check to see if the value was created using that constructor. If it
 was, we inspect it to obtain the individual values that we originally
 supplied to the constructor when we created the value.
Let’s consider what happens if we match
 the pattern (Book id name authors) against our example
 expression:
	The match will succeed, because the
 constructor in the value matches the one in our pattern.

	The variable id
 will be bound to 9.

	The variable name
 will be bound to "Close Calls".

	The variable
 authors will be bound to ["John
 Long"].

Because pattern matching acts as the
 inverse of construction, it’s sometimes referred to as
 deconstruction.
Deconstruction doesn’t destroy anything
If you’re steeped in object-oriented
 programming jargon, don’t confuse deconstruction with destruction!
 Matching a pattern has no effect on the value we’re examining: it
 just lets us “look inside” it.

Further Adventures

The syntax for pattern matching on a
 tuple is similar to the syntax for constructing a tuple. Here’s a
 function that returns the last element of a 3-tuple:
-- file: ch03/Tuple.hs
third (a, b, c) = c
There’s no limit on how
 “deep” within a value a pattern can look. This definition
 looks both inside a tuple and inside a list within that tuple:
-- file: ch03/Tuple.hs
complicated (True, a, x:xs, 5) = (a, xs)
We can try this out interactively:
ghci> :load Tuple.hs
[1 of 1] Compiling Main (Tuple.hs, interpreted)
Ok, modules loaded: Main.
ghci> complicated (True, 1, [1,2,3], 5)
(1,[2,3])
Wherever a literal value is present in a
 pattern (True and 5 in the preceding pattern), that value must
 match exactly for the pattern match to succeed. If every pattern
 within a series of equations fails to match, we get a runtime
 error:
ghci> complicated (False, 1, [1,2,3], 5)
*** Exception: Tuple.hs:10:0-39: Non-exhaustive patterns in function complicated

For an explanation of this error message,
 skip forward to the section Exhaustive Patterns and Wild Cards.
We can pattern match on an algebraic data
 type using its value constructors. Recall the BookInfo
 type we defined earlier; we can extract the values from a
 BookInfo as follows:
-- file: ch03/BookStore.hs
bookID (Book id title authors) = id
bookTitle (Book id title authors) = title
bookAuthors (Book id title authors) = authors
Let’s see it in action:
ghci> bookID (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
3
ghci> bookTitle (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
"Probability Theory"
ghci> bookAuthors (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
["E.T.H. Jaynes"]
The compiler can infer the types of the accessor
 functions based on the constructor that we’re using in our
 pattern:
ghci> :type bookID
bookID :: BookInfo -> Int
ghci> :type bookTitle
bookTitle :: BookInfo -> String
ghci> :type bookAuthors
bookAuthors :: BookInfo -> [String]
If we use a literal value in a pattern,
 the corresponding part of the value that we’re matching against must
 contain an identical value. For instance, the pattern
 (3:xs) first checks that a value is a nonempty list, by
 matching against the (:)
 constructor. It also ensures that the head of the list has the exact
 value 3. If both of these
 conditions hold, the tail of the list will be bound to the variable
 xs.

Variable Naming in Patterns

As you read functions that match on lists, you’ll frequently find that the
 names of the variables inside a pattern resemble (x:xs)
 or (d:ds). This is a popular naming convention. The idea
 is that the name xs has an s on the
 end of its name as if it’s the “plural” of
 x, because x contains the head
 of the list, and xs contains the remaining
 elements.

The Wild Card Pattern

We can indicate that we don’t care what is present in part of
 a pattern. The notation for this is the underscore character (_), which we call a wild
 card. We use it as follows:
-- file: ch03/BookStore.hs
nicerID (Book id _ _) = id
nicerTitle (Book _ title _) = title
nicerAuthors (Book _ _ authors) = authors
Here, we have tidier versions of the accessor
 functions that we introduced earlier. Now, there’s no question about
 which element we’re using in each function.
In a pattern, a wild card acts similarly
 to a variable, but it doesn’t bind a new variable. As the previous
 examples indicate, we can use more than one wild card in a single
 pattern.
Another advantage of wild cards
 is that a Haskell compiler can warn us if we introduce a variable name
 in a pattern, but then not use it in a function’s body. Defining a
 variable but forgetting to use it can often indicate the presence of a
 bug, so this is a helpful feature. If we use a wild card instead of a
 variable that we do not intend to use, the compiler won’t
 complain.

Exhaustive Patterns and Wild Cards

When writing a series of patterns, it’s
 important to cover all of a type’s constructors. For example, if we’re inspecting a list,
 we should have one equation that matches the non-empty constructor
 (:) and one that matches the
 empty-list constructor [].
Let’s see what happens if we fail to
 cover all the cases. Here, we deliberately omit a check for the
 [] constructor:
-- file: ch03/BadPattern.hs
badExample (x:xs) = x + badExample xs
If we apply this to a value that it
 cannot match, we’ll get an error at runtime—our software has a
 bug!
ghci> badExample []
*** Exception: BadPattern.hs:4:0-36: Non-exhaustive patterns in function badExample

In this example, no equation in the
 function’s definition matches the value [].
Warning about incomplete patterns
GHC provides a helpful
 compilation option, -fwarn-incomplete-patterns, that will cause it to print
 a warning during compilation if a sequence of patterns doesn’t match
 all of a type’s value constructors.

If we need to provide a default behavior
 in cases where we don’t care about specific constructors, we can use a
 wild card pattern:
-- file: ch03/BadPattern.hs
goodExample (x:xs) = x + goodExample xs
goodExample _ = 0
The wild card shown in the preceding code
 will match the [] constructor, so applying this function
 does not lead to a crash:
ghci> goodExample []
0
ghci> goodExample [1,2]
3

Record Syntax

Writing accessor functions for each of a data type’s components
 can be repetitive and tedious:
-- file: ch03/BookStore.hs
nicerID (Book id _ _) = id
nicerTitle (Book _ title _) = title
nicerAuthors (Book _ _ authors) = authors
We call this kind of code
 boilerplate—necessary,but bulky and irksome. Haskell programmers don’t like
 boilerplate. Fortunately, the language addresses this particular
 boilerplate problem: we can define a data type, and accessors for each
 of its components, simultaneously. (The positions of the commas here is
 a matter of preference. If you like, put them at the end of a line
 instead of the beginning.)
-- file: ch03/BookStore.hs
data Customer = Customer {
 customerID :: CustomerID
 , customerName :: String
 , customerAddress :: Address
 } deriving (Show)
This is almost exactly identical in meaning
 to the following, more familiar form:
-- file: ch03/AltCustomer.hs
data Customer = Customer Int String [String]
 deriving (Show)

customerID :: Customer -> Int
customerID (Customer id _ _) = id

customerName :: Customer -> String
customerName (Customer _ name _) = name

customerAddress :: Customer -> [String]
customerAddress (Customer _ _ address) = address
For each of the fields that we name in our
 type definition, Haskell creates an accessor function of that
 name:
ghci> :type customerID
customerID :: Customer -> CustomerID

We can still use the usual application
 syntax to create a value of this type:
-- file: ch03/BookStore.hs
customer1 = Customer 271828 "J.R. Hacker"
 ["255 Syntax Ct",
 "Milpitas, CA 95134",
 "USA"]
Record syntax adds a more verbose notation
 for creating a value. This can sometimes make code more readable:
-- file: ch03/BookStore.hs
customer2 = Customer {
 customerID = 271828
 , customerAddress = ["1048576 Disk Drive",
 "Milpitas, CA 95134",
 "USA"]
 , customerName = "Jane Q. Citizen"
 }
If we use this form, we can vary the order
 in which we list fields. Here, we moved the name and address fields from
 their positions in the declaration of the type.
When we define a type using record syntax,
 it also changes the way the type’s values are printed:
ghci> customer1
Customer {customerID = 271828, customerName = "J.R. Hacker", customerAddress =
["255 Syntax Ct","Milpitas, CA 95134","USA"]}

For comparison, let’s look at a
 BookInfo value; we defined this type without record
 syntax:
ghci> cities
Book 173 "Use of Weapons" ["Iain M. Banks"]

The accessor functions that we get
 “for free” when we use record syntax really are normal
 Haskell functions:
ghci> :type customerName
customerName :: Customer -> String
ghci> customerName customer1
"J.R. Hacker"
The standard System.Time module makes good use of record
 syntax. Here’s a type defined in that module:
data CalendarTime = CalendarTime {
 ctYear :: Int,
 ctMonth :: Month,
 ctDay, ctHour, ctMin, ctSec :: Int,
 ctPicosec :: Integer,
 ctWDay :: Day,
 ctYDay :: Int,
 ctTZName :: String,
 ctTZ :: Int,
 ctIsDST :: Bool
}
In the absence of record syntax, it would
 be painful to extract specific fields from a type such as this. The
 notation makes it easier to work with large structures.

Parameterized Types

We’ve repeatedly mentioned that the list type is polymorphic: the elements of a list can be of any
 type. We can also add polymorphism to our own types. To do this, we
 introduce type variables into a
 type declaration. The Prelude defines
 a type named Maybe, which we can use to represent a value
 that could be either present or missing, for example, a field in a
 database row that could be null:
-- file: ch03/Nullable.hs
data Maybe a = Just a
 | Nothing
Here, the variable a is
 not a regular variable—it’s a type variable. It indicates that the
 Maybe type takes another type as its parameter. This lets
 us use Maybe on values of any type:
-- file: ch03/Nullable.hs
someBool = Just True

someString = Just "something"
As usual, we can experiment with this type in ghci:
ghci> Just 1.5
Just 1.5
ghci> Nothing
Nothing
ghci> :type Just "invisible bike"
Just "invisible bike" :: Maybe [Char]
Maybe is a polymorphic, or
 generic, type. We give the Maybe type constructor a
 parameter to create a specific type, such as Maybe Int or
 Maybe [Bool]. As we might expect, these types are
 distinct.
We can nest uses of parameterized types
 inside each other, but when we do, we may need to use parentheses to
 tell the Haskell compiler how to parse our expression:
-- file: ch03/Nullable.hs
wrapped = Just (Just "wrapped")
To once again extend an analogy to more
 familiar languages, parameterized types bear some resemblance
 to templates in C++ and to generics in Java. Just be aware
 that this is a shallow analogy. Templates and generics were added to
 their respective languages long after the languages were initially
 defined, and they have an awkward feel. Haskell’s parameterized types
 are simpler and easier to use, as the language was designed with them
 from the beginning.

Recursive Types

The familiar list type is recursive: it’s defined in terms
 of itself. To understand this, let’s create our own list-like type.
 We’ll use Cons in place of the (:)
 constructor, and Nil in place of []:
-- file: ch03/ListADT.hs
data List a = Cons a (List a)
 | Nil
 deriving (Show)
Because List a
 appears on both the left and the right of the = sign, the
 type’s definition refers to itself. If we want to use the
 Cons constructor to create a new value, we must supply one
 value of type a and another of type
 List a. Let’s see where this leads us in
 practice.
The simplest value of type
 List a that we can create is Nil.
 Save the type definition in a file, and then load it into ghci:
ghci> Nil
Nil

Because Nil has a
 List type, we can use it as a parameter to
 Cons:
ghci> Cons 0 Nil
Cons 0 Nil

And because Cons 0 Nil has the
 type List a, we can use this as a parameter to
 Cons:
ghci> Cons 1 it
Cons 1 (Cons 0 Nil)
ghci> Cons 2 it
Cons 2 (Cons 1 (Cons 0 Nil))
ghci> Cons 3 it
Cons 3 (Cons 2 (Cons 1 (Cons 0 Nil)))
We could continue in this fashion
 indefinitely, creating ever-longer Cons chains, each with a
 single Nil at the end.
For a third example of what a recursive
 type is, here is a definition of a binary tree type:
-- file: ch03/Tree.hs
data Tree a = Node a (Tree a) (Tree a)
 | Empty
 deriving (Show)
A binary tree is either a node with two
 children—which are themselves binary trees—or an empty value.
Is List an acceptable list?
We can easily prove to ourselves that our
 List a type has the same shape as the
 built-in list type [a]. To do this, we write a function
 that takes any value of type [a] and produces a value of
 type List a:
-- file: ch03/ListADT.hs
fromList (x:xs) = Cons x (fromList xs)
fromList [] = Nil
By inspection, this clearly substitutes a
 Cons for every (:)
 and a Nil for each []. This covers both of
 the built-in list type’s constructors. The two types are
 isomorphic—they have the same shape:
ghci> fromList "durian"
Cons 'd' (Cons 'u' (Cons 'r' (Cons 'i' (Cons 'a' (Cons 'n' Nil)))))
ghci> fromList [Just True, Nothing, Just False]
Cons (Just True) (Cons Nothing (Cons (Just False) Nil))

This time, let’s search for insight by
 comparing our definition with one from a more familiar language. Here’s
 a similar class definition in Java:
class Tree<A>
{
 A value;
 Tree<A> left;
 Tree<A> right;

 public Tree(A v, Tree<A> l, Tree<A> r)
 {
	value = v;
	left = l;
	right = r;
 }
}
The one significant difference is that
 Java lets us use the special value null anywhere to indicate
 “nothing,” so we can use null to indicate that
 a node is missing a left or right child. Here’s a small function that
 constructs a tree with two leaves (a leaf, by convention, has no
 children):
class Example
{
 static Tree<String> simpleTree()
 {
	return new Tree<String>(
 "parent",
	 new Tree<String>("left leaf", null, null),
	 new Tree<String>("right leaf", null, null));
 }
}
In Haskell, we don’t have an equivalent of
 null. We could use the Maybe type to provide a
 similar effect, but that would bloat the pattern matching. Instead,
 we’ve decided to use a no-argument Empty constructor. Where
 the Java example provides null to the Tree
 constructor, we supply Empty in Haskell:
-- file: ch03/Tree.hs
simpleTree = Node "parent" (Node "left child" Empty Empty)
 (Node "right child" Empty Empty)
Exercises
	Write the converse of fromList for the List
 type: a function that takes a List a and generates a
 [a].

	Define a tree type that has only one constructor, like our
 Java example. Instead of the Empty constructor, use
 the Maybe type to refer to a node’s children.

Reporting Errors

Haskell provides a standard function, error :: String -> a, that we can call
 when something has gone terribly wrong in our code. We give it a string
 parameter, which is the error message to display. Its type signature
 looks peculiar: how can it produce a value of any type a given only a string?
It has a result type of a so that we can call it anywhere and it will
 always have the right type. However, it does not return a value like a
 normal function. Instead, it immediately aborts
 evaluation and prints the error message we give it.
The mySecond function returns the second element
 of its input list but fails if its input list isn’t long enough:
-- file: ch03/MySecond.hs
mySecond :: [a] -> a

mySecond xs = if null (tail xs)
 then error "list too short"
 else head (tail xs)
As usual, we can see how this works in
 practice in ghci:
ghci> mySecond "xi"
'i'
ghci> mySecond [2]
*** Exception: list too short
ghci> head (mySecond [[9]])
*** Exception: list too short
Notice the third case, where we try to use
 the result of the call to mySecond
 as the argument to another function. Evaluation still terminates and
 drops us back to the ghci prompt.
 This is the major weakness of using error: it doesn’t let our caller distinguish
 between a recoverable error and a problem so severe that it really
 should terminate our program.
As we have already seen, a pattern
 matching failure causes a similar unrecoverable error:
ghci> mySecond []
*** Exception: Prelude.tail: empty list

A More Controlled Approach

We can use the Maybe type to
 represent the possibility of an error.
If we want to indicate that an operation
 has failed, we can use the Nothing constructor. Otherwise, we wrap our
 value with the Just
 constructor.
Let’s see how our mySecond function changes if we return a
 Maybe value instead of calling error:
-- file: ch03/MySecond.hs
safeSecond :: [a] -> Maybe a

safeSecond [] = Nothing
safeSecond xs = if null (tail xs)
 then Nothing
 else Just (head (tail xs))
If the list we’re passed is too short, we
 return Nothing to our caller. This lets them decide what
 to do, while a call to error
 would force a crash:
ghci> safeSecond []
Nothing
ghci> safeSecond [1]
Nothing
ghci> safeSecond [1,2]
Just 2
ghci> safeSecond [1,2,3]
Just 2
To return to an earlier topic, we can
 further improve the readability of this function with pattern
 matching:
-- file: ch03/MySecond.hs
tidySecond :: [a] -> Maybe a

tidySecond (_:x:_) = Just x
tidySecond _ = Nothing
The first pattern matches only if the
 list is at least two elements long (it contains two list
 constructors), and it binds the variable x to the
 list’s second element. The second pattern is matched if the first
 fails.

Introducing Local Variables

Within the body of a function, we can introduce new local variables
 whenever we need them, using a let
 expression. Here is a simple function that determines whether we
 should lend some money to a customer. We meet a money reserve of at
 least 100, and we return our new balance after subtracting the amount we
 have loaned:
-- file: ch03/Lending.hs
lend amount balance = let reserve = 100
 newBalance = balance - amount
 in if balance < reserve
 then Nothing
 else Just newBalance
The keywords to look out for here are
 let, which starts a block of variable
 declarations, and in, which ends it. Each line introduces a
 new variable. The name is on the left of the =, and the expression to which it is bound is
 on the right.
Special notes
Let us reemphasize our wording: a name in
 a let block is bound to an expression, not to a
 value. Because Haskell is a lazy
 language, the expression associated with a name won’t actually be
 evaluated until it’s needed. In the previous example, we could not
 compute the value of newBalance if we did not meet our
 reserve.
When we define a variable in a let block, we refer to it as a let-bound variable.
 This simply means what it says: we have bound the variable in a
 let block.
Also, our use of whitespace here is
 important. We’ll talk in more detail about the layout rules later in
 this chapter in The Offside Rule and Whitespace in an Expression.

We can use the names of a variable in a
 let block both within the block of
 declarations and in the expression that follows the in keyword.
In general, we’ll refer to the places
 within our code where we can use a name as the name’s scope. If we can use a name,
 it’s in scope; otherwise, it’s out of
 scope. If a name is visible throughout a source file, we say
 it’s at the top level.
Shadowing

We can “nest” multiple
 let blocks inside each other in an expression:
-- file: ch03/NestedLets.hs
foo = let a = 1
 in let b = 2
 in a + b
It’s perfectly legal, but not exactly
 wise, to repeat a variable name in a nested let expression:
-- file: ch03/NestedLets.hs
bar = let x = 1
 in ((let x = "foo" in x), x)
Here, the inner x is
 hiding, or shadowing, the outer
 x. It has the same name, but a different type and
 value:
ghci> bar
("foo",1)

We can also shadow a function’s
 parameters, leading to even stranger results. What is the type of this function?
-- file: ch03/NestedLets.hs
quux a = let a = "foo"
 in a ++ "eek!"
Because the function’s argument
 a is never used in the body of the function, due to
 being shadowed by the let-bound
 a, the argument can have any type at all:
ghci> :type quux
quux :: t -> [Char]

Compiler warnings are your friends
Shadowing can obviously lead to
 confusion and nasty bugs, so GHC has a helpful
 -fwarn-name-shadowing option. When enabled, GHC will print a warning message any
 time we shadow a name.

The where Clause

We can use another mechanism to introduce local variables: the
 where clause. The definitions in a
 where clause apply to the code that
 precedes it. Here’s a similar function to
 lend, using where instead
 of let:
-- file: ch03/Lending.hs
lend2 amount balance = if amount < reserve * 0.5
 then Just newBalance
 else Nothing
 where reserve = 100
 newBalance = balance - amount
While a where clause may seem weird initially, it
 offers a wonderful aid to readability. It lets us direct our reader’s
 focus to the important details of an expression, with the supporting
 definitions following afterwards. After a while, you may find yourself
 missing where clauses when using
 languages that lack them.
As with let expressions, whitespace is significant
 in where clauses. We will talk more
 about the layout rules shortly in The Offside Rule and Whitespace in an Expression.

Local Functions, Global Variables

You’ll have noticed that Haskell’s syntax for defining a variable
 looks very similar to its syntax for defining a function. This
 symmetry is preserved in let and
 where blocks; we can define local
 functions just as easily as local
 variables:
-- file: ch03/LocalFunction.hs
pluralise :: String -> [Int] -> [String]
pluralise word counts = map plural counts
 where plural 0 = "no " ++ word ++ "s"
 plural 1 = "one " ++ word
 plural n = show n ++ " " ++ word ++ "s"
We have defined a local function,
 plural, that consists of several
 equations. Local functions can freely use variables from the scopes
 that enclose them; here, we use word from the
 definition of the outer function pluralise. In the definition of pluralise, the map function (which we’ll be revisiting in
 the next chapter) applies the local function plural to every element of the
 counts list.
We can also define variables, as well as
 functions, at the top level of a source file:
-- file: ch03/GlobalVariable.hs
itemName = "Weighted Companion Cube"

The Offside Rule and Whitespace in an Expression

In our definitions of lend and lend2, the left margin of our text wandered
 around quite a bit. This was not an accident; in Haskell, whitespace has
 meaning.
Haskell uses indentation as a cue to parse
 sections of code. This use of layout to convey structure is sometimes
 called the offside rule. At the beginning of a
 source file, the first top-level declaration or definition can start in
 any column, and the Haskell compiler or interpreter remembers that
 indentation level. Every subsequent top-level declaration must have the
 same indentation.
Here’s an illustration of the top-level indentation
 rule; our first file, GoodIndent.hs, is well-behaved:
-- file: ch03/GoodIndent.hs
-- This is the leftmost column.

 -- It's fine for top-level declarations to start in any column...
 firstGoodIndentation = 1

 -- ...provided all subsequent declarations do, too!
 secondGoodIndentation = 2
Our second, BadIndent.hs, doesn’t play by the
 rules:
-- file: ch03/BadIndent.hs
-- This is the leftmost column.

 -- Our first declaration is in column 4.
 firstBadIndentation = 1

 -- Our second is left of the first, which is illegal!
 secondBadIndentation = 2
Here’s what happens when we try to load the two files
 into ghci:
ghci> :load GoodIndent.hs
[1 of 1] Compiling Main (GoodIndent.hs, interpreted)
Ok, modules loaded: Main.
ghci> :load BadIndent.hs
[1 of 1] Compiling Main (BadIndent.hs, interpreted)

BadIndent.hs:8:2: parse error on input `secondBadIndentation'
Failed, modules loaded: none.
An empty following line is treated as a
 continuation of the current item, as is a following line indented
 further to the right.
The rules for let expressions and where clauses are similar. After a let or where keyword, the Haskell compiler or
 interpreter remembers the indentation of the next token it sees. If the
 line that follows is empty, or its indentation is further to the right,
 it is considered as a continuation of the previous line. If the
 indentation is the same as the start of the preceding item, it is
 treated as beginning a new item in the same block:
-- file: ch03/Indentation.hs
foo = let firstDefinition = blah blah
 -- a comment-only line is treated as empty
 continuation blah

 -- we reduce the indentation, so this is a new definition
 secondDefinition = yada yada

 continuation yada
 in whatever
Here are nested uses of let and where:
-- file: ch03/letwhere.hs
bar = let b = 2
 c = True
 in let a = b
 in (a, c)
The name a is only visible within the
 inner let expression—it’s not visible
 in the outer let. If we try to use
 the name a there, we’ll get a compilation error. The
 indentation gives both us and the compiler a visual cue as to what is
 currently in scope:
-- file: ch03/letwhere.hs
foo = x
 where x = y
 where y = 2
Similarly, the scope of the first where clause is the definition of
 foo, but the scope of the second is just the first
 where clause.
The indentation we use for the let and where clauses makes our intentions easy to
 figure out.
A Note About Tabs Versus Spaces

If you use a Haskell-aware text editor (e.g., Emacs), it is probably already
 configured to use space characters for all whitespace when you edit
 Haskell source files. If your editor is not
 Haskell-aware, you should configure it to use only space
 characters.
The reason for this is portability. In an
 editor that uses a fixed-width font, tab stops are by convention
 placed at different intervals on Unix-like systems (every eight
 characters) than on Windows (every four characters). This means that
 no matter what your personal beliefs are about where tabs belong, you
 can’t rely on someone else’s editor honoring your preferences. Any
 indentation that uses tabs is going to look broken under
 someone’s configuration. In fact, this could lead
 to compilation problems, as the Haskell language standard requires
 implementations to use the Unix tab width convention. Using space
 characters avoids this problem entirely.

The Offside Rule Is Not Mandatory

We can use explicit structuring instead
 of layout to indicate what we mean. To do so, we start a block of
 equations with an opening curly brace, separate each item with a
 semicolon, and finish the block with a closing curly brace. The
 following two uses of let have the
 same meanings:
-- file: ch03/Braces.hs
bar = let a = 1
 b = 2
 c = 3
 in a + b + c

foo = let { a = 1; b = 2;
 c = 3 }
 in a + b + c
When we use explicit structuring, the
 normal layout rules don’t apply, which is why we can get away with
 unusual indentation in the second let expression.
We can use explicit structuring anywhere
 that we’d normally use layout. It’s valid for where clauses and even for top-level
 declarations. Just remember that although the facility exists,
 explicit structuring is hardly ever actually used
 in Haskell programs.

The case Expression

Function definitions are not the only place where we can use
 pattern matching. The case construct
 lets us match patterns within an expression. Here’s what it looks like.
 This function (defined for us in Data.Maybe) unwraps a
 Maybe value, using a default if the value is
 Nothing:
-- file: ch03/Guard.hs
fromMaybe defval wrapped =
 case wrapped of
 Nothing -> defval
 Just value -> value
The case keyword is followed by an
 arbitrary expression; the pattern match is performed against the result
 of this expression. The of keyword signifies the end of the
 expression and the beginning of the block of patterns and
 expressions.
Each item in the block consists of a pattern, followed
 by an arrow (->), followed by an expression
 to evaluate if that pattern matches. These expressions must all have the
 same type. The result of the case expression is the result
 of the expression associated with the first pattern to match. Matches
 are attempted from top to bottom.
To express “here’s the expression to evaluate if
 none of the other patterns matches,” we just use the wild card
 pattern _ as the last in our list of patterns. If a pattern
 match fails, we will get the same kind of runtime error that we saw
 earlier.

Common Beginner Mistakes with Patterns

There are a few ways in which new Haskell
 programmers can misunderstand or misuse patterns. The following are some
 attempts at pattern matching gone awry. Depending on what you expect one
 of these examples to do, there may be some surprises.
Incorrectly Matching Against a Variable

Take a look at the following code:
-- file: ch03/BogusPattern.hs
data Fruit = Apple | Orange

apple = "apple"

orange = "orange"

whichFruit :: String -> Fruit

whichFruit f = case f of
 apple -> Apple
 orange -> Orange
A naive glance suggests that this code is trying to
 check the value f to see whether
 it matches the value apple or
 orange.
It is easier to spot the mistake if we
 rewrite the code in an equational style:
-- file: ch03/BogusPattern.hs
equational apple = Apple
equational orange = Orange
Now can you see the problem? Here, it is
 more obvious apple does not refer to the top-level
 value named apple—it is a local pattern
 variable.
Irrefutable patterns
We refer to a pattern that always succeeds as
 irrefutable. Plain variable names and the wild card _
 (underscore) are examples of irrefutable patterns.

Here’s a corrected version of this
 function:
-- file: ch03/BogusPattern.hs
betterFruit f = case f of
 "apple" -> Apple
 "orange" -> Orange
We fixed the problem by matching against
 the literal values "apple" and
 "orange".

Incorrectly Trying to Compare for Equality

What if we want to compare the values
 stored in two nodes of type Tree, and then return one of
 them if they’re equal? Here’s an attempt:
-- file: ch03/BadTree.hs
bad_nodesAreSame (Node a _ _) (Node a _ _) = Just a
bad_nodesAreSame _ _ = Nothing
A name can appear only once in a set of
 pattern bindings. We cannot place a variable in multiple positions to
 express the notion “this value and that should be
 identical.” Instead, we’ll solve this problem using guards, another invaluable
 Haskell feature.

Conditional Evaluation with Guards

Pattern matching limits us to performing fixed tests of a value’s shape.
 Although this is useful, we will often want to make a more expressive
 check before evaluating a function’s body. Haskell provides a feature
 called guards that give us this ability. We’ll
 introduce the idea with a modification of the function we wrote to
 compare two nodes of a tree:
-- file: ch03/BadTree.hs
nodesAreSame (Node a _ _) (Node b _ _)
 | a == b = Just a
nodesAreSame _ _ = Nothing
In this example, we use pattern matching
 to ensure that we are looking at values of the right shape, and a guard
 to compare pieces of them.
A pattern can be followed by zero or more
 guards, each an expression of type Bool. A guard is
 introduced by a | symbol. This is followed by the guard
 expression, then an = symbol (or -> if
 we’re in a case expression), then the
 body to use if the guard expression evaluates to True. If a
 pattern matches, each guard associated with that pattern is evaluated in
 the order in which they are written. If a guard succeeds, the body
 affiliated with it is used as the result of the function. If no guard
 succeeds, pattern matching moves on to the next pattern.
When a guard expression is evaluated, all
 of the variables mentioned in the pattern with which it is associated
 are bound and can be used.
Here is a reworked version of our
 lend function that uses
 guard:
-- file: ch03/Lending.hs
lend3 amount balance
 | amount <= 0 = Nothing
 | amount > reserve * 0.5 = Nothing
 | otherwise = Just newBalance
 where reserve = 100
 newBalance = balance - amount
The special-looking guard expression
 otherwise is simply a variable bound to the value True
 that aids readability.
We can use guards anywhere that we can use patterns.
 Writing a function as a series of equations using pattern matching and
 guards can make it much clearer. Remember the myDrop function we defined in Conditional Evaluation?
-- file: ch02/myDrop.hs
myDrop n xs = if n <= 0 || null xs
 then xs
 else myDrop (n - 1) (tail xs)
Here is a reformulation that uses patterns
 and guards:
-- file: ch02/myDrop.hs
niceDrop n xs | n <= 0 = xs
niceDrop _ [] = []
niceDrop n (_:xs) = niceDrop (n - 1) xs
This change in style lets us enumerate up
 front the cases in which we expect a function to behave differently. If
 we bury the decisions inside a function as if expressions, the code becomes harder
 to
 read.
Exercises
	Write a function that computes the number of elements in a
 list. To test it, ensure that it gives the same answers as the
 standard length
 function.

	Add a type signature for your function to your source file.
 To test it, load the source file into ghci again.

	Write a function that computes the mean of a list, i.e., the
 sum of all elements in the list divided by its length. (You may
 need to use the fromIntegral
 function to convert the length of the list from an integer into a
 floating-point number.)

	Turn a list into a palindrome; i.e., it should read the same
 both backward and forward. For example, given the list
 [1,2,3], your function should return
 [1,2,3,3,2,1].

	Write a function that determines whether its input list is a
 palindrome.

	Create a function that sorts a list of lists based on the
 length of each sublist. (You may want to look at the sortBy function from the
 Data.List module.)

	Define a function that joins a list of lists together using
 a separator value:
-- file: ch03/Intersperse.hs
intersperse :: a -> [[a]] -> [a]
The separator should appear between elements of the list,
 but it should not follow the last element. Your function should
 behave as follows:
ghci> :load Intersperse
[1 of 1] Compiling Main (Intersperse.hs, interpreted)
Ok, modules loaded: Main.
ghci> intersperse ',' []
""
ghci> intersperse ',' ["foo"]
"foo"
ghci> intersperse ',' ["foo","bar","baz","quux"]
"foo,bar,baz,quux"

	Using the binary tree type that we defined earlier in this
 chapter, write a function that will determine the height of the
 tree. The height is the largest number of hops from the root to an
 Empty. For example, the tree Empty has
 height zero; Node "x" Empty Empty has height one;
 Node "x" Empty (Node "y" Empty Empty) has height two;
 and so on.

	Consider three two-dimensional points,
 a, b, and
 c. If we look at the angle formed by the line
 segment from a to b and
 the line segment from b to
 c, it turns left, turns right, or forms a
 straight line. Define a Direction data type that lets
 you represent these possibilities.

	Write a function that calculates the turn made by three
 two-dimensional points and returns a
 Direction.

	Define a function that takes a list of two-dimensional
 points and computes the direction of each successive triple. Given
 a list of points [a,b,c,d,e], it should begin by
 computing the turn made by [a,b,c], then the turn
 made by [b,c,d], then [c,d,e]. Your
 function should return a list of Direction.

	Using the code from the preceding three exercises, implement
 Graham’s scan algorithm for the convex hull of a set of 2D points.
 You can find good description of what a convex hull
 is, and how the Graham scan
 algorithm should work, on Wikipedia.

[7] If you are familiar with C or C++, it is analogous
 to a typedef.

Chapter 4. Functional Programming

Thinking in Haskell

Our early learning of Haskell has two distinct obstacles. The
 first is coming to terms with the shift in mindset from imperative
 programming to functional: we have to replace our programming habits
 from other languages. We do this not because imperative techniques are
 bad, but because in a functional language other techniques work
 better.
Our second challenge is learning our way
 around the standard Haskell libraries. As in any language, the libraries
 act as a lever, enabling us to multiply our problem-solving ability.
 Haskell libraries tend to operate at a higher level of abstraction than
 those in many other languages. We’ll need to work a little harder to
 learn to use the libraries, but in exchange they offer a lot of
 power.
In this chapter, we’ll introduce a number
 of common functional programming techniques. We’ll draw upon examples
 from imperative languages in order to highlight the shift in thinking
 that we’ll need to make. As we do so, we’ll walk through some of the
 fundamentals of Haskell’s standard libraries. We’ll also intermittently
 cover a few more language features along the way.

A Simple Command-Line Framework

In most of this chapter, we will concern ourselves with code that has no
 interaction with the outside world. To maintain our focus on practical
 code, we will begin by developing a gateway between our
 “pure” code and the outside world. Our framework simply
 reads the contents of one file, applies a function to the file, and
 writes the result to another file:
-- file: ch04/InteractWith.hs
-- Save this in a source file, e.g., InteractWith.hs

import System.Environment (getArgs)

interactWith function inputFile outputFile = do
 input <- readFile inputFile
 writeFile outputFile (function input)

main = mainWith myFunction
 where mainWith function = do
 args <- getArgs
 case args of
 [input,output] -> interactWith function input output
 _ -> putStrLn "error: exactly two arguments needed"

 -- replace "id" with the name of our function below
 myFunction = id
This is all we need to write simple, but
 complete, file-processing programs. This is a complete program, and we
 can compile it to an executable named InteractWith as follows:
$ ghc --make InteractWith
[1 of 1] Compiling Main (InteractWith.hs, InteractWith.o)
Linking InteractWith ...
If we run this program from the shell or
 command prompt, it will accept two filenames, the name of a file to
 read, and the name of a file to write:
$./Interact
error: exactly two arguments needed
$./Interact hello-in.txt hello-out.txt
$ cat hello-in.txt
hello world
$ cat hello-out.txt
hello world
Some of the notation in our source file is
 new. The do keyword introduces a block of actions that can cause effects in
 the real world, such as reading or writing a file. The <- operator is the equivalent of
 assignment inside a do block. This is
 enough explanation to get us started. We will talk in much more depth
 about these details of notation, and I/O in general, in Chapter 7.
When we want to test a function that
 cannot talk to the outside world, we simply replace the name id in the preceding code with the name of the
 function we want to test. Whatever our function does, it will need to
 have the type String -> String; in other words, it must
 accept a string and return a string.

Warming Up: Portably Splitting Lines of Text

Haskell provides a built-in function, lines, that lets us split a text string on line boundaries. It
 returns a list of strings with line termination characters
 omitted:
ghci> :type lines
lines :: String -> [String]
ghci> lines "line 1\nline 2"
["line 1","line 2"]
ghci> lines "foo\n\nbar\n"
["foo","","bar"]
While lines looks useful, it relies on us reading a
 file in “text mode” in order to work. Text mode is a feature common to many
 programming languages; it provides a special behavior when we read and
 write files on Windows. When we read a file in text mode, the file I/O
 library translates the line-ending sequence "\r\n"
 (carriage return followed by newline) to "\n" (newline alone), and it does the
 reverse when we write a file. On Unix-like systems, text mode does not
 perform any translation. As a result of this difference, if we read a
 file on one platform that was written on the other, the line endings are
 likely to become a mess. (Both readFile and writeFile operate in text mode.)
ghci> lines "a\r\nb"
["a\r","b"]

The lines function splits only on newline
 characters, leaving carriage returns dangling at the ends of lines. If
 we read a Windows-generated text file on a Linux or Unix box, we’ll get
 trailing carriage returns at the end of each line.
We have comfortably used Python’s “universal
 newline” support for years; this transparently handles Unix and
 Windows line-ending conventions for us. We would like to provide
 something similar in Haskell.
Since we are still early in our career of reading
 Haskell code, we will discuss our Haskell implementation in some
 detail:
-- file: ch04/SplitLines.hs
splitLines :: String -> [String]
Our function’s type signature indicates
 that it accepts a single string, the contents of a file with some
 unknown line-ending convention. It returns a list of strings,
 representing each line from the file:
-- file: ch04/SplitLines.hs
splitLines [] = []
splitLines cs =
 let (pre, suf) = break isLineTerminator cs
 in pre : case suf of
 ('\r':'\n':rest) -> splitLines rest
 ('\r':rest) -> splitLines rest
 ('\n':rest) -> splitLines rest
 _ -> []

isLineTerminator c = c == '\r' || c == '\n'
Before we dive into detail, notice first
 how we organized our code. We presented the important pieces of code
 first, keeping the definition of isLineTerminator until later. Because we have
 given the helper function a readable name, we can guess what it does
 even before we’ve read it, which eases the smooth “flow” of
 reading the code.
The Prelude defines a
 function named break that we can
 use to partition a list into two parts. It takes a function as its first
 parameter. That function must examine an element of the list and return
 a Bool to indicate whether to break the list at that point.
 The break function returns a pair, which consists of the sublist consumed
 before the predicate returned True (the
 prefix) and the rest of the list (the
 suffix):
ghci> break odd [2,4,5,6,8]
([2,4],[5,6,8])
ghci> :module +Data.Char
ghci> break isUpper "isUpper"
("is","Upper")
Since we need only to match a single carriage return or
 newline at a time, examining each element of the list one by one is good
 enough for our needs.
The first equation of splitLines indicates that if we match an
 empty string, we have no further work to do.
In the second equation, we first apply
 break to our input string. The
 prefix is the substring before a line terminator, and the suffix is the
 remainder of the string. The suffix will include the line terminator, if
 any is present.
The pre : expression tells us
 that we should add the pre value to the front of the
 list of lines. We then use a case
 expression to inspect the suffix, so we can decide what to do next. The
 result of the case expression will be
 used as the second argument to the (:) list
 constructor.
The first pattern matches a string that begins with a
 carriage return, followed by a newline. The variable
 rest is bound to the remainder of the string. The
 other patterns are similar, so they ought to be easy to follow.
A prose description of a Haskell function
 isn’t necessarily easy to follow. We can gain a better understanding by
 stepping into ghci and observing the
 behavior of the function in different circumstances.
Let’s start by partitioning a string that
 doesn’t contain any line terminators:
ghci> splitLines "foo"
["foo"]

Here, our application of break never finds a line terminator, so the
 suffix it returns is empty:
ghci> break isLineTerminator "foo"
("foo","")

The case
 expression in splitLines must thus
 be matching on the fourth branch, and we’re finished. What about a
 slightly more interesting case?
ghci> splitLines "foo\r\nbar"
["foo","bar"]

Our first application of break gives us a nonempty suffix:
ghci> break isLineTerminator "foo\r\nbar"
("foo","\r\nbar")

Because the suffix begins with a carriage return
 followed by a newline, we match on the first branch of the case expression. This gives us
 pre bound to "foo", and
 suf bound to "bar". We apply splitLines recursively, this time on
 "bar" alone:
ghci> splitLines "bar"
["bar"]

The result is that we construct a list
 whose head is "foo" and whose tail is
 ["bar"]:
ghci> "foo" : ["bar"]
["foo","bar"]

This sort of experimenting with ghci is a helpful way to understand and debug
 the behavior of a piece of code. It has an even more important benefit
 that is almost accidental in nature. It can be tricky to test
 complicated code from ghci, so we
 will tend to write smaller functions, which can further help the
 readability of our code.
This style of creating and reusing small,
 powerful pieces of code is a fundamental part of functional
 programming.
A Line-Ending Conversion Program

Let’s hook our splitLines function into the little
 framework that we wrote earlier. Make a copy of the InteractWith.hs source file; let’s call the
 new file SplitLines.hs. Add the
 splitLines function to the new
 source file. Since our function must produce a single
 String, we must stitch the list of lines back together.
 The Prelude provides an unlines function that concatenates a list of strings, adding a newline
 to the end of each:
-- file: ch04/SplitLines.hs
fixLines :: String -> String
fixLines input = unlines (splitLines input)
If we replace the id function with fixLines, we can compile an executable that
 will convert a text file to our system’s native line ending:
$ ghc --make FixLines
[1 of 1] Compiling Main (FixLines.hs, FixLines.o)
Linking FixLines ...
If you are on a Windows system, find and download a
 text file that was created on a Unix system (for example, gpl-3.0.txt [http://www.gnu.org/licenses/gpl-3.0.txt]). Open it in
 the standard Notepad text editor. The lines should all run together,
 making the file almost unreadable. Process the file using the FixLines command you just created, and open
 the output file in Notepad. The line endings should now be fixed
 up.
On Unix-like systems, the standard pagers and editors
 hide Windows line endings, making it more difficult to verify that
 FixLines is actually eliminating
 them. Here are a few commands that should help:
$ file gpl-3.0.txt
gpl-3.0.txt: ASCII English text
$ unix2dos gpl-3.0.txt
unix2dos: converting file gpl-3.0.txt to DOS format ...
$ file gpl-3.0.txt
gpl-3.0.txt: ASCII English text, with CRLF line terminators

Infix Functions

Usually, when we define or apply a function in Haskell, we write
 the name of the function, followed by its arguments. This notation is
 referred to as prefix, because the name of the
 function comes before its arguments.
If a function or constructor takes two or
 more arguments, we have the option of using it in
 infix form, where we place it
 between its first and second arguments. This allows
 us to use functions as infix operators.
To define or apply a function or value
 constructor using infix notation, we enclose its name in backtick characters (sometimes known as backquotes).
 Here are simple infix definitions of a function and a type:
-- file: ch04/Plus.hs
a `plus` b = a + b

data a `Pair` b = a `Pair` b
 deriving (Show)

-- we can use the constructor either prefix or infix
foo = Pair 1 2
bar = True `Pair` "quux"
Since infix notation is purely a syntactic
 convenience, it does not change a function’s behavior:
ghci> 1 `plus` 2
3
ghci> plus 1 2
3
ghci> True `Pair` "something"
True `Pair` "something"
ghci> Pair True "something"
True `Pair` "something"
Infix notation can often help readability.
 For instance, the Prelude defines a
 function, elem, that indicates
 whether a value is present in a list. If we employ elem using prefix notation, it is fairly easy
 to read:
ghci> elem 'a' "camogie"
True

If we switch to infix notation, the code
 becomes even easier to understand. It is now clear that we’re checking
 to see if the value on the left is present in the list on the
 right:
ghci> 3 `elem` [1,2,4,8]
False

We see a more pronounced improvement with some useful
 functions from the Data.List module. The isPrefixOf function tells us if one list
 matches the beginning of another:
ghci> :module +Data.List
ghci> "foo" `isPrefixOf` "foobar"
True
The isInfixOf and
 isSuffixOf functions match anywhere
 in a list and at its end, respectively:
ghci> "needle" `isInfixOf` "haystack full of needle thingies"
True
ghci> "end" `isSuffixOf` "the end"
True
There is no hard-and-fast rule that
 dictates when you ought to use infix versus prefix notation, although
 prefix notation is far more common. It’s best to choose whichever makes
 your code more readable in a specific situation.
Beware familiar notation in an unfamiliar language
A few other programming languages use
 backticks, but in spite of the visual similarities, the purpose of
 backticks in Haskell does not remotely resemble their meaning in, for
 example, Perl, Python, or Unix shell scripts.
The only legal thing we can do with
 backticks in Haskell is wrap them around the name of a function. We
 can’t, for example, use them to enclose a complex expression whose
 value is a function. It might be convenient if we could, but that’s
 not how the language is today.

Working with Lists

As the bread and butter of functional programming, lists
 deserve some serious attention. The standard Prelude defines dozens of functions for
 dealing with lists. Many of these will be indispensable tools, so it’s
 important that we learn them early on.
For better or worse, this section is going
 to read a bit like a laundry list of functions. Why present so many
 functions at once? Because they are both easy to learn and absolutely
 ubiquitous. If we don’t have this toolbox at our fingertips, we’ll end
 up wasting time by reinventing simple functions that are already present
 in the standard libraries. So bear with us as we go through the list;
 the effort you’ll save will be huge.
The Data.List module is the
 “real” logical home of all standard list functions. The
 Prelude merely re-exports a large
 subset of the functions exported by Data.List. Several
 useful functions in Data.List are not
 re-exported by the standard Prelude.
 As we walk through list functions in the sections that follow, we will
 explicitly mention those that are only in Data.List:
ghci> :module +Data.List
Because none of these functions is complex
 or takes more than about three lines of Haskell to write, we’ll be brief
 in our descriptions of each. In fact, a quick and useful learning
 exercise is to write a definition of each function after you’ve read
 about it.
Basic List Manipulation

The length function tells us how many elements are in a list:
ghci> :type length
length :: [a] -> Int
ghci> length []
0
ghci> length [1,2,3]
3
ghci> length "strings are lists, too"
22
If you need to determine whether a list is empty, use
 the null
 function:
ghci> :type null
null :: [a] -> Bool
ghci> null []
True
ghci> null "plugh"
False
To access the first element of a list,
 use the head
 function:
ghci> :type head
head :: [a] -> a
ghci> head [1,2,3]
1
The converse, tail, returns all but the head of a list:
ghci> :type tail
tail :: [a] -> [a]
ghci> tail "foo"
"oo"
Another function, last, returns the very last element of a list:
ghci> :type last
last :: [a] -> a
ghci> last "bar"
'r'
The converse of last is init, which returns a list of all but the last element of its
 input:
ghci> :type init
init :: [a] -> [a]
ghci> init "bar"
"ba"
Several of the preceding functions behave
 poorly on empty lists, so be careful if you don’t know whether or not
 a list is empty. What form does their misbehavior take?
ghci> head []
*** Exception: Prelude.head: empty list

Try each of the previous functions in ghci. Which ones crash when given an empty
 list?

Safely and Sanely Working with Crashy Functions

When we want to use a function such
 as head, where we
 know that it might blow up on us if we pass in an empty list, there
 initially might be a strong temptation to check the length of the list
 before we call head. Let’s
 construct an artificial example to illustrate our point:
-- file: ch04/EfficientList.hs
myDumbExample xs = if length xs > 0
 then head xs
 else 'Z'
If we’re coming from a language such as
 Perl or Python, this might seem like a perfectly natural way to write
 this test. Behind the scenes, Python lists are arrays, and Perl arrays
 are, well, arrays. So we necessarily know how long they are, and
 calling len(foo) or scalar(@foo) is a
 perfectly natural thing to do. But as with many other things, it’s not
 a good idea to blindly transplant such an assumption into
 Haskell.
We’ve already seen the definition of the
 list algebraic data type many times, and we know that a list doesn’t
 store its own length explicitly. Thus, the only way that length can operate is to walk the entire
 list.
Therefore, when we care only whether or
 not a list is empty, calling length isn’t a good strategy. It can potentially do a lot more work
 than we want, if the list we’re working with is finite. Since Haskell
 lets us easily create infinite lists, a careless use of length may even result in an infinite
 loop.
A more appropriate function to call here
 instead is null, which runs in
 constant time. Better yet, using null makes our code indicate what property
 of the list we really care about. Here are two improved ways of
 expressing myDumbExample:
-- file: ch04/EfficientList.hs
mySmartExample xs = if not (null xs)
 then head xs
 else 'Z'

myOtherExample (x:_) = x
myOtherExample [] = 'Z'

Partial and Total Functions

Functions that have only return values defined for a
 subset of valid inputs are called partial functions (calling error doesn’t qualify as returning a
 value!). We call functions that return valid results over their entire
 input domains total functions.
It’s always a good idea to know whether a function
 you’re using is partial or total. Calling a partial function with an
 input that it can’t handle is probably the single biggest source of
 straightforward, avoidable bugs in Haskell programs.
Some Haskell programmers go so far as to
 give partial functions names that begin with a prefix such as
 unsafe so that they can’t shoot themselves in the foot
 accidentally.
It’s arguably a deficiency of the
 standard Prelude that it defines
 quite a few “unsafe” partial functions, such as head, without also providing
 “safe” total equivalents.

More Simple List Manipulations

Haskell’s name for the append function is (++):
ghci> :type (++)
(++) :: [a] -> [a] -> [a]
ghci> "foo" ++ "bar"
"foobar"
ghci> [] ++ [1,2,3]
[1,2,3]
ghci> [True] ++ []
[True]
The concat function takes a list of lists, all of the same type, and
 concatenates them into a single list:
ghci> :type concat
concat :: [[a]] -> [a]
ghci> concat [[1,2,3], [4,5,6]]
[1,2,3,4,5,6]
It removes one level of nesting:
ghci> concat [[[1,2],[3]], [[4],[5],[6]]]
[[1,2],[3],[4],[5],[6]]
ghci> concat (concat [[[1,2],[3]], [[4],[5],[6]]])
[1,2,3,4,5,6]
The reverse function returns the elements of a list in reverse order:
ghci> :type reverse
reverse :: [a] -> [a]
ghci> reverse "foo"
"oof"
For lists of Bool, the
 and and or functions
 generalize their two-argument cousins,
 (&&) and (||),
 over lists:
ghci> :type and
and :: [Bool] -> Bool
ghci> and [True,False,True]
False
ghci> and []
True
ghci> :type or
or :: [Bool] -> Bool
ghci> or [False,False,False,True,False]
True
ghci> or []
False
They have more useful cousins, all and any, which operate on lists of any type.
 Each one takes a predicate as its first argument; all returns True if that
 predicate succeeds on every element of the list, while any returns True if the
 predicate succeeds on at least one element of the list:
ghci> :type all
all :: (a -> Bool) -> [a] -> Bool
ghci> all odd [1,3,5]
True
ghci> all odd [3,1,4,1,5,9,2,6,5]
False
ghci> all odd []
True
ghci> :type any
any :: (a -> Bool) -> [a] -> Bool
ghci> any even [3,1,4,1,5,9,2,6,5]
True
ghci> any even []
False

Working with Sublists

The take function, which we already discussed
 in Function Application, returns a sublist consisting
 of the first k elements from a list. Its
 converse, drop, drops
 k elements from the start of the list:
ghci> :type take
take :: Int -> [a] -> [a]
ghci> take 3 "foobar"
"foo"
ghci> take 2 [1]
[1]
ghci> :type drop
drop :: Int -> [a] -> [a]
ghci> drop 3 "xyzzy"
"zy"
ghci> drop 1 []
[]
The splitAt function combines the functions take and drop, returning a pair of the input lists,
 split at the given index:
ghci> :type splitAt
splitAt :: Int -> [a] -> ([a], [a])
ghci> splitAt 3 "foobar"
("foo","bar")
The takeWhile and dropWhile functions take predicates. takeWhile takes elements from the beginning
 of a list as long as the predicate returns True, while
 dropWhile drops elements from the
 list as long as the predicate returns True:
ghci> :type takeWhile
takeWhile :: (a -> Bool) -> [a] -> [a]
ghci> takeWhile odd [1,3,5,6,8,9,11]
[1,3,5]
ghci> :type dropWhile
dropWhile :: (a -> Bool) -> [a] -> [a]
ghci> dropWhile even [2,4,6,7,9,10,12]
[7,9,10,12]
Just as splitAt “tuples up” the
 results of take and drop, the functions break (which we already saw in Warming Up: Portably Splitting Lines of Text) and
 span tuple up the results of
 takeWhile and dropWhile.
Each function takes a predicate;
 break consumes its input while
 its predicate fails, and span
 consumes while its predicate succeeds:
ghci> :type span
span :: (a -> Bool) -> [a] -> ([a], [a])
ghci> span even [2,4,6,7,9,10,11]
([2,4,6],[7,9,10,11])
ghci> :type break
break :: (a -> Bool) -> [a] -> ([a], [a])
ghci> break even [1,3,5,6,8,9,10]
([1,3,5],[6,8,9,10])

Searching Lists

As we’ve already seen, the elem function indicates whether a value is present in a list. It has
 a companion function, notElem:
ghci> :type elem
elem :: (Eq a) => a -> [a] -> Bool
ghci> 2 `elem` [5,3,2,1,1]
True
ghci> 2 `notElem` [5,3,2,1,1]
False
For a more general search, filter takes a predicate and returns every element of the list
 on which the predicate succeeds:
ghci> :type filter
filter :: (a -> Bool) -> [a] -> [a]
ghci> filter odd [2,4,1,3,6,8,5,7]
[1,3,5,7]
In Data.List, three
 predicates—isPrefixOf, isInfixOf, and isSuffixOf—let us
 test for the presence of sublists within a bigger list. The easiest
 way to use them is with infix notation.
The isPrefixOf function tells us whether its
 left argument matches the beginning of its right argument:
ghci> :module +Data.List
ghci> :type isPrefixOf
isPrefixOf :: (Eq a) => [a] -> [a] -> Bool
ghci> "foo" `isPrefixOf` "foobar"
True
ghci> [1,2] `isPrefixOf` []
False
The isInfixOf function indicates whether its
 left argument is a sublist of its right:
ghci> :module +Data.List
ghci> [2,6] `isInfixOf` [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9]
True
ghci> "funk" `isInfixOf` "sonic youth"
False
The operation of isSuffixOf shouldn’t need any
 explanation:
ghci> :module +Data.List
ghci> ".c" `isSuffixOf` "crashme.c"
True

Working with Several Lists at Once

The zip function takes two lists and “zips” them into a
 single list of pairs. The resulting list is the same length as the
 shorter of the two inputs:
ghci> :type zip
zip :: [a] -> [b] -> [(a, b)]
ghci> zip [12,72,93] "zippity"
[(12,'z'),(72,'i'),(93,'p')]
More useful is zipWith, which takes two lists and applies a function to each pair of
 elements, generating a list that is the same length as the shorter of
 the two:
ghci> :type zipWith
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
ghci> zipWith (+) [1,2,3] [4,5,6]
[5,7,9]
Haskell’s type system makes it an
 interesting challenge to write functions that take variable numbers of
 arguments.[8] So if we want to zip three lists together, we call
 zip3 or zipWith3, and so on, up to zip7 and zipWith7.

Special String-Handling Functions

We’ve already encountered the standard lines function and its standard counterpart unlines in the sectionWarming Up: Portably Splitting Lines of Text. Notice
 that unlines always places a
 newline on the end of its result:
ghci> lines "foo\nbar"
["foo","bar"]
ghci> unlines ["foo", "bar"]
"foo\nbar\n"
The words function splits an input string on
 any whitespace. Its counterpart, unwords, uses a single space to join a list of words:
ghci> words "the \r quick \t brown\n\n\nfox"
["the","quick","brown","fox"]
ghci> unwords ["jumps", "over", "the", "lazy", "dog"]
"jumps over the lazy dog"
Exercises
	Write your own “safe” definitions of the
 standard partial list functions, but make sure they never fail.
 As a hint, you might want to consider using the following
 types:
-- file: ch04/ch04.exercises.hs
safeHead :: [a] -> Maybe a
safeTail :: [a] -> Maybe [a]
safeLast :: [a] -> Maybe a
safeInit :: [a] -> Maybe [a]

	Write a function splitWith that acts similarly to
 words but takes a predicate
 and a list of any type, and then splits its input list on every
 element for which the predicate returns False:
-- file: ch04/ch04.exercises.hs
splitWith :: (a -> Bool) -> [a] -> [[a]]

	Using the command framework from the earlier section A Simple Command-Line Framework, write a program that prints the first
 word of each line of its input.

	Write a program that transposes the text in a file. For
 instance, it should convert "hello\nworld\n" to
 "hw\neo\nlr\nll\nod\n".

How to Think About Loops

Unlike traditional languages, Haskell has neither a
 for loop nor a while loop. If we’ve got a lot
 of data to process, what do we use instead? There are several possible
 answers to this question.
Explicit Recursion

A straightforward way to make the jump from a language that has loops to
 one that doesn’t is to run through a few examples, looking at the
 differences. Here’s a C function that takes a string of decimal digits
 and turns them into an integer:
int as_int(char *str)
{
 int acc; /* accumulate the partial result */

 for (acc = 0; isdigit(*str); str++) {
	acc = acc * 10 + (*str - '0');
 }

 return acc;
}
Given that Haskell doesn’t have any
 looping constructs, how should we think about representing a fairly
 straightforward piece of code such as this?
We don’t have to start off by writing a
 type signature, but it helps to remind us of what we’re working
 with:
-- file: ch04/IntParse.hs
import Data.Char (digitToInt) -- we'll need digitToInt shortly

asInt :: String -> Int
The C code computes the result
 incrementally as it traverses the string; the Haskell code can do the
 same. However, in Haskell, we can express the equivalent of a loop as
 a function. We’ll call ours loop
 just to keep things nice and explicit:
-- file: ch04/IntParse.hs
loop :: Int -> String -> Int

asInt xs = loop 0 xs
That first parameter to loop is the accumulator variable we’ll be
 using. Passing zero into it is equivalent to initializing the
 acc variable in C at the beginning of the
 loop.
Rather than leap into blazing code,
 let’s think about the data we have to work with. Our familiar
 String is just a synonym for [Char], a list
 of characters. The easiest way for us to get the traversal right is to
 think about the structure of a list: it’s either empty or a single
 element followed by the rest of the list.
We can express this structural thinking
 directly by pattern matching on the list type’s constructors. It’s
 often handy to think about the easy cases first; here, that means we
 will consider the empty list case:
-- file: ch04/IntParse.hs
loop acc [] = acc
An empty list doesn’t just mean “the input string is
 empty”; it’s also the case that we’ll encounter when we
 traverse all the way to the end of a nonempty list. So we don’t want
 to “error out” if we see an empty list. Instead, we
 should do something sensible. Here, the sensible thing is to terminate
 the loop and return our accumulated value.
The other case we have to consider
 arises when the input list is not empty. We need to do something with
 the current element of the list, and something with the rest of the
 list:
-- file: ch04/IntParse.hs
loop acc (x:xs) = let acc' = acc * 10 + digitToInt x
 in loop acc' xs
We compute a new value for the
 accumulator and give it the name acc'. We then call
 the loop function
 again, passing it the updated value acc' and the
 rest of the input list. This is equivalent to the loop starting
 another round in C.
Single quotes in variable names
Remember, a single quote is a legal
 character to use in a Haskell variable name, and it is pronounced
 “prime.” There’s a common idiom in Haskell programs
 involving a variable—say, foo—and another
 variable—say, foo'. We can usually assume that
 foo' is somehow related to
 foo. It’s often a new value for
 foo, as just shown in our code.
Sometimes we’ll see this idiom
 extended, such as foo''. Since keeping track of
 the number of single quotes tacked onto the end of a name rapidly
 becomes tedious, use of more than two in a row is thankfully rare.
 Indeed, even one single quote can be easy to miss, which can lead to
 confusion on the part of readers. It might be better to think of the
 use of single quotes as a coding convention that you should be able
 to recognize, and less as one that you should actually
 follow.

Each time the loop function calls itself, it has a new
 value for the accumulator, and it consumes one element of the input
 list. Eventually, it’s going to hit the end of the list, at which time
 the [] pattern will match and the recursive calls will
 cease.
How well does this function work? For
 positive integers, it’s perfectly cromulent:
ghci> asInt "33"
33

But because we were focusing on how to
 traverse lists, not error handling, our poor function misbehaves if we
 try to feed it nonsense:
ghci> asInt ""
0
ghci> asInt "potato"
*** Exception: Char.digitToInt: not a digit 'p'
We’ll defer fixing our function’s
 shortcomings to Exercises.
Because the last thing that loop does is simply call itself, it’s an
 example of a tail recursive function. There’s another common idiom in
 this code, too. Thinking about the structure of the list, and handling the
 empty and nonempty cases separately, is a kind of approach called structural recursion.
We call the nonrecursive case (when the
 list is empty) the base case (or sometimes the
 terminating case). We’ll see people refer to the
 case where the function calls itself as the recursive case
 (surprise!), or they might give a nod to mathematical induction and
 call it the inductive case.
As a useful technique, structural
 recursion is not confined to lists; we can use it on other algebraic
 data types, too. We’ll have more to say about it later.
What’s the big deal about tail recursion?
In an imperative language, a loop
 executes in constant space. Lacking loops, we use tail recursive
 functions in Haskell instead. Normally, a recursive function
 allocates some space each time it applies itself, so it knows where
 to return to.
Clearly, a recursive function would be
 at a huge disadvantage relative to a loop if it allocated memory for
 every recursive application—this would require linear space instead
 of constant space. However, functional language implementations
 detect uses of tail recursion and transform tail recursive calls to
 run in constant space; this is called tail call
 optimization (TCO).
Few imperative language
 implementations perform TCO; this is why using any kind of
 ambitiously functional style in an imperative language often leads
 to memory leaks and poor performance.

Transforming Every Piece of Input

Consider another C function, square,
 which squares every element in an array:
void square(double *out, const double *in, size_t length)
{
 for (size_t i = 0; i < length; i++) {
	out[i] = in[i] * in[i];
 }
}
This contains a straightforward and
 common kind of loop, one that does exactly the same thing to every
 element of its input array. How might we write this loop in
 Haskell?
-- file: ch04/Map.hs
square :: [Double] -> [Double]

square (x:xs) = x*x : square xs
square [] = []
Our square function consists of two
 pattern-matching equations. The first “deconstructs” the
 beginning of a nonempty list, in order to get its head and tail. It
 squares the first element, then puts that on the front of a new list,
 which is constructed by calling square on the remainder of the empty list.
 The second equation ensures that square halts when it reaches the end of the
 input list.
The effect of square is to construct a new list that’s
 the same length as its input list, with every element in the input
 list substituted with its square in the output list.
Here’s another such C loop, one that
 ensures that every letter in a string is converted to
 uppercase:
#include <ctype.h>

char *uppercase(const char *in)
{
 char *out = strdup(in);

 if (out != NULL) {
	for (size_t i = 0; out[i] != '\0'; i++) {
	 out[i] = toupper(out[i]);
	}
 }

 return out;
}
Let’s look at a Haskell
 equivalent:
-- file: ch04/Map.hs
import Data.Char (toUpper)

upperCase :: String -> String

upperCase (x:xs) = toUpper x : upperCase xs
upperCase [] = []
Here, we’re importing the toUpper function from the standard Data.Char module, which
 contains lots of useful functions for working with Char
 data.
Our upperCase function follows a similar
 pattern to our earlier square
 function. It terminates with an empty list when the input list is
 empty; when the input isn’t empty, it calls toUpper on the first element, then
 constructs a new list cell from that and the result of calling itself
 on the rest of the input list.
These examples follow a common pattern
 for writing recursive functions over lists in Haskell. The base case handles the situation where our input
 list is empty. The recursive case deals with a
 nonempty list; it does something with the head of the list and calls
 itself recursively on the tail.

Mapping over a List

The square and
 upperCase functions that we just
 defined produce new lists that are the same lengths as their input
 lists, and they do only one piece of work per element. This is such a
 common pattern that Haskell’s Prelude defines a function, map, in order to make it easier. map takes a function and applies it to
 every element of a list, returning a new list constructed from the
 results of these applications.
Here are our square and upperCase functions rewritten to use
 map:
-- file: ch04/Map.hs
square2 xs = map squareOne xs
 where squareOne x = x * x

upperCase2 xs = map toUpper xs
This is our first close look at a
 function that takes another function as its argument. We can learn a
 lot about what map does by simply
 inspecting its type:
ghci> :type map
map :: (a -> b) -> [a] -> [b]

The signature tells us that map takes two arguments. The first is a
 function that takes a value of one type, a, and returns a value of another type, b.
Because map takes a function as an argument, we
 refer to it as a higher-order function. (In
 spite of the name, there’s nothing mysterious about higher-order
 functions; it’s just a term for functions that take other functions as
 arguments, or return functions.)
Since map
 abstracts out the pattern common to our square and upperCase functions so that we can reuse it
 with less boilerplate, we can look at what those functions have in
 common and figure out how to implement it ourselves:
-- file: ch04/Map.hs
myMap :: (a -> b) -> [a] -> [b]

myMap f (x:xs) = f x : myMap f xs
myMap _ _ = []
What are those wild cards doing there?
If you’re new to functional
 programming, the reasons for matching patterns in certain ways won’t always
 be obvious. For example, in the definition of myMap in the preceding code, the first
 equation binds the function
 we’re mapping to the variable f, but the second
 uses wild cards for both parameters. What’s going on?
We use a wild card in place of
 f to indicate that we aren’t calling the function
 f on the righthand side of the equation. What
 about the list parameter? The list type has two constructors. We’ve
 already matched on the nonempty constructor in the first equation
 that defines myMap. By
 elimination, the constructor in the second equation is necessarily
 the empty list constructor, so there’s no need to perform a match to
 see what its value really is.
As a matter of style, it is fine to use wild cards
 for well-known simple types such as lists and
 Maybe. For more complicated or less familiar types, it
 can be safer and more readable to name constructors
 explicitly.

We try out our myMap function to give ourselves some
 assurance that it behaves similarly to the standard map:
ghci> :module +Data.Char
ghci> map toLower "SHOUTING"
"shouting"
ghci> myMap toUpper "whispering"
"WHISPERING"
ghci> map negate [1,2,3]
[-1,-2,-3]
This pattern of spotting a repeated idiom, and then
 abstracting it so we can reuse (and write less!) code, is a common
 aspect of Haskell programming. While abstraction isn’t unique to
 Haskell, higher-order functions make it remarkably easy.

Selecting Pieces of Input

Another common operation on a
 sequence of data is to comb through it for elements that satisfy some
 criterion. Here’s a function that walks a list of numbers and returns
 those that are odd. Our code has a recursive case that’s a bit more
 complex than our earlier functions—it puts a number in the list it
 returns only if the number is odd. Using a guard expresses this
 nicely:
-- file: ch04/Filter.hs
oddList :: [Int] -> [Int]

oddList (x:xs) | odd x = x : oddList xs
 | otherwise = oddList xs
oddList _ = []
Let’s see that in action:
ghci> oddList [1,1,2,3,5,8,13,21,34]
[1,1,3,5,13,21]

Once again, this idiom is so common that the Prelude defines a function, filter,
 which we already introduced. It removes the need for boilerplate code
 to recurse over the list:
ghci> :type filter
filter :: (a -> Bool) -> [a] -> [a]
ghci> filter odd [3,1,4,1,5,9,2,6,5]
[3,1,1,5,9,5]
The filter function takes a predicate and
 applies it to every element in its input list, returning a list of
 only those for which the predicate evaluates to True.
 We’ll revisit filter again later
 in this chapter in Folding from the Right.

Computing One Answer over a Collection

It is also common to reduce a collection
 to a single value. A simple example of this is summing the values of a
 list:
-- file: ch04/Sum.hs
mySum xs = helper 0 xs
 where helper acc (x:xs) = helper (acc + x) xs
 helper acc _ = acc
Our helper function is tail-recursive and uses
 an accumulator parameter, acc, to hold the current
 partial sum of the list. As we already saw with asInt, this is a “natural” way
 to represent a loop in a pure functional language.
For something a little more complicated,
 let’s take a look at the Adler-32 checksum. It is a popular checksum algorithm; it concatenates two
 16-bit checksums into a single 32-bit checksum. The first checksum is
 the sum of all input bytes, plus one. The second is the sum of all
 intermediate values of the first checksum. In each case, the sums are
 computed modulo 65521. Here’s a straightforward, unoptimized Java
 implementation (it’s safe to skip it if you don’t read Java):
public class Adler32
{
 private static final int base = 65521;

 public static int compute(byte[] data, int offset, int length)
 {
	int a = 1, b = 0;

	for (int i = offset; i < offset + length; i++) {
	 a = (a + (data[i] & 0xff)) % base;
	 b = (a + b) % base;
	}

	return (b << 16) | a;
 }
}
Although Adler-32 is a simple checksum,
 this code isn’t particularly easy to read on account of the
 bit-twiddling involved. Can we do any better with a Haskell implementation?
-- file: ch04/Adler32.hs
import Data.Char (ord)
import Data.Bits (shiftL, (.&.), (.|.))

base = 65521

adler32 xs = helper 1 0 xs
 where helper a b (x:xs) = let a' = (a + (ord x .&. 0xff)) `mod` base
 b' = (a' + b) `mod` base
 in helper a' b' xs
 helper a b _ = (b `shiftL` 16) .|. a
This code isn’t exactly easier to follow
 than the Java code, but let’s look at what’s going on. First of all,
 we’ve introduced some new functions. The shiftL function implements a logical shift left; (.&.) provides a bitwise
 “and”; and (.|.)
 provides a bitwise “or”.
Once again, our helper function is tail-recursive. We’ve
 turned the two variables that we updated on every loop iteration in
 Java into accumulator parameters. When our recursion terminates on the
 end of the input list, we compute our checksum and return it.
If we take a step back, we can
 restructure our Haskell adler32
 to more closely resemble our earlier mySum function. Instead of two accumulator
 parameters, we can use a pair as the accumulator:
-- file: ch04/Adler32.hs
adler32_try2 xs = helper (1,0) xs
 where helper (a,b) (x:xs) =
 let a' = (a + (ord x .&. 0xff)) `mod` base
 b' = (a' + b) `mod` base
 in helper (a',b') xs
 helper (a,b) _ = (b `shiftL` 16) .|. a
Why would we want to make this seemingly
 meaningless structural change? Because as we’ve already seen with
 map and filter, we can extract the common behavior
 shared by mySum and adler32_try2 into a higher-order function.
 We can describe this behavior as “do something to every element
 of a list, updating an accumulator as we go, and returning the
 accumulator when we’re done.”
This kind of function is called a
 fold, because it “folds up” a list. There are two kinds
 of fold-over lists: foldl for
 folding from the left (the start), and foldr for folding
 from the right (the end).

The Left Fold

Here is the definition of foldl:
-- file: ch04/Fold.hs
foldl :: (a -> b -> a) -> a -> [b] -> a

foldl step zero (x:xs) = foldl step (step zero x) xs
foldl _ zero [] = zero
The foldl function takes a “step”
 function, an initial value for its accumulator, and a list. The
 “step” takes an accumulator and an element from the list
 and returns a new accumulator value. All foldl does is call the
 “stepper” on the current accumulator and an element of
 the list, and then passes the new accumulator value to itself
 recursively to consume the rest of the list.
We refer to foldl as a left fold
 because it consumes the list from left (the head) to
 right.
Here’s a rewrite of mySum using foldl:
-- file: ch04/Sum.hs
foldlSum xs = foldl step 0 xs
 where step acc x = acc + x
That local function step just adds two numbers, so let’s simply
 use the addition operator instead, and eliminate the unnecessary
 where clause:
-- file: ch04/Sum.hs
niceSum :: [Integer] -> Integer
niceSum xs = foldl (+) 0 xs
Notice how much simpler this code is
 than our original mySum. We’re no
 longer using explicit recursion, because foldl takes care of that for us. We’ve
 simplified our problem down to two things: what the initial value of
 the accumulator should be (the second parameter to foldl) and how to update the
 accumulator (the (+)
 function). As an added bonus, our code is now shorter, too, which
 makes it easier to understand.
Let’s take a deeper look at what
 foldl is doing here, by manually
 writing out each step in its evaluation when we call niceSum
 [1,2,3]:
-- file: ch04/Fold.hs
foldl (+) 0 (1:2:3:[])
 == foldl (+) (0 + 1) (2:3:[])
 == foldl (+) ((0 + 1) + 2) (3:[])
 == foldl (+) (((0 + 1) + 2) + 3) []
 == (((0 + 1) + 2) + 3)
We can rewrite adler32_try2 using foldl to let us focus on the details that
 are important:
-- file: ch04/Adler32.hs
adler32_foldl xs = let (a, b) = foldl step (1, 0) xs
 in (b `shiftL` 16) .|. a
 where step (a, b) x = let a' = a + (ord x .&. 0xff)
 in (a' `mod` base, (a' + b) `mod` base)
Here, our accumulator is a pair, so the
 result of foldl will be, too. We
 pull the final accumulator apart when foldl returns, and then bit-twiddle it into
 a “proper” checksum.

Why Use Folds, Maps, and Filters?

A quick glance reveals that adler32_foldl isn’t really any shorter than
 adler32_try2. Why should we use a
 fold in this case? The advantage here lies in the fact that folds are
 extremely common in Haskell, and they have regular, predictable
 behavior.
This means that a reader with a little
 experience will have an easier time understanding a use of a fold than
 code that uses explicit recursion. A fold isn’t going to produce any
 surprises, but the behavior of a function that recurses explicitly
 isn’t immediately obvious. Explicit recursion requires us to read
 closely to understand exactly what’s going on.
This line of reasoning applies to other
 higher-order library functions, including those we’ve already seen,
 map and filter. Because they’re library functions
 with well-defined behavior, we need to learn what they do only once,
 and we’ll have an advantage when we need to understand any code that
 uses them. These improvements in readability also carry over to
 writing code. Once we start to think with higher-order functions in
 mind, we’ll produce concise code more quickly.

Folding from the Right

The counterpart to foldl is foldr, which folds from the right of a list:
-- file: ch04/Fold.hs
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr step zero (x:xs) = step x (foldr step zero xs)
foldr _ zero [] = zero
Let’s follow the same manual evaluation
 process with foldr (+) 0 [1,2,3]
 as we did with niceSum earlier in
 the section The Left Fold:
-- file: ch04/Fold.hs
foldr (+) 0 (1:2:3:[])
 == 1 + foldr (+) 0 (2:3:[])
 == 1 + (2 + foldr (+) 0 (3:[])
 == 1 + (2 + (3 + foldr (+) 0 []))
 == 1 + (2 + (3 + 0))
The difference between foldl and foldr should be clear from looking at where
 the parentheses and the empty list elements show up. With foldl, the empty list element is on the
 left, and all the parentheses group to the left. With foldr, the zero value is
 on the right, and the parentheses group to the right.
There is a lovely intuitive explanation
 of how foldr works: it replaces
 the empty list with the zero value, and replaces
 every constructor in the list with an application of the step
 function:
-- file: ch04/Fold.hs
1 : (2 : (3 : []))
1 + (2 + (3 + 0))
At first glance, foldr might seem less useful than foldl: what use is a function that folds
 from the right? But consider the Prelude’s filter function, which we last encountered
 earlier in this chapter in Selecting Pieces of Input. If we write
 filter using explicit recursion,
 it will look something like this:
-- file: ch04/Fold.hs
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)
 | p x = x : filter p xs
 | otherwise = filter p xs
Perhaps surprisingly, though, we can
 write filter as a fold, using
 foldr:
-- file: ch04/Fold.hs
myFilter p xs = foldr step [] xs
 where step x ys | p x = x : ys
 | otherwise = ys
This is the sort of definition that could cause us a
 headache, so let’s examine it in a little depth. Like foldl, foldr takes a function and a base case
 (what to do when the input list is empty) as arguments. From reading
 the type of filter, we know that
 our myFilter function must return
 a list of the same type as it consumes, so the base case should be a
 list of this type, and the step
 helper function must return a list.
Since we know that foldr
 calls step on one
 element of the input list at a time, then with the accumulator as its
 second argument, step’s actions
 must be quite simple. If the predicate returns True, it pushes that element onto the
 accumulated list; otherwise, it leaves the list untouched.
The class of functions that we can
 express using foldr is called primitive recursive. A
 surprisingly large number of list manipulation functions are primitive
 recursive. For example, here’s map written in terms of foldr:
-- file: ch04/Fold.hs
myMap :: (a -> b) -> [a] -> [b]

myMap f xs = foldr step [] xs
 where step x ys = f x : ys
In fact, we can even write foldl using foldr!
-- file: ch04/Fold.hs
myFoldl :: (a -> b -> a) -> a -> [b] -> a

myFoldl f z xs = foldr step id xs z
 where step x g a = g (f a x)
Understanding foldl in terms of foldr
If you want to set yourself a solid
 challenge, try to follow our definition of foldl using foldr. Be warned: this is not trivial!
 You might want to have the following tools at hand: some headache
 pills and a glass of water, ghci
 (so that you can find out what the id function
 does), and a pencil and paper.
You will want to follow the same
 manual evaluation process as we just outlined to see what foldl and foldr were really doing. If you get
 stuck, you may find the task easier after reading Partial Function Application and Currying.

Returning to our earlier intuitive
 explanation of what foldr does,
 another useful way to think about it is that it
 transforms its input list. Its first two
 arguments are “what to do with each head/tail element of the
 list,” and “what to substitute for the end of the
 list.”
The “identity”
 transformation with foldr thus
 replaces the empty list with itself and applies the list constructor
 to each head/tail pair:
-- file: ch04/Fold.hs
identity :: [a] -> [a]
identity xs = foldr (:) [] xs
It transforms a list into a copy of
 itself:
ghci> identity [1,2,3]
[1,2,3]

If foldr replaces the end of a list with some
 other value, this gives us another way to look at Haskell’s list append function, (++):
ghci> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

All we have to do to append a list onto
 another is substitute that second list for the end of our first
 list:
-- file: ch04/Fold.hs
append :: [a] -> [a] -> [a]
append xs ys = foldr (:) ys xs
Let’s try this out:
ghci> append [1,2,3] [4,5,6]
[1,2,3,4,5,6]

Here, we replace each list constructor
 with another list constructor, but we replace the empty list with the
 list we want to append onto the end of our first list.
As our extended treatment of folds
 should indicate, the foldr
 function is nearly as important a member of our list-programming
 toolbox as the more basic list functions we saw in Working with Lists. It can consume and produce a list
 incrementally, which makes it useful for writing lazy data-processing
 code.

Left Folds, Laziness, and Space Leaks

To keep our initial discussion simple, we use foldl
 throughout most of this section. This is convenient for testing, but
 we will never use foldl in
 practice. The reason has to do with Haskell’s nonstrict evaluation. If
 we apply foldl (+) [1,2,3], it evaluates to the
 expression (((0 + 1) + 2) + 3). We can see this occur if
 we revisit the way in which the function gets expanded:
-- file: ch04/Fold.hs
foldl (+) 0 (1:2:3:[])
 == foldl (+) (0 + 1) (2:3:[])
 == foldl (+) ((0 + 1) + 2) (3:[])
 == foldl (+) (((0 + 1) + 2) + 3) []
 == (((0 + 1) + 2) + 3)
The final expression will not be evaluated to
 6 until its value is demanded. Before it is evaluated, it
 must be stored as a thunk. Not surprisingly, a thunk is more expensive
 to store than a single number, and the more complex the thunked
 expression, the more space it needs. For something cheap such as
 arithmetic, thunking an expression is more computationally expensive
 than evaluating it immediately. We thus end up paying both in space
 and in time.
When GHC is evaluating a thunked expression,
 it uses an internal stack to do so. Because a thunked expression could
 potentially be infinitely large, GHC places a fixed limit on the maximum
 size of this stack. Thanks to this limit, we can try a large thunked
 expression in ghci without needing
 to worry that it might consume all the memory:
ghci> foldl (+) 0 [1..1000]
500500

From looking at this expansion, we can
 surmise that this creates a thunk that consists of 1,000 integers and
 999 applications of (+). That’s a
 lot of memory and effort to represent a single number! With a larger
 expression, although the size is still modest, the results are more
 dramatic:
ghci> foldl (+) 0 [1..1000000]
*** Exception: stack overflow

On small expressions, foldl will work correctly but slowly, due
 to the thunking overhead that it incurs. We refer to this invisible
 thunking as a space leak, because our code is
 operating normally, but it is using far more memory than it
 should.
On larger expressions, code with a
 space leak will simply fail, as above. A space leak with
 foldl is a classic roadblock for new Haskell programmers.
 Fortunately, this is easy to avoid.
The Data.List module
 defines a function named foldl'
 that is similar to foldl, but
 does not build up thunks. The difference in behavior between the two
 is immediately obvious:
ghci> foldl (+) 0 [1..1000000]
*** Exception: stack overflow
ghci> :module +Data.List
ghci> foldl' (+) 0 [1..1000000]
500000500000
Due to foldl’s thunking behavior, it is wise to
 avoid this function in real programs, even if it doesn’t fail
 outright, it will be unnecessarily inefficient. Instead, import
 Data.List and use foldl'.
Exercises
	Use a fold (choosing the appropriate fold will make your
 code much simpler) to rewrite and improve upon the asInt function from the earlier
 sectionExplicit Recursion.
-- file: ch04/ch04.exercises.hs
asInt_fold :: String -> Int
Your function should behave as follows:
ghci> asInt_fold "101"
101
ghci> asInt_fold "-31337"
-31337
ghci> asInt_fold "1798"
1798

	Extend your function to handle the following kinds of
 exceptional conditions by calling error:
ghci> asInt_fold ""
0
ghci> asInt_fold "-"
0
ghci> asInt_fold "-3"
-3
ghci> asInt_fold "2.7"
*** Exception: Char.digitToInt: not a digit '.'
ghci> asInt_fold "314159265358979323846"
564616105916946374

	The asInt_fold
 function uses error, so its
 callers cannot handle errors. Rewrite the function to fix this
 problem:
-- file: ch04/ch04.exercises.hs
type ErrorMessage = String
asInt_either :: String -> Either ErrorMessage Int
ghci> asInt_either "33"
Right 33
ghci> asInt_either "foo"
Left "non-digit 'o'"

	The Prelude function
 concat concatenates a list of lists into a single list
 and has the following type:
-- file: ch04/ch04.exercises.hs
concat :: [[a]] -> [a]
Write your own definition of concat using foldr.

	Write your own definition of the standard takeWhile function, first using
 explicit recursion, and then foldr.

	The Data.List module defines a function,
 groupBy, which has the
 following type:
-- file: ch04/ch04.exercises.hs
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
Use ghci to load the
 Data.List module and figure out what groupBy does, then write your own
 implementation using a fold.

	How many of the following Prelude functions can you rewrite
 using list folds?
	any

	cycle

	words

	unlines

For those functions where you can use either foldl' or foldr, which is more appropriate in
 each case?

Further Reading

The article “A tutorial on the
 universality and expressiveness of fold” by Graham Hutton (http://www.cs.nott.ac.uk/~gmh/fold.pdf) is an excellent
 and in-depth tutorial that covers folds. It includes many examples of
 how to use simple, systematic calculation techniques to turn functions
 that use explicit recursion into folds.

Anonymous (lambda) Functions

In many of the function definitions we’ve seen so far, we’ve
 written short helper functions:
-- file: ch04/Partial.hs
isInAny needle haystack = any inSequence haystack
 where inSequence s = needle `isInfixOf` s
Haskell lets us write completely anonymous
 functions, which we can use to avoid the need to give names to our
 helper functions. Anonymous functions are often called
 “lambda” functions, in a nod to their heritage in lambda
 calculus. We introduce an anonymous function with a backslash character (\) pronounced
 lambda.[9] This is followed by the function’s arguments (which can
 include patterns), and then an arrow (->) to introduce the function’s
 body.
Lambdas are most easily illustrated by example. Here’s a
 rewrite of isInAny using an
 anonymous function:
-- file: ch04/Partial.hs
isInAny2 needle haystack = any (\s -> needle `isInfixOf` s) haystack
We’ve wrapped the lambda in parentheses here so that
 Haskell can tell where the function body ends.
In every respect, anonymous functions
 behave identically to functions that have names, but Haskell places a
 few important restrictions on how we can define them. Most importantly,
 while we can write a normal function using multiple clauses containing
 different patterns and guards, a lambda can have only a single clause in
 its definition.
The limitation to a single clause
 restricts how we can use patterns in the definition of a lambda. We’ll
 usually write a normal function with several clauses to cover different
 pattern matching possibilities:
-- file: ch04/Lambda.hs
safeHead (x:_) = Just x
safeHead _ = Nothing
But as we can’t write multiple clauses to
 define a lambda, we must be certain that any patterns we use will
 match:
-- file: ch04/Lambda.hs
unsafeHead = \(x:_) -> x
This definition of unsafeHead will explode in our faces if we
 call it with a value on which pattern matching fails:
ghci> :type unsafeHead
unsafeHead :: [t] -> t
ghci> unsafeHead [1]
1
ghci> unsafeHead []
*** Exception: Lambda.hs:7:13-23: Non-exhaustive patterns in lambda
The definition typechecks, so it will
 compile, and the error will occur at runtime. The moral of this story is
 to be careful in how you use patterns when defining an anonymous
 function: make sure your patterns can’t fail!
Another thing to notice about the
 isInAny and isInAny2 functions shown previously is that
 the first version, using a helper function that has a name, is a little
 easier to read than the version that plops an anonymous function into
 the middle. The named helper function doesn’t disrupt the
 “flow” of the function in which it’s used, and the
 judiciously chosen name gives us a little bit of information about what
 the function is expected to do.
In contrast, when we run across a lambda in the middle
 of a function body, we have to switch gears and read its definition
 fairly carefully to understand what it does. To help with readability
 and maintainability, then, we tend to avoid lambdas in many situations
 where we could use them to trim a few characters from a function
 definition. Very often, we’ll use a partially applied function instead,
 resulting in clearer and more readable code than either a lambda or an
 explicit function. Don’t know what a partially applied function is yet?
 Read on!
We don’t intend these caveats to suggest
 that lambdas are useless, merely that we ought to be mindful of the
 potential pitfalls when we’re thinking of using them. In later chapters,
 we will see that they are often invaluable as
 “glue.”

Partial Function Application and Currying

You may wonder why the ->
 arrow is used for what seems to be two purposes in the type
 signature of a function:
ghci> :type dropWhile
dropWhile :: (a -> Bool) -> [a] -> [a]

It looks like the -> is
 separating the arguments to dropWhile from each other, but that it also
 separates the arguments from the return type. In fact -> has only one meaning: it denotes a
 function that takes an argument of the type on the left and returns a
 value of the type on the right.
The implication here is very important. In
 Haskell, all functions take only one argument.
 While dropWhile
 looks like a function that takes two arguments, it
 is actually a function of one argument, which returns a function that
 takes one argument. Here’s a perfectly valid Haskell expression:
ghci> :module +Data.Char
ghci> :type dropWhile isSpace
dropWhile isSpace :: [Char] -> [Char]
Well, that looks useful. The value
 dropWhile isSpace is a function that strips leading
 whitespace from a string. How is this useful? As one example, we can use
 it as an argument to a higher order function:
ghci> map (dropWhile isSpace) [" a","f"," e"]
["a","f","e"]

Every time we supply an argument to a function, we can
 “chop” an element off the front of its type signature.
 Let’s take zip3 as an example to
 see what we mean; this is a function that zips three lists into a list
 of three-tuples:
ghci> :type zip3
zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
ghci> zip3 "foo" "bar" "quux"
[('f','b','q'),('o','a','u'),('o','r','u')]
If we apply zip3
 with just one argument, we get a function that accepts two arguments. No
 matter what arguments we supply to this compound function, its first
 argument will always be the fixed value we specified:
ghci> :type zip3 "foo"
zip3 "foo" :: [b] -> [c] -> [(Char, b, c)]
ghci> let zip3foo = zip3 "foo"
ghci> :type zip3foo
zip3foo :: [b] -> [c] -> [(Char, b, c)]
ghci> (zip3 "foo") "aaa" "bbb"
[('f','a','b'),('o','a','b'),('o','a','b')]
ghci> zip3foo "aaa" "bbb"
[('f','a','b'),('o','a','b'),('o','a','b')]
ghci> zip3foo [1,2,3] [True,False,True]
[('f',1,True),('o',2,False),('o',3,True)]
When we pass fewer arguments to a function than the
 function can accept, we call it partial application of the
 function—we’re applying the function to only some of its arguments.
In the previous example, we have a partially applied
 function, zip3 "foo", and a new function, zip3foo. We can see that the type signatures
 of the two and their behavior are identical.
This applies just as well if we fix two arguments,
 giving us a function of just one argument:
ghci> let zip3foobar = zip3 "foo" "bar"
ghci> :type zip3foobar
zip3foobar :: [c] -> [(Char, Char, c)]
ghci> zip3foobar "quux"
[('f','b','q'),('o','a','u'),('o','r','u')]
ghci> zip3foobar [1,2]
[('f','b',1),('o','a',2)]
Partial function application lets us avoid writing
 tiresome throwaway functions. It’s often more useful for this purpose
 than the anonymous functions we introduced earlier in this chapter in
 Anonymous (lambda) Functions. Looking back at the isInAny function we defined there, here’s how
 we’d use a partially applied function instead of a named helper function
 or a lambda:
-- file: ch04/Partial.hs
isInAny3 needle haystack = any (isInfixOf needle) haystack
Here, the expression isInfixOf needle is
 the partially applied function. We’re taking the function isInfixOf and “fixing” its first
 argument to be the needle variable from our parameter
 list. This gives us a partially applied function that has exactly the
 same type and behavior as the helper and lambda in our earlier
 definitions.
Partial function application is
 named currying, after the logician
 Haskell Curry (for whom the Haskell language is named).
As another example of currying in use,
 let’s return to the list-summing function we wrote in The Left Fold:
-- file: ch04/Sum.hs
niceSum :: [Integer] -> Integer
niceSum xs = foldl (+) 0 xs
We don’t need to fully apply foldl; we can omit the list
 xs from both the parameter list and the parameters to
 foldl, and we’ll end up with a more
 compact function that has the same type:
-- file: ch04/Sum.hs
nicerSum :: [Integer] -> Integer
nicerSum = foldl (+) 0
Sections

Haskell provides a handy notational shortcut to let us write a
 partially applied function in infix style. If we enclose an operator
 in parentheses, we can supply its left or right argument inside the
 parentheses to get a partially applied function. This kind of partial
 application is called a section:
ghci> (1+) 2
3
ghci> map (*3) [24,36]
[72,108]
ghci> map (2^) [3,5,7,9]
[8,32,128,512]
If we provide the left argument inside
 the section, then calling the resulting function with one argument
 supplies the operator’s right argument, and vice versa.
Recall that we can wrap a function name
 in backquotes to use it as an infix operator. This lets us use
 sections with functions:
ghci> :type (`elem` ['a'..'z'])
(`elem` ['a'..'z']) :: Char -> Bool

The preceding definition fixes elem’s second argument, giving us a
 function that checks to see whether its argument is a lowercase
 letter:
ghci> (`elem` ['a'..'z']) 'f'
True

Using this as an argument to all, we get a function that checks an
 entire string to see if it’s all lowercase:
ghci> all (`elem` ['a'..'z']) "Frobozz"
False

If we use this style, we can further
 improve the readability of our earlier isInAny3 function:
-- file: ch04/Partial.hs
isInAny4 needle haystack = any (needle `isInfixOf`) haystack

As-patterns

Haskell’s tails function, in the Data.List module, generalizes the tail
 function we introduced earlier. Instead of returning one
 “tail” of a list, it returns all of
 them:
ghci> :m +Data.List
ghci> tail "foobar"
"oobar"
ghci> tail (tail "foobar")
"obar"
ghci> tails "foobar"
["foobar","oobar","obar","bar","ar","r",""]
Each of these strings is a
 suffix of the initial string, so tails produces a list of all suffixes, plus
 an extra empty list at the end. It always produces that extra empty
 list, even when its input list is empty:
ghci> tails []
[[]]

What if we want a function that behaves
 like tails but
 only returns the nonempty suffixes? One possibility
 would be for us to write our own version by hand. We’ll use a new piece
 of notation, the @ symbol:
-- file: ch04/SuffixTree.hs
suffixes :: [a] -> [[a]]
suffixes xs@(_:xs') = xs : suffixes xs'
suffixes _ = []
The pattern xs@(_:xs') is
 called an as-pattern, and it means “bind the
 variable xs to the value that matches the right side
 of the @ symbol.”
In our example, if the pattern after the
 @ matches, xs will be bound to the entire list
 that matched, and xs' will be bound to all but the
 head of the list (we used the wild card (_) pattern to indicate
 that we’re not interested in the value of the head of the list):
ghci> tails "foo"
["foo","oo","o",""]
ghci> suffixes "foo"
["foo","oo","o"]
The as-pattern makes our code more
 readable. To see how it helps, let us compare a definition that lacks an
 as-pattern:
-- file: ch04/SuffixTree.hs
noAsPattern :: [a] -> [[a]]
noAsPattern (x:xs) = (x:xs) : noAsPattern xs
noAsPattern _ = []
Here, the list that we’ve deconstructed in
 the pattern match just gets put right back together in the body of the
 function.
As-patterns have a more practical use than
 simple readability: they can help us to share data instead of copying
 it. In our definition of noAsPattern, when we match
 (x:xs), we construct a new copy of it in the body of our
 function. This causes us to allocate a new list node at runtime. That
 may be cheap, but it isn’t free. In contrast, when we defined suffixes, we reused the value
 xs that we matched with our as-pattern. Since we
 reuse an existing value, we avoid a little allocation.

Code Reuse Through Composition

It seems a shame to introduce a new function, suffixes,
 that does almost the same thing as the existing tails function. Surely we can do
 better?
Recall the init function we introduced in Working with Lists—it returns all but the last element of a
 list:
-- file: ch04/SuffixTree.hs
suffixes2 xs = init (tails xs)
This suffixes2 function behaves identically to
 suffixes, but it’s a single line of
 code:
ghci> suffixes2 "foo"
["foo","oo","o"]

If we take a step back, we see the glimmer
 of a pattern. We’re applying a function, then applying another function
 to its result. Let’s turn that pattern into a function
 definition:
-- file: ch04/SuffixTree.hs
compose :: (b -> c) -> (a -> b) -> a -> c
compose f g x = f (g x)
We now have a function, compose, that we can use to
 “glue” two other functions together:
-- file: ch04/SuffixTree.hs
suffixes3 xs = compose init tails xs
Haskell’s automatic currying lets us drop
 the xs variable, so we can make our definition even
 shorter:
-- file: ch04/SuffixTree.hs
suffixes4 = compose init tails
Fortunately, we don’t need to write our
 own compose function. Plugging
 functions into each other like this is so common that the Prelude provides function composition via the
 (.) operator:
-- file: ch04/SuffixTree.hs
suffixes5 = init . tails
The (.) operator isn’t a special piece of language syntax—it’s just a
 normal operator:
ghci> :type (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
ghci> :type suffixes
suffixes :: [a] -> [[a]]
ghci> :type suffixes5
suffixes5 :: [a] -> [[a]]
ghci> suffixes5 "foo"
["foo","oo","o"]
We can create new functions at any time by
 writing chains of composed functions, stitched together with (.), so long (of course) as the result type
 of the function on the right of each (.) matches the type of parameter that the
 function on the left can accept.
As an example, let’s solve a simple
 puzzle. Count the number of words in a string that begin with a capital
 letter:
ghci> :module +Data.Char
ghci> let capCount = length . filter (isUpper . head) . words
ghci> capCount "Hello there, Mom!"
2
We can understand what this composed
 function does by examining its pieces. The (.) function is right-associative, so we will
 proceed from right to left:
ghci> :type words
words :: String -> [String]

The words function has a result type of
 [String], so whatever is on the left side of (.) must accept a compatible argument:
ghci> :type isUpper . head
isUpper . head :: [Char] -> Bool

This function returns True
 if a word begins with a capital letter (try it in ghci), so filter (isUpper . head)
 returns a list of Strings containing only words that begin
 with capital letters:
ghci> :type filter (isUpper . head)
filter (isUpper . head) :: [[Char]] -> [[Char]]

Since this expression returns a list, all
 that remains is to calculate the length of the list, which we do with
 another composition.
Here’s another example, drawn from a real
 application. We want to extract a list of macro names from a C header
 file shipped with libpcap, a popular network
 packet-filtering library. The header file contains a large number
 definitions of the following form:
#define DLT_EN10MB 1 /* Ethernet (10Mb) */
#define DLT_EN3MB 2 /* Experimental Ethernet (3Mb) */
#define DLT_AX25 3 /* Amateur Radio AX.25 */
Our goal is to extract names such as
 DLT_EN10MB and DLT_AX25:
-- file: ch04/dlts.hs
import Data.List (isPrefixOf)

dlts :: String -> [String]

dlts = foldr step [] . lines
We treat an entire file as a string, split
 it up with lines, and then apply
 foldr step [] to the resulting list of lines. The step helper function operates on a single
 line:
-- file: ch04/dlts.hs
 where step l ds
 | "#define DLT_" `isPrefixOf` l = secondWord l : ds
 | otherwise = ds
 secondWord = head . tail . words
If we match a macro definition with our
 guard expression, we cons the name of the macro onto the head of the
 list we’re returning; otherwise, we leave the list untouched.
While the individual functions in the body
 of secondWord are familiar to us by
 now, it can take a little practice to piece together a chain of
 compositions such as this. Let’s walk through the procedure.
Once again, we proceed from right to left.
 The first function is words:
ghci> :type words
words :: String -> [String]
ghci> words "#define DLT_CHAOS 5"
["#define","DLT_CHAOS","5"]
We then apply tail to the
 result of words:
ghci> :type tail
tail :: [a] -> [a]
ghci> tail ["#define","DLT_CHAOS","5"]
["DLT_CHAOS","5"]
ghci> :type tail . words
tail . words :: String -> [String]
ghci> (tail . words) "#define DLT_CHAOS 5"
["DLT_CHAOS","5"]
Finally, applying head to the result of tail .
 words will give us the name of our macro:
ghci> :type head . tail . words
head . tail . words :: String -> String
ghci> (head . tail . words) "#define DLT_CHAOS 5"
"DLT_CHAOS"
Use Your Head Wisely

After warning against unsafe list
 functions earlier in this chapter in Safely and Sanely Working with Crashy Functions,
 here we are calling both head and
 tail, two of those unsafe list
 functions. What gives?
In this case, we can assure ourselves by
 inspection that we’re safe from a runtime failure. The pattern guard
 in the definition of step
 contains two words, so when we apply words to any string that makes it past the
 guard, we’ll have a list of at least two elements:
 "#define" and some macro beginning with
 "DLT_".
This is the kind of reasoning we ought
 to do to convince ourselves that our code won’t explode when we call
 partial functions. Don’t forget our earlier admonition: calling unsafe
 functions such as this requires care and can often make our code more
 fragile in subtle ways. If for some reason we modified the pattern
 guard to only contain one word, we could expose ourselves to the
 possibility of a crash, as the body of the function assumes that it
 will receive two words.

Tips for Writing Readable Code

So far in this chapter, we’ve come across two tempting
 features of Haskell: tail recursion and anonymous functions. As nice as
 these are, we don’t often want to use them.
Many list manipulation operations can be
 most easily expressed using combinations of library functions such as
 map, take, and filter. Without a doubt, it takes some
 practice to get used to using these. In return for our initial
 investment, we can write and read code more quickly, and with fewer
 bugs.
The reason for this is simple. A tail
 recursive function definition has the same problem as a loop in an
 imperative language: it’s completely general. It might perform some
 filtering, some mapping, or who knows what else. We are forced to look
 in detail at the entire definition of the function to see what it’s
 really doing. In contrast, map and
 most other list manipulation functions do only one
 thing. We can take for granted what these simple building blocks do and
 can focus on the idea the code is trying to express, not the minute
 details of how it’s manipulating its inputs.
Two folds lie in the middle ground between tail
 recursive functions (with complete generality) and our toolbox of list
 manipulation functions (each of which does one thing). A fold takes more
 effort to understand than, say, a composition of map and filter that does the same thing, but it
 behaves more regularly and predictably than a tail recursive function.
 As a general rule, don’t use a fold if you can compose some library
 functions, but otherwise try to use a fold in preference to a
 hand-rolled tail recursive loop.
As for anonymous functions, they tend to
 interrupt the “flow” of reading a piece of code. It is very
 often as easy to write a local function definition in a let
 or where clause and use that as it is to put an anonymous
 function into place. The relative advantages of a named function are
 twofold: we don’t need to understand the function’s definition when
 we’re reading the code that uses it, and a well-chosen function name
 acts as a tiny piece of local documentation.

Space Leaks and Strict Evaluation

The foldl function that we discussed earlier is not the only place where
 space leaks can happen in Haskell code. We will use it to illustrate how
 nonstrict evaluation can sometimes be problematic and how to solve the
 difficulties that can arise.
Do you need to know all of this right now?
It is perfectly reasonable to skip this
 section until you encounter a space leak “in the wild.”
 Provided you use foldr if you are
 generating a list, and foldl'
 instead of foldl otherwise, space
 leaks are unlikely to bother you in practice for a while.

Avoiding Space Leaks with seq

We refer to an expression that is not
 evaluated lazily as strict, so foldl' is a strict left fold. It bypasses
 Haskell’s usual nonstrict evaluation through the use of a
 special function named seq:
-- file: ch04/Fold.hs
foldl' _ zero [] = zero
foldl' step zero (x:xs) =
 let new = step zero x
 in new `seq` foldl' step new xs
This seq function has a peculiar type, hinting
 that it is not playing by the usual rules:
ghci> :type seq
seq :: a -> t -> t

It operates as follows: when a
 seq expression is evaluated, it
 forces its first argument to be evaluated, and then returns its second
 argument. It doesn’t actually do anything with the first argument.
 seq exists solely as a way to
 force that value to be evaluated. Let’s walk through a brief
 application to see what happens:
-- file: ch04/Fold.hs
foldl' (+) 1 (2:[])
This expands as follows:
-- file: ch04/Fold.hs
let new = 1 + 2
in new `seq` foldl' (+) new []
The use of seq forcibly evaluates
 new to 3 and returns its second
 argument:
-- file: ch04/Fold.hs
foldl' (+) 3 []
We end up with the following
 result:
-- file: ch04/Fold.hs
3
Thanks to seq, there are no thunks in sight.

Learning to Use seq

Without some direction, there is an
 element of mystery to using seq
 effectively. Here are some useful rules for using it well.
To have any effect, a seq expression must be the first thing
 evaluated in an expression:
-- file: ch04/Fold.hs
-- incorrect: seq is hidden by the application of someFunc
-- since someFunc will be evaluated first, seq may occur too late
hiddenInside x y = someFunc (x `seq` y)

-- incorrect: a variation of the above mistake
hiddenByLet x y z = let a = x `seq` someFunc y
 in anotherFunc a z

-- correct: seq will be evaluated first, forcing evaluation of x
onTheOutside x y = x `seq` someFunc y
To strictly evaluate several values,
 chain applications of seq
 together:
-- file: ch04/Fold.hs
chained x y z = x `seq` y `seq` someFunc z
A common mistake is to try to use seq with two unrelated expressions:
-- file: ch04/Fold.hs
badExpression step zero (x:xs) =
 seq (step zero x)
 (badExpression step (step zero x) xs)
Here, the apparent intention is to evaluate
 step zero x strictly. Since the expression is duplicated
 in the body of the function, strictly evaluating the first instance of
 it will have no effect on the second. The use of let from the definition of foldl' illustrates how to achieve this
 effect correctly.
When evaluating an expression, seq stops as soon as it reaches a
 constructor. For simple types such as numbers, this means that it will
 evaluate them completely. Algebraic data types are a different story.
 Consider the value (1+2):(3+4):[]. If we apply seq to this, it will evaluate the
 (1+2) thunk. Since it will stop when it reaches the first
 (:) constructor, it will have no effect on the second
 thunk. The same is true for tuples: seq ((1+2),(3+4))
 True will do nothing to the thunks inside the pair, since it
 immediately hits the pair’s constructor.
If necessary, we can use normal functional
 programming techniques to work around these limitations:
-- file: ch04/Fold.hs
strictPair (a,b) = a `seq` b `seq` (a,b)

strictList (x:xs) = x `seq` x : strictList xs
strictList [] = []
It is important to understand that seq isn’t free: it has to perform a check
 at runtime to see if an expression has been evaluated. Use it
 sparingly. For instance, while our strictPair function evaluates the contents
 of a pair up to the first constructor, it adds the overheads of
 pattern matching, two applications of seq, and the construction of a new tuple.
 If we were to measure its performance in the inner loop of a
 benchmark, we might find that it slows down the program.
Aside from its performance cost if
 overused, seq is not a miracle
 cure-all for memory consumption problems. Just because you
 can evaluate something strictly doesn’t mean you
 should. Careless use of seq may do nothing at all, move existing
 space leaks around, or introduce new leaks.
The best guides to whether seq is necessary, and how well it is
 working, are performance measurement and profiling, which we will
 cover in Chapter 25. From a base of
 empirical
 measurement, you will develop a reliable sense of when seq is most useful.

[8] Unfortunately, we do not have room to address
 that challenge in this book.

[9] The backslash was chosen for its
 visual resemblance to the Greek letter lambda
 (λ). Although GHC can accept Unicode input, it
 correctly treats λ as a letter, not as a synonym for
 \.

Chapter 5. Writing a Library: Working with JSON
 Data

A Whirlwind Tour of JSON

In this chapter, we’ll develop a small, but complete, Haskell
 library. Our library will manipulate and serialize data in a popular
 form known as JSON (JavaScript Object Notation).
The JSON language is a small, simple
 representation for storing and transmitting structured data—for
 example—over a network connection. It is most commonly used to transfer
 data from a web service to a browser-based JavaScript application. The
 JSON format is described at http://www.json.org/,
 and in greater detail by RFC 4627.
JSON supports four basic types of
 values—strings, numbers, Booleans, and a special value named
 null:
"a string" 12345 true
 null
The language provides two compound types:
 an array is an ordered sequence of
 values, and an object is an unordered collection of
 name/value pairs. The names in an object are always strings; the values
 in an object or array can be of any type:
[-3.14, true, null, "a string"]
 {"numbers": [1,2,3,4,5], "useful": false}

Representing JSON Data in Haskell

To work with JSON data in Haskell, we use an algebraic data type to
 represent the range of possible JSON types:
-- file: ch05/SimpleJSON.hs
data JValue = JString String
 | JNumber Double
 | JBool Bool
 | JNull
 | JObject [(String, JValue)]
 | JArray [JValue]
 deriving (Eq, Ord, Show)
For each JSON type, we supply a distinct
 value constructor. Some of these constructors have parameters: if we
 want to construct a JSON string, we must provide a String
 value as an argument to the JString constructor.
To start experimenting with this code,
 save the file SimpleJSON.hs in your
 editor, switch to a ghci window, and
 load the file into ghci:
ghci> :load SimpleJSON
[1 of 1] Compiling SimpleJSON (SimpleJSON.hs, interpreted)
Ok, modules loaded: SimpleJSON.
ghci> JString "foo"
JString "foo"
ghci> JNumber 2.7
JNumber 2.7
ghci> :type JBool True
JBool True :: JValue
We can see how to use a constructor to
 take a normal Haskell value and turn it into a JValue. To
 do the reverse, we use pattern matching. Here’s a function that we can
 add to SimpleJSON.hs that will
 extract a string from a JSON value for us. If the JSON value actually
 contains a string, our function will wrap the string with the
 Just constructor; otherwise, it will return
 Nothing:
-- file: ch05/SimpleJSON.hs
getString :: JValue -> Maybe String
getString (JString s) = Just s
getString _ = Nothing
When we save the modified source file, we
 can reload it in ghci and try the new
 definition. (The :reload command remembers the last source file
 we loaded, so we do not need to name it explicitly.)
ghci> :reload
Ok, modules loaded: SimpleJSON.
ghci> getString (JString "hello")
Just "hello"
ghci> getString (JNumber 3)
Nothing
A few more accessor functions and we’ve
 got a small body of code to work with:
-- file: ch05/SimpleJSON.hs
getInt (JNumber n) = Just (truncate n)
getInt _ = Nothing

getDouble (JNumber n) = Just n
getDouble _ = Nothing

getBool (JBool b) = Just b
getBool _ = Nothing

getObject (JObject o) = Just o
getObject _ = Nothing

getArray (JArray a) = Just a
getArray _ = Nothing

isNull v = v == JNull
The truncate function turns a floating-point or rational number into an integer
 by dropping the digits after the decimal point:
ghci> truncate 5.8
5
ghci> :module +Data.Ratio
ghci> truncate (22 % 7)
3

The Anatomy of a Haskell Module

A Haskell source file contains a
 definition of a single module. A module lets us
 determine which names inside the module are accessible from other
 modules.
A source file begins with a module declaration. This must
 precede all other definitions in the source file:
-- file: ch05/SimpleJSON.hs
module SimpleJSON
 (
 JValue(..)
 , getString
 , getInt
 , getDouble
 , getBool
 , getObject
 , getArray
 , isNull
) where
The word module is reserved.
 It is followed by the name of the module, which must begin with a
 capital letter. A source file must have the same base
 name (the component before the suffix) as the name of the
 module it contains. This is why our file SimpleJSON.hs contains a module named
 SimpleJSON.
Following the module name is a list of exports, enclosed in
 parentheses. The where keyword indicates that the body of
 the module follows.
The list of exports indicates which names
 in this module are visible to other modules. This lets us keep private
 code hidden from the outside world. The special notation
 (..) that follows the name JValue indicates
 that we are exporting both the type and all of its constructors.
It might seem strange that we can export a
 type’s name (i.e., its type constructor), but not its value
 constructors. The ability to do this is important: it lets us hide the
 details of a type from its users, making the type
 abstract. If we cannot see a type’s value
 constructors, we cannot pattern match against a value of that type, nor
 can we construct a new value of that type. Later in this chapter, we’ll
 discuss some situations in which we might want to make a type
 abstract.
If we omit the exports (and the
 parentheses that enclose them) from a module declaration, every name in
 the module will be exported:
-- file: ch05/Exporting.hs
module ExportEverything where
To export no names at all (which is
 rarely useful), we write an empty export list using a pair of
 parentheses:
-- file: ch05/Exporting.hs
module ExportNothing () where

Compiling Haskell Source

In addition to the ghci
 interpreter, the GHC
 distribution includes a compiler, ghc, that generates native code. If you are
 already familiar with a command-line compiler such as gcc or cl
 (the C++ compiler component of Microsoft’s Visual Studio), you’ll
 immediately be at home with ghc.
To compile a source file, we first open a
 terminal or command prompt window, and then invoke ghc with the name of the source file to
 compile:
 ghc -c SimpleJSON.hs
The -c option tells
 ghc to generate only object code. If we were to omit the
 -c option, the compiler would attempt to generate a
 complete executable. That would fail, because we haven’t written a
 main function, which GHC calls to start the execution of a
 standalone program.
After ghc completes, if we list the contents of the
 directory, it should contain two new files: SimpleJSON.hi and SimpleJSON.o. The former is an interface file, in which ghc stores information about the names
 exported from our module in machine-readable form. The latter
 is an object file, which contains the
 generated machine code.

Generating a Haskell Program and Importing Modules

Now that we’ve successfully compiled our
 minimal library, we’ll write a tiny program to exercise it. Create the
 following file in your text editor and save it as Main.hs:
-- file: ch05/Main.hs
module Main () where

import SimpleJSON

main = print (JObject [("foo", JNumber 1), ("bar", JBool False)])
Notice the import
 directive that follows the module declaration. This indicates that
 we want to take all of the names that are exported from the
 SimpleJSON module and make them available in our module.
 Any import directives must appear in a group at the
 beginning of a module, after the module declaration, but before all
 other code. We cannot, for example, scatter them throughout a source
 file.
Our choice of naming for the source file
 and function is deliberate. To create an executable, ghc expects
 a module named Main that contains a function named
 main (the main function is the one that will be called
 when we run the program once we’ve built it).
 ghc -o simple Main.hs SimpleJSON.o
This time around, we omit the
 -c option when we invoke ghc, so it will attempt to generate an
 executable. The process of generating an executable is called linking. As our command line
 suggests, ghc is perfectly able to
 both compile source files and link an executable in a single
 invocation.
We pass ghc a new option, -o,
 which takes one argument: the name of the executable that
 ghc should create.[10] Here, we’ve decided to name the program simple. On Windows, the program will have the
 suffix .exe, but on Unix variants,
 there will not be a suffix.
Finally, we supply the name of our new
 source file, Main.hs, and the
 object file we already compiled, SimpleJSON.o. We must explicitly list every
 one of our files that contains code that should end up in the
 executable. If we forget a source or object file, ghc will complain about undefined symbols, which
 indicates that some of the definitions that it needs are not provided in
 the files we supplied.
When compiling, we can pass ghc any mixture of source and object files. If
 ghc notices that it has already
 compiled a source file into an object file, it will only recompile the
 source file if we’ve modified it.
Once ghc has finished compiling and linking our
 simple program, we can run it from
 the command line.

Printing JSON Data

Now that we have a Haskell representation
 for JSON’s types, we’d like to be able to take Haskell values and render
 them as JSON data.
There are a few ways we could go about
 this. Perhaps the most direct would be to write a rendering function
 that prints a value in JSON form. Once we’re done, we’ll explore some
 more interesting approaches.
-- file: ch05/PutJSON.hs
module PutJSON where

import Data.List (intercalate)
import SimpleJSON

renderJValue :: JValue -> String

renderJValue (JString s) = show s
renderJValue (JNumber n) = show n
renderJValue (JBool True) = "true"
renderJValue (JBool False) = "false"
renderJValue JNull = "null"

renderJValue (JObject o) = "{" ++ pairs o ++ "}"
 where pairs [] = ""
 pairs ps = intercalate ", " (map renderPair ps)
 renderPair (k,v) = show k ++ ": " ++ renderJValue v

renderJValue (JArray a) = "[" ++ values a ++ "]"
 where values [] = ""
 values vs = intercalate ", " (map renderJValue vs)
Good Haskell style involves separating
 pure code from code that performs I/O. Our renderJValue function has no interaction with
 the outside world, but we still need to be able to print a
 JValue:
-- file: ch05/PutJSON.hs
putJValue :: JValue -> IO ()
putJValue v = putStrLn (renderJValue v)
Printing a JSON value is now easy.
Why should we separate the rendering code
 from the code that actually prints a value? This gives us flexibility.
 For instance, if we want to compress the data before writing it out and
 intermix rendering with printing, it would be much more difficult to
 adapt our code to that change in circumstances.
This idea of separating pure from impure
 code is powerful, and it is pervasive in Haskell code. Several Haskell
 compression libraries exist, all of which have simple interfaces: a
 compression function accepts an uncompressed string and returns a
 compressed string. We can use function composition to render JSON data
 to a string, and then compress to another string, postponing any
 decision on how to actually display or transmit the data.

Type Inference Is a Double-Edged Sword

A Haskell compiler’s ability to infer types is powerful and
 valuable. Early on, you’ll probably face a strong temptation to take
 advantage of type inference by omitting as many type declarations as
 possible. Let’s simply make the compiler figure the whole lot
 out!
Skimping on explicit type information has
 a downside, one that disproportionately affects new Haskell programmers.
 As such programmers, we’re extremely likely to write code that will fail
 to compile due to straightforward type errors.
When we omit explicit type information,
 we force the compiler to figure out our intentions. It will infer types that are
 logical and consistent, but perhaps not at all what we meant. If we and
 the compiler unknowingly disagree about what is going on, it will
 naturally take us longer to find the source of our problem.
Suppose, for instance, that we write a
 function that we believe returns a String, but we don’t
 write a type signature for it:
-- file: ch05/Trouble.hs
upcaseFirst (c:cs) = toUpper c -- forgot ":cs" here
Here, we want to uppercase the first
 character of a word, but we’ve forgotten to append the rest of the word
 onto the result. We think our function’s type is String ->
 String, but the compiler will correctly infer its type as
 String -> Char. Let’s say we then try to use this
 function somewhere else:
-- file: ch05/Trouble.hs
camelCase :: String -> String
camelCase xs = concat (map upcaseFirst (words xs))
When we try to compile this code or load
 it into ghci, we won’t necessarily
 get an obvious error message:
ghci> :load Trouble
[1 of 1] Compiling Main (Trouble.hs, interpreted)

Trouble.hs:9:27:
 Couldn't match expected type `[Char]' against inferred type `Char'
 Expected type: [Char] -> [Char]
 Inferred type: [Char] -> Char
 In the first argument of `map', namely `upcaseFirst'
 In the first argument of `concat', namely
 `(map upcaseFirst (words xs))'
Failed, modules loaded: none.

Notice that the error is reported where we
 use the upcaseFirst function. If we’re erroneously convinced that our
 definition and type for upcaseFirst
 are correct, we may end up staring at the wrong piece of code for quite
 a while, until enlightenment strikes.
Every time we write a type signature, we
 remove a degree of freedom from the type inference engine. This reduces
 the likelihood of divergence between our understanding of our code and
 the compiler’s. Type declarations also act as shorthand for us as
 readers of our own code, making it easier for us to develop a sense of
 what must be going on.
This is not to say that we need to pepper
 every tiny fragment of code with a type declaration. It is, however,
 usually good form to add a signature to every top-level definition in
 our code. It’s best to start out fairly aggressive with explicit type
 signatures, and slowly ease back as your mental model of how type
 checking works becomes more accurate.
Explicit types, undefined values, and error
The special value undefined
 will happily typecheck no matter where we use it, as will an
 expression like error "argh!". It is especially important
 that we write type signatures when we use these. Suppose we use undefined or error "write me"
 as a placeholder in the body of a top-level definition. If we omit a
 type signature, we may be able to use the value we defined in places
 where a correctly typed version would be rejected by the compiler.
 This can easily lead us astray.

A More General Look at Rendering

Our JSON rendering code is narrowly tailored to the exact
 needs of our data types and the JSON formatting conventions. The output
 it produces can be unfriendly to human eyes. We will now look at
 rendering as a more generic task: how can we build a library that is
 useful for rendering data in a variety of situations?
We would like to produce output that is
 suitable either for human consumption (e.g., for debugging) or for
 machine processing. Libraries that perform this job are referred to
 as pretty printers. Several Haskell
 pretty-printing libraries already exist. We are creating one of our own
 not to replace them, but for the many useful insights we will gain into
 both library design and functional programming techniques.
We will call our generic pretty-printing
 module Prettify, so our code will go into a source file
 named Prettify.hs.
Naming
In our Prettify module, we
 will base our names on those used by several established Haskell
 pretty-printing libraries., which will give us a degree of
 compatibility with existing mature libraries.

To make sure that Prettify
 meets practical needs, we write a new JSON renderer that uses the
 Prettify API. After we’re done, we’ll go back and fill in
 the details of the Prettify module.
Instead of rendering straight to a string,
 our Prettify module will use an abstract type that we’ll
 call Doc. By basing our generic rendering library on an
 abstract type, we can choose an implementation that is flexible and
 efficient. If we decide to change the underlying code, our users will
 not be able to tell.
We will name our new JSON rendering module
 PrettyJSON.hs and retain the name
 renderJValue for the rendering
 function. Rendering one of the basic JSON values is
 straightforward:
-- file: ch05/PrettyJSON.hs
renderJValue :: JValue -> Doc
renderJValue (JBool True) = text "true"
renderJValue (JBool False) = text "false"
renderJValue JNull = text "null"
renderJValue (JNumber num) = double num
renderJValue (JString str) = string str
Our Prettify module provides
 the text, double, and string functions.

Developing Haskell Code Without Going Nuts

Early on, as we come to grips with Haskell
 development, we have so many new, unfamiliar concepts to keep track of at
 one time that it can be a challenge to write code that compiles at
 all.
As we write our first substantial body of
 code, it’s a huge help to pause every few minutes
 and try to compile what we’ve produced so far. Because Haskell is so
 strongly typed, if our code compiles cleanly, we’re assured that we’re
 not wandering too far off into the programming weeds.
One useful technique for quickly
 developing the skeleton of a program is to write placeholder, or stub, versions of types and
 functions. For instance, we just mentioned that our string, text and double functions would be provided by our
 Prettify module. If we don’t provide definitions for those
 functions or the Doc type, our attempts to “compile
 early, compile often” with our JSON renderer will fail, as the
 compiler won’t know anything about those functions. To avoid this
 problem, we write stub code that doesn’t do anything:
-- file: ch05/PrettyStub.hs
import SimpleJSON

data Doc = ToBeDefined
 deriving (Show)

string :: String -> Doc
string str = undefined

text :: String -> Doc
text str = undefined

double :: Double -> Doc
double num = undefined
The special value undefined
 has the type a, so it always
 typechecks, no matter where we use it. If we attempt to evaluate it, it
 will cause our program to crash:
ghci> :type undefined
undefined :: a
ghci> undefined
*** Exception: Prelude.undefined
ghci> :type double
double :: Double -> Doc
ghci> double 3.14
*** Exception: Prelude.undefined
Even though we can’t yet run our stubbed
 code, the compiler’s type checker will ensure that our program is
 sensibly typed.

Pretty Printing a String

When we must pretty print a string value,
 JSON has moderately involved escaping rules that we must follow. At the
 highest level, a string is just a series of characters wrapped in
 quotes:
-- file: ch05/PrettyJSON.hs
string :: String -> Doc
string = enclose '"' '"' . hcat . map oneChar
Point-free style
This style of writing a definition
 exclusively as a composition of other functions is called point-free style. The use of
 the word point is not related to the “.” character used for
 function composition. The term point is roughly
 synonymous (in Haskell) with value, so a
 point-free expression makes no mention of the values that it operates
 on.
Contrast this point-free definition of
 string with this
 “pointy” version, which uses a variable,
 s, to refer to the value on which it
 operates:
-- file: ch05/PrettyJSON.hs
pointyString :: String -> Doc
pointyString s = enclose '"' '"' (hcat (map oneChar s))

The enclose function simply wraps a Doc value with an opening and
 closing character:
-- file: ch05/PrettyJSON.hs
enclose :: Char -> Char -> Doc -> Doc
enclose left right x = char left <> x <> char right
We provide a (<>) function in our pretty-printing library. It appends two
 Doc values, so it’s the Doc equivalent of
 (++):
-- file: ch05/PrettyStub.hs
(<>) :: Doc -> Doc -> Doc
a <> b = undefined

char :: Char -> Doc
char c = undefined
Our pretty-printing library also provides
 hcat, which concatenates multiple
 Doc values into one—it’s the analogue of concat for lists:
-- file: ch05/PrettyStub.hs
hcat :: [Doc] -> Doc
hcat xs = undefined
Our string function applies the oneChar
 function to every character in a string, concatenates the lot, and
 encloses the result in quotes. The oneChar function escapes or renders an
 individual character:
-- file: ch05/PrettyJSON.hs
oneChar :: Char -> Doc
oneChar c = case lookup c simpleEscapes of
 Just r -> text r
 Nothing | mustEscape c -> hexEscape c
 | otherwise -> char c
 where mustEscape c = c < ' ' || c == '\x7f' || c > '\xff'

simpleEscapes :: [(Char, String)]
simpleEscapes = zipWith ch "\b\n\f\r\t\\\"/" "bnfrt\\\"/"
 where ch a b = (a, ['\\',b])
The simpleEscapes value is a list of pairs. We
 call a list of pairs an association list, or
 alist for short. Each element of our alist
 associates a character with its escaped representation:
ghci> take 4 simpleEscapes
[('\b',"\\b"),('\n',"\\n"),('\f',"\\f"),('\r',"\\r")]

Our case expression attempts to see whether our
 character has a match in this alist. If we find the match, we emit it;
 otherwise, we might need to escape the character in a more complicated
 way. If so, we perform this escaping. Only if neither kind of escaping
 is required do we emit the plain character. To be conservative,
 printable ASCII characters are the only unescaped characters we
 emit.
The more complicated escaping involves
 turning a character into the string "\u" followed by a
 four-character sequence of hexadecimal digits representing the numeric
 value of the Unicode character:
-- file: ch05/PrettyJSON.hs
smallHex :: Int -> Doc
smallHex x = text "\\u"
 <> text (replicate (4 - length h) '0')
 <> text h
 where h = showHex x ""
The showHex function comes from the Numeric library (you will
 need to import this at the beginning of Prettify.hs) and returns a hexadecimal
 representation of a number:
ghci> showHex 114111 ""
"1bdbf"

The replicate function is provided by the Prelude and builds a fixed-length repeating
 list of its argument:
ghci> replicate 5 "foo"
["foo","foo","foo","foo","foo"]

There’s a wrinkle: the four-digit encoding
 that smallHex provides can only
 represent Unicode characters up to 0xffff. Valid Unicode
 characters can range up to 0x10ffff. To properly represent
 a character above 0xffff in a JSON string, we follow some
 complicated rules to split it into two, which gives us an opportunity to
 perform some bit-level manipulation of Haskell numbers:
-- file: ch05/PrettyJSON.hs
astral :: Int -> Doc
astral n = smallHex (a + 0xd800) <> smallHex (b + 0xdc00)
 where a = (n `shiftR` 10) .&. 0x3ff
 b = n .&. 0x3ff
The shiftR function comes from the Data.Bits module and shifts a
 number to the right. The (.&.)
 function, also from Data.Bits, performs a bit-level
 and of two values:
ghci> 0x10000 `shiftR` 4 :: Int
4096
ghci> 7 .&. 2 :: Int
2
Now that we’ve written smallHex and astral, we can provide a definition for
 hexEscape:
-- file: ch05/PrettyJSON.hs
hexEscape :: Char -> Doc
hexEscape c | d < 0x10000 = smallHex d
 | otherwise = astral (d - 0x10000)
 where d = ord c

Arrays and Objects, and the Module Header

Compared to strings, pretty printing arrays and objects is a snap. We already
 know that the two are visually similar: each starts with an opening
 character, followed by a series of values separated with commas,
 followed by a closing character. Let’s write a function that captures
 the common structure of arrays and objects:
-- file: ch05/PrettyJSON.hs
series :: Char -> Char -> (a -> Doc) -> [a] -> Doc
series open close item = enclose open close
 . fsep . punctuate (char ',') . map item
We’ll start by interpreting this
 function’s type. It takes an opening and closing character, then a
 function that knows how to pretty print a value of some unknown type
 a, followed by a list of values of
 type a. It then returns a value of
 type Doc.
Notice that although our type signature
 mentions four parameters, we listed only three in the definition of the
 function. We are just following the same rule that lets us simplify a
 definiton such as myLength xs = length xs to myLength
 = length.
We have already written enclose, which wraps a Doc value
 in opening and closing characters. The fsep function will live in our
 Prettify module. It combines a list of Doc
 values into one, possibly wrapping lines if the output will not fit on a
 single line:
-- file: ch05/PrettyStub.hs
fsep :: [Doc] -> Doc
fsep xs = undefined
By now, you should be able to define your
 own stubs in Prettify.hs, following
 the examples we have supplied. We will not explicitly define any more
 stubs.
The punctuate function will also live in our
 Prettify module, and we can define it in terms of functions
 for which we’ve already written stubs:
-- file: ch05/Prettify.hs
punctuate :: Doc -> [Doc] -> [Doc]
punctuate p [] = []
punctuate p [d] = [d]
punctuate p (d:ds) = (d <> p) : punctuate p ds
With this definition of series, pretty printing an array is entirely
 straightforward. We add this equation to the end of the block we’ve
 already written for our renderJValue function:
-- file: ch05/PrettyJSON.hs
renderJValue (JArray ary) = series '[' ']' renderJValue ary
To pretty print an object, we need to do
 only a little more work. For each element, we have both a name and a
 value to deal with:
-- file: ch05/PrettyJSON.hs
renderJValue (JObject obj) = series '{' '}' field obj
 where field (name,val) = string name
 <> text ": "
 <> renderJValue val

Writing a Module Header

Now that we have written the bulk of our PrettyJSON.hs file, we must go back to the
 top and add a module declaration:
-- file: ch05/PrettyJSON.hs
module PrettyJSON
 (
 renderJValue
) where

import Numeric (showHex)
import Data.Char (ord)
import Data.Bits (shiftR, (.&.))

import SimpleJSON (JValue(..))
import Prettify (Doc, (<>), char, double, fsep, hcat, punctuate, text,
 compact, pretty)
We export just one name from this module:
 renderJValue, our JSON rendering
 function. The other definitions in the module exist purely to support
 renderJValue, so there’s no reason
 to make them visible to other modules.
Regarding imports, the
 Numeric and Data.Bits modules are distributed
 with GHC. We’ve already
 written the SimpleJSON module and filled our
 Prettify module with skeletal definitions. Notice that
 there’s no difference in the way we import standard modules from those
 we’ve written ourselves.
With each import
 directive, we explicitly list each of the names we want to bring
 into our module’s namespace. This is not required. If we omit the list
 of names, all of the names exported from a module will be available to
 us. However, it’s generally a good idea to write an explicit import list
 for the following reasons:
	An explicit list makes it clear which
 names we’re importing from where. This will make it easier for a
 reader to look up documentation if he encounters an unfamiliar
 function.

	Occasionally, a library maintainer
 will remove or rename a function. If a function disappears from a
 third-party module that we use, any resulting compilation error is
 likely to happen long after we’ve written the module. The explicit
 list of imported names can act as a reminder to ourselves of where
 we had been importing the missing name from, which will help us to
 pinpoint the problem more quickly.

	It is possible that someone will add a
 name to a module that is identical to a name already in our own
 code. If we don’t use an explicit import list, we’ll end up with the
 same name in our module twice. If we use that name, GHC will report an error due to the
 ambiguity. An explicit list lets us avoid the possibility of
 accidentally importing an unexpected new name.

This idea of using explicit imports is a
 guideline that usually makes sense, not a hard-and-fast rule.
 Occasionally, we’ll need so many names from a module that listing each
 one becomes messy. In other cases, a module might be so widely used that
 a moderately experienced Haskell programmer will probably know which
 names come from that module.

Fleshing Out the Pretty-Printing Library

In our Prettify module, we
 represent our Doc type as an algebraic data type:
-- file: ch05/Prettify.hs
data Doc = Empty
 | Char Char
 | Text String
 | Line
 | Concat Doc Doc
 | Union Doc Doc
 deriving (Show,Eq)
Observe that the Doc type is
 actually a tree. The Concat and Union
 constructors create an internal node from two other Doc
 values, while the Empty and other simple constructors build
 leaves.
In the header of our module, we will
 export the name of the type, but none of its constructors. This will
 prevent modules that use the Doc type from creating and
 pattern matching against Doc values.
Instead, to create a Doc, a
 user of the Prettify module will call a function that we
 provide. Here are the simple construction functions. As we add real
 definitions, we must replace any stubbed versions already in the
 Prettify.hs source file:
-- file: ch05/Prettify.hs
empty :: Doc
empty = Empty

char :: Char -> Doc
char c = Char c

text :: String -> Doc
text "" = Empty
text s = Text s

double :: Double -> Doc
double d = text (show d)
The Line
 constructor represents a line break. The line function creates hard line breaks, which
 always appear in the pretty printer’s output. Sometimes we’ll want a
 soft line break, which is only used if a line is
 too wide to fit in a window or page (we’ll introduce a softline function shortly):
-- file: ch05/Prettify.hs
line :: Doc
line = Line
Almost as simple as the basic constructors
 is the (<>)
 function, which concatenates two Doc values:
-- file: ch05/Prettify.hs
(<>) :: Doc -> Doc -> Doc
Empty <> y = y
x <> Empty = x
x <> y = x `Concat` y
We pattern-match against
 Empty so that concatenating a Doc value with
 Empty on the left or right will have no effect, which keeps
 us from bloating the tree with useless values:
ghci> text "foo" <> text "bar"
Concat (Text "foo") (Text "bar")
ghci> text "foo" <> empty
Text "foo"
ghci> empty <> text "bar"
Text "bar"
A mathematical moment
If we briefly put on our mathematical
 hats, we can say that Empty is the identity under
 concatenation, since nothing happens if we concatenate a
 Doc value with Empty. In a similar vein, 0
 is the identity for adding numbers, and 1 is the identity for
 multiplying them. Taking the mathematical perspective has useful
 practical consequences, as we will see in a number of places
 throughout this book.

Our hcat and fsep functions concatenate a list of
 Doc values into one. In Exercises and in How to Think About Loops, we
 mentioned that we could define concatenation for lists using foldr:
-- file: ch05/Concat.hs
concat :: [[a]] -> [a]
concat = foldr (++) []
Since (<>) is analogous to (++), and empty to [], we can see how we might write hcat and fsep as folds, too:
-- file: ch05/Prettify.hs
hcat :: [Doc] -> Doc
hcat = fold (<>)

fold :: (Doc -> Doc -> Doc) -> [Doc] -> Doc
fold f = foldr f empty
The definition of fsep depends on several other
 functions:
-- file: ch05/Prettify.hs
fsep :: [Doc] -> Doc
fsep = fold (</>)

(</>) :: Doc -> Doc -> Doc
x </> y = x <> softline <> y

softline :: Doc
softline = group line
These take a little explaining. The
 softline function should insert a
 newline if the current line has become too wide, or a space otherwise.
 How can we do this if our Doc type doesn’t contain any
 information about rendering? Our answer is that every time we encounter
 a soft newline, we maintain two alternative
 representations of the document, using the Union
 constructor:
-- file: ch05/Prettify.hs
group :: Doc -> Doc
group x = flatten x `Union` x
Our flatten function replaces a Line
 with a space, turning two lines into one longer line:
-- file: ch05/Prettify.hs
flatten :: Doc -> Doc
flatten (x `Concat` y) = flatten x `Concat` flatten y
flatten Line = Char ' '
flatten (x `Union` _) = flatten x
flatten other = other
Notice that we always call flatten on the left element of a
 Union: the left of each Union is always the
 same width (in characters) as, or wider than, the right. We’ll make use
 of this property in our rendering functions that follow.
Compact Rendering

We frequently need to use a
 representation for a piece of data that contains as few characters as
 possible. For example, if we’re sending JSON data over a network
 connection, there’s no sense in laying it out nicely. The software on
 the far end won’t care whether the data is pretty or not, and the
 added whitespace needed to make the layout look good would add a lot
 of overhead.
For these cases, and because it’s a
 simple piece of code to start with, we provide a bare-bones compact
 rendering function:
-- file: ch05/Prettify.hs
compact :: Doc -> String
compact x = transform [x]
 where transform [] = ""
 transform (d:ds) =
 case d of
 Empty -> transform ds
 Char c -> c : transform ds
 Text s -> s ++ transform ds
 Line -> '\n' : transform ds
 a `Concat` b -> transform (a:b:ds)
 _ `Union` b -> transform (b:ds)
The compact function wraps its argument in a list and applies the transform helper function to it. The
 transform function treats its
 argument as a stack of items to process, where the first element of
 the list is the top of the stack.
The transform function’s (d:ds)
 pattern breaks the stack into its head, d, and the
 remainder, ds. In our case expression, the first several branches
 recurse on ds, consuming one item from the stack
 for each recursive application. The last two branches add items in
 front of ds; the Concat branch adds
 both elements to the stack, while the Union branch
 ignores its left element, on which we called flatten, and adds its right element to the
 stack.
We have now fleshed out enough of our
 original skeletal definitions that we can try out our compact function in ghci:
ghci> let value = renderJValue (JObject [("f", JNumber 1), ("q", JBool True)])
ghci> :type value
value :: Doc
ghci> putStrLn (compact value)
{"f": 1.0,
"q": true
}
To better understand how the code works,
 let’s look at a simpler example in more detail:
ghci> char 'f' <> text "oo"
Concat (Char 'f') (Text "oo")
ghci> compact (char 'f' <> text "oo")
"foo"
When we apply compact, it turns its argument into a list
 and applies transform (the degree
 of indentation below reflects the depth of recursion):
	The transform function receives a one-item
 list, which matches the (d:ds) pattern. Thus
 d is the value Concat (Char 'f') (Text
 "oo"), and ds is the empty list,
 [].
Since d’s
 constructor is Concat, the Concat
 pattern matches in the case
 expression. On the righthand side, we add Char 'f'
 and Text "oo" to the stack and then apply transform, recursively.

	The transform function
 receives a two-item list, again matching the (d:ds)
 pattern. The variable d is bound to Char
 'f', and ds to [Text
 "oo"].
	The case expression
 matches in the Char branch. On the righthand
 side, we use (:) to
 construct a list whose head is 'f', and whose
 body is the result of a recursive application of transform.
	The recursive invocation receives a one-item list.
 The variable d is bound to Text
 "oo", and ds to
 [].
The case
 expression matches in the Text branch. On the
 righthand side, we use (++) to concatenate
 "oo" with the result of a recursive
 application of transform.
	In the final invocation, transform is invoked with
 an empty list and returns an empty string.

	The result is "oo" ++ "".

	The result is 'f' : "oo" ++ "".

True Pretty Printing

While our compact function is useful for
 machine-to-machine communication, its result is not always easy for a
 human to follow: there’s very little information on each line. To
 generate more readable output, we’ll write another function, pretty. Compared to compact, pretty takes one extra argument: the
 maximum width of a line, in columns (we’re assuming that our typeface
 is of fixed width):
-- file: ch05/Prettify.hs
pretty :: Int -> Doc -> String
To be more precise, this
 Int parameter controls the behavior of pretty when it encounters a softline. Only at a softline does pretty have the option of either continuing
 the current line or beginning a new one. Elsewhere, we must strictly
 follow the directives set out by the person using our pretty-printing
 functions.
Here’s the core of our
 implementation:
-- file: ch05/Prettify.hs
pretty width x = best 0 [x]
 where best col (d:ds) =
 case d of
 Empty -> best col ds
 Char c -> c : best (col + 1) ds
 Text s -> s ++ best (col + length s) ds
 Line -> '\n' : best 0 ds
 a `Concat` b -> best col (a:b:ds)
 a `Union` b -> nicest col (best col (a:ds))
 (best col (b:ds))
 best _ _ = ""

 nicest col a b | (width - least) `fits` a = a
 | otherwise = b
 where least = min width col
Our best helper function takes two arguments:
 the number of columns emitted so far on the current line and the list
 of remaining Doc values to process.
In the simple cases, best updates the col
 variable in straightforward ways as it consumes the input. Even the
 Concat case is obvious: we push the two concatenated
 components onto our stack/list, and we don’t touch
 col.
The interesting case involves the
 Union constructor. Recall that we applied flatten to the left element and did nothing
 to the right. Also, remember that flatten replaces newlines with spaces.
 Therefore, our job is to see which (if either) of the two layouts—the
 flattened one or the
 original—will fit into our width
 restriction.
To do this, we write a small helper
 function that determines whether a single line of a rendered
 Doc value will fit into a given number of columns:
-- file: ch05/Prettify.hs
fits :: Int -> String -> Bool
w `fits` _ | w < 0 = False
w `fits` "" = True
w `fits` ('\n':_) = True
w `fits` (c:cs) = (w - 1) `fits` cs

Following the Pretty Printer

In order to understand how this code
 works, let’s first consider a simple Doc value:
ghci> empty </> char 'a'
Concat (Union (Char ' ') Line) (Char 'a')

We’ll apply pretty 2 on this value. When we first apply
 best, the value of
 col is zero. It matches the Concat case,
 pushes the values Union (Char ' ') Line and Char
 'a' onto the stack, and applies itself recursively. In the
 recursive application, it matches on Union (Char ' ')
 Line.
At this point, we’re going to ignore
 Haskell’s usual order of evaluation. This keeps our explanation of
 what’s going on simple, without changing the end result. We now have
 two subexpressions: best 0 [Char ' ', Char 'a'] and
 best 0 [Line, Char 'a']. The first evaluates to "
 a", and the second to "\na". We then substitute
 these into the outer expression to give nicest 0 " a"
 "\na".
To figure out what the result of
 nicest is here, we do a little
 substitution. The values of width and
 col are 0 and 2, respectively, so
 least is 0, and width - least is 2. We
 quickly evaluate 2 `fits` " a" in ghci:
ghci> 2 `fits` " a"
True

Since this evaluates to
 True, the result of nicest here is " a".
If we apply our pretty function to the same JSON data that
 we did earlier, we can see that it produces different output depending
 on the width that we give it:
ghci> putStrLn (pretty 10 value)
{"f": 1.0,
"q": true
}
ghci> putStrLn (pretty 20 value)
{"f": 1.0, "q": true
}
ghci> putStrLn (pretty 30 value)
{"f": 1.0, "q": true }
Exercises
	Our current pretty printer is spartan so that it will fit
 within our space constraints, but there are a number of useful
 improvements we can make.
Write a function, fill, with the following type
 signature:
-- file: ch05/Prettify.hs
fill :: Int -> Doc -> Doc
It should add spaces to a document until it is the given
 number of columns wide. If it is already wider than this value,
 it should not add any spaces.

	Our pretty printer does not take nesting into account.
 Whenever we open parentheses, braces, or brackets, any lines
 that follow should be indented so that they are aligned with the
 opening character until a matching closing character is
 encountered.
Add support for nesting, with a controllable amount of
 indentation:
-- file: ch05/Prettify.hs
fill :: Int -> Doc -> Doc

Creating a Package

The Haskell community has built a standard set of tools, named Cabal, that help
 with building, installing, and distributing software. Cabal organizes
 software as a package. A package contains one
 library, and possibly several executable programs.
Writing a Package Description

To do anything with a package, Cabal
 needs a description of it. This is contained in a text file whose name
 ends with the suffix .cabal. This
 file belongs in the top-level directory of your project. It has a
 simple format, which we’ll describe next.
A Cabal package must have a name.
 Usually, the name of the package matches the name of the .cabal file. We’ll call our package
 mypretty, so our file is mypretty.cabal. Often, the directory that
 contains a .cabal file will have
 the same name as the package, e.g., mypretty.
A package description begins with a
 series of global properties, which apply to every library and
 executable in the package:
Name: mypretty
Version: 0.1

-- This is a comment. It stretches to the end of the line.
Package names must be unique. If you
 create and install a package that has the same name as a package
 already present on your system, GHC will get very confused.
The global properties include a
 substantial amount of information that is intended for human readers,
 not Cabal itself:
Synopsis: My pretty printing library, with JSON support
Description:
 A simple pretty-printing library that illustrates how to
 develop a Haskell library.
Author: Real World Haskell
Maintainer: nobody@realworldhaskell.org
As the Description field
 indicates, a field can span multiple lines, provided they’re
 indented.
Also included in the global properties
 is license information. Most Haskell packages are licensed under the
 BSD license, which Cabal calls BSD3.[11] (Obviously, you’re free to choose whatever license you
 think is appropriate.) The optional License-File field
 lets us specify the name of a file that contains the exact text of our
 package’s licensing terms.
The features supported by successive
 versions of Cabal evolve over time, so it’s wise to indicate what
 versions of Cabal we expect to be compatible with. The features we are
 describing are supported by versions 1.2 and higher of Cabal:
Cabal-Version: >= 1.2
To describe an individual library within
 a package, we write a library section. The use of
 indentation here is significant; the contents of a section must be
 indented:
library
 Exposed-Modules: Prettify
 PrettyJSON
 SimpleJSON
 Build-Depends: base >= 2.0
The Exposed-Modules field
 contains a list of modules that should be available to
 users of this package. An optional field, Other-Modules,
 contains a list of internal
 modules. These are required for this library to function, but
 will not be visible to users.
The Build-Depends
 field contains a comma-separated list of packages that our
 library requires to build. For each package, we can optionally specify
 the range of versions with which this library is known to work. The
 base package contains many of the core Haskell modules,
 such as the Prelude, so it’s
 effectively always required.
Figuring out build dependencies
We don’t have to guess or do any
 research to establish which packages we depend on. If we try to
 build our package without a Build-Depends field,
 compilation will fail with a useful error message. Here’s an example
 where we commented out the dependency on the base
 package:
$ runghc Setup build
Preprocessing library mypretty-0.1...
Building mypretty-0.1...

PrettyJSON.hs:8:7:
 Could not find module `Data.Bits':
 it is a member of package base, which is hidden
The error message makes it clear that
 we need to add the base package, even though
 base is already installed. Forcing us to be explicit
 about every package we need has a practical benefit: a command-line
 tool named cabal-install will
 automatically download, build, and install a package and all of the
 packages it depends on.

GHC’s Package Manager

GHC includes a simple package manager
 that tracks which packages are installed, and what the versions of
 those packages are. A command-line tool named ghc-pkg lets us work with its package
 databases.
We say databases
 because GHC distinguishes
 between system-wide packages, which are available
 to every user, and per-user packages, which are
 only visible to the current user. The per-user database lets us avoid
 the need for administrative privileges to install packages.
The ghc-pkg command provides subcommands to
 address different tasks. Most of the time, we’ll need only two of
 them. The ghc-pkg list command lets us see what packages
 are installed. When we want to uninstall a package, ghc-pkg
 unregister tells GHC
 that we won’t be using a particular package any longer. (We will have
 to manually delete the installed files ourselves.)

Setting Up, Building, and Installing

In addition to a .cabal file, a package must contain a
 setup file. This allows Cabal’s build process to
 be heavily customized (if a package needs it). The simplest setup file
 looks like this:
-- file: ch05/Setup.hs
#!/usr/bin/env runhaskell
import Distribution.Simple
main = defaultMain
We save this file under the name
 Setup.hs.
Once we write the .cabal and Setup.hs files, there are three steps
 left:
	To instruct Cabal how to build and where to install a
 package, we run a simple command:
$ runghc Setup configure
This ensures that the packages we
 need are available, and it stores settings to be used later by
 other Cabal commands.
If we do not provide any arguments
 to configure, Cabal will install our package in the
 system-wide package database. To install it into our home
 directory and our personal package database, we must provide a
 little more information:

	We build the package:
$ runghc Setup build

	If this succeeds, we can install the package by running
 runghc Setup install. We don’t need to indicate
 where to install to—Cabal will use the settings we provided in the
 configure step. It will install to our own directory
 and update GHC’s
 per-user package database.

Practical Pointers and Further Reading

GHC already bundles a pretty-printing
 library, Text.PrettyPrint.HughesPJ. It provides the same
 basic API as our example but a much richer and more useful set of
 pretty-printing functions. We recommend using it, rather than writing
 your own.
John Hughes introduced the design of the
 HughesPJ pretty printer “The Design of a Pretty-Printing
 library” (http://citeseer.ist.psu.edu/hughes95design.html). The
 library was subsequently improved by Simon Peyton Jones, hence the name.
 Hughes’s paper is long, but well worth reading for his discussion of how
 to design a library in Haskell.
In this chapter, our pretty-printing
 library is based on a simpler system described by Philip Wadler in “A
 prettier printer” (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.635).
 His library was extended by Daan Leijen; this version is available for
 download from Hackage as wl-pprint.
 If you use the cabal command-line
 tool, you can download, build, and install it in one step
 with cabal install wl-pprint.

[10] Memory aid: -o
 stands for output or
 object file.

[11] The “3” in
 BSD3 refers to the number of clauses in the license.
 An older version of the BSD license contained 4 clauses, but it is
 no longer used.

Chapter 6. Using Typeclasses

Typeclasses are among the most powerful features in Haskell. They allow
 us to define generic interfaces that provide a common feature set over a
 wide variety of types. Typeclasses are at the heart of some basic language
 features such as equality testing and numeric operators. Before we talk
 about what exactly typeclasses are, though, we’d like to explain the need
 for them.
The Need for Typeclasses

Let’s imagine that for some
 unfathomable reason, the designers of the Haskell language neglected
 to implement the equality test ==.
 Once you get over your shock at hearing this, you resolve to implement
 your own equality tests. Your application consists of a simple Color type, and so your first equality test is
 for this type. Your first attempt might look like this:
-- file: ch06/naiveeq.hs
data Color = Red | Green | Blue

colorEq :: Color -> Color -> Bool
colorEq Red Red = True
colorEq Green Green = True
colorEq Blue Blue = True
colorEq _ _ = False
You can test this with ghci:
ghci> :load naiveeq.hs
[1 of 1] Compiling Main (naiveeq.hs, interpreted)
Ok, modules loaded: Main.
ghci> colorEq Red Red
True
ghci> colorEq Red Green
False
Now, let’s say that you want to add an
 equality test for Strings. Since a
 Haskell String is a list of
 characters, we can write a simple function to perform that test. For
 simplicity, we cheat a bit and use the == operator here to
 illustrate:
-- file: ch06/naiveeq.hs
stringEq :: [Char] -> [Char] -> Bool

-- Match if both are empty
stringEq [] [] = True

-- If both start with the same char, check the rest
stringEq (x:xs) (y:ys) = x == y && stringEq xs ys

-- Everything else doesn't match
stringEq _ _ = False
You should now be able to see a problem:
 we have to use a function with a different name for every different type
 that we want to be able to compare. That’s inefficient and annoying.
 It’s much more convenient to be able to just use == to compare anything. It may also be useful
 to write generic functions such as /=
 that could be implemented in terms of ==, and valid for almost anything. By having a
 generic function that can compare anything, we can also make our code
 generic: if a piece of code needs only to compare things, then it ought
 to be able to accept any data type that the compiler knows how to
 compare. What’s more, if new data types are added later, the existing
 code shouldn’t have to be modified.
Haskell’s typeclasses are designed to
 address all of these things.

What Are Typeclasses?

Typeclasses define a set of functions that
 can have different implementations depending on the type of data they
 are given. Typeclasses may look like the objects of object-oriented
 programming, but they are truly quite different.
Let’s use typeclasses to solve our
 equality dilemma from the previous section. To begin with, we must
 define the typeclass itself. We want a function that takes two
 parameters, both the same type, and returns a Bool indicating whether or not they are equal.
 We don’t care what that type is, but we just want two items of that
 type. Here’s our first definition of a typeclass:
-- file: ch06/eqclasses.hs
class BasicEq a where
 isEqual :: a -> a -> Bool
This says that we are declaring a
 typeclass named BasicEq, and we’ll
 refer to instance types with the letter a. An instance type of this typeclass is any
 type that implements the functions defined in the typeclass. This
 typeclass defines one function. That function takes two parameters—both
 corresponding to instance types—and returns a Bool.
When is a class not a class?
The keyword to define a typeclass in
 Haskell is class. Unfortunately,
 this may be confusing for those of you coming from an object-oriented
 background, as we are not really defining the same thing.

On the first line, the name of the
 parameter a was chosen arbitrarily—we
 could have used any name. The key is that, when you list the types of
 your functions, you must use that name to refer to instance
 types.
Let’s look at this in ghci. Recall that you can type :type in ghci to have it show you the type of
 something. Let’s see what it says about isEqual:
*Main> :type isEqual
isEqual :: (BasicEq a) => a -> a -> Bool
You can read that this way: “For all types
 a, so long as a is an instance of BasicEq, isEqual takes two parameters of type a and returns a Bool.” Let’s take a quick look at defining
 isEqual for a particular type:
-- file: ch06/eqclasses.hs
instance BasicEq Bool where
 isEqual True True = True
 isEqual False False = True
 isEqual _ _ = False
You can also use ghci to verify that we can now use isEqual on Bools but not on any other type:
ghci> :load eqclasses.hs
[1 of 1] Compiling Main (eqclasses.hs, interpreted)
Ok, modules loaded: Main.
ghci> isEqual False False
True
ghci> isEqual False True
False
ghci> isEqual "Hi" "Hi"

<interactive>:1:0:
 No instance for (BasicEq [Char])
 arising from a use of `isEqual' at <interactive>:1:0-16
 Possible fix: add an instance declaration for (BasicEq [Char])
 In the expression: isEqual "Hi" "Hi"
 In the definition of `it': it = isEqual "Hi" "Hi"
Notice that when we tried to compare two
 strings, ghci recognized that we
 hadn’t provided an instance of BasicEq for String. It therefore didn’t know how to
 compare a String and suggested that
 we could fix the problem by defining an instance of BasicEq for [Char], which is the same as String.
We’ll go into more detail on defining
 instances in the next section Declaring Typeclass Instances.
 First, though, let’s continue to look at ways to define typeclasses. In this example, a
 not-equal-to function might be useful. Here’s what we might say to
 define a typeclass with two functions:
-- file: ch06/eqclasses.hs
class BasicEq2 a where
 isEqual2 :: a -> a -> Bool
 isNotEqual2 :: a -> a -> Bool
Someone providing an instance of BasicEq2 will be required to define two
 functions: isEqual2 and isNotEqual2.
While our definition of BasicEq2 is fine, it seems that we’re making
 extra work for ourselves. Logically speaking, if we know what isEqual or isNotEqual would return, we know how to figure
 out what the other function would return, for all types. Rather than
 making users of the typeclass define both functions for all types, we
 can provide default implementations for them. Then, users will only have
 to implement one function.[12] Here’s an example that shows how to do this:
-- file: ch06/eqclasses.hs
class BasicEq3 a where
 isEqual3 :: a -> a -> Bool
 isEqual3 x y = not (isNotEqual3 x y)

 isNotEqual3 :: a -> a -> Bool
 isNotEqual3 x y = not (isEqual3 x y)
People implementing this class must
 provide an implementation of at least one function. They can implement
 both if they wish, but they will not be required to. While we did
 provide defaults for both functions, each function depends on the
 presence of the other to calculate an answer. If we don’t specify at
 least one, the resulting code would be an endless loop. Therefore, at
 least one function must always be implemented.
With BasicEq3, we have provided a class that does
 very much the same thing as Haskell’s built-in == and /=
 operators. In fact, these operators are defined by a typeclass that
 looks almost identical to BasicEq3.
 The Haskell 98 Report defines a typeclass that implements equality
 comparison. Here is the code for the built-in Eq typeclass. Note how similar it is to our
 BasicEq3 typeclass:
class Eq a where
 (==), (/=) :: a -> a -> Bool

 -- Minimal complete definition:
 -- (==) or (/=)
 x /= y = not (x == y)
 x == y = not (x /= y)

Declaring Typeclass Instances

Now that you know how to define typeclasses, it’s time to learn how
 to define instances of typeclasses. Recall that types are made instances
 of a particular typeclass by implementing the functions necessary for
 that typeclass.
Recall our attempt to create a test for
 equality over a Color type back in
 The Need for Typeclasses. Now let’s see how we could make
 that same Color type a member of the
 BasicEq3 class:
-- file: ch06/eqclasses.hs
instance BasicEq3 Color where
 isEqual3 Red Red = True
 isEqual3 Green Green = True
 isEqual3 Blue Blue = True
 isEqual3 _ _ = False
Notice that we provide essentially the
 same function as we used in The Need for Typeclasses. In
 fact, the implementation is identical. However, in this case, we can use
 isEqual3 on any
 type that we declare is an instance of BasicEq3, not just this one color type. We
 could define equality tests for anything from numbers to graphics using
 the same basic pattern. In fact, as you will see in Equality, Ordering, and Comparisons, this is exactly how you can
 make Haskell’s == operator work for
 your own custom types.
Note also that the BasicEq3 class defined both isEqual3 and isNotEqual3, but we implemented only one of them in the
 Color instance. That’s because of the
 default implementation contained in BasicEq3. Since we didn’t explicitly define
 isNotEqual3, the compiler
 automatically uses the default implementation given in the BasicEq3 declaration.

Important Built-in Typeclasses

Now that we’ve discussed defining your own typeclasses and
 making your types instances of typeclasses, it’s time to introduce you
 to typeclasses that are a standard part of the Haskell Prelude. As we
 mentioned at the beginning of this chapter, typeclasses are at the core
 of some important aspects of the language. We’ll cover the most common
 ones here. For more details, the Haskell library reference is a good
 resource. It will give you a description of the typeclasses and usually
 also will tell you which functions you must implement to have a complete
 definition.
Show

The Show typeclass is used to convert values to Strings. It is perhaps most commonly used to
 convert numbers to Strings, but it
 is defined for so many types that it can be used to convert quite a
 bit more. If you have defined your own types, making them instances of
 Show will make it easy to display
 them in ghci or print them out in
 programs.
The most important function of Show is show. It takes one argument—the data to
 convert. It returns a String
 representing that data. ghci
 reports the type of show like
 this:
ghci> :type show
show :: (Show a) => a -> String

Let’s look at some examples of
 converting values to strings:
ghci> show 1
"1"
ghci> show [1, 2, 3]
"[1,2,3]"
ghci> show (1, 2)
"(1,2)"
Remember that ghci displays results as they would be
 entered into a Haskell program. So the expression show 1 returns a single-character string
 containing the digit 1. That is,
 the quotes are not part of the string itself. We can make that clear
 by using putStrLn:
ghci> putStrLn (show 1)
1
ghci> putStrLn (show [1,2,3])
[1,2,3]
You can also use show on Strings:
ghci> show "Hello!"
"\"Hello!\""
ghci> putStrLn (show "Hello!")
"Hello!"
ghci> show ['H', 'i']
"\"Hi\""
ghci> putStrLn (show "Hi")
"Hi"
ghci> show "Hi, \"Jane\""
"\"Hi, \\\"Jane\\\"\""
ghci> putStrLn (show "Hi, \"Jane\"")
"Hi, \"Jane\""
Running show on Strings can be confusing. Since show generates a result that is suitable for
 a Haskell literal, it adds quotes and escaping suitable for inclusion
 in a Haskell program. ghci also
 uses show to display results, so
 quotes and escaping get added twice. Using putStrLn can help make this difference
 clear.
You can define a Show instance for your own types easily.
 Here’s an example:
-- file: ch06/eqclasses.hs
instance Show Color where
 show Red = "Red"
 show Green = "Green"
 show Blue = "Blue"
This example defines an instance of
 Show for our type Color (see The Need for Typeclasses). The implementation is simple: we
 define a function show. That’s all
 that’s needed.
The Show typeclass
Show is usually used to define a String representation for data that is
 useful for a machine to parse back with Read. Haskell programmers generally write
 custom functions to format data attractively for end users, if this
 representation would be different than expected via Show.

Read

The Read typeclass is essentially the opposite of Show. It defines functions that will take a
 String, parse it, and return data
 in any type that is a member of Read. The most useful function in Read is read. You can ask ghci for its type like this:
ghci> :type read
read :: (Read a) => String -> a

Here’s an example illustrating the use
 of read and show:
-- file: ch06/read.hs
main = do
 putStrLn "Please enter a Double:"
 inpStr <- getLine
 let inpDouble = (read inpStr)::Double
 putStrLn ("Twice " ++ show inpDouble ++ " is " ++ show (inpDouble * 2))
This is a simple example of read and show together. Notice that we gave an
 explicit type of Double when
 processing the read. That’s because
 read returns a value of type
 Read a =>
 a, and show expects a
 value of type Show a => a. There
 are many types that have instances defined for both Read and Show. Without knowing a specific type, the
 compiler must guess from these many types which one is needed. In
 situations such as this, it may often choose Integer. If we want to accept floating-point
 input, this wouldn’t work, so we provide an explicit type.
A note about defaulting
In most cases, if the explicit
 Double type annotation were
 omitted, the compiler would refuse to guess a common type and simply
 give an error. The fact that it could default to Integer here is a special case arising
 from the fact that the literal 2
 is treated as an Integer unless a
 different type is expected for it.

You can see the same effect at work if
 you try to use read on the ghci command line. ghci uses show internally to display results, meaning
 that you can encounter this ambiguous typing problem there as well.
 You’ll need to explicitly give types for your read results in ghci as shown here:
ghci> read "5"

<interactive>:1:0:
 Ambiguous type variable `a' in the constraint:
 `Read a' arising from a use of `read' at <interactive>:1:0-7
 Probable fix: add a type signature that fixes these type variable(s)
ghci> :type (read "5")
(read "5") :: (Read a) => a
ghci> (read "5")::Integer
5
ghci> (read "5")::Double
5.0
Recall the type of read: (Read a)
 => String -> a. The a here is the type of each instance of
 Read. The particular parsing
 function that is called depends upon the type that is expected from
 the return value of read. Let’s see
 how that works:
ghci> (read "5.0")::Double
5.0
ghci> (read "5.0")::Integer
*** Exception: Prelude.read: no parse
Notice the error when trying to parse
 5.0 as an Integer. The interpreter selects a different
 instance of Read when the return
 value was expected to be Integer
 than it did when a Double was
 expected. The Integer parser
 doesn’t accept decimal points and caused an exception to be
 raised.
The Read class provides for some fairly
 complicated parsers. You can define a simple parser by providing an
 implementation for the readsPrec
 function. Your implementation can return a list containing exactly one
 tuple on a successful parse, or it can return an empty list on an
 unsuccessful parse. Here’s an example implementation:
-- file: ch06/eqclasses.hs
instance Read Color where
 -- readsPrec is the main function for parsing input
 readsPrec _ value =
 -- We pass tryParse a list of pairs. Each pair has a string
 -- and the desired return value. tryParse will try to match
 -- the input to one of these strings.
 tryParse [("Red", Red), ("Green", Green), ("Blue", Blue)]
 where tryParse [] = [] -- If there is nothing left to try, fail
 tryParse ((attempt, result):xs) =
 -- Compare the start of the string to be parsed to the
 -- text we are looking for.
 if (take (length attempt) value) == attempt
 -- If we have a match, return the result and the
 -- remaining input
 then [(result, drop (length attempt) value)]
 -- If we don't have a match, try the next pair
 -- in the list of attempts.
 else tryParse xs
This example handles the known cases for
 the three colors. It returns an empty list (resulting in a “no parse”
 message) for others. The function is supposed to return the part of
 the input that was not parsed so that the system can integrate the
 parsing of different types together. Here’s an example of using this
 new instance of Read:
ghci> (read "Red")::Color
Red
ghci> (read "Green")::Color
Green
ghci> (read "Blue")::Color
Blue
ghci> (read "[Red]")::[Color]
[Red]
ghci> (read "[Red,Red,Blue]")::[Color]
[Red,Red,Blue]
ghci> (read "[Red, Red, Blue]")::[Color]
*** Exception: Prelude.read: no parse
Notice the error on the final attempt.
 That’s because our parser is not smart enough to handle leading spaces
 yet. If we modify it to accept leading spaces, that attempt would
 work. You could rectify this by changing your Read instance to discard any leading spaces,
 which is common practice in Haskell programs.
Read is not widely used
While it is possible to build
 sophisticated parsers using the Read typeclass, many people find it easier
 to do so using Parsec, and rely
 on Read only for simpler tasks.
 Parsec is covered in detail in
 Chapter 16.

Serialization with read and show

You may often have a data structure in memory that you need to
 store on disk for later retrieval or to send across the network. The
 process of converting data in memory to a flat series of bits for
 storage is called serialization.
It turns out that read and show make excellent tools for serialization. show produces output that is both human- and
 machine-readable. Most show output
 is also syntactically valid Haskell, though it is up to people that
 write Show instances to make it
 so.
Parsing large strings
String handling in Haskell is normally
 lazy, so read and show can be used on quite large data
 structures without incident. The built-in read and show instances in Haskell are efficient
 and implemented in pure Haskell. For information on how to handle
 parsing exceptions, refer to Chapter 19.

Let’s try it out in ghci:
ghci> let d1 = [Just 5, Nothing, Nothing, Just 8, Just 9]::[Maybe Int]
ghci> putStrLn (show d1)
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> writeFile "test" (show d1)
First, we assign d1 to be a list. Next, we print out the
 result of show d1, so we can see
 what it generates. Then, we write the result of show d1 to a file named test.
Let’s try reading it back:

ghci> input <- readFile "test"
"[Just 5,Nothing,Nothing,Just 8,Just 9]"
ghci> let d2 = read input

<interactive>:1:9:
 Ambiguous type variable `a' in the constraint:
 `Read a' arising from a use of `read' at <interactive>:1:9-18
 Probable fix: add a type signature that fixes these type variable(s)
ghci> let d2 = (read input)::[Maybe Int]
ghci> print d1
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> print d2
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> d1 == d2
True
First, we ask Haskell to read the file
 back.[13] Then, we try to assign the result of read input to d2. That generates an error. The reason is
 that the interpreter doesn’t know what type d2 is meant to be, so it doesn’t know how to
 parse the input. If we give it an explicit type, it works, and we can
 verify that the two sets of data are equal.
Since so many different types are
 instances of Read and Show by default (and others can be made
 instances easily; see Automatic Derivation),
 you can use it for some really complex data structures. Here are a few
 examples of slightly more complex data structures:
ghci> putStrLn $ show [("hi", 1), ("there", 3)]
[("hi",1),("there",3)]
ghci> putStrLn $ show [[1, 2, 3], [], [4, 0, 1], [], [503]]
[[1,2,3],[],[4,0,1],[],[503]]
ghci> putStrLn $ show [Left 5, Right "three", Left 0, Right "nine"]
[Left 5,Right "three",Left 0,Right "nine"]
ghci> putStrLn $ show [Left 0, Right [1, 2, 3], Left 5, Right []]
[Left 0,Right [1,2,3],Left 5,Right []]
Note
The $ operator is a bit of syntactic sugar
 that is equivalent to putting everything after it inside a pair of
 parentheses.

Numeric Types

Haskell has a powerful set of numeric types. You can use
 everything from fast 32-bit or 64-bit integers to arbitrary-precision
 rational numbers. You probably know that operators such as + can work with just about all of these.
 This feature is implemented using typeclasses. As a side benefit, it
 allows you to define your own numeric types and make them first-class
 citizens in Haskell.
Let’s begin our discussion of the
 typeclasses surrounding numeric types with an examination of the types themselves.
 Table 6-1 describes the most commonly
 used numeric types in Haskell. Note that there are also many more
 numeric types available for specific purposes such as interfacing to
 C.
Table 6-1. Selected numeric types
	Type	Description
	Double	Double-precision floating point. A common choice for
 floating-point data.
	Float	Single-precision floating point. Often used when interfacing
 with C.
	Int	Fixed-precision signed integer; minimum range
 [-2^29..2^29-1]. Commonly used.
	Int8	8-bit signed integer.
	Int16	16-bit signed integer.
	Int32	32-bit signed integer.
	Int64	64-bit signed integer.
	Integer	Arbitrary-precision signed integer; range limited only
 by machine resources. Commonly used.
	Rational	Arbitrary-precision rational numbers. Stored as a ratio of two
 Integers.
	Word	Fixed-precision unsigned integer; storage size same as Int.
	Word8	8-bit unsigned integer.
	Word16	16-bit unsigned integer.
	Word32	32-bit unsigned integer.
	Word64	64-bit unsigned integer.

These are quite a few different numeric
 types. There are some operations, such as addition, that work with all of them.
 There are others, such as asin,
 that apply only to floating-point types. Table 6-2 summarizes the different functions
 that operate on numeric types, and Table 6-3 matches the types with their
 respective typeclasses. As you read Table 6-3, keep in mind that Haskell
 operators are just functions: you can say either (+) 2 3 or 2 +
 3 with the same result. By convention, when referring to an
 operator as a function, it is written in parentheses as seen in Table 6-2.
Table 6-2. Selected numeric functions and constants
	Item	Type	Module	Description
	(+)	Num a => a ->
 a -> a	Prelude	Addition.
	(-)	Num a
 => a -> a -> a	Prelude	Subtraction.
	(*)	Num a
 => a -> a -> a	Prelude	Multiplication.
	(/)	Fractional a => a -> a ->
 a	Prelude	Fractional division.
	(**)	Floating
 a => a -> a -> a	Prelude	Raise to the power of.
	(^)	(Num a, Integral b)
 => a -> b
 -> a	Prelude	Raise a number to a nonnegative, integral
 power.
	(^^)	(Fractional a, Integral b)
 =>
 a -> b -> a	Prelude	Raise a fractional number to any integral
 power.
	(%)	Integral a => a -> a
 -> Ratio a	Data.Ratio	Ratio composition.
	(.&.)	Bits a
 => a -> a -> a	Data.Bits	Bitwise and.
	(.|.)	Bits a
 => a -> a -> a	Data.Bits	Bitwise or.
	abs	Num a => a ->
 a	Prelude	Absolute value
	approxRational	RealFrac a => a -> a
 -> Rational	Data.Ratio	Approximate rational composition based on fractional
 numerators and denominators.
	cos	Floating
 a => a -> a	Prelude	Cosine. Also provided are acos, cosh, and acosh, with the same type.
	div	Integral a => a -> a
 -> a	Prelude	Integer division always truncated down; see also
 quot.
	fromInteger	Num a => Integer ->
 a	Prelude	Conversion from an Integer to any numeric type.
	fromIntegral	(Integral a, Num b) => a
 -> b	Prelude	More general conversion from any Integral to any numeric
 type.
	fromRational	Fractional a => Rational
 -> a	Prelude	Conversion from a Rational. May be lossy.
	log	Floating a => a ->
 a	Prelude	Natural logarithm.
	logBase	Floating a => a -> a
 -> a	Prelude	Log with explicit base.
	maxBound	Bounded a =>
 a	Prelude	The maximum value of a bounded type.
	minBound	Bounded a =>
 a	Prelude	The minimum value of a bounded type.
	mod	Integral a => a -> a
 -> a	Prelude	Integer modulus.
	pi	Floating a =>
 a	Prelude	Mathematical constant pi.
	quot	Integral a => a -> a
 -> a	Prelude	Integer division; fractional part of quotient truncated
 towards zero.
	recip	Fractional a => a ->
 a	Prelude	Reciprocal.
	rem	Integral a => a -> a
 -> a	Prelude	Remainder of integer division.
	round	(RealFrac a, Integral
 b) => a -> b	Prelude	Rounds to nearest integer.
	shift	Bits a => a -> Int ->
 a	Bits	Shift left by the specified number of bits, which may
 be negative for a right shift.
	sin	Floating a => a ->
 a	Prelude	Sine. Also provided are asin, sinh, and asinh, with the same type.
	sqrt	Floating a => a ->
 a	Prelude	Square root.
	tan	Floating
 a => a -> a	Prelude	Tangent. Also provided are atan, tanh, and atanh, with the same type.
	toInteger	Integral a => a ->
 Integer	Prelude	Convert any Integral
 to an Integer.
	toRational	Real a => a ->
 Rational	Prelude	Convert losslessly to Rational.
	truncate	(RealFrac a, Integral
 b) => a -> b	Prelude	Truncates number towards zero.
	xor	Bits a => a -> a ->
 a	Data.Bits	Bitwise exclusive or.

Table 6-3. Typeclass instances for numeric types
	Type	Bits	Bounded	Floating	Fractional	Integral	Num	Real	RealFrac
	Double	 	 	X	X	 	X	X	X
	Float	 	 	X	X	 	X	X	X
	Int	X	X	 	 	X	X	X	
	Int16	X	X	 	 	X	X	X	
	Int32	X	X	 	 	X	X	X	
	Int64	X	X	 	 	X	X	X	
	Integer	X	 	 	 	X	X	X	
	Rational or any
 Ratio	 	 	 	X	 	X	X	X
	Word	X	X	 	 	X	X	X	
	Word16	X	X	 	 	X	X	X	
	Word32	X	X	 	 	X	X	X	
	Word64	X	X	 	 	X	X	X	

Converting between numeric types is
 another common need. Table 6-2 listed many
 functions that can be used for conversion. However, it is not always
 obvious how to apply them to convert between two arbitrary types. To
 help you out, Table 6-4 provides
 information on converting between different types.
Table 6-4. Conversion between numeric types[14]
	Source type	Destination type
	Double, Float	Int,
 Word	Integer	Rational
	Double, Float	fromRational .
 toRational	truncate *	truncate *	toRational
	Int, Word	fromIntegral	fromIntegral	fromIntegral	fromIntegral
	Integer	fromIntegral	fromIntegral	N/A	fromIntegral
	Rational	fromRational	truncate *	truncate *	N/A
	[14] Instead of truncate,
 you could also use round,
 ceiling, or floor.

For an extended example demonstrating
 the use of these numeric typeclasses, see Extended Example: Numeric Types.

Equality, Ordering, and Comparisons

We’ve already talked about the arithmetic operators such as
 + that can be used for all sorts of
 different numbers. But there are some even more widely applied
 operators in Haskell. The most obvious, of course, are the equality
 tests: == and /=. These operators are defined in the Eq class.
There are also comparison operators such
 as >= and <=. These are declared by the Ord typeclass. These are in a separate
 typeclass because there are some types, such as Handle, where an equality test makes sense,
 but there is no way to express a particular ordering. Anything that is
 an instance of Ord can be sorted by
 Data.List.sort.
Almost all Haskell types are instances
 of Eq, and nearly as many are
 instances of Ord.

Automatic Derivation

For many simple data types, the Haskell compiler can
 automatically derive instances of Read, Show,
 Bounded, Enum, Eq,
 and Ord for us. This saves us the
 effort of having to manually write code to compare or display our own
 types:
-- file: ch06/colorderived.hs
data Color = Red | Green | Blue
 deriving (Read, Show, Eq, Ord)
Which types can be automatically derived?
The Haskell standard requires compilers
 to be able to automatically derive instances of these specific
 typeclasses. This automation is not available for other
 typeclasses.

Let’s take a look at how these derived
 instances work for us:
ghci> show Red
"Red"
ghci> (read "Red")::Color
Red
ghci> (read "[Red,Red,Blue]")::[Color]
[Red,Red,Blue]
ghci> (read "[Red, Red, Blue]")::[Color]
[Red,Red,Blue]
ghci> Red == Red
True
ghci> Red == Blue
False
ghci> Data.List.sort [Blue,Green,Blue,Red]
[Red,Green,Blue,Blue]
ghci> Red < Blue
True
Notice that the sort order for Color was based on the order in which the
 constructors were defined.
Automatic derivation is not always
 possible. For instance, if you defined a type data MyType = MyType (Int -> Bool),
 the compiler will not be able to derive an instance of Show because it doesn’t know how to render a
 function. We will get a compilation error in such a situation.
When we automatically derive an instance
 of some typeclass, the types that we refer to in our data declaration must also be instances of
 that typeclass (manually or automatically):
-- file: ch06/AutomaticDerivation.hs
data CannotShow = CannotShow
 deriving (Show)

-- will not compile, since CannotShow is not an instance of Show
data CannotDeriveShow = CannotDeriveShow CannotShow
 deriving (Show)

data OK = OK

instance Show OK where
 show _ = "OK"

data ThisWorks = ThisWorks OK
 deriving (Show)

Typeclasses at Work: Making JSON Easier to Use

The JValue type that we introduced in Representing JSON Data in Haskell
 is not especially easy to work with. Here is a truncated and tidied
 snippet of some real JSON data, produced by a well-known search
 engine:
{
 "query": "awkward squad haskell",
 "estimatedCount": 3920,
 "moreResults": true,
 "results":
 [{
 "title": "Simon Peyton Jones: papers",
 "snippet": "Tackling the awkward squad: monadic input/output ...",
 "url": "http://research.microsoft.com/~simonpj/papers/marktoberdorf/",
 },
 {
 "title": "Haskell for C Programmers | Lambda the Ultimate",
 "snippet": "... the best job of all the tutorials I've read ...",
 "url": "http://lambda-the-ultimate.org/node/724",
 }]
}
And here’s a further slimmed down fragment
 of that data, represented in Haskell:
-- file: ch05/SimpleResult.hs
import SimpleJSON

result :: JValue
result = JObject [
 ("query", JString "awkward squad haskell"),
 ("estimatedCount", JNumber 3920),
 ("moreResults", JBool True),
 ("results", JArray [
 JObject [
 ("title", JString "Simon Peyton Jones: papers"),
 ("snippet", JString "Tackling the awkward ..."),
 ("url", JString "http://.../marktoberdorf/")
]])
]
Because Haskell doesn’t natively support
 lists that contain types of different values, we can’t directly
 represent a JSON object that contains values of different types.
 Instead, we must wrap each value with a JValue constructor,
 which limits our flexibility—if we want to change the number
 3920 to a string "3,920", we must change the
 constructor that we use to wrap it from JNumber to
 JString.
Haskell’s typeclasses offer a tempting
 solution to this problem:
-- file: ch06/JSONClass.hs
type JSONError = String

class JSON a where
 toJValue :: a -> JValue
 fromJValue :: JValue -> Either JSONError a

instance JSON JValue where
 toJValue = id
 fromJValue = Right
Now, instead of applying a constructor
 such as JNumber to a value in order to wrap it, we apply
 the toJValue function. If we change
 a value’s type, the compiler will choose a suitable implementation of
 toJValue to use with it.
We also provide a fromJValue function, which attempts to
 convert a JValue into a value of our desired type.
More Helpful Errors

The return type of our fromJValue function uses the
 Either type. Like Maybe, this type is
 predefined for us. We’ll often use it to represent a computation that
 could fail.
While Maybe is useful for
 this purpose, it gives us no information if a failure occurs: we
 literally have Nothing. The Either type has
 a similar structure, but instead of Nothing, the “something bad
 happened” constructor is named Left, and it takes
 a parameter:
-- file: ch06/DataEither.hs
data Maybe a = Nothing
 | Just a
 deriving (Eq, Ord, Read, Show)

data Either a b = Left a
 | Right b
 deriving (Eq, Ord, Read, Show)
Quite often, the type we use for the
 a parameter value is
 String, so we can provide a useful description if
 something goes wrong. To see how we use the Either type
 in practice, let’s look at a simple instance of our typeclass:
-- file: ch06/JSONClass.hs
instance JSON Bool where
 toJValue = JBool
 fromJValue (JBool b) = Right b
 fromJValue _ = Left "not a JSON boolean"

Making an Instance with a Type Synonym

The Haskell 98 standard does not allow us to write an
 instance of the following form, even though it seems perfectly
 reasonable:
-- file: ch06/JSONClass.hs
instance JSON String where
 toJValue = JString

 fromJValue (JString s) = Right s
 fromJValue _ = Left "not a JSON string"
Recall that String is a
 synonym for [Char], which in turn is the type
 [a] where Char is substituted for the type
 parameter a. According to Haskell 98’s
 rules, we are not allowed to supply a type in place of a type
 parameter when we write an instance. In other words, it would be legal
 for us to write an instance for [a], but not for
 [Char].
While GHC follows the Haskell 98 standard by
 default, we can relax this particular restriction by placing a
 specially formatted comment at the top of our source file:
-- file: ch06/JSONClass.hs
{-# LANGUAGE TypeSynonymInstances #-}
This comment is a directive to the
 compiler, called a pragma, which tells it to
 enable a language extension. The TypeSynonymInstances language extension
 makes the preceding code legal.
 We’ll encounter a few other language extensions in this chapter, and a
 handful more later in this book.

Living in an Open World

Haskell’s typeclasses are intentionally designed to let us create new instances
 of a typeclass whenever we see fit:
-- file: ch06/JSONClass.hs
doubleToJValue :: (Double -> a) -> JValue -> Either JSONError a
doubleToJValue f (JNumber v) = Right (f v)
doubleToJValue _ _ = Left "not a JSON number"

instance JSON Int where
 toJValue = JNumber . realToFrac
 fromJValue = doubleToJValue round

instance JSON Integer where
 toJValue = JNumber . realToFrac
 fromJValue = doubleToJValue round

instance JSON Double where
 toJValue = JNumber
 fromJValue = doubleToJValue id
We can add new instances anywhere; they
 are not confined to the module where we define a typeclass. This feature
 of the typeclass system is referred to as its open world
 assumption. If we had a way to express a notion of “the
 following are the only instances of this typeclass that can exist,” we
 would have a closed world.
We would like to be able to turn a list
 into what JSON calls an array. We won’t worry about implementation
 details just yet, so let’s use undefined as the bodies of
 the instance’s methods:
-- file: ch06/BrokenClass.hs
instance (JSON a) => JSON [a] where
 toJValue = undefined
 fromJValue = undefined
It would also be convenient if we could
 turn a list of name/value pairs into a JSON object:
-- file: ch06/BrokenClass.hs
instance (JSON a) => JSON [(String, a)] where
 toJValue = undefined
 fromJValue = undefined
When Do Overlapping Instances Cause Problems?

If we put these definitions into a source file and load them into
 ghci, everything seems fine
 initially:
ghci> :load BrokenClass
[1 of 2] Compiling SimpleJSON (../ch05/SimpleJSON.hs, interpreted)
[2 of 2] Compiling BrokenClass (BrokenClass.hs, interpreted)
Ok, modules loaded: BrokenClass, SimpleJSON.

However, once we try to
 use the list-of-pairs instance, we run into
 trouble:
ghci> toJValue [("foo","bar")]

<interactive>:1:0:
 Overlapping instances for JSON [([Char], [Char])]
 arising from a use of `toJValue' at <interactive>:1:0-23
 Matching instances:
 instance (JSON a) => JSON [a]
 -- Defined at BrokenClass.hs:(44,0)-(46,25)
 instance (JSON a) => JSON [(String, a)]
 -- Defined at BrokenClass.hs:(50,0)-(52,25)
 In the expression: toJValue [("foo", "bar")]
 In the definition of `it': it = toJValue [("foo", "bar")]

This problem of overlapping
 instances is a consequence of Haskell’s open world assumption.
 Here’s a simpler example that makes it clearer what’s going on:
-- file: ch06/Overlap.hs
class Borked a where
 bork :: a -> String

instance Borked Int where
 bork = show

instance Borked (Int, Int) where
 bork (a, b) = bork a ++ ", " ++ bork b

instance (Borked a, Borked b) => Borked (a, b) where
 bork (a, b) = ">>" ++ bork a ++ " " ++ bork b ++ "<<"
We have two instances of the typeclass
 Borked for pairs: one for a pair of Ints and
 another for a pair of anything else that’s Borked.
Suppose that we want to bork a pair of Int values. To
 do so, the compiler must choose an instance to use. Because these
 instances are right next to each other, it may seem that it could
 simply choose the more specific instance.
However, GHC is conservative by default and
 insists that there must be only one possible instance that it can use.
 It will thus report an error if we try to use
 bork.
When do overlapping instances matter?
As we mentioned earlier, we can
 scatter instances of a typeclass across several modules.
 GHC does not complain
 about the mere existence of overlapping instances. Instead, it
 complains only when we try to use a method of the affected
 typeclass, when it is forced to make a decision about which instance
 to use.

Relaxing Some Restrictions on Typeclasses

Normally, we cannot write an instance of a typeclass for a
 specialized version of a polymorphic type. The [Char]
 type is the polymorphic type [a] specialized to the type
 Char. We are thus prohibited from declaring
 [Char] to be an instance of a typeclass. This is highly
 inconvenient, since strings are ubiquitous in real code.
The TypeSynonymInstances
 language extension removes this restriction, permitting us to
 write such instances.
GHC supports another useful language
 extension, OverlappingInstances, which addresses the
 problem we saw with overlapping instances. When there are multiple
 overlapping instances to choose from, this extension causes the
 compiler to pick the most specific one.
We frequently use this extension
 together with TypeSynonymInstances. Here’s an example:
-- file: ch06/SimpleClass.hs
{-# LANGUAGE TypeSynonymInstances, OverlappingInstances #-}

import Data.List

class Foo a where
 foo :: a -> String

instance Foo a => Foo [a] where
 foo = concat . intersperse ", " . map foo

instance Foo Char where
 foo c = [c]

instance Foo String where
 foo = id
If we apply foo to a String, the compiler
 will use the String-specific implementation. Even though
 we have an instance of Foo for [a] and
 Char, the instance for String is more
 specific, so GHC chooses
 it. For other types of list, we will see the behavior specified for
 [a].
With the
 OverlappingInstances extension enabled, GHC
 will still reject code if it finds more than one equally specific
 instance.
When to use the OverlappingInstances extension
Here’s an important point:
 GHC treats
 OverlappingInstances as affecting the declaration of an
 instance, not a location where we use the
 instance. In other words, when we define an instance that we wish to
 allow to overlap with another instance, we must enable the extension
 for the module that contains the definition. When it compiles the
 module, GHC will record
 that instance as “can be overlapped with other instances.”
Once we import this module and use
 the instance, we won’t need to enable
 OverlappingInstances in the importing module.
 GHC will already know
 that the instance was marked as “OK to overlap” when it
 was defined.
This behavior is useful when we are
 writing a library: we can choose to create overlappable instances,
 but users of our library do not need to enable any special language
 extensions.

How Does Show Work for Strings?

The OverlappingInstances
 and TypeSynonymInstances language extensions are specific
 to GHC, and by definition
 were not present in Haskell 98. However, the familiar Show typeclass from
 Haskell 98 somehow renders a list of Char differently
 from a list of Int. It achieves this via a clever, but
 simple, trick.
The Show class defines both a show method, which renders one value, and a
 showList method, which renders a
 list of values. The default implementation of showList renders a list using square
 brackets and commas.
The instance of Show for
 [a] is implemented using showList. The instance of Show
 for Char provides a special implementation of showList that uses double quotes and
 escapes non-ASCII-printable characters.
As a result, if someone applies
 show to a [Char]
 value, the implementation of showList will be chosen, and it will
 correctly render the string using quotes.
At least sometimes, then, we can avoid
 the need for the OverlappingInstances extension with a
 little bit of lateral thinking.

How to Give a Type a New Identity

In addition to the familiar data keyword, Haskell provides us with another
 way to create a new type, using the newtype keyword:
-- file: ch06/Newtype.hs
data DataInt = D Int
 deriving (Eq, Ord, Show)

newtype NewtypeInt = N Int
 deriving (Eq, Ord, Show)
The purpose of a newtype declaration is to
 rename an existing type, giving it a distinct identity. As we can see,
 it is similar in appearance to a type declared using the data keyword.
The type and newtype keywords
Although their names are similar, the
 type and newtype
 keywords have different purposes. The type keyword gives us another way of
 referring to a type, like a nickname for a friend. We and the compiler
 know that [Char] and String names refer to
 the same type.
In contrast, the newtype
 keyword exists to hide the nature of a type.
 Consider a UniqueID type:
-- file: ch06/Newtype.hs
newtype UniqueID = UniqueID Int
 deriving (Eq)
The compiler treats
 UniqueID as a different type from Int. As a
 user of a UniqueID, we know only that we have a unique
 identifier; we cannot see that it is implemented as an
 Int.

When we declare a newtype,
 we must choose which of the underlying type’s typeclass instances we
 want to expose. Here, we’ve elected to make NewtypeInt
 provide Int’s instances for Eq,
 Ord, and Show. As a result, we can compare and
 print values of type NewtypeInt:
ghci> N 1 < N 2
True

Since we are not
 exposing Int’s Num or Integral
 instances, values of type NewtypeInt are not numbers. For
 instance, we can’t add them:
ghci> N 313 + N 37

<interactive>:1:0:
 No instance for (Num NewtypeInt)
 arising from a use of `+' at <interactive>:1:0-11
 Possible fix: add an instance declaration for (Num NewtypeInt)
 In the expression: N 313 + N 37
 In the definition of `it': it = N 313 + N 37

As with the data keyword, we can
 use a newtype’s value constructor to create a new value or
 to pattern match on an existing value.
If a newtype does not use
 automatic deriving to expose the underlying type’s implementation of a
 typeclass, we are free to either write a new instance or leave the
 typeclass unimplemented.
Differences Between Data and Newtype Declarations

The newtype keyword exists
 to give an existing type a new identity, and it has more restrictions
 on its uses than the data keyword.
 Specifically, a newtype can have only one value
 constructor, which must have exactly one field:
-- file: ch06/NewtypeDiff.hs
-- ok: any number of fields and constructors
data TwoFields = TwoFields Int Int

-- ok: exactly one field
newtype Okay = ExactlyOne Int

-- ok: type parameters are no problem
newtype Param a b = Param (Either a b)

-- ok: record syntax is fine
newtype Record = Record {
 getInt :: Int
 }

-- bad: no fields
newtype TooFew = TooFew

-- bad: more than one field
newtype TooManyFields = Fields Int Int

-- bad: more than one constructor
newtype TooManyCtors = Bad Int
 | Worse Int
Beyond this, there’s another important
 difference between data and
 newtype. A type created with the data keyword has a bookkeeping cost at
 runtime, for example, in order to track which constructor created a
 value. A newtype value, on the other hand, can have only
 one constructor and so does not need this overhead. This makes it more
 space- and time-efficient at runtime.
Because a newtype’s
 constructor is used only at compile time and does not even exist at
 runtime, pattern matching on undefined behaves
 differently for types defined using newtype than for
 those that use data.
To understand the difference, let’s
 first review what we might expect with a normal data type. We are
 already familiar with the idea that if undefined is
 evaluated at runtime, it causes a crash:
ghci> undefined
*** Exception: Prelude.undefined

Here is a pattern match where we
 construct a DataInt using the D constructor
 and put undefined inside:
ghci> case D undefined of D _ -> 1
1

Since our pattern matches against the constructor but doesn’t inspect the
 payload, undefined remains unevaluated and does not cause
 an exception to be thrown.
In this example, we’re not using the
 D constructor, so the unprotected undefined
 is evaluated when the pattern match occurs, and we throw an
 exception:
ghci> case undefined of D _ -> 1
*** Exception: Prelude.undefined

When we use the N
 constructor for the NewtypeInt type, we see the same
 behavior that we did with the DataInt type’s
 D constructor—no exception:
ghci> case N undefined of N _ -> 1
1

The crucial difference arises when we
 get rid of the N constructor from the expression and
 match against an unprotected undefined:
ghci> case undefined of N _ -> 1
1

We don’t crash! Because there’s no
 constructor present at runtime, matching against N _ is
 in fact equivalent to matching against the plain wild card
 (_). Since the wild card always matches, the expression
 does not need to be evaluated.
Another perspective on newtype constructors
Even though we use the value
 constructor for a newtype in the same way as that of a
 type defined using the data
 keyword, all it does is coerce a value between its
 “normal” type and its newtype type.
In other words, when we apply the
 N constructor in an expression, we coerce an expression
 from type Int to type NewtypeInt as far as
 we and the compiler are concerned, but absolutely nothing occurs at
 runtime.
Similarly, when we match on the
 N constructor in a pattern, we coerce an expression
 from type NewtypeInt to Int, but again
 there’s no overhead involved at runtime.

Summary: The Three Ways of Naming Types

Here’s a brief recap of Haskell’s three
 ways to introduce new names for types:
	The data keyword
 introduces a truly new algebraic data type.

	The type keyword gives
 us a synonym to use for an existing type. We can use the type and
 its synonym interchangeably.

	The newtype keyword
 gives an existing type a distinct identity. The original type and
 the new type are not interchangeable.

JSON Typeclasses Without Overlapping Instances

Enabling GHC’s support
 for overlapping instances is an effective and quick way to make our JSON
 code happy. In more complex cases, we will occasionally be faced with
 several equally good instances for some typeclass, in which case,
 overlapping instances will not help us and we will need to put some
 newtype declarations into place. To see what’s involved,
 let’s rework our JSON typeclass instances to use newtypes
 instead of overlapping instances.
Our first task, then, is to help the
 compiler to distinguish between [a], the representation we
 use for JSON arrays, and [(String,[a])], which we use for
 objects. These were the types that gave us problems before we learned
 about OverlappingInstances. We wrap up the list type so
 that the compiler will not see it as a list:
-- file: ch06/JSONClass.hs
newtype JAry a = JAry {
 fromJAry :: [a]
 } deriving (Eq, Ord, Show)
When we export this type from our module,
 we’ll export the complete details of the type. Our module header will
 look like this:
-- file: ch06/JSONClassExport.hs
module JSONClass
 (
 JAry(..)
) where
The (..) following the
 JAry name means “export all details of this type.”
A Slight Deviation from Normal Use
Usually, when we export a newtype, we will
 not export its data constructor, in order to keep
 the details of the type abstract. Instead, we would define a function
 to apply the constructor for us:
-- file: ch06/JSONClass.hs
jary :: [a] -> JAry a
jary = JAry
We would then export the type constructor, the deconstructor
 function, and our construction function, but not the data
 constructor:
-- file: ch06/JSONClassExport.hs
module JSONClass
 (
 JAry(fromJAry)
 , jary
) where
When we don’t export a type’s data
 constructor, clients of our library can only use the functions we
 provide to construct and deconstruct values of that type. This gives
 us, the library authors, the liberty to change our internal
 representation if we need to.
If we export the data constructor,
 clients are likely to start depending on it, for instance by using it
 in patterns. If we later wish to change the innards of our type, we’ll
 risk breaking any code that uses the constructor.
In our circumstances here, we have
 nothing to gain by making the array wrapper abstract, so we may as
 well simply export the entire definition of the type.

We provide another wrapper type that
 hides our representation of a JSON object:
-- file: ch06/JSONClass.hs
newtype JObj a = JObj {
 fromJObj :: [(String, a)]
 } deriving (Eq, Ord, Show)
With these types defined, we make small
 changes to the definition of our JValue type:
-- file: ch06/JSONClass.hs
data JValue = JString String
 | JNumber Double
 | JBool Bool
 | JNull
 | JObject (JObj JValue) -- was [(String, JValue)]
 | JArray (JAry JValue) -- was [JValue]
 deriving (Eq, Ord, Show)
This change doesn’t affect the instances
 of the JSON typeclass that we’ve already written, but we
 will want to write instances for our new JAry and
 JObj types:
-- file: ch06/JSONClass.hs
jaryFromJValue :: (JSON a) => JValue -> Either JSONError (JAry a)

jaryToJValue :: (JSON a) => JAry a -> JValue

instance (JSON a) => JSON (JAry a) where
 toJValue = jaryToJValue
 fromJValue = jaryFromJValue
Let’s take a slow walk through the
 individual steps of converting a JAry a to a
 JValue. Given a list where we know that everything inside
 is a JSON instance, converting it to a list of
 JValues is easy:
-- file: ch06/JSONClass.hs
listToJValues :: (JSON a) => [a] -> [JValue]
listToJValues = map toJValue
Taking this and wrapping it to become a
 JAry JValue is just a matter of applying the
 newtype’s type constructor:
-- file: ch06/JSONClass.hs
jvaluesToJAry :: [JValue] -> JAry JValue
jvaluesToJAry = JAry
(Remember, this has no performance cost.
 We’re just telling the compiler to hide the fact that we’re using a
 list.) To turn this into a JValue, we apply another type
 constructor:
-- file: ch06/JSONClass.hs
jaryOfJValuesToJValue :: JAry JValue -> JValue
jaryOfJValuesToJValue = JArray
Assemble these pieces using function
 composition, and we get a concise one-liner for converting to a
 JValue:
-- file: ch06/JSONClass.hs
jaryToJValue = JArray . JAry . map toJValue . fromJAry
We have more work to do to convert
 from a JValue to a JAry
 a, but we’ll break it into reusable parts. The basic function is
 straightforward:
-- file: ch06/JSONClass.hs
jaryFromJValue (JArray (JAry a)) =
 whenRight JAry (mapEithers fromJValue a)
jaryFromJValue _ = Left "not a JSON array"
The whenRight function inspects its argument. It
 calls a function on the argument if it was created with the
 Right constructor, and leaves a Left value
 untouched:
-- file: ch06/JSONClass.hs
whenRight :: (b -> c) -> Either a b -> Either a c
whenRight _ (Left err) = Left err
whenRight f (Right a) = Right (f a)
More complicated is mapEithers. It acts like the regular
 map function, but if it ever
 encounters a Left value, it returns that immediately,
 instead of continuing to accumulate a list of Right
 values:
-- file: ch06/JSONClass.hs
mapEithers :: (a -> Either b c) -> [a] -> Either b [c]
mapEithers f (x:xs) = case mapEithers f xs of
 Left err -> Left err
 Right ys -> case f x of
 Left err -> Left err
 Right y -> Right (y:ys)
mapEithers _ _ = Right []
Because the elements of the list hidden
 in the JObj type have a little more structure, the code to
 convert to and from a JValue is a bit more complex.
 Fortunately, we can reuse the functions that we just defined:
-- file: ch06/JSONClass.hs
import Control.Arrow (second)

instance (JSON a) => JSON (JObj a) where
 toJValue = JObject . JObj . map (second toJValue) . fromJObj

 fromJValue (JObject (JObj o)) = whenRight JObj (mapEithers unwrap o)
 where unwrap (k,v) = whenRight ((,) k) (fromJValue v)
 fromJValue _ = Left "not a JSON object"
Exercises
	Load the Control.Arrow module into ghci and find out what the second function does.

	What is the type of (,)? When you use it in ghci, what does it do? What about
 (,,)?

The Dreaded Monomorphism Restriction

The Haskell 98 standard has a subtle feature that can
 sometimes bite us in unexpected circumstances. Here’s a simple function
 definition that illustrates the issue:
-- file: ch06/Monomorphism.hs
myShow = show
If we try to load this definition into
 ghci, it issues a peculiar
 complaint:
ghci> :load Monomorphism
[1 of 1] Compiling Main (Monomorphism.hs, interpreted)

Monomorphism.hs:2:9:
 Ambiguous type variable `a' in the constraint:
 `Show a' arising from a use of `show' at Monomorphism.hs:2:9-12
 Possible cause: the monomorphism restriction applied to the following:
 myShow :: a -> String (bound at Monomorphism.hs:2:0)
 Probable fix: give these definition(s) an explicit type signature
 or use -fno-monomorphism-restriction
Failed, modules loaded: none.

The monomorphism
 restriction to which the error message refers is a part of
 the Haskell 98 standard. Monomorphism is
 simply the opposite of polymorphism: it indicates that an expression has
 exactly one type. The restriction lies in the fact
 that Haskell sometimes forces a declaration to be less polymorphic than
 we would expect.
We mention the monomorphism restriction
 here because although it isn’t specifically related to typeclasses, they
 usually provide the circumstances in which it crops up.
Tip
It’s possible that you will not run
 into the monomorphism restriction in real code for a long time. We
 don’t think you need to try to remember the details of this section.
 It should suffice to make a mental note of its existence, until
 eventually GHC complains
 with something such as the just shown error message. If that occurs,
 simply remember that you read about the error in this chapter, and
 come back for guidance.

We won’t attempt to explain the
 monomorphism restriction.[15] The consensus within the Haskell community is that it
 doesn’t arise often, it is tricky to explain, and it provides almost no
 practical benefit. So, it mostly serves to trip people up. For an
 example of its trickiness, while the definition provided previously
 falls afoul of it, the following two compile without problems:
-- file: ch06/Monomorphism.hs
myShow2 value = show value

myShow3 :: (Show a) => a -> String
myShow3 = show
As these alternative definitions suggest,
 if GHC complains about the
 monomorphism restriction, we have three easy ways to address the
 error:
	Make the function’s arguments
 explicit, instead of leaving them implicit.

	Give the definition an explicit type
 signature, instead of making the compiler infer its type.

	Leave the code untouched and compile
 the module with the language extension
 NoMonomorphismRestriction enabled. This disables the
 monomorphism restriction.

Because the monomorphism restriction is
 unwanted and unloved, it will almost certainly be dropped from the next
 revision of the Haskell standard. This does not quite mean that
 compiling with NoMonomorphismRestriction is always the
 right thing to do—some Haskell compilers (including older versions of
 GHC) do not understand this
 extension, but they’ll accept either of the other approaches to making
 the error disappear. If this degree of portability isn’t a concern to
 you, then by all means enable the language extension.

Conclusion

In this chapter, you learned about the
 need for typeclasses and how to use them. We talked about defining our
 own typeclasses and then covered some of the important typeclasses that
 are defined in the Haskell library. Finally, we showed how to have the
 Haskell compiler automatically derive instances of certain typeclasses
 for your types.

[12] We provided a default implementation
 of both functions, which gives an implementer of instances a choice:
 he can pick which one he implements. We could have provided a
 default for only one function, which would force users to implement
 the other every time. As it is, a user can implement one or both, as
 he sees fit.

[13] As you will see in Lazy I/O, Haskell doesn’t actually read the entire
 file at this point. But for the purposes of this example, we can
 ignore that distinction.

[15] If you simply
 must read the gory details, see section
 4.5.5 of the Haskell 98 Report.

Chapter 7. I/O

It should be obvious that most, if not all, programs are
 devoted to gathering data from outside, processing it, and providing
 results back to the outside world. That is, input and output are
 key.
Haskell’s I/O system is powerful and
 expressive. It is easy to work with and important to understand. Haskell
 strictly separates pure code from code that could cause things to occur in
 the world. That is, it provides a complete isolation from side effects in
 pure code. Besides helping programmers to reason about the correctness of
 their code, it also permits compilers to automatically introduce
 optimizations and parallelism.
We’ll begin this chapter with simple,
 standard-looking I/O in Haskell. Then we’ll discuss some of the more
 powerful options, as well as provide more detail on how I/O fits into the
 pure, lazy, functional Haskell world.
Classic I/O in Haskell

Let’s get started with I/O in Haskell by
 looking at a program that appears to be surprisingly similar to I/O in
 other languages such as C or Perl:
-- file: ch07/basicio.hs
main = do
 putStrLn "Greetings! What is your name?"
 inpStr <- getLine
 putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!"
Note
The $ operator is a bit of syntactic sugar
 that is equivalent to putting everything after it inside a pair of
 parentheses.

You can compile this program to a
 standalone executable, run it with runghc, or
 invoke main from within ghci. Here’s a
 sample session using runghc:
$ runghc basicio.hs
Greetings! What is your name?
John
Welcome to Haskell, John!
That’s a fairly simple, obvious result.
 You can see that putStrLn writes
 out a String, followed by an
 end-of-line character. getLine reads
 a line from standard input. The <-
 syntax may be new to you. Put simply, that binds the result from
 executing an I/O action to a name.[16] We use the simple list concatenation operator ++ to join the
 input string with our own text.
Let’s take a look at the types of putStrLn and getLine. You can find that information in the
 library reference, or just ask ghci:
ghci> :type putStrLn
putStrLn :: String -> IO ()
ghci> :type getLine
getLine :: IO String
Notice that both of these types have IO in their return value. That is your
 key to knowing that they may have side effects, or they may return
 different values even when called with the same arguments, or both. The
 type of putStrLn looks like a
 function. It takes a parameter of type String and returns value of type IO (). Just what is an IO () though?
Anything that is type IO something is an
 I/O action. You can store it and nothing will
 happen. I could say writefoo = putStrLn
 "foo" and nothing happens right then. But if I later use
 writefoo in the middle of another I/O
 action, the writefoo action will be
 executed when its parent action is executed—I/O actions can be glued
 together to form bigger I/O actions. The () is an empty tuple (pronounced
 “unit”), indicating that there is no return value from
 putStrLn. This is similar to void in Java or C.[17]
Tip
Actions can be created, assigned, and
 passed anywhere. However, they may only be performed (executed) from
 within another I/O action.

Let’s look at this with ghci:
ghci> let writefoo = putStrLn "foo"
ghci> writefoo
foo
In this example, the output foo is not a return value from putStrLn. Rather, it’s the side effect of
 putStrLn actually writing foo to the terminal.
Notice one other thing: ghci actually executed writefoo. This means that, when given an I/O
 action, ghci will perform it for you
 on the spot.
What is an I/O action?
Actions:
	Have the type IO t.

	Are first-class values in Haskell
 and fit seamlessly with Haskell’s type system.

	Produce an effect when
 performed, but not when
 evaluated. That is, they produce an effect
 only when called by something else in an I/O context.

	Any expression may produce an action
 as its value, but the action will not perform I/O until it is
 executed inside another I/O action (or it is main).

	Performing (executing) an action of
 type IO t may perform I/O and
 will ultimately deliver a result of type t.

The type of getLine may look strange to you. It looks like
 a value, rather than a function. And in fact, that is one way to look at
 it: getLine is storing an I/O action.
 When that action is performed, you get a String. The <- operator is
 used to “pull out” the result from performing an I/O action and store it
 in a variable.
main
 itself is an I/O action with type IO
 (). You can only perform I/O actions from within other I/O
 actions. All I/O in Haskell programs is driven from the top at main, which is where execution of every
 Haskell program begins. This, then, is the mechanism that provides
 isolation from side effects in Haskell: you perform I/O in your IO actions, and call pure (non-I/O) functions
 from there. Most Haskell code is pure; the I/O actions perform I/O and
 call that pure code.
do is a
 convenient way to define a sequence of actions. As you’ll see later,
 there are other ways. When you use do
 in this way, indentation is significant; make sure you line up your
 actions properly.
You need to use do only if you have more than one action that
 you need to perform. The value of a do block is the value of the last action
 executed. For a complete description of do syntax, see Desugaring of do Blocks.
Let’s consider an example of calling pure
 code from within an I/O action:
-- file: ch07/callingpure.hs
name2reply :: String -> String
name2reply name =
 "Pleased to meet you, " ++ name ++ ".\n" ++
 "Your name contains " ++ charcount ++ " characters."
 where charcount = show (length name)

main :: IO ()
main = do
 putStrLn "Greetings once again. What is your name?"
 inpStr <- getLine
 let outStr = name2reply inpStr
 putStrLn outStr
Notice the name2reply function in this example. It is a
 regular Haskell function and obeys all the rules we’ve told you about:
 it always returns the same result when given the same input, it has no
 side effects, and it operates lazily. It uses other Haskell functions:
 (++), show, and length.
Down in main, we bind the result of name2reply inpStr to outStr. When you’re working in a do block, use <- to get results from IO
 actions and let to get results from
 pure code. When used in a do block,
 you should not put in after your
 let statement.
You can see here how we read the person’s
 name from the keyboard. Then, that data got passed to a pure function,
 and its result was printed. In fact, the last two lines of main could have been replaced with putStrLn (name2reply inpStr). So, while
 main did have side effects—it caused
 things to appear on the terminal, for instance—name2reply did not and could not. That’s
 because name2reply is a pure
 function, not an action.
Let’s examine this with ghci:
ghci> :load callingpure.hs
[1 of 1] Compiling Main (callingpure.hs, interpreted)
Ok, modules loaded: Main.
ghci> name2reply "John"
"Pleased to meet you, John.\nYour name contains 4 characters."
ghci> putStrLn (name2reply "John")
Pleased to meet you, John.
Your name contains 4 characters.
The \n
 within the string is the end-of-line (newline) character, which causes
 the terminal to begin a new line in its output. Just calling name2reply "John" in ghci will show you the \n literally, because it is using show to display the return value. But using
 putStrLn sends it to the terminal,
 and the terminal interprets \n to
 start a new line.
What do you think will happen if you
 simply type main at the ghci prompt? Give it a try.
After looking at these example programs,
 you may be wondering if Haskell is really imperative rather than pure,
 lazy, and functional. Some of these examples look like a sequence of
 actions to be followed in order. There’s more to it than that, though.
 We’ll discuss that question later in this chapter in Is Haskell Really Imperative? and Lazy I/O.
Pure Versus I/O

Table 7-1
 is a comparison table to help you understand the differences between pure code and I/O.
 When we speak of pure code, we are talking about Haskell functions
 that always return the same result when given the same input and have
 no side effects. In Haskell, only the execution of I/O actions avoid
 these rules.
Table 7-1. Pure versus impure
	Pure	Impure
	Always produces the same result when given the same
 parameters	May produce different results for the same
 parameters
	Never has side effects	May have side effects
	Never alters state	May alter the global state of the program, system, or
 world

Why Purity Matters

In this section, we’ve discussed how Haskell, unlike most languages,
 draws a clear distinction between pure code and I/O actions. In
 languages such as C or Java, there is no such thing as a function that
 is guaranteed by the compiler to always return the same result for the
 same arguments or a function that is guaranteed to never have side
 effects. The only way to know if a given function has side effects is
 to read its documentation and hope that it’s accurate.
Many bugs in programs are caused by
 unanticipated side effects. Still more are caused by misunderstanding
 circumstances in which functions may return different results for the same input. As
 multithreading and other forms of parallelism grow increasingly
 common, it becomes more difficult to manage global side
 effects.
Haskell’s method of isolating side
 effects into I/O actions provides a clear boundary. You can always
 know which parts of the system may alter state and which won’t. You
 can always be sure that the pure parts of your program aren’t having
 unanticipated results. This helps you to think about the program. It
 also helps the compiler to think about it. Recent versions of ghc, for instance, can provide a level of
 automatic parallelism for the pure parts of your code—something of a
 holy grail for computing.
For more discussion on this topic, refer
 to Side Effects with Lazy I/O.

Working with Files and Handles

So far, you’ve seen how to interact with the user at the
 computer’s terminal. Of course, you’ll often need to manipulate specific
 files. That’s easy to do, too.
Haskell defines quite a few basic
 functions for I/O, many of which are similar to functions seen in other
 programming languages. The library reference for System.IO provides
 a good summary of all the basic I/O functions, should you need one that
 we aren’t touching upon here.
You will generally begin by using openFile, which will give you a file Handle. That Handle is then used to perform specific
 operations on the file. Haskell provides functions such as hPutStrLn that
 work just like putStrLn but take
 an additional argument, a Handle,
 that specifies which file to operate upon. When you’re done, you’ll use
 hClose to close the Handle. These functions are all defined in
 System.IO, so you’ll need to import
 that module when working with files. There are “h” functions
 corresponding to virtually all of the non-“h” functions; for instance,
 there is print for
 printing to the screen and hPrint for
 printing to a file.
Let’s start with an imperative way to read
 and write files. This should seem similar to a while loop that you may find in other
 languages. This isn’t the best way to write it in Haskell; later, you’ll
 see examples of more Haskellish approaches.
-- file: ch07/toupper-imp.hs
import System.IO
import Data.Char(toUpper)

main :: IO ()
main = do
 inh <- openFile "input.txt" ReadMode
 outh <- openFile "output.txt" WriteMode
 mainloop inh outh
 hClose inh
 hClose outh

mainloop :: Handle -> Handle -> IO ()
mainloop inh outh =
 do ineof <- hIsEOF inh
 if ineof
 then return ()
 else do inpStr <- hGetLine inh
 hPutStrLn outh (map toUpper inpStr)
 mainloop inh outh
Like every Haskell program, execution of
 this program begins with main. Two
 files are opened: input.txt is
 opened for reading, and output.txt
 is opened for writing. Then we call mainloop to process the file.
mainloopbegins by checking to see if we’re at the end of file (EOF) for the input. If not, we read a line
 from the input. We write out the same line to the output, after first
 converting it to uppercase. Then we recursively call mainloop again to continue processing the
 file.[18]
Notice that return call. This is not really the same as return in C or Python. In those languages,
 return is used to terminate execution
 of the current function immediately, and to return a value to the
 caller. In Haskell, return is the
 opposite of <-. That is, return takes a pure value and wraps it inside
 IO. Since every I/O action must return some IO
 type, if your result came from pure computation, you must use return to wrap it in IO. As an
 example, if 7 is an Int, then return
 7 would create an action stored in a value of type IO Int. When executed, that action would
 produce the result 7. For more
 details on return, see The True Nature of Return.
Let’s try running the program. We’ve got a
 file named input.txt that looks
 like this:
This is ch07/input.txt

Test Input
I like Haskell
Haskell is great
I/O is fun

123456789
Now, you can use runghc toupper-imp.hs and you’ll find output.txt in your directory. It should look
 like this:
THIS IS CH07/INPUT.TXT

TEST INPUT
I LIKE HASKELL
HASKELL IS GREAT
I/O IS FUN

123456789
More on openFile

Let’s use ghci to check on the type of openFile:
ghci> :module System.IO
ghci> :type openFile
openFile :: FilePath -> IOMode -> IO Handle
FilePath is simply another name for String. It is used in the types of I/O
 functions to help clarify that the parameter is being used as a
 filename, and not as regular data.
IOMode specifies how the file is to be
 managed. The possible values for IOMode are listed in Table 7-2.
Table 7-2. Possible IOMode values
	IOMode	Can read?	Can write?	Starting position	Notes
	ReadMode	Yes	No	Beginning of file	File must exist already.
	WriteMode	No	Yes	Beginning of file	File is truncated (completely emptied) if it already
 existed.
	ReadWriteMode	Yes	Yes	Beginning of file	File is created if it didn’t exist; otherwise, existing
 data is left intact.
	AppendMode	No	Yes	End of file	File is created if it didn’t exist; otherwise, existing
 data is left intact.

While we are mostly working with text
 examples in this chapter, binary files can also be used in Haskell. If
 you are working with a binary file, you should use openBinaryFile instead
 of openFile. Operating systems such
 as Windows process files differently if they are opened as binary
 instead of as text. On operating systems such as Linux, both openFile and openBinaryFile perform the same operation.
 Nevertheless, for portability, it is still wise to always use openBinaryFile if you will be dealing with
 binary data.

Closing Handles

You’ve already seen that hClose is used to close file handles. Let’s
 take a moment and think about why this is important.
As you’ll see in Buffering, Haskell maintains internal buffers for
 files. This provides an important performance boost. However, it means
 that until you call hClose on a
 file that is open for writing, your data may not be flushed out to the
 operating system.
Another reason to make sure to hClose files is that open files take up
 resources on the system. If your program runs for a long time, and
 opens many files but fails to close them, it is conceivable that your
 program could even crash due to resource exhaustion. All of this is no
 different in Haskell than in other languages.
When a program exits, Haskell will
 normally take care of closing any files that remain open. However,
 there are some circumstances in which this may not happen,[19] so once again, it is best to be responsible and call
 hClose all the time.
Haskell provides several tools for you
 to use to easily ensure this happens, regardless of whether errors are
 present. You can read about finally
 in Extended Example: Functional I/O and Temporary Files and bracket in The Acquire-Use-Release Cycle.

Seek and Tell

When reading and writing from a Handle that corresponds to a file on disk,
 the operating system maintains an internal record of the current
 position. Each time you do another read, the operating system returns
 the next chunk of data that begins at the current position, and
 increments the position to reflect the data that you read.
You can use hTell to find out your current position in the file. When the
 file is initially created, it is empty and your position will be 0.
 After you write out 5 bytes, your position will be 5, and so on.
 hTell takes a Handle and returns an IO Integer with your position.
The companion to hTell is hSeek. hSeek lets you change the file position. It takes three parameters:
 a Handle, a SeekMode, and a position.
SeekMode can be one of three different values, which specify how the
 given position is to be interpreted. AbsoluteSeek means that the position is a
 precise location in the file. This is the same kind of information
 that hTell gives you. RelativeSeek means to seek from the current
 position. A positive number requests going forwards in the file, and a
 negative number means going backwards. Finally, SeekFromEnd will seek to the specified
 number of bytes before the end of the file. hSeek handle SeekFromEnd 0 will take you to
 the end of the file. For an example of hSeek, refer to Extended Example: Functional I/O and Temporary Files.
Not all Handles are seekable. A Handle usually corresponds to a file, but it
 can also correspond to other things such as network connections, tape
 drives, or terminals. You can use hIsSeekable to see if a given Handle is seekable.

Standard Input, Output, and Error

Earlier, we pointed out that for each non-“h” function, there is
 usually also a corresponding “h” function that works on any Handle. In fact, the non-“h” functions are
 nothing more than shortcuts for their “h” counterparts.
There are three predefined Handles in System.IO. These Handles are always
 available for your use. They are stdin, which corresponds to
 standard input; stdout for
 standard output; and stderr for
 standard error. Standard input normally refers to the keyboard,
 standard output to the monitor, and standard error also normally goes
 to the monitor.
Functions such as getLine can thus be trivially defined like
 this:
getLine = hGetLine stdin
putStrLn = hPutStrLn stdout
print = hPrint stdout
Tip
We’re using partial application here.
 If this isn’t making sense, consult Partial Function Application and Currying
 for a refresher.

Earlier, we told you what the three
 standard file handles “normally” correspond to. That’s because some
 operating systems let you redirect the file handles to come from (or
 go to) different places—files, devices, or even other programs. This
 feature is used extensively in shell scripting on POSIX (Linux, BSD,
 Mac) operating systems, but can also be used on Windows.
It often makes sense to use standard
 input and output instead of specific files. This lets you interact
 with a human at the terminal. But it also lets you work with input and
 output files—or even combine your code with other programs—if that’s
 what’s requested.[20]
As an example, we can provide input to
 callingpure.hs in advance like
 this:
$ echo John|runghc callingpure.hs
Greetings once again. What is your name?
Pleased to meet you, John.
Your name contains 4 characters.
While callingpure.hs was running, it did not wait
 for input at the keyboard; instead it received John from the echo program. Notice also that the output
 didn’t contain the word John on a
 separate line as it did when this program was run at the keyboard. The
 terminal normally echoes everything you type back to you, but that is
 technically input and not included in the output stream.

Deleting and Renaming Files

So far in this chapter, we’ve discussed the contents of the files. Let’s now
 talk a bit about the files themselves.
System.Directory provides two functions you may find useful. removeFile takes a single argument, a
 filename, and deletes that file.[21] renameFile takes two
 filenames: the first is the old name and the second is the new name.
 If the new filename is in a different directory, you can also think of
 this as a move. The old filename must exist prior to the call to
 renameFile. If the new file already
 exists, it is removed before the rename takes place.
Like many other functions that take a
 filename, if the “old” name doesn’t exist, renameFile will raise an exception.
 More information on exception handling can be found in Chapter 19.
There are many other functions in
 System.Directory for doing things
 such as creating and removing directories, finding lists of files in
 directories, and testing for file existence. These are discussed in
 Directory and File Information.

Temporary Files

Programmers frequently need temporary files. These files may be
 used to store large amounts of data needed for computations, data to
 be used by other programs, or any number of other uses.
While you could craft a way to manually
 open files with unique names, the details of doing this in a secure
 way differ from platform to platform. Haskell provides a convenient
 function called openTempFile
 (and a corresponding openBinaryTempFile) to handle the difficult
 bits for you.
openTempFile takes two parameters: the
 directory in which to create the file, and a “template” for naming the
 file. The directory could simply be "." for the current working directory. Or you could use
 System.Directory.getTemporaryDirectory to
 find the best place for temporary files on a given machine. The
 template is used as the basis for the filename; it will have some
 random characters added to it to ensure that the result is truly
 unique. It guarantees that it will be working on a unique filename, in
 fact.
The return type of openTempFile is IO
 (FilePath, Handle). The first part of the tuple is the name
 of the file created, and the second is a Handle opened in ReadWriteMode over that file. When you’re
 done with the file, you’ll want to hClose it and then call removeFile to delete it. See the following
 example for a sample function to use.

Extended Example: Functional I/O and Temporary Files

Here’s a larger example that puts
 together some concepts from this chapter, from some earlier chapters,
 and a few you haven’t seen yet. Take a look at the program and see if
 you can figure out what it does and how it works:
-- file: ch07/tempfile.hs
import System.IO
import System.Directory(getTemporaryDirectory, removeFile)
import System.IO.Error(catch)
import Control.Exception(finally)

-- The main entry point. Work with a temp file in myAction.
main :: IO ()
main = withTempFile "mytemp.txt" myAction

{- The guts of the program. Called with the path and handle of a temporary
 file. When this function exits, that file will be closed and deleted
 because myAction was called from withTempFile. -}
myAction :: FilePath -> Handle -> IO ()
myAction tempname temph =
 do -- Start by displaying a greeting on the terminal
 putStrLn "Welcome to tempfile.hs"
 putStrLn $ "I have a temporary file at " ++ tempname

 -- Let's see what the initial position is
 pos <- hTell temph
 putStrLn $ "My initial position is " ++ show pos

 -- Now, write some data to the temporary file
 let tempdata = show [1..10]
 putStrLn $ "Writing one line containing " ++
 show (length tempdata) ++ " bytes: " ++
 tempdata
 hPutStrLn temph tempdata

 -- Get our new position. This doesn't actually modify pos
 -- in memory, but makes the name "pos" correspond to a different
 -- value for the remainder of the "do" block.
 pos <- hTell temph
 putStrLn $ "After writing, my new position is " ++ show pos

 -- Seek to the beginning of the file and display it
 putStrLn $ "The file content is: "
 hSeek temph AbsoluteSeek 0

 -- hGetContents performs a lazy read of the entire file
 c <- hGetContents temph

 -- Copy the file byte-for-byte to stdout, followed by \n
 putStrLn c

 -- Let's also display it as a Haskell literal
 putStrLn $ "Which could be expressed as this Haskell literal:"
 print c

{- This function takes two parameters: a filename pattern and another
 function. It will create a temporary file, and pass the name and Handle
 of that file to the given function.

 The temporary file is created with openTempFile. The directory is the one
 indicated by getTemporaryDirectory, or, if the system has no notion of
 a temporary directory, "." is used. The given pattern is passed to
 openTempFile.

 After the given function terminates, even if it terminates due to an
 exception, the Handle is closed and the file is deleted. -}
withTempFile :: String -> (FilePath -> Handle -> IO a) -> IO a
withTempFile pattern func =
 do -- The library ref says that getTemporaryDirectory may raise on
 -- exception on systems that have no notion of a temporary directory.
 -- So, we run getTemporaryDirectory under catch. catch takes
 -- two functions: one to run, and a different one to run if the
 -- first raised an exception. If getTemporaryDirectory raised an
 -- exception, just use "." (the current working directory).
 tempdir <- catch (getTemporaryDirectory) (_ -> return ".")
 (tempfile, temph) <- openTempFile tempdir pattern

 -- Call (func tempfile temph) to perform the action on the temporary
 -- file. finally takes two actions. The first is the action to run.
 -- The second is an action to run after the first, regardless of
 -- whether the first action raised an exception. This way, we ensure
 -- the temporary file is always deleted. The return value from finally
 -- is the first action's return value.
 finally (func tempfile temph)
 (do hClose temph
 removeFile tempfile)
Let’s start looking at this program from
 the end. The withTempFile function
 demonstrates that Haskell doesn’t forget its functional nature when I/O
 is introduced. This function takes a String and another function. The function
 passed to withTempFile is invoked
 with the name and Handle of a
 temporary file. When that function exits, the temporary file is closed
 and deleted. So even when dealing with I/O, we can still find the idiom
 of passing functions as parameters to be convenient. Lisp programmers
 might find our withTempFile function
 similar to Lisp’s with-open-file
 function.
There is some exception handling going on
 to make the program more robust in the face of errors. You normally want
 the temporary files to be deleted after processing completes, even if
 something went wrong. So we make sure that happens. For more on
 exception handling, see Chapter 19.
Let’s return to the start of the program.
 main is defined simply as withTempFile "mytemp.txt" myAction. myAction, then, will be invoked with the name
 and Handle of the temporary
 file.
myAction displays some information to the
 terminal, writes some data to the file, seeks to the beginning of the
 file, and reads the data back with hGetContents.[22] It then displays the contents of the file byte for byte
 and also as a Haskell literal via print
 c. That’s the same as putStrLn (show
 c).
Let’s look at the output:
$ runhaskell tempfile.hs
Welcome to tempfile.hs
I have a temporary file at /tmp/mytemp8572.txt
My initial position is 0
Writing one line containing 22 bytes: [1,2,3,4,5,6,7,8,9,10]
After writing, my new position is 23
The file content is:
[1,2,3,4,5,6,7,8,9,10]

Which could be expressed as this Haskell literal:
"[1,2,3,4,5,6,7,8,9,10]\n"
Every time you run this program, your
 temporary filename should be slightly different, since it contains a
 randomly generated component. Looking at this output, there are a few
 questions that might occur to you:
	Why is your position 23 after writing
 a line with 22 bytes?

	Why is there an empty line after the
 file content display?

	Why is there a \n at the end of the Haskell literal
 display?

You might be able to guess that the
 answers to all three questions are related. See if you can work out the
 answers for a moment. If you need some help, here are the explanations:
	Because we used hPutStrLn instead of hPutStr to write the data. hPutStrLn always terminates the line by
 writing a \n at the end, which
 didn’t appear in tempdata.

	We used putStrLn c to display the file contents
 c. Because the data was written
 originally with hPutStrLn,
 c ends with the newline
 character, and putStrLn adds a
 second newline character. The result is a blank line.

	The \n is the newline character from the
 original hPutStrLn.

As a final note, the byte counts may be
 different on some operating systems. Windows, for instance, uses the
 two-byte sequence \r\n as the
 end-of-line marker, so you may see differences on that platform.

Lazy I/O

So far in this chapter, you’ve seen examples of fairly
 traditional I/O. Each line, or block of data, is requested and processed
 individually.
Haskell has another approach available to
 you as well. Since Haskell is a lazy language, meaning that any given
 piece of data is only evaluated when its value must be known, there are
 some novel ways of approaching I/O.
hGetContents

One novel way to approach I/O is with the hGetContents function.[23] hGetContents has the
 type Handle -> IO String. The
 String it returns represents all of
 the data in the file given by the Handle.[24]
In a strictly evaluated language, using
 such a function is often a bad idea. It may be fine to read the entire
 contents of a 2 KB file, but if you try to read the entire contents of
 a 500 GB file, you are likely to crash due to lack of RAM to store all
 that data. In these languages, you would traditionally use mechanisms
 such as loops to process the file’s entire data.
But hGetContents is different. The String it returns is evaluated lazily. At the moment you call hGetContents, nothing is actually read. Data
 is only read from the Handle as the
 elements (characters) of the list are processed. As elements of the
 String are no longer used,
 Haskell’s garbage collector automatically frees that memory. All of
 this happens completely transparently to you. And since you have what
 looks like (and, really, is) a pure String, you can pass it to pure
 (non-IO) code.
Let’s take a quick look at an example.
 Back in Working with Files and Handles, you saw an imperative program
 that converted the entire content of a file to uppercase. Its
 imperative algorithm was similar to what you’d see in many other
 languages. Here now is the much simpler algorithm that exploits lazy
 evaluation:
-- file: ch07/toupper-lazy1.hs
import System.IO
import Data.Char(toUpper)

main :: IO ()
main = do
 inh <- openFile "input.txt" ReadMode
 outh <- openFile "output.txt" WriteMode
 inpStr <- hGetContents inh
 let result = processData inpStr
 hPutStr outh result
 hClose inh
 hClose outh

processData :: String -> String
processData = map toUpper
Notice that hGetContents handled
 all of the reading for us. Also, take a look at
 processData.
 It’s a pure function since it has no side effects and always returns
 the same result each time it is called. It has no need to know—and no
 way to tell—that its input is being read lazily from a file in this
 case. It can work perfectly well with a 20-character literal or a 500
 GB data dump on disk.
You can even verify that with ghci:
ghci> :load toupper-lazy1.hs
[1 of 1] Compiling Main (toupper-lazy1.hs, interpreted)
Ok, modules loaded: Main.
ghci> processData "Hello, there! How are you?"
"HELLO, THERE! HOW ARE YOU?"
ghci> :type processData
processData :: String -> String
ghci> :type processData "Hello!"
processData "Hello!" :: String
Warning
If we had tried to hang on to inpStr in the example just shown past the
 one place where it was used (the call to processData), the program would have lost
 its memory efficiency. That’s because the compiler would have been
 forced to keep inpStr’s value in
 memory for future use. Here it knows that inpStr will never be reused and frees the
 memory as soon as it is done with it. Just remember: memory is only
 freed after its last use.

This program was a bit verbose to make
 it clear that there was pure code in use. Here’s a bit more concise
 version, which we will build on in the following examples:
-- file: ch07/toupper-lazy2.hs
import System.IO
import Data.Char(toUpper)

main = do
 inh <- openFile "input.txt" ReadMode
 outh <- openFile "output.txt" WriteMode
 inpStr <- hGetContents inh
 hPutStr outh (map toUpper inpStr)
 hClose inh
 hClose outh
You are not required to ever consume all
 the data from the input file when using hGetContents. Whenever the Haskell system
 determines that the entire string hGetContents returned can be garbage
 collected—which means it will never be used again—the file is closed
 for you automatically. The same principle applies to data read from
 the file. Whenever a given piece of data will never again be needed,
 the Haskell environment releases the memory it was stored within.
 Strictly speaking, we wouldn’t have to call hClose at all in this example program.
 However, it is still a good practice to get into, as later changes to
 a program could make the call to hClose important.
Warning
When using hGetContents, it is important to remember
 that even though you may never again explicitly reference Handle directly in the rest of the
 program, you must not close the Handle until you have finished consuming
 its results via hGetContents.
 Doing so would cause you to miss on some or all of the file’s data.
 Since Haskell is lazy, you generally can assume that you have
 consumed input only after you have output the result of the
 computations involving the input.

readFile and writeFile

Haskell programmers use hGetContents as a filter quite often. They read from one file, do
 something to the data, and write the result out elsewhere. This is so
 common that there are some shortcuts for doing it. readFile and writeFile are shortcuts for working with
 files as strings. They handle all the details of opening files,
 closing files, reading data, and writing data. readFile uses hGetContents internally.
Can you guess the Haskell types of these
 functions? Let’s check with ghci:
ghci> :type readFile
readFile :: FilePath -> IO String
ghci> :type writeFile
writeFile :: FilePath -> String -> IO ()
Now, here’s an example program that uses
 readFile and writeFile:
-- file: ch07/toupper-lazy3.hs
import Data.Char(toUpper)

main = do
 inpStr <- readFile "input.txt"
 writeFile "output.txt" (map toUpper inpStr)
Look at that—the guts of the program
 take up only two lines! readFile
 returned a lazy String, which we
 stored in inpStr. We then took
 that, processed it, and passed it to writeFile for writing.
Neither readFile nor writeFile ever provide a Handle for you to work with, so there is
 nothing to ever hClose. readFile uses hGetContents internally, and the underlying
 Handle will be
 closed when the returned String is
 garbage-collected or all the input has been consumed. writeFile will close its underlying Handle when the entire String supplied to it has been
 written.

A Word on Lazy Output

By now, you should understand how lazy
 input works in Haskell. But what about laziness during output?
As you know, nothing in Haskell is
 evaluated before its value is needed. Since functions such as writeFile and putStr write out the entire String passed to them, that entire String must be evaluated. So you are
 guaranteed that the argument to putStr will be evaluated in full.[25]
But what does that mean for laziness of
 the input? In the earlier examples, will the call to putStr or
 writeFile force the entire input
 string to be loaded into memory at once, just to be written
 out?
The answer is no. putStr (and all the similar output
 functions) write out data as it becomes available. They also have no
 need for keeping around data already written, so as long as nothing
 else in the program needs it, the memory can be freed immediately. In
 a sense, you can think of the String between readFile and writeFile as a pipe linking the two. Data
 goes in one end, is transformed some way, and flows back out the
 other.
You can verify this yourself by
 generating a large input.txt for
 toupper-lazy3.hs. It may take a bit
 to process, but you should see a constant—and low—memory usage while
 it is being processed.

interact

You learned that readFile and writeFile address the common situation of
 reading from one file, making a conversion, and writing to a different
 file. There’s a situation that’s even more common than that: reading
 from standard input, making a conversion, and writing the result to
 standard output. For that situation, there is a function called
 interact. The type of interact is (String
 -> String) -> IO (). That is, it takes one argument: a
 function of type String ->
 String. That function is passed the result of getContents—that is, standard input read
 lazily. The result of that function is sent to standard output.
We can convert our example program to
 operate on standard input and standard output by using interact. Here’s one way to do that:
-- file: ch07/toupper-lazy4.hs
import Data.Char(toUpper)

main = interact (map toUpper)
Look at that—one
 line of code to achieve our transformation! To achieve the same effect
 as with the previous examples, you could run this one like
 this:
$ runghc toupper-lazy4.hs < input.txt > output.txt
Or, if you’d like to see the output
 printed to the screen, you could type:
$ runghc toupper-lazy4.hs < input.txt
If you want to see that Haskell output
 truly does write out chunks of data as soon as they are received, run
 runghc toupper-lazy4.hs without any
 other command-line parameters. You should see each character echoed
 back out as soon as you type it, but in uppercase. Buffering may
 change this behavior; see Buffering for more on
 buffering. If you see each line echoed as soon as you type it, or even
 nothing at all for a while, buffering is causing this behavior.
You can also write simple interactive
 programs using interact. Let’s
 start with a simple example—adding a line of text before the uppercase
 output:
-- file: ch07/toupper-lazy5.hs
import Data.Char(toUpper)

main = interact (map toUpper . (++) "Your data, in uppercase, is:\n\n")
Tip
If the use of the . operator is confusing, you might wish to
 refer to Code Reuse Through Composition.

Here we add a string at the beginning of
 the output. Can you spot the problem, though?
Since we’re calling map on the result of
 (++), that header itself will
 appear in uppercase. We can fix that in this way:
-- file: ch07/toupper-lazy6.hs
import Data.Char(toUpper)

main = interact ((++) "Your data, in uppercase, is:\n\n" .
 map toUpper)
This moved the header outside of the
 map.
Filters with interact

Another common use of interact is filtering. Let’s say that you want to write a program that reads
 a file and prints out every line that contains the character “a”.
 Here’s how you might do that with interact:
-- file: ch07/filter.hs
main = interact (unlines . filter (elem 'a') . lines)
This may have introduced three
 functions that you aren’t familiar with yet. Let’s inspect their
 types with ghci:
ghci> :type lines
lines :: String -> [String]
ghci> :type unlines
unlines :: [String] -> String
ghci> :type elem
elem :: (Eq a) => a -> [a] -> Bool
Can you guess what these functions do
 just by looking at their types? If not, you can find them explained
 in Warming Up: Portably Splitting Lines of Text and Special String-Handling Functions. You’ll frequently see lines and unlines used with I/O. Finally, elem takes a element and a list and
 returns True if that element
 occurs anywhere in the list.
Try running this over our standard
 example input:
$ runghc filter.hs < input.txt
I like Haskell
Haskell is great
Sure enough, you got back the two
 lines that contain an “a”. Lazy filters are a powerful way to use
 Haskell. When you think about it, a filter—such as the standard Unix
 program grep—sounds a lot like a
 function. It takes some input, applies some computation, and
 generates a predictable output.

The IO Monad

You’ve seen a number of examples of I/O in Haskell by this
 point. Let’s take a moment to step back and think about how I/O relates
 to the broader Haskell language.
Since Haskell is a pure language, if you
 give a certain function a specific argument, the function will return
 the same result every time you give it that argument. Moreover, the
 function will not change anything about the program’s overall
 state.
You may be wondering, then, how I/O fits
 into this picture. Surely if you want to read a line of input from the
 keyboard, the function to read input can’t possibly return the same
 result every time it is run, right? Moreover, I/O is all about changing
 state. I/O could cause pixels on a terminal to light up, cause paper to
 start coming out of a printer, or even to cause a package to be shipped
 from a warehouse on a different continent. I/O doesn’t just change the state of a
 program. You can think of I/O as changing the state of the world.
Actions

Most languages do not make a distinction
 between a pure function and an impure one. Haskell has functions in
 the mathematical sense: they are purely computations that cannot be
 altered by anything external. Moreover, the computation can be
 performed at any time—or even never, if its result is never
 needed.
Clearly, then, we need some other tool
 to work with I/O. That tool in Haskell is called actions. Actions resemble
 functions. They do nothing when they are defined, but perform some
 task when they are invoked. I/O actions are defined within the
 IO monad. Monads are a powerful way of chaining functions
 together purely and are covered in Chapter 14. It’s not
 necessary to understand monads in order to understand I/O. Just
 understand that the result type of actions is “tagged” with
 IO. Let’s take a look at some types:
ghci> :type putStrLn
putStrLn :: String -> IO ()
ghci> :type getLine
getLine :: IO String
The type of putStrLn is just like any other function. The function takes one
 parameter and returns an IO ().
 This IO () is the action. You can
 store and pass actions in pure code if you wish, though this isn’t
 frequently done. An action doesn’t do anything until it is invoked.
 Let’s look at an example of this:
-- file: ch07/actions.hs
str2action :: String -> IO ()
str2action input = putStrLn ("Data: " ++ input)

list2actions :: [String] -> [IO ()]
list2actions = map str2action

numbers :: [Int]
numbers = [1..10]

strings :: [String]
strings = map show numbers

actions :: [IO ()]
actions = list2actions strings

printitall :: IO ()
printitall = runall actions

-- Take a list of actions, and execute each of them in turn.
runall :: [IO ()] -> IO ()
runall [] = return ()
runall (firstelem:remainingelems) =
 do firstelem
 runall remainingelems

main = do str2action "Start of the program"
 printitall
 str2action "Done!"
str2action is a function that takes one
 parameter and returns an IO (). As
 you can see at the end of main, you
 could use this directly in another action and it will print out a line
 right away. Or, you can store—but not execute—the action from pure
 code. You can see an example of that in list2actions—we use map over str2action and return a list of actions,
 just like we would with other pure data. You can see that everything
 up through printitall is built up
 with pure tools.
Although we define printitall, it doesn’t get executed until
 its action is evaluated somewhere else. Notice in main how we use str2action as an I/O action to be executed,
 but earlier we used it outside of the I/O monad and assembled results
 into a list.
You could think of it this way: every
 statement, except let, in a
 do block must yield an I/O action
 that will be executed.
The call to printitall finally executes all those
 actions. Actually, since Haskell is lazy, the actions aren’t generated
 until here either.
When you run the program, your output
 will look like this:
Data: Start of the program
Data: 1
Data: 2
Data: 3
Data: 4
Data: 5
Data: 6
Data: 7
Data: 8
Data: 9
Data: 10
Data: Done!
We can actually write this in a much
 more compact way. Consider this revision of the example:
-- file: ch07/actions2.hs
str2message :: String -> String
str2message input = "Data: " ++ input

str2action :: String -> IO ()
str2action = putStrLn . str2message

numbers :: [Int]
numbers = [1..10]

main = do str2action "Start of the program"
 mapM_ (str2action . show) numbers
 str2action "Done!"
Notice in str2action the use of the standard function
 composition operator. In main,
 there’s a call to mapM_. This
 function is similar to map. It
 takes a function and a list. The function supplied to mapM_ is an I/O action that is executed for
 every item in the list. mapM_
 throws out the result of the function, though you can use mapM to return a list of I/O results if you
 want them. Take a look at their types:
ghci> :type mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :type mapM_
mapM_ :: (Monad m) => (a -> m b) -> [a] -> m ()
Tip
These functions actually work for more
 than just I/O; they work for any Monad. For now, wherever you see “M,” just
 think “IO.” Also, functions that end with an underscore typically
 discard their result.

Why a mapM when we already have map? Because map is a pure function that returns a list.
 It doesn’t—and can’t—actually execute actions directly. mapM is a utility that lives in the
 IO monad and thus can actually execute the
 actions.[26]
Going back to main, mapM_ applies (str2action . show) to every element in
 numbers. show converts each number to a String and str2action converts each String to an action. mapM_ combines these individual actions into
 one big action that prints out lines.

Sequencing

do
 blocks are actually shortcut notations for joining together
 actions. There are two operators that you can use instead of do blocks:
 >> and >>=. Let’s look at their types in
 ghci:
ghci> :type (>>)
(>>) :: (Monad m) => m a -> m b -> m b
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
The >> operator sequences two actions
 together: the first action is performed, and then the second. The
 result of the computation is the result of the second action. The
 result of the first action is thrown away. This is similar to simply
 having a line in a do block. You
 might write putStrLn "line 1" >> putStrLn "line 2" to test
 this out. It will print out two lines, discard the result from the
 first putStrLn, and provide the
 result from the second.
The >>= operator runs an action, and then
 passes its result to a function that returns an action. That second
 action is run as well, and the result of the entire expression is the
 result of that second action. As an example, you could write getLine >>=
 putStrLn, which would read a line from the keyboard and then
 display it back out.
Let’s rewrite one of our examples to
 avoid do blocks. Remember this
 example from the start of the chapter?
-- file: ch07/basicio.hs
main = do
 putStrLn "Greetings! What is your name?"
 inpStr <- getLine
 putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!"
Let’s write that without a do block:
-- file: ch07/basicio-nodo.hs
main =
 putStrLn "Greetings! What is your name?" >>
 getLine >>=
 (\inpStr -> putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!")
The Haskell compiler internally performs
 a translation just like this when you define a do block.
Tip
Forgetting how to use \ (lambda expressions)? See Anonymous (lambda) Functions.

The True Nature of Return

Earlier in this chapter, we mentioned that return is probably not what it looks like.
 Many languages have a keyword named return that aborts execution of a function
 immediately and returns a value to the caller.
The Haskell return function is quite different. In
 Haskell, return is used to wrap
 data in a monad. When speaking about I/O, return is used to take pure data and bring
 it into the IO monad.
Now, why would we want to do that?
 Remember that anything whose result depends on I/O must be within the
 IO monad. So if we are writing a
 function that performs I/O, and then a pure computation, we
 will need to use return to make
 this pure computation the proper return value of the function.
 Otherwise, a type error would occur. Here’s an example:
-- file: ch07/return1.hs
import Data.Char(toUpper)

isGreen :: IO Bool
isGreen =
 do putStrLn "Is green your favorite color?"
 inpStr <- getLine
 return ((toUpper . head $ inpStr) == 'Y')
We have a pure computation that yields a
 Bool. That computation is passed to
 return, which puts it into the
 IO monad. Since it is the last value in the do block, it becomes the return value of
 isGreen, but this is not because we
 used the return function.
Here’s a version of the same program
 with the pure computation broken out into a separate function. This
 helps keep the pure code separate and can also make the intent more
 clear:
-- file: ch07/return2.hs
import Data.Char(toUpper)

isYes :: String -> Bool
isYes inpStr = (toUpper . head $ inpStr) == 'Y'

isGreen :: IO Bool
isGreen =
 do putStrLn "Is green your favorite color?"
 inpStr <- getLine
 return (isYes inpStr)
Finally, here’s a contrived example to
 show that return truly does not
 have to occur at the end of a do
 block. In practice, it usually does, but it need not be so.
-- file: ch07/return3.hs
returnTest :: IO ()
returnTest =
 do one <- return 1
 let two = 2
 putStrLn $ show (one + two)
Notice that we used <- in combination with return, but let in combination with the simple literal.
 That’s because we needed both values to be pure in order to add them,
 and <- pulls things out of
 monads, effectively reversing the effect of return. Run this in ghci and you’ll see 3 displayed, as expected.

Is Haskell Really Imperative?

These do blocks may look a lot like an imperative
 language. After all, you’re giving commands to run in sequence most of
 the time.
But Haskell remains a lazy language at its
 core. While it is sometimes necessary to sequence actions for I/O, this
 is done using tools that are part of Haskell already. Haskell achieves a
 nice separation of I/O from the rest of the language through the
 IO monad as well.

Side Effects with Lazy I/O

Earlier in this chapter, you read about
 hGetContents. We explained that the
 String it returns can be used in pure
 code.
We need to get a bit more specific about
 what side effects are. When we say Haskell has no side effects, what
 exactly does that mean?
At a certain level, side effects are
 always possible. A poorly written loop, even if written in pure code,
 could cause the system’s RAM to be exhausted and the machine to crash.
 Or it could cause data to be swapped to disk.
When we speak of no side effects, we mean
 that pure code in Haskell can’t run commands that trigger side effects.
 Pure functions can’t modify a global variable, request I/O, or run a
 command to take down a system.
When you have a String from hGetContents that is passed to a pure
 function, the function has no idea that this String is backed by a disk file. It will
 behave just as it always would, but processing that String may cause the environment to issue I/O
 commands. The pure function isn’t issuing them; they are happening as a
 result of the processing the pure function is doing, just as with the
 example of swapping RAM to disk.
In some cases, you may need more control
 over exactly when your I/O occurs. Perhaps you are reading data
 interactively from the user, or via a pipe from another program, and
 need to communicate directly with the user. In those cases, hGetContents will probably not be
 appropriate.

Buffering

The I/O subsystem is one of the slowest parts of a modern computer.
 Completing a write to disk can take thousands of times as long as a
 write to memory. A write over the network can be hundreds or thousands
 of times slower yet. Even if your operation doesn’t directly communicate
 with the disk—perhaps because the data is cached—I/O still involves a system call, which
 slows things down by itself.
For this reason, modern operating systems
 and programming languages both provide tools to help programs perform
 better where I/O is concerned. The operating system typically performs
 caching—storing frequently used pieces of data in memory for faster
 access.
Programming languages typically perform
 buffering. This means that they may request one large chunk of data from
 the operating system, even if the code underneath is processing data one
 character at a time. By doing this, they can achieve remarkable
 performance gains because each request for I/O to the operating system
 carries a processing cost. Buffering allows us to read the same amount
 of data with far fewer I/O requests.
Haskell, too, provides buffering in its
 I/O system. In many cases, it is even on by default. Up until now, we
 have pretended it isn’t there. Haskell usually is good about picking a
 good default buffering mode, but it is rarely the fastest. If you have
 speed-critical I/O code, changing
 buffering could have a significant impact on your program.
Buffering Modes

There are three different buffering
 modes in Haskell. They are defined as the BufferMode type: NoBuffering, LineBuffering, and BlockBuffering.
NoBuffering does just what it sounds like—no
 buffering. Data read via functions like hGetLine will be read from the OS one
 character at a time. Data written will be written immediately, and
 also often will be written one character at a time. For this reason,
 NoBuffering is usually a very poor
 performer and not suitable for general-purpose use.
LineBuffering causes the output buffer to be
 written whenever the newline character is output, or whenever it gets
 too large. On input, it will usually attempt to read whatever data is
 available in chunks until it first sees the newline character. When
 reading from the terminal, it should return data immediately after
 each press of Enter. It is often a reasonable default.
BlockBuffering causes Haskell to read or
 write data in fixed-size chunks when possible. This is the best
 performer when processing large amounts of data in batch, even if that
 data is line-oriented. However, it is unusable for interactive
 programs because it will block input until a full block is read.
 BlockBuffering accepts one
 parameter of type Maybe; if
 Nothing, it will use an
 implementation-defined buffer size. Or, you can use a setting such as
 Just 4096 to set the buffer to 4096
 bytes.
The default buffering mode is dependent
 upon the operating system and Haskell implementation. You can ask the
 system for the current buffering mode by calling hGetBuffering. The
 current mode can be set with hSetBuffering, which accepts a Handle and BufferMode. You can say hSetBuffering stdin
 (BlockBuffering Nothing), for example.

Flushing The Buffer

For any type of buffering, you may
 sometimes want to force Haskell to write out any data that has been
 saved up in the buffer. There are a few times when this will happen
 automatically: a call to hClose,
 for instance. Sometimes you may want to instead call hFlush, which will force any pending data to be written
 immediately. This could be useful when the Handle is a network socket and you want the
 data to be transmitted immediately, or when you want to make the data
 on disk available to other programs that might be reading it
 concurrently.

Reading Command-Line Arguments

Many command-line programs are interested in the parameters passed on the command
 line. System.Environment.getArgs
 returns IO [String] listing each
 argument. This is the same as argv in
 C, starting with argv[1]. The program
 name (argv[0] in C) is available from
 System.Environment.getProgName.
The System.Console.GetOpt module provides some
 tools for parsing command-line options. If you have a program with
 complex options, you may find it useful. You can find an example of its
 use in Command-Line Parsing.

Environment Variables

If you need to read environment
 variables, you can use one of two functions in System.Environment:
 getEnv or getEnvironment. getEnv looks for a specific variable and
 raises an exception if it doesn’t exist. getEnvironment returns the whole environment
 as a [(String, String)], and then you
 can use functions such as lookup to
 find the environment entry you want.
Setting environment variables is not
 defined in a cross-platform way in Haskell. If you are on a POSIX
 platform such as Linux, you can use putEnv or setEnv from the System.Posix.Env module. Environment
 setting is not defined for Windows.

[16] You will later see that it has a more
 broad application, but it is sufficient to think of it in these
 terms for now.

[17] The type of the value () is also ().

[18] Imperative programmers might be
 concerned that such a recursive call would consume large amounts of
 stack space. In Haskell, recursion is a common idiom, and the
 compiler is smart enough to avoid consuming much stack by optimizing
 tail-recursive functions.

[19] If there was a bug in the C part of
 a hybrid program, for instance.

[20] For more information on
 interoperating with other programs with pipes, see Extended Example: Piping.

[21] POSIX programmers may be interested
 to know that this corresponds to unlink() in C.

[22] hGetContents is discussed in Lazy I/O

[23] There is also a shortcut function
 called getContents that
 operates on standard input.

[24] More precisely, it is the entire
 data from the current position of the file pointer to the end of
 the file.

[25] Excepting I/O errors such as a full
 disk, of course.

[26] Technically speaking, mapM combines a bunch of separate I/O
 actions into one big action. The separate actions are executed
 when the big action is.

Chapter 8. Efficient File Processing, Regular Expressions, and Filename
 Matching

Efficient File Processing

This simple microbenchmark reads a text file full of numbers and
 prints their sum:
-- file: ch08/SumFile.hs
main = do
 contents <- getContents
 print (sumFile contents)
 where sumFile = sum . map read . words
Although the String type is
 the default used for reading and writing files, it is not efficient, so
 a simple program like this will perform badly.
A String is represented as a list of Char values; each
 element of a list is allocated individually and has some bookkeeping
 overhead. These factors affect the memory consumption and performance of
 a program that must read or write text or binary data. On simple
 benchmarks like this, even programs written in interpreted languages
 such as Python can outperform Haskell code that uses String
 by an order of magnitude.
The bytestring
 library provides a fast, cheap alternative to the
 String type. Code written with bytestring can
 often match or exceed the performance and memory footprint of C, while
 maintaining Haskell’s expressivity and conciseness.
The library supplies two modules—each
 defines functions that are nearly drop-in replacements for their String
 counterparts:
	Data.ByteString
	Defines a strict type named ByteString. This represents a
 string of binary or text data in a single array.

	Data.ByteString.Lazy
	Provides a lazy type, also named
 ByteString. This represents a string of data as a list of chunks, arrays of up to 64
 KB in size.

Each ByteString type
 performs better under particular circumstances. For streaming a large
 quantity (hundreds of megabytes to terabytes) of data, the lazy
 ByteString type is usually best. Its chunk size is tuned to
 be friendly to a modern CPU’s L1 cache, and a garbage collector can
 quickly discard chunks of streamed data that are no longer being
 used.
The strict ByteString type
 performs best for applications that are less concerned with memory
 footprint or that need to access data randomly.
Binary I/O and Qualified Imports

Let’s develop a small function to illustrate some of the
 ByteString API. We will determine if a file is
 an ELF object file—this is the format used for executables
 on almost all modern Unix-like systems.
This is a simple matter of looking at
 the first four bytes in the file and seeing if they match a specific
 sequence of bytes. A byte sequence that identifies a file’s type is
 often known as a magic number:
-- file: ch08/ElfMagic.hs
import qualified Data.ByteString.Lazy as L

hasElfMagic :: L.ByteString -> Bool
hasElfMagic content = L.take 4 content == elfMagic
 where elfMagic = L.pack [0x7f, 0x45, 0x4c, 0x46]
We import the ByteString
 modules using Haskell’s qualified import
 syntax, the import qualified that we just saw. This lets us refer to a module with a name
 of our choosing.
For instance, when we want to refer to
 the lazy ByteString module’s take function, we must write L.take, since we imported the module under
 the name L. If we are not explicit about which version
 of, for example, take we want,
 the compiler will report an error.
We will always use qualified import
 syntax with the ByteString modules, because they provide
 many functions that have the same names as Prelude functions.
Tip
Qualified imports make it easy to
 switch between ByteString types. All you should need to
 do is modify an import declaration at the top of your
 source file; the rest of your code will probably not need any
 changes. You can thus handily benchmark the two types, to see which
 is best suited to your application’s needs

Whether or not we use qualified
 imports, we can always use the entire name of a module to identify
 something unambiguously. Both Data.ByteString.Lazy.length and L.length, for instance, identify the same
 function, as do Prelude.sum and
 sum.
The lazy and strict
 ByteString modules are intended for binary I/O. The
 Haskell data type for representing bytes is Word8; if we
 need to refer to it by name, we import it from the
 Data.Word module.
The L.pack
 function takes a list of Word8 values, and packs
 them into a lazy ByteString. (The L.unpack function performs the reverse
 conversion.) Our hasElfMagic
 function simply compares the first four bytes of a
 ByteString against a magic number.
We are writing in classic Haskell
 style, where our hasElfMagic
 function does not perform I/O. Here is the function that uses it on a
 file:
-- file: ch08/ElfMagic.hs
isElfFile :: FilePath -> IO Bool
isElfFile path = do
 content <- L.readFile path
 return (hasElfMagic content)
The L.readFile function is the lazy ByteString equivalent of
 readFile. It operates lazily,
 reading the file as data is demanded. It is also efficient, reading
 chunks of up to 64 KB at once. The lazy ByteString is a
 good choice for our task: since we only need to read at most the first
 four bytes of the file, we can safely use this function on a file of
 any size.

Text I/O

For convenience, the bytestring library provides two other
 modules with limited text I/O capabilities,
 Data.ByteString.Char8 and
 Data.ByteString.Lazy.Char8. These expose individual string elements as Char
 instead of Word8.
Warning
The functions in these modules only
 work with byte-sized Char values, so they are only
 suitable for use with ASCII and some European character sets. Values
 above 255 are truncated.

The character-oriented
 bytestring modules provide useful functions for text
 processing. Here is a file that contains monthly stock prices for a
 well-known Internet company from mid-2008:
ghci> putStr =<< readFile "prices.csv"
Date,Open,High,Low,Close,Volume,Adj Close
2008-08-01,20.09,20.12,19.53,19.80,19777000,19.80
2008-06-30,21.12,21.20,20.60,20.66,17173500,20.66
2008-05-30,27.07,27.10,26.63,26.76,17754100,26.76
2008-04-30,27.17,27.78,26.76,27.41,30597400,27.41

How can we find the highest closing
 price from a series of entries like this? Closing prices are in the
 fifth comma-separated column. This function obtains a closing price
 from one line of data:
-- file: ch08/HighestClose.hs
import qualified Data.ByteString.Lazy.Char8 as L

closing = readPrice . (!!4) . L.split ','
Since this function is written in
 point-free style, we read from right to left. The L.split function splits a lazy ByteString into a list of
 them, every time it finds a matching character. The (!!) operator
 retrieves the kth element of a list. Our
 readPrice function turns a string
 representing a fractional price into a whole number:
-- file: ch08/HighestClose.hs
readPrice :: L.ByteString -> Maybe Int
readPrice str =
 case L.readInt str of
 Nothing -> Nothing
 Just (dollars,rest) ->
 case L.readInt (L.tail rest) of
 Nothing -> Nothing
 Just (cents,more) ->
 Just (dollars * 100 + cents)
We use the L.readInt function, which parses an integer. It returns both the integer and the
 remainder of the string once a run of digits is consumed. Our
 definition is slightly complicated by L.readInt returning Nothing if
 parsing fails.
Our function for finding the highest
 closing price is straightforward:
-- file: ch08/HighestClose.hs
highestClose = maximum . (Nothing:) . map closing . L.lines

highestCloseFrom path = do
 contents <- L.readFile path
 print (highestClose contents)
We use one trick to work around the
 fact that we cannot supply an empty list to the maximum
 function:
ghci> maximum [3,6,2,9]
9
ghci> maximum []
*** Exception: Prelude.maximum: empty list
Since we do not want our code to throw
 an exception if we have no stock data, the (Nothing:)
 expression ensures that the list of Maybe Int values that
 we supply to maximum will never
 be empty:
ghci> maximum [Nothing, Just 1]
Just 1
ghci> maximum [Nothing]
Nothing
Does our function work?
ghci> :load HighestClose
[1 of 1] Compiling Main (HighestClose.hs, interpreted)
Ok, modules loaded: Main.
ghci> highestCloseFrom "prices.csv"
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Just 2741
Since we have separated our I/O from
 our logic, we can test the no-data case without having to create an
 empty file:
ghci> highestClose L.empty
Nothing

Filename Matching

Many systems-oriented programming languages provide library
 routines that let us match a filename against a pattern, or that will
 give a list of files that match the pattern. In other languages, this
 function is often named fnmatch.
 Although Haskell’s standard library generally has good systems
 programming facilities, it doesn’t provide these kinds of pattern
 matching functions. We’ll take this as an opportunity to develop our
 own.
The kinds of patterns we’ll be dealing
 with are commonly referred to as glob patterns (the term we’ll use),
 wild card patterns, or shell-style patterns. They have just a few simple
 rules. You probably already know them, but we’ll quickly recap
 here:
	Matching a string against a pattern
 starts at the beginning of the string, and finishes at the
 end.

	Most literal characters match
 themselves. For example, the text foo in a pattern will match foo, and only foo, in an input string.

	The * (asterisk) character means “match anything”; it will match
 any text, including the empty string. For instance, the pattern
 foo* will match any string that begins with
 foo, such as foo itself,
 foobar, or foo.c. The pattern
 quux*.c will match any string that begins with
 quux and ends in .c, such as
 quuxbaz.c.

	The ? (question mark) character matches any single character. The pattern
 pic??.jpg will match names like picaa.jpg
 or pic01.jpg.

	A [
 (open square bracket) character begins a character
 class, which is ended by a]. Its meaning is “match any
 character in this class”. A character class can be
 negated by following the opening [with a !, so that it means “match any
 character not in this class”.
As a shorthand, a character
 followed by a -
 (dash), followed by another character, denotes a
 range: “match any character within this
 set.”
Character classes have an added
 subtlety; they can’t be empty. The first character after the opening
 [or [! is part of the class, so we can write a
 class containing the] character
 as []aeiou]. The pattern
 pic[0-9].[pP][nN][gG] will match a name consisting of
 the string pic, followed by a single digit, followed by
 any capitalization of the string .png.

While Haskell doesn’t provide a way to
 match glob patterns among its standard libraries, it provides a good
 regular expression matching library. Glob patterns are nothing more than
 cut-down regular expressions with slightly different syntax. It’s easy
 to convert glob patterns into regular expressions, but to do so, we must
 first understand how to use regular expressions in Haskell.

Regular Expressions in Haskell

In this section, we assume that you are already familiar with regular
 expressions by way of some other language, such as Python, Perl, or
 Java.[27]
For brevity, we will abbreviate “regular
 expression” as regexp from here on.
Rather than introduce regexps as
 something new, we will focus on what’s different about regexp handling
 in Haskell, compared to other languages. Haskell’s regular expression
 matching libraries are a lot more expressive than those of other
 languages, so there’s plenty to talk about.
To begin our exploration of the regexp
 libraries, the only module we’ll need to work with is Text.Regex.Posix.
 As usual, the most convenient way to explore this module is by
 interacting with it via ghci:
ghci> :module +Text.Regex.Posix
The only function that we’re likely to
 need for normal use is the regexp matching function, an infix operator
 named (=~) (borrowed from Perl).
 The first hurdle to overcome is that Haskell’s regexp libraries make
 heavy use of polymorphism. As a result, the type signature of the
 (=~) operator is difficult to understand, so we will not explain it
 here.
The =~ operator uses typeclasses for both of its
 arguments and also for its return type. The first argument (on the left
 of the =~) is the text to match;
 the second (on the right) is the regular expression to match against. We
 can pass either a String or a ByteString as
 argument.
The Many Types of Result

The =~ operator is polymorphic in its return
 type, so the Haskell compiler needs some way to know what type of
 result we would like. In real code, it may be able to infer the right
 type, due to the way we subsequently use the result. But such cues are
 often lacking when we’re exploring with ghci. If we omit
 a specific type for the result, we’ll get an error from the
 interpreter, as it does not have enough information to successfuly
 infer the result type.
When ghci can’t infer the target type, we tell it what we’d like the
 type to be. If we want a result of type Bool, we’ll get a
 pass/fail answer:
ghci> "my left foot" =~ "foo" :: Bool
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
True
ghci> "your right hand" =~ "bar" :: Bool
False
ghci> "your right hand" =~ "(hand|foot)" :: Bool
True
In the bowels of the regexp libraries,
 there’s a typeclass named RegexContext that describes
 how a target type should behave;
 the base library defines many instances of this typeclass for us. The
 Bool type is an instance of this typeclass, so we get
 back a usable result. Another such instance is Int, which
 gives us a count of the number of times the regexp matches:
ghci> "a star called henry" =~ "planet" :: Int
0
ghci> "honorificabilitudinitatibus" =~ "[aeiou]" :: Int
13
If we ask for a String
 result, we’ll get the first substring that matches or an empty string
 if nothing matches:
ghci> "I, B. Ionsonii, uurit a lift'd batch" =~ "(uu|ii)" :: String
"ii"
ghci> "hi ludi, F. Baconis nati, tuiti orbi" =~ "Shakespeare" :: String
""
Another valid type of result is
 [String], which returns a list of
 all matching strings:
ghci> "I, B. Ionsonii, uurit a lift'd batch" =~ "(uu|ii)" :: [String]
["ii","uu"]
ghci> "hi ludi, F. Baconis nati, tuiti orbi" =~ "Shakespeare" :: [String]
[]
Warning
Some versions of regular expression support in Haskell do not
 support [String] and
 [[String]] return values from pattern
 matching.

Watch out for String results
If you want a result that’s a plain
 String, beware. Since (=~) returns an empty string to signify
 “no match”, this poses an obvious difficulty if the
 empty string could also be a valid match for the regexp. If such a
 case arises, you should use a different return type instead, such as
 [String].

That’s about it for
 “simple” result types, but we’re not by any means
 finished. Before we continue, let’s use a single pattern for our
 remaining examples. We can define this pattern as a variable in
 ghci, to save a little
 typing:
ghci> let pat = "(foo[a-z]*bar|quux)"
We can obtain quite a lot of information
 about the context in which a match occurs. If we ask for a
 (String, String, String) tuple, we’ll get back the text
 before the first match, the text
 of that match, and the text that
 follows it:
ghci> "before foodiebar after" =~ pat :: (String,String,String)
("before ","foodiebar"," after")

If the match fails, the entire text is
 returned as the “before” element of the tuple, with the
 other two elements left empty:
ghci> "no match here" =~ pat :: (String,String,String)
("no match here","","")

Asking for a four-element tuple gives us
 a fourth element that’s a list of all groups in the pattern that
 matched:
ghci> "before foodiebar after" =~ pat :: (String,String,String,[String])
("before ","foodiebar"," after",["foodiebar"])

We can get numeric information about
 matches, too. A pair of Ints gives us the starting offset
 of the first match, and its length. If we ask for a list of these
 pairs, we’ll get this information for all matches:
ghci> "before foodiebar after" =~ pat :: (Int,Int)
(7,9)
ghci> "i foobarbar a quux" =~ pat :: [(Int,Int)]
[(2,9),(14,4)]
A failed match is represented by the
 value -1 as the first element of
 the tuple (the match offset) if we’ve asked for a single tuple, or an
 empty list if we’ve asked for a list of tuples:
ghci> "eleemosynary" =~ pat :: (Int,Int)
(-1,0)
ghci> "mondegreen" =~ pat :: [(Int,Int)]
[]
This is not a comprehensive list of
 built-in instances of the RegexContext
 typeclass. For a complete list, see the documentation for the
 Text.Regex.Base.Context
 module.
This ability to make a function
 polymorphic in its result type is an unusual feature for a statically
 typed language.

More About Regular Expressions

Mixing and Matching String Types

As we noted earlier, the =~ operator uses typeclasses for its argument types and its return
 type. We can use either String or strict
 ByteString values for both the regular expression and the
 text to match against:
ghci> :module +Data.ByteString.Char8
ghci> :type pack "foo"
pack "foo" :: ByteString
We can then try using different
 combinations of String and
 ByteString:
ghci> pack "foo" =~ "bar" :: Bool
False
ghci> "foo" =~ pack "bar" :: Int
0
ghci> pack "foo" =~ pack "o" :: [(Int, Int)]
[(1,1),(2,1)]
However, we need to be aware that if we
 want a string value in the result of a match, the text we’re matching
 against must be the same type of string. Let’s see what this means in
 practice:
ghci> pack "good food" =~ ".ood" :: [ByteString]
["good","food"]

In the above example, we’ve used the
 pack to turn a
 String into a ByteString. The type checker
 accepts this because ByteString appears in the result
 type. But if we try getting a String out, that
 won’t work:
ghci> "good food" =~ ".ood" :: [ByteString]

<interactive>:1:0:
 No instance for (Text.Regex.Base.RegexLike.RegexContext
 Regex [Char] [ByteString])
 arising from a use of `=~' at <interactive>:1:0-20
 Possible fix:
 add an instance declaration for
 (Text.Regex.Base.RegexLike.RegexContext Regex [Char] [ByteString])
 In the expression: "good food" =~ ".ood" :: [ByteString]
 In the definition of `it':
 it = "good food" =~ ".ood" :: [ByteString]

We can easily fix this problem by making
 the string types of the lefthand side and the result match once
 again:
ghci> "good food" =~ ".ood" :: [String]
["good","food"]

This restriction does
 not apply to the type of the regexp we’re
 matching against. It can be either a String or
 ByteString, unconstrained by the other types in
 use.

Other Things You Should Know

When you look through Haskell library
 documentation, you’ll see several regexp-related modules. The modules under
 Text.Regex.Base define the common
 API adhered to by all of the other regexp modules. It’s possible to
 have multiple implementations of the regexp API installed at one time.
 At the time of this writing, GHC is bundled with one implementation,
 Text.Regex.Posix. As its name
 suggests, this package provides POSIX regexp semantics.
Perl and POSIX Regular Expressions
If you’re coming to Haskell from a language like Perl, Python,
 or Java, and you’ve used regular expressions in one of those
 languages, you should be aware that the POSIX regexps handled by the
 Text.Regex.Posix module are
 different in some significant ways from Perl-style regexps. Here are
 a few of the more notable differences.
Perl regexp engines perform
 left-biased matching when matching alternatives, whereas POSIX
 engines choose the greediest match. What this means is that given a
 regexp of (foo|fo*) and a text
 string of foooooo, a Perl-style
 engine will give a match of foo
 (the leftmost match), while a POSIX engine will match the entire
 string (the greediest match).
POSIX regexps have less uniform syntax
 than Perl-style regexps. They also lack a number of capabilities
 provided by Perl-style regexps, such as zero-width assertions and
 control over greedy matching.

Other Haskell regexp packages are
 available for download from Hackage. Some provide better performance
 than the current POSIX engine (e.g., regex-tdfa); others
 provide the Perl-style matching that most programmers are now familiar
 with (e.g., regex-pcre). All follow the standard API that
 we have covered in this section.

Translating a glob Pattern into a Regular Expression

Now that we’ve seen the myriad of ways to match text against
 regular expressions, let’s turn our attention back to glob patterns. We
 want to write a function that will take a glob pattern and return its
 representation as a regular expression. Both glob patterns and regexps
 are text strings, so the type that our function ought to have seems
 clear:
-- file: ch08/GlobRegex.hs
module GlobRegex
 (
 globToRegex
 , matchesGlob
) where

import Text.Regex.Posix ((=~))

globToRegex :: String -> String
The regular expression that we generate
 must be anchored so that it starts
 matching from the beginning of a string and finishes at the end:
-- file: ch08/GlobRegex.hs
globToRegex cs = '^' : globToRegex' cs ++ "$"
Recall that the String is
 just a synonym for [Char], a list of Chars.
 The : operator puts a
 value (the ^ character in this case)
 onto the front of a list, where the list is the value returned by the
 yet-to-be-seen globToRegex'
 function.
Using a value before defining it
Haskell does not require that a value or
 function be declared or defined in a source file before it’s used.
 It’s perfectly normal for a definition to come
 after the first place it’s used. The Haskell
 compiler doesn’t care about ordering at this level. This grants us the
 flexibility to structure our code in the manner that makes most
 logical sense to us, rather than follow an order that makes the
 compiler writer’s life easiest.
Haskell module writers often use this
 flexibility to put “more important” code earlier in a
 source file, relegating “plumbing” to later. This is
 exactly how we are presenting the globToRegex function and its helpers
 here.

With the regular expression rooted, the
 globToRegex' function will do the
 bulk of the translation work. We’ll use the convenience of Haskell’s
 pattern matching to enumerate each of the cases we’ll need to
 cover:
-- file: ch08/GlobRegex.hs
globToRegex' :: String -> String
globToRegex' "" = ""

globToRegex' ('*':cs) = ".*" ++ globToRegex' cs

globToRegex' ('?':cs) = '.' : globToRegex' cs

globToRegex' ('[':'!':c:cs) = "[^" ++ c : charClass cs
globToRegex' ('[':c:cs) = '[' : c : charClass cs
globToRegex' ('[':_) = error "unterminated character class"

globToRegex' (c:cs) = escape c ++ globToRegex' cs
Our first clause stipulates that if we hit
 the end of our glob pattern (by which time we’ll be looking at the empty
 string), we return $, the regular
 expression symbol for “match end-of-line.” Following this is a series of
 clauses that switch our pattern from glob syntax to regexp syntax. The
 last clause passes every other character through, possibly escaping it
 first.
The escape function ensures that the regexp
 engine will not interpret certain characters as pieces of regular
 expression syntax:
-- file: ch08/GlobRegex.hs
escape :: Char -> String
escape c | c `elem` regexChars = '\\' : [c]
 | otherwise = [c]
 where regexChars = "\\+()^$.{}]|"
The charClass helper function only checks that a
 character class is correctly terminated. It passes its input through
 unmodified until it hits a], when it
 hands control back to globToRegex':
-- file: ch08/GlobRegex.hs
charClass :: String -> String
charClass (']':cs) = ']' : globToRegex' cs
charClass (c:cs) = c : charClass cs
charClass [] = error "unterminated character class"
Now that we’ve finished defining globToRegex and its helpers, let’s load it
 into ghci and try it out:
ghci> :load GlobRegex.hs
[1 of 1] Compiling GlobRegex (GlobRegex.hs, interpreted)
Ok, modules loaded: GlobRegex.
ghci> :module +Text.Regex.Posix
ghci> globToRegex "f??.c"
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
"^f..\\.c$"
Sure enough, that looks like a reasonable
 regexp. Can we use it to match against a string?
ghci> "foo.c" =~ globToRegex "f??.c" :: Bool
True
ghci> "test.c" =~ globToRegex "t[ea]s*" :: Bool
True
ghci> "taste.txt" =~ globToRegex "t[ea]s*" :: Bool
True
It works! Now let’s play around a little
 with ghci. We can create a temporary
 definition for fnmatch and try it
 out:
ghci> let fnmatch pat name = name =~ globToRegex pat :: Bool
ghci> :type fnmatch
fnmatch :: (Text.Regex.Base.RegexLike.RegexLike Regex source1) =>
 String -> source1 -> Bool
ghci> fnmatch "d*" "myname"
False
The name fnmatch doesn’t really have the “Haskell
 nature,” though. By far the most common Haskell style is for functions
 to have descriptive, “camel cased” names. Camel casing concatenates words, capitalizing all but
 possibly the first word. For instance, the words “filename
 matches” would become the name fileNameMatches. The
 name “camel case” comes from the “humps”
 introduced by the capital letters. In our library, we’ll give this
 function the name matchesGlob:
-- file: ch08/GlobRegex.hs
matchesGlob :: FilePath -> String -> Bool
name `matchesGlob` pat = name =~ globToRegex pat
You may have noticed that most of the
 names that we have used for variables so far have been short. As a rule
 of thumb, descriptive variable names are more useful in longer function
 definitions, as they aid readability. For a two-line function, a long
 variable name has less value.
Exercises
	Use ghci to explore what
 happens if you pass a malformed pattern, such as [, to globToRegex. Write a small function
 that calls globToRegex, and
 pass it a malformed pattern. What happens?

	While filesystems on Unix are usually case-sensitive (e.g.,
 “G” vs. “g”) in filenames, Windows
 filesystems are not. Add a parameter to the globToRegex and matchesGlob functions that allows
 control over case sensitive matching.

An important Aside: Writing Lazy Functions

In an imperative language, the globToRegex' function is one that we’d
 usually express as a loop. For example, Python’s standard
 fnmatch module includes a function named translate that does exactly the same job as
 our globToRegex function. It’s
 written as a loop.
If you’ve been exposed to functional
 programming through a language such as Scheme or ML, you’ve probably had
 drilled into your head the notion that “the way to emulate a loop is via
 tail recursion.”
Looking at the globToRegex' function, we can see that it is
 not tail recursive. To see why, examine its final
 clause again (several of its other clauses are structured
 similarly):
-- file: ch08/GlobRegex.hs
globToRegex' (c:cs) = escape c ++ globToRegex' cs
It applies itself recursively, and the
 result of the recursive application is used as a parameter to the (++) function.
 Since the recursive application isn’t the last
 thing the function does, globToRegex' is not tail recursive.
Why is our definition of this function not
 tail recursive? The answer lies with Haskell’s nonstrict evaluation
 strategy. Before we start talking about that, let’s quickly talk about
 why, in a traditional language, we’d try to avoid this kind of recursive
 definition. Here is a simpler definition of the (++) operator. It is recursive, but not tail
 recursive:
-- file: ch08/append.hs
(++) :: [a] -> [a] -> [a]

(x:xs) ++ ys = x : (xs ++ ys)
[] ++ ys = ys
In a strict language, if we evaluate
 "foo" ++ "bar", the entire list is constructed, and then
 returned. Non-strict evaluation defers much of the work until it is
 needed.
If we demand an element of the expression
 "foo" ++ "bar", the first pattern of the function’s
 definition matches, and we return the expression x : (xs ++
 ys). Because the (:) constructor is nonstrict, the
 evaluation of xs ++ ys can be deferred: we generate more
 elements of the result at whatever rate they are demanded. When we
 generate more of the result, we will no longer be using
 x, so the garbage collector can reclaim it. Since we
 generate elements of the result on demand, and do not hold onto parts
 that we are done with, the compiler can evaluate our code in constant
 space.

Making Use of Our Pattern Matcher

It’s all very well to have a function that
 can match glob patterns, but we’d like to be able to put this to
 practical use. On Unix-like systems, the glob function returns the names of all files
 and directories that match a given glob pattern. Let’s build a similar
 function in Haskell. Following the Haskell norm of descriptive naming,
 we’ll call our function namesMatching:
-- file: ch08/Glob.hs
module Glob (namesMatching) where
We specify that namesMatching is the only name that users of
 our Glob module will be able to see.
This function will obviously have to
 manipulate filesystem paths a lot, splicing and joining them as it goes.
 We’ll need to use a few previously unfamiliar modules along the
 way.
The System.Directory module provides standard
 functions for working with directories and their contents:
-- file: ch08/Glob.hs
import System.Directory (doesDirectoryExist, doesFileExist,
 getCurrentDirectory, getDirectoryContents)
The System.FilePath module abstracts the details
 of an operating system’s path name conventions. The (</>) function joins two path
 components:
ghci> :m +System.FilePath
ghci> "foo" </> "bar"
Loading package filepath-1.1.0.0 ... linking ... done.
"foo/bar"
The name of the dropTrailingPathSeparator function is
 perfectly descriptive:
ghci> dropTrailingPathSeparator "foo/"
"foo"

The splitFileName function splits a path at the
 last slash:
ghci> splitFileName "foo/bar/Quux.hs"
("foo/bar/","Quux.hs")
ghci> splitFileName "zippity"
("","zippity")
Using System.FilePath
 together with the System.Directory
 module, we can write a portable namesMatching function that will run on both
 Unix-like and Windows systems:
-- file: ch08/Glob.hs
import System.FilePath (dropTrailingPathSeparator, splitFileName, (</>))
In this module, we’ll be emulating a
 “for” loop; getting our first taste of exception handling
 in Haskell; and of course using the matchesGlob function we just wrote:
-- file: ch08/Glob.hs
import Control.Exception (handle)
import Control.Monad (forM)
import GlobRegex (matchesGlob)
Since directories and files live in the
 “real world” of activities that have effects, our globbing
 function will have to have IO in its result
 type.
If the string we’re passed contains no
 pattern characters, we simply check that the given name exists in the
 filesystem. (Notice that we use Haskell’s function guard syntax here to
 write a nice tidy definition. An “if” would do but isn’t as
 aesthetically pleasing.)
-- file: ch08/Glob.hs
isPattern :: String -> Bool
isPattern = any (`elem` "[*?")

namesMatching pat
 | not (isPattern pat) = do
 exists <- doesNameExist pat
 return (if exists then [pat] else [])
The name doesNameExist refers to a function that we
 will define shortly.
What if the string is
 a glob pattern? Our function definition continues:
-- file: ch08/Glob.hs
 | otherwise = do
 case splitFileName pat of
 ("", baseName) -> do
 curDir <- getCurrentDirectory
 listMatches curDir baseName
 (dirName, baseName) -> do
 dirs <- if isPattern dirName
 then namesMatching (dropTrailingPathSeparator dirName)
 else return [dirName]
 let listDir = if isPattern baseName
 then listMatches
 else listPlain
 pathNames <- forM dirs $ \dir -> do
 baseNames <- listDir dir baseName
 return (map (dir </>) baseNames)
 return (concat pathNames)
We use splitFileName to split the string into a pair
 of “everything but the final name” and “the final name.” If
 the first element is empty, we’re looking for a pattern in the current
 directory. Otherwise, we must check the directory name and see if it
 contains patterns. If it does not, we create a singleton list of the
 directory name. If it contains a pattern, we list all of the matching
 directories.
Things to watch out for
The System.FilePath module can be a little tricky. The example just shown is a
 case in point; the splitFileName
 function leaves a trailing slash on the end of the directory name that
 it returns:
ghci> :module +System.FilePath
ghci> splitFileName "foo/bar"
Loading package filepath-1.1.0.0 ... linking ... done.
("foo/","bar")
If we didn’t remember (or know enough)
 to remove that slash, we’d recurse endlessly in namesMatching, because of the following
 behavior of splitFileName:
ghci> splitFileName "foo/"
("foo/","")

(You can guess what happened to us that
 led us to add this note!)

Finally, we collect all matches in every
 directory, giving us a list of lists, and concatenate them into a single
 list of names.
The unfamiliar forM function above acts a little like a
 “for” loop: it maps its second argument (an action) over
 its first (a list), and returns the list of results.
We have a few loose ends to clean up. The
 first is the definition of the doesNameExist function, used above. The
 System.Directory module doesn’t let us check to see if a name exists in the
 filesystem. It forces us to decide whether we want to check for a file
 or a directory. This API is ungainly, so we roll the two checks into a
 single function. In the name of performance, we make the check for a
 file first, since files are far more common than directories:
-- file: ch08/Glob.hs
doesNameExist :: FilePath -> IO Bool

doesNameExist name = do
 fileExists <- doesFileExist name
 if fileExists
 then return True
 else doesDirectoryExist name
We have two other functions to define,
 each of which returns a list of names in a directory. The listMatches function returns a list of all
 files matching the given glob pattern in a directory:
-- file: ch08/Glob.hs
listMatches :: FilePath -> String -> IO [String]
listMatches dirName pat = do
 dirName' <- if null dirName
 then getCurrentDirectory
 else return dirName
 handle (const (return [])) $ do
 names <- getDirectoryContents dirName'
 let names' = if isHidden pat
 then filter isHidden names
 else filter (not . isHidden) names
 return (filter (`matchesGlob` pat) names')

isHidden ('.':_) = True
isHidden _ = False
The listPlain function returns either an empty or
 singleton list, depending on whether the single name it’s passed
 exists:
-- file: ch08/Glob.hs
listPlain :: FilePath -> String -> IO [String]
listPlain dirName baseName = do
 exists <- if null baseName
 then doesDirectoryExist dirName
 else doesNameExist (dirName </> baseName)
 return (if exists then [baseName] else [])
If we look closely at the definition of
 listMatches, we’ll see a call to a
 function named handle. Earlier on,
 we imported this from the Control.Exception module; as that import
 implies, this gives us our first taste of exception handling in Haskell.
 Let’s drop into ghci and see what we
 can find out:
ghci> :module +Control.Exception
ghci> :type handle
handle :: (Exception -> IO a) -> IO a -> IO a
This is telling us that handle takes two arguments. The first is a
 function that is passed an exception value, and can have side effects
 (see the IO type in its return value); this is the handler
 to run if an exception is thrown. The second argument is the code that
 might throw an exception.
As for the exception handler, the type of
 the handle constrains it to return
 the same type of value as the body of code that threw the exception. So
 its choices are to either throw an exception or, as in our case, return
 a list of Strings.
The const function takes two arguments—it always
 returns its first argument, no matter what its second argument
 is:
ghci> :type const
const :: a -> b -> a
ghci> :type return []
return [] :: (Monad m) => m [a]
ghci> :type handle (const (return []))
handle (const (return [])) :: IO [a] -> IO [a]
We use const to write an exception handler that
 ignores the exception it is passed. Instead, it causes our code to
 return an empty list if we catch an exception.
We won’t have anything more to say about
 exception handling here. There’s plenty more to cover, though, so we’ll
 be returning to the subject of exceptions in Chapter 19.
Exercises
	Although we’ve gone to some lengths to write a portable
 namesMatching function, the
 function uses our case sensitive globToRegex function. Find a way to
 modify namesMatching to be
 case-sensitive on Unix, and case insensitive on Windows, without
 modifying its type signature. (Hint: consider
 reading the documentation for System.FilePath to look for a variable
 that tells us whether we’re running on a Unix-like system or on
 Windows.)

	If you’re on a Unix-like system, look through the
 documentation for the System.Posix.Files module, and see if you
 can find a replacement for the doesNameExist function.

	The * wild card matches
 names only within a single directory. Many shells have an extended
 wild card syntax, **, that
 matches names recursively in all directories. For example,
 **.c would mean “match a
 name ending in .c in this
 directory or any subdirectory at any depth”. Implement
 matching on ** wild
 cards.

Handling Errors Through API Design

It’s not necessarily a disaster if our globToRegex is passed a malformed pattern.
 Perhaps a user mistyped a pattern, in which case, we’d like to be able
 to report a meaningful error message.
Calling the error function when this kind of problem occurs can be a drastic
 response (exploring its consequences was the focus of Exercises). The error throws an exception. Pure Haskell code
 cannot deal with exceptions, so control is going to rocket out of our
 pure code into the nearest caller that lives in
 IO and has an appropriate exception handler
 installed. If no such handler is installed, the Haskell runtime will
 default to terminating our program (or print a nasty error message, in
 ghci).
So calling error is a little like pulling the handle of
 a fighter plane’s ejection seat. We’re bailing out of a catastrophic
 situation that we can’t deal with gracefully, and there’s likely to be a
 lot of flaming wreckage strewn about by the time we hit the
 ground.
We’ve established that error is for disasters, but we’re still using
 it in globToRegex. In that case,
 malformed input should be rejected, but not turned into a big deal. What
 would be a better way to handle this?
Haskell’s type system and libraries to the
 rescue! We can encode the possibility of failure in the type signature
 of globToRegex using the predefined
 Either type:
-- file: ch08/GlobRegexEither.hs
type GlobError = String

globToRegex :: String -> Either GlobError String
A value returned by globToRegex will now be either Left "an error message" or Right "a valid regexp". This return type
 forces our callers to deal with the possibility of error. (You’ll find
 that this use of the Either type occurs frequently in
 Haskell code.)
Exercises
	Write a version of globToRegex that uses the type
 signature shown earlier.

	Modify the type signature of namesMatching so that it encodes the
 possibility of a bad pattern, and make it use your rewritten
 globToRegex function.

Tip
You may find the amount of work involved to be surprisingly
 large. Don’t worry; we will introduce more concise and sophisticated
 ways of dealing with errors in later chapters.

Putting Our Code to Work

The namesMatching function isn’t very exciting by
 itself, but it’s a useful building block. Combine it with a few more
 functions, and we can start to do interesting things.
Here’s one such example. Let’s define a
 renameWith function that, instead
 of simply renaming a file, applies a function to the file’s name, and
 renames the file to whatever that function returns:
-- file: ch08/Useful.hs
import System.FilePath (replaceExtension)
import System.Directory (doesFileExist, renameDirectory, renameFile)
import Glob (namesMatching)

renameWith :: (FilePath -> FilePath)
 -> FilePath
 -> IO FilePath

renameWith f path = do
 let path' = f path
 rename path path'
 return path'
Once again, we work around the ungainly
 file/directory split in System.Directory with a helper
 function:
-- file: ch08/Useful.hs
rename :: FilePath -> FilePath -> IO ()

rename old new = do
 isFile <- doesFileExist old
 let f = if isFile then renameFile else renameDirectory
 f old new
The System.FilePath module provides many useful
 functions for manipulating filenames. These functions mesh nicely with
 our renameWith and namesMatching functions, so that we can
 quickly use them to create functions with complex behavior. As an
 example, this terse function changes the filename suffixing convention
 for C++ source files:
-- file: ch08/Useful.hs
cc2cpp =
 mapM (renameWith (flip replaceExtension ".cpp")) =<< namesMatching "*.cc"
The cc2cpp function uses a few functions we’ll
 see over and over. The flip
 function takes another function as argument and swaps the order of its
 arguments (inspect the type of replaceExtension in ghci to see why). The =<< function feeds the result of the action on its right side to the
 action on
 its left.
Exercise
	Glob patterns are simple enough to interpret that it’s easy
 to write a matcher directly in Haskell, rather than going through
 the regexp machinery. Give it a try.

[27] If you are not acquainted with regular expressions,
 we recommend Jeffrey Friedl’s book Mastering Regular
 Expressions (O’Reilly).

Chapter 9. I/O Case Study: A Library for Searching the Filesystem

The problem of “I know I have this file, but I don’t know
 where it is” has been around for as long as computers have had
 hierarchical filesystems. The fifth edition of Unix introduced the
 find command in 1974; it remains indispensable today. The state of the
 art has come a long way: modern operating systems ship with advanced
 document indexing and search capabilities.
There’s still a valuable place for find-like capability in the programmer’s
 toolbox. In this chapter, we’ll develop a library that gives us many of
 find’s capabilities, without leaving
 Haskell. We’ll explore several different approaches to writing this
 library, each with different strengths.
The find Command

If you don’t use a Unix-like operating
 system, or you’re not a heavy shell user, it’s quite possible you may
 not have heard of find. Given a list
 of directories, it searches each one recursively and prints the name of
 every entry that matches an expression.
Individual expressions can take such forms
 as “name matches this glob pattern,” “entry is a plain file,” “last
 modified before this date,” and many more. They can be stitched together
 into more complex expressions using “and” and
 “or” operators.

Starting Simple: Recursively Listing a Directory

Before we plunge into designing our library, let’s solve a few smaller
 issues. Our first problem is to recursively list the contents of a
 directory and its subdirectories:
-- file: ch09/RecursiveContents.hs
module RecursiveContents (getRecursiveContents) where

import Control.Monad (forM)
import System.Directory (doesDirectoryExist, getDirectoryContents)
import System.FilePath ((</>))

getRecursiveContents :: FilePath -> IO [FilePath]

getRecursiveContents topdir = do
 names <- getDirectoryContents topdir
 let properNames = filter (`notElem` [".", ".."]) names
 paths <- forM properNames $ \name -> do
 let path = topdir </> name
 isDirectory <- doesDirectoryExist path
 if isDirectory
 then getRecursiveContents path
 else return [path]
 return (concat paths)
The filter expression ensures that a listing for
 a single directory won’t contain the special directory names . or ..,
 which refer to the current and parent directory, respectively. If we
 forgot to filter these out, we’d recurse endlessly.
We encountered forM in the previous chapter; it is mapM with its arguments flipped:
ghci> :m +Control.Monad
ghci> :type mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :type forM
forM :: (Monad m) => [a] -> (a -> m b) -> m [b]
The body of the loop checks to see whether
 the current entry is a directory. If it is, it recursively calls
 getRecursiveContents to list that
 directory. Otherwise, it returns a single-element list that is the name of
 the current entry. (Don’t forget that the return function has a unique meaning in
 Haskell: it wraps a value with the monad’s type constructor.)
Another thing worth pointing out is the
 use of the variable isDirectory. In an imperative
 language such as Python, we’d normally write if
 os.path.isdir(path). However, the doesDirectoryExist function is an
 action; its return type is IO Bool,
 not Bool. Since an if
 expression requires an expression of type Bool, we have to
 use <- to get the Bool result of the action
 out of its IO wrapper so that we can use the plain,
 unwrapped Bool in the if.
Each iteration of the loop body yields a
 list of names, so the result type of forM here is IO [[FilePath]]. We
 use concat to flatten it into a
 single list.
Revisiting Anonymous and Named Functions

In Anonymous (lambda) Functions, we listed some reasons not to use anonymous functions,
 and yet here we are, using one as the body of a loop. This is one of
 the most common uses of anonymous functions in Haskell.
We’ve already seen from their types that
 forM and mapM take functions as arguments. Most loop
 bodies are blocks of code that appear only once in a program. Since
 we’re most likely to use a loop body in one place only, why give it a
 name?
Of course, it sometimes happens that we
 need to deploy exactly the same code in several different loops.
 Rather than cutting and pasting the same anonymous function, it makes
 sense in such cases to give a name to an existing anonymous
 function.

Why Provide Both mapM and forM?

It might seem a bit odd that there exist two functions that are
 identical but for the order in which they accept their arguments.
 However, mapM and forM are convenient in different circumstances.
Consider our previous example, using an
 anonymous function as a loop body. If we were to use mapM instead of forM, we’d have to place the variable
 properNames after the body of the function. In
 order to get the code to parse correctly, we’d have to wrap the entire
 anonymous function in parentheses, or replace it with a named function
 that would otherwise be unnecessary. Try it yourself: copy the code
 just shown, replacing forM with
 mapM, and see what this does to
 the readability of the code.
By contrast, if the body of the loop was
 already a named function, and the list over which we were looping was
 computed by a complicated expression, we’d have a good case for using
 mapM instead.
The stylistic rule of thumb to follow
 here is to use whichever of mapM
 or forM lets you write the
 tidiest code. If the loop body and the expression computing the data
 over which you’re looping are both short, it doesn’t matter which you
 use. If the loop is short, but the data is long, use mapM. If the loop is long, but the data
 short, use forM. And if both are
 long, use a let or where clause to make one of them short. With
 just a little practice, it will become obvious which of these
 approaches is best in every instance.

A Naive Finding Function

We can use our getRecursiveContents function as the basis
 for a simple-minded file finder:
-- file: ch09/SimpleFinder.hs
import RecursiveContents (getRecursiveContents)

simpleFind :: (FilePath -> Bool) -> FilePath -> IO [FilePath]

simpleFind p path = do
 names <- getRecursiveContents path
 return (filter p names)
This function takes a predicate that we
 use to filter the names returned by getRecursiveContents. Each name passed to the
 predicate is a complete path, so how can we perform a common operation
 such as “find all files ending in the extension .c”?
The System.FilePath
 module contains numerous invaluable functions that help us to
 manipulate filenames. In this case, we want takeExtension:
ghci> :m +System.FilePath
ghci> :type takeExtension
takeExtension :: FilePath -> String
ghci> takeExtension "foo/bar.c"
Loading package filepath-1.1.0.0 ... linking ... done.
".c"
ghci> takeExtension "quux"
""
This gives us a simple matter of writing a
 function that takes a path, extracts its extension, and compares it with
 .c:
ghci> :load SimpleFinder
[1 of 2] Compiling RecursiveContents (RecursiveContents.hs, interpreted)
[2 of 2] Compiling Main (SimpleFinder.hs, interpreted)
Ok, modules loaded: RecursiveContents, Main.
ghci> :type simpleFind (\p -> takeExtension p == ".c")
simpleFind (\p -> takeExtension p == ".c") :: FilePath -> IO [FilePath]
While simpleFind works, it has a few glaring
 problems. The first is that the predicate is not very expressive. It can
 only look at the name of a directory entry; it cannot, for example, find
 out whether it’s a file or a directory. This means that our attempt to
 use simpleFind will list
 directories ending in .c as well as
 files with the same extension.
The second problem is that simpleFind gives us no control over how it
 traverses the filesystem. To see why this is significant, consider the
 problem of searching for a source file in a tree managed by the
 Subversion revision control system. Subversion maintains a private
 .svn directory in every directory
 that it manages; each one contains many subdirectories and files that
 are of no interest to us. While we can easily filter out any path
 containing .svn, it’s more
 efficient to simply avoid traversing these directories in the first
 place. For example, one of us has a Subversion source tree containing
 45,000 files, 30,000 of which are stored in 1,200 different .svn directories. It’s cheaper to avoid
 traversing those 1,200 directories than to filter out the 30,000 files
 they contain.
Finally, simpleFind is strict, because it consists of
 a series of actions executed in the IO monad. If we have a
 million files to traverse, we encounter a long delay, and then receive
 one huge result containing a million names. This is bad for both
 resource usage and responsiveness. We might prefer a lazy stream of
 results delivered as they arrive.
In the sections that follow, we’ll
 overcome each one of these problems.

Predicates: From Poverty to Riches, While Remaining Pure

Our predicates can only look at filenames. This excludes a
 wide variety of interesting behaviors—for instance, what if we’d like to
 list files greater than a given size?
An easy reaction to this is to reach for
 IO: instead of our predicate being of type FilePath
 -> Bool, why don’t we change it to FilePath -> IO
 Bool? This would let us perform arbitrary I/O as part of our
 predicate. As appealing as this might seem, it’s also potentially a
 problem: such a predicate could have arbitrary side effects, since a
 function with return type IO a can have whatever side
 effects it pleases.
Let’s enlist the type system in our quest
 to write more predictable, less buggy code; we’ll keep predicates pure
 by avoiding the taint of “IO.” This will ensure that they can’t have any
 nasty side effects. We’ll feed them more information, too, so that they
 can gain the expressiveness we want without also becoming potentially
 dangerous.
Haskell’s portable
 System.Directory module provides a useful, albeit limited,
 set of file metadata:
ghci> :m +System.Directory
We can use doesFileExist and
 doesDirectoryExist to determine
 whether a directory entry is a file or a directory. There are not yet
 portable ways to query for other file types that have become widely
 available in recent years, such as named pipes, hard links, and symbolic
 links:
ghci> :type doesFileExist
doesFileExist :: FilePath -> IO Bool
ghci> doesFileExist "."
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
False
ghci> :type doesDirectoryExist
doesDirectoryExist :: FilePath -> IO Bool
ghci> doesDirectoryExist "."
True
The getPermissions function
 lets us find out whether certain operations on a file or directory are
 allowed:
ghci> :type getPermissions
getPermissions :: FilePath -> IO Permissions
ghci> :info Permissions
data Permissions
 = Permissions {readable :: Bool,
 writable :: Bool,
 executable :: Bool,
 searchable :: Bool}
 	-- Defined in System.Directory
instance Eq Permissions -- Defined in System.Directory
instance Ord Permissions -- Defined in System.Directory
instance Read Permissions -- Defined in System.Directory
instance Show Permissions -- Defined in System.Directory
ghci> getPermissions "."
Permissions {readable = True, writable = True, executable = False, searchable = True}
ghci> :type searchable
searchable :: Permissions -> Bool
ghci> searchable it
True
Finally, getModificationTime
 tells us when an entry was last modified:
ghci> :type getModificationTime
getModificationTime :: FilePath -> IO System.Time.ClockTime
ghci> getModificationTime "."
Sat Aug 23 22:28:16 PDT 2008
If we stick with portable, standard
 Haskell code, these functions are all we have at our disposal. (We can
 also find a file’s size using a small hack; see below.) They’re also
 quite enough to let us illustrate the principles we’re interested in,
 without letting us get carried away with an example that’s too
 expansive. If you need to write more demanding code, the System.Posix and
 System.Win32 module families provide much more detailed
 file metadata for the two major modern computing platforms. There also
 exists a unix-compat package on Hackage, which provides a Unix-like API on
 Windows.
How many pieces of data does our new,
 richer predicate need to see? Since we can find out whether an entry is
 a file or a directory by looking at its Permissions, we
 don’t need to pass in the results of doesFileExist or doesDirectoryExist. We thus have four pieces
 of data that a richer predicate needs to look at:
-- file: ch09/BetterPredicate.hs
import Control.Monad (filterM)
import System.Directory (Permissions(..), getModificationTime, getPermissions)
import System.Time (ClockTime(..))
import System.FilePath (takeExtension)
import Control.Exception (bracket, handle)
import System.IO (IOMode(..), hClose, hFileSize, openFile)

-- the function we wrote earlier
import RecursiveContents (getRecursiveContents)

type Predicate = FilePath -- path to directory entry
 -> Permissions -- permissions
 -> Maybe Integer -- file size (Nothing if not file)
 -> ClockTime -- last modified
 -> Bool
Our Predicate type is just a
 synonym for a function of four arguments. It will save us a little
 keyboard work and screen space.
Notice that the return value of this
 predicate is Bool, not IO Bool: the predicate
 is pure and cannot perform I/O. With this type in hand, our more
 expressive finder function is still quite trim:
-- file: ch09/BetterPredicate.hs
-- soon to be defined
getFileSize :: FilePath -> IO (Maybe Integer)

betterFind :: Predicate -> FilePath -> IO [FilePath]

betterFind p path = getRecursiveContents path >>= filterM check
 where check name = do
 perms <- getPermissions name
 size <- getFileSize name
 modified <- getModificationTime name
 return (p name perms size modified)
Let’s walk through the code. We’ll talk
 about getFileSize in some detail
 soon, so let’s skip over it for now.
We can’t use filter to call our predicate
 p, as p’s purity means it cannot
 do the I/O needed to gather the metadata it requires.
This leads us to the unfamiliar function
 filterM. It behaves like the normal
 filter function, but in this case
 it evaluates its predicate in the IO monad, allowing the
 predicate to perform I/O:
ghci> :m +Control.Monad
ghci> :type filterM
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
Our check predicate is an I/O-capable wrapper for
 our pure predicate p. It does all the
 “dirty” work of I/O on p’s behalf so
 that we can keep p incapable of unwanted side
 effects. After gathering the metadata, check calls p, and then
 uses return to wrap
 p’s result with IO.

Sizing a File Safely

Although System.Directory doesn’t let us find out how
 large a file is, we can use the similarly portable
 System.IO module to do this. It contains a function named hFileSize, which returns the size in bytes of
 an open file. Here’s a simple function that wraps it:
-- file: ch09/BetterPredicate.hs
simpleFileSize :: FilePath -> IO Integer

simpleFileSize path = do
 h <- openFile path ReadMode
 size <- hFileSize h
 hClose h
 return size
While this function works, it’s not yet
 suitable for us to use. In betterFind, we call getFileSize unconditionally on any directory
 entry; it should return Nothing if an entry is not a plain
 file, or it returns the size wrapped by Just otherwise.
 This function instead throws an exception if an entry is not a plain
 file or could not be opened (perhaps due to insufficient permissions),
 and returns the size unwrapped.
Here’s a safer version of this
 function:
-- file: ch09/BetterPredicate.hs
saferFileSize :: FilePath -> IO (Maybe Integer)

saferFileSize path = handle (_ -> return Nothing) $ do
 h <- openFile path ReadMode
 size <- hFileSize h
 hClose h
 return (Just size)
The body of the function is almost
 identical, save for the handle
 clause.
Our exception handler ignores the
 exception it’s passed and returns Nothing. The only change
 to the body that follows is that it wraps the file size with Just.
The saferFileSize function now has the correct
 type signature, and it won’t throw any exceptions. But it’s still not
 completely well behaved. There are directory entries on which openFile will succeed, but hFileSize will throw an exception. This can
 happen with, for example, named pipes. Such an exception will be caught
 by handle, but our call to
 hClose will never occur.
A Haskell implementation will
 automatically close the file handle when it notices that the handle is
 no longer being used. That will not occur until the garbage collector
 runs, and the delay until the next garbage collection pass
 is not predictable.
File handles are scarce resources,
 enforced by the underlying operating system. On Linux,
 for example, a process is by default allowed to have only 1,024 files
 open simultaneously.
It’s not hard to imagine a scenario in
 which a program that called a version of betterFind that used saferFileSize could crash due to betterFind exhausting the supply of open file
 handles before enough garbage file handles could be closed.
This is a particularly pernicious kind of
 bug: it has several aspects that combine to make it incredibly difficult
 to track down. It will only be triggered if betterFind visits a sufficiently large number of nonfiles to
 hit the process’s limit on open file handles, and then returns to a
 caller that tries to open another file before any of the accumulated
 garbage file handles are closed.
To make matters worse, any subsequent error will be
 caused by data that is no longer reachable from within the program and
 has yet to be garbage-collected. Such a bug is thus dependent on the
 structure of the program, the contents of the filesystem, and how close
 the current run of the program is to triggering the garbage
 collector.
This sort of problem is easy to overlook
 during development, and when it later occurs in the field (as these
 awkward problems always seem to do), it will be much harder to
 diagnose.
Fortunately, we can avoid this kind of
 error very easily, while also making our function
 shorter.
The Acquire-Use-Release Cycle

We need hClose to
 always be called if openFile
 succeeds. The Control.Exception module provides the bracket function for exactly this
 purpose:
ghci> :type bracket
bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

The bracket function takes three actions as arguments. The first action
 acquires a resource. The second releases the resource. The third runs
 in between, while the resource is acquired; let’s call this the
 “use” action. If the “acquire” action
 succeeds, the “release” action is
 always called. This guarantees that the resource
 will always be released. The “use” and
 “release” actions are each passed the resource acquired
 by the “acquire” action.
If an exception occurs while the
 “use” action is executing, bracket calls the “release”
 action and rethrows the exception. If the “use” action
 succeeds, bracket calls the
 “release” action and returns the value returned by the
 “use” action.
We can now write a function that is
 completely safe—it will not throw exceptions, neither will it
 accumulate garbage file handles that could cause spurious failures
 elsewhere in our program:
-- file: ch09/BetterPredicate.hs
getFileSize path = handle (_ -> return Nothing) $
 bracket (openFile path ReadMode) hClose $ \h -> do
 size <- hFileSize h
 return (Just size)
Look again closely at the arguments of
 bracket. The first opens the file
 and returns the open file handle. The second closes the handle. The
 third simply calls hFileSize
 on the handle and wraps the result in Just.
We need to use both bracket and handle for this function to operate
 correctly. The former ensures that we don’t accumulate garbage file
 handles, while the latter gets rid of exceptions.
Exercise
	Is the order in which we call bracket and handle important? Why?

A Domain-Specific Language for Predicates

Let’s take a stab at writing a predicate that will check for a
 C++ source file that is over 128 KB in size:
-- file: ch09/BetterPredicate.hs
myTest path _ (Just size) _ =
 takeExtension path == ".cpp" && size > 131072
myTest _ _ _ _ = False
This isn’t especially pleasing. The
 predicate takes four arguments, always ignores two of them, and requires
 two equations to define. Surely we can do better. Let’s create some code
 that will help us write more concise predicates.
Sometimes, this kind of library is
 referred to as an embedded domain-specific
 language: we use our programming language’s native facilities
 (hence embedded) to write code that lets us solve
 some narrow problem (hence domain-specific)
 particularly elegantly.
Our first step is to write a function that
 returns one of its arguments. This one extracts the path from the
 arguments passed to a Predicate:
-- file: ch09/BetterPredicate.hs
pathP path _ _ _ = path
If we don’t provide a type signature, a
 Haskell implementation will infer a very general type for this function.
 This can later lead to error messages that are difficult to interpret,
 so let’s give pathP a type:
-- file: ch09/BetterPredicate.hs
type InfoP a = FilePath -- path to directory entry
 -> Permissions -- permissions
 -> Maybe Integer -- file size (Nothing if not file)
 -> ClockTime -- last modified
 -> a

pathP :: InfoP FilePath
We’ve created a type synonym that we can
 use as shorthand for writing other, similarly structured functions. Our
 type synonym accepts a type parameter so that we can specify different
 result types:
-- file: ch09/BetterPredicate.hs
sizeP :: InfoP Integer
sizeP _ _ (Just size) _ = size
sizeP _ _ Nothing _ = -1
(We’re being a little sneaky here and
 returning a size of –1 for entries that are not files or that we
 couldn’t open.)
In fact, a quick glance shows that the
 Predicate type that we defined near the beginning of this
 chapter is the same type as InfoP Bool. (We could thus
 legitimately get rid of the Predicate type.)
What use are pathP and sizeP? With a little more glue, we can use
 them in a predicate (the P suffix on each name is intended
 to suggest “predicate”). This is where things start to get
 interesting:
-- file: ch09/BetterPredicate.hs
equalP :: (Eq a) => InfoP a -> a -> InfoP Bool
equalP f k = \w x y z -> f w x y z == k
The type signature of equalP deserves a little attention. It takes an InfoP a type, which is
 compatible with both pathP and
 sizeP. It next takes an
 a and returns an InfoP Bool type, which we
 already observed is a synonym for Predicate. In other
 words, equalP constructs a
 predicate.
The equalP function works by returning an
 anonymous function. That one takes the arguments accepted by a
 predicate, passes them to f, and compares the result
 to k.
This equation for equalP emphasizes the fact that we think of
 it as taking two arguments. Since Haskell curries all functions, writing
 equalP in this way is not actually
 necessary. We can omit the anonymous function and rely on currying to
 work on our behalf, letting us write a function that behaves
 identically:
-- file: ch09/BetterPredicate.hs
equalP' :: (Eq a) => InfoP a -> a -> InfoP Bool
equalP' f k w x y z = f w x y z == k
Before we continue with our explorations,
 let’s load our module into ghci:
ghci> :load BetterPredicate
[1 of 2] Compiling RecursiveContents (RecursiveContents.hs, interpreted)
[2 of 2] Compiling Main (BetterPredicate.hs, interpreted)
Ok, modules loaded: RecursiveContents, Main.

Let’s see if a simple predicate
 constructed from these functions will work:
ghci> :type betterFind (sizeP `equalP` 1024)
betterFind (sizeP `equalP` 1024) :: FilePath -> IO [FilePath]

Notice that we’re not actually calling
 betterFind, we’re merely making
 sure that our expression typechecks. We now have a more expressive way
 to list all files that are exactly some size. Our success gives us
 enough confidence to continue.
Avoiding Boilerplate with Lifting

Besides equalP, we’d like to be able to write other binary functions. We’d
 prefer not to write a complete definition of each one, because that
 seems unnecessarily verbose.
To address this, let’s put Haskell’s
 powers of abstraction to use. We’ll take the definition of equalP, and instead of calling (==) directly, we’ll pass in as another argument the binary function
 that we want to call:
-- file: ch09/BetterPredicate.hs
liftP :: (a -> b -> c) -> InfoP a -> b -> InfoP c
liftP q f k w x y z = f w x y z `q` k

greaterP, lesserP :: (Ord a) => InfoP a -> a -> InfoP Bool
greaterP = liftP (>)
lesserP = liftP (<)
This act of taking a function, such as
 (>), and transforming it into another function that operates
 in a different context (here greaterP) is referred to as
 lifting it into that context. (This explains the presence of
 lift in the function’s name.) Lifting lets us reuse code
 and reduce boilerplate. We’ll be using it a lot, in different guises,
 throughout the rest of this book.
When we lift a function, we’ll often
 refer to its original and new versions as
 unlifted and lifted,
 respectively.
By the way, our placement of
 q (the function to lift) as the first argument to
 liftP was quite deliberate. This
 made it possible for us to write such concise definitions of greaterP and lesserP. Partial application makes finding
 the “best” order for arguments a more important part of
 API design in Haskell than in other languages. In languages without
 partial application, argument ordering is a matter of taste and
 convention. Put an argument in the wrong place in Haskell, however,
 and we lose the concision that partial application gives.
We can recover some of that conciseness
 via combinators. For instance, forM was not added to the
 Control.Monad module until 2007. Prior to that, people
 wrote flip mapM instead:
ghci> :m +Control.Monad
ghci> :t mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :t forM
forM :: (Monad m) => [a] -> (a -> m b) -> m [b]
ghci> :t flip mapM
flip mapM :: (Monad m) => [a] -> (a -> m b) -> m [b]

Gluing Predicates Together

If we want to combine predicates, we
 can, of course, follow the obvious path of doing so by hand:
-- file: ch09/BetterPredicate.hs
simpleAndP :: InfoP Bool -> InfoP Bool -> InfoP Bool
simpleAndP f g w x y z = f w x y z && g w x y z
Now that we know about lifting, it
 becomes more natural to reduce the amount of code we must write by
 lifting our existing Boolean operators:
-- file: ch09/BetterPredicate.hs
liftP2 :: (a -> b -> c) -> InfoP a -> InfoP b -> InfoP c
liftP2 q f g w x y z = f w x y z `q` g w x y z

andP = liftP2 (&&)
orP = liftP2 (||)
Notice that liftP2 is very similar to our earlier
 liftP. In fact, it’s more
 general, because we can write liftP in terms of liftP2:
-- file: ch09/BetterPredicate.hs
constP :: a -> InfoP a
constP k _ _ _ _ = k

liftP' q f k w x y z = f w x y z `q` constP k w x y z
Combinators
In Haskell, we refer to functions that
 take other functions as arguments and return new functions
 as combinators.

Now that we have some helper functions
 in place, we can return to the myTest function we defined earlier:
-- file: ch09/BetterPredicate.hs
myTest path _ (Just size) _ =
 takeExtension path == ".cpp" && size > 131072
myTest _ _ _ _ = False
How will this function look if we write
 it using our new combinators?
-- file: ch09/BetterPredicate.hs
liftPath :: (FilePath -> a) -> InfoP a
liftPath f w _ _ _ = f w

myTest2 = (liftPath takeExtension `equalP` ".cpp") `andP`
 (sizeP `greaterP` 131072)
We’ve added one final combinator,
 liftPath, since manipulating
 filenames is such a common activity.

Defining and Using New Operators

We can take our domain-specific language further by defining new infix
 operators:
-- file: ch09/BetterPredicate.hs
(==?) = equalP
(&&?) = andP
(>?) = greaterP

myTest3 = (liftPath takeExtension ==? ".cpp") &&? (sizeP >? 131072)
We chose names such as (==?) for the lifted functions specifically
 for their visual similarity to their unlifted counterparts.
The parentheses in our definition are
 necessary, because we haven’t told Haskell about the precedence or
 associativity of our new operators. The language specifies that
 operators without fixity declarations should be treated as
 infixl 9, i.e., evaluated from left to right at the
 highest precedence level. If we were to omit the parentheses, the
 expression would thus be parsed as (((liftPath takeExtension)
 ==? ".cpp") &&? sizeP) >? 131072, which is horribly
 wrong.
We can respond by writing fixity
 declarations for our new operators. Our first step is to find out what
 the fixities of the unlifted operators are, so that we can mimic
 them:
ghci> :info ==
class Eq a where
 (==) :: a -> a -> Bool
 ...
 	-- Defined in GHC.Base
infix 4 ==
ghci> :info &&
(&&) :: Bool -> Bool -> Bool 	-- Defined in GHC.Base
infixr 3 &&
ghci> :info >
class (Eq a) => Ord a where
 ...
 (>) :: a -> a -> Bool
 ...
 	-- Defined in GHC.Base
infix 4 >
With these in hand, we can now write a
 parenthesis-free expression that will be parsed identically to
 myTest3:
-- file: ch09/BetterPredicate.hs
infix 4 ==?
infixr 3 &&?
infix 4 >?

myTest4 = liftPath takeExtension ==? ".cpp" &&? sizeP >? 131072

Controlling Traversal

When traversing the filesystem,
 we’d like to give ourselves more control over which directories we
 enter, and when. An easy way in which we can allow this is to pass in a
 function that takes a list of subdirectories of a given directory and
 returns another list. This list can have elements removed, or it can be
 ordered differently than the original list, or both. The simplest such
 control function is id, which will
 return its input list unmodified.
For variety, we’re going to change a few
 aspects of our representation here. Instead of the elaborate function
 type InfoP a, we’ll use a normal algebraic data type to substantially
 represent the same information:
-- file: ch09/ControlledVisit.hs
data Info = Info {
 infoPath :: FilePath
 , infoPerms :: Maybe Permissions
 , infoSize :: Maybe Integer
 , infoModTime :: Maybe ClockTime
 } deriving (Eq, Ord, Show)

getInfo :: FilePath -> IO Info
We’re using record syntax to give
 ourselves “free” accessor functions, such as infoPath. The type of our traverse function is simple, as we just
 proposed. To obtain Info about a file or directory, we call
 the getInfo action:
-- file: ch09/ControlledVisit.hs
traverse :: ([Info] -> [Info]) -> FilePath -> IO [Info]
The definition of traverse is short, but dense:
-- file: ch09/ControlledVisit.hs
traverse order path = do
 names <- getUsefulContents path
 contents <- mapM getInfo (path : map (path </>) names)
 liftM concat $ forM (order contents) $ \info -> do
 if isDirectory info && infoPath info /= path
 then traverse order (infoPath info)
 else return [info]

getUsefulContents :: FilePath -> IO [String]
getUsefulContents path = do
 names <- getDirectoryContents path
 return (filter (`notElem` [".", ".."]) names)

isDirectory :: Info -> Bool
isDirectory = maybe False searchable . infoPerms
While we’re not introducing any new
 techniques here, this is one of the densest function definitions we’ve
 yet encountered. Let’s walk through it almost line by line, explaining
 what is going on.
The first couple of lines hold no mystery, as they’re almost
 verbatim copies of code we’ve already seen. Things begin to get
 interesting when we assign to the variable contents.
 Let’s read this line from right to left. We already know that
 names is a list of directory entries. We make sure
 that the current directory is prepended to every element of the list and
 included in the list itself. We use mapM to apply getInfo to the resulting paths.
The line that follows is even more dense.
 Again reading from right to left, we see that the last element of the
 line begins the definition of an anonymous function that continues to
 the end of the paragraph. Given one Info value, this
 function either visits a directory recursively (there’s an extra check
 to make sure we don’t visit path again), or returns
 that value as a single-element list (to match the result type of
 traverse).
We use forM to apply this function to each element
 of the list of Info values returned by
 order, the user-supplied traversal control
 function.
At the beginning of the line, we use the
 technique of lifting in a new context. The liftM function takes a regular function, concat, and lifts it into the IO
 monad. In other words, it takes the result of forM (of type IO [[Info]]) out
 of the IO monad, applies concat to it (yielding a result of type
 [Info], which is what we need), and puts the result back
 into the IO monad.
Finally, we mustn’t forget to define our
 getInfo function:
-- file: ch09/ControlledVisit.hs
maybeIO :: IO a -> IO (Maybe a)
maybeIO act = handle (_ -> return Nothing) (Just `liftM` act)

getInfo path = do
 perms <- maybeIO (getPermissions path)
 size <- maybeIO (bracket (openFile path ReadMode) hClose hFileSize)
 modified <- maybeIO (getModificationTime path)
 return (Info path perms size modified)
The only noteworthy thing here is a useful
 combinator, maybeIO, which turns an
 IO action that might throw an exception into one that wraps
 its result in Maybe.
Exercises
	What should you pass to traverse to traverse a directory tree
 in reverse alphabetic order?

	Using id as a control
 function, traverse id performs a
 preorder traversal of a tree: it returns a
 parent directory before its children. Write a control function
 that makes traverse perform a
 postorder traversal, in which it returns
 children before their parent.

	Take the predicates and combinators from Gluing Predicates Together and make them work with our
 new Info type.

	Write a wrapper for traverse that lets you control
 traversal using one predicate and filter results using
 another.

Density, Readability, and the Learning Process

Code as dense as traverse is not unusual in Haskell. The gain in expressiveness is
 significant, and it requires a relatively small amount of practice to be
 able to fluently read and write code in this style.
For comparison, here’s a less dense
 presentation of the same code (this might be more typical of a less
 experienced Haskell programmer):
-- file: ch09/ControlledVisit.hs
traverseVerbose order path = do
 names <- getDirectoryContents path
 let usefulNames = filter (`notElem` [".", ".."]) names
 contents <- mapM getEntryName ("" : usefulNames)
 recursiveContents <- mapM recurse (order contents)
 return (concat recursiveContents)
 where getEntryName name = getInfo (path </> name)
 isDirectory info = case infoPerms info of
 Nothing -> False
 Just perms -> searchable perms
 recurse info = do
 if isDirectory info && infoPath info /= path
 then traverseVerbose order (infoPath info)
 else return [info]
All we’ve done here is make a few
 substitutions. Instead of liberally using partial application and function composition,
 we’ve defined some local functions in a where block. In place of the maybe combinator, we’re using a case expression. And instead of using
 liftM, we’re manually lifting
 concat ourselves.
This is not to say that density is a
 uniformly good property. Each line of the original traverse function is short. We introduce a
 local variable (usefulNames) and a local function
 (isDirectory) specifically to keep
 the lines short and the code clearer. Our names are descriptive. While
 we use function composition and pipelining, the longest pipeline
 contains only three elements.
The key to writing maintainable Haskell
 code is to find a balance between density and readability. Where your
 code falls on this continuum is likely to be influenced by your level of
 experience, as detailed here:
	As a beginning Haskell programmer,
 Andrew doesn’t know his way around the standard libraries very well.
 As a result, he unwittingly duplicates a lot of existing
 code.

	Zack has been programming for a few
 months and has mastered the use of (.) to compose long pipelines of code.
 Every time the needs of his program change slightly, he has to
 construct a new pipeline from scratch; he can’t understand the
 existing pipeline any longer, and it is in any case too fragile to
 change.

	Monica has been coding for a while.
 She’s familiar enough with Haskell libraries and idioms to write
 tight code, but she avoids a hyperdense style. Her code is
 maintainable, and she finds it easy to refactor when faced with
 changing requirements.

Another Way of Looking at Traversal

While the traverse function gives us more control than our original betterFind function, it still has a
 significant failing: we can avoid recursing into directories, but we
 can’t filter other names until after we’ve generated the entire list of
 names in a tree. If we are traversing a directory containing 100,000
 files of which we care about only 3, we’ll allocate a 100,000-element
 list before we have a chance to trim it down to the 3 we really
 want.
One approach would be to provide a filter
 function as a new argument to traverse, which we would apply to the list of
 names as we generate it. This would allow us to allocate a list of only
 as many elements as we need.
However, this approach also has a
 weakness. Say we know that we want at most 3 entries from our list, and
 that those 3 entries happen to be the first 3 of the 100,000 that we
 traverse. In this case, we’ll needlessly visit 99,997 other entries.
 This is not by any means a contrived example: for instance, the Maildir
 mailbox format stores a folder of email messages as a directory of
 individual files. It’s common for a single directory representing a
 mailbox to contain tens of thousands of files.
We can address the weaknesses of our two
 prior traversal functions by taking a different perspective: what if we
 think of filesystem traversal as a fold over the
 directory hierarchy?
The familiar folds, foldr and foldl', neatly generalize the idea of
 traversing a list while accumulating a result. It’s hardly a stretch to
 extend the idea of folding from lists to directory trees, but we’d like
 to add an element of control to our fold. We’ll
 represent this control as an algebraic data type:
-- file: ch09/FoldDir.hs
data Iterate seed = Done { unwrap :: seed }
 | Skip { unwrap :: seed }
 | Continue { unwrap :: seed }
 deriving (Show)

type Iterator seed = seed -> Info -> Iterate seed
The Iterator type gives us a convenient alias for the function that we fold
 with. It takes a seed and an Info value representing a
 directory entry, and returns both a new seed and an instruction for our
 fold function, where the instructions are represented as the
 constructors of the Iterate type:
	If the instruction is
 Done, traversal should cease immediately. The value
 wrapped by Done should be returned as the
 result.

	If the instruction is
 Skip and the current Info type represents
 a directory, traversal will not recurse into that directory.

	Otherwise, the traversal should
 continue, using the wrapped value as the input to the next call to
 the fold function.

Our fold is logically a kind of left fold,
 because we start folding from the first entry we encounter. The seed for
 each step is the result of the prior step:
-- file: ch09/FoldDir.hs
foldTree :: Iterator a -> a -> FilePath -> IO a

foldTree iter initSeed path = do
 endSeed <- fold initSeed path
 return (unwrap endSeed)
 where
 fold seed subpath = getUsefulContents subpath >>= walk seed

 walk seed (name:names) = do
 let path' = path </> name
 info <- getInfo path'
 case iter seed info of
 done@(Done _) -> return done
 Skip seed' -> walk seed' names
 Continue seed'
 | isDirectory info -> do
 next <- fold seed' path'
 case next of
 done@(Done _) -> return done
 seed'' -> walk (unwrap seed'') names
 | otherwise -> walk seed' names
 walk seed _ = return (Continue seed)
There are a few interesting things about
 the way this code is written. The first is the use of scoping to avoid
 having to pass extra parameters around. The top-level foldTree function is just a wrapper for
 fold that peels off the constructor
 of the fold’s final result.
Because fold is a local function, we don’t have to
 pass foldTree’s
 iter variable into it; it can already access it in
 the outer scope. Similarly, walk
 can see path in its outer scope.
Another point to note is that walk is a tail recursive loop, instead of an
 anonymous function called by forM
 as in our earlier functions. By taking the reins ourselves, we can stop
 early if we need to, which lets us drop out when our iterator returns
 Done.
Although fold calls walk, walk calls fold recursively to traverse subdirectories.
 Each function returns a seed wrapped in an Iterate: when
 fold is called by walk and returns, walk examines its result to see whether it
 should continue or drop out because it returned Done. In
 this way, a return of Done from the
 caller-supplied iterator immediately terminates all mutually recursive
 calls between the two functions.
What does an iterator look like in
 practice? Here’s a somewhat complicated example that looks for at most
 three bitmap images and won’t recurse into Subversion metadata
 directories:
-- file: ch09/FoldDir.hs
atMostThreePictures :: Iterator [FilePath]

atMostThreePictures paths info
 | length paths == 3
 = Done paths
 | isDirectory info && takeFileName path == ".svn"
 = Skip paths
 | extension `elem` [".jpg", ".png"]
 = Continue (path : paths)
 | otherwise
 = Continue paths
 where extension = map toLower (takeExtension path)
 path = infoPath info
To use this, we’d call foldTree
 atMostThreePictures [], giving us a return value of type IO
 [FilePath].
Of course, iterators don’t have to be this
 complicated. Here’s one that counts the number of directories it
 encounters:
-- file: ch09/FoldDir.hs
countDirectories count info =
 Continue (if isDirectory info
 then count + 1
 else count)
Here, the initial seed that we pass to
 foldTree should be the number
 zero.
Exercises
	Modify foldTree to
 allow the caller to change the order of traversal of entries in a
 directory.

	The foldTree function
 performs preorder traversal. Modify it to allow the caller to
 determine the order of traversal.

	Write a combinator library that makes it possible to express
 the kinds of iterators that foldTree accepts. Does it make the
 iterators you write any more succinct?

Useful Coding Guidelines

While many good Haskell
 programming habits come with experience, we have a few general
 guidelines to offer so that you can write readable code more
 quickly.
As we already mentioned in A Note About Tabs Versus Spaces, never use tab characters in Haskell source
 files. Use spaces.
If you find yourself proudly thinking that
 a particular piece of code is fiendishly clever, stop and consider
 whether you’ll be able to understand it again after you’ve stepped away
 from it for a month.
The conventional way of naming types and
 variables with compound names is to use camel case, i.e.,
 myVariableName. This style is almost universal in
 Haskell code. Regardless of your opinion of other naming practices, if
 you follow a nonstandard convention, your Haskell code will be somewhat
 jarring to the eyes of other readers.
Until you’ve been working with Haskell for
 a substantial amount of time, spend a few minutes searching for library
 functions before you write small functions. This applies particularly to
 ubiquitous types such as lists, Maybe, and
 Either. If the standard libraries don’t already provide
 exactly what you need, you might be able to combine a few functions to
 obtain the result you desire.
Long pipelines of composed functions are
 hard to read, where long means a series of more
 than three or four elements. If you have such a pipeline, use a let or where block to break it into smaller parts.
 Give each one of these pipeline elements a meaningful name, and then
 glue them back together. If you can’t think of a meaningful name for an
 element, ask yourself if you can even describe what it does. If the
 answer is “no,” simplify your code.
Even though it’s easy to resize a text
 editor window far beyond 80 columns, this width is still very common.
 Wider lines are wrapped or truncated in 80-column text editor windows,
 which severely hurts readability. Treating lines as no more than 80
 characters long limits the amount of code you can cram onto a single
 line. This helps to keep individual lines less complicated, and
 therefore easier to understand.
Common Layout Styles

A Haskell implementation won’t make a
 fuss about indentation as long as your code follows the layout rules
 and can hence be parsed unambiguously. That said, some layout patterns
 are widely used.
The in keyword is usually aligned directly under the let keyword, with the expression immediately
 following it:
-- file: ch09/Style.hs
tidyLet = let foo = undefined
 bar = foo * 2
 in undefined
While it’s legal to
 indent the in differently, or to
 let it “dangle” at the end of a series of equations, the
 following would generally be considered odd:
-- file: ch09/Style.hs
weirdLet = let foo = undefined
 bar = foo * 2
 in undefined

strangeLet = let foo = undefined
 bar = foo * 2 in
 undefined
In contrast, it’s usual to let a
 do dangle at the end of a line,
 rather than sit at the beginning of one:
-- file: ch09/Style.hs
commonDo = do
 something <- undefined
 return ()

-- not seen very often
rareDo =
 do something <- undefined
 return ()
Curly braces and semicolons, though
 legal, are almost never used. There’s nothing wrong with them; they
 just make code look strange due to their rarity. They’re really
 intended to let programs generate Haskell code without having to
 implement the layout rules and are not meant for human use.
-- file: ch09/Style.hs
unusualPunctuation =
 [(x,y) | x <- [1..a], y <- [1..b]] where {
 b = 7;
 a = 6 }

preferredLayout = [(x,y) | x <- [1..a], y <- [1..b]]
 where b = 7
 a = 6
If the righthand side of an equation
 starts on a new line, it’s usually indented a small number of spaces
 relative to the name of the variable or function that it’s
 defining:
-- file: ch09/Style.hs
normalIndent =
 undefined

strangeIndent =
 undefined
The actual number of spaces used to
 indent varies, sometimes within a single file. Depths of two, three,
 and four spaces are about equally common. A single space is legal but
 not very visually distinctive, so it’s easy to misread.
When indenting a where clause, it’s best to make it
 eye-catching:
-- file: ch09/Style.hs
goodWhere = take 5 lambdas
 where lambdas = []

alsoGood =
 take 5 lambdas
 where
 lambdas = []

badWhere = -- legal, but ugly and hard to read
 take 5 lambdas
 where
 lambdas = []
Exercises
	Although the file-finding code we described in this
 chapter is a good vehicle for learning, it’s not ideal for real
 systems programming tasks, because Haskell’s portable I/O
 libraries don’t expose enough information to let us write
 interesting and complicated queries.
Port the code from this chapter to your platform’s native
 API, either System.Posix or
 System.Win32.

	Add the ability to find out who owns a directory entry to
 your code. Make this information available to predicates.

Chapter 10. Code Case Study: Parsing a Binary Data Format

In this chapter, we’ll discuss a common task: parsing a binary file. We will
 use it for two purposes. Our first is indeed to talk a little about
 parsing, but our main goal is to talk about program organization,
 refactoring, and “boilerplate removal.” We will demonstrate how you can
 tidy up repetitious code, and set the stage for our discussion of monads
 in Chapter 14.
The file formats that we will work with come
 from the netpbm suite, an ancient and venerable collection of programs and file
 formats for working with bitmap images. These file formats have the dual
 advantages of being widely used and being fairly easy, though not
 completely trivial, to parse. Most importantly for our convenience, netpbm
 files are not compressed.
Grayscale Files

The name of netpbm’s grayscale file format is PGM (portable
 gray map). It is actually not one format, but two; the
 plain (or P2) format is encoded as ASCII, while the more common raw (P5) format is mostly binary.
A file of either format starts with a
 header, which in turn begins with a “magic” string
 describing the format. For a plain file, the string is P2, and for raw, it’s P5. The magic string is followed by
 whitespace, and then by three numbers: the width, height, and maximum
 gray value of the image. These numbers are represented as ASCII decimal
 numbers, separated by whitespace.
After the maximum gray value comes the
 image data. In a raw file, this is a string of binary values. In a plain
 file, the values are represented as ASCII decimal numbers separated by
 single-space characters.
A raw file can contain a sequence of
 images, one after the other, each with its own header. A plain file
 contains only one image.

Parsing a Raw PGM File

For our first try at a parsing function,
 we’ll only worry about raw PGM files. We’ll write our PGM parser as a
 pure function. It’s won’t be responsible for obtaining the data to parse,
 just for the actual parsing. This is a common approach in Haskell
 programs. By separating the reading of the data from what we
 subsequently do with it, we gain flexibility in where we take the data
 from.
We’ll use the ByteString
 type to store our graymap data, because it’s compact. Since
 the header of a PGM file is ASCII text but its body is binary, we import
 both the text- and binary-oriented ByteString
 modules:
-- file: ch10/PNM.hs
import qualified Data.ByteString.Lazy.Char8 as L8
import qualified Data.ByteString.Lazy as L
import Data.Char (isSpace)
For our purposes, it doesn’t matter
 whether we use a lazy or strict ByteString, so we’ve
 somewhat arbitrarily chosen the lazy kind.
We’ll use a straightforward data type to
 represent PGM images:
-- file: ch10/PNM.hs
data Greymap = Greymap {
 greyWidth :: Int
 , greyHeight :: Int
 , greyMax :: Int
 , greyData :: L.ByteString
 } deriving (Eq)
Normally, a Haskell Show
 instance should produce a string representation that we can read back by
 calling read. However, for a bitmap
 graphics file, this would potentially produce huge text strings, for
 example, if we were to show a
 photo. For this reason, we’re not going to let the compiler
 automatically derive a Show instance for us; we’ll write
 our own and intentionally simplify it:
-- file: ch10/PNM.hs
instance Show Greymap where
 show (Greymap w h m _) = "Greymap " ++ show w ++ "x" ++ show h ++
 " " ++ show m
Because our Show instance
 intentionally avoids printing the bitmap data, there’s no point in
 writing a Read instance, as we can’t reconstruct a valid
 Greymap from the result of show.
Here’s an obvious type for our parsing
 function:
-- file: ch10/PNM.hs
parseP5 :: L.ByteString -> Maybe (Greymap, L.ByteString)
This will take a ByteString,
 and if the parse succeeds, it will return a single parsed
 Greymap, along with the string that remains after parsing.
 That residual string will be available for future parses.
Our parsing function has to consume a
 little bit of its input at a time. First, we need to assure ourselves
 that we’re really looking at a raw PGM file; then we need to parse the
 numbers from the remainder of the header; and then we consume the bitmap
 data. Here’s an obvious way to express this, which we will use as a base
 for later improvements:
-- file: ch10/PNM.hs
matchHeader :: L.ByteString -> L.ByteString -> Maybe L.ByteString

-- "nat" here is short for "natural number"
getNat :: L.ByteString -> Maybe (Int, L.ByteString)

getBytes :: Int -> L.ByteString
 -> Maybe (L.ByteString, L.ByteString)

parseP5 s =
 case matchHeader (L8.pack "P5") s of
 Nothing -> Nothing
 Just s1 ->
 case getNat s1 of
 Nothing -> Nothing
 Just (width, s2) ->
 case getNat (L8.dropWhile isSpace s2) of
 Nothing -> Nothing
 Just (height, s3) ->
 case getNat (L8.dropWhile isSpace s3) of
 Nothing -> Nothing
 Just (maxGrey, s4)
 | maxGrey > 255 -> Nothing
 | otherwise ->
 case getBytes 1 s4 of
 Nothing -> Nothing
 Just (_, s5) ->
 case getBytes (width * height) s5 of
 Nothing -> Nothing
 Just (bitmap, s6) ->
 Just (Greymap width height maxGrey bitmap, s6)
This is a very literal piece of code,
 performing all of the parsing in one long staircase of case expressions. Each function returns the
 residual ByteString left over after it has consumed all it
 needs from its input string. We pass each residual string along to the
 next step. We deconstruct each result in turn, either returning
 Nothing if the parsing step fails, or building up a piece
 of the final result as we proceed. Here are the bodies of the functions
 that we apply during parsing (their types are commented out because we
 already presented them):
-- file: ch10/PNM.hs
-- L.ByteString -> L.ByteString -> Maybe L.ByteString
matchHeader prefix str
 | prefix `L8.isPrefixOf` str
 = Just (L8.dropWhile isSpace (L.drop (L.length prefix) str))
 | otherwise
 = Nothing

-- L.ByteString -> Maybe (Int, L.ByteString)
getNat s = case L8.readInt s of
 Nothing -> Nothing
 Just (num,rest)
 | num <= 0 -> Nothing
 | otherwise -> Just (fromIntegral num, rest)

-- Int -> L.ByteString -> Maybe (L.ByteString, L.ByteString)
getBytes n str = let count = fromIntegral n
 both@(prefix,_) = L.splitAt count str
 in if L.length prefix < count
 then Nothing
 else Just both

Getting Rid of Boilerplate Code

While our parseP5 function
 works, the style in which we wrote it is somehow not pleasing. Our code
 marches steadily to the right of the screen, and it’s clear that a
 slightly more complicated function would soon run out of visual real
 estate. We repeat a pattern of constructing and then deconstructing
 Maybe values, only continuing if a particular value matches
 Just. All of the similar case expressions act as boilerplate
 code, busywork that obscures what we’re really trying to do.
 In short, this function is begging for some abstraction and
 refactoring.
If we step back a little, we can see two
 patterns. First is that many of the functions that we apply have similar
 types. Each takes a ByteString as its last argument and
 returns Maybe something else. Second, every step in the
 “ladder” of our parseP5 function deconstructs a
 Maybe value, and either fails or passes the unwrapped
 result to a function.
We can quite easily write a function that
 captures this second pattern:
-- file: ch10/PNM.hs
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>? _ = Nothing
Just v >>? f = f v
The (>>?) function acts very simply: it takes a value as its left argument,
 and a function as its right. If the value is not Nothing, it applies the function to whatever
 is wrapped in the Just constructor. We have defined our
 function as an operator so that we can use it to chain functions
 together. Finally, we haven’t provided a fixity declaration for
 (>>?), so it defaults to
 infixl 9 (left-associative, strongest operator precedence).
 In other words, a >>? b >>? c will be evaluated
 from left to right, as (a >>? b) >>? c).
With this chaining function in hand, we
 can take a second try at our parsing function:
-- file: ch10/PNM.hs
parseP5_take2 :: L.ByteString -> Maybe (Greymap, L.ByteString)
parseP5_take2 s =
 matchHeader (L8.pack "P5") s >>?
 \s -> skipSpace ((), s) >>?
 (getNat . snd) >>?
 skipSpace >>?
 \(width, s) -> getNat s >>?
 skipSpace >>?
 \(height, s) -> getNat s >>?
 \(maxGrey, s) -> getBytes 1 s >>?
 (getBytes (width * height) . snd) >>?
 \(bitmap, s) -> Just (Greymap width height maxGrey bitmap, s)

skipSpace :: (a, L.ByteString) -> Maybe (a, L.ByteString)
skipSpace (a, s) = Just (a, L8.dropWhile isSpace s)
The key to understanding this function is
 to think about the chaining. On the left side of each (>>?) is a Maybe value; on
 the right is a function that returns a Maybe value. Each
 left-and-right-side expression is thus of type Maybe,
 suitable for passing to the following (>>?) expression.
The other change that we’ve made to
 improve readability is add a skipSpace function. With these changes, we’ve
 halved the number of lines of code compared to our original parsing
 function. By removing the boilerplate case expressions, we’ve made the code easier
 to follow.
While we warned against overuse of
 anonymous functions in Anonymous (lambda) Functions, we use several
 in our chain of functions here. Because these functions are so small, we
 wouldn’t improve readability by giving them names.

Implicit State

We’re not yet out of the woods. Our code explicitly passes
 pairs around, using one element for an intermediate part of the parsed
 result and the other for the current residual ByteString.
 If we want to extend the code, for example, to track the number of bytes
 we’ve consumed so that we can report the location of a parse failure, we
 already have eight different spots that we will need to modify, just to
 pass a three-tuple around.
This approach makes even a small body of
 code difficult to change. The problem lies with our use of pattern
 matching to pull values out of each pair: we have embedded the knowledge
 that we are always working with pairs straight into our code. As
 pleasant and helpful as pattern matching is, it can lead us in some
 undesirable directions if we do not use it carefully.
Let’s do something to address the
 inflexibility of our new code. First, we will change the type of state
 that our parser uses:
-- file: ch10/Parse.hs
data ParseState = ParseState {
 string :: L.ByteString
 , offset :: Int64 -- imported from Data.Int
 } deriving (Show)
In our switch to an algebraic data type,
 we added the ability to track both the current residual string and the
 offset into the original string since we started parsing. The more
 important change was our use of record syntax: we can now
 avoid pattern matching on the pieces of state that
 we pass around and use the accessor functions string and offset instead.
We have given our parsing state a name.
 When we name something, it can become easier to reason about. For
 example, we can now look at parsing as a kind of function: it consumes a
 parsing state and produces both a new parsing state and some other piece
 of information. We can directly represent this as a Haskell type:
-- file: ch10/Parse.hs
simpleParse :: ParseState -> (a, ParseState)
simpleParse = undefined
To provide more help to our users, we
 would like to report an error message if parsing fails. This requires
 only a minor tweak to the type of our parser:
-- file: ch10/Parse.hs
betterParse :: ParseState -> Either String (a, ParseState)
betterParse = undefined
In order to future-proof our code, it is
 best if we do not expose the implementation of our parser to our users.
 When we explicitly used pairs for state earlier, we found ourselves in
 trouble almost immediately, once we considered extending the
 capabilities of our parser. To stave off a repeat of that difficulty, we
 will hide the details of our parser type using a newtype
 declaration:
-- file: ch10/Parse.hs
newtype Parse a = Parse {
 runParse :: ParseState -> Either String (a, ParseState)
 }
Remember that the newtype
 definition is just a compile-time wrapper around a function, so it has
 no runtime overhead. When we want to use the function, we will apply the
 runParse accessor.
If we do not export the Parse
 value constructor from our module, we can ensure that nobody else will
 be able to accidentally create a parser, nor will they be able to
 inspect its internals via pattern matching.
The Identity Parser

Let’s try to define a simple parser, the
 identity parser. All it does is turn whatever it is passed into the
 result of the parse. In this way, it somewhat resembles the id function:
-- file: ch10/Parse.hs
identity :: a -> Parse a
identity a = Parse (\s -> Right (a, s))
This function leaves the parse state
 untouched and uses its argument as the result of the parse. We wrap
 the body of the function in our Parse type to satisfy the
 type checker. How can we use this wrapped function to parse
 something?
The first thing we must do is peel off
 the Parse wrapper so that we can get at the function inside. We do so
 using the runParse
 function. We also need to construct a ParseState,
 and then run our parsing function on it. Finally, we’d like to
 separate the result of the parse from the final
 ParseState:
-- file: ch10/Parse.hs
parse :: Parse a -> L.ByteString -> Either String a
parse parser initState
 = case runParse parser (ParseState initState 0) of
 Left err -> Left err
 Right (result, _) -> Right result
Because neither the identity parser nor the parse function examines the parse state, we
 don’t even need to create an input string in order to try our
 code:
ghci> :load Parse
[1 of 2] Compiling PNM (PNM.hs, interpreted)
[2 of 2] Compiling Parse (Parse.hs, interpreted)
Ok, modules loaded: Parse, PNM.
ghci> :type parse (identity 1) undefined
parse (identity 1) undefined :: (Num t) => Either String t
ghci> parse (identity 1) undefined
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Right 1
ghci> parse (identity "foo") undefined
Right "foo"
A parser that doesn’t even inspect its
 input might not seem interesting, but we will see shortly that in fact
 it is useful. Meanwhile, we have gained confidence that our types are
 correct and that we understand the basic workings of our code.

Record Syntax, Updates, and Pattern Matching

Record syntax is useful for more than just accessor functions—we can use
 it to copy and partly change an existing value. In use, the notation
 looks like this:
-- file: ch10/Parse.hs
modifyOffset :: ParseState -> Int64 -> ParseState
modifyOffset initState newOffset =
 initState { offset = newOffset }
This creates a new
 ParseState value identical to
 initState, but with its offset field
 set to whatever value we specify for newOffset:
ghci> let before = ParseState (L8.pack "foo") 0
ghci> let after = modifyOffset before 3
ghci> before
ParseState {string = Chunk "foo" Empty, offset = 0}
ghci> after
ParseState {string = Chunk "foo" Empty, offset = 3}
We can set as many fields as we want
 inside the curly braces, separating them using commas.

A More Interesting Parser

Let’s focus now on writing a parser
 that does something meaningful. We’re not going to get too ambitious
 yet—all we want to do is parse a single byte:
-- file: ch10/Parse.hs
-- import the Word8 type from Data.Word
parseByte :: Parse Word8
parseByte =
 getState ==> \initState ->
 case L.uncons (string initState) of
 Nothing ->
 bail "no more input"
 Just (byte,remainder) ->
 putState newState ==> _ ->
 identity byte
 where newState = initState { string = remainder,
 offset = newOffset }
 newOffset = offset initState + 1
There are a number of new functions in
 our definition.
The L8.uncons function takes the first element
 from a ByteString:
ghci> L8.uncons (L8.pack "foo")
Just ('f',Chunk "oo" Empty)
ghci> L8.uncons L8.empty
Nothing
Our getState function retrieves the current
 parsing state, while putState
 replaces it. The bail function
 terminates parsing and reports an error. The (==>) function chains parsers together. We will cover each of these
 functions shortly.
Hanging lambdas
The definition of parseByte has a visual style that we
 haven’t discussed before. It contains anonymous functions in which
 the parameters and -> sit at the end of a line, with
 the function’s body following on the next line.
This style of laying out an anonymous
 function doesn’t have an official name, so let’s call it a “hanging
 lambda.” Its main use is to make room for more text in the body of
 the function. It also makes it more visually clear that there’s a
 relationship between a function and the one that follows it. Often,
 for instance, the result of the first function is being passed as a
 parameter to the second.

Obtaining and Modifying the Parse State

Our parseByte function doesn’t take the parse state as an argument. Instead, it
 has to call getState to get a
 copy of the state and putState to
 replace the current state with a new one:
-- file: ch10/Parse.hs
getState :: Parse ParseState
getState = Parse (\s -> Right (s, s))

putState :: ParseState -> Parse ()
putState s = Parse (_ -> Right ((), s))
When reading these functions, recall
 that the left element of the tuple is the result of a
 Parse, while the right is the current
 ParseState. This makes it easier to follow what these
 functions are doing.
The getState function extracts the current
 parsing state so that the caller can access the string. The putState function replaces the current
 parsing state with a new one. This becomes the state that will be seen
 by the next function in the (==>) chain.
These functions let us move explicit
 state handling into the bodies of only those functions that need it.
 Many functions don’t need to know what the current state is, and so
 they’ll never call getState or
 putState. This lets us write more
 compact code than our earlier parser, which had to pass tuples around
 by hand. We will see the effect in some of the code that
 follows.
We’ve packaged up the details of the
 parsing state into the ParseState type, and we work with
 it using accessors instead of pattern matching. Now that the parsing
 state is passed around implicitly, we gain a further benefit. If we
 want to add more information to the parsing state, all we need to do
 is modify the definition of ParseState and the bodies of
 whatever functions need the new information. Compared to our earlier
 parsing code, where all of our state was exposed through pattern
 matching, this is much more modular: the only code we affect is code
 that needs the new information.

Reporting Parse Errors

We carefully defined our
 Parse type to accommodate the possibility of failure. The
 (==>) combinator checks for a
 parse failure and stops parsing if it runs into a failure. But we
 haven’t yet introduced the bail
 function, which we use to report a parse error:
-- file: ch10/Parse.hs
bail :: String -> Parse a
bail err = Parse $ \s -> Left $
 "byte offset " ++ show (offset s) ++ ": " ++ err
After we call bail, (==>) will successfully pattern match on
 the Left constructor that it wraps the error message
 with, and it will not invoke the next parser in the chain. This will
 cause the error message to percolate back through the chain of prior
 callers.

Chaining Parsers Together

The (==>) function serves a similar purpose
 to our earlier (>>?)
 function—it is “glue” that lets us chain functions
 together:
-- file: ch10/Parse.hs
(==>) :: Parse a -> (a -> Parse b) -> Parse b

firstParser ==> secondParser = Parse chainedParser
 where chainedParser initState =
 case runParse firstParser initState of
 Left errMessage ->
 Left errMessage
 Right (firstResult, newState) ->
 runParse (secondParser firstResult) newState
The body of (==>) is interesting and ever so
 slightly tricky. Recall that the Parse type represents
 really a function inside a wrapper. Since (==>) lets us chain two
 Parse values to produce a third, it must return a
 function, in a wrapper.
The function doesn’t really
 “do” much, it just creates a closure
 to remember the values of firstParser and
 secondParser.
Tip
A closure is simply the pairing of a
 function with its environment, the bound
 variables that it can see. Closures are commonplace in Haskell. For
 instance, the section (+5) is a
 closure. An implementation must record the value 5 as
 the second argument to the (+)
 operator so that the resulting function can add 5 to
 whatever value it is passed.

This closure will not be unwrapped and
 applied until we apply parse. At
 that point, it will be applied with a ParseState. It will
 apply firstParser and inspect its result. If that
 parse fails, the closure will fail too. Otherwise, it will pass the
 result of the parse and the new ParseState to
 secondParser.
This is really quite fancy and subtle
 stuff. We’re effectively passing the ParseState down the
 chain of Parse values in a hidden argument. (We’ll be
 revisiting this kind of code in a few chapters, so don’t fret if this
 description seems dense.)

Introducing Functors

We’re by now thoroughly familiar with
 the map function, which applies a
 function to every element of a list, returning a list of possibly a
 different type:
ghci> map (+1) [1,2,3]
[2,3,4]
ghci> map show [1,2,3]
["1","2","3"]
ghci> :type map show
map show :: (Show a) => [a] -> [String]
This map-like activity can be useful in other
 instances. For example, consider a binary tree:
-- file: ch10/TreeMap.hs
data Tree a = Node (Tree a) (Tree a)
 | Leaf a
 deriving (Show)
If we want to take a tree of strings and
 turn it into a tree containing the lengths of those strings, we could
 write a function to do this:
-- file: ch10/TreeMap.hs
treeLengths (Leaf s) = Leaf (length s)
treeLengths (Node l r) = Node (treeLengths l) (treeLengths r)
Now that our eyes are attuned to looking
 for patterns that we can turn into generally useful functions, we can
 see a possible case of this here:
-- file: ch10/TreeMap.hs
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf a) = Leaf (f a)
treeMap f (Node l r) = Node (treeMap f l) (treeMap f r)
As we might hope, treeLengths and treeMap length give the same results:
ghci> let tree = Node (Leaf "foo") (Node (Leaf "x") (Leaf "quux"))
ghci> treeLengths tree
Node (Leaf 3) (Node (Leaf 1) (Leaf 4))
ghci> treeMap length tree
Node (Leaf 3) (Node (Leaf 1) (Leaf 4))
ghci> treeMap (odd . length) tree
Node (Leaf True) (Node (Leaf True) (Leaf False))
Haskell provides a well-known typeclass to
 further generalize treeMap. This
 typeclass is named Functor, and it defines one function,
 fmap:
-- file: ch10/TreeMap.hs
class Functor f where
 fmap :: (a -> b) -> f a -> f b
We can think of fmap as a kind of
 lifting function, as we introduced in Avoiding Boilerplate with Lifting. It takes a function over ordinary
 values a -> b, and lifts it to become a function over
 containers f a -> f b, where f is the
 container type.
If we substitute Tree for the
 type variable f, for example, then the type of
 fmap is identical to the type of
 treeMap, and in fact we can use
 treeMap as the implementation of
 fmap over
 Trees:
-- file: ch10/TreeMap.hs
instance Functor Tree where
 fmap = treeMap
We can also use map as the implementation of fmap for lists:
-- file: ch10/TreeMap.hs
instance Functor [] where
 fmap = map
We can now use fmap over different container types:
ghci> fmap length ["foo","quux"]
[3,4]
ghci> fmap length (Node (Leaf "Livingstone") (Leaf "I presume"))
Node (Leaf 11) (Leaf 9)
The Prelude defines instances of
 Functor for several common types, notably lists and
 Maybe:
-- file: ch10/TreeMap.hs
instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap f (Just x) = Just (f x)
The instance for Maybe makes
 it particularly clear what an fmap
 implementation needs to do. The implementation must have a sensible
 behavior for each of a type’s constructors. If a value is wrapped in
 Just, for example, the fmap implementation calls the function on the
 unwrapped value, then rewraps it in Just.
The definition of Functor
 imposes a few obvious restrictions on what we can do with fmap. For example, we can only make instances
 of Functor from types that have
 exactly one type parameter.
We can’t write an fmap implementation for Either a
 b or (a, b), for example, because these have two
 type parameters. We also can’t write one for Bool or
 Int, as they have no type parameters.
In addition, we can’t place any
 constraints on our type definition. What does this mean? To illustrate,
 let’s first look at a normal data
 definition and its Functor instance:
-- file: ch10/ValidFunctor.hs
data Foo a = Foo a

instance Functor Foo where
 fmap f (Foo a) = Foo (f a)
When we define a new type, we can add a
 type constraint just after the data
 keyword as follows:
-- file: ch10/ValidFunctor.hs
data Eq a => Bar a = Bar a

instance Functor Bar where
 fmap f (Bar a) = Bar (f a)
This says that we can only put a type
 a into a Foo if a is a member of the Eq typeclass.
 However, the constraint renders it impossible to write a
 Functor instance for Bar:
ghci> :load ValidFunctor
[1 of 1] Compiling Main (ValidFunctor.hs, interpreted)

ValidFunctor.hs:12:12:
 Could not deduce (Eq a) from the context (Functor Bar)
 arising from a use of `Bar' at ValidFunctor.hs:12:12-16
 Possible fix:
 add (Eq a) to the context of the type signature for `fmap'
 In the pattern: Bar a
 In the definition of `fmap': fmap f (Bar a) = Bar (f a)
 In the definition for method `fmap'

ValidFunctor.hs:12:21:
 Could not deduce (Eq b) from the context (Functor Bar)
 arising from a use of `Bar' at ValidFunctor.hs:12:21-29
 Possible fix:
 add (Eq b) to the context of the type signature for `fmap'
 In the expression: Bar (f a)
 In the definition of `fmap': fmap f (Bar a) = Bar (f a)
 In the definition for method `fmap'
Failed, modules loaded: none.

Constraints on Type Definitions Are Bad

Adding a constraint to a type definition is essentially never a good idea.
 It has the effect of forcing you to add type constraints to
 every function that will operate on values of
 that type. Let’s say that we need a stack data structure that we want
 to be able to query to see whether its elements obey some ordering.
 Here’s a naive definition of the data type:
-- file: ch10/TypeConstraint.hs
data (Ord a) => OrdStack a = Bottom
 | Item a (OrdStack a)
 deriving (Show)
If we want to write a function that
 checks the stack to see whether it is increasing (i.e., every element
 is bigger than the element below it), we’ll obviously need an
 Ord constraint to perform the pairwise
 comparisons:
-- file: ch10/TypeConstraint.hs
isIncreasing :: (Ord a) => OrdStack a -> Bool
isIncreasing (Item a rest@(Item b _))
 | a < b = isIncreasing rest
 | otherwise = False
isIncreasing _ = True
However, because we wrote the type
 constraint on the type definition, that constraint ends up infecting
 places where it isn’t needed. We need to add the Ord
 constraint to push, which does
 not care about the ordering of elements on the stack:
-- file: ch10/TypeConstraint.hs
push :: (Ord a) => a -> OrdStack a -> OrdStack a
push a s = Item a s
Try removing that Ord
 constraint, and the definition of push will fail to typecheck.
This is why our attempt to write a
 Functor instance for Bar failed earlier: it
 would have required an Eq constraint to somehow get
 retroactively added to the signature of fmap.
Now that we’ve tentatively established
 that putting a type constraint on a type definition is a misfeature of
 Haskell, what’s a more sensible alternative? The answer is simply to
 omit type constraints from type definitions, and instead place them on
 the functions that need them.
In this example, we can drop the
 Ord constraints from OrdStack and push. It needs to stay on isIncreasing, which otherwise couldn’t call
 (<). We now have the
 constraints where they actually matter. This has the further benefit
 of making the type signatures better document the true requirements of
 each function.
Most Haskell container types follow this
 pattern. The Map type in the Data.Map module
 requires that its keys be ordered, but the type itself does not have
 such a constraint. The constraint is expressed on functions such as
 insert, where it’s actually
 needed, and not on size, where
 ordering isn’t used.

Infix Use of fmap

Quite often, you’ll see fmap called as
 an operator:
ghci> (1+) `fmap` [1,2,3] ++ [4,5,6]
[2,3,4,4,5,6]

Perhaps strangely, plain old map is almost never used in this
 way.
One possible reason for the stickiness
 of the fmap-as-operator meme is
 that this use lets us omit parentheses from its second argument. Fewer
 parentheses leads to reduced mental juggling while reading a
 function:
ghci> fmap (1+) ([1,2,3] ++ [4,5,6])
[2,3,4,5,6,7]

If you really want to use fmap as an operator, the
 Control.Applicative module contains an operator (<$>) that is an alias for fmap. The $ in its name
 appeals to the similarity between applying a function to its arguments
 (using the ($)
 operator) and lifting a function into a functor. We will see that
 this works well for parsing when we return to the code that we have
 been writing.

Flexible Instances

You might hope that we could write a Functor instance for the
 type Either Int b, which has one type parameter:
-- file: ch10/EitherInt.hs
instance Functor (Either Int) where
 fmap _ (Left n) = Left n
 fmap f (Right r) = Right (f r)
However, the type system of Haskell 98
 cannot guarantee that checking the constraints on such an instance
 will terminate. A nonterminating constraint check may send a compiler
 into an infinite loop, so instances of this form are forbidden:
ghci> :load EitherInt
[1 of 1] Compiling Main (EitherInt.hs, interpreted)

EitherInt.hs:2:0:
 Illegal instance declaration for `Functor (Either Int)'
 (All instance types must be of the form (T a1 ... an)
 where a1 ... an are type *variables*,
 and each type variable appears at most once in the instance head.
 Use -XFlexibleInstances if you want to disable this.)
 In the instance declaration for `Functor (Either Int)'
Failed, modules loaded: none.

GHC has a more powerful type system than
 the base Haskell 98 standard. It operates in Haskell 98 compatibility
 mode by default, for maximal portability. We can instruct it to allow
 more flexible instances using a special compiler directive:
-- file: ch10/EitherIntFlexible.hs
{-# LANGUAGE FlexibleInstances #-}

instance Functor (Either Int) where
 fmap _ (Left n) = Left n
 fmap f (Right r) = Right (f r)
The directive is embedded in the
 specially formatted LANGUAGE pragma.
With our Functor instance
 in hand, let’s try out fmap on
 Either Int:
ghci> :load EitherIntFlexible
[1 of 1] Compiling Main (EitherIntFlexible.hs, interpreted)
Ok, modules loaded: Main.
ghci> fmap (== "cheeseburger") (Left 1 :: Either Int String)
Left 1
ghci> fmap (== "cheeseburger") (Right "fries" :: Either Int String)
Right False

Thinking More About Functors

We’ve made a few implicit
 assumptions about how functors ought to work. It’s helpful to make
 these explicit and to think of them as rules to follow, because this
 lets us treat functors as uniform, well-behaved objects. We have only
 two rules to remember, and they’re simple:
	Our first rule is functors must preserve identity. That is, applying
 fmap id to a value should give us back an identical
 value:
ghci> fmap id (Node (Leaf "a") (Leaf "b"))
Node (Leaf "a") (Leaf "b")

	Our second rule is functors must be
 composable. That is, composing two uses of fmap should give the same result as one
 fmap with the same functions
 composed:
ghci> (fmap even . fmap length) (Just "twelve")
Just True
ghci> fmap (even . length) (Just "twelve")
Just True

Another way of looking at these two
 rules is that functors must preserve shape.
 The structure of a collection should not be affected by
 a functor; only the values that it contains should change:
ghci> fmap odd (Just 1)
Just True
ghci> fmap odd Nothing
Nothing
If you’re writing a Functor
 instance, it’s useful to keep these rules in mind, and indeed to test
 them, because the compiler can’t check the rules we’ve just listed. On
 the other hand, if you’re simply using functors,
 the rules are “natural” enough that there’s no need to
 memorize them. They just formalize a few intuitive notions of “do what
 I mean.” Here is a pseudocode representation of the expected
 behavior:
-- file: ch10/FunctorLaws.hs
fmap id == id
fmap (f . g) == fmap f . fmap g

Writing a Functor Instance for Parse

For the types we have surveyed so
 far, the behavior we ought to expect of fmap has been obvious. This is a little less
 clear for Parse, due to its complexity. A reasonable guess is that the
 function we’re fmapping should be
 applied to the current result of a parse, and leave the parse state
 untouched:
-- file: ch10/Parse.hs
instance Functor Parse where
 fmap f parser = parser ==> \result ->
 identity (f result)
This definition is easy to read, so let’s
 perform a few quick experiments to see if we’re following our rules for
 functors.
First, we’ll check that identity is
 preserved. Let’s try this first on a parse that ought to fail—parsing a
 byte from an empty string (remember that (<$>) is fmap):
ghci> parse parseByte L.empty
Left "byte offset 0: no more input"
ghci> parse (id <$> parseByte) L.empty
Left "byte offset 0: no more input"
Good. Now for a parse that should
 succeed:
ghci> let input = L8.pack "foo"
ghci> L.head input
102
ghci> parse parseByte input
Right 102
ghci> parse (id <$> parseByte) input
Right 102
Inspecting these results, we can also see
 that our Functor instance is obeying our second rule of
 preserving shape. Failure is preserved as failure, and success as
 success.
Finally, we’ll ensure that composability
 is preserved:
ghci> parse ((chr . fromIntegral) <$> parseByte) input
Right 'f'
ghci> parse (chr <$> fromIntegral <$> parseByte) input
Right 'f'
On the basis of this brief inspection, our
 Functor instance appears to be well behaved.

Using Functors for Parsing

All this talk of functors has a purpose: they often let us write tidy, expressive
 code. Recall the parseByte function
 that we introduced earlier. In recasting our PGM parser to use our new
 parser infrastructure, we’ll often want to work with ASCII characters
 instead of Word8 values.
While we could write a parseChar function that has a similar structure to parseByte, we can now avoid this code
 duplication by taking advantage of the functor nature of
 Parse. Our functor takes the result of a parse and applies
 a function to it, so what we need is a function that turns a
 Word8 into a Char:
-- file: ch10/Parse.hs
w2c :: Word8 -> Char
w2c = chr . fromIntegral

-- import Control.Applicative
parseChar :: Parse Char
parseChar = w2c <$> parseByte
We can also use functors to write a
 compact “peek” function. This returns Nothing
 if we’re at the end of the input string. Otherwise, it returns the next
 character without consuming it (i.e., it inspects, but doesn’t disturb,
 the current parsing state):
-- file: ch10/Parse.hs
peekByte :: Parse (Maybe Word8)
peekByte = (fmap fst . L.uncons . string) <$> getState
The same lifting trick that let us define
 parseChar lets us write a compact
 definition for peekChar:
-- file: ch10/Parse.hs
peekChar :: Parse (Maybe Char)
peekChar = fmap w2c <$> peekByte
Notice that peekByte and peekChar each make two calls to fmap, one of which is disguised as (<$>). This is necessary because the
 type Parse (Maybe a) is a functor within a functor. We thus
 have to lift a function twice to “get it into” the inner
 functor.
Finally, we’ll write another generic
 combinator, which is the Parse analogue of the familiar
 takeWhile. It consumes its input
 while its predicate returns True:
-- file: ch10/Parse.hs
parseWhile :: (Word8 -> Bool) -> Parse [Word8]
parseWhile p = (fmap p <$> peekByte) ==> \mp ->
 if mp == Just True
 then parseByte ==> \b ->
 (b:) <$> parseWhile p
 else identity []
Once again, we’re using functors in
 several places (doubled up, when necessary) to reduce the verbosity of
 our code. Here’s a rewrite of the same function in a more direct style
 that does not use functors:
-- file: ch10/Parse.hs
parseWhileVerbose p =
 peekByte ==> \mc ->
 case mc of
 Nothing -> identity []
 Just c | p c ->
 parseByte ==> \b ->
 parseWhileVerbose p ==> \bs ->
 identity (b:bs)
 | otherwise ->
 identity []
The more verbose definition is likely
 easier to read when you are less familiar with functors. However, use of
 functors is sufficiently common in Haskell code that the more compact
 representation should become second nature (both to read and to write)
 fairly quickly.

Rewriting Our PGM Parser

With our new parsing code, what does the
 raw PGM parsing function look like now?
-- file: ch10/Parse.hs
parseRawPGM =
 parseWhileWith w2c notWhite ==> \header -> skipSpaces ==>&
 assert (header == "P5") "invalid raw header" ==>&
 parseNat ==> \width -> skipSpaces ==>&
 parseNat ==> \height -> skipSpaces ==>&
 parseNat ==> \maxGrey ->
 parseByte ==>&
 parseBytes (width * height) ==> \bitmap ->
 identity (Greymap width height maxGrey bitmap)
 where notWhite = (`notElem` " \r\n\t")
This definition makes use of a few more
 helper functions that we present here, following a pattern that should
 be familiar by now:
-- file: ch10/Parse.hs
parseWhileWith :: (Word8 -> a) -> (a -> Bool) -> Parse [a]
parseWhileWith f p = fmap f <$> parseWhile (p . f)

parseNat :: Parse Int
parseNat = parseWhileWith w2c isDigit ==> \digits ->
 if null digits
 then bail "no more input"
 else let n = read digits
 in if n < 0
 then bail "integer overflow"
 else identity n

(==>&) :: Parse a -> Parse b -> Parse b
p ==>& f = p ==> _ -> f

skipSpaces :: Parse ()
skipSpaces = parseWhileWith w2c isSpace ==>& identity ()

assert :: Bool -> String -> Parse ()
assert True _ = identity ()
assert False err = bail err
The (==>&) combinator chains parsers such
 as (==>), but the righthand side
 ignores the result from the left. The assert function lets us check a property and
 abort parsing with a useful error message if the property is
 False.
Notice how few of the functions that we
 have written make any reference to the current parsing state. Most
 notably, where our old parseP5
 function explicitly passed two-tuples down the chain of dataflow, all of
 the state management in parseRawPGM
 is hidden from us.
Of course, we can’t completely avoid
 inspecting and modifying the parsing state. Here’s a case in point, the
 last of the helper functions needed by parseRawPGM:
-- file: ch10/Parse.hs
parseBytes :: Int -> Parse L.ByteString
parseBytes n =
 getState ==> \st ->
 let n' = fromIntegral n
 (h, t) = L.splitAt n' (string st)
 st' = st { offset = offset st + L.length h, string = t }
 in putState st' ==>&
 assert (L.length h == n') "end of input" ==>&
 identity h

Future Directions

Our main theme in this chapter has been
 abstraction. We found passing explicit state down a chain of functions
 to be unsatisfactory, so we abstracted this detail away. We noticed some
 recurring needs as we worked out our parsing code, and abstracted those
 into common functions. Along the way, we introduced the notion of a
 functor, which offers a generalized way to map over a parameterized
 type.
We will revisit parsing in Chapter 16, when we discuss Parsec, a widely used and flexible parsing
 library. And in Chapter 14, we will return to our theme
 of abstraction, where we will find that much of the code that we have
 developed in this chapter can be further simplified by the use of
 monads.
For efficiently parsing binary data
 represented as a ByteString, a number of packages are
 available via the Hackage package database. At the time of this writing,
 the most popular is binary, which is easy to use and offers
 high
 performance.
Exercises
	Write a parser for “plain” PGM files.

	In our description of “raw” PGM files, we
 omitted a small detail. If the “maximum gray” value
 in the header is less than 256, each pixel is represented by a
 single byte. However, it can range up to 65,535, in which case,
 each pixel will be represented by 2 bytes, in big-endian order
 (most significant byte first).
Rewrite the raw PGM parser to accommodate both the single-
 and double-byte pixel formats.

	Extend your parser so that it can identify a raw or plain
 PGM file, and then parse the appropriate file type.

Chapter 11. Testing and Quality Assurance

Building real systems means caring
 about quality control, robustness, and correctness. With the
 right quality assurance mechanisms in place, well-written code can feel
 like a precision machine, with all functions performing their tasks
 exactly as specified. There is no sloppiness around the edges, and the
 final result can be code that is self-explanatory—and obviously
 correct—the kind of code that inspires confidence.
In Haskell, we have several tools at our
 disposal for building such precise systems. The most obvious tool, and one
 built into the language itself, is the expressive type system, which
 allows for complicated invariants to be enforced statically—making it
 impossible to write code violating chosen constraints. In addition, purity
 and polymorphism encourage a style of code that is modular, refactorable,
 and testable. This is the kind of code that just doesn’t go wrong.
Testing plays a key role in keeping code on
 the straight-and-narrow path. The main testing mechanisms in Haskell are
 traditional unit testing (via the HUnit library) and its more powerful descendant, type-based
 “property” testing, with QuickCheck, an open source testing
 framework for Haskell. Property-based testing that encourages a high-level
 approach to testing in the form of abstract invariants functions should
 satisfy universally, with the actual test data generated for the
 programmer by the testing library. In this way, code can be hammered with
 thousands of tests that would be infeasible to write by hand, often
 uncovering subtle corner cases that wouldn’t be found otherwise.
In this chapter, we’ll look at how to use
 QuickCheck to establish invariants in code, and then re-examine the pretty
 printer developed in previous chapters, testing it with the framework.
 We’ll also see how to guide the testing process with GHC’s code coverage tool: HPC.
QuickCheck: Type-Based Testing

To get an overview of how property-based testing works, we’ll begin with a simple
 scenario: you’ve written a specialized sorting function and want to test
 its behavior.
First, we import the QuickCheck
 library,[28] and any other modules we need:
-- file: ch11/QC-basics.hs
import Test.QuickCheck
import Data.List
And the function we want to test—a custom
 sort routine:
-- file: ch11/QC-basics.hs
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs
 where lhs = filter (< x) xs
 rhs = filter (>= x) xs
This is the classic Haskell sort
 implementation: a study in functional programming elegance, if not
 efficiency (this isn’t an inplace sort). Now, we’d like to check that
 this function obeys the basic rules a good sort should follow. One
 useful invariant to start with, and one that comes up in a lot of purely
 functional code, is idempotency—applying a function
 twice has the same result as applying it only once. For our sort
 routine—a stable sort algorithm—this should certainly be true, or things
 have gone horribly wrong! This invariant can be encoded as a property
 simply, as follows:
-- file: ch11/QC-basics.hs
prop_idempotent xs = qsort (qsort xs) == qsort xs
We’ll use the QuickCheck convention of
 prefixing test properties with prop_ in order to
 distinguish them from normal code. This idempotency property is written
 simply as a Haskell function stating an equality that must hold for any
 input data that is sorted. We can check this makes sense for a few
 simple cases by hand:
ghci> prop_idempotent []
True
ghci> prop_idempotent [1,1,1,1]
True
ghci> prop_idempotent [1..100]
True
ghci> prop_idempotent [1,5,2,1,2,0,9]
True
Looks good. However, writing out the input
 data by hand is tedious and violates the moral code of the efficient
 functional programmer: let the machine do the work! To automate this,
 the QuickCheck library comes with a set of data generators for all the
 basic Haskell data types. QuickCheck uses the Arbitrary
 typeclass to present a uniform interface to (pseudo)random data
 generation with the type system used to resolve the question of which
 generator to use. QuickCheck normally hides the data generation
 plumbing; however, we can also run the generators by hand to get a sense
 for the distribution of data that QuickCheck produces. For example, to
 generate a random list of Boolean values:
ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Bool]
[False,False,False,False,False,True]

QuickCheck generates test data such as
 this and passes it to the property of our choosing, via the
 quickCheck function. The type of the property itself
 determines which data generator is used. quickCheck then
 checks that for all the test data produced, the property is satisfied.
 Now, since our idempotency test is polymorphic in the list element type,
 we need to pick a particular type for which to generate test data, which
 we write as a type constraint on the property. To run the test, we just
 call quickCheck with our property function, which is set to
 the required data type (otherwise, the list element type will default to
 the uninteresting () type):
ghci> :type quickCheck
quickCheck :: (Testable a) => a -> IO ()
ghci> quickCheck (prop_idempotent :: [Integer] -> Bool)
 passed 100 tests.
For the 100 different lists generated, our
 property held—great! When developing tests, it is often useful to see
 the actual data generated for each test. To do this, we would replace
 quickCheck with its sibling, verboseCheck, to
 see (verbose) output for each test. Now, let’s look at more
 sophisticated properties that our function might satisfy.
Testing for Properties

Good libraries consist of a set of
 orthogonal primitives having sensible relationships to each other. We
 can use QuickCheck to specify the relationships between functions in
 our code, helping us find a good library interface by developing
 functions that are interrelated via useful properties. QuickCheck in
 this way acts as an API “lint” tool—it provides machine support for
 ensuring that our library API makes sense.
The list sorting function should
 certainly have a number of interesting properties that tie it to other
 list operations. For example, the first element in a sorted list
 should always be the smallest element of the input list. We might be
 tempted to specify this intuition in Haskell, using the
 List library’s minimum function:
-- file: ch11/QC-basics.hs
prop_minimum xs = head (qsort xs) == minimum xs
Testing this, though, reveals an
 error:
ghci> quickCheck (prop_minimum :: [Integer] -> Bool)
** Exception: Prelude.head: empty list

The property failed when sorting an
 empty list, for which head and minimum
 aren’t defined, as we can see from their definition:
-- file: ch11/minimum.hs
head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"

minimum :: (Ord a) => [a] -> a
minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldl1 min xs
So this property will only hold for
 nonempty lists. QuickCheck, thankfully, comes with a full property
 writing embedded language, so we can specify more precisely our
 invariants, filtering out values we don’t want to consider. For the
 empty list case, we really want to say if the
 list is nonempty, then the first element of the
 sorted result is the minimum. This is done using the
 (==>) implication function, which filters out invalid data before running
 the property:
-- file: ch11/QC-basics.hs
prop_minimum' xs = not (null xs) ==> head (qsort xs) == minimum xs
The result is quite clean. By separating
 out the empty list case, we can now confirm that the property does in
 fact hold:
ghci> quickCheck (prop_minimum' :: [Integer] -> Property)
 passed 100 tests.

Note that we had to change the type of
 the property from being a simple Bool result to the more
 general Property type (the property itself is now a
 function that filters nonempty lists, before testing them, rather than
 a simple Boolean constant).
We can now complete the basic property
 set for the sort function with some other invariants that it should
 satisfy: the output should be ordered (each element should be smaller
 than, or equal to, its successor); the output should be a permutation
 of the input (which we achieve via the list difference function,
 (\\)); the last sorted element should be the largest element;
 and if we find the smallest element of two different lists, that
 should be the first element if we append and sort those lists. These
 properties can be stated as:
-- file: ch11/QC-basics.hs
prop_ordered xs = ordered (qsort xs)
 where ordered [] = True
 ordered [x] = True
 ordered (x:y:xs) = x <= y && ordered (y:xs)

prop_permutation xs = permutation xs (qsort xs)
 where permutation xs ys = null (xs \\ ys) && null (ys \\ xs)

prop_maximum xs =
 not (null xs) ==>
 last (qsort xs) == maximum xs

prop_append xs ys =
 not (null xs) ==>
 not (null ys) ==>
 head (qsort (xs ++ ys)) == min (minimum xs) (minimum ys)

Testing Against a Model

Another technique for gaining confidence
 in some code is to test it against a model implementation. We can tie
 our implementation of list sort to the reference sort function in the
 standard list library, and, if they behave the same, we gain
 confidence that our sort does the right thing:
-- file: ch11/QC-basics.hs
prop_sort_model xs = sort xs == qsort xs
This kind of model-based testing
 is extremely powerful. Often, developers will have a
 reference implementation or prototype that, while inefficient, is
 correct. This can then be kept around and used to ensure that
 optimized production code conforms to the reference. By building a
 large suite of these model-based tests and running them regularly (on
 every commit, for example), we can cheaply ensure the precision of our
 code. Large Haskell projects often come bundled with property suites
 comparable in size to the project itself, with thousands of invariants
 tested on every change, keeping the code tied to the specification,
 and ensuring that it behaves as required.

Testing Case Study: Specifying a Pretty Printer

Testing individual functions for their natural properties is one
 of the basic building blocks that guides development of large systems in
 Haskell. We’ll look now at a more complicated scenario: taking the
 pretty-printing library developed in earlier chapters and building a
 test suite for it.
Generating Test Data

Recall that the pretty printer is built
 around the Doc, an algebraic data type that represents well-formed
 documents:
-- file: ch11/Prettify2.hs

data Doc = Empty
 | Char Char
 | Text String
 | Line
 | Concat Doc Doc
 | Union Doc Doc
 deriving (Show,Eq)
The library itself is implemented as a
 set of functions that build and transform values of this document
 type, before finally rendering the finished document to a
 string.
QuickCheck encourages an approach to testing where the developer specifies
 invariants that should hold for any data we can throw at the code. To
 test the pretty-printing library, then, we’ll need a source of input
 data. To do this, we take advantage of the small combinator suite for
 building random data that QuickCheck provides via the
 Arbitrary class. The class provides a function, arbitrary, to
 generate data of each type. With it, we can define our data generator
 for our custom data types:[29]
-- file: ch11/Arbitrary.hs
class Arbitrary a where
 arbitrary :: Gen a
One thing to notice is that the
 generators run in a Gen environment, indicated by the type. This is a simple state-passing
 monad that is used to hide the random number generator state that is
 threaded through the code. We’ll look thoroughly at monads in later
 chapters, but for now it suffices to know that, as Gen is
 defined as a monad, we can use do syntax to write new
 generators that access the implicit random number source. To actually
 write generators for our custom type, we use any of a set of functions
 defined in the library for introducing new random values and gluing
 them together to build up data structures of the type we’re interested
 in. The types of the key functions are:
-- file: ch11/Arbitrary.hs
 elements :: [a] -> Gen a
 choose :: Random a => (a, a) -> Gen a
 oneof :: [Gen a] -> Gen a
The function elements,
 for example, takes a list of values and returns a generator
 of random values from that list. (We’ll use choose and
 oneof later.) With it, we can start writing generators
 for simple data types. For example, if we define a new data type for
 ternary logic:
-- file: ch11/Arbitrary.hs
data Ternary
 = Yes
 | No
 | Unknown
 deriving (Eq,Show)
we can write an Arbitrary
 instance for the Ternary type by defining a function that picks elements from a list
 of the possible values of the Ternary type:
-- file: ch11/Arbitrary.hs
instance Arbitrary Ternary where
 arbitrary = elements [Yes, No, Unknown]
Another approach to data generation is
 to generate values for one of the basic Haskell types and then
 translate those values into the type we’re actually interested in. We
 could have written the Ternary instance by generating
 integer values from 0 to 2 instead, using choose, and
 then mapping them onto the ternary values:
-- file: ch11/Arbitrary2.hs
instance Arbitrary Ternary where
 arbitrary = do
 n <- choose (0, 2) :: Gen Int
 return $ case n of
 0 -> Yes
 1 -> No
 _ -> Unknown
For simple sum
 types, this approach works well, as the integers map nicely
 onto the constructors of the data type. For
 product types (such as structures and tuples), we
 need to instead generate each component of the product separately (and
 recursively for nested types),
 and then combine the components. For example, to generate random pairs
 of random values:
-- file: ch11/Arbitrary.hs
instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b) where
 arbitrary = do
 x <- arbitrary
 y <- arbitrary
 return (x, y)
So let’s now write a generator for all
 the different variants of the Doc type. We’ll start by
 breaking the problem down, first generating random constructors for
 each type, and then, depending on the result, the components of each
 field. The most complicated case are the union and concatenation
 variants.
First, though, we need to write an
 instance for generating random characters—QuickCheck doesn’t have a default
 instance for characters, due to the abundance of different text
 encodings we might want to use for character tests. We’ll write our
 own, and, as we don’t care about the actual text content of the
 document, a simple generator of alphabetic characters and punctuation
 will suffice (richer generators are simple extensions of this basic
 approach):
-- file: ch11/QC.hs
instance Arbitrary Char where
 arbitrary = elements (['A'..'Z'] ++ ['a' .. 'z'] ++ " ~!@#$%^&*()")
With this in place, we can now write an
 instance for documents by enumerating the constructors and filling in
 the fields. We choose a random integer to represent which document
 variant to generate, and then dispatch based on the result. To
 generate concat or union document nodes, we just recurse on
 arbitrary, letting type inference determine which
 instance of Arbitrary we mean:
-- file: ch11/QC.hs
instance Arbitrary Doc where
 arbitrary = do
 n <- choose (1,6) :: Gen Int
 case n of
 1 -> return Empty

 2 -> do x <- arbitrary
 return (Char x)

 3 -> do x <- arbitrary
 return (Text x)

 4 -> return Line

 5 -> do x <- arbitrary
 y <- arbitrary
 return (Concat x y)

 6 -> do x <- arbitrary
 y <- arbitrary
 return (Union x y)
That was fairly straightforward, and we
 can clean it up some more by using the oneof function,
 whose type we saw earlier, to pick between different generators in a
 list (we can also use the monadic combinator, liftM, in
 order to avoid naming intermediate results from each
 generator):
-- file: ch11/QC.hs
instance Arbitrary Doc where
 arbitrary =
 oneof [return Empty
 , liftM Char arbitrary
 , liftM Text arbitrary
 , return Line
 , liftM2 Concat arbitrary arbitrary
 , liftM2 Union arbitrary arbitrary]
The latter is more concise—just picking
 between a list of generators—but they describe the same data either
 way. We can check that the output makes sense, by generating a list of
 random documents (seeding the pseudorandom generator with an initial
 seed of 2):
ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Doc]
[Line,Empty,Union Empty Line,Union (Char 'R') (Concat (Union Line (Concat
(Text "i@BmSu") (Char ')'))) (Union (Concat (Concat (Concat (Text "kqV!iN")
Line) Line) Line) Line)),Char 'M',Text "YdwVLrQOQh"]

Looking at the output, we see a good
 mix of simple base cases and some more complicated nested documents.
 We’ll be generating hundreds of these each test run so that should do
 a pretty good job. We can now write some generic properties for our
 document functions.

Testing Document Construction

Two of the basic functions on documents
 are the null document constant (a nullary function),
 empty, and the append function. Their types are:
-- file: ch11/Prettify2.hs
empty :: Doc
(<>) :: Doc -> Doc -> Doc
Together, these should have a nice property:
 appending or prepending the empty list onto a second list should leave
 the second list unchanged. We can state this invariant as a
 property:
-- file: ch11/QC.hs
prop_empty_id x =
 empty <> x == x
 &&
 x <> empty == x
Confirming that this is indeed true,
 we’re now underway with our testing:
ghci> quickCheck prop_empty_id
 passed 100 tests.

Use this in order to look at what
 actual test documents were generated (by replacing
 quickCheck with verboseCheck). If we look at
 a good mixture of both simple and complicated cases, we see a good
 mixture being generated. We can refine the data generation further,
 with constraints on the proportion of generated data, if
 desirable.
Other functions in the API are also
 simple enough to have their behavior fully described via properties.
 By doing so we can maintain an external, checkable description of the
 function’s behavior, so later changes won’t break these basic
 invariants.
-- file: ch11/QC.hs

prop_char c = char c == Char c

prop_text s = text s == if null s then Empty else Text s

prop_line = line == Line

prop_double d = double d == text (show d)
These properties are enough to fully
 test the structure returned by the basic document operators. Testing
 the rest of the library will require more work.

Using Lists as a Model

Higher order functions are the basic glue of reusable programming,
 and our pretty-printer library is no exception—a custom fold function
 is used internally to implement both document concatenation and
 interleaving separators between document chunks. The fold
 defined for documents takes a list of document pieces and glues them
 all together with a supplied combining function:
-- file: ch11/Prettify2.hs
fold :: (Doc -> Doc -> Doc) -> [Doc] -> Doc
fold f = foldr f empty
We can write tests in isolation for
 specific instances of fold easily. Horizontal concatenation of
 documents, for example, is easy to specify by writing a reference
 implementation on lists:
-- file: ch11/QC.hs

prop_hcat xs = hcat xs == glue xs
 where
 glue [] = empty
 glue (d:ds) = d <> glue ds
It is a similar story for
 punctuate, where we can model inserting punctuation with
 list interspersion (from Data.List,
 intersperse is a function that takes an element and
 interleaves it between other elements of a list):
-- file: ch11/QC.hs

prop_punctuate s xs = punctuate s xs == intersperse s xs
While this looks fine, running it
 reveals a flaw in our reasoning:
ghci> quickCheck prop_punctuate
Falsifiable, after 6 tests:
Empty
[Line,Text "",Line]

The pretty-printing library optimizes
 away redundant empty documents, something the model implementation
 doesn’t do, so we’ll need to augment our model to match reality.
 First, we can intersperse the punctuation text throughout the document
 list, and then a little loop to clean up the Empty
 documents scattered through, like so:
-- file: ch11/QC.hs
prop_punctuate' s xs = punctuate s xs == combine (intersperse s xs)
 where
 combine [] = []
 combine [x] = [x]

 combine (x:Empty:ys) = x : combine ys
 combine (Empty:y:ys) = y : combine ys
 combine (x:y:ys) = x `Concat` y : combine ys
Running this in GHCi, we can confirm
 the result. It is reassuring to have the test framework spot the flaws
 in our reasoning about the code—exactly what we’re looking for:
ghci> quickCheck prop_punctuate'
passed 100 tests.

Putting It All Together

We can put all these tests together in
 a single file and run them simply using one of QuickCheck’s driver
 functions. Several exist, including elaborate parallel ones. The basic
 batch driver is often good enough, however. All we need do is set up
 some default test parameters, and then list the functions we want to
 test:
-- file: ch11/Run.hs
import Prettify2
import Test.QuickCheck.Batch

options = TestOptions
 { no_of_tests = 200
 , length_of_tests = 1
 , debug_tests = False }

main = do
 runTests "simple" options
 [run prop_empty_id
 , run prop_char
 , run prop_text
 , run prop_line
 , run prop_double
]

 runTests "complex" options
 [run prop_hcat
 , run prop_puncutate'
]
We’ve structured the code here as a
 separate, standalone test script, with instances and properties in
 their own file, separate from the library source. This is typical for
 library projects, where the tests are kept apart from the library
 itself, and where they import the library via the module system. The
 test script can then be compiled and executed:
$ ghc --make Run.hs
$./Run
 simple : (1000)
 complex : .. (400)
A total of 1,400 individual tests were
 created, which is comforting. We can increase the depth easily enough,
 but to find out exactly how well the code is being tested, we should
 turn to the built-in code coverage tool, HPC, which can state
 precisely what is going on.

Measuring Test Coverage with HPC

HPC (Haskell Program Coverage) is an extension to the compiler to observe what parts of
 the code were actually executed during a given program run. This is
 useful in the context of testing, as it lets us observe exactly which
 functions, branches, and expressions were evaluated. The result is
 precise knowledge about the percent of code tested that’s easy to
 obtain. HPC comes with a simple utility to generate useful graphs of
 program coverage, making it easy to zoom in on weak spots in the test
 suite.
To obtain test coverage data, all we need to do is add the -fhpc
 flag to the command line when compiling the tests:
$ ghc -fhpc Run.hs --make
Then run the tests as normal:
$./Run
 simple : (1000)
 complex : .. (400)
During the test run, the trace of the
 program is written to .tix and
 .mix files in the current directory. Afterwards, these files are
 used by the command-line tool, hpc, to display various
 statistics about what happened. The basic interface is textual. To
 begin, we can get a summary of the code tested during the run using the
 report flag to hpc. We’ll exclude the test programs themselves (using the
 --exclude flag), so as to concentrate only on code in
 the pretty-printer library. Entering the following into the
 console:
$ hpc report Run --exclude=Main --exclude=QC
 18% expressions used (30/158)
 0% boolean coverage (0/3)
 0% guards (0/3), 3 unevaluated
 100% 'if' conditions (0/0)
 100% qualifiers (0/0)
 23% alternatives used (8/34)
 0% local declarations used (0/4)
 42% top-level declarations used (9/21)
we see that, on the last line, 42% of
 top-level definitions were evaluated during the test run. Not too bad
 for a first attempt. As we test more and more functions from the
 library, this figure will rise. The textual version is useful for a
 quick summary, but to really see what’s going on, it is best to look at
 the marked up output. To generate this, use the markup flag
 instead:
$ hpc markup Run --exclude=Main --exclude=QC
This will generate one HTML file for each
 Haskell source file, and some index files. Loading the file
 hpc_index.html into a browser, we can see some pretty
 graphs of the code coverage. See Figure 11-1.
[image: Revised coverage for module Prettify2: 52% of top-level definitions (up from 42%), 23% of alternatives, 18% of expressions]

Figure 11-1. Revised coverage for module Prettify2: 52% of top-level
 definitions (up from 42%), 23% of alternatives, 18% of
 expressions

Not too bad. Clicking through to the
 pretty module itself, we see the actual source of the program (see Figure 11-2). It is marked up in bold yellow
 for code that wasn’t tested, and marked simply bold for code that was
 tested.
[image: Screenshot of annotated coverage output, displaying the Monoid instance for Doc in bold yellow (not tested), and other code nearby in bold (was executed)]

Figure 11-2. Screenshot of annotated coverage output, displaying the Monoid
 instance for Doc in bold yellow (not tested), and other code nearby in
 bold (was executed)

We forgot to test the Monoid
 instance, for example, and some of the more complicated functions.
 HPC helps keep our test suite honest. Let’s add a test for the typeclass
 instance of Monoid, which is the class of types that
 support appending and empty elements:
-- file: ch11/QC.hs
prop_mempty_id x =
 mempty `mappend` x == x
 &&
 x `mappend` mempty == (x :: Doc)
Run this property in ghci, to check it is correct:
ghci> quickCheck prop_mempty_id
 passed 100 tests.

We can now recompile and run the test
 driver. It is important to remove the old .tix file first though, or an error will
 occur as HPC tries to combine the statistics from separate runs:
 $ ghc -fhpc Run.hs --make -no-recomp
 $./Run
 Hpc failure: inconsistent number of tick boxes
 (perhaps remove Run.tix file?)
 $ rm *.tix
 $./Run
 simple : (1000)
 complex : ... (600)
Another 200 tests were added to the
 suite, and our coverage statistics improves to 52% of the code base (see
 Figure 11-3).
[image: Coverage for module Prettify2: 42% of top-level definitions, 23% of alternatives, 18% of expressions]

Figure 11-3. Coverage for module Prettify2: 42% of top-level definitions,
 23% of alternatives, 18% of expressions

HPC ensures that we’re honest in our
 testing, as anything less than 100% coverage will be pointed out in
 glaring color. In particular, it ensures the programmer has to think
 about error cases, complicated branches with obscure conditions, and all
 forms of code smell. When combined with a saturating test generation
 system such as QuickCheck’s, testing becomes a rewarding activity and a
 core part of Haskell development.

[28] Throughout this chapter, we’ll use
 QuickCheck 1.0 (classic QuickCheck). It should be kept in mind that
 some functions may differ in later releases of the library.

[29] The class also defines a method,
 coarbitrary, which, given a value of some type,
 yields a function for new generators. We can disregard this for
 now, as it is only needed for generating random values of function
 type. One result of disregarding coarbitrary is that
 GHC will warn about it not being defined. However, it is safe to
 ignore these warnings.

Chapter 12. Barcode Recognition

In this chapter, we’ll make use of the image-parsing library we developed
 in Chapter 10 to build a barcode recognition application.
 Given a picture of the back of a book taken with a camera phone, we could
 use this to extract its ISBN number.
A Little Bit About Barcodes

The vast majority of packaged and
 mass-produced consumer goods sold have a barcode somewhere on them.
 Although there are dozens of barcode systems used across a variety of
 specialized domains, consumer products typically use either UPC-A or EAN-13. UPC-A was developed in the United
 States, while EAN-13 is European in origin.
EAN-13 was developed after UPC-A and is a
 superset of UPC-A. (In fact, UPC-A has been officially declared obsolete
 since 2005, though it’s still widely used within the United States.) Any
 software or hardware that can understand EAN-13 barcodes will
 automatically handle UPC-A barcodes. This neatly reduces our descriptive
 problem to one standard.
As the name suggests, EAN-13 describes a
 13-digit sequence, which is broken into four groups:
	Number system
	The first two digits. This can either indicate the nationality of the
 manufacturer or describe one of a few other categories, such as
 ISBN (book identifier) numbers.

	Manufacturer ID
	The next five digits. These are assigned by a country’s
 numbering authority.

	Product ID
	The next five digits. These are assigned by the
 manufacturer. (Smaller manufacturers may have a longer
 manufacturer ID and shorter product ID, but they still add up to
 10 digits.)

	Check digit
	The last digit. This allows a scanner to validate the digit
 string it scans.

The only way in which an EAN-13 barcode
 differs from a UPC-A barcode is that the latter uses a single digit to
 represent its number system. EAN-13 barcodes retain UPC-A compatibility by setting the first
 number system digit to zero.
EAN-13 Encoding

Before we worry about decoding an EAN-13
 barcode, we need to understand how they are encoded. The system EAN-13
 uses is a little involved. We start by computing the check digit,
 which is the last digit of a string:
-- file: ch12/Barcode.hs
checkDigit :: (Integral a) => [a] -> a
checkDigit ds = 10 - (sum products `mod` 10)
 where products = mapEveryOther (*3) (reverse ds)

mapEveryOther :: (a -> a) -> [a] -> [a]
mapEveryOther f = zipWith ($) (cycle [f,id])
This is one of those algorithms that is
 more easily understood via the code than a verbal description. The
 computation proceeds from the right of the string. Each successive
 digit is either multiplied by three or left alone (the cycle function repeats its input list
 infinitely). The check digit is the difference between their sum,
 modulo 10, and the number 10.
A barcode is a series of fixed-width
 bars, where black represents a binary “one” bit, and
 white a “zero.” A run of the same digits thus looks like a thicker
 bar.
The sequence of bits in a barcode is as
 follows:
	The leading guard sequence, encoded
 as 101.

	A group of six digits, each seven
 bits wide.

	Another guard sequence, encoded as
 01010.

	A group of six more digits.

	The trailing guard sequence, encoded
 as 101.

The digits in the left and right groups
 have separate encodings. On the left, digits are encoded with parity
 bits. The parity bits encode the 13th digit of the barcode.

Introducing Arrays

Before we continue, here are all of the imports that we will be using in the
 remainder of this chapter:
-- file: ch12/Barcode.hs
import Data.Array (Array(..), (!), bounds, elems, indices,
 ixmap, listArray)

import Control.Applicative ((<$>))
import Control.Monad (forM_)
import Data.Char (digitToInt)
import Data.Ix (Ix(..))
import Data.List (foldl', group, sort, sortBy, tails)
import Data.Maybe (catMaybes, listToMaybe)
import Data.Ratio (Ratio)
import Data.Word (Word8)
import System.Environment (getArgs)
import qualified Data.ByteString.Lazy.Char8 as L
import qualified Data.Map as M

import Parse -- from chapter 10
The barcode encoding process can largely
 be table-driven, in which we use small tables of bit patterns to decide
 how to encode each digit. Haskell’s bread-and-butter—data types, lists,
 and tuples—are not well-suited to use for tables whose elements may be
 accessed randomly. A list has to be traversed linearly to reach the
 kth element. A tuple doesn’t have this problem, but
 Haskell’s type system makes it difficult to write a function that takes
 a tuple and an element offset and returns the element at that offset
 within the tuple. (We’ll explore why in the exercises that
 follow.)
The usual data type for constant-time
 random access is of course the array. Haskell provides several array
 data types. We’ll thus represent our encoding tables as arrays of
 strings.
The simplest array type is in the
 Data.Array module, which we’re using here. This presents arrays that can
 contain values of any Haskell type. Like other common Haskell types,
 these arrays are immutable. An immutable array is
 populated with values just once, when it is created. Its contents cannot
 subsequently be modified. (The standard libraries also provide other
 array types, some of which are mutable, but we won’t cover those for a
 while.)
-- file: ch12/Barcode.hs
leftOddList = ["0001101", "0011001", "0010011", "0111101", "0100011",
 "0110001", "0101111", "0111011", "0110111", "0001011"]

rightList = map complement <$> leftOddList
 where complement '0' = '1'
 complement '1' = '0'

leftEvenList = map reverse rightList

parityList = ["111111", "110100", "110010", "110001", "101100",
 "100110", "100011", "101010", "101001", "100101"]

listToArray :: [a] -> Array Int a
listToArray xs = listArray (0,l-1) xs
 where l = length xs

leftOddCodes, leftEvenCodes, rightCodes, parityCodes :: Array Int String

leftOddCodes = listToArray leftOddList
leftEvenCodes = listToArray leftEvenList
rightCodes = listToArray rightList
parityCodes = listToArray parityList
The Data.Array module’s
 listArray function populates an array from a list. It takes as its first
 parameter the bounds of the array to create; the second is the values
 with which to populate it.
An unusual feature of the
 Array type is that its type is parameterized over both the
 data it contains and the index type. For example, the type of a
 one-dimensional array of String is Array Int
 String, but a two-dimensional array would have the type
 Array (Int,Int) String:
ghci> :m +Data.Array
ghci> :type listArray
listArray :: (Ix i) => (i, i) -> [e] -> Array i e
We can construct an array easily:
ghci> listArray (0,2) "foo"
array (0,2) [(0,'f'),(1,'o'),(2,'o')]

Notice that we have to specify the lower
 and upper bounds of the array. These bounds are inclusive, so an array
 from 0 to 2 has elements 0, 1, and 2:
ghci> listArray (0,3) [True,False,False,True,False]
array (0,3) [(0,True),(1,False),(2,False),(3,True)]
ghci> listArray (0,10) "too short"
array (0,10) [(0,'t'),(1,'o'),(2,'o'),(3,' '),(4,'s'),(5,'h'),(6,'o'),
(7,'r'),(8,'t'),(9,*** Exception: (Array.!): undefined array element
Once an array is constructed, we can use
 the (!) operator to access its elements by index:
ghci> let a = listArray (0,14) ['a'..]
ghci> a ! 2
'c'
ghci> a ! 100
*** Exception: Error in array index
Since the array construction function lets
 us specify the bounds of an array, we don’t have to use the zero-based
 array indexing that is familiar to C programmers. We can choose whatever
 bounds are convenient for our purposes:
ghci> let a = listArray (-9,5) ['a'..]
ghci> a ! (-2)
'h'
The index type can be any member of the
 Ix type. This lets us use, for example, Char as the index
 type:
ghci> let a = listArray ('a', 'h') [97..]
ghci> a ! 'e'
101
To create a higher-dimensioned array, we
 use a tuple of Ix instances as the index type. The Prelude makes tuples of up to five elements
 members of the Ix class. To illustrate, here’s a small
 three-dimensional array:
ghci> let a = listArray ((0,0,0), (9,9,9)) [0..]
ghci> a ! (4,3,7)
437
Arrays and Laziness

The list that we use to populate the array must contain at least as
 many elements as are in the array. If we do not provide enough
 elements, we’ll get an error at runtime. When the error occurs depends
 on the nature of the array.
Here, we are using an array type that
 is nonstrict in its elements. If we provide a list of three values to
 an array that we specify as containing more than three elements, the
 remaining elements will undefined. We will not get an error unless we
 access an element beyond the third:
ghci> let a = listArray (0,5) "bar"
ghci> a ! 2
'r'
ghci> a ! 4
*** Exception: (Array.!): undefined array element
Haskell also provides strict arrays,
 which behave differently. We will discuss the tradeoffs between the
 two kinds of arrays in Unboxing, Lifting, and Bottom.

Folding over Arrays

The bounds function returns a tuple describing the bounds that we used to
 create the array. The indices
 function returns a list of every index. We can use these to define
 some useful folds, since the Data.Array module doesn’t define any fold functions itself:
-- file: ch12/Barcode.hs
-- | Strict left fold, similar to foldl' on lists.
foldA :: Ix k => (a -> b -> a) -> a -> Array k b -> a
foldA f s a = go s (indices a)
 where go s (j:js) = let s' = f s (a ! j)
 in s' `seq` go s' js
 go s _ = s

-- | Strict left fold using the first element of the array as its
-- starting value, similar to foldl1 on lists.
foldA1 :: Ix k => (a -> a -> a) -> Array k a -> a
foldA1 f a = foldA f (a ! fst (bounds a)) a
You might wonder why the array modules
 don’t already provide such useful things as folding functions. There
 are some obvious correspondences between a one-dimensional array and a list. For
 instance, there are only two natural ways in which we can fold
 sequentially: left-to-right and right-to-left. Additionally, we can
 only fold over one element at a time.
This does not translate even to
 two-dimensional arrays. First of all, there are several kinds of fold that make
 sense. We might still want to fold over single elements, but we now
 have the possibility of folding over rows or columns, too. On top of
 this, for element-at-a-time folding, there are no longer just two
 sequences for traversal.
In other words, for two-dimensional
 arrays, there are enough permutations of possibly useful behavior that
 there aren’t many compelling reasons to choose a handful for a
 standard library. This problem is only compounded for higher
 dimensions, so it’s best to let developers write folds that suit the
 needs of their applications. As we can see from our examples, this is
 not hard to do.

Modifying Array Elements

While
 “modification” functions exist for immutable arrays, they are not very
 practical. For example, the accum
 function takes an array and a list of (index,
 value) pairs and returns a new array with the values at the
 given indices replaced.
Since arrays are immutable, modifying
 even one element requires copying the entire array. This quickly
 becomes prohibitively expensive on arrays of even modest size.
Another array type,
 DiffArray in the Data.Array.Diff module,
 attempts to offset the cost of small modifications by
 storing deltas between successive versions of an array. Unfortunately,
 it is not implemented efficiently at the time of this writing, and it
 is currently too slow to be of practical use.
Don’t lose hope
It is in fact
 possible to modify an array efficiently in Haskell, using the
 ST monad. We’ll return to this subject in Chapter 26.

Exercises
Let’s briefly explore the suitability of tuples as stand-ins
 for arrays:
	Write a function that takes two arguments: a four-element
 tuple and an integer. With an integer argument of zero, it
 should return the leftmost element of the tuple. With an
 argument of one, it should return the next element. And so on.
 What restrictions do you have to put on the types of the
 arguments in order to write a function that typechecks
 correctly?

	Write a similar function that takes a six-tuple as its
 first argument.

	Try refactoring the two functions to share any common code
 you can identify. How much shared code are you able to
 find?

Encoding an EAN-13 Barcode

Even though our goal is to
 decode a barcode, it’s useful to have an encoder for reference. This will
 allow us to, for example, ensure that our code is correct by checking
 that the output of decode . encode is the same as its
 input:
-- file: ch12/Barcode.hs
encodeEAN13 :: String -> String
encodeEAN13 = concat . encodeDigits . map digitToInt

-- | This function computes the check digit; don't pass one in.
encodeDigits :: [Int] -> [String]
encodeDigits s@(first:rest) =
 outerGuard : lefties ++ centerGuard : righties ++ [outerGuard]
 where (left, right) = splitAt 5 rest
 lefties = zipWith leftEncode (parityCodes ! first) left
 righties = map rightEncode (right ++ [checkDigit s])

leftEncode :: Char -> Int -> String
leftEncode '1' = (leftOddCodes !)
leftEncode '0' = (leftEvenCodes !)

rightEncode :: Int -> String
rightEncode = (rightCodes !)

outerGuard = "101"
centerGuard = "01010"
The string to encode is 12 digits long,
 with encodeDigits adding a 13th
 check digit.
The barcode is encoded as two groups of
 six digits, with a guard sequence in the middle and
 “outside” sequences on either side. But if we have two
 groups of six digits, what happened to the missing digit?
Each digit in the left group is encoded
 using either odd or even parity, with the parity chosen based on the
 bits of the first digit in the string. If a bit of the first digit is
 zero, the corresponding digit in the left group is encoded with even
 parity. A one bit causes the digit to be encoded with odd parity. This
 encoding is an elegant hack, chosen to make EAN-13 barcodes
 backwards-compatible with the older UPC-A standard.

Constraints on Our Decoder

Before we talk about decoding, let’s set a few practical
 limitations on what kinds of barcode images we can work with.
Phone cameras and webcams generally output
 JPEG images, but writing a JPEG decoder would take us several chapters.
 We’ll simplify our parsing problem by handling the netpbm file format. We will use the parsing
 combinators we developed earlier in Chapter 10.
We’d like to deal with real images from
 the kinds of cheap, fixed-focus cameras that come with low-end cell
 phones. These images tend to be out of focus, noisy, low in contrast,
 and of poor resolution. Fortunately, it’s not hard to write code that
 can handle noisy, defocused VGA-resolution (640×480) images with
 terrible contrast ratios. We’ve verified that the code in this chapter
 captures barcodes from real books, using pictures taken by authentically
 mediocre cameras.
We will avoid any image-processing
 heroics, because that’s another chapter-consuming subject. We won’t
 correct perspective (such as in Figure 12-1). Neither will we sharpen images
 taken from too near to the subject (Figure 12-2), which causes narrow bars to fade
 out; or from too far (Figure 12-3), which
 causes adjacent bars to blur together.
[image: Barcode image distorted by perspective, due to photo being taken from an angle]

Figure 12-1. Barcode image distorted by perspective, due to photo being
 taken from an angle

[image: Barcode image blurred by being taken from inside the focal length of the camera lens, causing bars to run together]

Figure 12-2. Barcode image blurred by being taken from inside the focal
 length of the camera lens, causing bars to run together

[image: Barcode image contains insufficient detail, due to poor resolution of camera lens and CCD]

Figure 12-3. Barcode image contains insufficient detail, due to poor
 resolution of camera lens and CCD

Divide and Conquer

Our task is to take a camera image and
 extract a valid barcode from it. Given such a nonspecific description,
 it can be hard to see how to make progress. However, we can break the
 big problem into a series of subproblems, each of which is
 self-contained and more tractable:
	Convert color data into a form we can
 easily work with.

	Sample a single scan line from the
 image and extract a set of guesses as to what the encoded digits in
 this line could be.

	From the guesses, create a list of
 valid decodings.

Many of these subproblems can be further
 divided, as we’ll see.
You might wonder how closely this approach
 of subdivision mirrors the actual work we did when writing the code that
 we present in this chapter. The answer is that we’re far from
 image-processing gurus, and when we started writing this chapter, we
 didn’t know exactly what our solution was going to look like.
We made some early educated guesses as to
 what a reasonable solution might appear as and came up with the subtasks
 just listed. We were then able to start tackling those parts that we
 knew how to solve, using our spare time to think about the bits that we
 had no prior experience with. We certainly didn’t have a preexisting
 algorithm or master plan in mind.
Dividing the problem up like this helped
 us in two ways. By making progress on familiar ground, we had the
 psychological advantage of starting to solve the problem, even when we
 didn’t really know where we were going. And as we started to work on a
 particular subproblem, we found ourselves able to further subdivide it
 into tasks of varying familiarity. We continued to focus on easier
 components, deferring ones we hadn’t thought about in enough detail yet,
 and jumping from one element of the master list to another. Eventually,
 we ran out of problems that were both unfamiliar and unsolved, and we
 had a complete idea of our eventual solution.

Turning a Color Image into Something Tractable

Since we want to work with barcodes (which are sequences of
 black and white stripes) and we want to write a simple decoder, an easy
 representation to work with will be a monochrome image, in which each
 pixel is either black or white.
Parsing a Color Image

As we mentioned earlier, we’ll work with
 netpbm images. The netpbm color image format is only slightly more complicated
 than the grayscale image format that we parsed in Chapter 10. The
 identifying string in a header is “P6,” with the rest of the header
 layout identical to the grayscale format. In the body of an image,
 each pixel is represented as three bytes, one each for red, green, and
 blue.
We’ll represent the image data as a
 two-dimensional array of pixels. We’re using arrays here purely to
 gain experience with them. For this application, we could just as well
 use a list of lists. The only advantage of an array is slight—we can
 efficiently extract a row:
-- file: ch12/Barcode.hs
type Pixel = Word8
type RGB = (Pixel, Pixel, Pixel)

type Pixmap = Array (Int,Int) RGB
We provide a few type synonyms to make
 our type signatures more readable.
Since Haskell gives us considerable
 freedom in how we lay out an array, we must choose a representation.
 We’ll play it safe and follow a popular convention: indices begin at
 zero. We don’t need to store the dimensions of the image explicitly,
 since we can extract them using the bounds
 function.
The actual parser is mercifully short,
 thanks to the combinators we developed in Chapter 10:
-- file: ch12/Barcode.hs
parseRawPPM :: Parse Pixmap
parseRawPPM =
 parseWhileWith w2c (/= '\n') ==> \header -> skipSpaces ==>&
 assert (header == "P6") "invalid raw header" ==>&
 parseNat ==> \width -> skipSpaces ==>&
 parseNat ==> \height -> skipSpaces ==>&
 parseNat ==> \maxValue ->
 assert (maxValue == 255) "max value out of spec" ==>&
 parseByte ==>&
 parseTimes (width * height) parseRGB ==> \pxs ->
 identity (listArray ((0,0),(width-1,height-1)) pxs)

parseRGB :: Parse RGB
parseRGB = parseByte ==> \r ->
 parseByte ==> \g ->
 parseByte ==> \b ->
 identity (r,g,b)

parseTimes :: Int -> Parse a -> Parse [a]
parseTimes 0 _ = identity []
parseTimes n p = p ==> \x -> (x:) <$> parseTimes (n-1) p
The only function of note here is
 parseTimes, which calls another parser a given number of times, building
 up a list of results.

Grayscale Conversion

Now that we have a color image in hand,
 we need to convert the color data into monochrome. An intermediate step is to
 convert the data to grayscale. There’s a simple, widely used
 formula[30] for converting an RGB image into a grayscale image, based on the
 perceived brightness of each color channel:
-- file: ch12/Barcode.hs
luminance :: (Pixel, Pixel, Pixel) -> Pixel
luminance (r,g,b) = round (r' * 0.30 + g' * 0.59 + b' * 0.11)
 where r' = fromIntegral r
 g' = fromIntegral g
 b' = fromIntegral b
Haskell arrays are members of the
 Functor typeclass, so we can simply use fmap to turn an entire image, or a single
 scanline, from color into grayscale:
-- file: ch12/Barcode.hs
type Greymap = Array (Int,Int) Pixel

pixmapToGreymap :: Pixmap -> Greymap
pixmapToGreymap = fmap luminance
This pixmapToGreymap function is just for
 illustration. Since we’ll only be checking a few rows of an image for
 possible barcodes, there’s no reason to do the extra work of
 converting data we’ll never subsequently use.

Grayscale to Binary and Type Safety

Our next subproblem is to convert the
 grayscale image into a two-valued image, where each pixel is either on
 or off.
In an image-processing application,
 where we’re juggling lots of numbers, it would be easy to reuse the
 same numeric type for several different purposes. For example, we
 could use the Pixel type to represent on/off states,
 using the convention that the digit one represents a bit that’s “on,”
 and zero represents “off.”
However, reusing types for multiple
 purposes in this way quickly leads to potential confusion. To see
 whether a particular “Pixel” is a number or an on/off value, we can no longer simply
 glance at a type signature. We could easily use a value containing
 “the wrong kind of number” in some context, and the
 compiler wouldn’t catch it because the types work out.
We could try to work around this by
 introducing a type alias. In the same way that we declared
 Pixel to be a synonym of Word8, we could
 declare a Bit type as a synonym of Pixel.
 While this might help readability, type synonyms still don’t make the
 compiler do any useful work on our behalf.
The compiler would treat
 Pixel and Bit as exactly the same type, so
 it could not catch a mistake such as using a Pixel value
 of 253 in a function that expects Bit values of zero or
 one.
If we define the monochrome type
 ourselves, the compiler will prevent us from accidentally mixing our
 types up like this:
-- file: ch12/Barcode.hs
data Bit = Zero | One
 deriving (Eq, Show)

threshold :: (Ix k, Integral a) => Double -> Array k a -> Array k Bit
threshold n a = binary <$> a
 where binary i | i < pivot = Zero
 | otherwise = One
 pivot = round $ least + (greatest - least) * n
 least = fromIntegral $ choose (<) a
 greatest = fromIntegral $ choose (>) a
 choose f = foldA1 $ \x y -> if f x y then x else y
Our threshold function computes the minimum and
 maximum values in its input array. It takes these and a threshold
 valued between zero and one, and computes a “pivot”
 value. Then for each value in the array, if that value is less than
 the pivot, the result is Zero; otherwise,
 One. Notice that we use one of the folding functions that
 we wrote in Folding over Arrays.

What Have We Done to Our Image?

Let’s step back for a moment and
 consider what we did to our image when we converted it from color to
 monochrome. Figure 12-4 shows an image captured
 from a VGA-resolution camera. All
 we’ve done is crop it down to the barcode.
[image: Barcode photo, somewhat blurry and dim]

Figure 12-4. Barcode photo, somewhat blurry and dim

The encoded digit string, 9780132114677,
 is printed below the barcode. The left group encodes the digits 780132,
 with 9 encoded in their parity. The right group encodes the digits
 114677, where the final 7 is the check digit. Figure 12-5 shows a clean encoding of this
 barcode, from one of the many websites that offers barcode image
 generation for free.
[image: Automatically generated image of the same barcode]

Figure 12-5. Automatically generated image of the same barcode

In Figure 12-6, we’ve chosen a row from the
 captured image and stretched it out vertically to make it easier to see.
 We’ve superimposed this on top of the perfect image and stretched it out
 so that the two are aligned.
[image: Photographic and generated images of barcode juxtaposed to illustrate the variation in bar brightness and resolution]

Figure 12-6. Photographic and generated images of barcode juxtaposed to
 illustrate the variation in bar brightness and resolution

The luminance-converted row from the photo
 is in the dark gray band. It is low in contrast and poor in quality,
 with plenty of blurring and noise. The paler band is the same row with
 the contrast adjusted.
Somewhat below these two bands is another:
 this shows the effect of thresholding the luminance-converted row.
 Notice that some bars have gotten thicker, others thinner, and many bars
 have moved a little to the left or right.
Clearly, any attempt to find exact matches
 in an image with problems such as these is not going to succeed very
 often. We must write code that’s robust in the face of bars that are too
 thick, too thin, or not exactly where they’re supposed to be. The widths
 of our bars will depend on how far our book was from the camera, so we
 can’t make any assumptions about widths, either.

Finding Matching Digits

Our first problem is to find the digits
 that might be encoded at a given position. For the
 next while, we’ll make a couple simplifying assumptions. The first is
 that we’re working with a single row. The second is that we know exactly
 where in a row the left edge of a barcode begins.
Run Length Encoding

How can we overcome the problem of not
 even knowing how thick our bars are? The answer is to run length
 encode (instead of repeating a value some number of times, run length
 encoding presents it once, with a count of the number of consecutive
 repeats):
-- file: ch12/Barcode.hs
type Run = Int
type RunLength a = [(Run, a)]

runLength :: Eq a => [a] -> RunLength a
runLength = map rle . group
 where rle xs = (length xs, head xs)
The group function takes sequences of identical elements in a list and
 groups them into sublists:
ghci> group [1,1,2,3,3,3,3]
[[1,1],[2],[3,3,3,3]]

Our runLength function represents each group as
 a pair of its length and first element:
ghci> let bits = [0,0,1,1,0,0,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0]
ghci> runLength bits
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
[(2,0),(2,1),(2,0),(2,1),(6,0),(4,1),(4,0)]
Since the data we’re run length encoding
 are just ones and zeros, the encoded numbers will simply alternate
 between one and zero. We can throw the encoded values away without
 losing any useful information, keeping only the length of each
 run:
-- file: ch12/Barcode.hs
runLengths :: Eq a => [a] -> [Run]
runLengths = map fst . runLength
ghci> runLengths bits
[2,2,2,2,6,4,4]

The bit patterns aren’t random; they’re
 the left outer guard and first encoded digit of a row from our
 captured image. If we drop the guard bars, we’re left with the run
 lengths [2,6,4,4]. How do we find matches for these in
 the encoding tables we wrote in Introducing Arrays?

Scaling Run Lengths, and Finding Approximate Matches

One possible approach is to scale the
 run lengths so that they sum to one. We’ll use the Ratio
 Int type instead of the usual Double to manage
 these scaled values, as Ratios print out more readably in
 ghci. This makes interactive
 debugging and development much easier:
-- file: ch12/Barcode.hs
type Score = Ratio Int

scaleToOne :: [Run] -> [Score]
scaleToOne xs = map divide xs
 where divide d = fromIntegral d / divisor
 divisor = fromIntegral (sum xs)
-- A more compact alternative that "knows" we're using Ratio Int:
-- scaleToOne xs = map (% sum xs) xs

type ScoreTable = [[Score]]

-- "SRL" means "scaled run length".
asSRL :: [String] -> ScoreTable
asSRL = map (scaleToOne . runLengths)

leftOddSRL = asSRL leftOddList
leftEvenSRL = asSRL leftEvenList
rightSRL = asSRL rightList
paritySRL = asSRL parityList
We use the Score type
 synonym so that most of our code won’t have to care what the
 underlying type is. Once we’re done developing our code and poking
 around with ghci, we could, if we
 wish, go back and turn the Score type synonym into
 Doubles without changing any code.
We can use scaleToOne to scale a sequence of digits
 that we’re searching for. We’ve now corrected for variations in bar
 widths due to distance, as there should be a pretty close match
 between an entry in a scaled run length encoding table and a run
 length sequence pulled from an image.
The next question is how we turn the
 intuitive idea of “pretty close” into a measure of “close
 enough.” Given two scaled run length sequences, we can calculate an
 approximate “distance” between them as follows:
-- file: ch12/Barcode.hs
distance :: [Score] -> [Score] -> Score
distance a b = sum . map abs $ zipWith (-) a b
An exact match will give a distance of
 zero, with weaker matches resulting in larger distances:
ghci> let group = scaleToOne [2,6,4,4]
ghci> distance group (head leftEvenSRL)
13%28
ghci> distance group (head leftOddSRL)
17%28
Given a scaled run length table, we
 choose the best few matches in that table for a given input
 sequence:
-- file: ch12/Barcode.hs
bestScores :: ScoreTable -> [Run] -> [(Score, Digit)]
bestScores srl ps = take 3 . sort $ scores
 where scores = zip [distance d (scaleToOne ps) | d <- srl] digits
 digits = [0..9]

List Comprehensions

The new notation that we introduced in the previous example is
 an illustration of a list comprehension, which
 creates a list from one or more other lists:
ghci> [(a,b) | a <- [1,2], b <- "abc"]
[(1,'a'),(1,'b'),(1,'c'),(2,'a'),(2,'b'),(2,'c')]

The expression on the left of the
 vertical bar is evaluated for each combination of generator expressions on the
 right. A generator expression binds a variable on the left of a
 <- to an element of the list on
 the right. As the preceding example shows, the combinations of
 generators are evaluated in depth first order: for the first element
 of the first list, we evaluate every element of the second, and so
 on.
In addition to generators, we can also
 specify guards on the right of a list comprehension. A guard is a
 Bool expression. If it evaluates to False,
 that element is skipped over:
ghci> [(a,b) | a <- [1..6], b <- [5..7], even (a + b ^ 2)]
[(1,5),(1,7),(2,6),(3,5),(3,7),(4,6),(5,5),(5,7),(6,6)]

We can also bind local variables using
 a let expression:
ghci> let vowel = (`elem` "aeiou")
ghci> [x | a <- "etaoin", b <- "shrdlu", let x = [a,b], all vowel x]
["eu","au","ou","iu"]
If a pattern match fails in a generator
 expression, no error occurs. Instead, that list element is
 skipped:
ghci> [a | (3,a) <- [(1,'y'),(3,'e'),(5,'p')]]
"e"

List comprehensions are powerful and
 concise. As a result, they can be difficult to read, but when used
 with care, they can make code easier to follow:
-- file: ch12/Barcode.hs
-- our original
zip [distance d (scaleToOne ps) | d <- srl] digits

-- the same expression, expressed without a list comprehension
zip (map (flip distance (scaleToOne ps)) srl) digits

-- the same expression, written entirely as a list comprehension
[(distance d (scaleToOne ps), n) | d <- srl, n <- digits]

Remembering a Match’s Parity

For each match in the left group, we
 have to remember whether we found it in the even parity table or the
 odd table:
-- file: ch12/Barcode.hs
data Parity a = Even a | Odd a | None a
 deriving (Show)

fromParity :: Parity a -> a
fromParity (Even a) = a
fromParity (Odd a) = a
fromParity (None a) = a

parityMap :: (a -> b) -> Parity a -> Parity b
parityMap f (Even a) = Even (f a)
parityMap f (Odd a) = Odd (f a)
parityMap f (None a) = None (f a)

instance Functor Parity where
 fmap = parityMap
We wrap a value in the parity with which
 it was encoded, and then make it a Functor instance so
 that we can easily manipulate parity-encoded values.
We would like to be able to sort
 parity-encoded values based on the values they contain. The Data.Function module provides a lovely
 combinator that we can use for this, named on:
-- file: ch12/Barcode.hs
on :: (a -> a -> b) -> (c -> a) -> c -> c -> b
on f g x y = g x `f` g y

compareWithoutParity = compare `on` fromParity
In case it’s unclear, try thinking of
 on as a function of two
 arguments, f and g, which return
 a function of two arguments, x and
 y. It applies g to x and to
 y, then f on
 the two results (hence the name on).
Wrapping a match in a parity value is
 straightforward:
-- file: ch12/Barcode.hs
type Digit = Word8

bestLeft :: [Run] -> [Parity (Score, Digit)]
bestLeft ps = sortBy compareWithoutParity
 ((map Odd (bestScores leftOddSRL ps)) ++
 (map Even (bestScores leftEvenSRL ps)))

bestRight :: [Run] -> [Parity (Score, Digit)]
bestRight = map None . bestScores rightSRL
Once we have the best lefthand matches
 from the even and odd tables, we sort them based only on the quality
 of each match.
Another kind of laziness, of the keyboarding variety

In our definition of the
 Parity type, we could have used Haskell’s record syntax
 to avoid the need to write a fromParity function. In
 other words, we could have written it as follows:
-- file: ch12/Barcode.hs
data AltParity a = AltEven {fromAltParity :: a}
 | AltOdd {fromAltParity :: a}
 | AltNone {fromAltParity :: a}
 deriving (Show)
Why did we not do this? The answer is
 slightly shameful and has to do with interactive debugging in
 ghci. When we tell GHC to automatically derive a
 Show instance for a type, it produces different code
 depending on whether or not we declare the type with record
 syntax:
ghci> show $ Even 1
"Even 1"
ghci> show $ AltEven 1
"AltEven {fromAltParity = 1}"
ghci> length . show $ Even 1
6
ghci> length . show $ AltEven 1
27
The Show instance for the
 variant that uses record syntax is considerably more verbose. This
 creates much more noise that we must scan through when we’re trying
 to read, say, a list of parity-encoded values output by ghci.
Of course, we could write our own,
 less noisy, Show instance. It’s simply less effort to
 avoid record syntax and write our own fromParity
 function instead, letting GHC derive a more terse
 Show instance for us. This isn’t an especially
 satisfying rationale, but programmer laziness can lead in odd
 directions at times.

Chunking a List

A common aspect of working with lists is
 needing to “chunk” them. For example, each digit in a
 barcode is encoded using a run of four digits. We can turn the flat
 list that represents a row into a list of four-element lists as
 follows:
-- file: ch12/Barcode.hs
chunkWith :: ([a] -> ([a], [a])) -> [a] -> [[a]]
chunkWith _ [] = []
chunkWith f xs = let (h, t) = f xs
 in h : chunkWith f t

chunksOf :: Int -> [a] -> [[a]]
chunksOf n = chunkWith (splitAt n)
It’s somewhat rare that we need to write
 generic list manipulation functions such as this. Often, a glance
 through the Data.List module will find us a function that
 does exactly or close enough to what we need.

Generating a List of Candidate Digits

With our small army of helper functions
 deployed, the function that generates lists of candidate matches for
 each digit group is easy to write. First of all, we take care of a few
 early checks to determine whether matching even makes sense. A list of
 runs must start on a black (Zero) bar, and contain enough
 bars. Here are the first few equations of our function:
-- file: ch12/Barcode.hs
candidateDigits :: RunLength Bit -> [[Parity Digit]]
candidateDigits ((_, One):_) = []
candidateDigits rle | length rle < 59 = []
If any application of bestLeft or bestRight results in an empty list, we
 can’t possibly have a match. Otherwise, we throw away the scores, and
 return a list of lists of parity-encoded candidate digits. The outer
 list is 12 elements long, 1 per digit in the barcode. The digits in
 each sublist are ordered by match quality.
Here is the remainder of the definition
 of our function:
-- file: ch12/Barcode.hs
candidateDigits rle
 | any null match = []
 | otherwise = map (map (fmap snd)) match
 where match = map bestLeft left ++ map bestRight right
 left = chunksOf 4 . take 24 . drop 3 $ runLengths
 right = chunksOf 4 . take 24 . drop 32 $ runLengths
 runLengths = map fst rle
Let’s take a glance at the candidate
 digits chosen for each group of bars, from a row taken from Figure
 12-5:
ghci> :type input
input :: [(Run, Bit)]
ghci> take 7 input
[(2,Zero),(2,One),(2,Zero),(2,One),(6,Zero),(4,One),(4,Zero)]
ghci> mapM_ print $ candidateDigits input
[Even 1,Even 5,Odd 7,Odd 1,Even 2,Odd 5]
[Even 8,Even 7,Odd 1,Odd 2,Odd 0,Even 6]
[Even 0,Even 1,Odd 8,Odd 2,Odd 4,Even 9]
[Odd 1,Odd 0,Even 8,Odd 2,Even 2,Even 4]
[Even 3,Odd 4,Odd 5,Even 7,Even 0,Odd 2]
[Odd 2,Odd 4,Even 7,Even 0,Odd 1,Even 1]
[None 1,None 5,None 0]
[None 1,None 5,None 2]
[None 4,None 5,None 2]
[None 6,None 8,None 2]
[None 7,None 8,None 3]
[None 7,None 3,None 8]

Life Without Arrays or Hash Tables

In an imperative language, the array is as much a “bread
 and butter” type as a list or tuple in Haskell. We take it for
 granted that an array in an imperative language is usually mutable; we
 can change an element of an array whenever it suits us.
As we mentioned in Modifying Array Elements, Haskell arrays are
 not mutable. This means that to
 “modify” a single array element, a copy of the entire array
 is made, with that single element set to its new value. Clearly, this
 approach is not a winner for performance.
The mutable array is a building block for another ubiquitous imperative data
 structure, the hash table. In the typical implementation, an array acts
 as the “spine” of the table, with each element containing a
 list of elements. To add an element to a hash table, we hash the element
 to find the array offset and modify the list at that offset to add the
 element to it.
If arrays aren’t mutable for updating a
 hash table, we must create a new one. We copy the array, putting a new
 list at the offset indicated by the element’s hash. We don’t need to
 copy the lists at other offsets, but we’ve already dealt performance a
 fatal blow simply by having to copy the spine.
At a single stroke, then, immutable arrays
 have eliminated two canonical imperative data
 structures from our toolbox. Arrays are somewhat less useful in pure
 Haskell code than in many other languages. Still, many array codes
 update an array only during a build phase, and subsequently use it in a
 read-only manner.
A Forest of Solutions

This is not the calamitous situation
 that it might seem, though. Arrays and hash tables are often used as
 collections indexed by a key, and in Haskell we use
 trees for this purpose.
Implementing a naive tree type is
 particularly easy in Haskell. Beyond that, more useful tree types are
 also unusually easy to implement. Self-balancing structures, such as
 red-black trees, have struck fear into generations of undergraduate
 computer science students, because the balancing algorithms are
 notoriously hard to get right.
Haskell’s combination of algebraic data
 types, pattern matching, and guards reduce even the hairiest of
 balancing operations to a few lines of code. We’ll bite back our
 enthusiasm for building trees, however, and focus on why they’re
 particularly useful in a pure functional language.
The attraction of a tree to a functional
 programmer is cheap modification. We don’t break
 the immutability rule: trees are immutable just like everything else.
 However, when we modify a tree, thus creating a new tree, we can share
 most of the structure between the old and new versions. For example,
 in a tree containing 10,000 nodes, we might expect that the old and
 new versions will share about 9,985 elements when we add or remove
 one. In other words, the number of elements modified per update
 depends on the height of the tree or the logarithm of the size of the
 tree.
Haskell’s standard libraries provide two
 collection types that are implemented using balanced trees behind the
 scenes: Data.Map for key/value pairs and
 Data.Set for sets of values. As we’ll be using
 Data.Map in the sections that follow, we’ll give a quick
 introduction to it next. Data.Set is sufficiently similar
 that you should be able to pick it up quickly.
A word about performance
Compared to a hash table, a
 well-implemented purely functional tree data structure will perform
 competitively. You should not approach trees with the assumption
 that your code will pay a performance penalty.

A Brief Introduction to Maps

The Data.Map
 module provides a parameterized type, Map k a,
 that maps from a key type k to a value
 type a. Although it is internally a
 size-balanced binary tree, the implementation is not visible to
 us.
Map is strict in its keys,
 but nonstrict in its values. In other words, the spine, or structure, of the map
 is always kept up-to-date, but values in the map aren’t evaluated
 unless we force them to be.
It is very important to remember this,
 as Map’s laziness over values is a frequent source of
 space leaks among coders who are not expecting it.
Because the Data.Map module
 contains a number of names that clash with Prelude names, it’s usually imported in
 qualified form. Earlier in this chapter, we imported it using the
 prefix M.
Type constraints

The Map type doesn’t place any explicit constraints on its key
 type, but most of the module’s useful functions require that keys be
 instances of Ord. This is noteworthy, as it’s an
 example of a common design pattern in Haskell code: type constraints
 are pushed out to where they’re actually needed, not necessarily
 applied at the point where they’d result in the least typing for a
 library’s author.
Neither the Map type nor
 any functions in the module constrain the types that can be used as
 values.

Partial application awkwardness

For some reason, the type signatures
 of the functions in Data.Map are not generally friendly
 to partial application. The map
 parameter always comes last, whereas it would be easier to partially
 apply if it were first. As a result, code that uses partially
 applied map functions almost always contains adapter functions to
 fiddle with argument ordering.

Getting started with the API

The Data.Map module has a
 large “surface area”: it exports dozens of functions.
 Just a handful of these comprise the most frequently used core of
 the module.
To create an empty map, we use
 empty. For a map containing one
 key/value pair, we use singleton:
ghci> M.empty
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
fromList []
ghci> M.singleton "foo" True
fromList [("foo",True)]
Since the implementation is abstract,
 we can’t pattern match on Map values. Instead, it
 provides a number of lookup functions, of which two are particularly
 widely used. The lookup
 function has a slightly tricky type signature,[31] but don’t worry—all will become clear in Chapter 14:
ghci> :type M.lookup
M.lookup :: (Ord k, Monad m) => k -> M.Map k a -> m a

Most often, the type parameter
 m in the result is
 Maybe. In other words, if the map contains a value for
 the given key, lookup will
 return the value wrapped in Just. Otherwise, it will return
 Nothing:
ghci> let m = M.singleton "foo" 1 :: M.Map String Int
ghci> case M.lookup "bar" m of { Just v -> "yay"; Nothing -> "boo" }
"boo"
The findWithDefault function takes a value to
 return if the key isn’t in the map.
Beware the partial functions!
There exists a (!) operator that performs a lookup and returns the unadorned
 value associated with a key (i.e., not wrapped in
 Maybe or whatever). Unfortunately, it is not a total
 function: it calls error if
 the key is not present in the map.

To add a key/value pair to the map,
 the most useful functions are insert and insertWith'. The insert function simply inserts a value
 into the map, overwriting any matching value that may already have
 been present.
ghci> :type M.insert
M.insert :: (Ord k) => k -> a -> M.Map k a -> M.Map k a
ghci> M.insert "quux" 10 m
fromList [("foo",1),("quux",10)]
ghci> M.insert "foo" 9999 m
fromList [("foo",9999)]
The insertWith' function takes a further combining function as
 its argument. If no matching key was present in the map, the new
 value is inserted verbatim. Otherwise, the combining function is
 called on the new and old values, and its result is inserted into
 the map:
ghci> :type M.insertWith'
M.insertWith' :: (Ord k) => (a -> a -> a) -> k -> a -> M.Map k a -> M.Map k a
ghci> M.insertWith' (+) "zippity" 10 m
fromList [("foo",1),("zippity",10)]
ghci> M.insertWith' (+) "foo" 9999 m
fromList [("foo",10000)]
As the tick at the end of its name
 suggests, insertWith' evaluates
 the combining function strictly, allowing us to avoid space leaks.
 While there exists a lazy variant (insertWith without the trailing tick in
 the name), it’s rarely what we’ll actually want.
The delete function deletes the given key from the map. It returns the
 map unmodified if the key is not present:
ghci> :type M.delete
M.delete :: (Ord k) => k -> M.Map k a -> M.Map k a
ghci> M.delete "foo" m
fromList []
Finally, there are several efficient
 functions for performing set-like operations on maps. Of these,
 we’ll be using union. This
 function is left-biased—if two maps contain the same key, the result will
 contain the value from the left map:
ghci> m `M.union` M.singleton "quux" 1
fromList [("foo",1),("quux",1)]
ghci> m `M.union` M.singleton "foo" 0
fromList [("foo",1)]
We have barely covered ten percent of
 the Data.Map API. We will cover maps and similar data
 structures in greater detail in Chapter 13. For further
 inspiration, we encourage you to browse the module documentation.
 The module is impressively thorough.

Further Reading

Purely Functional Data
 Structures by Chris Okasaki (Cambridge University Press)
 gives a wonderful and thorough implementor’s tour of many pure
 functional data structures, including several kinds of balanced trees.
 It also provides valuable insight into reasoning about the performance
 of purely functional data structures and lazy evaluation.
We recommend Okasaki’s book as essential
 reading for functional programmers. If you’re not convinced, Okasaki’s
 Ph.D. thesis, Purely Functional Data Structures
 (see http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf), is a
 less complete and polished version of the book, and it is available
 for free online.

Turning Digit Soup into an Answer

We’ve got yet another problem to solve.
 We have many candidates for the last 12 digits of the barcode. In
 addition, we need to use the parities of the first six digits to figure
 out what the first digit is. Finally, we need to ensure that our
 answer’s check digit makes sense.
This seems quite challenging! We have a
 lot of uncertain data; what should we do? It’s reasonable to ask if we
 could perform a brute-force search. Given the candidates we saw in th
 preceding ghci session, how many
 combinations would we have to examine?
ghci> product . map length . candidateDigits $ input
34012224

So much for that idea. Once again, we’ll
 initially focus on a subproblem that we know how to solve and postpone
 worrying about the rest.
Solving for Check Digits in Parallel

Let’s abandon the idea of searching for
 now, and focus on computing a check digit. The check digit for a
 barcode can assume 1 of 12 possible values. For a given parity digit,
 which input sequences can cause that digit to be computed?
-- file: ch12/Barcode.hs
type Map a = M.Map Digit [a]
In this map, the key is a check digit,
 and the value is a sequence that evaluates to this check digit. We
 have two further map types based on this definition:
-- file: ch12/Barcode.hs
type DigitMap = Map Digit
type ParityMap = Map (Parity Digit)
We’ll generically refer to these as
 solution maps, because they show us the digit sequence that “solves
 for” each check digit.
Given a single digit, here’s how we can
 update an existing solution map:
-- file: ch12/Barcode.hs
updateMap :: Parity Digit -- ^ new digit
 -> Digit -- ^ existing key
 -> [Parity Digit] -- ^ existing digit sequence
 -> ParityMap -- ^ map to update
 -> ParityMap
updateMap digit key seq = insertMap key (fromParity digit) (digit:seq)

insertMap :: Digit -> Digit -> [a] -> Map a -> Map a
insertMap key digit val m = val `seq` M.insert key' val m
 where key' = (key + digit) `mod` 10
With an existing check digit drawn from
 the map, the sequence that solves for it, and a new input digit, this
 function updates the map with the new sequence that leads to the new
 check digit.
This might seem a bit much to digest,
 but an example will make it clear. Let’s say the check digit we’re
 looking at is 4, the sequence leading to it is
 [1,3], and the digit we want to add to the map is
 8. The sum of 4 and 8, modulo
 10, is 2, so this is the key we’ll be inserting into the
 map. The sequence that leads to the new check digit 2 is
 thus [8,1,3], so this is what we’ll insert as the
 value.
For each digit in a sequence, we’ll
 generate a new solution map, using that digit and an older solution
 map:
-- file: ch12/Barcode.hs
useDigit :: ParityMap -> ParityMap -> Parity Digit -> ParityMap
useDigit old new digit =
 new `M.union` M.foldWithKey (updateMap digit) M.empty old
Once again, let’s illustrate what this
 code is doing using some examples. This time, we’ll use ghci:
ghci> let single n = M.singleton n [Even n] :: ParityMap
ghci> useDigit (single 1) M.empty (Even 1)
fromList [(2,[Even 1,Even 1])]
ghci> useDigit (single 1) (single 2) (Even 2)
fromList [(2,[Even 2]),(3,[Even 2,Even 1])]
The new solution map that we feed to
 useDigits starts out empty. We
 populate it completely by folding useDigits over a sequence of input
 digits:
-- file: ch12/Barcode.hs
incorporateDigits :: ParityMap -> [Parity Digit] -> ParityMap
incorporateDigits old digits = foldl' (useDigit old) M.empty digits
This generates a complete new solution
 map from an old one:
ghci> incorporateDigits (M.singleton 0 []) [Even 1, Even 5]
fromList [(1,[Even 1]),(5,[Even 5])]

Finally, we must build the complete
 solution map. We start out with an empty map, then fold over each
 digit position from the barcode in turn. For each position, we create
 a new map from our guesses at the digits in that position. This
 becomes the old map for the next round of the fold:
-- file: ch12/Barcode.hs
finalDigits :: [[Parity Digit]] -> ParityMap
finalDigits = foldl' incorporateDigits (M.singleton 0 [])
 . mapEveryOther (map (fmap (*3)))
(From the checkDigit function that we defined in
 EAN-13 Encoding, we remember that the check digit
 computation requires that we multiply every other digit by
 3.)
How long is the list with which we call
 finalDigits? We don’t yet know
 what the first digit of our sequence is, so obviously we can’t provide
 that. And we don’t want to include our guess at the check digit, so
 the list must be 11 elements long.
Once we’ve returned from finalDigits, our solution map is
 necessarily incomplete, because we haven’t yet figured out what the
 first digit is.

Completing the Solution Map with the First Digit

We haven’t yet discussed how we should
 extract the value of the first digit from the parities of the left
 group of digits. This is a straightforward matter of reusing code that
 we’ve already written:
-- file: ch12/Barcode.hs
firstDigit :: [Parity a] -> Digit
firstDigit = snd
 . head
 . bestScores paritySRL
 . runLengths
 . map parityBit
 . take 6
 where parityBit (Even _) = Zero
 parityBit (Odd _) = One
Each element of our partial solution map
 now contains a reversed list of digits and parity data. Our next task
 is to create a completed solution map, by computing the first digit in
 each sequence, and using it to create that last solution map:
-- file: ch12/Barcode.hs
addFirstDigit :: ParityMap -> DigitMap
addFirstDigit = M.foldWithKey updateFirst M.empty

updateFirst :: Digit -> [Parity Digit] -> DigitMap -> DigitMap
updateFirst key seq = insertMap key digit (digit:renormalize qes)
 where renormalize = mapEveryOther (`div` 3) . map fromParity
 digit = firstDigit qes
 qes = reverse seq
Along the way, we get rid of the
 Parity type and reverse our earlier multiplications by
 three. Our last step is to complete the check digit
 computation:
-- file: ch12/Barcode.hs
buildMap :: [[Parity Digit]] -> DigitMap
buildMap = M.mapKeys (10 -)
 . addFirstDigit
 . finalDigits

Finding the Correct Sequence

We now have a map of all possible
 checksums and the sequences that lead to each. All that remains is to
 take our guesses at the check digit, and then see if we have a
 corresponding solution map entry:
-- file: ch12/Barcode.hs
solve :: [[Parity Digit]] -> [[Digit]]
solve [] = []
solve xs = catMaybes $ map (addCheckDigit m) checkDigits
 where checkDigits = map fromParity (last xs)
 m = buildMap (init xs)
 addCheckDigit m k = (++[k]) <$> M.lookup k m
Let’s try this out on the row we picked
 from our photo and see if we get a sensible answer:
ghci> listToMaybe . solve . candidateDigits $ input
Just [9,7,8,0,1,3,2,1,1,4,6,7,7]

Excellent! This is exactly the string
 encoded in the barcode that we photographed.

Working with Row Data

We’ve mentioned repeatedly that we are taking a single row from our
 image. Here’s how:
-- file: ch12/Barcode.hs
withRow :: Int -> Pixmap -> (RunLength Bit -> a) -> a
withRow n greymap f = f . runLength . elems $ posterized
 where posterized = threshold 0.4 . fmap luminance . row n $ greymap
The withRow function takes a row, converts it to
 monochrome, and then calls another function on the run length encoded
 row data. To get the row data, it calls row:
-- file: ch12/Barcode.hs
row :: (Ix a, Ix b) => b -> Array (a,b) c -> Array a c
row j a = ixmap (l,u) project a
 where project i = (i,j)
 ((l,_), (u,_)) = bounds a
This function takes a bit of explaining.
 Whereas fmap transforms the
 values in an array, ixmap transforms the
 indices of an array. It’s a very powerful function that lets us
 “slice” an array however we please.
The first argument to ixmap is the bounds of the new array. These
 bounds can be of a different dimension than the source array. In
 row, for example, we’re extracting a one-dimensional array
 from a two-dimensional array.
The second argument is a
 projection function. This takes an index from the new array and returns an
 index into the source array. The value at that projected index then
 becomes the value in the new array at the original index. For example,
 if we pass 2 into the projection function and it returns
 (2,2), the element at index 2 of the new array
 will be taken from element (2,2) of the source
 array.

Pulling It All Together

Our candidateDigits function gives an empty
 result unless we call it at the beginning of a barcode sequence. We can
 easily scan across a row until we get a match as follows:
-- file: ch12/Barcode.hs
findMatch :: [(Run, Bit)] -> Maybe [[Digit]]
findMatch = listToMaybe
 . filter (not . null)
 . map (solve . candidateDigits)
 . tails
Here, we’re taking advantage of lazy
 evaluation. The call to map over
 tails will only be evaluated until
 it results in a nonempty list.
Next, we choose a row from an image and
 try to find a barcode in it:
-- file: ch12/Barcode.hs
findEAN13 :: Pixmap -> Maybe [Digit]
findEAN13 pixmap = withRow center pixmap (fmap head . findMatch)
 where (_, (maxX, _)) = bounds pixmap
 center = (maxX + 1) `div` 2
Finally, here’s a very simple wrapper that
 prints barcodes from whatever netpbm image files we pass into our
 program on the command line:
-- file: ch12/Barcode.hs
main :: IO ()
main = do
 args <- getArgs
 forM_ args $ \arg -> do
 e <- parse parseRawPPM <$> L.readFile arg
 case e of
 Left err -> print $ "error: " ++ err
 Right pixmap -> print $ findEAN13 pixmap
Notice that, of the more than 30 functions
 we’ve defined in this chapter, main
 is the only one that lives in IO.

A Few Comments on Development Style

You may have noticed that many of the
 functions we presented in this chapter were short functions at the top
 level of the source file. This is no accident. As we mentioned earlier,
 when we started writing this chapter, we didn’t know what form our
 solution was going to take.
Quite often, then, we had to explore a
 problem space in order to figure out where we were going. To do this, we
 spent a lot of time fiddling about in ghci, performing tiny experiments on
 individual functions. This kind of exploration requires that a function
 be declared at the top level of a source file; otherwise, ghci won’t be able to see it.
Once we were satisfied that individual
 functions were behaving themselves, we started to glue them together,
 again investigating the consequences in ghci. This is where our devotion to writing
 type signatures paid back, as we immediately discovered when a
 particular composition of functions couldn’t possibly work.
At the end of this process, we were left
 with a large number of very small top-level functions, each with a type
 signature. This isn’t the most compact representation possible; we could
 have hoisted many of those functions into let or where blocks when we were done with them.
 However, we find that the added vertical space, small function bodies,
 and type signatures make the code far more readable, so we generally
 avoided “golfing” functions after we wrote them.[32]
Working in a language with strong, static
 typing does not at all interfere with incrementally and fluidly
 developing a solution to a problem. We find the turnaround between
 writing a function and getting useful feedback from ghci to be very rapid; it greatly assists us
 in writing good code quickly.

[30] The formula originates in ITU-R
 Recommendation 601.

[31] Starting with GHC 6.10.1, the type of this function has
 been simplified to k -> M.Map k a
 -> Maybe a.

[32] Our use of the word
 golf comes from a game originally played by
 Perl hackers, in which programmers try to create the smallest piece
 of code for some purpose. The code with the fewest (key)strokes
 wins.

Chapter 13. Data Structures

Association Lists

Often, we have to deal with data that is unordered but is indexed by
 a key. For instance, a Unix administrator might have a list of numeric UIDs (user IDs) and the
 textual usernames that they correspond to. The value of this list lies
 in being able to look up a textual username for a given UID, not in the
 order of the data. In other words, the UID is a key into a
 database.
In Haskell, there are several ways to
 handle data that is structured in this way. The two most common are
 association lists and the Map type provided by Data.Map module. Association lists are handy
 because they are simple. They are standard Haskell lists, so all the
 familiar list functions work with them. However, for large data sets,
 Map will have a considerable performance advantage over
 association lists. We’ll use both in this chapter.
An association list is just a normal list containing (key,
 value) tuples. The type of a list of mappings from UID to username might
 be [(Integer, String)]. We could use
 just about any type[33] for both the key and the value.
We can build association lists just like
 we do any other list. Haskell comes with one built-in function called
 Data.List.lookup to look up data in an association list. Its type is Eq a => a -> [(a, b)] ->
 Maybe b. Can you guess how it works from that type? Let’s take
 a look in ghci:
ghci> let al = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]
ghci> lookup 1 al
Just "one"
ghci> lookup 5 al
Nothing
The lookup function is really simple. Here’s one
 way we could write it:
-- file: ch13/lookup.hs
myLookup :: Eq a => a -> [(a, b)] -> Maybe b
myLookup _ [] = Nothing
myLookup key ((thiskey,thisval):rest) =
 if key == thiskey
 then Just thisval
 else myLookup key rest
This function returns Nothing if passed the empty list. Otherwise,
 it compares the key with the key we’re looking for. If a match is found,
 the corresponding value is returned; otherwise, it searches the rest of
 the list.
Let’s take a look at a more complex
 example of association lists. On Unix/Linux machines, there is a file
 called /etc/passwd that stores
 usernames, UIDs, home directories, and various other data. We will write
 a program that parses such a file, creates an association list, and lets
 the user look up a username with a UID:
-- file: ch13/passwd-al.hs
import Data.List
import System.IO
import Control.Monad(when)
import System.Exit
import System.Environment(getArgs)

main = do
 -- Load the command-line arguments
 args <- getArgs

 -- If we don't have the right amount of args, give an error and abort
 when (length args /= 2) $ do
 putStrLn "Syntax: passwd-al filename uid"
 exitFailure

 -- Read the file lazily
 content <- readFile (args !! 0)

 -- Compute the username in pure code
 let username = findByUID content (read (args !! 1))

 -- Display the result
 case username of
 Just x -> putStrLn x
 Nothing -> putStrLn "Could not find that UID"

-- Given the entire input and a UID, see if we can find a username.
findByUID :: String -> Integer -> Maybe String
findByUID content uid =
 let al = map parseline . lines $ content
 in lookup uid al

-- Convert a colon-separated line into fields
parseline :: String -> (Integer, String)
parseline input =
 let fields = split ':' input
 in (read (fields !! 2), fields !! 0)

{- | Takes a delimiter and a list. Break up the list based on the
- delimiter. -}
split :: Eq a => a -> [a] -> [[a]]

-- If the input is empty, the result is a list of empty lists.
split _ [] = [[]]
split delim str =
 let -- Find the part of the list before delim and put it in "before".
 -- The rest of the list, including the leading delim, goes
 -- in "remainder".
 (before, remainder) = span (/= delim) str
 in
 before : case remainder of
 [] -> []
 x -> -- If there is more data to process,
 -- call split recursively to process it
 split delim (tail x)
Let’s look at this program. The heart of
 it is findByUID, which is a simple
 function that parses the input one line at a time, then calls lookup over the result. The remaining program
 is concerned with parsing the input. The input file looks like
 this:
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
jgoerzen:x:1000:1000:John Goerzen,,,:/home/jgoerzen:/bin/bash
Its fields are separated by colons and
 include a username, numeric user ID, numeric group ID, full name, home
 directory, and shell. No field may contain an internal colon.

Maps

The Data.Map module provides a Map type with behavior that is
 similar to association lists but has much better performance.
Maps give us the same capabilities as
 hash tables do in other languages. Internally, a map is
 implemented as a balanced binary tree. Compared to a hash table, this is
 a much more efficient representation in a language with immutable data.
 This is the most visible example of how deeply pure functional
 programming affects how we write code: we choose data structures and
 algorithms that we can express cleanly and that perform efficiently, but
 our choices for specific tasks are often different from their
 counterparts in imperative languages.
Some functions in the
 Data.Map module have the same names as those in the
 Prelude. Therefore, we will import it
 with import qualified Data.Map as Map
 and use Map.name to refer
 to names in that module. Let’s start our tour of Data.Map by taking a look at some ways to
 build a map:
-- file: ch13/buildmap.hs
import qualified Data.Map as Map

-- Functions to generate a Map that represents an association list
-- as a map

al = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]

{- | Create a map representation of 'al' by converting the association
- list using Map.fromList -}
mapFromAL =
 Map.fromList al

{- | Create a map representation of 'al' by doing a fold -}
mapFold =
 foldl (\map (k, v) -> Map.insert k v map) Map.empty al

{- | Manually create a map with the elements of 'al' in it -}
mapManual =
 Map.insert 2 "two" .
 Map.insert 4 "four" .
 Map.insert 1 "one" .
 Map.insert 3 "three" $ Map.empty
Functions such as Map.insert work in the usual Haskell way: they return a copy of the input
 data, with the requested change applied. This is quite handy with maps.
 It means that you can use foldl to
 build up a map as in the mapFold
 example. Or, you can chain together calls to Map.insert as in the mapManual example. Let’s use ghci to verify that all of these maps are as
 expected:
ghci> :l buildmap.hs
[1 of 1] Compiling Main (buildmap.hs, interpreted)
Ok, modules loaded: Main.
ghci> al
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
[(1,"one"),(2,"two"),(3,"three"),(4,"four")]
ghci> mapFromAL
fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]
ghci> mapFold
fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]
ghci> mapManual
fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]
Notice that the output from mapManual differs from the order of the list
 we used to construct the map. Maps do not guarantee that they will
 preserve the original ordering.
Maps operate similarly in concept to
 association lists. The Data.Map
 module provides functions for adding and removing data from maps. It
 also lets us filter them, modify them, fold over them, and convert to
 and from association lists. The library documentation for this module is
 good, so instead of going into detail on each function, we will present
 an example that ties together many of the concepts we’ve discussed in
 this chapter.

Functions Are Data, Too

Part of Haskell’s power is the ease with which it lets us create and
 manipulate functions. Let’s take a look at a record that stores a
 function as one of its fields:
-- file: ch13/funcrecs.hs
{- | Our usual CustomColor type to play with -}
data CustomColor =
 CustomColor {red :: Int,
 green :: Int,
 blue :: Int}
 deriving (Eq, Show, Read)

{- | A new type that stores a name and a function.

The function takes an Int, applies some computation to it, and returns
an Int along with a CustomColor -}
data FuncRec =
 FuncRec {name :: String,
 colorCalc :: Int -> (CustomColor, Int)}

plus5func color x = (color, x + 5)

purple = CustomColor 255 0 255

plus5 = FuncRec {name = "plus5", colorCalc = plus5func purple}
always0 = FuncRec {name = "always0", colorCalc = _ -> (purple, 0)}
Notice the type of the colorCalc field: it’s a function. It takes an
 Int and returns a tuple of (CustomColor, Int). We create two FuncRec records: plus5 and always0. Notice that the colorCalc for both of them will always return
 the color purple. FuncRec itself has
 no field to store the color in, yet that value somehow becomes part of
 the function itself. This is called a closure.
 Let’s play with this a bit:
ghci> :l funcrecs.hs
[1 of 1] Compiling Main (funcrecs.hs, interpreted)
Ok, modules loaded: Main.
ghci> :t plus5
plus5 :: FuncRec
ghci> name plus5
"plus5"
ghci> :t colorCalc plus5
colorCalc plus5 :: Int -> (CustomColor, Int)
ghci> (colorCalc plus5) 7
(CustomColor {red = 255, green = 0, blue = 255},12)
ghci> :t colorCalc always0
colorCalc always0 :: Int -> (CustomColor, Int)
ghci> (colorCalc always0) 7
(CustomColor {red = 255, green = 0, blue = 255},0)
That worked well enough, but you might
 wonder how to do something more advanced, such as making a piece of data
 available in multiple places. A type construction function can be
 helpful. Here’s an example:
-- file: ch13/funcrecs2.hs
data FuncRec =
 FuncRec {name :: String,
 calc :: Int -> Int,
 namedCalc :: Int -> (String, Int)}

mkFuncRec :: String -> (Int -> Int) -> FuncRec
mkFuncRec name calcfunc =
 FuncRec {name = name,
 calc = calcfunc,
 namedCalc = \x -> (name, calcfunc x)}

plus5 = mkFuncRec "plus5" (+ 5)
always0 = mkFuncRec "always0" (_ -> 0)
Here we have a function called mkFuncRec that takes a String and another function as parameters, and
 then returns a new FuncRec record.
 Notice how both parameters to mkFuncRec are used in multiple places. Let’s
 try it out:
ghci> :l funcrecs2.hs
[1 of 1] Compiling Main (funcrecs2.hs, interpreted)
Ok, modules loaded: Main.
ghci> :t plus5
plus5 :: FuncRec
ghci> name plus5
"plus5"
ghci> (calc plus5) 5
10
ghci> (namedCalc plus5) 5
("plus5",10)
ghci> let plus5a = plus5 {name = "PLUS5A"}
ghci> name plus5a
"PLUS5A"
ghci> (namedCalc plus5a) 5
("plus5",10)
Notice the creation of plus5a. We changed the name field, but not the namedCalc field. That’s why name has the new name, but namedCalc still returns the name that was
 passed to mkFuncRec; it doesn’t
 change unless we explicitly change it.

Extended Example: /etc/passwd

In order to illustrate the usage of a number of different data
 structures together, we’ve prepared an extended example. This example
 parses and stores entries from files in the format of a typical
 /etc/passwd file:
-- file: ch13/passwdmap.hs
import Data.List
import qualified Data.Map as Map
import System.IO
import Text.Printf(printf)
import System.Environment(getArgs)
import System.Exit
import Control.Monad(when)

{- | The primary piece of data this program will store.
 It represents the fields in a POSIX /etc/passwd file -}
data PasswdEntry = PasswdEntry {
 userName :: String,
 password :: String,
 uid :: Integer,
 gid :: Integer,
 gecos :: String,
 homeDir :: String,
 shell :: String}
 deriving (Eq, Ord)

{- | Define how we get data to a 'PasswdEntry'. -}
instance Show PasswdEntry where
 show pe = printf "%s:%s:%d:%d:%s:%s:%s"
 (userName pe) (password pe) (uid pe) (gid pe)
 (gecos pe) (homeDir pe) (shell pe)

{- | Converting data back out of a 'PasswdEntry'. -}
instance Read PasswdEntry where
 readsPrec _ value =
 case split ':' value of
 [f1, f2, f3, f4, f5, f6, f7] ->
 -- Generate a 'PasswdEntry' the shorthand way:
 -- using the positional fields. We use 'read' to convert
 -- the numeric fields to Integers.
 [(PasswdEntry f1 f2 (read f3) (read f4) f5 f6 f7, [])]
 x -> error $ "Invalid number of fields in input: " ++ show x
 where
 {- | Takes a delimiter and a list. Break up the list based on the
 - delimiter. -}
 split :: Eq a => a -> [a] -> [[a]]

 -- If the input is empty, the result is a list of empty lists.
 split _ [] = [[]]
 split delim str =
 let -- Find the part of the list before delim and put it in
 -- "before". The rest of the list, including the leading
 -- delim, goes in "remainder".
 (before, remainder) = span (/= delim) str
 in
 before : case remainder of
 [] -> []
 x -> -- If there is more data to process,
 -- call split recursively to process it
 split delim (tail x)

-- Convenience aliases; we'll have two maps: one from UID to entries
-- and the other from username to entries
type UIDMap = Map.Map Integer PasswdEntry
type UserMap = Map.Map String PasswdEntry

{- | Converts input data to maps. Returns UID and User maps. -}
inputToMaps :: String -> (UIDMap, UserMap)
inputToMaps inp =
 (uidmap, usermap)
 where
 -- fromList converts a [(key, value)] list into a Map
 uidmap = Map.fromList . map (\pe -> (uid pe, pe)) $ entries
 usermap = Map.fromList .
 map (\pe -> (userName pe, pe)) $ entries
 -- Convert the input String to [PasswdEntry]
 entries = map read (lines inp)

main = do
 -- Load the command-line arguments
 args <- getArgs

 -- If we don't have the right number of args,
 -- give an error and abort

 when (length args /= 1) $ do
 putStrLn "Syntax: passwdmap filename"
 exitFailure

 -- Read the file lazily
 content <- readFile (head args)
 let maps = inputToMaps content
 mainMenu maps

mainMenu maps@(uidmap, usermap) = do
 putStr optionText
 hFlush stdout
 sel <- getLine
 -- See what they want to do. For every option except 4,
 -- return them to the main menu afterwards by calling
 -- mainMenu recursively
 case sel of
 "1" -> lookupUserName >> mainMenu maps
 "2" -> lookupUID >> mainMenu maps
 "3" -> displayFile >> mainMenu maps
 "4" -> return ()
 _ -> putStrLn "Invalid selection" >> mainMenu maps

 where
 lookupUserName = do
 putStrLn "Username: "
 username <- getLine
 case Map.lookup username usermap of
 Nothing -> putStrLn "Not found."
 Just x -> print x
 lookupUID = do
 putStrLn "UID: "
 uidstring <- getLine
 case Map.lookup (read uidstring) uidmap of
 Nothing -> putStrLn "Not found."
 Just x -> print x
 displayFile =
 putStr . unlines . map (show . snd) . Map.toList $ uidmap
 optionText =
 "\npasswdmap options:\n\
 \\n\
 \1 Look up a user name\n\
 \2 Look up a UID\n\
 \3 Display entire file\n\
 \4 Quit\n\n\
 \Your selection: "
This example maintains two maps: one from
 username to PasswdEntry and another
 one from UID to PasswdEntry. Database
 developers may find it convenient to think of this as having two
 different indices into the data to speed searching on different
 fields.
Take a look at the Show and Read instances for PasswdEntry. There is already a standard
 format for rendering data of this type as a string: the colon-separated
 version the system already uses. So our Show function displays a PasswdEntry in the format, and Read parses that format.

Extended Example: Numeric Types

We’ve told you how powerful and expressive Haskell’s type
 system is. We’ve shown you a lot of ways to use that power. Here’s a
 chance to really see that in action.
Back in Numeric Types, we showed the numeric
 typeclasses that come with Haskell. Let’s see what we can do by defining
 new types and utilizing the numeric typeclasses to integrate them with
 basic mathematics in Haskell.
To begin let’s think through what we’d
 like to see out of ghci when we
 interact with our new types. To start with, it might be nice to render
 numeric expressions as strings, making sure to indicate proper
 precedence. Perhaps we could create a function called prettyShow to do that. We’ll show you how to
 write it in a bit, but first we’ll look at how we might use it:
ghci> :l num.hs
[1 of 1] Compiling Main (num.hs, interpreted)
Ok, modules loaded: Main.
ghci> 5 + 1 * 3
8
ghci> prettyShow $ 5 + 1 * 3
"5+(1*3)"
ghci> prettyShow $ 5 * 1 + 3
"(5*1)+3"
That looks nice, but it wasn’t all that
 smart. We could easily simplify out the 1
 * part of the expression. How about a function to do some very
 basic simplification?
ghci> prettyShow $ simplify $ 5 + 1 * 3
"5+3"

How about converting a numeric
 expression to Reverse Polish Notation (RPN)?
 RPN is a postfix notation that never requires parentheses and is
 commonly found on HP calculators. RPN is a stack-based notation. We push
 numbers onto the stack, and when we enter operations, they pop the most
 recent numbers off the stack and place the result on the stack:
ghci> rpnShow $ 5 + 1 * 3
"5 1 3 * +"
ghci> rpnShow $ simplify $ 5 + 1 * 3
"5 3 +"
Maybe it would be nice to be able to
 represent simple expressions with symbols for the unknowns:
ghci> prettyShow $ 5 + (Symbol "x") * 3
"5+(x*3)"

It’s often important to track units of
 measure when working with numbers. For instance, when you see the number
 5, does it mean 5 meters, 5 feet, or 5 bytes? Of course, if you divide 5
 meters by 2 seconds, the system ought to be able to figure out the
 appropriate units. Moreover, it should stop you from adding 2 seconds to
 5 meters:
ghci> 5 / 2
2.5
ghci> (units 5 "m") / (units 2 "s")
2.5_m/s
ghci> (units 5 "m") + (units 2 "s")
*** Exception: Mis-matched units in add or subtract
ghci> (units 5 "m") + (units 2 "m")
7_m
ghci> (units 5 "m") / 2
2.5_m
ghci> 10 * (units 5 "m") / (units 2 "s")
25.0_m/s
If we define an expression or a function
 that is valid for all numbers, we should be able to calculate the
 result, or render the expression. For instance, if we define test to have type Num
 a => a—and, say, test = 2 * 5 +
 3, then we ought to be able to do this:
ghci> test
13
ghci> rpnShow test
"2 5 * 3 +"
ghci> prettyShow test
"(2*5)+3"
ghci> test + 5
18
ghci> prettyShow (test + 5)
"((2*5)+3)+5"
ghci> rpnShow (test + 5)
"2 5 * 3 + 5 +"
Since we have units, we should be able to
 handle some basic trigonometry as well. Many of these operations operate
 on angles. Let’s make sure that we can handle both degrees and
 radians:
ghci> sin (pi / 2)
1.0
ghci> sin (units (pi / 2) "rad")
1.0_1.0
ghci> sin (units 90 "deg")
1.0_1.0
ghci> (units 50 "m") * sin (units 90 "deg")
50.0_m
Finally, we ought to be able to put all
 this together and combine different kinds of expressions:
ghci> ((units 50 "m") * sin (units 90 "deg")) :: Units (SymbolicManip Double)
50.0*sin(((2.0*pi)*90.0)/360.0)_m
ghci> prettyShow $ dropUnits $ (units 50 "m") * sin (units 90 "deg")
"50.0*sin(((2.0*pi)*90.0)/360.0)"
ghci> rpnShow $ dropUnits $ (units 50 "m") * sin (units 90 "deg")
"50.0 2.0 pi * 90.0 * 360.0 / sin *"
ghci> (units (Symbol "x") "m") * sin (units 90 "deg")
x*sin(((2.0*pi)*90.0)/360.0)_m
Everything you’ve just seen is possible
 with Haskell types and classes. In fact, you’ve been reading a real
 ghci session demonstrating num.hs, which you’ll see shortly.
First Steps

Let’s think about how we would
 accomplish everything just shown. To start with, we might use ghci to check the type of (+), which is Num a
 => a -> a -> a. If we want to make some custom
 behavior for the plus operator possible, then we will have to define a
 new type and make it an instance of Num. This type will need to store an
 expression symbolically. We can start by thinking of operations such
 as addition. To store that, we will need to store the operation
 itself, its left and right sides. The left and right sides could
 themselves be expressions.
We can therefore think of an expression
 as a sort of tree. Let’s start with some simple types:
-- file: ch13/numsimple.hs
-- The "operators" that we're going to support
data Op = Plus | Minus | Mul | Div | Pow
 deriving (Eq, Show)

{- The core symbolic manipulation type -}
data SymbolicManip a =
 Number a -- Simple number, such as 5
 | Arith Op (SymbolicManip a) (SymbolicManip a)
 deriving (Eq, Show)

{- SymbolicManip will be an instance of Num. Define how the Num
operations are handled over a SymbolicManip. This will implement things
like (+) for SymbolicManip. -}
instance Num a => Num (SymbolicManip a) where
 a + b = Arith Plus a b
 a - b = Arith Minus a b
 a * b = Arith Mul a b
 negate a = Arith Mul (Number (-1)) a
 abs a = error "abs is unimplemented"
 signum _ = error "signum is unimplemented"
 fromInteger i = Number (fromInteger i)
First, we define a type called Op, which simply represents some of the
 operations we will support. Next, there is a definition for SymbolicManip a. Because of the Num a constraint, any Num can be used for the a. So a full type may be something like
 SymbolicManip Int.
A SymbolicManip type can be a plain number or
 some arithmetic operation. The type for the Arith constructor is recursive, which is
 perfectly legal in Haskell. Arith
 creates a SymbolicManip out of an
 Op and two other SymbolicManip items. Let’s look at an
 example:
ghci> :l numsimple.hs
[1 of 1] Compiling Main (numsimple.hs, interpreted)
Ok, modules loaded: Main.
ghci> Number 5
Number 5
ghci> :t Number 5
Number 5 :: (Num t) => SymbolicManip t
ghci> :t Number (5::Int)
Number (5::Int) :: SymbolicManip Int
ghci> Number 5 * Number 10
Arith Mul (Number 5) (Number 10)
ghci> (5 * 10)::SymbolicManip Int
Arith Mul (Number 5) (Number 10)
ghci> (5 * 10 + 2)::SymbolicManip Int
Arith Plus (Arith Mul (Number 5) (Number 10)) (Number 2)
You can see that we already have a very
 basic representation of expressions working. Notice how Haskell
 “converted” 5 * 10 + 2 into a
 SymbolicManip, and even handled
 order of evaluation properly. This wasn’t really a true conversion;
 SymbolicManip is a first-class
 number now. Integer numeric literals are internally treated as being
 wrapped in fromInteger anyway, so
 5 is just as valid as a SymbolicManip Int as it as an Int.
From here, then, our task is simple:
 extend the SymbolicManip type to be
 able to represent all the operations we will want to perform,
 implement instances of it for the other numeric typeclasses, and
 implement our own instance of Show
 for SymbolicManip that renders this
 tree in a more accessible fashion.

Completed Code

Here is the completed num.hs, which was used with the ghci examples at the beginning of this
 chapter. Let’s look at this code one piece at a time:
-- file: ch13/num.hs
import Data.List

--
-- Symbolic/units manipulation
--

-- The "operators" that we're going to support
data Op = Plus | Minus | Mul | Div | Pow
 deriving (Eq, Show)

{- The core symbolic manipulation type. It can be a simple number,
a symbol, a binary arithmetic operation (such as +), or a unary
arithmetic operation (such as cos)

Notice the types of BinaryArith and UnaryArith: it's a recursive
type. So, we could represent a (+) over two SymbolicManips. -}
data SymbolicManip a =
 Number a -- Simple number, such as 5
 | Symbol String -- A symbol, such as x
 | BinaryArith Op (SymbolicManip a) (SymbolicManip a)
 | UnaryArith String (SymbolicManip a)
 deriving (Eq)
In this section of code, we define an
 Op that is identical to the one we
 used earlier. We also define SymbolicManip, which is similar to what we
 used before. In this version, we now support unary arithmetic
 operations (those which take only one parameter) such as abs or cos. Next we define our instance of Num:
-- file: ch13/num.hs
{- SymbolicManip will be an instance of Num. Define how the Num
operations are handled over a SymbolicManip. This will implement things
like (+) for SymbolicManip. -}
instance Num a => Num (SymbolicManip a) where
 a + b = BinaryArith Plus a b
 a - b = BinaryArith Minus a b
 a * b = BinaryArith Mul a b
 negate a = BinaryArith Mul (Number (-1)) a
 abs a = UnaryArith "abs" a
 signum _ = error "signum is unimplemented"
 fromInteger i = Number (fromInteger i)
This is pretty straightforward and also
 similar to our earlier code. Note that earlier we weren’t able to
 properly support abs, but now with
 the UnaryArith constructor, we can.
 Next we define some more instances:
-- file: ch13/num.hs
{- Make SymbolicManip an instance of Fractional -}
instance (Fractional a) => Fractional (SymbolicManip a) where
 a / b = BinaryArith Div a b
 recip a = BinaryArith Div (Number 1) a
 fromRational r = Number (fromRational r)

{- Make SymbolicManip an instance of Floating -}
instance (Floating a) => Floating (SymbolicManip a) where
 pi = Symbol "pi"
 exp a = UnaryArith "exp" a
 log a = UnaryArith "log" a
 sqrt a = UnaryArith "sqrt" a
 a ** b = BinaryArith Pow a b
 sin a = UnaryArith "sin" a
 cos a = UnaryArith "cos" a
 tan a = UnaryArith "tan" a
 asin a = UnaryArith "asin" a
 acos a = UnaryArith "acos" a
 atan a = UnaryArith "atan" a
 sinh a = UnaryArith "sinh" a
 cosh a = UnaryArith "cosh" a
 tanh a = UnaryArith "tanh" a
 asinh a = UnaryArith "asinh" a
 acosh a = UnaryArith "acosh" a
 atanh a = UnaryArith "atanh" a
This section of code defines some
 fairly straightforward instances of Fractional and Floating. Now let’s work on converting our
 expressions to strings for display:
-- file: ch13/num.hs
{- Show a SymbolicManip as a String, using conventional
algebraic notation -}
prettyShow :: (Show a, Num a) => SymbolicManip a -> String

-- Show a number or symbol as a bare number or serial
prettyShow (Number x) = show x
prettyShow (Symbol x) = x

prettyShow (BinaryArith op a b) =
 let pa = simpleParen a
 pb = simpleParen b
 pop = op2str op
 in pa ++ pop ++ pb
prettyShow (UnaryArith opstr a) =
 opstr ++ "(" ++ show a ++ ")"

op2str :: Op -> String
op2str Plus = "+"
op2str Minus = "-"
op2str Mul = "*"
op2str Div = "/"
op2str Pow = "**"

{- Add parentheses where needed. This function is fairly conservative
and will add parenthesis when not needed in some cases.

Haskell will have already figured out precedence for us while building
up the SymbolicManip. -}
simpleParen :: (Show a, Num a) => SymbolicManip a -> String
simpleParen (Number x) = prettyShow (Number x)
simpleParen (Symbol x) = prettyShow (Symbol x)
simpleParen x@(BinaryArith _ _ _) = "(" ++ prettyShow x ++ ")"
simpleParen x@(UnaryArith _ _) = prettyShow x

{- Showing a SymbolicManip calls the prettyShow function on it -}
instance (Show a, Num a) => Show (SymbolicManip a) where
 show a = prettyShow a
We start by defining a function prettyShow. It renders an expression using
 conventional style. The algorithm is fairly simple: bare numbers and
 symbols are rendered bare; binary arithmetic is rendered with the two
 sides plus the operator in the middle, and, of course, we handle the
 unary operators as well. op2str
 simply converts an Op to a String. In simpleParen, we have a quite conservative
 algorithm that adds parentheses to keep precedence clear in the
 result. Finally, we make SymbolicManip an instance of Show, using prettyShow to accomplish that. Now let’s
 implement an algorithm that converts an expression to a string in RPN
 format:
-- file: ch13/num.hs
{- Show a SymbolicManip using RPN. HP calculator users may
find this familiar. -}
rpnShow :: (Show a, Num a) => SymbolicManip a -> String
rpnShow i =
 let toList (Number x) = [show x]
 toList (Symbol x) = [x]
 toList (BinaryArith op a b) = toList a ++ toList b ++
 [op2str op]
 toList (UnaryArith op a) = toList a ++ [op]
 join :: [a] -> [[a]] -> [a]
 join delim l = concat (intersperse delim l)
 in join " " (toList i)
Fans of RPN will note how much simpler this algorithm
 is compared to the algorithm used to render with conventional
 notation. In particular, we didn’t have to worry about where to add
 parentheses, because RPN can, by definition, be evaluated only one
 way. Next, let’s see how we might implement a function to do some
 rudimentary simplification on expressions:
-- file: ch13/num.hs
{- Perform some basic algebraic simplifications on a SymbolicManip. -}
simplify :: (Num a) => SymbolicManip a -> SymbolicManip a
simplify (BinaryArith op ia ib) =
 let sa = simplify ia
 sb = simplify ib
 in
 case (op, sa, sb) of
 (Mul, Number 1, b) -> b
 (Mul, a, Number 1) -> a
 (Mul, Number 0, b) -> Number 0
 (Mul, a, Number 0) -> Number 0
 (Div, a, Number 1) -> a
 (Plus, a, Number 0) -> a
 (Plus, Number 0, b) -> b
 (Minus, a, Number 0) -> a
 _ -> BinaryArith op sa sb
simplify (UnaryArith op a) = UnaryArith op (simplify a)
simplify x = x
This function is pretty simple. For certain binary
 arithmetic operations—for instance, multiplying any value by 1—we are
 able to easily simplify the situation. First, we obtain simplified
 versions of both sides of the calculation (this is where recursion
 hits) and then simplify the result. We have little to do with unary
 operators, so we just simplify the expression they act upon.
From here on, we will add support for
 units of measure to our established library. This will let us
 represent quantities such as “5 meters.” We start, as before, by
 defining a type:
-- file: ch13/num.hs
{- New data type: Units. A Units type contains a number
and a SymbolicManip, which represents the units of measure.
A simple label would be something like (Symbol "m") -}
data Num a => Units a = Units a (SymbolicManip a)
 deriving (Eq)
So, Units contains a number and a label that is
 itself a SymbolicManip. Next, it
 will probably come as no surprise to see an instance of Num for Units:
-- file: ch13/num.hs
{- Implement Units for Num. We don't know how to convert between
arbitrary units, so we generate an error if we try to add numbers with
different units. For multiplication, generate the appropriate
new units. -}
instance (Num a) => Num (Units a) where
 (Units xa ua) + (Units xb ub)
 | ua == ub = Units (xa + xb) ua
 | otherwise = error "Mis-matched units in add or subtract"
 (Units xa ua) - (Units xb ub) = (Units xa ua) + (Units (xb * (-1)) ub)
 (Units xa ua) * (Units xb ub) = Units (xa * xb) (ua * ub)
 negate (Units xa ua) = Units (negate xa) ua
 abs (Units xa ua) = Units (abs xa) ua
 signum (Units xa _) = Units (signum xa) (Number 1)
 fromInteger i = Units (fromInteger i) (Number 1)
Now it may be clear why we use a
 SymbolicManip instead of a String to store the unit of measure. As
 calculations such as multiplication occur, the unit of measure also
 changes. For instance, if we multiply 5 meters by 2 meters, we obtain
 10 square meters. We force the units for addition to match and
 implement subtraction in terms of addition. Let’s look at more typeclass
 instances for Units:
-- file: ch13/num.hs
{- Make Units an instance of Fractional -}
instance (Fractional a) => Fractional (Units a) where
 (Units xa ua) / (Units xb ub) = Units (xa / xb) (ua / ub)
 recip a = 1 / a
 fromRational r = Units (fromRational r) (Number 1)

{- Floating implementation for Units.

Use some intelligence for angle calculations: support deg and rad
-}
instance (Floating a) => Floating (Units a) where
 pi = (Units pi (Number 1))
 exp _ = error "exp not yet implemented in Units"
 log _ = error "log not yet implemented in Units"
 (Units xa ua) ** (Units xb ub)
 | ub == Number 1 = Units (xa ** xb) (ua ** Number xb)
 | otherwise = error "units for RHS of ** not supported"
 sqrt (Units xa ua) = Units (sqrt xa) (sqrt ua)
 sin (Units xa ua)
 | ua == Symbol "rad" = Units (sin xa) (Number 1)
 | ua == Symbol "deg" = Units (sin (deg2rad xa)) (Number 1)
 | otherwise = error "Units for sin must be deg or rad"
 cos (Units xa ua)
 | ua == Symbol "rad" = Units (cos xa) (Number 1)
 | ua == Symbol "deg" = Units (cos (deg2rad xa)) (Number 1)
 | otherwise = error "Units for cos must be deg or rad"
 tan (Units xa ua)
 | ua == Symbol "rad" = Units (tan xa) (Number 1)
 | ua == Symbol "deg" = Units (tan (deg2rad xa)) (Number 1)
 | otherwise = error "Units for tan must be deg or rad"
 asin (Units xa ua)
 | ua == Number 1 = Units (rad2deg $ asin xa) (Symbol "deg")
 | otherwise = error "Units for asin must be empty"
 acos (Units xa ua)
 | ua == Number 1 = Units (rad2deg $ acos xa) (Symbol "deg")
 | otherwise = error "Units for acos must be empty"
 atan (Units xa ua)
 | ua == Number 1 = Units (rad2deg $ atan xa) (Symbol "deg")
 | otherwise = error "Units for atan must be empty"
 sinh = error "sinh not yet implemented in Units"
 cosh = error "cosh not yet implemented in Units"
 tanh = error "tanh not yet implemented in Units"
 asinh = error "asinh not yet implemented in Units"
 acosh = error "acosh not yet implemented in Units"
 atanh = error "atanh not yet implemented in Units"
We didn’t supply implementations for
 every function, but quite a few have been defined. Now let’s define a
 few utility functions for working with units:
-- file: ch13/num.hs
{- A simple function that takes a number and a String and returns an
appropriate Units type to represent the number and its unit of measure -}
units :: (Num z) => z -> String -> Units z
units a b = Units a (Symbol b)

{- Extract the number only out of a Units type -}
dropUnits :: (Num z) => Units z -> z
dropUnits (Units x _) = x

{- Utilities for the Unit implementation -}
deg2rad x = 2 * pi * x / 360
rad2deg x = 360 * x / (2 * pi)
First, we have units, which makes it easy to craft simple
 expressions. It’s faster to say units 5
 "m" than Units 5 (Symbol
 "m"). We also have a corresponding dropUnits, which discards the unit of
 measure and returns the embedded bare Num. Finally, we define some functions for
 use by our earlier instances to convert between degrees and radians.
 Next, we just define a Show
 instance for Units:
-- file: ch13/num.hs
{- Showing units: we show the numeric component, an underscore,
then the prettyShow version of the simplified units -}
instance (Show a, Num a) => Show (Units a) where
 show (Units xa ua) = show xa ++ "_" ++ prettyShow (simplify ua)
That was simple. For one last piece, we
 define a variable test to
 experiment with:
-- file: ch13/num.hs
test :: (Num a) => a
test = 2 * 5 + 3
So, looking back over all this code, we
 have done what we set out to accomplish: implement more instances for SymbolicManip. We have also introduced
 another type called Units, which
 stores a number and a unit of measure. We employed several show-like
 functions, which render the SymbolicManip or Units in different ways.
There is one other point that this
 example drives home: every language—even those with objects and
 overloading—has parts that are special in some way. In Haskell, the
 “special” bits are extremely small. We just developed a new
 representation for something as fundamental as a number, and it was
 really quite easy. Our new type is first-class, and the compiler knows
 what functions to use with it at compile time. Haskell takes code
 reuse and interchangeability to the extreme. It is easy to make code
 generic and work on things of many different types. It’s also easy to
 create new types and automatically make them first-class features
 of the system.
Remember our ghci examples at the beginning of the
 chapter? All of them were made with the code in this example. You
 might want to try them out for yourself and see how they work.
Exercise
	Extend the prettyShow
 function to remove unnecessary parentheses.

Taking Advantage of Functions as Data

In an imperative language, appending two lists is cheap and
 easy. Here’s a simple C structure in which we maintain a pointer to the
 head and tail of a list:
struct list {
 struct node *head, *tail;
};
When we have one list and want to append
 another list onto its end, we modify the last node of the existing list
 to point to its head node, and then update its
 tail pointer to point to its tail node.
Obviously, this approach is off limits to
 us in Haskell if we want to stay pure. Since pure data is immutable, we
 can’t go around modifying lists in place. Haskell’s (++) operator appends two lists by creating a new one:
-- file: ch13/Append.hs
(++) :: [a] -> [a] -> [a]
(x:xs) ++ ys = x : xs ++ ys
_ ++ ys = ys
From inspecting the code, we can see that
 the cost of creating a new list depends on the length of the initial
 one.[34]
We often need to append lists over and
 over in order to construct one big list. For instance, we might be
 generating the contents of a web page as a String, emitting
 a chunk at a time as we traverse some data structure. Each time we have
 a chunk of markup to add to the page, we will naturally want to append
 it onto the end of our existing String.
If a single append has a cost proportional
 to the length of the initial list, and each repeated append makes the
 initial list longer, we end up in an unhappy situation: the cost of all
 of the repeated appends is proportional to the
 square of the length of the final list.
To understand this, let’s dig in a little.
 The (++) operator is
 right-associative:
ghci> :info (++)
(++) :: [a] -> [a] -> [a] 	-- Defined in GHC.Base
infixr 5 ++

This means that a Haskell implementation
 will evaluate the expression "a" ++ "b" ++ "c" as though we
 had put parentheses around it as follows: "a" ++ ("b" ++
 "c"). This makes good performance sense, because it keeps the
 left operand as short as possible.
When we repeatedly append onto the end of
 a list, we defeat this associativity. Let’s say we start with the list
 "a" and append "b", and save the result as our
 new list. If we later append "c" onto this new list, our
 left operand is now "ab". In this scheme, every time we
 append, our left operand gets longer.
Meanwhile, the imperative programmers are
 cackling with glee, because the cost of their
 repeated appends depends only on the number that they perform. They have
 linear performance; ours is quadratic.
When something as common as repeated
 appending of lists imposes such a performance penalty, it’s time to look
 at the problem from another angle.
The expression ("a"++) is a
 section, a partially applied function. What is its type?
ghci> :type ("a" ++)
("a" ++) :: [Char] -> [Char]

Since this is a function, we can use the
 (.) operator to compose it with another section, let’s say
 ("b"++):
ghci> :type ("a" ++) . ("b" ++)
("a" ++) . ("b" ++) :: [Char] -> [Char]

Our new function has the same type. What
 happens if we stop composing functions, and instead provide a
 String to the function we’ve created?
ghci> let f = ("a" ++) . ("b" ++)
ghci> f []
"ab"
We’ve appended the strings! We’re using
 these partially applied functions to store data, which we can retrieve
 by providing an empty list. Each partial application of (++) and (.) represents an
 append, but it doesn’t actually perform the
 append.
There are two very interesting things
 about this approach. The first is that the cost of a partial application
 is constant, so the cost of many partial applications is linear. The
 second is that when we finally provide a [] value to unlock
 the final list from its chain of partial applications, application
 proceeds from right to left. This keeps the left operand (++) small, and so the overall cost of all
 of these appends is linear, not quadratic.
By choosing an unfamiliar data
 representation, we’ve avoided a nasty performance quagmire, while
 gaining a new perspective on the usefulness of treating functions as
 data. By the way, this is an old trick, and it’s usually called a
 difference list.
We’re not yet finished, though. As
 appealing as difference lists are in theory, ours won’t be very pleasant
 in practice if we leave all the plumbing of (++), (.), and partial applications exposed. We
 need to turn this mess into something pleasant to work with.
Turning Difference Lists into a Proper Library

Our first step is to use a
 newtype declaration to hide the underlying type from our
 users. We’ll create a new type and call it DList, and
 like a regular list, it will be a parameterized type:
-- file: ch13/DList.hs
newtype DList a = DL {
 unDL :: [a] -> [a]
 }
The unDL function is our deconstructor, which
 removes the DL constructor. When we go back and decide
 what we want to export from our module, we will omit our data
 constructor and deconstruction function, so the DList
 type will be completely opaque to our users. They’ll only be able to
 work with the type using the other functions we export:
-- file: ch13/DList.hs
append :: DList a -> DList a -> DList a
append xs ys = DL (unDL xs . unDL ys)
Our append function may seem a little
 complicated, but it’s just performing some book-keeping around the
 same use of the (.) operator that
 we demonstrated earlier. To compose our functions, we must first
 unwrap them from their DL constructor—hence the use of
 unDL. We then re-wrap the
 resulting function with the DL constructor so that it
 will have the right type.
Here’s another way of writing the same
 function, in which we perform the unwrapping of xs
 and ys via pattern matching:
-- file: ch13/DList.hs
append' :: DList a -> DList a -> DList a
append' (DL xs) (DL ys) = DL (xs . ys)
Our DList type won’t be
 much use if we can’t convert back and forth between the
 DList representation and a regular list:
-- file: ch13/DList.hs
fromList :: [a] -> DList a
fromList xs = DL (xs ++)

toList :: DList a -> [a]
toList (DL xs) = xs []
Once again, compared to the original
 versions of these functions that we wrote, all we’re doing is a little
 bookkeeping to hide the plumbing.
If we want to make DList
 useful as a substitute for regular lists, we need to provide some more
 of the common list operations:
-- file: ch13/DList.hs
empty :: DList a
empty = DL id

-- equivalent of the list type's (:) operator
cons :: a -> DList a -> DList a
cons x (DL xs) = DL ((x:) . xs)
infixr `cons`

dfoldr :: (a -> b -> b) -> b -> DList a -> b
dfoldr f z xs = foldr f z (toList xs)
Although the DList approach
 makes appends cheap, not all list-like operations are easily
 available. The head function has
 constant cost for lists. Our DList equivalent requires
 that we convert the entire DList to a regular list, so it
 is much more expensive than its list counterpart—its cost is linear in
 the number of appends we have performed to construct the
 DList:
-- file: ch13/DList.hs
safeHead :: DList a -> Maybe a
safeHead xs = case toList xs of
 (y:_) -> Just y
 _ -> Nothing
To support an equivalent of map, we can make our DList
 type a functor:
-- file: ch13/DList.hs
dmap :: (a -> b) -> DList a -> DList b
dmap f = dfoldr go empty
 where go x xs = cons (f x) xs

instance Functor DList where
 fmap = dmap
Once we decide that we have written
 enough equivalents of list functions, we go back to the top of our
 source file and add a module header:
-- file: ch13/DList.hs
module DList
 (
 DList
 , fromList
 , toList
 , empty
 , append
 , cons
 , dfoldr
) where

Lists, Difference Lists, and Monoids

In abstract algebra, there is a simple abstract structure called a
 monoid. Many mathematical objects are monoids,
 because the “bar to entry” is very low. In order to be
 considered a monoid, an object must have two properties:
	An associative binary operator
	Let’s call it (*):
 the expression a * (b * c) must give the same
 result as (a * b) * c.

	An identity value
	If we call this e, it must obey two
 rules: a * e == a and e * a ==
 a.

The rules for monoids don’t say what the
 binary operator must do, merely that such an operator must exist.
 Because of this, lots of mathematical objects are monoids. If we take
 addition as the binary operator and zero as the identity value,
 integers form a monoid. With multiplication as the binary operator and
 one as the identity value, integers form a different monoid.
Monoids are ubiquitous in
 Haskell.[35] The Monoid typeclass is defined in
 the Data.Monoid
 module:
-- file: ch13/Monoid.hs
class Monoid a where
 mempty :: a -- the identity
 mappend :: a -> a -> a -- associative binary operator
If we take (++) as the binary operator and
 [] as the identity, lists forms a monoid:
-- file: ch13/Monoid.hs
instance Monoid [a] where
 mempty = []
 mappend = (++)
Since lists and DLists are
 so closely related, it follows that our DList type must
 be a monoid, too:
-- file: ch13/DList.hs
instance Monoid (DList a) where
 mempty = empty
 mappend = append
Let’s try out the methods of the
 Monoid typeclass in ghci:
ghci> "foo" `mappend` "bar"
"foobar"
ghci> toList (fromList [1,2] `mappend` fromList [3,4])
[1,2,3,4]
ghci> mempty `mappend` [1]
[1]
Writing Multiple Monoid Instances
Although from a mathematical
 perspective, integers can be monoids in two different ways, we can’t
 write two differing Monoid instances for
 Int in Haskell—the compiler would complain about
 duplicate instances.
In those rare cases where we really
 need several Monoid instances for the same type, we can
 use some newtype trickery to create distinct types for
 the purpose:
-- file: ch13/Monoid.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype AInt = A { unA :: Int }
 deriving (Show, Eq, Num)

-- monoid under addition
instance Monoid AInt where
 mempty = 0
 mappend = (+)

newtype MInt = M { unM :: Int }
 deriving (Show, Eq, Num)

-- monoid under multiplication
instance Monoid MInt where
 mempty = 1
 mappend = (*)
We’ll then get different behavior depending on the type we
 use:
ghci> 2 `mappend` 5 :: MInt
M {unM = 10}
ghci> 2 `mappend` 5 :: AInt
A {unA = 7}

We will have more to say about
 difference lists and their monoidal nature in The Writer Monad and Lists.
Enforcing the monoid rules
As with the rules for functors,
 Haskell cannot check the rules for monoids on our behalf. If we’re
 defining a Monoid instance, we can easily write
 QuickCheck properties to give us high statistical confidence that
 our code is following the monoid rules.

General-Purpose Sequences

Both Haskell’s built-in list type and
 the DList type that we defined earlier have poor
 performance characteristics under some circumstances. The
 Data.Sequence module defines a Seq container type that gives good
 performance for a wider variety of operations.
As with other modules,
 Data.Sequence is intended to be used via qualified
 import:
-- file: ch13/DataSequence.hs
import qualified Data.Sequence as Seq
We can construct an empty
 Seq using empty and a
 single-element container using singleton:
ghci> Seq.empty
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
fromList []
ghci> Seq.singleton 1
fromList [1]
We can create a Seq from a
 list using fromList:
ghci> let a = Seq.fromList [1,2,3]
The Data.Sequence module
 provides some constructor functions in the form of operators. When we
 perform a qualified import, we must qualify the name of an operator in
 our code (which is ugly):
ghci> 1 Seq.<| Seq.singleton 2
fromList [1,2]

If we import the operators explicitly, we
 can avoid the need to qualify them:
-- file: ch13/DataSequence.hs
import Data.Sequence ((><), (<|), (|>))
By removing the qualification from the
 operator, we improve the readability of our code:
ghci> Seq.singleton 1 |> 2
fromList [1,2]

A useful way to remember the (<|) and (|>) functions is that the “arrow” points to the element
 we’re adding to the Seq. The element will be added on the
 side to which the arrow points: (<|) adds on the left, (|>) on the right.
Both adding on the left and adding on the
 right are constant-time operations. Appending two Seqs is
 also cheap, occurring in time proportional to the logarithm of whichever
 is shorter. To append, we use the (><)
 operator:
ghci> let left = Seq.fromList [1,3,3]
ghci> let right = Seq.fromList [7,1]
ghci> left >< right
fromList [1,3,3,7,1]
If we want to create a list from a
 Seq, we must use the Data.Foldable
 module, which is best imported qualified:
-- file: ch13/DataSequence.hs
import qualified Data.Foldable as Foldable
This module defines a typeclass,
 Foldable, which Seq implements:
ghci> Foldable.toList (Seq.fromList [1,2,3])
[1,2,3]

If we want to fold over a Seq, we use the
 fold functions from the Data.Foldable module:
ghci> Foldable.foldl' (+) 0 (Seq.fromList [1,2,3])
6

The Data.Sequence module
 provides a number of other useful list-like functions. Its documentation
 is very thorough, giving time bounds for each operation.
If Seq has so many desirable
 characteristics, why is it not the default sequence type? Lists are
 simpler and have less overhead, and so quite often they are good enough
 for the task at hand. They are also well suited to a lazy setting,
 whereas Seq does not fare well.

[33] The type we use for the key must be a
 member of the Eq
 typeclass.

[34] Nonstrict evaluation makes the cost
 calculation more subtle. We pay for an append only if we actually
 use the resulting list. Even then, we pay only for as much as we
 actually use.

[35] Indeed, monoids are ubiquitous
 throughout programming. The difference is that in Haskell, we
 recognize, and talk about them.

Chapter 14. Monads

In Chapter 7, we talked about the IO monad, but we
 intentionally kept the discussion narrowly focused on how to communicate
 with the outside world. We didn’t discuss what a monad
 is.
We’ve already seen in Chapter 7 that the IO monad is easy to work with.
 Notational differences aside, writing code in the IO monad
 isn’t much different from coding in any other imperative
 language.
When we had practical problems to solve in
 earlier chapters, we introduced structures that, as we will soon see,
 are actually monads. We aim to show you that a monad is often an
 obvious and useful tool to
 help solve a problem. We’ll define a few monads in this chapter, to show
 how easy it is.

Revisiting Earlier Code Examples

Maybe Chaining

Let’s take another look at the parseP5 function that we wrote in Chapter 10:
-- file: ch10/PNM.hs
matchHeader :: L.ByteString -> L.ByteString -> Maybe L.ByteString

-- "nat" here is short for "natural number"
getNat :: L.ByteString -> Maybe (Int, L.ByteString)

getBytes :: Int -> L.ByteString
 -> Maybe (L.ByteString, L.ByteString)

parseP5 s =
 case matchHeader (L8.pack "P5") s of
 Nothing -> Nothing
 Just s1 ->
 case getNat s1 of
 Nothing -> Nothing
 Just (width, s2) ->
 case getNat (L8.dropWhile isSpace s2) of
 Nothing -> Nothing
 Just (height, s3) ->
 case getNat (L8.dropWhile isSpace s3) of
 Nothing -> Nothing
 Just (maxGrey, s4)
 | maxGrey > 255 -> Nothing
 | otherwise ->
 case getBytes 1 s4 of
 Nothing -> Nothing
 Just (_, s5) ->
 case getBytes (width * height) s5 of
 Nothing -> Nothing
 Just (bitmap, s6) ->
 Just (Greymap width height maxGrey bitmap, s6)
When we introduced this function, it
 threatened to march off the right side of the page if it got much more
 complicated. We brought the staircasing under control using the (>>?)
 function:
-- file: ch10/PNM.hs
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>? _ = Nothing
Just v >>? f = f v
We carefully chose the type of (>>?) to let us chain together
 functions that return a Maybe value. So long as the
 result type of one function matches the parameter of the next, we can
 chain functions returning Maybe together indefinitely.
 The body of (>>?) hides the
 details of whether the chain of functions we build is short-circuited
 somewhere, due to one returning Nothing, or whenever it
 is completely evaluated.

Implicit State

Useful as (>>?) was for cleaning up the structure of parseP5, we had to incrementally consume
 pieces of a string as we parsed it. This forced us to pass the current
 value of the string down our chain of Maybes, wrapped up
 in a tuple. Each function in the chain put a result into one element
 of the tuple and the unconsumed remainder of the string into the
 other:
-- file: ch10/PNM.hs
parseP5_take2 :: L.ByteString -> Maybe (Greymap, L.ByteString)
parseP5_take2 s =
 matchHeader (L8.pack "P5") s >>?
 \s -> skipSpace ((), s) >>?
 (getNat . snd) >>?
 skipSpace >>?
 \(width, s) -> getNat s >>?
 skipSpace >>?
 \(height, s) -> getNat s >>?
 \(maxGrey, s) -> getBytes 1 s >>?
 (getBytes (width * height) . snd) >>?
 \(bitmap, s) -> Just (Greymap width height maxGrey bitmap, s)

skipSpace :: (a, L.ByteString) -> Maybe (a, L.ByteString)
skipSpace (a, s) = Just (a, L8.dropWhile isSpace s)
Once again, we were faced with a pattern
 of repeated behavior: consume some string, return a result, and return
 the remaining string for the next function to consume. However, this
 pattern was more insidious. If we wanted to pass another piece of
 information down the chain, we’d have to modify nearly every element
 of the chain, turning each two-tuple into a three-tuple!
We addressed this by moving the
 responsibility for managing the current piece of string out of the
 individual functions in the chain, and into the function that we used
 to chain them together:
-- file: ch10/Parse.hs
(==>) :: Parse a -> (a -> Parse b) -> Parse b

firstParser ==> secondParser = Parse chainedParser
 where chainedParser initState =
 case runParse firstParser initState of
 Left errMessage ->
 Left errMessage
 Right (firstResult, newState) ->
 runParse (secondParser firstResult) newState
We also hid the details of the parsing
 state in the ParseState type. Even the getState and putState functions don’t inspect the
 parsing state, so any modification to ParseState will
 have no effect on any existing code.

Looking for Shared Patterns

When we look at the preceding examples in detail, they don’t
 seem to have much in common. Obviously, they’re both concerned with
 chaining functions together and hiding details to let us write tidier
 code. However, let’s take a step back and consider them in
 less detail.
First, let’s look at the type
 definitions:
-- file: ch14/Maybe.hs
data Maybe a = Nothing
 | Just a
-- file: ch10/Parse.hs
newtype Parse a = Parse {
 runParse :: ParseState -> Either String (a, ParseState)
 }
The common feature of these two types is
 that each has a single type parameter on the left of the definition,
 which appears somewhere on the right. These are thus generic types,
 which know nothing about their payloads.
Next, we’ll examine the chaining functions
 that we wrote for the two types:
ghci> :type (>>?)
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b

ghci> :type (==>)
(==>) :: Parse a -> (a -> Parse b) -> Parse b

These functions have strikingly similar
 types. If we were to turn those type constructors into a type variable,
 we’d end up with a single more abstract type:
-- file: ch14/Maybe.hs
chain :: m a -> (a -> m b) -> m b
Finally, in each case, we have a function
 that takes a “plain” value and “injects” it
 into the target type. For Maybe, this function is simply
 the value constructor Just, but the injector for
 Parse is more complicated:
-- file: ch10/Parse.hs
identity :: a -> Parse a
identity a = Parse (\s -> Right (a, s))
Again, it’s not the details or complexity
 that we’re interested in, it’s the fact that each of these types
 has an “injector” function, which looks like
 this:
-- file: ch14/Maybe.hs
inject :: a -> m a
It is exactly these
 three properties, and a few rules about how we can use them together,
 that define a monad in Haskell. Let’s revisit the preceding list in
 condensed form:
	A type constructor m.

	A function of type m a -> (a
 -> m b) -> m b for chaining the output of one function
 into the input of another.

	A function of type a -> m
 a for injecting a normal value into the chain, that is, it
 wraps a type a with the type constructor
 m.

The properties that make the
 Maybe type a monad are its type constructor Maybe
 a, our chaining function (>>?), and the injector function
 Just.
For Parse, the corresponding
 properties are the type constructor Parse a, the chaining
 function (==>), and the injector
 function identity.
We intentionally have said nothing about
 how the chaining and injection functions of a monad should behave,
 because this almost doesn’t matter. In fact, monads are ubiquitous in Haskell code precisely
 because they are so simple. Many common programming patterns have a
 monadic structure: passing around implicit data or short-circuiting a chain of evaluations if one
 fails, to choose but two.

The Monad Typeclass

We can capture the notions of chaining and injection, and the
 types that we want them to have, in a Haskell typeclass. The standard
 Prelude already defines just such a
 typeclass, named Monad:
-- file: ch14/Maybe.hs
class Monad m where
 -- chain
 (>>=) :: m a -> (a -> m b) -> m b
 -- inject
 return :: a -> m a
Here, (>>=) is our chaining function. We’ve already been introduced to it in
 Sequencing. It’s often referred to as bind, as it binds the
 result of the computation on the left to the parameter of the one on the
 right.
Our injection function is return. As we noted in The True Nature of Return, the choice of the name return is a little unfortunate. That name is
 widely used in imperative languages, where it has a fairly
 well-understood meaning. In Haskell, its behavior is much less
 constrained. In particular, calling return in the middle of a chain of functions
 won’t cause the chain to exit early. A useful way to link its behavior
 to its name is that it returns a pure value (of
 type a) into a monad (of type m a). But
 really, “inject” would be a better name.
While (>>=) and return are the core functions of the
 Monad typeclass, it also defines two other functions. The first is
 (>>). Like (>>=), it performs chaining, but it
 ignores the value on the left:
-- file: ch14/Maybe.hs
 (>>) :: m a -> m b -> m b
 a >> f = a >>= _ -> f
We use this function when we want to
 perform actions in a certain order, but don’t care what the result of
 one is. This might seem pointless: why would we not care what a
 function’s return value is? Recall, though, that we defined a (==>&) combinator earlier to express
 exactly this. Alternatively, consider a function such as print, which provides a placeholder result
 that we do not need to inspect:
ghci> :type print "foo"
print "foo" :: IO ()

If we use plain (>>=), we have to provide, as its
 righthand side, a function that ignores its argument:
ghci> print "foo" >>= _ -> print "bar"
"foo"
"bar"

But if we use (>>), we can omit the needless function:
ghci> print "baz" >> print "quux"
"baz"
"quux"

As we just showed, the default
 implementation of (>>) is
 defined in terms of (>>=).
The second noncore Monad
 function is fail, which takes an error message and does something to make
 the chain of functions fail:
-- file: ch14/Maybe.hs
 fail :: String -> m a
 fail = error
Beware of fail
Many Monad instances don’t
 override the default implementation of fail that we show here, so in those monads,
 fail uses error. Calling error is usually highly undesirable, since
 it throws an exception that callers either cannot catch or will not
 expect.
Even if you know that right now you’re
 executing in a monad that has fail do something more sensible, we still
 recommend avoiding it. It’s far too easy to cause yourself a problem
 later when you refactor your code and forget that a previously safe
 use of fail might be dangerous in
 its new context.

To revisit the parser that we developed in
 Chapter 10, here is its Monad
 instance:
-- file: ch10/Parse.hs
instance Monad Parse where
 return = identity
 (>>=) = (==>)
 fail = bail

And Now, a Jargon Moment

There are a few terms of art around monads
 that you may not be familiar with. These aren’t formal, but they’re
 commonly used, so it’s helpful to know about them:
	Monadic simply
 means “pertaining to monads.” A monadic type is
 an instance of the Monad typeclass; a monadic
 value has a monadic type.

	When we say that a type “is a monad,”
 this is really a shorthand way of saying that it’s an instance of
 the Monad typeclass. Being an instance of
 Monad gives us the necessary monadic triple of type
 constructor, injection function, and chaining function.

	In the same way, a reference to
 “the Foo monad” implies that we’re talking
 about the type named Foo and that it’s an instance of
 Monad.

	An action
 is another name for a monadic value. This use of the
 word probably originated with the introduction of monads for I/O,
 where a monadic value such as print "foo" can
 have an observable side effect. A function with a monadic return
 type might also be referred to as an action, though this is a little
 less common.

Using a New Monad: Show Your Work!

In our introduction to monads, we showed
 how some preexisting code was already monadic in form. Now that we are
 beginning to grasp what a monad is and have seen the Monad
 typeclass, let’s build a monad with foreknowledge of what we’re doing.
 We’ll start out by defining its interface, and then we’ll put it to use.
 Once we have those out of the way, we’ll finally build it.
Pure Haskell code is wonderfully clean to
 write, but, of course, it can’t perform I/O. Sometimes, we’d like to
 have a record of decisions we made, without writing log information to a file. Let’s develop a
 small library to help with this.
Recall the globToRegex function that we developed in
 Translating a glob Pattern into a Regular Expression. We will modify it so that it keeps a
 record of each of the special pattern sequences that it translates. We
 are revisiting familiar territory for a reason: it lets us compare
 nonmonadic and monadic versions of the same code.
To start off, we’ll wrap our result type
 with a Logger type constructor:
-- file: ch14/Logger.hs
globToRegex :: String -> Logger String
Information Hiding

We’ll intentionally keep the internals
 of the Logger module abstract:
-- file: ch14/Logger.hs
module Logger
 (
 Logger
 , Log
 , runLogger
 , record
) where
Hiding the details like this has two
 benefits: it grants us considerable flexibility in how we implement
 our monad, and more importantly, it gives users a simple
 interface.
Our Logger type is purely a
 type constructor. We don’t export the
 value constructor that a user would need to
 create a value of this type. All they can use Logger for
 is writing type signatures.
The Log type is just a
 synonym for a list of strings, to make a few signatures more readable.
 We use a list of strings to keep the implementation simple:
-- file: ch14/Logger.hs
type Log = [String]
Instead of giving our users a value
 constructor, we provide them with a function, runLogger, that evaluates a logged action.
 This returns both the result of an action and whatever was logged
 while the result was being computed:
-- file: ch14/Logger.hs
runLogger :: Logger a -> (a, Log)

Controlled Escape

The Monad typeclass doesn’t
 provide any means for values to escape their monadic shackles. We can
 inject a value into a monad using return. We can extract a value from a monad
 using (>>=) but the function on the right, which can see an unwrapped
 value, has to wrap its own result back up again.
Most monads have one or more runLogger-like functions. The notable
 exception is of course IO, which we usually escape from
 simply by exiting a program.
A monad execution function runs the code
 inside the monad and unwraps its result. Such functions are usually
 the only means provided for a value to escape from its monadic
 wrapper. The author of a monad thus has complete control over how
 whatever happens inside the monad gets out.
Some monads have several execution
 functions. In our case, we can imagine a few alternatives to runLogger: one might return only the log
 messages, whereas another might return just the result and drop the
 log messages.

Leaving a Trace

When executing inside a
 Logger action, the user code calls record to record something:
-- file: ch14/Logger.hs
record :: String -> Logger ()
Since recording occurs in the plumbing
 of our monad, our action’s result supplies no information.
Usually, a monad will provide one or
 more helper functions such as our record. These are our means for accessing
 the special behaviors of that monad.
Our module also defines the
 Monad instance for the Logger type. These
 definitions are all that a client module needs in order to be able to
 use this monad.
Here is a preview, in ghci, of how our monad will behave:
ghci> let simple = return True :: Logger Bool
ghci> runLogger simple
(True,[])
When we run the logged action using
 runLogger, we get back a pair.
 The first element is the result of our code; the second is the list of
 items logged while the action executed. We haven’t logged anything, so
 the list is empty. Let’s fix that:
ghci> runLogger (record "hi mom!" >> return 3.1337)
(3.1337,["hi mom!"])

Using the Logger Monad

Here’s how we kick off our
 glob-to-regexp conversion inside the Logger monad:
-- file: ch14/Logger.hs
globToRegex cs =
 globToRegex' cs >>= \ds ->
 return ('^':ds)
There are a few coding style issues
 worth mentioning here. The body of the function starts on the line
 after its name. This gives us some horizontal whitespace. We’ve also
 “hung” the parameter of the anonymous function at the end
 of the line. This is common practice in monadic code.
Remember the type of (>>=): it extracts the value on the
 left from its Logger wrapper, and passes the unwrapped
 value to the function on the right. The function on the right must, in
 turn, wrap its result with the
 Logger wrapper. This is exactly what return does. It takes a pure value, and
 wraps it in the monad’s type constructor:
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type (globToRegex "" >>=)
(globToRegex "" >>=) :: (String -> Logger b) -> Logger b
Even when we write a function that does
 almost nothing, we must call return to wrap the result with the correct
 type:
-- file: ch14/Logger.hs
globToRegex' :: String -> Logger String
globToRegex' "" = return "$"
When we call record to save a log entry, we
 use (>>) instead
 of (>>=) to chain it with
 the following action:
-- file: ch14/Logger.hs
globToRegex' ('?':cs) =
 record "any" >>
 globToRegex' cs >>= \ds ->
 return ('.':ds)
Recall that this is a variant of
 (>>=) that ignores the
 result on the left. We know that the result of record will always be (), so
 there’s no point in capturing it.
We can use do notation, which we first encountered in
 Sequencing, to tidy up our code somewhat:
-- file: ch14/Logger.hs
globToRegex' ('*':cs) = do
 record "kleene star"
 ds <- globToRegex' cs
 return (".*" ++ ds)
The choice of do notation versus explicit (>>=) with anonymous functions is
 mostly a matter of taste, although almost everyone’s taste is to use
 do notation for anything longer
 than about two lines. There is one significant difference between the
 two styles, though, which we’ll return to in Desugaring of do Blocks.
Parsing a character class mostly follows
 the same pattern that we’ve already seen:
-- file: ch14/Logger.hs
globToRegex' ('[':'!':c:cs) =
 record "character class, negative" >>
 charClass cs >>= \ds ->
 return ("[^" ++ c : ds)
globToRegex' ('[':c:cs) =
 record "character class" >>
 charClass cs >>= \ds ->
 return ("[" ++ c : ds)
globToRegex' ('[':_) =
 fail "unterminated character class"

Mixing Pure and Monadic Code

Based on the code we’ve seen so far,
 monads seem to have a substantial shortcoming: the type constructor that
 wraps a monadic value makes it tricky to use a normal, pure function on
 a value trapped inside a monadic wrapper. Here’s a simple illustration
 of the apparent problem. Let’s say we have a trivial piece of code that
 runs in the Logger monad and returns a string:
ghci> let m = return "foo" :: Logger String
If we want to find out the length of that
 string, we can’t simply call length. The string is wrapped, so the types
 don’t match up:
ghci> length m

<interactive>:1:7:
 Couldn't match expected type `[a]'
 against inferred type `Logger String'
 In the first argument of `length', namely `m'
 In the expression: length m
 In the definition of `it': it = length m

So far, to work around this, we’ve
 something like the following:
ghci> :type m >>= \s -> return (length s)
m >>= \s -> return (length s) :: Logger Int

We use (>>=) to unwrap the string, and then
 write a small anonymous function that calls length and rewraps the result using return.
This need crops up often in Haskell code.
 You won’t be surprised to learn that a shorthand already exists: we use
 the lifting technique that we introduced for
 functors in Introducing Functors. Lifting a pure function
 into a functor usually involves unwrapping the value inside the functor,
 calling the function on it, and rewrapping the result with the same
 constructor.
We do exactly the same thing with a monad.
 Because the Monad typeclass already provides the (>>=) and return functions that know how to unwrap and
 wrap a value, the liftM function
 doesn’t need to know any details of a monad’s implementation:
-- file: ch14/Logger.hs
liftM :: (Monad m) => (a -> b) -> m a -> m b
liftM f m = m >>= \i ->
 return (f i)
When we declare a type to be an instance
 of the Functor typeclass, we have to write our own version
 of fmap specially tailored to that
 type. By contrast, liftM doesn’t
 need to know anything of a monad’s internals, because they’re abstracted
 by (>>=) and return. We need to write it only once, with the appropriate type
 constraint.
The liftM function is predefined for us in the
 standard Control.Monad module.
To see how liftM can help readability, we’ll compare two
 otherwise identical pieces of code. First, we’ll look at the familiar
 kind that does not use liftM:
-- file: ch14/Logger.hs
charClass_wordy (']':cs) =
 globToRegex' cs >>= \ds ->
 return (']':ds)
charClass_wordy (c:cs) =
 charClass_wordy cs >>= \ds ->
 return (c:ds)
Now we can eliminate the (>>=) and anonymous function cruft with
 liftM:
-- file: ch14/Logger.hs
charClass (']':cs) = (']':) `liftM` globToRegex' cs
charClass (c:cs) = (c:) `liftM` charClass cs
As with fmap, we often use liftM in infix form. An easy way to read such
 an expression is “apply the pure function on the left to the result of
 the monadic action on the right.”
The liftM function is so useful that
 Control.Monad defines several variants, which combine
 longer chains of actions. We can see one in the last clause of our
 globToRegex' function:
-- file: ch14/Logger.hs
globToRegex' (c:cs) = liftM2 (++) (escape c) (globToRegex' cs)

escape :: Char -> Logger String
escape c
 | c `elem` regexChars = record "escape" >> return ['\\',c]
 | otherwise = return [c]
 where regexChars = "\\+()^$.{}]|"
The liftM2 function that we use here is defined
 as follows:
-- file: ch14/Logger.hs
liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c
liftM2 f m1 m2 =
 m1 >>= \a ->
 m2 >>= \b ->
 return (f a b)
It executes the first action, then the
 second, and then combines their results using the pure function
 f, and wraps that result. In addition to liftM2, the variants in Control.Monad go up to liftM5.

Putting a Few Misconceptions to Rest

We’ve now seen enough examples of monads
 in action to have some feel for what’s going on. Before we continue,
 there are a few oft-repeated myths about monads that we’re going to
 address. You’re bound to encounter these assertions “in the wild,” so
 you might as well be prepared with a few good retorts:
	Monads can be hard to understand
	We’ve already shown that monads “fall out
 naturally” from several problems. We’ve found that the best
 key to understanding them is to explain several concrete examples,
 and then talk about what they have in common.

	Monads are only useful for I/O and imperative coding
	While we use monads for I/O in Haskell, they’re valuable for
 many other purposes as well. We’ve already used them for
 short-circuiting a chain of computations, hiding complicated
 state, and logging. Even so, we’ve barely scratched the
 surface.

	Monads are unique to Haskell
	Haskell is probably the language that makes the most
 explicit use of monads, but people write them in other languages,
 too, ranging from C++ to OCaml. They happen to be particularly
 tractable in Haskell, due to do
 notation, the power and inference of the type system, and the
 language’s syntax.

	Monads are for controlling the order of evaluation
	

Building the Logger Monad

The definition of our Logger
 type is very simple:
-- file: ch14/Logger.hs
newtype Logger a = Logger { execLogger :: (a, Log) }
It’s a pair, where the first element is
 the result of an action, and the second is a list of messages logged
 while that action was run.
We’ve wrapped the tuple in a
 newtype to make it a distinct type. The runLogger function extracts the tuple from
 its wrapper. The function that we’re exporting to execute a logged
 action, runLogger, is just a
 synonym for execLogger:
-- file: ch14/Logger.hs
runLogger = execLogger
Our record helper function creates a singleton
 list of the message that we pass it:
-- file: ch14/Logger.hs
record s = Logger ((), [s])
The result of this action is
 (), so that’s the value we put in the result slot.
Let’s begin our Monad
 instance with return, which is
 trivial. It logs nothing and stores its input in the result slot of the
 tuple:
-- file: ch14/Logger.hs
instance Monad Logger where
 return a = Logger (a, [])
Slightly more interesting is (>>=), which is the heart of the monad.
 It combines an action and a monadic function to give a new result and a
 new log:
-- file: ch14/Logger.hs
 -- (>>=) :: Logger a -> (a -> Logger b) -> Logger b
 m >>= k = let (a, w) = execLogger m
 n = k a
 (b, x) = execLogger n
 in Logger (b, w ++ x)
Let’s spell out explicitly what is going
 on. We use runLogger to extract the
 result a from the action m, and we
 pass it to the monadic function k. We extract the
 result b from that in turn, and put it into the
 result slot of the final action. We concatenate the logs
 w and x to give the new
 log.
Sequential Logging, Not Sequential Evaluation

Our definition of (>>=) ensures that messages logged on
 the left will appear in the new log before those on the right.
 However, it says nothing about when the values a
 and b are evaluated: (>>=) is lazy.
Like most other aspects of a monad’s
 behavior, strictness is under the control of the implementor. It is
 not a constant shared by all monads. Indeed, some monads come in
 multiple flavors, each with different levels of strictness.

The Writer Monad

Our Logger monad is a
 specialized version of the standard Writer monad, which
 can be found in the Control.Monad.Writer module of the
 mtl package. We will present a Writer
 example in Using Typeclasses.

The Maybe Monad

The Maybe type is very nearly
 the simplest instance of Monad. It represents a computation
 that might not produce a result:
-- file: ch14/Maybe.hs
instance Monad Maybe where
 Just x >>= k = k x
 Nothing >>= _ = Nothing

 Just _ >> k = k
 Nothing >> _ = Nothing

 return x = Just x

 fail _ = Nothing
If, when we chain together a number of
 computations over Maybe using (>>=) or (>>), any of them returns
 Nothing, we don’t evaluate any of the remaining computations.
Note, though, that the chain is not
 completely short-circuited. Each (>>=) or (>>) in the chain will still match a
 Nothing on its left and produce a Nothing on its right, all the way to the end.
 It’s easy to forget this point: when a computation in the chain fails,
 the subsequent production, chaining, and consumption of
 Nothing values are cheap at runtime, but they’re not
 free.
Executing the Maybe Monad

A function suitable for executing the
 Maybe monad is maybe. (Remember that
 “executing” a monad involves evaluating it and returning
 a result that’s had the monad’s type wrapper removed.)
-- file: ch14/Maybe.hs
maybe :: b -> (a -> b) -> Maybe a -> b
maybe n _ Nothing = n
maybe _ f (Just x) = f x
Its first parameter is the value to
 return if the result is Nothing. The second is a function
 to apply to a result wrapped in the Just constructor; the
 result of that application is then returned.
Since the Maybe type is so
 simple, it’s about as common to simply pattern match on a
 Maybe value as it is to call maybe. Each one is more readable in
 different circumstances.

Maybe at Work, and Good API Design

Here’s an example of Maybe
 in use as a monad. Given a customer’s name, we want to find the
 billing address of her mobile phone carrier:
-- file: ch14/Carrier.hs
import qualified Data.Map as M

type PersonName = String
type PhoneNumber = String
type BillingAddress = String
data MobileCarrier = Honest_Bobs_Phone_Network
 | Morrisas_Marvelous_Mobiles
 | Petes_Plutocratic_Phones
 deriving (Eq, Ord)

findCarrierBillingAddress :: PersonName
 -> M.Map PersonName PhoneNumber
 -> M.Map PhoneNumber MobileCarrier
 -> M.Map MobileCarrier BillingAddress
 -> Maybe BillingAddress
Our first version is the dreaded ladder
 of code marching off the right of the screen, with many boilerplate
 case expressions:
-- file: ch14/Carrier.hs
variation1 person phoneMap carrierMap addressMap =
 case M.lookup person phoneMap of
 Nothing -> Nothing
 Just number ->
 case M.lookup number carrierMap of
 Nothing -> Nothing
 Just carrier -> M.lookup carrier addressMap
The Data.Map module’s
 lookup function has a monadic
 return type:
ghci> :module +Data.Map
ghci> :type Data.Map.lookup
Data.Map.lookup :: (Ord k, Monad m) => k -> Map k a -> m a
In other words, if the given key is
 present in the map, lookup
 injects it into the monad using return. Otherwise, it calls fail. This is an interesting piece of API
 design, though one that we think was a poor choice:
	On the positive side, the behaviors
 of success and failure are automatically customized to our needs,
 based on the monad from which we’re calling lookup. Better yet, lookup itself doesn’t know or care what
 those behaviors are.
The case expressions just shown typecheck
 because we’re comparing the result of lookup against values of type
 Maybe.

	The hitch is, of course, that using
 fail in the wrong monad
 throws a bothersome exception. We have already warned against the
 use of fail, so we will not
 repeat ourselves here.

In practice,
 everyone uses Maybe as the result
 type for lookup. The result type
 of such a conceptually simple function provides generality where it is
 not needed: lookup should have
 been written to return Maybe.
Let’s set aside the API question and
 deal with the ugliness of our code. We can make more sensible use of
 Maybe’s status as a monad:
-- file: ch14/Carrier.hs
variation2 person phoneMap carrierMap addressMap = do
 number <- M.lookup person phoneMap
 carrier <- M.lookup number carrierMap
 address <- M.lookup carrier addressMap
 return address
If any of these lookups fails, the
 definitions of (>>=) and
 (>>) mean that the result
 of the function as a whole will be Nothing, just as it
 was for our first attempt that used case explicitly.
This version is much tidier, but the
 return isn’t necessary.
 Stylistically, it makes the code look more regular, and perhaps more
 familiar to the eyes of an imperative programmer, but behaviorally
 it’s redundant. Here’s an equivalent piece of code:
-- file: ch14/Carrier.hs
variation2a person phoneMap carrierMap addressMap = do
 number <- M.lookup person phoneMap
 carrier <- M.lookup number carrierMap
 M.lookup carrier addressMap
When we introduced maps, we mentioned in
 Partial application awkwardness that the type signatures of
 functions in the Data.Map module often make them awkward
 to partially apply. The lookup
 function is a good example. If we flip its arguments, we can write the
 function body as a one-liner:
-- file: ch14/Carrier.hs
variation3 person phoneMap carrierMap addressMap =
 lookup phoneMap person >>= lookup carrierMap >>= lookup addressMap
 where lookup = flip M.lookup

The List Monad

While the Maybe type can represent either no value
 or one, there are many situations where we might want to return some
 number of results that we do not know in advance. Obviously, a list is
 well suited to this purpose. The type of a list suggests that we might
 be able to use it as a monad, because its type constructor has one free
 variable. And sure enough, we can use a list as a monad.
Rather than simply present the Prelude’s Monad instance for the
 list type, let’s try to figure out what an instance
 ought to look like. This is easy to do: we’ll look
 at the types of (>>=)
 and return, perform some
 substitutions, and see if we can use a few familiar list
 functions.
The more obvious of the two functions is
 return. We know that it takes a type a, and wraps it in a type constructor m to give the type m
 a. We also know that the type constructor here is
 []. Substituting this type constructor for the type
 variable m gives us the type []
 a (yes, this really is valid notation!), which we can rewrite in
 more familiar form as [a].
We now know that return for lists should have the type a
 -> [a]. There are only a few sensible possibilities for an
 implementation of this function. It might return the empty list, a
 singleton list, or an infinite list. The most appealing behavior, based
 on what we know so far about monads, is the singleton list—it doesn’t
 throw away information, nor does it repeat it infinitely:
-- file: ch14/ListMonad.hs
returnSingleton :: a -> [a]
returnSingleton x = [x]
If we perform the same substitution trick
 on the type of (>>=) as we
 did with return, we discover that it
 should have the type [a] -> (a -> [b]) -> [b].
 This seems close to the type of map:
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type map
map :: (a -> b) -> [a] -> [b]
The ordering of the types in map’s arguments doesn’t match, but that’s
 easy to fix:
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type flip map
flip map :: [a] -> (a -> b) -> [b]
We’ve still got a problem: the second
 argument of flip map has the type a -> b,
 whereas the second argument of (>>=) for lists has the type a
 -> [b]. What do we do about this?
Let’s do a little more substitution and
 see what happens with the types. The function flip map can
 return any type b as its result. If we
 substitute [b] for b in both places where it appears in flip
 map’s type signature, its type signature reads as a ->
 (a -> [b]) -> [[b]]. In other words, if we map a function
 that returns a list over a list, we get a list of lists back:
ghci> flip map [1,2,3] (\a -> [a,a+100])
[[1,101],[2,102],[3,103]]

Interestingly, we haven’t really changed
 how closely our type signatures match. The type of (>>=) is [a] -> (a -> [b])
 -> [b], while that of flip map when the mapped
 function returns a list is [a] -> (a -> [b]) ->
 [[b]]. There’s still a mismatch in one type term—we’ve just moved
 that term from the middle of the type signature to the end. However, our
 juggling wasn’t in vain—we now need a function that takes a
 [[b]] and returns a [b], and one readily
 suggests itself in the form of concat:
ghci> :type concat
concat :: [[a]] -> [a]

The types suggest that we should flip the
 arguments to map, and then
 concat the results to give a single
 list:
ghci> :type \xs f -> concat (map f xs)
\xs f -> concat (map f xs) :: [a] -> (a -> [a1]) -> [a1]

This is exactly the definition of
 (>>=) for lists:
-- file: ch14/ListMonad.hs
instance Monad [] where
 return x = [x]
 xs >>= f = concat (map f xs)
It applies f to every
 element in the list xs, and concatenates the results
 to return a single list.
With our two core Monad
 definitions in hand, the implementations of the noncore definitions that
 remain, (>>) and fail, ought to be obvious:
-- file: ch14/ListMonad.hs
 xs >> f = concat (map (_ -> f) xs)
 fail _ = []
Understanding the List Monad

The list monad is similar to a familiar
 Haskell tool, the list comprehension. We can illustrate this
 similarity by computing the Cartesian product of two lists. First,
 we’ll write a list comprehension:
-- file: ch14/CartesianProduct.hs
comprehensive xs ys = [(x,y) | x <- xs, y <- ys]
For once, we’ll use bracketed notation
 for the monadic code instead of layout notation. This will highlight
 how structurally similar the monadic code is to the list comprehension:
-- file: ch14/CartesianProduct.hs
monadic xs ys = do { x <- xs; y <- ys; return (x,y) }
The only real difference is that the
 value we’re constructing comes at the end of the sequence of
 expressions, instead of at the beginning as in the list comprehension.
 Also, the results of the two functions are identical:
ghci> comprehensive [1,2] "bar"
[(1,'b'),(1,'a'),(1,'r'),(2,'b'),(2,'a'),(2,'r')]
ghci> comprehensive [1,2] "bar" == monadic [1,2] "bar"
True
It’s easy to be baffled by the list
 monad early on, so let’s walk through our monadic Cartesian product
 code again in more detail. This time, we’ll rearrange the function to
 use layout instead of brackets:
-- file: ch14/CartesianProduct.hs
blockyDo xs ys = do
 x <- xs
 y <- ys
 return (x, y)
For every element in the list
 xs, the rest of the function is evaluated once,
 with x bound to a different value from the list
 each time. Then for every element in the list ys,
 the remainder of the function is evaluated once, with
 y bound to a different value from the list each
 time.
What we really have here is a doubly
 nested loop! This highlights an important fact about monads: you
 cannot predict how a block of monadic code will
 behave unless you know what monad it will execute in.
We’ll now walk through the code even
 more explicitly, but first let’s get rid of the do notation to make the underlying structure
 clearer. We’ve indented the code a little unusually to make the loop
 nesting more obvious:
-- file: ch14/CartesianProduct.hs
blockyPlain xs ys =
 xs >>=
 \x -> ys >>=
 \y -> return (x, y)

blockyPlain_reloaded xs ys =
 concat (map (\x ->
 concat (map (\y ->
 return (x, y))
 ys))
 xs)
If xs has the value
 [1,2,3], the two lines that follow are evaluated with
 x bound to 1, then to 2,
 and finally to 3. If ys has the
 value [True, False], the final line is evaluated
 six times: once with x as
 1 and y as True; again
 with x as 1 and y
 as False; and so on. The return expression wraps each tuple in a
 single-element list.

Putting the List Monad to Work

Here is a simple brute-force constraint
 solver. Given an integer, it finds all pairs of positive integers
 that, when multiplied, give that value (this is the constraint being
 solved):
-- file: ch14/MultiplyTo.hs
guarded :: Bool -> [a] -> [a]
guarded True xs = xs
guarded False _ = []

multiplyTo :: Int -> [(Int, Int)]
multiplyTo n = do
 x <- [1..n]
 y <- [x..n]
 guarded (x * y == n) $
 return (x, y)
Let’s try this in ghci:
ghci> multiplyTo 8
[(1,8),(2,4)]
ghci> multiplyTo 100
[(1,100),(2,50),(4,25),(5,20),(10,10)]
ghci> multiplyTo 891
[(1,891),(3,297),(9,99),(11,81),(27,33)]

Desugaring of do Blocks

Haskell’s do syntax is an
 example of syntactic sugar: it provides an
 alternative way of writing monadic code, without using (>>=) and anonymous functions.
 Desugaring is the translation of syntactic sugar
 back to the core language.
The rules for desugaring a do block are easy to follow. We can think of a
 compiler as applying these rules mechanically and repeatedly to a
 do block until no more do keywords remain.
A do
 keyword followed by a single action is translated to that action by
 itself:
-- file: ch14/Do.hs -- file: ch14/Do.hs
doNotation1 = translated1 =
 do act act
A do
 keyword followed by more than one action is translated to the first
 action, then (>>), followed
 by a do keyword and the remaining
 actions. When we apply this rule repeatedly, the entire do block ends up chained together by
 applications of (>>):
-- file: ch14/Do.hs -- file: ch14/Do.hs
doNotation2 = translated2 =
 do act1 act1 >>
 act2 do act2
 {- ... etc. -} {- ... etc. -}
 actN actN

 finalTranslation2 =
 act1 >>
 act2 >>
 {- ... etc. -}
 actN
The <- notation has a translation that’s worth paying close attention to.
 On the left of the <- is a normal
 Haskell pattern. This can be a single variable or something more
 complicated, but a guard expression is not allowed:
-- file: ch14/Do.hs -- file: ch14/Do.hs
doNotation3 = translated3 =
 do pattern <- act1 let f pattern = do act2
 act2 let f pattern = do act2
 {- ... etc. -} actN
 actN f _ = fail "..."
 in act1 >>= f
This pattern is translated into a let binding that declares a local function
 with a unique name (we’re just using f as an
 example). The action on the right of the <- is then chained with this function using
 (>>=).
What’s noteworthy about this translation
 is that if the pattern match fails, the local function calls the monad’s
 fail implementation. Here’s an
 example using the Maybe monad:
-- file: ch14/Do.hs
robust :: [a] -> Maybe a
robust xs = do (_:x:_) <- Just xs
 return x
The fail implementation in the Maybe
 monad simply returns Nothing. If the pattern match in the
 preceding function fails, we thus get Nothing as our
 result:
ghci> robust [1,2,3]
Just 2
ghci> robust [1]
Nothing
Finally, when we write a let expression in a do block, we can omit the usual in keyword.
 Subsequent actions in the block must be lined up with the let keyword:
-- file: ch14/Do.hs -- file: ch14/Do.hs
doNotation4 = translated4 =
 do let val1 = expr1 let val1 = expr1
 val2 = expr2 val2 = expr2
 {- ... etc. -} valN = exprN
 valN = exprN in do act1
 act1 act2
 act2 {- ... etc. -}
 {- ... etc. -} actN
 actN
Monads as a Programmable Semicolon

Earlier in The Offside Rule Is Not Mandatory, we mentioned that layout is the
 norm in Haskell, but it’s not required.
 We can write a do block using
 explicit structure instead of layout:
-- file: ch14/Do.hs -- file: ch14/Do.hs
semicolon = do semicolonTranslated =
 { act1 >>
 act1; let f val1 = let val2 = expr1
 val1 <- act2; in actN
 let { val2 = expr1 }; f _ = fail "..."
 actN; in act2 >>= f
 }
Even though this use of explicit
 structure is rare, the fact that it uses semicolons to separate
 expressions has given rise to an apt slogan: monads are a kind of
 “programmable semicolon,”
 because the behaviors of (>>) and (>>=) are different in each monad.

Why Go Sugar-Free?

When we write (>>=) explicitly in our code, it reminds us that we’re
 stitching functions together using combinators, not simply sequencing
 actions.
As long as you feel like a novice with
 monads, we think you should prefer to explicitly write (>>=) over the syntactic sugar of
 do notation. The repeated
 reinforcement of what’s really happening seems, for many programmers,
 to help keep things clear. (It can be easy for an imperative
 programmer to relax a little too much from exposure to the
 IO monad and assume that a do block means nothing more than a simple
 sequence of actions.)
Once you’re feeling more familiar with
 monads, you can choose whichever style seems more appropriate for
 writing a particular function. Indeed, when you read other people’s
 monadic code, you’ll see that it’s unusual, but by no means rare, to
 mix both do
 notation and (>>=) in a
 single function.
The (=<<) function shows up frequently whether or not we use do notation. It is a flipped version of
 (>>=):
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type (=<<)
(=<<) :: (Monad m) => (a -> m b) -> m a -> m b
It comes in handy if we want to compose
 monadic functions in the usual Haskell right-to-left style:
-- file: ch14/CartesianProduct.hs
wordCount = print . length . words =<< getContents

The State Monad

We discovered earlier in this chapter that Parse from
 Chapter 10 was a monad. It has two logically distinct
 aspects. One is the idea of a parse failing and providing a message with
 the details (we represented this using the Either type).
 The other involves carrying around a piece of implicit state, in our
 case, the partially consumed ByteString.
This need for a way to read and write
 state is common enough in Haskell programs that the standard libraries
 provide a monad named State that is dedicated to this
 purpose. This monad lives in the Control.Monad.State
 module.
Where our Parse type carried
 around a ByteString as its piece of state, the
 State monad can carry any type of state. We’ll refer to the
 state’s unknown type as s.
What’s an obvious and general thing we
 might want to do with a state? Given a state value, we inspect it, and
 then produce a result and a new state value. Let’s say the result can be
 of any type a. A type signature that
 captures this idea is s -> (a, s). Take a state s, do something with it, and return a result
 a and possibly a new state s.
Almost a State Monad

Let’s develop some simple code that’s
 almost the State monad, and then
 take a look at the real thing. We’ll start with our type definition,
 which has exactly the obvious type that we just described:
-- file: ch14/SimpleState.hs
type SimpleState s a = s -> (a, s)
Our monad is a function that transforms
 one state into another, yielding a result when it does so. Because of
 this, the State monad is sometimes
 called the state transformer monad.
Yes, this is a type synonym, not a new
 type, and so we’re cheating a little. Bear with us for now; this
 simplifies the description that follows.
Earlier in this chapter, we said that a
 monad has a type constructor with a single type variable, and yet
 here we have a type with two parameters. The key is to understand that
 we can partially apply a type just as we can
 partially apply a normal function. This is easiest to follow with an
 example:
-- file: ch14/SimpleState.hs
type StringState a = SimpleState String a
Here, we’ve bound the type variable
 s to String. The type
 StringState still has a type parameter a, though. It’s now more obvious that we have a
 suitable type constructor for a monad. In other words, our monad’s
 type constructor is SimpleState s, not
 SimpleState alone.
The next ingredient we need to make a
 monad is a definition for the return function:
-- file: ch14/SimpleState.hs
returnSt :: a -> SimpleState s a
returnSt a = \s -> (a, s)
All this does is take the result and the
 current state and “tuple them up.” You may now be used to the idea
 that a Haskell function with multiple parameters is just a chain of
 single-parameter functions, but just in case you’re not, here’s a more
 familiar way of writing returnSt
 that makes it more obvious how simple this function is:
-- file: ch14/SimpleState.hs
returnAlt :: a -> SimpleState s a
returnAlt a s = (a, s)
Our final piece of the monadic puzzle is
 a definition for (>>=).
 Here it is, using the actual variable names from the
 standard library’s definition of (>>=) for State:
-- file: ch14/SimpleState.hs
bindSt :: (SimpleState s a) -> (a -> SimpleState s b) -> SimpleState s b
bindSt m k = \s -> let (a, s') = m s
 in (k a) s'
Those single-letter variable names
 aren’t exactly a boon to readability, so let’s see if we can
 substitute some more meaningful names:
-- file: ch14/SimpleState.hs
-- m == step
-- k == makeStep
-- s == oldState

bindAlt step makeStep oldState =
 let (result, newState) = step oldState
 in (makeStep result) newState
To understand this definition, remember
 that step is a function with the type s ->
 (a, s). When we evaluate this, we get a tuple, which we have to
 use to return a new function of type s -> (a, s). This
 is perhaps easier to follow if we get rid of the
 SimpleState type synonyms from bindAlt’s type signature, and then examine
 the types of its parameters and result:
-- file: ch14/SimpleState.hs
bindAlt :: (s -> (a, s)) -- step
 -> (a -> s -> (b, s)) -- makeStep
 -> (s -> (b, s)) -- (makeStep result) newState

Reading and Modifying the State

The definitions of (>>=) and return for the State monad simply act as plumbing:
 they move a piece of state around, but they don’t touch it in any way.
 We need a few other simple functions to actually do useful work with
 the state:
-- file: ch14/SimpleState.hs
getSt :: SimpleState s s
getSt = \s -> (s, s)

putSt :: s -> SimpleState s ()
putSt s = _ -> ((), s)
The getSt function simply takes the current
 state and returns it as the result, while putSt ignores the current state and replaces it with a new
 one.

Will the Real State Monad Please Stand Up?

The only simplifying trick we played in
 the previous section was to use a type synonym instead of a type
 definition for SimpleState. If we had introduced a
 newtype wrapper at the same time, the extra wrapping and
 unwrapping would have made our code harder to follow.
In order to define a Monad
 instance, we have to provide a proper type constructor as well as
 definitions for (>>=) and
 return. This leads us to the
 real definition of State:
-- file: ch14/State.hs
newtype State s a = State {
 runState :: s -> (a, s)
 }
All we’ve done is wrap our s ->
 (a, s) type in a State constructor. We’re
 automatically given a runState
 function that will unwrap a State value from its
 constructor when we use Haskell’s record syntax to define the type.
 The type of runState is
 State s a -> s -> (a, s).
The definition of return is almost the same as for
 SimpleState, except we wrap our function with a
 State constructor:
-- file: ch14/State.hs
returnState :: a -> State s a
returnState a = State $ \s -> (a, s)
The definition of (>>=) is a little more complicated,
 because it has to use runState to
 remove the State wrappers:
-- file: ch14/State.hs
bindState :: State s a -> (a -> State s b) -> State s b
bindState m k = State $ \s -> let (a, s') = runState m s
 in runState (k a) s'
This function differs from our earlier
 bindSt only in adding the
 wrapping and unwrapping of a few values. By separating the “real
 work” from the bookkeeping, we’ve hopefully made it clearer
 what’s really happening.
We modify the functions for reading and
 modifying the state in the same way, by adding a little
 wrapping:
-- file: ch14/State.hs
get :: State s s
get = State $ \s -> (s, s)

put :: s -> State s ()
put s = State $ _ -> ((), s)

Using the State Monad: Generating Random Values

We’ve already used Parse, our precursor to the
 State monad, to parse binary data. In that case, we wired
 the type of the state we were manipulating directly into the
 Parse type.
The State monad, by
 contrast, accepts any type of state as a parameter. We supply the type
 of the state to give, for example, State
 ByteString.
The State monad will
 probably feel more familiar to you than many other monads if you have
 a background in imperative languages. After all, imperative languages
 are all about carrying around some implicit state, reading some parts,
 and modifying others through assignment, which is just what the
 State monad is for.
So instead of unnecessarily cheerleading
 for the idea of using the State monad, we’ll begin by
 demonstrating how to use it for something simple: pseudorandom value
 generation. In an imperative language, there’s usually an
 easily available source of uniformly distributed pseudorandom numbers.
 For example, in C, there’s a standard rand function that generates a pseudorandom
 number, using a global state that it updates.
Haskell’s standard random value
 generation module is named System.Random. It allows the
 generation of random values of any type, not just numbers. The module
 contains several handy functions that live in the IO
 monad. For example, a rough equivalent of C’s rand function would be the
 following:
-- file: ch14/Random.hs
import System.Random

rand :: IO Int
rand = getStdRandom (randomR (0, maxBound))
(The randomR function takes an inclusive range within which the generated
 random value should lie.)
The System.Random module
 provides a typeclass, RandomGen, that lets us define new
 sources of random Int values. The type
 StdGen is the standard RandomGen instance.
 It generates pseudorandom values. If we had an external source of
 truly random data, we could make it an instance of
 RandomGen and get truly random, instead of merely pseudorandom, values.
Another typeclass, Random,
 indicates how to generate random values of a particular type. The
 module defines Random instances for all of the usual
 simple types.
Incidentally, the definition of
 rand here reads and modifies a
 built-in global random generator that inhabits the IO
 monad.

A First Attempt at Purity

After all of our emphasis so far on avoiding the IO monad wherever
 possible, it would be a shame if we were dragged back into it just to
 generate some random values. Indeed, System.Random
 contains pure random number generation functions.
The traditional downside of purity is
 that we have to get or create a random number generator, and then ship
 it from the point we created it to the place where it’s needed. When
 we finally call it, it returns a new random
 number generator—we’re in pure code, remember, so we can’t modify the
 state of the existing generator.
If we forget about immutability and
 reuse the same generator within a function, we get back exactly the
 same “random” number every time:
-- file: ch14/Random.hs
twoBadRandoms :: RandomGen g => g -> (Int, Int)
twoBadRandoms gen = (fst $ random gen, fst $ random gen)
Needless to say, this has unpleasant
 consequences:
ghci> twoBadRandoms `fmap` getStdGen
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
(639600350314210417,639600350314210417)

The random function uses an implicit range
 instead of the user-supplied range employed by randomR. The getStdGen function retrieves the current
 value of the global standard number generator from the IO
 monad.
Unfortunately, correctly passing around
 and using successive versions of the generator does not make for
 palatable reading. Here’s a simple example:
-- file: ch14/Random.hs
twoGoodRandoms :: RandomGen g => g -> ((Int, Int), g)
twoGoodRandoms gen = let (a, gen') = random gen
 (b, gen'') = random gen'
 in ((a, b), gen'')
Now that we know about the
 State monad, though, it looks like a fine candidate to
 hide the generator. The State monad lets us manage our
 mutable state tidily, while guaranteeing that our code will be free of
 other unexpected side effects, such as modifying files or making
 network connections. This makes it easier to reason about the behavior
 of our code.

Random Values in the State Monad

Here’s a State monad that carries around a
 StdGen as its piece of state:
-- file: ch14/Random.hs
type RandomState a = State StdGen a
The type synonym is, of course, not
 necessary, but it’s handy. It saves a little keyboarding, and if we
 want to swap another random generator for StdGen, it
 would reduce the number of type signatures we’d need to change.
Generating a random value is now a
 matter of fetching the current generator, using it, then modifying the
 state to replace it with the new generator:
-- file: ch14/Random.hs
getRandom :: Random a => RandomState a
getRandom =
 get >>= \gen ->
 let (val, gen') = random gen in
 put gen' >>
 return val
We can now use some of the monadic
 machinery that we saw earlier to write a much more concise function
 for giving us a pair of random numbers:
-- file: ch14/Random.hs
getTwoRandoms :: Random a => RandomState (a, a)
getTwoRandoms = liftM2 (,) getRandom getRandom
Exercise
	Rewrite getRandom to
 use do notation.

Running the State Monad

As we’ve already mentioned, each monad has its own specialized
 evaluation functions. In the case of the State monad, we
 have several to choose from:
	runState
	Returns both the result and the final state

	evalState
	Returns only the result, throwing away the final
 state

	execState
	Throws the result away, returning only the final
 state

The evalState and execState functions are simply compositions
 of fst and snd with runState, respectively. Thus, of the three,
 runState is the one most worth
 remembering.
Here’s a complete example of how to
 implement our getTwoRandoms
 function:
-- file: ch14/Random.hs
runTwoRandoms :: IO (Int, Int)
runTwoRandoms = do
 oldState <- getStdGen
 let (result, newState) = runState getTwoRandoms oldState
 setStdGen newState
 return result
The call to runState follows a standard pattern: we
 pass it a function in the State monad and an initial
 state. It returns the result of the function and the final
 state.
The code surrounding the call to
 runState merely obtains the
 current global StdGen value, and then replaces it
 afterwards so that subsequent calls to runTwoRandoms or other random generation
 functions will pick up the updated state.

What About a Bit More State?

It’s a little hard to imagine writing
 much interesting code in which there’s only a single state value to
 pass around. When we want to track multiple pieces of state at once,
 the usual trick is to maintain them in a data type. The following is
 an example of keeping track of how many of random numbers we are
 handing out:
-- file: ch14/Random.hs
data CountedRandom = CountedRandom {
 crGen :: StdGen
 , crCount :: Int
 }

type CRState = State CountedRandom

getCountedRandom :: Random a => CRState a
getCountedRandom = do
 st <- get
 let (val, gen') = random (crGen st)
 put CountedRandom { crGen = gen', crCount = crCount st + 1 }
 return val
This example happens to consume both
 elements of the state, and it constructs a completely new state, every
 time we call into it. More frequently, we’re likely to read or modify
 only part of a state. This function gets the number of random values
 generated so far:
-- file: ch14/Random.hs
getCount :: CRState Int
getCount = crCount `liftM` get
This example illustrates why we used
 record syntax to define our CountedRandom state. It gives
 us accessor functions that we can glue together with get to read specific pieces of the
 state.
If we want to partially update a state,
 the code doesn’t come out quite so appealingly:
-- file: ch14/Random.hs
putCount :: Int -> CRState ()
putCount a = do
 st <- get
 put st { crCount = a }
Here, instead of a function, we’re using
 record update syntax. The expression st {
 crCount = a } creates a new value that’s an identical copy of
 st, except in its crCount field, which
 is given the value a. Because this is a syntactic
 hack, we don’t get the same kind of flexibility as with a function.
 Record syntax may not exhibit Haskell’s usual elegance, but it at
 least gets the job done.
There is a function named modify that combines the get and put steps. It takes as argument a state
 transformation function, but it’s hardly more satisfactory—we still
 can’t escape from the clumsiness of record update syntax:
-- file: ch14/Random.hs
putCountModify :: Int -> CRState ()
putCountModify a = modify $ \st -> st { crCount = a }

Monads and Functors

Functors and monads are closely related. The terms are borrowed
 from a branch of mathematics called category theory, but they did
 not make the transition to Haskell completely unscathed.
In category theory, a monad is built from
 a functor. You might expect that in Haskell, the Monad
 typeclass would thus be a subclass of Functor, but it isn’t
 defined as such in the standard Prelude—an unfortunate oversight.
However, authors of Haskell libraries use
 a workaround: when programmers define an instance of Monad
 for a type, they almost always write a Functor instance for
 it, too. You can expect that you’ll be able to use the
 Functor typeclass’s fmap function with any monad.
If we compare the type signature of
 fmap with those of
 some of the standard monad functions that we’ve already seen, we get a
 hint as to what fmap on a monad
 does:
ghci> :type fmap
fmap :: (Functor f) => (a -> b) -> f a -> f b
ghci> :module +Control.Monad
ghci> :type liftM
liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r
Sure enough, fmap lifts a pure function into the monad,
 just as liftM does.
Another Way of Looking at Monads

Now that we know about the relationship
 between functors and monads, if we look back at the list monad,
 we can see something interesting. Specifically, take a look at the
 definition of (>>=) for
 lists:
-- file: ch14/ListMonad.hs
instance Monad [] where
 return x = [x]
 xs >>= f = concat (map f xs)
Recall that f has
 type a -> [a]. When we call map f xs, we
 get back a value of type [[a]], which we have to
 “flatten” using concat.
Consider what we could do if
 Monad was a subclass of Functor. Since fmap for lists is defined to be map, we could replace map with fmap in the definition of (>>=). This is not very interesting
 by itself, but suppose we go further.
The concat function is of type [[a]]
 -> [a]. As we mentioned, it flattens the nesting of lists.
 We could generalize this type signature from lists to monads, giving
 us the “remove a level of nesting” type m (m a)
 -> m a. The function that has this type is conventionally
 named join.
If we had definitions of join and fmap, we wouldn’t need to write a
 definition of (>>=) for
 every monad, because it would be completely generic. Here’s what an
 alternative definition of the Monad typeclass might look
 like, along with a definition of (>>=):
-- file: ch14/AltMonad.hs
import Prelude hiding ((>>=), return)

class Functor m => AltMonad m where
 join :: m (m a) -> m a
 return :: a -> m a

(>>=) :: AltMonad m => m a -> (a -> m b) -> m b
xs >>= f = join (fmap f xs)
Neither definition of a monad is
 “better,” because if we have join
 we can write (>>=) and vice
 versa, but the different perspectives can be refreshing.
Removing a layer of monadic wrapping can, in fact, be useful in
 realistic circumstances. We can find a generic definition of join in the Control.Monad
 module:
-- file: ch14/MonadJoin.hs
join :: Monad m => m (m a) -> m a
join x = x >>= id
Here are some examples of what it
 does:
ghci> join (Just (Just 1))
Just 1
ghci> join Nothing
Nothing
ghci> join [[1],[2,3]]
[1,2,3]

The Monad Laws and Good Coding Style

In Thinking More About Functors, we introduced two rules for how
 functors should always behave:
-- file: ch14/MonadLaws.hs
fmap id == id
fmap (f . g) == fmap f . fmap g
There are also rules for how monads ought
 to behave. The three laws described in the following paragraphs are
 referred to as the monad laws. A Haskell implementation doesn’t enforce
 these laws—it’s up to the author of a Monad instance to
 follow them.
The monad laws are simply formal ways of saying “a monad
 shouldn’t surprise me.” In principle, we could probably get away with
 skipping over them entirely. It would be a shame if we did, however,
 because the laws contain gems of wisdom that we might otherwise
 overlook.
Reading the laws
You can read each of the following laws
 as “the expression on the left of the === is
 equivalent to that on the right.”

The first law states that return is a left identity for (>>=):
-- file: ch14/MonadLaws.hs
return x >>= f === f x
Another way to phrase this is that there’s
 no reason to use return to wrap up a
 pure value if all you’re going to do is unwrap it again with (>>=). It’s actually a common style
 error among programmers new to monads to wrap a value with return, and then unwrap it with (>>=) a few lines later in the same
 function. Here’s the same law written with do notation:
-- file: ch14/MonadLaws.hs
do y <- return x
 f y === f x
This law has practical consequences for
 our coding style: we don’t want to write unnecessary code, and the law
 lets us assume that the terse code will be identical in its effect to
 the more verbose version.
The second monad law states that return is a
 right identity for (>>=):
-- file: ch14/MonadLaws.hs
m >>= return === m
This law also has style consequences in
 real programs, particularly if you’re coming from an imperative
 language: there’s no need to use return if the last action in a block would
 otherwise be returning the correct result. Let’s look at this law in
 do notation:
-- file: ch14/MonadLaws.hs
do y <- m
 return y === m
Once again, if we assume that a monad
 obeys this law, we can write the shorter code with the knowledge that it
 will have the same effect as the longer code.
The final law is concerned with
 associativity:
-- file: ch14/MonadLaws.hs
m >>= (\x -> f x >>= g) === (m >>= f) >>= g
This law can be a little more difficult to
 follow, so let’s look at the contents of the parentheses on each side of
 the equation. We can rewrite the expression on the left as
 follows:
-- file: ch14/MonadLaws.hs
m >>= s
 where s x = f x >>= g
On the right, we can also rearrange
 things:
-- file: ch14/MonadLaws.hs
t >>= g
 where t = m >>= f
We’re now claiming that the following two
 expressions are equivalent:
-- file: ch14/MonadLaws.hs
m >>= s === t >>= g
This means that if we want to break up an
 action into smaller pieces, it doesn’t matter which subactions we hoist
 out to make new actions, provided we preserve their ordering. If we have
 three actions chained together, we can substitute the first two and
 leave the third in place, or we can replace the second two and leave the
 first in place.
Even this more complicated law has a
 practical consequence. In the terminology of software refactoring,
 the extract method technique is a
 fancy term for snipping out a piece of inline code, turning it into a
 function, and calling the function from the site of the snipped code.
 This law essentially states that this technique can be applied to
 monadic Haskell code.
We’ve now seen how each of the monad laws
 offers us an insight into writing better monadic code. The first two
 laws show us how to avoid any unnecessary use of return. The third suggests that we can safely
 refactor a complicated action into several simpler ones. We can now
 safely let the details fade, with the knowledge that our “do what
 I mean” intuitions won’t be violated when we use properly written
 monads.
Incidentally, a Haskell compiler cannot
 guarantee that a monad actually follows the monad laws. It is the
 responsibility of a monad’s author to satisfy—or, preferably, prove
 to—himself that his code follows the laws.

Chapter 15. Programming with Monads

Golfing Practice: Association Lists

Web clients and servers often pass information around as a
 simple textual list of key-value pairs:
name=Attila+%42The+Hun%42&occupation=Khan
The encoding is named application/x-www-form-urlencoded, and
 it’s easy to understand. Each key-value pair is separated by an &
 character. Within a pair, a key is a series of characters, followed by
 an =, followed by a value.
We can obviously represent a key as a
 String, but the HTTP specification is not clear about
 whether a key must be followed by a value. We can capture this ambiguity
 by representing a value as a Maybe String. If we use
 Nothing for a value, then there is no value present. If we
 wrap a string in Just, then there is a value. Using
 Maybe lets us distinguish between “no value”
 and “empty value.”
Haskell programmers use the name association list for the type
 [(a, b)], where we can think of each element as an
 association between a key and a value. The name originates in the Lisp
 community, where it’s usually abbreviated as an
 alist. We could thus represent the preceding string
 as the following Haskell value:
-- file: ch15/MovieReview.hs
 [("name", Just "Attila \"The Hun\""),
 ("occupation", Just "Khan")]
In Parsing a URL-Encoded Query String, we’ll parse an
 application/x-www-form-urlencoded string, and we will
 represent the result as an alist of [(String, Maybe
 String)]. Let’s say we want to use one of these alists to fill
 out a data structure:
-- file: ch15/MovieReview.hs
data MovieReview = MovieReview {
 revTitle :: String
 , revUser :: String
 , revReview :: String
 }
We’ll begin by belaboring the obvious with
 a naive function:
-- file: ch15/MovieReview.hs
simpleReview :: [(String, Maybe String)] -> Maybe MovieReview
simpleReview alist =
 case lookup "title" alist of
 Just (Just title@(_:_)) ->
 case lookup "user" alist of
 Just (Just user@(_:_)) ->
 case lookup "review" alist of
 Just (Just review@(_:_)) ->
 Just (MovieReview title user review)
 _ -> Nothing -- no review
 _ -> Nothing -- no user
 _ -> Nothing -- no title
It returns a MovieReview only
 if the alist contains all of the necessary values, and they’re all
 nonempty strings. However, the fact that it validates its inputs is its
 only merit. It suffers badly from the “staircasing” that
 we’ve learned to be wary of, and it knows the intimate details of the
 representation of an alist.
Since we’re now well acquainted with the
 Maybe monad, we can tidy up the staircasing:
-- file: ch15/MovieReview.hs
maybeReview alist = do
 title <- lookup1 "title" alist
 user <- lookup1 "user" alist
 review <- lookup1 "review" alist
 return (MovieReview title user review)

lookup1 key alist = case lookup key alist of
 Just (Just s@(_:_)) -> Just s
 _ -> Nothing
Although this is much neater, we’re still
 repeating ourselves. We can take advantage of the fact that the
 MovieReview constructor acts as a normal, pure function by
 lifting it into the monad, as we discussed in Mixing Pure and Monadic Code:
-- file: ch15/MovieReview.hs
liftedReview alist =
 liftM3 MovieReview (lookup1 "title" alist)
 (lookup1 "user" alist)
 (lookup1 "review" alist)
We still have some repetition here, but
 it is dramatically reduced and also more difficult to remove.

Generalized Lifting

Although using liftM3 tidies up our code, we can’t use a liftM-family function to solve this sort of
 problem in general, because the standard libraries define them only up
 to liftM5. We could write variants
 up to whatever number we pleased, but that would amount to
 drudgery.
If we had a constructor or pure function
 that takes, say, 10 parameters, and decided to stick with the standard
 libraries, you might think we’d be out of luck.
Of course, our toolbox isn’t empty yet. In
 Control.Monad, there’s a function named ap
 with an interesting type signature:
ghci> :m +Control.Monad
ghci> :type ap
ap :: (Monad m) => m (a -> b) -> m a -> m b
You might wonder who would put a
 single-argument pure function inside a monad, and why. Recall, however,
 that all Haskell functions really take only one
 argument, and you’ll begin to see how this might relate to the
 MovieReview constructor:
ghci> :type MovieReview
MovieReview :: String -> String -> String -> MovieReview

We can just as easily write that type
 as:
String -> (String -> (String -> MovieReview))
If we use plain old liftM to
 lift MovieReview into the Maybe monad, we’ll
 have a value of type:
Maybe (String -> (String -> (String -> MovieReview)))
We can now see that this type is suitable as an argument for
 ap, in which case, the result type
 will be:
 Maybe (String -> (String -> MovieReview))
We can pass this, in turn, to ap, and continue to chain until we end up
 with this definition:
-- file: ch15/MovieReview.hs
apReview alist =
 MovieReview `liftM` lookup1 "title" alist
 `ap` lookup1 "user" alist
 `ap` lookup1 "review" alist
We can chain applications of ap such as this as many times as we need to,
 thereby bypassing the liftM family
 of functions.
Another helpful way to look at ap is that it’s the monadic equivalent of the
 familiar ($) operator; think of
 pronouncing ap as
 apply. We can see this clearly when we compare the
 type signatures of the two functions:
ghci> :type ($)
($) :: (a -> b) -> a -> b
ghci> :type ap
ap :: (Monad m) => m (a -> b) -> m a -> m b
In fact, ap is usually defined as either liftM2
 id or liftM2 ($).

Looking for Alternatives

Here’s a simple representation of a
 person’s phone numbers:
-- file: ch15/VCard.hs
data Context = Home | Mobile | Business
 deriving (Eq, Show)

type Phone = String

albulena = [(Home, "+355-652-55512")]

nils = [(Mobile, "+47-922-55-512"), (Business, "+47-922-12-121"),
 (Home, "+47-925-55-121"), (Business, "+47-922-25-551")]

twalumba = [(Business, "+260-02-55-5121")]
Suppose we want to get in touch with
 someone to make a personal call. We don’t want his business number, and
 we’d prefer to use his home number (if he has one) instead of their
 mobile number:
-- file: ch15/VCard.hs
onePersonalPhone :: [(Context, Phone)] -> Maybe Phone
onePersonalPhone ps = case lookup Home ps of
 Nothing -> lookup Mobile ps
 Just n -> Just n
Of course, if we use Maybe as
 the result type, we can’t accommodate the possibility that someone might
 have more than one number that meets our criteria. For that, we switch
 to a list:
-- file: ch15/VCard.hs
allBusinessPhones :: [(Context, Phone)] -> [Phone]
allBusinessPhones ps = map snd numbers
 where numbers = case filter (contextIs Business) ps of
 [] -> filter (contextIs Mobile) ps
 ns -> ns

contextIs a (b, _) = a == b
Notice that these two functions structure
 their case expressions similarly—one
 alternative handles the case where the first lookup returns an empty
 result, while the other handles the nonempty case:
ghci> onePersonalPhone twalumba
Nothing
ghci> onePersonalPhone albulena
Just "+355-652-55512"
ghci> allBusinessPhones nils
["+47-922-12-121","+47-922-25-551"]
Haskell’s Control.Monad
 module defines a typeclass, MonadPlus, that lets us
 abstract the common pattern out of our case expressions:
-- file: ch15/VCard.hs
class Monad m => MonadPlus m where
 mzero :: m a	
 mplus :: m a -> m a -> m a
The value mzero represents an
 empty result, while mplus combines
 two results into one. Here are the standard definitions of
 mzero and mplus for
 Maybe and lists:
-- file: ch15/VCard.hs
instance MonadPlus [] where
 mzero = []
 mplus = (++)

instance MonadPlus Maybe where
 mzero = Nothing

 Nothing `mplus` ys = ys
 xs `mplus` _ = xs
We can now use mplus to get rid of our case expressions entirely. For variety, let’s
 fetch one business and all personal phone numbers:
-- file: ch15/VCard.hs
oneBusinessPhone :: [(Context, Phone)] -> Maybe Phone
oneBusinessPhone ps = lookup Business ps `mplus` lookup Mobile ps

allPersonalPhones :: [(Context, Phone)] -> [Phone]
allPersonalPhones ps = map snd $ filter (contextIs Home) ps `mplus`
 filter (contextIs Mobile) ps
In these functions, because we know that
 lookup returns a value of type
 Maybe, and filter
 returns a list, it’s obvious which version of mplus is going to be used in each
 case.
What’s more interesting is that we can use
 mzero and mplus to
 write functions that will be useful for any
 MonadPlus instance. As an example, here’s the standard
 lookup function, which returns a
 value of type Maybe:
-- file: ch15/VCard.hs
lookup :: (Eq a) => a -> [(a, b)] -> Maybe b
lookup _ [] = Nothing
lookup k ((x,y):xys) | x == k = Just y
 | otherwise = lookup k xys
We can easily generalize the result type
 to any instance of MonadPlus as follows:
-- file: ch15/VCard.hs
lookupM :: (MonadPlus m, Eq a) => a -> [(a, b)] -> m b
lookupM _ [] = mzero
lookupM k ((x,y):xys)
 | x == k = return y `mplus` lookupM k xys
 | otherwise = lookupM k xys
This lets us get either no result or one,
 if our result type is Maybe; all results, if our result
 type is a list; or something more appropriate for some other exotic
 instance of MonadPlus.
For small functions, such as those we
 present here, there’s little benefit to using mplus. The advantage lies in more complex
 code and in code that is independent of the monad in which it executes.
 Even if you don’t find yourself needing MonadPlus for your
 own code, you are likely to encounter it in other people’s
 projects.
The Name mplus Does Not Imply Addition

Even though the mplus function contains the text “plus,” you should not think of it as
 necessarily implying that we’re trying to add two values.
Depending on the monad we’re working in,
 mplus may
 implement an operation that looks like addition. For example,
 mplus in the list monad is
 implemented as the (++)
 operator:
ghci> [1,2,3] `mplus` [4,5,6]
[1,2,3,4,5,6]

However, if we switch to another monad,
 the obvious similarity to addition falls away:
ghci> Just 1 `mplus` Just 2
Just 1
-

Rules for Working with MonadPlus

Instances of the MonadPlus typeclass must follow a
 few simple rules in addition to the usual monad rules.
An instance must short-circuit if mzero appears on
 the left of a bind expression. In other words, an expression
 mzero >>= f must evaluate to the same result as
 mzero alone:
-- file: ch15/MonadPlus.hs
 mzero >>= f == mzero
An instance must short-circuit if mzero appears on
 the right of a sequence expression:
-- file: ch15/MonadPlus.hs
 v >> == mzero

Failing Safely with MonadPlus

When we introduced the fail function in The Monad Typeclass, we took pains to warn against its use: in
 many monads, it’s implemented as a call to error, which has unpleasant
 consequences.
The MonadPlus typeclass
 gives us a gentler way to fail a computation, without fail or error blowing up in our faces. The rules
 that we just introduced allow us to introduce an mzero
 into our code wherever we need to, and computation will short-circuit
 at that point.
In the Control.Monad
 module, the standard function guard packages up this idea in a convenient
 form:
-- file: ch15/MonadPlus.hs
guard :: (MonadPlus m) => Bool -> m ()
guard True = return ()
guard False = mzero
As a simple example, here’s a function
 that takes a number x and computes its value modulo
 some other number n. If the result is zero, it
 returns x; otherwise, the current monad’s
 mzero:
-- file: ch15/MonadPlus.hs
x `zeroMod` n = guard ((x `mod` n) == 0) >> return x

Adventures in Hiding the Plumbing

In Using the State Monad: Generating Random Values,
 we showed how to use the State monad to give ourselves
 access to random numbers in a way that is easy to use.
A drawback of the code we developed is
 that it’s leaky: Users know that they’re executing inside the
 State monad. This means that they can inspect and modify
 the state of the random number generator just as easily as we, the
 authors, can.
Human nature dictates that if we leave our
 internal workings exposed, someone will surely come along and monkey
 with them. For a sufficiently small program, this may be fine, but in a
 larger software project, when one consumer of a library modifies its
 internals in a way that other consumers are not prepared for, the
 resulting bugs can be among the most difficult to track down. These bugs
 occur at a level where we’re unlikely to question our basic assumptions
 about a library until long after we’ve exhausted all other avenues of
 inquiry.
Even worse, once we leave our
 implementation exposed for a while, and some well-intentioned person
 inevitably bypasses our APIs and uses the implementation directly, we
 have a nasty quandary if we need to fix a bug or make an enhancement.
 Either we can modify our internals and break code that depends on them;
 or we’re stuck with our existing internals and must try to find some
 other way to make the change that we need.
How can we revise our random number monad
 so that the fact that we’re using the State monad is
 hidden? We need to somehow prevent our users from being able to call
 get or put. This is not difficult to do, and
 it introduces some tricks that we’ll reuse often in day-to-day Haskell
 programming.
To widen our scope, we’ll move beyond
 random numbers and implement a monad that supplies unique values of
 any kind. The name we’ll give to our monad is
 Supply. We’ll provide the execution function, runSupply, with a list of values (it will be
 up to us to ensure that each one is unique):
-- file: ch15/Supply.hs
runSupply :: Supply s a -> [s] -> (a, [s])
The monad won’t care what the values are.
 They might be random numbers, or names for temporary files, or
 identifiers for HTTP cookies.
Within the monad, every time a consumer
 asks for a value, the next action
 will take the next one from the list and give it to the consumer. Each
 value is wrapped in a Maybe constructor in case the list
 isn’t long enough to satisfy the demand:
-- file: ch15/Supply.hs
next :: Supply s (Maybe s)
To hide our plumbing, in our module
 declaration, we export only the type constructor, the execution
 function, and the next
 action:
-- file: ch15/Supply.hs
module Supply
 (
 Supply
 , next
 , runSupply
) where
Since a module that imports the library
 can’t see the internals of the monad, it can’t manipulate them.
Our plumbing is exceedingly simple. We use
 a newtype declaration to wrap the existing
 State monad:
-- file: ch15/Supply.hs
import Control.Monad.State

newtype Supply s a = S (State [s] a)
The s
 parameter is the type of the unique values we are going to supply, and
 a is the usual type parameter that we
 must provide in order to make our type a monad.
Our use of newtype for the
 Supply type and our module header join forces to prevent
 our clients from using the State monad’s get and set actions. Because our module does not
 export the S data constructor, clients have no programmatic
 way to see that we’re wrapping the State monad, or to
 access it.
At this point, we’ve got a type,
 Supply, that we need to make an instance of the
 Monad typeclass. We could follow the usual pattern of
 defining (>>=) and return, but this would be pure boilerplate
 code. All we’d be doing is wrapping and unwrapping the
 State monad’s versions of (>>=) and return using our S value
 constructor. Here is how such code would look:
-- file: ch15/AltSupply.hs
unwrapS :: Supply s a -> State [s] a
unwrapS (S s) = s

instance Monad (Supply s) where
 s >>= m = S (unwrapS s >>= unwrapS . m)
 return = S . return
Haskell programmers are not fond of
 boilerplate, and sure enough, GHC has a lovely language extension that
 eliminates the work. To use it, we add the following directive to the
 top of our source file, before the module header:
-- file: ch15/Supply.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
Usually, we can only automatically derive
 instances of a handful of standard typeclasses, such as
 Show and Eq. As its name suggests,
 the GeneralizedNewtypeDeriving
 extension broadens our ability to derive typeclass instances, and
 it is specific to newtype
 declarations. If the type we’re wrapping is an instance of any
 typeclass, the extensions can automatically make our new type an
 instance of that typeclass as follows:
-- file: ch15/Supply.hs
 deriving (Monad)
This takes the underlying type’s
 implementations of (>>=) and
 return, adds the necessary wrapping and unwrapping with our
 S data constructor, and uses the new versions of those
 functions to derive a Monad instance for us.
What we gain here is very useful beyond
 just this example. We can use newtype to wrap any
 underlying type; we selectively expose only those typeclass instances
 that we want; and we expend almost no effort to create these narrower,
 more specialized types.
Now that we’ve seen the
 GeneralizedNewtypeDeriving technique, all that remains is
 to provide definitions of next and
 runSupply:
-- file: ch15/Supply.hs
next = S $ do st <- get
 case st of
 [] -> return Nothing
 (x:xs) -> do put xs
 return (Just x)

runSupply (S m) xs = runState m xs
If we load our module into ghci, we can try it out in a few simple
 ways:
ghci> :load Supply
[1 of 1] Compiling Supply (Supply.hs, interpreted)
Ok, modules loaded: Supply.
ghci> runSupply next [1,2,3]
Loading package mtl-1.1.0.1 ... linking ... done.
(Just 1,[2,3])
ghci> runSupply (liftM2 (,) next next) [1,2,3]
((Just 1,Just 2),[3])
ghci> runSupply (liftM2 (,) next next) [1]
((Just 1,Nothing),[])
We can also verify that the
 State monad has not somehow leaked out:
ghci> :browse Supply
data Supply s a
next :: Supply s (Maybe s)
runSupply :: Supply s a -> [s] -> (a, [s])
ghci> :info Supply
data Supply s a 	-- Defined at Supply.hs:17:8-13
instance Monad (Supply s) -- Defined at Supply.hs:17:8-13
Supplying Random Numbers

If we want to use our
 Supply monad as a source of random numbers, we have a
 small difficulty to face. Ideally, we’d like to be able to provide it
 with an infinite stream of random numbers. We can get a
 StdGen in the IO monad, but we must “put back” a different
 StdGen when we’re done. If we don’t, the next piece of
 code to get a StdGen will get the same state as we did.
 This means it will generate the same random numbers as we did, which
 is potentially catastrophic.
From the parts of the
 System.Random module we’ve seen so far, it’s difficult to reconcile these
 demands. We can use getStdRandom,
 whose type ensures that when we get a StdGen, we
 put one back:
ghci> :type getStdRandom
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

We can use random to get back a new
 StdGen when they give us a random number. And we can use
 randoms to get an infinite list
 of random numbers. But how do we get both an infinite list of random
 numbers and a new StdGen?
The answer lies with the
 RandomGen typeclass’s split function, which takes one random number generator and turns it
 into two generators. Splitting a random generator such as this is a
 most unusual thing to be able to do: it’s obviously tremendously
 useful in a pure functional setting, but it is essentially either
 never necessary an impure language, or the language doesn’t provide
 for it.
With the split function, we can use one
 StdGen to generate an infinite list of random numbers to
 feed to runSupply, while we give
 the other back to the IO monad:
-- file: ch15/RandomSupply.hs
import Supply
import System.Random hiding (next)

randomsIO :: Random a => IO [a]
randomsIO =
 getStdRandom $ \g ->
 let (a, b) = split g
 in (randoms a, b)
If we’ve written this function properly,
 our example ought to print a different random number on each
 invocation:
ghci> :load RandomSupply
[1 of 2] Compiling Supply (Supply.hs, interpreted)
[2 of 2] Compiling RandomSupply (RandomSupply.hs, interpreted)
Ok, modules loaded: RandomSupply, Supply.
ghci> (fst . runSupply next) `fmap` randomsIO

<interactive>:1:17:
 Ambiguous occurrence `next'
 It could refer to either `Supply.next', imported from Supply at RandomSupply.hs:4:
 (defined at Supply.hs:32:0)
 or `System.Random.next', imported from System.Random
ghci> (fst . runSupply next) `fmap` randomsIO

<interactive>:1:17:
 Ambiguous occurrence `next'
 It could refer to either `Supply.next', imported from Supply at RandomSupply.hs:4:
 (defined at Supply.hs:32:0)
 or `System.Random.next', imported from System.Random
Recall that our runSupply function returns both the result
 of executing the monadic action and the unconsumed remainder of the
 list. Since we passed it an infinite list of random numbers, we
 compose with fst to ensure that
 we don’t get drowned in random numbers when ghci tries to print the result.

Another Round of Golf

The pattern of applying a function to
 one element of a pair and constructing a new pair with the other
 original element untouched is common enough in Haskell code that it
 has been turned into standard code.
Two functions, first and second, perform this operation in the Control.Arrow module:
ghci> :m +Control.Arrow
ghci> first (+3) (1,2)
(4,2)
ghci> second odd ('a',1)
('a',True)
(Indeed, we already encountered
 second in JSON Typeclasses Without Overlapping Instances.) We can use first to golf our definition of randomsIO, turning it into a
 one-liner:
-- file: ch15/RandomGolf.hs
import Control.Arrow (first)

randomsIO_golfed :: Random a => IO [a]
randomsIO_golfed = getStdRandom (first randoms . split)

Separating Interface from Implementation

In the previous section, we saw how to hide the fact that we’re
 using a State monad to hold the state for our
 Supply monad.
Another important way to make code more
 modular involves separating its interface (what the
 code can do) from its implementation—how it does
 it.
The standard random number generator in
 System.Random is known to be quite slow. If we use our
 randomsIO function to provide it
 with random numbers, then our next
 action will not perform well.
One simple and effective way that we could
 deal with this is to provide Supply with a better source of
 random numbers. Let’s set this idea aside, though, and consider an
 alternative approach, one that is useful in many settings. We will
 separate the actions we can perform with the monad from how it works
 using a typeclass:
-- file: ch15/SupplyClass.hs
class (Monad m) => MonadSupply s m | m -> s where
 next :: m (Maybe s)
This typeclass defines the interface that
 any supply monad must implement. It bears careful inspection, since it
 uses several unfamiliar Haskell language extensions. We will cover each
 one in the sections that follow.
Multiparameter Typeclasses

How should we read the snippet
 MonadSupply s m in the typeclass? If we add parentheses,
 an equivalent expression is (MonadSupply s) m, which is a
 little clearer. In other words, given some type variable
 m that is a Monad, we can make it an
 instance of the typeclass MonadSupply s. Unlike a regular
 typeclass, this one has a parameter.
As this language extension allows a
 typeclass to have more than one parameter, its name is MultiParamTypeClasses. The parameter
 s serves the same purpose as the
 Supply type’s parameter of the same name: it represents
 the type of the values handed out by the next function.
Notice that we don’t need to mention
 (>>=) or return in the definition of
 MonadSupply s, since the typeclass’s context (superclass)
 requires that a MonadSupply s must already be a
 Monad.

Functional Dependencies

To revisit a snippet that we ignored
 earlier, | m -> s is a functional
 dependency, often called a fundep. We
 can read the vertical bar | as “such that,” and the arrow
 -> as “uniquely determines.” Our functional dependency
 establishes a relationship between
 m and s.
The FunctionalDependencies language pragma
 governs the availability of functional dependencies.
The purpose behind us declaring a
 relationship is to help the type checker. Recall that a Haskell type
 checker is essentially a theorem prover, and that it is conservative
 in how it operates: it insists that its proofs must terminate. A
 nonterminating proof results in the compiler either giving up or
 getting stuck in an infinite loop.
With our functional dependency, we are
 telling the type checker that every time it sees some monad
 m being used in the context of a MonadSupply
 s, the type s is the only acceptable type to
 use with it. If we were to omit the functional dependency, the type
 checker would simply give up with an error message.
It’s hard to picture what the
 relationship between m and s
 really means, so let’s look at an instance of this typeclass:
-- file: ch15/SupplyClass.hs
import qualified Supply as S

instance MonadSupply s (S.Supply s) where
 next = S.next
Here, the type variable
 m is replaced by the type S.Supply s.
 Thanks to our functional dependency, the type checker now knows that
 when it sees a type S.Supply s, the type can be used as
 an instance of the typeclass MonadSupply s.
If we didn’t have a functional
 dependency, the type checker would not be able to figure out the
 relationship between the type parameter of the class MonadSupply
 s and that of the type Supply s, and it would
 abort compilation with an error. The definition itself would compile;
 the type error would not arise until the first time we tried to use
 it.
To strip away one final layer of
 abstraction, consider the type S.Supply Int. Without a
 functional dependency, we could declare this an instance of
 MonadSupply s. However, if we try to write code using
 this instance, the compiler would not be able to figure out that the
 type’s Int parameter needs to be the same as the
 typeclass’s s parameter, and it would report an
 error.
Functional dependencies can be tricky to
 understand, and once we move beyond simple uses, they often prove
 difficult to work with in practice. Fortunately, the most frequent use
 of functional dependencies is in situations as simple as ours, where
 they cause little trouble.

Rounding Out Our Module

If we save our typeclass and instance in
 a source file named SupplyClass.hs, we’ll need to add a module
 header such as the following:
-- file: ch15/SupplyClass.hs
{-# LANGUAGE FlexibleInstances, FunctionalDependencies,
 MultiParamTypeClasses #-}

module SupplyClass
 (
 MonadSupply(..)
 , S.Supply
 , S.runSupply
) where
The FlexibleInstances extension is necessary so
 that the compiler will accept our instance declaration. This extension
 relaxes the normal rules for writing instances in some circumstances,
 in a way that still lets the compiler’s type checker guarantee that it
 will terminate. Our need for FlexibleInstances here is
 caused by our use of functional dependencies, but the details are
 unfortunately beyond the scope of this book.
How to know when a language extension is needed
If GHC cannot compile a piece of code
 because it would require some language extension to be enabled, it
 will tell us which extension we should use. For example, if it
 decides that our code needs flexible instance support, it will
 suggest that we try compiling with the -XFlexibleInstances option. A
 -X option has the same effect as a LANGUAGE directive: it enables a
 particular extension.

Finally, notice that we’re re-exporting
 the runSupply and
 Supply names from this module. It’s perfectly legal to
 export a name from one module even though it’s defined in another. In
 our case, it means that client code needs only to import the
 SupplyClass module, without also importing the
 Supply module. This reduces the number of “moving
 parts” that a user of our code needs to keep in mind.

Programming to a Monad’s Interface

Here is a simple function that fetches
 two values from our Supply monad, formats them as a
 string, and returns them:
-- file: ch15/Supply.hs
showTwo :: (Show s) => Supply s String
showTwo = do
 a <- next
 b <- next
 return (show "a: " ++ show a ++ ", b: " ++ show b)
This code is tied by its result type to
 our Supply monad. We can easily generalize to any monad
 that implements our MonadSupply interface by modifying
 our function’s type. Notice that the body of the function remains
 unchanged:
-- file: ch15/SupplyClass.hs
showTwo_class :: (Show s, Monad m, MonadSupply s m) => m String
showTwo_class = do
 a <- next
 b <- next
 return (show "a: " ++ show a ++ ", b: " ++ show b)

The Reader Monad

The State monad lets us
 plumb a piece of mutable state through our code. Sometimes, we would
 like to be able to pass some immutable state
 around, such as a program’s configuration data. We could use the
 State monad for this purpose, but we might then find
 ourselves accidentally modifying data that should remain
 unchanged.
Let’s forget about monads for a moment and
 think about what a function with our desired
 characteristics ought to do. It should accept a value of some type
 e (for environment) that represents the data that
 we’re passing in, and return a value of some other type a as its result. The overall type we want is
 e -> a.
To turn this type into a convenient
 Monad instance, we’ll wrap it in a
 newtype:
-- file: ch15/SupplyInstance.hs
newtype Reader e a = R { runReader :: e -> a }
Making this into a Monad
 instance doesn’t take much work:
-- file: ch15/SupplyInstance.hs
instance Monad (Reader e) where
 return a = R $ _ -> a
 m >>= k = R $ \r -> runReader (k (runReader m r)) r
We can think of our value of type e as an environment in which we’re evaluating some
 expression. The return action should
 have the same effect no matter what the environment is, so our version
 ignores its environment.
Our definition of (>>=) is a little more complicated, but
 only because we have to make the environment—here the variable
 r—available both in the current computation and in
 the computation we’re chaining into.
How does a piece of code executing in this
 monad find out what’s in its environment? It simply has to ask:
-- file: ch15/SupplyInstance.hs
ask :: Reader e e
ask = R id
Within a given chain of actions, every
 invocation of ask will return the
 same value, since the value stored in the environment doesn’t change.
 Our code is easy to test in ghci:
ghci> runReader (ask >>= \x -> return (x * 3)) 2
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
6

The Reader monad is included
 in the standard mtl library, which is usually bundled with
 GHC. You can find it in the
 Control.Monad.Reader module. The motivation for this monad
 may initially seem a little thin, because it is most often useful in
 complicated code. We’ll often need to access a piece of configuration
 information deep in the bowels of a program; passing that information in
 as a normal parameter would require a painful restructuring of our code.
 By hiding this information in our monad’s plumbing, intermediate
 functions that don’t care about the configuration information don’t need
 to see it.
The clearest motivation for the
 Reader monad will come in Chapter 18,
 when we discuss combining several monads to build a new monad. There,
 we’ll see how to gain finer control over state, so that our code can
 modify some values via the State monad, while other values
 remain immutable, courtesy of the Reader monad.

A Return to Automated Deriving

Now that we know about the
 Reader monad, let’s use it to create an instance of our
 MonadSupply typeclass. To keep our example simple, we’ll
 violate the spirit of MonadSupply here: our next action will always return the same
 value, instead of always returning a different one.
It would be a bad idea to directly make
 the Reader type an instance of the MonadSupply
 class, because then any Reader could
 act as a MonadSupply. This would usually not make any
 sense.
Instead, we create a newtype
 based on Reader. The newtype hides the fact
 that we’re using Reader internally. We must now make our
 type an instance of both of the typeclasses we care about. With the
 GeneralizedNewtypeDeriving extension enabled, GHC will do most of the hard work for
 us:
-- file: ch15/SupplyInstance.hs
newtype MySupply e a = MySupply { runMySupply :: Reader e a }
 deriving (Monad)

instance MonadSupply e (MySupply e) where
 next = MySupply $ do
 v <- ask
 return (Just v)

 -- more concise:
 -- next = MySupply (Just `liftM` ask)
Notice that we must make our type an
 instance of MonadSupply e, not MonadSupply. If
 we omit the type variable, the compiler will complain.
To try out our MySupply type,
 we’ll first create a simple function that should work with any
 MonadSupply instance:
-- file: ch15/SupplyInstance.hs
xy :: (Num s, MonadSupply s m) => m s
xy = do
 Just x <- next
 Just y <- next
 return (x * y)
If we use this with our
 Supply monad and randomsIO function, we get a different answer
 every time, as we expect:
ghci> (fst . runSupply xy) `fmap` randomsIO
3155268008533561605104245047686121354
ghci> (fst . runSupply xy) `fmap` randomsIO
1764220767702892260034822063450517650
Because our MySupply monad
 has two layers of newtype wrapping, we can write a custom
 execution function for it to make it easier to use:
-- file: ch15/SupplyInstance.hs
runMS :: MySupply i a -> i -> a
runMS = runReader . runMySupply
When we apply our xy action using this execution function, we
 get the same answer every time. Our code remains the same, but because
 we are executing it in a different implementation of
 MonadSupply, its behavior has changed:
ghci> runMS xy 2
4
ghci> runMS xy 2
4
Like our MonadSupply
 typeclass and Supply monad, almost all of the common
 Haskell monads are built with a split between interface and
 implementation. For example, the get and put functions that we introduced as
 “belonging to” the State monad are actually
 methods of the MonadState typeclass; the State
 type is an instance of this class.
Similarly, the standard
 Reader monad is an instance of the MonadReader
 typeclass, which specifies the ask
 method.
While the separation of interface and
 implementation that we discussed is appealing for its architectural
 cleanliness, it has important practical applications that will become
 clearer later. When we start combining monads in Chapter 18, we will save a lot of effort through the use of
 GeneralizedNewtypeDeriving and typeclasses.

Hiding the IO Monad

The blessing and curse of the IO monad is that
 it is extremely powerful. If we believe that careful use of types helps
 us to avoid programming mistakes, then the IO monad should
 be a great source of unease. Because the IO monad imposes
 no restrictions on what we can do, it leaves us vulnerable to all kinds
 of accidents.
How can we tame its power? Let’s say that
 we would like to guarantee to ourselves that a piece of code can read
 and write files on the local filesystem, but it will not access the
 network. We can’t use the plain IO monad, because it won’t
 restrict us.
Using a newtype

Let’s create a module that provides a
 small set of functionality for reading and writing files:
-- file: ch15/HandleIO.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module HandleIO
 (
 HandleIO
 , Handle
 , IOMode(..)
 , runHandleIO
 , openFile
 , hClose
 , hPutStrLn
) where

import System.IO (Handle, IOMode(..))
import qualified System.IO
Our first approach to creating a
 restricted version of IO is to wrap it with a
 newtype:
-- file: ch15/HandleIO.hs
newtype HandleIO a = HandleIO { runHandleIO :: IO a }
 deriving (Monad)
We do the by now familiar trick of
 exporting the type constructor and the runHandleIO execution function from our
 module, but not the data constructor. This will prevent code running
 within the HandleIO monad from getting hold of the
 IO monad that it wraps.
All that remains is for us to wrap each
 of the actions that we want our monad to allow. This is a simple
 matter of wrapping each IO with a HandleIO
 data constructor:
-- file: ch15/HandleIO.hs
openFile :: FilePath -> IOMode -> HandleIO Handle
openFile path mode = HandleIO (System.IO.openFile path mode)

hClose :: Handle -> HandleIO ()
hClose = HandleIO . System.IO.hClose

hPutStrLn :: Handle -> String -> HandleIO ()
hPutStrLn h s = HandleIO (System.IO.hPutStrLn h s)
We can now use our restricted
 HandleIO monad to perform I/O:
-- file: ch15/HandleIO.hs
safeHello :: FilePath -> HandleIO ()
safeHello path = do
 h <- openFile path WriteMode
 hPutStrLn h "hello world"
 hClose h
To run this action, we use runHandleIO:
ghci> :load HandleIO
[1 of 1] Compiling HandleIO (HandleIO.hs, interpreted)
Ok, modules loaded: HandleIO.
ghci> runHandleIO (safeHello "hello_world_101.txt")
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
ghci> :m +System.Directory
ghci> removeFile "hello_world_101.txt"
If we try to sequence an action that
 runs in the HandleIO monad with one that is not
 permitted, the type system will forbid it:
ghci> runHandleIO (safeHello "goodbye" >> removeFile "goodbye")

<interactive>:1:36:
 Couldn't match expected type `HandleIO a'
 against inferred type `IO ()'
 In the second argument of `(>>)', namely `removeFile "goodbye"'
 In the first argument of `runHandleIO', namely
 `(safeHello "goodbye" >> removeFile "goodbye")'
 In the expression:
 runHandleIO (safeHello "goodbye" >> removeFile "goodbye")

Designing for Unexpected Uses

There’s one small, but significant,
 problem with our HandleIO monad: it doesn’t take into
 account the possibility that we might occasionally need an escape
 hatch. If we define a monad such as this, it is likely that we will
 occasionally need to perform an I/O action that isn’t allowed for by the
 design of our monad.
Our purpose in defining a monad like
 this is to make it easier for us to write solid code in the common
 case, not to make corner cases impossible. Let’s give ourselves a way
 out.
The Control.Monad.Trans
 module defines a “standard escape hatch,” the
 MonadIO typeclass. This defines a single function, liftIO, which lets us embed an
 IO action in another monad:
ghci> :m +Control.Monad.Trans
ghci> :info MonadIO
class (Monad m) => MonadIO m where liftIO :: IO a -> m a
 	-- Defined in Control.Monad.Trans
instance MonadIO IO -- Defined in Control.Monad.Trans
Our implementation of this typeclass is
 trivial; we just wrap IO with our data constructor:
-- file: ch15/HandleIO.hs
import Control.Monad.Trans (MonadIO(..))

instance MonadIO HandleIO where
 liftIO = HandleIO
With judicious use of liftIO, we can escape our shackles and
 invoke IO actions where necessary:
-- file: ch15/HandleIO.hs
tidyHello :: FilePath -> HandleIO ()
tidyHello path = do
 safeHello path
 liftIO (removeFile path)
Automatic derivation and MonadIO
We could have had the compiler
 automatically derive an instance of MonadIO for us by
 adding the typeclass to the deriving clause of
 HandleIO. In fact, in production code, this would be
 our usual strategy. We avoided that here simply to separate the
 presentation of the earlier material from that of
 MonadIO.

Using Typeclasses

The disadvantage of hiding IO in another monad is that we’re still
 tied to a concrete implementation. If we want to swap
 HandleIO for some other monad, we must change the type of
 every action that uses HandleIO.
As an alternative, we can create a
 typeclass that specifies the interface we want from a monad that
 manipulates files:
-- file: ch15/MonadHandle.hs
{-# LANGUAGE FunctionalDependencies, MultiParamTypeClasses #-}

module MonadHandle (MonadHandle(..)) where

import System.IO (IOMode(..))

class Monad m => MonadHandle h m | m -> h where
 openFile :: FilePath -> IOMode -> m h
 hPutStr :: h -> String -> m ()
 hClose :: h -> m ()
 hGetContents :: h -> m String

 hPutStrLn :: h -> String -> m ()
 hPutStrLn h s = hPutStr h s >> hPutStr h "\n"
Here, we’ve chosen to abstract away both
 the type of the monad and the type of a file handle. To satisfy the
 type checker, we’ve added a functional dependency: for any instance of
 MonadHandle, there is exactly one handle type that we can
 use. When we make the IO monad an instance of this class,
 we use a regular Handle:
-- file: ch15/MonadHandleIO.hs
{-# LANGUAGE FunctionalDependencies, MultiParamTypeClasses #-}

import MonadHandle
import qualified System.IO

import System.IO (IOMode(..))
import Control.Monad.Trans (MonadIO(..), MonadTrans(..))
import System.Directory (removeFile)

import SafeHello

instance MonadHandle System.IO.Handle IO where
 openFile = System.IO.openFile
 hPutStr = System.IO.hPutStr
 hClose = System.IO.hClose
 hGetContents = System.IO.hGetContents
 hPutStrLn = System.IO.hPutStrLn
Because any MonadHandle
 must also be a Monad, we can write code that manipulates
 files using normal do notation,
 without caring what monad it will finally execute in:
-- file: ch15/SafeHello.hs
safeHello :: MonadHandle h m => FilePath -> m ()
safeHello path = do
 h <- openFile path WriteMode
 hPutStrLn h "hello world"
 hClose h
Because we made IO an
 instance of this typeclass, we can execute this action from ghci:
ghci> safeHello "hello to my fans in domestic surveillance"
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
ghci> removeFile "hello to my fans in domestic surveillance"
The beauty of the typeclass approach is
 that we can swap one underlying monad for another without touching
 much code, as most of our code doesn’t know or care about the
 implementation. For instance, we could replace IO with a
 monad that compresses files as it writes them out.
Defining a monad’s interface through a
 typeclass has a further benefit. It lets another user hide our
 implementation in a newtype wrapper and automatically
 derive instances of just the typeclasses she wants to expose.

Isolation and Testing

In fact, because our safeHello function doesn’t use the
 IO type, we can even use a monad that
 can’t perform I/O. This allows us to test code
 that would normally have side effects in a completely pure, controlled
 environment.
To do this, we will create a monad that
 doesn’t perform I/O but instead logs every file-related event for
 later processing:
-- file: ch15/WriterIO.hs
data Event = Open FilePath IOMode
 | Put String String
 | Close String
 | GetContents String
 deriving (Show)
Although we already developed a
 Logger type in Using a New Monad: Show Your Work!, here
 we’ll use the standard, and more general, Writer monad.
 Like other mtl monads, the API provided by
 Writer is defined in a typeclass—in this case,
 MonadWriter. Its most useful method is tell, which logs a value:
ghci> :m +Control.Monad.Writer
ghci> :type tell
tell :: (MonadWriter w m) => w -> m ()
The values we log can be of any
 Monoid type. Since the list type is a
 Monoid, we’ll log to a list of Event.
We could make Writer
 [Event] an instance of MonadHandle, but it’s
 cheap, easy, and safer to make a special-purpose monad:
-- file: ch15/WriterIO.hs
newtype WriterIO a = W { runW :: Writer [Event] a }
 deriving (Monad, MonadWriter [Event])
Our execution function simply removes
 the newtype wrapper we added, and then calls the normal
 Writer monad’s execution function:
-- file: ch15/WriterIO.hs
runWriterIO :: WriterIO a -> (a, [Event])
runWriterIO = runWriter . runW
When we try this code out in ghci, it gives us a log of the function’s
 file activities:
ghci> :load WriterIO
[1 of 3] Compiling MonadHandle (MonadHandle.hs, interpreted)
[2 of 3] Compiling SafeHello (SafeHello.hs, interpreted)
[3 of 3] Compiling WriterIO (WriterIO.hs, interpreted)
Ok, modules loaded: MonadHandle, SafeHello, WriterIO.
ghci> runWriterIO (safeHello "foo")
((),[Open "foo" WriteMode,Put "foo" "hello world",Put "foo" "\n",Close "foo"])

The Writer Monad and Lists

The Writer monad uses the Monoid’s
 mappend function every time we
 use tell. Because mappend for lists is (++), lists are not a good practical choice
 for use with Writer: repeated appends are expensive. We
 used lists previously purely for simplicity.
In production code, if you want to use
 the Writer monad and you need list-like behavior, use a
 type with better append characteristics. One such type is the
 difference list, which we introduced in Taking Advantage of Functions as Data.
 You don’t need to roll your own difference list implementation: a
 well-tuned library is available for download from Hackage, the Haskell
 package database. Alternatively, you can use the Seq type
 from the Data.Sequence module, which we introduced in
 General-Purpose Sequences.

Arbitrary I/O Revisited

If we use the typeclass approach to restricting IO, we may still
 want to retain the ability to perform arbitrary I/O actions. We might
 try adding MonadIO as a constraint on our
 typeclass:
-- file: ch15/MonadHandleIO.hs
class (MonadHandle h m, MonadIO m) => MonadHandleIO h m | m -> h

instance MonadHandleIO System.IO.Handle IO

tidierHello :: (MonadHandleIO h m) => FilePath -> m ()
tidierHello path = do
 safeHello path
 liftIO (removeFile path)
This approach has a problem, though: the
 added MonadIO constraint strips us of the ability to test
 our code in a pure environment, because we can no longer tell whether
 a test might have damaging side effects. The alternative is to move
 this constraint from the typeclass—where it “infects” all
 functions—to only those functions that really need to perform
 I/O:
-- file: ch15/MonadHandleIO.hs
tidyHello :: (MonadIO m, MonadHandle h m) => FilePath -> m ()
tidyHello path = do
 safeHello path
 liftIO (removeFile path)
We can use pure property tests on the
 functions that lack MonadIO constraints and traditional
 unit tests on the rest.
Unfortunately, we’ve substituted one
 problem for another: we can’t invoke code with both
 MonadIO and MonadHandle constraints from
 code that has the MonadHandle constraint alone. If we
 find that somewhere deep in our MonadHandle-only code
 that we really need the MonadIO constraint, we must add
 it to all the code paths that lead to this point.
Allowing arbitrary I/O is risky, and it
 has a profound effect on how we develop and test our code. When we
 have to choose between being permissive on the one hand, and easier
 reasoning and testing on the other, we usually opt for the latter.
Exercises
	Using QuickCheck, write a test for an action in the
 MonadHandle monad, in order to see if it tries to
 write to a file handle that is not open. Try it out on safeHello.

	Write an action that tries to write to a file handle that
 it has closed. Does your test catch this bug?

	In a form-encoded string, the same key may appear several
 times, with or without values, e.g.,
 key&key=1&key=2. What type might you use to
 represent the values associated with a key in this sort of
 string? Write a parser that correctly captures all of the
 information.

Chapter 16. Using Parsec

Parsing a file, or data of various types, is a common task for
 programmers. We already learned about Haskell’s support for regular
 expressions back in Regular Expressions in Haskell. Regular expressions are nice for many tasks, but they
 rapidly become unwieldy, or cannot be used at all, when dealing with a
 complex data format. For instance, we cannot use regular expressions to
 parse source code from most programming languages.
Parsec is a useful parser combinator
 library, with which we combine small parsing functions to build more
 sophisticated parsers. Parsec provides some simple parsing functions, as
 well as functions to tie them all together. It should come as no surprise
 that this parser library for Haskell is built around the notion of
 functions.
It’s helpful to know where Parsec fits
 compared to the tools used for parsing in other languages. Parsing is
 sometimes divided into two stages: lexical analysis (the domain of tools
 such as flex) and parsing
 itself (performed by programs such as bison). Parsec can perform both lexical analysis
 and parsing.
First Steps with Parsec: Simple CSV Parsing

Let’s jump right in and write some code for parsing a CSV file. CSV files are often used as a plain-text
 representation of spreadsheets or databases. Each line is a record, and
 each field in the record is separated from the next by a comma. There
 are ways of dealing with fields that contain commas, but we won’t worry
 about that now.
This first example is much longer than it
 really needs to be. We will soon introduce more Parsec features that
 will shrink the parser down to only four lines!
-- file: ch16/csv1.hs
import Text.ParserCombinators.Parsec

{- A CSV file contains 0 or more lines, each of which is terminated
 by the end-of-line character (eol). -}
csvFile :: GenParser Char st [[String]]
csvFile =
 do result <- many line
 eof
 return result

-- Each line contains 1 or more cells, separated by a comma
line :: GenParser Char st [String]
line =
 do result <- cells
 eol -- end of line
 return result

-- Build up a list of cells. Try to parse the first cell, then figure out
-- what ends the cell.
cells :: GenParser Char st [String]
cells =
 do first <- cellContent
 next <- remainingCells
 return (first : next)

-- The cell either ends with a comma, indicating that 1 or more cells follow,
-- or it doesn't, indicating that we're at the end of the cells for this line
remainingCells :: GenParser Char st [String]
remainingCells =
 (char ',' >> cells) -- Found comma? More cells coming
 <|> (return []) -- No comma? Return [], no more cells

-- Each cell contains 0 or more characters, which must not be a comma or
-- EOL
cellContent :: GenParser Char st String
cellContent =
 many (noneOf ",\n")

-- The end of line character is \n
eol :: GenParser Char st Char
eol = char '\n'

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input
Let’s take a look at the code for this
 example. We didn’t use many shortcuts here, so remember that this will
 get shorter and simpler!
We’ve built it from the top down, so our
 first function is csvFile. The type
 of this function is GenParser Char st
 [[String]]. This means that the type of the input is a
 sequence of characters, which is exactly what a Haskell string is, since
 String is the same as [Char]. It also means that we will return a
 value of type [[String]]: a list of a
 list of strings. The st can be
 ignored for now.
Parsec programmers often omit type
 declarations, since we write so many small functions. Haskell’s type
 inference can figure it out. We’ve listed the types for the first
 example, here so you can get a better idea of what’s going on. You can
 always use :t in ghci to inspect types as well.
The csvFile uses a do block. As this implies, Parsec is a monadic
 library: it defines its own special parsing monad,[36] GenParser.
We start by running many line. many is a function that takes a function as an
 argument. It tries to repeatedly parse the input using the function
 passed to it. It gathers up the results from all that repeated parsing
 and returns a list of them. So, here, we are storing the results of
 parsing all lines in result. Then we
 look for the end-of-file indicator, called eof. Finally, we return the result. So, a CSV file is made up of many
 lines, and then the end of file. We can often read out Parsec functions
 in plain English just like this.
Now we must answer the question: what is a
 line? We define the line function to
 do just that. Reading the function, we can see that a line consists of
 cells followed by the end-of-line character.
So what are cells? We defined them in the
 cells function. The cells of a line
 start with the content of the first cell, and then continue with the
 content of the remaining cells, if any. The result is simply the first
 cell and the remaining cells assembled into a list.
Let’s skip over remainingCells for a minute and look at
 cellContent. A cell contains any
 number of characters, but each character must not be a comma or
 end-of-line character. The noneOf
 function matches one item, so long as it isn’t in the list of items that
 we pass. So, saying many (noneOf
 ",\n") defines a cell the way we want it.
Back in remainingCells, we have the first example of a
 choice in Parsec. The choice operator is <|>. This operator behaves like this: it
 will try the parser on the left, and if it consumes no input,[37] it will try the parser on the right.
So, in remainingCells, our task is to come up with
 all the cells after the first. Recall that cellContent uses noneOf ",\n". So it will not consume the comma
 or end-of-line character from the input. If we see a comma after parsing
 a cell, it means that at least one more cell follows. Otherwise, we’re
 done. So, our first choice in remainingCells is char ','. This parser simply matches the
 passed character in the input. If we find a comma, we want this function
 to return the remaining cells on the line. At this point, the “remaining
 cells” looks exactly like the start of the line, so we call cells recursively to parse them. If we don’t
 find a comma, we return the empty list, signifying no remaining cells on
 the line.
Finally, we must define what the
 end-of-line indicator is. We set it to char
 '\n', which will suit our purposes fine for now.
At the very end of the program, we define
 a function parseCSV that takes a
 String and parses it as a CSV file.
 This function is just a shortcut that calls Parsec’s parse function, filling in a few parameters.
 parse returns Either ParseError [[String]] for the CSV file.
 If there is an error, the return value will be Left with the error; otherwise, it will be
 Right with the result.
Now that we understand this code, let’s
 play with it a bit and see what it does:
ghci> :l csv1.hs
[1 of 1] Compiling Main (csv1.hs, interpreted)
Ok, modules loaded: Main.
ghci> parseCSV ""
Loading package parsec-2.1.0.1 ... linking ... done.
Right []
That makes sense—parsing the empty string
 returns an empty list. Let’s try parsing a single cell:
ghci> parseCSV "hi"
Left "(unknown)" (line 1, column 3):
unexpected end of input
expecting "," or "\n"

Look at that. Recall how we defined that
 each line must end with the end-of-line character, and we didn’t give
 it. Parsec’s error message helpfully indicated the line number and
 column number of the problem, and even told us what it was expecting!
 Let’s give it an end-of-line character and continue
 experimenting:
ghci> parseCSV "hi\n"
Right [["hi"]]
ghci> parseCSV "line1\nline2\nline3\n"
Right [["line1"],["line2"],["line3"]]
ghci> parseCSV "cell1,cell2,cell3\n"
Right [["cell1","cell2","cell3"]]
ghci> parseCSV "l1c1,l1c2\nl2c1,l2c2\n"
Right [["l1c1","l1c2"],["l2c1","l2c2"]]
ghci> parseCSV "Hi,\n\n,Hello\n"
Right [["Hi",""],[""],["","Hello"]]
You can see that parseCSV is doing exactly what we want it to
 do. It’s even handling empty cells and empty lines properly.

The sepBy and endBy Combinators

We promised you earlier that we could simplify our CSV
 parser significantly by using a few Parsec helper functions. There are
 two that will dramatically simplify this code.
The first tool is the sepBy function. This function takes two functions as arguments: the first
 parses some sort of content, while the second parses a separator.
 sepBy starts by trying to parse
 content, and then separators, and alternates back and forth until it
 can’t parse a separator. It returns a list of all the content that it
 was able to parse.
The second tool is endBy. It’s similar to sepBy, but
 expects the very last item to be followed by the separator. That is, it
 continues parsing until it can’t parse any more content.
So, we can use endBy to parse lines, since every line must
 end with the end-of-line character. We can use sepBy to parse cells, since the last cell will
 not end with a comma. Take a look at how much simpler our parser is
 now:
-- file: ch16/csv2.hs
import Text.ParserCombinators.Parsec

csvFile = endBy line eol
line = sepBy cell (char ',')
cell = many (noneOf ",\n")
eol = char '\n'

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input
This program behaves exactly the same as
 the first one. We can verify this by using ghci to rerun our examples from the earlier
 example. We’ll get the same result from every one. Yet the program is
 much shorter and more readable. It won’t be long before you can
 translate Parsec code such as this into a file format definition in
 plain English. As you read over this code, you can see that:
	A CSV file contains zero or more
 lines, each of which is terminated by the end-of-line
 character.

	A line contains one or more cells,
 separated by a comma.

	A cell contains zero or more
 characters, which must be neither the comma nor the end-of-line character.

	The end-of-line character is the
 newline, \n.

Choices and Errors

Different operating systems use different
 characters to mark the end of line. Unix/Linux systems,
 and Windows in text mode, use simply "\n". DOS and Windows systems use "\r\n", and Macs traditionally use "\r". We could add support for "\n\r" too, just in case
 anybody uses that.
We could easily adapt our example to be
 able to handle all these types of line endings in a single file. We
 would need to make two modifications: adjust eol to recognize the different endings, and
 adjust the noneOf pattern in cell to ignore \r.
This must be done carefully. Recall that
 our earlier definition of eol was
 simply char
 '\n'. There is a parser called string that we can use to match the
 multicharacter patterns. Let’s start by thinking of how we would add
 support for \n\r.
Our first attempt might look like
 this:
-- file: ch16/csv3.hs
-- This function is not correct!
eol = string "\n" <|> string "\n\r"
This isn’t quite right. Recall that the
 <|> operator always tries the left alternative first. Looking for the
 single character \n will match both
 types of line endings, so it will look to the system that the following
 line begins with \r. Not what we
 want. Try it in ghci:
ghci> :m Text.ParserCombinators.Parsec
ghci> let eol = string "\n" <|> string "\n\r"
Loading package parsec-2.1.0.1 ... linking ... done.
ghci> parse eol "" "\n"
Right "\n"
ghci> parse eol "" "\n\r"
Right "\n"
It may seem like the parser worked for
 both endings, but actually looking at it this way, we can’t tell. If it
 left something unparsed, we don’t know, because we’re not trying to
 consume anything else from the input. So let’s look for the end of file
 after our end of line:
ghci> parse (eol >> eof) "" "\n\r"
Left (line 2, column 1):
unexpected "\r"
expecting end of input
ghci> parse (eol >> eof) "" "\n"
Right ()
As expected, we got an error from the
 \n\r ending. So the next temptation
 may be to try it this way:
-- file: ch16/csv4.hs
-- This function is not correct!
eol = string "\n\r" <|> string "\n"
This also isn’t right. Recall that
 <|> attempts the option on the
 right only if the option on the left consumes no input. But by the time
 we are able to see if there is a \r
 after the \n, we’ve already consumed
 the \n. This time, we fail on the
 other case in ghci:
ghci> :m Text.ParserCombinators.Parsec
ghci> let eol = string "\n\r" <|> string "\n"
Loading package parsec-2.1.0.1 ... linking ... done.
ghci> parse (eol >> eof) "" "\n\r"
Right ()
ghci> parse (eol >> eof) "" "\n"
Left (line 1, column 1):
unexpected end of input
expecting "\n\r"
We’ve stumbled upon the lookahead problem.
 It turns out that, when writing parsers, it’s often very convenient to
 be able to “look ahead” at the data that’s coming in. Parsec supports this, but
 before showing you how to use it, let’s see how you would have to write
 this to get along without it. You’d have to manually expand all the
 options after the \n like
 this:
-- file: ch16/csv5.hs
eol =
 do char '\n'
 char '\r' <|> return '\n'
This function first looks for \n. If it finds it, then it will look for
 \r, consuming it if possible. Since
 the return type of char '\r' is a
 Char, the alternative action is to
 simply return a Char without
 attempting to parse anything. Parsec has a function option that can also express this idiom as
 option '\n' (char '\r'). Let’s test
 this with ghci:
ghci> :l csv5.hs
[1 of 1] Compiling Main (csv5.hs, interpreted)
Ok, modules loaded: Main.
ghci> parse (eol >> eof) "" "\n\r"
Loading package parsec-2.1.0.1 ... linking ... done.
Right ()
ghci> parse (eol >> eof) "" "\n"
Right ()
This time, we got the right result! But we
 could have done it easier with Parsec’s lookahead support.
Lookahead

Parsec has a function called try that is used to express lookaheads. try takes one function, a parser, and
 applies it. If the parser doesn’t succeed, try behaves as if it hadn’t consumed any
 input at all. So, when you use try
 on the left side of <|>,
 Parsec will try the option on the right even if the left side failed
 after consuming some input. try has
 an effect only if it is on the left of a <|>. Keep in mind, though, that many functions use <|> internally. Here’s a way to add
 expanded end-of-line support to our CSV parser using try:
-- file: ch16/csv6.hs
import Text.ParserCombinators.Parsec

csvFile = endBy line eol
line = sepBy cell (char ',')
cell = many (noneOf ",\n\r")

eol = try (string "\n\r")
 <|> try (string "\r\n")
 <|> string "\n"
 <|> string "\r"

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input
Here we put both of the two-character
 endings first, and run both tests under try. Both of them occur to the left of a
 <|>, so they will do the
 right thing. We could have put string
 "\n" within a try, but it
 wouldn’t have altered any behavior since they look at only one
 character anyway. We can load this up and test the eol function in
 ghci:
ghci> :l csv6.hs
[1 of 1] Compiling Main (csv6.hs, interpreted)
Ok, modules loaded: Main.
ghci> parse (eol >> eof) "" "\n\r"
Loading package parsec-2.1.0.1 ... linking ... done.
Right ()
ghci> parse (eol >> eof) "" "\n"
Right ()
ghci> parse (eol >> eof) "" "\r\n"
Right ()
ghci> parse (eol >> eof) "" "\r"
Right ()
All four endings were handled properly.
 You can also test the full CSV parser with some different endings like
 this:
ghci> parseCSV "line1\r\nline2\nline3\n\rline4\rline5\n"
Right [["line1"],["line2"],["line3"],["line4"],["line5"]]

As you can see, this program even
 supports different line endings within a single file.

Error Handling

At the beginning of this chapter, you saw how Parsec could
 generate error messages that list the location where the error
 occurred as well as what was expected. As parsers get more complex,
 the list of what was expected can become cumbersome. Parsec provides a
 way for you to specify custom error messages in the event of parse
 failures.
Let’s look at what happens when our
 current CSV parser encounters an error:
ghci> parseCSV "line1"
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting ",", "\n\r", "\r\n", "\n" or "\r"

That’s a pretty long, and technical,
 error message. We could make an attempt to resolve this using the
 monad fail function, like
 so:
-- file: ch16/csv7.hs
eol = try (string "\n\r")
 <|> try (string "\r\n")
 <|> string "\n"
 <|> string "\r"
 <|> fail "Couldn't find EOL"
Under ghci, we can see the result:
ghci> :l csv7.hs
[1 of 1] Compiling Main (csv7.hs, interpreted)
Ok, modules loaded: Main.
ghci> parseCSV "line1"
Loading package parsec-2.1.0.1 ... linking ... done.
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting ",", "\n\r", "\r\n", "\n" or "\r"
Couldn't find EOL
We added to the error result but didn’t
 really help clean up the output. Parsec has an <?> operator that is designed for just these situations. It is
 similar to <|> in that it
 first tries the parser on its left. Instead of trying another parser
 in the event of a failure, it presents an error message. Here’s how
 we’d use it:
-- file: ch16/csv8.hs
eol = try (string "\n\r")
 <|> try (string "\r\n")
 <|> string "\n"
 <|> string "\r"
 <?> "end of line"
Now, when you generate an error, you’ll
 get more helpful output:
ghci> :l csv8.hs
[1 of 1] Compiling Main (csv8.hs, interpreted)
Ok, modules loaded: Main.
ghci> parseCSV "line1"
Loading package parsec-2.1.0.1 ... linking ... done.
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting "," or end of line
That’s pretty helpful! The general rule
 of thumb is that you put a human description of what you’re looking
 for to the right of <?>.

Extended Example: Full CSV Parser

Our earlier CSV examples have had an
 important flaw—they weren’t able to handle cells that contain a comma.
 CSV generating programs typically put quotation marks around such data.
 But then you have another problem: what to do if a cell contains a
 quotation mark and a comma. In these cases, the embedded quotation marks
 are doubled up.
Here is a full CSV parser. You can use
 this from ghci, or if you compile it
 to a standalone program, it will parse a CSV file on standard input and
 convert it to a different format on output:
-- file: ch16/csv9.hs
import Text.ParserCombinators.Parsec

csvFile = endBy line eol
line = sepBy cell (char ',')
cell = quotedCell <|> many (noneOf ",\n\r")

quotedCell =
 do char '"'
 content <- many quotedChar
 char '"' <?> "quote at end of cell"
 return content

quotedChar =
 noneOf "\""
 <|> try (string "\"\"" >> return '"')

eol = try (string "\n\r")
 <|> try (string "\r\n")
 <|> string "\n"
 <|> string "\r"
 <?> "end of line"

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input

main =
 do c <- getContents
 case parse csvFile "(stdin)" c of
 Left e -> do putStrLn "Error parsing input:"
 print e
 Right r -> mapM_ print r
That’s a full-featured CSV parser in just
 21 lines of code, plus an additional 10 lines for the parseCSV and main utility functions.
Let’s look at the changes in this program
 from the previous versions. First, a cell may now be either a bare cell
 or a quoted cell. We give the quotedCell option first, because we want to
 follow that path if the first character in a cell is the quote
 mark.
The quotedCell begins and ends with a quote mark
 and contains zero or more characters. These characters can’t be copied
 directly, though, because they may contain embedded, doubled-up quote
 marks themselves, so we define a custom quotedChar to process them.
When we’re processing characters inside a
 quoted cell, we first say noneOf
 "\"". This will match and return any single character as long
 as it’s not the quote mark. Otherwise, if it is the quote mark, we see
 if we have two in a row. If so, we return a single quote mark to go on
 our result string.
Notice that try in quotedChar is on the
 right side of <|>. Recall that we said that try has an effect only if it is on the left
 side of <|>. This try does occur on the left side of a <|>, but on the
 left of one that must be within the implementation of many.
This try is important. Let’s say we are parsing a
 quoted cell and are getting towards the end of it. There will be another
 cell following. So we will expect to see a quote to end the current
 cell, followed by a comma. When we hit quotedChar, we will fail the noneOf test and proceed to the test that looks
 for two quotes in a row. We’ll also fail that one because we’ll have a
 quote, and then a comma. If we hadn’t used try, we’d crash with an error at this point,
 saying that it was expecting the second quote, because the first quote
 was already consumed. Since we use try, this is properly recognized as not part
 of the cell, so it terminates the many
 quotedChar expression as expected. Lookahead has once again
 proven very useful, and the fact that it is so easy to add makes it a
 remarkable tool in Parsec.
We can test this program with ghci over some quoted cells:
ghci> :l csv9.hs
[1 of 1] Compiling Main (csv9.hs, interpreted)
Ok, modules loaded: Main.
ghci> parseCSV "\"This, is, one, big, cell\"\n"
Loading package parsec-2.1.0.1 ... linking ... done.
Right [["This, is, one, big, cell"]]
ghci> parseCSV "\"Cell without an end\n"
Left "(unknown)" (line 2, column 1):
unexpected end of input
expecting "\"\"" or quote at end of cell
Let’s run it over a real CSV file. Here’s
 one generated by a spreadsheet program:
"Product","Price"
"O'Reilly Socks",10
"Shirt with ""Haskell"" text",20
"Shirt, ""O'Reilly"" version",20
"Haskell Caps",15
Now, we can run this under our test
 program and watch:
$ runhaskell csv9.hs < test.csv
["Product","Price"]
["O'Reilly Socks","10"]
["Shirt with \"Haskell\" text","20"]
["Shirt, \"O'Reilly\" version","20"]
["Haskell Caps","15"]

Parsec and MonadPlus

Parsec’s GenParser
 monad is an instance of the MonadPlus typeclass
 that we introduced in Looking for Alternatives. The value
 mzero represents a parse failure, while mplus combines two alternative parses into
 one, using (<|>):
-- file: ch16/ParsecPlus.hs
instance MonadPlus (GenParser tok st) where
 mzero = fail "mzero"
 mplus = (<|>)

Parsing a URL-Encoded Query String

When we introduced application/x-www-form-urlencoded
 text in Golfing Practice: Association Lists, we mentioned that we’d
 write a parser for these strings. We can quickly and easily do this
 using Parsec.
Each key-value pair is separated by the & character:
-- file: ch16/FormParse.hs
p_query :: CharParser () [(String, Maybe String)]
p_query = p_pair `sepBy` char '&'
Notice that in the type signature, we’re
 using Maybe to represent a value: the HTTP specification is
 unclear about whether a key must have an associated
 value, and we’d like to be able to distinguish between “no
 value” and “empty value”:
-- file: ch16/FormParse.hs
p_pair :: CharParser () (String, Maybe String)
p_pair = do
 name <- many1 p_char
 value <- optionMaybe (char '=' >> many p_char)
 return (name, value)
The many1 function is similar to many: it applies its parser repeatedly,
 returning a list of results. While many will succeed and return an empty list if
 its parser never succeeds, many1
 will fail if its parser never succeeds and will otherwise return a list
 of at least one element.
The optionMaybe function modifies the behavior of
 a parser. If the parser fails, optionMaybe doesn’t: it returns
 Nothing. Otherwise, it wraps the parser’s successful result
 with Just. This gives us the ability to distinguish between
 “no value” and “empty value,” as we mentioned
 earlier.
Individual characters can be encoded in
 one of several ways:
-- file: ch16/FormParse.hs
p_char :: CharParser () Char
p_char = oneOf urlBaseChars
 <|> (char '+' >> return ' ')
 <|> p_hex

urlBaseChars = ['a'..'z']++['A'..'Z']++['0'..'9']++"$-_.!*'(),"

p_hex :: CharParser () Char
p_hex = do
 char '%'
 a <- hexDigit
 b <- hexDigit
 let ((d, _):_) = readHex [a,b]
 return . toEnum $ d
Some characters can be represented
 literally. Spaces are treated specially, using a +
 character. Other characters must be encoded as a %
 character followed by two hexadecimal digits. The Numeric
 module’s readHex parses a hex
 string as a number:
ghci> parseTest p_query "foo=bar&a%21=b+c"
Loading package parsec-2.1.0.1 ... linking ... done.
[("foo",Just "bar"),("a!",Just "b c")]

As appealing and readable as this parser
 is, we can profit from stepping back and taking another look at some of
 our building blocks.

Supplanting Regular Expressions for Casual Parsing

In many popular languages, people tend to put regular expressions
 to work for “casual” parsing. They’re notoriously tricky
 for this purpose: hard to write, difficult to debug, nearly
 incomprehensible after a few months of neglect, and they provide no
 error messages on failure.
If we can write compact Parsec parsers,
 we’ll gain in readability, expressiveness, and error reporting. Our
 parsers won’t be as short as regular expressions, but they’ll be close
 enough to negate much of the temptation of regexps.

Parsing Without Variables

A few of our parsers just shown use
 do notation and bind the result of an
 intermediate parse to a variable for later use. One such function is
 p_pair:
-- file: ch16/FormParse.hs
p_pair :: CharParser () (String, Maybe String)
p_pair = do
 name <- many1 p_char
 value <- optionMaybe (char '=' >> many p_char)
 return (name, value)
We can get rid of the need for explicit
 variables by using the liftM2
 combinator from Control.Monad:
-- file: ch16/FormParse.hs
p_pair_app1 =
 liftM2 (,) (many1 p_char) (optionMaybe (char '=' >> many p_char))
This parser has exactly the same type and
 behavior as p_pair, but it’s one
 line long. Instead of writing our parser in a “procedural”
 style, we’ve simply switched to a programming style that emphasizes that
 we’re applying parsers and
 combining their results.
We can take this applicative style of
 writing a parser much further. In most cases, the extra compactness that
 we will gain will not come at any cost in
 readability, beyond the initial effort of coming to grips with the
 idea.

Applicative Functors for Parsing

The standard Haskell libraries include a module named
 Control.Applicative, which we already encountered in Infix Use of fmap. This module defines a typeclass named
 Applicative, which represents an applicative functor. This is a
 little bit more structured than a functor, but a little bit less than a
 monad. It also defines Alternative, which is similar to
 MonadPlus.
As usual, we think that the best way to
 introduce applicative functors is to put them to work. In theory, every
 monad is an applicative functor, but not every applicative functor is a
 monad. Because applicative functors were added to the standard Haskell
 libraries long after monads, we often don’t get an
 Applicative instance for free; frequently, we have to
 declare the monad we’re using to be Applicative or
 Alternative.
To do this for Parsec, we’ll
 write a small module that we can import instead of the normal
 Parsec module:
-- file: ch16/ApplicativeParsec.hs
module ApplicativeParsec
 (
 module Control.Applicative
 , module Text.ParserCombinators.Parsec
) where

import Control.Applicative
import Control.Monad (MonadPlus(..), ap)
-- Hide a few names that are provided by Applicative.
import Text.ParserCombinators.Parsec hiding (many, optional, (<|>))

-- The Applicative instance for every Monad looks like this.
instance Applicative (GenParser s a) where
 pure = return
 (<*>) = ap

-- The Alternative instance for every MonadPlus looks like this.
instance Alternative (GenParser s a) where
 empty = mzero
 (<|>) = mplus
For convenience, our module’s export
 section exports all the names we imported from both the
 Applicative and Parsec modules. Because we hid
 Parsec’s version of (<|>)
 when importing, the one that will be exported is from
 Control.Applicative—as we would like.

Applicative Parsing by Example

We’ll start by rewriting our existing form
 parser from the bottom up, beginning with p_hex, which parses a hexadecimal escape
 sequence. Here’s the code in normal do-notation style:
-- file: ch16/FormApp.hs
p_hex :: CharParser () Char
p_hex = do
 char '%'
 a <- hexDigit
 b <- hexDigit
 let ((d, _):_) = readHex [a,b]
 return . toEnum $ d
And here’s our applicative version:
-- file: ch16/FormApp.hs
a_hex = hexify <$> (char '%' *> hexDigit) <*> hexDigit
 where hexify a b = toEnum . fst . head . readHex $ [a,b]
Although the individual parsers are mostly
 untouched, the combinators that we’re gluing them together with have
 changed. The only familiar one is (<$>), which we already know is a synonym for fmap.
From our definition of
 Applicative, we know that (<*>) is ap.
The remaining unfamiliar combinator is
 (*>), which applies its first argument, throws away its result, and then
 applies the second and returns its result. In other words, it’s
 similar to (>>).
A handy tip about angle brackets
Before we continue, here’s a useful aid
 for remembering what all the angle brackets are for in the combinators
 from Control.Applicative: if there’s an angle bracket
 pointing to a side, the result from that side should be used.
For example, (*>) returns the result on its right;
 (<*>) returns results from
 both sides; and (<*)—which we
 have not seen yet—returns the result on its left.

Although the concepts here should mostly
 be familiar from our earlier coverage of functors and monads, we’ll walk
 through this function to explain what’s happening. First, to get a grip
 on our types, we’ll hoist hexify to
 the top level and give it a signature:
-- file: ch16/FormApp.hs
hexify :: Char -> Char -> Char
hexify a b = toEnum . fst . head . readHex $ [a,b]
Parsec’s hexDigit parser parses a single hexadecimal
 digit:
ghci> :type hexDigit
hexDigit :: CharParser st Char

Therefore, char '%' *>
 hexDigit has the same type, since (*>) returns the result on its right. (The
 CharParser type is nothing more than a synonym for
 GenParser Char.)
ghci> :type char '%' *> hexDigit
char '%' *> hexDigit :: GenParser Char st Char

The expression hexify <$>
 (char '%' *> hexDigit) is a parser that matches a % character followed by hexDigit,
 and whose result is a function:
ghci> :type hexify <$> (char '%' *> hexDigit)
hexify <$> (char '%' *> hexDigit) :: GenParser Char st (Char -> Char)

Finally, (<*>) applies the parser on its left,
 and then the parser on its right, and then applies the function that’s
 the result of the left parse to the value that’s the result of the
 right.
If you’ve been able to follow this, you
 understand the (<*>) and
 ap combinators—(<*>) is plain old ($) lifted to applicative functors, and
 ap is the same thing lifted to
 monads:
ghci> :type ($)
($) :: (a -> b) -> a -> b
ghci> :type (<*>)
(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b
ghci> :type ap
ap :: (Monad m) => m (a -> b) -> m a -> m b
Next, we’ll consider the p_char parser:
-- file: ch16/FormApp.hs
p_char :: CharParser () Char
p_char = oneOf urlBaseChars
 <|> (char '+' >> return ' ')
 <|> p_hex

urlBaseChars = ['a'..'z']++['A'..'Z']++['0'..'9']++"$-_.!*'(),"
This remains almost the same in an
 applicative style, save for one piece of convenient notation:
-- file: ch16/FormApp.hs
a_char = oneOf urlBaseChars
 <|> (' ' <$ char '+')
 <|> a_hex
Here, the (<$) combinator uses the value on the left
 if the parser on the right succeeds.
Finally, the equivalent of p_pair_app1 is almost identical:
-- file: ch16/FormParse.hs
p_pair_app1 =
 liftM2 (,) (many1 p_char) (optionMaybe (char '=' >> many p_char))
All we’ve changed is the combinator we use
 for lifting—the liftA functions act
 in the same way as their liftM
 cousins:
-- file: ch16/FormApp.hs
a_pair :: CharParser () (String, Maybe String)
a_pair = liftA2 (,) (many1 a_char) (optionMaybe (char '=' *> many a_char))

Parsing JSON Data

To give ourselves a better feel for parsing with applicative functors, and
 to explore a few more corners of Parsec, we’ll write a JSON parser that
 follows the definition in RFC 4627.
At the top level, a JSON value must be
 either an object or an array:
-- file: ch16/JSONParsec.hs
p_text :: CharParser () JValue
p_text = spaces *> text
 <?> "JSON text"
 where text = JObject <$> p_object
 <|> JArray <$> p_array
These are structurally similar, with an
 opening character, followed by one or more items separated by commas,
 followed by a closing character. We capture this similarity by writing a
 small helper function:
-- file: ch16/JSONParsec.hs
p_series :: Char -> CharParser () a -> Char -> CharParser () [a]
p_series left parser right =
 between (char left <* spaces) (char right) $
 (parser <* spaces) `sepBy` (char ',' <* spaces)
Here, we finally have a use for the
 (<*) combinator that we introduced earlier. We use it to skip over any
 whitespace that might follow certain tokens. With this p_series function, parsing an array is
 simple:
-- file: ch16/JSONParsec.hs
p_array :: CharParser () (JAry JValue)
p_array = JAry <$> p_series '[' p_value ']'
Dealing with a JSON object is hardly more
 complicated, requiring just a little additional effort to produce a
 name/value pair for each of the object’s fields:
-- file: ch16/JSONParsec.hs
p_object :: CharParser () (JObj JValue)
p_object = JObj <$> p_series '{' p_field '}'
 where p_field = (,) <$> (p_string <* char ':' <* spaces) <*> p_value
Parsing an individual value is a matter of
 calling an existing parser, and then wrapping its result with the
 appropriate JValue constructor:
-- file: ch16/JSONParsec.hs
p_value :: CharParser () JValue
p_value = value <* spaces
 where value = JString <$> p_string
 <|> JNumber <$> p_number
 <|> JObject <$> p_object
 <|> JArray <$> p_array
 <|> JBool <$> p_bool
 <|> JNull <$ string "null"
 <?> "JSON value"

p_bool :: CharParser () Bool
p_bool = True <$ string "true"
 <|> False <$ string "false"
The choice combinator allows us to represent this
 kind of ladder-of-alternatives as a list. It returns the result of the
 first parser to succeed:
-- file: ch16/JSONParsec.hs
p_value_choice = value <* spaces
 where value = choice [JString <$> p_string
 , JNumber <$> p_number
 , JObject <$> p_object
 , JArray <$> p_array
 , JBool <$> p_bool
 , JNull <$ string "null"
]
 <?> "JSON value"
This leads us to the two most interesting
 parsers, for numbers and strings. We’ll deal with numbers first, since
 they’re simpler:
-- file: ch16/JSONParsec.hs
p_number :: CharParser () Double
p_number = do s <- getInput
 case readSigned readFloat s of
 [(n, s')] -> n <$ setInput s'
 _ -> empty
Our trick here is to take advantage of
 Haskell’s standard number parsing library functions, which are defined
 in the Numeric module. The readFloat function reads an unsigned
 floating-point number; readSigned
 takes a parser for an unsigned number and turns it into a parser for
 possibly signed numbers.
Since these functions know nothing about
 Parsec, we have to work with them specially. Parsec’s getInput function gives us direct access to
 Parsec’s unconsumed input stream. If readSigned readFloat
 succeeds, it returns both the parsed number and the rest of the unparsed
 input. We then use setInput to give
 this back to Parsec as its new unconsumed input stream.
Parsing a string isn’t difficult, merely
 detailed:
-- file: ch16/JSONParsec.hs
p_string :: CharParser () String
p_string = between (char '\"') (char '\"') (many jchar)
 where jchar = char '\\' *> (p_escape <|> p_unicode)
 <|> satisfy (`notElem` "\"\\")
We can parse and decode an escape sequence
 with the help of the choice
 combinator that we just met:
-- file: ch16/JSONParsec.hs
p_escape = choice (zipWith decode "bnfrt\\\"/" "\b\n\f\r\t\\\"/")
 where decode c r = r <$ char c
Finally, JSON lets us encode a Unicode
 character in a string as \u, followed
 by four hexadecimal digits:
-- file: ch16/JSONParsec.hs
p_unicode :: CharParser () Char
p_unicode = char 'u' *> (decode <$> count 4 hexDigit)
 where decode x = toEnum code
 where ((code,_):_) = readHex x
The only piece of functionality that
 applicative functors are missing, compared to monads, is the ability to
 bind a value to a variable, which we need here in order to be able to
 validate the value we’re trying to decode.
This is the one place in our parser that
 we’ve needed to use a monadic function. This pattern extends to more
 complicated parsers, too—only infrequently do we need the extra bit of
 power that monads offer.
As of this writing, applicative functors
 are still quite new to Haskell, and people are only beginning to explore
 the possible uses for them beyond the realm of parsing.

Parsing a HTTP Request

As another example of applicative parsing, we will develop a
 basic parser for HTTP requests:
-- file: ch16/HttpRequestParser.hs
module HttpRequestParser
 (
 HttpRequest(..)
 , Method(..)
 , p_request
 , p_query
) where

import ApplicativeParsec
import Numeric (readHex)
import Control.Monad (liftM4)
import System.IO (Handle)
An HTTP request consists of a method, an
 identifier, a series of headers, and an optional body. For simplicity,
 we’ll focus on just two of the six method types specified by the HTTP
 1.1 standard. A POST method has a body; a GET has none:
-- file: ch16/HttpRequestParser.hs
data Method = Get | Post
 deriving (Eq, Ord, Show)

data HttpRequest = HttpRequest {
 reqMethod :: Method
 , reqURL :: String
 , reqHeaders :: [(String, String)]
 , reqBody :: Maybe String
 } deriving (Eq, Show)
Because we’re writing in an applicative
 style, our parser can be both brief and readable. Readable, that is, if
 you’re becoming used to the applicative parsing notation:
-- file: ch16/HttpRequestParser.hs
p_request :: CharParser () HttpRequest
p_request = q "GET" Get (pure Nothing)
 <|> q "POST" Post (Just <$> many anyChar)
 where q name ctor body = liftM4 HttpRequest req url p_headers body
 where req = ctor <$ string name <* char ' '
 url = optional (char '/') *>
 manyTill notEOL (try $ string " HTTP/1." <* oneOf "01")
 <* crlf
Briefly, the q helper function accepts a method name, the
 type constructor to apply to it, and a parser for a request’s optional
 body. The url helper does not
 attempt to validate a URL, because the HTTP specification does not state
 what characters a URL contain. The function just consumes input until
 either the line ends or it reaches an HTTP version identifier.
Backtracking and Its Discontents

The try combinator has to hold onto input in case it needs to restore it
 so that an alternative parser can be used. This practice is referred
 to as backtracking. Because try must save input, it is expensive to
 use. Sprinkling a parser with unnecessary uses of try is a very effective way to slow it
 down, sometimes to the point of unacceptable performance.
The standard way to avoid the need for
 backtracking is to tidy up a parser so that we can decide whether it
 will succeed or fail using only a single token of input. In this case,
 the two parsers consume the same initial tokens, so we turn them into
 a single parser:
ghci> let parser = (++) <$> string "HT" <*> (string "TP" <|> string "ML")
ghci> parseTest parser "HTTP"
"HTTP"
ghci> parseTest parser "HTML"
"HTML"
Even better, Parsec gives us an improved
 error message if we feed it nonmatching input:
ghci> parseTest parser "HTXY"
parse error at (line 1, column 3):
unexpected "X"
expecting "TP" or "ML"

Parsing Headers

Following the first line of a HTTP
 request is a series of zero or more headers. A header begins
 with a field name, followed by a colon, followed by the content. If
 the lines that follow begin with spaces, they are treated as
 continuations of the current content:
-- file: ch16/HttpRequestParser.hs
p_headers :: CharParser st [(String, String)]
p_headers = header `manyTill` crlf
 where header = liftA2 (,) fieldName (char ':' *> spaces *> contents)
 contents = liftA2 (++) (many1 notEOL <* crlf)
 (continuation <|> pure [])
 continuation = liftA2 (:) (' ' <$ many1 (oneOf " \t")) contents
 fieldName = (:) <$> letter <*> many fieldChar
 fieldChar = letter <|> digit <|> oneOf "-_"

crlf :: CharParser st ()
crlf = (() <$ string "\r\n") <|> (() <$ newline)

notEOL :: CharParser st Char
notEOL = noneOf "\r\n"
Exercises
	Our HTTP request parser is too simple to be useful in real
 deployments. It is missing vital functionality and is not
 resistant to even the most basic denial-of-service
 attacks.
Make the parser honor the Content-Length
 field properly, if it is present.

	A popular denial-of-service attack against naive web
 servers is simply to send unreasonably long headers. A single
 header might contain 10s or 100s of megabytes of garbage text,
 causing a server to run out of memory.
Restructure the header parser so that it will fail if any
 line is longer than 4,096 characters. It must fail immediately
 when this occurs; it cannot wait until the end of a line
 eventually shows up.

	Add the ability to honor the Transfer-Encoding:
 chunked header if it is present. See section
 3.6.1 of RFC 2616 for details.

	Another popular attack is to open a connection and either
 leave it idle or send data extremely slowly.
Write a wrapper in the IO monad that will
 invoke the parser. Use the System.Timeout module to close the
 connection if the parser does not complete within 30 seconds.

[36] For more on monads, refer to Chapter 14.

[37] For information on dealing with
 choices that may consume some input before failing, see Lookahead.

Chapter 17. Interfacing with C: The FFI

Programming languages do not exist in perfect isolation. They inhabit
 an ecosystem of tools and libraries, built up over decades, and often
 written in a range of programming languages. Good engineering practice
 suggests we reuse that effort. The Haskell Foreign Function Interface
 (the FFI) is the means by which Haskell code can use, and be used by, code
 written in other languages. In this chapter, we’ll look at how the FFI
 works and how to produce a Haskell binding to a C library, including how
 to use an FFI preprocessor to automate much of the work. The challenge:
 take PCRE, the standard Perl-compatible regular expression
 library, and make it usable from Haskell in an efficient and
 functional way. Throughout, we’ll seek to abstract out manual effort
 required by the C implementation, delegating that work to Haskell to make
 the interface more robust, yielding a clean, high-level binding. We assume
 only some basic familiarity with regular expressions.
Binding one language to another is a
 nontrivial task. The binding language needs to understand the calling
 conventions, type system, data structures, memory allocation mechanisms,
 and linking strategy of the target language, just to get things working.
 The task is to carefully align the semantics of both languages so that
 both can understand the data that passes between them.
For Haskell, this technology stack is
 specified by FFI to the
 Haskell report. The FFI report describes how to correctly bind Haskell and
 C together and how to extend bindings to other languages. The standard is
 designed to be portable so that FFI bindings will work reliably across
 Haskell implementations, operating
 systems, and C compilers.
All implementations of Haskell support the
 FFI, and it is a key technology when using Haskell in a new field. Instead
 of reimplementing the standard libraries in a domain, we just bind to
 existing ones written in languages other than Haskell.
The FFI adds a new dimension of flexibility
 to the language: if we need to access raw hardware for some reason (say
 we’re programming new hardware or implementing an operating system), the
 FFI lets us get access to that hardware. It also gives us a performance
 escape hatch: if we can’t get a code hot spot fast enough, there’s always
 the option of trying again in C. So let’s look at what the FFI actually
 means for writing code.
Foreign Language Bindings: The Basics

The most common operation we’ll want to
 do, unsurprisingly, is call a C function from Haskell. So let’s do that,
 by binding to some functions from the standard C math library. We’ll put
 the binding in a source file, and then compile it into a Haskell binary
 that makes use of the C code.
To start with, we need to enable the FFI
 extension, as the FFI addendum support isn’t enabled by default. We do
 this, as always, via a LANGUAGE pragma at the top of our
 source file:
-- file: ch17/SimpleFFI.hs
{-# LANGUAGE ForeignFunctionInterface #-}
The LANGUAGE pragmas
 indicate which extensions to Haskell 98 a module uses. We bring just the FFI extension in play
 this time. It is important to track which extensions to the language you
 need. Fewer extensions generally means more portable, more robust code.
 Indeed, it is common for Haskell programs written more than a decade ago
 to compile perfectly well today, thanks to standardization, despite
 changes to the language’s syntax, type system, and core
 libraries.
The next step is to import the Foreign modules, which provide
 useful types (such as pointers, numerical types, and arrays) and utility
 functions (such as malloc and alloca)
 for writing bindings to other languages:
-- file: ch17/SimpleFFI.hs
import Foreign
import Foreign.C.Types
For extensive work with foreign
 libraries, a good knowledge of the Foreign module is
 essential. Other useful modules include Foreign.C.String,
 Foreign.Ptr, and Foreign.Marshal.Array.
Now we can get down to work calling C
 functions. To do this, we need to know three things: the name of the C
 function, its type, and its associated header file. Additionally, for
 code that isn’t provided by the standard C library, we’ll need to know
 the C library’s name for linking purposes. The actual binding work is
 done with a foreign import declaration, like
 so:
-- file: ch17/SimpleFFI.hs
foreign import ccall "math.h sin"
 c_sin :: CDouble -> CDouble
This defines a new Haskell function,
 c_sin, whose concrete implementation is in C, via the sin
 function. When c_sin is called, a call to the actual
 sin will be made (using the standard C calling convention,
 indicated by ccall). The Haskell runtime passes control to C, which returns
 its results back to Haskell. The result is then wrapped up as a Haskell
 value of type CDouble.
A common idiom when writing FFI bindings
 is to expose the C function with the prefix c_, distinguishing it from more user-friendly,
 higher-level functions. The raw C function is specified by the
 math.h header, where it is declared to have the
 type:
double sin(double x);
When writing the binding, the programmer
 has to translate C type signatures such as this into their Haskell FFI
 equivalents, making sure that the data representations match up. For
 example, double in C corresponds to CDouble in
 Haskell. We need to be careful here, since if a mistake is made, the
 Haskell compiler will happily generate incorrect code to call C! The
 poor Haskell compiler doesn’t know anything about what types the C
 function actually requires, so if instructed to, it will call the C
 function with the wrong arguments. At best this will lead to C compiler
 warnings, and more likely, it will end with a runtime crash. At worst
 the error will silently go unnoticed until some critical failure occurs.
 So make sure you use the correct FFI types, and don’t be wary of using
 QuickCheck to test your C code via the bindings.[38]
The most important primitive C types are
 represented in Haskell with the somewhat intuitive names (for signed and
 unsigned types) CChar, CUChar,
 CInt, CUInt, CLong,
 CULong, CSize, CFloat, and
 CDouble. More are defined in the FFI standard and can be
 found in the Haskell base library under Foreign.C.Types. It
 is also possible to define your own Haskell-side representation types
 for C, as we’ll see later.
Be Careful of Side Effects

One point to note is that we bound
 sin as a pure function in Haskell, one with no side effects. That’s fine in
 this case, since the sin function in C is referentially
 transparent. By binding pure C functions to pure Haskell functions,
 the Haskell compiler is taught something about the C code—namely, that
 it has no side effects, making optimizations easier. Pure code is also
 more flexible for the Haskell programmer, as it yields naturally
 persistent data structures and threadsafe functions. However, while
 pure Haskell code is always threadsafe, this is harder to guarantee of
 C. Even if the documentation indicates the function is likely to
 expose no side effects, there’s little to ensure it is also
 threadsafe, unless explicitly documented as “reentrant.” Pure,
 threadsafe C code, while rare, is a valuable commodity. It is the
 easiest flavor of C to use from Haskell.
Of course, code with side effects is
 more common in imperative languages, where the explicit sequencing of
 statements encourages the use of effects. It is much more common in C
 for functions to return different values, given the same arguments,
 due to changes in global or local state, or to have other side
 effects. Typically, this is signalled in C by the function returning
 only a status value or some void type, rather than a useful result
 value. This indicates that the real work of the function was in its
 side effects. For such functions, we’ll need to capture those side
 effects in the IO monad (by changing the return type to IO
 CDouble, for example). We also need to be very careful with
 pure C functions that aren’t also reentrant, as multiple threads are
 extremely common in Haskell code, in comparison to C. We might need to
 moderate access to the FFI binding with a transactional lock, or by
 duplicating the underlying C state to make nonreentrant code safe for
 use.

A High-Level Wrapper

With the foreign imports out of the way, the next step is to
 convert the C types we pass to and receive from the foreign language
 call into native Haskell types, wrapping the binding so that it appears
 as a normal Haskell function:
-- file: ch17/SimpleFFI.hs
fastsin :: Double -> Double
fastsin x = realToFrac (c_sin (realToFrac x))
The main thing to remember when writing
 convenient wrappers over bindings such as this is to correctly convert
 input and output back to normal Haskell types. To convert between
 floating-point values, we can use realToFrac, which lets us translate
 different floating-point values to each other (and these conversions,
 such as from CDouble to Double, are usually
 free, as the underlying representations are unchanged). For integer
 values, fromIntegral is available. For
 other common C data types, such as arrays, we may need to unpack the
 data to a more workable Haskell type (such as a list), or possibly
 leave the C data opaque and operate on it indirectly only (perhaps via
 a ByteString). The choice depends on how costly the
 transformation is and the functions that are available on the source
 and destination types.
We can now proceed to use the bound
 function in a program. For example, we can apply the C
 sin function to a Haskell list of 10ths:
-- file: ch17/SimpleFFI.hs
main = mapM_ (print . fastsin) [0/10, 1/10 .. 10/10]
This simple program prints each result
 as it is computed. Putting the complete binding in the file SimpleFFI.hs allows us to run it in
 ghci:
$ ghci SimpleFFI.hs
*Main> main
0.0
9.983341664682815e-2
0.19866933079506122
0.2955202066613396
0.3894183423086505
0.479425538604203
0.5646424733950354
0.644217687237691
0.7173560908995227
0.7833269096274833
0.8414709848078964
Alternatively, we can compile the code
 to an executable, dynamically linked against the corresponding C
 library:
$ ghc -O --make SimpleFFI.hs
[1 of 1] Compiling Main (SimpleFFI.hs, SimpleFFI.o)
Linking SimpleFFI ...

and then run that:
$./SimpleFFI
0.0
9.983341664682815e-2
0.19866933079506122
0.2955202066613396
0.3894183423086505
0.479425538604203
0.5646424733950354
0.644217687237691
0.7173560908995227
0.7833269096274833
0.8414709848078964
We’re well on our way now, with a full
 program, statically linked against C, which interleaves C and Haskell
 code and passes data across the language boundary. Simple bindings
 such as the one just shown are almost trivial, as the standard
 Foreign library provides convenient aliases for common
 types such as CDouble. In the next section, we’ll look at
 a larger engineering task: binding to the PCRE library, which brings
 up issues of memory management and type safety.

Regular Expressions for Haskell: A Binding for PCRE

As we’ve seen in previous sections, Haskell programs have
 something of a bias towards lists as a foundational data structure. List
 functions are a core part of the base library, and convenient syntax for
 constructing and taking apart list structures is wired into the
 language. Strings are, of course, simply lists of characters (rather
 than, for example, flat arrays of characters). This flexibility is all
 well and good, but it results in a tendency for the standard library to
 favor polymorphic list operations at the expense of string-specific operations.
Indeed, many common tasks can be solved
 via regular-expression-based string processing, yet support for regular
 expressions isn’t part of the Haskell Prelude. So let’s look at how we’d take an
 off-the-shelf regular expression library, PCRE, and provide a natural,
 convenient Haskell binding to it, giving us useful regular expressions
 for Haskell.
PCRE itself is a ubiquitous C library
 implementing Perl-style regular expressions. It is widely available and
 preinstalled on many systems. You can find it at http://www.pcre.org/. In the following sections, we’ll
 assume the PCRE library and headers are available on the machine.
Simple Tasks: Using the C Preprocessor

The simplest task when setting out to write a new FFI binding from Haskell
 to C is to bind constants defined in C headers to equivalent Haskell values. For example, PCRE
 provides a set of flags for modifying how the core pattern matching
 system works (such as ignoring case or allowing matching on newlines).
 These flags appear as numeric constants in the PCRE header
 files:
/* Options */

#define PCRE_CASELESS 0x00000001
#define PCRE_MULTILINE 0x00000002
#define PCRE_DOTALL 0x00000004
#define PCRE_EXTENDED 0x00000008
To export these values to Haskell, we
 need to insert them into a Haskell source file somehow. One obvious
 way to do this is by using the C preprocessor to substitute
 definitions from C into the Haskell source, which we then compile as a
 normal Haskell source file. Using the preprocessor, we can even
 declare simple constants, via textual substitutions on the Haskell
 source file:
-- file: ch17/Enum1.hs
{-# LANGUAGE CPP #-}

#define N 16

main = print [1 .. N]
The file is processed with the
 preprocessor in a similar manner to C source (with CPP run for us by the Haskell compiler, when it
 spots the LANGUAGE pragma), resulting in program
 output:
$ runhaskell Enum.hs
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

However, relying on CPP is a rather
 fragile approach. The C preprocessor isn’t aware it is processing a
 Haskell source file and will happily include text, or transform
 source, in such a way as to make our Haskell code invalid. We need to
 be careful not to confuse CPP. If we were to include C headers, we
 risk substituting unwanted symbols, or inserting C type information
 and prototypes into the Haskell source, resulting in a broken
 mess.
To solve these problems, the binding
 preprocessor hsc2hs is distributed with GHC. It provides
 a convenient syntax for including C binding information in Haskell, as
 well as letting us safely operate with headers. It is the tool of
 choice for the majority of Haskell FFI bindings.

Binding Haskell to C with hsc2hs

To use hsc2hs as an intelligent binding tool for Haskell, we need to
 create an .hsc file, Regex.hsc, which will hold the Haskell
 source for our binding, along with hsc2hs processing
 rules, C headers, and C type information. To start off, we need some
 pragmas and imports:
-- file: ch17/Regex-hsc.hs
{-# LANGUAGE CPP, ForeignFunctionInterface #-}

module Regex where

import Foreign
import Foreign.C.Types

#include <pcre.h>
The module begins with a typical
 preamble for an FFI binding: enable CPP, enable the FFI syntax,
 declare a module name, and then import some things from the base
 library. The unusual item is the final line, where we include the C
 header for PCRE. This wouldn’t be valid in a .hs source file, but is fine in .hsc code.

Adding Type Safety to PCRE

Next we need a type to represent PCRE compile-time flags. In C, these
 are integer flags to the compile function, so we could
 just use CInt to represent them. All we know about the
 flags is that they’re C numeric constants, so CInt is the
 appropriate representation.
As a Haskell library writer though,
 this feels sloppy. The type of values that can be used as regex flags
 contains fewer values than CInt allows for. Nothing would
 prevent the end user from passing illegal integer values as arguments,
 or mixing up flags that should be passed only at regex compile time,
 with runtime flags. It is also possible to do arbitrary math on flags
 or to make other mistakes where integers and flags are confused. We
 really need to more precisely specify that the type of flags is
 distinct from its runtime representation as a numeric value. If we can
 do this, we can statically prevent a class of bugs relating to misuse
 of flags.
Adding such a layer of type safety is
 relatively easy, and a great use case for newtype, the
 type introduction declaration. newtype lets us create a
 type with an identical runtime representation type to another type,
 but which is treated as a separate type at compile time. We can
 represent flags as CInt values, but at compile time they’ll
 be tagged distinctly for the type checker. This makes it a type error
 to use invalid flag values (as we specify only those valid flags and
 prevent access to the data constructor), or to pass flags to functions
 expecting integers. We get to use the Haskell type system to introduce
 a layer of type safety to the C PCRE API.
To do this, we define a
 newtype for PCRE compile-time options, whose
 representation is actually that of a CInt value, like
 so:
-- file: ch17/Regex-hsc.hs
-- | A type for PCRE compile-time options. These are newtyped CInts,
-- which can be bitwise-or'd together, using '(Data.Bits..|.)'
--
newtype PCREOption = PCREOption { unPCREOption :: CInt }
 deriving (Eq,Show)
The type name is
 PCREOption, and it has a single constructor, also named
 PCREOption, which lifts a CInt value into a
 new type by wrapping it in a constructor. We can also happily define
 an accessor, unPCREOption, using the Haskell record
 syntax to access the underlying
 CInt. That’s a lot of convenience in one line. While
 we’re here, we can also derive some useful typeclass operations for
 flags (equality and printing). We need to remember to export the data
 constructor abstractly from the source module, ensuring that users
 can’t construct their own PCREOption values.

Binding to Constants

Now that we’ve pulled in the required modules, turned on the language features
 we need, and defined a type to represent PCRE options, we need to
 actually define some Haskell values corresponding to those PCRE
 constants.
We can do this in two ways with
 hsc2hs. The first is to use the #const
 keyword hsc2hs provides. This lets us name constants to
 be provided by the C preprocessor. We can bind to the constants
 manually by listing the CPP symbols for them using the
 #const keyword:
-- file: ch17/Regex-hsc-const.hs
caseless :: PCREOption
caseless = PCREOption #const PCRE_CASELESS

dollar_endonly :: PCREOption
dollar_endonly = PCREOption #const PCRE_DOLLAR_ENDONLY

dotall :: PCREOption
dotall = PCREOption #const PCRE_DOTALL
This introduces three new constants on
 the Haskell side, caseless, dollar_endonly,
 and dotall, corresponding to the similarly named C
 definitions. We immediately wrap the constants in a newtype constructor, so they’re exposed to
 the programmer as abstract PCREOption types only.
Creating a .hsc file is the first step. We now need to
 actually create a Haskell source file, with the C preprocessing done.
 Time to run hsc2hs over the .hsc file:
$ hsc2hs Regex.hsc
This creates a new output file,
 Regex.hs, where the CPP variables
 have been expanded, yielding valid Haskell code:
-- file: ch17/Regex-hsc-const-generated.hs
caseless :: PCREOption
caseless = PCREOption 1
{-# LINE 21 "Regex.hsc" #-}

dollar_endonly :: PCREOption
dollar_endonly = PCREOption 32
{-# LINE 24 "Regex.hsc" #-}

dotall :: PCREOption
dotall = PCREOption 4
{-# LINE 27 "Regex.hsc" #-}
Notice how the original line in the
 .hsc file is listed next to each expanded definition via the
 LINE pragma. The compiler uses this information to report errors in
 terms of their source, in the original file, rather than in the
 generated one. We can load this generated .hs file into the interpreter and play with
 the results:
$ ghci Regex.hs
*Regex> caseless
PCREOption {unPCREOption = 1}
*Regex> unPCREOption caseless
1
*Regex> unPCREOption caseless + unPCREOption caseless
2
*Regex> caseless + caseless
interactive>:1:0:
 No instance for (Num PCREOption)
So things are working as expected. The
 values are opaque, we get type errors if we try to break the
 abstraction, and we can unwrap them and operate on them if needed. The
 unPCREOption accessor is used to unwrap the boxes. That’s
 a good start, but let’s see how we can simplify this task
 further.

Automating the Binding

Clearly, manually listing all the C
 defines and wrapping them is tedious and error prone. Wrapping all the
 literals in newtype constructors is also annoying. This
 kind of binding is such a common task that hsc2hs
 provides convenient syntax to automate it: the #enum
 construct.
We can replace our list of top-level
 bindings with the equivalent:
-- file: ch17/Regex-hsc.hs
-- PCRE compile options
#{enum PCREOption, PCREOption
 , caseless = PCRE_CASELESS
 , dollar_endonly = PCRE_DOLLAR_ENDONLY
 , dotall = PCRE_DOTALL
 }
This is much more concise! The
 #enum construct gives us three fields to work with. The first is the
 name of the type we’d like the C defines to be treated as. This lets
 us pick something other than just CInt for the binding.
 We chose PCREOption’s to construct.
The second field is an optional
 constructor to place in front of the symbols. This is specifically for
 the case we want to construct newtype values, and where
 much of the grunt work is saved. The final part of the
 #enum syntax is self-explanatory: it just defines Haskell
 names for constants to be filled in via CPP.
Running this code through
 hsc2hs, as before, generates a Haskell file with the
 following binding code produced (with LINE pragmas
 removed for brevity):
-- file: ch17/Regex.hs
caseless :: PCREOption
caseless = PCREOption 1
dollar_endonly :: PCREOption
dollar_endonly = PCREOption 32
dotall :: PCREOption
dotall = PCREOption 4
Perfect. Now we can do something in
 Haskell with these values. Our aim here is to treat flags as abstract
 types, not as bit fields in integers in C. Passing multiple flags in C
 would be done by bitwise or-ing multiple flags together. For an
 abstract type though, that would expose too much information. In order
 to preserve the abstraction and give it a Haskell flavor, we’d prefer
 that users pass in flags in a list that the library itself combined.
 This is achievable with a simple fold:
-- file: ch17/Regex.hs
-- | Combine a list of options into a single option, using bitwise (.|.)
combineOptions :: [PCREOption] -> PCREOption
combineOptions = PCREOption . foldr ((.|.) . unPCREOption) 0
This simple loop starts with an initial
 value of 0, unpacks each flag, and uses
 bitwise-or—(.|.)—on the underlying CInt, to
 combine each value with the loop accumulator. The final accumulated
 state is then wrapped up in the PCREOption
 constructor.
Let’s turn now to actually compiling
 some regular expressions.

Passing String Data Between Haskell and C

The next task is to write a binding to the PCRE regular
 expression compile function. Let’s look at its type,
 straight from the pcre.h
 header file:
pcre *pcre_compile(const char *pattern,
 int options,
 const char **errptr,
 int *erroffset,
 const unsigned char *tableptr);
This function compiles a regular
 expression pattern into some internal format, taking the pattern as an
 argument, along with some flags and some variables for returning status
 information.
We need to work out what Haskell types to
 represent each argument with. Most of these types are covered by
 equivalents defined for us by the FFI standard and are available in
 Foreign.C.Types. The first argument, the regular expression itself, is passed
 as a null-terminated char pointer to C, equivalent to the
 Haskell CString type. We’ve already chosen PCRE
 compile-time options to represent the abstract PCREOption
 newtype, whose runtime representation is a
 CInt. As the representations are guaranteed to be
 identical, we can pass the newtype safely. The other
 arguments are a little more complicated and require some work to
 construct and take apart.
The third argument, a pointer to a C
 string, will be used as a reference to any error message generated when
 compiling the expression. The value of the pointer will be modified by
 the C function to point to a custom error string. We can represent this
 with a Ptr CString type. Pointers in Haskell are
 heap-allocated containers for raw addresses and can be created and
 operated on with a number of allocation primitives in the FFI library.
 For example, we can represent a pointer to a C int as
 Ptr CInt, and a pointer to an unsigned char as a Ptr
 Word8.
A note about pointers
Once we have a Haskell Ptr value handy, we can do various pointer-like things with it.
 We can compare it for equality with the null pointer, represented with
 the special nullPtr constant. We can cast a pointer from one type to a pointer to
 another, or we can advance a pointer by an offset in bytes with
 plusPtr. We can even modify the value pointed to, using
 poke, and, of course, dereference a pointer yielding that
 which it points to, with peek. In the majority of
 circumstances, a Haskell programmer doesn’t need to operate on
 pointers directly, but when they are needed, these tools come in
 handy.

The question then is how to represent the
 abstract pcre pointer returned when we compile the regular
 expression. We need to find a Haskell type that is as abstract as the C
 type. Since the C type is treated abstractly, we can assign any
 heap-allocated Haskell type to the data, as long as it has few or no
 operations on it. This is a common trick for arbitrarily typed foreign
 data. The idiomatic simple type to use to represent unknown foreign data
 is a pointer to the () type. We can use a type synonym to
 remember the binding:
-- file: ch17/PCRE-compile.hs
type PCRE = ()
That is, the foreign data is some
 unknown, opaque object, and we’ll just treat it as a pointer to
 (), knowing full well that we’ll never actually dereference
 that pointer. This gives us the following foreign import binding for
 pcre_compile, which must be in IO, as the
 pointer returned will vary on each call, even if the returned object is
 functionally equivalent:
-- file: ch17/PCRE-compile.hs
foreign import ccall unsafe "pcre.h pcre_compile"
 c_pcre_compile :: CString
 -> PCREOption
 -> Ptr CString
 -> Ptr CInt
 -> Ptr Word8
 -> IO (Ptr PCRE)
Typed Pointers

We can increase safety in the binding futher by using a
 typed pointer, instead of using the
 () type. That is, a unique type, distinct from the unit
 type, that has no meaningful runtime representation. A type for which
 no data can be constructed, making dereferencing it a type error. One
 good way to build such provably uninspectable data types is with a
 nullary data type:
-- file: ch17/PCRE-nullary.hs
data PCRE
A note about safety
When making a foreign import declaration, we can optionally
 specify a safety level to use when making the
 call, using either the safe or unsafe
 keyword. A safe call is less efficient but guarantees that the
 Haskell system can be safely called into from C. An unsafe call has
 far less overhead, but the C code that is called must not call back
 into Haskell. By default, foreign imports are safe, but in practice
 it is rare for C code to call back into Haskell, so for efficiency
 we mostly use unsafe calls.

This requires the
 EmptyDataDecls language extension. This type clearly contains no values! We can only ever
 construct pointers to such values, as there are no concrete values
 (other than bottom) that have this type.
We can also achieve the same thing,
 without requiring a language extension, using a recursive
 newtype:
-- file: ch17/PCRE-recursive.hs
newtype PCRE = PCRE (Ptr PCRE)
Again, we can’t really do anything with
 a value of this type, as it has no runtime representation. Using typed
 pointers in these ways is just another way to add safety to a Haskell
 layer over what C provides. What would require discipline on the part
 of the C programmer (remembering never to dereference a PCRE pointer)
 can be enforced statically in the type system of the Haskell binding.
 If this code compiles, the type checker has given us a proof that the
 PCRE objects returned by C are never dereferenced on the Haskell
 side.
We have the foreign import declaration
 sorted out now, and the next step is to marshal data into the right
 form so that we can finally call the C code.

Memory Management: Let the Garbage Collector Do the
 Work

One question that isn’t resolved yet is how to manage the memory
 associated with the abstract PCRE structure returned by
 the C library. The caller didn’t have to allocate it—the library took
 care of that by allocating memory on the C side. At some point,
 though, we’ll need to deallocate it. This, again, is an opportunity to
 abstract the tedium of using the C library by hiding the complexity
 inside the Haskell binding.
We’ll use the Haskell garbage collector
 to automatically deallocate the C structure once it is no longer in
 use. To do this, we’ll make use of Haskell garbage collector
 finalizers and the ForeignPtr type.
We don’t want users to have to manually
 deallocate the Ptr PCRE value returned by the foreign
 call. The PCRE library specifically states that structures are
 allocated on the C side with malloc and need to be freed
 when no longer in use, or we risk leaking memory. The Haskell garbage
 collector already goes to great lengths to automate the task of
 managing memory for Haskell values. Cleverly, we can also assign our
 hardworking garbage collector the task of looking after C’s memory for
 us. The trick is to associate a piece of Haskell data with the foreign
 allocator data and to give the Haskell garbage collector an arbitrary
 function that is to deallocate the C resource once it notices that the
 Haskell data is finished.
We have two tools at our disposal
 here—the opaque ForeignPtr data type and the
 newForeignPtr function, which has type:
-- file: ch17/ForeignPtr.hs
newForeignPtr :: FinalizerPtr a -> Ptr a -> IO (ForeignPtr a)
The function takes two arguments: a
 finalizer to run when the data goes out of scope and a pointer to the
 associated C data. It returns a new managed pointer, which will have
 its finalizer run once the garbage collector decides the data is no
 longer in use. What a lovely abstraction!
These finalizable pointers are
 appropriate whenever a C library requires the user to explicitly
 deallocate, or otherwise clean up a resource, when it is no longer in
 use. It is a simple piece of equipment that goes a long way towards
 making the C library binding more natural, more functional, and in
 flavor.
So with this in mind, we can hide the
 manually managed Ptr PCRE type inside an automatically managed data structure.
 This yields us the data type used to represent regular expressions
 that users will see:
-- file: ch17/PCRE-compile.hs
data Regex = Regex !(ForeignPtr PCRE)
 !ByteString
 deriving (Eq, Ord, Show)
This new Regex data type
 consists of two parts. The first is an abstract
 ForeignPtr, which we’ll use to manage the underlying
 PCRE data allocated in C. The second component is a
 strict ByteString, which is the string representation of
 the regular expression that we compiled. By keeping the user-level
 representation of the regular expression handy inside the
 Regex type, it’ll be easier to print friendly error
 messages and show the Regex itself in a meaningful
 way.

A High-Level Interface: Marshaling Data

The challenge when writing FFI bindings, once the Haskell types have
 been decided upon, is to convert regular data types that a Haskell
 programmer will be familiar with into low-level pointers to arrays and
 other C types. What would an ideal Haskell interface to regular expression
 compilation look like? We have some design intuitions to guide
 us.
For starters, the act of compilation
 should be a referentially transparent operation: passing the same
 regex string will yield functionally the same compiled pattern each
 time, although the C library will give us observably different
 pointers to functionally identical expressions. If we can hide these
 memory management details, we should be able to represent the binding
 as a pure function. The ability to represent a C function in Haskell
 as a pure operation is a key step towards flexibility, and an
 indicator that the interface will be easy to use (as it won’t require
 complicated state to be initialized before it can be used).
Despite being pure, the function can
 still fail. If the regular expression input the user provides is
 ill-formed, an error string is returned. A good data type to represent
 optional failure with an error value is Either. That is,
 either we return a valid compiled regular expression or we return an
 error string. Encoding the results of a C function in a familiar,
 foundational Haskell type such as this is another useful step to make
 the binding more idiomatic.
For the user-supplied parameters, we’ve
 already decided to pass compilation flags in as a list. We can choose
 to pass the input regular expression either as an efficient
 ByteString or as a regular String. An
 appropriate type signature, then, for referentially transparent
 compilation success with a value or failure with an error string would
 be:
-- file: ch17/PCRE-compile.hs
compile :: ByteString -> [PCREOption] -> Either String Regex
The input is a ByteString,
 available from the Data.ByteString.Char8 module (and
 we’ll import this qualified to avoid name clashes),
 containing the regular expression and a list of flags (or the empty
 list if there are no flags to pass). The result is either an error
 string, or a new, compiled regular expression.

Marshaling ByteStrings

Given this type, we can sketch out the compile function: the
 high-level interface to the raw C binding. At its heart, it will call
 c_pcre_compile. Before it does that, it has to marshal
 the input ByteString into a CString. This is
 done with the ByteString library’s
 useAsCString function, which copies the input
 ByteString into a null-terminated C array (there is also
 an unsafe, zero copy variant, which assumes the
 ByteString is already null-terminated):
-- file: ch17/ForeignPtr.hs
useAsCString :: ByteString -> (CString -> IO a) -> IO a
This function takes a
 ByteString as input. The second argument is a
 user-defined function that will run with the resulting
 CString. We see here another useful idiom: data
 marshaling functions that are naturally scoped via closures. Our
 useAsCString function will convert the input data to a C
 string, which we can then pass to C as a pointer. Our burden then is
 to supply it with a chunk of code to call C.
Code in this style is often written in
 a dangling do-block notation. The
 following pseudocode illustrates
 this structure:
-- file: ch17/DoBlock.hs
useAsCString str $ \cstr -> do
 ... operate on the C string
 ... return a result
The second argument here is an
 anonymous function, a lambda, with a monadic do block for a body. It is common to use the
 simple ($) application operator to avoid the need for
 parentheses when delimiting the code block argument. This is a useful
 idiom to remember when dealing with code block parameters such as
 this.

Allocating Local C Data: The Storable Class

We can happily marshal
 ByteString data to C-compatible types, but the pcre_compile
 function also needs some pointers and arrays in which to place its
 other return values. These should only exist briefly, so we don’t need
 complicated allocation strategies. Such short-lifetime C data can be
 created with the alloca function:
-- file: ch17/ForeignPtr.hs
alloca :: Storable a => (Ptr a -> IO b) -> IO b
This function takes a code block
 accepting a pointer to some C type as an argument and arranges to call
 that function with the unitialized data of the right shape, allocated
 freshly. The allocation mechanism mirrors local stack variables in
 other languages. The allocated memory is released once the argument
 function exits. In this way, we get lexically scoped allocation of
 low-level data types, which are guaranteed to be released once the
 scope is exited. We can use it to allocate any data types that have an
 instance of the Storable typeclass. An implication of
 overloading the allocation operator such as this is that the data type
 allocated can be inferred from type information, based on use! Haskell
 will know what to allocate based on the functions we use on that
 data.
To allocate a pointer to a
 CString, for example, which will be updated to point to a
 particular CString by the called function, we would call
 alloca, in pseudocode as:
-- file: ch17/DoBlock.hs
alloca $ \stringptr -> do
 ... call some Ptr CString function
 peek stringptr
This locally allocates a Ptr
 CString and applies the code block to that pointer, which then
 calls a C function to modify the pointer contents. Finally, we
 dereference the pointer with the Storable class
 peek function, yielding a CString.
We can now put it all together, to
 complete our high-level PCRE compilation wrapper.

Putting It All Together

We’ve decided what Haskell type to
 represent the C function with, what the result data will be
 represented by, and how its memory will be managed. We’ve chosen a
 representation for flags to the pcre_compile function and
 worked out how to get C strings to and from code inspecting it. So
 let’s write the complete function for compiling PCRE regular
 expressions from Haskell:
-- file: ch17/PCRE-compile.hs
compile :: ByteString -> [PCREOption] -> Either String Regex
compile str flags = unsafePerformIO $
 useAsCString str $ \pattern -> do
 alloca $ \errptr -> do
 alloca $ \erroffset -> do
 pcre_ptr <- c_pcre_compile pattern (combineOptions flags) errptr
 erroffset nullPtr
 if pcre_ptr == nullPtr
 then do
 err <- peekCString =<< peek errptr
 return (Left err)
 else do
 reg <- newForeignPtr finalizerFree pcre_ptr -- release with free()
 return (Right (Regex reg str))
That’s it! Let’s carefully walk through
 the details here, since it is rather dense. The first thing that
 stands out is the use of unsafePerformIO, a rather
 infamous function, with a very unusual type, imported from the ominous
 System.IO.Unsafe:
-- file: ch17/ForeignPtr.hs
unsafePerformIO :: IO a -> a
This function does something odd. It
 takes an IO value and converts it
 to a pure one! After warning about the danger of effects for so long,
 here we have the very enabler of dangerous effects in one line. Used
 unwisely, this function lets us sidestep all safety guarantees that
 the Haskell type system provides, inserting arbitrary side effects
 into a Haskell program, anywhere. The dangers in doing this are
 significant. We can break optimizations, modify arbitrary locations in
 memory, remove files on the user’s machine, or launch nuclear missiles
 from our Fibonacci sequences. So why does this function exist at
 all?
It exists precisely to enable Haskell
 to bind to C code that we know to be referentially transparent, but
 can’t prove the case to the Haskell type system. It lets us say to the
 compiler, “I know what I’m doing—this code really is pure.” For
 regular expression compilation, we know this to be the case: given the
 same pattern, we should get the same regular expression matcher every
 time. However, proving that to the compiler is beyond the Haskell type
 system, so we’re forced to assert that this code is pure. Using
 unsafePerformIO allows us to do just that.
However, if we know the C code is pure, why don’t we just
 declare it as such, by giving it a pure type in the import
 declaration? We don’t because we have to allocate local memory for the
 C function to work with, which must be done in the IO monad, as it is a local side effect.
 Those effects won’t escape the code surrounding the foreign call,
 though, so when wrapped, we use unsafePerformIO to
 reintroduce purity.
The argument to
 unsafePerformIO is the actual body of our compilation
 function, which consists of four parts: marshaling Haskell data to C
 form; calling into the C library; checking the return values; and
 finally, constructing a Haskell value from the results.
We marshal with
 useAsCString and alloca, setting up the data
 we need to pass to C, and use combineOptions, developed
 previously, to collapse the list of flags into a single
 CInt. Once that’s all in place, we can finally call
 c_pcre_compile with the pattern, flags, and pointers for
 the results. We use nullPtr for the character-encoding
 table, which is unused in this case.
The result returned from the C call is
 a pointer to the abstract PCRE structure. We then test
 this against the nullPtr. If there is a problem with the
 regular expression, we have to dereference the error pointer, yielding
 a CString. We then unpack that to a normal Haskell list
 with the library function, peekCString. The final result
 of the error path is a value of Left err, indicating
 failure to the caller.
If the call succeeds, however, we
 allocate a new storage-managed pointer, with the C function using a
 ForeignPtr. The special value finalizerFree
 is bound as the finalizer for this data, which uses the standard C
 free to deallocate the data. This is then wrapped as an
 opaque Regex value. The successful result is tagged as
 such with Right, and then returned to the user. And now
 we’re done!
We need to process our source file with
 hsc2hs, and then load the function in ghci.
 However, doing this results in an error on the first attempt:
$ hsc2hs Regex.hsc
$ ghci Regex.hs

During interactive linking, GHCi couldn't find the following symbol:
 pcre_compile
This may be due to you not asking GHCi to load extra object files,
archives, or DLLs needed by your current session. Restart GHCi, specifying
the missing library using the -L/path/to/object/dir and -lmissinglibname
flags, or simply by naming the relevant files on the GHCi command line.
A little scary. However, this is just
 because we didn’t link the C library we wanted to call to the Haskell
 code. Assuming the PCRE library has been installed on the system in
 the default library location, we can let ghci know about
 it by adding -lpcre to the ghci command
 line. Now we can try out the code on some regular expressions, looking
 at the success and error cases:
$ ghci Regex.hs -lpcre
*Regex> :m + Data.ByteString.Char8
*Regex Data.ByteString.Char8> compile (pack "a.*b") []
Right (Regex 0x00000000028882a0 "a.*b")
*Regex Data.ByteString.Char8> compile (pack "a.*b[xy]+(foo?)") []
Right (Regex 0x0000000002888860 "a.*b[xy]+(foo?)")
Regex Data.ByteString.Char8> compile (pack "") []
Left "nothing to repeat"
The regular expressions are packed into
 byte strings and marshaled to C, where they are compiled by the PCRE
 library. The result is then handed back to Haskell, where we display
 the structure using the default Show instance. Our next
 step is to pattern match some strings with these compiled regular
 expressions.

Matching on Strings

The second part of a good regular expression library is the
 matching function. Given a compiled regular expression, this function
 does the matching of the compiled regex against some input, indicating
 whether it matched, and if so, what parts of the string matched. In
 PCRE, this function is pcre_exec, which has type:
int pcre_exec(const pcre *code,
 const pcre_extra *extra,
 const char *subject,
 int length,
 int startoffset,
 int options,
 int *ovector,
 int ovecsize);
The most important arguments are the
 input pcre pointer structure (which we obtained from
 pcre_compile) and the subject string. The other flags let
 us provide bookkeeping structures and space for return values. We can
 directly translate this type to the Haskell import declaration:
-- file: ch17/RegexExec.hs
foreign import ccall "pcre.h pcre_exec"
 c_pcre_exec :: Ptr PCRE
 -> Ptr PCREExtra
 -> Ptr Word8
 -> CInt
 -> CInt
 -> PCREExecOption
 -> Ptr CInt
 -> CInt
 -> IO CInt
We use the same method as before to
 create typed pointers for the PCREExtra structure, and a
 newtype to represent flags passed at regex execution time.
 This lets us ensure that users don’t pass compile-time flags incorrectly
 at regex runtime.
Extracting Information About the Pattern

The main complication involved in
 calling pcre_exec is the array of int
 pointers used to hold the offsets of matching substrings found by the
 pattern matcher. These offsets are held in an offset vector, whose
 required size is determined by analyzing the input regular expression
 to determine the number of captured patterns it contains. PCRE
 provides a function, pcre_fullinfo, for determining much information about the regular
 expression, including the number of patterns. We’ll need to call this,
 and now, we can directly write down the Haskell type for binding to
 pcre_fullinfo as:
-- file: ch17/RegexExec.hs
foreign import ccall "pcre.h pcre_fullinfo"
 c_pcre_fullinfo :: Ptr PCRE
 -> Ptr PCREExtra
 -> PCREInfo
 -> Ptr a
 -> IO CInt
The most important arguments to this
 function are the compiled regular expression and the
 PCREInfo flag, which indicates which information we’re
 interested in. In this case, we care about the captured pattern count.
 The flags are encoded in numeric constants, and we need to use
 specifically the PCRE_INFO_CAPTURECOUNT value. There is a
 range of other constants that determine the result type of the
 function, which we can bind to using the #enum construct
 as before. The final argument is a pointer to a location to store the
 information about the pattern (whose size depends on the flag argument
 passed in!).
Calling pcre_fullinfo to
 determine the captured pattern count is pretty easy:
-- file: ch17/RegexExec.hs
capturedCount :: Ptr PCRE -> IO Int
capturedCount regex_ptr =
 alloca $ \n_ptr -> do
 c_pcre_fullinfo regex_ptr nullPtr info_capturecount n_ptr
 return . fromIntegral =<< peek (n_ptr :: Ptr CInt)
This takes a raw PCRE pointer and
 allocates space for the CInt count of the matched
 patterns. We then call the information function and peek into the
 result structure, finding a CInt. Finally, we convert
 this to a normal Haskell Int and pass it back to the
 user.

Pattern Matching with Substrings

Let’s now write the regex matching function. The Haskell type for
 matching is similar to that for compiling regular expressions:
-- file: ch17/RegexExec.hs
match :: Regex -> ByteString -> [PCREExecOption] -> Maybe [ByteString]
This function is how users will match
 strings against compiled regular expressions. Again, the main design
 point is that it is a pure function. Matching is a pure function:
 given the same input regular expression and subject string, it will
 always return the same matched substrings. We convey this information
 to the user via the type signature, indicating no side effects will
 occur when you call this function.
The arguments are a compiled
 Regex, a strict ByteString (containing the
 input data), and a list of flags that modify the regular expression
 engine’s behavior at runtime. The result is either no match at all,
 indicated by a Nothing value, or just a list of matched
 substrings. We use the Maybe type to clearly indicate in
 the type that matching may fail. Using strict ByteStrings
 for the input data, we can extract matched substrings in constant
 time, without copying, which makes the interface rather efficient. If
 substrings are matched in the input, the offset vector is populated
 with pairs of integer offsets into the subject string. We’ll need to
 loop over this result vector, reading offsets, and building
 ByteString slices as we go.
The implementation of the match wrapper
 can be broken into three parts. At the top level, our function takes
 apart the compiled Regex structure, yielding the
 underlying PCRE pointer:
-- file: ch17/RegexExec.hs
match :: Regex -> ByteString -> [PCREExecOption] -> Maybe [ByteString]
match (Regex pcre_fp _) subject os = unsafePerformIO $ do
 withForeignPtr pcre_fp $ \pcre_ptr -> do
 n_capt <- capturedCount pcre_ptr

 let ovec_size = (n_capt + 1) * 3
 ovec_bytes = ovec_size * sizeOf (undefined :: CInt)
As it is pure, we can use
 unsafePerformIO to hide any allocation effects internally. After pattern
 matching on the PCRE type, we need to take apart the
 ForeignPtr that hides our C-allocated raw PCRE data. We
 can use withForeignPtr. This holds onto the Haskell data associated with the PCRE
 value while the call is being made, preventing it from being collected
 for at least the time it is used by this call. We then call the
 information function and use that value to compute the size of the
 offset vector (the formula for which is given in the PCRE
 documentation). The number of bytes we need is the number of elements
 multiplied by the size of a CInt. To portably compute C
 type sizes, the Storable class provides a
 sizeOf function, which takes some arbitrary value of the
 required type (and we can use the undefined value here to
 do our type dispatch).
The next step is to allocate an offset
 vector of the size we computed, in order to convert the input
 ByteString into a pointer to a C char array.
 Finally, we call pcre_exec with all the required
 arguments:
-- file: ch17/RegexExec.hs
 allocaBytes ovec_bytes $ \ovec -> do

 let (str_fp, off, len) = toForeignPtr subject
 withForeignPtr str_fp $ \cstr -> do
 r <- c_pcre_exec
 pcre_ptr
 nullPtr
 (cstr `plusPtr` off)
 (fromIntegral len)
 0
 (combineExecOptions os)
 ovec
 (fromIntegral ovec_size)
For the offset vector, we use
 allocaBytes to control exactly the size of the allocated
 array. It is like alloca, but rather than using the
 Storable class to determine the required size, it takes
 an explicit size in bytes to allocate. Taking apart
 ByteStrings, yielding the underlying pointer to memory
 that the Bytestrings contain, is done with toForeignPtr, which converts our nice
 ByteString type into a managed pointer. Using withForeignPtr on the result gives us a
 raw Ptr CChar, which is exactly what we need to pass the
 input string to C. Programming in Haskell is often just solving a type
 puzzle!
We then just call
 c_pcre_exec with the raw PCRE pointer, the input string
 pointer at the correct offset, its length, and the result vector
 pointer. A status code is returned, and, finally, we analyze the
 result:
-- file: ch17/RegexExec.hs
 if r < 0
 then return Nothing
 else let loop n o acc =
 if n == r
 then return (Just (reverse acc))
 else do
 i <- peekElemOff ovec o
 j <- peekElemOff ovec (o+1)
 let s = substring i j subject
 loop (n+1) (o+2) (s : acc)
 in loop 0 0 []

 where
 substring :: CInt -> CInt -> ByteString -> ByteString
 substring x y _ | x == y = empty
 substring a b s = end
 where
 start = unsafeDrop (fromIntegral a) s
 end = unsafeTake (fromIntegral (b-a)) start
If the result value is less than zero,
 there was an error, or no match, so we return Nothing to
 the user. Otherwise, we need a loop peeking pairs of offsets from the
 offset vector (via peekElemOff). Those offsets are used
 to find the matched substrings. To build substrings, we use a helper
 function that, given a start and end offset, drops the surrounding
 portions of the subject string, yielding just the matched portion. The
 loop runs until it has extracted the number of substrings we were told
 the matcher found.
The substrings are accumulated in a
 tail recursive loop, building up a reverse list of each string. Before
 returning the substrings of the user, we need to flip that list around
 and wrap it in a successful Just tag. Let’s try it
 out!

The Real Deal: Compiling and Matching Regular
 Expressions

If we take this function and its surrounding hsc2hs definitions and data
 wrappers, and process it with hsc2hs, we can load the
 resulting Haskell file in GHCi and try out our code (we need to import
 Data.ByteString.Char8 so we can build ByteStrings from string
 literals):
$ hsc2hs Regex.hsc
$ ghci Regex.hs -lpcre
*Regex> :t compile
compile :: ByteString -> [PCREOption] -> Either String Regex
*Regex> :t match
match :: Regex -> ByteString -> Maybe [ByteString]
Things seem to be in order. Now let’s
 try some compilation and matching. First, something easy:
*Regex> :m + Data.ByteString.Char8
*Regex Data.ByteString.Char8> let Right r = compile (pack "the quick brown fox") []
*Regex Data.ByteString.Char8> match r (pack "the quick brown fox") []
Just ["the quick brown fox"]
*Regex Data.ByteString.Char8> match r (pack "The Quick Brown Fox") []
Nothing
*Regex Data.ByteString.Char8> match r (pack "What
 do you know about the quick brown fox?") []
Just ["the quick brown fox"]
(We could also avoid the
 pack calls by using the OverloadedStrings
 extensions). Or we can be more adventurous:
*Regex Data.ByteString.Char8> let Right r = compile
(pack "a*abc?xyz+pqr{3}ab{2,}xy{4,5}pq{0,6}AB{0,}zz") []
*Regex Data.ByteString.Char8> match r (pack "abxyzpqrrrabbxyyyypqAzz") []
Just ["abxyzpqrrrabbxyyyypqAzz"]
*Regex Data.ByteString.Char8> let Right r = compile
(pack "^([^!]+)!(.+)=apquxz\\.ixr\\.zzz\\.ac\\.uk$") []
*Regex Data.ByteString.Char8> match r (pack "abc!pqr=apquxz.ixr.zzz.ac.uk") []
Just ["abc!pqr=apquxz.ixr.zzz.ac.uk","abc","pqr"]
That’s pretty awesome. The full power
 of Perl regular expressions in Haskell, at your fingertips.
In this chapter, we’ve looked at how to
 declare bindings that let Haskell code call C functions, how to
 marshal different data types between the two languages, how to
 allocate memory at a low level (by allocating locally or via C’s
 memory management), and how to exploit the Haskell type system and
 garbage collector to automate much of the hard work of dealing with C.
 Finally, we looked at how FFI preprocessors can ease much of the labor
 of constructing new bindings. The result is a natural Haskell API that
 is actually implemented primarily in C.
The majority of FFI tasks fall into
 these categories. Other advanced techniques that we are unable to
 cover include linking Haskell into C programs, registering callbacks
 from one language to another, and the c2hs preprocessing
 tool. You can find more information about these topics online.

[38] Some more advanced binding tools
 provide greater degrees of type checking. For example,
 c2hs is able to parse the C header, and generate the
 binding definition for you, and it is especially suited for large
 projects where the full API is specified.

Chapter 18. Monad Transformers

Motivation: Boilerplate Avoidance

Monads provide a powerful way to build computations with
 effects. Each of the standard monads is specialized to do exactly one
 thing. In real code, we often need to be able to use several effects at
 once.
Recall the Parse
 type that we developed in Chapter 10, for
 instance. When we introduced monads, we mentioned that this type was a
 State monad in disguise. Our monad is more complex than the standard
 State monad, because it uses the Either
 type to allow the possibility of a parsing failure. In our
 case, if a parse fails early on, we want to stop parsing, not continue
 in some broken state. Our monad combines the effect of carrying state
 around with the effect of early exit.
The normal State monad
 doesn’t let us escape in this way; it carries state only. It uses the
 default implementation of fail:
 this calls error, which throws an
 exception that we can’t catch in pure code. The State monad
 thus appears to allow for failure, without that
 capability actually being any use. (Once again, we recommend that you
 almost always avoid using fail!)
It would be ideal if we could somehow take
 the standard State monad and add failure handling to it,
 without resorting to the wholesale construction of custom monads by
 hand. The standard monads in the mtl library don’t allow us to combine them. Instead, the library
 provides a set of monad transformers[39] to achieve the same result.
A monad transformer is similar to a
 regular monad, but it’s not a standalone entity. Instead, it modifies
 the behavior of an underlying monad. Most of the monads in the
 mtl library have transformer equivalents. By convention,
 the transformer version of a monad has the same name, with a
 T stuck on the end. For example, the transformer equivalent
 of State is StateT; it adds mutable state to
 an underlying monad. The WriterT monad transformer makes it
 possible to write data when stacked on top of another monad.

A Simple Monad Transformer Example

Before we introduce monad transformers,
 let’s look at a function written using techniques we are already
 familiar with. The function that follows recurses into a directory tree
 and returns a list of the number of entries it finds at each level of
 the tree:
-- file: ch18/CountEntries.hs
module CountEntries (listDirectory, countEntriesTrad) where

import System.Directory (doesDirectoryExist, getDirectoryContents)
import System.FilePath ((</>))
import Control.Monad (forM, liftM)

listDirectory :: FilePath -> IO [String]
listDirectory = liftM (filter notDots) . getDirectoryContents
 where notDots p = p /= "." && p /= ".."

countEntriesTrad :: FilePath -> IO [(FilePath, Int)]
countEntriesTrad path = do
 contents <- listDirectory path
 rest <- forM contents $ \name -> do
 let newName = path </> name
 isDir <- doesDirectoryExist newName
 if isDir
 then countEntriesTrad newName
 else return []
 return $ (path, length contents) : concat rest
We’ll now look at using the Writer monad to achieve the same goal. Since
 this monad lets us record a value wherever we want, we don’t need to
 explicitly build up a result.
As our function must execute in the
 IO monad so that it can traverse directories, we can’t use
 the Writer monad directly. Instead, we use
 WriterT to add the recording capability to IO.
 We will find the going easier if we look at the types involved.
The normal Writer monad has
 two type parameters, so it’s more properly written Writer w
 a. The first parameter w is the
 type of the values to be recorded, and a
 is the usual type that the Monad typeclass requires. Thus
 Writer [(FilePath, Int)] a is a writer monad that records a
 list of directory names and sizes.
The WriterT transformer has a
 similar structure, but it adds another type parameter m: this is the underlying monad whose behavior we
 are augmenting. The full signature of WriterT is
 WriterT w m a.
Because we need to traverse directories,
 which requires access to the IO monad, we’ll stack our
 writer on top of the IO monad. Our combination of monad
 transformer and underlying monad will thus have the type WriterT
 [(FilePath, Int)] IO a. This stack of monad transformer and monad
 is itself a monad:
-- file: ch18/CountEntriesT.hs
module CountEntriesT (listDirectory, countEntries) where

import CountEntries (listDirectory)
import System.Directory (doesDirectoryExist)
import System.FilePath ((</>))
import Control.Monad (forM_, when)
import Control.Monad.Trans (liftIO)
import Control.Monad.Writer (WriterT, tell)

countEntries :: FilePath -> WriterT [(FilePath, Int)] IO ()
countEntries path = do
 contents <- liftIO . listDirectory $ path
 tell [(path, length contents)]
 forM_ contents $ \name -> do
 let newName = path </> name
 isDir <- liftIO . doesDirectoryExist $ newName
 when isDir $ countEntries newName
This code is not terribly different from
 our earlier version. We use liftIO
 to expose the IO monad where necessary and use tell to record a visit to a directory.
To run our code, we must use one of
 WriterT’s execution functions:
ghci> :type runWriterT
runWriterT :: WriterT w m a -> m (a, w)
ghci> :type execWriterT
execWriterT :: (Monad m) => WriterT w m a -> m w
These functions execute the action, and
 then remove the WriterT wrapper and give a result that is
 wrapped in the underlying monad. The runWriterT function gives both the result of
 the action and whatever was recorded as it ran, while execWriterT throws away the result and just
 gives us what was recorded:
ghci> :type countEntries ".."
countEntries ".." :: WriterT [(FilePath, Int)] IO ()
ghci> :type execWriterT (countEntries "..")
execWriterT (countEntries "..") :: IO [(FilePath, Int)]
ghci> take 4 `liftM` execWriterT (countEntries "..")
[("..",30),("../ch05",28),("../ch05/dist",3),("../ch05/dist/build",9)]
We use a WriterT on top of
 IO because there is no IOT monad transformer.
 Whenever we use the IO monad with one or more monad
 transformers, IO will always be at the bottom of the
 stack.

Common Patterns in Monads and Monad Transformers

Most of the monads and monad transformers in the mtl library follow a few common
 patterns around naming and typeclasses.
To illustrate these rules, we will focus
 on a single straightforward monad: the reader monad. The
 reader monad’s API is detailed by the
 MonadReader typeclass. Most mtl monads have similarly named
 typeclasses. MonadWriter defines the API of the writer
 monad, and so on:
-- file: ch18/Reader.hs
class (Monad m) => MonadReader r m | m -> r where
 ask :: m r
 local :: (r -> r) -> m a -> m a
The type variable r represents the immutable state that the reader
 monad carries around. The Reader r monad is an instance of
 the MonadReader class, as is the ReaderT r m
 monad transformer. Again, this pattern is repeated by other
 mtl monads: there usually exist both a concrete monad and a
 transformer, each of which are instances of the typeclass that defines
 the monad’s API.
Returning to the specifics of the reader
 monad, we haven’t touched upon the local function before. It temporarily
 modifies the current environment using the r -> r
 function, and then executes its action in the modified environment. To
 make this idea more concrete, here is a simple example:
-- file: ch18/LocalReader.hs
import Control.Monad.Reader

myName step = do
 name <- ask
 return (step ++ ", I am " ++ name)

localExample :: Reader String (String, String, String)
localExample = do
 a <- myName "First"
 b <- local (++"dy") (myName "Second")
 c <- myName "Third"
 return (a, b, c)
If we execute the localExample action in ghci, we can see that the effect of modifying
 the environment is confined to one place:
ghci> runReader localExample "Fred"
Loading package mtl-1.1.0.1 ... linking ... done.
("First, I am Fred","Second, I am Freddy","Third, I am Fred")

When the underlying monad m is an instance of MonadIO, the
 mtl library provides an instance for ReaderT r
 m and also for a number of other typeclasses. Here are a
 few:
-- file: ch18/Reader.hs
instance (Monad m) => Functor (ReaderT r m) where
 ...

instance (MonadIO m) => MonadIO (ReaderT r m) where
 ...

instance (MonadPlus m) => MonadPlus (ReaderT r m) where
 ...
Once again, most mtl monad
 transformers define instances such as these, in order to make it easier
 for us to work with them.

Stacking Multiple Monad Transformers

As we have already mentioned, when we stack a monad transformer
 on a normal monad, the result is another monad. This suggests the
 possibility that we can again stack a monad transformer on top of our
 combined monad, in order to get a new monad and in fact, this is a
 common thing to do. Under what circumstances might we want to create
 such a stack?
	If we need to talk to the outside
 world, we’ll have IO at the base of the stack.
 Otherwise, we will have some normal monad.

	If we add a ReaderT
 layer, we give ourselves access to read-only configuration
 information.

	Add a StateT layer,
 and we gain a global state that we can modify.

	Should we need the ability to log
 events, we can add a WriterT layer.

The power of this approach is that we can
 customize the stack to our exact needs, specifying which kinds of
 effects we want to support.
As a small example of stacked monad
 transformers in action, here is a reworking of the countEntries function we developed earlier. We will modify it to recurse no
 deeper into a directory tree than a given amount and to record the
 maximum depth it reaches:
-- file: ch18/UglyStack.hs
import System.Directory
import System.FilePath
import Control.Monad.Reader
import Control.Monad.State

data AppConfig = AppConfig {
 cfgMaxDepth :: Int
 } deriving (Show)

data AppState = AppState {
 stDeepestReached :: Int
 } deriving (Show)
We use ReaderT to store
 configuration data, in the form of the maximum depth of recursion we
 will perform. We also use StateT to record the maximum
 depth we reach during an actual traversal:
-- file: ch18/UglyStack.hs
type App = ReaderT AppConfig (StateT AppState IO)
Our transformer stack has IO
 on the bottom, then StateT, with ReaderT on
 top. In this particular case, it doesn’t matter whether we have
 ReaderT or WriterT on top, but IO
 must be on the bottom.
Even a small stack of monad transformers
 quickly develops an unwieldy type name. We can use a type alias to reduce the lengths of the type
 signatures that we write.
Where’s the Missing Type Parameter?
You might have noticed that our type synonym doesn’t have the usual type
 parameter a that we associate with a monadic
 type:
-- file: ch18/UglyStack.hs
type App2 a = ReaderT AppConfig (StateT AppState IO) a
Both App and
 App2 work fine in normal type signatures. The difference
 arises when we try to construct another type from one of these. Say we
 want to add another monad transformer to the stack: the compiler will
 allow WriterT [String] App a, but reject WriterT
 [String] App2 a.
The reason for this is that Haskell does
 not allow us to partially apply a type synonym. The synonym
 App doesn’t take a type parameter, so it doesn’t pose a
 problem. However, because App2 takes a type parameter, we
 must supply some type for that parameter if we want to use
 App2 to create another type.
This restriction is limited to type
 synonyms. When we create a monad transformer stack, we usually wrap it
 with a newtype (as we will see shortly). As a result, we
 will rarely run into this problem in practice.

The execution function for our monad stack
 is simple:
-- file: ch18/UglyStack.hs
runApp :: App a -> Int -> IO (a, AppState)
runApp k maxDepth =
 let config = AppConfig maxDepth
 state = AppState 0
 in runStateT (runReaderT k config) state
Our application of runReaderT removes the ReaderT
 transformer wrapper, while runStateT removes the StateT
 wrapper, leaving us with a result in the IO monad.
Compared to earlier versions, the only
 complications we added to our traversal function are slight. We track
 our current depth, and record the maximum depth we reach:
-- file: ch18/UglyStack.hs
constrainedCount :: Int -> FilePath -> App [(FilePath, Int)]
constrainedCount curDepth path = do
 contents <- liftIO . listDirectory $ path
 cfg <- ask
 rest <- forM contents $ \name -> do
 let newPath = path </> name
 isDir <- liftIO $ doesDirectoryExist newPath
 if isDir && curDepth < cfgMaxDepth cfg
 then do
 let newDepth = curDepth + 1
 st <- get
 when (stDeepestReached st < newDepth) $
 put st { stDeepestReached = newDepth }
 constrainedCount newDepth newPath
 else return []
 return $ (path, length contents) : concat rest
Our use of monad transformers here is
 admittedly a little contrived. Because we’re writing a single
 straightforward function, we’re not really winning anything. What’s
 useful about this approach, though, is that it
 scales to bigger programs.
We can write most of an application’s
 imperative-style code in a monad stack similar to our App
 monad. In a real program, we’d carry around more complex configuration
 data, but we’d still use ReaderT to keep it read-only and
 hidden except when needed. We’d have more mutable state to manage, but
 we’d still use StateT to encapsulate it.
Hiding Our Work

We can use the usual
 newtype technique to erect a solid barrier between the
 implementation of our custom monad and its interface:
-- file: ch18/UglyStack.hs
newtype MyApp a = MyA {
 runA :: ReaderT AppConfig (StateT AppState IO) a
 } deriving (Monad, MonadIO, MonadReader AppConfig,
 MonadState AppState)

runMyApp :: MyApp a -> Int -> IO (a, AppState)
runMyApp k maxDepth =
 let config = AppConfig maxDepth
 state = AppState 0
 in runStateT (runReaderT (runA k) config) state
If we export the MyApp type
 constructor and the runMyApp
 execution function from a module, client code will not be able to tell
 that the internals of our monad is a stack of monad
 transformers.
The large deriving clause
 requires the GeneralizedNewtypeDeriving
 language pragma. It seems somehow magical that the compiler can
 derive all of these instances for us. How does this work?
Earlier, we mentioned that the
 mtl library provides instances of a number of typeclasses
 for each monad transformer. For example, the IO monad
 implements MonadIO. If the underlying monad is an
 instance of MonadIO, mtl makes
 StateT an instance, too, and likewise for
 ReaderT.
There is thus no magic going on: the
 top-level monad transformer in the stack is an instance of all of the
 typeclasses that we’re rederiving with our deriving
 clause. This is a consequence of mtl providing a
 carefully coordinated set of typeclasses and instances that fit
 together well. There is nothing more going on than the usual automatic
 derivation that we can perform with newtype
 declarations.
Exercises
	Modify the App type synonym to swap the order
 of ReaderT and WriterT. What effect
 does this have on the runApp execution function?

	Add the WriterT transformer to the
 App monad transformer stack. Modify runApp to work with this new
 setup.

	Rewrite the constrainedCount function to record
 results using the WriterT transformer in your new
 App stack.

Moving Down the Stack

So far, our uses of monad
 transformers have been simple, and the plumbing of the mtl
 library has allowed us to avoid the details of how a stack of monads is
 constructed. Indeed, we already know enough about monad transformers to
 simplify many common programming tasks.
There are a few useful ways in which we
 can depart from the comfort of mtl. Most often, a custom
 monad sits at the bottom of the stack, or a custom monad transformer
 lies somewhere within the stack. To understand the potential difficulty,
 let’s look at an example.
Suppose we have a custom monad
 transformer, CustomT:
-- file: ch18/CustomT.hs
newtype CustomT m a = ...
In the framework that mtl
 provides, each monad transformer in the stack makes the API of a lower
 level available by providing instances of a host of typeclasses. We
 could follow this pattern and write a number of boilerplate
 instances:
-- file: ch18/CustomT.hs
instance MonadReader r m => MonadReader r (CustomT m) where
 ...

instance MonadIO m => MonadIO (CustomT m) where
 ...
If the underlying monad was an instance of
 MonadReader, we would write a MonadReader
 instance for CustomT in which each function in the API
 passes through to the corresponding function in the underlying instance.
 This would allow higher-level code to only care that the stack as a
 whole is an instance of MonadReader, without knowing or
 caring about which layer provides the real
 implementation.
Instead of relying on all of these
 typeclass instances to work for us behind the scenes, we can be
 explicit. The MonadTrans typeclass defines a useful
 function named lift:
ghci> :m +Control.Monad.Trans
ghci> :info MonadTrans
class MonadTrans t where lift :: (Monad m) => m a -> t m a
 	-- Defined in Control.Monad.Trans
This function takes a monadic action from
 one layer down the stack, and turns it—in other words,
 lifts it—into an action in the current monad
 transformer. Every monad transformer is an instance of
 MonadTrans.
We use the name lift based on its similarity of purpose
 to fmap and liftM. In each case,
 we hoist something from a lower level of the type system to the level
 we’re currently working in. The different options are described
 here:
	fmap
	Elevates a pure function to the level of functors

	liftM
	Takes a pure function to the level of monads

	lift
	Raises a monadic action from one level beneath in the
 transformer stack to the current one

Let’s revisit the App monad
 stack we defined earlier (before we wrapped it with a newtype):
-- file: ch18/UglyStack.hs
type App = ReaderT AppConfig (StateT AppState IO)
If we want to access the
 AppState carried by the StateT, we would
 usually rely on mtl’s typeclasses and instances to handle
 the plumbing for us:
-- file: ch18/UglyStack.hs
implicitGet :: App AppState
implicitGet = get
The lift function lets us achieve the same
 effect, by lifting get from
 StateT into ReaderT:
-- file: ch18/UglyStack.hs
explicitGet :: App AppState
explicitGet = lift get
Obviously, when we can let
 mtl do this work for us, we end up with cleaner code, but
 this is not always possible.
When Explicit Lifting Is Necessary

One case in which we
 must use lift is when we create a monad transformer
 stack in which instances of the same typeclass appear at multiple
 levels:
-- file: ch18/StackStack.hs
type Foo = StateT Int (State String)
If we try to use the put action of the MonadState
 typeclass, the instance we will get is that of StateT
 Int, because it’s at the top of the stack:
-- file: ch18/StackStack.hs
outerPut :: Int -> Foo ()
outerPut = put
In this case, the only way we can access
 the underlying State monad’s put is through use of lift:
-- file: ch18/StackStack.hs
innerPut :: String -> Foo ()
innerPut = lift . put
Sometimes, we need to access a monad
 more than one level down the stack, in which case we must compose
 calls to lift. Each composed use
 of lift gives us access to one
 deeper level:
-- file: ch18/StackStack.hs
type Bar = ReaderT Bool Foo

barPut :: String -> Bar ()
barPut = lift . lift . put
When we need to use lift, it can be good style to write wrapper
 functions that do the lifting for us, as just shown, and to use those.
 The alternative of sprinkling explicit uses of lift throughout our code tends to look
 messy. Worse, it hardwires the details of the layout of our monad
 stack into our code, which will complicate any subsequent modifications.

Understanding Monad Transformers by Building One

To give ourselves some insight into how monad transformers in
 general work, we will create one and describe its machinery as we go.
 Our target is simple and useful: MaybeT. Surprisingly, though, it is missing
 from the mtl library.
This monad transformer modifies the
 behavior of an underlying monad m a by wrapping its type
 parameter with Maybe, in order to get m (Maybe
 a). As with the Maybe monad, if we call fail in the MaybeT monad
 transformer, execution terminates early.
In order to turn m (Maybe a)
 into a Monad instance, we must make it a distinct type, via
 a newtype declaration:
-- file: ch18/MaybeT.hs
newtype MaybeT m a = MaybeT {
 runMaybeT :: m (Maybe a)
 }
We now need to define the three standard
 monad functions. The most complex is (>>=), and its innards shed the most
 light on what we are actually doing. Before we delve into its operation,
 let us first take a look at its type:
-- file: ch18/MaybeT.hs
bindMT :: (Monad m) => MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b
To understand this type signature, hark
 back to our discussion of multiparameter typeclasses in Multiparameter Typeclasses. The thing that we intend to make a
 Monad instance is the partial type
 MaybeT m; this has the usual single type parameter, a, that
 satisfies the requirements of the Monad typeclass.
The trick to understanding the body of our
 (>>=) implementation is that
 everything inside the do block
 executes in the underlying monad m,
 whatever that is:
-- file: ch18/MaybeT.hs
x `bindMT` f = MaybeT $ do
 unwrapped <- runMaybeT x
 case unwrapped of
 Nothing -> return Nothing
 Just y -> runMaybeT (f y)
Our runMaybeT function unwraps the result
 contained in x. Next, recall that the
 <- symbol desugars to (>>=): a monad transformer’s (>>=) must use the underlying monad’s
 (>>=). The final bit of case
 analysis determines whether we short-circuit or chain our computation.
 Finally, look back at the top of the body. Here, we must wrap the result
 with the MaybeT constructor, in order to once again hide
 the underlying monad.
The do
 notation just shown might be pleasant to read, but it hides the fact
 that we are relying on the underlying monad’s (>>=) implementation. Here is a more
 idiomatic version of (>>=)
 for MaybeT that makes this clearer:
-- file: ch18/MaybeT.hs
x `altBindMT` f =
 MaybeT $ runMaybeT x >>= maybe (return Nothing) (runMaybeT . f)
Now that we understand what (>>=) is doing, our implementations of
 return and fail need no explanation, and neither does
 our Monad instance:
-- file: ch18/MaybeT.hs
returnMT :: (Monad m) => a -> MaybeT m a
returnMT a = MaybeT $ return (Just a)

failMT :: (Monad m) => t -> MaybeT m a
failMT _ = MaybeT $ return Nothing

instance (Monad m) => Monad (MaybeT m) where
 return = returnMT
 (>>=) = bindMT
 fail = failMT
Creating a Monad Transformer

To turn our type into a monad transformer, we must provide an instance
 of the MonadTrans class so that a user can
 access the underlying monad:
-- file: ch18/MaybeT.hs
instance MonadTrans MaybeT where
 lift m = MaybeT (Just `liftM` m)
The underlying monad starts out with a
 type parameter of a: we “inject” the
 Just constructor so that it will acquire the type that we
 need, Maybe a. We then hide the monad with our
 MaybeT constructor.

More Typeclass Instances

Once we have an instance for MonadTrans defined, we can
 use it to define instances for the umpteen other mtl
 typeclasses:
-- file: ch18/MaybeT.hs
instance (MonadIO m) => MonadIO (MaybeT m) where
 liftIO m = lift (liftIO m)

instance (MonadState s m) => MonadState s (MaybeT m) where
 get = lift get
 put k = lift (put k)

-- ... and so on for MonadReader, MonadWriter, etc ...
Because several of the mtl
 typeclasses use functional dependencies, some of our instance
 declarations require us to considerably relax GHC’s usual strict type checking rules.
 (If we were to forget any of these directives, the compiler would
 helpfully advise us which ones we needed in its error
 messages.)
-- file: ch18/MaybeT.hs
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses,
 UndecidableInstances #-}
Is it better to use lift explicitly or to spend time writing
 these boilerplate instances? That depends on what we expect to do with
 our monad transformer. If we’re going to use it in just a few
 restricted situations, we can get away with providing an instance for
 MonadTrans alone. In this case, a few more instances
 might still make sense, such as MonadIO. On the other
 hand, if our transformer is going to pop up in diverse situations
 throughout a body of code, spending a dull hour to write those
 instances might be a good investment.

Replacing the Parse Type with a Monad Stack

Now that we have developed a monad
 transformer that can exit early, we can use it to bail if, for
 example, a parse fails partway through. We could thus replace the
 Parse type that we developed in Implicit State with a monad customized to our
 needs:
-- file: ch18/MaybeTParse.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module MaybeTParse
 (
 Parse
 , evalParse
) where

import MaybeT
import Control.Monad.State
import Data.Int (Int64)
import qualified Data.ByteString.Lazy as L

data ParseState = ParseState {
 string :: L.ByteString
 , offset :: Int64
 } deriving (Show)

newtype Parse a = P {
 runP :: MaybeT (State ParseState) a
 } deriving (Monad, MonadState ParseState)

evalParse :: Parse a -> L.ByteString -> Maybe a
evalParse m s = evalState (runMaybeT (runP m)) (ParseState s 0)
Exercise
	Our Parse monad is not a perfect replacement
 for its earlier counterpart. Because we are using
 Maybe instead of Either to represent a
 result, we can’t report any useful information if a parse
 fails.
Create an EitherT sometype monad transformer,
 and use it to implement a more capable Parse monad
 that can report an error message if parsing fails.

Tip
If you like to explore the Haskell libraries for fun, you
 may have run across an existing Monad instance for
 the Either type in the
 Control.Monad.Error module. We suggest that you do
 not use that as a guide. Its design is too restrictive: it turns
 Either String into a monad, when you could use a type
 parameter instead of String.
Hint: if you follow this suggestion,
 you’ll probably need to use the FlexibleInstances
 language extension in your definition.

Transformer Stacking Order Is Important

From our early examples using monad transformers such as ReaderT and StateT, it
 might be easy to conclude that the order in which we stack monad
 transformers doesn’t matter.
When we stack StateT on top
 of State, it should be clearer that order can indeed make a
 difference. The types StateT Int (State String) and
 StateT String (State Int) might carry around the same
 information, but we can’t use them interchangeably. The ordering
 determines when we need to use lift
 to get at one or the other piece of state.
Here’s a case that more dramatically
 demonstrates the importance of ordering. Suppose we have a computation
 that might fail, and we want to log the circumstances under which it
 does so:
-- file: ch18/MTComposition.hs
{-# LANGUAGE FlexibleContexts #-}
import Control.Monad.Writer
import MaybeT

problem :: MonadWriter [String] m => m ()
problem = do
 tell ["this is where i fail"]
 fail "oops"
Which of these monad stacks will give us
 the information we need?
-- file: ch18/MTComposition.hs
type A = WriterT [String] Maybe

type B = MaybeT (Writer [String])

a :: A ()
a = problem

b :: B ()
b = problem
Let’s try the alternatives in ghci:
ghci> runWriterT a
Loading package mtl-1.1.0.1 ... linking ... done.
Nothing
ghci> runWriter $ runMaybeT b
(Nothing,["this is where i fail"])
This difference in results should not come
 as a surprise—just look at the signatures of the execution
 functions:
ghci> :t runWriterT
runWriterT :: WriterT w m a -> m (a, w)
ghci> :t runWriter . runMaybeT
runWriter . runMaybeT :: MaybeT (Writer w) a -> (Maybe a, w)
Our
 WriterT-on-Maybe stack has Maybe
 as the underlying monad, so runWriterT must give us back a result of type
 Maybe. In our test case, we get to see only the log of what
 happened if nothing actually went wrong!
Stacking monad transformers is analogous
 to composing functions. If we change the order in which we apply
 functions and then get different results, we won’t be surprised. So it
 is with monad transformers, too.

Putting Monads and Monad Transformers into Perspective

It’s useful to step back from details for
 a few moments and look at the weaknesses and strengths of programming
 with monads and monad transformers.
Interference with Pure Code

Probably the biggest practical irritation of working with monads is that a
 monad’s type constructor often gets in our way when we’d like to use
 pure code. Many useful pure functions need monadic counterparts,
 simply to tack on a placeholder parameter m for
 some monadic type constructor:
ghci> :t filter
filter :: (a -> Bool) -> [a] -> [a]
ghci> :i filterM
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
 	-- Defined in Control.Monad
However, the coverage is incomplete: the
 standard libraries don’t always provide monadic versions of pure
 functions.
The reason for this lies in history.
 Eugenio Moggi introduced the idea of using monads for programming in 1988,
 around the time the Haskell 1.0 standard was being developed. Many of
 the functions in today’s Prelude date back to Haskell
 1.0, which was released in 1990. In 1991, Philip Wadler started
 writing for a wider functional programming audience about the
 potential of monads, at which point, they began to be put in
 use.
Not until 1996 and the release of
 Haskell 1.3 did the standard acquire support for monads. By this time,
 the language designers were already constrained by backwards
 compatibility: they couldn’t change the signatures of functions in the
 Prelude, because it would have broken existing
 code.
Since then, the Haskell community has
 learned a lot about creating suitable abstractions, so that we can
 write code that is less affected by the pure/monadic divide. You can
 find modern distillations of these ideas in the
 Data.Traversable and Data.Foldable modules. As appealing as those modules are, we do not cover them
 in this book. This is in part for want of space, but also because if
 you’re still following us at this point, you won’t have trouble
 figuring them out for yourself.
In an ideal world, would we make a break
 from the past and switch over Prelude to use
 Traversable and Foldable types? Probably
 not. Learning Haskell is already a stimulating enough adventure for
 newcomers. The Foldable and Traversable
 abstractions are easy to pick up when we already understand functors
 and monads, but they would put early learners on too pure a diet of
 abstraction. For teaching the language, it’s good
 that map operates on lists, not
 on functors.

Overdetermined Ordering

One of the principal reasons that we use
 monads is that they let us specify an ordering for effects. Look again
 at a small snippet of code we wrote earlier:
-- file: ch18/MTComposition.hs
{-# LANGUAGE FlexibleContexts #-}
import Control.Monad.Writer
import MaybeT

problem :: MonadWriter [String] m => m ()
problem = do
 tell ["this is where i fail"]
 fail "oops"
Because we are executing in a monad, we
 are guaranteed that the effect of the tell will occur before the effect of
 fail. The problem is that we get
 this guarantee of ordering even when we don’t necessarily want it: the
 compiler is not free to rearrange monadic code, even if doing so would
 make it more efficient.

Runtime Overhead

Finally, when we use monads and monad
 transformers, we can pay an efficiency tax. For instance, the
 State monad carries its state around in a closure.
 Closures might be cheap in a Haskell implementation, but they’re not
 free.
A monad transformer adds its own
 overhead to that of whatever is underneath. Our MaybeT
 transformer has to wrap and unwrap Maybe values every
 time we use (>>=). A stack
 of MaybeT on top of StateT over
 ReaderT thus has a lot of bookkeeping to do for each
 (>>=).
A sufficiently smart compiler might make
 some or all of these costs vanish, but that degree of sophistication
 is not yet widely available.
There are relatively simple techniques
 to avoid some of these costs, though we lack space to do more than
 mention them by name. For instance, using a continuation monad, we can
 avoid the constant wrapping and unwrapping in (>>=), paying only for effects when
 we use them. Much of the complexity of this approach has already been
 packaged up in libraries. This area of work is still under lively
 development as of this writing. If you want to make your use of monad
 transformers more efficient, we recommend looking on Hackage or asking
 for directions on a mailing list or IRC.

Unwieldy Interfaces

If we use the mtl library
 as a black box, all of its components mesh quite nicely. However, once
 we start developing our own monads and monad transformers, and also
 using them with those provided by mtl, some deficiencies
 start to show.
For example, if we create a new monad
 transformer FooT and want to follow the same pattern as
 mtl, we’ll have it implement a typeclass
 MonadFoo. If we really want to integrate it cleanly into
 the mtl, we’ll have to provide instances for each of the
 dozen or so mtl typeclasses.
On top of that, we’ll have to declare
 instances of MonadFoo for each of the mtl
 transformers. Most of those instances will be almost identical, and
 quite dull to write. If we want to keep integrating new monad
 transformers into the mtl framework, the number of moving
 parts we must deal with increases with the square
 of the number of new transformers!
In fairness, this problem matters to a
 tiny number of people only. Most users of mtl don’t need
 to develop new transformers at all, so they are not affected.
This weakness of mtl’s
 design lies with the fact that it was the first library of monad
 transformers that was developed. Given that its designers were
 plunging into the unknown, they did a remarkable job of producing a
 powerful library that is easy for most users to understand and work
 with.
A newer library of monads and
 transformers, monadLib, corrects many of the design flaws
 in mtl. If at some point you turn into a hardcore hacker
 of monad transformers, it is well worth looking at.
The quadratic instances definition is
 actually a problem with the approach of using monad transformers.
 There have been many other approaches put forward for composing monads
 that don’t have this problem, but none of them seem as convenient to
 the end user as monad transformers. Fortunately, there simply aren’t
 that many foundational, generically useful monad transformers.

Pulling It All Together

Monads are not by any means the end of
 the road when it comes to working with effects and types. What they
 are is the most practical resting point we have reached so far.
 Language researchers are always working on systems that try to provide
 similar advantages, without the
 same compromises.
Although we must make compromises when
 we use them, monads and monad transformers still offer a degree of
 flexibility and control that has no precedent in an imperative
 language. With just a few declarations, we can rewire something as
 fundamental as the semicolon to give it a new meaning.

[39] The name mtl stands for
 “monad transformer library.”

Chapter 19. Error Handling

Error handling is one of the most important—and overlooked—topics for
 programmers, regardless of the language used. In Haskell, you will find
 two major types of error handling employed: pure error handling and
 exceptions.
When we speak of pure error handling, we are
 referring to algorithms that do not require anything from the
 IO monad. We can often implement error handling for them
 simply by using Haskell’s expressive data type system to our advantage.
 Haskell also has an exception system. Due to the complexities of lazy
 evaluation, exceptions in Haskell can be thrown anywhere, but caught only
 within the IO monad. In this chapter, we’ll consider
 both.
Error Handling with Data Types

Let’s begin our discussion of error handling with a very simple function. Let’s say
 that we wish to perform division on a series of numbers. We have a
 constant numerator but wish to vary the denominator. We might come up
 with a function like this:
-- file: ch19/divby1.hs
divBy :: Integral a => a -> [a] -> [a]
divBy numerator = map (numerator `div`)
Very simple, right? We can play around
 with this a bit in ghci:
ghci> divBy 50 [1,2,5,8,10]
[50,25,10,6,5]
ghci> take 5 (divBy 100 [1..])
[100,50,33,25,20]
This behaves as expected: 50 / 1 is 50, 50 / 2
 is 25, and so forth.[40] This even worked with the infinite list [1..]. What happens if we sneak a 0 into our list somewhere?
ghci> divBy 50 [1,2,0,8,10]
[50,25,*** Exception: divide by zero

Isn’t that interesting? ghci started displaying the output, and then
 stopped with an exception when it got to the zero. That’s lazy
 evaluation at work—it calculated results as needed.
As we will see later in this chapter, in
 the absence of an explicit exception handler, this exception will crash
 the program. That’s obviously not desirable, so let’s consider better
 ways we could indicate an error in this pure function.
Use of Maybe

One immediately recognizable and easy
 way to indicate failure is to use Maybe.[41] Instead of just returning a list and throwing an
 exception on failure, we can return Nothing if the input list contains a zero
 anywhere, or return Just with the
 results otherwise. Here’s an implementation of such an
 algorithm:
-- file: ch19/divby2.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy _ [] = Just []
divBy _ (0:_) = Nothing
divBy numerator (denom:xs) =
 case divBy numerator xs of
 Nothing -> Nothing
 Just results -> Just ((numerator `div` denom) : results)
If you try it out in ghci, you’ll see that it works:
ghci> divBy 50 [1,2,5,8,10]
Just [50,25,10,6,5]
ghci> divBy 50 [1,2,0,8,10]
Nothing
The function that calls divBy can now use a case statement to see if the call was
 successful, just as divBy does when
 it calls itself.
Tip
You may note that you could use a
 monadic implementation of the preceding example, like so:
-- file: ch19/divby2m.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy numerator denominators =
 mapM (numerator `safeDiv`) denominators
 where safeDiv _ 0 = Nothing
 safeDiv x y = x `div` y
We will avoid the monadic
 implementation in this chapter for simplicity but wanted to point
 out that it exists.

Loss and preservation of laziness

The use of Maybe is convenient, but it has come at a
 cost. divBy can no longer handle
 infinite lists as input. Since the result is Maybe [a], the entire input list must be
 examined before we can be sure that we won’t be returning Nothing due to a zero somewhere in it. You
 can verify this is the case by attempting one of our earlier
 examples:
ghci> divBy 100 [1..]
*** Exception: stack overflow

Note that you don’t start seeing
 partial output here; you get no output. Notice
 that at each step in divBy
 (except for the case of an empty input list or a zero at the start
 of the list), the results from every subsequent element must be
 known before the results from the current element can be known. Thus
 this algorithm can’t work on infinite lists, and it is also not very
 space-efficient for large finite lists.
Having said all that, Maybe is often a fine choice. In this
 particular case, we don’t know whether there will be a problem until
 we get into evaluating the entire input. Sometimes we know of a
 problem up front—for instance, tail
 [] in ghci produces an
 exception. We could easily write an infinite-capable tail that doesn’t have this
 problem:
-- file: ch19/safetail.hs
safeTail :: [a] -> Maybe [a]
safeTail [] = Nothing
safeTail (_:xs) = Just xs
This simply returns Nothing if given an empty input list or
 Just with the result for anything
 else. Since we have only to make sure the list is nonempty before
 knowing whether or not we have an error, using Maybe here doesn’t reduce our laziness. We
 can test this out in ghci and see
 how it compares with regular tail:
ghci> tail [1,2,3,4,5]
[2,3,4,5]
ghci> safeTail [1,2,3,4,5]
Just [2,3,4,5]
ghci> tail []
*** Exception: Prelude.tail: empty list
ghci> safeTail []
Nothing
Here, we can see our safeTail performed as expected. But what
 about infinite lists? We don’t want to print out an infinite number
 of results, so we can test with take 5
 (tail [1..]) and a similar construction with safeTail:
ghci> take 5 (tail [1..])
[2,3,4,5,6]
ghci> case safeTail [1..] of {Nothing -> Nothing; Just x -> Just (take 5 x)}
Just [2,3,4,5,6]
ghci> take 5 (tail [])
*** Exception: Prelude.tail: empty list
ghci> case safeTail [] of {Nothing -> Nothing; Just x -> Just (take 5 x)}
Nothing
Here you can see that both tail and safeTail handled infinite lists just fine.
 Note that we were able to deal better with an empty input list;
 instead of throwing an exception, we decided to return Nothing in that situation. We were able to
 achieve error handling at no expense to laziness.
But how do we apply this to our
 divBy example? Let’s consider the
 situation there. Failure is a property of an individual bad input,
 not of the input list itself. How about making failure a property of
 an individual output element, rather than the output list itself?
 That is, instead of a function of type a -> [a] -> Maybe [a], we will
 have a -> [a] -> [Maybe a].
 This will have the benefit of preserving laziness, plus the caller
 will be able to determine exactly where in the list the problem
 is—or even just filter out the problem results if desired. Here’s an
 implementation:
-- file: ch19/divby3.hs
divBy :: Integral a => a -> [a] -> [Maybe a]
divBy numerator denominators =
 map worker denominators
 where worker 0 = Nothing
 worker x = Just (numerator `div` x)
Take a look at this function. We’re
 back to using map, which is a
 good thing for both laziness and simplicity. We can try it out in
 ghci and see that it works for
 finite and infinite lists just fine:
ghci> divBy 50 [1,2,5,8,10]
[Just 50,Just 25,Just 10,Just 6,Just 5]
ghci> divBy 50 [1,2,0,8,10]
[Just 50,Just 25,Nothing,Just 6,Just 5]
ghci> take 5 (divBy 100 [1..])
[Just 100,Just 50,Just 33,Just 25,Just 20]
We hope that you can take from this
 discussion the point that there is a distinction between the input
 not being well-formed (as in the case of safeTail) and the input potentially
 containing some bad data, as in the case of divBy. These two cases can often justify
 different handling of the results.

Usage of the Maybe monad

Back in Use of Maybe, we had an example program named divby2.hs. This example didn’t preserve
 laziness but returned a value of type Maybe
 [a]. The exact same algorithm could be expressed using a
 monadic style. For more information and important background on
 monads, please refer to Chapter 14. Here’s our new
 monadic-style algorithm:
-- file: ch19/divby4.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy _ [] = return []
divBy _ (0:_) = fail "division by zero in divBy"
divBy numerator (denom:xs) =
 do next <- divBy numerator xs
 return ((numerator `div` denom) : next)
The Maybe monad makes the expression of this
 algorithm look nicer. For the Maybe monad, return is the same as Just, and fail _
 = Nothing, so our error explanation string is never
 actually seen anywhere. We can test this algorithm with the same
 tests we used against divby2.hs
 if we want:
ghci> divBy 50 [1,2,5,8,10]
Just [50,25,10,6,5]
ghci> divBy 50 [1,2,0,8,10]
Nothing
ghci> divBy 100 [1..]
*** Exception: stack overflow
The code we wrote actually isn’t
 specific to the Maybe monad. By
 simply changing the type, we can make it work for
 any monad. Let’s try it:
-- file: ch19/divby5.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy = divByGeneric

divByGeneric :: (Monad m, Integral a) => a -> [a] -> m [a]
divByGeneric _ [] = return []
divByGeneric _ (0:_) = fail "division by zero in divByGeneric"
divByGeneric numerator (denom:xs) =
 do next <- divByGeneric numerator xs
 return ((numerator `div` denom) : next)
The divByGeneric function contains the same
 code as divBy did before; we just
 gave it a more general type. This is, in fact, the type that
 ghci infers if no type is given.
 We also defined a convenience function divBy with a more specific type.
Let’s try this out in ghci:
ghci> :l divby5.hs
[1 of 1] Compiling Main (divby5.hs, interpreted)
Ok, modules loaded: Main.
ghci> divBy 50 [1,2,5,8,10]
Just [50,25,10,6,5]
ghci> (divByGeneric 50 [1,2,5,8,10])::(Integral a => Maybe [a])
Just [50,25,10,6,5]
ghci> divByGeneric 50 [1,2,5,8,10]
[50,25,10,6,5]
ghci> divByGeneric 50 [1,2,0,8,10]
*** Exception: user error (division by zero in divByGeneric)
The first two inputs both produce the
 same output that we saw earlier. Since divByGeneric doesn’t have a specific
 return type, we must either give one or let the interpreter infer
 one from the environment. If we don’t give a specific return type,
 ghci infers the IO
 monad. You can see that in the third and fourth examples. The
 IO monad converts fail into an exception, as you can see
 with the fourth example.
The Control.Monad.Error module in the mtl package
 makes Either String into a monad
 as well. If you use Either, you
 can get a pure result that preserves the error message, like
 so:
ghci> :m +Control.Monad.Error
ghci> (divByGeneric 50 [1,2,5,8,10])::(Integral a => Either String [a])
Loading package mtl-1.1.0.1 ... linking ... done.
Right [50,25,10,6,5]
ghci> (divByGeneric 50 [1,2,0,8,10])::(Integral a => Either String [a])
Left "division by zero in divByGeneric"
This leads us into our next topic of
 discussion: using Either for
 returning error information.

Use of Either

The Either type is similar to the Maybe type, with one key difference: it can
 carry attached data both for an error and a success (“the
 Right answer”).[42] Although the language imposes no restrictions, by
 convention, a function returning an Either uses a Left return value to indicate an error, and it uses Right to indicate success. If it helps you
 remember, you can think of getting the Right answer. We can start with our
 divby2.hs example from the
 earlier section on Maybe and adapt
 it to work with Either:
-- file: ch19/divby6.hs
divBy :: Integral a => a -> [a] -> Either String [a]
divBy _ [] = Right []
divBy _ (0:_) = Left "divBy: division by 0"
divBy numerator (denom:xs) =
 case divBy numerator xs of
 Left x -> Left x
 Right results -> Right ((numerator `div` denom) : results)
This code is almost identical to the
 Maybe code; we’ve substituted
 Right for every Just. Left compares to Nothing, but now it can carry a message.
 Let’s check it out in ghci:
ghci> divBy 50 [1,2,5,8,10]
Right [50,25,10,6,5]
ghci> divBy 50 [1,2,0,8,10]
Left "divBy: division by 0"
Custom data types for errors

While a String indicating the cause of an error may be useful to humans down
 the road, it’s often helpful to define a custom error type that we
 can use to programmatically decide on a course of action based upon
 exactly what the problem was. For instance, let’s say that for some
 reason, besides 0, we also don’t want to divide by 10 or 20. We
 could define a custom error type like so:
-- file: ch19/divby7.hs
data DivByError a = DivBy0
 | ForbiddenDenominator a
 deriving (Eq, Read, Show)

divBy :: Integral a => a -> [a] -> Either (DivByError a) [a]
divBy _ [] = Right []
divBy _ (0:_) = Left DivBy0
divBy _ (10:_) = Left (ForbiddenDenominator 10)
divBy _ (20:_) = Left (ForbiddenDenominator 20)
divBy numerator (denom:xs) =
 case divBy numerator xs of
 Left x -> Left x
 Right results -> Right ((numerator `div` denom) : results)
Now, in the event of an error, the
 Left data could be inspected to find the exact cause. Or, it could
 simply be printed out with show,
 which will generate a reasonable idea of the problem as well. Here’s
 this function in action:
ghci> divBy 50 [1,2,5,8]
Right [50,25,10,6]
ghci> divBy 50 [1,2,5,8,10]
Left (ForbiddenDenominator 10)
ghci> divBy 50 [1,2,0,8,10]
Left DivBy0
Warning
All of these Either examples suffer from the lack of
 laziness that our early Maybe
 examples suffered from. We address that in an exercise question at
 the end of this chapter.

Monadic use of Either

Back in Usage of the Maybe monad, we showed you how to use Maybe in a monad. Either can be used in a monad too, but it
 can be slightly more complicated. The reason is that fail is hardcoded to accept only a
 String as the failure code, so we
 have to have a way to map such a string into whatever type we used
 for Left. As you saw earlier,
 Control.Monad.Error
 provides built-in support for Either
 String a, which involves no mapping for the argument to
 fail. Here’s how we can set up
 our example to work with Either
 in the monadic style:
-- file: ch19/divby8.hs
{-# LANGUAGE FlexibleContexts #-}

import Control.Monad.Error

data Show a =>
 DivByError a = DivBy0
 | ForbiddenDenominator a
 | OtherDivByError String
 deriving (Eq, Read, Show)

instance Error (DivByError a) where
 strMsg x = OtherDivByError x

divBy :: Integral a => a -> [a] -> Either (DivByError a) [a]
divBy = divByGeneric

divByGeneric :: (Integral a, MonadError (DivByError a) m) =>
 a -> [a] -> m [a]
divByGeneric _ [] = return []
divByGeneric _ (0:_) = throwError DivBy0
divByGeneric _ (10:_) = throwError (ForbiddenDenominator 10)
divByGeneric _ (20:_) = throwError (ForbiddenDenominator 20)
divByGeneric numerator (denom:xs) =
 do next <- divByGeneric numerator xs
 return ((numerator `div` denom) : next)
Here, we needed to turn on the FlexibleContexts language extension in
 order to provide the type signature for divByGeneric. The divBy function works exactly the same as
 before. For divByGeneric, we make
 divByError a member of the
 Error class by defining what
 happens when someone calls fail
 (the strMsg function). We also
 convert Right to return and Left to throwError to enable this to be
 generic.

Exceptions

Note
Version 6.10.1 of GHC was released as this book went to press.
 It introduces an extensible exception system. In the sections that
 follow, we document the older exception system. The two are similar,
 but not completely compatible.

Exception handling is found in many programming languages,
 including Haskell. It can be useful because, when a problem occurs,
 exception handling can provide an easy way of handling it, even if it
 occurs several layers down through a chain of function calls. With
 exceptions, it’s not necessary to check the return value of every
 function call for errors, and we must take care to produce a return
 value that reflects the error, as C programmers must do. In Haskell,
 thanks to monads and the Either and
 Maybe types, we can often achieve the
 same effects in pure code without the need to use exceptions and
 exception handling.
Some problems—especially those involving
 I/O—call for working with exceptions. In Haskell, exceptions may be
 thrown from any location in the program. However, due to the unspecified
 evaluation order, they can only be caught in the IO monad.
 Haskell exception handling doesn’t involve special syntax as it does in
 Python or Java. Rather, the mechanisms to catch and handle exceptions
 are—surprise—functions.
First Steps with Exceptions

In the Control.Exception module, various functions and types relating to exceptions are defined. There is an
 Exception type defined there; all exceptions are of type Exception. There are
 also functions for catching and handling exceptions. Let’s start by
 looking at try, which has type
 IO a -> IO (Either Exception a).
 This wraps an IO action with exception handling. If an
 exception is thrown, it will return a Left value with the exception; otherwise, it
 returns a Right value with the
 original result. Let’s try this out in ghci. We’ll first trigger an unhandled
 exception, and then try to catch it:
ghci> :m Control.Exception
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> print x
*** Exception: divide by zero
ghci> print y
5
ghci> try (print x)
Left divide by zero
ghci> try (print y)
5
Right ()
Notice that no exception was thrown by the let statements. That’s to be expected due to lazy evaluation; the division by
 zero won’t be attempted until it is demanded by the attempt to print
 out x. Also, notice that there were
 two lines of output from try
 (print y). The
 first line was produced by print,
 which displayed the digit 5 on the
 terminal. The second was produced by ghci and shows us that print y returned () and didn’t throw an exception.

Laziness and Exception Handling

Now that you know how try works, let’s try another experiment.
 Let’s say we want to catch the result of try for future evaluation, so we can handle
 the result of division. Perhaps we would do it like this:
ghci> result <- try (return x)
Right *** Exception: divide by zero

What happened here? Let’s try to piece
 it together, and illustrate with another attempt:
ghci> let z = undefined
ghci> try (print z)
Left Prelude.undefined
ghci> result <- try (return z)
Right *** Exception: Prelude.undefined
As before, assigning
 undefined to z was not
 a problem. The key to this puzzle, and to the division puzzle, lies
 with lazy evaluation. Specifically, it lies with return, which does not force the evaluation
 of its argument; it only wraps it up. So, the result of try (return undefined) would be Right undefined. Now, ghci wants to display this result on the
 terminal. It gets as far as printing out "Right ", but we can’t print out
 undefined (or the result of division by zero). So when we
 see the exception message, it’s coming from ghci, not your program.
This is a key point. Let’s think about
 why our earlier example worked and this one didn’t. Earlier, we put
 print x inside try. Printing the value of something, of
 course, requires it to be evaluated, so the exception was detected at
 the right place. But simply using return does not force evaluation. To solve
 this problem, the Control.Exception
 module defines the evaluate
 function. It behaves just like return but forces its argument to be
 evaluated immediately. Let’s try it:
ghci> let z = undefined
ghci> result <- try (evaluate z)
Left Prelude.undefined
ghci> result <- try (evaluate x)
Left divide by zero
There, that’s what was expected. This
 worked for both undefined and our division by zero
 example.
Tip
Remember: whenever you are trying to
 catch exceptions thrown by pure code, use evaluate instead of return inside your exception-catching
 function.

Using handle

Often, you may wish to perform one
 action if a piece of code completes without an exception, and
 perform a different action otherwise. For situations such as this,
 there’s a function called handle.
 This function has type (Exception -> IO a)
 -> IO a -> IO a. That is, it takes two parameters. The
 first is a function to call in the event where there is an exception
 while performing the second. Here’s one way we could use it:
ghci> :m Control.Exception
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> handle (_ -> putStrLn "Error calculating result") (print x)
Error calculating result
ghci> handle (_ -> putStrLn "Error calculating result") (print y)
5
This way, we can print out a nice message if there is
 an error in the calculations. It’s nicer than having the program crash
 with a division by zero error, for sure.

Selective Handling of Exceptions

One problem with the previous example is that it prints "Error calculating result" for
 any exception. There may have been an exception
 other than a division by zero exception. For instance, there may have
 been an error displaying the output, or some other exception could
 have been thrown by the pure code.
There’s a function handleJust for these situations. It lets you specify a test to see
 whether you are interested in a given exception. Let’s take a
 look:
-- file: ch19/hj1.hs
import Control.Exception

catchIt :: Exception -> Maybe ()
catchIt (ArithException DivideByZero) = Just ()
catchIt _ = Nothing

handler :: () -> IO ()
handler _ = putStrLn "Caught error: divide by zero"

safePrint :: Integer -> IO ()
safePrint x = handleJust catchIt handler (print x)
catchIt defines a function that decides
 whether or not we’re interested in a given exception. It returns
 Just if so, and Nothing if not. Also, the value attached to
 Just will be passed to our handler.
 We can now use safePrint
 nicely:
ghci> :l hj1.hs
[1 of 1] Compiling Main (hj1.hs, interpreted)
Ok, modules loaded: Main.
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> safePrint x
Caught error: divide by zero
ghci> safePrint y
5
The Control.Exception module also presents a number of functions that we can use as
 part of the test in handleJust to
 narrow down the kinds of exceptions we care about. For instance, there
 is a function arithExceptions of
 type Exception -> Maybe ArithException that
 will pick out any ArithException,
 but ignore any other one. We could use it like this:
-- file: ch19/hj2.hs
import Control.Exception

handler :: ArithException -> IO ()
handler e = putStrLn $ "Caught arithmetic error: " ++ show e

safePrint :: Integer -> IO ()
safePrint x = handleJust arithExceptions handler (print x)
In this way, we can catch all types of
 ArithException, but still let other
 exceptions pass through unmodified and uncaught. We can see it work
 like so:
ghci> :l hj2.hs
[1 of 1] Compiling Main (hj2.hs, interpreted)
Ok, modules loaded: Main.
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> safePrint x
Caught arithmetic error: divide by zero
ghci> safePrint y
5
Of particular interest is the ioErrors test, which corresponds to the
 large class of I/O-related exceptions.

I/O Exceptions

Perhaps the largest source of exceptions in any program is I/O.
 All sorts of things can go wrong when dealing with the outside world:
 disks can be full, networks can go down, or files can be empty when
 you expect them to have data. In Haskell, an I/O exception is just
 like any other exception in that the Exception data type can represent it. On the
 other hand, because there are so many types of I/O exceptions, a
 special module, System.IO.Error,
 exists for dealing with them.
System.IO.Error defines two functions,
 catch and try, that, like their counterparts in Control.Exception, are used to deal with
 exceptions. Unlike the Control.Exception functions, however, these
 functions will trap only I/O errors and will pass all other exceptions
 through uncaught. In Haskell, I/O errors all have type IOError, which is defined as the same as
 IOException.
Be careful which names you use
Because both System.IO.Error and Control.Exception define functions with
 the same names, if you import both in your program, you will get an
 error message about an ambiguous reference to a function. You can
 import one or the other module qualified, or hide the symbols from one
 module or the other.
Note that Prelude exports System.IO.Error’s version of catch, not the
 version provided by Control.Exception. Remember that
 the former can catch only I/O errors, while the latter can catch all
 exceptions. In other words, the catch in Control.Exception is
 almost always the one you will want, but it is
 not the one you will get by default.

Let’s take a look at one approach to
 using exceptions in the I/O system to our benefit. Back in Working with Files and Handles, we presented a program that used an imperative
 style to read lines from a file one by one. Although we subsequently
 demonstrated more compact, “Haskelly” ways to solve that problem,
 let’s revisit that example here. In the mainloop function, we had to explicitly test
 if we were at the end of the input file before each attempt to read a
 line from it. Instead, we could check if the attempt to read a line
 resulted in an EOF error, like so:
-- file: ch19/toupper-impch20.hs
import System.IO
import System.IO.Error
import Data.Char(toUpper)

main :: IO ()
main = do
 inh <- openFile "input.txt" ReadMode
 outh <- openFile "output.txt" WriteMode
 mainloop inh outh
 hClose inh
 hClose outh

mainloop :: Handle -> Handle -> IO ()
mainloop inh outh =
 do input <- try (hGetLine inh)
 case input of
 Left e ->
 if isEOFError e
 then return ()
 else ioError e
 Right inpStr ->
 do hPutStrLn outh (map toUpper inpStr)
 mainloop inh outh
Here, we use the System.IO.Error version of try to check whether hGetLine threw an IOError. If it did, we use isEOFError (defined in System.IO.Error) to see if the thrown
 exception indicated that we reached the end of the file. If it did, we
 exit the loop. If the exception was something else, we call ioError to rethrow it.
There are many such tests and ways to
 extract information from IOError
 defined in System.IO.Error. We
 recommend that you consult that page in the library reference when you
 need to know about them.

Throwing Exceptions

Thus far, we have talked in
 detail about handling exceptions. There is another piece to the
 puzzle: throwing exceptions.[43] In the examples we have visited so far in this chapter,
 the Haskell system throws exceptions for you. However, it is possible
 to throw any exception yourself. We’ll show you how.
You’ll notice that most of these functions appear to
 return a value of type a or
 IO a. This means that the function
 can appear to return a value of any type. In fact, because these
 functions throw exceptions, they never “return” anything in the normal
 sense. These return values let you use these functions in various
 contexts where various different types are expected.
Let’s start our tour of ways to throw
 exceptions with the functions in Control.Exception. The most generic
 function is throw, which has
 type Exception -> a. This
 function can throw any Exception,
 and can do so in a pure context. There is a companion
 function—throwIO with type Exception -> IO a—that throws an
 exception in the IO monad. Both functions require an
 Exception to throw. You can craft
 an Exception by hand or reuse an
 Exception that was previously
 created.
There is also a function ioError, which is defined identically in
 Control.Exception and System.IO.Error with type IOError -> IO a. This is used when you
 want to generate an arbitrary I/O-related exception.

Dynamic Exceptions

Dynamic Exceptions make use of two little-used Haskell modules: Data.Dynamic and Data.Typeable. We will not go into a great level of detail on those
 modules here, but we will give you the tools you need to craft and use
 your own dynamic exception type.
In Chapter 21, you
 will see that the HDBC database library uses dynamic exceptions to
 indicate errors from SQL databases back to applications. Errors from
 database engines often have
 three components: an integer that represents an error code, a state,
 and a human-readable error message. We will build up our own
 implementation of the HDBC SqlError
 type here. Let’s start with the data structure representing the error
 itself:
-- file: ch19/dynexc.hs
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Dynamic
import Control.Exception

data SqlError = SqlError {seState :: String,
 seNativeError :: Int,
 seErrorMsg :: String}
 deriving (Eq, Show, Read, Typeable)
By deriving the Typeable
 typeclass, we’ve made this type available for dynamically typed
 programming. In order for GHC to automatically generate a
 Typeable instance, we had to enable the
 DeriveDataTypeable language extension.[44]
Now, let’s define a catchSql and a handleSql that can be used to catch an
 exception that is an SqlError (note
 that the regular catch and handle functions cannot catch our SqlError, because it is not a type of
 Exception):
-- file: ch19/dynexc.hs
{- | Execute the given IO action.

If it raises a 'SqlError', then execute the supplied
handler and return its return value. Otherwise, proceed
as normal. -}
catchSql :: IO a -> (SqlError -> IO a) -> IO a
catchSql = catchDyn

{- | Like 'catchSql', with the order of arguments reversed. -}
handleSql :: (SqlError -> IO a) -> IO a -> IO a
handleSql = flip catchSql
These functions are simply thin
 wrappers around catchDyn, which has
 type Typeable exception => IO a ->
 (exception -> IO a) -> IO a. We simply restrict the
 type of this here so that it catches only SQL exceptions.
Normally, when an exception is thrown
 but not caught anywhere, the program will crash and display the
 exception to standard error. With a dynamic exception, however, the
 system will not know how to display this, so we will simply see an
 unhelpful “unknown exception” message. We can provide a utility so
 that application writers can simply say main
 = handleSqlError $ do ... and have confidence that any
 exceptions thrown (in that thread) will be displayed. Here’s how to
 write handleSqlError:
-- file: ch19/dynexc.hs
{- | Catches 'SqlError's, and re-raises them as IO errors with fail.
Useful if you don't care to catch SQL errors, but want to see a sane
error message if one happens. One would often use this as a
high-level wrapper around SQL calls. -}
handleSqlError :: IO a -> IO a
handleSqlError action =
 catchSql action handler
 where handler e = fail ("SQL error: " ++ show e)
Finally, here’s an example of how to
 throw an SqlError as an exception.
 Here’s a function that will do just that:
-- file: ch19/dynexc.hs
throwSqlError :: String -> Int -> String -> a
throwSqlError state nativeerror errormsg =
 throwDyn (SqlError state nativeerror errormsg)

throwSqlErrorIO :: String -> Int -> String -> IO a
throwSqlErrorIO state nativeerror errormsg =
 evaluate (throwSqlError state nativeerror errormsg)
Tip
As a reminder, evaluate is like return but forces the evaluation of its
 argument.

This completes our dynamic exception
 support. That was a lot of code, and you may not have needed that
 much, but we wanted to give you an example of the dynamic exception
 itself and the utilities that often go with it. In fact, these
 examples reflect almost exactly what is present in the HDBC library.
 Let’s play with these in ghci for a
 bit:
ghci> :l dynexc.hs
[1 of 1] Compiling Main (dynexc.hs, interpreted)
Ok, modules loaded: Main.
ghci> throwSqlErrorIO "state" 5 "error message"
*** Exception: (unknown)
ghci> handleSqlError $ throwSqlErrorIO "state" 5 "error message"
*** Exception: user error (SQL error: SqlError {seState = "state", seNativeError = 5,
seErrorMsg = "error message"})
ghci> handleSqlError $ fail "other error"
*** Exception: user error (other error)
From this, you can see that ghci doesn’t know how to display an SQL
 error by itself. However, you can also see that our handleSqlError function helped out with that
 but also passed through other errors unmodified. Let’s finally try out
 a custom handler:
ghci> handleSql (fail . seErrorMsg) (throwSqlErrorIO "state" 5 "my error")
*** Exception: user error (my error)

Here, we defined a custom error handler
 that threw a new exception, consisting of the message in the seErrorMsg field of the SqlError. You can see that it worked as
 intended.
Exercise
	Take the Either example
 and made it work with laziness in the style of the Maybe example.

Error Handling in Monads

Because we must catch exceptions in the IO monad, if
 we try to use them inside a monad, or in a stack of monad transformers,
 we’ll get bounced out to the IO monad. This is almost never
 what we would actually like.
We defined a MaybeT transformer in Understanding Monad Transformers by Building One, but it is more useful as an aid to
 understanding than a programming tool. Fortunately, a dedicated—and more
 useful—monad transformer already exists: ErrorT, which is
 defined in the Control.Monad.Error module.
The ErrorT
 transformer lets us add exceptions to a monad, but it uses its own
 special exception machinery, separate from that provided the
 Control.Exception module. It gives us some interesting
 capabilities:
	If we stick with the
 ErrorT interfaces, we can both throw and catch
 exceptions within this monad.

	Following the naming pattern of other
 monad transformers, the execution function is named runErrorT. An uncaught
 ErrorT exception will stop propagating upwards when it
 reaches runErrorT. We will not
 be kicked out to the IO monad.

	We control the type that our
 exceptions will have.

Do not confuse ErrorT with regular exceptions
If we use the throw function from
 Control.Exception inside ErrorT (or if we
 use error or
 undefined), we will still be bounced
 out to the IO monad.

As with other mtl monads,
 the interface that ErrorT provides is defined by a
 typeclass:
-- file: ch19/MonadError.hs
class (Monad m) => MonadError e m | m -> e where
 throwError :: e -- error to throw
 -> m a

 catchError :: m a -- action to execute
 -> (e -> m a) -- error handler
 -> m a
The type variable e represents the error type that we want to use.
 Whatever our error type is, we must make it an instance of the
 Error typeclass:
-- file: ch19/MonadError.hs
class Error a where
 -- create an exception with no message
 noMsg :: a

 -- create an exception with a message
 strMsg :: String -> a
ErrorT’s implementation of
 fail uses the strMsg function. It throws strMsg as an exception, passing it the string
 argument that it received. As for noMsg, it is used to provide an mzero implementation for the
 MonadPlus typeclass.
To support the strMsg and noMsg functions, our ParseError
 type will have a Chatty constructor. This will be used as
 the constructor if, for example, someone calls fail in our monad.
One last piece of plumbing that we need
 to know about is the type of the execution function
 runErrorT:
ghci> :t runErrorT
runErrorT :: ErrorT e m a -> m (Either e a)

A Tiny Parsing Framework

To illustrate the use of
 ErrorT, let’s develop the bare bones of a parsing library
 similar to Parsec:
-- file: ch19/ParseInt.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Error
import Control.Monad.State
import qualified Data.ByteString.Char8 as B

data ParseError = NumericOverflow
 | EndOfInput
 | Chatty String
 deriving (Eq, Ord, Show)

instance Error ParseError where
 noMsg = Chatty "oh noes!"
 strMsg = Chatty
For our parser’s state, we will create
 a very small monad transformer stack. A State
 monad carries around the ByteString to parse,
 and ErrorT is stacked on top to provide error
 handling:
-- file: ch19/ParseInt.hs
newtype Parser a = P {
 runP :: ErrorT ParseError (State B.ByteString) a
 } deriving (Monad, MonadError ParseError)
As usual, we have wrapped our monad
 stack in a newtype. This costs us nothing in performance
 but adds type safety. We deliberately avoided deriving an instance of
 MonadState B.ByteString. This means that users of the
 Parser monad will not be able to use get or put to query or modify the parser’s state.
 As a result, we force ourselves to do some manual lifting to get at
 the State monad in our stack. This is, however, very easy
 to do:
-- file: ch19/ParseInt.hs
liftP :: State B.ByteString a -> Parser a
liftP m = P (lift m)

satisfy :: (Char -> Bool) -> Parser Char
satisfy p = do
 s <- liftP get
 case B.uncons s of
 Nothing -> throwError EndOfInput
 Just (c, s')
 | p c -> liftP (put s') >> return c
 | otherwise -> throwError (Chatty "satisfy failed")
The catchError function is useful for tasks beyond simple error handling. For
 instance, we can easily defang an exception, turning it into a more
 friendly form:
-- file: ch19/ParseInt.hs
optional :: Parser a -> Parser (Maybe a)
optional p = (Just `liftM` p) `catchError` _ -> return Nothing
Our execution function merely plugs
 together the various layers and rearranges the result into a tidier
 form:
-- file: ch19/ParseInt.hs
runParser :: Parser a -> B.ByteString
 -> Either ParseError (a, B.ByteString)
runParser p bs = case runState (runErrorT (runP p)) bs of
 (Left err, _) -> Left err
 (Right r, bs) -> Right (r, bs)
If we load this into ghci, we can put it through its paces:
ghci> :m +Data.Char
ghci> let p = satisfy isDigit
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
ghci> runParser p (B.pack "x")
Left (Chatty "satisfy failed")
ghci> runParser p (B.pack "9abc")
Right ('9',"abc")
ghci> runParser (optional p) (B.pack "x")
Right (Nothing,"x")
ghci> runParser (optional p) (B.pack "9a")
Right (Just '9',"a")
Exercises
	Write a many parser,
 with type Parser a -> Parser [a]. It should
 apply a parser until it fails.

	Use many to write an
 int parser, with type
 Parser Int. It should accept negative and positive
 integers.

	Modify your int
 parser to throw a NumericOverflow exception if it
 detects a numeric overflow while parsing.

[40] We’re using integral division here, so
 50 / 8 shows as 6 instead of 6.25. We’re not using floating-point
 arithmetic in this example because division by zero with a Double produces the special value Infinity rather than an error.

[41] For an introduction to Maybe, refer to A More Controlled Approach.

[42] For more information on Either, refer to Handling Errors Through API Design.

[43] In some other languages, throwing
 an exception is referred to as raising
 it.

[44] It is possible to derive
 Typeable instances by hand, but that is
 cumbersome.

Chapter 20. Systems Programming in Haskell

So far, we’ve been talking mostly about high-level concepts. Haskell can also
 be used for lower-level systems programming. It is quite possible to write
 programs that interface with the operating system at a low level using
 Haskell.
In this chapter, we are going to attempt
 something ambitious: a Perl-like “language” that is valid Haskell,
 implemented in pure Haskell, that makes shell scripting easy. We are going to implement piping, easy
 command invocation, and some simple tools to handle tasks that might
 otherwise be performed with grep or
 sed.
Specialized modules exist for different
 operating systems. In this chapter, we will use generic OS-independent
 modules as much as possible. However, we will be focusing on the POSIX
 environment for much of the chapter. POSIX is a standard for Unix-like
 operating systems such as Linux, FreeBSD, MacOS X, or Solaris. Windows
 does not support POSIX by default, but the Cygwin environment provides a
 POSIX compatibility layer for Windows.
Running External Programs

It is possible to invoke external commands from Haskell. To do that, we
 suggest using rawSystem from
 the System.Cmd module. This will
 invoke a specified program, with the specified arguments, and return the
 exit code from that program. You can play with it in ghci:
ghci> :module System.Cmd
ghci> rawSystem "ls" ["-l", "/usr"]
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package unix-2.3.0.1 ... linking ... done.
Loading package process-1.0.0.1 ... linking ... done.
total 408
drwxr-xr-x 2 root root 94208 2008-08-22 04:51 bin
drwxr-xr-x 2 root root 4096 2008-04-07 14:44 etc
drwxr-xr-x 2 root root 4096 2008-04-07 14:44 games
drwxr-xr-x 155 root root 16384 2008-08-20 20:54 include
drwxr-xr-x 4 root root 4096 2007-11-01 21:31 java
drwxr-xr-x 6 root root 4096 2008-03-18 11:38 kerberos
drwxr-xr-x 70 root root 36864 2008-08-21 04:52 lib
drwxr-xr-x 212 root root 126976 2008-08-21 04:53 lib64
drwxr-xr-x 23 root root 12288 2008-08-21 04:53 libexec
drwxr-xr-x 15 root root 4096 2008-04-07 14:44 local
drwxr-xr-x 2 root root 20480 2008-08-21 04:53 sbin
drwxr-xr-x 347 root root 12288 2008-08-21 11:01 share
drwxr-xr-x 5 root root 4096 2008-04-07 14:44 src
lrwxrwxrwx 1 root root 10 2008-05-16 15:01 tmp -> ../var/tmp
drwxr-xr-x 2 root root 4096 2007-04-10 11:01 X11R6
ExitSuccess
Here, we run the equivalent of the shell
 command ls -l /usr. rawSystem does not parse arguments from a
 string or expand wild cards.[45] Instead, it expects every argument to be contained in a
 list. If you don’t want to pass any arguments, you can simply pass an
 empty list like this:
ghci> rawSystem "ls" []
calendartime.ghci modtime.ghci rp.ghci	 RunProcessSimple.hs
cmd.ghci	 posixtime.hs rps.ghci	 timediff.ghci
dir.ghci	 rawSystem.ghci RunProcess.hs time.ghci
ExitSuccess

Directory and File Information

The System.Directory module contains quite a few functions that can be used to obtain
 information from the filesystem. You can get a list of files in a
 directory, rename or delete files, copy files, change the current
 working directory, or create new directories. System.Directory is portable and works on any
 platform where GHC itself works.
The library
 reference for System.Directory provides a
 comprehensive list of the functions available. Let’s use ghci to demonstrate a few of them. Most of these functions are
 straightforward equivalents to C library calls or shell commands:
ghci> :module System.Directory
ghci> setCurrentDirectory "/etc"
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
ghci> getCurrentDirectory
"/etc"
ghci> setCurrentDirectory ".."
ghci> getCurrentDirectory
"/"
Here we saw commands to change the current
 working directory and obtain the current working directory from the
 system. These are similar to the cd
 and pwd commands in the POSIX
 shell:
ghci> getDirectoryContents "/"
["dev",".vmware","mnt","var","etc","net","..","lib","srv","media","lib64","opt",
".ccache","bin","selinux",".","lost+found","proc",".autorelabel",".autofsck",
"sys","misc","home","tmp","boot",".bash_history","root","sbin","usr"]

getDirectoryContents returns a list for every
 item in a given directory. Note that on POSIX systems, this list
 normally includes the special values "." and "..". You will usually want to filter these
 out when processing the content of the directory, perhaps like
 this:
ghci> getDirectoryContents "/" >>= return . filter (`notElem` [".", ".."])
["dev",".vmware","mnt","var","etc","net","lib","srv","media","lib64","opt",
".ccache","bin","selinux","lost+found","proc",".autorelabel",".autofsck",
"sys","misc","home","tmp","boot",".bash_history","root","sbin","usr"]

Tip
For a more detailed discussion of
 filtering the results of getDirectoryContents, refer to Chapter 8.
Is the filter
 (`notElem` [".", ".."]) part confusing? That could also be
 written as filter (\c -> not $ elem c
 [".", ".."]). The backticks in this case effectively let us
 pass the second argument to notElem; see Infix Functions for more information on backticks.

You can also query the system about the
 location of certain directories. This query will ask the underlying
 operating system for the information:
ghci> getHomeDirectory
"/home/bos"
ghci> getAppUserDataDirectory "myApp"
"/home/bos/.myApp"
ghci> getUserDocumentsDirectory
"/home/bos"

Program Termination

Developers often write individual programs to accomplish particular
 tasks. These individual parts may be combined to accomplish larger
 tasks. A shell script or another program may execute them. The calling
 script often needs a way to discover whether the program was able to
 complete its task successfully. Haskell automatically indicates a
 nonsuccessful exit whenever a program is aborted by an exception.
However, you may need more fine-grained
 control over the exit code than that. Perhaps you need to return
 different codes for different types of errors. The System.Exit module provides a way to exit the program and return a specific
 exit status code to the caller. You can call exitWith ExitSuccess to return a code
 indicating a successful termination (0 on POSIX systems). Or, you can
 call something like exitWith (ExitFailure
 5), which will return code 5 to the calling program.

Dates and Times

Everything from file timestamps to business transactions involve
 dates and times. Haskell provides ways for manipulating dates and times,
 as well as features for obtaining date and time information from the
 system.
ClockTime and CalendarTime

In Haskell, the System.Time module is primarily responsible for date and time handling. It
 defines two types: ClockTime and
 CalendarTime.
ClockTime is the Haskell version of the
 traditional POSIX epoch. A ClockTime represents a time relative to
 midnight the morning of January 1, 1970, Coordinated Universal Time
 (UTC). A negative ClockTime
 represents a number of seconds prior to that date, while a positive
 number represents a count of seconds after it.
ClockTime is convenient for computations.
 Since it tracks UTC, it doesn’t have to adjust for local time zones,
 daylight saving time, or other special cases in time handling. Every
 day is exactly (60 * 60 * 24) or 86,400 seconds,[46] which makes time interval calculations simple. You can,
 for instance, check the ClockTime at the start of a long task,
 again at the end, and simply subtract the start time from the end time
 to determine how much time elapsed. You can then divide by 3,600 and
 display the elapsed time as a count of hours if you wish.
ClockTime is ideal for answering questions
 such as these:
	How much time has elapsed?

	What will be the ClockTime 14 days ahead of this precise
 instant?

	When was the file last
 modified?

	What is the precise time right
 now?

These are good uses of ClockTime because they refer to precise,
 unambiguous moments in time. However, ClockTime is not as easily used for
 questions such as:
	Is today Monday?

	What day of the week will May 1 fall
 on next year?

	What is the current time in my local
 time zone, taking the potential presence of Daylight Saving Time (DST) into account?

CalendarTime stores time the way humans do:
 with a year, month, day, hour, minute, second, time zone, and DST
 information. It’s easy to convert this into a conveniently displayable
 string, or to answer questions about the local time.
You can convert between ClockTime and CalendarTime at will. Haskell includes
 functions to convert a ClockTime to
 a CalendarTime in the local time
 zone or to a CalendarTime representing UTC.
Using ClockTime

ClockTime is defined in System.Time like this:
data ClockTime = TOD Integer Integer
The first Integer represents the number of seconds
 since the epoch. The second Integer represents an additional
 number of picoseconds. Because ClockTime in Haskell uses the unbounded
 Integer type, it can effectively
 represent a date range limited only by computational
 resources.
Let’s look at some ways to use
 ClockTime. First, there is the
 getClockTime function that
 returns the current time according to the system’s clock:
ghci> :module System.Time
ghci> getClockTime
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Sat Aug 23 22:30:03 PDT 2008
If you wait a second and run getClockTime again, it will return an updated time. Notice that the output
 from this command is a nice-looking string, complete with
 day-of-week information. That’s due to the Show instance for ClockTime. Let’s look at the ClockTime at a lower
 level:
ghci> TOD 1000 0
Wed Dec 31 16:16:40 PST 1969
ghci> getClockTime >>= (\(TOD sec _) -> return sec)
1219555803
Here we first construct a ClockTime representing the point in time
 1,000 seconds after midnight on January 1, 1970, UTC. That moment in
 time is known as the epoch. Depending on your
 time zone, this moment in time may correspond to the evening of
 December 31, 1969, in your local time zone.
In the second example we pull the
 number of seconds out of the value returned by getClockTime. We can now manipulate it,
 like so:
ghci> getClockTime >>= (\(TOD sec _) -> return (TOD (sec + 86400) 0))
Sun Aug 24 22:30:03 PDT 2008

This will display what the time will
 be exactly 24 hours from now in your local time zone, since there
 are 86,400 seconds in 24 hours.

Using CalendarTime

As its name implies, CalendarTime represents time like we would on a calendar. It has fields for
 information such as year, month, and day. CalendarTime and its associated types are
 defined like this:
data CalendarTime = CalendarTime
 {ctYear :: Int, -- Year (post-Gregorian)
 ctMonth :: Month,
 ctDay :: Int, -- Day of the month (1 to 31)
 ctHour :: Int, -- Hour of the day (0 to 23)
 ctMin :: Int, -- Minutes (0 to 59)
 ctSec :: Int, -- Seconds (0 to 61, allowing for leap seconds)
 ctPicosec :: Integer, -- Picoseconds
 ctWDay :: Day, -- Day of the week
 ctYDay :: Int, -- Day of the year (0 to 364 or 365)
 ctTZName :: String, -- Name of timezone
 ctTZ :: Int, -- Variation from UTC in seconds
 ctIsDST :: Bool -- True if Daylight Saving Time in effect
 }

data Month = January | February | March | April | May | June
 | July | August | September | October | November | December

data Day = Sunday | Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday
There are a few things about these
 structures that should be highlighted:
	ctWDay, ctYDay, and ctTZName are generated by the library functions that create a
 CalendarTime but are not used
 in calculations. If you are creating a CalendarTime by hand, it is not
 necessary to put accurate values into these fields, unless your
 later calculations will depend upon them.

	All of these three types are
 members of the Eq, Ord, Read, and Show typeclasses. In addition,
 Month and Day are declared as members of the Enum and
 Bounded typeclasses. For more
 information on these typeclasses, refer to Important Built-in Typeclasses.
You can generate CalendarTime values several ways. You
 could start by converting a ClockTime to a CalendarTime such as this:
ghci> :module System.Time
ghci> now <- getClockTime
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Sat Aug 23 22:29:59 PDT 2008
ghci> nowCal <- toCalendarTime now
CalendarTime {ctYear = 2008, ctMonth = August, ctDay = 23, ctHour = 22,
ctMin = 29,ctSec = 59, ctPicosec = 877577000000, ctWDay = Saturday,
ctYDay = 235, ctTZName ="PDT", ctTZ = -25200, ctIsDST = True}
ghci> let nowUTC = toUTCTime now
ghci> nowCal
CalendarTime {ctYear = 2008, ctMonth = August, ctDay = 23, ctHour = 22,
ctMin = 29, ctSec = 59, ctPicosec = 877577000000, ctWDay = Saturday,
ctYDay = 235, ctTZName = "PDT", ctTZ = -25200, ctIsDST = True}
ghci> nowUTC
CalendarTime {ctYear = 2008, ctMonth = August, ctDay = 24, ctHour = 5,
ctMin = 29, ctSec = 59, ctPicosec = 877577000000, ctWDay = Sunday,
ctYDay = 236, ctTZName = "UTC", ctTZ = 0, ctIsDST = False}
We used getClockTime to obtain the current
 ClockTime from the system’s
 clock. Next, toCalendarTime
 converts the ClockTime to a
 CalendarTime representing the
 time in the local time zone. toUTCtime performs a similar
 conversion, but its result is in the UTC time zone instead of
 the local time zone.
Notice that toCalendarTime is an IO function, but toUTCTime is not. The reason is that
 toCalendarTime returns a
 different result depending upon the locally configured time
 zone, but toUTCTime will
 return the exact same result whenever it is passed the same
 source ClockTime.
It’s easy to modify a CalendarTime value:
ghci> nowCal {ctYear = 1960}
CalendarTime {ctYear = 1960, ctMonth = August, ctDay = 23,
ctHour = 22, ctMin = 29, ctSec = 59, ctPicosec = 877577000000,
ctWDay = Saturday, ctYDay = 235, ctTZName = "PDT",
ctTZ = -25200, ctIsDST = True}
ghci> (\(TOD sec _) -> sec) (toClockTime nowCal)
1219555799
ghci> (\(TOD sec _) -> sec) (toClockTime (nowCal {ctYear = 1960}))
-295209001
In this example, we first took the
 CalendarTime value from
 earlier and simply switched its year to 1960. Then, we used
 toClockTime to convert the
 unmodified value to a ClockTime, and then the modified
 value, so you can see the difference. Notice that the modified
 value shows a negative number of seconds once converted to
 ClockTime. That’s to be
 expected, since a ClockTime
 is an offset from midnight on January 1, 1970, UTC, and this
 value is in 1960.
You can also create CalendarTime values manually:
ghci> let newCT = CalendarTime 2010 January 15 12 30 0 0 Sunday 0 "UTC" 0 False
ghci> newCT
CalendarTime {ctYear = 2010, ctMonth = January, ctDay = 15, ctHour = 12,
ctMin = 30, ctSec = 0, ctPicosec = 0, ctWDay = Sunday, ctYDay = 0,
ctTZName = "UTC", ctTZ = 0, ctIsDST = False}
ghci> (\(TOD sec _) -> sec) (toClockTime newCT)
1263558600
Note that even though January 15,
 2010, isn’t a Sunday—and isn’t day 0 in the year—the system was
 able to process this just fine. In fact, if we convert the value
 to a ClockTime and then back
 to a CalendarTime, you’ll
 find those fields properly filled in:
ghci> toUTCTime . toClockTime $ newCT
CalendarTime {ctYear = 2010, ctMonth = January, ctDay = 15, ctHour = 12,
ctMin = 30, ctSec = 0, ctPicosec = 0, ctWDay = Friday, ctYDay = 14,
ctTZName = "UTC", ctTZ = 0, ctIsDST = False}

TimeDiff for ClockTime

Because it can be difficult to
 manage differences between ClockTime values in a human-friendly way,
 the System.Time module includes a
 TimeDiff type. TimeDiff can be used, where convenient, to
 handle these differences. It is defined like this:
data TimeDiff = TimeDiff
 {tdYear :: Int,
 tdMonth :: Int,
 tdDay :: Int,
 tdHour :: Int,
 tdMin :: Int,
 tdSec :: Int,
 tdPicosec :: Integer}
Functions such as diffClockTimes and addToClockTime take a ClockTime and a
 TimeDiff and
 handle the calculations internally by converting to a CalendarTime in UTC, applying the
 differences, and converting back to a ClockTime.
Let’s see how it works:
ghci> :module System.Time
ghci> let feb5 = toClockTime $ CalendarTime 2008 February 5 0 0 0 0 Sunday 0
"UTC" 0 False
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
ghci> feb5
Mon Feb 4 16:00:00 PST 2008
ghci> addToClockTime (TimeDiff 0 1 0 0 0 0 0) feb5
Tue Mar 4 16:00:00 PST 2008
ghci> toUTCTime $ addToClockTime (TimeDiff 0 1 0 0 0 0 0) feb5
CalendarTime {ctYear = 2008, ctMonth = March, ctDay = 5, ctHour = 0,
ctMin = 0, ctSec = 0, ctPicosec = 0, ctWDay = Wednesday, ctYDay = 64,
ctTZName = "UTC", ctTZ = 0, ctIsDST = False}
ghci> let jan30 = toClockTime $ CalendarTime 2009 January 30 0 0 0 0
Sunday 0 "UTC" 0 False
ghci> jan30
Thu Jan 29 16:00:00 PST 2009
ghci> addToClockTime (TimeDiff 0 1 0 0 0 0 0) jan30
Sun Mar 1 16:00:00 PST 2009
ghci> toUTCTime $ addToClockTime (TimeDiff 0 1 0 0 0 0 0) jan30
CalendarTime {ctYear = 2009, ctMonth = March, ctDay = 2, ctHour = 0, ctMin = 0,
ctSec = 0, ctPicosec = 0, ctWDay = Monday, ctYDay = 60, ctTZName = "UTC", ctTZ =
0, ctIsDST = False}
ghci> diffClockTimes jan30 feb5
TimeDiff {tdYear = 0, tdMonth = 0, tdDay = 0, tdHour = 0, tdMin = 0, tdSec = 31104000,
tdPicosec = 0}
ghci> normalizeTimeDiff $ diffClockTimes jan30 feb5
TimeDiff {tdYear = 0, tdMonth = 12, tdDay = 0, tdHour = 0, tdMin = 0, tdSec = 0,
tdPicosec = 0}
We started by generating a ClockTime representing midnight February
 5, 2008 in UTC. Note that, unless your time zone is the same as UTC,
 when this time is printed out on the display, it may show up as the
 evening of February 4 because it is formatted for your local time
 zone.
Next, we add one month to it
 by calling addToClockTime. 2008 is a leap year, but
 the system handled that properly and we get a result that has the
 same date and time in March. Using toUTCTime, we can see the effect on this
 in the original UTC time zone.
For a second experiment, we set up a
 time representing midnight on January 30, 2009 in UTC. 2009 is not a
 leap year, so we might wonder what will happen when trying to add
 one month to it. We can see that, since neither February 29 or 30
 exist in 2009, we wind up with March 2.
Finally, we can see how diffClockTimes turns two ClockTime values into a TimeDiff,
 though only the seconds and picoseconds are filled in. The normalizeTimeDiff function takes such a
 TimeDiff and reformats it as a
 human might expect to see it.

File Modification Times

Many programs need to find out when particular files were last
 modified. Programs such as ls or
 graphical file managers typically display the modification time of
 files. The System.Directory
 module contains a cross-platform getModificationTime function. It takes a
 filename and returns a ClockTime
 representing the time the file was last modified. For instance:
ghci> :module System.Directory
ghci> getModificationTime "/etc/passwd"
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Mon Jul 14 04:06:29 PDT 2008
POSIX platforms maintain not just a
 modification time (known as mtime), but also the time of last read or
 write access (atime) and the time of last status change (ctime). Since
 this information is POSIX-specific, the cross-platform System.Directory module does not provide
 access to it. Instead, you will need to use functions in System.Posix.Files.
 Here is an example function to do that:
-- file: ch20/posixtime.hs
-- posixtime.hs

import System.Posix.Files
import System.Time
import System.Posix.Types

-- | Given a path, returns (atime, mtime, ctime)
getTimes :: FilePath -> IO (ClockTime, ClockTime, ClockTime)
getTimes fp =
 do stat <- getFileStatus fp
 return (toct (accessTime stat),
 toct (modificationTime stat),
 toct (statusChangeTime stat))

-- | Convert an EpochTime to a ClockTime
toct :: EpochTime -> ClockTime
toct et =
 TOD (truncate (toRational et)) 0
Notice that call to getFileStatus. That call maps directly to
 the C function stat(). Its return
 value stores a vast assortment of information, including file type,
 permissions, owner, group, and the three time values we’re interested
 in. System.Posix.Files provides
 various functions, such as accessTime, that extract the information
 we’re interested out of the opaque FileStatus type returned by getFileStatus.
The functions such as accessTime return data in a POSIX-specific
 type called EpochTime, which converts to a ClockTime using the toct function. System.Posix.Files also provides a
 setFileTimes function to set the atime and mtime for a file.[47]

Extended Example: Piping

We’ve just seen how to invoke external
 programs. Sometimes we need more control than that. Perhaps we need to
 obtain the output from those programs, provide input, or even chain
 together multiple external programs. Piping can help with all of these
 needs. Piping is often used in shell scripts. When you set up a pipe in
 the shell, you run multiple programs. The output of the first program is
 sent to the input of the second. Its output is sent to the third as
 input, and so on. The last program’s output normally goes to the
 terminal, or it could go to a file. Here’s an example session with the
 POSIX shell to illustrate piping:
$ ls /etc | grep 'm.*ap' | tr a-z A-Z
IDMAPD.CONF
MAILCAP
MAILCAP.ORDER
MEDIAPRM
TERMCAP
This command runs three programs, piping
 data between them. It starts with ls /etc, which outputs a list of all
 files or directories in /etc. The
 output of ls is sent as input to
 grep. We gave grep a regular expression that will cause it
 to output only the lines that start with 'm' and then contain "ap" somewhere in the line. Finally, the
 result of that is sent to tr. We gave
 tr options to convert everything to
 uppercase. The output of tr isn’t set
 anywhere in particular, so it is displayed on the screen.
In this situation, the shell handles
 setting up all the pipelines between programs. By using some of the
 POSIX tools in Haskell, we can accomplish the same thing.
Before describing how to do this, we
 should first warn you that the System.Posix modules expose a very low-level
 interface to Unix systems. The interfaces can be complex and their
 interactions can be complex as well, regardless of the programming
 language you use to access them. The full nature of these low-level
 interfaces has been the topic of entire books themselves, so we will
 just scratch the surface in this chapter.
Using Pipes for Redirection

POSIX defines a function that creates a pipe. This function returns two file
 descriptors (FDs), which are similar in concept to a Haskell Handle. One FD is the reading end of the
 pipe, and the other is the writing end. Anything that is written to
 the writing end can be read by the reading end. The data is “shoved
 through a pipe.” In Haskell, you call createPipe to access this interface.
Having a pipe is the first step to being
 able to pipe data between external programs. We must also be able to
 redirect the output of a program to a pipe and the input of another
 program from a pipe. The Haskell function dupTo accomplishes this. It takes an FD and
 makes a copy of it at another FD number. POSIX FDs for standard input,
 standard output, and standard error have the predefined FD numbers of
 0, 1, and 2, respectively. By renumbering an endpoint of a pipe to one
 of those numbers, we effectively can cause programs to have their
 input or output redirected.
There is another piece of the puzzle,
 however. We can’t just use dupTo
 before a call such as rawSystem
 because that would mess up the standard input or output of our main
 Haskell process. Moreover, rawSystem blocks until the invoked program
 executes, leaving us no way to start multiple processes running in
 parallel. To make this happen, we must use forkProcess. This is a very special function. It actually makes a
 copy of the program currently running and we wind up with two copies
 of the program running at the same time. Haskell’s forkProcess function takes a function to
 execute in the new process (known as the child). We have that function
 call dupTo. After it has done that,
 it calls executeFile to actually
 invoke the command. This is also a special function: if all goes well,
 it never returns. That’s because executeFile
 replaces the running process with a different program. Eventually, the
 original Haskell process will call getProcessStatus to wait for the child processes to terminate and learn of
 their exit codes.
Whenever you run a command on POSIX
 systems, whether you’ve just typed ls on the command line or used rawSystem in Haskell, under the hood,
 forkProcess, executeFile, and
 getProcessStatus (or their C
 equivalents) are always being used. To set up pipes, we duplicate the
 process that the system uses to start up programs, and add a few steps
 involving piping and redirection along the way.
There are a few other housekeeping
 things we must be careful about. When you call forkProcess, just about everything about
 your program is cloned.[48] That includes the set of open file descriptors
 (handles). Programs detect when they’re done receiving input from a
 pipe by checking the end-of-file indicator. When the process at the
 writing end of a pipe closes the pipe, the process at the reading end
 will receive an end-of-file indication. However, if the writing file
 descriptor exists in more than one process, the end-of-file indicator
 won’t be sent until all processes have closed that particular FD.
 Therefore, we must keep track of which FDs are opened so that we can
 close them all in the child processes. We must also close the child
 ends of the pipes in the parent process as soon as possible.
Here is an initial implementation of a
 system of piping in Haskell:
-- file: ch20/RunProcessSimple.hs
{-# OPTIONS_GHC -fglasgow-exts #-}
-- RunProcessSimple.hs

module RunProcessSimple where

import System.Process
import Control.Concurrent
import Control.Concurrent.MVar
import System.IO
import System.Exit
import Text.Regex
import System.Posix.Process
import System.Posix.IO
import System.Posix.Types

{- | The type for running external commands. The first part
of the tuple is the program name. The list represents the
command-line parameters to pass to the command. -}
type SysCommand = (String, [String])

{- | The result of running any command -}
data CommandResult = CommandResult {
 cmdOutput :: IO String, -- ^ IO action that yields the output
 getExitStatus :: IO ProcessStatus -- ^ IO action that yields exit result
 }

{- | The type for handling global lists of FDs to always close in the clients
-}
type CloseFDs = MVar [Fd]

{- | Class representing anything that is a runnable command -}
class CommandLike a where
 {- | Given the command and a String representing input,
 invokes the command. Returns a String
 representing the output of the command. -}
 invoke :: a -> CloseFDs -> String -> IO CommandResult

-- Support for running system commands
instance CommandLike SysCommand where
 invoke (cmd, args) closefds input =
 do -- Create two pipes: one to handle stdin and the other
 -- to handle stdout. We do not redirect stderr in this program.
 (stdinread, stdinwrite) <- createPipe
 (stdoutread, stdoutwrite) <- createPipe

 -- We add the parent FDs to this list because we always need
 -- to close them in the clients.
 addCloseFDs closefds [stdinwrite, stdoutread]

 -- Now, grab the closed FDs list and fork the child.
 childPID <- withMVar closefds (\fds ->
 forkProcess (child fds stdinread stdoutwrite))

 -- Now, on the parent, close the client-side FDs.
 closeFd stdinread
 closeFd stdoutwrite

 -- Write the input to the command.
 stdinhdl <- fdToHandle stdinwrite
 forkIO $ do hPutStr stdinhdl input
 hClose stdinhdl

 -- Prepare to receive output from the command
 stdouthdl <- fdToHandle stdoutread

 -- Set up the function to call when ready to wait for the
 -- child to exit.
 let waitfunc =
 do status <- getProcessStatus True False childPID
 case status of
 Nothing -> fail $ "Error: Nothing from getProcessStatus"
 Just ps -> do removeCloseFDs closefds
 [stdinwrite, stdoutread]
 return ps
 return $ CommandResult {cmdOutput = hGetContents stdouthdl,
 getExitStatus = waitfunc}

 -- Define what happens in the child process
 where child closefds stdinread stdoutwrite =
 do -- Copy our pipes over the regular stdin/stdout FDs
 dupTo stdinread stdInput
 dupTo stdoutwrite stdOutput

 -- Now close the original pipe FDs
 closeFd stdinread
 closeFd stdoutwrite

 -- Close all the open FDs we inherited from the parent
 mapM_ (\fd -> catch (closeFd fd) (_ -> return ())) closefds

 -- Start the program
 executeFile cmd True args Nothing

-- Add FDs to the list of FDs that must be closed post-fork in a child
addCloseFDs :: CloseFDs -> [Fd] -> IO ()
addCloseFDs closefds newfds =
 modifyMVar_ closefds (\oldfds -> return $ oldfds ++ newfds)

-- Remove FDs from the list
removeCloseFDs :: CloseFDs -> [Fd] -> IO ()
removeCloseFDs closefds removethem =
 modifyMVar_ closefds (\fdlist -> return $ procfdlist fdlist removethem)

 where
 procfdlist fdlist [] = fdlist
 procfdlist fdlist (x:xs) = procfdlist (removefd fdlist x) xs

 -- We want to remove only the first occurance ot any given fd
 removefd [] _ = []
 removefd (x:xs) fd
 | fd == x = xs
 | otherwise = x : removefd xs fd

{- | Type representing a pipe. A 'PipeCommand' consists of a source
and destination part, both of which must be instances of
'CommandLike'. -}
data (CommandLike src, CommandLike dest) =>
 PipeCommand src dest = PipeCommand src dest

{- | A convenient function for creating a 'PipeCommand'. -}
(-|-) :: (CommandLike a, CommandLike b) => a -> b -> PipeCommand a b
(-|-) = PipeCommand

{- | Make 'PipeCommand' runnable as a command -}
instance (CommandLike a, CommandLike b) =>
 CommandLike (PipeCommand a b) where
 invoke (PipeCommand src dest) closefds input =
 do res1 <- invoke src closefds input
 output1 <- cmdOutput res1
 res2 <- invoke dest closefds output1
 return $ CommandResult (cmdOutput res2) (getEC res1 res2)

{- | Given two 'CommandResult' items, evaluate the exit codes for
both and then return a "combined" exit code. This will be ExitSuccess
if both exited successfully. Otherwise, it will reflect the first
error encountered. -}
getEC :: CommandResult -> CommandResult -> IO ProcessStatus
getEC src dest =
 do sec <- getExitStatus src
 dec <- getExitStatus dest
 case sec of
 Exited ExitSuccess -> return dec
 x -> return x

{- | Execute a 'CommandLike'. -}
runIO :: CommandLike a => a -> IO ()
runIO cmd =
 do -- Initialize our closefds list
 closefds <- newMVar []

 -- Invoke the command
 res <- invoke cmd closefds []

 -- Process its output
 output <- cmdOutput res
 putStr output

 -- Wait for termination and get exit status
 ec <- getExitStatus res
 case ec of
 Exited ExitSuccess -> return ()
 x -> fail $ "Exited: " ++ show x
Let’s experiment with this in ghci a bit before looking at how it
 works:
ghci> :load RunProcessSimple.hs
[1 of 1] Compiling RunProcessSimple (RunProcessSimple.hs, interpreted)
Ok, modules loaded: RunProcessSimple.
ghci> runIO $ ("pwd", []::[String])
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package unix-2.3.0.1 ... linking ... done.
Loading package process-1.0.0.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
Loading package regex-compat-0.71.0.1 ... linking ... done.
/home/bos/src/darcs/book/examples/ch20
ghci> runIO $ ("ls", ["/usr"])
bin
etc
games
include
java
kerberos
lib
lib64
libexec
local
sbin
share
src
tmp
X11R6
ghci> runIO $ ("ls", ["/usr"]) -|- ("grep", ["^l"])
lib
lib64
libexec
local
ghci> runIO $ ("ls", ["/etc"]) -|- ("grep", ["m.*ap"]) -|- ("tr", ["a-z", "A-Z"])
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
We start by running a simple command,
 pwd, which just prints the name of the current working directory.
 We pass [] for the list of
 arguments, because pwd doesn’t need
 any arguments. Due to the typeclasses used, Haskell can’t infer the
 type of [], so we specifically
 mention that it’s a String.
Then we get into more complex commands.
 We run ls, sending it through
 grep. At the end, we set up a pipe
 to run the exact same command that we ran via a shell-built pipe at
 the start of this section. It’s not yet as pleasant as it was in the
 shell, but then again our program is still relatively simple when
 compared to the shell.
Let’s look at the program. The very
 first line has a special OPTIONS_GHC clause. This is the same as passing -fglasgow-exts to ghc or ghci. We are using a GHC extension that
 permits us to use a (String,
 [String]) type as an instance of a typeclass.[49] Putting it in the source file means we don’t have to
 remember to specify it every time we use this module.
After the import lines, we define a few types. First,
 we define type SysCommand = (String,
 [String]) as an alias. This is the type a command to be
 executed by the system will take. We used data of this type for each
 command in the example execution above. The CommandResult type represents the result
 from executing a given command, and the CloseFDs type represents the list of FDs
 that we must close upon forking a new child process.
Next, we define a class named CommandLike, which will be used to run
 “things,” where a “thing” might be a standalone program, a pipe set up
 between two or more programs, or in the future, even pure Haskell
 functions. To be a member of this class, only one function—invoke—needs to be present for a given type.
 This will let us use runIO to start
 either a standalone command or a pipeline. It will also be useful for
 defining a pipeline, since we may have a whole stack of commands on
 one or both sides of a given command.
Our piping infrastructure is going to
 use strings as the way of sending data from one process to another. We
 can take advantage of Haskell’s support for lazy reading via hGetContents while reading data, and use
 forkIO to let writing occur in the
 background. This will work well, although not as fast as connecting
 the endpoints of two processes directly together.[50] It makes implementation quite simple, however. We need
 only take care to do nothing that would require the entire String to be buffered, and let Haskell’s
 laziness do the rest.
Next, we define an instance of CommandLike for SysCommand. We create two pipes: one to use
 for the new process’s standard input, and the other for its standard
 output. This creates four endpoints, and thus four file descriptors.
 We add the parent file descriptors to the list of those that must be
 closed in all children. These would be the write end of the child’s
 standard input, and the read end of the child’s standard output. Next,
 we fork the child process. In the parent, we can then close the file
 descriptors that correspond to the child. We can’t do that before the
 fork, because they wouldn’t be available to the child. We obtain a
 handle for the stdinwrite file
 descriptor, and start a thread via forkIO to write the input data to it. We
 then define waitfunc, which is the
 action that the caller will invoke when it is ready to wait for the
 called process to terminate. Meanwhile, the child uses dupTo, closes the file descriptors it
 doesn’t need, and executes the command.
Next, we define some utility functions
 to manage the list of file descriptors. After that, we define the
 tools that help set up pipelines. First, we define a new type PipeCommand that has a source and
 destination. Both the source and destination must be members of
 CommandLike. We also define the
 -|- convenience operator. Then, we
 make PipeCommand an instance of CommandLike. Its invoke implementation starts the first
 command with the given input, obtains its output, and passes that
 output to the invocation of the second command. It then returns the
 output of the second command and causes the getExitStatus function to wait for and check
 the exit statuses from both commands.
We finish by defining runIO. This function establishes the list of
 FDs that must be closed in the client, starts the command, displays
 its output, and checks its exit status.

Better Piping

Our previous example solved the basic
 need of letting us set up shell-like pipes. There are some other
 features that it would be nice to have though:
	Support more shell-like
 syntax

	The ability to let people pipe data
 into external programs or regular Haskell functions, freely mixing
 and matching the two

	The ability to return the final
 output and exit code in a way that Haskell programs can readily
 use

Fortunately, we already have most of the
 pieces to support this in place. We need only to add a few more
 instances of CommandLike to support
 this and a few more functions similar to runIO. Here is a revised example that
 implements all of these features:
-- file: ch20/RunProcess.hs
{-# OPTIONS_GHC -fglasgow-exts #-}

module RunProcess where

import System.Process
import Control.Concurrent
import Control.Concurrent.MVar
import Control.Exception(evaluate)
import System.Posix.Directory
import System.Directory(setCurrentDirectory)
import System.IO
import System.Exit
import Text.Regex
import System.Posix.Process
import System.Posix.IO
import System.Posix.Types
import Data.List
import System.Posix.Env(getEnv)

{- | The type for running external commands. The first part
of the tuple is the program name. The list represents the
command-line parameters to pass to the command. -}
type SysCommand = (String, [String])

{- | The result of running any command -}
data CommandResult = CommandResult {
 cmdOutput :: IO String, -- ^ IO action that yields the output
 getExitStatus :: IO ProcessStatus -- ^ IO action that yields exit result
 }

{- | The type for handling global lists of FDs to always close in the clients
-}
type CloseFDs = MVar [Fd]

{- | Class representing anything that is a runnable command -}
class CommandLike a where
 {- | Given the command and a String representing input,
 invokes the command. Returns a String
 representing the output of the command. -}
 invoke :: a -> CloseFDs -> String -> IO CommandResult

-- Support for running system commands
instance CommandLike SysCommand where
 invoke (cmd, args) closefds input =
 do -- Create two pipes: one to handle stdin and the other
 -- to handle stdout. We do not redirect stderr in this program.
 (stdinread, stdinwrite) <- createPipe
 (stdoutread, stdoutwrite) <- createPipe

 -- We add the parent FDs to this list because we always need
 -- to close them in the clients.
 addCloseFDs closefds [stdinwrite, stdoutread]

 -- Now, grab the closed FDs list and fork the child.
 childPID <- withMVar closefds (\fds ->
 forkProcess (child fds stdinread stdoutwrite))

 -- Now, on the parent, close the client-side FDs.
 closeFd stdinread
 closeFd stdoutwrite

 -- Write the input to the command.
 stdinhdl <- fdToHandle stdinwrite
 forkIO $ do hPutStr stdinhdl input
 hClose stdinhdl

 -- Prepare to receive output from the command
 stdouthdl <- fdToHandle stdoutread

 -- Set up the function to call when ready to wait for the
 -- child to exit.
 let waitfunc =
 do status <- getProcessStatus True False childPID
 case status of
 Nothing -> fail $ "Error: Nothing from getProcessStatus"
 Just ps -> do removeCloseFDs closefds
 [stdinwrite, stdoutread]
 return ps
 return $ CommandResult {cmdOutput = hGetContents stdouthdl,
 getExitStatus = waitfunc}

 -- Define what happens in the child process
 where child closefds stdinread stdoutwrite =
 do -- Copy our pipes over the regular stdin/stdout FDs
 dupTo stdinread stdInput
 dupTo stdoutwrite stdOutput

 -- Now close the original pipe FDs
 closeFd stdinread
 closeFd stdoutwrite

 -- Close all the open FDs we inherited from the parent
 mapM_ (\fd -> catch (closeFd fd) (_ -> return ())) closefds

 -- Start the program
 executeFile cmd True args Nothing

{- | An instance of 'CommandLike' for an external command. The String is
passed to a shell for evaluation and invocation. -}
instance CommandLike String where
 invoke cmd closefds input =
 do -- Use the shell given by the environment variable SHELL,
 -- if any. Otherwise, use /bin/sh
 esh <- getEnv "SHELL"
 let sh = case esh of
 Nothing -> "/bin/sh"
 Just x -> x
 invoke (sh, ["-c", cmd]) closefds input

-- Add FDs to the list of FDs that must be closed post-fork in a child
addCloseFDs :: CloseFDs -> [Fd] -> IO ()
addCloseFDs closefds newfds =
 modifyMVar_ closefds (\oldfds -> return $ oldfds ++ newfds)

-- Remove FDs from the list
removeCloseFDs :: CloseFDs -> [Fd] -> IO ()
removeCloseFDs closefds removethem =
 modifyMVar_ closefds (\fdlist -> return $ procfdlist fdlist removethem)

 where
 procfdlist fdlist [] = fdlist
 procfdlist fdlist (x:xs) = procfdlist (removefd fdlist x) xs

 -- We want to remove only the first occurance ot any given fd
 removefd [] _ = []
 removefd (x:xs) fd
 | fd == x = xs
 | otherwise = x : removefd xs fd

-- Support for running Haskell commands
instance CommandLike (String -> IO String) where
 invoke func _ input =
 return $ CommandResult (func input) (return (Exited ExitSuccess))

-- Support pure Haskell functions by wrapping them in IO
instance CommandLike (String -> String) where
 invoke func = invoke iofunc
 where iofunc :: String -> IO String
 iofunc = return . func

-- It's also useful to operate on lines. Define support for line-based
-- functions both within and without the IO monad.

instance CommandLike ([String] -> IO [String]) where
 invoke func _ input =
 return $ CommandResult linedfunc (return (Exited ExitSuccess))
 where linedfunc = func (lines input) >>= (return . unlines)

instance CommandLike ([String] -> [String]) where
 invoke func = invoke (unlines . func . lines)

{- | Type representing a pipe. A 'PipeCommand' consists of a source
and destination part, both of which must be instances of
'CommandLike'. -}
data (CommandLike src, CommandLike dest) =>
 PipeCommand src dest = PipeCommand src dest

{- | A convenient function for creating a 'PipeCommand'. -}
(-|-) :: (CommandLike a, CommandLike b) => a -> b -> PipeCommand a b
(-|-) = PipeCommand

{- | Make 'PipeCommand' runnable as a command -}
instance (CommandLike a, CommandLike b) =>
 CommandLike (PipeCommand a b) where
 invoke (PipeCommand src dest) closefds input =
 do res1 <- invoke src closefds input
 output1 <- cmdOutput res1
 res2 <- invoke dest closefds output1
 return $ CommandResult (cmdOutput res2) (getEC res1 res2)

{- | Given two 'CommandResult' items, evaluate the exit codes for
both and then return a "combined" exit code. This will be ExitSuccess
if both exited successfully. Otherwise, it will reflect the first
error encountered. -}
getEC :: CommandResult -> CommandResult -> IO ProcessStatus
getEC src dest =
 do sec <- getExitStatus src
 dec <- getExitStatus dest
 case sec of
 Exited ExitSuccess -> return dec
 x -> return x

{- | Different ways to get data from 'run'.

 * IO () runs, throws an exception on error, and sends stdout to stdout.

 * IO String runs, throws an exception on error, reads stdout into
 a buffer, and returns it as a string.

 * IO [String] is same as IO String, but returns the results as lines.

 * IO ProcessStatus runs and returns a ProcessStatus with the exit
 information. stdout is sent to stdout. Exceptions are not thrown.

 * IO (String, ProcessStatus) is like IO ProcessStatus, but also
 includes a description of the last command in the pipe to have
 an error (or the last command, if there was no error).

 * IO Int returns the exit code from a program directly. If a signal
 caused the command to be reaped, returns 128 + SIGNUM.

 * IO Bool returns True if the program exited normally (exit code 0,
 not stopped by a signal) and False otherwise.

-}
class RunResult a where
 {- | Runs a command (or pipe of commands), with results presented
 in any number of different ways. -}
 run :: (CommandLike b) => b -> a

-- | Utility function for use by 'RunResult' instances
setUpCommand :: CommandLike a => a -> IO CommandResult
setUpCommand cmd =
 do -- Initialize our closefds list
 closefds <- newMVar []

 -- Invoke the command
 invoke cmd closefds []

instance RunResult (IO ()) where
 run cmd = run cmd >>= checkResult

instance RunResult (IO ProcessStatus) where
 run cmd =
 do res <- setUpCommand cmd

 -- Process its output
 output <- cmdOutput res
 putStr output

 getExitStatus res

instance RunResult (IO Int) where
 run cmd = do rc <- run cmd
 case rc of
 Exited (ExitSuccess) -> return 0
 Exited (ExitFailure x) -> return x
 Terminated x -> return (128 + (fromIntegral x))
 Stopped x -> return (128 + (fromIntegral x))

instance RunResult (IO Bool) where
 run cmd = do rc <- run cmd
 return ((rc::Int) == 0)

instance RunResult (IO [String]) where
 run cmd = do r <- run cmd
 return (lines r)

instance RunResult (IO String) where
 run cmd =
 do res <- setUpCommand cmd

 output <- cmdOutput res

 -- Force output to be buffered
 evaluate (length output)

 ec <- getExitStatus res
 checkResult ec
 return output

checkResult :: ProcessStatus -> IO ()
checkResult ps =
 case ps of
 Exited (ExitSuccess) -> return ()
 x -> fail (show x)

{- | A convenience function. Refers only to the version of 'run'
that returns @IO ()@. This prevents you from having to cast to it
all the time when you do not care about the result of 'run'.
-}
runIO :: CommandLike a => a -> IO ()
runIO = run

--
-- Utility Functions
--
cd :: FilePath -> IO ()
cd = setCurrentDirectory

{- | Takes a string and sends it on as standard output.
The input to this function is never read. -}
echo :: String -> String -> String
echo inp _ = inp

-- | Search for the regexp in the lines. Return those that match.
grep :: String -> [String] -> [String]
grep pat = filter (ismatch regex)
 where regex = mkRegex pat
 ismatch r inp = case matchRegex r inp of
 Nothing -> False
 Just _ -> True

{- | Creates the given directory. A value of 0o755 for mode would be typical.
An alias for System.Posix.Directory.createDirectory. -}
mkdir :: FilePath -> FileMode -> IO ()
mkdir = createDirectory

{- | Remove duplicate lines from a file (like Unix uniq).
Takes a String representing a file or output and plugs it through
lines and then nub to uniqify on a line basis. -}
uniq :: String -> String
uniq = unlines . nub . lines

-- | Count number of lines. wc -l
wcL, wcW :: [String] -> [String]
wcL inp = [show (genericLength inp :: Integer)]

-- | Count number of words in a file (like wc -w)
wcW inp = [show ((genericLength $ words $ unlines inp) :: Integer)]

sortLines :: [String] -> [String]
sortLines = sort

-- | Count the lines in the input
countLines :: String -> IO String
countLines = return . (++) "\n" . show . length . lines
Here’s what has changed:
	A new CommandLike instance for String that uses the shell to evaluate
 and invoke the string.

	New CommandLike instances for String -> IO String and various other
 types that are implemented in terms of this one. These process
 Haskell functions as commands.

	A new RunResult typeclass that defines a
 function run that returns
 information about the command in many different ways. See the
 comments in the source for more information. runIO is now just an alias for one
 particular RunResult
 instance.

	A few utility functions providing
 Haskell implementations of familiar Unix shell commands.

Let’s try out the new shell features.
 First, let’s make sure that the command we used in the previous
 example still works. Then, let’s try it using a more shell-like
 syntax.
ghci> :load RunProcess.hs
[1 of 1] Compiling RunProcess (RunProcess.hs, interpreted)
Ok, modules loaded: RunProcess.
ghci> runIO $ ("ls", ["/etc"]) -|- ("grep", ["m.*ap"]) -|- ("tr", ["a-z", "A-Z"])
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package unix-2.3.0.1 ... linking ... done.
Loading package process-1.0.0.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
Loading package regex-compat-0.71.0.1 ... linking ... done.
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
ghci> runIO $ "ls /etc" -|- "grep 'm.*ap'" -|- "tr a-z A-Z"
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
That was a lot easier to type. Let’s try
 substituting our native Haskell implementation of grep and try out some other new features as
 well:
ghci> runIO $ "ls /etc" -|- grep "m.*ap" -|- "tr a-z A-Z"
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
ghci> run $ "ls /etc" -|- grep "m.*ap" -|- "tr a-z A-Z" :: IO String
"IDMAPD.CONF\nMAILCAP\nPM-UTILS-HD-APM-RESTORE.CONF\n"
ghci> run $ "ls /etc" -|- grep "m.*ap" -|- "tr a-z A-Z" :: IO [String]
["IDMAPD.CONF","MAILCAP","PM-UTILS-HD-APM-RESTORE.CONF"]
ghci> run $ "ls /nonexistant" :: IO String
ls: cannot access /nonexistant: No such file or directory
*** Exception: user error (Exited (ExitFailure 2))
ghci> run $ "ls /nonexistant" :: IO ProcessStatus
ls: cannot access /nonexistant: No such file or directory
Exited (ExitFailure 2)
ghci> run $ "ls /nonexistant" :: IO Int
ls: cannot access /nonexistant: No such file or directory
2
ghci> runIO $ echo "Line1\nHi, test\n" -|- "tr a-z A-Z" -|- sortLines
HI, TEST
LINE1

Final Words on Pipes

We have developed a sophisticated system
 here. We warned you earlier that POSIX can be complex. One other thing
 we need to highlight: you must always make sure to evaluate the
 String returned by these functions
 before you attempt to evaluate the exit code of the child process. The
 child process will often not exit until it can write all of its data,
 and if you do this in the wrong order, your program will hang.
In this chapter, we developed, from the
 ground up, a simplified version of HSH. If you wish to use these
 shell-like capabilities in your own programs, we recommend HSH instead
 of the example developed here due to optimizations present in HSH. HSH
 also comes with a larger set of utility functions and more
 capabilities, but the source code behind the library is much more
 complex and large. Some of the utility functions presented here, in
 fact, were copied verbatim from HSH. HSH is available at http://software.complete.org/hsh.

[45] There is also a function system that takes only a single string and
 passes it through the shell to parse. We recommend using rawSystem instead, because the shell
 attaches special meaning to certain characters, which could lead to
 security issues or unexpected behavior.

[46] Some will note that UTC defines leap
 seconds at irregular intervals. The POSIX standard, which Haskell
 follows, states that every day is exactly 86,400 seconds in length
 in its representation, so you need not be concerned about leap
 seconds when performing routine calculations. The exact manner of
 handling leap seconds is system-dependent and complex, though
 usually it can be explained as having a “long second.” This nuance
 is generally only of interest when performing precise subsecond
 calculations.

[47] It is not normally possible to set
 the ctime on POSIX systems.

[48] The main exception is threads, which
 are not cloned.

[49] This extension is well-supported in
 the Haskell community; Hugs users can access the same thing with
 hugs -98 +o.

[50] The Haskell library HSH provides a
 similar API to that presented here, but it uses a more efficient
 (and much more complex) mechanism of connecting pipes directly
 between external processes without the data needing to pass
 through Haskell. This is the same approach that the shell takes,
 and it reduces the CPU load of handling piping.

Chapter 21. Using Databases

Everything from web forums to podcatchers or even backup programs
 frequently use databases for persistent storage. SQL-based databases are
 often quite convenient: they are fast, can scale from tiny to massive
 sizes, can operate over the network, often help handle locking and
 transactions, and can even provide failover and redundancy improvements for applications. Databases
 come in many different shapes: the large commercial databases such as
 Oracle, open source engines such as PostgreSQL or MySQL, and even
 embeddable engines such as Sqlite.
Because databases are so important, Haskell
 support for them is important as well. In this chapter, we will introduce
 you to one of the Haskell frameworks for working with databases. We will
 also use this framework to begin building a podcast downloader, which we
 will further develop in Chapter 22.
Overview of HDBC

At the bottom of the database stack is
 the database engine, which is
 responsible for actually storing data on disk. Well-known database
 engines include PostgreSQL, MySQL, and Oracle.
Most modern database engines support
 the Structured Query Language (SQL) as a standard way of
 getting data into and out of relational databases. This book will not
 provide a tutorial on SQL or relational database management.[51]
Once you have a database engine that
 supports SQL, you need a way to communicate with it. Each database has
 its own protocol. Since SQL is reasonably constant across databases, it
 is possible to make a generic interface that uses drivers for each
 individual protocol.
Haskell has several different database
 frameworks available, some providing high-level layers atop others. For
 this chapter, we will concentrate on the Haskell DataBase Connectivity
 system (HDBC). HDBC is a database abstraction library. That is, you can
 write code that uses HDBC and can access data stored in almost any SQL
 database with little or no modification.[52] Even if you never need to switch underlying database
 engines, the HDBC system of drivers makes a large number of choices
 available to you with a single interface.
Another database abstraction library for
 Haskell is HSQL, which shares a similar purpose with HDBC. There is also
 a higher-level framework called HaskellDB, which sits atop either HDBC
 or HSQL and is designed to help insulate the programmer from the details
 of working with SQL. However, it does not have as broad appeal because
 its design limits it to certain—albeit quite common—database access
 patterns. Finally, Takusen is a framework that uses a “left fold”
 approach to reading data from the database.

Installing HDBC and Drivers

To connect to a given database with HDBC,
 you need at least two packages: the generic interface and a
 driver for your specific database. You can obtain the generic HDBC
 package, and all of the other drivers, from Hackage.[53] For this chapter, we will use HDBC version 1.1.3.
You’ll also need a database backend and a
 backend driver. For this chapter, we’ll use Sqlite version 3. Sqlite is
 an embedded database, so it doesn’t require a separate server and is
 easy to set up. Many operating systems already ship with Sqlite version
 3. If yours doesn’t, you can download it from http://www.sqlite.org/. The HDBC home page has a link to
 known HDBC backend drivers. The specific driver for Sqlite version 3 can
 be obtained from Hackage.
If you want to use HDBC with other
 databases, check out the HDBC Known Drivers page at http://software.complete.org/hdbc/wiki/KnownDrivers.
 There you will find a link to the ODBC binding, which lets you connect
 to virtually any database on virtually any platform (Windows, POSIX, and
 others). You will also find a PostgreSQL binding. MySQL is supported via
 the ODBC binding, and specific information for MySQL users can be found
 in the HDBC-ODBC
 API documentation.

Connecting to Databases

To connect to a database, you will use a connection function from a
 database backend driver. Each database has its own unique method of
 connecting. The initial connection is generally the only time you will
 call anything from a backend driver module directly.
The database connection function will
 return a database handle. The precise type of this handle may vary from
 one driver to the next, but it will always be an instance of the
 IConnection typeclass. All of the functions you will use to operate on databases
 will work with any type that is an instance of IConnection. When you’re done talking to the
 database, call the disconnect
 function to disconnect from it. Here’s an example of making a
 connection to an Sqlite database:
ghci> :module Database.HDBC Database.HDBC.Sqlite3
ghci> conn <- connectSqlite3 "test1.db"
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package HDBC-1.1.4 ... linking ... done.
Loading package HDBC-sqlite3-1.1.4.0 ... linking ... done.
ghci> :type conn
conn :: Connectionghci> disconnect conn

Transactions

Most modern SQL databases have a notion of transactions. A transaction is designed
 to ensure that all components of a modification get applied, or that
 none of them do. Furthermore, transactions help prevent other processes
 accessing the same database from seeing partial data from modifications
 that are in progress.
Many databases require you to either
 explicitly commit all your changes before they appear on disk, or to run
 in an autocommit mode. Autocommit mode runs an implicit commit after every
 statement. This may make the adjustment to transactional databases
 easier for programmers not accustomed to them, but it is just a
 hindrance to people who actually want to use multistatement
 transactions.
HDBC intentionally does not support
 autocommit mode. When you modify data in your databases, you must
 explicitly cause it to be committed to disk. There are two ways to do
 that in HDBC: you can call commit
 when you’re ready to write the data to disk, or you can use the withTransaction function to wrap around your modification code. withTransaction will cause data to be
 committed upon successful completion of your function.
Sometimes a problem will occur while you
 are working on writing data to the database. Perhaps you get an error
 from the database or discover a problem with the data. In these
 instances, you can “roll back” your changes. This will cause all changes
 you made since your last commit or
 rollback to be forgotten. In HDBC, you can call the rollback function to do
 this. If you are using withTransaction, any uncaught exception will
 cause a rollback to be issued.
Note that a roll back operation rolls back
 only the changes since the last commit, rollback, or withTransaction. A database does not maintain
 an extensive history like a version-control system. You will see
 examples of commit later in this
 chapter.
Warning
One popular database, MySQL, does not
 support transactions with its default table type. In its default
 configuration, MySQL will silently ignore calls to commit or rollback and will commit all changes to disk
 immediately. The HDBC ODBC driver has instructions for configuring MySQL to indicate to
 HDBC that it does not support transactions, which will cause commit and rollback to generate errors. Alternatively,
 you can use InnoDB tables with MySQL, which do support transactions.
 InnoDB tables are recommended for use with HDBC.

Simple Queries

Some of the simplest queries in SQL involve statements that don’t
 return any data. These queries can be used to create tables, insert
 data, delete data, and set database parameters.
The most basic function for sending
 queries to a database is run. This
 function takes an IConnection, a
 String representing the query itself,
 and a list of parameters. Let’s use it to set up some things in our
 database:
ghci> :module Database.HDBC Database.HDBC.Sqlite3
ghci> conn <- connectSqlite3 "test1.db"
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package HDBC-1.1.4 ... linking ... done.
Loading package HDBC-sqlite3-1.1.4.0 ... linking ... done.
ghci> run conn "CREATE TABLE test (id INTEGER NOT NULL, desc VARCHAR(80))" []
0
ghci> run conn "INSERT INTO test (id) VALUES (0)" []
1
ghci> commit conn
ghci> disconnect conn
In this example, after connecting to the
 database, we first created a table called test. Then we inserted one row of data into
 the table. Finally, we committed the changes and disconnected from the
 database. Note that if we hadn’t called commit, no final change would have been
 written to the database at all.
The run
 function returns the number of rows that each query modified. For the
 first query, which created a table, no rows were modified. The second
 query inserted a single row, so run
 returned 1.

SqlValue

Before proceeding, we need to discuss a data type introduced in HDBC: SqlValue. Since both Haskell and SQL are
 strongly typed systems, HDBC tries to preserve type information as much
 as possible. At the same time, Haskell and SQL types don’t exactly
 mirror each other. Furthermore, different databases have different ways
 of representing things such as dates or special characters in
 strings.
SqlValue is a data type that has a number of
 constructors such as SqlString,
 SqlBool, SqlNull, SqlInteger, and more. This lets you represent
 various types of data in argument lists to the database and see various
 types of data in the results coming back, and still store it all in a
 list. There are convenience functions, toSql and fromSql, that you will normally use. If you
 care about the precise representation of data, you can still manually
 construct SqlValue data if you need
 to.

Query Parameters

HDBC, like most databases, supports a notion of replaceable parameters in queries.
 There are three primary benefits of using replaceable parameters: they
 prevent SQL injection attacks or trouble when the input contains quote
 characters, they improve performance when executing similar queries
 repeatedly, and they permit easy and portable insertion of data into
 queries.
Let’s say you want to add thousands of
 rows into our new table test. You
 could issue queries that look like INSERT INTO
 test VALUES (0, 'zero') and INSERT
 INTO test VALUES (1, 'one'). This forces the database server
 to parse each SQL statement individually. If you could replace the two
 values with a placeholder, the server could parse the SQL query once and
 just execute it multiple times with the different data.
A second problem involves escaping
 characters. What if you want to insert the string "I don't like 1"? SQL uses the single quote
 character to show the end of the field. Most SQL databases would require
 you to write this as 'I don''t like
 1'. But rules for other special characters such as backslashes
 differ between databases. Rather than trying to code this yourself, HDBC
 can handle it all for you. Let’s look at an example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> run conn "INSERT INTO test VALUES (?, ?)" [toSql 0, toSql "zero"]
1
ghci> commit conn
ghci> disconnect conn
The question marks in the INSERT
 query in this example are the placeholders. We then pass the
 parameters that are going to go there. run takes a list of SqlValue, so we use toSql to convert each item into an SqlValue. HDBC automatically handles
 conversion of the String "zero" into the appropriate representation for
 the database in use.
This approach won’t actually achieve any
 performance benefits when inserting large amounts of data. For that, we
 need more control over the process of creating the SQL query. We’ll
 discuss that in the next section.
Using replaceable parameters
Replaceable parameters work only for
 parts of the queries where the server is expecting a value, such as a
 WHERE clause in a SELECT statement or a value for an INSERT statement.
 You cannot say run "SELECT * from ?" [toSql
 "tablename"] and expect it to work. A table name is not a
 value, and most databases will not accept this syntax. That’s not a
 big problem in practice, because there is rarely a call for replacing
 things in this way that aren’t values.

Prepared Statements

HDBC defines a function prepare that
 will prepare a SQL query, but it does not yet bind the parameters to the
 query. prepare returns a Statement representing the compiled
 query.
Once you have a Statement, you can do a number of things with
 it. You can call execute on it one or more times. After
 calling execute on a query that
 returns data, you can use one of the fetch functions to retrieve that
 data. Functions such as run and
 quickQuery' use statements and
 execute internally; they are simply
 shortcuts to let you perform common tasks quickly. When you need more
 control over what’s happening, you can use a Statement instead of a function such as
 run.
Let’s look at using statements to insert
 multiple values with a single query. Here’s an example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> stmt <- prepare conn "INSERT INTO test VALUES (?, ?)"
ghci> execute stmt [toSql 1, toSql "one"]
1
ghci> execute stmt [toSql 2, toSql "two"]
1
ghci> execute stmt [toSql 3, toSql "three"]
1
ghci> execute stmt [toSql 4, SqlNull]
1
ghci> commit conn
ghci> disconnect conn
Here, we create a prepared statement and
 call it stmt. We then execute that
 statement four times and pass different parameters each time. These
 parameters are used, in order, to replace the question marks in the
 original query string. Finally, we commit the changes and disconnect the
 database.
HDBC also provides a function, executeMany, that can be useful in situations
 such as this. executeMany simply
 takes a list of rows of data to call the statement with. Here’s an
 example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> stmt <- prepare conn "INSERT INTO test VALUES (?, ?)"
ghci> executeMany stmt [[toSql 5, toSql "five's nice"], [toSql 6, SqlNull]]
ghci> commit conn
ghci> disconnect conn
More efficient execution
On the server, most databases will have
 an optimization that they can apply to executeMany so that they only have to
 compile this query string once, rather than twice.[54] This can lead to a dramatic performance gain when
 inserting large amounts of data at one time. Some databases can also
 apply this optimization to execute,
 but not all.

Reading Results

So far, we have discussed queries that
 insert or change data. Let’s now go over getting data back out of the
 database. The type of the function quickQuery' looks very similar to run,
 but it returns a list of results instead of a count of changed rows.
 quickQuery' is normally
 used with SELECT statements. Let’s see an example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> quickQuery' conn "SELECT * from test where id < 2" []
[[SqlString "0",SqlNull],[SqlString "0",SqlString "zero"],
[SqlString "1",SqlString "one"],[SqlString "0",SqlNull],
[SqlString "0",SqlString "zero"],[SqlString "1",SqlString "one"]]
ghci> disconnect conn
quickQuery' works with replaceable parameters,
 as we just discussed. In this case, we aren’t using any, so the set of
 values to replace is the empty list at the end of the quickQuery' call. quickQuery' returns a list of rows, where each
 row is itself represented as [SqlValue]. The values in the row are listed
 in the order returned by the database. You can use fromSql to convert them into regular Haskell
 types as needed.
It’s a bit hard to read that output. Let’s
 extend this example to format the results nicely. Here’s some code to do
 that:
-- file: ch21/query.hs
import Database.HDBC.Sqlite3 (connectSqlite3)
import Database.HDBC

{- | Define a function that takes an integer representing the maximum
id value to look up. Will fetch all matching rows from the test database
and print them to the screen in a friendly format. -}
query :: Int -> IO ()
query maxId =
 do -- Connect to the database
 conn <- connectSqlite3 "test1.db"

 -- Run the query and store the results in r
 r <- quickQuery' conn
 "SELECT id, desc from test where id <= ? ORDER BY id, desc"
 [toSql maxId]

 -- Convert each row into a String
 let stringRows = map convRow r

 -- Print the rows out
 mapM_ putStrLn stringRows

 -- And disconnect from the database
 disconnect conn

 where convRow :: [SqlValue] -> String
 convRow [sqlId, sqlDesc] =
 show intid ++ ": " ++ desc
 where intid = (fromSql sqlId)::Integer
 desc = case fromSql sqlDesc of
 Just x -> x
 Nothing -> "NULL"
 convRow x = fail $ "Unexpected result: " ++ show x
This program does mostly the same thing as
 our example with ghci but with a new
 addition: the convRow function. This
 function takes a row of data from the database and converts it to a
 String. This string can then be
 easily printed out.
Notice how we took intid from fromSql directly but processed fromSql sqlDesc as a Maybe String type. If you recall, we declared
 that the first column in this table can never contain a NULL value but
 that the second column could. Therefore, we can safely ignore the
 potential for a NULL in the first column but not in the second. It is
 possible to use fromSql to convert
 the second column to a String
 directly, and it would even work—until a row with a NULL in that
 position is encountered. This would cause a runtime exception. So, we
 convert a SQL NULL value into the string "NULL". When printed, this will be
 indistinguishable from a SQL string 'NULL', but that’s acceptable for this
 example. Let’s try calling this function in ghci:
ghci> :load query.hs
[1 of 1] Compiling Main (query.hs, interpreted)
Ok, modules loaded: Main.
ghci> query 2
0: NULL
0: NULL
0: zero
0: zero
1: one
1: one
2: two
2: two
Reading with Statements

As we discussed in Prepared Statements, you can use statements for reading.
 There are a number of ways of reading data from statements that can be
 useful in certain situations. Like run, quickQuery' is a convenience function that
 in fact uses statements to accomplish its task.
To create a statement for reading, we
 use prepare just as we would for a
 statement that will be used to write data. You also use execute to execute it on the database
 server. Then, we can use various functions to read data from the
 Statement. The fetchAllRows' function returns [[SqlValue]], just like quickQuery'. There is also a function called
 sFetchAllRows', which converts
 every column’s data to Maybe String
 before returning it. Finally, there is fetchAllRowsAL', which returns (String, SqlValue) pairs for each column.
 The String is the column name as
 returned by the database; see Database Metadata
 for other ways to obtain column names.
You can also read data one row at a time
 by calling fetchRow, which returns
 IO (Maybe [SqlValue]). It will be
 Nothing if all the results have
 already been read, or one row otherwise.

Lazy Reading

Back in Lazy I/O, we
 talked about lazy I/O from files. It is also possible to read data lazily from databases.
 This can be particularly useful when dealing with queries that return
 an exceptionally large amount of data. By reading data lazily, you can
 still use convenient functions such as fetchAllRows instead of having to manually
 read each row as it comes in. If we are careful in our use of the
 data, we can avoid having to buffer all of the results in
 memory.
Lazy reading from a database, however,
 is more complex than reading from a file. When we’re done reading data
 lazily from a file, the file is closed—which is generally fine. When
 we’re done reading data lazily from a database, the database
 connection is still open—you may be submitting other queries with it,
 for instance. Some databases can even support multiple simultaneous
 queries, so HDBC can’t just close the connection when we’re
 done.
When using lazy reading, it is
 critically important that we finish reading the entire data set before
 we attempt to close the connection or execute a new query. We
 encourage you to use the strict functions, or row-by-row processing,
 wherever possible to minimize complex interactions with lazy
 reading.
Tip
If you are new to HDBC or the concept
 of lazy reading but have lots of data to read, repeated calls to
 fetchRow may be easier to
 understand. Lazy reading is a powerful and useful tool, but must be
 used correctly.

To read lazily from a database, we use
 the same functions we used before, without the apostrophe. For
 instance, use fetchAllRows instead
 of fetchAllRows'. The types of the
 lazy functions are the same as their strict cousins. Here’s an example
 of lazy reading:
ghci> conn <- connectSqlite3 "test1.db"
ghci> stmt <- prepare conn "SELECT * from test where id < 2"
ghci> execute stmt []
0
ghci> results <- fetchAllRowsAL stmt
[[("id",SqlString "0"),("desc",SqlNull)],[("id",SqlString "0"),
("desc",SqlString "zero")],[("id",SqlString "1"),("desc",SqlString "one")]
,[("id",SqlString "0"),("desc",SqlNull)],[("id",SqlString "0"),
("desc",SqlString "zero")],[("id",SqlString "1"),("desc",SqlString "one")]]
ghci> mapM_ print results
[("id",SqlString "0"),("desc",SqlNull)]
[("id",SqlString "0"),("desc",SqlString "zero")]
[("id",SqlString "1"),("desc",SqlString "one")]
[("id",SqlString "0"),("desc",SqlNull)]
[("id",SqlString "0"),("desc",SqlString "zero")]
[("id",SqlString "1"),("desc",SqlString "one")]ghci> disconnect conn
Note that you could have used fetchAllRowsAL' here as well. However, if you had a large data set to read,
 it would consume a lot of memory. By reading the data lazily, we can
 print out extremely large result sets using a constant amount of
 memory. With the lazy version, results will be evaluated in chunks;
 with the strict version, all results are read up front, stored in RAM,
 and then printed.

Database Metadata

Sometimes it can be useful for a program to learn information about
 the database itself. For instance, a program may want to see what tables
 exist so that it can automatically create missing tables or upgrade the
 database schema. In some cases, a program may need to alter its behavior
 depending on the database backend in use.
First, there is a getTables function that will obtain a list of defined tables in a database.
 You can also use the describeTable
 function, which will provide information about the defined columns
 in a given table.
You can learn about the database server in
 use by calling dbServerVer and
 proxiedClientName, for instance. The
 dbTransactionSupport function can be
 used to determine whether or not a given database supports transactions.
 Let’s look at an example of some of these items:
ghci> conn <- connectSqlite3 "test1.db"
ghci> getTables conn
["test"]
ghci> proxiedClientName conn
"sqlite3"
ghci> dbServerVer conn
"3.5.6"
ghci> dbTransactionSupport conn
Trueghci> disconnect conn
You can also learn about the results of a
 specific query by obtaining information from its statement. The describeResult function returns [(String, SqlColDesc)], a list of pairs. The
 first item gives the column name, and the second provides information
 about the column: the type, the size, and whether it may be NULL. The
 full specification is given in the HDBC API reference.
Note
Some databases may not be able to provide all this metadata. In
 these circumstances, an exception will be raised. Sqlite3, for
 instance, does not support describeResult or describeTable as of this writing.

Error Handling

HDBC will raise exceptions when
 errors occur. The exceptions have type SqlError. They convey information from the underlying SQL engine, such
 as the database’s state, the error message, and the database’s numeric
 error code, if any.
ghci does not know how to display an
 SqlError on the screen when it
 occurs. While the exception will cause the program to terminate, it will
 not display a useful message. Here’s an example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> quickQuery' conn "SELECT * from test2" []
*** Exception: (unknown)
ghci> disconnect conn
Here we tried to SELECT data from a table
 that didn’t exist. The error message we got wasn’t helpful. There’s a
 utility function, handleSqlError,
 that will catch an SqlError and re-raise it as an IOError. In this form, it will be printable
 onscreen, but it will be more difficult to extract specific pieces of
 information programmatically. Let’s look at its usage:
ghci> conn <- connectSqlite3 "test1.db"
ghci> handleSqlError $ quickQuery' conn "SELECT * from test2" []
*** Exception: user error (SQL error: SqlError {seState = "", seNativeError = 1,
seErrorMsg = "prepare 20: SELECT * from test2: no such table: test2"})
ghci> disconnect conn
Here we got more information, including a
 message saying that there is no such table as test2. This is much more
 helpful. Many HDBC programmers make it a standard practice to start
 their programs with main = handleSqlError $
 do, which will ensure that every uncaught SqlError will be printed in a helpful
 manner.
There are also catchSql and handleSql—similar to the standard catch and handle functions. catchSql and handleSql will intercept HDBC errors only.
 For more
 information on error handling, refer to Chapter 19.

[51] Alan Beaulieu’s Learning
 SQL and Kevin Kline et al.’s SQL in a
 Nutshell (both O’Reilly) may be useful if you don’t have
 experience with SQL.

[52] This assumes that you restrict
 yourself to using standard SQL.

[53] For more information on installing Haskell
 software, please refer to Installing Haskell Software.

[54] HDBC emulates this behavior for
 databases that do not provide it, offering programmers a unified
 API for running queries repeatedly.

Chapter 22. Extended Example: Web Client Programming

By this point, you’ve seen how to interact with a database, parse things,
 and handle errors. Let’s now take this a step farther and introduce a web
 client library to the mix.
We’ll develop a real application in this
 chapter: a podcast downloader, or podcatcher. The idea of a podcatcher
 is simple. It is given a list of URLs to process. Downloading each of
 these URLs results in an XML file in the RSS format. Inside this XML file, we’ll find references to URLs for
 audio files to download.
Podcatchers usually let the user subscribe
 to podcasts by adding RSS URLs to their configuration. Then, the user can
 periodically run an update operation. The podcatcher will download the RSS
 documents, examine them for audio file references, and download any audio
 files that haven’t already been downloaded on behalf of this user.
Tip
Users often call the RSS document a
 podcast or the podcast feed, and call each individual audio file an
 episode.

To make this happen, we need to have several
 things:
	An HTTP client library to download
 files

	An XML parser

	A way to specify and persistently store
 which podcasts we’re interested in

	A way to persistently store which
 podcast episodes we’ve already downloaded

The last two items can be accommodated via a
 database that we’ll set up using HDBC. The first two can be accommodated
 via other library modules we’ll introduce in this chapter.
Tip
The code in this chapter was written
 specifically for this book, but is based on code written for hpodder, an
 existing podcatcher written in Haskell. hpodder has many more features
 than the examples presented here, which make it too long and complex to
 cover in this book. If you are interested in studying hpodder, its
 source code is freely available at http://software.complete.org/hpodder.

We’ll write the code for this chapter in
 pieces. Each piece will be its own Haskell module. You’ll be able to play
 with each piece by itself in ghci. At
 the end, we’ll write the final code that ties everything together into a
 finished application. We’ll start with the basic types that we’ll need to
 use.
Basic Types

The first thing to do is have some idea of
 the basic information that will be important to the application. This
 will generally be information about the podcasts the user is interested
 in, plus information about episodes that we have seen and processed.
 It’s easy enough to change this later if needed, but since we’ll be
 importing it just about everywhere, we’ll define it first:
-- file: ch22/PodTypes.hs
module PodTypes where

data Podcast =
 Podcast {castId :: Integer, -- ^ Numeric ID for this podcast
 castURL :: String -- ^ Its feed URL
 }
 deriving (Eq, Show, Read)

data Episode =
 Episode {epId :: Integer, -- ^ Numeric ID for this episode
 epCast :: Podcast, -- ^ The ID of the podcast it came from
 epURL :: String, -- ^ The download URL for this episode
 epDone :: Bool -- ^ Whether or not we are done with this ep
 }
 deriving (Eq, Show, Read)
We’ll be storing this information in a
 database. Having a unique identifier for both a podcast and an episode
 makes it easy to find which episodes belong to a particular podcast,
 load information for a particular podcast or episode, or handle future
 cases such as changing URLs for podcasts.

The Database

Next, we’ll write the code to make
 possible persistent storage in a database. We’ll primarily be interested
 in moving data between the Haskell structures that we defined in
 PodTypes.hs and the database on disk. Also, the
 first time the user runs the program, the user will need to create the
 database tables that he will use to store our data.
We’ll use HDBC (see Chapter 21) to interact with a Sqlite database. Sqlite is
 lightweight and self-contained, which makes it perfect for this project.
 For information on installing HDBC and Sqlite, consult Installing HDBC and Drivers:
-- file: ch22/PodDB.hs
module PodDB where

import Database.HDBC
import Database.HDBC.Sqlite3
import PodTypes
import Control.Monad(when)
import Data.List(sort)

-- | Initialize DB and return database Connection
connect :: FilePath -> IO Connection
connect fp =
 do dbh <- connectSqlite3 fp
 prepDB dbh
 return dbh

{- | Prepare the database for our data.

We create two tables and ask the database engine to verify some pieces
of data consistency for us:

* castid and epid both are unique primary keys and must never be duplicated
* castURL also is unique
* In the episodes table, for a given podcast (epcast), there must be only
 one instance of each given URL or episode ID
-}
prepDB :: IConnection conn => conn -> IO ()
prepDB dbh =
 do tables <- getTables dbh
 when (not ("podcasts" `elem` tables)) $
 do run dbh "CREATE TABLE podcasts (\
 \castid INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,\
 \castURL TEXT NOT NULL UNIQUE)" []
 return ()
 when (not ("episodes" `elem` tables)) $
 do run dbh "CREATE TABLE episodes (\
 \epid INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,\
 \epcastid INTEGER NOT NULL,\
 \epurl TEXT NOT NULL,\
 \epdone INTEGER NOT NULL,\
 \UNIQUE(epcastid, epurl),\
 \UNIQUE(epcastid, epid))" []
 return ()
 commit dbh

{- | Adds a new podcast to the database. Ignores the castid on the
incoming podcast, and returns a new object with the castid populated.

An attempt to add a podcast that already exists is an error. -}
addPodcast :: IConnection conn => conn -> Podcast -> IO Podcast
addPodcast dbh podcast =
 handleSql errorHandler $
 do -- Insert the castURL into the table. The database
 -- will automatically assign a cast ID.
 run dbh "INSERT INTO podcasts (castURL) VALUES (?)"
 [toSql (castURL podcast)]
 -- Find out the castID for the URL we just added.
 r <- quickQuery' dbh "SELECT castid FROM podcasts WHERE castURL = ?"
 [toSql (castURL podcast)]
 case r of
 [[x]] -> return $ podcast {castId = fromSql x}
 y -> fail $ "addPodcast: unexpected result: " ++ show y
 where errorHandler e =
 do fail $ "Error adding podcast; does this URL already exist?\n"
 ++ show e

{- | Adds a new episode to the database.

Since this is done by automation instead of by user request, we will
simply ignore requests to add duplicate episodes. This way, when we are
processing a feed, each URL encountered can be fed to this function,
without having to first look it up in the DB.

Also, we generally won't care about the new ID here, so don't bother
fetching it. -}
addEpisode :: IConnection conn => conn -> Episode -> IO ()
addEpisode dbh ep =
 run dbh "INSERT OR IGNORE INTO episodes (epCastId, epURL, epDone) \
 \VALUES (?, ?, ?)"
 [toSql (castId . epCast $ ep), toSql (epURL ep),
 toSql (epDone ep)]
 >> return ()

{- | Modifies an existing podcast. Looks up the given podcast by
ID and modifies the database record to match the passed Podcast. -}
updatePodcast :: IConnection conn => conn -> Podcast -> IO ()
updatePodcast dbh podcast =
 run dbh "UPDATE podcasts SET castURL = ? WHERE castId = ?"
 [toSql (castURL podcast), toSql (castId podcast)]
 >> return ()

{- | Modifies an existing episode. Looks it up by ID and modifies the
database record to match the given episode. -}
updateEpisode :: IConnection conn => conn -> Episode -> IO ()
updateEpisode dbh episode =
 run dbh "UPDATE episodes SET epCastId = ?, epURL = ?, epDone = ? \
 \WHERE epId = ?"
 [toSql (castId . epCast $ episode),
 toSql (epURL episode),
 toSql (epDone episode),
 toSql (epId episode)]
 >> return ()

{- | Remove a podcast. First removes any episodes that may exist
for this podcast. -}
removePodcast :: IConnection conn => conn -> Podcast -> IO ()
removePodcast dbh podcast =
 do run dbh "DELETE FROM episodes WHERE epcastid = ?"
 [toSql (castId podcast)]
 run dbh "DELETE FROM podcasts WHERE castid = ?"
 [toSql (castId podcast)]
 return ()

{- | Gets a list of all podcasts. -}
getPodcasts :: IConnection conn => conn -> IO [Podcast]
getPodcasts dbh =
 do res <- quickQuery' dbh
 "SELECT castid, casturl FROM podcasts ORDER BY castid" []
 return (map convPodcastRow res)

{- | Get a particular podcast. Nothing if the ID doesn't match, or
Just Podcast if it does. -}
getPodcast :: IConnection conn => conn -> Integer -> IO (Maybe Podcast)
getPodcast dbh wantedId =
 do res <- quickQuery' dbh
 "SELECT castid, casturl FROM podcasts WHERE castid = ?"
 [toSql wantedId]
 case res of
 [x] -> return (Just (convPodcastRow x))
 [] -> return Nothing
 x -> fail $ "Really bad error; more than one podcast with ID"

{- | Convert the result of a SELECT into a Podcast record -}
convPodcastRow :: [SqlValue] -> Podcast
convPodcastRow [svId, svURL] =
 Podcast {castId = fromSql svId,
 castURL = fromSql svURL}
convPodcastRow x = error $ "Can't convert podcast row " ++ show x

{- | Get all episodes for a particular podcast. -}
getPodcastEpisodes :: IConnection conn => conn -> Podcast -> IO [Episode]
getPodcastEpisodes dbh pc =
 do r <- quickQuery' dbh
 "SELECT epId, epURL, epDone FROM episodes WHERE epCastId = ?"
 [toSql (castId pc)]
 return (map convEpisodeRow r)
 where convEpisodeRow [svId, svURL, svDone] =
 Episode {epId = fromSql svId, epURL = fromSql svURL,
 epDone = fromSql svDone, epCast = pc}
In the PodDB module, we have defined functions to
 connect to the database, create the needed tables for it, add data to
 it, query it, and remove data from it. Here is an example ghci session demonstrating interacting with
 the database. It will create a database file named poddbtest.db in the current working directory
 and add a podcast and an episode to it:
ghci> :load PodDB.hs
[1 of 2] Compiling PodTypes (PodTypes.hs, interpreted)
[2 of 2] Compiling PodDB (PodDB.hs, interpreted)
Ok, modules loaded: PodDB, PodTypes.
ghci> dbh <- connect "poddbtest.db"
ghci> :type dbh
dbh :: Connection
ghci> getTables dbh
["episodes","podcasts","sqlite_sequence"]
ghci> let url = "http://feeds.thisamericanlife.org/talpodcast"
ghci> pc <- addPodcast dbh (Podcast {castId=0, castURL=url})
Podcast {castId = 1, castURL = "http://feeds.thisamericanlife.org/talpodcast"}
ghci> getPodcasts dbh
[Podcast {castId = 1, castURL = "http://feeds.thisamericanlife.org/talpodcast"}]
ghci> addEpisode dbh (Episode {epId = 0, epCast = pc, epURL =
"http://www.example.com/foo.mp3", epDone = False})
ghci> getPodcastEpisodes dbh pc
[Episode {epId = 1, epCast = Podcast {castId = 1, castURL =
"http://feeds.thisamericanlife.org/talpodcast"}, epURL = "http://www.example.com/foo.mp3",
epDone = False}]
ghci> commit dbh
ghci> disconnect dbh

The Parser

Now that we have the database component,
 we need to have code to parse the podcast feeds. These are XML files
 that contain various information. Here’s an example XML file to show you
 what they look like:
<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:itunes="http://www.itunes.com/DTDs/Podcast-1.0.dtd" version="2.0">
 <channel>
 <title>Haskell Radio</title>
 <link>http://www.example.com/radio/</link>
 <description>Description of this podcast</description>
 <item>
 <title>Episode 2: Lambdas</title>
 <link>http://www.example.com/radio/lambdas</link>
 <enclosure url="http://www.example.com/radio/lambdas.mp3"
 type="audio/mpeg" length="10485760"/>
 </item>
 <item>
 <title>Episode 1: Parsec</title>
 <link>http://www.example.com/radio/parsec</link>
 <enclosure url="http://www.example.com/radio/parsec.mp3"
 type="audio/mpeg" length="10485150"/>
 </item>
 </channel>
</rss>
Out of these files, we are mainly
 interested in two things: the podcast title and the enclosure URLs. We
 use the HaXml
 toolkit to parse the XML file. Here’s the source code for this
 component:
-- file: ch22/PodParser.hs
module PodParser where

import PodTypes
import Text.XML.HaXml
import Text.XML.HaXml.Parse
import Text.XML.HaXml.Html.Generate(showattr)
import Data.Char
import Data.List

data PodItem = PodItem {itemtitle :: String,
 enclosureurl :: String
 }
 deriving (Eq, Show, Read)

data Feed = Feed {channeltitle :: String,
 items :: [PodItem]}
 deriving (Eq, Show, Read)

{- | Given a podcast and an PodItem, produce an Episode -}
item2ep :: Podcast -> PodItem -> Episode
item2ep pc item =
 Episode {epId = 0,
 epCast = pc,
 epURL = enclosureurl item,
 epDone = False}

{- | Parse the data from a given string, with the given name to use
in error messages. -}
parse :: String -> String -> Feed
parse content name =
 Feed {channeltitle = getTitle doc,
 items = getEnclosures doc}

 where parseResult = xmlParse name (stripUnicodeBOM content)
 doc = getContent parseResult

 getContent :: Document -> Content
 getContent (Document _ _ e _) = CElem e

 {- | Some Unicode documents begin with a binary sequence;
 strip it off before processing. -}
 stripUnicodeBOM :: String -> String
 stripUnicodeBOM ('\xef':'\xbb':'\xbf':x) = x
 stripUnicodeBOM x = x

{- | Pull out the channel part of the document.

Note that HaXml defines CFilter as:

> type CFilter = Content -> [Content]
-}
channel :: CFilter
channel = tag "rss" /> tag "channel"

getTitle :: Content -> String
getTitle doc =
 contentToStringDefault "Untitled Podcast"
 (channel /> tag "title" /> txt $ doc)

getEnclosures :: Content -> [PodItem]
getEnclosures doc =
 concatMap procPodItem $ getPodItems doc
 where procPodItem :: Content -> [PodItem]
 procPodItem item = concatMap (procEnclosure title) enclosure
 where title = contentToStringDefault "Untitled Episode"
 (keep /> tag "title" /> txt $ item)
 enclosure = (keep /> tag "enclosure") item

 getPodItems :: CFilter
 getPodItems = channel /> tag "item"

 procEnclosure :: String -> Content -> [PodItem]
 procEnclosure title enclosure =
 map makePodItem (showattr "url" enclosure)
 where makePodItem :: Content -> PodItem
 makePodItem x = PodItem {itemtitle = title,
 enclosureurl = contentToString [x]}

{- | Convert [Content] to a printable String, with a default if the
passed-in [Content] is [], signifying a lack of a match. -}
contentToStringDefault :: String -> [Content] -> String
contentToStringDefault msg [] = msg
contentToStringDefault _ x = contentToString x

{- | Convert [Content] to a printable string, taking care to unescape it.

An implementation without unescaping would simply be:

> contentToString = concatMap (show . content)

Because HaXml's unescaping works only on Elements, we must make sure that
whatever Content we have is wrapped in an Element, then use txt to
pull the insides back out. -}
contentToString :: [Content] -> String
contentToString =
 concatMap procContent
 where procContent x =
 verbatim $ keep /> txt $ CElem (unesc (fakeElem x))

 fakeElem :: Content -> Element
 fakeElem x = Elem "fake" [] [x]

 unesc :: Element -> Element
 unesc = xmlUnEscape stdXmlEscaper
Let’s look at this code. First, we declare
 two types: PodItem and Feed. We will be transforming the XML document
 into a Feed, which then contains
 items. We also provide a function to convert an PodItem into an Episode as defined in PodTypes.hs.
Next, it is on to parsing. The parse function takes a String representing the XML content as well as
 a String representing a name to use
 in error messages, and then returns a Feed.
HaXml is designed as a “filter” converting
 data of one type to another. It can be a simple straightforward
 conversion of XML to XML, or of XML to Haskell data, or of Haskell data
 to XML. HaXml has a data type called CFilter, which is defined like this:
type CFilter = Content -> [Content]
That is, a CFilter takes a fragment of an XML document
 and returns 0 or more fragments. A CFilter might be asked to find all children of
 a specified tag, all tags with a certain name, the literal text
 contained within a part of an XML document, or any of a number of other
 things. There is also an operator (/>) that chains CFilter functions together. All of the data
 that we’re interested in occurs within the <channel> tag, so first we want to get
 at that. We define a simple CFilter:
channel = tag "rss" /> tag "channel"
When we pass a document to channel, it will search the top level for the
 tag named rss. Then, within that, it
 will look for the channel tag.
The rest of the program follows this basic
 approach. txt extracts the literal
 text from a tag, and by using CFilter
 functions, we can get at any part of the document.

Downloading

The next part of our program is a module
 to download data. We’ll need to download two different types of data:
 the content of a podcast and the audio for each episode. In the former
 case, we’ll parse the data and update our database. For the latter,
 we’ll write the data out to a file on disk.
We’ll be downloading from HTTP servers, so
 we’ll use a Haskell HTTP
 library. For downloading podcast feeds, we’ll download the
 document, parse it, and update the database. For episode audio, we’ll
 download the file, write it to disk, and mark it downloaded in the
 database. Here’s the code:
-- file: ch22/PodDownload.hs
module PodDownload where
import PodTypes
import PodDB
import PodParser
import Network.HTTP
import System.IO
import Database.HDBC
import Data.Maybe
import Network.URI

{- | Download a URL. (Left errorMessage) if an error,
(Right doc) if success. -}
downloadURL :: String -> IO (Either String String)
downloadURL url =
 do resp <- simpleHTTP request
 case resp of
 Left x -> return $ Left ("Error connecting: " ++ show x)
 Right r ->
 case rspCode r of
 (2,_,_) -> return $ Right (rspBody r)
 (3,_,_) -> -- A HTTP redirect
 case findHeader HdrLocation r of
 Nothing -> return $ Left (show r)
 Just url -> downloadURL url
 _ -> return $ Left (show r)
 where request = Request {rqURI = uri,
 rqMethod = GET,
 rqHeaders = [],
 rqBody = ""}
 uri = fromJust $ parseURI url

{- | Update the podcast in the database. -}
updatePodcastFromFeed :: IConnection conn => conn -> Podcast -> IO ()
updatePodcastFromFeed dbh pc =
 do resp <- downloadURL (castURL pc)
 case resp of
 Left x -> putStrLn x
 Right doc -> updateDB doc

 where updateDB doc =
 do mapM_ (addEpisode dbh) episodes
 commit dbh
 where feed = parse doc (castURL pc)
 episodes = map (item2ep pc) (items feed)

{- | Downloads an episode, returning a String representing
the filename it was placed into, or Nothing on error. -}
getEpisode :: IConnection conn => conn -> Episode -> IO (Maybe String)
getEpisode dbh ep =
 do resp <- downloadURL (epURL ep)
 case resp of
 Left x -> do putStrLn x
 return Nothing
 Right doc ->
 do file <- openBinaryFile filename WriteMode
 hPutStr file doc
 hClose file
 updateEpisode dbh (ep {epDone = True})
 commit dbh
 return (Just filename)
 -- This function ought to apply an extension based on the file type
 where filename = "pod." ++ (show . castId . epCast $ ep) ++ "." ++
 (show (epId ep)) ++ ".mp3"
This module defines three functions:
 downloadURL, which simply downloads a
 URL and returns it as a String;
 updatePodcastFromFeed, which
 downloads an XML feed file, parses it, and updates the database; and
 getEpisode, which downloads a given
 episode and marks it done in the database.
Warning
The HTTP library used here does not read
 the HTTP result lazily. As a result, it can result in the consumption
 of a large amount of RAM when downloading large files such as
 podcasts. Other libraries are available that do not have this
 limitation. We used this one because it is stable, easy to install,
 and reasonably easy to use. We suggest mini-http, available from
 Hackage, for serious HTTP needs.

Main Program

Finally, we need a main program to tie it
 all together. Here’s our main module:
-- file: ch22/PodMain.hs
module Main where

import PodDownload
import PodDB
import PodTypes
import System.Environment
import Database.HDBC
import Network.Socket(withSocketsDo)

main = withSocketsDo $ handleSqlError $
 do args <- getArgs
 dbh <- connect "pod.db"
 case args of
 ["add", url] -> add dbh url
 ["update"] -> update dbh
 ["download"] -> download dbh
 ["fetch"] -> do update dbh
 download dbh
 _ -> syntaxError
 disconnect dbh

add dbh url =
 do addPodcast dbh pc
 commit dbh
 where pc = Podcast {castId = 0, castURL = url}

update dbh =
 do pclist <- getPodcasts dbh
 mapM_ procPodcast pclist
 where procPodcast pc =
 do putStrLn $ "Updating from " ++ (castURL pc)
 updatePodcastFromFeed dbh pc

download dbh =
 do pclist <- getPodcasts dbh
 mapM_ procPodcast pclist
 where procPodcast pc =
 do putStrLn $ "Considering " ++ (castURL pc)
 episodelist <- getPodcastEpisodes dbh pc
 let dleps = filter (\ep -> epDone ep == False)
 episodelist
 mapM_ procEpisode dleps
 procEpisode ep =
 do putStrLn $ "Downloading " ++ (epURL ep)
 getEpisode dbh ep

syntaxError = putStrLn
 "Usage: pod command [args]\n\
 \\n\
 \pod add url Adds a new podcast with the given URL\n\
 \pod download Downloads all pending episodes\n\
 \pod fetch Updates, then downloads\n\
 \pod update Downloads podcast feeds, looks for new episodes\n"
We have a very simple command-line parser
 with a function to indicate a command-line syntax error, plus small
 functions to handle the different command-line arguments.
You can compile this program with a
 command like this:
ghc --make -O2 -o pod -package HTTP -package HaXml -package network \
 -package HDBC -package HDBC-sqlite3 PodMain.hs
Alternatively, you could use a Cabal file
 as documented in Creating a Package to build this
 project:
-- ch23/pod.cabal
Name: pod
Version: 1.0.0
Build-type: Simple
Build-Depends: HTTP, HaXml, network, HDBC, HDBC-sqlite3, base

Executable: pod
Main-Is: PodMain.hs
GHC-Options: -O2
Also, you’ll want a simple Setup.hs file:
import Distribution.Simple
main = defaultMain
Now, to build with Cabal, you just run the
 following:
runghc Setup.hs configure
runghc Setup.hs build
And you’ll find a dist directory containing your output. To
 install the program system-wide, run runghc Setup.hs install.

Chapter 23. GUI Programming with gtk2hs

Throughout this book, we have been developing simple text-based tools.
 While these are often ideal interfaces, sometimes a graphical user
 interface (GUI) is required. There are several GUI toolkits available for
 Haskell. In this chapter, we will look at one of them, gtk2hs.[55]
Installing gtk2hs

Before we dive in to working with gtk2hs,
 you’ll need to get it installed. On most Linux, BSD, or other POSIX
 platforms, you will find ready-made gtk2hs packages. You will generally
 need to install the GTK+ development environment, Glade, and gtk2hs. The
 specifics of doing so vary by distribution.
Windows and Mac developers should consult
 the gtk2hs downloads site at http://www.haskell.org/gtk2hs/download/. Begin by
 downloading gtk2hs from there. Then you will also need Glade version 3. Mac developers can find this at http://www.macports.org/, while Windows developers should
 consult http://sourceforge.net/projects/gladewin32.

Overview of the GTK+ Stack

Before examining the code, let’s pause a
 brief moment and consider the architecture of the system we are going to
 use. First off, we have GTK+. GTK+ is a cross-platform GUI-building
 toolkit, implemented in C. It runs on Windows, Mac, Linux, BSDs, and
 more. It is also the toolkit beneath the GNOME desktop
 environment.
Next, we have Glade. Glade is a
 user-interface designer, which lets you graphically lay out your
 application’s windows and dialogs. Glade saves the interface in XML
 files, which your application will load at runtime.
The last piece of this puzzle is gtk2hs.
 This is the Haskell binding for GTK+, Glade, and several related
 libraries. It is one of many language bindings available for
 GTK+.

User Interface Design with Glade

In this chapter, we are going to develop a
 GUI for the podcast downloader we first developed in Chapter 22. Our first task is to design the user interface
 in Glade. Once we have accomplished that, we will write the Haskell code
 to integrate it with the application.
Because this is a Haskell book, rather
 than a GUI design book, we will move fast through some of these early
 parts. For more information on interface design with Glade, you may wish
 to refer to one of these resources:
	The Glade homepage
	Contains documentation for Glade; see http://glade.gnome.org/.

	The GTK+ homepage
	Contains information about the different widgets. Refer to
 the documentation section, and then the stable GTK documentation
 area; see http://www.gtk.org/.

	The gtk2hs homepage
	Also has a useful documentation section, which contains an
 API reference to gtk2hs as well as a glade tutorial; see http://www.haskell.org/gtk2hs/documentation/.

Glade Concepts

Glade is a user-interface design tool. It lets us use a
 graphical interface to design our graphical interface. We could build
 up the window components using a bunch of calls to GTK+ functions, but
 it is usually easier to do this with Glade.
The fundamental “thing” we work with in
 GTK+ is the widget. A widget represents any part of the GUI, and may contain
 other widgets. Some examples of widgets include a window, dialog box,
 button, and text within the button.
Glade, then, is a widget layout tool. We
 set up a whole tree of widgets, with top-level windows at the top of
 the tree. You can think of Glade and widgets in somewhat the same
 terms as HTML: you can arrange widgets in a table-like layout, set up
 padding rules, and structure the entire description in a hierarchical
 way.
Glade saves the widget descriptions
 into an XML file. Our program loads this XML file at runtime. We load the
 widgets by asking the Glade runtime library to load a widget with a
 specific name.
Figure 23-1
 shows a screenshot of an example working with Glade to design our
 application’s main screen.
[image: Screenshot of Glade, showing components of the graphical user interface]

Figure 23-1. Screenshot of Glade, showing components of the graphical user
 interface

In the downloadable material available
 for this book, you can find the full Glade XML file as podresources.glade. You can load this file
 in Glade and edit it if you wish.

Event-Driven Programming

GTK+, like many GUI toolkits, is an event-driven toolkit. That
 means that instead of, say, displaying a dialog box and waiting for the
 user to click on a button, we instead tell gtk2hs what function to call
 if a certain button is clicked, but don’t sit there waiting for a click
 in the dialog box.
This is different from the model
 traditionally used for console programs. When you think about it,
 though, it almost has to be. A GUI program could have multiple windows
 open, and writing code to sit there waiting for input in the particular
 combination of open windows could be a complicated proposition.
Event-driven programming complements
 Haskell nicely. As we’ve discussed over and over in this book,
 functional languages thrive on passing around functions. So we’ll be
 passing functions to gtk2hs that get called when certain events occur.
 These are known as callback functions.
At the core of a GTK+ program is the
 main loop. This is the part of the program that waits for actions from
 the user or commands from the program and carries them out. The GTK+
 main loop is handled entirely by GTK+. To us, it looks like an I/O
 action that we execute, which doesn’t return until the GUI has been
 disposed of.
Since the main loop is responsible for
 doing everything from handling clicks of a mouse to redrawing a window
 when it has been uncovered, it must always be available. We can’t just
 run a long-running task—such as downloading a podcast episode—from
 within the main loop. This would make the GUI unresponsive, and actions
 such as clicking a Cancel button wouldn’t be processed in a timely
 manner.
Therefore, we will be using multithreading
 to handle these long-running tasks. More information on multithreading
 can be found in Chapter 24. For now, just know that
 we will use forkIO to create new
 threads for long-running tasks such as downloading podcast feeds and
 episodes. For very quick tasks, such as adding a new podcast to the
 database, we will not bother with a separate thread since it will be
 executed so fast that the user will never notice.

Initializing the GUI

Our first steps are going to involve initializing the GUI for our
 program. For reasons that we’ll explain later in this chapter in Using Cabal, we’re going to have a small file called
 PodLocalMain.hs that loads PodMain and passes to it the path to podresources.glade, which is the XML file
 saved by Glade that gives the information about our GUI widgets:
-- file: ch23/PodLocalMain.hs
module Main where

import qualified PodMainGUI

main = PodMainGUI.main "podresources.glade"
Now, let’s consider PodMainGUI.hs. This file is the only Haskell
 source file that we had to modify from the example in Chapter 22 to make it work as a GUI. Let’s begin by looking
 at the start of our new PodMainGUI.hs file—we’ve renamed it from
 PodMain.hs for
 clarity:
-- file: ch23/PodMainGUI.hs
module PodMainGUI where

import PodDownload
import PodDB
import PodTypes
import System.Environment
import Database.HDBC
import Network.Socket(withSocketsDo)

-- GUI libraries

import Graphics.UI.Gtk hiding (disconnect)
import Graphics.UI.Gtk.Glade

-- Threading

import Control.Concurrent
This first part of PodMainGUI.hs is similar to our non-GUI
 version. We import three additional components, however. First, we have
 Graphics.UI.Gtk, which provides most of the GTK+ functions we will be using.
 Both this module and Database.HDBC
 provide a function named disconnect. Since we’ll be using the HDBC
 version, but not the GTK+ version,
 we don’t import that function from Graphics.UI.Gtk. Graphics.UI.Gtk.Glade contains functions needed for loading and working with our Glade
 file.
We also import Control.Concurrent, which has the basics needed for multithreaded programming.
 We’ll use a few functions from here as just described once we get into
 the guts of the program. Next, let’s define a type to store information
 about our GUI:
-- file: ch23/PodMainGUI.hs
-- | Our main GUI type
data GUI = GUI {
 mainWin :: Window,
 mwAddBt :: Button,
 mwUpdateBt :: Button,
 mwDownloadBt :: Button,
 mwFetchBt :: Button,
 mwExitBt :: Button,
 statusWin :: Dialog,
 swOKBt :: Button,
 swCancelBt :: Button,
 swLabel :: Label,
 addWin :: Dialog,
 awOKBt :: Button,
 awCancelBt :: Button,
 awEntry :: Entry}
Our new GUI type stores all the widgets we will care
 about in the entire program. Large programs may not wish to have a
 monolithic type like this. For this small example, it makes sense
 because it can be easily passed around to different functions, and we’ll
 know that we always have the information we need available.
Within this record, we have fields for a
 Window (a top-level window), Dialog (dialog window), Button (clickable button), Label (piece of text), and Entry (place for the user to enter text).
 Let’s now look at our main
 function:
-- file: ch23/PodMainGUI.hs
main :: FilePath -> IO ()
main gladepath = withSocketsDo $ handleSqlError $
 do initGUI -- Initialize GTK+ engine

 -- Every so often, we try to run other threads.
 timeoutAddFull (yield >> return True)
 priorityDefaultIdle 100

 -- Load the GUI from the Glade file
 gui <- loadGlade gladepath

 -- Connect to the database
 dbh <- connect "pod.db"

 -- Set up our events
 connectGui gui dbh

 -- Run the GTK+ main loop; exits after GUI is done
 mainGUI

 -- Disconnect from the database at the end
 disconnect dbh
Remember that the type of this main function is a little different than usual
 because it is being called by main in
 PodLocalMain.hs. We start by
 calling initGUI, which initializes
 the GTK+ system. Next, we have a call to timeoutAddFull. This call is only needed for
 multithreaded GTK+ programs. It tells the GTK+ main loop to pause to
 give other threads a chance to run every so often.
After that, we call our loadGlade function (see the following code) to
 load the widgets from our Glade XML file. Next, we connect to our
 database and call our connectGui
 function to set up our callback functions. Then, we fire up the GTK+
 main loop. We expect it could be minutes, hours, or even days before
 mainGUI returns. When it does, it
 means the user has closed the main window or clicked the Exit button.
 After that, we disconnect from the database and close the program. Now,
 let’s look at our loadGlade function:
-- file: ch23/PodMainGUI.hs
loadGlade gladepath =
 do -- Load XML from glade path.
 -- Note: crashes with a runtime error on console if fails!
 Just xml <- xmlNew gladepath

 -- Load main window
 mw <- xmlGetWidget xml castToWindow "mainWindow"

 -- Load all buttons

 [mwAdd, mwUpdate, mwDownload, mwFetch, mwExit, swOK, swCancel,
 auOK, auCancel] <-
 mapM (xmlGetWidget xml castToButton)
 ["addButton", "updateButton", "downloadButton",
 "fetchButton", "exitButton", "okButton", "cancelButton",
 "auOK", "auCancel"]

 sw <- xmlGetWidget xml castToDialog "statusDialog"
 swl <- xmlGetWidget xml castToLabel "statusLabel"

 au <- xmlGetWidget xml castToDialog "addDialog"
 aue <- xmlGetWidget xml castToEntry "auEntry"

 return $ GUI mw mwAdd mwUpdate mwDownload mwFetch mwExit
 sw swOK swCancel swl au auOK auCancel aue
This function starts by calling xmlNew, which loads the Glade XML file. It
 returns Nothing
 on error. Here we are using pattern matching to extract the result value
 on success. If it fails, there will be a console (not graphical)
 exception displayed; one of the exercises at the end of this chapter
 addresses this.
Now that we have Glade’s XML file loaded,
 you will see a bunch of calls to xmlGetWidget. This Glade function is used
 to load the XML definition of a widget and return a GTK+ widget type for
 that widget. We have to pass along to that function a value indicating
 what GTK+ type we expect—we’ll get a runtime error if these don’t
 match.
We start by creating a widget for the main
 window. It is loaded from the XML widget defined with name "mainWindow" and stored in the mw variable. We then use pattern matching and
 mapM to load up all the buttons.
 Then, we have two dialogs, a label, and an entry to load. Finally, we
 use all of these to build up the GUI type and return it. Next, we need
 to set up our callback functions as event handlers:
-- file: ch23/PodMainGUI.hs
connectGui gui dbh =
 do -- When the close button is clicked, terminate the GUI loop
 -- by calling GTK mainQuit function
 onDestroy (mainWin gui) mainQuit

 -- Main window buttons
 onClicked (mwAddBt gui) (guiAdd gui dbh)
 onClicked (mwUpdateBt gui) (guiUpdate gui dbh)
 onClicked (mwDownloadBt gui) (guiDownload gui dbh)
 onClicked (mwFetchBt gui) (guiFetch gui dbh)
 onClicked (mwExitBt gui) mainQuit

 -- We leave the status window buttons for later
We start out the connectGui function by calling onDestroy. This means that when somebody clicks on the operating system’s
 close button (typically an X in the titlebar on Windows or Linux, or a
 red circle on Mac OS X), we call the mainQuit function on the main window. mainQuit closes all GUI windows and terminates
 the GTK+ main loop.
Next, we call onClicked to register event handlers for clicking on our five different
 buttons. For buttons, these handlers are also called if the user selects
 the button via the keyboard. Clicking on these buttons will call our
 functions such as guiAdd, passing
 along the GUI record as well as a database handle.
At this point, we have completely defined
 the main window for the GUI podcatcher. It looks like the screenshot in
 Figure 23-2.
[image: Screenshot of the main window of the podcatcher application]

Figure 23-2. Screenshot of the main window of the podcatcher
 application

The Add Podcast Window

Now that we’ve covered the main
 window, let’s talk about the other windows that our application
 presents, starting with the Add Podcast window. When the user clicks the
 button to add a new podcast, we need to pop up a dialog box to prompt
 for the URL of the podcast. We have defined this dialog box in Glade, so
 all we need to do is set it up:
-- file: ch23/PodMainGUI.hs
guiAdd gui dbh =
 do -- Initialize the add URL window
 entrySetText (awEntry gui) ""
 onClicked (awCancelBt gui) (widgetHide (addWin gui))
 onClicked (awOKBt gui) procOK

 -- Show the add URL window
 windowPresent (addWin gui)
 where procOK =
 do url <- entryGetText (awEntry gui)
 widgetHide (addWin gui) -- Remove the dialog
 add dbh url -- Add to the DB
We start by calling entrySetText to set the contents of the entry
 box (the place where the user types in the URL) to the empty string.
 That’s because the same widget gets reused over the lifetime of the
 program, and we don’t want the last URL the user entered to remain
 there. Next, we set up actions for the two buttons in the dialog. If the
 user clicks on the cancel button, we simply remove the dialog box from
 the screen by calling widgetHide on
 it. If the user clicks the OK button, we call procOK.
procOK
 starts by retrieving the supplied URL from the entry widget. Next, it
 uses widgetHide
 to get rid of the dialog box. Finally, it calls add to add the URL to the database. This
 add is exactly the same function as
 we had in the non-GUI version of the program.
The last thing we do in guiAdd is actually display the pop-up window.
 That’s done by calling windowPresent,
 which is the opposite of widgetHide.
Note that the guiAdd function returns almost immediately. It
 just sets up the widgets and causes the box to be displayed; at no point
 does it block waiting for input. Figure 23-3 shows
 what the dialog box looks like.
[image: Screenshot of the add-a-podcast window]

Figure 23-3. Screenshot of the add-a-podcast window

Long-Running Tasks

As we think about the buttons available in
 the main window, three of them correspond to tasks that could take a
 while to complete: update, download, and fetch. While these operations
 take place, we’d like to do two things with our GUI: provide the user
 with the status of the operation and the ability to cancel the operation
 as it is in progress.
Since all three of these things are very
 similar operations, it makes sense to provide a generic way to handle
 this interaction. We have defined a single status window widget in the
 Glade file that will be used by all three of these. In our Haskell
 source code, we’ll define a generic statusWindow function that will be used by all
 three of these operations as well.
statusWindow takes four parameters: the GUI
 information, the database information, a String giving the title of the window, and a
 function that will perform the operation. This function will itself be
 passed a function that it can call to report its progress. Here’s the
 code:
-- file: ch23/PodMainGUI.hs
statusWindow :: IConnection conn =>
 GUI
 -> conn
 -> String
 -> ((String -> IO ()) -> IO ())
 -> IO ()
statusWindow gui dbh title func =
 do -- Clear the status text
 labelSetText (swLabel gui) ""

 -- Disable the OK button, enable Cancel button
 widgetSetSensitivity (swOKBt gui) False
 widgetSetSensitivity (swCancelBt gui) True

 -- Set the title
 windowSetTitle (statusWin gui) title

 -- Start the operation
 childThread <- forkIO childTasks

 -- Define what happens when clicking on Cancel
 onClicked (swCancelBt gui) (cancelChild childThread)

 -- Show the window
 windowPresent (statusWin gui)
 where childTasks =
 do updateLabel "Starting thread..."
 func updateLabel
 -- After the child task finishes, enable OK
 -- and disable Cancel
 enableOK

 enableOK =
 do widgetSetSensitivity (swCancelBt gui) False
 widgetSetSensitivity (swOKBt gui) True
 onClicked (swOKBt gui) (widgetHide (statusWin gui))
 return ()

 updateLabel text =
 labelSetText (swLabel gui) text
 cancelChild childThread =
 do killThread childThread
 yield
 updateLabel "Action has been cancelled."
 enableOK
This function starts by clearing the label
 text from the last run. Next, we disable (gray out) the OK button and
 enable the Cancel button. While the operation is in progress, clicking
 OK doesn’t make much sense. And when it’s done, clicking Cancel also
 doesn’t make much sense.
Next, we set the title of the window. The
 title is the part that is displayed by the system in the title bar of
 the window. Finally, we start off the new thread (represented by
 childTasks) and save off its thread
 ID. Then, we define what to do if the user clicks Cancel—we call
 cancelChild, passing along the thread
 ID. Finally, we call windowPresent to show the status
 window.
In childTasks, we display a message saying that
 we’re starting the thread. Then we call the actual worker function,
 passing updateLabel as the function
 to use for displaying status messages. Note that a command-line version
 of the program could pass putStrLn
 here.
Finally, after the worker function exits,
 we call enableOK. This function
 disables the Cancel button, enables the OK button, and defines that a
 click on the OK button causes the status window to go away.
updateLabel simply calls labelSetText on the label widget to update it
 with the displayed text. Finally, cancelChild kills the thread that is
 processing the task, updates the label, and enables the OK
 button.
We now have the infrastructure in place to
 define our three GUI functions. They look like this:
-- file: ch23/PodMainGUI.hs
guiUpdate :: IConnection conn => GUI -> conn -> IO ()
guiUpdate gui dbh =
 statusWindow gui dbh "Pod: Update" (update dbh)

guiDownload gui dbh =
 statusWindow gui dbh "Pod: Download" (download dbh)

guiFetch gui dbh =
 statusWindow gui dbh "Pod: Fetch"
 (\logf -> update dbh logf >> download dbh logf)
For brevity, we have given the type for
 only the first one, but all three have the same type, and Haskell can
 work them out via type inference. Notice our implementation of guiFetch. We don’t call statusWindow twice, but rather combine
 functions in its action.
The final piece of the puzzle consists of
 the three functions that do our work. add is unmodified from the command-line
 chapter. update and download are modified only to take a logging
 function instead of calling putStrLn
 for status updates.
-- file: ch23/PodMainGUI.hs
add dbh url =
 do addPodcast dbh pc
 commit dbh
 where pc = Podcast {castId = 0, castURL = url}

update :: IConnection conn => conn -> (String -> IO ()) -> IO ()
update dbh logf =
 do pclist <- getPodcasts dbh
 mapM_ procPodcast pclist
 logf "Update complete."
 where procPodcast pc =
 do logf $ "Updating from " ++ (castURL pc)
 updatePodcastFromFeed dbh pc

download dbh logf =
 do pclist <- getPodcasts dbh
 mapM_ procPodcast pclist
 logf "Download complete."
 where procPodcast pc =
 do logf $ "Considering " ++ (castURL pc)
 episodelist <- getPodcastEpisodes dbh pc
 let dleps = filter (\ep -> epDone ep == False)
 episodelist
 mapM_ procEpisode dleps
 procEpisode ep =
 do logf $ "Downloading " ++ (epURL ep)
 getEpisode dbh ep
Figure 23-4 shows
 what the final result looks like after running an update.
[image: Screenshot of a dialog box displaying the words “Update complete”]

Figure 23-4. Screenshot of a dialog box displaying the words “Update
 complete”

Using Cabal

We presented a Cabal file to build this project for the command-line
 version in Main Program. We need to make a few
 tweaks for it to work with our GUI version. First, there’s the obvious
 need to add the gtk2hs packages to the list of build dependencies. There
 is also the matter of the Glade XML file.
Earlier, we wrote a PodLocalMain.hs file that simply assumed this
 file is named podresources.glade and stored in the
 current working directory. For a real, system-wide installation, we
 can’t make that assumption. Moreover, different systems may place the
 file in different locations.
Cabal provides a way around this problem.
 It automatically generates a module that exports functions that can
 interrogate the environment. We must add a Data-files line to our Cabal description file.
 This file names all data files that will be part of a system-wide
 installation. Then, Cabal will export a Paths_pod module (the “pod” part comes from
 the Name line in the Cabal file) that
 we can interrogate for the location at runtime. Here’s our new Cabal
 description file:
-- ch24/pod.cabal
Name: pod
Version: 1.0.0
Build-type: Simple
Build-Depends: HTTP, HaXml, network, HDBC, HDBC-sqlite3, base,
 gtk, glade
Data-files: podresources.glade

Executable: pod
Main-Is: PodCabalMain.hs
GHC-Options: -O2
And, to go with it, here’s PodCabalMain.hs:
-- file: ch23/PodCabalMain.hs
module Main where

import qualified PodMainGUI
import Paths_pod(getDataFileName)

main =
 do gladefn <- getDataFileName "podresources.glade"
 PodMainGUI.main gladefn
Exercises
	Present a helpful GUI error message if the call to xmlNew returns Nothing.

	Modify the podcatcher to be able to run with either the GUI
 or the command-line interface from a single code base. Hint: move
 common code out of PodMainGUI.hs, then have two different
 Main modules—one for the GUI,
 and one for the command line.

	Why does guiFetch combine
 worker functions instead of calling statusWindow twice?

[55] Several alternatives also exist.
 Alongside gtk2hs, wxHaskell is also a prominent cross-platform GUI
 toolkit.

Chapter 24. Concurrent and Multicore Programming

As we write this book, the landscape of CPU architecture is
 changing more rapidly than it has in decades.
Defining Concurrency and Parallelism

A concurrent program
 needs to perform several possibly unrelated tasks at the same time.
 Consider the example of a game server: it is typically composed of
 dozens of components, each of which has complicated interactions with
 the outside world. One component might handle multiuser chat; several
 more will process players’ inputs and also feed state updates back to
 them; while yet another performs physics calculations.
The correct operation of a concurrent
 program does not require multiple cores, though they may improve
 performance and responsiveness.
In contrast, a
 parallel program solves a single problem. Consider a financial model that
 attempts to predict the next minute of fluctuations in the price of a
 single stock. If we want to apply this model to every stock listed on an
 exchange—for example, to estimate which ones we should buy and sell—we
 hope to get an answer more quickly if we run the model on 500 cores than
 if we use just 1. As this suggests, a parallel program does not usually
 depend on the presence of multiple cores to work correctly.
Another useful distinction between
 concurrent and parallel programs lies in their interaction with the outside world. By
 definition, a concurrent program deals continuously with networking
 protocols, databases, and the like. A typical parallel program is likely
 to be more focused: it streams in data, crunches it for a while (with
 little further I/O), and then streams data back out.
Many traditional languages further blur
 the already indistinct boundary between concurrent and parallel
 programming, because they force programmers to use the same primitives
 to construct both kinds of programs.
In this chapter, we will concern
 ourselves with concurrent and parallel programs that operate within the
 boundaries of a single operating system process.

Concurrent Programming with Threads

As a building block for concurrent programs, most programming languages
 provide a way of creating multiple independent threads of
 control. Haskell is no exception, though programming with
 threads in Haskell looks somewhat different than in other languages.
In Haskell, a thread is an
 IO action that executes independently from other threads.
 To create a thread, we import the Control.Concurrent
 module and use the forkIO
 function:
ghci> :m +Control.Concurrent
ghci> :t forkIO
forkIO :: IO () -> IO ThreadId
ghci> :m +System.Directory
ghci> forkIO (writeFile "xyzzy" "seo craic nua!") >> doesFileExist "xyzzy"
False
The new thread starts to execute almost
 immediately, and the thread that created it continues to execute
 concurrently. The thread will stop executing when it reaches the end of
 its IO action.
Threads Are Nondeterministic

The runtime component of GHC does not specify an order in which
 it executes threads. As a result, in the preceding example, the file
 xyzzy created by the new thread
 may or may not have been created by the time the
 original thread checks for its existence. If we try this example once,
 and then remove xyzzy and try
 again, we may get a different result the second time.

Hiding Latency

Suppose we have a large file to compress and write to disk, but
 we want to handle a user’s input quickly enough that she will perceive
 our program as responding immediately. If we use forkIO to write the file out in a separate
 thread, we can do both simultaneously:
-- file: ch24/Compressor.hs
import Control.Concurrent (forkIO)
import Control.Exception (handle)
import Control.Monad (forever)
import qualified Data.ByteString.Lazy as L
import System.Console.Readline (readline)

-- Provided by the 'zlib' package on http://hackage.haskell.org/
import Codec.Compression.GZip (compress)

main = do
 maybeLine <- readline "Enter a file to compress> "
 case maybeLine of
 Nothing -> return () -- user entered EOF
 Just "" -> return () -- treat no name as "want to quit"
 Just name -> do
 handle print $ do
 content <- L.readFile name
 forkIO (compressFile name content)
 return ()
 main
 where compressFile path = L.writeFile (path ++ ".gz") . compress
Because we’re using lazy
 ByteString I/O here, all we really do in the main thread
 is open the file. The actual reading occurs on demand in the other
 thread.
The use of handle print
 gives us a cheap way to print an error message if the user enters the
 name of a file that does not exist.

Simple Communication Between Threads

The simplest way to share information between two threads is to let them
 both use a variable. In our file compression example, the main thread shares both the name of a file
 and its contents with the other thread. Because Haskell data is
 immutable by default, this poses no risks: neither thread can modify the
 other’s view of the file’s name or contents.
We often need to have threads actively
 communicate with each other. For example, GHC does not provide a way for one thread
 to find out whether another is still executing, has completed, or has
 crashed.[56] However, it provides a synchronizing
 variable type, the MVar, which we can use to create this capability for
 ourselves.
An MVar acts like a
 single-element box: it can be either full or empty. We can put something
 into the box, making it full, or take something out, making it
 empty:
ghci> :t putMVar
putMVar :: MVar a -> a -> IO ()
ghci> :t takeMVar
takeMVar :: MVar a -> IO a
If we try to put a value into an
 MVar that is already full, our thread is put to sleep until
 another thread takes the value out. Similarly, if we try to take a value
 from an empty MVar, our thread is put to sleep until some
 other thread puts a value in:
-- file: ch24/MVarExample.hs
import Control.Concurrent

communicate = do
 m <- newEmptyMVar
 forkIO $ do
 v <- takeMVar m
 putStrLn ("received " ++ show v)
 putStrLn "sending"
 putMVar m "wake up!"
The newEmptyMVar function has a descriptive name. To create an MVar that
 starts out nonempty, we’d use newMVar:
ghci> :t newEmptyMVar
newEmptyMVar :: IO (MVar a)
ghci> :t newMVar
newMVar :: a -> IO (MVar a)
Let’s run our example in ghci:
ghci> :load MVarExample
[1 of 1] Compiling Main (MVarExample.hs, interpreted)
Ok, modules loaded: Main.
ghci> communicate
sending
received "wake up!"
If you’re coming from a background of
 concurrent programming in a traditional language, you can think of an
 MVar as being useful for two familiar purposes:
	Sending a message from one thread to
 another, for example, a notification.

	Providing mutual
 exclusion for a piece of mutable data that is shared
 among threads. We put the data into the MVar when it is
 not being used by any thread. One thread then takes it out
 temporarily to read or modify it.

The Main Thread and Waiting for Other Threads

GHC’s
 runtime system treats the program’s original thread of control
 differently from other threads. When this thread finishes executing, the
 runtime system considers the program as a whole to have completed. If
 any other threads are executing at the time, they are terminated.
As a result, when we have long-running threads that
 must not be killed, we need to make special arrangements to ensure that
 the main thread doesn’t complete until the others do. Let’s develop a
 small library that makes this easy to do:
-- file: ch24/NiceFork.hs
import Control.Concurrent
import Control.Exception (Exception, try)
import qualified Data.Map as M

data ThreadStatus = Running
 | Finished -- terminated normally
 | Threw Exception -- killed by uncaught exception
 deriving (Eq, Show)

-- | Create a new thread manager.
newManager :: IO ThreadManager

-- | Create a new managed thread.
forkManaged :: ThreadManager -> IO () -> IO ThreadId

-- | Immediately return the status of a managed thread.
getStatus :: ThreadManager -> ThreadId -> IO (Maybe ThreadStatus)

-- | Block until a specific managed thread terminates.
waitFor :: ThreadManager -> ThreadId -> IO (Maybe ThreadStatus)

-- | Block until all managed threads terminate.
waitAll :: ThreadManager -> IO ()
We keep our ThreadManager type abstract
 using the usual recipe: we wrap it in a newtype and prevent clients from creating
 values of this type. Among our module’s exports, we list the type
 constructor and the IO action that constructs a manager,
 but we do not export the data constructor:
-- file: ch24/NiceFork.hs
module NiceFork
 (
 ThreadManager
 , newManager
 , forkManaged
 , getStatus
 , waitFor
 , waitAll
) where
For the implementation of
 ThreadManager, we maintain a map from thread ID to thread
 state. We’ll refer to this as the thread map:
-- file: ch24/NiceFork.hs
newtype ThreadManager =
 Mgr (MVar (M.Map ThreadId (MVar ThreadStatus)))
 deriving (Eq)

newManager = Mgr `fmap` newMVar M.empty
We have two levels of MVar
 at use here. We keep the Map in an MVar. This
 lets us “modify” the Map
 by replacing it with a new version. We also ensure that any thread that
 uses the Map will see a consistent view of it.
For each thread that we manage, we
 maintain an MVar. A per-thread MVar starts off
 empty, which indicates that the thread is executing. When the thread
 finishes or is killed by an uncaught exception, we put this information
 into the MVar.
To create a thread and watch its status,
 we must perform a little bit of bookkeeping:
-- file: ch24/NiceFork.hs
forkManaged (Mgr mgr) body =
 modifyMVar mgr $ \m -> do
 state <- newEmptyMVar
 tid <- forkIO $ do
 result <- try body
 putMVar state (either Threw (const Finished) result)
 return (M.insert tid state m, tid)
Safely Modifying an MVar

The modifyMVar function that we used in forkManaged in the preceding code is very
 useful. It’s a safe combination of takeMVar and putMVar:
ghci> :t modifyMVar
modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b

It takes the value from an
 MVar and passes it to a function. This function can both
 generate a new value and return a result. If the function throws an
 exception, modifyMVar puts the
 original value back into the MVar; otherwise, it puts in
 the new value. It returns the other element of the function as its own
 result.
When we use modifyMVar instead of manually managing an
 MVar with takeMVar
 and putMVar, we avoid two common
 kinds of concurrency bugs:
	Forgetting to put a value back into
 an MVar. This can result in
 deadlock, in which some thread waits forever on an
 MVar that will never have a value put into it.

	Failure to account for the
 possibility that an exception might be thrown, disrupting the flow
 of a piece of code. This can result in a call to putMVar that
 should occur, but doesn’t actually happen,
 again leading to deadlock.

Because of these nice safety
 properties, it’s wise to use modifyMVar whenever possible.

Safe Resource Management: A Good Idea, and Easy Besides

We can the take the pattern that
 modifyMVar follows and apply it
 to many other resource management situations. Here are the steps of
 the pattern:
	Acquire a resource.

	Pass the resource to a function
 that will do something with it.

	Always release the resource, even
 if the function throws an exception. If that occurs, rethrow the
 exception so application code can catch it.

Safety aside, this approach has another
 benefit: it can make our code shorter and easier to follow. As we can
 see from looking at forkManaged
 in the previous code listing, Haskell’s lightweight syntax
 for anonymous functions makes this style of coding visually
 unobtrusive.
Here’s the definition of modifyMVar so that you can see a specific
 form of this pattern:
-- file: ch24/ModifyMVar.hs
import Control.Concurrent (MVar, putMVar, takeMVar)
import Control.Exception (block, catch, throw, unblock)
import Prelude hiding (catch) -- use Control.Exception's version

modifyMVar :: MVar a -> (a -> IO (a,b)) -> IO b
modifyMVar m io =
 block $ do
 a <- takeMVar m
 (b,r) <- unblock (io a) `catch` \e ->
 putMVar m a >> throw e
 putMVar m b
 return r
You should easily be able to adapt this
 to your particular needs, whether you’re working with network
 connections, database handles, or data managed by a C library.

Finding the Status of a Thread

Our getStatus function tells us the current state of a thread. If the thread
 is no longer managed (or was never managed in the first place), it
 returns Nothing:
-- file: ch24/NiceFork.hs
getStatus (Mgr mgr) tid =
 modifyMVar mgr $ \m ->
 case M.lookup tid m of
 Nothing -> return (m, Nothing)
 Just st -> tryTakeMVar st >>= \mst -> case mst of
 Nothing -> return (m, Just Running)
 Just sth -> return (M.delete tid m, Just sth)
If the thread is still running, it
 returns Just Running. Otherwise, it indicates why the
 thread terminated and stops managing the
 thread.
If the tryTakeMVar function finds that the
 MVar is empty, it returns Nothing
 immediately instead of blocking:
ghci> :t tryTakeMVar
tryTakeMVar :: MVar a -> IO (Maybe a)

Otherwise, it extracts the value from
 the MVar as usual.
The waitFor function behaves similarly, but instead of returning
 immediately, it blocks until the given thread terminates before
 returning:
-- file: ch24/NiceFork.hs
waitFor (Mgr mgr) tid = do
 maybeDone <- modifyMVar mgr $ \m ->
 return $ case M.updateLookupWithKey (_ _ -> Nothing) tid m of
 (Nothing, _) -> (m, Nothing)
 (done, m') -> (m', done)
 case maybeDone of
 Nothing -> return Nothing
 Just st -> Just `fmap` takeMVar st
It first extracts the MVar that holds
 the thread’s state, if it exists. The Map type’s
 updateLookupWithKey
 function is useful—it combines looking up a key with modifying
 or removing the value:
ghci> :m +Data.Map
ghci> :t updateLookupWithKey
updateLookupWithKey :: (Ord k) =>
 (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a, Map k a)
In this case, we want to always remove the
 MVar holding the thread’s state if it is present so that
 our thread manager will no longer be managing the thread. If there is
 a value to extract, we take the thread’s exit status from the
 MVar and return it.
Our final useful function simply waits for all
 currently managed threads to complete and ignores their exit
 statuses:
-- file: ch24/NiceFork.hs
waitAll (Mgr mgr) = modifyMVar mgr elems >>= mapM_ takeMVar
 where elems m = return (M.empty, M.elems m)

Writing Tighter Code

Our definition of waitFor is a little unsatisfactory, because we’re performing more or less
 the same case analysis in two places: inside the function called by
 modifyMVar, and again on its
 return value.
Sure enough, we can apply a function
 that we came across earlier to eliminate this duplication. The
 function in question is join,
 from the Control.Monad module:
ghci> :m +Control.Monad
ghci> :t join
join :: (Monad m) => m (m a) -> m a
The trick here is to see that we can
 get rid of the second case
 expression by having the first one return the IO action
 that we should perform once we return from modifyMVar. We’ll use join to execute the action:
-- file: ch24/NiceFork.hs
waitFor2 (Mgr mgr) tid =
 join . modifyMVar mgr $ \m ->
 return $ case M.updateLookupWithKey (_ _ -> Nothing) tid m of
 (Nothing, _) -> (m, return Nothing)
 (Just st, m') -> (m', Just `fmap` takeMVar st)
This is an interesting idea: we can
 create a monadic function or action in pure code, and then pass it
 around until we end up in a monad where we can use it. This can be a
 nimble way to write code, once you develop an eye for when it makes
 sense.

Communicating over Channels

For one-shot communications
 between threads, an MVar is perfectly good. Another type,
 Chan, provides a one-way communication channel. Here is a
 simple example of its use:
-- file: ch24/Chan.hs
import Control.Concurrent
import Control.Concurrent.Chan

chanExample = do
 ch <- newChan
 forkIO $ do
 writeChan ch "hello world"
 writeChan ch "now i quit"
 readChan ch >>= print
 readChan ch >>= print
If a Chan is empty,
 readChan blocks until there is a
 value to read. The writeChan
 function never blocks; it writes a new value into a Chan
 immediately.

Useful Things to Know About

MVar and Chan Are Nonstrict

Like most Haskell container types, both MVar and
 Chan are nonstrict: neither evaluates its contents. We mention this not because it’s a problem but
 because it’s a common blind spot. People tend to assume that these
 types are strict, perhaps because they’re used in the IO
 monad.
As for other container types, the
 upshot of a mistaken guess about the strictness of an
 MVar or Chan type is often a space or
 performance leak. Here’s a plausible scenario to consider.
We fork off a thread to perform some
 expensive computation on another core:
-- file: ch24/Expensive.hs
import Control.Concurrent

notQuiteRight = do
 mv <- newEmptyMVar
 forkIO $ expensiveComputation_stricter mv
 someOtherActivity
 result <- takeMVar mv
 print result
It seems to do
 something and puts its result back into the MVar:
-- file: ch24/Expensive.hs
expensiveComputation mv = do
 let a = "this is "
 b = "not really "
 c = "all that expensive"
 putMVar mv (a ++ b ++ c)
When we take the result from the
 MVar in the parent thread and attempt to do something
 with it, our thread starts computing furiously, because we never
 forced the computation to actually occur in the other thread!
As usual, the solution is
 straightforward, once we know there’s a potential for a problem: we
 add strictness to the forked thread, in order to ensure that the
 computation occurs there. This strictness is best added in one place,
 in order to avoid the possibility that we might forget to add
 it:
-- file: ch24/ModifyMVarStrict.hs
{-# LANGUAGE BangPatterns #-}

import Control.Concurrent (MVar, putMVar, takeMVar)
import Control.Exception (block, catch, throw, unblock)
import Prelude hiding (catch) -- use Control.Exception's version

modifyMVar_strict :: MVar a -> (a -> IO a) -> IO ()
modifyMVar_strict m io = block $ do
 a <- takeMVar m
 !b <- unblock (io a) `catch` \e ->
 putMVar m a >> throw e
 putMVar m b
It’s always worth checking Hackage
In the Hackage package database, you
 will find a library, strict-concurrency, that provides strict
 versions of the MVar and Chan
 types.

The ! pattern in the
 preceding code is simple to use, but it is not always sufficient to
 ensure that our data is evaluated. For a more complete approach, see
 Separating Algorithm from Evaluation.

Chan Is Unbounded

Because writeChan always succeeds immediately, there is a potential risk to
 using a Chan. If one thread writes to a Chan
 more often than another thread reads from it, the Chan
 will grow in an unchecked manner: unread messages will pile up as the
 reader falls further and further behind.

Shared-State Concurrency Is Still Hard

Although Haskell has different primitives for sharing data between threads
 than other languages, it still suffers from the same fundamental
 problem: writing correct concurrent programs is fiendishly
 difficult. Indeed, several pitfalls of concurrent programming in other languages apply
 equally to Haskell. Two of the better-known problems are
 deadlock and
 starvation.
Deadlock

In a deadlock
 situation, two or more threads get stuck forever in a clash over
 access to shared resources. One classic way to make a multithreaded
 program deadlock is to forget the order in which we must acquire
 locks. This kind of bug is so common, it has a name: lock
 order inversion. While Haskell doesn’t provide locks, the MVar
 type is prone to the order inversion problem. Here’s a simple
 example:
-- file: ch24/LockHierarchy.hs
import Control.Concurrent

nestedModification outer inner = do
 modifyMVar_ outer $ \x -> do
 yield -- force this thread to temporarily yield the CPU
 modifyMVar_ inner $ \y -> return (y + 1)
 return (x + 1)
 putStrLn "done"

main = do
 a <- newMVar 1
 b <- newMVar 2
 forkIO $ nestedModification a b
 forkIO $ nestedModification b a
If we run this in ghci, it will usually—but not always—print
 nothing, indicating that both threads have gotten stuck.
The problem with the nestedModification function is easy to
 spot. In the first thread, we take the MVar
 a, then b. In the second, we
 take b, then a. If the first
 thread succeeds in taking a and the second takes
 b, both threads will block; each tries to take an
 MVar that the other has already emptied, so neither can
 make progress.
Across languages, the usual way to
 solve an order inversion problem is to always follow a consistent
 order when acquiring resources. Since this approach requires manual
 adherence to a coding convention, it is easy to miss in
 practice.
To make matters more complicated, these
 kinds of inversion problems can be difficult to spot in real code. The
 taking of MVars is often spread across several functions
 in different files, making visual inspection more tricky. Worse, these
 problems are often intermittent, which makes them
 tough to even reproduce, never mind isolate and fix.

Starvation

Concurrent software is also prone to starvation, in
 which one thread “hogs” a shared resource, preventing
 another from using it. It’s easy to imagine how this might occur: one
 thread calls modifyMVar
 with a body that executes for 100 milliseconds, while another calls
 modifyMVar on the same
 MVar with a body that executes for 1 millisecond. The
 second thread cannot make progress until the first puts a value back
 into the MVar.
The nonstrict nature of the
 MVar type can either cause or exacerbate a starvation
 problem. If we put a thunk into an MVar that will be
 expensive to evaluate, and then take it out of the MVar
 in a thread that otherwise looks like it ought to
 be cheap, that thread could suddenly become computationally expensive
 if it has to evaluate the thunk. This makes the advice we gave in
 MVar and Chan Are Nonstrict particularly
 relevant.

Is There Any Hope?

Fortunately, the APIs for concurrency
 that we have covered here are by no means the end of the story. A more
 recent addition to Haskell, software transactional memory (STM), is
 both easier and safer to work with. We will discuss it in Chapter 28.
Exercises
	The Chan type is implemented using
 MVars. Use MVars to develop a
 BoundedChan library.
Your newBoundedChan
 function should accept an Int parameter, limiting
 the number of unread items that can be present in a
 BoundedChan at once.
If this limit is hit, a call to your writeBoundedChan function must block
 until a reader uses readBoundedChan to consume a
 value.

	Although we’ve already mentioned the existence of the
 strict-concurrency package in the Hackage
 repository, try developing your own, as a wrapper around the
 built-in MVar type. Following classic Haskell
 practice, make your library type safe, so that users cannot
 accidentally mix uses of strict and nonstrict
 MVars.

Using Multiple Cores with GHC

By default, GHC generates programs that use just one core, even when we write
 explicitly concurrent code. To use multiple cores, we must explicitly
 choose to do so. We make this choice at link time, when we are
 generating an executable program:
	The nonthreaded
 runtime library runs all Haskell threads in a single
 operating system thread. This runtime is highly efficient for
 creating threads and passing data around in
 MVars.

	The threaded
 runtime library uses multiple operating system threads to run
 Haskell threads. It has somewhat more overhead for creating threads
 and using MVars.

If we pass the -threaded
 option to the compiler, it will link our program against the
 threaded runtime library. We do not need to use
 -threaded when we are compiling libraries or source
 files—only when we are finally generating an executable.
Even when we select the threaded runtime
 for our program, it will still default to using only one core when we
 run it. We must explicitly tell the runtime how many cores to
 use.
Runtime Options

We can pass options to GHC’s runtime system on the command line
 of our program. Before handing control to our code, the runtime scans
 the program’s arguments for the special command-line option
 +RTS. It interprets everything that follows (until
 the special option -RTS) as an option for the runtime
 system, not our program. It hides all of these options from our code.
 When we use the System.Environment module’s getArgs function to obtain our command-line
 arguments, we will not find any runtime options in the list.
The threaded runtime accepts an option
 -N.[57] This takes one argument, which specifies the number of
 cores that GHC’s runtime
 system should use. The option parser is picky: there cannot be any
 spaces between -N and the number that follows it. The
 option -N4 is acceptable, but
 -N 4 is not.

Finding the Number of Available Cores from Haskell

The module GHC.Conc
 exports a variable, numCapabilities, that
 tells us how many cores the runtime system has been given
 with the -N RTS option:
-- file: ch24/NumCapabilities.hs
import GHC.Conc (numCapabilities)
import System.Environment (getArgs)

main = do
 args <- getArgs
 putStrLn $ "command line arguments: " ++ show args
 putStrLn $ "number of cores: " ++ show numCapabilities
If we compile and run this program, we
 can see that the options to the runtime system are not visible to the
 program, but we can see how many cores it can run on:
$ ghc -c NumCapabilities.hs
$ ghc -threaded -o NumCapabilities NumCapabilities.o
$./NumCapabilities +RTS -N4 -RTS foo
command line arguments: ["foo"]
number of cores: 4

Choosing the Right Runtime

The decision of which runtime to use is
 not completely clear cut. While the threaded runtime can use multiple
 cores, it has a cost: threads and sharing data between them are more
 expensive than with the nonthreaded runtime.
Furthermore, the garbage collector used
 by GHC as of version 6.8.3
 is single-threaded: it pauses all other threads while it runs and
 executes on one core. This limits the performance improvement we can
 hope to see from using multiple cores.[58] In many real-world concurrent programs, an individual
 thread will spend most of its time waiting for a network request or
 response. In these cases, if a single Haskell program serves tens of
 thousands of concurrent clients, the lower overhead of the nonthreaded
 runtime may be helpful. For example, instead of having a single server
 program use the threaded runtime on four cores, we might see better
 performance if we design our server so that we can run four copies of
 it simultaneously and use the nonthreaded runtime.
Our purpose here is not to dissuade you
 from using the threaded runtime. It is not much more expensive than
 the nonthreaded runtime—threads remain amazingly cheap compared to the
 runtimes of most other programming languages. We merely want to make
 it clear that switching to the threaded runtime will not necessarily
 result in an automatic win.

Parallel Programming in Haskell

We will now switch our focus to parallel programming. For many
 computationally expensive problems, we could calculate a result more
 quickly if we could divide the solution and evaluate it on many cores at
 once. Computers with multiple cores are already ubiquitous, but few
 programs can take advantage of the computing power of even a modern
 laptop.
In large part, this is because parallel
 programming is traditionally seen as very difficult. In a typical
 programming language, we would use the same libraries and constructs
 that we apply to concurrent programs to develop a parallel program. This
 forces us to contend with the familiar problems of deadlocks, race
 conditions, starvation, and sheer complexity.
While we could certainly use Haskell’s
 concurrency features to develop parallel code, there is a much simpler
 approach available to us. We can take a normal Haskell function, apply a
 few simple transformations to it, and have it evaluated in
 parallel.
Normal Form and Head Normal Form

The familiar seq function evaluates an expression to
 what we call head normal form (HNF). It
 stops once it reaches the outermost constructor (the head).
 This is distinct from normal form (NF),
 in which an expression is completely evaluated.
You will also hear Haskell programmers
 refer to weak head normal form (WHNF). For normal data, weak head normal
 form is the same as head normal form. The difference arises only for
 functions and is too abstruse to concern us here.

Sequential Sorting

Here is a normal Haskell function that sorts a list using a
 divide-and-conquer approach:
-- file: ch24/Sorting.hs
sort :: (Ord a) => [a] -> [a]
sort (x:xs) = lesser ++ x:greater
 where lesser = sort [y | y <- xs, y < x]
 greater = sort [y | y <- xs, y >= x]
sort _ = []
This function is inspired by the
 well-known Quicksort algorithm, and it is a classic among Haskell
 programmers. It is often presented as a one-liner early in a Haskell
 tutorial to tease the reader with an example of Haskell’s
 expressiveness. Here, we’ve split the code over a few lines, in order
 to make it easier to compare the serial and parallel versions.
Here is a very brief description
 of how sort
 operates:
	It chooses an element from the list. This is
 called the pivot. Any element
 would do as the pivot; the first is merely the easiest to pattern
 match on.

	It creates a sublist of all elements less than
 the pivot and recursively sorts them.

	It creates a sublist of all elements greater than
 or equal to the pivot and recursively sorts them.

	It appends the two sorted sublists.

Transforming Our Code into Parallel Code

The parallel version of the function is only a little
 more complicated than the initial version:
-- file: ch24/Sorting.hs
module Sorting where

import Control.Parallel (par, pseq)

parSort :: (Ord a) => [a] -> [a]
parSort (x:xs) = force greater `par` (force lesser `pseq`
 (lesser ++ x:greater))
 where lesser = parSort [y | y <- xs, y < x]
 greater = parSort [y | y <- xs, y >= x]
parSort _ = []
We have barely perturbed the code—all we have added
 are three functions: par,
 pseq, and force.
The par function
 is provided by the Control.Parallel module. It serves a similar purpose to seq. It evaluates its left argument to WHNF
 and returns its right. As its name suggests, par can evaluate its left argument in
 parallel with whatever other evaluations are occurring.
As for pseq, it is similar to seq: it evaluates the expression on the
 left to WHNF before returning the expression on the right. The
 difference between the two is subtle but important for parallel
 programs: the compiler does not promise to
 evaluate the left argument of seq
 if it can see that evaluating the right argument first would improve
 performance. This flexibility is fine for a program executing on one
 core, but it is not strong enough for code running on multiple cores.
 In contrast, the compiler guarantees that
 pseq will evaluate its left
 argument before its right.
These changes to our code are
 remarkable for all the things we have not needed
 to say:
	How many cores to use

	What threads do to communicate with
 each other

	How to divide up work among the
 available cores

	Which data are shared between
 threads, and which are private

	How to determine when all the
 participants are finished

Knowing What to Evaluate in Parallel

The key to getting decent performance
 out of parallel Haskell code is to find meaningful chunks of work to
 perform in parallel. Nonstrict evaluation can get in the way of this,
 which is why we use the force
 function in our parallel sort. To best explain what the force function is for, we will first look at a mistaken
 example:
-- file: ch24/Sorting.hs
sillySort (x:xs) = greater `par` (lesser `pseq`
 (lesser ++ x:greater))
 where lesser = sillySort [y | y <- xs, y < x]
 greater = sillySort [y | y <- xs, y >= x]
sillySort _ = []
Take a look at the small changes in
 each use of par. Instead of
 force lesser and force greater, here we
 evaluate lesser and greater.
Remember that evaluation to WHNF
 computes only enough of an expression to see its
 outermost constructor. In this mistaken example,
 we evaluate each sorted sublist to WHNF. Since the outermost
 constructor in each case is just a single list constructor, we are in
 fact forcing only the evaluation of the first element of each sorted
 sublist! Every other element of each list remains unevaluated. In
 other words, we do almost no useful work in parallel: our sillySort is nearly completely
 sequential.
We avoid this with our force function by forcing the entire spine
 of a list to be evaluated before we give back a constructor:
-- file: ch24/Sorting.hs
force :: [a] -> ()
force xs = go xs `pseq` ()
 where go (_:xs) = go xs
 go [] = 1
Notice that we don’t care what’s in the list; we walk
 down its spine to the end, and then use pseq once. There is clearly no magic
 involved here—we are just using our usual understanding of Haskell’s
 evaluation model. And because we will be using force on the lefthand side of par or pseq, we don’t need to return a meaningful
 value.
Of course, in many cases, we will need
 to force the evaluation of individual elements of the list, too.
 Below, we will discuss a typeclass-based solution to this
 problem.

What Promises Does par Make?

The par function does not actually promise to evaluate an expression in
 parallel with another. Instead, it undertakes to do so if it
 “makes sense.” This wishy-washy non-promise is actually
 more useful than a guarantee to always evaluate an expression in
 parallel. It gives the runtime system the freedom to act intelligently
 when it encounters par.
For instance, the runtime could decide
 that an expression is too cheap to be worth evaluating in parallel. Or
 it might notice that all cores are currently busy so that
 “sparking” a new parallel evaluation would lead to more
 runnable threads than there are cores available to execute
 them.
This lax specification in turn affects
 how we write parallel code. Since par may be somewhat intelligent at runtime,
 we can use it almost wherever we like, on the assumption that
 performance will not be bogged down by threads contending for busy
 cores.

Running Our Code and Measuring Performance

To try our code out, let’s save
 sort, parSort, and parSort2 to a module named
 Sorting.hs. We create a small driver program that we can
 use to time the performance of one of those sorting functions:
-- file: ch24/SortMain.hs

module Main where

import Data.Time.Clock (diffUTCTime, getCurrentTime)
import System.Environment (getArgs)
import System.Random (StdGen, getStdGen, randoms)

import Sorting

-- testFunction = sort
-- testFunction = seqSort
testFunction = parSort
-- testFunction = parSort2 2

randomInts :: Int -> StdGen -> [Int]
randomInts k g = let result = take k (randoms g)
 in force result `seq` result

main = do
 args <- getArgs
 let count | null args = 500000
 | otherwise = read (head args)
 input <- randomInts count `fmap` getStdGen
 putStrLn $ "We have " ++ show (length input) ++ " elements to sort."
 start <- getCurrentTime
 let sorted = testFunction input
 putStrLn $ "Sorted all " ++ show (length sorted) ++ " elements."
 end <- getCurrentTime
 putStrLn $ show (end `diffUTCTime` start) ++ " elapsed."
For simplicity, we choose the sorting
 function to benchmark at compilation time, via the
 testFunction variable.
Our program accepts a single, optional
 command-line argument, the length of the random list to
 generate.
Nonstrict evaluation can turn
 performance measurement and analysis into something of a minefield.
 Here are some potential problems that we specifically work to avoid in
 our driver program:
	Measuring several things when we think we are looking at
 just one
	Haskell’s default pseudorandom number generator (PRNG)
 is slow, and the randoms function generates random
 numbers on demand.
Before we record our starting time, we force every element
 of the input list to be evaluated, and we print the length of
 the list. This ensures that we create all of the random numbers
 that we will need in advance.
If we were to omit this step, we would interleave the
 generation of random numbers with attempts to work with them in
 parallel. We would thus be measuring both the cost of sorting
 the numbers and, less obviously, the cost of generating
 them.

	Invisible data dependencies
	When we generate the list of random numbers, simply
 printing the length of the list would not perform enough
 evaluation. This would evaluate the spine
 of the list, but not its elements. The actual random numbers
 would not be evaluated until the sort compares them.
This can have serious consequences for performance. The
 value of a random number depends on the value of the preceding
 random number in the list, but we have scattered the list
 elements randomly among our processor cores. If we did not
 evaluate the list elements prior to sorting, we would suffer a
 terrible “ping pong” effect: not only would
 evaluation bounce from one core to another, performance would
 suffer.
Try snipping out the application of force from the body of main. You should find that the
 parallel code can easily end up three times
 slower than the nonparallel code.

	Benchmarking a thunk when we believe that the code is
 performing meaningful work
	To force the sort to take place, we print the length of
 the result list before we record the ending time. Without
 putStrLn demanding the
 length of the list in order to print it, the sort would not
 occur at all.

When we build the program, we enable
 optimization and ghc’s threaded runtime:
$ ghc -threaded -O2 --make SortMain
[1 of 2] Compiling Sorting (Sorting.hs, Sorting.o)
[2 of 2] Compiling Main (SortMain.hs, SortMain.o)
Linking SortMain ...
When we run the program, we must tell
 ghc’s runtime how many cores
 to use. Initially, we try the original sort, in order to establish a performance
 baseline:
$./Sorting +RTS -N1 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.178941s elapsed.
Enabling a second core ought to have no
 effect on performance:
$./Sorting +RTS -N2 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.259869s elapsed.
If we recompile and test the
 performance of parSort, the
 results are less than stellar:
$./Sorting +RTS -N1 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.915818s elapsed.
$./Sorting +RTS -N2 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
4.029781s elapsed.
We have gained nothing in performance.
 It seems that this could be due to one of two factors: either
 par is intrinsically expensive or
 we are using it too much. To help us to distinguish between the two
 possibilities, here is a sort that is identical to parSort, but it uses pseq instead of par:
-- file: ch24/Sorting.hs
seqSort :: (Ord a) => [a] -> [a]
seqSort (x:xs) = lesser `pseq` (greater `pseq`
 (lesser ++ x:greater))
 where lesser = seqSort [y | y <- xs, y < x]
 greater = seqSort [y | y <- xs, y >= x]
seqSort _ = []
We also drop the use of force, so compared to our original
 sort, we should only be measuring
 the cost of using pseq. What
 effect does pseq alone have on
 performance?
$./Sorting +RTS -N1 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.848295s elapsed.
This suggests that par and pseq have similar costs. What can we do to
 improve performance?

Tuning for Performance

In our parSort, we perform twice as many
 applications of par as there are
 elements to sort. While par is
 cheap, as we have seen, it is not free. When
 we recursively apply parSort, we
 eventually apply par to
 individual list elements. At this fine granularity, the cost of using
 par outweighs any possible
 usefulness. To reduce this effect, we switch to our nonparallel
 sort after passing some
 threshold:
-- file: ch24/Sorting.hs
parSort2 :: (Ord a) => Int -> [a] -> [a]
parSort2 d list@(x:xs)
 | d <= 0 = sort list
 | otherwise = force greater `par` (force lesser `pseq`
 (lesser ++ x:greater))
 where lesser = parSort2 d' [y | y <- xs, y < x]
 greater = parSort2 d' [y | y <- xs, y >= x]
 d' = d - 1
parSort2 _ _ = []
Here, we stop recursing and sparking
 new parallel evaluations at a controllable depth. If we knew the size
 of the data we were dealing with, we could stop subdividing and switch
 to the nonparallel code once we reached a sufficiently small amount of
 remaining work:
$./Sorting +RTS -N2 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
2.947872s elapsed.
On a dual core system, this gives us
 roughly a 25% speedup. This is not a huge number, but consider that we
 had to change only a few annotations in return for this performance
 improvement.
This sorting function is particularly
 resistant to good parallel performance. The amount of memory
 allocation it performs forces the garbage collector to run frequently.
 We can see the effect by running our program with the
 -sstderr RTS option, which prints garbage collection statistics to the
 screen. This indicates that our program spends roughly 40% of its time
 collecting garbage. Since the garbage collector in GHC 6.8 stops all threads and runs on a
 single core, it acts as a bottleneck.
You can expect more impressive
 performance improvements from less allocation-heavy code when you use
 par annotations. We have seen
 some simple numerical benchmarks run 1.8 times faster on a dual core
 system than with a single core. As of this writing, a parallel garbage
 collector is under development for GHC, which should help considerably with
 the performance of allocation-heavy code on multicore systems.
Beware a GC bug in GHC 6.8.2
The garbage collector in release
 6.8.2 of GHC has a bug
 that can cause programs using par to crash. If you want to use
 par and you are using 6.8.2, we
 suggest upgrading to at least 6.8.3.

Exercises
	It can be difficult to determine when to switch from
 parSort2 to sort. An alternative approach to the
 one we outline previously would be to decide based on the length
 of a sublist. Rewrite parList2 so that it switches to
 sort if the list contains
 more than some number of elements.

	Measure the performance of the length-based approach and
 compare it with the depth approach. Which gives better
 performance results?

Parallel Strategies and MapReduce

Within the programming community, one of the most famous
 software systems to credit functional programming for inspiration is
 Google’s MapReduce infrastructure for parallel processing of bulk
 data.
We can easily construct a greatly
 simplified, but still useful, Haskell equivalent. To focus our
 attention, we will look at processing web server logfiles, which tend to
 be both huge and plentiful.[59]As an example, here is a log entry for a page visit
 recorded by the Apache Web Server. The entry originally filled one
 line—we split it across several lines to fit:
201.49.94.87 - - [08/Jun/2008:07:04:20 -0500] "GET / HTTP/1.1"
200 2097 "http://en.wikipedia.org/wiki/Mercurial_(software)"
"Mozilla/5.0 (Windows; U; Windows XP 5.1; en-GB; rv:1.8.1.12)
Gecko/20080201 Firefox/2.0.0.12" 0 hgbook.red-bean.com
While we could create a straightforward
 implementation without much effort, we will resist the temptation to
 dive in. If we think about solving a class of
 problems instead of a single one, we may end up with more widely
 applicable code.
When we develop a parallel program, we
 always face a few “bad penny” problems, which turn up
 regardless of the underlying programming language. A few are described
 here:
	Our algorithm quickly becomes
 obscured by the details of partitioning and communication. This
 makes it difficult to understand code, which in turn makes modifying
 it risky.

	Choosing a grain
 size—the smallest unit of work parceled out to a core—can be
 difficult. If the grain size is too small, cores spend so much of
 their time on book-keeping that a parallel program can easily become
 slower than a serial counterpart. If the grain size is too large,
 some cores may lie idle due to poor load balancing.

Separating Algorithm from Evaluation

In parallel Haskell code, the clutter
 that would arise from communication code in a traditional language is
 replaced with the clutter of par
 and pseq annotations. As an
 example, this function operates similarly to map, but evaluates each element to WHNF in
 parallel as it goes:
-- file: ch24/ParMap.hs
import Control.Parallel (par)

parallelMap :: (a -> b) -> [a] -> [b]
parallelMap f (x:xs) = let r = f x
 in r `par` r : parallelMap f xs
parallelMap _ _ = []
The type b might be a list or some other type for which
 evaluation to WHNF doesn’t do a useful amount of work. We’d prefer not
 to have to write a special parallelMap for lists and every other type
 that needs special handling.
To address this problem, we will begin
 by considering a simpler problem: how to force a value to be
 evaluated. Here is a function that forces every element of a list to
 be evaluated to WHNF:
-- file: ch24/ParMap.hs
forceList :: [a] -> ()
forceList (x:xs) = x `pseq` forceList xs
forceList _ = ()
Our function performs no computation on
 the list. (In fact, from examining its type signature, we can tell
 that it cannot perform any computation, since it
 knows nothing about the elements of the list.) Its only purpose is to
 ensure that the spine of the list is evaluated to head normal form.
 The only place that it makes any sense to apply this function is in
 the first argument of seq or
 par, as follows:
-- file: ch24/ParMap.hs
stricterMap :: (a -> b) -> [a] -> [b]
stricterMap f xs = forceList xs `seq` map f xs
This still leaves us with the elements
 of the list evaluated only to WHNF. We address this by adding a
 function as parameter that can force an element to be evaluated more
 deeply:
-- file: ch24/ParMap.hs
forceListAndElts :: (a -> ()) -> [a] -> ()
forceListAndElts forceElt (x:xs) =
 forceElt x `seq` forceListAndElts forceElt xs
forceListAndElts _ _ = ()
The
 Control.Parallel.Strategies module generalizes this idea
 into something we can use as a library. It introduces the idea
 of an evaluation strategy:
-- file: ch24/Strat.hs
type Done = ()

type Strategy a = a -> Done
An evaluation strategy performs no
 computation; it simply ensures that a value is evaluated to some
 extent. The simplest strategy is named r0, and does nothing at all:
-- file: ch24/Strat.hs
r0 :: Strategy a
r0 _ = ()
Next is rwhnf, which evaluates a value to
 WHNF:
-- file: ch24/Strat.hs
rwhnf :: Strategy a
rwhnf x = x `seq` ()
To evaluate a value to normal form, the
 module provides a typeclass with a method named rnf:
-- file: ch24/Strat.hs
class NFData a where
 rnf :: Strategy a
 rnf = rwhnf
Remembering those names
If the names of these functions and
 types are not sticking in your head, look at them as acronyms. The
 name rwhnf expands to reduce to
 weak head normal form; NFData becomes normal form data;
 and so on.

For the basic types, such as
 Int, weak head normal form and normal form are the same
 thing, which is why the NFData typeclass uses rwhnf as the default implementation of
 rnf. For many common types, the
 Control.Parallel.Strategies module provides instances of NFData:
-- file: ch24/Strat.hs
instance NFData Char
instance NFData Int

instance NFData a => NFData (Maybe a) where
 rnf Nothing = ()
 rnf (Just x) = rnf x

{- ... and so on ... -}
From these examples, it should be clear
 how you might write an NFData instance for a type of your
 own. Your implementation of rnf
 must handle every constructor and apply rnf to every field of a constructor.

Separating Algorithm from Strategy

From these strategy building blocks, we
 can construct more elaborate strategies. Many are already provided by
 Control.Parallel.Strategies. For instance, parList applies an evaluation strategy in
 parallel to every element of a list:
-- file: ch24/Strat.hs
parList :: Strategy a -> Strategy [a]
parList strat [] = ()
parList strat (x:xs) = strat x `par` (parList strat xs)
The module uses this to define a
 parallel map function:
-- file: ch24/Strat.hs
parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs `using` parList strat
This is where the code becomes
 interesting. On the left of using, we have a normal application of
 map. On the right, we have an
 evaluation strategy. The using
 combinator tells us how to apply a strategy to a value, allowing us to
 keep the code separate from how we plan to evaluate it:
-- file: ch24/Strat.hs
using :: a -> Strategy a -> a
using x s = s x `seq` x
The
 Control.Parallel.Strategies module provides many other
 functions that enable fine control over evaluation. For instance,
 parZipWith that applies zipWith in parallel, using an evaluation
 strategy:
-- file: ch24/Strat.hs
vectorSum' :: (NFData a, Num a) => [a] -> [a] -> [a]
vectorSum' = parZipWith rnf (+)

Writing a Simple MapReduce Definition

We can quickly suggest a type for a mapReduce function by considering what it
 must do. We need a map component, to which we
 will give the usual type a -> b. And we need a
 reduce; this term is a synonym for
 fold. Rather than commit ourselves to using a
 specific kind of fold, we’ll use a more general type, [b] ->
 c. This type lets us use a left or right fold, so we can choose
 the one that suits our data and processing needs.
If we plug these types together, the complete type
 looks like this:
-- file: ch24/MapReduce.hs
simpleMapReduce
 :: (a -> b) -- map function
 -> ([b] -> c) -- reduce function
 -> [a] -- list to map over
 -> c
The code that goes with the type is extremely
 simple:
-- file: ch24/MapReduce.hs
simpleMapReduce mapFunc reduceFunc = reduceFunc . map mapFunc

MapReduce and Strategies

Our definition of simpleMapReduce is too simple to really be
 interesting. To make it useful, we want to be able to specify that
 some of the work should occur in parallel. We’ll achieve this using
 strategies, passing in a strategy for the map phase and one for the
 reduction phase:
-- file: ch24/MapReduce.hs
mapReduce
 :: Strategy b -- evaluation strategy for mapping
 -> (a -> b) -- map function
 -> Strategy c -- evaluation strategy for reduction
 -> ([b] -> c) -- reduce function
 -> [a] -- list to map over
 -> c
Both the type and the body of the
 function must grow a little in size to accommodate the strategy
 parameters.
-- file: ch24/MapReduce.hs
mapReduce mapStrat mapFunc reduceStrat reduceFunc input =
 mapResult `pseq` reduceResult
 where mapResult = parMap mapStrat mapFunc input
 reduceResult = reduceFunc mapResult `using` reduceStrat

Sizing Work Appropriately

To achieve decent performance, we must ensure that
 the work that we do per application of par substantially outweighs its bookkeeping
 costs. If we are processing a huge file, splitting it on line
 boundaries gives us far too little work compared to overhead.
We will develop a way to process a file
 in larger chunks in a later section. What should those chunks consist
 of? Because a web server logfile ought to contain only ASCII text, we
 will see excellent performance with a lazy ByteString.
 This type is highly efficient and consumes little memory when we
 stream it from a file:
-- file: ch24/LineChunks.hs
module LineChunks
 (
 chunkedReadWith
) where

import Control.Exception (bracket, finally)
import Control.Monad (forM, liftM)
import Control.Parallel.Strategies (NFData, rnf)
import Data.Int (Int64)
import qualified Data.ByteString.Lazy.Char8 as LB
import GHC.Conc (numCapabilities)
import System.IO

data ChunkSpec = CS {
 chunkOffset :: !Int64
 , chunkLength :: !Int64
 } deriving (Eq, Show)

withChunks :: (NFData a) =>
 (FilePath -> IO [ChunkSpec])
 -> ([LB.ByteString] -> a)
 -> FilePath
 -> IO a
withChunks chunkFunc process path = do
 (chunks, handles) <- chunkedRead chunkFunc path
 let r = process chunks
 (rnf r `seq` return r) `finally` mapM_ hClose handles

chunkedReadWith :: (NFData a) =>
 ([LB.ByteString] -> a) -> FilePath -> IO a
chunkedReadWith func path =
 withChunks (lineChunks (numCapabilities * 4)) func path
We consume each chunk in parallel,
 taking careful advantage of lazy I/O to ensure that we can stream
 these chunks safely.
Mitigating the risks of lazy I/O

Lazy I/O poses a few well-known hazards that we would like to
 avoid:
	We may invisibly keep a file
 handle open for longer than necessary by not forcing the
 computation that pulls data from it to be evaluated. Since an
 operating system will typically place a small, fixed limit on
 the number of files we can have open at once, if we do not
 address this risk, we can accidentally starve some other part of
 our program of file handles.

	If we do not explicitly close a
 file handle, the garbage collector will automatically close it
 for us, but it may take a long time to notice that it should
 close the file handle. This poses the same starvation risk
 mentioned earlier.

	We can avoid starvation by
 explicitly closing a file handle. If we do so too early, though,
 we can cause a lazy computation to fail if it expects to be able
 to pull more data from a closed file handle.

On top of these well-known risks, we
 cannot use a single file handle to supply data to multiple threads.
 A file handle has a single seek pointer
 that tracks the position from which it should be reading,
 but when we want to read multiple chunks, each needs to consume data
 from a different position in the file.
With these ideas in mind, let’s fill
 out the lazy I/O picture:
-- file: ch24/LineChunks.hs
chunkedRead :: (FilePath -> IO [ChunkSpec])
 -> FilePath
 -> IO ([LB.ByteString], [Handle])
chunkedRead chunkFunc path = do
 chunks <- chunkFunc path
 liftM unzip . forM chunks $ \spec -> do
 h <- openFile path ReadMode
 hSeek h AbsoluteSeek (fromIntegral (chunkOffset spec))
 chunk <- LB.take (chunkLength spec) `liftM` LB.hGetContents h
 return (chunk, h)
We avoid the starvation problem by
 explicitly closing file handles. We allow multiple threads to read
 different chunks at once by supplying each one with a distinct file
 handle, all reading the same file.
The final problem that we try to
 mitigate is that of a lazy computation having a file handle closed
 behind its back. We use rnf to
 force all of our processing to complete before we return from
 withChunks. We can then close
 our file handles explicitly, as they should no longer be read from.
 If you must use lazy I/O in a program, it is often best to
 “firewall” it like this so that it cannot cause
 problems in unexpected parts of your code.
Processing chunks via a fold
We can adapt the
 fold-with-early-termination technique from Another Way of Looking at Traversal to stream-based file processing. While this
 requires more work than the lazy I/O approach, it nicely avoids
 the problems just discussed.

Efficiently Finding Line-Aligned Chunks

Since a server logfile is line-oriented, we need an efficient way to
 break a file into large chunks, while making sure that each chunk ends
 on a line boundary. Since a chunk might be tens of megabytes in size,
 we don’t want to scan all of the data in a chunk to determine where
 its final boundary should be.
Our approach works whether we choose a
 fixed chunk size or a fixed number of chunks. Here, we opt for the
 latter. We begin by seeking to the approximate position of the end of
 a chunk, and then scan forwards until we reach a newline character. We
 next start the following chunk after the newline, and repeat the
 procedure:
-- file: ch24/LineChunks.hs
lineChunks :: Int -> FilePath -> IO [ChunkSpec]
lineChunks numChunks path = do
 bracket (openFile path ReadMode) hClose $ \h -> do
 totalSize <- fromIntegral `liftM` hFileSize h
 let chunkSize = totalSize `div` fromIntegral numChunks
 findChunks offset = do
 let newOffset = offset + chunkSize
 hSeek h AbsoluteSeek (fromIntegral newOffset)
 let findNewline off = do
 eof <- hIsEOF h
 if eof
 then return [CS offset (totalSize - offset)]
 else do
 bytes <- LB.hGet h 4096
 case LB.elemIndex '\n' bytes of
 Just n -> do
 chunks@(c:_) <- findChunks (off + n + 1)
 let coff = chunkOffset c
 return (CS offset (coff - offset):chunks)
 Nothing -> findNewline (off + LB.length bytes)
 findNewline newOffset
 findChunks 0
The last chunk will end up a little
 shorter than its predecessors, but this difference will be
 insignificant in practice.

Counting Lines

This simple example illustrates how to
 use the scaffolding we built:
-- file: ch24/LineCount.hs
module Main where

import Control.Monad (forM_)
import Data.Int (Int64)
import qualified Data.ByteString.Lazy.Char8 as LB
import System.Environment (getArgs)

import LineChunks (chunkedReadWith)
import MapReduce (mapReduce, rnf)

lineCount :: [LB.ByteString] -> Int64
lineCount = mapReduce rnf (LB.count '\n')
 rnf sum

main :: IO ()
main = do
 args <- getArgs
 forM_ args $ \path -> do
 numLines <- chunkedReadWith lineCount path
 putStrLn $ path ++ ": " ++ show numLines
If we compile this program with
 ghc -O2 --make -threaded, it should perform well
 after an initial run to “warm” the filesystem cache. On a
 dual-core laptop processing a logfile 248 megabytes (1.1 million
 lines) in size, this program runs in 0.576 seconds using a single
 core, and in 0.361 using two (using +RTS -N2).

Finding the Most Popular URLs

In this example, we count the number of
 times each URL is accessed. This example comes from “MapReduce:
 simplified data processing on large clusters” by Jeffrey Dean and Sanjay Ghemawat (http://labs.google.com/papers/mapreduce.html), Google’s
 original paper discussing MapReduce. In the map
 phase, for each chunk, we create a Map from a URL using
 the number of times it was accessed. In the
 reduce phase, we union-merge these maps into
 one:
-- file: ch24/CommonURLs.hs
module Main where

import Control.Parallel.Strategies (NFData(..), rwhnf)
import Control.Monad (forM_)
import Data.List (foldl', sortBy)
import qualified Data.ByteString.Lazy.Char8 as L
import qualified Data.ByteString.Char8 as S
import qualified Data.Map as M
import Text.Regex.PCRE.Light (compile, match)

import System.Environment (getArgs)
import LineChunks (chunkedReadWith)
import MapReduce (mapReduce)

countURLs :: [L.ByteString] -> M.Map S.ByteString Int
countURLs = mapReduce rwhnf (foldl' augment M.empty . L.lines)
 rwhnf (M.unionsWith (+))
 where augment map line =
 case match (compile pattern []) (strict line) [] of
 Just (_:url:_) -> M.insertWith' (+) url 1 map
 _ -> map
 strict = S.concat . L.toChunks
 pattern = S.pack "\"(?:GET|POST|HEAD) ([^]+) HTTP/"
To pick a URL out of a line of the
 logfile, we use the bindings to the PCRE regular expression library
 that we developed in Chapter 17.
Our driver function prints the 10 most
 popular URLs. As with the line-counting example, this program runs
 about 1.8 times faster with two cores than with one, taking 1.7
 seconds to process the a logfile containing 1.1 million
 entries.

Conclusions

Given a problem that fits its model
 well, the MapReduce programming model lets us write
 “casual” parallel programs in Haskell with good
 performance and minimal additional effort. We can easily extend
 the idea to use other data sources, such as collections of files or
 data sourced over the network.
In many cases, the performance
 bottleneck will be streaming data at a rate high enough to keep up
 with a core’s processing capacity. For instance, if we try to use
 either of the sample programs just shown on a file that is not cached
 in memory or streamed from a high-bandwidth storage array, we will
 spend most of our time waiting for disk I/O, gaining no benefit from
 multiple cores.

[56] As we will show later, GHC threads are extraordinarily
 lightweight. If the runtime were to provide a way to check the
 status of every thread, the overhead of every thread would increase,
 even if this information were never used.

[57] The nonthreaded runtime does not
 understand this option and will reject it with an error
 message.

[58] As of this writing, the garbage
 collector is being retooled to use multiple cores, but we cannot
 yet predict its future effect.

[59] The genesis of this idea came from
 Tim Bray.

Chapter 25. Profiling and Optimization

Haskell is a high-level language. A really
 high-level language. We can spend our days programming entirely in
 abstractions, in monoids, functors, and hylomorphisms, far removed from
 any specific hardware model of computation. The language specification
 goes to great lengths to avoid prescribing any particular evaluation
 model. These layers of abstraction let us treat Haskell as a notation for
 computation itself, letting us concentrate on the essence of the problem
 without getting bogged down in low-level implementation decisions. We get to program
 in pure thought.
However, this is a book about real-world
 programming, and in the real world, code runs on stock hardware with
 limited resources. Our programs will have time and space requirements that
 we may need to enforce. As such, we need a good knowledge of how our
 program data is represented, the precise consequences of using lazy or
 strict evaluation strategies, and techniques for analyzing and controlling
 space and time behavior.
In this chapter, we’ll look at typical
 space and time problems a Haskell programmer might encounter and how to
 methodically analyze, understand, and address them. To do this, we’ll use
 a range of techniques: time and space profiling, runtime statistics, and
 reasoning about strict and lazy evaluation. We’ll also look at the impact
 of compiler optimizations on performance and the use of advanced
 optimization techniques that become feasible in a purely functional
 language. So let’s begin with a challenge: squashing unexpected memory
 usage in some inocuous-looking code.
Profiling Haskell Programs

Let’s consider the following list manipulating program, which naively
 computes the mean of some large list of values. While only a program
 fragment (and we’ll stress that the particular algorithm we’re
 implementing is irrelevant here), it is representative of real code that
 we might find in any Haskell program: typically concise list
 manipulation code and heavy use of standard library functions. It also
 illustrates several common performance trouble spots that can catch the
 unwary:
-- file: ch25/A.hs
import System.Environment
import Text.Printf

main = do
 [d] <- map read `fmap` getArgs
 printf "%f\n" (mean [1..d])

mean :: [Double] -> Double
mean xs = sum xs / fromIntegral (length xs)
This program is very simple. We import functions for
 accessing the system’s environment (in particular, getArgs), and the Haskell version of printf, for
 formatted text output. The program then reads a numeric literal from the
 command line, using that to build a list of floating-point values, whose
 mean value we compute by dividing the list sum by its length. The result
 is printed as a string. Let’s compile this source to native code (with
 optimizations on) and run it with the time command to see
 how it performs:
$ ghc --make -O2 A.hs
[1 of 1] Compiling Main (A.hs, A.o)
Linking A ...
$ time ./A 1e5
50000.5
./A 1e5 0.05s user 0.01s system 102% cpu 0.059 total
$ time ./A 1e6
500000.5
./A 1e6 0.26s user 0.04s system 99% cpu 0.298 total
$ time ./A 1e7
5000000.5
./A 1e7 63.80s user 0.62s system 99% cpu 1:04.53 total
It worked well for small numbers, but the program
 really started to struggle with a list size of 10 million. From this
 alone, we know something’s not quite right, but it’s unclear what
 resources are being used. Let’s investigate.
Collecting Runtime Statistics

To get access to that kind of information, GHC lets us pass flags
 directly to the Haskell runtime, using the special +RTS
 and -RTS flags to delimit arguments reserved for the runtime system.
 The application itself won’t see those flags, as they’re immediately
 consumed by the Haskell runtime system.
In particular, we can ask the runtime
 system to gather memory and garbage collector performance numbers with
 the -s flag (as well as control the number of OS threads with
 -N or tweak the stack and heap sizes). We’ll also use
 runtime flags to enable different varieties of profiling. The complete
 set of flags the Haskell runtime accepts is documented in the GHC
 User’s Guide.
So let’s run the program with statistic
 reporting enabled, via +RTS -sstderr, yielding this result:
$./A 1e7 +RTS -sstderr
./A 1e7 +RTS -sstderr
5000000.5
1,689,133,824 bytes allocated in the heap
697,882,192 bytes copied during GC (scavenged)
465,051,008 bytes copied during GC (not scavenged)
382,705,664 bytes maximum residency (10 sample(s))

 3222 collections in generation 0 (0.91s)
 10 collections in generation 1 (18.69s)

 742 Mb total memory in use

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.63s (0.71s elapsed)
 GC time 19.60s (20.73s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 20.23s (21.44s elapsed)

 %GC time 96.9% (96.7% elapsed)

 Alloc rate 2,681,318,018 bytes per MUT second

 Productivity 3.1% of total user, 2.9% of total elapsed

When using -sstderr, our
 program’s performance numbers are printed to the standard error
 stream, giving us a lot of information about what our program is
 doing. In particular, it tells us how much time was spent in garbage
 collection and what the maximum live memory usage was. It turns out
 that to compute the mean of a list of 10 million elements, our program
 used a maximum of 742 megabytes on the heap, and spent 96.9% of its
 time doing garbage collection! In total, only 3.1% of the program’s
 running time was spent doing productive work.
So why is our program behaving so
 badly, and what can we do to improve it? After all, Haskell is a lazy
 language—shouldn’t it be able to process the list in constant
 space?

Time Profiling

Thankfully, GHC comes with several
 tools to analyze a program’s time and space usage. In particular, we
 can compile a program with profiling enabled, which, when run yields
 useful information about what resources each function is using.
 Profiling proceeds in three steps: compile the program for profiling,
 run it with particular profiling modes enabled, and inspect the
 resulting statistics.
To compile our program for basic time
 and allocation profiling, we use the -prof flag. We also
 need to tell the profiling code which functions we’re interested in
 profiling, by adding cost centers to them. A cost
 center is a location in the program we’d like to collect statistics
 about. GHC will generate code to compute the cost of evaluating the
 expression at each location. Cost centers can be added manually to
 instrument any expression, using the SCC pragma:
-- file: ch25/SCC.hs
mean :: [Double] -> Double
mean xs = {-# SCC "mean" #-} sum xs / fromIntegral (length xs)
Alternatively, we can have the compiler
 insert the cost centers on all top-level functions for us by compiling
 with the -auto-all flag. Manual cost centers are a useful addition to automated
 cost-center profiling, as once a hot spot is been identified, we can
 precisely pin down the expensive subexpressions of a function.
One complication to be aware of is that
 in a lazy, pure language such as Haskell, values with no arguments
 need only be computed once (for example, the large list in our example
 program), and the result shared for later uses. Such values are not
 really part of the call graph of a program, as they’re not evaluated
 on each call, but we would of course still like to know how expensive
 their one-off cost of evaluation was. To get accurate numbers for
 these values, known as constant applicative forms
 (CAFs), we use the -caf-all
 flag.
Compiling our example program for
 profiling then (using the -fforce-recomp flag to force
 full recompilation):
$ ghc -O2 --make A.hs -prof -auto-all -caf-all -fforce-recomp
[1 of 1] Compiling Main (A.hs, A.o)
Linking A ...

We can now run this annotated program
 with time profiling enabled (and we’ll use a smaller input size for
 the time being, as the program now has additional profiling overhead):
$ time ./A 1e6 +RTS -p
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize' to increase it.
./A 1e6 +RTS -p 1.11s user 0.15s system 95% cpu 1.319 total

The program ran out of stack space!
 This is the main complication to be aware of when using profiling:
 adding cost centers to a program modifies how it is optimized,
 possibly changing its runtime behavior, as each expression now has
 additional code associated with it to track the evaluation steps. In a
 sense, observing the program that is executing modifies how it
 executes. In this case, it is simple to proceed—we use the GHC runtime
 flag, -K, to set a larger stack limit for our program
 (with the usual suffixes to indicate magnitude):
$ time ./A 1e6 +RTS -p -K100M
500000.5
./A 1e6 +RTS -p -K100M 4.27s user 0.20s system 99% cpu 4.489 total

The runtime will dump its profiling
 information into a file, A.prof
 (named after the binary that was executed), which contains the
 following information:
Time and Allocation Profiling Report (Final)

	 A +RTS -p -K100M -RTS 1e6

	total time = 0.28 secs (14 ticks @ 20 ms)
	total alloc = 224,041,656 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

CAF:sum Main 78.6 25.0
CAF GHC.Float 21.4 75.0

 individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 1 0 0.0 0.0 100.0 100.0
 main Main 166 2 0.0 0.0 0.0 0.0
 mean Main 168 1 0.0 0.0 0.0 0.0
 CAF:sum Main 160 1 78.6 25.0 78.6 25.0
 CAF:lvl Main 158 1 0.0 0.0 0.0 0.0
 main Main 167 0 0.0 0.0 0.0 0.0
 CAF Numeric 136 1 0.0 0.0 0.0 0.0
 CAF Text.Read.Lex 135 9 0.0 0.0 0.0 0.0
 CAF GHC.Read 130 1 0.0 0.0 0.0 0.0
 CAF GHC.Float 129 1 21.4 75.0 21.4 75.0
 CAF GHC.Handle 110 4 0.0 0.0 0.0 0.0
This gives us a view into the program’s
 runtime behavior. We can see the program’s name and the flags we ran
 it with. The total time is time actually spent
 executing code from the runtime system’s point of view, and the
 total allocation is the number of bytes allocated
 during the entire program run (not the maximum live memory, which is
 around 700 MB).
The second section of the profiling
 report is the proportion of time and space each function was
 responsible for. The third section is the cost center report,
 structured as a call graph (for example, we can see that mean was called from main). The “individual” and “inherited”
 columns give us the resources a cost center was responsible for on its
 own, and what it and its children were responsible for. Additionally,
 we see the one-off costs of evaluating constants (such as the
 floating-point values in the large list and the list itself) assigned
 to top-level CAFs.
What conclusions can we draw from this
 information? We can see that the majority of time is spent in two
 CAFs, one related to computing the sum and another for floating-point
 numbers. These alone account for nearly all allocations that occurred
 during the program run. Combined with our earlier observation about
 garbage collector stress, it begins to look like the list node
 allocations, containing floating-point values, are causing a
 problem.
For simple performance hot spot
 identification, particularly in large programs where we might have
 little idea where time is being spent, the initial time profile can
 highlight a particular problematic module and top-level function,
 which is often enough to reveal the trouble spot. Once we’ve narrowed
 down the code to a problematic section, such as our example here, we
 can use more sophisticated profiling tools to extract more
 information.

Space Profiling

Beyond basic time and allocation
 statistics, GHC is able to generate graphs of memory usage of the
 heap, over the program’s lifetime. This is perfect for revealing
 space leaks, where memory is retained unnecessarily, leading to the kind
 of heavy garbage collector activity we see in our example.
Constructing a heap profile follows the
 same procedure as constructing a normal time profile—namely, compile
 with -prof -auto-all -caf-all. But, when we execute the
 program, we’ll ask the runtime system to gather more detailed heap use
 statistics. We can break down the heap use information in several
 ways: via cost center, via module, by constructor, or by data type.
 Each has its own insights. Heap profiling A.hs logs to a file A.hp, with raw data that is in turn
 processed by the tool hp2ps, which generates a
 PostScript-based, graphical visualization of the heap over
 time.
To extract a standard heap profile from
 our program, we run it with the -hc runtime flag:
$ time ./A 1e6 +RTS -hc -p -K100M
500000.5
./A 1e6 +RTS -hc -p -K100M 4.15s user 0.27s system 99% cpu 4.432 total

A heap profiling log, A.hp, was created, with the content in the
 following form:
JOB "A 1e6 +RTS -hc -p -K100M"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
END_SAMPLE 0.00
BEGIN_SAMPLE 0.24
(167)main/CAF:lvl 48
(136)Numeric.CAF 112
(166)main 8384
(110)GHC.Handle.CAF 8480
(160)CAF:sum 10562000
(129)GHC.Float.CAF 10562080
END_SAMPLE 0.24
Samples are taken at regular intervals
 during the program run. We can increase the heap sampling frequency
 using -iN, where N is
 the number of seconds (e.g., 0.01) between heap size samples.
 Obviously, the more we sample, the more accurate the results, but the
 slower our program will run. We can now render the heap profile as a
 graph, using the hp2ps tool:
$ hp2ps -e8in -c A.hp
This produces the graph, in the file
 A.ps shown in Figure 25-1.
[image: The heap profile graph rises in a gently decreasing curve in the first half of the program’s run, drops abruptly, then trails off during the remaining third.]

Figure 25-1. The heap profile graph rises in a gently decreasing curve in
 the first half of the program’s run, drops abruptly, then trails off
 during the remaining third.

What does this graph tell us? For one,
 the program runs in two phases, spending its first half allocating
 increasingly large amounts of memory while summing values, and the
 second half cleaning up those values. The initial allocation also
 coincides with sum, doing some work, allocating a lot of
 data. We get a slightly different presentation if we break down the
 allocation by type, using -hy profiling:
$ time ./A 1e6 +RTS -hy -p -K100M
500000.5
./A 1e6 +RTS -i0.001 -hy -p -K100M 34.96s user 0.22s system 99% cpu 35.237 total
$ hp2ps -e8in -c A.hp

This yields the graph shown in Figure 25-2.
[image: Heap profiling curve, broken down by data type. Values of unknown type account for half of the first phase, with Double and lists split. The second phase is one third black holes, the rest split between Double and lists.]

Figure 25-2. Heap profiling curve, broken down by data type. Values of
 unknown type account for half of the first phase, with Double and
 lists split. The second phase is one third black holes, the rest
 split between Double and lists.

The most interesting things to notice
 here are large parts of the heap devoted to values of list type (the
 [] band) and heap-allocated Double values.
 There’s also some heap-allocated data of unknown type (represented as
 data of type *). Finally, let’s
 break it down by what constructors are being allocated, using the
 -hd flag:
$ time ./A 1e6 +RTS -hd -p -K100M
$ time ./A 1e6 +RTS -i0.001 -hd -p -K100M
500000.5
./A 1e6 +RTS -i0.001 -hd -p -K100M 27.85s user 0.31s system 99% cpu 28.222 total

Our final graphic reveals the full
 story of what is going on. See Figure 25-3.
[image: The graph is similar in shape but reveals the unknown values to be lists.]

Figure 25-3. The graph is similar in shape but reveals the unknown values
 to be lists.

A lot of work is going into allocating
 list nodes containing double-precision floating-point values. Haskell
 lists are lazy, so the full million element list is built up over
 time. Crucially, though, it is not being deallocated as it is
 traversed, leading to increasingly large resident memory use. Finally,
 a bit over halfway through the program run, the program finally
 finishes summing the list and starts calculating the length. If we
 look at the original fragment for mean, we can see
 exactly why that memory is being retained:
-- file: ch25/Fragment.hs
mean :: [Double] -> Double
mean xs = sum xs / fromIntegral (length xs)
At first we sum our list, which
 triggers the allocation of list nodes, but we’re unable to release the
 list nodes once we’re done, as the entire list is still needed by
 length. As soon as sum is done though, and length starts consuming the list, the
 garbage collector can chase it along, deallocating the list nodes,
 until we’re done. These two phases of evaluation give two strikingly
 different phases of allocation and deallocation, and point at exactly
 what we need to do: traverse the list once only, summing and averaging
 it as we go.

Controlling Evaluation

We have a number of options if we want to
 write our loop to traverse the list only once. For example, we can write
 the loop as a fold over the list or via explicit recursion on the list
 structure. Sticking to the high-level approaches, we’ll try a fold
 first:
-- file: ch25/B.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
 where
 (n, s) = foldl k (0, 0) xs
 k (n, s) x = (n+1, s+x)
Now, instead of taking the sum of the
 list and retaining the list until we can take its length, we left-fold
 over the list, accumulating the intermediate sum and length values in a
 pair (and we must left-fold, since a right-fold would take us to the end
 of the list and work backwards, which is exactly what we’re trying to
 avoid).
The body of our loop is the k function, which takes the intermediate loop
 state and the current element and returns a new state with the length
 increased by one and the sum increased by the current element. When we
 run this, however, we get a stack overflow:
$ ghc -O2 --make B.hs -fforce-recomp
$ time ./B 1e6
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize' to increase it.
./B 1e6 0.44s user 0.10s system 96% cpu 0.565 total
We traded wasted heap for wasted stack!
 In fact, if we increase the stack size to the size of the heap in our
 previous implementation, using the -K runtime flag, the
 program runs to completion and has similar allocation figures:
$ ghc -O2 --make B.hs -prof -auto-all -caf-all -fforce-recomp
[1 of 1] Compiling Main (B.hs, B.o)
Linking B ...
$ time ./B 1e6 +RTS -i0.001 -hc -p -K100M
500000.5
./B 1e6 +RTS -i0.001 -hc -p -K100M 38.70s user 0.27s system 99% cpu 39.241 total
Generating the heap profile, we see all
 the allocation is now in mean. See Figure 25-4.
[image: Graph of stack usage. The curve is shaped like a hump, with mean representing 80%, and GHC.Real.CAF the other 20%.]

Figure 25-4. Graph of stack usage. The curve is shaped like a hump, with
 mean representing 80%, and GHC.Real.CAF the other 20%.

The question is: why are we building up
 more and more allocated state, when all we are doing is folding over the
 list? This, it turns out, is a classic space leak due to excessive
 laziness.
Strictness and Tail Recursion

The problem is that our left-fold, foldl, is too lazy. What we want is a
 tail-recursive loop, which can be implemented effectively as a
 goto, with no state left on the stack. In this case
 though, rather than fully reducing the tuple state at each step, a
 long chain of thunks is being created, which is evaluated only towards
 the end of the program. At no point do we demand reduction of the loop
 state, so the compiler is unable to infer any strictness and must
 reduce the value purely lazily.
What we need to do is tune the
 evaluation strategy slightly—lazily unfolding the list, but strictly
 accumulating the fold state. The standard approach here is to replace
 foldl with foldl', from the Data.List module:
-- file: ch25/C.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
 where
 (n, s) = foldl' k (0, 0) xs
 k (n, s) x = (n+1, s+x)
However, if we run this implementation,
 we see that we still haven’t quite got it right:
$ ghc -O2 --make C.hs
[1 of 1] Compiling Main (C.hs, C.o)
Linking C ...
$ time ./C 1e6
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize' to increase it.
./C 1e6 0.44s user 0.13s system 94% cpu 0.601 total
Still not strict enough! Our loop is
 continuing to accumulate unevaluated state on the stack. The problem
 here is that foldl' is only
 outermost strict:
-- file: ch25/Foldl.hs
foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f z xs = lgo z xs
 where lgo z [] = z
 lgo z (x:xs) = let z' = f z x in z' `seq` lgo z' xs
This loop uses `seq` to reduce the accumulated state at
 each step, but only to the outermost constructor on the loop state.
 That is, seq reduces an expression to weak head normal
 form (WHNF). Evaluation stops on the loop state once the first
 constructor is reached. In this case, the outermost constructor is the
 tuple wrapper, (,), which isn’t deep enough. The problem
 is still the unevaluated numeric state inside the tuple.

Adding Strictness

There are a number of ways to make this
 function fully strict. We can, for example, add our own strictness
 hints to the internal state of the tuple, yielding a truly
 tail-recursive loop:
-- file: ch25/D.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
 where
 (n, s) = foldl' k (0, 0) xs
 k (n, s) x = n `seq` s `seq` (n+1, s+x)
In this variant, we step inside the
 tuple state and explicitly tell the compiler that each state component
 should be reduced on each step. This gives us a version that does, at
 last, run in constant space:
$ ghc -O2 D.hs --make
[1 of 1] Compiling Main (D.hs, D.o)
Linking D ...

If we run this, with allocation
 statistics enabled, we get the satisfying result:
$ time ./D 1e6 +RTS -sstderr
./D 1e6 +RTS -sstderr
500000.5
256,060,848 bytes allocated in the heap
 43,928 bytes copied during GC (scavenged)
 23,456 bytes copied during GC (not scavenged)
 45,056 bytes maximum residency (1 sample(s))

 489 collections in generation 0 (0.00s)
 1 collections in generation 1 (0.00s)

 1 Mb total memory in use

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.12s (0.13s elapsed)
 GC time 0.00s (0.00s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 0.13s (0.13s elapsed)

 %GC time 2.6% (2.6% elapsed)

 Alloc rate 2,076,309,329 bytes per MUT second

 Productivity 97.4% of total user, 94.8% of total elapsed

./D 1e6 +RTS -sstderr 0.13s user 0.00s system 95% cpu 0.133 total

Unlike our first version, this program
 is 97.4% efficient, spending only 2.6% of its time doing garbage
 collection, and it runs in a constant 1 megabyte of space. It
 illustrates a nice balance between mixed strict and lazy evaluation,
 with the large list unfolded lazily, while we walk over it strictly.
 The result is a program that runs in constant space, and does so
 quickly.
Normal form reduction

There are a number of other ways we
 could have addressed the strictness issue here. For deep strictness,
 we can use the rnf function, part of the parallel strategies library (along with
 using), which unlike seq reduces to the
 fully evaluated “normal form” (hence its name). We can write as such
 a deep seq fold:
-- file: ch25/E.hs
import System.Environment
import Text.Printf
import Control.Parallel.Strategies

main = do
 [d] <- map read `fmap` getArgs
 printf "%f\n" (mean [1..d])

foldl'rnf :: NFData a => (a -> b -> a) -> a -> [b] -> a
foldl'rnf f z xs = lgo z xs
 where
 lgo z [] = z
 lgo z (x:xs) = lgo z' xs
 where
 z' = f z x `using` rnf

mean :: [Double] -> Double
mean xs = s / fromIntegral n
 where
 (n, s) = foldl'rnf k (0, 0) xs
 k (n, s) x = (n+1, s+x) :: (Int, Double)
We change the implementation of
 foldl' to reduce the state to normal form, using the
 rnf strategy. This also raises an issue that we avoided
 earlier: the type inferred for the loop accumulator state.
 Previously, we relied on type defaulting to infer a numeric,
 integral type for the length of the list in the accumulator, but
 switching to rnf introduces the NFData
 class constraint, and we can no longer rely on defaulting to set the
 length type.

Bang patterns

Perhaps the cheapest way,
 syntactically, to add required strictness to code that’s excessively
 lazy is via bang patterns (whose name comes from pronunciation of
 the “!” character as “bang”), a language extension introduced with
 the following pragma:
-- file: ch25/F.hs
{-# LANGUAGE BangPatterns #-}
With bang patterns, we can hint at
 strictness on any binding form, making the function strict in that
 variable. Much as explicit type annotations can guide type
 inference, bang patterns can help guide strictness inference. Bang
 patterns are a language extension and are enabled with the
 BangPatterns language pragma. We can now rewrite the
 loop state to be simply:
-- file: ch25/F.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
 where
 (n, s) = foldl' k (0, 0) xs
 k (!n, !s) x = (n+1, s+x)
The intermediate values in the loop
 state are now strict, and the loop runs in constant space:
$ ghc -O2 F.hs --make
$ time ./F 1e6 +RTS -sstderr
./F 1e6 +RTS -sstderr
500000.5
256,060,848 bytes allocated in the heap
 43,928 bytes copied during GC (scavenged)
 23,456 bytes copied during GC (not scavenged)
 45,056 bytes maximum residency (1 sample(s))

 489 collections in generation 0 (0.00s)
 1 collections in generation 1 (0.00s)

 1 Mb total memory in use

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.14s (0.15s elapsed)
 GC time 0.00s (0.00s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 0.14s (0.15s elapsed)

 %GC time 0.0% (2.3% elapsed)

 Alloc rate 1,786,599,833 bytes per MUT second

 Productivity 100.0% of total user, 94.6% of total elapsed

./F 1e6 +RTS -sstderr 0.14s user 0.01s system 96% cpu 0.155 total
In large projects, when we are
 investigating memory allocation hot spots, bang patterns are the
 cheapest way to speculatively modify the strictness properties of
 some code, as they’re syntactically less invasive than other
 methods.

Strict data types

Strict data types are another
 effective way to provide strictness information to the compiler. By
 default, Haskell data types are lazy, but it is easy enough to add
 strictness information to the fields of a data type that then
 propagate through the program. We can declare a new strict pair
 type, for example:
-- file: ch25/G.hs
data Pair a b = Pair !a !b
This creates a pair type whose fields
 will always be kept in WHNF. We can now rewrite our loop as:
-- file: ch25/G.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
 where
 Pair n s = foldl' k (Pair 0 0) xs
 k (Pair n s) x = Pair (n+1) (s+x)
This implementation again has the
 same efficient, constant space behavior. At this point, to squeeze
 the last drops of performance out of this code, though, we have to
 dive a bit deeper.

Understanding Core

Besides looking at runtime profiling data, one sure way to
 determine exactly what your program is doing is to look at the final
 program source after the compiler is done optimizing it, particularly in the case of
 Haskell compilers, which can perform very aggressive transformations on
 the code. GHC uses what is humorously referred to as “a simple
 functional language”—known as Core—as the compiler intermediate
 representation. It is essentially a subset of Haskell, augmented with
 unboxed data types (raw machine types, directly corresponding to
 primitive data types in languages such as C), suitable for code
 generation. GHC optimizes Haskell by transformation, repeatedly
 rewriting the source into more and more efficient forms. The Core
 representation is the final functional version of your program, before
 translation to low-level imperative code. In other words, Core has
 the final say, and if all-out performance is your goal, it is worth
 understanding.
To view the Core version of our Haskell
 program, we compile with the -ddump-simpl flag, or use the ghc-core tool, a third-party
 utility that lets us view Core in a pager. So let’s look at the
 representation of our final fold using strict data types,
 in Core form:
$ ghc -O2 -ddump-simpl G.hs
A screenful of text is generated. If we
 look carefully at it, we’ll see a loop (here, cleaned up slightly for
 clarity):
lgo :: Integer -> [Double] -> Double# -> (# Integer, Double #)

lgo = \ n xs s ->
 case xs of
 [] -> (# n, D# s #);
 (:) x ys ->
 case plusInteger n 1 of
 n' -> case x of
 D# y -> lgo n' ys (+## s y)
This is the final version of our
 foldl', and it tells us a lot about the next steps for
 optimization. The fold itself has been entirely inlined, yielding an
 explicit recursive loop over the list. The loop state, our strict pair,
 has disappeared entirely, and the function now takes its length and sum
 accumulators as direct arguments along with the list.
The sum of the list elements is
 represented with an unboxed Double# value, a raw machine
 double kept in a floating-point register. This is ideal, as
 there will be no memory traffic involved in keeping the sum on the heap.
 However, the length of the list—since we gave no explicit type
 annotation—has been inferred to be a heap-allocated Integer, which requires a nonprimitive
 plusInteger to perform addition. If it is algorithmically
 sound to use a Int instead, we can replace
 Integer with it, via a type annotation, and GHC will then
 be able to use a raw machine Int# for the length. We can
 hope for an improvement in time and space by ensuring that both loop
 components are unboxed and kept in registers.
The base case of the loop, its end,
 yields an unboxed pair (a pair allocated only in registers), storing the
 final length of the list and the accumulated sum. Notice that the return
 type is a heap-allocated Double value, indicated by the
 D# constructor, which lifts a raw double value onto the
 heap. Again this has implications for performance, as GHC will need to
 check that there is sufficient heap space available before it can
 allocate and return from the loop.
We can use a custom pair type in the loop
 to make ghc return an unboxed Double# value,
 which avoids this final heap check. In addition, ghc
 provides an optimization that unboxes the strict fields of a data type,
 ensuring that the fields of the new pair type will be stored in
 registers. This optimization is turned on with -funbox-strict-fields.
We can make both representation changes
 by replacing the polymorphic strict pair type with one whose fields are
 fixed as Int and Double:
-- file: ch25/H.hs
data Pair = Pair !Int !Double

mean :: [Double] -> Double
mean xs = s / fromIntegral n
 where
 Pair n s = foldl' k (Pair 0 0) xs
 k (Pair n s) x = Pair (n+1) (s+x)
Compiling this with optimizations on and
 -funbox-strict-fields -ddump-simpl, we get a tighter inner
 loop in Core:
lgo :: Int# -> Double# -> [Double] -> (# Int#, Double# #)
lgo = \ n s xs ->
 case xs of
 [] -> (# n, s #)
 (:) x ys ->
 case x of
 D# y -> lgo (+# n 1) (+## s y) ys
Now the pair we use to represent the loop
 state is represented and returned as unboxed primitive types and will be
 kept in registers. The final version now allocates heap memory for the
 list nodes only, as the list is lazily demanded. If we compile and run
 this tuned version, we can compare the allocation and time performance
 against our original program:
$ time ./H 1e7 +RTS -sstderr
./H 1e7 +RTS -sstderr
5000000.5
1,689,133,824 bytes allocated in the heap
 284,432 bytes copied during GC (scavenged)
 32 bytes copied during GC (not scavenged)
 45,056 bytes maximum residency (1 sample(s))

 3222 collections in generation 0 (0.01s)
 1 collections in generation 1 (0.00s)

 1 Mb total memory in use

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.63s (0.63s elapsed)
 GC time 0.01s (0.02s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 0.64s (0.64s elapsed)

 %GC time 1.0% (2.4% elapsed)

 Alloc rate 2,667,227,478 bytes per MUT second

 Productivity 98.4% of total user, 98.2% of total elapsed

./H 1e7 +RTS -sstderr 0.64s user 0.00s system 99% cpu 0.644 total

Our original program, when operating on a
 list of 10 million elements, took more than a minute to run and
 allocated more than 700 megabytes of memory. The final version, using a
 simple higher order fold and a strict data type, however runs in around
 half a second and allocates a total of 1 megabyte. Quite an
 improvement!
The general rules we can learn from the
 profiling and optimization process are:
	Compile to native code, with
 optimizations on.

	When in doubt, use runtime statistics
 and time profiling.

	If you suspect allocation problems,
 use heap profiling.

	A careful mixture of strict and lazy
 evaluation can yield the best results.

	Prefer strict fields for atomic data
 types (Int, Double, and similar
 types).

	Use data types with simpler machine representations
 (prefer Int over Integer).

These simple strategies are enough to
 identify and squash untoward memory use issues, and when used wisely,
 can keep them from occurring in the first place.

Advanced Techniques: Fusion

The final bottleneck in our program is the lazy list itself. While
 we can avoid allocating it all at once, there is still memory traffic
 each time around the loop, as we demand the next cons cell in the list,
 allocate it to the heap, operate on it, and continue. The list type is
 also polymorphic, so the elements of the list will be represented as
 heap-allocated Double values.
What we’d like to do is eliminate the
 list entirely, keeping just the next element we need in a register.
 Perhaps surprisingly, GHC is able to transform the list program into a
 listless version, using an optimization known as deforestation, which
 refers to a general class of optimizations that involve eliminating
 intermediate data structures. Due to the absence of side effects, a
 Haskell compiler can be extremely aggressive when rearranging code,
 reordering and transforming wholesale at times. The specific
 deforestation optimization we will use here is stream fusion.
This optimization transforms recursive
 list generation and transformation functions into nonrecursive
 unfolds. When an unfold appears next to a
 fold, the structure between them is then eliminated entirely,
 yielding a single, tight loop with no heap allocation. The optimization
 isn’t enabled by default, and it can radically change the complexity of
 a piece of code, but it is enabled by a number of data structure
 libraries, which provide rewrite rules, custom
 optimizations, that the compiler applies to functions that the library
 exports.
We’ll use the uvector
 library, which provides a suite of list-like operations that use stream
 fusion to remove intermediate data structures. Rewriting our program to
 use streams is straightforward:
-- file: ch25/I.hs
import System.Environment
import Text.Printf
import Data.Array.Vector

main = do
 [d] <- map read `fmap` getArgs
 printf "%f\n" (mean (enumFromToFracU 1 d))

data Pair = Pair !Int !Double

mean :: UArr Double -> Double
mean xs = s / fromIntegral n
 where
 Pair n s = foldlU k (Pair 0 0) xs
 k (Pair n s) x = Pair (n+1) (s+x)
After installing the uvector
 library from Hackage, we can build our program, with -O2
 -funbox-strict-fields, and then inspect the Core that
 results:
fold :: Int# -> Double# -> Double# -> (# Int#, Double# #)
fold = \ n s t ->
 case >## t limit of {
 False -> fold (+# n 1) (+## s t) (+## t 1.0)
 True -> (# n, s #)
This is really the optimal result! Our
 lists have been entirely fused away, yielding a tight loop where list
 generation is interleaved with accumulation, and all input and output
 variables are kept in registers. Running this, we see another
 improvement bump in performance, with runtime falling by another order
 of magnitude:
$ time ./I 1e7
5000000.5
./I 1e7 0.06s user 0.00s system 72% cpu 0.083 total
Tuning the Generated Assembly

Given that our Core is now optimal, the
 only step left to take this program further is to look directly at the
 assembly. Of course, there are only small gains left to make at this
 point. To view the generated assembly, we can use a tool such as
 ghc-core or generate assembly to standard output with the
 -ddump-asm flag to GHC. We have few levers available to adjust the
 generated assembly, but we may choose between the C and native code
 backends to GHC. And, if we then choose the C backend, which
 optimization flags to pass to GCC. Particularly with floating-point
 code, it is sometimes useful to compile via C, and enable specific
 high-performance C compiler optimizations.
For example, we can squeeze out the
 last drops of performance from our final fused loop code by using
 -funbox-strict-fields -fvia-C -optc-O2, which cuts the running time in half again (as the C compiler
 is able to optimize away some redundant move instructions in the
 program’s inner loop):
$ ghc -fforce-recomp --make -O2 -funbox-strict-fields -fvia-C -optc-O2 I.hs
[1 of 1] Compiling Main (I.hs, I.o)
Linking I ...
$ time ./I 1e7
5000000.5
./I 1e7 0.04s user 0.00s system 98% cpu 0.047 total
Inspecting the final x86_64 assembly (via
 -keep-tmp-files), we see the generated loop contains only six
 instructions:
go:
 ucomisd 5(%rbx), %xmm6
 ja .L31
 addsd %xmm6, %xmm5
 addq $1, %rsi
 addsd .LC0(%rip), %xmm6
 jmp go
We’ve effectively massaged the program
 through multiple source-level optimizations, all the way to the final
 assembly. There’s nowhere else to go from here. Optimizing code to
 this level is very rarely necessary, of course, and typically makes
 sense only when writing low-level libraries or optimizing particularly
 important code, where all algorithm choices have already been
 determined. For day-to-day code, choosing better algorithms is always
 a more effective strategy, but it’s useful to know we can optimize
 down to the metal if necessary.

Conclusions

In this chapter, we’ve looked at a
 suite of tools and techniques you can use to track down and identify
 problematic areas of your code, along with a variety of conventions
 that can go a long way towards keeping your code lean and efficient.
 The goal is really to program in such a way that you have good
 knowledge of what your code is doing at all levels from source through
 the compiler to the metal, and to be able to focus in on particular
 levels when requirements demand.
By sticking to simple rules, choosing
 the right data structures, and avoiding the traps of the unwary, it is
 perfectly possible to reliably achieve high performance from your
 Haskell code, while being able to develop at a very high level. The
 result is a sweet balance of productivity and ruthless efficiency.

Chapter 26. Advanced Library Design: Building a
 Bloom Filter

Introducing the Bloom Filter

A Bloom filter is a set-like data structure that is highly efficient in its
 use of space. It supports two operations only: insertion and membership
 querying. Unlike a normal set data structure, a Bloom filter can give
 incorrect answers. If we query it to see whether an element that we have
 inserted is present, it will answer affirmatively. If we query for an
 element that we have not inserted, it
 might incorrectly claim that the element is
 present.
For many applications, a low rate of
 false positives is tolerable. For instance, the job of a network traffic
 shaper is to throttle bulk transfers (e.g., BitTorrent) so that
 interactive sessions (such as ssh
 sessions or games) see good response times. A traffic shaper might use a
 Bloom filter to determine whether a packet belonging to a particular
 session is bulk or interactive. If it misidentifies 1 in 10,000 bulk
 packets as interactive and fails to throttle it, nobody will
 notice.
The attraction of a Bloom filter is its
 space efficiency. If we want to build a spell checker and have a
 dictionary of 500,000 words, a set data structure might consume 20
 megabytes of space. A Bloom
 filter, in contrast, would consume about half a megabyte, at the cost of
 missing perhaps 1% of misspelled words.
Behind the scenes, a Bloom filter is
 remarkably simple. It consists of a bit array and a handful of hash functions. We’ll use
 k for the number of hash functions. If we want to
 insert a value into the Bloom filter, we compute k
 hashes of the value and turn on those bits in the bit array. If we want
 to see whether a value is present, we compute k
 hashes and check all of those bits in the array to see if they are
 turned on.
To see how this works, let’s say we want
 to insert the strings "foo" and "bar" into a
 Bloom filter that is 8 bits wide, and we have two hash functions:
	Compute the two hashes of
 "foo", and get the values 1 and
 6.

	Set bits 1 and
 6 in the bit array.

	Compute the two hashes of
 "bar", and get the values 6 and
 3.

	Set bits 6 and
 3 in the bit array.

This example should make it clear why we
 cannot remove an element from a Bloom filter: both "foo"
 and "bar" resulted in bit 6 being set.
Suppose we now want to query the Bloom
 filter to see whether the values "quux" and
 "baz" are present:
	Compute the two hashes of
 "quux", and get the values 4 and
 0.

	Check bit 4 in the bit
 array. It is not set, so "quux" cannot be present. We
 do not need to check bit 0.

	Compute the two hashes of
 "baz" and get the values 1 and
 3.

	Check bit 1 in the bit
 array. It is set, as is bit 3, so we say that
 "baz" is present even though it is not. We have
 reported a false positive.

For a survey of some of the uses of Bloom
 filters in networking, see “Network Applications of Bloom Filters: A
 Survey” by Andrei Broder and Michael Mitzenmacher (see http://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf).

Use Cases and Package Layout

Not all users of Bloom filters have the
 same needs. In some cases, it suffices to create a Bloom filter in one
 pass, and only query it afterwards. For other applications, we may need
 to continue to update the Bloom filter after we create it. To
 accommodate these needs, we will design our library with mutable and
 immutable APIs.
We will segregate the mutable and
 immutable APIs that we publish by placing them in different modules:
 BloomFilter for the immutable code and
 BloomFilter.Mutable for the mutable code.
In addition, we will create several
 “helper” modules that won’t provide parts of the public API
 but will keep the internal code cleaner.
Finally, we will ask our API’s users to
 provide a function that can generate a number of hashes of an element.
 This function will have the type a -> [Word32]. We will
 use all of the hashes that this function returns, so the list must not
 be infinite!

Basic Design

The data structure that we use for our
 Haskell Bloom filter is a direct translation of the simple description
 we gave earlier—a bit array and a function that computes hashes:
-- file: BloomFilter/Internal.hs
module BloomFilter.Internal
 (
 Bloom(..)
 , MutBloom(..)
) where

import Data.Array.ST (STUArray)
import Data.Array.Unboxed (UArray)
import Data.Word (Word32)

data Bloom a = B {
 blmHash :: (a -> [Word32])
 , blmArray :: UArray Word32 Bool
 }
When we create our Cabal package, we will
 not be exporting this BloomFilter.Internal module. It exists purely to let us
 control the visibility of names. We will import
 BloomFilter.Internal into both the mutable and immutable
 modules, but we will re-export from each module only the type that is
 relevant to that module’s API.
Unboxing, Lifting, and Bottom

Unlike other Haskell arrays, a UArray contains unboxed values.
For a normal Haskell type, a value can
 be either fully evaluated, an unevaluated thunk, or the special value
 ⊥, pronounced (and sometimes written) bottom. The
 value ⊥ is a placeholder for a computation that does not succeed. Such
 a computation could take any of several forms. It could be an infinite
 loop, an application of error, or
 the special value undefined.
A type that can contain ⊥ is referred
 to as lifted. All normal Haskell types are
 lifted. In practice, this means that we can always write error
 "eek!" or undefined in place of a normal
 expression.
This ability to store thunks or ⊥ comes
 with a performance cost: it adds an extra layer of indirection. To see
 why we need this indirection, consider the Word32 type. A
 value of this type is a full 32 bits wide, so on a 32-bit system,
 there is no way to directly encode the value ⊥ within 32 bits. The
 runtime system has to maintain, and check, some extra data to track
 whether the value is ⊥ or not.
An unboxed value does away with this
 indirection. In doing so, it gains performance but sacrifices the
 ability to represent a thunk or ⊥. Since it can be denser than a
 normal Haskell array, an array of unboxed values is an excellent
 choice for numeric data and bits.
GHC implements a UArray of
 Bool values by packing eight array elements into each
 byte, so this type is perfect for our needs.
Boxing and lifting
The counterpart of an unboxed type is
 a boxed type, which uses indirection. All lifted types are
 boxed, but a few low-level boxed types are not lifted. For instance,
 GHC’s runtime system has
 a low-level array type for which it uses boxing (i.e., it maintains
 a pointer to the array). If it has a reference to such an array, it
 knows that the array must exist, so it does not need to account for
 the possibility of ⊥. This array type is thus boxed, but not lifted.
 Boxed but unlifted types show up only at the lowest level of runtime
 hacking. We will never encounter them in normal use.

The ST Monad

Back in Modifying Array Elements, we mentioned that modifying an
 immutable array is prohibitively expensive, as it requires copying the
 entire array. Using a UArray does not change this, so what
 can we do to reduce the cost to bearable levels?
In an imperative language, we would
 simply modify the elements of the array in place—this will be our
 approach in Haskell, too.
Haskell provides a special
 monad, named ST,[60] which lets us work safely with mutable state. Compared to
 the State monad, it has some powerful added
 capabilities:
	We can thaw an
 immutable array to give a mutable array; modify the mutable array in
 place; and freeze a new immutable array when we
 are done.

	We have the ability to use
 mutable references. This lets us implement data structures that we can modify
 after construction, as in an imperative language. This ability is
 vital for some imperative data structures and algorithms, for which
 similarly efficient, purely functional alternatives have not yet
 been discovered.

The IO monad also provides
 these capabilities. The major difference between the two is that the
 ST monad is intentionally designed so that we can
 escape from it back into pure Haskell code. We
 enter the ST monad via the execution function runST (in
 the same way as most other Haskell monads do—except IO, of
 course), and we escape by returning from runST.
When we apply a monad’s execution
 function, we expect it to behave repeatably: given the same body and
 arguments, we must get the same results every time. This also applies to
 runST. To achieve this
 repeatability, the ST monad is more restrictive than the
 IO monad. We cannot read or write files, create global
 variables, or fork threads. Indeed, although we can create and work with
 mutable references and arrays, the type system prevents them from
 escaping to the caller of runST. A
 mutable array must be frozen into an immutable array before we can
 return it, and a mutable reference cannot escape at all.

Designing an API for Qualified Import

The public interfaces that we provide for
 working with Bloom filters are worth a little discussion:
-- file: BloomFilter/Mutable.hs
module BloomFilter.Mutable
 (
 MutBloom
 , elem
 , notElem
 , insert
 , length
 , new
) where

import Control.Monad (liftM)
import Control.Monad.ST (ST)
import Data.Array.MArray (getBounds, newArray, readArray, writeArray)
import Data.Word (Word32)
import Prelude hiding (elem, length, notElem)

import BloomFilter.Internal (MutBloom(..))
We export several names that clash with
 names the Prelude exports. This is
 deliberate: we expect users of our modules to import them with qualified
 names. This reduces the burden on the memory of our users, as they
 should already be familiar with the Prelude’s elem, notElem, and length functions.
When we use a module written in this
 style, we might often import it with a single-letter prefix—for
 instance, as import qualified BloomFilter.Mutable as M.
 This would allow us to write M.length, which stays compact and
 readable.
Alternatively, we could import the module
 unqualified and import the Prelude
 while hiding the clashing names with import Prelude hiding
 (length). This is much less useful, as it gives a reader skimming
 the code no local cue that she is not actually
 seeing the Prelude’s length.
Of course, we seem to be violating this
 precept in our own module’s header: we import the Prelude and hide some of the names it exports.
 There is a practical reason for this. We define a function named
 length. If we export this from our
 module without first hiding the Prelude’s length, the compiler will complain that it
 cannot tell whether to export our version of length or the Prelude’s.
While we could export the fully qualified
 name BloomFilter.Mutable.length to
 eliminate the ambiguity, that seems uglier in this case. This decision
 has no consequences for someone using our module, just for ourselves as
 the authors of what ought to be a “black box,” so there is little chance
 of confusion here.

Creating a Mutable Bloom Filter

We put type declaration for our mutable
 Bloom filter in the BloomFilter.Internal module, along with
 the immutable Bloom type:
-- file: BloomFilter/Internal.hs
data MutBloom s a = MB {
 mutHash :: (a -> [Word32])
 , mutArray :: STUArray s Word32 Bool
 }
The STUArray type gives us a
 mutable unboxed array that we can work with in the ST monad. To
 create an STUArray, we use the newArray function. The new function belongs in the
 BloomFilter.Mutable function:
-- file: BloomFilter/Mutable.hs
new :: (a -> [Word32]) -> Word32 -> ST s (MutBloom s a)
new hash numBits = MB hash `liftM` newArray (0,numBits-1) False
Most of the methods of
 STUArray are actually implementations of the
 MArray typeclass, which is defined in the
 Data.Array.MArray module.
Our length function is slightly complicated by
 two factors. We are relying on our bit array’s record of its own bounds,
 and an MArray instance’s getBounds function has a monadic type. We
 also have to add one to the answer, as the upper bound of the array is
 one less than its actual length:
-- file: BloomFilter/Mutable.hs
length :: MutBloom s a -> ST s Word32
length filt = (succ . snd) `liftM` getBounds (mutArray filt)
To add an element to the Bloom filter, we
 set all of the bits indicated by the hash function. We use the mod function to ensure that all of the hashes
 stay within the bounds of our array, and isolate our code that computes
 offsets into the bit array in one function:
-- file: BloomFilter/Mutable.hs
insert :: MutBloom s a -> a -> ST s ()
insert filt elt = indices filt elt >>=
 mapM_ (\bit -> writeArray (mutArray filt) bit True)

indices :: MutBloom s a -> a -> ST s [Word32]
indices filt elt = do
 modulus <- length filt
 return $ map (`mod` modulus) (mutHash filt elt)
Testing for membership is no more
 difficult. If every bit indicated by the hash function is set, we
 consider an element to be present in the Bloom filter:
-- file: BloomFilter/Mutable.hs
elem, notElem :: a -> MutBloom s a -> ST s Bool

elem elt filt = indices filt elt >>=
 allM (readArray (mutArray filt))

notElem elt filt = not `liftM` elem elt filt
We need to write a small supporting
 function—a monadic version of all,
 which we will call allM:
-- file: BloomFilter/Mutable.hs
allM :: Monad m => (a -> m Bool) -> [a] -> m Bool
allM p (x:xs) = do
 ok <- p x
 if ok
 then allM p xs
 else return False
allM _ [] = return True

The Immutable API

Our interface to the immutable Bloom
 filter has the same structure as the mutable API:
-- file: ch26/BloomFilter.hs
module BloomFilter
 (
 Bloom
 , length
 , elem
 , notElem
 , fromList
) where

import BloomFilter.Internal
import BloomFilter.Mutable (insert, new)
import Data.Array.ST (runSTUArray)
import Data.Array.IArray ((!), bounds)
import Data.Word (Word32)
import Prelude hiding (elem, length, notElem)

length :: Bloom a -> Int
length = fromIntegral . len

len :: Bloom a -> Word32
len = succ . snd . bounds . blmArray

elem :: a -> Bloom a -> Bool
elt `elem` filt = all test (blmHash filt elt)
 where test hash = blmArray filt ! (hash `mod` len filt)

notElem :: a -> Bloom a -> Bool
elt `notElem` filt = not (elt `elem` filt)
We provide an easy-to-use means to create
 an immutable Bloom filter, via a fromList function. This hides the
 ST monad from our users so that they see only the immutable
 type:
-- file: ch26/BloomFilter.hs
fromList :: (a -> [Word32]) -- family of hash functions to use
 -> Word32 -- number of bits in filter
 -> [a] -- values to populate with
 -> Bloom a
fromList hash numBits values =
 B hash . runSTUArray $
 do mb <- new hash numBits
 mapM_ (insert mb) values
 return (mutArray mb)
The key to this function is runSTUArray. We mentioned earlier that in
 order to return an immutable array from the ST monad, we
 must freeze a mutable array. The runSTUArray function combines execution with
 freezing. Given an action that returns an STUArray, it
 executes the action using runST;
 freezes the STUArray that it returns; and returns that as a
 UArray.
The MArray typeclass
 provides a freeze function that we
 could use instead, but runSTUArray
 is both more convenient and more efficient. The efficiency lies in the
 fact that freeze must copy the
 underlying data from the STUArray to the new
 UArray, in order to ensure that subsequent modifications of
 the STUArray cannot affect the contents of the
 UArray. Thanks to the type system, runSTUArray can guarantee that an
 STUArray is no longer accessible when it uses it to create
 a UArray. It can thus share the underlying contents between
 the two arrays, avoiding the copy.

Creating a Friendly Interface

Although our immutable Bloom filter API
 is straightforward to use once we have created a Bloom
 value, the fromList function leaves
 some important decisions unresolved. We still have to choose a function
 that can generate many hash values and determine what the capacity of a
 Bloom filter should be:
-- file: BloomFilter/Easy.hs
easyList :: (Hashable a)
 => Double -- false positive rate (between 0 and 1)
 -> [a] -- values to populate the filter with
 -> Either String (B.Bloom a)
Here is a possible
 “friendlier” way to create a Bloom filter. It leaves
 responsibility for hashing values in the hands of a typeclass,
 Hashable. It lets us configure the Bloom filter based on a
 parameter that is easier to understand—namely the rate of false
 positives that we are willing to tolerate. And it chooses the size of
 the filter for us, based on the desired false positive rate and the
 number of elements in the input list.
This function will, of course, not always
 be usable—for example, it will fail if the length of the input list is
 too long. However, its simplicity rounds out the other interfaces we
 provide. It lets us offer our users a range of control over creation,
 from entirely imperative to completely declarative.
Re-Exporting Names for Convenience

In the export list for our module, we
 re-export some names from the base BloomFilter module. This allows casual
 users to import only the BloomFilter.Easy module and have access to
 all of the types and functions they are likely to need.
If we import both
 BloomFilter.Easy and BloomFilter, you might
 wonder what will happen if we try to use a name exported by both. We
 already know that if we import BloomFilter unqualified
 and try to use length,
 GHC will issue an error
 about ambiguity, because the Prelude also makes the name length available.
The Haskell standard requires an
 implementation to be able to tell when several names refer to the same
 “thing.” For instance, the Bloom type is exported by
 BloomFilter and BloomFilter.Easy. If we
 import both modules and try to use Bloom, GHC will be able to see that the
 Bloom re-exported from BloomFilter.Easy is
 the same as the one exported from BloomFilter, and it
 will not report an ambiguity.

Hashing Values

A Bloom filter depends on fast, high-quality hashes for good performance and a
 low false positive rate. It is surprisingly difficult to write a
 general purpose hash function that has both of these
 properties.
Luckily for us, a fellow named Bob
 Jenkins developed some hash functions that have exactly
 these properties, and he placed the code in the public domain at
 http://burtleburtle.net/bob/hash/doobs.html.[61] He wrote his hash functions in C, so we can easily use
 the FFI to create bindings to them. The specific source file that we
 need from that site is named lookup3.c. We create a cbits directory and download it to
 there.
A little editing
On line 36 of the copy of lookup3.c that you just downloaded, there
 is a macro named SELF_TEST defined. To use this source
 file as a library, you must delete this line or
 comment it out. If you forget to do so, the main function defined near the bottom of
 the file will supersede the main of any Haskell program you link this
 library against.

There remains one hitch: we will
 frequently need 7 or even 10 hash functions. We really don’t want to
 scrape together that many different functions, and fortunately we do
 not need to. In most cases, we can get away with just two. We will see
 how shortly. The Jenkins hash library includes two functions,
 hashword2 and hashlittle2, that compute two hash values.
 Here is a C header file that describes the APIs of these two
 functions. We save this to cbits/lookup3.h:
/* save this file as lookup3.h */

#ifndef _lookup3_h
#define _lookup3_h

#include <stdint.h>
#include <sys/types.h>

/* only accepts uint32_t aligned arrays of uint32_t */
void hashword2(const uint32_t *key, /* array of uint32_t */
	 size_t length,	 /* number of uint32_t values */
	 uint32_t *pc,	 /* in: seed1, out: hash1 */
	 uint32_t *pb);	 /* in: seed2, out: hash2 */

/* handles arbitrarily aligned arrays of bytes */
void hashlittle2(const void *key, /* array of bytes */
		 size_t length, /* number of bytes */
		 uint32_t *pc, /* in: seed1, out: hash1 */
		 uint32_t *pb); /* in: seed2, out: hash2 */

#endif /* _lookup3_h */
A salt is a value
 that perturbs the hash value that the function computes. If we hash
 the same value with two different salts, we will get two different
 hashes. Since these functions compute two hashes, they accept two
 salts.
Here are our Haskell bindings to these
 functions:
-- file: BloomFilter/Hash.hs
{-# LANGUAGE BangPatterns, ForeignFunctionInterface #-}
module BloomFilter.Hash
 (
 Hashable(..)
 , hash
 , doubleHash
) where

import Data.Bits ((.&.), shiftR)
import Foreign.Marshal.Array (withArrayLen)
import Control.Monad (foldM)
import Data.Word (Word32, Word64)
import Foreign.C.Types (CSize)
import Foreign.Marshal.Utils (with)
import Foreign.Ptr (Ptr, castPtr, plusPtr)
import Foreign.Storable (Storable, peek, sizeOf)
import qualified Data.ByteString as Strict
import qualified Data.ByteString.Lazy as Lazy
import System.IO.Unsafe (unsafePerformIO)

foreign import ccall unsafe "lookup3.h hashword2" hashWord2
 :: Ptr Word32 -> CSize -> Ptr Word32 -> Ptr Word32 -> IO ()

foreign import ccall unsafe "lookup3.h hashlittle2" hashLittle2
 :: Ptr a -> CSize -> Ptr Word32 -> Ptr Word32 -> IO ()
We have specified that the definitions
 of the functions can be found in the lookup3.h header file that we just
 created.
For convenience and efficiency, we will
 combine the 32-bit salts consumed, and the hash values computed, by
 the Jenkins hash functions into a single 64-bit value:
-- file: BloomFilter/Hash.hs
hashIO :: Ptr a -- value to hash
 -> CSize -- number of bytes
 -> Word64 -- salt
 -> IO Word64
hashIO ptr bytes salt =
 with (fromIntegral salt) $ \sp -> do
 let p1 = castPtr sp
 p2 = castPtr sp `plusPtr` 4
 go p1 p2
 peek sp
 where go p1 p2
 | bytes .&. 3 == 0 = hashWord2 (castPtr ptr) words p1 p2
 | otherwise = hashLittle2 ptr bytes p1 p2
 words = bytes `div` 4
Without explicit types around to
 describe what is happening, this code is not completely obvious. The
 with function allocates room for
 the salt on the C stack and stores the current salt value in there, so
 sp is a Ptr Word64. The pointers
 p1 and p2 are Ptr
 Word32; p1 points at the low word of
 sp, and p2 at the high word.
 This is how we chop the single Word64 salt into two
 Ptr Word32 parameters.
Because all of our data pointers are
 coming from the Haskell heap, we know that they will be aligned on an
 address that is safe to pass to either hashWord2 (which accepts only
 32-bit-aligned addresses) or hashLittle2. Since hashWord2 is the faster of the two hashing
 functions, we call it if our data is a multiple of 4 bytes in size;
 otherwise, we call hashLittle2.
Since the C hash function will write
 the computed hashes into p1 and
 p2, we need only to peek the pointer sp to
 retrieve the computed hash.
We don’t want clients of this module to
 be stuck fiddling with low-level details, so we use a typeclass to
 provide a clean, high-level interface:
-- file: BloomFilter/Hash.hs
class Hashable a where
 hashSalt :: Word64 -- ^ salt
 -> a -- ^ value to hash
 -> Word64

hash :: Hashable a => a -> Word64
hash = hashSalt 0x106fc397cf62f64d3
We also provide a number of useful
 implementations of this typeclass. To hash basic types, we must write
 a little boilerplate code:
-- file: BloomFilter/Hash.hs
hashStorable :: Storable a => Word64 -> a -> Word64
hashStorable salt k = unsafePerformIO . with k $ \ptr ->
 hashIO ptr (fromIntegral (sizeOf k)) salt

instance Hashable Char where hashSalt = hashStorable
instance Hashable Int where hashSalt = hashStorable
instance Hashable Double where hashSalt = hashStorable
We might prefer to use the
 Storable typeclass to write just one declaration, as
 follows:
-- file: BloomFilter/Hash.hs
instance Storable a => Hashable a where
 hashSalt = hashStorable
Unfortunately, Haskell does not permit
 us to write instances of this form, as allowing them would make the
 type system undecidable: they can cause the
 compiler’s type checker to loop infinitely. This restriction on
 undecidable types forces us to write out individual declarations. It
 does not, however, pose a problem for a definition such as this
 one:
-- file: BloomFilter/Hash.hs
hashList :: (Storable a) => Word64 -> [a] -> IO Word64
hashList salt xs =
 withArrayLen xs $ \len ptr ->
 hashIO ptr (fromIntegral (len * sizeOf x)) salt
 where x = head xs

instance (Storable a) => Hashable [a] where
 hashSalt salt xs = unsafePerformIO $ hashList salt xs
The compiler will accept this instance,
 so we gain the ability to hash values of many list types.[62] Most importantly, since Char is an instance
 of Storable, we can now hash String
 values.
For tuple types, we take advantage of
 function composition. We take a salt in at one end of the composition
 pipeline and use the result of hashing each tuple element as the salt
 for the next element:
-- file: BloomFilter/Hash.hs
hash2 :: (Hashable a) => a -> Word64 -> Word64
hash2 k salt = hashSalt salt k

instance (Hashable a, Hashable b) => Hashable (a,b) where
 hashSalt salt (a,b) = hash2 b . hash2 a $ salt

instance (Hashable a, Hashable b, Hashable c) => Hashable (a,b,c) where
 hashSalt salt (a,b,c) = hash2 c . hash2 b . hash2 a $ salt
To hash ByteString types,
 we write special instances that plug straight into the internals of
 the ByteString types (this gives us excellent hashing
 performance):
-- file: BloomFilter/Hash.hs
hashByteString :: Word64 -> Strict.ByteString -> IO Word64
hashByteString salt bs = Strict.useAsCStringLen bs $ \(ptr, len) ->
 hashIO ptr (fromIntegral len) salt

instance Hashable Strict.ByteString where
 hashSalt salt bs = unsafePerformIO $ hashByteString salt bs

rechunk :: Lazy.ByteString -> [Strict.ByteString]
rechunk s
 | Lazy.null s = []
 | otherwise = let (pre,suf) = Lazy.splitAt chunkSize s
 in repack pre : rechunk suf
 where repack = Strict.concat . Lazy.toChunks
 chunkSize = 64 * 1024

instance Hashable Lazy.ByteString where
 hashSalt salt bs = unsafePerformIO $
 foldM hashByteString salt (rechunk bs)
Since a lazy ByteString is
 represented as a series of chunks, we must be careful with the
 boundaries between those chunks. The string "foobar" can
 be represented in five different ways—for example,
 ["fo","obar"] or ["foob","ar"]. This is
 invisible to most users of the type, but not to us, as we use the
 underlying chunks directly. Our rechunk function ensures that the chunks we
 pass to the C hashing code are a uniform 64 KB in size so that we will
 give consistent hash values no matter where the original chunk
 boundaries lie.

Turning Two Hashes into Many

As we mentioned earlier, we need many more than two hashes to make effective use
 of a Bloom filter. We can use a technique called double
 hashing to combine the two values computed by the Jenkins hash functions, yielding many more hashes. The
 resulting hashes are of good enough quality for our needs and far
 cheaper than computing many distinct hashes:
-- file: BloomFilter/Hash.hs
doubleHash :: Hashable a => Int -> a -> [Word32]
doubleHash numHashes value = [h1 + h2 * i | i <- [0..num]]
 where h = hashSalt 0x9150a946c4a8966e value
 h1 = fromIntegral (h `shiftR` 32) .&. maxBound
 h2 = fromIntegral h
 num = fromIntegral numHashes

Implementing the Easy Creation Function

In the BloomFilter.Easy
 module, we use our new doubleHash
 function to define the easyList
 function whose type we defined earlier:
-- file: BloomFilter/Easy.hs
module BloomFilter.Easy
 (
 suggestSizing
 , sizings
 , easyList

 -- re-export useful names from BloomFilter
 , B.Bloom
 , B.length
 , B.elem
 , B.notElem
) where

import BloomFilter.Hash (Hashable, doubleHash)
import Data.List (genericLength)
import Data.Maybe (catMaybes)
import Data.Word (Word32)
import qualified BloomFilter as B

easyList errRate values =
 case suggestSizing (genericLength values) errRate of
 Left err -> Left err
 Right (bits,hashes) -> Right filt
 where filt = B.fromList (doubleHash hashes) bits values
This depends on a suggestSizing function that estimates the
 best combination of filter size and number of hashes to compute, based
 on our desired false positive rate and the maximum number of elements
 that we expect the filter to contain:
-- file: BloomFilter/Easy.hs
suggestSizing
 :: Integer -- expected maximum capacity
 -> Double -- desired false positive rate
 -> Either String (Word32,Int) -- (filter size, number of hashes)
suggestSizing capacity errRate
 | capacity <= 0 = Left "capacity too small"
 | errRate <= 0 || errRate >= 1 = Left "invalid error rate"
 | null saneSizes = Left "capacity too large"
 | otherwise = Right (minimum saneSizes)
 where saneSizes = catMaybes . map sanitize $ sizings capacity errRate
 sanitize (bits,hashes)
 | bits > maxWord32 - 1 = Nothing
 | otherwise = Just (ceiling bits, truncate hashes)
 where maxWord32 = fromIntegral (maxBound :: Word32)

sizings :: Integer -> Double -> [(Double, Double)]
sizings capacity errRate =
 [(((-k) * cap / log (1 - (errRate ** (1 / k)))), k) | k <- [1..50]]
 where cap = fromIntegral capacity
We perform some rather paranoid
 checking. For instance, the sizings function suggests pairs of array
 size and hash count, but it does not validate its suggestions. Since
 we use 32-bit hashes, we must filter out suggested array sizes that
 are too large.
In our suggestSizing function, we attempt to
 minimize only the size of the bit array, without regard for the number
 of hashes. To see why, let us interactively explore the relationship
 between array size and number of hashes.
Suppose we want to insert 10 million
 elements into a Bloom filter, with a false positive rate of
 0.1%:
ghci> let kbytes (bits,hashes) = (ceiling bits `div` 8192, hashes)
ghci> :m +BloomFilter.Easy Data.List
ghci> mapM_ (print . kbytes) . take 10 . sort $ sizings 10000000 0.001
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package rwh-bloomfilter-0.1 ... linking ... done.
(17550,10.0)
(17601,11.0)
(17608,9.0)
(17727,12.0)
(17831,8.0)
(17905,13.0)
(18122,14.0)
(18320,7.0)
(18368,15.0)
(18635,16.0)
We achieve the most compact table (just
 over 17 KB) by computing 10 hashes. If we really were hashing the data
 repeatedly, we could reduce the number of hashes to 7 at a cost of 5%
 in space. Since we are using Jenkins’s hash functions—which compute
 two hashes in a single pass—and double hashing the results to produce
 additional hashes, the cost of computing those extra hashes is tiny,
 so we will choose the smallest table size.
If we increase our tolerance for false
 positives tenfold, to 1%, the amount of space and the number of hashes
 we need go down, though not by easily predictable amounts:
ghci> mapM_ (print . kbytes) . take 10 . sort $ sizings 10000000 0.01
(11710,7.0)
(11739,6.0)
(11818,8.0)
(12006,9.0)
(12022,5.0)
(12245,10.0)
(12517,11.0)
(12810,12.0)
(12845,4.0)
(13118,13.0)

Creating a Cabal Package

We have created a moderately complicated
 library, with four public modules and one internal module. To turn this
 into a package that we can easily redistribute, we create a rwh-bloomfilter.cabal file.
Cabal allows us to describe several
 libraries in a single package. A .cabal file begins with information that is
 common to all of the libraries, which is followed by a distinct section
 for each library:
Name: rwh-bloomfilter
Version: 0.1
License: BSD3
License-File: License.txt
Category: Data
Stability: experimental
Build-Type: Simple
As we are bundling some C code with our
 library, we tell Cabal about our C source files:
Extra-Source-Files: cbits/lookup3.c cbits/lookup3.h
The extra-source-files
 directive has no effect on a build: it directs Cabal to bundle some
 extra files if we run runhaskell Setup
 sdist to create a source tarball for redistribution.
Property names are case-insensitive
When reading a property (the text
 before a “:”
 character), Cabal ignores case, so it treats
 extra-source-files and Extra-Source-Files
 the same.

Dealing with Different Build Setups

Prior to 2007, the standard Haskell libraries were
 organized in a handful of large packages, of which the biggest was
 named base. This organization tied many unrelated
 libraries together, so the Haskell community split the
 base package up into a number of more modular libraries.
 For instance, the array types migrated from base into a
 package named array.
A Cabal package needs to specify the other packages
 that it needs to have present in order to build. This makes it
 possible for Cabal’s command-line interface to automatically download
 and build a package’s dependencies, if necessary. We would like our
 code to work with as many versions of GHC as possible, regardless of whether
 they have the modern layout of base and numerous other
 packages. We thus need to be able to specify that we depend on the
 array package if it is present, and base
 alone otherwise.
Cabal provides a generic configurations
 feature, which we can use to selectively enable parts of a .cabal file. A build configuration is
 controlled by a Boolean-valued flag. If it is
 True, the text following an if flag
 directive is used; otherwise, the text following the associated
 else is used:
Cabal-Version: >= 1.2

Flag split-base
 Description: Has the base package been split up?
 Default: True

Flag bytestring-in-base
 Description: Is ByteString in the base or bytestring package?
 Default: False
	The configurations feature was
 introduced in version 1.2 of Cabal, so we specify that our package
 cannot be built with an older version.

	The meaning of the
 split-base flag should be self-explanatory.

	The bytestring-in-base
 flag deals with a more torturous history. When the
 bytestring package was first created, it was bundled
 with GHC 6.4 and kept
 separate from the base package. In GHC 6.6, it was incorporated into
 the base package, but it became independent again
 when the base package was split before the release of
 GHC 6.8.1.

These flags are usually invisible to
 people building a package, because Cabal handles them automatically.
 Before we explain what happens, it will help to see the beginning of
 the Library section of our .cabal file:
Library
 if flag(bytestring-in-base)
 -- bytestring was in base-2.0 and 2.1.1
 Build-Depends: base >= 2.0 && < 2.2
 else
 -- in base 1.0 and 3.0, bytestring is a separate package
 Build-Depends: base < 2.0 || >= 3, bytestring >= 0.9

 if flag(split-base)
 Build-Depends: base >= 3.0, array
 else
 Build-Depends: base < 3.0
Cabal creates a package description
 with the default values of the flags (a missing default is assumed to
 be True). If that configuration can be built (e.g.,
 because all of the needed package versions are available), it will be
 used. Otherwise, Cabal tries different combinations of flags until it
 either finds a configuration that it can build or exhausts the
 alternatives.
For example, if we were to begin with
 both split-base and bytestring-in-base set
 to True, Cabal would select the following package
 dependencies:
Build-Depends: base >= 2.0 && < 2.2
Build-Depends: base >= 3.0, array
The base package cannot
 simultaneously be newer than 3.0 and older than
 2.2, so Cabal would reject this configuration as
 inconsistent. For a modern version of GHC, after a few attempts, it would
 discover this configuration that will indeed build:
-- in base 1.0 and 3.0, bytestring is a separate package
Build-Depends: base < 2.0 || >= 3, bytestring >= 0.9
Build-Depends: base >= 3.0, array
When we run runhaskell Setup configure, we can manually
 specify the values of flags via the --flag option,
 though we will rarely need to do so in practice.

Compilation Options and Interfacing to C

Continuing with our .cabal
 file, we fill out the remaining details of the Haskell side of our
 library. If we enable profiling when we build, we want all of our
 top-level functions to show up in any profiling output:
 GHC-Prof-Options: -auto-all
The Other-Modules property
 lists Haskell modules that are private to the library.
 Such modules will be invisible to code that uses this package.
When we build this package with
 GHC, Cabal will pass the
 options from the GHC-Options property to the
 compiler.
The -O2 option makes
 GHC optimize our code aggressively. Code compiled without
 optimization is very slow, so we should always use
 -O2 for production code.
To help ourselves write cleaner code,
 we usually add the -Wall option, which enables all of GHC’s warnings. This will cause
 GHC to issue complaints if
 it encounters potential problems, such as overlapping patterns;
 function parameters that are not used; and a myriad of other potential
 stumbling blocks. While it is often safe to ignore these warnings, we
 generally prefer to fix up our code to eliminate them. The small added
 effort usually yields code that is easier to read and maintain.
When we compile with
 -fvia-C, GHC will generate C code and use the system’s C compiler to
 compile it, instead of going straight to assembly language as it
 usually does. This slows compilation down, but sometimes the C
 compiler can further improve GHC’s optimized code, so it can be
 worthwhile.
We include -fvia-C here mainly to show how to compile
 using this option:
 C-Sources: cbits/lookup3.c
 CC-Options: -O3
 Include-Dirs: cbits
 Includes: lookup3.h
 Install-Includes: lookup3.h
For the C-Sources
 property, we need only to list files that must be compiled into our
 library. The CC-Options property contains options for the
 C compiler (-O3 specifies a high level of
 optimization). Because our FFI bindings for the Jenkins hash functions
 refer to the lookup3.h header
 file, we need to tell Cabal where to find the header file. We must
 also tell it to install the header file
 (Install-Includes); otherwise, client code will fail to
 find the header file when we try to build it.
The value of -fvia-C with the FFI
Compiling with
 -fvia-C has a useful safety benefit when we
 write FFI bindings. If we mention a header file in an FFI
 declaration (e.g., foreign import "string.h memcpy"),
 the C compiler will typecheck the generated Haskell code and ensure
 that its invocation of the C function is consistent with the C
 function’s prototype in the header file.
If we do not use
 -fvia-C, we lose that additional layer of safety,
 making it easy to let simple C type errors slip into our Haskell
 code. As an example, on most 64-bit machines, a CInt is
 32 bits wide, and a CSize is 64 bits wide. If we
 accidentally use one type to describe a parameter for an FFI binding
 when we should use the other, we are likely to cause data corruption
 or a crash.

Testing with QuickCheck

Before we pay any attention to performance, we want to establish
 that our Bloom filter behaves correctly. We can easily use QuickCheck to
 test some basic properties:
-- file: examples/BloomCheck.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Main where

import BloomFilter.Hash (Hashable)
import Data.Word (Word8, Word32)
import System.Random (Random(..), RandomGen)
import Test.QuickCheck
import qualified BloomFilter.Easy as B
import qualified Data.ByteString as Strict
import qualified Data.ByteString.Lazy as Lazy
We will not use the normal quickCheck function to test our properties, as the 100 test inputs that it
 generates do not provide much coverage:
-- file: examples/BloomCheck.hs
handyCheck :: Testable a => Int -> a -> IO ()
handyCheck limit = check defaultConfig {
 configMaxTest = limit
 , configEvery = _ _ -> ""
 }
Our first task is to ensure that if we
 add a value to a Bloom filter, a subsequent membership test will always report it as
 present, regardless of the chosen false positive rate or input
 value.
We will use the easyList function to create a Bloom filter. The Random
 instance for Double generates numbers in the range zero to
 one, so QuickCheck can nearly supply us with
 arbitrary false positive rates.
However, we need to ensure that both zero
 and one are excluded from the false positives we test with. QuickCheck
 gives us two ways to do this:
	Construction
	We specify the range of valid values to generate. QuickCheck
 provides a forAll combinator
 for this purpose.

	Elimination
	When QuickCheck generates an arbitrary value for us, we
 filter out those that do not fit our criteria, using the (==>) operator. If we reject a value in this way, a test will
 appear to succeed.

If we can choose either method, it is
 always preferable to take the constructive approach. To see why, suppose
 that QuickCheck generates 1,000 arbitrary values for us, and we filter
 out 800 as unsuitable for some reason. We will
 appear to run 1,000 tests, but only 200 will
 actually do anything useful.
Following this idea, when we generate
 desired false positive rates, we could eliminate zeroes and ones from
 whatever QuickCheck gives us, but instead we construct values in an
 interval that will always be valid:
-- file: examples/BloomCheck.hs
falsePositive :: Gen Double
falsePositive = choose (epsilon, 1 - epsilon)
 where epsilon = 1e-6

(=~>) :: Either a b -> (b -> Bool) -> Bool
k =~> f = either (const True) f k

prop_one_present _ elt =
 forAll falsePositive $ \errRate ->
 B.easyList errRate [elt] =~> \filt ->
 elt `B.elem` filt
Our small combinator, (=~>), lets us filter out failures of
 easyList. If it fails, the test
 automatically passes.
Polymorphic Testing

QuickCheck requires properties to
 be monomorphic. Since we have many
 different hashable types that we would like to test, we want to avoid
 having to write the same test in many different ways.
Notice that although our prop_one_present function is polymorphic, it ignores its first argument. We use
 this to simulate monomorphic properties, as follows:
ghci> :load BloomCheck
[1 of 1] Compiling Main (BloomCheck.hs, interpreted)
Ok, modules loaded: Main.
ghci> :t prop_one_present
prop_one_present :: (Hashable a) => t -> a -> Property
ghci> :t prop_one_present (undefined :: Int)
prop_one_present (undefined :: Int) :: (Hashable a) => a -> Property
We can supply any value as the first
 argument to prop_one_present—all
 that matters is its type, as the same type will
 be used for the first element of the second argument:
ghci> handyCheck 5000 $ prop_one_present (undefined :: Int)
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package QuickCheck-1.1.0.0 ... linking ... done.
Loading package rwh-bloomfilter-0.1 ... linking ... done.
OK, passed 5000 tests.
ghci> handyCheck 5000 $ prop_one_present (undefined :: Double)
OK, passed 5000 tests.
If we populate a Bloom filter with many
 elements, they should all be present afterwards:
-- file: examples/BloomCheck.hs
prop_all_present _ xs =
 forAll falsePositive $ \errRate ->
 B.easyList errRate xs =~> \filt ->
 all (`B.elem` filt) xs
This test also succeeds:
ghci> handyCheck 2000 $ prop_all_present (undefined :: Int)
OK, passed 2000 tests.

Writing Arbitrary Instances for ByteStrings

The QuickCheck library does not provide
 Arbitrary instances for ByteString types, so
 we must write our own. Rather than create a ByteString
 directly, we will use a pack
 function to create one from a [Word8]:
-- file: examples/BloomCheck.hs
instance Arbitrary Lazy.ByteString where
 arbitrary = Lazy.pack `fmap` arbitrary
 coarbitrary = coarbitrary . Lazy.unpack

instance Arbitrary Strict.ByteString where
 arbitrary = Strict.pack `fmap` arbitrary
 coarbitrary = coarbitrary . Strict.unpack
Also missing from QuickCheck are
 Arbitrary instances for the fixed-width types defined in
 Data.Word and Data.Int. We need to at least
 create an Arbitrary instance for
 Word8:
-- file: examples/BloomCheck.hs
instance Random Word8 where
 randomR = integralRandomR
 random = randomR (minBound, maxBound)

instance Arbitrary Word8 where
 arbitrary = choose (minBound, maxBound)
 coarbitrary = integralCoarbitrary
We support these instances with a few
 common functions so that we can reuse them when writing instances for
 other integral types:
-- file: examples/BloomCheck.hs
integralCoarbitrary n =
 variant $ if m >= 0 then 2*m else 2*(-m) + 1
 where m = fromIntegral n

integralRandomR (a,b) g = case randomR (c,d) g of
 (x,h) -> (fromIntegral x, h)
 where (c,d) = (fromIntegral a :: Integer,
 fromIntegral b :: Integer)

instance Random Word32 where
 randomR = integralRandomR
 random = randomR (minBound, maxBound)

instance Arbitrary Word32 where
 arbitrary = choose (minBound, maxBound)
 coarbitrary = integralCoarbitrary
With these Arbitrary
 instances created, we can try our existing properties on the
 ByteString types:
ghci> handyCheck 1000 $ prop_one_present (undefined :: Lazy.ByteString)
OK, passed 1000 tests.
ghci> handyCheck 1000 $ prop_all_present (undefined :: Strict.ByteString)
OK, passed 1000 tests.

Are Suggested Sizes Correct?

The cost of testing properties of
 easyList increases rapidly as we increase the number of
 tests to run. We would still like to have some assurance that
 easyList will behave well on huge
 inputs. Since it is not practical to test this directly, we can use a
 proxy: will suggestSizing give a
 sensible array size and number of hashes even with extreme
 inputs?
This is a slightly tricky property to
 check. We need to vary both the desired false positive rate and the
 expected capacity. When we looked at some results from the sizings function, we saw that the
 relationship between these values is not easy to predict.
We can try to ignore the
 complexity:
-- file: examples/BloomCheck.hs
prop_suggest_try1 =
 forAll falsePositive $ \errRate ->
 forAll (choose (1,maxBound :: Word32)) $ \cap ->
 case B.suggestSizing (fromIntegral cap) errRate of
 Left err -> False
 Right (bits,hashes) -> bits > 0 && bits < maxBound && hashes > 0
Not surprisingly, this gives us a test
 that is not actually useful:
ghci> handyCheck 1000 $ prop_suggest_try1
Falsifiable, after 1 tests:
0.2723862775515961
2484762599
ghci> handyCheck 1000 $ prop_suggest_try1
Falsifiable, after 3 tests:
2.390547635799778e-2
2315209155
When we plug the counterexamples that
 QuickCheck prints into suggestSizings, we can see that these
 inputs are rejected because they result in a bit array that would be
 too large:
ghci> B.suggestSizing 1678125842 8.501133057303545e-3
Left "capacity too large"

Since we can’t easily predict which
 combinations will cause this problem, we must resort to eliminating
 sizes and false positive rates before they bite us:
-- file: examples/BloomCheck.hs
prop_suggest_try2 =
 forAll falsePositive $ \errRate ->
 forAll (choose (1,fromIntegral maxWord32)) $ \cap ->
 let bestSize = fst . minimum $ B.sizings cap errRate
 in bestSize < fromIntegral maxWord32 ==>
 either (const False) sane $ B.suggestSizing cap errRate
 where sane (bits,hashes) = bits > 0 && bits < maxBound && hashes > 0
 maxWord32 = maxBound :: Word32
If we try this with a small number of
 tests, it seems to work well:
ghci> handyCheck 1000 $ prop_suggest_try2
OK, passed 1000 tests.

On a larger body of tests, we filter
 out too many combinations:
ghci> handyCheck 10000 $ prop_suggest_try2
Arguments exhausted after 2074 tests.

To deal with this, we try to reduce the
 likelihood of generating inputs that we will subsequently
 reject:
-- file: examples/BloomCheck.hs
prop_suggestions_sane =
 forAll falsePositive $ \errRate ->
 forAll (choose (1,fromIntegral maxWord32 `div` 8)) $ \cap ->
 let size = fst . minimum $ B.sizings cap errRate
 in size < fromIntegral maxWord32 ==>
 either (const False) sane $ B.suggestSizing cap errRate
 where sane (bits,hashes) = bits > 0 && bits < maxBound && hashes > 0
 maxWord32 = maxBound :: Word32
Finally, we have a robust looking
 property:
ghci> handyCheck 40000 $ prop_suggestions_sane
OK, passed 40000 tests.

Performance Analysis and Tuning

We now have a correctness base line: our
 QuickCheck tests pass. When we start tweaking performance, we can rerun
 the tests at any time to ensure that we haven’t inadvertently broken
 anything.
Our first step is to write a small test
 application that we can use for timing:
-- file: examples/WordTest.hs
module Main where

import Control.Parallel.Strategies (NFData(..))
import Control.Monad (forM_, mapM_)
import qualified BloomFilter.Easy as B
import qualified Data.ByteString.Char8 as BS
import Data.Time.Clock (diffUTCTime, getCurrentTime)
import System.Environment (getArgs)
import System.Exit (exitFailure)

timed :: (NFData a) => String -> IO a -> IO a
timed desc act = do
 start <- getCurrentTime
 ret <- act
 end <- rnf ret `seq` getCurrentTime
 putStrLn $ show (diffUTCTime end start) ++ " to " ++ desc
 return ret

instance NFData BS.ByteString where
 rnf _ = ()

instance NFData (B.Bloom a) where
 rnf filt = B.length filt `seq` ()
We borrow the rnf function that we introduced in Separating Algorithm from Evaluation to develop a simple timing harness.
 Our timed action ensures that a
 value is evaluated to normal form in order to accurately capture the
 cost of evaluating it.
The application creates a Bloom filter
 from the contents of a file, treating each line as an element to add to
 the filter:
-- file: examples/WordTest.hs
main = do
 args <- getArgs
 let files | null args = ["/usr/share/dict/words"]
 | otherwise = args
 forM_ files $ \file -> do

 words <- timed "read words" $
 BS.lines `fmap` BS.readFile file

 let len = length words
 errRate = 0.01

 putStrLn $ show len ++ " words"
 putStrLn $ "suggested sizings: " ++
 show (B.suggestSizing (fromIntegral len) errRate)

 filt <- timed "construct filter" $
 case B.easyList errRate words of
 Left errmsg -> do
 putStrLn $ "Error: " ++ errmsg
 exitFailure
 Right filt -> return filt

 timed "query every element" $
 mapM_ print $ filter (not . (`B.elem` filt)) words
We use timed to account for the costs of three
 distinct phases: reading and splitting the data into lines; populating
 the Bloom filter; and querying every element in it.
If we compile this and run it a few
 times, we can see that the execution time is just long enough to be
 interesting, while the timing variation from run to run is small. We
 have created a plausible-looking microbenchmark:
$ ghc -O2 --make WordTest
[1 of 1] Compiling Main (WordTest.hs, WordTest.o)
Linking WordTest ...
$./WordTest
0.196347s to read words
479829 words
1.063537s to construct filter
4602978 bits
0.766899s to query every element
$./WordTest
0.179284s to read words
479829 words
1.069363s to construct filter
4602978 bits
0.780079s to query every element
Profile-Driven Performance Tuning

To understand where our program might
 benefit from some tuning, we rebuild it and run it with profiling
 enabled.
Since we already built WordTest and have not subsequently changed
 it, if we rerun ghc to enable
 profiling support, it will quite reasonably decide to do nothing. We
 must force it to rebuild, which we accomplish by updating the
 filesystem’s idea of when we last edited the source file:
$ touch WordTest.hs
$ ghc -O2 -prof -auto-all --make WordTest
[1 of 1] Compiling Main (WordTest.hs, WordTest.o)
Linking WordTest ...

$./WordTest +RTS -p
0.322675s to read words
479829 words
suggested sizings: Right (4602978,7)
2.475339s to construct filter
1.964404s to query every element

$ head -20 WordTest.prof
total time = 4.10 secs (205 ticks @ 20 ms)
total alloc = 2,752,287,168 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

doubleHash BloomFilter.Hash 48.8 66.4
indices BloomFilter.Mutable 13.7 15.8
elem BloomFilter 9.8 1.3
hashByteString BloomFilter.Hash 6.8 3.8
easyList BloomFilter.Easy 5.9 0.3
hashIO BloomFilter.Hash 4.4 5.3
main Main 4.4 3.8
insert BloomFilter.Mutable 2.9 0.0
len BloomFilter 2.0 2.4
length BloomFilter.Mutable 1.5 1.0
Our doubleHash function immediately leaps out
 as a huge time and memory sink.
Always profile before—and while—you tune!
Before our first profiling run, we
 did not expect doubleHash to
 even appear in the top 10 of “hot” functions, much less
 dominate it. Without this knowledge, we would probably have started
 tuning something entirely irrelevant.

Recall that the body of doubleHash is an innocuous list
 comprehension:
-- file: BloomFilter/Hash.hs
doubleHash :: Hashable a => Int -> a -> [Word32]
doubleHash numHashes value = [h1 + h2 * i | i <- [0..num]]
 where h = hashSalt 0x9150a946c4a8966e value
 h1 = fromIntegral (h `shiftR` 32) .&. maxBound
 h2 = fromIntegral h
 num = fromIntegral numHashes
Since the function returns a list, it makes
 some sense that it allocates so much memory, but
 when code this simple performs so badly, we should be
 suspicious.
Faced with a performance mystery, the suspicious mind
 will naturally want to inspect the output of the compiler. We don’t
 need to start scrabbling through assembly language dumps: it’s best to
 start at a higher level.
GHC’s
 -ddump-simpl option prints out the code that it produces after performing
 all of its high-level optimizations:
$ ghc -O2 -c -ddump-simpl --make BloomFilter/Hash.hs > dump.txt
[1 of 1] Compiling BloomFilter.Hash (BloomFilter/Hash.hs)
The file thus produced is about 1,000
 lines long. Most of the names in it are mangled somewhat from their
 original Haskell representations. Even so, searching for doubleHash will immediately drop us at the
 definition of the function. For example, here is how we might start
 exactly at the right spot from a Unix shell:
$ less +/doubleHash dump.txt
It can be difficult to start reading
 the output of GHC’s
 simplifier. There are many automatically generated names, and the code
 has many obscure annotations. We can make substantial progress by
 ignoring things that we do not understand, focusing on those that look
 familiar. The Core language shares some features with regular Haskell,
 notably type signatures, let for
 variable binding, and case for
 pattern matching.
If we skim through the definition of doubleHash, we will arrive at a section
 that looks something like this:
__letrec { [image: 1]
 go_s1YC :: [GHC.Word.Word32] -> [GHC.Word.Word32] [image: 2]
 [Arity 1
 Str: DmdType S]
 go_s1YC =
 \ (ds_a1DR :: [GHC.Word.Word32]) ->
 case ds_a1DR of wild_a1DS {
	[] -> GHC.Base.[] @ GHC.Word.Word32; [image: 3]
	: y_a1DW ys_a1DX -> [image: 4]
	 GHC.Base.: @ GHC.Word.Word32 [image: 5]
	 (case h1_s1YA of wild1_a1Mk { GHC.Word.W32# x#_a1Mm -> [image: 6]
	 case h2_s1Yy of wild2_a1Mu { GHC.Word.W32# x#1_a1Mw ->
	 case y_a1DW of wild11_a1My { GHC.Word.W32# y#_a1MA ->
	 GHC.Word.W32# [image: 7]
	 (GHC.Prim.narrow32Word#
		 (GHC.Prim.plusWord# [image: 8]
		 x#_a1Mm (GHC.Prim.narrow32Word#
 (GHC.Prim.timesWord# x#1_a1Mw y#_a1MA))))
	 }
	 }
	 })
	 (go_s1YC ys_a1DX) [image: 9]
 };
} in
 go_s1YC [image: 10]
 (GHC.Word.wdmenumFromTo2
 __word 0 (GHC.Prim.narrow32Word# (GHC.Prim.int2Word# ww_s1X3)))
This is the body of the list comprehension. It may
 seem daunting, but we can look through it piece by piece and find that
 it is not, after all, so complicated:
	[image: 1]
	A __letrec is equivalent to a normal
 Haskell let.

	[image: 2]
	GHC
 compiled the body of our list comprehension into a loop named
 go_s1YC.

	[image: 3]
	If our case
 expression matches the empty list, we return the empty list. This
 is reassuringly familiar.

	[image: 4]
	This pattern would read in Haskell
 as (y_a1DW:ys_a1DX). The (:) constructor
 appears before its operands because the Core language uses prefix
 notation exclusively for simplicity.

	[image: 5]
	This is an application of the
 (:) constructor. The
 @ notation indicates that the first operand will have
 type Word32.

	[image: 6]
	Each of the three case expressions
 unboxes a Word32 value, to get
 at the primitive value inside. First to be unboxed is
 h1 (named h1_s1YA here),
 then h2, then the current list element,
 y.
The unboxing occurs via pattern matching:
 W32# is the constructor that boxes a primitive value.
 By convention, primitive types and values, and functions that use
 them, always contains a # somewhere in their
 name.

	[image: 7]
	Here, we apply the W32# constructor
 to a value of the primitive type Word32#, in order to
 give a normal value of type Word32.

	[image: 8]
	The plusWord# and timesWord# functions add and multiply
 primitive unsigned integers.

	[image: 9]
	This is the second argument to the
 (:) constructor, in which the
 go_s1YC function applies
 itself recursively.

	[image: 10]
	Here, we apply our list
 comprehension loop function. Its argument is the Core translation
 of the expression [0..n].

From reading the Core for this code, we
 can see two interesting behaviors:
	We are creating a list, and then
 immediately deconstructing it in the go_s1YC loop.
GHC can often spot this pattern of
 production followed immediately by consumption, and transform it
 into a loop in which no allocation occurs. This class of
 transformation is called fusion, because the
 producer and consumer become fused together. Unfortunately, it is
 not occurring here.

	The repeated unboxing of
 h1 and h2 in the body of the
 loop is wasteful.

To address these problems, we make a
 few tiny changes to our doubleHash function:
-- file: BloomFilter/Hash.hs
doubleHash :: Hashable a => Int -> a -> [Word32]
doubleHash numHashes value = go 0
 where go n | n == num = []
 | otherwise = h1 + h2 * n : go (n + 1)

 !h1 = fromIntegral (h `shiftR` 32) .&. maxBound
 !h2 = fromIntegral h

 h = hashSalt 0x9150a946c4a8966e value
 num = fromIntegral numHashes
We manually fused the
 [0..num] expression and the code that consumes it into a
 single loop. We added strictness annotations to h1
 and h2. And nothing more. This has turned a
 six-line function into an eight-line function. What effect does our
 change have on Core output?
__letrec {
 $wgo_s1UH :: GHC.Prim.Word# -> [GHC.Word.Word32]
 [Arity 1
 Str: DmdType L]
 $wgo_s1UH =
 \ (ww2_s1St :: GHC.Prim.Word#) ->
 case GHC.Prim.eqWord# ww2_s1St a_s1T1 of wild1_X2m {
	GHC.Base.False ->
	 GHC.Base.: @ GHC.Word.Word32
	 (GHC.Word.W32#
	 (GHC.Prim.narrow32Word#
	 (GHC.Prim.plusWord#
	 ipv_s1B2
	 (GHC.Prim.narrow32Word#
		(GHC.Prim.timesWord# ipv1_s1AZ ww2_s1St)))))
	 ($wgo_s1UH (GHC.Prim.narrow32Word#
 (GHC.Prim.plusWord# ww2_s1St __word 1)));
	GHC.Base.True -> GHC.Base.[] @ GHC.Word.Word32
 };
} in $wgo_s1UH __word 0
Our new function has compiled down to a
 simple counting loop. This is very encouraging, but how does it
 actually perform?
$ touch WordTest.hs
$ ghc -O2 -prof -auto-all --make WordTest
[1 of 1] Compiling Main (WordTest.hs, WordTest.o)
Linking WordTest ...

$./WordTest +RTS -p
0.304352s to read words
479829 words
suggested sizings: Right (4602978,7)
1.516229s to construct filter
1.069305s to query every element
~/src/darcs/book/examples/ch27/examples $ head -20 WordTest.prof
total time = 3.68 secs (184 ticks @ 20 ms)
total alloc = 2,644,805,536 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

doubleHash BloomFilter.Hash 45.1 65.0
indices BloomFilter.Mutable 19.0 16.4
elem BloomFilter 12.5 1.3
insert BloomFilter.Mutable 7.6 0.0
easyList BloomFilter.Easy 4.3 0.3
len BloomFilter 3.3 2.5
hashByteString BloomFilter.Hash 3.3 4.0
main Main 2.7 4.0
hashIO BloomFilter.Hash 2.2 5.5
length BloomFilter.Mutable 0.0 1.0
Our tweak has improved performance by
 about 11%—a good result for such a small change.
Exercises
	Our use of genericLength in easyList will cause our function to
 loop infinitely if we supply an infinite list. Fix this.

	Difficult: write a QuickCheck property that checks whether
 the observed false positive rate is close to the requested false
 positive rate.

[60] The name ST is an
 acronym for state thread.

[61] Jenkins’s hash functions have
 much better mixing properties than some other
 popular noncryptographic hash functions that you might be familiar
 with, such as FNV and
 hashpjw, so we recommend
 avoiding them.

[62] Unfortunately, we do not have room
 to explain why one of these instances is decidable, but the other
 is not.

Chapter 27. Sockets and Syslog

Basic Networking

In several earlier chapters of this book, we discussed services that
 operate over a network. Two examples are client/server databases and web
 services. When the need arises to devise a new protocol or to
 communicate with a protocol that doesn’t have an existing helper library
 in Haskell, you’ll need to use the lower-level networking tools in the
 Haskell library.
In this chapter, we will discuss these
 lower-level tools. Network communication is a broad topic with entire
 books devoted to it. We will show you how to use Haskell to apply the
 low-level network knowledge you already have.
Haskell’s networking functions almost
 always correspond directly to familiar C function calls. As most other
 languages also layer on top of C, you should find this interface
 familiar.

Communicating with UDP

UDP breaks data down into packets. It does not ensure that
 the data reaches its destination or it reaches it only once. It does use
 checksumming to ensure that packets that arrive have not been corrupted.
 UDP tends to be used in applications that are performance- or latency-sensitive, in
 which each individual packet of data is less important than the overall
 performance of the system. It may also be used where the TCP behavior
 isn’t the most efficient, such as ones that send short, discrete
 messages. Examples of systems that tend to use UDP include audio and
 video conferencing, time synchronization, network-based filesystems, and
 logging systems.
UDP Client Example: syslog

The traditional Unix syslog service
 allows programs to send log messages over a network to a central
 server that records them. Some programs are quite
 performance-sensitive and may generate a large volume of messages. In
 these programs, it could be more important to have the logging impose
 a minimal performance overhead than to guarantee every message is
 logged. Moreover, it may be desirable to continue program operation
 even if the logging server is unreachable. For this reason, UDP is one
 of the protocols syslog supports for the transmission of log messages.
 The protocol is simple; we present a Haskell implementation of a
 client here:
-- file: ch27/syslogclient.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List
import SyslogTypes

data SyslogHandle =
 SyslogHandle {slSocket :: Socket,
 slProgram :: String,
 slAddress :: SockAddr}

openlog :: HostName -- ^ Remote hostname, or localhost
 -> String -- ^ Port number or name; 514 is default
 -> String -- ^ Name to log under
 -> IO SyslogHandle -- ^ Handle to use for logging
openlog hostname port progname =
 do -- Look up the hostname and port. Either raises an exception
 -- or returns a nonempty list. First element in that list
 -- is supposed to be the best option.
 addrinfos <- getAddrInfo Nothing (Just hostname) (Just port)
 let serveraddr = head addrinfos

 -- Establish a socket for communication
 sock <- socket (addrFamily serveraddr) Datagram defaultProtocol

 -- Save off the socket, program name, and server address in a handle
 return $ SyslogHandle sock progname (addrAddress serveraddr)

syslog :: SyslogHandle -> Facility -> Priority -> String -> IO ()
syslog syslogh fac pri msg =
 sendstr sendmsg
 where code = makeCode fac pri
 sendmsg = "<" ++ show code ++ ">" ++ (slProgram syslogh) ++
 ": " ++ msg

 -- Send until everything is done
 sendstr :: String -> IO ()
 sendstr [] = return ()
 sendstr omsg = do sent <- sendTo (slSocket syslogh) omsg
 (slAddress syslogh)
 sendstr (genericDrop sent omsg)

closelog :: SyslogHandle -> IO ()
closelog syslogh = sClose (slSocket syslogh)

{- | Convert a facility and a priority into a syslog code -}
makeCode :: Facility -> Priority -> Int
makeCode fac pri =
 let faccode = codeOfFac fac
 pricode = fromEnum pri
 in
 (faccode `shiftL` 3) .|. pricode
This also requires SyslogTypes.hs, shown here:
-- file: ch27/SyslogTypes.hs
module SyslogTypes where
{- | Priorities define how important a log message is. -}

data Priority =
 DEBUG -- ^ Debug messages
 | INFO -- ^ Information
 | NOTICE -- ^ Normal runtime conditions
 | WARNING -- ^ General Warnings
 | ERROR -- ^ General Errors
 | CRITICAL -- ^ Severe situations
 | ALERT -- ^ Take immediate action
 | EMERGENCY -- ^ System is unusable
 deriving (Eq, Ord, Show, Read, Enum)

{- | Facilities are used by the system to determine where messages
are sent. -}

data Facility =
 KERN -- ^ Kernel messages
 | USER -- ^ General userland messages
 | MAIL -- ^ E-Mail system
 | DAEMON -- ^ Daemon (server process) messages
 | AUTH -- ^ Authentication or security messages
 | SYSLOG -- ^ Internal syslog messages
 | LPR -- ^ Printer messages
 | NEWS -- ^ Usenet news
 | UUCP -- ^ UUCP messages
 | CRON -- ^ Cron messages
 | AUTHPRIV -- ^ Private authentication messages
 | FTP -- ^ FTP messages
 | LOCAL0
 | LOCAL1
 | LOCAL2
 | LOCAL3
 | LOCAL4
 | LOCAL5
 | LOCAL6
 | LOCAL7
 deriving (Eq, Show, Read)

facToCode = [
 (KERN, 0),
 (USER, 1),
 (MAIL, 2),
 (DAEMON, 3),
 (AUTH, 4),
 (SYSLOG, 5),
 (LPR, 6),
 (NEWS, 7),
 (UUCP, 8),
 (CRON, 9),
 (AUTHPRIV, 10),
 (FTP, 11),
 (LOCAL0, 16),
 (LOCAL1, 17),
 (LOCAL2, 18),
 (LOCAL3, 19),
 (LOCAL4, 20),
 (LOCAL5, 21),
 (LOCAL6, 22),
 (LOCAL7, 23)
]

codeToFac = map (\(x, y) -> (y, x)) facToCode

{- | We can't use enum here because the numbering is discontiguous -}
codeOfFac :: Facility -> Int
codeOfFac f = case lookup f facToCode of
 Just x -> x
 _ -> error $ "Internal error in codeOfFac"

facOfCode :: Int -> Facility
facOfCode f = case lookup f codeToFac of
 Just x -> x
 _ -> error $ "Invalid code in facOfCode"
With ghci, you can send a message to a local
 syslog server. You can use either the example syslog server presented
 in this chapter or an existing syslog server like you would typically
 find on Linux or other POSIX systems. Note that most of these disable
 the UDP port by default, and you may need to enable UDP before your
 vendor-supplied syslog daemon will display received messages.
If you were sending a message to a
 syslog server on the local system, you might use a command such as
 this:
ghci> :load syslogclient.hs
[1 of 2] Compiling SyslogTypes (SyslogTypes.hs, interpreted)
[2 of 2] Compiling Main (syslogclient.hs, interpreted)
Ok, modules loaded: SyslogTypes, Main.
ghci> h <- openlog "localhost" "514" "testprog"
Loading package parsec-2.1.0.1 ... linking ... done.
Loading package network-2.2.0.0 ... linking ... done.
ghci> syslog h USER INFO "This is my message"
ghci> closelog h

UDP Syslog Server

UDP servers will bind to a specific port
 on the server machine. They will accept packets directed to that port
 and process them. Since UDP is a stateless, packet-oriented protocol,
 programmers normally use a call such as recvFrom to receive both the data and
 information about the machine that sent it, which is used for sending
 back a response:
-- file: ch27/syslogserver.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List

type HandlerFunc = SockAddr -> String -> IO ()

serveLog :: String -- ^ Port number or name; 514 is default
 -> HandlerFunc -- ^ Function to handle incoming messages
 -> IO ()
serveLog port handlerfunc = withSocketsDo $
 do -- Look up the port. Either raises an exception or returns
 -- a nonempty list.
 addrinfos <- getAddrInfo
 (Just (defaultHints {addrFlags = [AI_PASSIVE]}))
 Nothing (Just port)
 let serveraddr = head addrinfos

 -- Create a socket
 sock <- socket (addrFamily serveraddr) Datagram defaultProtocol

 -- Bind it to the address we're listening to
 bindSocket sock (addrAddress serveraddr)

 -- Loop forever processing incoming data. Ctrl-C to abort.
 procMessages sock
 where procMessages sock =
 do -- Receive one UDP packet, maximum length 1024 bytes,
 -- and save its content into msg and its source
 -- IP and port into addr
 (msg, _, addr) <- recvFrom sock 1024
 -- Handle it
 handlerfunc addr msg
 -- And process more messages
 procMessages sock

-- A simple handler that prints incoming packets
plainHandler :: HandlerFunc
plainHandler addr msg =
 putStrLn $ "From " ++ show addr ++ ": " ++ msg
You can run this in ghci. A call to serveLog "1514" plainHandler will set up a
 UDP server on port 1514 that will use plainHandler to print out every incoming UDP
 packet on that port. Ctrl-C will terminate the program.
In case of problems
Getting bind:
 permission denied when testing this? Make sure you use a
 port number greater than 1024. Some operating systems only allow the
 root user to bind to ports less
 than 1024.

Communicating with TCP

TCP is designed to make data transfer over the Internet as
 reliable as possible. TCP traffic is a stream of data. While this stream
 gets broken up into individual packets by the operating system, the
 packet boundaries are neither known nor relevant to applications. TCP
 guarantees that, if traffic is delivered to the application at all, it
 arrives intact, unmodified, exactly once, and in order. Obviously,
 things such as a broken wire can cause traffic to not be delivered, and
 no protocol can overcome those limitations.
This brings with it some trade-offs
 compared with UDP. First of all, there are a few packets that must be
 sent at the start of the TCP conversation to establish the link. For
 very short conversations, then, UDP would have a performance advantage.
 Also, TCP tries very hard to get data through. If one end of a
 conversation tries to send data to the remote but doesn’t receive an
 acknowledgment back, it will periodically retransmit the data for some
 time before giving up. This makes TCP robust in the face of dropped
 packets. However, it also means that TCP is not the best choice for
 real-time protocols that involve things such as live audio or
 video.
Handling Multiple TCP Streams

With TCP, connections are stateful. That
 means that there is a dedicated logical “channel” between a client and
 server, rather than just one-off packets as with UDP. This makes
 things easy for client developers. Server applications almost always
 will want to be able to handle more than one TCP connection at once.
 How then to do this?
On the server side, you will first
 create a socket and bind to a port, just like with UDP. Instead of
 repeatedly listening for data from any location, your main loop will
 be around the accept call. Each
 time a client connects, the server’s operating system allocates a new
 socket for it. So we have the master
 socket, used only to listen for incoming connections, and never
 to transmit data. We also have the potential for multiple
 child sockets to be used at once, each
 corresponding to a logical TCP conversation.
In Haskell, you will usually use
 forkIO to create a separate
 lightweight thread to handle each conversation with a child. Haskell
 has an efficient internal implementation of this that performs quite
 well.

TCP Syslog Server

Suppose we want to reimplement syslog
 using TCP instead of UDP. We could say that a single message is
 defined not by being in a single packet, but by a trailing newline
 character '\n'. Any given client
 could send zero or more messages to the server using a given TCP
 connection. Here’s how we might write that:
-- file: ch27/syslogtcpserver.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List
import Control.Concurrent
import Control.Concurrent.MVar
import System.IO

type HandlerFunc = SockAddr -> String -> IO ()

serveLog :: String -- ^ Port number or name; 514 is default
 -> HandlerFunc -- ^ Function to handle incoming messages
 -> IO ()
serveLog port handlerfunc = withSocketsDo $
 do -- Look up the port. Either raises an exception or returns
 -- a nonempty list.
 addrinfos <- getAddrInfo
 (Just (defaultHints {addrFlags = [AI_PASSIVE]}))
 Nothing (Just port)
 let serveraddr = head addrinfos

 -- Create a socket
 sock <- socket (addrFamily serveraddr) Stream defaultProtocol

 -- Bind it to the address we're listening to
 bindSocket sock (addrAddress serveraddr)

 -- Start listening for connection requests. Maximum queue size
 -- of 5 connection requests waiting to be accepted.
 listen sock 5

 -- Create a lock to use for synchronizing access to the handler
 lock <- newMVar ()

 -- Loop forever waiting for connections. Ctrl-C to abort.
 procRequests lock sock

 where
 -- | Process incoming connection requests
 procRequests :: MVar () -> Socket -> IO ()
 procRequests lock mastersock =
 do (connsock, clientaddr) <- accept mastersock
 handle lock clientaddr
 "syslogtcpserver.hs: client connnected"
 forkIO $ procMessages lock connsock clientaddr
 procRequests lock mastersock

 -- | Process incoming messages
 procMessages :: MVar () -> Socket -> SockAddr -> IO ()
 procMessages lock connsock clientaddr =
 do connhdl <- socketToHandle connsock ReadMode
 hSetBuffering connhdl LineBuffering
 messages <- hGetContents connhdl
 mapM_ (handle lock clientaddr) (lines messages)
 hClose connhdl
 handle lock clientaddr
 "syslogtcpserver.hs: client disconnected"

 -- Lock the handler before passing data to it.
 handle :: MVar () -> HandlerFunc
 -- This type is the same as
 -- handle :: MVar () -> SockAddr -> String -> IO ()
 handle lock clientaddr msg =
 withMVar lock
 (\a -> handlerfunc clientaddr msg >> return a)

-- A simple handler that prints incoming packets
plainHandler :: HandlerFunc
plainHandler addr msg =
 putStrLn $ "From " ++ show addr ++ ": " ++ msg
For our SyslogTypes implementation, see UDP Client Example: syslog.
Let’s look at this code. Our main loop
 is in procRequests, where we loop
 forever waiting for new connections from clients. The accept call blocks until a client connects.
 When a client connects, we get a new socket and the client’s address.
 We pass a message to the handler about that, and then use forkIO to create a thread to handle the data
 from that client. This thread runs procMessages.
When dealing with TCP data, it’s often
 convenient to convert a socket into a Haskell Handle. We do so here, and explicitly set
 the buffering—an important point for TCP communication. Next, we set
 up lazy reading from the socket’s Handle. For each incoming line, we pass it
 to handle. After there is no more
 data—because the remote end has closed the socket—we output a message
 about that.
Since we may be handling multiple
 incoming messages at once, we need to ensure that we’re not writing
 out multiple messages at once in the handler. That could result in
 garbled output. We use a simple lock to serialize access to the
 handler, and write a simple handle
 function to handle that.
We can test this with the client we’ll
 present next, or we can even use the telnet program to connect to this server.
 Each line of text we send to it will be printed on the display by the
 server. Let’s try it out:
ghci> :load syslogtcpserver.hs
[1 of 1] Compiling Main (syslogtcpserver.hs, interpreted)
Ok, modules loaded: Main.
ghci> serveLog "10514" plainHandler
Loading package parsec-2.1.0.0 ... linking ... done.
Loading package network-2.1.0.0 ... linking ... done.
At this point, the server will begin
 listening for connections at port 10514. It will not appear to be
 doing anything until a client connects. We could use telnet to connect
 to the server:
~$ telnet localhost 10514
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Test message
^]
telnet> quit
Connection closed.
Meanwhile, in our other terminal running
 the TCP server, you’ll see something like this:
From 127.0.0.1:38790: syslogtcpserver.hs: client connnected
From 127.0.0.1:38790: Test message
From 127.0.0.1:38790: syslogtcpserver.hs: client disconnected
This shows that a client connected from
 port 38790 on the local machine (127.0.0.1). After it connected, it
 sent one message and disconnected. When you are acting as a TCP
 client, the operating system assigns an unused port for you. This port
 number will usually be different each time you run the program.

TCP Syslog Client

Now, let’s write a client for our TCP
 syslog protocol. This client will be similar to the UDP client, but
 there are some changes. First, since TCP is a streaming protocol, we
 can send data using a Handle rather
 than using the lower-level socket operations. Second, we no longer
 need to store the destination address in the SyslogHandle, since we will be using
 connect to establish the TCP
 connection. Finally, we need a way to know where one message ends and
 the next begins. With UDP, that was easy because each message was a
 discrete logical packet. With TCP, we’ll just use the newline
 character '\n' as the
 end-of-message marker, although that means that no individual message
 may contain the newline. Here’s our code:
-- file: ch27/syslogtcpclient.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List
import SyslogTypes
import System.IO

data SyslogHandle =
 SyslogHandle {slHandle :: Handle,
 slProgram :: String}

openlog :: HostName -- ^ Remote hostname, or localhost
 -> String -- ^ Port number or name; 514 is default
 -> String -- ^ Name to log under
 -> IO SyslogHandle -- ^ Handle to use for logging
openlog hostname port progname =
 do -- Look up the hostname and port. Either raises an exception
 -- or returns a nonempty list. First element in that list
 -- is supposed to be the best option.
 addrinfos <- getAddrInfo Nothing (Just hostname) (Just port)
 let serveraddr = head addrinfos

 -- Establish a socket for communication
 sock <- socket (addrFamily serveraddr) Stream defaultProtocol

 -- Mark the socket for keep-alive handling since it may be idle
 -- for long periods of time
 setSocketOption sock KeepAlive 1

 -- Connect to server
 connect sock (addrAddress serveraddr)

 -- Make a Handle out of it for convenience
 h <- socketToHandle sock WriteMode

 -- We're going to set buffering to BlockBuffering and then
 -- explicitly call hFlush after each message, below, so that
 -- messages get logged immediately
 hSetBuffering h (BlockBuffering Nothing)

 -- Save off the socket, program name, and server address in a handle
 return $ SyslogHandle h progname

syslog :: SyslogHandle -> Facility -> Priority -> String -> IO ()
syslog syslogh fac pri msg =
 do hPutStrLn (slHandle syslogh) sendmsg
 -- Make sure that we send data immediately
 hFlush (slHandle syslogh)
 where code = makeCode fac pri
 sendmsg = "<" ++ show code ++ ">" ++ (slProgram syslogh) ++
 ": " ++ msg

closelog :: SyslogHandle -> IO ()
closelog syslogh = hClose (slHandle syslogh)

{- | Convert a facility and a priority into a syslog code -}
makeCode :: Facility -> Priority -> Int
makeCode fac pri =
 let faccode = codeOfFac fac
 pricode = fromEnum pri
 in
 (faccode `shiftL` 3) .|. pricode
We can try it out under ghci. If you still have the TCP server
 running from earlier, your session might look something like
 this:
ghci> :load syslogtcpclient.hs
Loading package base ... linking ... done.
[1 of 2] Compiling SyslogTypes (SyslogTypes.hs, interpreted)
[2 of 2] Compiling Main (syslogtcpclient.hs, interpreted)
Ok, modules loaded: Main, SyslogTypes.
ghci> openlog "localhost" "10514" "tcptest"
Loading package parsec-2.1.0.0 ... linking ... done.
Loading package network-2.1.0.0 ... linking ... done.
ghci> sl <- openlog "localhost" "10514" "tcptest"
ghci> syslog sl USER INFO "This is my TCP message"
ghci> syslog sl USER INFO "This is my TCP message again"
ghci> closelog sl
Over on the server, you’ll see something
 like this:
From 127.0.0.1:46319: syslogtcpserver.hs: client connnected
From 127.0.0.1:46319: <9>tcptest: This is my TCP message
From 127.0.0.1:46319: <9>tcptest: This is my TCP message again
From 127.0.0.1:46319: syslogtcpserver.hs: client disconnected
The <9> is the priority and facility code
 being sent along, just as it was with UDP.

Chapter 28. Software Transactional Memory

In the traditional threaded model of concurrent programming, when
 we share data among threads, we keep it consistent using locks, and we
 notify threads of changes using condition variables. Haskell’s
 MVar mechanism improves somewhat upon these tools, but it
 still suffers from all of the same problems:
	Race conditions due to forgotten
 locks

	Deadlocks resulting from inconsistent
 lock ordering

	Corruption caused by uncaught
 exceptions

	Lost wakeups induced by omitted
 notifications

These problems frequently affect even the
 smallest concurrent programs, but the difficulties they pose become far
 worse in larger code bases or under heavy load.
For instance, a program with a few big
 locks is somewhat tractable to write and debug, but contention for those
 locks will clobber us under heavy load. If we react with finer-grained
 locking, it becomes far harder to keep our software
 working at all. The additional bookkeeping will hurt performance even when
 loads are light.
The Basics

Software transactional memory (STM) gives
 us a few simple, but powerful, tools with which we can address most of
 these problems. We execute a block of actions as a transaction using the
 atomically combinator. Once we
 enter the block, other threads cannot see any modifications we make
 until we exit, nor can our thread see any changes made by other threads.
 These two properties mean that our execution is
 isolated.
Upon exit from a transaction, exactly one of the
 following things will occur:
	If no other thread concurrently
 modifies the same data as us, all of our modifications will
 simultaneously become visible to other threads.

	Otherwise, our modifications are
 discarded without being performed, and our block of actions is
 automatically restarted.

This all-or-nothing nature of an
 atomically block is referred to as
 atomic, hence the name of the combinator. If you
 have used databases that support transactions, you should find that
 working with STM feels quite familiar.

Some Simple Examples

In a multiplayer role playing game, a
 player’s character will have some state such as health, possessions, and
 money. To explore the world of STM, let’s start with a few simple
 functions and types based around working with some character state for a
 game. We will refine our code as we learn more about the API.
The STM API is provided by the
 stm package, and its modules are in the Control.Concurrent.STM hierarchy:
-- file: ch28/GameInventory.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Concurrent.STM
import Control.Monad

data Item = Scroll
 | Wand
 | Banjo
 deriving (Eq, Ord, Show)

newtype Gold = Gold Int
 deriving (Eq, Ord, Show, Num)

newtype HitPoint = HitPoint Int
 deriving (Eq, Ord, Show, Num)

type Inventory = TVar [Item]
type Health = TVar HitPoint
type Balance = TVar Gold

data Player = Player {
 balance :: Balance,
 health :: Health,
 inventory :: Inventory
 }
The TVar parameterized type
 is a mutable variable that we can read or write inside an atomically block. For simplicity, we
 represent a player’s inventory as a list of items. Notice, too, that we
 use newtype declarations so that we cannot accidentally
 confuse wealth with health.
To perform a basic transfer of money from
 one Balance to another, all we have to do is adjust the
 values in each TVar:
-- file: ch28/GameInventory.hs
basicTransfer qty fromBal toBal = do
 fromQty <- readTVar fromBal
 toQty <- readTVar toBal
 writeTVar fromBal (fromQty - qty)
 writeTVar toBal (toQty + qty)
Let’s write a small function to try this
 out:
-- file: ch28/GameInventory.hs
transferTest = do
 alice <- newTVar (12 :: Gold)
 bob <- newTVar 4
 basicTransfer 3 alice bob
 liftM2 (,) (readTVar alice) (readTVar bob)
If we run this in ghci, it behaves as we should expect:
ghci> :load GameInventory
[1 of 1] Compiling Main (GameInventory.hs, interpreted)
Ok, modules loaded: Main.
ghci> atomically transferTest
Loading package array-0.1.0.0 ... linking ... done.
Loading package stm-2.1.1.1 ... linking ... done.
(Gold 9,Gold 7)
The properties of atomicity and isolation
 guarantee that if another thread sees a change in bob’s
 balance, they will also be able to see the modification of
 alice’s balance.
Even in a concurrent program, we strive
 to keep as much of our code as possible purely functional. This makes
 our code easier to reason about and to test. It also gives the
 underlying STM engine less work to do, since the data involved is not
 transactional. Here’s a pure function that removes an item from the list
 we use to represent a player’s inventory:
-- file: ch28/GameInventory.hs
removeInv :: Eq a => a -> [a] -> Maybe [a]
removeInv x xs =
 case takeWhile (/= x) xs of
 (_:ys) -> Just ys
 [] -> Nothing
The result uses Maybe so
 that we can tell whether the item was actually present in the player’s
 inventory.
Here is a transactional function to give
 an item to another player, slightly complicated by the need to determine
 whether the donor actually has the item in
 question:
-- file: ch28/GameInventory.hs
maybeGiveItem item fromInv toInv = do
 fromList <- readTVar fromInv
 case removeInv item fromList of
 Nothing -> return False
 Just newList -> do
 writeTVar fromInv newList
 destItems <- readTVar toInv
 writeTVar toInv (item : destItems)
 return True

STM and Safety

If we are to provide atomic, isolated
 transactions, it is critical that we cannot either deliberately or
 accidentally escape from an atomically block. Haskell’s type system
 enforces this on our behalf, via the STM monad:
ghci> :type atomically
atomically :: STM a -> IO a

The atomically block takes an action in the STM monad, executes
 it, and makes its result available to us in the IO monad.
 This is the monad in which all transactional code executes. For
 instance, the functions that we have seen for manipulating
 TVar values operate in the STM monad:
ghci> :type newTVar
newTVar :: a -> STM (TVar a)
ghci> :type readTVar
readTVar :: TVar a -> STM a
ghci> :type writeTVar
writeTVar :: TVar a -> a -> STM ()
This is also true of the transactional
 functions we defined earlier:
-- file: ch28/GameInventory.hs
basicTransfer :: Gold -> Balance -> Balance -> STM ()
maybeGiveItem :: Item -> Inventory -> Inventory -> STM Bool
The STM monad does not let
 us perform I/O or manipulate nontransactional mutable state, such as
 MVar values. This lets us avoid operations that might
 violate the transactional guarantees.

Retrying a Transaction

The API of our maybeGiveItem function is somewhat awkward.
 It gives an item only if the character actually possesses it, which is
 reasonable, but by returning a Bool, it complicates the
 code of its callers. Here is an item sale function that has to look at
 the result of maybeGiveItem to
 decide what to do next:
-- file: ch28/GameInventory.hs
maybeSellItem :: Item -> Gold -> Player -> Player -> STM Bool
maybeSellItem item price buyer seller = do
 given <- maybeGiveItem item (inventory seller) (inventory buyer)
 if given
 then do
 basicTransfer price (balance buyer) (balance seller)
 return True
 else return False
Not only do we have to check whether the
 item was given, we have to propagate an indication of success back to
 our caller. The complexity thus cascades outwards.
There is a more elegant way to handle
 transactions that cannot succeed. The STM API provides a retry action that will immediately terminate
 an atomically block that cannot
 proceed. As the name suggests, when this occurs, execution of the block
 is restarted from scratch, with any previous modifications unperformed.
 Here is a rewrite of maybeGiveItem
 to use retry:
-- file: ch28/GameInventory.hs
giveItem :: Item -> Inventory -> Inventory -> STM ()

giveItem item fromInv toInv = do
 fromList <- readTVar fromInv
 case removeInv item fromList of
 Nothing -> retry
 Just newList -> do
 writeTVar fromInv newList
 readTVar toInv >>= writeTVar toInv . (item :)
Our basicTransfer from earlier had a different
 kind of flaw: it did not check the sender’s balance to see if she had
 sufficient money to transfer. We can use retry to correct this, while keeping the
 function’s type the same:
-- file: ch28/GameInventory.hs
transfer :: Gold -> Balance -> Balance -> STM ()

transfer qty fromBal toBal = do
 fromQty <- readTVar fromBal
 when (qty > fromQty) $
 retry
 writeTVar fromBal (fromQty - qty)
 readTVar toBal >>= writeTVar toBal . (qty +)
Now that we are using retry, our item sale function becomes
 dramatically simpler:
-- file: ch28/GameInventory.hs
sellItem :: Item -> Gold -> Player -> Player -> STM ()
sellItem item price buyer seller = do
 giveItem item (inventory seller) (inventory buyer)
 transfer price (balance buyer) (balance seller)
Its behavior is slightly different from
 our earlier function. Instead of immediately returning False if the seller doesn’t have the item, it
 will block (if necessary) until both the seller has the item and the
 buyer has enough money to pay for it.
The beauty of STM lies in the cleanliness
 of the code it lets us write. We can take two functions that work
 correctly, and use them to create a third that will also behave itself,
 all with minimal effort.
What Happens When We Retry?

The retry function doesn’t just make our code
 cleaner—its underlying behavior seems nearly magical. When we call it,
 it doesn’t restart our transaction immediately. Instead, it blocks our
 thread until one or more of the variables that we touched before
 calling retry is changed by
 another thread.
For instance, if we invoke transfer with insufficient funds, retry will automatically
 wait until our balance changes before it starts the
 atomically block again. The same
 happens with our new giveItem
 function: if the sender doesn’t currently have the item in his
 inventory, the thread will block until he does.

Choosing Between Alternatives

We don’t always want to restart an
 atomically action if it calls
 retry or fails due to concurrent
 modification by another thread. For instance, our new sellItem function will retry indefinitely as
 long as we are missing either the item or enough money, but we might
 prefer to just try the sale once.
The orElse combinator lets us perform a
 “backup” action if the main one fails:
ghci> :type orElse
orElse :: STM a -> STM a -> STM a

If sellItem fails, orElse will invoke the return
 False action, causing our sale function to return
 immediately.
Using Higher Order Code with Transactions

Imagine that we’d like to be a little
 more ambitious and buy the first item from a list that is both in the
 possession of the seller and affordable to us, but it does nothing if
 we cannot afford something right now. We could, of course, write code
 to do this in a direct manner:
-- file: ch28/GameInventory.hs
crummyList :: [(Item, Gold)] -> Player -> Player
 -> STM (Maybe (Item, Gold))
crummyList list buyer seller = go list
 where go [] = return Nothing
 go (this@(item,price) : rest) = do
 sellItem item price buyer seller
 return (Just this)
 `orElse`
 go rest
This function suffers from the familiar
 problem of muddling together what we want to do with how we ought to
 do it. A little inspection suggests that there are two reusable
 patterns buried in this code.
The first of these is to make a
 transaction fail immediately instead of retrying:
-- file: ch28/GameInventory.hs
maybeSTM :: STM a -> STM (Maybe a)
maybeSTM m = (Just `liftM` m) `orElse` return Nothing
Second, we want to try an action over
 successive elements of a list, stopping at the first that succeeds or
 performing a retry if every one
 fails. Conveniently for us, STM is an instance of the
 MonadPlus typeclass:
-- file: ch28/STMPlus.hs
instance MonadPlus STM where
 mzero = retry
 mplus = orElse
The Control.Monad module
 defines the msum function as
 follows, which is exactly what we need:
-- file: ch28/STMPlus.hs
msum :: MonadPlus m => [m a] -> m a
msum = foldr mplus mzero
We now have a few key pieces of
 machinery that will help us write a much clearer version of our
 function:
-- file: ch28/GameInventory.hs
shoppingList :: [(Item, Gold)] -> Player -> Player
 -> STM (Maybe (Item, Gold))
shoppingList list buyer seller = maybeSTM . msum $ map sellOne list
 where sellOne this@(item,price) = do
 sellItem item price buyer seller
 return this
Since STM is an instance of the
 MonadPlus typeclass, we can generalize maybeSTM to work over any
 MonadPlus:
-- file: ch28/GameInventory.hs
maybeM :: MonadPlus m => m a -> m (Maybe a)
maybeM m = (Just `liftM` m) `mplus` return Nothing
This gives us a function that is useful in a greater
 variety of situations.

I/O and STM

The STM monad forbids us from performing arbitrary I/O actions, because
 they can break the guarantees of atomicity and isolation that the monad
 provides. Of course, the need to perform I/O still arises—we just have
 to treat it very carefully.
Most often, we will need to perform some
 I/O action as a result of a decision we made inside an atomically block. In these cases, the right
 thing to do is usually to return a piece of data from atomically, which will tell the caller in the
 IO monad what to do next. We can even return the action to
 perform, since actions are first-class values:
-- file: ch28/STMIO.hs
someAction :: IO a

stmTransaction :: STM (IO a)
stmTransaction = return someAction

doSomething :: IO a
doSomething = join (atomically stmTransaction)
We occasionally need to perform an I/O
 operation from within STM. For instance, reading immutable
 data from a file that must exist does not violate the STM
 guarantees of isolation or atomicity. In these cases, we can use
 unsafeIOToSTM to execute an IO action. This function is
 exported by the low-level GHC.Conc module, so we must go out of our way to use it:
ghci> :m +GHC.Conc
ghci> :type unsafeIOToSTM
unsafeIOToSTM :: IO a -> STM a
The IO action that we
 execute must not start another atomically transaction. If a thread tries to
 nest transactions, the runtime system will throw an exception.
Since the type system can’t help us to
 ensure that our IO code is doing something sensible, we
 will be safest if we limit our use of unsafeIOToSTM as much as possible. Here is a
 typical error that can arise with IO in an atomically block:
-- file: ch28/STMIO.hs
launchTorpedoes :: IO ()

notActuallyAtomic = do
 doStuff
 unsafeIOToSTM launchTorpedoes
 mightRetry
If the mightRetry block causes our transaction to
 restart, we will call launchTorpedoes more than once. Indeed, we
 can’t predict how many times it will be called, since the runtime system
 handles retries for us. The solution is not to perform these kinds of
 nonidempotent[63] I/O operations inside a transaction.

Communication Between Threads

As well as the basic TVar
 type, the stm package provides two types that are more useful for communicating
 between threads. A TMVar is the STM equivalent of an MVar: it can
 hold either Just a value or Nothing. The
 TChan type is the STM
 counterpart of Chan, and it implements a typed FIFO
 channel.

A Concurrent Web Link Checker

As a practical example of using STM,
 we will develop a program that checks an HTML file for broken links—that
 is, URLs that either point to bad web pages or dead servers. This is a
 good problem to address via concurrency: if we try to talk to a dead
 server, it will take up to two minutes before our connection attempt
 times out. If we use multiple threads, we can still get useful work done
 while one or two are stuck talking to slow or dead servers.
We can’t simply create one thread per
 URL, because that may overburden either our CPU or our network
 connection if (as we expect) most of the links are live and responsive.
 Instead, we use a fixed number of worker threads, which fetch URLs to
 download from a queue:
-- file: ch28/Check.hs
{-# LANGUAGE FlexibleContexts, GeneralizedNewtypeDeriving,
 PatternGuards #-}

import Control.Concurrent (forkIO)
import Control.Concurrent.STM
import Control.Exception (catch, finally)
import Control.Monad.Error
import Control.Monad.State
import Data.Char (isControl)
import Data.List (nub)
import Network.URI
import Prelude hiding (catch)
import System.Console.GetOpt
import System.Environment (getArgs)
import System.Exit (ExitCode(..), exitWith)
import System.IO (hFlush, hPutStrLn, stderr, stdout)
import Text.Printf (printf)
import qualified Data.ByteString.Lazy.Char8 as B
import qualified Data.Set as S

-- This requires the HTTP package, which is not bundled with GHC
import Network.HTTP

type URL = B.ByteString

data Task = Check URL | Done
Our main function provides the top-level
 scaffolding for our program:
-- file: ch28/Check.hs
main :: IO ()
main = do
 (files,k) <- parseArgs
 let n = length files

 -- count of broken links
 badCount <- newTVarIO (0 :: Int)

 -- for reporting broken links
 badLinks <- newTChanIO

 -- for sending jobs to workers
 jobs <- newTChanIO

 -- the number of workers currently running
 workers <- newTVarIO k

 -- one thread reports bad links to stdout
 forkIO $ writeBadLinks badLinks

 -- start worker threads
 forkTimes k workers (worker badLinks jobs badCount)

 -- read links from files, and enqueue them as jobs
 stats <- execJob (mapM_ checkURLs files)
 (JobState S.empty 0 jobs)

 -- enqueue "please finish" messages
 atomically $ replicateM_ k (writeTChan jobs Done)

 waitFor workers

 broken <- atomically $ readTVar badCount

 printf fmt broken
 (linksFound stats)
 (S.size (linksSeen stats))
 n
 where
 fmt = "Found %d broken links. " ++
 "Checked %d links (%d unique) in %d files.\n"
When we are in the IO monad,
 we can create new TVar values using the
 newTVarIO function. There are also counterparts for
 creating TMVar and TChan values.
Notice that we use the printf function to print a report at the end.
 Unlike its counterpart in C, the Haskell printf function can check its argument types
 and their numbers at runtime:
ghci> :m +Text.Printf
ghci> printf "%d and %d\n" (3::Int)
3 and *** Exception: Printf.printf: argument list ended prematurely
ghci> printf "%s and %d\n" "foo" (3::Int)
foo and 3
Try evaluating printf "%d"
 True at the ghci prompt, and
 see what happens.
Several short functions support main:
-- file: ch28/Check.hs
modifyTVar_ :: TVar a -> (a -> a) -> STM ()
modifyTVar_ tv f = readTVar tv >>= writeTVar tv . f

forkTimes :: Int -> TVar Int -> IO () -> IO ()
forkTimes k alive act =
 replicateM_ k . forkIO $
 act
 `finally`
 (atomically $ modifyTVar_ alive (subtract 1))
The forkTimes function starts a number of
 identical worker threads and decreases the “alive” count
 each time a thread exits. We use a finally combinator to ensure that the count
 is always decremented, no matter how the thread terminates.
Next, the writeBadLinks function prints each broken or
 dead link to stdout:
-- file: ch28/Check.hs
writeBadLinks :: TChan String -> IO ()
writeBadLinks c =
 forever $
 atomically (readTChan c) >>= putStrLn >> hFlush stdout
We use the forever combinator in the preceding code,
 which repeats an action endlessly:
ghci> :m +Control.Monad
ghci> :type forever
forever :: (Monad m) => m a -> m ()
Our waitFor function uses check, which calls retry if its argument evaluates to
 False:
-- file: ch28/Check.hs
waitFor :: TVar Int -> IO ()
waitFor alive = atomically $ do
 count <- readTVar alive
 check (count == 0)
Checking a Link

Here is a naive function to check the
 state of a link. This code is similar to the podcatcher that we
 developed in Chapter 22, with a few small
 differences:
-- file: ch28/Check.hs
getStatus :: URI -> IO (Either String Int)
getStatus = chase (5 :: Int)
 where
 chase 0 _ = bail "too many redirects"
 chase n u = do
 resp <- getHead u
 case resp of
 Left err -> bail (show err)
 Right r ->
 case rspCode r of
 (3,_,_) ->
 case findHeader HdrLocation r of
 Nothing -> bail (show r)
 Just u' ->
 case parseURI u' of
 Nothing -> bail "bad URL"
 Just url -> chase (n-1) url
 (a,b,c) -> return . Right $ a * 100 + b * 10 + c
 bail = return . Left

getHead :: URI -> IO (Result Response)
getHead uri = simpleHTTP Request { rqURI = uri,
 rqMethod = HEAD,
 rqHeaders = [],
 rqBody = "" }
We follow an HTTP redirect response
 just a few times, in order to avoid endless redirect loops. To
 determine whether a URL is valid, we use the HTTP standard’s HEAD
 verb, which uses less bandwidth than a full GET.
This code has the classic “marching off the
 right of the screen” style that we have learned to be wary of.
 Here is a rewrite that offers greater clarity via the
 ErrorT monad transformer and a few generally useful
 functions:
-- file: ch28/Check.hs
getStatusE = runErrorT . chase (5 :: Int)
 where
 chase :: Int -> URI -> ErrorT String IO Int
 chase 0 _ = throwError "too many redirects"
 chase n u = do
 r <- embedEither show =<< liftIO (getHead u)
 case rspCode r of
 (3,_,_) -> do
 u' <- embedMaybe (show r) $ findHeader HdrLocation r
 url <- embedMaybe "bad URL" $ parseURI u'
 chase (n-1) url
 (a,b,c) -> return $ a*100 + b*10 + c

-- This function is defined in Control.Arrow.
left :: (a -> c) -> Either a b -> Either c b
left f (Left x) = Left (f x)
left _ (Right x) = Right x

-- Some handy embedding functions.
embedEither :: (MonadError e m) => (s -> e) -> Either s a -> m a
embedEither f = either (throwError . f) return

embedMaybe :: (MonadError e m) => e -> Maybe a -> m a
embedMaybe err = maybe (throwError err) return

Worker Threads

Each worker thread reads a task off the
 shared queue. It either checks the given URL or exits:
-- file: ch28/Check.hs
worker :: TChan String -> TChan Task -> TVar Int -> IO ()
worker badLinks jobQueue badCount = loop
 where
 -- Consume jobs until we are told to exit.
 loop = do
 job <- atomically $ readTChan jobQueue
 case job of
 Done -> return ()
 Check x -> checkOne (B.unpack x) >> loop

 -- Check a single link.
 checkOne url = case parseURI url of
 Just uri -> do
 code <- getStatus uri `catch` (return . Left . show)
 case code of
 Right 200 -> return ()
 Right n -> report (show n)
 Left err -> report err
 _ -> report "invalid URL"

 where report s = atomically $ do
 modifyTVar_ badCount (+1)
 writeTChan badLinks (url ++ " " ++ s)

Finding Links

We structure our link finding around a
 state monad transformer stacked on the IO monad. Our
 state tracks links that we have already seen (so we don’t check a
 repeated link more than once), the total number of links we have
 encountered, and the queue to which we should add the links that we
 will be checking:
-- file: ch28/Check.hs
data JobState = JobState { linksSeen :: S.Set URL,
 linksFound :: Int,
 linkQueue :: TChan Task }

newtype Job a = Job { runJob :: StateT JobState IO a }
 deriving (Monad, MonadState JobState, MonadIO)

execJob :: Job a -> JobState -> IO JobState
execJob = execStateT . runJob
Strictly speaking, for a small
 standalone program, we don’t need the newtype wrapper,
 but we include it here as an example of good practice (it costs only a
 few lines of code, anyway).
The main function maps checkURLs over each input file, so
 checkURLs needs only to read a
 single file:
-- file: ch28/Check.hs
checkURLs :: FilePath -> Job ()
checkURLs f = do
 src <- liftIO $ B.readFile f
 let urls = extractLinks src
 filterM seenURI urls >>= sendJobs
 updateStats (length urls)

updateStats :: Int -> Job ()
updateStats a = modify $ \s ->
 s { linksFound = linksFound s + a }

-- | Add a link to the set we have seen.
insertURI :: URL -> Job ()
insertURI c = modify $ \s ->
 s { linksSeen = S.insert c (linksSeen s) }

-- | If we have seen a link, return False. Otherwise, record that we
-- have seen it, and return True.
seenURI :: URL -> Job Bool
seenURI url = do
 seen <- (not . S.member url) `liftM` gets linksSeen
 insertURI url
 return seen

sendJobs :: [URL] -> Job ()
sendJobs js = do
 c <- gets linkQueue
 liftIO . atomically $ mapM_ (writeTChan c . Check) js
Our extractLinks function doesn’t attempt to
 properly parse an HTML or text file. Instead, it looks for strings
 that appear to be URLs and treats them as “good
 enough”:
-- file: ch28/Check.hs
extractLinks :: B.ByteString -> [URL]
extractLinks = concatMap uris . B.lines
 where uris s = filter looksOkay (B.splitWith isDelim s)
 isDelim c = isControl c || c `elem` " <>\"{}|\\^[]`"
 looksOkay s = http `B.isPrefixOf` s
 http = B.pack "http:"

Command-Line Parsing

To parse our command-line arguments, we
 use the System.Console.GetOpt module. It provides useful
 code for parsing arguments, but it is slightly involved to use:
-- file: ch28/Check.hs
data Flag = Help | N Int
 deriving Eq

parseArgs :: IO ([String], Int)
parseArgs = do
 argv <- getArgs
 case parse argv of
 ([], files, []) -> return (nub files, 16)
 (opts, files, [])
 | Help `elem` opts -> help
 | [N n] <- filter (/=Help) opts -> return (nub files, n)
 (_,_,errs) -> die errs
 where
 parse argv = getOpt Permute options argv
 header = "Usage: urlcheck [-h] [-n n] [file ...]"
 info = usageInfo header options
 dump = hPutStrLn stderr
 die errs = dump (concat errs ++ info) >> exitWith (ExitFailure 1)
 help = dump info >> exitWith ExitSuccess
The getOpt function takes three
 arguments:
	An argument ordering, which
 specifies whether options can be mixed with other arguments
 (Permute, which we used earlier) or must appear
 before them.

	A list of option definitions. Each
 consists of a list of short names for the option, a list of long
 names for the option, a description of the option (e.g., whether
 it accepts an argument), and an explanation for users.

	A list of the arguments and
 options, as returned by getArgs.

The function returns a triple that
 consists of the parsed options, the remaining arguments, and any error
 messages that arose.
We use the Flag algebraic
 data type to represent the options that our program can accept:
-- file: ch28/Check.hs
options :: [OptDescr Flag]
options = [Option ['h'] ["help"] (NoArg Help)
 "Show this help message",
 Option ['n'] [] (ReqArg (\s -> N (read s)) "N")
 "Number of concurrent connections (default 16)"]
Our options list
 describes each option that we accept. Each description must be able to
 create a Flag value. Take a look at our uses of
 NoArg and ReqArg in the preceding code.
 These are constructors for the GetOpt module’s
 ArgDescr type:
-- file: ch28/GetOpt.hs
data ArgDescr a = NoArg a
 | ReqArg (String -> a) String
 | OptArg (Maybe String -> a) String
The constructors have the following meanings:
	NoArg
	Accepts a parameter that will represent this option. In
 our case, if a user invokes our program with -h
 or --help, we will use the value
 Help.

	ReqArg
	Accepts a function that maps a required argument to a
 value. Its second argument is used when printing help. Here, we
 convert a string into an integer, and pass it to our
 Flag type’s N constructor.

	OptArg
	Similar to the ReqArg constructor, but it
 permits the use of options that can be used without
 arguments.

Pattern Guards

We sneaked one last language extension
 into our definition of parseArgs.
 Pattern guards let us write more concise guard expressions. They are
 enabled via the PatternGuards language extension.

A pattern guard has three components: a
 pattern, a <- symbol, and an expression. The
 expression is evaluated and matched against the pattern. If it
 matches, any variables present in the pattern are bound. We can mix
 pattern guards and normal Bool guard expressions in a
 single guard by separating them with commas:
-- file: ch28/PatternGuard.hs
{-# LANGUAGE PatternGuards #-}

testme x xs | Just y <- lookup x xs, y > 3 = y
 | otherwise = 0
In this example, we return a value from
 the alist xs if its associated key
 x is present, provided the value is greater than 3.
 This definition is equivalent to the following:
-- file: ch28/PatternGuard.hs
testme_noguards x xs = case lookup x xs of
 Just y | y > 3 -> y
 _ -> 0
Pattern guards let us
 “collapse” a collection of guards and case expressions into a single guard,
 allowing us to write more succinct and descriptive guards.

Practical Aspects of STM

We have so far been quiet about the
 specific benefits that STM gives us.
 Most obvious is how well it composes—to add code to
 a transaction, we just use our usual monadic building blocks, (>>=) and (>>).
The notion of composability is critical to building
 modular software. If we take two pieces of code that work correctly
 individually, the composition of the two should also be correct. While
 normal threaded programming makes composability impossible, STM restores it as a key assumption that we
 can rely upon.
The STM monad prevents us from
 accidentally performing nontransactional I/O actions. We don’t need to
 worry about lock ordering, since our code contains no locks. We can
 forget about lost wakeups, since we don’t have condition variables. If
 an exception is thrown, we can either catch it using catchSTM or be bounced out of our
 transaction, leaving our state untouched. Finally, the retry and orElse functions give us some beautiful ways
 to structure our code.
Code that uses STM will not deadlock, but it is possible for
 threads to starve each other to some degree. A long-running transaction
 can cause another transaction to retry often enough that it will make
 comparatively little progress. To address a problem such as this, make
 your transactions as short as you can, while keeping your data
 consistent.
Getting Comfortable with Giving Up Control

Whether with concurrency or memory
 management, there will be times when we must retain control: some
 software must make solid guarantees about latency or memory footprint,
 so we will be forced to spend the extra time and effort managing and
 debugging explicit code. For many interesting, practical uses of
 software, garbage collection and STM will do more than well enough.
STM
 is not a complete panacea. It is useful to compare it with the use of
 garbage collection for memory management. When we abandon explicit
 memory management in favor of garbage collection, we give up control
 in return for safer code. Likewise, with STM, we abandon the low-level details in
 exchange for code that we can better hope to understand.

Using Invariants

STM
 cannot eliminate certain classes of bugs. For instance, if we
 withdraw money from an account in one atomically block, return to the
 IO monad, and then deposit it to another account in a
 different atomically block, our
 code will have an inconsistency. There will be a window of time in
 which the money is present in neither account.
-- file: ch28/GameInventory.hs
bogusTransfer qty fromBal toBal = do
 fromQty <- atomically $ readTVar fromBal
 -- window of inconsistency
 toQty <- atomically $ readTVar toBal
 atomically $ writeTVar fromBal (fromQty - qty)
 -- window of inconsistency
 atomically $ writeTVar toBal (toQty + qty)

bogusSale :: Item -> Gold -> Player -> Player -> IO ()
bogusSale item price buyer seller = do
 atomically $ giveItem item (inventory seller) (inventory buyer)
 bogusTransfer price (balance buyer) (balance seller)
In concurrent programs, these kinds of
 problems are notoriously difficult to find and reproduce. For
 instance, the inconsistency that we describe here will usually only
 occur for a brief period of time. Problems such as this often refuse
 to show up during development, instead occurring only in the field
 under heavy load.
The alwaysSucceeds function lets us define an
 invariant, a property of our data that must
 always be true:
ghci> :type alwaysSucceeds
alwaysSucceeds :: STM a -> STM ()

When we create an invariant, it will
 immediately be checked. To fail, the invariant must raise an
 exception. More interestingly, the invariant will subsequently be
 checked automatically at the end
 of every transaction. If it fails at any point,
 the transaction will be aborted, and the exception raised by the
 invariant will be propagated. This means that we will get immediate
 feedback as soon as one of our invariants is violated.
For instance, here are a few functions
 to populate our game world from the beginning of this chapter with
 players:
-- file: ch28/GameInventory.hs
newPlayer :: Gold -> HitPoint -> [Item] -> STM Player
newPlayer balance health inventory =
 Player `liftM` newTVar balance
 `ap` newTVar health
 `ap` newTVar inventory

populateWorld :: STM [Player]
populateWorld = sequence [newPlayer 20 20 [Wand, Banjo],
 newPlayer 10 12 [Scroll]]
This function returns an invariant that
 we can use to ensure that the world’s money balance is always
 consistent—the balance at any point in time should be the same as at
 the creation of the world:
-- file: ch28/GameInventory.hs
consistentBalance :: [Player] -> STM (STM ())
consistentBalance players = do
 initialTotal <- totalBalance
 return $ do
 curTotal <- totalBalance
 when (curTotal /= initialTotal) $
 error "inconsistent global balance"
 where totalBalance = foldM addBalance 0 players
 addBalance a b = (a+) `liftM` readTVar (balance b)
Let’s write a small function that
 exercises this:
-- file: ch28/GameInventory.hs
tryBogusSale = do
 players@(alice:bob:_) <- atomically populateWorld
 atomically $ alwaysSucceeds =<< consistentBalance players
 bogusSale Wand 5 alice bob
If we run it in ghci, it should detect the inconsistency
 caused by our incorrect use of atomically in the bogusTransfer function we wrote:
ghci> tryBogusSale
*** Exception: inconsistent global balance

[63] An idempotent action gives the same
 result every time it is invoked, no matter how many times this
 occurs.

Appendix A. Installing GHC and Haskell Libraries

The instructions in this appendix are based on our experience installing
 GHC and other software in late
 2008. Installation instructions inevitably become dated quickly; please
 bear this in mind as you read.
Installing GHC

Because GHC
 runs on a large number of platforms, we focus on a handful of the most
 popular.
Windows

The prebuilt binary packages of GHC should work on Windows Vista and XP (even Windows 2000). We have
 installed GHC 6.8.3 under
 Windows XP Service Pack 2; the following paragraphs detail the steps
 we followed.
How much room does GHC need?
On Windows, GHC requires about 400 MB of disk
 space. The exact amount will vary from release to release.

Our first step is to visit the
 GHC at http://www.haskell.org/ghcdownload.html
 (see Figure A-1) and follow the link to the
 current stable release. Scroll down to the section entitled
 “Binary packages,” and then again to the subsection for
 Windows. Download the installer; in our case, it’s named ghc-6.8.3-i386-windows.exe.
[image: Screenshot of Firefox, displaying the GHC download page]

Figure A-1. Screenshot of Firefox, displaying the GHC download
 page

After the installer has downloaded, double-click it to
 start the installation process. This involves stepping through a
 normal Windows installer wizard (see Figure A-2).
[image: Screenshot of the GHC installation wizard on Windows]

Figure A-2. Screenshot of the GHC installation wizard on Windows

Once the installer has finished, the Start Menu’s
 “All Programs” submenu (see Figure A-3) should have a GHC folder, inside which you’ll find an
 icon that you can use to run ghci.
[image: Screenshot of the Windows XP Start menu, showing the GHC submenu]

Figure A-3. Screenshot of the Windows XP Start menu, showing the GHC
 submenu

Clicking the ghci
 icon brings up a normal Windows console window that is running
 ghci (see Figure A-4).
[image: Screenshot of the ghci interpreter running on Windows]

Figure A-4. Screenshot of the ghci interpreter running on Windows

Updating your search path
The GHC
 installer automatically modifies your user account’s
 PATH environment variable so that commands
 such as ghc will be present in
 the command shell’s search path (i.e., you can type a GHC command name without typing its
 complete path). This change will take effect the next time you open
 a command shell.

Mac OS X

We have installed GHC 6.8.3 under Mac OS X 10.5 (Leopard),
 on an Intel-based MacBook. Before installing GHC, the Xcode development system must
 already be installed.
The Xcode software installer may have
 come bundled on a DVD with your Mac. If not (or you can’t find it),
 you should be able to download it from Apple. Once you’ve finished
 installing Xcode, continue on to download GHC itself.
Visit the GHC download page
 and follow the link to the current stable release. Scroll down to the
 section entitled “Binary packages,” and then again to the
 subsection for Mac OS X. There is a single installer package
 available. Download and run it.
Terminal at your fingertips yet?
Since most of your interactions with
 GHC will be through a
 Terminal window, this
 might be a good time to add the Terminal application to your dock (if
 you haven’t already done so). You can find it in the system’s
 /Applications/Utilities
 folder.

The installation process should take a
 minute or two. Finally, you should be able to successfully run the
 ghci command from your shell prompt
 (see Figure A-5).
[image: Screenshot of the ghci interpreter running in a Terminal window on Mac OS X]

Figure A-5. Screenshot of the ghci interpreter running in a Terminal
 window on Mac OS X

Alternatives

Both the MacPorts and Fink projects
 provide builds of GHC.

Ubuntu and Debian Linux

Under both Ubuntu and Debian, you can install a minimal working version of
 GHC by running sudo aptitude install ghc6 from a shell
 prompt.
These distros maintain a small core
 GHC package, which is
 insufficient for much practical development. However, they make a
 number of additional prebuilt packages available; run apt-cache search libghc6 to find a complete
 list of these prebuilt packages. We recommend that you install at
 least the mtl package, using sudo aptitude install
 libghc6-mtl-dev.
Since you will probably want to profile
 the performance of your Haskell programs at some point, you should
 also install the ghc6-prof package.

Fedora Linux

GHC is available as a standard Fedora binary package. From a shell, all
 you need to do is run the following command:
 sudo yum -y install ghc ghc-doc ghc683-prof
The base package,
 containing the ghc and ghci commands and libraries, is ghc. The ghc-doc package
 contains the GHC user
 guide, and command and library documentation. The
 ghc683-prof package contains profiling-capable versions
 of the standard libraries (its
 version number may have changed by the time you read this).
Once installation has finished, you
 should be able to run ghci from the
 shell immediately. You won’t need to change your shell’s search path
 or set any environment variables.

FreeBSD

Under FreeBSD, run the following commands:
$ cd /usr/ports/lang/ghc
$ sudo make install clean
This will download and build
 GHC from source. You should
 expect the process to take several hours.

Installing Haskell Software

Almost all Haskell libraries are distributed using a
 standard packaging system named Cabal. You can find hundreds of Haskell
 open source libraries and programs, all of which use Cabal, at http://hackage.haskell.org/, the home of the Hackage code
 repository.
Automated Download and Installation with cabal

A command named cabal automates the job of downloading, building, and installing a
 Haskell package. It also figures out what dependencies a particular
 library needs and either makes sure that they are installed already or
 downloads and builds them first. You can install any Haskell package
 with a single cabal install
 mypackage command.
The cabal command
 is not bundled with GHC, so
 at least as of GHC version 6.8.3, you will have to download and build
 it yourself.
Installing cabal

To build the cabal command, download the sources for
 the following four packages from http://hackage.haskell.org/:
	Cabal

	HTTP

	zlib

	cabal-install

Follow the instructions in Building Packages by Hand to manually build each of these four
 packages, making sure that you leave cabal-install
 until last.
After you install the
 cabal-install package, the $HOME/.cabal/bin directory will contain
 the cabal command. You can either
 move it somewhere more convenient or add that directory to your
 shell’s search path.

Updating cabal’s package list

After installing cabal, and periodically thereafter, you
 should download a fresh list of packages from Hackage. You can do so
 as follows:
$ cabal update

Installing a library or program

To install some executable or
 library, just run the following command:
$ cabal install -p mypackage

Building Packages by Hand

If you download a tarball from Hackage,
 it will arrive in source form. Unpack the tarball and go into the
 newly created directory in a command shell. The process to build and
 install it is simple, consisting of three commands:
	Configure for system-wide
 installation (i.e., available to all users):
$ runghc Setup configure -p
Alternatively, configure to install
 only for yourself:
$ runghc Setup configure --user --prefix=$HOME -p

	Build (this will build each source
 file twice, with and without profiling support):
$ runghc Setup build

	Install if you chose system-wide
 configuration:
$ sudo runghc Setup install
Alternatively, if you chose
 configuration for yourself only:
$ runghc Setup install

If you build by hand, you will
 frequently find that the configuration step fails because some other
 library must be installed first. You may find yourself needing to
 download and build several packages before you can make progress on
 the one you really want. This is why we recommend using the cabal command instead.

Appendix B. Characters, Strings, and Escaping Rules

This appendix covers the escaping rules used
 to represent non-ASCII characters in Haskell character and string
 literals. Haskell’s escaping rules follow the pattern established by the C
 programming language, but they expand considerably upon them.
Writing Character and String Literals

A single character is surrounded by ASCII single quotes, ', and
 has type Char:
ghci> 'c'
'c'
ghci> :type 'c'
'c' :: Char
A string literal is surrounded by
 double quotes, ", and
 has type [Char] (more often written as
 String):
ghci> "a string literal"
"a string literal"
ghci> :type "a string literal"
"a string literal" :: [Char]
The double-quoted form of a string literal
 is just syntactic sugar for list notation:
ghci> ['a', ' ', 's', 't', 'r', 'i', 'n', 'g'] == "a string"
True

International Language Support

Haskell uses Unicode internally for its Char data
 type. Since String is just an alias for [Char]
 (which is a list of Chars), Unicode is also used to
 represent strings.
Different Haskell implementations place
 limitations on the character sets they can accept in source files.
 GHC allows source files to be
 written in the UTF-8 encoding of Unicode, so in a source file, you can
 use UTF-8 literals inside a character or string constant. Do be aware
 that if you use UTF-8, other Haskell implementations may not be able to
 parse your source files.
When you run the ghci interpreter interactively, it may not be
 able to deal with international characters in character or string
 literals that you enter at the keyboard.
Note
Although Haskell represents characters
 and strings internally using Unicode, there is no standardized way to
 do I/O on files that contain Unicode data. Haskell’s standard text I/O
 functions treat text as a sequence of 8-bit characters, and do not
 perform any character set conversion.
There are third-party libraries that
 will convert between the many different encodings used in files and
 Haskell’s internal Unicode representation.

Escaping Text

Some characters must be escaped to be represented inside a
 character or string literal. For example, a double-quote character
 inside a string literal must be escaped, or else it will be treated as
 the end of the string.
Single-Character Escape Codes

Haskell uses essentially the same single-character escapes as the C
 language and many other popular languages. The escape codes are shown
 in Table B-1.
Table B-1. Single-character escape codes
	Escape	Unicode	Character
	\0	U+0000	Null character
	\a	U+0007	Alert
	\b	U+0008	Backspace
	\f	U+000C	Form feed
	\n	U+000A	Newline (linefeed)
	\r	U+000D	Carriage return
	\t	U+0009	Horizontal tab
	\v	U+000B	Vertical tab
	\"	U+0022	Double-quote
	\&	n/a	Empty string
	\'	U+0027	Single quote
	\\	U+005C	Backslash

Multiline String Literals

To write a string literal that spans multiple lines, terminate one line
 with a backslash and resume the string with another backslash. An
 arbitrary amount of whitespace (of any kind) can fill the gap between
 the two backslashes:
"this is a \
	\long string,\
 \ spanning multiple lines"

ASCII Control Codes

Haskell recognizes the escaped use of the standard two- and three-letter
 abbreviations of ASCII control codes, shown in Table B-2.
Table B-2. ASCII control code abbreviations
	Escape	Unicode	Meaning
	\NUL	U+0000	Null character
	\SOH	U+0001	Start of heading
	\STX	U+0002	Start of text
	\ETX	U+0003	End of text
	\EOT	U+0004	End of transmission
	\ENQ	U+0005	Enquiry
	\ACK	U+0006	Acknowledge
	\BEL	U+0007	Bell
	\BS	U+0008	Backspace
	\HT	U+0009	Horizontal tab
	\LF	U+000A	Newline (linefeed)
	\VT	U+000B	Vertical tab
	\FF	U+000C	Form feed
	\CR	U+000D	Carriage return
	\SO	U+000E	Shift out
	\SI	U+000F	Shift in
	\DLE	U+0010	Data link escape
	\DC1	U+0011	Device control 1
	\DC2	U+0012	Device control 2
	\DC3	U+0013	Device control 3
	\DC4	U+0014	Device control 4
	\NAK	U+0015	Negative acknowledge
	\SYN	U+0016	Synchronous idle
	\ETB	U+0017	End of transmission block
	\CAN	U+0018	Cancel
	\EM	U+0019	End of medium
	\SUB	U+001A	Substitute
	\ESC	U+001B	Escape
	\FS	U+001C	File separator
	\GS	U+001D	Group separator
	\RS	U+001E	Record separator
	\US	U+001F	Unit separator
	\SP	U+0020	Space
	\DEL	U+007F	Delete

Control-with-Character Escapes

Haskell recognizes an alternate notation for control characters, which
 represents the archaic effect of pressing the Ctrl key on a keyboard
 and chording it with another key. These sequences begin with the
 characters \^, followed by a symbol
 or uppercase letter and are listed in Table B-3.
Table B-3. Control-with-character escapes
	Escape	Unicode	Meaning
	\^@	U+0000	Null character
	\^A through \^Z	U+0001 through U+001A	Control codes
	\^[U+001B	Escape
	\^\	U+001C	File separator
	\^]	U+001D	Group separator
	\^^	U+001E	Record separator
	\^_	U+001F	Unit separator

Numeric Escapes

Haskell allows Unicode characters to be written using numeric escapes. A
 decimal character begins with a digit, e.g., \1234. A hexadecimal character begins with
 an x, e.g. \xbeef. An octal character begins with an
 o, e.g., \o1234.
The maximum value of a numeric literal
 is \1114111, which may also be
 written \x10ffff or \o4177777.

The Zero-Width Escape Sequence

String literals can contain a zero-width escape sequence, written \&. This is not a real character, as it
 represents the empty string:
ghci> "\&"
""
ghci> "foo\&bar"
"foobar"
The purpose of this escape sequence is
 to make it possible to write a numeric escape followed immediately by
 a regular ASCII digit:
ghci> "\130\&11"
"\130\&11"

Because the empty escape sequence
 represents an empty string, it is not legal in a character
 literal.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	!= (C comparison operator), Boolean Logic, Operators, and Value Comparisons
	" (double quotes), writing strings, Strings and Characters, Writing Character and String Literals
	$ operator, Serialization with read and show, Classic I/O in Haskell
	&& (logical and), Boolean Logic, Operators, and Value Comparisons
	' (single quotes), Writing Character and String Literals
	() (parentheses), Simple Arithmetic, Operator Precedence and Associativity, Useful Composite Data Types: Lists and Tuples, Folding from the Right
		arithmetic expressions, writing, Simple Arithmetic
	foldl and foldr function, Folding from the Right
	operator precedence and, Operator Precedence and Associativity
	tuples, writing, Useful Composite Data Types: Lists and Tuples

	(!!) operator, Text I/O
	(!) operator, Introducing Arrays, Getting started with the API
	($) operator, Infix Use of fmap
	(%) operator, First Steps with Types, Numeric Types
	(&&) operator, More Simple List Manipulations
	(*) multiplication function, Numeric Types
	(**) (exponentiation) operator, Undefined Values, and Introducing Variables, Numeric Types
	(*>) operator, Applicative Parsing by Example
	(+) (accumulator) option, The Left Fold, Numeric Types
	(++) append function, More Simple List Manipulations, Folding from the Right, Pretty Printing a String, Taking Advantage of Functions as Data, The Name mplus Does Not Imply Addition
		fold functions and, Folding from the Right
	mplus function, The Name mplus Does Not Imply Addition

	(++) append option, Operators on Lists, Classic I/O in Haskell, An important Aside: Writing Lazy Functions
		lazy functions, writing, An important Aside: Writing Lazy Functions

	(-) subtraction function, Numeric Types
	(-) unary operator, An Arithmetic Quirk: Writing Negative Numbers
	(.&.) (bitwise and), Computing One Answer over a Collection, Numeric Types
	(.) operator, Code Reuse Through Composition, Taking Advantage of Functions as Data
	(.|.) bitwise or, Computing One Answer over a Collection, Numeric Types
	(/) fractional division function, Numeric Types
	(/=) operator, Boolean Logic, Operators, and Value Comparisons, Equality, Ordering, and Comparisons
	(:) list constructor, Pattern Matching, Recursive Types, Warming Up: Portably Splitting Lines of Text
		pattern matching, using, Pattern Matching
	recursive types and, Recursive Types
	splitting lines of text, Warming Up: Portably Splitting Lines of Text

	(:) operator, Translating a glob Pattern into a Regular Expression
	(::) operator, using type signatures and, Some Common Basic Types
	(<$>) operator, Infix Use of fmap, Applicative Parsing by Example
	(<*) operator, Parsing JSON Data
	(<-) operator, A Simple Command-Line Framework, Classic I/O in Haskell, Desugaring of do Blocks
	(<>) operator, Pretty Printing a String, Fleshing Out the Pretty-Printing Library
	(<?>) operator, Error Handling
	(<|) operator, General-Purpose Sequences
	(<|>) operator, Choices and Errors, Lookahead
		lookaheads and, Lookahead

	(=<<) function, Putting Our Code to Work
	(=<<) operator, Why Go Sugar-Free?
	(==) operator, Tuples, Algebraic Data Types, and When to Use Each, The Need for Typeclasses, Equality, Ordering, and Comparisons, Avoiding Boilerplate with Lifting
	(==>) operator, A More Interesting Parser, Testing for Properties, Testing with QuickCheck
	(=~) operator, Regular Expressions in Haskell
	(>) operator, Avoiding Boilerplate with Lifting
	(><) operator, General-Purpose Sequences
	(>=) operator, Equality, Ordering, and Comparisons
	(>>) operator, Sequencing, The Monad Typeclass, The Monad Typeclass, Using the Logger Monad, Applicative Parsing by Example
		return calls and, The Monad Typeclass

	(>>=) operator, Sequencing, The Monad Typeclass, Controlled Escape, Mixing Pure and Monadic Code, The List Monad, Why Go Sugar-Free?, Almost a State Monad, Reading and Modifying the State, Another Way of Looking at Monads, The Monad Laws and Good Coding Style, The Monad Laws and Good Coding Style, Adventures in Hiding the Plumbing
		coding style and, The Monad Laws and Good Coding Style, The Monad Laws and Good Coding Style
	list Monads and, The List Monad
	Monad typeclasses and, The Monad Typeclass
	return call and, Mixing Pure and Monadic Code, Reading and Modifying the State, Adventures in Hiding the Plumbing
		reading/modifying state, Reading and Modifying the State

	state monads and, Almost a State Monad

	(>>?) operator, Getting Rid of Boilerplate Code, Maybe Chaining
	(\\) operator, Testing for Properties
	(^) operator, Numeric Types
	(^^) operator, Numeric Types
	(|>) operator, General-Purpose Sequences
	(||) operator, Conditional Evaluation, A More Involved Example, Ending the Recursion, More Simple List Manipulations
		recursion and, Ending the Recursion

	* (asterisk), as a wild card, Filename Matching
	, (commas), Lists, Useful Composite Data Types: Lists and Tuples, First Steps with Parsec: Simple CSV Parsing
		CSV files and, First Steps with Parsec: Simple CSV Parsing
	tuples, writing, Useful Composite Data Types: Lists and Tuples

	- (dash), as a range character, Filename Matching
	-> syntax, The case Expression, Anonymous (lambda) Functions, Partial Function Application and Currying
		case expressions, The case Expression
	lambda (\) functions and, Anonymous (lambda) Functions

	. (point) character, Pretty Printing a String
	.. (enumeration) characters, Lists
	-02 GHC option, Compilation Options and Interfacing to C
	:? (help) command, Getting Started with ghci, the Interpreter
	<*> operator, Applicative Parsing by Example
	? (question mark), matching characters with, Filename Matching
	@ (at-sign), matching patterns, As-patterns
	[] (square brackets), Lists, Useful Composite Data Types: Lists and Tuples, Exhaustive Patterns and Wild Cards, Recursive Types, Filename Matching
		character classes, Filename Matching
	exhaustive patterns, as a constructor, Exhaustive Patterns and Wild Cards
	lists, using, Lists
	recursive types and, Recursive Types
	type variables and, Useful Composite Data Types: Lists and Tuples

	\ (backslash character), using lambda functions, Anonymous (lambda) Functions
	^ (carat) exponentiation operator, Undefined Values, and Introducing Variables
	^ (caret) exponentiation operator, Simple Arithmetic
	_ (underscore character), matching wild cards, The Wild Card Pattern
	` (backtick) characters, using infix functions
 and, Infix Functions
	| (pipe), separating value constructors, Algebraic Data Types
	|| (logical or), Boolean Logic, Operators, and Value Comparisons

A
	abs function, Numeric Types
	abstract data types (ADT), Algebraic Data Types
	abstraction, Why Care About Types?
	accum function, Modifying Array Elements
	accumulator (+) option, The Left Fold, Numeric Types
	“acquire-use-release”
 cycle, The Acquire-Use-Release Cycle
	actions, A Simple Command-Line Framework, Actions, And Now, a Jargon Moment
		monadic values, And Now, a Jargon Moment

	addition (+) option, Numeric Types
		(see also accumulator function)

	addToClockTime function, TimeDiff for ClockTime
	Adler-32 checksum, Computing One Answer over a Collection
	ADT (abstract data types), Algebraic Data Types
	algebraic data types, Algebraic Data Types–Pattern Matching, Tuples, Algebraic Data Types, and When to Use Each
		tuples and, Tuples, Algebraic Data Types, and When to Use Each

	alist (association lists), Pretty Printing a String
	alloca C function, Foreign Language Bindings: The Basics
	alternatives (value constructors), Algebraic Data Types
	anchored regular expressions, Translating a glob Pattern into a Regular Expression
	and function, More Simple List Manipulations
	anonymous (lambda) functions, Anonymous (lambda) Functions, Revisiting Anonymous and Named Functions
	anonymous types, The structure
	API design, handling errors through, Handling Errors Through API Design
	append (++) option, More Simple List Manipulations, Folding from the Right, Pretty Printing a String, An important Aside: Writing Lazy Functions, Taking Advantage of Functions as Data, The Name mplus Does Not Imply Addition
		fold functions and, Folding from the Right
	lazy functions, writing, An important Aside: Writing Lazy Functions
	mplus function, The Name mplus Does Not Imply Addition

	application/x-www-form-urlencoded encoding, Golfing Practice: Association Lists, Parsing a URL-Encoded Query String
	applicative functor, Applicative Functors for Parsing
	approxRational function, Numeric Types
	arbitrary function, Generating Test Data
	Arbitrary typeclass, QuickCheck: Type-Based Testing, Generating Test Data, Arbitrary I/O Revisited
	arithmetic, Simple Arithmetic
	arrays, A Whirlwind Tour of JSON, Arrays and Objects, and the Module Header, Introducing Arrays–Encoding an EAN-13 Barcode, Arrays and Laziness, Modifying Array Elements, Life Without Arrays or Hash Tables–Turning Digit Soup into an Answer, Introducing the Bloom Filter, Unboxing, Lifting, and Bottom, Creating a Mutable Bloom Filter
		barcode recognition and, Introducing Arrays–Encoding an EAN-13 Barcode, Arrays and Laziness, Modifying Array Elements
		elements, modifying, Modifying Array Elements
	laziness and, Arrays and Laziness

	Bloom filters and, Introducing the Bloom Filter, Unboxing, Lifting, and Bottom, Creating a Mutable Bloom Filter
		mutable, creating, Creating a Mutable Bloom Filter

	as-patterns, As-patterns
	ASCII control codes, ASCII Control Codes
	association lists, Pretty Printing a String, Association Lists, Golfing Practice: Association Lists
		alists, Pretty Printing a String

	associativity of operators, Operator Precedence and Associativity
	asterisk (*), as a wild card, Filename Matching
	at-sign (@), matching patterns, As-patterns
	atomically blocks, STM and Safety
	-auto-all flag
 (GHC), Time Profiling
	autocommit mode (databases), Transactions
	automatic derivation, Automatic Derivation

B
	backslash characters (\), using lambda functions, Anonymous (lambda) Functions
	backtick (`) characters, using infix functions, Infix Functions
	backtracking, Backtracking and Its Discontents
	barcodes, Barcode Recognition–A Few Comments on Development Style, Turning a Color Image into Something Tractable
		color images and, Turning a Color Image into Something Tractable

	base case, induction, Explicit Recursion, Transforming Every Piece of Input
		inductive/recursive case and, Explicit Recursion

	binary data, parsing, Code Case Study: Parsing a Binary Data Format–Future Directions, Implicit State–Introducing Functors
		implicit state and, Implicit State–Introducing Functors

	binary I/O, Binary I/O and Qualified Imports
	binding function, The Monad Typeclass (see (>>=) operator)
	bison command, Using Parsec
	bitwise and (.&.), Computing One Answer over a Collection, Numeric Types
	bitwise or (.|.), Computing One Answer over a Collection, Numeric Types
	BlockBuffering mode (BufferMode), Buffering Modes
	bloom filters, building, Introducing the Bloom Filter–Profile-Driven Performance Tuning
	boilerplate code, Record Syntax, Avoiding Boilerplate with Lifting, Getting Rid of Boilerplate Code
		getting rid of, Getting Rid of Boilerplate Code
	lifting, avoiding with, Avoiding Boilerplate with Lifting

	Bool type, Some Common Basic Types
	Boolean logic, Boolean Logic, Operators, and Value Comparisons
	Bounded typeclass, Using CalendarTime
	bounded variables, Just What Is a Variable, Anyway?
	bounds function, Folding over Arrays, Parsing a Color Image
	bracket function, The Acquire-Use-Release Cycle
	break function, Warming Up: Portably Splitting Lines of Text, Working with Sublists
	buffering, Buffering
	BufferMode type, Buffering Modes
	Build-Depends fields, Writing a Package Description
	ByetString module, Marshaling ByteStrings
		marshaling, Marshaling ByteStrings

	bytestring library, Efficient File Processing, Text I/O
		text I/O and, Text I/O

	ByteString module, Efficient File Processing
	ByteString type, Parsing a Raw PGM File
		PGM files and, Parsing a Raw PGM File

	bytestring-in-base Cabal flag, Dealing with Different Build Setups

C
	-c option (ghc), Compiling Haskell Source
	C PCRE API, Adding Type Safety to PCRE
	C programming language, Simple Arithmetic, Boolean Logic, Operators, and Value Comparisons, The structure, Transforming Every Piece of Input, Interfacing with C: The FFI–The Real Deal: Compiling and Matching Regular
 Expressions, Simple Tasks: Using the C Preprocessor, Binding Haskell to C with hsc2hs, Typed Pointers, A High-Level Interface: Marshaling Data, Allocating Local C Data: The Storable Class, Compilation Options and Interfacing to C
		algebraic data types, analogues to, The structure
	allocating data, Allocating Local C Data: The Storable Class
	comparison operators and, Boolean Logic, Operators, and Value Comparisons
	hsc2hs, Binding Haskell to C with hsc2hs
	loops, Transforming Every Piece of Input
	marshaling data, A High-Level Interface: Marshaling Data
	preprocessor, Simple Tasks: Using the C Preprocessor
	typed pointers, Typed Pointers

	Cabal, Creating a Package–Practical Pointers and Further Reading, Using Cabal, Dealing with Different Build Setups
		GUI programming and, Using Cabal

	cabal command, installing Haskell software, Automated Download and Installation with cabal
	CAFs (constant applicative forms), Time Profiling
	CalendarTime type, ClockTime and CalendarTime, Using CalendarTime
		using, Using CalendarTime

	callback functions, Event-Driven Programming
	“camel cased” names, Translating a glob Pattern into a Regular Expression, Useful Coding Guidelines
	carat (^) exponentiation operator, Simple Arithmetic, Undefined Values, and Introducing Variables
	carriage return (\r) character, Warming Up: Portably Splitting Lines of Text, Choices and Errors
		CSV files and, Choices and Errors

	case expression, The case Expression
	cases (value constructors), Algebraic Data Types
	catch function, I/O Exceptions
	catchError function, A Tiny Parsing Framework
	category theory, Monads and Functors
	ccall keyword, Foreign Language Bindings: The Basics
	:cd command, Haskell Source Files, and Writing Simple Functions
	Chan type, MVar and Chan Are Nonstrict
	Char value, Some Common Basic Types
	character classes, Filename Matching
	characters, Strings and Characters, Writing Character and String Literals
		writing, Writing Character and String Literals

	cheap modifications, A Forest of Solutions
	Check digits of barcodes, A Little Bit About Barcodes
	child sockets, Handling Multiple TCP Streams
	chunks, Efficient File Processing
	CInt values, Adding Type Safety to PCRE
	cl compiler, Compiling Haskell Source
	classes, Defining a New Data Type
	ClockTime type, ClockTime and CalendarTime, Using ClockTime, TimeDiff for ClockTime
		TimeDiff type for, TimeDiff for ClockTime
	using, Using ClockTime

	closed world assumptions, Living in an Open World
	code, Record Syntax, Code Reuse Through Composition–Tips for Writing Readable Code, Tips for Writing Readable Code, Compiling Haskell Source, Avoiding Boilerplate with Lifting, Useful Coding Guidelines–Common Layout Styles, Interference with Pure Code, Writing Tighter Code
		boilerplate, Record Syntax, Avoiding Boilerplate with Lifting
	compiling source, Compiling Haskell Source
	guidelines, using, Useful Coding Guidelines–Common Layout Styles
	pure, Interference with Pure Code
	readable, writing, Tips for Writing Readable Code
	reuse, Code Reuse Through Composition–Tips for Writing Readable Code
	threads and, Writing Tighter Code

	coercion, Strong Types, Polymorphism in Haskell
		polymorphism, Polymorphism in Haskell
	using strong types and, Strong Types

	color images, Turning a Color Image into Something Tractable–What Have We Done to Our Image?
	combinator functions, Gluing Predicates Together
	combining functions, Getting started with the API
	command-line, Command-Line Editing in ghci, A Simple Command-Line Framework, Reading Command-Line Arguments
		arguments, reading, Reading Command-Line Arguments
	editing, Command-Line Editing in ghci

	commas (,), Lists, Useful Composite Data Types: Lists and Tuples, First Steps with Parsec: Simple CSV Parsing
		CSV files and, First Steps with Parsec: Simple CSV Parsing
	tuples, writing, Useful Composite Data Types: Lists and Tuples

	compact function, Compact Rendering
	comparison operators, Boolean Logic, Operators, and Value Comparisons, Equality, Ordering, and Comparisons
	compilers, Your Haskell Environment, Compiling Haskell Source
		Glasgow Haskell, Your Haskell Environment

	components (types), Defining a New Data Type
	composable functors, Thinking More About Functors
	composite data types, Useful Composite Data Types: Lists and Tuples
	concat function, More Simple List Manipulations, Left Folds, Laziness, and Space Leaks, The List Monad
	concurrent programs, Concurrent and Multicore Programming–Conclusions, Hiding Latency, The Main Thread and Waiting for Other Threads–Communicating over Channels, Shared-State Concurrency Is Still Hard–Using Multiple Cores with GHC, A Concurrent Web Link Checker
		latency, hiding, Hiding Latency
	main thread waiting for other threads, The Main Thread and Waiting for Other Threads–Communicating over Channels
	shared-state, Shared-State Concurrency Is Still Hard–Using Multiple Cores with GHC

	conditional evaluation, Conditional Evaluation–Understanding Evaluation by Example, Conditional Evaluation with Guards
	constant applicative forms (CAFs), Time Profiling
	constants, binding C to Haskell, Binding to Constants
	constraints, Constraints on Type Definitions Are Bad, Constraints on Our Decoder
		decoding, Constraints on Our Decoder
	type definitions and, Constraints on Type Definitions Are Bad

	constructors, Construction and Deconstruction
	Content-Length field, Parsing Headers
	continuations, Parsing Headers
	control-with-character escapes, Control-with-Character Escapes
	Control.Applicative module, Infix Use of fmap
	Control.Arrow module, Another Round of Golf
	control.Concurrent module, Initializing the GUI, Concurrent Programming with Threads
		concurrent programming with threads, Concurrent Programming with Threads

	Control.Exception module, The Acquire-Use-Release Cycle, First Steps with Exceptions, Selective Handling of Exceptions
	Control.Monad module, Another Way of Looking at Monads, Generalized Lifting, Failing Safely with MonadPlus, Writing Tighter Code
		lifting, Generalized Lifting
	MonadPlus typeclass and, Failing Safely with MonadPlus

	Control.Monad.Error module, Usage of the Maybe monad, Monadic use of Either, Error Handling in Monads
	Control.Monad.Trans module, Designing for Unexpected Uses
	Control.Parallel module, Transforming Our Code into Parallel Code
	Control.Parallel.Strategies module, Separating Algorithm from Evaluation
	Coordinated Universal Time (UTC), ClockTime and CalendarTime
	cores, Using Multiple Cores with GHC, Understanding Core–Advanced Techniques: Fusion
		using multiple, Using Multiple Cores with GHC

	cos function, Numeric Types
	countEntries function, Stacking Multiple Monad Transformers
	CSV files, First Steps with Parsec: Simple CSV Parsing–The sepBy and endBy Combinators, The sepBy and endBy Combinators
		Parsec helper functions and, The sepBy and endBy Combinators

	ctTZName function, Using CalendarTime
	ctWDay function, Using CalendarTime
	ctYDay function, Using CalendarTime
	currying, using partial functions, Partial Function Application and Currying
	custom data types for errors, Custom data types for errors
	c_sin function, Foreign Language Bindings: The Basics

D
	dash (-), as a range character, Filename Matching
	data keyword, Defining a New Data Type, How to Give a Type a New Identity
		newtype keyword and, How to Give a Type a New Identity

	data structures, Defining a New Data Type, The structure, Association Lists–General-Purpose Sequences, Functions Are Data, Too, Taking Advantage of Functions as Data–General-Purpose Sequences
		functions and, Functions Are Data, Too, Taking Advantage of Functions as Data–General-Purpose Sequences
		taking advantage of, Taking Advantage of Functions as Data–General-Purpose Sequences

	data type, defining, Defining a New Data Type–Type Synonyms
		(see also types)

	Data.Array module, Introducing Arrays, Folding over Arrays
		barcode recognition and, Introducing Arrays
	folding over arrays, Folding over Arrays

	Data.Bits module, Pretty Printing a String
	Data.ByteString.Char8 module, Text I/O, The Real Deal: Compiling and Matching Regular
 Expressions
	Data.ByteString.Lazy.Char8 module, Text I/O
	Data.Char module, Transforming Every Piece of Input
	Data.Dynamic module, Dynamic Exceptions
	Data.Foldable module, General-Purpose Sequences, Interference with Pure Code
	Data.Function module, Remembering a Match’s Parity
	Data.List module, As-patterns, Strictness and Tail Recursion
		tails function, As-patterns

	Data.List.lookup function, Association Lists
	Data.Map module, A Brief Introduction to Maps, Maps–Functions Are Data, Too
	Data.Monoid module, Lists, Difference Lists, and Monoids
	Data.Ratio module, Getting Started with ghci, the Interpreter
	Data.Sequence module, General-Purpose Sequences
	Data.Traversable module, Interference with Pure Code
	Data.Typeable module, Dynamic Exceptions
	database engines, Overview of HDBC
	Database.HDBC module, Initializing the GUI
	databases, Using Databases–Error Handling, Connecting to Databases, Simple Queries, Lazy Reading, Database Metadata
		connecting, Connecting to Databases
	lazy reading, Lazy Reading
	metadata, Database Metadata
	queries, Simple Queries

	dates, Dates and Times–Extended Example: Piping
	dates and times, Dates and Times–Extended Example: Piping
	Daylight Saving Time (DST), ClockTime and CalendarTime
	-ddump-asm compiler
 flag, Tuning the Generated Assembly
	-ddump-simpl compiler
 flag, Understanding Core, Profile-Driven Performance Tuning
	deadlocks, Safely Modifying an MVar, Deadlock
	Dean, Jeffrey, Finding the Most Popular URLs
	Debian Linux, installing GHC/Haskell libraries, Ubuntu and Debian Linux
	debugging, Boolean Logic, Operators, and Value Comparisons
	declarations (module), The Anatomy of a Haskell Module
	decoding barcodes, Encoding an EAN-13 Barcode
	deconstructors, Construction and Deconstruction
	delete function, Getting started with the API
	DeriveDataTypeable language, Dynamic Exceptions
	describeTable function, Database Metadata
	DiffArray type, Modifying Array Elements
	diffClockTimes function, TimeDiff for ClockTime
	directories, Directory and File Information
	disconnect function, Connecting to Databases
	discriminated unions, The discriminated union
	div function, Numeric Types
	do keyword, A Simple Command-Line Framework, Sequencing, Desugaring of do Blocks
		Monads and, Desugaring of do Blocks
	sequencing and, Sequencing

	Doc data type, Generating Test Data
	doskey command (ghci), Command-Line Editing in ghci
	double hashing, Turning Two Hashes into Many
	double quotes (“), writing strings, Strings and Characters, Writing Character and String Literals
	Double value, Some Common Basic Types, Numeric Types
	drivers (HDBC), installing, Installing HDBC and Drivers
	drop function, Functions over Lists and Tuples, Conditional Evaluation
	dropWhile function, Working with Sublists
	DST (Daylight Saving Time), ClockTime and CalendarTime
	duck typing, Static Types
	dynamic exceptions, Dynamic Exceptions–Error Handling in Monads

E
	EAN-13 barcodes, A Little Bit About Barcodes
	easyList function, Testing with QuickCheck
	Either type, Motivation: Boilerplate Avoidance, Use of Either–Exceptions, Monadic use of Either
		monadic use of, Monadic use of Either

	elem function, Searching Lists
	elements function, Generating Test Data
	ELF object files, Binary I/O and Qualified Imports
	else keyword, Conditional Evaluation
	embedded domain specific languages, A Domain-Specific Language for Predicates–Controlling Traversal
	EmptyDataDecls language extension, Typed Pointers
	enclose function, Pretty Printing a String
	endBy function, The sepBy and endBy Combinators
	#enum construct, Automating the Binding
	enum keyword (C/C++), The enumeration
	Enum typeclass, Using CalendarTime
	enumeration notation, Lists
	enumeration types, The enumeration
	environment (programming), Your Haskell Environment
	environment variables, Environment Variables
	EOF (end of file), Working with Files and Handles
	eol function, Lookahead
	equality tests, The Need for Typeclasses, Equality, Ordering, and Comparisons
	error function, Handling Errors Through API Design
	errors, Boolean Logic, Operators, and Value Comparisons, Boolean Logic, Operators, and Value Comparisons, Strong Types, Algebraic Data Types, Reporting Errors, Type Inference Is a Double-Edged Sword, More Helpful Errors, Standard Input, Output, and Error, Handling Errors Through API Design, Reporting Parse Errors, Error Handling, Error Handling–Exceptions, Error Handling with Data Types–Exceptions, Custom data types for errors, Error Handling in Monads, Error Handling
		API design, handling, Handling Errors Through API Design
	compiling source code, Type Inference Is a Double-Edged Sword
	custom data types for, Custom data types for errors
	handling, Error Handling–Exceptions, Error Handling with Data Types–Exceptions, Error Handling in Monads, Error Handling
		data types, Error Handling with Data Types–Exceptions
	databases, Error Handling
	monads, Error Handling in Monads

	I/O and, Standard Input, Output, and Error
	messages, Boolean Logic, Operators, and Value Comparisons, Boolean Logic, Operators, and Value Comparisons, Algebraic Data Types
		Boolean values and, Boolean Logic, Operators, and Value Comparisons
	No instance, Boolean Logic, Operators, and Value Comparisons, Algebraic Data Types

	parsers, handling, Error Handling
	reporting, Reporting Errors
	typeclasses, Strong Types, More Helpful Errors

	ErrorT transformer, Error Handling in Monads
	escape characters, Strings and Characters
	escaping text, Escaping Text
	/etc/passwd file, Extended Example: /etc/passwd–Extended Example: Numeric Types
	evaluation, Understanding Evaluation by Example–Polymorphism in Haskell, Conditional Evaluation with Guards, Space Leaks and Strict Evaluation–Learning to Use seq
		conditional with guards, Conditional Evaluation with Guards
	strict, Space Leaks and Strict Evaluation–Learning to Use seq

	evaluation strategies, Separating Algorithm from Evaluation
	event-driven programming, Event-Driven Programming
	Exception type, First Steps with Exceptions
	exceptions, Error Handling, Exceptions–Error Handling in Monads, Selective Handling of Exceptions, I/O Exceptions, Throwing Exceptions, Dynamic Exceptions–Error Handling in Monads
		dynamic, Dynamic Exceptions–Error Handling in Monads
	I/O (input/output), I/O Exceptions
	selective handling of, Selective Handling of Exceptions
	throwing, Throwing Exceptions

	--exclude flag (hpc), Measuring Test Coverage with HPC
	executables, creating, Generating a Haskell Program and Importing Modules
	executeFile function, Using Pipes for Redirection
	exhaustive patterns, Exhaustive Patterns and Wild Cards
	explicit recursion, Explicit Recursion
	exponentiation (**) operator, Undefined Values, and Introducing Variables, Numeric Types
	exports, The Anatomy of a Haskell Module
	Exposed-Modules field, Writing a Package Description
	expressions, Passing an Expression to a Function, Introducing Local Variables
		functions, passing to, Passing an Expression to a Function
	let blocks and, Introducing Local Variables

	external programs, running, Running External Programs
	extract methods, The Monad Laws and Good Coding Style

F
	fail function, The Monad Typeclass
	False Boolean value, Boolean Logic, Operators, and Value Comparisons
	FDs (file descriptors), Using Pipes for Redirection
	Fedora Linux, installing GHC/Haskell libraries, Fedora Linux
	fetchAllRowsAL’ function, Lazy Reading
	fetchAllRows’ function, Reading with Statements
	FFI (Haskell Foreign Function Interface), Interfacing with C: The FFI–The Real Deal: Compiling and Matching Regular
 Expressions
	FFI binding, Compilation Options and Interfacing to C
	fFlush function, Flushing The Buffer
	file descriptors (FDs), Using Pipes for Redirection
	file processing, Efficient File Processing–Putting Our Code to Work
	filename matching, Filename Matching
	files, Working with Files and Handles–Extended Example: Functional I/O and Temporary Files, Deleting and Renaming Files, Temporary Files, Efficient File Processing, Filename Matching, Sizing a File Safely–A Domain-Specific Language for Predicates, Directory and File Information, File Modification Times
		deleting/renaming, Deleting and Renaming Files
	filename matching, Filename Matching
	modification times, File Modification Times
	processing, Efficient File Processing (see file processing)
	sizing safely, Sizing a File Safely–A Domain-Specific Language for Predicates
	System.Directory module, using, Directory and File Information
	temporary, Temporary Files

	filesystems, I/O Case Study: A Library for Searching the Filesystem–Common Layout Styles
		searching, I/O Case Study: A Library for Searching the Filesystem–Common Layout Styles

	filter function, Searching Lists, Selecting Pieces of Input, Filters with interact
		interact, Filters with interact

	find command, I/O Case Study: A Library for Searching the Filesystem
	first function, Another Round of Golf
	flex, Using Parsec
	Float type, Numeric Types
	floating-point numbers, Simple Arithmetic, Lists
		enumerating, Lists

	fmap function, Infix Use of fmap, Monads and Functors, Moving Down the Stack
		monads and, Monads and Functors

	fold functions, Computing One Answer over a Collection, The Left Fold, Folding from the Right–Left Folds, Laziness, and Space Leaks
		folding from left, The Left Fold
	folding from right, Folding from the Right–Left Folds, Laziness, and Space Leaks

	foldl function, The Left Fold, Folding from the Right–Left Folds, Laziness, and Space Leaks, Left Folds, Laziness, and Space Leaks, Strictness and Tail Recursion
		foldr function and, Folding from the Right–Left Folds, Laziness, and Space Leaks
	laziness and space leaks, Left Folds, Laziness, and Space Leaks

	foldr function, Computing One Answer over a Collection, Folding from the Right–Left Folds, Laziness, and Space Leaks
	fold’ function, Strictness and Tail Recursion
	force function, Knowing What to Evaluate in Parallel
	foreign import declarations, Foreign Language Bindings: The Basics
	Foreign modules, Foreign Language Bindings: The Basics–Regular Expressions for Haskell: A Binding for PCRE
	Foreign.C.String module, Foreign Language Bindings: The Basics, Passing String Data Between Haskell and C
	Foreign.Marshal.Array module, Foreign Language Bindings: The Basics
	Foreign.Ptr module, Foreign Language Bindings: The Basics
	ForeignPtr type, Memory Management: Let the Garbage Collector Do the
 Work
	forkManaged function, Safe Resource Management: A Good Idea, and Easy Besides
	forkProcess function, Using Pipes for Redirection
	forM function, Why Provide Both mapM and forM?
	-fphc flag, Measuring Test Coverage with HPC
	fractional division (/) option, Numeric Types
	FreeBSD, installing GHC/Haskell libraries, FreeBSD
	fromInteger function, Numeric Types
	fromIntegral function, Numeric Types, A High-Level Wrapper
	fromRational function, Numeric Types
	fst function, Functions over Lists and Tuples, Reasoning About Polymorphic Functions
	-funbox-strict-fields
 option, Understanding Core, Tuning the Generated Assembly
	functional programming, Thinking in Haskell–Learning to Use seq
	functions, Functions over Lists and Tuples, Passing an Expression to a Function, Function Types and Purity, Haskell Source Files, and Writing Simple Functions–Conclusion, Haskell Source Files, and Writing Simple Functions–Understanding Evaluation by Example, Shadowing, Local Functions, Global Variables, Infix Functions, Partial and Total Functions, Special String-Handling Functions, Mapping over a List, Computing One Answer over a Collection, Partial Function Application and Currying, Why Purity Matters, Functions Are Data, Too, Taking Advantage of Functions as Data–General-Purpose Sequences, Almost a State Monad, Monads and Functors–The Monad Laws and Good Coding Style
		data structures and, Functions Are Data, Too, Taking Advantage of Functions as Data–General-Purpose Sequences
		taking advantage of, Taking Advantage of Functions as Data–General-Purpose Sequences

	expressions, passing, Passing an Expression to a Function
	fold, Computing One Answer over a Collection
	high-order, Mapping over a List
	infix, Infix Functions
	lists and tuples, Functions over Lists and Tuples
	local, Local Functions, Global Variables
	monads and, Almost a State Monad, Monads and Functors–The Monad Laws and Good Coding Style
	partial, Partial and Total Functions
	partial applications of, Partial Function Application and Currying
	purity and, Why Purity Matters
	shadowing parameters, Shadowing
	string-handling, Special String-Handling Functions
	types and purity, Function Types and Purity
	writing, Haskell Source Files, and Writing Simple Functions–Understanding Evaluation by Example

	Functor typeclass, Grayscale Conversion
	functors, Thinking More About Functors, Writing a Functor Instance for Parse, Using Functors for Parsing, Applicative Functors for Parsing
		applicative, Applicative Functors for Parsing
	Parse type, writing for, Writing a Functor Instance for Parse
	parsing, Using Functors for Parsing

	fusion, Advanced Techniques: Fusion
	-fvia-C GHC option, Compilation Options and Interfacing to C
	-fvia-C option, Tuning the Generated Assembly
	-fwarn-incomplete-patterns
 option, Exhaustive Patterns and Wild Cards
	-fwarn-name-shadowing
 option, Shadowing

G
	garbage collecting, Sizing a File Safely, Memory Management: Let the Garbage Collector Do the
 Work
		binding C to Haskell, Memory Management: Let the Garbage Collector Do the
 Work
	closing file handles and, Sizing a File Safely

	gcc compiler, Compiling Haskell Source
	Gen environment, Generating Test Data
	GeneralizedNewtypeDeriving extension, Adventures in Hiding the Plumbing, Hiding Our Work
	generator expressions, List Comprehensions
	generics (Java), Parameterized Types
	GET method (HTTP), Parsing a HTTP Request
	getClockTime function, Using ClockTime
	getDirectoryContents function, Directory and File Information
	getModificationTime function, File Modification Times
	getProcessStatus function, Using Pipes for Redirection
	getSt function, Reading and Modifying the State
	getStatus function, Finding the Status of a Thread
	getStdRandom function, Supplying Random Numbers
	getTables function, Database Metadata
	GHC (Glasgow Haskell Compiler), Your Haskell Environment, Installing GHC and Haskell Libraries–Building Packages by Hand
		installing, Installing GHC and Haskell Libraries–Building Packages by Hand

	ghc compiler, Your Haskell Environment, Compiling Haskell Source, Measuring Test Coverage with HPC
		-fhpc flag, Measuring Test Coverage with HPC

	GHC-Options property, Compilation Options and Interfacing to C
	GHC.Conc module, Finding the Number of Available Cores from Haskell, I/O and STM
	ghci interpreter, Your Haskell Environment–Lists, Basic Interaction: Using ghci as a Calculator–Command-Line Editing in ghci, Command-Line Editing in ghci, Strings and Characters, Defining a New Data Type, Compiling Haskell Source, Classic I/O in Haskell, Classic I/O in Haskell, The Many Types of Result, Running External Programs, Directory and File Information
		calculators, using as, Basic Interaction: Using ghci as a Calculator–Command-Line Editing in ghci
	command-line editing, Command-Line Editing in ghci
	compiling source, Compiling Haskell Source
	data types, creating, Defining a New Data Type
	directories and files, Directory and File Information
	external programs, running with, Running External Programs
	I/O, Classic I/O in Haskell
	regular expressions and, The Many Types of Result
	strings and characters, Strings and Characters

	Ghemawat, Jeffrey, Finding the Most Popular URLs
	Glade, Installing gtk2hs, Glade Concepts
		concepts, Glade Concepts

	Glasgow Haskell Compiler (GHC), Your Haskell Environment
	glob patterns, Filename Matching, Translating a glob Pattern into a Regular Expression
		regular expressions, translating from, Translating a glob Pattern into a Regular Expression

	global variables, Local Functions, Global Variables
	Google, Parallel Strategies and MapReduce
	grain sizes, Parallel Strategies and MapReduce
	Graphics.UI.Gtk module, Initializing the GUI
	Graphics.UI.Gtk.Graphics.UI.Gtk.Glade module, Initializing the GUI
	grayscale image format, Grayscale Files, Parsing a Color Image–What Have We Done to Our Image?
	group function, Run Length Encoding
	GTK+ development environment, Installing gtk2hs
	gtk2hs, GUI Programming with gtk2hs–Using Cabal
	guards, Incorrectly Trying to Compare for Equality
	GUI (graphical user interface) programming, GUI Programming with gtk2hs–Using Cabal, Event-Driven Programming, Initializing the GUI–The Add Podcast Window
		event-driven, Event-Driven Programming
	initializing, Initializing the GUI–The Add Podcast Window

H
	“h” functions, Working with Files and Handles
	handle function, Using handle
	handleJust function, Selective Handling of Exceptions
	handles, Working with Files and Handles–Extended Example: Functional I/O and Temporary Files, Closing Handles, Sizing a File Safely
		closing, Closing Handles
	resources, Sizing a File Safely

	“hanging lambdas”, A More Interesting Parser
	hasElfMagic function, Binary I/O and Qualified Imports
	hash tables, Life Without Arrays or Hash Tables–Turning Digit Soup into an Answer, Maps, Hashing Values, Turning Two Hashes into Many
		maps and, Maps
	turning two into many, Turning Two Hashes into Many

	Haskell 98, Making an Instance with a Type Synonym, How Does Show Work for Strings?, The Dreaded Monomorphism Restriction, Foreign Language Bindings: The Basics
		instances, writing, Making an Instance with a Type Synonym
	LANGUAGE pragmas, binding languages, Foreign Language Bindings: The Basics
	monomorphism and, The Dreaded Monomorphism Restriction
	OverlappingInstances/TypeSynonymInstances language
 extensions and, How Does Show Work for Strings?

	Haskell DataBase Connectivity system (HDBC), Overview of HDBC
	Haskell Foreign Function Interface (FFI), Interfacing with C: The FFI–The Real Deal: Compiling and Matching Regular
 Expressions
	Haskell Program Coverage (HPC), Measuring Test Coverage with HPC–Measuring Test Coverage with HPC
	-hc runtime flag, Space Profiling
	hClose function, Closing Handles, The Acquire-Use-Release Cycle
	head function, Useful Composite Data Types: Lists and Tuples, Functions over Lists and Tuples, Basic List Manipulation, Safely and Sanely Working with Crashy Functions
		lists, passing empty, Safely and Sanely Working with Crashy Functions

	head normal form (HNF), Normal Form and Head Normal Form
	headers (HTTP), parsing, Parsing Headers
	help command (ghci), Getting Started with ghci, the Interpreter
	hFileSize function, The Acquire-Use-Release Cycle
	hGetContents function, hGetContents–readFile and writeFile
	high-level wrappers, blending C with Haskell, A High-Level Wrapper
	high-order functions, Mapping over a List
	HNF (head normal form), Normal Form and Head Normal Form
	HPC (Haskell Program Coverage), Measuring Test Coverage with HPC–Measuring Test Coverage with HPC
	hPrint function, Working with Files and Handles
	hPutStrLn function, Working with Files and Handles
	.hs source files, Haskell Source Files, and Writing Simple Functions
	.hsc files, Binding Haskell to C with hsc2hs, Binding to Constants
	hsc2hs command, Binding Haskell to C with hsc2hs
	hSeek function, Seek and Tell
	hTell function, Seek and Tell
	HTTP requests, parsing, Parsing a HTTP Request–Parsing Headers
	Hugs interpreter, Your Haskell Environment
	HUnit library, Testing and Quality Assurance

I
	I/O (input/output), I/O–Environment Variables, Pure Versus I/O, Standard Input, Output, and Error, Lazy I/O–The IO Monad, Buffering, Binary I/O and Qualified Imports, Text I/O, I/O Case Study: A Library for Searching the Filesystem–Common Layout Styles, Predicates: From Poverty to Riches, While Remaining Pure, And Now, a Jargon Moment, Putting a Few Misconceptions to Rest, I/O Exceptions–Throwing Exceptions, Mitigating the risks of lazy I/O, I/O and STM
		binary, Binary I/O and Qualified Imports
	buffering, Buffering
	errors, Standard Input, Output, and Error
	exceptions, I/O Exceptions–Throwing Exceptions
	filesystems, searching, I/O Case Study: A Library for Searching the Filesystem–Common Layout Styles
	lazy, Lazy I/O–The IO Monad, Mitigating the risks of lazy I/O
	monadic values and, And Now, a Jargon Moment, Putting a Few Misconceptions to Rest
	predicates, Predicates: From Poverty to Riches, While Remaining Pure
	pure functions and, Pure Versus I/O
	STM monad and, I/O and STM
	text, Text I/O

	IConnection function, Simple Queries
	IConnection typeclass, Connecting to Databases
	id function, Folding from the Right
	idempotency, QuickCheck: Type-Based Testing
	identities, Thinking More About Functors
	identity parsers, The Identity Parser
	“identity”
 transformation (foldr), Folding from the Right
	if expression, Conditional Evaluation
	ill typed rules, Strong Types
	immutable arrays, Introducing Arrays
	immutable lists, Functions over Lists and Tuples
	immutable states, The Reader Monad
	implementation, Separating Interface from Implementation
	implicit state, Implicit State–Introducing Functors, Implicit State
	import directive, Generating a Haskell Program and Importing Modules, Writing a Module Header, Binary I/O and Qualified Imports
		ByteString modules and, Binary I/O and Qualified Imports

	impure code, Why the Fuss over Purity?
	impure functions, Function Types and Purity, Pure Versus I/O
		I/O (input/output) and, Pure Versus I/O

	in keyword, Introducing Local Variables, Common Layout Styles, Desugaring of do Blocks
	in scope, Introducing Local Variables
	indices of arrays, Working with Row Data
	inductive case, Explicit Recursion
	infix form, using arithmetic operators and, Simple Arithmetic
	infix functions, Infix Functions
	:info command
 (ghci), Operator Precedence and Associativity
	InfoP type, A Domain-Specific Language for Predicates, Controlling Traversal
	init function, Basic List Manipulation
	“injector” functions, Looking for Shared Patterns
	input/output, I/O (see I/O)
	insert function, Getting started with the API
	INSERT queries, Query Parameters
	insertWith function, Getting started with the API
	instances, Making an Instance with a Type Synonym, When Do Overlapping Instances Cause Problems?, Flexible Instances, More Typeclass Instances
		flexible, Flexible Instances
	overlapping, When Do Overlapping Instances Cause Problems?
	type synonyms, making, Making an Instance with a Type Synonym
	typeclasses, More Typeclass Instances

	Int type, Some Common Basic Types, Numeric Types
	Int16 type, Numeric Types
	Int32 type, Numeric Types
	Int64 type, Numeric Types
	Int8 type, Numeric Types
	Integer type, First Steps with Types, Some Common Basic Types, Numeric Types
	interact function, interact–The IO Monad
	interface files, Compiling Haskell Source
	interfaces, making code modular, Separating Interface from Implementation–The Reader Monad, Separating Interface from Implementation
	internal modules, Writing a Package Description
	international language support, International Language Support
	interpreters, Your Haskell Environment, Why the Fuss over Purity?
		ghci, Why the Fuss over Purity?

	invariants, Using Invariants
	invisible data dependencies, Running Our Code and Measuring Performance
	IO monad, The IO Monad–Is Haskell Really Imperative?, , Using the State Monad: Generating Random Values, Supplying Random Numbers, Hiding the IO Monad–Arbitrary I/O Revisited, Be Careful of Side Effects
		blending with C, Be Careful of Side Effects
	random numbers, supplying, Supplying Random Numbers
	random values, generating, Using the State Monad: Generating Random Values

	IO type, Classic I/O in Haskell
	isInfixOf function, Searching Lists
	isPrefixOf function, Searching Lists
	isSuffixOf function, Searching Lists
	it variable in ghci output, First Steps with Types
	Iterator type, Another Way of Looking at Traversal
	Ix type, Introducing Arrays

J
	Java programming language, Recursive Types
	JavaScript Object Notation, Representing JSON Data in Haskell (see JSON)
	Jenkins hash functions, Hashing Values, Turning Two Hashes into Many
	join function, Another Way of Looking at Monads
	JSON (JavaScript Object Notation), A Whirlwind Tour of JSON–Practical Pointers and Further Reading, Representing JSON Data in Haskell, Typeclasses at Work: Making JSON Easier to Use, JSON Typeclasses Without Overlapping Instances–The Dreaded Monomorphism Restriction, Parsing JSON Data
		parsing, Parsing JSON Data
	representing data, Representing JSON Data in Haskell
	typeclasses and, Typeclasses at Work: Making JSON Easier to Use, JSON Typeclasses Without Overlapping Instances–The Dreaded Monomorphism Restriction
		overlapping instances, JSON Typeclasses Without Overlapping Instances–The Dreaded Monomorphism Restriction

K
	-keep-tmp-files
 option, Tuning the Generated Assembly
	key-value pairs, Golfing Practice: Association Lists, Parsing a URL-Encoded Query String

L
	lambda functions, Anonymous (lambda) Functions
	language extensions, Making an Instance with a Type Synonym, Relaxing Some Restrictions on Typeclasses, Relaxing Some Restrictions on Typeclasses, Relaxing Some Restrictions on Typeclasses, The Dreaded Monomorphism Restriction, The Dreaded Monomorphism Restriction, Adventures in Hiding the Plumbing, Multiparameter Typeclasses, Functional Dependencies, Rounding Out Our Module, A Return to Automated Deriving, Foreign Language Bindings: The Basics, Simple Tasks: Using the C Preprocessor, Typed Pointers, Hiding Our Work, Monadic use of Either, Dynamic Exceptions, Bang patterns, Pattern Guards
		BangPatterns, Bang patterns
	CPP, Simple Tasks: Using the C Preprocessor
	DeriveDataTypeable, Dynamic Exceptions
	EmptyDataDecls, Typed Pointers
	FlexibleContexts, Monadic use of Either
	FlexibleInstances, Rounding Out Our Module
	ForeignFunctionInterface, Foreign Language Bindings: The Basics
	FunctionalDependencies, Functional Dependencies
	GeneralizedNewtypeDeriving, Adventures in Hiding the Plumbing, A Return to Automated Deriving, Hiding Our Work
	MultiParamTypeClasses, Multiparameter Typeclasses
	NoMonomorphismRestriction, The Dreaded Monomorphism Restriction, The Dreaded Monomorphism Restriction
	OverlappingInstances, Relaxing Some Restrictions on Typeclasses, Relaxing Some Restrictions on Typeclasses
	PatternGuards, Pattern Guards
	TypeSynonymInstances, Making an Instance with a Type Synonym, Relaxing Some Restrictions on Typeclasses

	last function, Polymorphism in Haskell, Basic List Manipulation
	lastButOne function, The Type of a Function of More Than One Argument
	latency, Hiding Latency
	lazy evaluations, Lazy Evaluation, Left Folds, Laziness, and Space Leaks, Lazy I/O–The IO Monad
		foldl function and, Left Folds, Laziness, and Space Leaks
	I/O, Lazy I/O–The IO Monad

	lazy functions, An important Aside: Writing Lazy Functions, Lazy Reading
		databases, reading from, Lazy Reading
	writing, An important Aside: Writing Lazy Functions

	lazy I/O, Lazy I/O–The IO Monad, Mitigating the risks of lazy I/O
	lazy languages, Introducing Local Variables
	lazy reading from databases, Lazy Reading
	leaky code, Adventures in Hiding the Plumbing
	left fold functions, The Left Fold
	left identity, The Monad Laws and Good Coding Style (see (>>=) operator)
	Left value, Use of Either, Custom data types for errors
	left-biased functions, Getting started with the API
	lend function, The where Clause
	length function, Basic List Manipulation, Safely and Sanely Working with Crashy Functions
	let construct (ghci), Undefined Values, and Introducing Variables
	let expression, Introducing Local Variables, Shadowing, Local Functions, Global Variables
		local functions/global variables, Local Functions, Global Variables
	shadowing, Shadowing

	let keyword, Common Layout Styles, Desugaring of do Blocks, First Steps with Exceptions
		exceptions and, First Steps with Exceptions

	library sections, Writing a Package Description
	lift function, Moving Down the Stack, Moving Down the Stack
	lifted functions, Avoiding Boilerplate with Lifting
	lifting functions, Introducing Functors
	liftM function, Controlling Traversal, Mixing Pure and Monadic Code, Generalized Lifting, Moving Down the Stack
	Line constructor, Fleshing Out the Pretty-Printing Library
	line function, Fleshing Out the Pretty-Printing Library
	LINE pragma, Binding to Constants
	line-aligned chunks, finding, Efficiently Finding Line-Aligned Chunks
	LineBuffering mode (BufferMode), Buffering Modes
	lines function, Function Types and Purity, Warming Up: Portably Splitting Lines of Text, Special String-Handling Functions
	link time, using multiple cores, Using Multiple Cores with GHC
	linking, Generating a Haskell Program and Importing Modules
	list comprehensions, List Comprehensions
	listArray function, Introducing Arrays
	lists, Lists–Strings and Characters, Useful Composite Data Types: Lists and Tuples–Functions over Lists and Tuples, Functions over Lists and Tuples, Working with Lists–How to Think About Loops, More Simple List Manipulations, Explicit Recursion, Mapping over a List–Selecting Pieces of Input, Using Lists as a Model, Lists, Difference Lists, and Monoids, The List Monad–Desugaring of do Blocks
		functions for, Functions over Lists and Tuples, Working with Lists–How to Think About Loops
	loops, working with, Explicit Recursion
	mapping over, Mapping over a List–Selecting Pieces of Input
	models, using as, Using Lists as a Model
	Monads, The List Monad–Desugaring of do Blocks

	:load command (ghci), Defining a New Data Type
	local function, Local Functions, Global Variables
	local variables, Introducing Local Variables–The Offside Rule and Whitespace in an Expression
	lock order inversion, Deadlock
	log function, Numeric Types
	logBase function, Numeric Types
	logical and (&&), Boolean Logic, Operators, and Value Comparisons
	logical or (||), Boolean Logic, Operators, and Value Comparisons
	lookaheads (regular expressions), Choices and Errors
	lookup function, Getting started with the API
	loop function, Explicit Recursion
	loops, How to Think About Loops–Anonymous (lambda) Functions, Transforming Every Piece of Input
		transforming input and, Transforming Every Piece of Input

M
	:m (module) command, First Steps with Types
	Mac OS X, installing GHC/Haskell libraries, Mac OS X
	magic numbers, Binary I/O and Qualified Imports
	main function, Generating a Haskell Program and Importing Modules
	main loop (GUI programming), Event-Driven Programming
	mainloop keyword, Working with Files and Handles
	malloc C function, Foreign Language Bindings: The Basics
	manufacturer ID of barcodes, A Little Bit About Barcodes
	map function, Mapping over a List
	Map type, Type constraints
	Map.insert function, Maps
	mapM function, Actions, Why Provide Both mapM and forM?
	MapReduce (Google), Parallel Strategies and MapReduce, Writing a Simple MapReduce Definition
		definitions, writing, Writing a Simple MapReduce Definition

	maps, Mapping over a List, A Brief Introduction to Maps–Further Reading, Maps–Functions Are Data, Too
	marshaling data, binding C to Haskell, A High-Level Interface: Marshaling Data
	master sockets, Handling Multiple TCP Streams
	maxBound function, Numeric Types
	maximum function, Text I/O
	Maybe monads, Use of Maybe–Use of Either
	MaybeT monad transformer, Understanding Monad Transformers by Building One, Error Handling in Monads
	memory locations, Just What Is a Variable, Anyway?
	memory management, binding C to Haskell, Memory Management: Let the Garbage Collector Do the
 Work
	metadata (database), Database Metadata
	minBound function, Numeric Types
	.mix files, Measuring Test Coverage with HPC
	mod function, Numeric Types
	mode based testing, Testing Against a Model
	modifyMVar function, Safely Modifying an MVar, Starvation
		starvation and, Starvation

	:module command, Getting Started with ghci, the Interpreter
	module declarations, The Anatomy of a Haskell Module
	module headers, Arrays and Objects, and the Module Header, Writing a Module Header
		writing, Writing a Module Header

	modules, The Anatomy of a Haskell Module
	Moggi, Eugenio, Interference with Pure Code
	MonadIO typeclass, Designing for Unexpected Uses
	MonadPlus typeclass, Parsec and MonadPlus
		Parsec and, Parsec and MonadPlus

	MonadReader typeclass, Common Patterns in Monads and Monad Transformers
	monads, The IO Monad–Is Haskell Really Imperative?, –The Monad Laws and Good Coding Style, The Monad Typeclass, The List Monad–Desugaring of do Blocks, The State Monad–Monads and Functors, Using the State Monad: Generating Random Values, Running the State Monad, Monads and Functors–The Monad Laws and Good Coding Style, Golfing Practice: Association Lists–Arbitrary I/O Revisited, Motivation: Boilerplate Avoidance–Pulling It All Together, Common Patterns in Monads and Monad Transformers, Stacking Multiple Monad Transformers–Moving Down the Stack, Understanding Monad Transformers by Building One–Transformer Stacking Order Is Important, Creating a Monad Transformer, Transformer Stacking Order Is Important, Error Handling in Monads–A Tiny Parsing Framework
		common patterns, Common Patterns in Monads and Monad Transformers
	error handling, Error Handling in Monads–A Tiny Parsing Framework
	functions, Monads and Functors–The Monad Laws and Good Coding Style
	lists and, The List Monad–Desugaring of do Blocks
	programming with, Golfing Practice: Association Lists–Arbitrary I/O Revisited
	state, The State Monad–Monads and Functors, Using the State Monad: Generating Random Values, Running the State Monad
		random values, generating, Using the State Monad: Generating Random Values
	running, Running the State Monad

	transformer stacking and, Transformer Stacking Order Is Important
	transformers, Motivation: Boilerplate Avoidance–Pulling It All Together, Stacking Multiple Monad Transformers–Moving Down the Stack, Understanding Monad Transformers by Building One–Transformer Stacking Order Is Important, Creating a Monad Transformer
		creating, Creating a Monad Transformer
	stacking multiple, Stacking Multiple Monad Transformers–Moving Down the Stack
	understanding, Understanding Monad Transformers by Building One–Transformer Stacking Order Is Important

	typeclasses, The Monad Typeclass

	MonadState typeclass, When Explicit Lifting Is Necessary
	MonadTrans class, Creating a Monad Transformer
	Monoid instance, Measuring Test Coverage with HPC
	monoids, Lists, Difference Lists, and Monoids
	monomorphic properties, Polymorphic Testing
	monomorphism restriction, The Dreaded Monomorphism Restriction–Conclusion
	mplus function, The Name mplus Does Not Imply Addition
	mtl library, Motivation: Boilerplate Avoidance, Common Patterns in Monads and Monad Transformers, Unwieldy Interfaces
		common patterns in monads, Common Patterns in Monads and Monad Transformers

	mulitcore programming, Using Multiple Cores with GHC–Conclusions
	multiline string literals, Multiline String Literals
	multiplication (*) option, Numeric Types
	mutable arrays, Life Without Arrays or Hash Tables
	mutable references, The ST Monad
	MVar type, Simple Communication Between Threads, Safely Modifying an MVar, MVar and Chan Are Nonstrict
	MySQL, Overview of HDBC

N
	\n (newline)
 character, Strings and Characters, Warming Up: Portably Splitting Lines of Text, Choices and Errors
		CSV files, parsing, Choices and Errors

	-N RTS option, Finding the Number of Available Cores from Haskell
	negative numbers, writing, An Arithmetic Quirk: Writing Negative Numbers
	netpbm file format, Code Case Study: Parsing a Binary Data Format, Constraints on Our Decoder, Parsing a Color Image
		color images, parsing, Parsing a Color Image

	networking, Basic Networking–TCP Syslog Client
	newEmptyMVar function, Simple Communication Between Threads
	newline (\n) character, Strings and Characters, Warming Up: Portably Splitting Lines of Text, Choices and Errors
		CSV files, parsing, Choices and Errors

	newtype keyword, How to Give a Type a New Identity–JSON Typeclasses Without Overlapping Instances, JSON Typeclasses Without Overlapping Instances
		JSON typclasses and, JSON Typeclasses Without Overlapping Instances

	NF (normal form), Normal Form and Head Normal Form
	Nil, Recursive Types
	NoBuffering mode (BufferMode), Buffering Modes
	NoMonomorphismRestriction language extension, The Dreaded Monomorphism Restriction
	non-strict evaluation, Lazy Evaluation
	non-threaded runtime, Using Multiple Cores with GHC
	normal form (NF), Normal Form and Head Normal Form
	normal form data, Separating Algorithm from Evaluation
	notElem function, Searching Lists
	null function, Conditional Evaluation, Basic List Manipulation
	null values, Recursive Types
	nullPtr constant, Passing String Data Between Haskell and C
	number systems of barcodes, A Little Bit About Barcodes
	numeric escapes, Numeric Escapes
	Numeric library, Pretty Printing a String
	numeric types, Numeric Types–Equality, Ordering, and Comparisons, Extended Example: Numeric Types–Taking Advantage of Functions as Data

O
	-o option (ghc), Generating a Haskell Program and Importing Modules
	object files, Compiling Haskell Source
	objects, A Whirlwind Tour of JSON, Arrays and Objects, and the Module Header
	ODBC drivers, Transactions
	offside rule, The Offside Rule and Whitespace in an Expression–The case Expression
	onClicked event handler, Initializing the GUI
	onDestroy function, Initializing the GUI
	open world assumption, Living in an Open World–How to Give a Type a New Identity
	openBinaryTempFile function, Temporary Files
	openFile function, Working with Files and Handles, More on openFile
	openTempFile function, Temporary Files
	operator, Serialization with read and show, Classic I/O in Haskell
		$, Serialization with read and show, Classic I/O in Haskell

	operators, Boolean Logic, Operators, and Value Comparisons, Operator Precedence and Associativity, Defining and Using New Operators
		defining and using new, Defining and Using New Operators
	precedence and associativity, Operator Precedence and Associativity

	-optc-02 option, Tuning the Generated Assembly
	OPTIONS_GHC clause, Using Pipes for Redirection
	or function, More Simple List Manipulations
	Oracle, Overview of HDBC
	Other-Modules field, Writing a Package Description
	Other-Modules property, Compilation Options and Interfacing to C
	otherwise expression, Conditional Evaluation with Guards
	out of scope, Introducing Local Variables
	overlapping instances, When Do Overlapping Instances Cause Problems?, JSON Typeclasses Without Overlapping Instances–The Dreaded Monomorphism Restriction
		JSON typeclasses and, JSON Typeclasses Without Overlapping Instances–The Dreaded Monomorphism Restriction

	OverlappingInstances language extension, Relaxing Some Restrictions on Typeclasses

P
	P3 (plain) netpbm image format, Grayscale Files
	P5 (raw) netpbm image format, Grayscale Files
	pack function, Binary I/O and Qualified Imports
	packages, creating, Creating a Package–Practical Pointers and Further Reading
	pair (2-tuple), Useful Composite Data Types: Lists and Tuples
	par function, What Promises Does par Make?, Tuning for Performance
	parallel programs, Defining Concurrency and Parallelism, Parallel Programming in Haskell–Parallel Strategies and MapReduce, Parallel Strategies and MapReduce
		MapReduce and, Parallel Strategies and MapReduce

	parameterized types, Polymorphism in Haskell, Parameterized Types
	parametric polymorphism, Polymorphism in Haskell
	parentheses (()), Simple Arithmetic, Operator Precedence and Associativity, Useful Composite Data Types: Lists and Tuples, Folding from the Right
		arithmetic expressions, writing, Simple Arithmetic
	foldl and foldr functions, Folding from the Right
	operator precedence and, Operator Precedence and Associativity
	tuples, writing, Useful Composite Data Types: Lists and Tuples

	Parse type, Writing a Functor Instance for Parse, Motivation: Boilerplate Avoidance, Replacing the Parse Type with a Monad Stack
		monad stack, replacing, Replacing the Parse Type with a Monad Stack

	Parse wrapper, The Identity Parser
	parseByte function, Obtaining and Modifying the Parse State
	Parsec, Using Parsec–Parsing Headers, First Steps with Parsec: Simple CSV Parsing–The sepBy and endBy Combinators, Parsec and MonadPlus
		CSV files and, First Steps with Parsec: Simple CSV Parsing–The sepBy and endBy Combinators
	MonadPlus and, Parsec and MonadPlus

	Parsec CSV files and, The sepBy and endBy Combinators
	parseChar function, Using Functors for Parsing
	parseTimes function, Parsing a Color Image
	partial application of functions, Partial Function Application and Currying
	partial functions, Partial and Total Functions
	partial type Monad instances, Understanding Monad Transformers by Building One
	pattern matches, The Wild Card Pattern, Differences Between Data and Newtype Declarations
		newtype declarations and, Differences Between Data and Newtype Declarations
	wild card, The Wild Card Pattern

	pattern matching, Pattern Matching–Record Syntax, Variable Naming in Patterns, As-patterns, Filename Matching, Record Syntax, Updates, and Pattern Matching, Pattern Matching with Substrings
		as-patterns, As-patterns
	filenames, Filename Matching
	record syntax and, Record Syntax, Updates, and Pattern Matching
	substrings, binding C with Haskell, Pattern Matching with Substrings
	variable naming, Variable Naming in Patterns

	PatternGuards language extension, Pattern Guards
	PCRE (Perl-compatible regular expression), Interfacing with C: The FFI, Simple Tasks: Using the C Preprocessor, Adding Type Safety to PCRE
		C preprocessor and, Simple Tasks: Using the C Preprocessor
	types, adding safety to, Adding Type Safety to PCRE

	pcre.h header file, Passing String Data Between Haskell and C
	pcre_compile function, Allocating Local C Data: The Storable Class
	pcre_exec function, Matching on Strings
	pcre_fullinfo function, Extracting Information About the Pattern
	peek function, Passing String Data Between Haskell and C
	Perl, Other Things You Should Know, Interfacing with C: The FFI
		PCRE library and, Interfacing with C: The FFI
	regular expressions and, Other Things You Should Know

	permissive types, Strong Types
	PGM files, Parsing a Raw PGM File–Getting Rid of Boilerplate Code
	pi value, Numeric Types
	pipe (|), separating value constructors, Algebraic Data Types
	pipes (redirection), Using Pipes for Redirection–Final Words on Pipes
	pivots, Sequential Sorting
	pixels, Grayscale to Binary and Type Safety
	plain (P3) netpbm format, Grayscale Files
	plusPtr function, Passing String Data Between Haskell and C
	podcatcher, building, Extended Example: Web Client Programming
	point (.) character, Pretty Printing a String
	point-free expressions, Pretty Printing a String
	point-free style, Pretty Printing a String
	pointers, Passing String Data Between Haskell and C, Typed Pointers
		typed, Typed Pointers

	poke function, Passing String Data Between Haskell and C
	polymorphic list types, Useful Composite Data Types: Lists and Tuples
	polymorphic testing, Polymorphic Testing
	polymorphic types, Polymorphism in Haskell, Parameterized Types
	polymorphism, Polymorphism in Haskell–The Type of a Function of More Than One Argument
	positional types, The structure
	POSIX regular expressions, Other Things You Should Know
	POST method (HTTP), Parsing a HTTP Request
	PostgreSQL, Overview of HDBC
	predicates, Conditional Evaluation, Predicates: From Poverty to Riches, While Remaining Pure–Sizing a File Safely, A Domain-Specific Language for Predicates–Controlling Traversal
		domain-specific language for, A Domain-Specific Language for Predicates–Controlling Traversal
	I/O, Predicates: From Poverty to Riches, While Remaining Pure–Sizing a File Safely

	prefix form, Simple Arithmetic
	prefix notation, Infix Functions
	Prelude module, Getting Started with ghci, the Interpreter, Important Built-in Typeclasses
	prepare function, Prepared Statements
	pretty printers, A More General Look at Rendering, Testing Case Study: Specifying a Pretty Printer–Measuring Test Coverage with HPC
		testing, Testing Case Study: Specifying a Pretty Printer–Measuring Test Coverage with HPC

	primitive recursive functions, Folding from the Right
	print function, Working with Files and Handles
	printf (C) option, Profiling Haskell Programs
	PRNG (pseudorandom number generator), Running Our Code and Measuring Performance
	Product IDs of barcodes, A Little Bit About Barcodes
	product types, Generating Test Data
	-prof flag (GHC), Time Profiling
	profiling, Profiling Haskell Programs
	program termination, Program Termination
	programmable semicolon, Monads as a Programmable Semicolon
	programming environment, Your Haskell Environment
	projection functions, Working with Row Data
	prompt directive (ghci), Getting Started with ghci, the Interpreter
	property-based testing, QuickCheck: Type-Based Testing
	prop_one_present function, Polymorphic Testing
	pseudorandom number generator (PRNG), Running Our Code and Measuring Performance
	pseudorandom value generation, Using the State Monad: Generating Random Values
	Ptr type, Passing String Data Between Haskell and C
	pure code, Interference with Pure Code
	pure error handling, Error Handling
	pure function, Function Types and Purity, Pure Versus I/O, Parsing a Raw PGM File
		PGM files and, Parsing a Raw PGM File
	vs. I/O, Pure Versus I/O

	purity, Function Types and Purity, Why the Fuss over Purity?, Why Purity Matters, A First Attempt at Purity
		(see also pure functions)
	random values and, A First Attempt at Purity

	putSt function, Reading and Modifying the State
	putStr function, A Word on Lazy Output
	putStrLn function, Strings and Characters, Classic I/O in Haskell, Working with Files and Handles, Actions
		actions, Actions

	pwd command, Using Pipes for Redirection
	Python, Getting Started with ghci, the Interpreter, Simple Arithmetic, Just What Is a Variable, Anyway?, Warming Up: Portably Splitting Lines of Text
		universal newline support and, Warming Up: Portably Splitting Lines of Text

Q
	qualified imports, Binary I/O and Qualified Imports, Binary I/O and Qualified Imports
		syntax, Binary I/O and Qualified Imports

	quality assurance, Testing and Quality Assurance–Measuring Test Coverage with HPC, Measuring Test Coverage with HPC–Measuring Test Coverage with HPC
		HPC, measuring test coverage with, Measuring Test Coverage with HPC–Measuring Test Coverage with HPC

	queries (database), Simple Queries
	query (database), Query Parameters
		parameters, Query Parameters

	question mark (?), matching characters with, Filename Matching
	QuickCheck, QuickCheck: Type-Based Testing–Testing Case Study: Specifying a Pretty Printer, Generating Test Data, Testing with QuickCheck
		test data and, Generating Test Data

	quickCheck function, Testing with QuickCheck
	quickQuery’ function, Reading Results, Reading with Statements
	Quicksort algorithm, Sequential Sorting
	quot function, Numeric Types

R
	\r (carriage return)
 character, Warming Up: Portably Splitting Lines of Text, Choices and Errors
		CSV files and, Choices and Errors

	random values, Using the State Monad: Generating Random Values, Random Values in the State Monad, Supplying Random Numbers
		numbers, supplying, Supplying Random Numbers
	state monad and, Random Values in the State Monad

	randomR function, Using the State Monad: Generating Random Values
	randoms function, Running Our Code and Measuring Performance
	ranges (pattern matching), Filename Matching
	Rational type, Numeric Types
	raw (P5) netpbm format, Grayscale Files
	rawSystem function, Running External Programs, Using Pipes for Redirection
	read, Serialization with read and show
	Read typeclass, Read
	ReaderT monad layer, Stacking Multiple Monad Transformers, Transformer Stacking Order Is Important
		transformer stacking order and, Transformer Stacking Order Is Important

	readFile function, readFile and writeFile, Binary I/O and Qualified Imports, Binary I/O and Qualified Imports
	readInt function, Text I/O, Text I/O
	realToFrac function, A High-Level Wrapper
	recip function, Numeric Types
	record syntax, Record Syntax, Record Syntax, Updates, and Pattern Matching
	recursion, Recursion–What Have We Learned?, Explicit Recursion, Starting Simple: Recursively Listing a Directory, Strictness and Tail Recursion
		explicit, Explicit Recursion
	listing directories with, Starting Simple: Recursively Listing a Directory
	tail, Strictness and Tail Recursion

	recursive case, induction, Transforming Every Piece of Input
	recursive types, Recursive Types–Reporting Errors
	redirection (pipes), Using Pipes for Redirection–Final Words on Pipes
	RegexContex typeclass, The Many Types of Result
	regexp, Regular Expressions in Haskell (see regular expressions)
	regular expressions, Regular Expressions in Haskell–Translating a glob Pattern into a Regular Expression, Translating a glob Pattern into a Regular Expression–An important Aside: Writing Lazy Functions, Using Parsec, Supplanting Regular Expressions for Casual Parsing, Regular Expressions for Haskell: A Binding for PCRE–Passing String Data Between Haskell and C, The Real Deal: Compiling and Matching Regular
 Expressions
		casual parsing for, Supplanting Regular Expressions for Casual Parsing
	glob patterns, translating into, Translating a glob Pattern into a Regular Expression–An important Aside: Writing Lazy Functions
	hsc2hs and, The Real Deal: Compiling and Matching Regular
 Expressions
	Parsec, using instead of, Using Parsec
	PCRE libraries and, Regular Expressions for Haskell: A Binding for PCRE–Passing String Data Between Haskell and C

	:reload command, Representing JSON Data in Haskell
	rem function, Numeric Types
	rendering, A More General Look at Rendering
	replicate function, Pretty Printing a String
	report flag (hpc), Measuring Test Coverage with HPC
	return calls, Working with Files and Handles, The True Nature of Return, The Monad Typeclass, Mixing Pure and Monadic Code, The List Monad, Reading and Modifying the State, Adventures in Hiding the Plumbing
		(>>=) function and, The Monad Typeclass, Mixing Pure and Monadic Code, Reading and Modifying the State, Adventures in Hiding the Plumbing
		reading/modifying state, Reading and Modifying the State

	list Monads and, The List Monad

	return keyword, Haskell Source Files, and Writing Simple Functions
	reverse function, More Simple List Manipulations
	Reverse Polish Notation (RPN), Extended Example: Numeric Types
	RGB images, Grayscale Conversion
	right identity, The Monad Laws and Good Coding Style (see (>>=) operator)
	Right value, Use of Either
	right-associative signatures, The Type of a Function of More Than One Argument
	rnf function, Normal form reduction
	round function, Numeric Types
	row data, working with, Working with Row Data
	RPN (Reverse Polish Notation), Extended Example: Numeric Types
	RSS format, Extended Example: Web Client Programming
	+RTS flag (GHC), Collecting Runtime Statistics
	-RTS flag (GHC), Collecting Runtime Statistics
	Ruby, Getting Started with ghci, the Interpreter
	runghc program, Your Haskell Environment, Classic I/O in Haskell
		I/O, Classic I/O in Haskell

	runParse function, The Identity Parser
	runST function, The ST Monad
	runtime options, Runtime Options
	runtime statistics, Collecting Runtime Statistics

S
	-s flag (GHC), Collecting Runtime Statistics
	safe keyword, Typed Pointers
	scaled values, managing, Scaling Run Lengths, and Finding Approximate Matches
	scope, Introducing Local Variables
	second function, Another Round of Golf
	sections, Sections
	seek pointers, Mitigating the risks of lazy I/O
	SeekMode parameter (hTell), Seek and Tell
	SELECT statements, Reading Results
	sepBy function, The sepBy and endBy Combinators
	seq function, Avoiding Space Leaks with seq–Learning to Use seq
	sequencing, Sequencing
	sequential sorting, Sequential Sorting
	serialization, Serialization with read and show
	:set prompt, Getting Started with ghci, the Interpreter, First Steps with Types
	setFileTimes function, File Modification Times
	sFetchAllRows’ function, Reading with Statements
	shadowing, Shadowing
	shape of functors, Thinking More About Functors
	shared patterns, Looking for Shared Patterns
	shell scripting, Systems Programming in Haskell
	shift function, Numeric Types
	shiftL function, Computing One Answer over a Collection
	shiftR function, Pretty Printing a String
	show, Serialization with read and show
	Show typeclass, Show, How Does Show Work for Strings?
		strings and, How Does Show Work for Strings?

	showHex function, Pretty Printing a String
	side effects, Function Types and Purity, Be Careful of Side Effects
		blending C with Haskell, Be Careful of Side Effects

	signatures, The Type of a Function of More Than One Argument
	sin function, Numeric Types
	single quotes ('), Writing Character and String Literals
	single-character escape codes, Single-Character Escape Codes
	snd function, Functions over Lists and Tuples
	sockets, Basic Networking–TCP Syslog Client
	solution maps, Solving for Check Digits in Parallel
	sort function, Sequential Sorting
	source files, Haskell Source Files, and Writing Simple Functions–Understanding Evaluation by Example
	space leaks, Left Folds, Laziness, and Space Leaks, Space Leaks and Strict Evaluation–Learning to Use seq, Space Profiling
	spines for maps, A Brief Introduction to Maps
	split function, Text I/O, Supplying Random Numbers
		supplying random numbers, Supplying Random Numbers

	split-base Cabal flag, Dealing with Different Build Setups
	splitAt function, Working with Sublists
	SQL (Structured Query Language), Overview of HDBC
	SqlError type, Error Handling
	SqlValues type, SqlValue
	sqrt function, Numeric Types
	square brackets ([]), Lists, Useful Composite Data Types: Lists and Tuples, Exhaustive Patterns and Wild Cards, Recursive Types, Filename Matching
		character classes, Filename Matching
	exhaustive patterns, as a constructor, Exhaustive Patterns and Wild Cards
	lists, using, Lists
	recursive types and, Recursive Types
	type variables and, Useful Composite Data Types: Lists and Tuples

	-sstderr RTS option, Tuning for Performance, Collecting Runtime Statistics
	ST (state thread) monad, The ST Monad
	stack, Stacking Multiple Monad Transformers–Understanding Monad Transformers by Building One, Stacking Multiple Monad Transformers–Moving Down the Stack
		monad transformers, Stacking Multiple Monad Transformers–Moving Down the Stack

	standard module, Getting Started with ghci, the Interpreter
	starvation, Starvation
	state monads, The State Monad–Monads and Functors, Using the State Monad: Generating Random Values, Running the State Monad, Motivation: Boilerplate Avoidance, A Tiny Parsing Framework
		random values, generating, Using the State Monad: Generating Random Values
	running, Running the State Monad

	StateT monad transformer, Stacking Multiple Monad Transformers, Transformer Stacking Order Is Important
		transformer stacking order and, Transformer Stacking Order Is Important

	static types, Static Types
	stderr function, Standard Input, Output, and Error
	stdin function, Standard Input, Output, and Error
	stdout function, Standard Input, Output, and Error
	STM (software transactional memory), Software Transactional Memory–Using Invariants, STM and Safety
		I/O (input/output), STM and Safety

	strict evaluation, Lazy Evaluation, Space Leaks and Strict Evaluation–Learning to Use seq
	strict types, Efficient File Processing
	strictness, Strictness and Tail Recursion–Understanding Core
	string function, Pretty Printing a String
	string literals, Writing Character and String Literals
	String type, First Steps with Types, hGetContents, Efficient File Processing, Mixing and Matching String Types
		file processing and, Efficient File Processing
	hGetContents function and, hGetContents
	regular expressions, Mixing and Matching String Types

	strings, Strings and Characters, Passing String Data Between Haskell and C–Matching on Strings, Matching on Strings, Multiline String Literals
		multiline literals, Multiline String Literals
	passing data between C and Haskell, Passing String Data Between Haskell and C–Matching on Strings, Matching on Strings
		matching on, Matching on Strings

	strong types, Strong Types
	struct keyword (C/C++), The structure
	structural recursion, Explicit Recursion
	Structured Query Language (SQL), Overview of HDBC
	structures, Defining a New Data Type, The structure, Association Lists
		(see also data structures)

	stub versions of types/functions, Developing Haskell Code Without Going Nuts
	subtraction (-) option, Numeric Types
	subtype polymorphism, Polymorphism in Haskell
	suffixes function, Code Reuse Through Composition
	sum types, Generating Test Data
	synchronizing variable, Simple Communication Between Threads
	synonyms (types), Type Synonyms
	syntactic sugar, Desugaring of do Blocks
	syslog, Basic Networking
	System.Cmd module, Running External Programs
	System.Directory library, Deleting and Renaming Files
	System.Directory module, Making Use of Our Pattern Matcher, Directory and File Information, File Modification Times
	System.Environment module, Runtime Options
	System.Exit module, Program Termination
	System.FilePath module, Making Use of Our Pattern Matcher, A Naive Finding Function
	System.IO library, Working with Files and Handles, Standard Input, Output, and Error, Sizing a File Safely
		errors, Standard Input, Output, and Error
	files, sizing safely, Sizing a File Safely

	System.IO.Error module, I/O Exceptions
	System.Posix module, Predicates: From Poverty to Riches, While Remaining Pure
	System.Posix.Files module, File Modification Times
	System.Random module, Using the State Monad: Generating Random Values, Supplying Random Numbers
		supplying random numbers, Supplying Random Numbers

	System.Time module, ClockTime and CalendarTime
	System.Win32 module, Predicates: From Poverty to Riches, While Remaining Pure
	systems programming, Systems Programming in Haskell–Final Words on Pipes, Dates and Times–Extended Example: Piping
		dates and times, Dates and Times–Extended Example: Piping

T
	\t (tab) character, Strings and Characters, A Note About Tabs Versus Spaces
		vs. spaces, A Note About Tabs Versus Spaces

	tab (\t) character, Strings and Characters, A Note About Tabs Versus Spaces
		vs. spaces, A Note About Tabs Versus Spaces

	tables (hash), Life Without Arrays or Hash Tables, Maps, Hashing Values, Turning Two Hashes into Many
		maps and, Maps
	turning two into many, Turning Two Hashes into Many

	tail function, Useful Composite Data Types: Lists and Tuples, Functions over Lists and Tuples, Recursion, Basic List Manipulation
	tail recursion, Strictness and Tail Recursion
	tails function, As-patterns, Code Reuse Through Composition
		suffixes function and, Code Reuse Through Composition

	take function, Functions over Lists and Tuples
	takeWhile function, Working with Sublists
	tan function, Numeric Types
	TCP, communicating with, Communicating with TCP–TCP Syslog Client
	templates (C++), Parameterized Types
	temporary files, Temporary Files
	Ternary type, Generating Test Data
	testing, Testing and Quality Assurance (see quality assurance)
	text, Warming Up: Portably Splitting Lines of Text–Infix Functions, Text I/O–Filename Matching, Escaping Text
		escaping, Escaping Text
	I/O (input/output), Text I/O–Filename Matching
	splitting lines of, Warming Up: Portably Splitting Lines of Text–Infix Functions

	text I/O, Text I/O–Filename Matching
	“text mode”, reading
 files, Warming Up: Portably Splitting Lines of Text
	Text.Regex.Posix module, Regular Expressions in Haskell
	then and else branches, Conditional Evaluation
	thread maps, The Main Thread and Waiting for Other Threads
	-threaded compiler
 option, Using Multiple Cores with GHC
	threaded runtime, Using Multiple Cores with GHC
	threads, Concurrent Programming with Threads, Simple Communication Between Threads, The Main Thread and Waiting for Other Threads–Communicating over Channels, Finding the Status of a Thread, Communication Between Threads
		communication between, Simple Communication Between Threads, Communication Between Threads
	finding status of, Finding the Status of a Thread
	waiting for other threads, The Main Thread and Waiting for Other Threads–Communicating over Channels

	throw function, Throwing Exceptions
	thunks, Lazy Evaluation
	TimeDiff type, TimeDiff for ClockTime
	times, Dates and Times–Extended Example: Piping, File Modification Times
		file modifications and, File Modification Times

	.tix files, Measuring Test Coverage with HPC
	toCalendarTime function, Using CalendarTime
	toInteger function, Numeric Types
	top level names, Introducing Local Variables
	toRational function, Numeric Types
	total functions, Partial and Total Functions
	toUpper function, Transforming Every Piece of Input
	toUTCTime function, Using CalendarTime
	transactions (database), Transactions
	transformer stacking, Transformer Stacking Order Is Important
	traverse function, Controlling Traversal, Density, Readability, and the Learning Process, Another Way of Looking at Traversal
		readability of, Density, Readability, and the Learning Process

	triple (3-tuple), Useful Composite Data Types: Lists and Tuples
	True Boolean value, Boolean Logic, Operators, and Value Comparisons
	truncate function, Representing JSON Data in Haskell, Numeric Types
	try keyword, Lookahead, First Steps with Exceptions, I/O Exceptions
		exceptions and, First Steps with Exceptions, I/O Exceptions
		I/O (input/output), I/O Exceptions

	tuples, Useful Composite Data Types: Lists and Tuples–Functions over Lists and Tuples, Functions over Lists and Tuples, Tuples, Algebraic Data Types, and When to Use Each
		algebraic data types and, Tuples, Algebraic Data Types, and When to Use Each
	functions for, Functions over Lists and Tuples

	two-dimensional arrays, Folding over Arrays
	two-dimensional vectors, Tuples, Algebraic Data Types, and When to Use Each
	:type command, First Steps with Types, Defining a New Data Type
	type constructors, Defining a New Data Type, Looking for Shared Patterns, Almost a State Monad
		Monads and, Looking for Shared Patterns, Almost a State Monad

	type inference, Type Inference, Type Inference Is a Double-Edged Sword–A More General Look at Rendering
	type keyword, Type Synonyms
	type signatures, Some Common Basic Types
	type variables, Useful Composite Data Types: Lists and Tuples, Polymorphism in Haskell
		polymorphism and, Polymorphism in Haskell

	type-based testing, QuickCheck: Type-Based Testing
	Typeable typeclass, Dynamic Exceptions
	typeclasses, Static Types, Using Typeclasses–Conclusion, Declaring Typeclass Instances, Important Built-in Typeclasses–Automatic Derivation, Automatic Derivation, Living in an Open World–How to Give a Type a New Identity, Relaxing Some Restrictions on Typeclasses, The Dreaded Monomorphism Restriction–Conclusion, Using Typeclasses, More Typeclass Instances
		automatic derivation, Automatic Derivation
	built-in, Important Built-in Typeclasses–Automatic Derivation
	declaring instances, Declaring Typeclass Instances
	instances, More Typeclass Instances
	monomorphism restriction, The Dreaded Monomorphism Restriction–Conclusion
	open world assumptions, Living in an Open World–How to Give a Type a New Identity
	restrictions, relaxing, Relaxing Some Restrictions on Typeclasses
	using, Using Typeclasses

	typed pointers, Typed Pointers
	types, First Steps with Types–A Simple Program, Why Care About Types?–Function Types and Purity, Function Types and Purity, Defining a New Data Type–Conditional Evaluation with Guards, Defining a New Data Type–Type Synonyms, Naming Types and Values, Type Synonyms, Algebraic Data Types, Parameterized Types, Recursive Types–Reporting Errors, Numeric Types–Equality, Ordering, and Comparisons, Making an Instance with a Type Synonym, How to Give a Type a New Identity–JSON Typeclasses Without Overlapping Instances, Constraints on Type Definitions Are Bad, Extended Example: Numeric Types–Taking Advantage of Functions as Data, A High-Level Wrapper, Adding Type Safety to PCRE, Error Handling with Data Types
		algebraic, Algebraic Data Types
	C programming, A High-Level Wrapper, Adding Type Safety to PCRE
		adding safely to PCRE, Adding Type Safety to PCRE

	defining new, Defining a New Data Type–Type Synonyms
	definitions, constraints on, Constraints on Type Definitions Are Bad
	error handling and, Error Handling with Data Types
	functions and, Function Types and Purity
	naming, Naming Types and Values
	new identities, How to Give a Type a New Identity–JSON Typeclasses Without Overlapping Instances
	numeric, Numeric Types–Equality, Ordering, and Comparisons, Extended Example: Numeric Types–Taking Advantage of Functions as Data
	parameterized, Parameterized Types
	recursive, Recursive Types–Reporting Errors
	synonyms, Type Synonyms, Making an Instance with a Type Synonym
		making instances, Making an Instance with a Type Synonym

	TypeSynonymInstances language extension, Making an Instance with a Type Synonym, Relaxing Some Restrictions on Typeclasses

U
	Ubuntu Linux, installing GHC/Haskell libraries, Ubuntu and Debian Linux
	UDP, communicating with, Communicating with UDP–Communicating with TCP
	UIDs (user IDs), Association Lists
	unary operator (-), An Arithmetic Quirk: Writing Negative Numbers
	unboxed values in arrays, Unboxing, Lifting, and Bottom
	undefined symbols, Generating a Haskell Program and Importing Modules
	undefined values, Undefined Values, and Introducing Variables
	underscore character (_), matching wild cards, The Wild Card Pattern
	union keyword (C/C++), The discriminated union
	“universal newline”
 support, Warming Up: Portably Splitting Lines of Text
	unix-compat package, Predicates: From Poverty to Riches, While Remaining Pure
	unlifted functions, Avoiding Boilerplate with Lifting
	unlines function, A Line-Ending Conversion Program, Special String-Handling Functions
	unsafe keyword, Typed Pointers
	unsafeIOToSTM function, I/O and STM
	unsafePerformIO function, Pattern Matching with Substrings
	unwords function, Special String-Handling Functions
	UPC-A barcodes, A Little Bit About Barcodes
	updateLookupWithKey type, Finding the Status of a Thread
	URL-encoded query strings, parsing, Parsing a URL-Encoded Query String
	user IDs (UIDs), Association Lists
	UTC (Coordinated Universal Time), ClockTime and CalendarTime

V
	value comparisons, Boolean Logic, Operators, and Value Comparisons
	value constructors, Defining a New Data Type
	values (undefined), Undefined Values, and Introducing Variables
	variables, Undefined Values, and Introducing Variables, Just What Is a Variable, Anyway?, Introducing Local Variables–The Offside Rule and Whitespace in an Expression, Local Functions, Global Variables
		global, Local Functions, Global Variables
	local, Introducing Local Variables–The Offside Rule and Whitespace in an Expression

W
	Wadler, Philip, Further Reading
	waitFor function, Finding the Status of a Thread
	-Wall GHC option, Compilation Options and Interfacing to C
	weak head normal form (WHNF), Normal Form and Head Normal Form, Separating Algorithm from Evaluation, Strictness and Tail Recursion
	web client programming, Extended Example: Web Client Programming–Main Program
	well typed rules, Strong Types
	where clause, The where Clause, The Anatomy of a Haskell Module
	whitespace in expressions, The Offside Rule and Whitespace in an Expression–The case Expression, A Note About Tabs Versus Spaces
		vs. tab characters, A Note About Tabs Versus Spaces

	WHNF (weak head normal form), Normal Form and Head Normal Form, Separating Algorithm from Evaluation, Strictness and Tail Recursion
	widgets (GUI programming), Glade Concepts
	wild card patterns, The Wild Card Pattern
	Windows, installing GHC/Haskell libraries, Windows
	withForeignPtr function, Pattern Matching with Substrings
	withTransaction function, Transactions
	Word type, Numeric Types
	Word16 type, Numeric Types
	Word32 type, Numeric Types
	Word64 type, Numeric Types
	Word8 type, Numeric Types
	writeChan function, Chan Is Unbounded
	writeFile function, readFile and writeFile
	Writer monad, The Writer Monad and Lists
	WriterT monad transformer, Motivation: Boilerplate Avoidance

X
	x86_64 assembly, Tuning the Generated Assembly
	XML, Extended Example: Web Client Programming, Glade Concepts
		widget descriptions saved as, Glade Concepts

	xor function, Numeric Types

Z
	zero-width escape sequences, The Zero-Width Escape Sequence
	zip function, Working with Several Lists at Once
	zipWith function, Working with Several Lists at Once

About the Authors
Bryan O'Sullivan is an Irish hacker and writer who likes distributed systems, open source software, and programming languages. He was a member of the initial design team for the Jini network service architecture (subsequently open sourced as Apache River). He has made significant contributions to, and written a book about, the popular Mercurial revision control system. He lives in San Francisco with his wife and sons. Whenever he can, he runs off to climb rocks.
John Goerzen is an American hacker and author. He has written a number of real-world Haskell libraries and applications, including the HDBC database interface, the ConfigFile configuration file interface, a podcast downloader, and various other libraries relating to networks, parsing, logging, and POSIX code. John has been a developer for the Debian GNU/Linux operating system project for over 10 years and maintains numerous Haskell libraries and code for Debian. He also served as President of Software in the Public Interest, Inc., the legal parent organization of Debian. John lives in rural Kansas with his wife and son, where he enjoys photography and geocaching.
Don Stewart is an Australian hacker based in Portland, Oregon. Don has been involved in a diverse range of Haskell projects, including practical libraries, such as Data.ByteString and Data.Binary, as well as applying the Haskell philosophy to real-world applications including compilers, linkers, text editors, network servers, and systems software. His recent work has focused on optimizing Haskell for high-performance scenarios, using techniques from term rewriting.

Colophon
The animal on the cover of Real World Haskell
 is a rhinoceros beetle, a species of scarab beetle. Relative to their
 size, rhinoceros beetles are among the strongest animals on the planet.
 They can lift up to 850 times their own weight. The average rhino beetle
 found in the U.S. is about an inch long, but they can grow as long as
 seven inches.
Rhino beetles have horns on their heads, resembling that of the
 rhinoceros, hence the name. The size of their horns is related to how much
 nutrition they had in larva. In some species, the horns are longer than
 the bodies, and they can grow as many as four or five horns. They use the
 horns for digging, as well as for fighting for territory and mates.
Rhino beetles thrive on sap and rotting fruit, specifically bananas,
 apples, and oranges. Their larvae, which takes between 3–5 years to
 mature, eat decaying wood, compost, and dead leaves—a kind of recycling
 for the environment.
The cover image is from an unknown source. The cover font is Adobe
 ITC Garamond. The text font is Linotype Birka; the heading font is Adobe
 Myriad Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Real World Haskell

Bryan O’Sullivan

John Goerzen

Donald Bruce Stewart

Editor
Mike Loukides

Copyright © 2008 Bryan O’Sullivan, Donald Stewart and John Goerzen

O’Reilly books may be purchased for educational, business, or
 sales promotional use. Online editions are also available for most
 titles (http://safari.oreilly.com). For more
 information, contact our corporate/institutional sales department: (800)
 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
 logo are registered trademarks of O’Reilly Media, Inc. Real
 World Haskell, the image of a rhinoceros beetle, and related
 trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of
 a trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2016-01-25T13:54:06-08:00

OEBPS/httpatomoreillycomsourceoreillyimages2242120.png
Add Podcast — |8 X

URL of new podcast

Jok & cancel |

OEBPS/httpatomoreillycomsourceoreillyimages2242134.png.jpg
1 Setup - GHC

Select Destination Location
Where should GHC be installed?

‘Setup wilnstall GHC rto the following foder.

To continue, click Next. you would ke to select dfferent folder, lick Browse.

\gho\chc 533 Bowse.

Atleast £10.1 MB offree disk space s requied.

OEBPS/httpatomoreillycomsourceoreillyimages2242124.png
A 106 +RTS -10.001 -hc -p -K100M 1,521,224 ,414 bytes x seconds Thu Aug 21 21:46 2008

M (1290GHC Foat caF

W (isocAFsum

oh.
00 20 40 €0 80 100 120 140 160 180 200 220 240 seconds

OEBPS/httpatomoreillycomsourceoreillyimages2242098.png
Top Level Definitions Alternatives Expressions

dul
module % | covered /total | % | covered/total | % | _covered/ total

nodule Prettifys 42%[9/21 23%8/34 [T 18%6(30/158 | I
Program Coverage Total | 42%|9/21 [IR 23%|8/34 | I 18%(30/158 [I

OEBPS/httpatomoreillycomsourceoreillyimages2242108.png.jpg
E308 D-i3-2aiNb?-N

OEBPS/callouts/35.png

OEBPS/callouts/34.png

OEBPS/callouts/37.png

OEBPS/callouts/36.png

OEBPS/callouts/39.png

OEBPS/callouts/38.png

OEBPS/orm_front_cover.jpg
Code You Can Believe In

Real World

Bryan O'Sullivan,
O’REILLY*® Jobn Goerzen & Don Stewart

OEBPS/httpatomoreillycomsourceoreillyimages2242126.png
A 106 +RTS -10.001 -hy -p -K100M 1,640,341,226 bytes x seconds Thu Aug 21 21:56 2008

3|
com
O
4om
1 ooutie
20m
M eLackHoLE

seconds.

OEBPS/httpatomoreillycomsourceoreillyimages2242136.png
@ setProgram Access and Defaults
% windons Uncte
B MosoftUndate

TR S —
- —
Ot | @

@ secondie
@ runemacs @ stertn
(e) Aorle Softvare Lpcate
A ke @& ttemet xplorer
@ 70
Eg Developer @ sean
@ Torwisesn
@ munes
@ qudme
LAl @ vozte Thundertica
@ Mosoft NET Framenork DK v2.0
@ Misosoft Vsl St 2005

@ sipe

All Programs

@ ke 24

&) voreax Inredeuid

@ Microsoft DirectX SDK (November 2007)
@ v

@ Gz

@ vm71

@ KeyTuesk

@) Actveper 58,3 5uid 522
@ pyton 25

& s

@ prun

& nsis

@) voals Frefox 35eta s
@) oeveoper

& ok 26

@ rofts

paint e

&) G Documentaton
8] cHCFig Reference
8] GHC Lrary Doamentation
GC Resdne
sia

OEBPS/callouts/24.png

OEBPS/httpatomoreillycomsourceoreillyimages2242132.png
) GHC: Download version 6.8.3 - Mozilla Firefox

Eie Edt Vew Hgory Deldous Booknarks Iods tep B Mostvsted

@ ¢ X & bl Bl @ (% [rtomm ol agniomiond_she ss3imiz 77 -]

Windows (x86) (standalone)

o ghc-6.8.3-1386-windows.exe (36 MB); a Windows Installer for
GHC 6.83

This is a complete build, and should work for Microsoft Windows 2000,
XP and Vista. It also includes support for compiling C-++ files

E

OEBPS/callouts/23.png

OEBPS/callouts/26.png

OEBPS/callouts/25.png

OEBPS/callouts/28.png

OEBPS/callouts/27.png

OEBPS/httpatomoreillycomsourceoreillyimages2242106.png.jpg
y, ':';;;g. Rt

OEBPS/callouts/29.png

OEBPS/callouts/31.png

OEBPS/callouts/30.png

OEBPS/callouts/33.png

OEBPS/callouts/32.png

OEBPS/callouts/2.png

OEBPS/callouts/1.png

OEBPS/httpatomoreillycomsourceoreillyimages2242102.png
Top Level Definitions Alternatives Expressions
% | covered/total | % | covered/total | % | covered/ total

nodule Prettify2 52%]11/21] [23%]8/3 4| 2 0%|32/ 1 58] I
Program Coverage Total[52%|11/21 |23%|8/3 4[R2 0%|32 /156 I

module

OEBPS/callouts/6.png

OEBPS/httpatomoreillycomsourceoreillyimages2242122.png
Pod: Update
Update complete

<Jox |

OEBPS/callouts/5.png

OEBPS/callouts/4.png

OEBPS/callouts/3.png

OEBPS/callouts/13.png

OEBPS/httpatomoreillycomsourceoreillyimages2242116.png
Eile Edit View Projects

Help

N B H e - e w & @O
New Open.. Save | Undo cut copy

sy

Select | Drag Resize

~ Toplevels

~ Containers

R =
» Gtk+ Obsolete

Add New Podcast I

Update Podcast Feeds

Download New Episodes

Eetch (Update and Download)

Exit
—_

~ & vbox1
& addButton
& updateButton
& downloadButton

LI e o]
mainWindow [GtkWindow] - Properties
eneral|Backing | Gommon | signals | &
Class: [GtkWindow
Name: [manwindow
Window Type: Top Level B
Window Title: [Pod =
Startup ID:

Window Role

Resizable Yes
Modal No

Window Position
Default Width
Default Height:

OEBPS/callouts/9.png

OEBPS/callouts/12.png

OEBPS/callouts/8.png

OEBPS/callouts/15.png

OEBPS/callouts/7.png

OEBPS/callouts/14.png

OEBPS/callouts/17.png

OEBPS/callouts/16.png

OEBPS/callouts/19.png

OEBPS/callouts/18.png

OEBPS/callouts/20.png

OEBPS/callouts/22.png

OEBPS/callouts/21.png

OEBPS/httpatomoreillycomsourceoreillyimages2242112.png
78013211467

OEBPS/httpatomoreillycomsourceoreillyimages2242100.png
data Doc = Empty
| Char char

| Text string

| Line

| Concat Doc Doc
| Union Doc Doc
d

leriving (Show, Eq)

{

/snippet Doc -

instance Monoid Doc where
nenpty
nappend

{-- snippet append -}
enpty :: Doc

() :: Doc -> Dac -> Doc
{-- /snippet append

enpty = Enpty

Enpty <y -y
X <> Enpty = x
X<y - x Concat' y

char :: Char -> Doc
char ¢ = Char ¢

OEBPS/callouts/11.png

OEBPS/callouts/10.png

OEBPS/httpatomoreillycomsourceoreillyimages2242140.png
- § ghei
GHCi, version 6.8.3: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done

Prelude> :browse Data.Function

Ga->a)->a
G->b->c)->(a->b)>a->a->c
(a->b)>a->b

) (->¢c)->(a->b)>a->c
Qb oa
(@a->b->¢)>b->a->c

id:ia-sa

Pretudes I

OEBPS/oreilly_large.png.jpg
OREILLY®

OEBPS/httpatomoreillycomsourceoreillyimages2242138.png
Data. Sequence. Seq (Data. Sequence. FingerTree.
“ (Data. Sequence. Elem a))
EmptyL | a i< (Seq @)
EmptyR | (seq @) > a
(@ > a) > Int > Seq a > Seq a
pata. Sequence.drop :: Int -> Seq a -> Seq a
i Seq a
[a] > Seq a
Seq a > Int > a
pata. Sequence. Tength :: Seq a -> Int
ata. Sequence.null :: Seq a > Bool
Seq a -> Seq a

pata. Sequence. sp1tAt :: Int -> Seq a - (Seq a, Seq a)
pata. Sequence. take :: Int - Seq a —> Sea a
a->seqa
Seq a -> View a
: Seq a > ViewR a
Seqa > a > Seqa

OEBPS/httpatomoreillycomsourceoreillyimages2242110.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2242128.png
A 106 +RTS -10.001 -hd -p -K100M 1,246,527,260 bytes x seconds Thu Aug 21 22:15 2008

H
[<baseDataListat_s2ymn
com
]
son
[
| e

seconds.

OEBPS/httpatomoreillycomsourceoreillyimages2242114.png
S I7E80132"11467 7" >

OEBPS/httpatomoreillycomsourceoreillyimages2242118.png
Add New Podcast
Update Podcast Feeds

Download New Episodes

Eetch (Update and Download)

OEBPS/httpatomoreillycomsourceoreillyimages2242104.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages2242130.png
B 106 +RTS -0.001 -hc -p -K100M 1,689,334,923 bytes x seconds Thu Aug 21 22:47 2008

M (iseymeanimain

M (126)GHC Foat cAF

