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Preface



Have We Got a Deal for You!



Haskell is a deep language; we think
      learning it is a hugely rewarding experience. We will focus on three
      elements as we explain why. The first is novelty:
      we invite you to think about programming from a different and valuable
      perspective. The second is power: we’ll show you
      how to create software that is short, fast, and safe. Lastly, we offer
      you a lot of enjoyment: the pleasure of applying
      beautiful programming techniques to solve real problems.
Novelty



Haskell is most likely quite different
        from any language you’ve ever used before. Compared to the usual set
        of concepts in a programmer’s mental toolbox, functional programming
        offers us a profoundly different way to think about software.
In Haskell, we deemphasize code that
        modifies data. Instead, we focus on functions that take immutable
        values as input and produce new values as output. Given the same
        inputs, these functions always return the same results. This is a core
        idea behind functional programming.
Along with not modifying data, our Haskell
        functions usually don’t talk to the external world; we call these
        functions pure. We make a strong distinction
        between pure code and the parts of our programs that read or write
        files, communicate over network connections, or make robot arms move.
        This makes it easier to organize, reason about, and test our
        programs.
We abandon some ideas that might seem
        fundamental, such as having a for loop built into the
        language. We have other, more flexible, ways to perform repetitive
        tasks.
Even the way in which we evaluate
        expressions is different in Haskell. We defer every computation until
        its result is actually needed—Haskell is a lazy
        language. Laziness is not merely a matter of moving work around, it
        profoundly affects how we write programs.

Power



Throughout this book, we will show you how
        Haskell’s alternatives to the features of traditional languages are
        powerful and flexible and lead to reliable code. Haskell is positively
        crammed full of cutting-edge ideas about how to create great
        software.
Since pure code has no dealings with the
        outside world, and the data it works with is never modified, the kind
        of nasty surprise in which one piece of code invisibly corrupts data
        used by another is very rare. Whatever context we use a pure function
        in, the function will behave consistently.
Pure code is easier to test than code that
        deals with the outside world. When a function responds only to its
        visible inputs, we can easily state properties of its behavior that
        should always be true. We can automatically test that those properties
        hold for a huge body of random inputs, and when our tests pass, we
        move on. We still use traditional techniques to test code that must
        interact with files, networks, or exotic hardware. Since there is much
        less of this impure code than we would find in a traditional language,
        we gain much more assurance that our software is solid.
Lazy evaluation has some spooky effects.
        Let’s say we want to find the k least-valued
        elements of an unsorted list. In a traditional language, the obvious
        approach would be to sort the list and take the first
        k elements, but this is expensive. For
        efficiency, we would instead write a special function that takes these
        values in one pass, and that would have to perform some moderately
        complex bookkeeping. In Haskell, the sort-then-take approach actually
        performs well: laziness ensures that the list will only be sorted
        enough to find the k minimal elements.
Better yet, our Haskell code that operates
        so efficiently is tiny and uses standard library functions:
-- file: ch00/KMinima.hs
-- lines beginning with "--" are comments.

minima k xs = take k (sort xs)
It can take a while to develop an
        intuitive feel for when lazy evaluation is important, but when we
        exploit it, the resulting code is often clean, brief, and
        efficient.
As the preceding example shows, an
        important aspect of Haskell’s power lies in the compactness of the
        code we write. Compared to working in popular traditional languages,
        when we develop in Haskell we often write much less code, in
        substantially less time and with fewer bugs.

Enjoyment



We believe that it is easy to pick up the
        basics of Haskell programming and that you will be able to
        successfully write small programs within a matter of hours or
        days.
Since effective programming in Haskell
        differs greatly from other languages, you should expect that mastering
        both the language itself and functional programming techniques will
        require plenty of thought and practice.
Harking back to our own days of getting
        started with Haskell, the good news is that the fun begins early: it’s
        simply an entertaining challenge to dig into a new language— in which
        so many commonplace ideas are different or missing—and to figure out
        how to write simple programs.
For us, the initial pleasure lasted as our
        experience grew and our understanding deepened. In other languages,
        it’s difficult to see any connection between science and the
        nuts-and-bolts of programming. In Haskell, we have imported some ideas
        from abstract mathematics and put them to work. Even better, we find
        that not only are these ideas easy to pick up, but they also have a
        practical payoff in helping us to write more compact, reusable
        code.
Furthermore, we won’t be putting any
        “brick walls” in your way. There are no especially
        difficult or gruesome techniques in this book that you must master in
        order to be able to program effectively.
That being said, Haskell is a rigorous
        language: it will make you perform more of your thinking up front. It
        can take a little while to adjust to debugging much of your code
        before you ever run it, in response to the compiler telling you that
        something about your program does not make sense. Even with years of
        experience, we remain astonished and pleased by how often our Haskell
        programs simply work on the first try, once we fix those compilation
        errors.


What to Expect from This Book



We started this project because a growing
      number of people are using Haskell to solve everyday problems. Because
      Haskell has its roots in academia, few of the Haskell books that
      currently exist focus on the problems and techniques of the typical
      programming that we’re interested in.
With this book, we want to show you how to
      use functional programming and Haskell to solve realistic problems. We
      take a hands-on approach: every chapter contains dozens of code samples,
      and many contain complete applications. Here are a few examples of the
      libraries, techniques, and tools that we’ll show you how to
      develop:
	Create an application that downloads
          podcast episodes from the Internet and stores its history in an SQL
          database.

	Test your code in an intuitive and
          powerful way. Describe properties that ought to be true, and then
          let the QuickCheck library generate test cases automatically.

	Take a grainy phone camera snapshot of a
          barcode and turn it into an identifier that you can use to query a
          library or bookseller’s website.

	Write code that thrives on the Web.
          Exchange data with servers and clients written in other languages
          using JSON notation. Develop a concurrent link checker.



A Little Bit About You



What will you need to know before reading
        this book? We expect that you already know how to program, but if
        you’ve never used a functional language, that’s fine.
No matter what your level of experience
        is, we tried to anticipate your needs; we go out of our way to explain
        new and potentially tricky ideas in depth, usually with examples and
        images to drive our points home.
As a new Haskell programmer, you’ll
        inevitably start out writing quite a bit of code by hand for which you
        could have used a library function or programming technique, had you
        just known of its existence. We packed this book with information to
        help you get up to speed as quickly as possible.
Of course, there will always be a few
        bumps along the road. If you start out anticipating an occasional
        surprise or difficulty along with the fun stuff, you will have the
        best experience. Any rough patches you might hit won’t last
        long.
As you become a more seasoned Haskell
        programmer, the way that you write code will change. Indeed, over the
        course of this book, the way that we present code will evolve, as we
        move from the basics of the language to increasingly powerful and
        productive features and techniques.


What to Expect from Haskell



Haskell is a general-purpose programming
      language. It was designed without any application niche in mind.
      Although it takes a strong stand on how programs should be written, it
      does not favor one problem domain over others.
While at its core, the language encourages a
      pure, lazy style of functional programming, this is the
      default, not the only option. Haskell also supports
      the more traditional models of procedural code and strict evaluation.
      Additionally, although the focus of the language is squarely on writing
      statically typed programs, it is possible (though rarely seen) to write
      Haskell code in a dynamically typed manner.
Compared to Traditional Static Languages



Languages that use simple static type
        systems have been the mainstay of the programming world for decades.
        Haskell is statically typed, but its notion of what types are for and
        what we can do with them is much more flexible and powerful than
        traditional languages. Types make a major contribution to the brevity,
        clarity, and efficiency of Haskell programs.
Although powerful, Haskell’s type system
        is often also unobtrusive. If we omit explicit type information, a
        Haskell compiler will automatically infer the type of an expression or
        function. Compared to traditional static languages, to which we must
        spoon-feed large amounts of type information, the combination of power
        and inference in Haskell’s type system significantly reduces the
        clutter and redundancy of our code.
Several of Haskell’s other features
        combine to further increase the amount of work we can fit into a
        screenful of text. This brings improvements in development time and
        agility; we can create reliable code quickly and easily refactor it in
        response to changing requirements.
Sometimes, Haskell programs may run more
        slowly than similar programs written in C or C++. For most of the code
        we write, Haskell’s large advantages in productivity and reliability
        outweigh any small performance disadvantage.
Multicore processors are now ubiquitous,
        but they remain notoriously difficult to program using traditional
        techniques. Haskell provides unique technologies to make multicore programming more tractable. It
        supports parallel programming, software transactional memory for
        reliable concurrency, and it scales to hundreds of thousands of
        concurrent threads.

Compared to Modern Dynamic Languages



Over the past decade, dynamically typed,
        interpreted languages have become increasingly popular. They offer
        substantial benefits in developer productivity. Although this often
        comes at the cost of a huge performance hit, for many programming
        tasks productivity trumps performance, or performance isn’t a
        significant factor in any case.
Brevity is one area in which Haskell and
        dynamically typed languages perform similarly: in each case, we write
        much less code to solve a problem than in a traditional language.
        Programs are often around the same size in dynamically typed languages
        and Haskell.
When we consider runtime performance,
        Haskell almost always has a huge advantage. Code compiled by the
        Glasgow Haskell Compiler (GHC) is typically between 20 to 60 times
        faster than code run through a dynamic language’s interpreter.
        GHC also provides an
        interpreter, so you can run scripts without compiling them.
Another big difference between dynamically
        typed languages and Haskell lies in their philosophies around types. A
        major reason for the popularity of dynamically typed languages is that
        only rarely do we need to explicitly mention types. Through automatic
        type inference, Haskell offers the same advantage.
Beyond this surface similarity, the
        differences run deep. In a dynamically typed language, we can create constructs that
        are difficult to express in a statically typed language. However, the
        same is true in reverse: with a type system as powerful as Haskell’s,
        we can structure a program in a way that would be unmanageable or
        infeasible in a dynamically typed language.
It’s important to recognize that each of
        these approaches involves trade-offs. Very briefly put, the Haskell
        perspective emphasizes safety, while the dynamically typed outlook
        favors flexibility. If someone had already discovered one way of
        thinking about types that was always best, we imagine that everyone
        would know about it by now.
Of course, we, the authors, have our own
        opinions about which trade-offs are more beneficial. Two of us have
        years of experience programming in dynamically typed languages. We
        love working with them; we still use them every day; but usually, we
        prefer Haskell.

Haskell in Industry and Open Source



Here are just a few examples of large
        software systems that have been created in Haskell. Some of these are
        open source, while others are proprietary products:
	ASIC and FPGA design software (Lava,
            products from Bluespec, Inc.)

	Music composition software
            (Haskore)

	Compilers and compiler-related tools
            (most notably GHC)

	Distributed revision control
            (Darcs)

	Web middleware (HAppS, products from
            Galois, Inc.)



The following is a sample of some of the
        companies using Haskell in late 2008, taken from the Haskell
        wiki:
	ABN AMRO
	An international bank. It uses Haskell in investment
              banking, in order to measure the counterparty risk on portfolios
              of financial derivatives.

	Anygma
	A startup company. It develops multimedia content creation
              tools using Haskell.

	Amgen
	A biotech company. It creates mathematical models and
              other complex applications in Haskell.

	Bluespec
	An ASIC and FPGA design software vendor. Its products are
              developed in Haskell, and the chip design languages that its
              products provide are influenced by Haskell.

	Eaton
	Uses Haskell for the design and verification of hydraulic
              hybrid vehicle systems.




Compilation, Debugging, and Performance Analysis



For practical work, almost as important as
        a language itself is the ecosystem of libraries and tools around it.
        Haskell has a strong showing in this area.
The most widely used compiler,
        GHC, has been actively
        developed for over 15 years and provides a mature and stable set of
        features:
	Compiles to efficient native code on
            all major modern operating systems and CPU architectures

	Easy deployment of compiled binaries,
            unencumbered by licensing restrictions

	Code coverage analysis

	Detailed profiling of performance and
            memory usage

	Thorough documentation

	Massively scalable support for
            concurrent and multicore programming

	Interactive interpreter and
            debugger




Bundled and Third-Party Libraries



The GHC compiler ships with a collection of
        useful libraries. Here are a few of the common programming needs that
        these libraries address:
	File I/O and filesystem traversal and
            manipulation

	Network client and server
            programming

	Regular expressions and parsing

	Concurrent programming

	Automated testing

	Sound and graphics



The Hackage package database is the
        Haskell community’s collection of open source libraries and
        applications. Most libraries published on Hackage are licensed under
        liberal terms that permit both commercial and open source use. Some of
        the areas covered by these open source libraries include the
        following:
	Interfaces to all major open source
            and commercial databases

	XML, HTML, and XQuery
            processing

	Network and web client and server
            development

	Desktop GUIs, including cross-platform
            toolkits

	Support for Unicode and other text
            encodings





A Brief Sketch of Haskell’s History



The development of Haskell is rooted in
      mathematics and computer science research.
Prehistory



A few decades before modern computers were
        invented, the mathematician Alonzo Church developed a language called
        lambda calculus. He intended it as a tool for
        investigating the foundations of mathematics. The first person to
        realize the practical connection between programming and lambda
        calculus was John McCarthy, who created Lisp in 1958.
During the 1960s, computer scientists
        began to recognize and study the importance of lambda calculus. Peter
        Landin and Christopher Strachey developed ideas about the foundations
        of programming languages: how to reason about what they do
        (operational semantics) and how to understand what they mean
        (denotational semantics).
In the early 1970s, Robin Milner created a
        more rigorous functional programming language named
        ML. While ML was developed to help with automated
        proofs of mathematical theorems, it gained a following for more
        general computing tasks.
The 1970s also saw the emergence of lazy
        evaluation as a novel strategy. David Turner developed SASL and KRC,
        while Rod Burstall and John Darlington developed NPL and Hope. NPL,
        KRC, and ML influenced the development of several more languages in
        the 1980s, including Lazy ML, Clean, and Miranda.

Early Antiquity



By the late 1980s, the efforts of
        researchers working on lazy functional languages were scattered across
        more than a dozen languages. Concerned by this diffusion of effort, a
        number of researchers decided to form a committee to design a common
        language. After three years of work, the committee published the
        Haskell 1.0 specification in 1990. It named the language after Haskell
        Curry, an influential logician.
Many people are rightfully suspicious of
        “design by committee,” but the output of the Haskell committee is a
        beautiful example of the best work a committee can do. They produced
        an elegant, considered language design and succeeded in unifying the
        fractured efforts of their research community. Of the thicket of lazy
        functional languages that existed in 1990, only Haskell is still
        actively used.
Since its publication in 1990, the Haskell
        language standard has seen five revisions, most recently in 1998. A
        number of Haskell implementations have been written, and several are
        still actively developed.
During the 1990s, Haskell served two main
        purposes. On one side, it gave language researchers a stable language
        in which to experiment with making lazy functional programs run efficiently and on the
        other side researchers explored how to construct programs using lazy
        functional techniques, and still others used it as a teaching language.

The Modern Era



While these basic explorations of the
        1990s proceeded, Haskell remained firmly an academic affair. The
        informal slogan of those inside the community was to “avoid success at
        all costs.” Few outsiders had heard of the language at all. Indeed,
        functional programming as a field was quite obscure.
During this time, the mainstream
        programming world experimented with relatively small tweaks, from
        programming in C, to C++, to Java. Meanwhile, on the fringes,
        programmers were beginning to tinker with new, more dynamic languages.
        Guido van Rossum designed Python; Larry Wall created Perl; and
        Yukihiro Matsumoto developed Ruby.
As these newer languages began to seep
        into wider use, they spread some crucial ideas. The first was that
        programmers are not merely capable of working in expressive languages;
        in fact, they flourish. The second was in part a byproduct of the
        rapid growth in raw computing power of that era: it’s often smart to
        sacrifice some execution performance in exchange for a big increase in
        programmer productivity. Finally, several of these languages borrowed
        from functional programming.
Over the past half decade, Haskell has
        successfully escaped from academia, buoyed in part by the visibility
        of Python, Ruby, and even JavaScript. The language now has a vibrant
        and fast-growing culture of open source and commercial users, and
        researchers continue to use it to push the boundaries of performance
        and expressiveness.


Helpful Resources



As you work with Haskell, you’re sure to
      have questions and want more information about things. The following
      paragraphs describe some Internet resources where you can look up
      information and interact with other Haskell programmers.
Reference Material



	The Haskell Hierarchical Libraries reference
	Provides the documentation for the standard library that
              comes with your compiler. This is one of the most valuable
              online assets for Haskell programmers.

	Haskell 98 Report
	Describes the Haskell 98 language standard.

	GHC Users’s Guide
	Contains detailed documentation on the extensions
              supported by GHC, as
              well as some GHC-specific features.

	Hoogle and Hayoo
	Haskell API search engines. They can search for functions
              by name or type.




Applications and Libraries



If you’re looking for a Haskell library to
        use for a particular task or an application written in Haskell, check
        out the following resources:
	The Haskell community
	Maintains a central repository of open source Haskell
              libraries called Hackage. It lets you
              search for software to download, or browse its collection by
              category.

	The Haskell
            wiki
	Contains a section dedicated to information about
              particular Haskell libraries.




The Haskell Community



There are a number of ways you can get in
        touch with other Haskell programmers, in order to ask questions, learn
        what other people are talking about, and simply do some social
        networking with your peers:
	The first stop on your search for
            community resources should be the Haskell website. This page
            contains the most current links to various communities and
            information, as well as a huge and actively maintained
            wiki.

	Haskellers use a number of mailing
            lists for topical discussions. Of these, the most
            generally interesting is named haskell-cafe. It has a
            relaxed, friendly atmosphere, where professionals and academics
            rub shoulders with casual hackers and beginners.

	For real-time chat, the Haskell IRC
            channel, named #haskell, is large and lively.
            Like haskell-cafe, the atmosphere stays friendly and
            helpful in spite of the huge number of concurrent users.

	There are many local user groups,
            meetups, academic workshops, and the like; there is a list of the
            known user groups and workshops.

	The Haskell Weekly News is
            a very-nearly-weekly summary of activities in the Haskell
            community. You can find pointers to interesting mailing list
            discussions, new software releases, and similar things.

	The Haskell Communities and
            Activities Report collects information about people that
            use Haskell and what they’re doing with it. It’s been running for
            years, so it provides a good way to peer into Haskell’s
            past.





Conventions Used in This Book



The following typographical conventions are used in this
      book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
            file extensions.

	Constant
          width
	Used for program listings, as well as within paragraphs to
            refer to program elements such as variable or function names,
            databases, data types, environment variables, statements, and
            keywords.

	Constant width
          bold
	Shows commands or other text that should be typed literally
            by the user.

	Constant width
          italic
	Shows text that should be replaced with user-supplied values
            or by values determined by context.



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you
      may use the code in this book in your programs and documentation. You do
      not need to contact us for permission unless you’re reproducing a
      significant portion of the code. For example, writing a program that
      uses several chunks of code from this book does not require permission.
      Selling or distributing a CD-ROM of examples from O’Reilly books does
      require permission. Answering a question by citing this book and quoting
      example code does not require permission. Incorporating a significant
      amount of example code from this book into your product’s documentation
      does require permission.
We appreciate, but do not require, attribution. An attribution
      usually includes the title, author, publisher, and ISBN. For example:
      “Real World Haskell, by Bryan O’Sullivan, John
      Goerzen, and Don Stewart. Copyright 2009 Bryan O’Sullivan, John Goerzen,
      and Donald Stewart, 978-0-596-51498-3.”
If you feel your use of code examples falls outside fair use or
      the permission given above, feel free to contact us at
      permissions@oreilly.com.

Safari® Books Online



Note
When you see a Safari® Books Online icon on the cover of your
        favorite technology book, that means the book is available online
        through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
      virtual library that lets you easily search thousands of top tech books,
      cut and paste code samples, download chapters, and find quick answers
      when you need the most accurate, current information. Try it for free at
      http://safari.oreilly.com.

How to Contact Us



Please address comments and questions concerning this book to the
      publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
      and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596514983

To comment or ask technical questions about this book, send email
      to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
      Centers, and the O’Reilly Network,
      see our website at:
	http://www.oreilly.com
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Chapter 1. Getting Started



As you read the early chapters of this book,
    keep in mind that we will sometimes introduce ideas in restricted, simplified
    form. Haskell is a deep language, and presenting every aspect of a given
    subject all at once is likely to prove overwhelming. As we build a solid
    foundation in Haskell, we will expand upon these initial
    explanations.
Your Haskell Environment



Haskell is a language with many implementations, two of which are
      widely used. Hugs is an interpreter that is primarily used for teaching. For
      real applications, the Glasgow Haskell Compiler (GHC) is much more popular. Compared to Hugs, GHC is more suited to “real
      work”: it compiles to native code, supports parallel execution,
      and provides useful performance analysis and debugging tools. For these
      reasons, GHC is the Haskell
      implementation that we will be using throughout this book.
GHC has three
      main components:
	ghc
	An optimizing compiler that generates fast native code

	ghci
	An interactive interpreter and debugger

	runghc
	A program for running Haskell programs as scripts, without needing to compile
            them first



How we refer to the components of GHC
When we discuss the GHC system as a whole, we will refer to
        it as GHC. If we are
        talking about a specific command, we will mention ghc, ghci, or runghc by name.

We assume that you’re using at least version 6.8.2 of
      GHC, which was released in
      2007. Many of our examples will work unmodified with older versions.
      However, we recommend using the newest version
      available for your platform. If you’re using Windows or Mac OS X, you
      can get started easily and quickly using a prebuilt installer. To obtain
      a copy of GHC for these
      platforms, visit the GHC download page and look for the
      list of binary packages and installers.
Many Linux distributors and providers of BSD and other
      Unix variants make custom binary packages of GHC available. Because these are built
      specifically for each environment, they are much easier to install and
      use than the generic binary packages that are available from the
      GHC download page. You can
      find a list of distributions that custom build GHC at the GHC page distribution
      packages.
For more detailed information about how to
      install GHC on a variety of
      popular platforms, we’ve provided some instructions in Appendix A.

Getting Started with ghci, the Interpreter



The interactive interpreter for
      GHC is a program named
      ghci. It lets us enter and evaluate
      Haskell expressions, explore modules, and debug our code. If you are
      familiar with Python or Ruby, ghci is
      somewhat similar to python and
      irb, the interactive Python and Ruby
      interpreters.
The ghci command has a narrow focus
We typically cannot copy some code out of
        a Haskell source file and paste it into ghci. This does not have a significant
        effect on debugging pieces of code, but it can initially be surprising
        if you are used to, say, the interactive Python interpreter.

On Unix-like systems, we run ghci as a command in a shell window. On
      Windows, it’s available via the Start menu. For example, if you install
      the program using the GHC
      installer on Windows XP, you should go to All Programs, then GHC; you
      will see ghci in the list. (See Windows for a screenshot.)
When we run ghci, it displays a startup banner, followed
      by a Prelude> prompt. Here, we’re
      showing version 6.8.3 on a Linux box:
$ ghci
GHCi, version 6.8.3: http://www.haskell.org/ghc/  :? for help
Loading package base ... linking ... done.
Prelude>
The word Prelude in the prompt
      indicates that Prelude, a standard
      library of useful functions, is loaded and ready to use. When we load
      other modules or source files, they will show up in the prompt,
      too.
Getting help
If you enter :? at the ghci prompt, it
        will print a long help message.

The Prelude module is sometimes referred to as “the standard
      prelude” because its contents are defined by the Haskell 98
      standard. Usually, it’s simply shortened to “the
      prelude.”
About the ghci prompt
The prompt displayed by ghci changes frequently depending on what
        modules we have loaded. It can often grow long enough to leave little
        visual room on a single line for our input.
For brevity and consistency, we replaced
        ghci’s default prompts throughout
        this book with the prompt string ghci>.
If you want to do this
        yourself, use ghci’s
        :set prompt directive, as follows:
Prelude> :set prompt "ghci> "
ghci>

The Prelude is always
      implicitly available; we don’t need to take any actions to use the
      types, values, or functions it defines. To use definitions from other
      modules, we must load them into ghci,
      using the :module
      command:
ghci> :module + Data.Ratio
We can now use the functionality of the
      Data.Ratio module, which lets us work with rational numbers
      (fractions).

Basic Interaction: Using ghci as a Calculator



In addition to providing a convenient interface for testing
      code fragments, ghci can function as
      a readily accessible desktop calculator. We can easily express any
      calculator operation in ghci and, as
      an added bonus, we can add more complex operations as we become more
      familiar with Haskell. Even using the interpreter in this simple way can
      help us to become more comfortable with how Haskell works.
Simple Arithmetic



We can immediately start entering expressions, in order to see what ghci will do with them. Basic arithmetic
        works similarly to languages such as C and Python—we write expressions in infix form, where an operator
        appears between its operands:
ghci> 2 + 2
4
ghci> 31337 * 101
3165037
ghci> 7.0 / 2.0
3.5
The infix style of writing an expression
        is just a convenience; we can also write an expression in
        prefix form, where the operator precedes its arguments. To do this,
        we must enclose the operator in parentheses:
ghci> 2 + 2
4
ghci> (+) 2 2
4
As these expressions imply, Haskell has a notion of
        integers and floating-point numbers. Integers can be arbitrarily
        large. Here, (^) provides
        integer exponentiation:
ghci> 313 ^ 15
27112218957718876716220410905036741257


An Arithmetic Quirk: Writing Negative Numbers



Haskell presents us with one peculiarity in how we must write
        numbers: it’s often necessary to enclose a negative number in
        parentheses. This affects us as soon as we move beyond the simplest
        expressions.
We’ll start by writing a negative
        number:
ghci> -3
-3

The - used in the preceding
        code is a unary operator. In other words, we didn’t write the
        single number “-3”; we wrote the number “3”
        and applied the operator - to it. The -
        operator is Haskell’s only unary operator, and we cannot mix it with
        infix operators:
ghci> 2 + -3

<interactive>:1:0:
    precedence parsing error
        cannot mix `(+)' [infixl 6] and prefix `-' [infixl 6] in the same infix 
                                                              expression

If we want to use the unary minus near an
        infix operator, we must wrap the expression that it applies to in
        parentheses:
ghci> 2 + (-3)
-1
ghci> 3 + (-(13 * 37))
-478
This avoids a parsing ambiguity. When we
        apply a function in Haskell, we write the name of the function,
        followed by its argument—for example, f 3. If we did not
        need to wrap a negative number in parentheses, we would have two
        profoundly different ways to read f-3: it could be either
        “apply the function f to the number -3,” or “subtract the number 3
        from the variable f.”
Most of the time, we can omit
        whitespace (“blank” characters such as space and tab)
        from expressions, and Haskell will parse them as we intended. But not
        always. Here is an expression that works:
ghci> 2*3
6

And here is one that seems similar to the
        previous problematic negative number example, but that results in a
        different error message:
ghci> 2*-3

<interactive>:1:1: Not in scope: `*-'

Here, the Haskell implementation is reading *- as a single operator. Haskell lets us
        define new operators (a subject that we will return to later), but we
        haven’t defined *-. Once again, a
        few parentheses get us and ghci
        looking at the expression in the same way:
ghci> 2*(-3)
-6

Compared to other languages, this unusual treatment of
        negative numbers might seem annoying, but it represents a reasoned
        trade-off. Haskell lets us define new operators at any time. This is
        not some kind of esoteric language feature; we will see quite a few
        user-defined operators in the chapters ahead. The language designers
        chose to accept a slightly cumbersome syntax for negative numbers in
        exchange for this expressive power.

Boolean Logic, Operators, and Value Comparisons



The values of Boolean logic in Haskell are True
        and False. The capitalization of
        these names is important. The language uses C-influenced operators for
        working with Boolean values: (&&) is logical “and”,
        and (||) is logical
        “or”:
ghci> True && False
False
ghci> False || True
True
While some programming languages treat
        the number zero as synonymous with False, Haskell does not, nor does it
        consider a nonzero value to be True:
ghci> True && 1

<interactive>:1:8:
    No instance for (Num Bool)
      arising from the literal `1' at <interactive>:1:8
    Possible fix: add an instance declaration for (Num Bool)
    In the second argument of `(&&)', namely `1'
    In the expression: True && 1
    In the definition of `it': it = True && 1

Once again, we are faced with a
        substantial-looking error message. In brief, it tells us that the
        Boolean type, Bool, is not a member of the family of
        numeric types, Num. The error message is rather long
        because ghci is pointing out the
        location of the problem and hinting at a possible change we could make
        that might fix it.
Here is a more detailed breakdown of the
        error message:
	No instance for (Num
            Bool) 
	Tells us that ghci is
              trying to treat the numeric value 1 as having a
              Bool type, but it cannot

	arising from the literal
            '1'
	Indicates that it was our use of the number 1
              that caused the problem

	In the definition of
            'it'
	Refers to a ghci
              shortcut that we will revisit in a few pages



Remain fearless in the face of error messages
We have an important point to make
          here, which we will repeat throughout the early sections of this
          book. If you run into problems or error messages that you do not yet
          understand, don’t panic. Early on, all you have
          to do is figure out enough to make progress on a problem. As you
          acquire experience, you will find it easier to understand parts of
          error messages that initially seem obscure.
The numerous error messages have a
          purpose: they actually help us write correct code by making us
          perform some amount of debugging “up front,” before we ever run a program. If you come from a
          background of working with more permissive languages, this may come
          as something of a shock. Bear with us.

Most of Haskell’s comparison operators
        are similar to those used in C and the many languages it has influenced:
ghci> 1 == 1
True
ghci> 2 < 3
True
ghci> 4 >= 3.99
True
One operator that differs from its C
        counterpart is “is not equal to”. In C, this is written
        as !=. In Haskell, we write (/=), which resembles the ≠ notation used
        in mathematics:
ghci> 2 /= 3
True

Also, where C-like languages often use
        ! for logical negation, Haskell
        uses the not function:
ghci> not True
False


Operator Precedence and Associativity



Like written algebra and other programming languages that use infix
        operators, Haskell has a notion of operator precedence. We can use
        parentheses to explicitly group parts of an expression, and precedence
        allows us to omit a few parentheses. For example, the multiplication
        operator has a higher precedence than the addition operator, so
        Haskell treats the following two expressions as equivalent:
ghci> 1 + (4 * 4)
17
ghci> 1 + 4 * 4
17
Haskell assigns numeric precedence values
        to operators, with 1 being the lowest precedence and 9 the highest. A
        higher-precedence operator is applied before a lower-precedence operator. We can use ghci to inspect the precedence levels of
        individual operators, using ghci’s
        :info command:
ghci> :info (+)
class (Eq a, Show a) => Num a where
  (+) :: a -> a -> a
  ...
  	-- Defined in GHC.Num
infixl 6 +
ghci> :info (*)
class (Eq a, Show a) => Num a where
  ...
  (*) :: a -> a -> a
  ...
  	-- Defined in GHC.Num
infixl 7 *
The information we seek is in the line
        infixl 6 +, which indicates that
        the (+) operator has a precedence
        of 6. (We will explain the other output in a later chapter.) infixl 7 * tells us that the (*) operator has a precedence of 7. Since
        (*) has a higher precedence than
        (+), we can now see why 1 +
        4 * 4 is evaluated as 1 + (4 * 4), and not
        (1 + 4) * 4.
Haskell also defines
        associativity of operators. This determines
        whether an expression containing multiple uses of an operator is
        evaluated from left to right or right to left. The (+) and (*) operators are left associative, which
        is represented as infixl in the preceding ghci output. A right associative operator is
        displayed with infixr:
ghci> :info (^)
(^) :: (Num a, Integral b) => a -> b -> a 	-- Defined in GHC.Real
infixr 8 ^

The combination of precedence and
        associativity rules are usually referred to as
        fixity rules.

Undefined Values, and Introducing Variables



Haskell’s Prelude, the
        standard library we mentioned earlier, defines at least one well-known
        mathematical constant for us:
ghci> pi
3.141592653589793

But its coverage of mathematical constants is not
        comprehensive, as we can quickly see. Let us look for Euler’s number,
        e:
ghci> e

<interactive>:1:0: Not in scope: `e'

Oh well. We have to define it
        ourselves.
Don’t worry about the error message
If the not in
          scope error message seems a little daunting, do not worry.
          All it means is that there is no variable defined with the name
          e.

Using ghci’s
        let construct, we can make a temporary definition of e
        ourselves:
ghci> let e = exp 1
This is an application of the exponential
        function, exp, and our first
        example of applying a function in Haskell. While languages such as
        Python require parentheses around the arguments to a function, Haskell
        does not.
With e defined, we can
        now use it in arithmetic expressions. The (^) exponentiation operator that we introduced earlier can only raise a number to
        an integer power. To use a floating-point number as the exponent, we
        use the (**) exponentiation
        operator:
ghci> (e ** pi) - pi
19.99909997918947

This syntax is ghci-specific
The syntax for let that ghci accepts is not the same as we would
          use at the “top level” of a normal Haskell program. We
          will see the normal syntax in Introducing Local Variables.


Dealing with Precedence and Associativity Rules



It is sometimes better to leave at least some
        parentheses in place, even when Haskell allows us to omit them. Their
        presence can help future readers (including ourselves) to understand
        what we intended.
Even more importantly, complex expressions that rely
        completely on operator precedence are notorious sources of bugs. A
        compiler and a human can easily end up with different notions of what
        even a short, parenthesis-free expression is supposed to do.
There is no need to remember all of the
        precedence and associativity rules numbers: it is simpler to add
        parentheses if you are unsure.


Command-Line Editing in ghci



On most systems, ghci has
      some amount of command-line editing ability. In case you are not
      familiar with command-line editing, it’s a huge time saver. The basics
      are common to both Unix-like and Windows systems. Pressing the up arrow
      key on your keyboard recalls the last line of input you entered;
      pressing up repeatedly cycles through earlier lines of input. You can
      use the left and right arrow keys to move around inside a line of input.
      On Unix (but not Windows, unfortunately), the Tab key completes
      partially entered identifiers.
Where to look for more information
We’ve barely scratched the surface of
        command-line editing here. Since you can work more effectively if
        you’re familiar with the capabilities of your command-line editing
        system, you might find it useful to do some further reading.
On Unix-like systems, ghci uses the GNU
        readline library, which is powerful and customizable. On Windows,
        ghci’s command-line editing capabilities are provided by the doskey command.


Lists



A list is surrounded by square brackets; the elements are separated by
      commas:
ghci> [1, 2, 3]
[1,2,3]

Commas are separators, not terminators
Some languages permit the last element in a list to be
        followed by an optional trailing comma before a closing bracket, but
        Haskell doesn’t allow this. If you leave in a trailing comma (e.g.,
        [1,2,]), you’ll get a parse error.

A list can be of any length. An empty list is written
      []:
ghci> []
[]
ghci> ["foo", "bar", "baz", "quux", "fnord", "xyzzy"]
["foo","bar","baz","quux","fnord","xyzzy"]
All elements of a list must be of the same type. Here,
      we violate this rule. Our list starts with two Bool values,
      but ends with a string:
ghci> [True, False, "testing"]

<interactive>:1:14:
    Couldn't match expected type `Bool' against inferred type `[Char]'
    In the expression: "testing"
    In the expression: [True, False, "testing"]
    In the definition of `it': it = [True, False, "testing"]

Once again, ghci’s
      error message is verbose, but it’s simply telling us that there is no
      way to turn the string into a Boolean value, so the list expression
      isn’t properly typed.
If we write a series of elements using
      enumeration notation, Haskell will fill in the contents of the list for us:
ghci> [1..10]
[1,2,3,4,5,6,7,8,9,10]

Here, the .. characters denote an enumeration. We can only
      use this notation for types whose elements we can enumerate. It makes no
      sense for text strings, for instance—there is not any sensible, general
      way to enumerate ["foo".."quux"].
By the way, notice that the preceding use
      of range notation gives us a closed interval; the
      list contains both endpoints.
When we write an enumeration, we can
      optionally specify the size of the step to use by providing the first
      two elements, followed by the value at which to stop generating the
      enumeration:
ghci> [1.0,1.25..2.0]
[1.0,1.25,1.5,1.75,2.0]
ghci> [1,4..15]
[1,4,7,10,13]
ghci> [10,9..1]
[10,9,8,7,6,5,4,3,2,1]
In the second case, the list is quite
      sensibly missing the endpoint of the enumeration, because it isn’t an
      element of the series we defined.
We can omit the endpoint of an enumeration.
      If a type doesn’t have a natural “upper bound,” this will
      produce values indefinitely. For example, if you type [1..] at the ghci prompt, you’ll have to interrupt or kill
      ghci to stop it from printing an
      infinite succession of ever-larger numbers. If you are tempted to do
      this, hit Ctrl-C to halt the enumeration. We will find later on that
      infinite lists are often useful in Haskell.
Beware of enumerating floating-point numbers
Here’s a nonintuitive bit of behavior:
ghci> [1.0..1.8]
[1.0,2.0]

Behind the scenes, to avoid
        floating-point roundoff problems, the Haskell implementation
        enumerates from 1.0 to 1.8+0.5.
Using enumeration notation over
        floating-point numbers can pack more than a few surprises, so if you
        use it at all, be careful. Floating-point behavior is quirky in all
        programming languages; there is nothing unique to Haskell here.

Operators on Lists



There are two ubiquitous operators for
        working with lists. We concatenate two lists using the (++) operator:
ghci> [3,1,3] ++ [3,7]
[3,1,3,3,7]
ghci> [] ++ [False,True] ++ [True]
[False,True,True]
More basic is the (:) operator, which adds an element to the
        front of a list (this is pronounced “cons” [short for
        “construct”]):
ghci> 1 : [2,3]
[1,2,3]
ghci> 1 : []
[1]
You might be tempted to try writing
        [1,2]:3 to add an element to the end of a list, but
        ghci will reject this with an error
        message, because the first argument of (:) must be an element, and the second must
        be a list.


Strings and Characters



If you know a language such as Perl or C, you’ll find
      Haskell’s notations for strings familiar.
A text string is surrounded by double quotes:
ghci> "This is a string."
"This is a string."

As in many languages, we can represent hard-to-see characters by
      “escaping” them. Haskell’s escape characters and escaping
      rules follow the widely used conventions established by the C language. For
      example, '\n' denotes a
      newline character, and '\t' is a tab
      character. For complete details, see Appendix B.
ghci> putStrLn "Here's a newline -->\n<-- See?"
Here's a newline -->
<-- See?

The putStrLn
      function prints a string.
Haskell makes a distinction between single
      characters and text strings. A single character is enclosed in single
      quotes:
ghci> 'a'
'a'

In fact, a text string is simply a list of
      individual characters. Here’s a painful way to write a short string,
      which ghci gives back to us in a more familiar form:
ghci> let a = ['l', 'o', 't', 's', ' ', 'o', 'f', ' ', 'w', 'o', 'r', 'k']
ghci> a
"lots of work"
ghci> a == "lots of work"
True
The empty string is written "", and is a synonym for
      []:
ghci> "" == []
True

Since a string is a list of characters, we can use the
      regular list operators to construct new strings:
ghci> 'a':"bc"
"abc"
ghci> "foo" ++ "bar"
"foobar"

First Steps with Types



While we’ve talked a little about types already, our interactions with ghci have so far been free of much
      type-related thinking. We haven’t told ghci what types we’ve been using, and it’s
      mostly been willing to accept our input.
Haskell requires type names to start with
      an uppercase letter, and variable names must start with a lowercase
      letter. Bear this in mind as you read on; it makes it much easier to
      follow the names.
The first thing we can do to start
      exploring the world of types is to get ghci to tell us more about what it’s doing.
      ghci has a command, :set, that lets us change a few of its default behaviors. We can tell
      it to print more type information as follows:
ghci> :set +t
ghci> 'c'
'c'
it :: Char
ghci> "foo"
"foo"
it :: [Char]
What the +t does is tell
      ghci to print the type of an
      expression after the expression. That cryptic it in the output can be very
      useful: it’s actually the name of a special variable, in which ghci stores the result of the last expression
      we evaluated. (This isn’t a Haskell language feature; it’s specific to
      ghci alone.) Let’s break down the
      meaning of the last line of ghci
      output:
	It tells us about the special variable
          it.

	We can read text of the form x ::
          y as meaning “the expression x has the type y.”

	Here, the expression “it”
          has the type [Char]. (The name String
          is often used instead of [Char]. It is
          simply a synonym for [Char].)



The Joy of it
That it variable is a handy ghci shortcut. It lets us use the result of
        the expression we just evaluated in a new expression:
ghci> "foo"
"foo"
it :: [Char]
ghci> it ++ "bar"
"foobar"
it :: [Char]
When evaluating an expression, ghci won’t change the value of
        it if the evaluation fails. This lets you write
        potentially bogus expressions with something of a safety net:
ghci> it
"foobar"
it :: [Char]
ghci> it ++ 3

<interactive>:1:6:
    No instance for (Num [Char])
      arising from the literal `3' at <interactive>:1:6
    Possible fix: add an instance declaration for (Num [Char])
    In the second argument of `(++)', namely `3'
    In the expression: it ++ 3
    In the definition of `it': it = it ++ 3
ghci> it
"foobar"
it :: [Char]
ghci> it ++ "baz"
"foobarbaz"
it :: [Char]
When we couple it with liberal use of the
        arrow keys to recall and edit the last expression we typed, we gain a
        decent way to experiment interactively: the cost of mistakes is very
        low. Take advantage of the opportunity to make cheap, plentiful
        mistakes when you’re exploring the language!

Here are a few more of Haskell’s names for types, from
      expressions of the sort that we’ve already seen:
ghci> 7 ^ 80
40536215597144386832065866109016673800875222251012083746192454448001
it :: Integer

Haskell’s integer type is named Integer.
      The size of an Integer value is bounded only by
      your system’s memory capacity.
Rational numbers don’t look quite the same as integers.
      To construct a rational number, we use the (%)
      operator. The numerator is on the left, the denominator on the
      right:
ghci> :m +Data.Ratio
ghci> 11 % 29
11%29
it :: Ratio Integer
For convenience, ghci lets us abbreviate many commands, so we
      can write :m instead of
      :module to load a module.
Notice there are two words on the
      righthand side of the :: in the preceding code. We can read
      this as a “Ratio of Integer.” We might guess that a Ratio
      must have values of type Integer as both numerator and
      denominator. Sure enough, if we try to construct a Ratio
      where the numerator and denominator are of different types or of the
      same nonintegral type, ghci
      complains:
ghci> 3.14 % 8

<interactive>:1:0:
    Ambiguous type variable `t' in the constraints:
      `Integral t' arising from a use of `%' at <interactive>:1:0-7
      `Fractional t'
        arising from the literal `3.14' at <interactive>:1:0-3
    Probable fix: add a type signature that fixes these type variable(s)
ghci> 1.2 % 3.4

<interactive>:1:0:
    Ambiguous type variable `t' in the constraints:
      `Integral t' arising from a use of `%' at <interactive>:1:0-8
      `Fractional t'
        arising from the literal `3.4' at <interactive>:1:6-8
    Probable fix: add a type signature that fixes these type variable(s)
Although it is initially useful to have
      :set +t giving us type
      information for every expression we enter, this is a facility we will
      quickly outgrow. After a while, we will often know what type we expect
      an expression to have. We can turn off the extra type information at any time, using the
      :unset command:
ghci> :unset +t
ghci> 2
2
Even with this facility turned off, we can
      still get that type information easily when we need it, using another
      ghci command:
ghci> :type 'a'
'a' :: Char
ghci> "foo"
"foo"
ghci> :type it
it :: [Char]
The :type command will print type information for any expression we give it
      (including it, as we see here). It won’t actually
      evaluate the expression; it checks only its type and prints that.
Why are the types reported for these two
      expressions different?
ghci> 3 + 2
5
ghci> :type it
it :: Integer
ghci> :type 3 + 2
3 + 2 :: (Num t) => t
Haskell has several numeric types. For
      example, a literal number such as 1
      could, depending on the context in which it appears, be an integer or a
      floating-point value. When we force ghci to evaluate the expression 3 +
      2, it has to choose a type so that it can print the value, and it
      defaults to Integer. In the second case, we ask ghci to print the type of the expression
      without actually evaluating it, so it does not have to be so specific.
      It answers, in effect, “its type is numeric.” We will see more of this
      style of type annotation in Chapter 6.

A Simple Program



Let’s take a small leap ahead and write a
      small program that counts the number of lines in its input. Don’t expect
      to understand this yet—it’s just fun to get our hands dirty. In a text
      editor, enter the following code into a file, and save it as WC.hs:
-- file: ch01/WC.hs
-- lines beginning with "--" are comments.

main = interact wordCount
    where wordCount input = show (length (lines input)) ++ "\n"
Find or create a text file; let’s call it
      quux.txt:[1]
$ cat quux.txt
Teignmouth, England
Paris, France
Ulm, Germany
Auxerre, France
Brunswick, Germany
Beaumont-en-Auge, France
Ryazan, Russia
From a shell or command prompt, run the
      following command:
$ runghc WC < quux.txt
7
We have successfully written a simple
      program that interacts with the real world! In the chapters that follow,
      we will continue to fill the gaps in our understanding until we can
      write programs of our own.
Exercises
	Enter the following expressions into ghci. What are their types?
	5 + 8

	3 * 5 + 8

	2 + 4

	(+) 2 4

	sqrt 16

	succ 6

	succ 7

	pred 9

	pred 8

	sin (pi / 2)

	truncate pi

	round 3.5

	round 3.4

	floor 3.7

	ceiling 3.3




	From ghci, type
            :? to print some help.
            Define a variable, such as let x = 1, and then type
            :show bindings. What do you see?

	The words function
            breaks a string up into a list of words. Modify the WC.hs example in order to count the
            number of words in a file.

	Modify the WC.hs
            example again, in order to print the number of characters in a
            file.







[1] Incidentally, what do these cities
          have in common?



Chapter 2. Types and Functions



Why Care About Types?



Every expression and function in Haskell has a
      type. For example, the value True has the type Bool, while the
      value "foo" has the type
      String. The type of a value indicates that it shares
      certain properties with other values of the same type. For example, we
      can add numbers and concatenate lists; these are properties of those
      types. We say an expression has type X, or is of type X.
Before we launch into a deeper discussion
      of Haskell’s type system, let’s talk about why we should care about
      types at all—what are they even for? At the lowest
      level, a computer is concerned with bytes, with barely any additional
      structure. What a type system gives us is abstraction. A type adds meaning
      to plain bytes: it lets us say “these bytes are text,”
      “those bytes are an airline reservation,” and so on.
      Usually, a type system goes beyond this to prevent us from accidentally
      mixing up types. For example, a type system usually won’t let us treat a
      hotel reservation as a car rental receipt.
The benefit of introducing abstraction is
      that it lets us forget or ignore low-level details. If I know that a
      value in my program is a string, I don’t have to know the intimate
      details of how strings are implemented. I can just assume that my string
      is going to behave like all the other strings I’ve worked with.
What makes type systems interesting is that
      they’re not all equal. In fact, different type systems are often not
      even concerned with the same kinds of problems. A programming language’s
      type system deeply colors the way we think and write code in that
      language.
Haskell’s type system allows us to think at
      a very abstract level, and it permits us to write concise, powerful
      programs.

Haskell’s Type System



There are three interesting aspects to
      types in Haskell: they are strong, they are
      static, and they can be automatically
      inferred. Let’s talk in more detail about each of
      these ideas. When possible, we’ll present similarities between concepts
      from Haskell’s type system and related ideas in other languages. We’ll
      also touch on the respective strengths and weaknesses of each of these
      properties.
Strong Types



When we say that Haskell has a strong
        type system, we mean that the type system guarantees that a program
        cannot contain certain kinds of errors. These errors come from trying
        to write expressions that don’t make sense, such as using an integer
        as a function. For instance, if a function expects to work with
        integers and we pass it a string, a Haskell compiler will reject
        this.
We call an expression that obeys a
        language’s type rules well typed. An expression that
        disobeys the type rules is ill typed, and it will
        cause a type error.
Another aspect of Haskell’s view of
        strong typing is that it will not automatically coerce values from one type to another. (Coercion is
        also known as casting or conversion.) For example, a C compiler will
        automatically and silently coerce a value of type int
        into a float on our behalf if a function expects a
        parameter of type float, but a Haskell compiler will
        raise a compilation error in a similar situation. We must explicitly
        coerce types by applying coercion functions.
Strong typing does occasionally make it
        more difficult to write certain kinds of code. For example, a classic
        way to write low-level code in the C language is to be given a byte
        array and cast it to treat the bytes as if they’re really a
        complicated data structure. This is very efficient, since it doesn’t
        require us to copy the bytes around. Haskell’s type system does not
        allow this sort of coercion. In order to get the same structured view
        of the data, we would need to do some copying, which would cost a
        little in performance.
The huge benefit of strong typing is that
        it catches real bugs in our code before they can cause problems. For
        example, in a strongly typed language, we can’t accidentally use a
        string where an integer is expected.
Weaker and Stronger Types
It is useful to be aware that many
          language communities have their own definitions of a strong type.
          Nevertheless, we will speak briefly and in broad terms about the
          notion of strength in type systems.
In academic computer science, the
          meanings of strong and
          weak have a narrowly technical meaning.
          Strength refers to how permissive a type system is, whereas a weaker type system treats
          more expressions as valid than a stronger type system does.
For example, in Perl, the expression
          "foo" + 2 evaluates to the number 2, but the expression
          "13foo" + 2 evaluates to the number 15. Haskell rejects
          both expressions as invalid, because the (+) operator requires both of its
          operands to be numeric. Because Perl’s type system is more
          permissive than Haskell’s, we say that it is weaker under this
          narrow technical interpretation.
The fireworks around type systems have
          their roots in ordinary English, where people attach notions of
          value to the words “weak” and
          “strong”—we usually think of strength as better than
          weakness. Many more programmers speak plain English than academic
          jargon, and quite often academics really are
          throwing brickbats at whatever type system doesn’t suit their fancy.
          The result is often that popular Internet pastime, a flame
          war.


Static Types



Having a static type
        system means that the compiler knows the type of every value
        and expression at compile time, before any code is executed. A Haskell
        compiler or interpreter will detect when we try to use expressions
        whose types don’t match, and reject our code with an error message
        before we run it:
ghci> True && "false"

<interactive>:1:8:
    Couldn't match expected type `Bool' against inferred type `[Char]'
    In the second argument of `(&&)', namely `"false"'
    In the expression: True && "false"
    In the definition of `it': it = True && "false"

We’ve seen this kind of error message
        before. The compiler has inferred that the type of the expression
        "false" is [Char]. The
        (&&) operator requires
        each of its operands to be of type Bool, and its left
        operand indeed has this type. Since the actual type of "false" does not match the required type,
        the compiler rejects this expression as ill typed.
Static typing can occasionally make it
        difficult to write some useful kinds of code. In languages such as
        Python, duck typing is common, where an object acts enough like another to be used as
        a substitute for it.[2] Fortunately, Haskell’s system of
        typeclasses, which we will cover in Chapter 6,
        provides almost all of the benefits of dynamic typing, in a safe and
        convenient form. Haskell has some support for programming with truly
        dynamic types, though it is not quite as easy as it is in a language
        that wholeheartedly embraces the notion.
Haskell’s combination of strong and
        static typing makes it impossible for type errors to occur at runtime.
        While this means that we need to do a little more thinking up front,
        it also eliminates many simple errors that can otherwise be devilishly
        hard to find. It’s a truism within the Haskell community that once
        code compiles, it’s more likely to work correctly than in other
        languages. (Perhaps a more realistic way of putting this is that
        Haskell code often has fewer trivial bugs.)
Programs written in dynamically typed
        languages require large suites of tests to give some assurance that
        simple type errors cannot occur. Test suites cannot offer complete
        coverage: some common tasks, such as refactoring a program to make it
        more modular, can introduce new type errors that a test suite may not
        expose.
In Haskell, the compiler proves the
        absence of type errors for us: a Haskell program that compiles will
        not suffer from type errors when it runs. Refactoring is usually a
        matter of moving code around, and then recompiling and tidying up a
        few times until the compiler gives us the “all
        clear.”
A helpful analogy to understand the
        value of static typing is to look at it as putting pieces into a
        jigsaw puzzle. In Haskell, if a piece has the wrong shape, it simply
        won’t fit. In a dynamically typed language, all the pieces are 1×1
        squares and always fit, so you have to constantly examine the
        resulting picture and check (through testing) whether it’s
        correct.

Type Inference



Finally, a Haskell compiler can automatically deduce the types of
        almost[3] all expressions in a program. This process is known as
        type inference. Haskell allows us to explicitly
        declare the type of any value, but the presence of type inference
        means that this is almost always optional, not something we are
        required to do.


What to Expect from the Type System



Our exploration of the major capabilities
      and benefits of Haskell’s type system will span a number of chapters.
      Early on, you may find Haskell’s types to be a chore to deal
      with.
For example, instead of simply writing some
      code and running it to see if it works as you might expect in Python or
      Ruby, you’ll first need to make sure that your program passes the
      scrutiny of the type checker. Why stick with the learning curve?
While strong, static typing makes Haskell
      safe, type inference makes it concise. The result is potent: we end up
      with a language that’s safer than popular statically typed languages and
      often more expressive than dynamically typed languages. This is a strong
      claim to make, and we will back it up with evidence throughout the
      book.
Fixing type errors may initially feel like
      more work than using a dynamic language. It might help to look at this
      as moving much of your debugging up front. The
      compiler shows you many of the logical flaws in your code, instead of
      leaving you to stumble across problems at runtime.
Furthermore, because Haskell can infer the
      types of your expressions and functions, you gain the benefits of static
      typing without the added burden of “finger
      typing” imposed by less powerful statically typed languages. In
      other languages, the type system serves the needs of the compiler. In
      Haskell, it serves you. The trade-off is that you
      have to learn to work within the framework it provides.
We will introduce new uses of Haskell’s
      types throughout this book to help us write and test practical code. As
      a result, the complete picture of why the type system is worthwhile will
      emerge gradually. While each step should justify itself, the whole will
      end up greater than the sum of its parts.

Some Common Basic Types



In First Steps with Types, we
      introduced a few types. Here are several more of the most common base
      types:
	A Char value
	Represents a Unicode character.

	A Bool value
	Represents a value in Boolean logic. The possible values of
            type Bool are True and
            False.

	The Int type
	Used for signed, fixed-width integer values. The exact range
            of values represented as Int depends on the system’s
            longest “native” integer: on a 32-bit machine, an
            Int is usually 32 bits wide, while on a 64-bit
            machine, it is usually 64 bits wide. The Haskell standard
            guarantees only that an Int is wider than 28 bits.
            (Numeric types exist that are exactly 8, 16, and so on bits wide,
            in signed and unsigned flavors; we’ll get to those later.)

	An Integer value
	A signed integer of unbounded size. Integers
            are not used as often as Ints, because they are more
            expensive both in performance and space consumption. On the other
            hand, Integer computations do not silently overflow,
            so they give more reliably correct answers.

	Values of type Double
	Used for floating-point numbers. A Double
            value is typically 64 bits wide and uses the system’s native
            floating-point representation. (A narrower type,
            Float, also exists, but its use is discouraged;
            Haskell compiler writers concentrate more on making
            Double efficient, so Float is much
            slower.)



We have already briefly seen Haskell’s
      notation for types earlier in First Steps with Types. When we
      write a type explicitly, we use the notation expression ::
      MyType to say that expression has the
      type MyType. If we omit the :: and the type
      that follows, a Haskell compiler will infer the type of the
      expression:
ghci> :type 'a'
'a' :: Char
ghci> 'a' :: Char
'a'
ghci> [1,2,3] :: Int

<interactive>:1:0:
    Couldn't match expected type `Int' against inferred type `[a]'
    In the expression: [1, 2, 3] :: Int
    In the definition of `it': it = [1, 2, 3] :: Int
The combination of :: and the
      type after it is called a type signature.

Function Application



Now that we’ve had our fill of data types
      for a while, let’s turn our attention to working with some of the types
      we’ve seen, using functions.
To apply a function in Haskell, we write the name of the
      function followed by its arguments:
ghci> odd 3
True
ghci> odd 6
False
We don’t use parentheses or commas to group
      or separate the arguments to a function; merely writing the name of the
      function, followed by each argument in turn, is enough. As an example,
      let’s apply the compare function,
      which takes two arguments:
ghci> compare 2 3
LT
ghci> compare 3 3
EQ
ghci> compare 3 2
GT
If you’re used to function call syntax in
      other languages, this notation can take a little getting used to, but
      it’s simple and uniform.
Function application has higher precedence
      than using operators, so the following two expressions have the same
      meaning:
ghci> (compare 2 3) == LT
True
ghci> compare 2 3 == LT
True
The parentheses in the preceding code don’t
      do any harm, but they add some visual noise. Sometimes, however, we
      must use parentheses to indicate how we want a
      complicated expression to be parsed:
ghci> compare (sqrt 3) (sqrt 6)
LT

This applies compare to the results of applying sqrt
      3 and sqrt 6, respectively. If we omit the
      parentheses, it looks like we are trying to pass four arguments to
      compare, instead of the two it
      accepts.

Useful Composite Data Types: Lists and Tuples



A composite data type is constructed from other types. The most common
      composite data types in Haskell are lists and tuples.
We’ve already seen the list type mentioned
      earlier in the Strings and Characters, where we found that
      Haskell represents a text string as a list of Char values,
      and that the type “list of Char” is written
      [Char].
The head function returns the first element of a list:
ghci> head [1,2,3,4]
1
ghci> head ['a','b','c']
'a'
Its counterpart, tail, returns all but the head of a list:
ghci> tail [1,2,3,4]
[2,3,4]
ghci> tail [2,3,4]
[3,4]
ghci> tail [True,False]
[False]
ghci> tail "list"
"ist"
ghci> tail []
*** Exception: Prelude.tail: empty list
As you can see, we can apply head and tail to lists of different types. Applying
      head to a [Char] value
      returns a Char value, while applying it to a
      [Bool] value returns a Bool value. The
      head function doesn’t care what
      type of list it deals with.
Because the values in a list can have any
      type, we call the list type
      polymorphic.[4] When we want to write a polymorphic type, we use a
      type variable, which must begin with a lowercase letter. A type variable is a
      placeholder, where we’ll eventually substitute a real type.
We can write the type “list of
      a” by enclosing the type variable
      in square brackets: [a]. This amounts to
      saying, “I don’t care what type I have; I can make a list with
      it.”
Distinguishing type names and type variables
We can now see why a type name must start
        with an uppercase letter: it makes it distinct from a type variable,
        which must start with a lowercase letter.

When we talk about a list with values of a
      specific type, we substitute that type for our type variable. So, for
      example, the type [Int] is a list of values of type
      Int, because we substituted Int for a. Similarly, the type
      [MyPersonalType] is a list of values of type
      MyPersonalType. We can perform this substitution
      recursively, too: [[Int]] is a list of values of type
      [Int], i.e., a list of lists of Int.
ghci> :type [[True],[False,False]]
[[True],[False,False]] :: [[Bool]]

The type of this expression is a list of
      lists of Bool.
Lists are special
Lists are the bread and butter of Haskell
        collections. In an imperative language, we might perform a task many
        times by iterating through a loop. This is something that we often do
        in Haskell by traversing a list, either by recursing or using a
        function that recurses for us. Lists are the easiest stepping stone
        into the idea that we can use data to structure our program and its
        control flow. We’ll be spending a lot more time discussing lists in
        Chapter 4.

A tuple is a fixed-size collection of
      values, where each value can have a different type. This distinguishes
      them from a list, which can have any length, but whose elements must all
      have the same type.
To help understand the difference, let’s
      say we want to track two pieces of information about a book: its year of
      publication—a number—and its a title—a string. We can’t keep both of
      these pieces of information in a list, because they have different
      types. Instead, we use a tuple:
ghci> (1964, "Labyrinths")
(1964,"Labyrinths")

We write a tuple by enclosing its elements
      in parentheses and separating them with commas. We use the same notation for writing its
      type:
ghci> :type (True, "hello")
(True, "hello") :: (Bool, [Char])
ghci> (4, ['a', 'm'], (16, True))
(4,"am",(16,True))
There’s a special type, (),
      that acts as a tuple of zero elements. This type has only one
      value, which is also written (). Both the type and the
      value are usually pronounced “unit.” If you are familiar
      with C, () is somewhat similar to void.
Haskell doesn’t have a notion of a
      one-element tuple. Tuples are often referred to using the number of
      elements as a prefix. A 2-tuple has two elements and is usually
      called a pair. A 3-tuple (sometimes
      called a triple) has three elements; a 5-tuple has
      five; and so on. In practice, working with tuples that contain more than
      a handful of elements makes code unwieldy, so tuples of more than a few
      elements are rarely used.
A tuple’s type represents the number,
      positions, and types of its elements. This means that tuples containing
      different numbers or types of elements have distinct types, as do tuples
      whose types appear in different orders:
ghci> :type (False, 'a')
(False, 'a') :: (Bool, Char)
ghci> :type ('a', False)
('a', False) :: (Char, Bool)
In this example, the expression
      (False, 'a') has the type (Bool, Char), which
      is distinct from the type of ('a', False). Even though the
      number of elements and their types is the same, these two types are
      distinct because the positions of the element types are
      different:
ghci> :type (False, 'a', 'b')
(False, 'a', 'b') :: (Bool, Char, Char)

This type, (Bool, Char, Char),
      is distinct from (Bool, Char) because it contains three
      elements, not two.
We often use tuples to return multiple
      values from a function. We can also use them any time we need a
      fixed-size collection of values, if the circumstances don’t require a
      custom container type.
Exercise
	What are the types of the following expressions?
	False

	(["foo", "bar"],
                'a')

	[(True, []), (False,
                [['a']])]








Functions over Lists and Tuples



Our discussion of lists and tuples mentioned how we can
      construct them but little about how we do anything with them afterwards.
      So far we have only been introduced to two list functions, head and tail.
Two related list functions, take and drop, take two arguments. Given a number n and a
      list, take returns the first
      n elements of the list, while drop returns all but the
      first n elements of the list. (As these functions
      take two arguments, notice that we separate each function and its
      arguments using whitespace.)
ghci> take 2 [1,2,3,4,5]
[1,2]
ghci> drop 3 [1,2,3,4,5]
[4,5]
For tuples, the fst and snd functions return the first and second element of a pair,
      respectively:
ghci> fst (1,'a')
1
ghci> snd (1,'a')
'a'
If your background is in any of a number of
      other languages, each of these may look like an application of a
      function to two arguments. Under Haskell’s convention for function
      application, each one is an application of a function to a single
      pair.
Haskell tuples aren’t immutable lists
If you are coming from the Python world, you’ll probably be used to lists
        and tuples being almost interchangeable. Although the elements of a
        Python tuple are immutable, it can be indexed and iterated over using
        the same methods as a list. This isn’t the case in Haskell, so don’t
        try to carry that idea with you into unfamiliar linguistic
        territory.
As an illustration, take a look at the
        type signatures of fst and
        snd: they’re defined
        only for pairs and can’t be used with tuples of
        other sizes. Haskell’s type system makes it tricky to write a
        generalized “get the second element from any tuple, no matter
        how wide” function.

Passing an Expression to a Function



In Haskell, function application is left-associative. This is best
        illustrated by example: the expression a b c d is
        equivalent to (((a b) c) d). If we want to use one
        expression as an argument to another, we have to use explicit
        parentheses to tell the parser what we really mean. Here’s an
        example:
ghci> head (drop 4 "azerty")
't'

We can read this as “pass the expression
        drop 4
        "azerty" as the argument to head.”
        If we were to leave out the parentheses, the offending expression
        would be similar to passing three arguments to head. Compilation would fail with a type
        error, as head requires a single
        argument, a list.


Function Types and Purity



Let’s take a look at a function’s type:
ghci> :type lines
lines :: String -> [String]

We can read the ->
      as “to,” which loosely translates to
      “returns.” The signature as a whole thus reads as
      “lines has the type
      String to list-of-String”. Let’s try
      applying the function:
ghci> lines "the quick\nbrown fox\njumps"
["the quick","brown fox","jumps"]

The lines function
      splits a string on line boundaries. Notice that its type
      signature gives us a hint as to what the function might actually do: it
      takes one String, and returns many. This is an incredibly
      valuable property of types in a functional language.
A side effect
      introduces a dependency between the global state of the system and
      the behavior of a function. For example, let’s step away from Haskell
      for a moment and think about an imperative programming language.
      Consider a function that reads and returns the value of a global
      variable. If some other code can modify that global variable, then the
      result of a particular application of our function depends on the
      current value of the global variable. The function has a side effect,
      even though it never modifies the variable itself.
Side effects are essentially invisible
      inputs to, or outputs from, functions. In Haskell, the default is for
      functions to not have side effects: the result of a
      function depends only on the inputs that we explicitly provide. We call
      these functions pure; functions with side effects are impure.
If a function has side effects, we can tell
      by reading its type signature—the type of the function’s result will
      begin with IO:
ghci> :type readFile
readFile :: FilePath -> IO String

Haskell’s type system prevents us from
      accidentally mixing pure and impure code.

Haskell Source Files, and Writing Simple Functions



Now that we know how to apply functions, it’s time we turned
      our attention to writing them. While we can write functions in ghci, it’s not a good environment for this. It
      accepts only a highly restricted subset of Haskell—most importantly, the
      syntax it uses for defining functions is not the same as we use in a
      Haskell source file.[5] Instead, we’ll finally break down and create a source
      file.
Haskell source files are usually identified with a suffix of .hs. A simple function definition is to open
      up a file named add.hs and add
      these contents to it:
-- file: ch03/add.hs
add a b = a + b
On the lefthand side of the = is the name of the function, followed by the
      arguments to the function. On the righthand side is the body of the
      function. With our source file saved, we can load it into ghci, and use our new add function straightaway (the prompt that
      ghci displays will change after you
      load your file):
ghci> :load add.hs
[1 of 1] Compiling Main             ( add.hs, interpreted )
Ok, modules loaded: Main.
ghci> add 1 2
3
What if ghci cannot find your source file?
When you run ghci, it may not be able to find your source
        file. It will search for source files in whatever directory it was
        run. If this is not the directory that your source file is actually
        in, you can use ghci’s
        :cd command to change its working directory:
ghci> :cd /tmp
Alternatively, you can provide the path
        to your Haskell source file as the argument to :load.
        This path can be either absolute or relative to ghci’s current directory.

When we apply add to the values 1 and 2,
      the variables a and b on the
      lefthand side of our definition are given (or “bound to”)
      the values 1 and 2, so the result is the expression 1 +
      2.
Haskell doesn’t have a return keyword, because a function is a single expression, not a sequence of
      statements. The value of the expression is the result of the function.
      (Haskell does have a function called return, but we won’t discuss it for a while;
      it has a different meaning than in imperative languages.)
When you see an = symbol in Haskell code, it represents
      “meaning”—the name on the left is defined to be the
      expression on the right.
Just What Is a Variable, Anyway?



In Haskell, a variable provides a way to give a name to an expression. Once a
        variable is bound to (i.e., associated with)
        a particular expression, its value does not change: we can always use
        the name of the variable instead of writing out the expression, and we
        will get the same result either way.
If you’re used to imperative programming
        languages, you’re likely to think of a variable as a way of
        identifying a memory location (or some
        equivalent) that can hold different values at different times. In an
        imperative language, we can change a variable’s value at any time, so
        that examining the memory location repeatedly can potentially give
        different results each time.
The critical difference between these two
        notions of a variable is that in Haskell, once we’ve bound a variable
        to an expression, we know that we can always substitute it for that
        expression, because it will not change. In an imperative language,
        this notion of substitutability does not hold.
For example, if we run the following
        tiny Python script, it will print the number 11:
x = 10
x = 11
# value of x is now 11
print x
In contrast, trying the equivalent in
        Haskell results in an error:
-- file: ch02/Assign.hs
x = 10
x = 11
We cannot assign a value to
        x twice:
ghci> :load Assign
[1 of 1] Compiling Main             ( Assign.hs, interpreted )

Assign.hs:4:0:
    Multiple declarations of `Main.x'
    Declared at: Assign.hs:3:0
                 Assign.hs:4:0
Failed, modules loaded: none.


Conditional Evaluation



Like many other languages, Haskell has an if expression. Let’s see it in action;
        then we’ll explain what’s going on. As an example, we’ll write our own
        version of the standard drop
        function. Before we begin, let’s probe a little into how drop behaves, so we can replicate its
        behavior:
ghci> drop 2 "foobar"
"obar"
ghci> drop 4 "foobar"
"ar"
ghci> drop 4 [1,2]
[]
ghci> drop 0 [1,2]
[1,2]
ghci> drop 7 []
[]
ghci> drop (-2) "foo"
"foo"
From this code, it seems that drop returns the original list if the
        number to remove is less than or equal to zero. Otherwise, it removes
        elements until it either runs out or reaches the given number. Here’s
        a myDrop function that has the
        same behavior, and that uses Haskell’s if expression to
        decide what to do. The following null function below checks whether a list
        is empty:
-- file: ch02/myDrop.hs
myDrop n xs = if n <= 0 || null xs
              then xs
              else myDrop (n - 1) (tail xs)
In Haskell, indentation is important: it
        continues an existing definition, instead of
        starting a new one. Don’t omit the indentation!
You might wonder where the variable name
        xs comes from in the Haskell function. This is a
        common naming pattern for lists. You can read the s as a
        suffix, so the name is essentially “plural of x.”
Let’s save our Haskell function in a file named
        myDrop.hs, then load it into
        ghci:
ghci> :load myDrop.hs
[1 of 1] Compiling Main             ( myDrop.hs, interpreted )
Ok, modules loaded: Main.
ghci> myDrop 2 "foobar"
"obar"
ghci> myDrop 4 "foobar"
"ar"
ghci> myDrop 4 [1,2]
[]
ghci> myDrop 0 [1,2]
[1,2]
ghci> myDrop 7 []
[]
ghci> myDrop (-2) "foo"
"foo"
Now that we’ve seen myDrop in action, let’s return to the
        source code and look at all the novelties we’ve introduced.
First of all, we have introduced
        --, the beginning of a single-line comment. This comment
        extends to the end of the line.
Next is the if keyword
        itself. It introduces an expression that has three components:
	An expression of type
            Bool, immediately following the if. We refer to this as a predicate.

	A then keyword, followed
            by another expression. This expression will be used as the value
            of the if expression if the
            predicate evaluates to True.

	An else keyword,
            followed by another expression. This expression will
            be used as the value of the if
            expression if the predicate evaluates to
            False.



We’ll refer to the expressions that
        follow the then and else keywords as
        “branches.” The branches must have the same types; the
        if expression will also have this
        type. An expression such as if True then 1 else "foo" has
        different types for its branches, so it is ill typed and a compiler or
        interpreter will reject it.
Recall that Haskell is an
        expression-oriented language. In an imperative language, it can make
        sense to omit the else branch from an if,
        because we’re working with statements, not expressions.
        However, when we’re working with expressions, an if that
        was missing an else wouldn’t have a result or type if the
        predicate evaluated to False, so
        it would be nonsensical.
Our predicate contains a few more
        novelties. The null
        function indicates whether a list is empty, while the (||) operator performs a logical “or” of its
        Bool-typed arguments:
ghci> :type null
null :: [a] -> Bool
ghci> :type (||)
(||) :: Bool -> Bool -> Bool
Operators are not special
Notice that we were able to find the
          type of (||) by wrapping it in
          parentheses. The (||) operator isn’t built into the
          language; it’s an ordinary function.
The (||) operator “short
          circuits”: if its left operand evaluates to
          True, it doesn’t evaluate its right operand. In most
          languages, short-circuit evaluation requires special support, but
          not in Haskell. We’ll see why shortly.

Next, our function applies itself
        recursively. This is our first example of recursion, which we’ll talk
        about in some detail soon.
Finally, our if expression spans several
        lines. We align the then and else branches
        under the if for neatness. So long as we use some
        indentation, the exact amount is not important. If we wish, we can
        write the entire expression on a single line:
-- file: ch02/myDrop.hs
myDropX n xs = if n <= 0 || null xs then xs else myDropX (n - 1) (tail xs)
The length of this version makes it more
        difficult to read. We will usually break an if expression across several lines to keep
        the predicate and each of the branches easier to follow.
For comparison, here is a Python
        equivalent of the Haskell myDrop.
        The two are structured similarly—each decrements a counter while
        removing an element from the head of the list:
def myDrop(n, elts):
    while n > 0 and elts:
        n = n - 1
        elts = elts[1:]
    return elts


Understanding Evaluation by Example



In our description of myDrop, we have so far focused on surface
      features. We need to go deeper and develop a useful mental model of how
      function application works. To do this, we’ll first work through a few
      simple examples, until we can walk through the evaluation of the
      expression myDrop 2 "abcd".
We’ve talked a lot about substituting an
      expression for a variable, and we’ll make use of this capability here.
      Our procedure will involve rewriting expressions over and over,
      substituting expressions for variables until we reach a final result.
      This would be a good time to fetch a pencil and paper, so you can follow
      our descriptions by trying them yourself.
Lazy Evaluation



We will begin by looking at the definition of a simple, nonrecursive
        function:
-- file: ch02/RoundToEven.hs
isOdd n = mod n 2 == 1
Here, mod is the standard modulo function. The
        first big step to understanding how evaluation works in Haskell is
        figuring out the result of evaluating the expression isOdd (1 +
        2).
Before we explain how evaluation proceeds
        in Haskell, let us recap the sort of evaluation strategy more familiar
        languages use. First, evaluate the subexpression 1 + 2,
        to give 3. Then apply the isOdd function with n
        bound to 3. Finally, evaluate mod 3 2 to
        give 1, and 1 == 1 to give
        True.
In a language that uses
        strict evaluation, the arguments to a function are evaluated before the
        function is applied. Haskell chooses another path:
        nonstrict evaluation.
In Haskell, the subexpression 1 +
        2 is not reduced to the value
        3. Instead, we create a “promise” that when
        the value of the expression isOdd (1 + 2) is needed,
        we’ll be able to compute it. The record that we use to track an
        unevaluated expression is referred to as a thunk. This is
        all that happens: we create a thunk and defer the
        actual evaluation until it’s really needed. If the result of this
        expression is never subsequently used, we will not compute its value
        at all.
Nonstrict evaluation is often referred to
        as lazy evaluation.[6]

A More Involved Example



Let us now look at the evaluation of the
        expression myDrop 2 "abcd", where we use print to ensure that it will be
        evaluated:
ghci> print (myDrop 2 "abcd")
"cd"

Our first step is to attempt to apply
        print, which needs its argument
        to be evaluated. To do that, we apply the function myDrop to the values 2 and
        "abcd". We bind the variable n to the
        value 2, and xs to
        "abcd". If we substitute these values into myDrop’s predicate, we get the following
        expression:
ghci> :type  2 <= 0 || null "abcd"
2 <= 0 || null "abcd" :: Bool

We then evaluate enough of the predicate
        to find out what its value is. This requires that we evaluate the
        (||) expression. To determine its value, the (||) operator needs to examine the value of
        its left operand first:
ghci> 2 <= 0
False

Substituting that value into the
        (||) expression leads to the
        following expression:
ghci> :type  False || null "abcd"
False || null "abcd" :: Bool

If the left operand had evaluated to
        True, (||) would not need to evaluate its right
        operand, since it could not affect the result of the expression. Since
        it evaluates to False, (||) must evaluate the right
        operand:
ghci> null "abcd"
False

We now substitute this value back into
        the (||) expression. Since both
        operands evaluate to False, the
        (||) expression does too, and
        thus the predicate evaluates to False:
ghci> False || False
False

This causes the if expression’s else branch to
        be evaluated. This branch contains a recursive application of
        myDrop.
Short-circuiting for free
Many languages need to treat the
          logical-or operator specially so that it short-circuits if its left
          operand evaluates to True. In Haskell, (||) is an ordinary function: nonstrict
          evaluation builds this capability into the language.
In Haskell, we can easily define a new function
          that short-circuits:
-- file: ch02/shortCircuit.hs
newOr a b = if a then a else b
If we write an expression such as newOr True
          (length [1..] > 0), it will not evaluate its second
          argument. (This is just as well: that expression tries to compute
          the length of an infinite list. If it were evaluated, it would hang
          ghci, looping infinitely until we
          killed it.)
Were we to write a comparable function in, say,
          Python, strict evaluation would bite us: both arguments would be
          evaluated before being passed to newOr, and we would not be able to avoid
          the infinite loop on the second argument.


Recursion



When we apply myDrop
        recursively, n is bound to the thunk 2 -
        1, and xs is bound to tail
        "abcd".
We’re now evaluating myDrop from the beginning again. We
        substitute the new values of n and
        xs into the predicate:
ghci> :type (2 - 1) <= 0 || null (tail "abcd")
(2 - 1) <= 0 || null (tail "abcd") :: Bool

Here’s a condensed version of the
        evaluation of the left operand:
ghci> :type (2 - 1) <= 0
(2 - 1) <= 0 :: Bool
ghci> 2 - 1
1
ghci> 1 <= 0
False
As we should now expect, we didn’t
        evaluate the expression 2 - 1 until we needed its value.
        We also evaluate the right operand lazily, deferring tail "abcd" until we need its
        value:
ghci> :type null (tail "abcd")
null (tail "abcd") :: Bool
ghci> tail "abcd"
"bcd"
ghci> null "bcd"
False
The predicate again evaluates to False, causing the else branch
        to be evaluated once more.
Because we’ve had to evaluate the
        expressions for n and xs to
        evaluate the predicate, we now know that in this application of
        myDrop, n has
        the value 1 and xs has the value
        "bcd".

Ending the Recursion



In the next recursive application of
        myDrop, we bind
        n to 1 - 1 and xs
        to tail "bcd":
ghci> :type (1 - 1) <= 0 || null (tail "bcd")
(1 - 1) <= 0 || null (tail "bcd") :: Bool

Once again, (||) needs to evaluate its left operand
        first:
ghci> :type (1 - 1) <= 0
(1 - 1) <= 0 :: Bool
ghci> 1 - 1
0
ghci> 0 <= 0
True
Finally, this expression evaluates to
        True!
ghci> True || null (tail "bcd")
True

Because the right operand cannot affect
        the result of (||), it is not
        evaluated, and the result of the predicate is True. This causes us to evaluate the
        then branch:
ghci> :type tail "bcd"
tail "bcd" :: [Char]


Returning from the Recursion



Remember, we’re now inside our second
        recursive application of myDrop.
        This application evaluates to tail "bcd". We return from
        the application of the function, substituting this expression for
        myDrop (1 - 1) (tail "bcd") to become the
        result of this application:
ghci> myDrop (1 - 1) (tail "bcd") == tail "bcd"
True

We then return from the first recursive
        application, substituting the result of the second recursive
        application for myDrop (2 - 1) (tail "abcd") to become
        the result of this application:
ghci> myDrop (2 - 1) (tail "abcd") == tail "bcd"
True

Finally, we return from our original
        application, substituting the result of the first recursive
        application:
ghci> myDrop 2 "abcd" == tail "bcd"
True

Notice that as we return from each
        successive recursive application, none of them needs to evaluate the
        expression tail "bcd": the final result of evaluating the
        original expression is a thunk. The thunk is only evaluated when
        ghci needs to print it.
ghci> myDrop 2 "abcd"
"cd"
ghci> tail "bcd"
"cd"

What Have We Learned?



We have established several
        important points:
	It makes sense to use substitution
            and rewriting to understand the evaluation of a Haskell
            expression.

	Laziness leads us to defer evaluation
            until we need a value and to evaluate just enough of an expression
            to establish its value.

	The result of applying a function may
            be a thunk (a deferred expression).





Polymorphism in Haskell



When we introduced lists, we mentioned that the list type is
      polymorphic. We’ll talk about Haskell’s polymorphism in more detail
      here.
If we want to fetch the last element of a
      list, we use the last function.
      The value that it returns must have the same type as the elements of the
      list, but last operates in the same
      way no matter what type those elements actually are:
ghci> last [1,2,3,4,5]
5
ghci> last "baz"
'z'
To capture this idea, its type signature
      contains a type variable:
ghci> :type last
last :: [a] -> a

Here, a is
      the type variable. We can read the signature as “takes a list, all of
      whose elements have some type a, and returns a value of the same type
      a.”
Identifying a type variable
Type variables always start with a
        lowercase letter. You can always tell a type variable from a normal
        variable by context, because the languages of types and functions are
        separate: type variables live in type signatures, and regular
        variables live in normal expressions.
It’s common Haskell practice to keep the
        names of type variables very short. One letter is overwhelmingly
        common; longer names show up infrequently. Type signatures are usually
        brief; we gain more in readability by keeping names short than we
        would by making them descriptive.

When a function has type variables in its signature,
      indicating that some of its arguments can be of any type, we call the
      function polymorphic.
When we want to apply last to, say, a list of Char,
      the compiler substitutes Char for each a throughout the type signature. This gives us the
      type of last with an input of
      [Char] as [Char] -> Char.
This kind of polymorphism is called
      parametric polymorphism. The choice of naming is easy to understand by analogy:
      just as a function can have parameters that we can later bind to real
      values, a Haskell type can have parameters that we can later bind to
      other types.
A little nomenclature
If a type contains type parameters, we
        say that it is a parameterized type, or a polymorphic type. If a
        function or value’s type contains type parameters, we call it
        polymorphic.

When we see a parameterized type, we’ve
      already noted that the code doesn’t care what the actual type is.
      However, we can make a stronger statement: it has no way to
      find out what the real type is, or to manipulate a value of
      that type. It can’t create a value; neither can it inspect one. All it
      can do is treat it as a fully abstract “black box.” We’ll
      cover one reason that this is important soon.
Parametric polymorphism is the most visible
      kind of polymorphism that Haskell supports. Haskell’s parametric
      polymorphism directly influenced the design of the generic facilities of
      the Java and C# languages. A parameterized type in Haskell is similar to
      a type variable in Java generics. C++ templates also bear a resemblance
      to parametric polymorphism.
To make it clearer how Haskell’s
      polymorphism differs from other languages, here are a few forms of
      polymorphism that are common in other languages, but not present in
      Haskell.
In mainstream object-oriented languages,
      subtype polymorphism is more widespread than parametric polymorphism. The
      subclassing mechanisms of C++ and Java give them subtype polymorphism. A
      base class defines a set of behaviors that its subclasses can modify and
      extend. Since Haskell isn’t an object-oriented language, it doesn’t
      provide subtype polymorphism.
Also common is
      coercion polymorphism, which allows a value of one type to be implicitly
      converted into a value of another type. Many languages provide some form
      of coercion polymorphism; one example is automatic conversion between
      integers and floating-point numbers. Haskell deliberately avoids even
      this kind of simple automatic coercion.
This is not the whole story of polymorphism
      in Haskell. We’ll return to the subject in Chapter 6.
Reasoning About Polymorphic Functions



In Function Types and Purity we
        talked about figuring out the behavior of a function based on its type
        signature. We can apply the same kind of reasoning to polymorphic
        functions. Let’s look again at fst:
ghci> :type fst
fst :: (a, b) -> a

First of all, notice that its argument
        contains two type variables, a and
        b, signifying that the elements of the
        tuple can be of different types.
The result type of fst is a. We’ve already
        mentioned that parametric polymorphism makes the real type
        inaccessible. fst doesn’t have
        enough information to construct a value of type a, nor can it turn an a into a b. So
        the only possible valid behavior (omitting
        infinite loops or crashes) it can have is to return the first element
        of the pair.

Further Reading



There is a deep mathematical sense in which any nonpathological
        function of type (a,b) -> a must do exactly what
        fst does. Moreover, this line of
        reasoning extends to more complicated polymorphic functions. The paper
        “Theorems for free” by Philip Wadler (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9875)
        covers this procedure in depth.


The Type of a Function of More Than One Argument



So far, we haven’t looked much at
      signatures for functions that take more than one argument. We’ve already
      used a few such functions; let’s look at the signature of one, take:
ghci> :type take
take :: Int -> [a] -> [a]

It’s pretty clear that there’s something
      going on with an Int and some lists, but why are there two -> symbols in the signature? Haskell groups
      this chain of arrows from right to left; that is, -> is
      right-associative. If we introduce parentheses, we can make it clearer how this
      type signature is interpreted:
-- file: ch02/Take.hs
take :: Int -> ([a] -> [a])
From this, it looks like we ought to read
      the type signature as a function that takes one argument, an
      Int, and returns another function. That other function also
      takes one argument, a list, and returns a list of the same type as its
      result.
This is correct, but it’s not easy to see
      what its consequences might be. We’ll return to this topic in Partial Function Application and Currying, once we’ve spent a bit of time writing
      functions. For now, we can treat the type following the last
      -> as being the function’s return type, and the
      preceding types to be those of the function’s arguments.
We can now write a type signature for the
      myDrop function that we defined
      earlier:
-- file: ch02/myDrop.hs
myDrop :: Int -> [a] -> [a]
Exercises
	Haskell provides a standard function, last :: [a]
            -> a, that returns the last element of a list. From
            reading the type alone, what are the possible valid behaviors
            (omitting crashes and infinite loops) that this function could
            have? What are a few things that this function clearly cannot
            do?

	Write a function, lastButOne, that returns the element before the
            last.

	Load your lastButOne
            function into ghci and try it
            out on lists of different lengths. What happens when you pass it a
            list that’s too short?





Why the Fuss over Purity?



Few programming languages go as far as Haskell in insisting that purity
      should be the default. This choice has profound and valuable
      consequences.
Because the result of applying a pure
      function can only depend on its arguments, we can often get a strong
      hint of what a pure function does by simply reading its name and
      understanding its type signature. As an example, let’s look at not:
ghci> :type not
not :: Bool -> Bool

Even if we don’t know the name of this
      function, its signature alone limits the possible valid behaviors it
      could have:
	Ignore its argument and always return
          either True or False.

	Return its argument unmodified.

	Negate its argument.



We also know that this function
      cannot do some things: access
      files, talk to the network, and tell what time it is.
Purity makes the job of understanding code
      easier. The behavior of a pure function does not depend on the value of
      a global variable, or the contents of a database, or the state of a
      network connection. Pure code is inherently modular: every function is
      self-contained and has a well-defined interface.
A nonobvious consequence of purity being
      the default is that working with impure code becomes easier.
      Haskell encourages a style of programming in which we separate code that
      must have side effects from code that doesn’t need
      side effects. In this style, impure code tends to be simple, with the
      “heavy lifting” performed in pure code.
Much of the risk in software lies in
      talking to the outside world, be it coping with bad or missing data or
      handling malicious attacks. Because Haskell’s type system tells us
      exactly which parts of our code have side effects, we can be
      appropriately on guard. Because our favored coding style keeps impure
      code isolated and simple, our “attack surface” is
      small.

Conclusion



In this chapter, we’ve had a whirlwind
      overview of Haskell’s type system and much of its syntax. We’ve read
      about the most common types and discovered how to write simple
      functions. We’ve been introduced to polymorphism, conditional
      expressions, purity, and lazy evaluation.
This all amounts to a lot of information to absorb. In
      Chapter 3, we’ll build on this basic knowledge to
      further enhance our understanding of Haskell.



[2] “If it walks like a duck, and
            quacks like a duck, then let’s call it a duck.”

[3] Occasionally, we need to give the
            compiler a little information to help it make a choice in
            understanding our code.

[4] We’ll talk more about polymorphism in
          Polymorphism in Haskell.

[5] The environment in which ghci operates is called the
          IO monad. In Chapter 7, we will cover the
          IO monad in depth, and the seemingly arbitrary
          restrictions that ghci places on
          us will make more sense.

[6] The terms “nonstrict” and
            “lazy” have slightly different technical meanings,
            but we won’t go into the details of the distinction here.



Chapter 3. Defining Types, Streamlining Functions



Defining a New Data Type



Although lists and tuples are useful, we’ll often want to
      construct new data types of our own. This allows us to add structure to
      the values in our programs. Instead of using an anonymous tuple, we can
      give a collection of related values a name and a distinct type. Defining
      our own types also improves the type safety of our code: Haskell will
      not allow us to accidentally mix values of two types that are
      structurally similar but have different names.
For motivation, we’ll consider a few kinds
      of data that a small online bookstore might need to manage. We won’t
      make any attempt at complete or realistic data definitions, but at least
      we’re tying them to the real world.
We define a new data type using the data keyword:
-- file: ch03/BookStore.hs
data BookInfo = Book Int String [String]
                deriving (Show)
BookInfo after the
      data keyword is the name of our new type. We call
      BookInfo a type constructor.
      Once we define a type, we will use its type constructor to
      refer to it. As we’ve already mentioned, a type name, and hence a type
      constructor, must start with a capital letter.
The Book that follows is the name of
      the value constructor (sometimes called
      a data constructor). We use this to create a value of the
      BookInfo type. A value constructor’s name must also start
      with a capital letter.
After Book, the
      Int, String, and [String] that
      follow are the components of the type. A
      component serves the same purpose in Haskell as a field in a structure or class would in another language: it’s a
      “slot” where we keep a value. (We’ll often refer to
      components as fields.)
In this example, the Int
      represents a book’s identifier (e.g., in a stock database), String
      represents its title, and [String] represents the names of
      its authors.
To make the link to a concept we’ve already
      seen, the BookInfo type contains the same components as a
      3-tuple of type (Int, String, [String]), but it has a
      distinct type. We can’t accidentally (or deliberately) use one in a
      context where the other is expected. For instance, a bookstore is also
      likely to carry magazines:
-- file: ch03/BookStore.hs
data MagazineInfo = Magazine Int String [String]
                    deriving (Show)
Even though this MagazineInfo type has the
      same structure as our BookInfo type, Haskell treats the
      types as distinct because their type and value constructors have
      different names.
Deriving what?
We’ll explain the full meaning of
        deriving (Show) later, in Show. For now, it’s enough to know
        that we need to tack this onto a type declaration so that ghci will automatically know how to print a
        value of this type.

We can create a new value of type
      BookInfo by treating Book as a function and applying it with
      arguments of types Int, String, and
      [String]:
-- file: ch03/BookStore.hs
myInfo = Book 9780135072455 "Algebra of Programming"
         ["Richard Bird", "Oege de Moor"]
Once we define a type, we can experiment
      with it in ghci. We begin by
      using the :load command to load our source file:
ghci> :load BookStore
[1 of 1] Compiling Main             ( BookStore.hs, interpreted )
Ok, modules loaded: Main.

Remember the myInfo variable that we
      defined in our source file? Here it is:
ghci> myInfo
Book 9780135072455 "Algebra of Programming" ["Richard Bird","Oege de Moor"]
ghci> :type myInfo
myInfo :: BookInfo
We can construct new values interactively
      in ghci, too:
ghci> Book 0 "The Book of Imaginary Beings" ["Jorge Luis Borges"]
Book 0 "The Book of Imaginary Beings" ["Jorge Luis Borges"]

The ghci
      command :type lets us see what
      the type of an expression is:
ghci> :type Book 1 "Cosmicomics" ["Italo Calvino"]
Book 1 "Cosmicomics" ["Italo Calvino"] :: BookInfo

Remember that if we want to define a new variable
      inside ghci, the syntax is slightly
      different from that of a Haskell source file—we need to put a let in front:
ghci> let cities = Book 173 "Use of Weapons" ["Iain M. Banks"]
To find out more about a type, we can use some of
      ghci’s browsing capabilities. The
      :info command gets ghci to tell us everything it knows about a
      name:
ghci> :info BookInfo
data BookInfo = Book Int String [String]
  	-- Defined at BookStore.hs:4:5-12
instance Show BookInfo -- Defined at BookStore.hs:4:5-12

We can also find out why we use Book to construct a new value of type
      BookInfo:
ghci> :type Book
Book :: Int -> String -> [String] -> BookInfo

We can treat a value constructor as just
      another function—one that happens to create and return a new value of
      the type we desire.
Naming Types and Values



When we introduced the type BookInfo, we
        deliberately chose to give the type constructor BookInfo
        a different name from the value constructor Book, purely
        to make it obvious which was which.
However, in Haskell, the names of types
        and values are independent of each other. We use a type constructor
        (i.e., the type’s name) only in a type declaration or a type
        signature. We use a value constructor only in actual code. Because
        these uses are distinct, there is no ambiguity if we give a type
        constructor and a value constructor the same name. If we are writing a
        type signature, we must be referring to a type constructor. If we are
        writing an expression, we must be using the value constructor:
-- file: ch03/BookStore.hs
-- We will introduce the CustomerID type shortly.

data BookReview = BookReview BookInfo CustomerID String
This definition says that the type named
        BookReview has a value constructor that is also named
        BookReview.
Not only is it legal
        for a value constructor to have the same name as its type constructor,
        it’s normal. You’ll see this all the time in
        regular Haskell code.


Type Synonyms



We can introduce a synonym for an
      existing type at any time, in order to give a type a more descriptive
      name. For example, the String in our
      BookReview type doesn’t tell us what the string is for, but
      we can clarify this:
-- file: ch03/BookStore.hs
type CustomerID = Int
type ReviewBody = String

data BetterReview = BetterReview BookInfo CustomerID ReviewBody
The type
      keyword introduces a type synonym. The new name is on the left of
      the =, with the existing name on the right. The two names
      identify the same type, so type synonyms are purely
      for making code more readable.
We can also use a type synonym to create a
      shorter name for a verbose type:
-- file: ch03/BookStore.hs
type BookRecord = (BookInfo, BookReview)
This states that we can use BookRecord as a synonym for the tuple
      (BookInfo, BookReview). A
      type synonym creates only a new name that refers to an existing
      type.[7] We still use the same value constructors to create a value
      of the type.

Algebraic Data Types



The familiar Bool is the simplest common example of a category of type called
      an algebraic data type. An algebraic data type can
      have more than one value constructor:
-- file: ch03/Bool.hs
data Bool = False | True
The Bool type has two value constructors,
      True and False. Each value constructor is
      separated in the definition by a | character, which
      we can read as “or”—we can construct a Bool
      that has the value True, or the value False.
      When a type has more than one value constructor, they are usually
      referred to as alternatives or
      cases. We can use any one of the alternatives to create a value of
      that type.
A note about naming
Although the phrase “algebraic data
        type” is long, we’re being careful to avoid using the
        acronym “ADT,” which is already widely
        understood to stand for “abstract data
        type.” Since Haskell supports both algebraic and abstract data
        types, we’ll be explicit and avoid the acronym entirely.

Each of an algebraic data type’s value constructors can
      take zero or more arguments. As an example, here’s one way we might
      represent billing information:
-- file: ch03/BookStore.hs
type CardHolder = String
type CardNumber = String
type Address = [String]

data BillingInfo = CreditCard CardNumber CardHolder Address
                 | CashOnDelivery
                 | Invoice CustomerID
                   deriving (Show)
Here, we’re saying that we support three ways to bill
      our customers. If they want to pay by credit card, they must supply a
      card number, the holder’s name, and the holder’s billing address as
      arguments to the CreditCard value constructor.
      Alternatively, they can pay the person who delivers their shipment.
      Since we don’t need to store any extra information about this, we
      specify no arguments for the CashOnDelivery constructor.
      Finally, we can send an invoice to the specified customer, in which
      case, we need her CustomerID as an argument to the
      Invoice constructor.
When we use a value constructor to create a
      value of type BillingInfo, we must supply the arguments
      that it requires:
ghci> :type CreditCard
CreditCard :: CardNumber -> CardHolder -> Address -> BillingInfo
ghci> CreditCard "2901650221064486" "Thomas Gradgrind" ["Dickens", "England"]
CreditCard "2901650221064486" "Thomas Gradgrind" ["Dickens","England"]
ghci> :type it
it :: BillingInfo
ghci> Invoice

<interactive>:1:0:
    No instance for (Show (CustomerID -> BillingInfo))
      arising from a use of `print' at <interactive>:1:0-6
    Possible fix:
      add an instance declaration for (Show (CustomerID -> BillingInfo))
    In the expression: print it
    In a stmt of a 'do' expression: print it

The No instance error message arose because we did not supply an argument to the
      Invoice constructor. As a result, we were trying to print
      the Invoice constructor itself. That constructor requires
      an argument and returns a value, so it is a function. We cannot print
      functions in Haskell, which is ultimately why the interpreter
      complained.
Tuples, Algebraic Data Types, and When to Use Each



There is some overlap between tuples and user-defined
        algebraic data types. If we want, we can represent our
        BookInfo type from earlier as an (Int, String,
        [String]) tuple:
ghci> Book 2 "The Wealth of Networks" ["Yochai Benkler"]
Book 2 "The Wealth of Networks" ["Yochai Benkler"]
ghci> (2, "The Wealth of Networks", ["Yochai Benkler"])
(2,"The Wealth of Networks",["Yochai Benkler"])
Algebraic data types allow us to
        distinguish between otherwise identical pieces of information. Two tuples with elements of
        the same type are structurally identical, so they have the same
        type:
-- file: ch03/Distinction.hs
a = ("Porpoise", "Grey")
b = ("Table", "Oak")
Since they have different names, two algebraic data
        types have distinct types even if they are otherwise structurally
        equivalent:
-- file: ch03/Distinction.hs
data Cetacean = Cetacean String String
data Furniture = Furniture String String

c = Cetacean "Porpoise" "Grey"
d = Furniture "Table" "Oak"
This lets us bring the type system to bear in writing
        programs with fewer bugs. With the tuples we just defined, we could
        conceivably pass a description of a whale to a function expecting a
        chair, and the type system could not help us. With the algebraic data
        types, there is no such possibility of confusion.
Here is a more subtle example. Consider the following
        representations of a two-dimensional
        vector:
-- file: ch03/AlgebraicVector.hs
-- x and y coordinates or lengths.
data Cartesian2D = Cartesian2D Double Double
                   deriving (Eq, Show)

-- Angle and distance (magnitude).
data Polar2D = Polar2D Double Double
               deriving (Eq, Show)
The Cartesian and polar forms use the
        same types for their two elements. However, the
        meanings of the elements are different. Because
        Cartesian2D and Polar2D are distinct types,
        the type system will not let us accidentally use a
        Cartesian2D value where a Polar2D is
        expected, or vice versa.
ghci> Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2

<interactive>:1:33:
    Couldn't match expected type `Cartesian2D'
           against inferred type `Polar2D'
    In the second argument of `(==)', namely `Polar2D (pi / 4) 2'
    In the expression:
          Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2
    In the definition of `it':
        it = Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2

The (==) operator requires its arguments to have the same type.
Comparing for equality
Notice that in the
          deriving clause for our vector types, we added another
          word, Eq. This causes the Haskell implementation to
          generate code that lets us compare the values for equality.

If we use tuples to represent these
        values, we could quickly land ourselves in hot water by mixing the two
        representations inappropriately:
ghci> (1, 2) == (1, 2)
True

The type system can’t rescue us here: as
        far as it’s concerned, we’re comparing two (Double,
        Double) pairs, which is a perfectly valid thing to do. Indeed,
        we cannot tell by inspection which of these values is supposed to be
        polar or Cartesian, but (1,2) has a different meaning in
        each representation.
There is no hard and fast rule for
        deciding when it’s better to use a tuple or a distinct data type, but
        here’s a rule of thumb. If you’re using compound values widely in your
        code (as almost all nontrivial programs do), adding data declarations will benefit you in both
        type safety and readability. For smaller, localized uses, a tuple is
        usually fine.

Analogues to Algebraic Data Types in Other Languages



Algebraic data types provide a single powerful way to
        describe data types. Other languages often need several different
        features to achieve the same degree of expressiveness. Here are some
        analogues from C and C++, which might make what we can do with
        algebraic data types and how they relate to concepts that might be
        more familiar or easier to understand.
The structure



With just one constructor, an algebraic data type is similar to a tuple: it
          groups related values together into a compound value. It corresponds
          to a struct in C or C++, and its components correspond
          to the fields of a struct. Here’s a C equivalent of the BookInfo type that we defined
          earlier:
struct book_info {
    int id;
    char *name;
    char **authors;
};
The main difference between the two is
          that the fields in the Haskell type are anonymous and positional:
-- file: ch03/BookStore.hs
data BookInfo = Book Int String [String]
                deriving (Show)
By positional, we
          mean that the section number is in the first field of the Haskell
          type and the title is in the second. We refer to them by location,
          not by name.
Later in this chapter in Pattern Matching, we’ll see how to access the fields of
          a BookInfo value. In Record Syntax, also in this chapter, we’ll introduce
          an alternate syntax for defining data types that looks a little more
          C-like.

The enumeration



Algebraic data types also serve where we’d use an enum in C
          or C++ to represent a range of symbolic values. Such algebraic data
          types are sometimes referred to as enumeration
          types. Here’s an example from C:
enum roygbiv {
    red,
    orange,
    yellow,
    green,
    blue,
    indigo,
    violet,
};
And here’s a Haskell equivalent:
-- file: ch03/Roygbiv.hs

data Roygbiv = Red
             | Orange
             | Yellow
             | Green
             | Blue
             | Indigo
             | Violet
               deriving (Eq, Show)
We can try these out in ghci:
ghci> :type Yellow
Yellow :: Roygbiv
ghci> :type Red
Red :: Roygbiv
ghci> Red == Yellow
False
ghci> Green == Green
True
In C, the elements of an
          enum are integers. We can use an integer in a context
          where an enum is expected and vice versa—a C compiler
          will automatically convert values between the two types. This can be
          a source of nasty bugs. In Haskell, this kind of problem does not
          occur. For example, we cannot use a Roygbiv value where
          an Int is expected:
ghci> take 3 "foobar"
"foo"
ghci> take Red "foobar"

<interactive>:1:5:
    Couldn't match expected type `Int' against inferred type `Roygbiv'
    In the first argument of `take', namely `Red'
    In the expression: take Red "foobar"
    In the definition of `it': it = take Red "foobar"

The discriminated union



If an algebraic data type has multiple alternatives, we can think of it as
          similar to a union in C or C++. A big difference
          between the two is that a union doesn’t tell us which alternative is
          actually present; we have to explicitly and manually track which
          alternative we’re using, usually in another field of an enclosing
          struct. This means that unions can be sources of nasty bugs, where
          our notion of which alternative we should be using is
          incorrect:
enum shape_type {
    shape_circle,
    shape_poly,
};

struct circle {
    struct vector centre;
    float radius;
};

struct poly {
    size_t num_vertices;
    struct vector *vertices;
};

struct shape 
{
    enum shape_type type;
    union {
	struct circle circle;
	struct poly poly;
    } shape;
};
In this example, the union
          can contain valid data for either a struct circle or a
          struct poly. We have to use the enum
          shape_type by hand to indicate which kind of value is
          currently stored in the union.
The Haskell version of this code is
          both dramatically shorter and safer than the C equivalent:
-- file: ch03/ShapeUnion.hs
type Vector = (Double, Double)

data Shape = Circle Vector Double
           | Poly [Vector]
If we create a Shape value using the
          Circle constructor, the fact that we created a
          Circle is stored. When we later use a
          Circle, we can’t accidentally treat it as a
          Square. We will see why in the next section Pattern Matching.
A few notes
After reading the preceding sections,
            it should now be clear that all of the data
            types that we define with the data keyword are
            algebraic data types. Some may have just one alternative, while
            others have several, but they’re all using the same
            machinery.




Pattern Matching



Now that we’ve seen how to construct values with algebraic
      data types, let’s discuss how we work with these values. If we have a
      value of some type, there are two things we would like to be able to
      do:
	If the type has more than one value
          constructor, we need to be able to tell which value constructor was
          used to create the value.

	If the value constructor has data
          components, we need to be able to extract those values.



Haskell has a simple, but tremendously
      useful, pattern matching facility that lets us do
      both of these things.
A pattern lets us look inside a value and
      bind variables to the data it contains. Here’s an example of pattern
      matching in action on a Bool value; we’re going to
      reproduce the not function:
-- file: ch03/add.hs
myNot True  = False
myNot False = True
It might seem that we have two functions
      named myNot here, but Haskell lets
      us define a function as a series of equations:
      these two clauses are defining the behavior of the same function for
      different patterns of input. On each line, the patterns are the items
      following the function name, up until the = sign.
To understand how pattern matching works,
      let’s step through an example—say, myNot False.
When we apply myNot, the Haskell runtime checks the value
      we supply against the value constructor in the first pattern. This does
      not match, so it tries against the second pattern. That match succeeds,
      so it uses the righthand side of that equation as the result of the
      function application.
Here is a slightly more extended example. This function
      adds together the elements of a list:
-- file: ch03/add.hs
sumList (x:xs) = x + sumList xs
sumList []     = 0
Let us step through the evaluation of sumList
      [1,2]. The list notation [1,2] is shorthand for the
      expression (1:(2:[])). We begin by trying to match the
      pattern in the first equation of the definition of sumList.
      In the (x:xs) pattern, the : is the familiar list constructor, (:). We are now using it to match against a value, not to
      construct one. The value (1:(2:[])) was constructed with
      (:), so the constructor in the value matches the
      constructor in the pattern. We say that the pattern
      matches or that the match
      succeeds.
The variables x and
      xs are now “bound to” the constructor’s
      arguments, so x is given the value 1,
      and xs the value 2:[].
The expression we are now evaluating is
      1 + sumList (2:[]). We must recursively apply sumList to the value 2:[]. Once
      again, this was constructed using (:), so the match
      succeeds. In our recursive application of sumList, x is now bound to
      2, and xs to [].
We are now evaluating 1 + (2 +
      sumList []). In this recursive application of sumList, the value we are matching against is
      []. The value’s constructor does not match the constructor
      in the first pattern, so we skip this equation. Instead, we “fall
      through” to the next pattern, which matches. The righthand side
      of this equation is thus chosen as the result of this
      application.
The result of sumList [1,2] is
      thus 1 + (2 + (0)), or 3.
Ordering is important
As we already mentioned, a Haskell implementation
        checks patterns for matches in the order in which we specify them in
        our equations. Matching proceeds from top to bottom and stops at the
        first success. Equations that are below a successful match have no
        effect.

As a final note, there is a standard
      function, sum, that performs this
      sum-of-a-list for us. Our sumList
      is purely for illustration.
Construction and Deconstruction



Let’s step back and take a look at the relationship between
        constructing a value and pattern matching on it.
We apply a value constructor to build a
        value. The expression Book 9 "Close Calls" ["John Long"]
        applies the Book constructor to
        the values 9, "Close Calls", and
        ["John Long"] in order to produce a new value of type
        BookInfo.
When we pattern match against the
        Book constructor, we
        reverse the construction process. First of all,
        we check to see if the value was created using that constructor. If it
        was, we inspect it to obtain the individual values that we originally
        supplied to the constructor when we created the value.
Let’s consider what happens if we match
        the pattern (Book id name authors) against our example
        expression:
	The match will succeed, because the
            constructor in the value matches the one in our pattern.

	The variable id
            will be bound to 9.

	The variable name
            will be bound to "Close Calls".

	The variable
            authors will be bound to ["John
            Long"].



Because pattern matching acts as the
        inverse of construction, it’s sometimes referred to as
        deconstruction.
Deconstruction doesn’t destroy anything
If you’re steeped in object-oriented
          programming jargon, don’t confuse deconstruction with destruction!
          Matching a pattern has no effect on the value we’re examining: it
          just lets us “look inside” it.


Further Adventures



The syntax for pattern matching on a
        tuple is similar to the syntax for constructing a tuple. Here’s a
        function that returns the last element of a 3-tuple:
-- file: ch03/Tuple.hs
third (a, b, c) = c
There’s no limit on how
        “deep” within a value a pattern can look. This definition
        looks both inside a tuple and inside a list within that tuple:
-- file: ch03/Tuple.hs
complicated (True, a, x:xs, 5) = (a, xs)
We can try this out interactively:
ghci> :load Tuple.hs
[1 of 1] Compiling Main             ( Tuple.hs, interpreted )
Ok, modules loaded: Main.
ghci> complicated (True, 1, [1,2,3], 5)
(1,[2,3])
Wherever a literal value is present in a
        pattern (True and 5 in the preceding pattern), that value must
        match exactly for the pattern match to succeed. If every pattern
        within a series of equations fails to match, we get a runtime
        error:
ghci> complicated (False, 1, [1,2,3], 5)
*** Exception: Tuple.hs:10:0-39: Non-exhaustive patterns in function complicated

For an explanation of this error message,
        skip forward to the section Exhaustive Patterns and Wild Cards.
We can pattern match on an algebraic data
        type using its value constructors. Recall the BookInfo
        type we defined earlier; we can extract the values from a
        BookInfo as follows:
-- file: ch03/BookStore.hs
bookID      (Book id title authors) = id
bookTitle   (Book id title authors) = title
bookAuthors (Book id title authors) = authors
Let’s see it in action:
ghci> bookID (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
3
ghci> bookTitle (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
"Probability Theory"
ghci> bookAuthors (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
["E.T.H. Jaynes"]
The compiler can infer the types of the accessor
        functions based on the constructor that we’re using in our
        pattern:
ghci> :type bookID
bookID :: BookInfo -> Int
ghci> :type bookTitle
bookTitle :: BookInfo -> String
ghci> :type bookAuthors
bookAuthors :: BookInfo -> [String]
If we use a literal value in a pattern,
        the corresponding part of the value that we’re matching against must
        contain an identical value. For instance, the pattern
        (3:xs) first checks that a value is a nonempty list, by
        matching against the (:)
        constructor. It also ensures that the head of the list has the exact
        value 3. If both of these
        conditions hold, the tail of the list will be bound to the variable
        xs.

Variable Naming in Patterns



As you read functions that match on lists, you’ll frequently find that the
        names of the variables inside a pattern resemble (x:xs)
        or (d:ds). This is a popular naming convention. The idea
        is that the name xs has an s on the
        end of its name as if it’s the “plural” of
        x, because x contains the head
        of the list, and xs contains the remaining
        elements.

The Wild Card Pattern



We can indicate that we don’t care what is present in part of
        a pattern. The notation for this is the underscore character (_), which we call a wild
        card. We use it as follows:
-- file: ch03/BookStore.hs
nicerID      (Book id _     _      ) = id
nicerTitle   (Book _  title _      ) = title
nicerAuthors (Book _  _     authors) = authors
Here, we have tidier versions of the accessor
        functions that we introduced earlier. Now, there’s no question about
        which element we’re using in each function.
In a pattern, a wild card acts similarly
        to a variable, but it doesn’t bind a new variable. As the previous
        examples indicate, we can use more than one wild card in a single
        pattern.
Another advantage of wild cards
        is that a Haskell compiler can warn us if we introduce a variable name
        in a pattern, but then not use it in a function’s body. Defining a
        variable but forgetting to use it can often indicate the presence of a
        bug, so this is a helpful feature. If we use a wild card instead of a
        variable that we do not intend to use, the compiler won’t
        complain.

Exhaustive Patterns and Wild Cards



When writing a series of patterns, it’s
        important to cover all of a type’s constructors. For example, if we’re inspecting a list,
        we should have one equation that matches the non-empty constructor
        (:) and one that matches the
        empty-list constructor [].
Let’s see what happens if we fail to
        cover all the cases. Here, we deliberately omit a check for the
        [] constructor:
-- file: ch03/BadPattern.hs
badExample (x:xs) = x + badExample xs
If we apply this to a value that it
        cannot match, we’ll get an error at runtime—our software has a
        bug!
ghci> badExample []
*** Exception: BadPattern.hs:4:0-36: Non-exhaustive patterns in function badExample

In this example, no equation in the
        function’s definition matches the value [].
Warning about incomplete patterns
GHC provides a helpful
          compilation option, -fwarn-incomplete-patterns, that will cause it to print
          a warning during compilation if a sequence of patterns doesn’t match
          all of a type’s value constructors.

If we need to provide a default behavior
        in cases where we don’t care about specific constructors, we can use a
        wild card pattern:
-- file: ch03/BadPattern.hs
goodExample (x:xs) = x + goodExample xs
goodExample _      = 0
The wild card shown in the preceding code
        will match the [] constructor, so applying this function
        does not lead to a crash:
ghci> goodExample []
0
ghci> goodExample [1,2]
3


Record Syntax



Writing accessor functions for each of a data type’s components
      can be repetitive and tedious:
-- file: ch03/BookStore.hs
nicerID      (Book id _     _      ) = id
nicerTitle   (Book _  title _      ) = title
nicerAuthors (Book _  _     authors) = authors
We call this kind of code
      boilerplate—necessary,but bulky and irksome. Haskell programmers don’t like
      boilerplate. Fortunately, the language addresses this particular
      boilerplate problem: we can define a data type, and accessors for each
      of its components, simultaneously. (The positions of the commas here is
      a matter of preference. If you like, put them at the end of a line
      instead of the beginning.)
-- file: ch03/BookStore.hs
data Customer = Customer {
      customerID      :: CustomerID
    , customerName    :: String
    , customerAddress :: Address
    } deriving (Show)
This is almost exactly identical in meaning
      to the following, more familiar form:
-- file: ch03/AltCustomer.hs
data Customer = Customer Int String [String]
                deriving (Show)

customerID :: Customer -> Int
customerID (Customer id _ _) = id

customerName :: Customer -> String
customerName (Customer _ name _) = name

customerAddress :: Customer -> [String]
customerAddress (Customer _ _ address) = address
For each of the fields that we name in our
      type definition, Haskell creates an accessor function of that
      name:
ghci> :type customerID
customerID :: Customer -> CustomerID

We can still use the usual application
      syntax to create a value of this type:
-- file: ch03/BookStore.hs
customer1 = Customer 271828 "J.R. Hacker"
            ["255 Syntax Ct",
             "Milpitas, CA 95134",
             "USA"]
Record syntax adds a more verbose notation
      for creating a value. This can sometimes make code more readable:
-- file: ch03/BookStore.hs
customer2 = Customer {
              customerID = 271828
            , customerAddress = ["1048576 Disk Drive",
                                 "Milpitas, CA 95134",
                                 "USA"]
            , customerName = "Jane Q. Citizen"
            }
If we use this form, we can vary the order
      in which we list fields. Here, we moved the name and address fields from
      their positions in the declaration of the type.
When we define a type using record syntax,
      it also changes the way the type’s values are printed:
ghci> customer1
Customer {customerID = 271828, customerName = "J.R. Hacker", customerAddress = 
["255 Syntax Ct","Milpitas, CA 95134","USA"]}

For comparison, let’s look at a
      BookInfo value; we defined this type without record
      syntax:
ghci> cities
Book 173 "Use of Weapons" ["Iain M. Banks"]

The accessor functions that we get
      “for free” when we use record syntax really are normal
      Haskell functions:
ghci> :type customerName
customerName :: Customer -> String
ghci> customerName customer1
"J.R. Hacker"
The standard System.Time module makes good use of record
      syntax. Here’s a type defined in that module:
data CalendarTime = CalendarTime {
  ctYear                      :: Int,
  ctMonth                     :: Month,
  ctDay, ctHour, ctMin, ctSec :: Int,
  ctPicosec                   :: Integer,
  ctWDay                      :: Day,
  ctYDay                      :: Int,
  ctTZName                    :: String,
  ctTZ                        :: Int,
  ctIsDST                     :: Bool
}
In the absence of record syntax, it would
      be painful to extract specific fields from a type such as this. The
      notation makes it easier to work with large structures.

Parameterized Types



We’ve repeatedly mentioned that the list type is polymorphic: the elements of a list can be of any
      type. We can also add polymorphism to our own types. To do this, we
      introduce type variables into a
      type declaration. The Prelude defines
      a type named Maybe, which we can use to represent a value
      that could be either present or missing, for example, a field in a
      database row that could be null:
-- file: ch03/Nullable.hs
data Maybe a = Just a
             | Nothing
Here, the variable a is
      not a regular variable—it’s a type variable. It indicates that the
      Maybe type takes another type as its parameter. This lets
      us use Maybe on values of any type:
-- file: ch03/Nullable.hs
someBool = Just True

someString = Just "something"
As usual, we can experiment with this type in ghci:
ghci> Just 1.5
Just 1.5
ghci> Nothing
Nothing
ghci> :type Just "invisible bike"
Just "invisible bike" :: Maybe [Char]
Maybe is a polymorphic, or
      generic, type. We give the Maybe type constructor a
      parameter to create a specific type, such as Maybe Int or
      Maybe [Bool]. As we might expect, these types are
      distinct.
We can nest uses of parameterized types
      inside each other, but when we do, we may need to use parentheses to
      tell the Haskell compiler how to parse our expression:
-- file: ch03/Nullable.hs
wrapped = Just (Just "wrapped")
To once again extend an analogy to more
      familiar languages, parameterized types bear some resemblance
      to templates in C++ and to generics in Java. Just be aware
      that this is a shallow analogy. Templates and generics were added to
      their respective languages long after the languages were initially
      defined, and they have an awkward feel. Haskell’s parameterized types
      are simpler and easier to use, as the language was designed with them
      from the beginning.

Recursive Types



The familiar list type is recursive: it’s defined in terms
      of itself. To understand this, let’s create our own list-like type.
      We’ll use Cons in place of the (:)
      constructor, and Nil in place of []:
-- file: ch03/ListADT.hs
data List a = Cons a (List a)
            | Nil
              deriving (Show)
Because List a
      appears on both the left and the right of the = sign, the
      type’s definition refers to itself. If we want to use the
      Cons constructor to create a new value, we must supply one
      value of type a and another of type
      List a. Let’s see where this leads us in
      practice.
The simplest value of type
      List a that we can create is Nil.
      Save the type definition in a file, and then load it into ghci:
ghci> Nil
Nil

Because Nil has a
      List type, we can use it as a parameter to
      Cons:
ghci> Cons 0 Nil
Cons 0 Nil

And because Cons 0 Nil has the
      type List a, we can use this as a parameter to
      Cons:
ghci> Cons 1 it
Cons 1 (Cons 0 Nil)
ghci> Cons 2 it
Cons 2 (Cons 1 (Cons 0 Nil))
ghci> Cons 3 it
Cons 3 (Cons 2 (Cons 1 (Cons 0 Nil)))
We could continue in this fashion
      indefinitely, creating ever-longer Cons chains, each with a
      single Nil at the end.
For a third example of what a recursive
      type is, here is a definition of a binary tree type:
-- file: ch03/Tree.hs
data Tree a = Node a (Tree a) (Tree a)
            | Empty
              deriving (Show)
A binary tree is either a node with two
      children—which are themselves binary trees—or an empty value.
Is List an acceptable list?
We can easily prove to ourselves that our
        List a type has the same shape as the
        built-in list type [a]. To do this, we write a function
        that takes any value of type [a] and produces a value of
        type List a:
-- file: ch03/ListADT.hs
fromList (x:xs) = Cons x (fromList xs)
fromList []     = Nil
By inspection, this clearly substitutes a
        Cons for every (:)
        and a Nil for each []. This covers both of
        the built-in list type’s constructors. The two types are
        isomorphic—they have the same shape:
ghci> fromList "durian"
Cons 'd' (Cons 'u' (Cons 'r' (Cons 'i' (Cons 'a' (Cons 'n' Nil)))))
ghci> fromList [Just True, Nothing, Just False]
Cons (Just True) (Cons Nothing (Cons (Just False) Nil))

This time, let’s search for insight by
      comparing our definition with one from a more familiar language. Here’s
      a similar class definition in Java:
class Tree<A>
{
    A value;
    Tree<A> left;
    Tree<A> right;

    public Tree(A v, Tree<A> l, Tree<A> r)
    {
	value = v;
	left = l;
	right = r;
    }
}
The one significant difference is that
      Java lets us use the special value null anywhere to indicate
      “nothing,” so we can use null to indicate that
      a node is missing a left or right child. Here’s a small function that
      constructs a tree with two leaves (a leaf, by convention, has no
      children):
class Example 
{
    static Tree<String> simpleTree()
    {
	return new Tree<String>(
            "parent",
	    new Tree<String>("left leaf", null, null),
	    new Tree<String>("right leaf", null, null));
    }
}
In Haskell, we don’t have an equivalent of
      null. We could use the Maybe type to provide a
      similar effect, but that would bloat the pattern matching. Instead,
      we’ve decided to use a no-argument Empty constructor. Where
      the Java example provides null to the Tree
      constructor, we supply Empty in Haskell:
-- file: ch03/Tree.hs
simpleTree = Node "parent" (Node "left child" Empty Empty)
                           (Node "right child" Empty Empty)
Exercises
	Write the converse of fromList for the List
            type: a function that takes a List a and generates a
            [a].

	Define a tree type that has only one constructor, like our
            Java example. Instead of the Empty constructor, use
            the Maybe type to refer to a node’s children.





Reporting Errors



Haskell provides a standard function, error :: String -> a, that we can call
      when something has gone terribly wrong in our code. We give it a string
      parameter, which is the error message to display. Its type signature
      looks peculiar: how can it produce a value of any type a given only a string?
It has a result type of a so that we can call it anywhere and it will
      always have the right type. However, it does not return a value like a
      normal function. Instead, it immediately aborts
      evaluation and prints the error message we give it.
The mySecond function returns the second element
      of its input list but fails if its input list isn’t long enough:
-- file: ch03/MySecond.hs
mySecond :: [a] -> a

mySecond xs = if null (tail xs)
              then error "list too short"
              else head (tail xs)
As usual, we can see how this works in
      practice in ghci:
ghci> mySecond "xi"
'i'
ghci> mySecond [2]
*** Exception: list too short
ghci> head (mySecond [[9]])
*** Exception: list too short
Notice the third case, where we try to use
      the result of the call to mySecond
      as the argument to another function. Evaluation still terminates and
      drops us back to the ghci prompt.
      This is the major weakness of using error: it doesn’t let our caller distinguish
      between a recoverable error and a problem so severe that it really
      should terminate our program.
As we have already seen, a pattern
      matching failure causes a similar unrecoverable error:
ghci> mySecond []
*** Exception: Prelude.tail: empty list

A More Controlled Approach



We can use the Maybe type to
        represent the possibility of an error.
If we want to indicate that an operation
        has failed, we can use the Nothing constructor. Otherwise, we wrap our
        value with the Just
        constructor.
Let’s see how our mySecond function changes if we return a
        Maybe value instead of calling error:
-- file: ch03/MySecond.hs
safeSecond :: [a] -> Maybe a

safeSecond [] = Nothing
safeSecond xs = if null (tail xs)
                then Nothing
                else Just (head (tail xs))
If the list we’re passed is too short, we
        return Nothing to our caller. This lets them decide what
        to do, while a call to error
        would force a crash:
ghci> safeSecond []
Nothing
ghci> safeSecond [1]
Nothing
ghci> safeSecond [1,2]
Just 2
ghci> safeSecond [1,2,3]
Just 2
To return to an earlier topic, we can
        further improve the readability of this function with pattern
        matching:
-- file: ch03/MySecond.hs
tidySecond :: [a] -> Maybe a

tidySecond (_:x:_) = Just x
tidySecond _       = Nothing
The first pattern matches only if the
        list is at least two elements long (it contains two list
        constructors), and it binds the variable x to the
        list’s second element. The second pattern is matched if the first
        fails.


Introducing Local Variables



Within the body of a function, we can introduce new local variables
      whenever we need them, using a let
      expression. Here is a simple function that determines whether we
      should lend some money to a customer. We meet a money reserve of at
      least 100, and we return our new balance after subtracting the amount we
      have loaned:
-- file: ch03/Lending.hs
lend amount balance = let reserve    = 100
                          newBalance = balance - amount
                      in if balance < reserve
                         then Nothing
                         else Just newBalance
The keywords to look out for here are
      let, which starts a block of variable
      declarations, and in, which ends it. Each line introduces a
      new variable. The name is on the left of the =, and the expression to which it is bound is
      on the right.
Special notes
Let us reemphasize our wording: a name in
        a let block is bound to an expression, not to a
        value. Because Haskell is a lazy
        language, the expression associated with a name won’t actually be
        evaluated until it’s needed. In the previous example, we could not
        compute the value of newBalance if we did not meet our
        reserve.
When we define a variable in a let block, we refer to it as a let-bound variable.
        This simply means what it says: we have bound the variable in a
        let block.
Also, our use of whitespace here is
        important. We’ll talk in more detail about the layout rules later in
        this chapter in The Offside Rule and Whitespace in an Expression.

We can use the names of a variable in a
      let block both within the block of
      declarations and in the expression that follows the in keyword.
In general, we’ll refer to the places
      within our code where we can use a name as the name’s scope. If we can use a name,
      it’s in scope; otherwise, it’s out of
      scope. If a name is visible throughout a source file, we say
      it’s at the top level.
Shadowing



We can “nest” multiple
        let blocks inside each other in an expression:
-- file: ch03/NestedLets.hs
foo = let a = 1
      in let b = 2
         in a + b
It’s perfectly legal, but not exactly
        wise, to repeat a variable name in a nested let expression:
-- file: ch03/NestedLets.hs
bar = let x = 1
      in ((let x = "foo" in x), x)
Here, the inner x is
        hiding, or shadowing, the outer
        x. It has the same name, but a different type and
        value:
ghci> bar
("foo",1)

We can also shadow a function’s
        parameters, leading to even stranger results. What is the type of this function?
-- file: ch03/NestedLets.hs
quux a = let a = "foo"
         in a ++ "eek!"
Because the function’s argument
        a is never used in the body of the function, due to
        being shadowed by the let-bound
        a, the argument can have any type at all:
ghci> :type quux
quux :: t -> [Char]

Compiler warnings are your friends
Shadowing can obviously lead to
          confusion and nasty bugs, so GHC has a helpful
          -fwarn-name-shadowing option. When enabled, GHC will print a warning message any
          time we shadow a name.


The where Clause



We can use another mechanism to introduce local variables: the
        where clause. The definitions in a
        where clause apply to the code that
        precedes it. Here’s a similar function to
        lend, using where instead
        of let:
-- file: ch03/Lending.hs
lend2 amount balance = if amount < reserve * 0.5
                       then Just newBalance
                       else Nothing
    where reserve    = 100
          newBalance = balance - amount
While a where clause may seem weird initially, it
        offers a wonderful aid to readability. It lets us direct our reader’s
        focus to the important details of an expression, with the supporting
        definitions following afterwards. After a while, you may find yourself
        missing where clauses when using
        languages that lack them.
As with let expressions, whitespace is significant
        in where clauses. We will talk more
        about the layout rules shortly in The Offside Rule and Whitespace in an Expression.

Local Functions, Global Variables



You’ll have noticed that Haskell’s syntax for defining a variable
        looks very similar to its syntax for defining a function. This
        symmetry is preserved in let and
        where blocks; we can define local
        functions just as easily as local
        variables:
-- file: ch03/LocalFunction.hs
pluralise :: String -> [Int] -> [String]
pluralise word counts = map plural counts
    where plural 0 = "no " ++ word ++ "s"
          plural 1 = "one " ++ word
          plural n = show n ++ " " ++ word ++ "s"
We have defined a local function,
        plural, that consists of several
        equations. Local functions can freely use variables from the scopes
        that enclose them; here, we use word from the
        definition of the outer function pluralise. In the definition of pluralise, the map function (which we’ll be revisiting in
        the next chapter) applies the local function plural to every element of the
        counts list.
We can also define variables, as well as
        functions, at the top level of a source file:
-- file: ch03/GlobalVariable.hs
itemName = "Weighted Companion Cube"


The Offside Rule and Whitespace in an Expression



In our definitions of lend and lend2, the left margin of our text wandered
      around quite a bit. This was not an accident; in Haskell, whitespace has
      meaning.
Haskell uses indentation as a cue to parse
      sections of code. This use of layout to convey structure is sometimes
      called the offside rule. At the beginning of a
      source file, the first top-level declaration or definition can start in
      any column, and the Haskell compiler or interpreter remembers that
      indentation level. Every subsequent top-level declaration must have the
      same indentation.
Here’s an illustration of the top-level indentation
      rule; our first file, GoodIndent.hs, is well-behaved:
-- file: ch03/GoodIndent.hs
-- This is the leftmost column.

  -- It's fine for top-level declarations to start in any column...
  firstGoodIndentation = 1

  -- ...provided all subsequent declarations do, too!
  secondGoodIndentation = 2
Our second, BadIndent.hs, doesn’t play by the
      rules:
-- file: ch03/BadIndent.hs
-- This is the leftmost column.

    -- Our first declaration is in column 4.
    firstBadIndentation = 1

  -- Our second is left of the first, which is illegal!
  secondBadIndentation = 2
Here’s what happens when we try to load the two files
      into ghci:
ghci> :load GoodIndent.hs
[1 of 1] Compiling Main             ( GoodIndent.hs, interpreted )
Ok, modules loaded: Main.
ghci> :load BadIndent.hs
[1 of 1] Compiling Main             ( BadIndent.hs, interpreted )

BadIndent.hs:8:2: parse error on input `secondBadIndentation'
Failed, modules loaded: none.
An empty following line is treated as a
      continuation of the current item, as is a following line indented
      further to the right.
The rules for let expressions and where clauses are similar. After a let or where keyword, the Haskell compiler or
      interpreter remembers the indentation of the next token it sees. If the
      line that follows is empty, or its indentation is further to the right,
      it is considered as a continuation of the previous line. If the
      indentation is the same as the start of the preceding item, it is
      treated as beginning a new item in the same block:
-- file: ch03/Indentation.hs
foo = let firstDefinition = blah blah
          -- a comment-only line is treated as empty
                              continuation blah

          -- we reduce the indentation, so this is a new definition
          secondDefinition = yada yada

                             continuation yada
      in whatever
Here are nested uses of let and where:
-- file: ch03/letwhere.hs
bar = let b = 2
          c = True
      in let a = b
         in (a, c)
The name a is only visible within the
      inner let expression—it’s not visible
      in the outer let. If we try to use
      the name a there, we’ll get a compilation error. The
      indentation gives both us and the compiler a visual cue as to what is
      currently in scope:
-- file: ch03/letwhere.hs
foo = x
    where x = y
              where y = 2
Similarly, the scope of the first where clause is the definition of
      foo, but the scope of the second is just the first
      where clause.
The indentation we use for the let and where clauses makes our intentions easy to
      figure out.
A Note About Tabs Versus Spaces



If you use a Haskell-aware text editor (e.g., Emacs), it is probably already
        configured to use space characters for all whitespace when you edit
        Haskell source files. If your editor is not
        Haskell-aware, you should configure it to use only space
        characters.
The reason for this is portability. In an
        editor that uses a fixed-width font, tab stops are by convention
        placed at different intervals on Unix-like systems (every eight
        characters) than on Windows (every four characters). This means that
        no matter what your personal beliefs are about where tabs belong, you
        can’t rely on someone else’s editor honoring your preferences. Any
        indentation that uses tabs is going to look broken under
        someone’s configuration. In fact, this could lead
        to compilation problems, as the Haskell language standard requires
        implementations to use the Unix tab width convention. Using space
        characters avoids this problem entirely.

The Offside Rule Is Not Mandatory



We can use explicit structuring instead
        of layout to indicate what we mean. To do so, we start a block of
        equations with an opening curly brace, separate each item with a
        semicolon, and finish the block with a closing curly brace. The
        following two uses of let have the
        same meanings:
-- file: ch03/Braces.hs
bar = let a = 1
          b = 2
          c = 3
      in a + b + c

foo = let { a = 1;  b = 2;
        c = 3 }
      in a + b + c
When we use explicit structuring, the
        normal layout rules don’t apply, which is why we can get away with
        unusual indentation in the second let expression.
We can use explicit structuring anywhere
        that we’d normally use layout. It’s valid for where clauses and even for top-level
        declarations. Just remember that although the facility exists,
        explicit structuring is hardly ever actually used
        in Haskell programs.


The case Expression



Function definitions are not the only place where we can use
      pattern matching. The case construct
      lets us match patterns within an expression. Here’s what it looks like.
      This function (defined for us in Data.Maybe) unwraps a
      Maybe value, using a default if the value is
      Nothing:
-- file: ch03/Guard.hs
fromMaybe defval wrapped =
    case wrapped of
      Nothing     -> defval
      Just value  -> value
The case keyword is followed by an
      arbitrary expression; the pattern match is performed against the result
      of this expression. The of keyword signifies the end of the
      expression and the beginning of the block of patterns and
      expressions.
Each item in the block consists of a pattern, followed
      by an arrow (->), followed by an expression
      to evaluate if that pattern matches. These expressions must all have the
      same type. The result of the case expression is the result
      of the expression associated with the first pattern to match. Matches
      are attempted from top to bottom.
To express “here’s the expression to evaluate if
      none of the other patterns matches,” we just use the wild card
      pattern _ as the last in our list of patterns. If a pattern
      match fails, we will get the same kind of runtime error that we saw
      earlier.

Common Beginner Mistakes with Patterns



There are a few ways in which new Haskell
      programmers can misunderstand or misuse patterns. The following are some
      attempts at pattern matching gone awry. Depending on what you expect one
      of these examples to do, there may be some surprises.
Incorrectly Matching Against a Variable



Take a look at the following code:
-- file: ch03/BogusPattern.hs
data Fruit = Apple | Orange

apple = "apple"

orange = "orange"        

whichFruit :: String -> Fruit

whichFruit f = case f of
                 apple  -> Apple
                 orange -> Orange
A naive glance suggests that this code is trying to
        check the value f to see whether
        it matches the value apple or
        orange.
It is easier to spot the mistake if we
        rewrite the code in an equational style:
-- file: ch03/BogusPattern.hs
equational apple = Apple
equational orange = Orange
Now can you see the problem? Here, it is
        more obvious apple does not refer to the top-level
        value named apple—it is a local pattern
        variable.
Irrefutable patterns
We refer to a pattern that always succeeds as
          irrefutable. Plain variable names and the wild card _
          (underscore) are examples of irrefutable patterns.

Here’s a corrected version of this
        function:
-- file: ch03/BogusPattern.hs
betterFruit f = case f of
                  "apple"  -> Apple
                  "orange" -> Orange
We fixed the problem by matching against
        the literal values "apple" and
        "orange".

Incorrectly Trying to Compare for Equality



What if we want to compare the values
        stored in two nodes of type Tree, and then return one of
        them if they’re equal? Here’s an attempt:
-- file: ch03/BadTree.hs
bad_nodesAreSame (Node a _ _) (Node a _ _) = Just a
bad_nodesAreSame _            _            = Nothing
A name can appear only once in a set of
        pattern bindings. We cannot place a variable in multiple positions to
        express the notion “this value and that should be
        identical.” Instead, we’ll solve this problem using guards, another invaluable
        Haskell feature.


Conditional Evaluation with Guards



Pattern matching limits us to performing fixed tests of a value’s shape.
      Although this is useful, we will often want to make a more expressive
      check before evaluating a function’s body. Haskell provides a feature
      called guards that give us this ability. We’ll
      introduce the idea with a modification of the function we wrote to
      compare two nodes of a tree:
-- file: ch03/BadTree.hs
nodesAreSame (Node a _ _) (Node b _ _)
    | a == b     = Just a
nodesAreSame _ _ = Nothing
In this example, we use pattern matching
      to ensure that we are looking at values of the right shape, and a guard
      to compare pieces of them.
A pattern can be followed by zero or more
      guards, each an expression of type Bool. A guard is
      introduced by a | symbol. This is followed by the guard
      expression, then an = symbol (or -> if
      we’re in a case expression), then the
      body to use if the guard expression evaluates to True. If a
      pattern matches, each guard associated with that pattern is evaluated in
      the order in which they are written. If a guard succeeds, the body
      affiliated with it is used as the result of the function. If no guard
      succeeds, pattern matching moves on to the next pattern.
When a guard expression is evaluated, all
      of the variables mentioned in the pattern with which it is associated
      are bound and can be used.
Here is a reworked version of our
      lend function that uses
      guard:
-- file: ch03/Lending.hs
lend3 amount balance
     | amount <= 0            = Nothing
     | amount > reserve * 0.5 = Nothing
     | otherwise              = Just newBalance
    where reserve    = 100
          newBalance = balance - amount
The special-looking guard expression
      otherwise is simply a variable bound to the value True
      that aids readability.
We can use guards anywhere that we can use patterns.
      Writing a function as a series of equations using pattern matching and
      guards can make it much clearer. Remember the myDrop function we defined in Conditional Evaluation?
-- file: ch02/myDrop.hs
myDrop n xs = if n <= 0 || null xs
              then xs
              else myDrop (n - 1) (tail xs)
Here is a reformulation that uses patterns
      and guards:
-- file: ch02/myDrop.hs
niceDrop n xs | n <= 0 = xs
niceDrop _ []          = []
niceDrop n (_:xs)      = niceDrop (n - 1) xs
This change in style lets us enumerate up
      front the cases in which we expect a function to behave differently. If
      we bury the decisions inside a function as if expressions, the code becomes harder
      to
      read.
Exercises
	Write a function that computes the number of elements in a
            list. To test it, ensure that it gives the same answers as the
            standard length
            function.

	Add a type signature for your function to your source file.
            To test it, load the source file into ghci again.

	Write a function that computes the mean of a list, i.e., the
            sum of all elements in the list divided by its length. (You may
            need to use the fromIntegral
            function to convert the length of the list from an integer into a
            floating-point number.)

	Turn a list into a palindrome; i.e., it should read the same
            both backward and forward. For example, given the list
            [1,2,3], your function should return
            [1,2,3,3,2,1].

	Write a function that determines whether its input list is a
            palindrome.

	Create a function that sorts a list of lists based on the
            length of each sublist. (You may want to look at the sortBy function from the
            Data.List module.)

	Define a function that joins a list of lists together using
            a separator value:
-- file: ch03/Intersperse.hs
intersperse :: a -> [[a]] -> [a]
The separator should appear between elements of the list,
            but it should not follow the last element. Your function should
            behave as follows:
ghci> :load Intersperse
[1 of 1] Compiling Main             ( Intersperse.hs, interpreted )
Ok, modules loaded: Main.
ghci> intersperse ',' []
""
ghci> intersperse ',' ["foo"]
"foo"
ghci> intersperse ',' ["foo","bar","baz","quux"]
"foo,bar,baz,quux"

	Using the binary tree type that we defined earlier in this
            chapter, write a function that will determine the height of the
            tree. The height is the largest number of hops from the root to an
            Empty. For example, the tree Empty has
            height zero; Node "x" Empty Empty has height one;
            Node "x" Empty (Node "y" Empty Empty) has height two;
            and so on.

	Consider three two-dimensional points,
            a, b, and
            c. If we look at the angle formed by the line
            segment from a to b and
            the line segment from b to
            c, it turns left, turns right, or forms a
            straight line. Define a Direction data type that lets
            you represent these possibilities.

	Write a function that calculates the turn made by three
            two-dimensional points and returns a
            Direction.

	Define a function that takes a list of two-dimensional
            points and computes the direction of each successive triple. Given
            a list of points [a,b,c,d,e], it should begin by
            computing the turn made by [a,b,c], then the turn
            made by [b,c,d], then [c,d,e]. Your
            function should return a list of Direction.

	Using the code from the preceding three exercises, implement
            Graham’s scan algorithm for the convex hull of a set of 2D points.
            You can find good description of what a convex hull
            is, and how the Graham scan
            algorithm should work, on Wikipedia.







[7] If you are familiar with C or C++, it is analogous
          to a typedef.



Chapter 4. Functional Programming



Thinking in Haskell



Our early learning of Haskell has two distinct obstacles. The
      first is coming to terms with the shift in mindset from imperative
      programming to functional: we have to replace our programming habits
      from other languages. We do this not because imperative techniques are
      bad, but because in a functional language other techniques work
      better.
Our second challenge is learning our way
      around the standard Haskell libraries. As in any language, the libraries
      act as a lever, enabling us to multiply our problem-solving ability.
      Haskell libraries tend to operate at a higher level of abstraction than
      those in many other languages. We’ll need to work a little harder to
      learn to use the libraries, but in exchange they offer a lot of
      power.
In this chapter, we’ll introduce a number
      of common functional programming techniques. We’ll draw upon examples
      from imperative languages in order to highlight the shift in thinking
      that we’ll need to make. As we do so, we’ll walk through some of the
      fundamentals of Haskell’s standard libraries. We’ll also intermittently
      cover a few more language features along the way.

A Simple Command-Line Framework



In most of this chapter, we will concern ourselves with code that has no
      interaction with the outside world. To maintain our focus on practical
      code, we will begin by developing a gateway between our
      “pure” code and the outside world. Our framework simply
      reads the contents of one file, applies a function to the file, and
      writes the result to another file:
-- file: ch04/InteractWith.hs
-- Save this in a source file, e.g., InteractWith.hs

import System.Environment (getArgs)

interactWith function inputFile outputFile = do
  input <- readFile inputFile
  writeFile outputFile (function input)

main = mainWith myFunction
  where mainWith function = do
          args <- getArgs
          case args of
            [input,output] -> interactWith function input output
            _ -> putStrLn "error: exactly two arguments needed"

        -- replace "id" with the name of our function below
        myFunction = id
This is all we need to write simple, but
      complete, file-processing programs. This is a complete program, and we
      can compile it to an executable named InteractWith as follows:
$ ghc --make InteractWith
[1 of 1] Compiling Main             ( InteractWith.hs, InteractWith.o )
Linking InteractWith ...
If we run this program from the shell or
      command prompt, it will accept two filenames, the name of a file to
      read, and the name of a file to write:
$ ./Interact
error: exactly two arguments needed
$ ./Interact hello-in.txt hello-out.txt
$ cat hello-in.txt
hello world
$ cat hello-out.txt
hello world
Some of the notation in our source file is
      new. The do keyword introduces a block of actions that can cause effects in
      the real world, such as reading or writing a file. The <- operator is the equivalent of
      assignment inside a do block. This is
      enough explanation to get us started. We will talk in much more depth
      about these details of notation, and I/O in general, in Chapter 7.
When we want to test a function that
      cannot talk to the outside world, we simply replace the name id in the preceding code with the name of the
      function we want to test. Whatever our function does, it will need to
      have the type String -> String; in other words, it must
      accept a string and return a string.

Warming Up: Portably Splitting Lines of Text



Haskell provides a built-in function, lines, that lets us split a text string on line boundaries. It
      returns a list of strings with line termination characters
      omitted:
ghci> :type lines
lines :: String -> [String]
ghci> lines "line 1\nline 2"
["line 1","line 2"]
ghci> lines "foo\n\nbar\n"
["foo","","bar"]
While lines looks useful, it relies on us reading a
      file in “text mode” in order to work. Text mode is a feature common to many
      programming languages; it provides a special behavior when we read and
      write files on Windows. When we read a file in text mode, the file I/O
      library translates the line-ending sequence "\r\n"
      (carriage return followed by newline) to "\n" (newline alone), and it does the
      reverse when we write a file. On Unix-like systems, text mode does not
      perform any translation. As a result of this difference, if we read a
      file on one platform that was written on the other, the line endings are
      likely to become a mess. (Both readFile and writeFile operate in text mode.)
ghci> lines "a\r\nb"
["a\r","b"]

The lines function splits only on newline
      characters, leaving carriage returns dangling at the ends of lines. If
      we read a Windows-generated text file on a Linux or Unix box, we’ll get
      trailing carriage returns at the end of each line.
We have comfortably used Python’s “universal
      newline” support for years; this transparently handles Unix and
      Windows line-ending conventions for us. We would like to provide
      something similar in Haskell.
Since we are still early in our career of reading
      Haskell code, we will discuss our Haskell implementation in some
      detail:
-- file: ch04/SplitLines.hs
splitLines :: String -> [String]
Our function’s type signature indicates
      that it accepts a single string, the contents of a file with some
      unknown line-ending convention. It returns a list of strings,
      representing each line from the file:
-- file: ch04/SplitLines.hs
splitLines [] = []
splitLines cs =
    let (pre, suf) = break isLineTerminator cs
    in  pre : case suf of 
                ('\r':'\n':rest) -> splitLines rest
                ('\r':rest)      -> splitLines rest
                ('\n':rest)      -> splitLines rest
                _                -> []

isLineTerminator c = c == '\r' || c == '\n'
Before we dive into detail, notice first
      how we organized our code. We presented the important pieces of code
      first, keeping the definition of isLineTerminator until later. Because we have
      given the helper function a readable name, we can guess what it does
      even before we’ve read it, which eases the smooth “flow” of
      reading the code.
The Prelude defines a
      function named break that we can
      use to partition a list into two parts. It takes a function as its first
      parameter. That function must examine an element of the list and return
      a Bool to indicate whether to break the list at that point.
      The break function returns a pair, which consists of the sublist consumed
      before the predicate returned True (the
      prefix) and the rest of the list (the
      suffix):
ghci> break odd [2,4,5,6,8]
([2,4],[5,6,8])
ghci> :module +Data.Char
ghci> break isUpper "isUpper"
("is","Upper")
Since we need only to match a single carriage return or
      newline at a time, examining each element of the list one by one is good
      enough for our needs.
The first equation of splitLines indicates that if we match an
      empty string, we have no further work to do.
In the second equation, we first apply
      break to our input string. The
      prefix is the substring before a line terminator, and the suffix is the
      remainder of the string. The suffix will include the line terminator, if
      any is present.
The pre : expression tells us
      that we should add the pre value to the front of the
      list of lines. We then use a case
      expression to inspect the suffix, so we can decide what to do next. The
      result of the case expression will be
      used as the second argument to the (:) list
      constructor.
The first pattern matches a string that begins with a
      carriage return, followed by a newline. The variable
      rest is bound to the remainder of the string. The
      other patterns are similar, so they ought to be easy to follow.
A prose description of a Haskell function
      isn’t necessarily easy to follow. We can gain a better understanding by
      stepping into ghci and observing the
      behavior of the function in different circumstances.
Let’s start by partitioning a string that
      doesn’t contain any line terminators:
ghci> splitLines "foo"
["foo"]

Here, our application of break never finds a line terminator, so the
      suffix it returns is empty:
ghci> break isLineTerminator "foo"
("foo","")

The case
      expression in splitLines must thus
      be matching on the fourth branch, and we’re finished. What about a
      slightly more interesting case?
ghci> splitLines "foo\r\nbar"
["foo","bar"]

Our first application of break gives us a nonempty suffix:
ghci> break isLineTerminator "foo\r\nbar"
("foo","\r\nbar")

Because the suffix begins with a carriage return
      followed by a newline, we match on the first branch of the case expression. This gives us
      pre bound to "foo", and
      suf bound to "bar". We apply splitLines recursively, this time on
      "bar" alone:
ghci> splitLines "bar"
["bar"]

The result is that we construct a list
      whose head is "foo" and whose tail is
      ["bar"]:
ghci> "foo" : ["bar"]
["foo","bar"]

This sort of experimenting with ghci is a helpful way to understand and debug
      the behavior of a piece of code. It has an even more important benefit
      that is almost accidental in nature. It can be tricky to test
      complicated code from ghci, so we
      will tend to write smaller functions, which can further help the
      readability of our code.
This style of creating and reusing small,
      powerful pieces of code is a fundamental part of functional
      programming.
A Line-Ending Conversion Program



Let’s hook our splitLines function into the little
        framework that we wrote earlier. Make a copy of the InteractWith.hs source file; let’s call the
        new file SplitLines.hs. Add the
        splitLines function to the new
        source file. Since our function must produce a single
        String, we must stitch the list of lines back together.
        The Prelude provides an unlines function that concatenates a list of strings, adding a newline
        to the end of each:
-- file: ch04/SplitLines.hs
fixLines :: String -> String
fixLines input = unlines (splitLines input)
If we replace the id function with fixLines, we can compile an executable that
        will convert a text file to our system’s native line ending:
$ ghc --make FixLines
[1 of 1] Compiling Main             ( FixLines.hs, FixLines.o )
Linking FixLines ...
If you are on a Windows system, find and download a
        text file that was created on a Unix system (for example, gpl-3.0.txt [http://www.gnu.org/licenses/gpl-3.0.txt]). Open it in
        the standard Notepad text editor. The lines should all run together,
        making the file almost unreadable. Process the file using the FixLines command you just created, and open
        the output file in Notepad. The line endings should now be fixed
        up.
On Unix-like systems, the standard pagers and editors
        hide Windows line endings, making it more difficult to verify that
        FixLines is actually eliminating
        them. Here are a few commands that should help:
$ file gpl-3.0.txt
gpl-3.0.txt: ASCII English text
$ unix2dos gpl-3.0.txt
unix2dos: converting file gpl-3.0.txt to DOS format ...
$ file gpl-3.0.txt
gpl-3.0.txt: ASCII English text, with CRLF line terminators


Infix Functions



Usually, when we define or apply a function in Haskell, we write
      the name of the function, followed by its arguments. This notation is
      referred to as prefix, because the name of the
      function comes before its arguments.
If a function or constructor takes two or
      more arguments, we have the option of using it in
      infix form, where we place it
      between its first and second arguments. This allows
      us to use functions as infix operators.
To define or apply a function or value
      constructor using infix notation, we enclose its name in backtick characters (sometimes known as backquotes).
      Here are simple infix definitions of a function and a type:
-- file: ch04/Plus.hs
a `plus` b = a + b

data a `Pair` b = a `Pair` b
                  deriving (Show)

-- we can use the constructor either prefix or infix
foo = Pair 1 2
bar = True `Pair` "quux"
Since infix notation is purely a syntactic
      convenience, it does not change a function’s behavior:
ghci> 1 `plus` 2
3
ghci> plus 1 2
3
ghci> True `Pair` "something"
True `Pair` "something"
ghci> Pair True "something"
True `Pair` "something"
Infix notation can often help readability.
      For instance, the Prelude defines a
      function, elem, that indicates
      whether a value is present in a list. If we employ elem using prefix notation, it is fairly easy
      to read:
ghci> elem 'a' "camogie"
True

If we switch to infix notation, the code
      becomes even easier to understand. It is now clear that we’re checking
      to see if the value on the left is present in the list on the
      right:
ghci> 3 `elem` [1,2,4,8]
False

We see a more pronounced improvement with some useful
      functions from the Data.List module. The isPrefixOf function tells us if one list
      matches the beginning of another:
ghci> :module +Data.List
ghci> "foo" `isPrefixOf` "foobar"
True
The isInfixOf and
      isSuffixOf functions match anywhere
      in a list and at its end, respectively:
ghci> "needle" `isInfixOf` "haystack full of needle thingies"
True
ghci> "end" `isSuffixOf` "the end"
True
There is no hard-and-fast rule that
      dictates when you ought to use infix versus prefix notation, although
      prefix notation is far more common. It’s best to choose whichever makes
      your code more readable in a specific situation.
Beware familiar notation in an unfamiliar language
A few other programming languages use
        backticks, but in spite of the visual similarities, the purpose of
        backticks in Haskell does not remotely resemble their meaning in, for
        example, Perl, Python, or Unix shell scripts.
The only legal thing we can do with
        backticks in Haskell is wrap them around the name of a function. We
        can’t, for example, use them to enclose a complex expression whose
        value is a function. It might be convenient if we could, but that’s
        not how the language is today.


Working with Lists



As the bread and butter of functional programming, lists
      deserve some serious attention. The standard Prelude defines dozens of functions for
      dealing with lists. Many of these will be indispensable tools, so it’s
      important that we learn them early on.
For better or worse, this section is going
      to read a bit like a laundry list of functions. Why present so many
      functions at once? Because they are both easy to learn and absolutely
      ubiquitous. If we don’t have this toolbox at our fingertips, we’ll end
      up wasting time by reinventing simple functions that are already present
      in the standard libraries. So bear with us as we go through the list;
      the effort you’ll save will be huge.
The Data.List module is the
      “real” logical home of all standard list functions. The
      Prelude merely re-exports a large
      subset of the functions exported by Data.List. Several
      useful functions in Data.List are not
      re-exported by the standard Prelude.
      As we walk through list functions in the sections that follow, we will
      explicitly mention those that are only in Data.List:
ghci> :module +Data.List
Because none of these functions is complex
      or takes more than about three lines of Haskell to write, we’ll be brief
      in our descriptions of each. In fact, a quick and useful learning
      exercise is to write a definition of each function after you’ve read
      about it.
Basic List Manipulation



The length function tells us how many elements are in a list:
ghci> :type length
length :: [a] -> Int
ghci> length []
0
ghci> length [1,2,3]
3
ghci> length "strings are lists, too"
22
If you need to determine whether a list is empty, use
        the null
        function:
ghci> :type null
null :: [a] -> Bool
ghci> null []
True
ghci> null "plugh"
False
To access the first element of a list,
        use the head
        function:
ghci> :type head
head :: [a] -> a
ghci> head [1,2,3]
1
The converse, tail, returns all but the head of a list:
ghci> :type tail
tail :: [a] -> [a]
ghci> tail "foo"
"oo"
Another function, last, returns the very last element of a list:
ghci> :type last
last :: [a] -> a
ghci> last "bar"
'r'
The converse of last is init, which returns a list of all but the last element of its
        input:
ghci> :type init
init :: [a] -> [a]
ghci> init "bar"
"ba"
Several of the preceding functions behave
        poorly on empty lists, so be careful if you don’t know whether or not
        a list is empty. What form does their misbehavior take?
ghci> head []
*** Exception: Prelude.head: empty list

Try each of the previous functions in ghci. Which ones crash when given an empty
        list?

Safely and Sanely Working with Crashy Functions



When we want to use a function such
        as head, where we
        know that it might blow up on us if we pass in an empty list, there
        initially might be a strong temptation to check the length of the list
        before we call head. Let’s
        construct an artificial example to illustrate our point:
-- file: ch04/EfficientList.hs
myDumbExample xs = if length xs > 0
                   then head xs
                   else 'Z'
If we’re coming from a language such as
        Perl or Python, this might seem like a perfectly natural way to write
        this test. Behind the scenes, Python lists are arrays, and Perl arrays
        are, well, arrays. So we necessarily know how long they are, and
        calling len(foo) or scalar(@foo) is a
        perfectly natural thing to do. But as with many other things, it’s not
        a good idea to blindly transplant such an assumption into
        Haskell.
We’ve already seen the definition of the
        list algebraic data type many times, and we know that a list doesn’t
        store its own length explicitly. Thus, the only way that length can operate is to walk the entire
        list.
Therefore, when we care only whether or
        not a list is empty, calling length isn’t a good strategy. It can potentially do a lot more work
        than we want, if the list we’re working with is finite. Since Haskell
        lets us easily create infinite lists, a careless use of length may even result in an infinite
        loop.
A more appropriate function to call here
        instead is null, which runs in
        constant time. Better yet, using null makes our code indicate what property
        of the list we really care about. Here are two improved ways of
        expressing myDumbExample:
-- file: ch04/EfficientList.hs
mySmartExample xs = if not (null xs)
                    then head xs
                    else 'Z'

myOtherExample (x:_) = x
myOtherExample [] = 'Z'

Partial and Total Functions



Functions that have only return values defined for a
        subset of valid inputs are called partial functions (calling error doesn’t qualify as returning a
        value!). We call functions that return valid results over their entire
        input domains total functions.
It’s always a good idea to know whether a function
        you’re using is partial or total. Calling a partial function with an
        input that it can’t handle is probably the single biggest source of
        straightforward, avoidable bugs in Haskell programs.
Some Haskell programmers go so far as to
        give partial functions names that begin with a prefix such as
        unsafe so that they can’t shoot themselves in the foot
        accidentally.
It’s arguably a deficiency of the
        standard Prelude that it defines
        quite a few “unsafe” partial functions, such as head, without also providing
        “safe” total equivalents.

More Simple List Manipulations



Haskell’s name for the append function is (++):
ghci> :type (++)
(++) :: [a] -> [a] -> [a]
ghci> "foo" ++ "bar"
"foobar"
ghci> [] ++ [1,2,3]
[1,2,3]
ghci> [True] ++ []
[True]
The concat function takes a list of lists, all of the same type, and
        concatenates them into a single list:
ghci> :type concat
concat :: [[a]] -> [a]
ghci> concat [[1,2,3], [4,5,6]]
[1,2,3,4,5,6]
It removes one level of nesting:
ghci> concat [[[1,2],[3]], [[4],[5],[6]]]
[[1,2],[3],[4],[5],[6]]
ghci> concat (concat [[[1,2],[3]], [[4],[5],[6]]])
[1,2,3,4,5,6]
The reverse function returns the elements of a list in reverse order:
ghci> :type reverse
reverse :: [a] -> [a]
ghci> reverse "foo"
"oof"
For lists of Bool, the
        and and or functions
        generalize their two-argument cousins,
        (&&) and (||),
        over lists:
ghci> :type and
and :: [Bool] -> Bool
ghci> and [True,False,True]
False
ghci> and []
True
ghci> :type or
or :: [Bool] -> Bool
ghci> or [False,False,False,True,False]
True
ghci> or []
False
They have more useful cousins, all and any, which operate on lists of any type.
        Each one takes a predicate as its first argument; all returns True if that
        predicate succeeds on every element of the list, while any returns True if the
        predicate succeeds on at least one element of the list:
ghci> :type all
all :: (a -> Bool) -> [a] -> Bool
ghci> all odd [1,3,5]
True
ghci> all odd [3,1,4,1,5,9,2,6,5]
False
ghci> all odd []
True
ghci> :type any
any :: (a -> Bool) -> [a] -> Bool
ghci> any even [3,1,4,1,5,9,2,6,5]
True
ghci> any even []
False

Working with Sublists



The take function, which we already discussed
        in Function Application, returns a sublist consisting
        of the first k elements from a list. Its
        converse, drop, drops
        k elements from the start of the list:
ghci> :type take
take :: Int -> [a] -> [a]
ghci> take 3 "foobar"
"foo"
ghci> take 2 [1]
[1]
ghci> :type drop
drop :: Int -> [a] -> [a]
ghci> drop 3 "xyzzy"
"zy"
ghci> drop 1 []
[]
The splitAt function combines the functions take and drop, returning a pair of the input lists,
        split at the given index:
ghci> :type splitAt
splitAt :: Int -> [a] -> ([a], [a])
ghci> splitAt 3 "foobar"
("foo","bar")
The takeWhile and dropWhile functions take predicates. takeWhile takes elements from the beginning
        of a list as long as the predicate returns True, while
        dropWhile drops elements from the
        list as long as the predicate returns True:
ghci> :type takeWhile
takeWhile :: (a -> Bool) -> [a] -> [a]
ghci> takeWhile odd [1,3,5,6,8,9,11]
[1,3,5]
ghci> :type dropWhile
dropWhile :: (a -> Bool) -> [a] -> [a]
ghci> dropWhile even [2,4,6,7,9,10,12]
[7,9,10,12]
Just as splitAt “tuples up” the
        results of take and drop, the functions break (which we already saw in Warming Up: Portably Splitting Lines of Text) and
        span tuple up the results of
        takeWhile and dropWhile.
Each function takes a predicate;
        break consumes its input while
        its predicate fails, and span
        consumes while its predicate succeeds:
ghci> :type span
span :: (a -> Bool) -> [a] -> ([a], [a])
ghci> span even [2,4,6,7,9,10,11]
([2,4,6],[7,9,10,11])
ghci> :type break
break :: (a -> Bool) -> [a] -> ([a], [a])
ghci> break even [1,3,5,6,8,9,10]
([1,3,5],[6,8,9,10])

Searching Lists



As we’ve already seen, the elem function indicates whether a value is present in a list. It has
        a companion function, notElem:
ghci> :type elem
elem :: (Eq a) => a -> [a] -> Bool
ghci> 2 `elem` [5,3,2,1,1]
True
ghci> 2 `notElem` [5,3,2,1,1]
False
For a more general search, filter takes a predicate and returns every element of the list
        on which the predicate succeeds:
ghci> :type filter
filter :: (a -> Bool) -> [a] -> [a]
ghci> filter odd [2,4,1,3,6,8,5,7]
[1,3,5,7]
In Data.List, three
        predicates—isPrefixOf, isInfixOf, and isSuffixOf—let us
        test for the presence of sublists within a bigger list. The easiest
        way to use them is with infix notation.
The isPrefixOf function tells us whether its
        left argument matches the beginning of its right argument:
ghci> :module +Data.List
ghci> :type isPrefixOf
isPrefixOf :: (Eq a) => [a] -> [a] -> Bool
ghci> "foo" `isPrefixOf` "foobar"
True
ghci> [1,2] `isPrefixOf` []
False
The isInfixOf function indicates whether its
        left argument is a sublist of its right:
ghci> :module +Data.List
ghci> [2,6] `isInfixOf` [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9]
True
ghci> "funk" `isInfixOf` "sonic youth"
False
The operation of isSuffixOf shouldn’t need any
        explanation:
ghci> :module +Data.List
ghci> ".c" `isSuffixOf` "crashme.c"
True

Working with Several Lists at Once



The zip function takes two lists and “zips” them into a
        single list of pairs. The resulting list is the same length as the
        shorter of the two inputs:
ghci> :type zip
zip :: [a] -> [b] -> [(a, b)]
ghci> zip [12,72,93] "zippity"
[(12,'z'),(72,'i'),(93,'p')]
More useful is zipWith, which takes two lists and applies a function to each pair of
        elements, generating a list that is the same length as the shorter of
        the two:
ghci> :type zipWith
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
ghci> zipWith (+) [1,2,3] [4,5,6]
[5,7,9]
Haskell’s type system makes it an
        interesting challenge to write functions that take variable numbers of
        arguments.[8] So if we want to zip three lists together, we call
        zip3 or zipWith3, and so on, up to zip7 and zipWith7.

Special String-Handling Functions



We’ve already encountered the standard lines function and its standard counterpart unlines in the sectionWarming Up: Portably Splitting Lines of Text. Notice
        that unlines always places a
        newline on the end of its result:
ghci> lines "foo\nbar"
["foo","bar"]
ghci> unlines ["foo", "bar"]
"foo\nbar\n"
The words function splits an input string on
        any whitespace. Its counterpart, unwords, uses a single space to join a list of words:
ghci> words "the  \r  quick \t  brown\n\n\nfox"
["the","quick","brown","fox"]
ghci> unwords ["jumps", "over", "the", "lazy", "dog"]
"jumps over the lazy dog"
Exercises
	Write your own “safe” definitions of the
              standard partial list functions, but make sure they never fail.
              As a hint, you might want to consider using the following
              types:
-- file: ch04/ch04.exercises.hs
safeHead :: [a] -> Maybe a
safeTail :: [a] -> Maybe [a]
safeLast :: [a] -> Maybe a
safeInit :: [a] -> Maybe [a]

	Write a function splitWith that acts similarly to
              words but takes a predicate
              and a list of any type, and then splits its input list on every
              element for which the predicate returns False:
-- file: ch04/ch04.exercises.hs
splitWith :: (a -> Bool) -> [a] -> [[a]]

	Using the command framework from the earlier section A Simple Command-Line Framework, write a program that prints the first
              word of each line of its input.

	Write a program that transposes the text in a file. For
              instance, it should convert "hello\nworld\n" to
              "hw\neo\nlr\nll\nod\n".






How to Think About Loops



Unlike traditional languages, Haskell has neither a
      for loop nor a while loop. If we’ve got a lot
      of data to process, what do we use instead? There are several possible
      answers to this question.
Explicit Recursion



A straightforward way to make the jump from a language that has loops to
        one that doesn’t is to run through a few examples, looking at the
        differences. Here’s a C function that takes a string of decimal digits
        and turns them into an integer:
int as_int(char *str)
{
    int acc; /* accumulate the partial result */

    for (acc = 0; isdigit(*str); str++) {
	acc = acc * 10 + (*str - '0');
    }

    return acc;
}
Given that Haskell doesn’t have any
        looping constructs, how should we think about representing a fairly
        straightforward piece of code such as this?
We don’t have to start off by writing a
        type signature, but it helps to remind us of what we’re working
        with:
-- file: ch04/IntParse.hs
import Data.Char (digitToInt) -- we'll need digitToInt shortly

asInt :: String -> Int
The C code computes the result
        incrementally as it traverses the string; the Haskell code can do the
        same. However, in Haskell, we can express the equivalent of a loop as
        a function. We’ll call ours loop
        just to keep things nice and explicit:
-- file: ch04/IntParse.hs
loop :: Int -> String -> Int

asInt xs = loop 0 xs
That first parameter to loop is the accumulator variable we’ll be
        using. Passing zero into it is equivalent to initializing the
        acc variable in C at the beginning of the
        loop.
Rather than leap into blazing code,
        let’s think about the data we have to work with. Our familiar
        String is just a synonym for [Char], a list
        of characters. The easiest way for us to get the traversal right is to
        think about the structure of a list: it’s either empty or a single
        element followed by the rest of the list.
We can express this structural thinking
        directly by pattern matching on the list type’s constructors. It’s
        often handy to think about the easy cases first; here, that means we
        will consider the empty list case:
-- file: ch04/IntParse.hs
loop acc [] = acc
An empty list doesn’t just mean “the input string is
        empty”; it’s also the case that we’ll encounter when we
        traverse all the way to the end of a nonempty list. So we don’t want
        to “error out” if we see an empty list. Instead, we
        should do something sensible. Here, the sensible thing is to terminate
        the loop and return our accumulated value.
The other case we have to consider
        arises when the input list is not empty. We need to do something with
        the current element of the list, and something with the rest of the
        list:
-- file: ch04/IntParse.hs
loop acc (x:xs) = let acc' = acc * 10 + digitToInt x
                  in loop acc' xs
We compute a new value for the
        accumulator and give it the name acc'. We then call
        the loop function
        again, passing it the updated value acc' and the
        rest of the input list. This is equivalent to the loop starting
        another round in C.
Single quotes in variable names
Remember, a single quote is a legal
          character to use in a Haskell variable name, and it is pronounced
          “prime.” There’s a common idiom in Haskell programs
          involving a variable—say, foo—and another
          variable—say, foo'. We can usually assume that
          foo' is somehow related to
          foo. It’s often a new value for
          foo, as just shown in our code.
Sometimes we’ll see this idiom
          extended, such as foo''. Since keeping track of
          the number of single quotes tacked onto the end of a name rapidly
          becomes tedious, use of more than two in a row is thankfully rare.
          Indeed, even one single quote can be easy to miss, which can lead to
          confusion on the part of readers. It might be better to think of the
          use of single quotes as a coding convention that you should be able
          to recognize, and less as one that you should actually
          follow.

Each time the loop function calls itself, it has a new
        value for the accumulator, and it consumes one element of the input
        list. Eventually, it’s going to hit the end of the list, at which time
        the [] pattern will match and the recursive calls will
        cease.
How well does this function work? For
        positive integers, it’s perfectly cromulent:
ghci> asInt "33"
33

But because we were focusing on how to
        traverse lists, not error handling, our poor function misbehaves if we
        try to feed it nonsense:
ghci> asInt ""
0
ghci> asInt "potato"
*** Exception: Char.digitToInt: not a digit 'p'
We’ll defer fixing our function’s
        shortcomings to Exercises.
Because the last thing that loop does is simply call itself, it’s an
        example of a tail recursive function. There’s another common idiom in
        this code, too. Thinking about the structure of the list, and handling the
        empty and nonempty cases separately, is a kind of approach called structural recursion.
We call the nonrecursive case (when the
        list is empty) the base case (or sometimes the
        terminating case). We’ll see people refer to the
        case where the function calls itself as the recursive case
        (surprise!), or they might give a nod to mathematical induction and
        call it the inductive case.
As a useful technique, structural
        recursion is not confined to lists; we can use it on other algebraic
        data types, too. We’ll have more to say about it later.
What’s the big deal about tail recursion?
In an imperative language, a loop
          executes in constant space. Lacking loops, we use tail recursive
          functions in Haskell instead. Normally, a recursive function
          allocates some space each time it applies itself, so it knows where
          to return to.
Clearly, a recursive function would be
          at a huge disadvantage relative to a loop if it allocated memory for
          every recursive application—this would require linear space instead
          of constant space. However, functional language implementations
          detect uses of tail recursion and transform tail recursive calls to
          run in constant space; this is called tail call
          optimization (TCO).
Few imperative language
          implementations perform TCO; this is why using any kind of
          ambitiously functional style in an imperative language often leads
          to memory leaks and poor performance.


Transforming Every Piece of Input



Consider another C function, square,
        which squares every element in an array:
void square(double *out, const double *in, size_t length)
{
    for (size_t i = 0; i < length; i++) {
	out[i] = in[i] * in[i];
    }
}
This contains a straightforward and
        common kind of loop, one that does exactly the same thing to every
        element of its input array. How might we write this loop in
        Haskell?
-- file: ch04/Map.hs
square :: [Double] -> [Double]

square (x:xs) = x*x : square xs
square []     = []
Our square function consists of two
        pattern-matching equations. The first “deconstructs” the
        beginning of a nonempty list, in order to get its head and tail. It
        squares the first element, then puts that on the front of a new list,
        which is constructed by calling square on the remainder of the empty list.
        The second equation ensures that square halts when it reaches the end of the
        input list.
The effect of square is to construct a new list that’s
        the same length as its input list, with every element in the input
        list substituted with its square in the output list.
Here’s another such C loop, one that
        ensures that every letter in a string is converted to
        uppercase:
#include <ctype.h>

char *uppercase(const char *in)
{
    char *out = strdup(in);
    
    if (out != NULL) {
	for (size_t i = 0; out[i] != '\0'; i++) {
	    out[i] = toupper(out[i]);
	}
    }

    return out;
}
Let’s look at a Haskell
        equivalent:
-- file: ch04/Map.hs
import Data.Char (toUpper)

upperCase :: String -> String

upperCase (x:xs) = toUpper x : upperCase xs
upperCase []     = []
Here, we’re importing the toUpper function from the standard Data.Char module, which
        contains lots of useful functions for working with Char
        data.
Our upperCase function follows a similar
        pattern to our earlier square
        function. It terminates with an empty list when the input list is
        empty; when the input isn’t empty, it calls toUpper on the first element, then
        constructs a new list cell from that and the result of calling itself
        on the rest of the input list.
These examples follow a common pattern
        for writing recursive functions over lists in Haskell. The base case handles the situation where our input
        list is empty. The recursive case deals with a
        nonempty list; it does something with the head of the list and calls
        itself recursively on the tail.

Mapping over a List



The square and
        upperCase functions that we just
        defined produce new lists that are the same lengths as their input
        lists, and they do only one piece of work per element. This is such a
        common pattern that Haskell’s Prelude defines a function, map, in order to make it easier. map takes a function and applies it to
        every element of a list, returning a new list constructed from the
        results of these applications.
Here are our square and upperCase functions rewritten to use
        map:
-- file: ch04/Map.hs
square2 xs = map squareOne xs
    where squareOne x = x * x

upperCase2 xs = map toUpper xs
This is our first close look at a
        function that takes another function as its argument. We can learn a
        lot about what map does by simply
        inspecting its type:
ghci> :type map
map :: (a -> b) -> [a] -> [b]

The signature tells us that map takes two arguments. The first is a
        function that takes a value of one type, a, and returns a value of another type, b.
Because map takes a function as an argument, we
        refer to it as a higher-order function. (In
        spite of the name, there’s nothing mysterious about higher-order
        functions; it’s just a term for functions that take other functions as
        arguments, or return functions.)
Since map
        abstracts out the pattern common to our square and upperCase functions so that we can reuse it
        with less boilerplate, we can look at what those functions have in
        common and figure out how to implement it ourselves:
-- file: ch04/Map.hs
myMap :: (a -> b) -> [a] -> [b]

myMap f (x:xs) = f x : myMap f xs
myMap _ _      = []
What are those wild cards doing there?
If you’re new to functional
          programming, the reasons for matching patterns in certain ways won’t always
          be obvious. For example, in the definition of myMap in the preceding code, the first
          equation binds the function
          we’re mapping to the variable f, but the second
          uses wild cards for both parameters. What’s going on?
We use a wild card in place of
          f to indicate that we aren’t calling the function
          f on the righthand side of the equation. What
          about the list parameter? The list type has two constructors. We’ve
          already matched on the nonempty constructor in the first equation
          that defines myMap. By
          elimination, the constructor in the second equation is necessarily
          the empty list constructor, so there’s no need to perform a match to
          see what its value really is.
As a matter of style, it is fine to use wild cards
          for well-known simple types such as lists and
          Maybe. For more complicated or less familiar types, it
          can be safer and more readable to name constructors
          explicitly.

We try out our myMap function to give ourselves some
        assurance that it behaves similarly to the standard map:
ghci> :module +Data.Char
ghci> map toLower "SHOUTING"
"shouting"
ghci> myMap toUpper "whispering"
"WHISPERING"
ghci> map negate [1,2,3]
[-1,-2,-3]
This pattern of spotting a repeated idiom, and then
        abstracting it so we can reuse (and write less!) code, is a common
        aspect of Haskell programming. While abstraction isn’t unique to
        Haskell, higher-order functions make it remarkably easy.

Selecting Pieces of Input



Another common operation on a
        sequence of data is to comb through it for elements that satisfy some
        criterion. Here’s a function that walks a list of numbers and returns
        those that are odd. Our code has a recursive case that’s a bit more
        complex than our earlier functions—it puts a number in the list it
        returns only if the number is odd. Using a guard expresses this
        nicely:
-- file: ch04/Filter.hs
oddList :: [Int] -> [Int]

oddList (x:xs) | odd x     = x : oddList xs
               | otherwise = oddList xs
oddList _                  = []
Let’s see that in action:
ghci> oddList [1,1,2,3,5,8,13,21,34]
[1,1,3,5,13,21]

Once again, this idiom is so common that the Prelude defines a function, filter,
        which we already introduced. It removes the need for boilerplate code
        to recurse over the list:
ghci> :type filter
filter :: (a -> Bool) -> [a] -> [a]
ghci> filter odd [3,1,4,1,5,9,2,6,5]
[3,1,1,5,9,5]
The filter function takes a predicate and
        applies it to every element in its input list, returning a list of
        only those for which the predicate evaluates to True.
        We’ll revisit filter again later
        in this chapter in Folding from the Right.

Computing One Answer over a Collection



It is also common to reduce a collection
        to a single value. A simple example of this is summing the values of a
        list:
-- file: ch04/Sum.hs
mySum xs = helper 0 xs
    where helper acc (x:xs) = helper (acc + x) xs
          helper acc _      = acc
Our helper function is tail-recursive and uses
        an accumulator parameter, acc, to hold the current
        partial sum of the list. As we already saw with asInt, this is a “natural” way
        to represent a loop in a pure functional language.
For something a little more complicated,
        let’s take a look at the Adler-32 checksum. It is a popular checksum algorithm; it concatenates two
        16-bit checksums into a single 32-bit checksum. The first checksum is
        the sum of all input bytes, plus one. The second is the sum of all
        intermediate values of the first checksum. In each case, the sums are
        computed modulo 65521. Here’s a straightforward, unoptimized Java
        implementation (it’s safe to skip it if you don’t read Java):
public class Adler32 
{
    private static final int base = 65521;

    public static int compute(byte[] data, int offset, int length)
    {
	int a = 1, b = 0;

	for (int i = offset; i < offset + length; i++) {
	    a = (a + (data[i] & 0xff)) % base;
	    b = (a + b) % base;
	}

	return (b << 16) | a;
    }
}
Although Adler-32 is a simple checksum,
        this code isn’t particularly easy to read on account of the
        bit-twiddling involved. Can we do any better with a Haskell implementation?
-- file: ch04/Adler32.hs
import Data.Char (ord)
import Data.Bits (shiftL, (.&.), (.|.))

base = 65521

adler32 xs = helper 1 0 xs
    where helper a b (x:xs) = let a' = (a + (ord x .&. 0xff)) `mod` base
                                  b' = (a' + b) `mod` base
                              in helper a' b' xs
          helper a b _     = (b `shiftL` 16) .|. a
This code isn’t exactly easier to follow
        than the Java code, but let’s look at what’s going on. First of all,
        we’ve introduced some new functions. The shiftL function implements a logical shift left; (.&.) provides a bitwise
        “and”; and (.|.)
        provides a bitwise “or”.
Once again, our helper function is tail-recursive. We’ve
        turned the two variables that we updated on every loop iteration in
        Java into accumulator parameters. When our recursion terminates on the
        end of the input list, we compute our checksum and return it.
If we take a step back, we can
        restructure our Haskell adler32
        to more closely resemble our earlier mySum function. Instead of two accumulator
        parameters, we can use a pair as the accumulator:
-- file: ch04/Adler32.hs
adler32_try2 xs = helper (1,0) xs
    where helper (a,b) (x:xs) =
              let a' = (a + (ord x .&. 0xff)) `mod` base
                  b' = (a' + b) `mod` base
              in helper (a',b') xs
          helper (a,b) _     = (b `shiftL` 16) .|. a
Why would we want to make this seemingly
        meaningless structural change? Because as we’ve already seen with
        map and filter, we can extract the common behavior
        shared by mySum and adler32_try2 into a higher-order function.
        We can describe this behavior as “do something to every element
        of a list, updating an accumulator as we go, and returning the
        accumulator when we’re done.”
This kind of function is called a
        fold, because it “folds up” a list. There are two kinds
        of fold-over lists: foldl for
        folding from the left (the start), and foldr for folding
        from the right (the end).

The Left Fold



Here is the definition of foldl:
-- file: ch04/Fold.hs
foldl :: (a -> b -> a) -> a -> [b] -> a

foldl step zero (x:xs) = foldl step (step zero x) xs
foldl _    zero []     = zero
The foldl function takes a “step”
        function, an initial value for its accumulator, and a list. The
        “step” takes an accumulator and an element from the list
        and returns a new accumulator value. All foldl does is call the
        “stepper” on the current accumulator and an element of
        the list, and then passes the new accumulator value to itself
        recursively to consume the rest of the list.
We refer to foldl as a left fold
        because it consumes the list from left (the head) to
        right.
Here’s a rewrite of mySum using foldl:
-- file: ch04/Sum.hs
foldlSum xs = foldl step 0 xs
    where step acc x = acc + x
That local function step just adds two numbers, so let’s simply
        use the addition operator instead, and eliminate the unnecessary
        where clause:
-- file: ch04/Sum.hs
niceSum :: [Integer] -> Integer
niceSum xs = foldl (+) 0 xs
Notice how much simpler this code is
        than our original mySum. We’re no
        longer using explicit recursion, because foldl takes care of that for us. We’ve
        simplified our problem down to two things: what the initial value of
        the accumulator should be (the second parameter to foldl) and how to update the
        accumulator (the (+)
        function). As an added bonus, our code is now shorter, too, which
        makes it easier to understand.
Let’s take a deeper look at what
        foldl is doing here, by manually
        writing out each step in its evaluation when we call niceSum
        [1,2,3]:
-- file: ch04/Fold.hs
foldl (+) 0 (1:2:3:[])
          == foldl (+) (0 + 1)             (2:3:[])
          == foldl (+) ((0 + 1) + 2)       (3:[])
          == foldl (+) (((0 + 1) + 2) + 3) []
          ==           (((0 + 1) + 2) + 3)
We can rewrite adler32_try2 using foldl to let us focus on the details that
        are important:
-- file: ch04/Adler32.hs
adler32_foldl xs = let (a, b) = foldl step (1, 0) xs
                   in (b `shiftL` 16) .|. a
    where step (a, b) x = let a' = a + (ord x .&. 0xff)
                          in (a' `mod` base, (a' + b) `mod` base)
Here, our accumulator is a pair, so the
        result of foldl will be, too. We
        pull the final accumulator apart when foldl returns, and then bit-twiddle it into
        a “proper” checksum.

Why Use Folds, Maps, and Filters?



A quick glance reveals that adler32_foldl isn’t really any shorter than
        adler32_try2. Why should we use a
        fold in this case? The advantage here lies in the fact that folds are
        extremely common in Haskell, and they have regular, predictable
        behavior.
This means that a reader with a little
        experience will have an easier time understanding a use of a fold than
        code that uses explicit recursion. A fold isn’t going to produce any
        surprises, but the behavior of a function that recurses explicitly
        isn’t immediately obvious. Explicit recursion requires us to read
        closely to understand exactly what’s going on.
This line of reasoning applies to other
        higher-order library functions, including those we’ve already seen,
        map and filter. Because they’re library functions
        with well-defined behavior, we need to learn what they do only once,
        and we’ll have an advantage when we need to understand any code that
        uses them. These improvements in readability also carry over to
        writing code. Once we start to think with higher-order functions in
        mind, we’ll produce concise code more quickly.

Folding from the Right



The counterpart to foldl is foldr, which folds from the right of a list:
-- file: ch04/Fold.hs
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr step zero (x:xs) = step x (foldr step zero xs)
foldr _    zero []     = zero
Let’s follow the same manual evaluation
        process with foldr (+) 0 [1,2,3]
        as we did with niceSum earlier in
        the section The Left Fold:
-- file: ch04/Fold.hs
foldr (+) 0 (1:2:3:[])
          == 1 +           foldr (+) 0 (2:3:[])
          == 1 + (2 +      foldr (+) 0 (3:[])
          == 1 + (2 + (3 + foldr (+) 0 []))
          == 1 + (2 + (3 + 0))
The difference between foldl and foldr should be clear from looking at where
        the parentheses and the empty list elements show up. With foldl, the empty list element is on the
        left, and all the parentheses group to the left. With foldr, the zero value is
        on the right, and the parentheses group to the right.
There is a lovely intuitive explanation
        of how foldr works: it replaces
        the empty list with the zero value, and replaces
        every constructor in the list with an application of the step
        function:
-- file: ch04/Fold.hs
1 : (2 : (3 : []))
1 + (2 + (3 + 0 ))
At first glance, foldr might seem less useful than foldl: what use is a function that folds
        from the right? But consider the Prelude’s filter function, which we last encountered
        earlier in this chapter in Selecting Pieces of Input. If we write
        filter using explicit recursion,
        it will look something like this:
-- file: ch04/Fold.hs
filter :: (a -> Bool) -> [a] -> [a]
filter p []   = []
filter p (x:xs)
    | p x       = x : filter p xs
    | otherwise = filter p xs
Perhaps surprisingly, though, we can
        write filter as a fold, using
        foldr:
-- file: ch04/Fold.hs
myFilter p xs = foldr step [] xs
    where step x ys | p x       = x : ys
                    | otherwise = ys
This is the sort of definition that could cause us a
        headache, so let’s examine it in a little depth. Like foldl, foldr takes a function and a base case
        (what to do when the input list is empty) as arguments. From reading
        the type of filter, we know that
        our myFilter function must return
        a list of the same type as it consumes, so the base case should be a
        list of this type, and the step
        helper function must return a list.
Since we know that foldr
        calls step on one
        element of the input list at a time, then with the accumulator as its
        second argument, step’s actions
        must be quite simple. If the predicate returns True, it pushes that element onto the
        accumulated list; otherwise, it leaves the list untouched.
The class of functions that we can
        express using foldr is called primitive recursive. A
        surprisingly large number of list manipulation functions are primitive
        recursive. For example, here’s map written in terms of foldr:
-- file: ch04/Fold.hs
myMap :: (a -> b) -> [a] -> [b]

myMap f xs = foldr step [] xs
    where step x ys = f x : ys
In fact, we can even write foldl using foldr!
-- file: ch04/Fold.hs
myFoldl :: (a -> b -> a) -> a -> [b] -> a

myFoldl f z xs = foldr step id xs z
    where step x g a = g (f a x)
Understanding foldl in terms of foldr
If you want to set yourself a solid
          challenge, try to follow our definition of foldl using foldr. Be warned: this is not trivial!
          You might want to have the following tools at hand: some headache
          pills and a glass of water, ghci
          (so that you can find out what the id function
          does), and a pencil and paper.
You will want to follow the same
          manual evaluation process as we just outlined to see what foldl and foldr were really doing. If you get
          stuck, you may find the task easier after reading Partial Function Application and Currying.

Returning to our earlier intuitive
        explanation of what foldr does,
        another useful way to think about it is that it
        transforms its input list. Its first two
        arguments are “what to do with each head/tail element of the
        list,” and “what to substitute for the end of the
        list.”
The “identity”
        transformation with foldr thus
        replaces the empty list with itself and applies the list constructor
        to each head/tail pair:
-- file: ch04/Fold.hs
identity :: [a] -> [a]
identity xs = foldr (:) [] xs
It transforms a list into a copy of
        itself:
ghci> identity [1,2,3]
[1,2,3]

If foldr replaces the end of a list with some
        other value, this gives us another way to look at Haskell’s list append function, (++):
ghci> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

All we have to do to append a list onto
        another is substitute that second list for the end of our first
        list:
-- file: ch04/Fold.hs
append :: [a] -> [a] -> [a]
append xs ys = foldr (:) ys xs
Let’s try this out:
ghci> append [1,2,3] [4,5,6]
[1,2,3,4,5,6]

Here, we replace each list constructor
        with another list constructor, but we replace the empty list with the
        list we want to append onto the end of our first list.
As our extended treatment of folds
        should indicate, the foldr
        function is nearly as important a member of our list-programming
        toolbox as the more basic list functions we saw in Working with Lists. It can consume and produce a list
        incrementally, which makes it useful for writing lazy data-processing
        code.

Left Folds, Laziness, and Space Leaks



To keep our initial discussion simple, we use foldl
        throughout most of this section. This is convenient for testing, but
        we will never use foldl in
        practice. The reason has to do with Haskell’s nonstrict evaluation. If
        we apply foldl (+) [1,2,3], it evaluates to the
        expression (((0 + 1) + 2) + 3). We can see this occur if
        we revisit the way in which the function gets expanded:
-- file: ch04/Fold.hs
foldl (+) 0 (1:2:3:[])
          == foldl (+) (0 + 1)             (2:3:[])
          == foldl (+) ((0 + 1) + 2)       (3:[])
          == foldl (+) (((0 + 1) + 2) + 3) []
          ==           (((0 + 1) + 2) + 3)
The final expression will not be evaluated to
        6 until its value is demanded. Before it is evaluated, it
        must be stored as a thunk. Not surprisingly, a thunk is more expensive
        to store than a single number, and the more complex the thunked
        expression, the more space it needs. For something cheap such as
        arithmetic, thunking an expression is more computationally expensive
        than evaluating it immediately. We thus end up paying both in space
        and in time.
When GHC is evaluating a thunked expression,
        it uses an internal stack to do so. Because a thunked expression could
        potentially be infinitely large, GHC places a fixed limit on the maximum
        size of this stack. Thanks to this limit, we can try a large thunked
        expression in ghci without needing
        to worry that it might consume all the memory:
ghci> foldl (+) 0 [1..1000]
500500

From looking at this expansion, we can
        surmise that this creates a thunk that consists of 1,000 integers and
        999 applications of (+). That’s a
        lot of memory and effort to represent a single number! With a larger
        expression, although the size is still modest, the results are more
        dramatic:
ghci> foldl (+) 0 [1..1000000]
*** Exception: stack overflow

On small expressions, foldl will work correctly but slowly, due
        to the thunking overhead that it incurs. We refer to this invisible
        thunking as a space leak, because our code is
        operating normally, but it is using far more memory than it
        should.
On larger expressions, code with a
        space leak will simply fail, as above. A space leak with
        foldl is a classic roadblock for new Haskell programmers.
        Fortunately, this is easy to avoid.
The Data.List module
        defines a function named foldl'
        that is similar to foldl, but
        does not build up thunks. The difference in behavior between the two
        is immediately obvious:
ghci> foldl  (+) 0 [1..1000000]
*** Exception: stack overflow
ghci> :module +Data.List
ghci> foldl' (+) 0 [1..1000000]
500000500000
Due to foldl’s thunking behavior, it is wise to
        avoid this function in real programs, even if it doesn’t fail
        outright, it will be unnecessarily inefficient. Instead, import
        Data.List and use foldl'.
Exercises
	Use a fold (choosing the appropriate fold will make your
              code much simpler) to rewrite and improve upon the asInt function from the earlier
              sectionExplicit Recursion.
-- file: ch04/ch04.exercises.hs
asInt_fold :: String -> Int
Your function should behave as follows:
ghci> asInt_fold "101"
101
ghci> asInt_fold "-31337"
-31337
ghci> asInt_fold "1798"
1798

	Extend your function to handle the following kinds of
              exceptional conditions by calling error:
ghci> asInt_fold ""
0
ghci> asInt_fold "-"
0
ghci> asInt_fold "-3"
-3
ghci> asInt_fold "2.7"
*** Exception: Char.digitToInt: not a digit '.'
ghci> asInt_fold "314159265358979323846"
564616105916946374

	The asInt_fold
              function uses error, so its
              callers cannot handle errors. Rewrite the function to fix this
              problem:
-- file: ch04/ch04.exercises.hs
type ErrorMessage = String
asInt_either :: String -> Either ErrorMessage Int
ghci> asInt_either "33"
Right 33
ghci> asInt_either "foo"
Left "non-digit 'o'"

	The Prelude function
              concat concatenates a list of lists into a single list
              and has the following type:
-- file: ch04/ch04.exercises.hs
concat :: [[a]] -> [a]
Write your own definition of concat using foldr.

	Write your own definition of the standard takeWhile function, first using
              explicit recursion, and then foldr.

	The Data.List module defines a function,
              groupBy, which has the
              following type:
-- file: ch04/ch04.exercises.hs
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
Use ghci to load the
              Data.List module and figure out what groupBy does, then write your own
              implementation using a fold.

	How many of the following Prelude functions can you rewrite
              using list folds?
	any

	cycle

	words

	unlines



For those functions where you can use either foldl' or foldr, which is more appropriate in
              each case?





Further Reading



The article “A tutorial on the
        universality and expressiveness of fold” by Graham Hutton (http://www.cs.nott.ac.uk/~gmh/fold.pdf) is an excellent
        and in-depth tutorial that covers folds. It includes many examples of
        how to use simple, systematic calculation techniques to turn functions
        that use explicit recursion into folds.


Anonymous (lambda) Functions



In many of the function definitions we’ve seen so far, we’ve
      written short helper functions:
-- file: ch04/Partial.hs
isInAny needle haystack = any inSequence haystack
    where inSequence s = needle `isInfixOf` s
Haskell lets us write completely anonymous
      functions, which we can use to avoid the need to give names to our
      helper functions. Anonymous functions are often called
      “lambda” functions, in a nod to their heritage in lambda
      calculus. We introduce an anonymous function with a backslash character (\) pronounced
      lambda.[9] This is followed by the function’s arguments (which can
      include patterns), and then an arrow (->) to introduce the function’s
      body.
Lambdas are most easily illustrated by example. Here’s a
      rewrite of isInAny using an
      anonymous function:
-- file: ch04/Partial.hs
isInAny2 needle haystack = any (\s -> needle `isInfixOf` s) haystack
We’ve wrapped the lambda in parentheses here so that
      Haskell can tell where the function body ends.
In every respect, anonymous functions
      behave identically to functions that have names, but Haskell places a
      few important restrictions on how we can define them. Most importantly,
      while we can write a normal function using multiple clauses containing
      different patterns and guards, a lambda can have only a single clause in
      its definition.
The limitation to a single clause
      restricts how we can use patterns in the definition of a lambda. We’ll
      usually write a normal function with several clauses to cover different
      pattern matching possibilities:
-- file: ch04/Lambda.hs
safeHead (x:_) = Just x
safeHead _ = Nothing
But as we can’t write multiple clauses to
      define a lambda, we must be certain that any patterns we use will
      match:
-- file: ch04/Lambda.hs
unsafeHead = \(x:_) -> x
This definition of unsafeHead will explode in our faces if we
      call it with a value on which pattern matching fails:
ghci> :type unsafeHead
unsafeHead :: [t] -> t
ghci> unsafeHead [1]
1
ghci> unsafeHead []
*** Exception: Lambda.hs:7:13-23: Non-exhaustive patterns in lambda
The definition typechecks, so it will
      compile, and the error will occur at runtime. The moral of this story is
      to be careful in how you use patterns when defining an anonymous
      function: make sure your patterns can’t fail!
Another thing to notice about the
      isInAny and isInAny2 functions shown previously is that
      the first version, using a helper function that has a name, is a little
      easier to read than the version that plops an anonymous function into
      the middle. The named helper function doesn’t disrupt the
      “flow” of the function in which it’s used, and the
      judiciously chosen name gives us a little bit of information about what
      the function is expected to do.
In contrast, when we run across a lambda in the middle
      of a function body, we have to switch gears and read its definition
      fairly carefully to understand what it does. To help with readability
      and maintainability, then, we tend to avoid lambdas in many situations
      where we could use them to trim a few characters from a function
      definition. Very often, we’ll use a partially applied function instead,
      resulting in clearer and more readable code than either a lambda or an
      explicit function. Don’t know what a partially applied function is yet?
      Read on!
We don’t intend these caveats to suggest
      that lambdas are useless, merely that we ought to be mindful of the
      potential pitfalls when we’re thinking of using them. In later chapters,
      we will see that they are often invaluable as
      “glue.”

Partial Function Application and Currying



You may wonder why the ->
      arrow is used for what seems to be two purposes in the type
      signature of a function:
ghci> :type dropWhile
dropWhile :: (a -> Bool) -> [a] -> [a]

It looks like the -> is
      separating the arguments to dropWhile from each other, but that it also
      separates the arguments from the return type. In fact -> has only one meaning: it denotes a
      function that takes an argument of the type on the left and returns a
      value of the type on the right.
The implication here is very important. In
      Haskell, all functions take only one argument.
      While dropWhile
      looks like a function that takes two arguments, it
      is actually a function of one argument, which returns a function that
      takes one argument. Here’s a perfectly valid Haskell expression:
ghci> :module +Data.Char
ghci> :type dropWhile isSpace
dropWhile isSpace :: [Char] -> [Char]
Well, that looks useful. The value
      dropWhile isSpace is a function that strips leading
      whitespace from a string. How is this useful? As one example, we can use
      it as an argument to a higher order function:
ghci> map (dropWhile isSpace) [" a","f","   e"]
["a","f","e"]

Every time we supply an argument to a function, we can
      “chop” an element off the front of its type signature.
      Let’s take zip3 as an example to
      see what we mean; this is a function that zips three lists into a list
      of three-tuples:
ghci> :type zip3
zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
ghci> zip3 "foo" "bar" "quux"
[('f','b','q'),('o','a','u'),('o','r','u')]
If we apply zip3
      with just one argument, we get a function that accepts two arguments. No
      matter what arguments we supply to this compound function, its first
      argument will always be the fixed value we specified:
ghci> :type zip3 "foo"
zip3 "foo" :: [b] -> [c] -> [(Char, b, c)]
ghci> let zip3foo = zip3 "foo"
ghci> :type zip3foo
zip3foo :: [b] -> [c] -> [(Char, b, c)]
ghci> (zip3 "foo") "aaa" "bbb"
[('f','a','b'),('o','a','b'),('o','a','b')]
ghci> zip3foo "aaa" "bbb"
[('f','a','b'),('o','a','b'),('o','a','b')]
ghci> zip3foo [1,2,3] [True,False,True]
[('f',1,True),('o',2,False),('o',3,True)]
When we pass fewer arguments to a function than the
      function can accept, we call it partial application of the
      function—we’re applying the function to only some of its arguments.
In the previous example, we have a partially applied
      function, zip3 "foo", and a new function, zip3foo. We can see that the type signatures
      of the two and their behavior are identical.
This applies just as well if we fix two arguments,
      giving us a function of just one argument:
ghci> let zip3foobar = zip3 "foo" "bar"
ghci> :type zip3foobar
zip3foobar :: [c] -> [(Char, Char, c)]
ghci> zip3foobar "quux"
[('f','b','q'),('o','a','u'),('o','r','u')]
ghci> zip3foobar [1,2]
[('f','b',1),('o','a',2)]
Partial function application lets us avoid writing
      tiresome throwaway functions. It’s often more useful for this purpose
      than the anonymous functions we introduced earlier in this chapter in
      Anonymous (lambda) Functions. Looking back at the isInAny function we defined there, here’s how
      we’d use a partially applied function instead of a named helper function
      or a lambda:
-- file: ch04/Partial.hs
isInAny3 needle haystack = any (isInfixOf needle) haystack
Here, the expression isInfixOf needle is
      the partially applied function. We’re taking the function isInfixOf and “fixing” its first
      argument to be the needle variable from our parameter
      list. This gives us a partially applied function that has exactly the
      same type and behavior as the helper and lambda in our earlier
      definitions.
Partial function application is
      named currying, after the logician
      Haskell Curry (for whom the Haskell language is named).
As another example of currying in use,
      let’s return to the list-summing function we wrote in The Left Fold:
-- file: ch04/Sum.hs
niceSum :: [Integer] -> Integer
niceSum xs = foldl (+) 0 xs
We don’t need to fully apply foldl; we can omit the list
      xs from both the parameter list and the parameters to
      foldl, and we’ll end up with a more
      compact function that has the same type:
-- file: ch04/Sum.hs
nicerSum :: [Integer] -> Integer
nicerSum = foldl (+) 0
Sections



Haskell provides a handy notational shortcut to let us write a
        partially applied function in infix style. If we enclose an operator
        in parentheses, we can supply its left or right argument inside the
        parentheses to get a partially applied function. This kind of partial
        application is called a section:
ghci> (1+) 2
3
ghci> map (*3) [24,36]
[72,108]
ghci> map (2^) [3,5,7,9]
[8,32,128,512]
If we provide the left argument inside
        the section, then calling the resulting function with one argument
        supplies the operator’s right argument, and vice versa.
Recall that we can wrap a function name
        in backquotes to use it as an infix operator. This lets us use
        sections with functions:
ghci> :type (`elem` ['a'..'z'])
(`elem` ['a'..'z']) :: Char -> Bool

The preceding definition fixes elem’s second argument, giving us a
        function that checks to see whether its argument is a lowercase
        letter:
ghci> (`elem` ['a'..'z']) 'f'
True

Using this as an argument to all, we get a function that checks an
        entire string to see if it’s all lowercase:
ghci> all (`elem` ['a'..'z']) "Frobozz"
False

If we use this style, we can further
        improve the readability of our earlier isInAny3 function:
-- file: ch04/Partial.hs
isInAny4 needle haystack = any (needle `isInfixOf`) haystack


As-patterns



Haskell’s tails function, in the Data.List module, generalizes the tail
      function we introduced earlier. Instead of returning one
      “tail” of a list, it returns all of
      them:
ghci> :m +Data.List
ghci> tail "foobar"
"oobar"
ghci> tail (tail "foobar")
"obar"
ghci> tails "foobar"
["foobar","oobar","obar","bar","ar","r",""]
Each of these strings is a
      suffix of the initial string, so tails produces a list of all suffixes, plus
      an extra empty list at the end. It always produces that extra empty
      list, even when its input list is empty:
ghci> tails []
[[]]

What if we want a function that behaves
      like tails but
      only returns the nonempty suffixes? One possibility
      would be for us to write our own version by hand. We’ll use a new piece
      of notation, the @ symbol:
-- file: ch04/SuffixTree.hs
suffixes :: [a] -> [[a]]
suffixes xs@(_:xs') = xs : suffixes xs'
suffixes _ = []
The pattern xs@(_:xs') is
      called an as-pattern, and it means “bind the
      variable xs to the value that matches the right side
      of the @ symbol.”
In our example, if the pattern after the
      @ matches, xs will be bound to the entire list
      that matched, and xs' will be bound to all but the
      head of the list (we used the wild card (_) pattern to indicate
      that we’re not interested in the value of the head of the list):
ghci> tails "foo"
["foo","oo","o",""]
ghci> suffixes "foo"
["foo","oo","o"]
The as-pattern makes our code more
      readable. To see how it helps, let us compare a definition that lacks an
      as-pattern:
-- file: ch04/SuffixTree.hs
noAsPattern :: [a] -> [[a]]
noAsPattern (x:xs) = (x:xs) : noAsPattern xs
noAsPattern _ = []
Here, the list that we’ve deconstructed in
      the pattern match just gets put right back together in the body of the
      function.
As-patterns have a more practical use than
      simple readability: they can help us to share data instead of copying
      it. In our definition of noAsPattern, when we match
      (x:xs), we construct a new copy of it in the body of our
      function. This causes us to allocate a new list node at runtime. That
      may be cheap, but it isn’t free. In contrast, when we defined suffixes, we reused the value
      xs that we matched with our as-pattern. Since we
      reuse an existing value, we avoid a little allocation.

Code Reuse Through Composition



It seems a shame to introduce a new function, suffixes,
      that does almost the same thing as the existing tails function. Surely we can do
      better?
Recall the init function we introduced in Working with Lists—it returns all but the last element of a
      list:
-- file: ch04/SuffixTree.hs
suffixes2 xs = init (tails xs)
This suffixes2 function behaves identically to
      suffixes, but it’s a single line of
      code:
ghci> suffixes2 "foo"
["foo","oo","o"]

If we take a step back, we see the glimmer
      of a pattern. We’re applying a function, then applying another function
      to its result. Let’s turn that pattern into a function
      definition:
-- file: ch04/SuffixTree.hs
compose :: (b -> c) -> (a -> b) -> a -> c
compose f g x = f (g x)
We now have a function, compose, that we can use to
      “glue” two other functions together:
-- file: ch04/SuffixTree.hs
suffixes3 xs = compose init tails xs
Haskell’s automatic currying lets us drop
      the xs variable, so we can make our definition even
      shorter:
-- file: ch04/SuffixTree.hs
suffixes4 = compose init tails
Fortunately, we don’t need to write our
      own compose function. Plugging
      functions into each other like this is so common that the Prelude provides function composition via the
      (.) operator:
-- file: ch04/SuffixTree.hs
suffixes5 = init . tails
The (.) operator isn’t a special piece of language syntax—it’s just a
      normal operator:
ghci> :type (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
ghci> :type suffixes
suffixes :: [a] -> [[a]]
ghci> :type suffixes5
suffixes5 :: [a] -> [[a]]
ghci> suffixes5 "foo"
["foo","oo","o"]
We can create new functions at any time by
      writing chains of composed functions, stitched together with (.), so long (of course) as the result type
      of the function on the right of each (.) matches the type of parameter that the
      function on the left can accept.
As an example, let’s solve a simple
      puzzle. Count the number of words in a string that begin with a capital
      letter:
ghci> :module +Data.Char
ghci> let capCount = length . filter (isUpper . head) . words
ghci> capCount "Hello there, Mom!"
2
We can understand what this composed
      function does by examining its pieces. The (.) function is right-associative, so we will
      proceed from right to left:
ghci> :type words
words :: String -> [String]

The words function has a result type of
      [String], so whatever is on the left side of (.) must accept a compatible argument:
ghci> :type isUpper . head
isUpper . head :: [Char] -> Bool

This function returns True
      if a word begins with a capital letter (try it in ghci), so filter (isUpper . head)
      returns a list of Strings containing only words that begin
      with capital letters:
ghci> :type filter (isUpper . head)
filter (isUpper . head) :: [[Char]] -> [[Char]]

Since this expression returns a list, all
      that remains is to calculate the length of the list, which we do with
      another composition.
Here’s another example, drawn from a real
      application. We want to extract a list of macro names from a C header
      file shipped with libpcap, a popular network
      packet-filtering library. The header file contains a large number
      definitions of the following form:
#define DLT_EN10MB      1       /* Ethernet (10Mb) */
#define DLT_EN3MB       2       /* Experimental Ethernet (3Mb) */
#define DLT_AX25        3       /* Amateur Radio AX.25 */
Our goal is to extract names such as
      DLT_EN10MB and DLT_AX25:
-- file: ch04/dlts.hs
import Data.List (isPrefixOf)

dlts :: String -> [String]

dlts = foldr step [] . lines
We treat an entire file as a string, split
      it up with lines, and then apply
      foldr step [] to the resulting list of lines. The step helper function operates on a single
      line:
-- file: ch04/dlts.hs
  where step l ds
          | "#define DLT_" `isPrefixOf` l = secondWord l : ds
          | otherwise                     = ds
        secondWord = head . tail . words
If we match a macro definition with our
      guard expression, we cons the name of the macro onto the head of the
      list we’re returning; otherwise, we leave the list untouched.
While the individual functions in the body
      of secondWord are familiar to us by
      now, it can take a little practice to piece together a chain of
      compositions such as this. Let’s walk through the procedure.
Once again, we proceed from right to left.
      The first function is words:
ghci> :type words
words :: String -> [String]
ghci> words "#define DLT_CHAOS    5"
["#define","DLT_CHAOS","5"]
We then apply tail to the
      result of words:
ghci> :type tail
tail :: [a] -> [a]
ghci> tail ["#define","DLT_CHAOS","5"]
["DLT_CHAOS","5"]
ghci> :type tail . words
tail . words :: String -> [String]
ghci> (tail . words) "#define DLT_CHAOS    5"
["DLT_CHAOS","5"]
Finally, applying head to the result of tail .
      words will give us the name of our macro:
ghci> :type head . tail . words
head . tail . words :: String -> String
ghci> (head . tail . words) "#define DLT_CHAOS    5"
"DLT_CHAOS"
Use Your Head Wisely



After warning against unsafe list
        functions earlier in this chapter in Safely and Sanely Working with Crashy Functions,
        here we are calling both head and
        tail, two of those unsafe list
        functions. What gives?
In this case, we can assure ourselves by
        inspection that we’re safe from a runtime failure. The pattern guard
        in the definition of step
        contains two words, so when we apply words to any string that makes it past the
        guard, we’ll have a list of at least two elements:
        "#define" and some macro beginning with
        "DLT_".
This is the kind of reasoning we ought
        to do to convince ourselves that our code won’t explode when we call
        partial functions. Don’t forget our earlier admonition: calling unsafe
        functions such as this requires care and can often make our code more
        fragile in subtle ways. If for some reason we modified the pattern
        guard to only contain one word, we could expose ourselves to the
        possibility of a crash, as the body of the function assumes that it
        will receive two words.


Tips for Writing Readable Code



So far in this chapter, we’ve come across two tempting
      features of Haskell: tail recursion and anonymous functions. As nice as
      these are, we don’t often want to use them.
Many list manipulation operations can be
      most easily expressed using combinations of library functions such as
      map, take, and filter. Without a doubt, it takes some
      practice to get used to using these. In return for our initial
      investment, we can write and read code more quickly, and with fewer
      bugs.
The reason for this is simple. A tail
      recursive function definition has the same problem as a loop in an
      imperative language: it’s completely general. It might perform some
      filtering, some mapping, or who knows what else. We are forced to look
      in detail at the entire definition of the function to see what it’s
      really doing. In contrast, map and
      most other list manipulation functions do only one
      thing. We can take for granted what these simple building blocks do and
      can focus on the idea the code is trying to express, not the minute
      details of how it’s manipulating its inputs.
Two folds lie in the middle ground between tail
      recursive functions (with complete generality) and our toolbox of list
      manipulation functions (each of which does one thing). A fold takes more
      effort to understand than, say, a composition of map and filter that does the same thing, but it
      behaves more regularly and predictably than a tail recursive function.
      As a general rule, don’t use a fold if you can compose some library
      functions, but otherwise try to use a fold in preference to a
      hand-rolled tail recursive loop.
As for anonymous functions, they tend to
      interrupt the “flow” of reading a piece of code. It is very
      often as easy to write a local function definition in a let
      or where clause and use that as it is to put an anonymous
      function into place. The relative advantages of a named function are
      twofold: we don’t need to understand the function’s definition when
      we’re reading the code that uses it, and a well-chosen function name
      acts as a tiny piece of local documentation.

Space Leaks and Strict Evaluation



The foldl function that we discussed earlier is not the only place where
      space leaks can happen in Haskell code. We will use it to illustrate how
      nonstrict evaluation can sometimes be problematic and how to solve the
      difficulties that can arise.
Do you need to know all of this right now?
It is perfectly reasonable to skip this
        section until you encounter a space leak “in the wild.”
        Provided you use foldr if you are
        generating a list, and foldl'
        instead of foldl otherwise, space
        leaks are unlikely to bother you in practice for a while.

Avoiding Space Leaks with seq



We refer to an expression that is not
        evaluated lazily as strict, so foldl' is a strict left fold. It bypasses
        Haskell’s usual nonstrict evaluation through the use of a
        special function named seq:
-- file: ch04/Fold.hs
foldl' _    zero []     = zero
foldl' step zero (x:xs) =
    let new = step zero x
    in  new `seq` foldl' step new xs
This seq function has a peculiar type, hinting
        that it is not playing by the usual rules:
ghci> :type seq
seq :: a -> t -> t

It operates as follows: when a
        seq expression is evaluated, it
        forces its first argument to be evaluated, and then returns its second
        argument. It doesn’t actually do anything with the first argument.
        seq exists solely as a way to
        force that value to be evaluated. Let’s walk through a brief
        application to see what happens:
-- file: ch04/Fold.hs
foldl' (+) 1 (2:[])
This expands as follows:
-- file: ch04/Fold.hs
let new = 1 + 2
in new `seq` foldl' (+) new []
The use of seq forcibly evaluates
        new to 3 and returns its second
        argument:
-- file: ch04/Fold.hs
foldl' (+) 3 []
We end up with the following
        result:
-- file: ch04/Fold.hs
3
Thanks to seq, there are no thunks in sight.

Learning to Use seq



Without some direction, there is an
        element of mystery to using seq
        effectively. Here are some useful rules for using it well.
To have any effect, a seq expression must be the first thing
        evaluated in an expression:
-- file: ch04/Fold.hs
-- incorrect: seq is hidden by the application of someFunc
-- since someFunc will be evaluated first, seq may occur too late
hiddenInside x y = someFunc (x `seq` y)

-- incorrect: a variation of the above mistake
hiddenByLet x y z = let a = x `seq` someFunc y
                    in anotherFunc a z

-- correct: seq will be evaluated first, forcing evaluation of x
onTheOutside x y = x `seq` someFunc y
To strictly evaluate several values,
        chain applications of seq
        together:
-- file: ch04/Fold.hs
chained x y z = x `seq` y `seq` someFunc z
A common mistake is to try to use seq with two unrelated expressions:
-- file: ch04/Fold.hs
badExpression step zero (x:xs) =
    seq (step zero x)
        (badExpression step (step zero x) xs)
Here, the apparent intention is to evaluate
        step zero x strictly. Since the expression is duplicated
        in the body of the function, strictly evaluating the first instance of
        it will have no effect on the second. The use of let from the definition of foldl' illustrates how to achieve this
        effect correctly.
When evaluating an expression, seq stops as soon as it reaches a
        constructor. For simple types such as numbers, this means that it will
        evaluate them completely. Algebraic data types are a different story.
        Consider the value (1+2):(3+4):[]. If we apply seq to this, it will evaluate the
        (1+2) thunk. Since it will stop when it reaches the first
        (:) constructor, it will have no effect on the second
        thunk. The same is true for tuples: seq ((1+2),(3+4))
        True will do nothing to the thunks inside the pair, since it
        immediately hits the pair’s constructor.
If necessary, we can use normal functional
        programming techniques to work around these limitations:
-- file: ch04/Fold.hs
strictPair (a,b) = a `seq` b `seq` (a,b)

strictList (x:xs) = x `seq` x : strictList xs
strictList []     = []
It is important to understand that seq isn’t free: it has to perform a check
        at runtime to see if an expression has been evaluated. Use it
        sparingly. For instance, while our strictPair function evaluates the contents
        of a pair up to the first constructor, it adds the overheads of
        pattern matching, two applications of seq, and the construction of a new tuple.
        If we were to measure its performance in the inner loop of a
        benchmark, we might find that it slows down the program.
Aside from its performance cost if
        overused, seq is not a miracle
        cure-all for memory consumption problems. Just because you
        can evaluate something strictly doesn’t mean you
        should. Careless use of seq may do nothing at all, move existing
        space leaks around, or introduce new leaks.
The best guides to whether seq is necessary, and how well it is
        working, are performance measurement and profiling, which we will
        cover in Chapter 25. From a base of
        empirical
        measurement, you will develop a reliable sense of when seq is most useful.




[8] Unfortunately, we do not have room to address
            that challenge in this book.

[9] The backslash was chosen for its
          visual resemblance to the Greek letter lambda
          (λ). Although GHC can accept Unicode input, it
          correctly treats λ as a letter, not as a synonym for
          \.



Chapter 5. Writing a Library: Working with JSON
    Data



A Whirlwind Tour of JSON



In this chapter, we’ll develop a small, but complete, Haskell
      library. Our library will manipulate and serialize data in a popular
      form known as JSON (JavaScript Object Notation).
The JSON language is a small, simple
      representation for storing and transmitting structured data—for
      example—over a network connection. It is most commonly used to transfer
      data from a web service to a browser-based JavaScript application. The
      JSON format is described at http://www.json.org/,
      and in greater detail by RFC 4627.
JSON supports four basic types of
      values—strings, numbers, Booleans, and a special value named
      null:
"a string" 12345 true
      null
The language provides two compound types:
      an array is an ordered sequence of
      values, and an object is an unordered collection of
      name/value pairs. The names in an object are always strings; the values
      in an object or array can be of any type:
[-3.14, true, null, "a string"]
      {"numbers": [1,2,3,4,5], "useful": false}

Representing JSON Data in Haskell



To work with JSON data in Haskell, we use an algebraic data type to
      represent the range of possible JSON types:
-- file: ch05/SimpleJSON.hs
data JValue = JString String
            | JNumber Double
            | JBool Bool
            | JNull
            | JObject [(String, JValue)]
            | JArray [JValue]
              deriving (Eq, Ord, Show)
For each JSON type, we supply a distinct
      value constructor. Some of these constructors have parameters: if we
      want to construct a JSON string, we must provide a String
      value as an argument to the JString constructor.
To start experimenting with this code,
      save the file SimpleJSON.hs in your
      editor, switch to a ghci window, and
      load the file into ghci:
ghci> :load SimpleJSON
[1 of 1] Compiling SimpleJSON       ( SimpleJSON.hs, interpreted )
Ok, modules loaded: SimpleJSON.
ghci> JString "foo"
JString "foo"
ghci> JNumber 2.7
JNumber 2.7
ghci> :type JBool True
JBool True :: JValue
We can see how to use a constructor to
      take a normal Haskell value and turn it into a JValue. To
      do the reverse, we use pattern matching. Here’s a function that we can
      add to SimpleJSON.hs that will
      extract a string from a JSON value for us. If the JSON value actually
      contains a string, our function will wrap the string with the
      Just constructor; otherwise, it will return
      Nothing:
-- file: ch05/SimpleJSON.hs
getString :: JValue -> Maybe String
getString (JString s) = Just s
getString _           = Nothing
When we save the modified source file, we
      can reload it in ghci and try the new
      definition. (The :reload command remembers the last source file
      we loaded, so we do not need to name it explicitly.)
ghci> :reload
Ok, modules loaded: SimpleJSON.
ghci> getString (JString "hello")
Just "hello"
ghci> getString (JNumber 3)
Nothing
A few more accessor functions and we’ve
      got a small body of code to work with:
-- file: ch05/SimpleJSON.hs
getInt (JNumber n) = Just (truncate n)
getInt _           = Nothing

getDouble (JNumber n) = Just n
getDouble _           = Nothing

getBool (JBool b) = Just b
getBool _         = Nothing

getObject (JObject o) = Just o
getObject _           = Nothing

getArray (JArray a) = Just a
getArray _          = Nothing

isNull v            = v == JNull
The truncate function turns a floating-point or rational number into an integer
      by dropping the digits after the decimal point:
ghci> truncate 5.8
5
ghci> :module +Data.Ratio
ghci> truncate (22 % 7)
3

The Anatomy of a Haskell Module



A Haskell source file contains a
      definition of a single module. A module lets us
      determine which names inside the module are accessible from other
      modules.
A source file begins with a module declaration. This must
      precede all other definitions in the source file:
-- file: ch05/SimpleJSON.hs
module SimpleJSON
    (
      JValue(..)
    , getString
    , getInt
    , getDouble
    , getBool
    , getObject
    , getArray
    , isNull
    ) where
The word module is reserved.
      It is followed by the name of the module, which must begin with a
      capital letter. A source file must have the same base
      name (the component before the suffix) as the name of the
      module it contains. This is why our file SimpleJSON.hs contains a module named
      SimpleJSON.
Following the module name is a list of exports, enclosed in
      parentheses. The where keyword indicates that the body of
      the module follows.
The list of exports indicates which names
      in this module are visible to other modules. This lets us keep private
      code hidden from the outside world. The special notation
      (..) that follows the name JValue indicates
      that we are exporting both the type and all of its constructors.
It might seem strange that we can export a
      type’s name (i.e., its type constructor), but not its value
      constructors. The ability to do this is important: it lets us hide the
      details of a type from its users, making the type
      abstract. If we cannot see a type’s value
      constructors, we cannot pattern match against a value of that type, nor
      can we construct a new value of that type. Later in this chapter, we’ll
      discuss some situations in which we might want to make a type
      abstract.
If we omit the exports (and the
      parentheses that enclose them) from a module declaration, every name in
      the module will be exported:
-- file: ch05/Exporting.hs
module ExportEverything where
To export no names at all (which is
      rarely useful), we write an empty export list using a pair of
      parentheses:
-- file: ch05/Exporting.hs
module ExportNothing () where

Compiling Haskell Source



In addition to the ghci
      interpreter, the GHC
      distribution includes a compiler, ghc, that generates native code. If you are
      already familiar with a command-line compiler such as gcc or cl
      (the C++ compiler component of Microsoft’s Visual Studio), you’ll
      immediately be at home with ghc.
To compile a source file, we first open a
      terminal or command prompt window, and then invoke ghc with the name of the source file to
      compile:
        ghc -c SimpleJSON.hs
The -c option tells
      ghc to generate only object code. If we were to omit the
      -c option, the compiler would attempt to generate a
      complete executable. That would fail, because we haven’t written a
      main function, which GHC calls to start the execution of a
      standalone program.
After ghc completes, if we list the contents of the
      directory, it should contain two new files: SimpleJSON.hi and SimpleJSON.o. The former is an interface file, in which ghc stores information about the names
      exported from our module in machine-readable form. The latter
      is an object file, which contains the
      generated machine code.

Generating a Haskell Program and Importing Modules



Now that we’ve successfully compiled our
      minimal library, we’ll write a tiny program to exercise it. Create the
      following file in your text editor and save it as Main.hs:
-- file: ch05/Main.hs
module Main () where

import SimpleJSON

main = print (JObject [("foo", JNumber 1), ("bar", JBool False)])
Notice the import
      directive that follows the module declaration. This indicates that
      we want to take all of the names that are exported from the
      SimpleJSON module and make them available in our module.
      Any import directives must appear in a group at the
      beginning of a module, after the module declaration, but before all
      other code. We cannot, for example, scatter them throughout a source
      file.
Our choice of naming for the source file
      and function is deliberate. To create an executable, ghc expects
      a module named Main that contains a function named
      main (the main function is the one that will be called
      when we run the program once we’ve built it).
        ghc -o simple Main.hs SimpleJSON.o
This time around, we omit the
      -c option when we invoke ghc, so it will attempt to generate an
      executable. The process of generating an executable is called linking. As our command line
      suggests, ghc is perfectly able to
      both compile source files and link an executable in a single
      invocation.
We pass ghc a new option, -o,
      which takes one argument: the name of the executable that
      ghc should create.[10] Here, we’ve decided to name the program simple. On Windows, the program will have the
      suffix .exe, but on Unix variants,
      there will not be a suffix.
Finally, we supply the name of our new
      source file, Main.hs, and the
      object file we already compiled, SimpleJSON.o. We must explicitly list every
      one of our files that contains code that should end up in the
      executable. If we forget a source or object file, ghc will complain about undefined symbols, which
      indicates that some of the definitions that it needs are not provided in
      the files we supplied.
When compiling, we can pass ghc any mixture of source and object files. If
      ghc notices that it has already
      compiled a source file into an object file, it will only recompile the
      source file if we’ve modified it.
Once ghc has finished compiling and linking our
      simple program, we can run it from
      the command line.

Printing JSON Data



Now that we have a Haskell representation
      for JSON’s types, we’d like to be able to take Haskell values and render
      them as JSON data.
There are a few ways we could go about
      this. Perhaps the most direct would be to write a rendering function
      that prints a value in JSON form. Once we’re done, we’ll explore some
      more interesting approaches.
-- file: ch05/PutJSON.hs
module PutJSON where

import Data.List (intercalate)
import SimpleJSON

renderJValue :: JValue -> String

renderJValue (JString s)   = show s
renderJValue (JNumber n)   = show n
renderJValue (JBool True)  = "true"
renderJValue (JBool False) = "false"
renderJValue JNull         = "null"

renderJValue (JObject o) = "{" ++ pairs o ++ "}"
  where pairs [] = ""
        pairs ps = intercalate ", " (map renderPair ps)
        renderPair (k,v)   = show k ++ ": " ++ renderJValue v

renderJValue (JArray a) = "[" ++ values a ++ "]"
  where values [] = ""
        values vs = intercalate ", " (map renderJValue vs)
Good Haskell style involves separating
      pure code from code that performs I/O. Our renderJValue function has no interaction with
      the outside world, but we still need to be able to print a
      JValue:
-- file: ch05/PutJSON.hs
putJValue :: JValue -> IO ()
putJValue v = putStrLn (renderJValue v)
Printing a JSON value is now easy.
Why should we separate the rendering code
      from the code that actually prints a value? This gives us flexibility.
      For instance, if we want to compress the data before writing it out and
      intermix rendering with printing, it would be much more difficult to
      adapt our code to that change in circumstances.
This idea of separating pure from impure
      code is powerful, and it is pervasive in Haskell code. Several Haskell
      compression libraries exist, all of which have simple interfaces: a
      compression function accepts an uncompressed string and returns a
      compressed string. We can use function composition to render JSON data
      to a string, and then compress to another string, postponing any
      decision on how to actually display or transmit the data.

Type Inference Is a Double-Edged Sword



A Haskell compiler’s ability to infer types is powerful and
      valuable. Early on, you’ll probably face a strong temptation to take
      advantage of type inference by omitting as many type declarations as
      possible. Let’s simply make the compiler figure the whole lot
      out!
Skimping on explicit type information has
      a downside, one that disproportionately affects new Haskell programmers.
      As such programmers, we’re extremely likely to write code that will fail
      to compile due to straightforward type errors.
When we omit explicit type information,
      we force the compiler to figure out our intentions. It will infer types that are
      logical and consistent, but perhaps not at all what we meant. If we and
      the compiler unknowingly disagree about what is going on, it will
      naturally take us longer to find the source of our problem.
Suppose, for instance, that we write a
      function that we believe returns a String, but we don’t
      write a type signature for it:
-- file: ch05/Trouble.hs
upcaseFirst (c:cs) = toUpper c -- forgot ":cs" here
Here, we want to uppercase the first
      character of a word, but we’ve forgotten to append the rest of the word
      onto the result. We think our function’s type is String ->
      String, but the compiler will correctly infer its type as
      String -> Char. Let’s say we then try to use this
      function somewhere else:
-- file: ch05/Trouble.hs
camelCase :: String -> String
camelCase xs = concat (map upcaseFirst (words xs))
When we try to compile this code or load
      it into ghci, we won’t necessarily
      get an obvious error message:
ghci> :load Trouble
[1 of 1] Compiling Main             ( Trouble.hs, interpreted )

Trouble.hs:9:27:
    Couldn't match expected type `[Char]' against inferred type `Char'
      Expected type: [Char] -> [Char]
      Inferred type: [Char] -> Char
    In the first argument of `map', namely `upcaseFirst'
    In the first argument of `concat', namely
        `(map upcaseFirst (words xs))'
Failed, modules loaded: none.

Notice that the error is reported where we
      use the upcaseFirst function. If we’re erroneously convinced that our
      definition and type for upcaseFirst
      are correct, we may end up staring at the wrong piece of code for quite
      a while, until enlightenment strikes.
Every time we write a type signature, we
      remove a degree of freedom from the type inference engine. This reduces
      the likelihood of divergence between our understanding of our code and
      the compiler’s. Type declarations also act as shorthand for us as
      readers of our own code, making it easier for us to develop a sense of
      what must be going on.
This is not to say that we need to pepper
      every tiny fragment of code with a type declaration. It is, however,
      usually good form to add a signature to every top-level definition in
      our code. It’s best to start out fairly aggressive with explicit type
      signatures, and slowly ease back as your mental model of how type
      checking works becomes more accurate.
Explicit types, undefined values, and error
The special value undefined
        will happily typecheck no matter where we use it, as will an
        expression like error "argh!". It is especially important
        that we write type signatures when we use these. Suppose we use undefined or error "write me"
        as a placeholder in the body of a top-level definition. If we omit a
        type signature, we may be able to use the value we defined in places
        where a correctly typed version would be rejected by the compiler.
        This can easily lead us astray.


A More General Look at Rendering



Our JSON rendering code is narrowly tailored to the exact
      needs of our data types and the JSON formatting conventions. The output
      it produces can be unfriendly to human eyes. We will now look at
      rendering as a more generic task: how can we build a library that is
      useful for rendering data in a variety of situations?
We would like to produce output that is
      suitable either for human consumption (e.g., for debugging) or for
      machine processing. Libraries that perform this job are referred to
      as pretty printers. Several Haskell
      pretty-printing libraries already exist. We are creating one of our own
      not to replace them, but for the many useful insights we will gain into
      both library design and functional programming techniques.
We will call our generic pretty-printing
      module Prettify, so our code will go into a source file
      named Prettify.hs.
Naming
In our Prettify module, we
        will base our names on those used by several established Haskell
        pretty-printing libraries., which will give us a degree of
        compatibility with existing mature libraries.

To make sure that Prettify
      meets practical needs, we write a new JSON renderer that uses the
      Prettify API. After we’re done, we’ll go back and fill in
      the details of the Prettify module.
Instead of rendering straight to a string,
      our Prettify module will use an abstract type that we’ll
      call Doc. By basing our generic rendering library on an
      abstract type, we can choose an implementation that is flexible and
      efficient. If we decide to change the underlying code, our users will
      not be able to tell.
We will name our new JSON rendering module
      PrettyJSON.hs and retain the name
      renderJValue for the rendering
      function. Rendering one of the basic JSON values is
      straightforward:
-- file: ch05/PrettyJSON.hs
renderJValue :: JValue -> Doc
renderJValue (JBool True)  = text "true"
renderJValue (JBool False) = text "false"
renderJValue JNull         = text "null"
renderJValue (JNumber num) = double num
renderJValue (JString str) = string str
Our Prettify module provides
      the text, double, and string functions.

Developing Haskell Code Without Going Nuts



Early on, as we come to grips with Haskell
      development, we have so many new, unfamiliar concepts to keep track of at
      one time that it can be a challenge to write code that compiles at
      all.
As we write our first substantial body of
      code, it’s a huge help to pause every few minutes
      and try to compile what we’ve produced so far. Because Haskell is so
      strongly typed, if our code compiles cleanly, we’re assured that we’re
      not wandering too far off into the programming weeds.
One useful technique for quickly
      developing the skeleton of a program is to write placeholder, or stub, versions of types and
      functions. For instance, we just mentioned that our string, text and double functions would be provided by our
      Prettify module. If we don’t provide definitions for those
      functions or the Doc type, our attempts to “compile
      early, compile often” with our JSON renderer will fail, as the
      compiler won’t know anything about those functions. To avoid this
      problem, we write stub code that doesn’t do anything:
-- file: ch05/PrettyStub.hs
import SimpleJSON

data Doc = ToBeDefined
         deriving (Show)

string :: String -> Doc
string str = undefined

text :: String -> Doc
text str = undefined

double :: Double -> Doc
double num = undefined
The special value undefined
      has the type a, so it always
      typechecks, no matter where we use it. If we attempt to evaluate it, it
      will cause our program to crash:
ghci> :type undefined
undefined :: a
ghci> undefined
*** Exception: Prelude.undefined
ghci> :type double
double :: Double -> Doc
ghci> double 3.14
*** Exception: Prelude.undefined
Even though we can’t yet run our stubbed
      code, the compiler’s type checker will ensure that our program is
      sensibly typed.

Pretty Printing a String



When we must pretty print a string value,
      JSON has moderately involved escaping rules that we must follow. At the
      highest level, a string is just a series of characters wrapped in
      quotes:
-- file: ch05/PrettyJSON.hs
string :: String -> Doc
string = enclose '"' '"' . hcat . map oneChar
Point-free style
This style of writing a definition
        exclusively as a composition of other functions is called point-free style. The use of
        the word point is not related to the “.” character used for
        function composition. The term point is roughly
        synonymous (in Haskell) with value, so a
        point-free expression makes no mention of the values that it operates
        on.
Contrast this point-free definition of
        string with this
        “pointy” version, which uses a variable,
        s, to refer to the value on which it
        operates:
-- file: ch05/PrettyJSON.hs
pointyString :: String -> Doc
pointyString s = enclose '"' '"' (hcat (map oneChar s))

The enclose function simply wraps a Doc value with an opening and
      closing character:
-- file: ch05/PrettyJSON.hs
enclose :: Char -> Char -> Doc -> Doc
enclose left right x = char left <> x <> char right
We provide a (<>) function in our pretty-printing library. It appends two
      Doc values, so it’s the Doc equivalent of
      (++):
-- file: ch05/PrettyStub.hs
(<>) :: Doc -> Doc -> Doc
a <> b = undefined

char :: Char -> Doc
char c = undefined
Our pretty-printing library also provides
      hcat, which concatenates multiple
      Doc values into one—it’s the analogue of concat for lists:
-- file: ch05/PrettyStub.hs
hcat :: [Doc] -> Doc
hcat xs = undefined
Our string function applies the oneChar
      function to every character in a string, concatenates the lot, and
      encloses the result in quotes. The oneChar function escapes or renders an
      individual character:
-- file: ch05/PrettyJSON.hs
oneChar :: Char -> Doc
oneChar c = case lookup c simpleEscapes of
              Just r -> text r
              Nothing | mustEscape c -> hexEscape c
                      | otherwise    -> char c
    where mustEscape c = c < ' ' || c == '\x7f' || c > '\xff'

simpleEscapes :: [(Char, String)]
simpleEscapes = zipWith ch "\b\n\f\r\t\\\"/" "bnfrt\\\"/"
    where ch a b = (a, ['\\',b])
The simpleEscapes value is a list of pairs. We
      call a list of pairs an association list, or
      alist for short. Each element of our alist
      associates a character with its escaped representation:
ghci> take 4 simpleEscapes
[('\b',"\\b"),('\n',"\\n"),('\f',"\\f"),('\r',"\\r")]

Our case expression attempts to see whether our
      character has a match in this alist. If we find the match, we emit it;
      otherwise, we might need to escape the character in a more complicated
      way. If so, we perform this escaping. Only if neither kind of escaping
      is required do we emit the plain character. To be conservative,
      printable ASCII characters are the only unescaped characters we
      emit.
The more complicated escaping involves
      turning a character into the string "\u" followed by a
      four-character sequence of hexadecimal digits representing the numeric
      value of the Unicode character:
-- file: ch05/PrettyJSON.hs
smallHex :: Int -> Doc
smallHex x  = text "\\u"
           <> text (replicate (4 - length h) '0')
           <> text h
    where h = showHex x ""
The showHex function comes from the Numeric library (you will
      need to import this at the beginning of Prettify.hs) and returns a hexadecimal
      representation of a number:
ghci> showHex 114111 ""
"1bdbf"

The replicate function is provided by the Prelude and builds a fixed-length repeating
      list of its argument:
ghci> replicate 5 "foo"
["foo","foo","foo","foo","foo"]

There’s a wrinkle: the four-digit encoding
      that smallHex provides can only
      represent Unicode characters up to 0xffff. Valid Unicode
      characters can range up to 0x10ffff. To properly represent
      a character above 0xffff in a JSON string, we follow some
      complicated rules to split it into two, which gives us an opportunity to
      perform some bit-level manipulation of Haskell numbers:
-- file: ch05/PrettyJSON.hs
astral :: Int -> Doc
astral n = smallHex (a + 0xd800) <> smallHex (b + 0xdc00)
    where a = (n `shiftR` 10) .&. 0x3ff
          b = n .&. 0x3ff
The shiftR function comes from the Data.Bits module and shifts a
      number to the right. The (.&.)
      function, also from Data.Bits, performs a bit-level
      and of two values:
ghci> 0x10000 `shiftR` 4   :: Int
4096
ghci> 7 .&. 2   :: Int
2
Now that we’ve written smallHex and astral, we can provide a definition for
      hexEscape:
-- file: ch05/PrettyJSON.hs
hexEscape :: Char -> Doc
hexEscape c | d < 0x10000 = smallHex d
            | otherwise   = astral (d - 0x10000)
  where d = ord c

Arrays and Objects, and the Module Header



Compared to strings, pretty printing arrays and objects is a snap. We already
      know that the two are visually similar: each starts with an opening
      character, followed by a series of values separated with commas,
      followed by a closing character. Let’s write a function that captures
      the common structure of arrays and objects:
-- file: ch05/PrettyJSON.hs
series :: Char -> Char -> (a -> Doc) -> [a] -> Doc
series open close item = enclose open close
                       . fsep . punctuate (char ',') . map item
We’ll start by interpreting this
      function’s type. It takes an opening and closing character, then a
      function that knows how to pretty print a value of some unknown type
      a, followed by a list of values of
      type a. It then returns a value of
      type Doc.
Notice that although our type signature
      mentions four parameters, we listed only three in the definition of the
      function. We are just following the same rule that lets us simplify a
      definiton such as myLength xs = length xs to myLength
      = length.
We have already written enclose, which wraps a Doc value
      in opening and closing characters. The fsep function will live in our
      Prettify module. It combines a list of Doc
      values into one, possibly wrapping lines if the output will not fit on a
      single line:
-- file: ch05/PrettyStub.hs
fsep :: [Doc] -> Doc
fsep xs = undefined
By now, you should be able to define your
      own stubs in Prettify.hs, following
      the examples we have supplied. We will not explicitly define any more
      stubs.
The punctuate function will also live in our
      Prettify module, and we can define it in terms of functions
      for which we’ve already written stubs:
-- file: ch05/Prettify.hs
punctuate :: Doc -> [Doc] -> [Doc]
punctuate p []     = []
punctuate p [d]    = [d]
punctuate p (d:ds) = (d <> p) : punctuate p ds
With this definition of series, pretty printing an array is entirely
      straightforward. We add this equation to the end of the block we’ve
      already written for our renderJValue function:
-- file: ch05/PrettyJSON.hs
renderJValue (JArray ary) = series '[' ']' renderJValue ary
To pretty print an object, we need to do
      only a little more work. For each element, we have both a name and a
      value to deal with:
-- file: ch05/PrettyJSON.hs
renderJValue (JObject obj) = series '{' '}' field obj
    where field (name,val) = string name
                          <> text ": "
                          <> renderJValue val

Writing a Module Header



Now that we have written the bulk of our PrettyJSON.hs file, we must go back to the
      top and add a module declaration:
-- file: ch05/PrettyJSON.hs
module PrettyJSON
    (
      renderJValue
    ) where

import Numeric (showHex)
import Data.Char (ord)
import Data.Bits (shiftR, (.&.))

import SimpleJSON (JValue(..))
import Prettify (Doc, (<>), char, double, fsep, hcat, punctuate, text,
                 compact, pretty)
We export just one name from this module:
      renderJValue, our JSON rendering
      function. The other definitions in the module exist purely to support
      renderJValue, so there’s no reason
      to make them visible to other modules.
Regarding imports, the
      Numeric and Data.Bits modules are distributed
      with GHC. We’ve already
      written the SimpleJSON module and filled our
      Prettify module with skeletal definitions. Notice that
      there’s no difference in the way we import standard modules from those
      we’ve written ourselves.
With each import
      directive, we explicitly list each of the names we want to bring
      into our module’s namespace. This is not required. If we omit the list
      of names, all of the names exported from a module will be available to
      us. However, it’s generally a good idea to write an explicit import list
      for the following reasons:
	An explicit list makes it clear which
          names we’re importing from where. This will make it easier for a
          reader to look up documentation if he encounters an unfamiliar
          function.

	Occasionally, a library maintainer
          will remove or rename a function. If a function disappears from a
          third-party module that we use, any resulting compilation error is
          likely to happen long after we’ve written the module. The explicit
          list of imported names can act as a reminder to ourselves of where
          we had been importing the missing name from, which will help us to
          pinpoint the problem more quickly.

	It is possible that someone will add a
          name to a module that is identical to a name already in our own
          code. If we don’t use an explicit import list, we’ll end up with the
          same name in our module twice. If we use that name, GHC will report an error due to the
          ambiguity. An explicit list lets us avoid the possibility of
          accidentally importing an unexpected new name.



This idea of using explicit imports is a
      guideline that usually makes sense, not a hard-and-fast rule.
      Occasionally, we’ll need so many names from a module that listing each
      one becomes messy. In other cases, a module might be so widely used that
      a moderately experienced Haskell programmer will probably know which
      names come from that module.

Fleshing Out the Pretty-Printing Library



In our Prettify module, we
      represent our Doc type as an algebraic data type:
-- file: ch05/Prettify.hs
data Doc = Empty
         | Char Char
         | Text String
         | Line
         | Concat Doc Doc
         | Union Doc Doc
           deriving (Show,Eq)
Observe that the Doc type is
      actually a tree. The Concat and Union
      constructors create an internal node from two other Doc
      values, while the Empty and other simple constructors build
      leaves.
In the header of our module, we will
      export the name of the type, but none of its constructors. This will
      prevent modules that use the Doc type from creating and
      pattern matching against Doc values.
Instead, to create a Doc, a
      user of the Prettify module will call a function that we
      provide. Here are the simple construction functions. As we add real
      definitions, we must replace any stubbed versions already in the
      Prettify.hs source file:
-- file: ch05/Prettify.hs
empty :: Doc
empty = Empty

char :: Char -> Doc
char c = Char c

text :: String -> Doc
text "" = Empty
text s  = Text s

double :: Double -> Doc
double d = text (show d)
The Line
      constructor represents a line break. The line function creates hard line breaks, which
      always appear in the pretty printer’s output. Sometimes we’ll want a
      soft line break, which is only used if a line is
      too wide to fit in a window or page (we’ll introduce a softline function shortly):
-- file: ch05/Prettify.hs
line :: Doc
line = Line
Almost as simple as the basic constructors
      is the (<>)
      function, which concatenates two Doc values:
-- file: ch05/Prettify.hs
(<>) :: Doc -> Doc -> Doc
Empty <> y = y
x <> Empty = x
x <> y = x `Concat` y
We pattern-match against
      Empty so that concatenating a Doc value with
      Empty on the left or right will have no effect, which keeps
      us from bloating the tree with useless values:
ghci> text "foo" <> text "bar"
Concat (Text "foo") (Text "bar")
ghci> text "foo" <> empty
Text "foo"
ghci> empty <> text "bar"
Text "bar"
A mathematical moment
If we briefly put on our mathematical
        hats, we can say that Empty is the identity under
        concatenation, since nothing happens if we concatenate a
        Doc value with Empty. In a similar vein, 0
        is the identity for adding numbers, and 1 is the identity for
        multiplying them. Taking the mathematical perspective has useful
        practical consequences, as we will see in a number of places
        throughout this book.

Our hcat and fsep functions concatenate a list of
      Doc values into one. In Exercises and in How to Think About Loops, we
      mentioned that we could define concatenation for lists using foldr:
-- file: ch05/Concat.hs
concat :: [[a]] -> [a]
concat = foldr (++) []
Since (<>) is analogous to (++), and empty to [], we can see how we might write hcat and fsep as folds, too:
-- file: ch05/Prettify.hs
hcat :: [Doc] -> Doc
hcat = fold (<>)

fold :: (Doc -> Doc -> Doc) -> [Doc] -> Doc
fold f = foldr f empty
The definition of fsep depends on several other
      functions:
-- file: ch05/Prettify.hs
fsep :: [Doc] -> Doc
fsep = fold (</>)

(</>) :: Doc -> Doc -> Doc
x </> y = x <> softline <> y

softline :: Doc
softline = group line
These take a little explaining. The
      softline function should insert a
      newline if the current line has become too wide, or a space otherwise.
      How can we do this if our Doc type doesn’t contain any
      information about rendering? Our answer is that every time we encounter
      a soft newline, we maintain two alternative
      representations of the document, using the Union
      constructor:
-- file: ch05/Prettify.hs
group :: Doc -> Doc
group x = flatten x `Union` x
Our flatten function replaces a Line
      with a space, turning two lines into one longer line:
-- file: ch05/Prettify.hs
flatten :: Doc -> Doc
flatten (x `Concat` y) = flatten x `Concat` flatten y
flatten Line           = Char ' '
flatten (x `Union` _)  = flatten x
flatten other          = other
Notice that we always call flatten on the left element of a
      Union: the left of each Union is always the
      same width (in characters) as, or wider than, the right. We’ll make use
      of this property in our rendering functions that follow.
Compact Rendering



We frequently need to use a
        representation for a piece of data that contains as few characters as
        possible. For example, if we’re sending JSON data over a network
        connection, there’s no sense in laying it out nicely. The software on
        the far end won’t care whether the data is pretty or not, and the
        added whitespace needed to make the layout look good would add a lot
        of overhead.
For these cases, and because it’s a
        simple piece of code to start with, we provide a bare-bones compact
        rendering function:
-- file: ch05/Prettify.hs
compact :: Doc -> String
compact x = transform [x]
    where transform [] = ""
          transform (d:ds) =
              case d of
                Empty        -> transform ds
                Char c       -> c : transform ds
                Text s       -> s ++ transform ds
                Line         -> '\n' : transform ds
                a `Concat` b -> transform (a:b:ds)
                _ `Union` b  -> transform (b:ds)
The compact function wraps its argument in a list and applies the transform helper function to it. The
        transform function treats its
        argument as a stack of items to process, where the first element of
        the list is the top of the stack.
The transform function’s (d:ds)
        pattern breaks the stack into its head, d, and the
        remainder, ds. In our case expression, the first several branches
        recurse on ds, consuming one item from the stack
        for each recursive application. The last two branches add items in
        front of ds; the Concat branch adds
        both elements to the stack, while the Union branch
        ignores its left element, on which we called flatten, and adds its right element to the
        stack.
We have now fleshed out enough of our
        original skeletal definitions that we can try out our compact function in ghci:
ghci> let value = renderJValue (JObject [("f", JNumber 1), ("q", JBool True)])
ghci> :type value
value :: Doc
ghci> putStrLn (compact value)
{"f": 1.0,
"q": true
}
To better understand how the code works,
        let’s look at a simpler example in more detail:
ghci> char 'f' <> text "oo"
Concat (Char 'f') (Text "oo")
ghci> compact (char 'f' <> text "oo")
"foo"
When we apply compact, it turns its argument into a list
        and applies transform (the degree
        of indentation below reflects the depth of recursion):
	The transform function receives a one-item
            list, which matches the (d:ds) pattern. Thus
            d is the value Concat (Char 'f') (Text
            "oo"), and ds is the empty list,
            [].
Since d’s
            constructor is Concat, the Concat
            pattern matches in the case
            expression. On the righthand side, we add Char 'f'
            and Text "oo" to the stack and then apply transform, recursively.

	The transform function
            receives a two-item list, again matching the (d:ds)
            pattern. The variable d is bound to Char
            'f', and ds to [Text
            "oo"].
	The case expression
                matches in the Char branch. On the righthand
                side, we use (:) to
                construct a list whose head is 'f', and whose
                body is the result of a recursive application of transform.
	The recursive invocation receives a one-item list.
                    The variable d is bound to Text
                    "oo", and ds to
                    [].
The case
                    expression matches in the Text branch. On the
                    righthand side, we use (++) to concatenate
                    "oo" with the result of a recursive
                    application of transform.
	In the final invocation, transform is invoked with
                        an empty list and returns an empty string.




	The result is "oo" ++ "".

	The result is 'f' : "oo" ++ "".










True Pretty Printing



While our compact function is useful for
        machine-to-machine communication, its result is not always easy for a
        human to follow: there’s very little information on each line. To
        generate more readable output, we’ll write another function, pretty. Compared to compact, pretty takes one extra argument: the
        maximum width of a line, in columns (we’re assuming that our typeface
        is of fixed width):
-- file: ch05/Prettify.hs
pretty :: Int -> Doc -> String
To be more precise, this
        Int parameter controls the behavior of pretty when it encounters a softline. Only at a softline does pretty have the option of either continuing
        the current line or beginning a new one. Elsewhere, we must strictly
        follow the directives set out by the person using our pretty-printing
        functions.
Here’s the core of our
        implementation:
-- file: ch05/Prettify.hs
pretty width x = best 0 [x]
    where best col (d:ds) =
              case d of
                Empty        -> best col ds
                Char c       -> c :  best (col + 1) ds
                Text s       -> s ++ best (col + length s) ds
                Line         -> '\n' : best 0 ds
                a `Concat` b -> best col (a:b:ds)
                a `Union` b  -> nicest col (best col (a:ds))
                                           (best col (b:ds))
          best _ _ = ""

          nicest col a b | (width - least) `fits` a = a
                         | otherwise                = b
                         where least = min width col
Our best helper function takes two arguments:
        the number of columns emitted so far on the current line and the list
        of remaining Doc values to process.
In the simple cases, best updates the col
        variable in straightforward ways as it consumes the input. Even the
        Concat case is obvious: we push the two concatenated
        components onto our stack/list, and we don’t touch
        col.
The interesting case involves the
        Union constructor. Recall that we applied flatten to the left element and did nothing
        to the right. Also, remember that flatten replaces newlines with spaces.
        Therefore, our job is to see which (if either) of the two layouts—the
        flattened one or the
        original—will fit into our width
        restriction.
To do this, we write a small helper
        function that determines whether a single line of a rendered
        Doc value will fit into a given number of columns:
-- file: ch05/Prettify.hs
fits :: Int -> String -> Bool
w `fits` _ | w < 0 = False
w `fits` ""        = True
w `fits` ('\n':_)  = True
w `fits` (c:cs)    = (w - 1) `fits` cs

Following the Pretty Printer



In order to understand how this code
        works, let’s first consider a simple Doc value:
ghci> empty </> char 'a'
Concat (Union (Char ' ') Line) (Char 'a')

We’ll apply pretty 2 on this value. When we first apply
        best, the value of
        col is zero. It matches the Concat case,
        pushes the values Union (Char ' ') Line and Char
        'a' onto the stack, and applies itself recursively. In the
        recursive application, it matches on Union (Char ' ')
        Line.
At this point, we’re going to ignore
        Haskell’s usual order of evaluation. This keeps our explanation of
        what’s going on simple, without changing the end result. We now have
        two subexpressions: best 0 [Char ' ', Char 'a'] and
        best 0 [Line, Char 'a']. The first evaluates to "
        a", and the second to "\na". We then substitute
        these into the outer expression to give nicest 0 " a"
        "\na".
To figure out what the result of
        nicest is here, we do a little
        substitution. The values of width and
        col are 0 and 2, respectively, so
        least is 0, and width - least is 2. We
        quickly evaluate 2 `fits` " a" in ghci:
ghci> 2 `fits` " a"
True

Since this evaluates to
        True, the result of nicest here is " a".
If we apply our pretty function to the same JSON data that
        we did earlier, we can see that it produces different output depending
        on the width that we give it:
ghci> putStrLn (pretty 10 value)
{"f": 1.0,
"q": true
}
ghci> putStrLn (pretty 20 value)
{"f": 1.0, "q": true
}
ghci> putStrLn (pretty 30 value)
{"f": 1.0, "q": true }
Exercises
	Our current pretty printer is spartan so that it will fit
              within our space constraints, but there are a number of useful
              improvements we can make.
Write a function, fill, with the following type
              signature:
-- file: ch05/Prettify.hs
fill :: Int -> Doc -> Doc
It should add spaces to a document until it is the given
              number of columns wide. If it is already wider than this value,
              it should not add any spaces.

	Our pretty printer does not take nesting into account.
              Whenever we open parentheses, braces, or brackets, any lines
              that follow should be indented so that they are aligned with the
              opening character until a matching closing character is
              encountered.
Add support for nesting, with a controllable amount of
              indentation:
-- file: ch05/Prettify.hs
fill :: Int -> Doc -> Doc






Creating a Package



The Haskell community has built a standard set of tools, named Cabal, that help
      with building, installing, and distributing software. Cabal organizes
      software as a package. A package contains one
      library, and possibly several executable programs.
Writing a Package Description



To do anything with a package, Cabal
        needs a description of it. This is contained in a text file whose name
        ends with the suffix .cabal. This
        file belongs in the top-level directory of your project. It has a
        simple format, which we’ll describe next.
A Cabal package must have a name.
        Usually, the name of the package matches the name of the .cabal file. We’ll call our package
        mypretty, so our file is mypretty.cabal. Often, the directory that
        contains a .cabal file will have
        the same name as the package, e.g., mypretty.
A package description begins with a
        series of global properties, which apply to every library and
        executable in the package:
Name:          mypretty
Version:       0.1

-- This is a comment.  It stretches to the end of the line.
Package names must be unique. If you
        create and install a package that has the same name as a package
        already present on your system, GHC will get very confused.
The global properties include a
        substantial amount of information that is intended for human readers,
        not Cabal itself:
Synopsis:      My pretty printing library, with JSON support
Description:
  A simple pretty-printing library that illustrates how to
  develop a Haskell library.
Author:        Real World Haskell
Maintainer:    nobody@realworldhaskell.org
As the Description field
        indicates, a field can span multiple lines, provided they’re
        indented.
Also included in the global properties
        is license information. Most Haskell packages are licensed under the
        BSD license, which Cabal calls BSD3.[11] (Obviously, you’re free to choose whatever license you
        think is appropriate.) The optional License-File field
        lets us specify the name of a file that contains the exact text of our
        package’s licensing terms.
The features supported by successive
        versions of Cabal evolve over time, so it’s wise to indicate what
        versions of Cabal we expect to be compatible with. The features we are
        describing are supported by versions 1.2 and higher of Cabal:
Cabal-Version: >= 1.2
To describe an individual library within
        a package, we write a library section. The use of
        indentation here is significant; the contents of a section must be
        indented:
library
  Exposed-Modules: Prettify
                   PrettyJSON
                   SimpleJSON
  Build-Depends:   base >= 2.0
The Exposed-Modules field
        contains a list of modules that should be available to
        users of this package. An optional field, Other-Modules,
        contains a list of internal
        modules. These are required for this library to function, but
        will not be visible to users.
The Build-Depends
        field contains a comma-separated list of packages that our
        library requires to build. For each package, we can optionally specify
        the range of versions with which this library is known to work. The
        base package contains many of the core Haskell modules,
        such as the Prelude, so it’s
        effectively always required.
Figuring out build dependencies
We don’t have to guess or do any
          research to establish which packages we depend on. If we try to
          build our package without a Build-Depends field,
          compilation will fail with a useful error message. Here’s an example
          where we commented out the dependency on the base
          package:
$ runghc Setup build
Preprocessing library mypretty-0.1...
Building mypretty-0.1...

PrettyJSON.hs:8:7:
    Could not find module `Data.Bits':
      it is a member of package base, which is hidden
The error message makes it clear that
          we need to add the base package, even though
          base is already installed. Forcing us to be explicit
          about every package we need has a practical benefit: a command-line
          tool named cabal-install will
          automatically download, build, and install a package and all of the
          packages it depends on.


GHC’s Package Manager



GHC includes a simple package manager
        that tracks which packages are installed, and what the versions of
        those packages are. A command-line tool named ghc-pkg lets us work with its package
        databases.
We say databases
        because GHC distinguishes
        between system-wide packages, which are available
        to every user, and per-user packages, which are
        only visible to the current user. The per-user database lets us avoid
        the need for administrative privileges to install packages.
The ghc-pkg command provides subcommands to
        address different tasks. Most of the time, we’ll need only two of
        them. The ghc-pkg list command lets us see what packages
        are installed. When we want to uninstall a package, ghc-pkg
        unregister tells GHC
        that we won’t be using a particular package any longer. (We will have
        to manually delete the installed files ourselves.)

Setting Up, Building, and Installing



In addition to a .cabal file, a package must contain a
        setup file. This allows Cabal’s build process to
        be heavily customized (if a package needs it). The simplest setup file
        looks like this:
-- file: ch05/Setup.hs
#!/usr/bin/env runhaskell
import Distribution.Simple
main = defaultMain
We save this file under the name
        Setup.hs.
Once we write the .cabal and Setup.hs files, there are three steps
        left:
	To instruct Cabal how to build and where to install a
            package, we run a simple command:
$ runghc Setup configure
This ensures that the packages we
            need are available, and it stores settings to be used later by
            other Cabal commands.
If we do not provide any arguments
            to configure, Cabal will install our package in the
            system-wide package database. To install it into our home
            directory and our personal package database, we must provide a
            little more information:

	We build the package:
$ runghc Setup build

	If this succeeds, we can install the package by running
            runghc Setup install. We don’t need to indicate
            where to install to—Cabal will use the settings we provided in the
            configure step. It will install to our own directory
            and update GHC’s
            per-user package database.





Practical Pointers and Further Reading



GHC already bundles a pretty-printing
      library, Text.PrettyPrint.HughesPJ. It provides the same
      basic API as our example but a much richer and more useful set of
      pretty-printing functions. We recommend using it, rather than writing
      your own.
John Hughes introduced the design of the
      HughesPJ pretty printer “The Design of a Pretty-Printing
      library” (http://citeseer.ist.psu.edu/hughes95design.html). The
      library was subsequently improved by Simon Peyton Jones, hence the name.
      Hughes’s paper is long, but well worth reading for his discussion of how
      to design a library in Haskell.
In this chapter, our pretty-printing
      library is based on a simpler system described by Philip Wadler in “A
      prettier printer” (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.635).
      His library was extended by Daan Leijen; this version is available for
      download from Hackage as wl-pprint.
      If you use the cabal command-line
      tool, you can download, build, and install it in one step
      with cabal install wl-pprint.



[10] Memory aid: -o
          stands for output or
          object file.

[11] The “3” in
            BSD3 refers to the number of clauses in the license.
            An older version of the BSD license contained 4 clauses, but it is
            no longer used.



Chapter 6. Using Typeclasses



Typeclasses are among the most powerful features in Haskell. They allow
    us to define generic interfaces that provide a common feature set over a
    wide variety of types. Typeclasses are at the heart of some basic language
    features such as equality testing and numeric operators. Before we talk
    about what exactly typeclasses are, though, we’d like to explain the need
    for them.
The Need for Typeclasses



Let’s imagine that for some
      unfathomable reason, the designers of the Haskell language neglected
      to implement the equality test ==.
      Once you get over your shock at hearing this, you resolve to implement
      your own equality tests. Your application consists of a simple Color type, and so your first equality test is
      for this type. Your first attempt might look like this:
-- file: ch06/naiveeq.hs
data Color = Red | Green | Blue

colorEq :: Color -> Color -> Bool
colorEq Red   Red   = True
colorEq Green Green = True
colorEq Blue  Blue  = True
colorEq _     _     = False
You can test this with ghci:
ghci> :load naiveeq.hs
[1 of 1] Compiling Main             ( naiveeq.hs, interpreted )
Ok, modules loaded: Main.
ghci> colorEq Red Red
True
ghci> colorEq Red Green
False
Now, let’s say that you want to add an
      equality test for Strings. Since a
      Haskell String is a list of
      characters, we can write a simple function to perform that test. For
      simplicity, we cheat a bit and use the == operator here to
      illustrate:
-- file: ch06/naiveeq.hs
stringEq :: [Char] -> [Char] -> Bool

-- Match if both are empty
stringEq [] [] = True

-- If both start with the same char, check the rest
stringEq (x:xs) (y:ys) = x == y && stringEq xs ys

-- Everything else doesn't match
stringEq _ _ = False
You should now be able to see a problem:
      we have to use a function with a different name for every different type
      that we want to be able to compare. That’s inefficient and annoying.
      It’s much more convenient to be able to just use == to compare anything. It may also be useful
      to write generic functions such as /=
      that could be implemented in terms of ==, and valid for almost anything. By having a
      generic function that can compare anything, we can also make our code
      generic: if a piece of code needs only to compare things, then it ought
      to be able to accept any data type that the compiler knows how to
      compare. What’s more, if new data types are added later, the existing
      code shouldn’t have to be modified.
Haskell’s typeclasses are designed to
      address all of these things.

What Are Typeclasses?



Typeclasses define a set of functions that
      can have different implementations depending on the type of data they
      are given. Typeclasses may look like the objects of object-oriented
      programming, but they are truly quite different.
Let’s use typeclasses to solve our
      equality dilemma from the previous section. To begin with, we must
      define the typeclass itself. We want a function that takes two
      parameters, both the same type, and returns a Bool indicating whether or not they are equal.
      We don’t care what that type is, but we just want two items of that
      type. Here’s our first definition of a typeclass:
-- file: ch06/eqclasses.hs
class BasicEq a where
    isEqual :: a -> a -> Bool
This says that we are declaring a
      typeclass named BasicEq, and we’ll
      refer to instance types with the letter a. An instance type of this typeclass is any
      type that implements the functions defined in the typeclass. This
      typeclass defines one function. That function takes two parameters—both
      corresponding to instance types—and returns a Bool.
When is a class not a class?
The keyword to define a typeclass in
        Haskell is class. Unfortunately,
        this may be confusing for those of you coming from an object-oriented
        background, as we are not really defining the same thing.

On the first line, the name of the
      parameter a was chosen arbitrarily—we
      could have used any name. The key is that, when you list the types of
      your functions, you must use that name to refer to instance
      types.
Let’s look at this in ghci. Recall that you can type :type in ghci to have it show you the type of
      something. Let’s see what it says about isEqual:
*Main> :type isEqual
isEqual :: (BasicEq a) => a -> a -> Bool
You can read that this way: “For all types
      a, so long as a is an instance of BasicEq, isEqual takes two parameters of type a and returns a Bool.” Let’s take a quick look at defining
      isEqual for a particular type:
-- file: ch06/eqclasses.hs
instance BasicEq Bool where
    isEqual True  True  = True
    isEqual False False = True
    isEqual _     _     = False
You can also use ghci to verify that we can now use isEqual on Bools but not on any other type:
ghci> :load eqclasses.hs
[1 of 1] Compiling Main             ( eqclasses.hs, interpreted )
Ok, modules loaded: Main.
ghci> isEqual False False
True
ghci> isEqual False True
False
ghci> isEqual "Hi" "Hi"

<interactive>:1:0:
    No instance for (BasicEq [Char])
      arising from a use of `isEqual' at <interactive>:1:0-16
    Possible fix: add an instance declaration for (BasicEq [Char])
    In the expression: isEqual "Hi" "Hi"
    In the definition of `it': it = isEqual "Hi" "Hi"
Notice that when we tried to compare two
      strings, ghci recognized that we
      hadn’t provided an instance of BasicEq for String. It therefore didn’t know how to
      compare a String and suggested that
      we could fix the problem by defining an instance of BasicEq for [Char], which is the same as String.
We’ll go into more detail on defining
      instances in the next section Declaring Typeclass Instances.
      First, though, let’s continue to look at ways to define typeclasses. In this example, a
      not-equal-to function might be useful. Here’s what we might say to
      define a typeclass with two functions:
-- file: ch06/eqclasses.hs
class BasicEq2 a where
    isEqual2    :: a -> a -> Bool
    isNotEqual2 :: a -> a -> Bool
Someone providing an instance of BasicEq2 will be required to define two
      functions: isEqual2 and isNotEqual2.
While our definition of BasicEq2 is fine, it seems that we’re making
      extra work for ourselves. Logically speaking, if we know what isEqual or isNotEqual would return, we know how to figure
      out what the other function would return, for all types. Rather than
      making users of the typeclass define both functions for all types, we
      can provide default implementations for them. Then, users will only have
      to implement one function.[12] Here’s an example that shows how to do this:
-- file: ch06/eqclasses.hs
class BasicEq3 a where
    isEqual3 :: a -> a -> Bool
    isEqual3 x y = not (isNotEqual3 x y)

    isNotEqual3 :: a -> a -> Bool
    isNotEqual3 x y = not (isEqual3 x y)
People implementing this class must
      provide an implementation of at least one function. They can implement
      both if they wish, but they will not be required to. While we did
      provide defaults for both functions, each function depends on the
      presence of the other to calculate an answer. If we don’t specify at
      least one, the resulting code would be an endless loop. Therefore, at
      least one function must always be implemented.
With BasicEq3, we have provided a class that does
      very much the same thing as Haskell’s built-in == and /=
      operators. In fact, these operators are defined by a typeclass that
      looks almost identical to BasicEq3.
      The Haskell 98 Report defines a typeclass that implements equality
      comparison. Here is the code for the built-in Eq typeclass. Note how similar it is to our
      BasicEq3 typeclass:
class  Eq a  where
    (==), (/=) :: a -> a -> Bool

       -- Minimal complete definition:
       --     (==) or (/=)
    x /= y     =  not (x == y)
    x == y     =  not (x /= y)

Declaring Typeclass Instances



Now that you know how to define typeclasses, it’s time to learn how
      to define instances of typeclasses. Recall that types are made instances
      of a particular typeclass by implementing the functions necessary for
      that typeclass.
Recall our attempt to create a test for
      equality over a Color type back in
      The Need for Typeclasses. Now let’s see how we could make
      that same Color type a member of the
      BasicEq3 class:
-- file: ch06/eqclasses.hs
instance BasicEq3 Color where
    isEqual3 Red Red = True
    isEqual3 Green Green = True
    isEqual3 Blue Blue = True
    isEqual3 _ _ = False
Notice that we provide essentially the
      same function as we used in The Need for Typeclasses. In
      fact, the implementation is identical. However, in this case, we can use
      isEqual3 on any
      type that we declare is an instance of BasicEq3, not just this one color type. We
      could define equality tests for anything from numbers to graphics using
      the same basic pattern. In fact, as you will see in Equality, Ordering, and Comparisons, this is exactly how you can
      make Haskell’s == operator work for
      your own custom types.
Note also that the BasicEq3 class defined both isEqual3 and isNotEqual3, but we implemented only one of them in the
      Color instance. That’s because of the
      default implementation contained in BasicEq3. Since we didn’t explicitly define
      isNotEqual3, the compiler
      automatically uses the default implementation given in the BasicEq3 declaration.

Important Built-in Typeclasses



Now that we’ve discussed defining your own typeclasses and
      making your types instances of typeclasses, it’s time to introduce you
      to typeclasses that are a standard part of the Haskell Prelude. As we
      mentioned at the beginning of this chapter, typeclasses are at the core
      of some important aspects of the language. We’ll cover the most common
      ones here. For more details, the Haskell library reference is a good
      resource. It will give you a description of the typeclasses and usually
      also will tell you which functions you must implement to have a complete
      definition.
Show



The Show typeclass is used to convert values to Strings. It is perhaps most commonly used to
        convert numbers to Strings, but it
        is defined for so many types that it can be used to convert quite a
        bit more. If you have defined your own types, making them instances of
        Show will make it easy to display
        them in ghci or print them out in
        programs.
The most important function of Show is show. It takes one argument—the data to
        convert. It returns a String
        representing that data. ghci
        reports the type of show like
        this:
ghci> :type show
show :: (Show a) => a -> String

Let’s look at some examples of
        converting values to strings:
ghci> show 1
"1"
ghci> show [1, 2, 3]
"[1,2,3]"
ghci> show (1, 2)
"(1,2)"
Remember that ghci displays results as they would be
        entered into a Haskell program. So the expression show 1 returns a single-character string
        containing the digit 1. That is,
        the quotes are not part of the string itself. We can make that clear
        by using putStrLn:
ghci> putStrLn (show 1)
1
ghci> putStrLn (show [1,2,3])
[1,2,3]
You can also use show on Strings:
ghci> show "Hello!"
"\"Hello!\""
ghci> putStrLn (show "Hello!")
"Hello!"
ghci> show ['H', 'i']
"\"Hi\""
ghci> putStrLn (show "Hi")
"Hi"
ghci> show "Hi, \"Jane\""
"\"Hi, \\\"Jane\\\"\""
ghci> putStrLn (show "Hi, \"Jane\"")
"Hi, \"Jane\""
Running show on Strings can be confusing. Since show generates a result that is suitable for
        a Haskell literal, it adds quotes and escaping suitable for inclusion
        in a Haskell program. ghci also
        uses show to display results, so
        quotes and escaping get added twice. Using putStrLn can help make this difference
        clear.
You can define a Show instance for your own types easily.
        Here’s an example:
-- file: ch06/eqclasses.hs
instance Show Color where
    show Red   = "Red"
    show Green = "Green"
    show Blue  = "Blue"
This example defines an instance of
        Show for our type Color (see The Need for Typeclasses). The implementation is simple: we
        define a function show. That’s all
        that’s needed.
The Show typeclass
Show is usually used to define a String representation for data that is
          useful for a machine to parse back with Read. Haskell programmers generally write
          custom functions to format data attractively for end users, if this
          representation would be different than expected via Show.


Read



The Read typeclass is essentially the opposite of Show. It defines functions that will take a
        String, parse it, and return data
        in any type that is a member of Read. The most useful function in Read is read. You can ask ghci for its type like this:
ghci> :type read
read :: (Read a) => String -> a

Here’s an example illustrating the use
        of read and show:
-- file: ch06/read.hs
main = do
        putStrLn "Please enter a Double:"
        inpStr <- getLine
        let inpDouble = (read inpStr)::Double
        putStrLn ("Twice " ++ show inpDouble ++ " is " ++ show (inpDouble * 2))
This is a simple example of read and show together. Notice that we gave an
        explicit type of Double when
        processing the read. That’s because
        read returns a value of type
        Read a =>
        a, and show expects a
        value of type Show a => a. There
        are many types that have instances defined for both Read and Show. Without knowing a specific type, the
        compiler must guess from these many types which one is needed. In
        situations such as this, it may often choose Integer. If we want to accept floating-point
        input, this wouldn’t work, so we provide an explicit type.
A note about defaulting
In most cases, if the explicit
          Double type annotation were
          omitted, the compiler would refuse to guess a common type and simply
          give an error. The fact that it could default to Integer here is a special case arising
          from the fact that the literal 2
          is treated as an Integer unless a
          different type is expected for it.

You can see the same effect at work if
        you try to use read on the ghci command line. ghci uses show internally to display results, meaning
        that you can encounter this ambiguous typing problem there as well.
        You’ll need to explicitly give types for your read results in ghci as shown here:
ghci> read "5"

<interactive>:1:0:
    Ambiguous type variable `a' in the constraint:
      `Read a' arising from a use of `read' at <interactive>:1:0-7
    Probable fix: add a type signature that fixes these type variable(s)
ghci> :type (read "5")
(read "5") :: (Read a) => a
ghci> (read "5")::Integer
5
ghci> (read "5")::Double
5.0
Recall the type of read: (Read a)
        => String -> a. The a here is the type of each instance of
        Read. The particular parsing
        function that is called depends upon the type that is expected from
        the return value of read. Let’s see
        how that works:
ghci> (read "5.0")::Double
5.0
ghci> (read "5.0")::Integer
*** Exception: Prelude.read: no parse
Notice the error when trying to parse
        5.0 as an Integer. The interpreter selects a different
        instance of Read when the return
        value was expected to be Integer
        than it did when a Double was
        expected. The Integer parser
        doesn’t accept decimal points and caused an exception to be
        raised.
The Read class provides for some fairly
        complicated parsers. You can define a simple parser by providing an
        implementation for the readsPrec
        function. Your implementation can return a list containing exactly one
        tuple on a successful parse, or it can return an empty list on an
        unsuccessful parse. Here’s an example implementation:
-- file: ch06/eqclasses.hs
instance Read Color where
    -- readsPrec is the main function for parsing input
    readsPrec _ value = 
        -- We pass tryParse a list of pairs.  Each pair has a string
        -- and the desired return value.  tryParse will try to match
        -- the input to one of these strings.
        tryParse [("Red", Red), ("Green", Green), ("Blue", Blue)]
        where tryParse [] = []    -- If there is nothing left to try, fail
              tryParse ((attempt, result):xs) =
                      -- Compare the start of the string to be parsed to the
                      -- text we are looking for.
                      if (take (length attempt) value) == attempt
                         -- If we have a match, return the result and the
                         -- remaining input
                         then [(result, drop (length attempt) value)]
                         -- If we don't have a match, try the next pair
                         -- in the list of attempts.
                         else tryParse xs
This example handles the known cases for
        the three colors. It returns an empty list (resulting in a “no parse”
        message) for others. The function is supposed to return the part of
        the input that was not parsed so that the system can integrate the
        parsing of different types together. Here’s an example of using this
        new instance of Read:
ghci> (read "Red")::Color
Red
ghci> (read "Green")::Color
Green
ghci> (read "Blue")::Color
Blue
ghci> (read "[Red]")::[Color]
[Red]
ghci> (read "[Red,Red,Blue]")::[Color]
[Red,Red,Blue]
ghci> (read "[Red, Red, Blue]")::[Color]
*** Exception: Prelude.read: no parse
Notice the error on the final attempt.
        That’s because our parser is not smart enough to handle leading spaces
        yet. If we modify it to accept leading spaces, that attempt would
        work. You could rectify this by changing your Read instance to discard any leading spaces,
        which is common practice in Haskell programs.
Read is not widely used
While it is possible to build
          sophisticated parsers using the Read typeclass, many people find it easier
          to do so using Parsec, and rely
          on Read only for simpler tasks.
          Parsec is covered in detail in
          Chapter 16.


Serialization with read and show



You may often have a data structure in memory that you need to
        store on disk for later retrieval or to send across the network. The
        process of converting data in memory to a flat series of bits for
        storage is called serialization.
It turns out that read and show make excellent tools for serialization. show produces output that is both human- and
        machine-readable. Most show output
        is also syntactically valid Haskell, though it is up to people that
        write Show instances to make it
        so.
Parsing large strings
String handling in Haskell is normally
          lazy, so read and show can be used on quite large data
          structures without incident. The built-in read and show instances in Haskell are efficient
          and implemented in pure Haskell. For information on how to handle
          parsing exceptions, refer to Chapter 19.

Let’s try it out in ghci:
ghci> let d1 = [Just 5, Nothing, Nothing, Just 8, Just 9]::[Maybe Int]
ghci> putStrLn (show d1)
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> writeFile "test" (show d1)
First, we assign d1 to be a list. Next, we print out the
        result of show d1, so we can see
        what it generates. Then, we write the result of show d1 to a file named test.
Let’s try reading it back:
        
ghci> input <- readFile "test"
"[Just 5,Nothing,Nothing,Just 8,Just 9]"
ghci> let d2 = read input

<interactive>:1:9:
    Ambiguous type variable `a' in the constraint:
      `Read a' arising from a use of `read' at <interactive>:1:9-18
    Probable fix: add a type signature that fixes these type variable(s)
ghci> let d2 = (read input)::[Maybe Int]
ghci> print d1
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> print d2
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> d1 == d2
True
First, we ask Haskell to read the file
        back.[13] Then, we try to assign the result of read input to d2. That generates an error. The reason is
        that the interpreter doesn’t know what type d2 is meant to be, so it doesn’t know how to
        parse the input. If we give it an explicit type, it works, and we can
        verify that the two sets of data are equal.
Since so many different types are
        instances of Read and Show by default (and others can be made
        instances easily; see Automatic Derivation),
        you can use it for some really complex data structures. Here are a few
        examples of slightly more complex data structures:
ghci> putStrLn $ show [("hi", 1), ("there", 3)]
[("hi",1),("there",3)]
ghci> putStrLn $ show [[1, 2, 3], [], [4, 0, 1], [], [503]]
[[1,2,3],[],[4,0,1],[],[503]]
ghci> putStrLn $ show [Left 5, Right "three", Left 0, Right "nine"]
[Left 5,Right "three",Left 0,Right "nine"]
ghci> putStrLn $ show [Left 0, Right [1, 2, 3], Left 5, Right []]
[Left 0,Right [1,2,3],Left 5,Right []]
Note
The $ operator is a bit of syntactic sugar
          that is equivalent to putting everything after it inside a pair of
          parentheses.


Numeric Types



Haskell has a powerful set of numeric types. You can use
        everything from fast 32-bit or 64-bit integers to arbitrary-precision
        rational numbers. You probably know that operators such as + can work with just about all of these.
        This feature is implemented using typeclasses. As a side benefit, it
        allows you to define your own numeric types and make them first-class
        citizens in Haskell.
Let’s begin our discussion of the
        typeclasses surrounding numeric types with an examination of the types themselves.
        Table 6-1 describes the most commonly
        used numeric types in Haskell. Note that there are also many more
        numeric types available for specific purposes such as interfacing to
        C.
Table 6-1. Selected numeric types
	Type	Description
	Double	Double-precision floating point. A common choice for
                floating-point data.
	Float	Single-precision floating point. Often used when interfacing
                with C.
	Int	Fixed-precision signed integer; minimum range
                [-2^29..2^29-1]. Commonly used.
	Int8	8-bit signed integer.
	Int16	16-bit signed integer.
	Int32	32-bit signed integer.
	Int64	64-bit signed integer.
	Integer	Arbitrary-precision signed integer; range limited only
                by machine resources. Commonly used.
	Rational	Arbitrary-precision rational numbers. Stored as a ratio of two
                Integers.
	Word	Fixed-precision unsigned integer; storage size same as Int.
	Word8	8-bit unsigned integer.
	Word16	16-bit unsigned integer.
	Word32	32-bit unsigned integer.
	Word64	64-bit unsigned integer.



These are quite a few different numeric
        types. There are some operations, such as addition, that work with all of them.
        There are others, such as asin,
        that apply only to floating-point types. Table 6-2 summarizes the different functions
        that operate on numeric types, and Table 6-3 matches the types with their
        respective typeclasses. As you read Table 6-3, keep in mind that Haskell
        operators are just functions: you can say either (+) 2 3 or 2 +
        3 with the same result. By convention, when referring to an
        operator as a function, it is written in parentheses as seen in Table 6-2.
Table 6-2. Selected numeric functions and constants
	Item	Type	Module	Description
	(+)	Num a => a ->
                a -> a	Prelude	Addition.
	(-)	Num a
                => a -> a -> a	Prelude	Subtraction.
	(*)	Num a
                => a -> a -> a	Prelude	Multiplication.
	(/)	Fractional a => a -> a ->
                a	Prelude	Fractional division.
	(**)	Floating
                a => a -> a -> a	Prelude	Raise to the power of.
	(^)	(Num a, Integral b)
                => a -> b
                -> a	Prelude	Raise a number to a nonnegative, integral
                power.
	(^^)	(Fractional a, Integral b)
                 =>
                a -> b -> a	Prelude	Raise a fractional number to any integral
                power.
	(%)	Integral a => a -> a
                -> Ratio a	Data.Ratio	Ratio composition.
	(.&.)	Bits a
                => a -> a -> a	Data.Bits	Bitwise and.
	(.|.)	Bits a
                => a -> a -> a	Data.Bits	Bitwise or.
	abs	Num a => a ->
                a	Prelude	Absolute value
	approxRational	RealFrac a => a -> a
                -> Rational	Data.Ratio	Approximate rational composition based on fractional
                numerators and denominators.
	cos	Floating
                a => a -> a	Prelude	Cosine. Also provided are acos, cosh, and acosh, with the same type.
	div	Integral a => a -> a
                -> a	Prelude	Integer division always truncated down; see also
                quot.
	fromInteger	Num a => Integer ->
                a	Prelude	Conversion from an Integer to any numeric type.
	fromIntegral	(Integral a, Num b) => a
                -> b	Prelude	More general conversion from any Integral to any numeric
                type.
	fromRational	Fractional a => Rational
                -> a	Prelude	Conversion from a Rational. May be lossy.
	log	Floating a => a ->
                a	Prelude	Natural logarithm.
	logBase	Floating a => a -> a
                -> a	Prelude	Log with explicit base.
	maxBound	Bounded a =>
                a	Prelude	The maximum value of a bounded type.
	minBound	Bounded a =>
                a	Prelude	The minimum value of a bounded type.
	mod	Integral a => a -> a
                -> a	Prelude	Integer modulus.
	pi	Floating a =>
                a	Prelude	Mathematical constant pi.
	quot	Integral a => a -> a
                -> a	Prelude	Integer division; fractional part of quotient truncated
                towards zero.
	recip	Fractional a => a ->
                a	Prelude	Reciprocal.
	rem	Integral a => a -> a
                -> a	Prelude	Remainder of integer division.
	round	(RealFrac a, Integral
                b) => a -> b	Prelude	Rounds to nearest integer.
	shift	Bits a => a -> Int ->
                a	Bits	Shift left by the specified number of bits, which may
                be negative for a right shift.
	sin	Floating a => a ->
                a	Prelude	Sine. Also provided are asin, sinh, and asinh, with the same type.
	sqrt	Floating a => a ->
                a	Prelude	Square root.
	tan	Floating
                a => a -> a	Prelude	Tangent. Also provided are atan, tanh, and atanh, with the same type.
	toInteger	Integral a => a ->
                Integer	Prelude	Convert any Integral
                to an Integer.
	toRational	Real a => a ->
                Rational	Prelude	Convert losslessly to Rational.
	truncate	(RealFrac a, Integral
                b) => a -> b	Prelude	Truncates number towards zero.
	xor	Bits a => a -> a ->
                a	Data.Bits	Bitwise exclusive or.



Table 6-3. Typeclass instances for numeric types
	Type	Bits	Bounded	Floating	Fractional	Integral	Num	Real	RealFrac
	Double	 	 	X	X	 	X	X	X
	Float	 	 	X	X	 	X	X	X
	Int	X	X	 	 	X	X	X	 
	Int16	X	X	 	 	X	X	X	 
	Int32	X	X	 	 	X	X	X	 
	Int64	X	X	 	 	X	X	X	 
	Integer	X	 	 	 	X	X	X	 
	Rational or any
                Ratio	 	 	 	X	 	X	X	X
	Word	X	X	 	 	X	X	X	 
	Word16	X	X	 	 	X	X	X	 
	Word32	X	X	 	 	X	X	X	 
	Word64	X	X	 	 	X	X	X	 



Converting between numeric types is
        another common need. Table 6-2 listed many
        functions that can be used for conversion. However, it is not always
        obvious how to apply them to convert between two arbitrary types. To
        help you out, Table 6-4 provides
        information on converting between different types.
Table 6-4. Conversion between numeric types[14]
	Source type	Destination type
	Double, Float	Int,
                Word	Integer	Rational
	Double, Float	fromRational .
                toRational	truncate *	truncate *	toRational
	Int, Word	fromIntegral	fromIntegral	fromIntegral	fromIntegral
	Integer	fromIntegral	fromIntegral	N/A	fromIntegral
	Rational	fromRational	truncate *	truncate *	N/A
	[14] Instead of truncate,
              you could also use round,
              ceiling, or floor.





For an extended example demonstrating
        the use of these numeric typeclasses, see Extended Example: Numeric Types.

Equality, Ordering, and Comparisons



We’ve already talked about the arithmetic operators such as
        + that can be used for all sorts of
        different numbers. But there are some even more widely applied
        operators in Haskell. The most obvious, of course, are the equality
        tests: == and /=. These operators are defined in the Eq class.
There are also comparison operators such
        as >= and <=. These are declared by the Ord typeclass. These are in a separate
        typeclass because there are some types, such as Handle, where an equality test makes sense,
        but there is no way to express a particular ordering. Anything that is
        an instance of Ord can be sorted by
        Data.List.sort.
Almost all Haskell types are instances
        of Eq, and nearly as many are
        instances of Ord.


Automatic Derivation



For many simple data types, the Haskell compiler can
      automatically derive instances of Read, Show,
      Bounded, Enum, Eq,
      and Ord for us. This saves us the
      effort of having to manually write code to compare or display our own
      types:
-- file: ch06/colorderived.hs
data Color = Red | Green | Blue
     deriving (Read, Show, Eq, Ord)
Which types can be automatically derived?
The Haskell standard requires compilers
        to be able to automatically derive instances of these specific
        typeclasses. This automation is not available for other
        typeclasses.

Let’s take a look at how these derived
      instances work for us:
ghci> show Red
"Red"
ghci> (read "Red")::Color
Red
ghci> (read "[Red,Red,Blue]")::[Color]
[Red,Red,Blue]
ghci> (read "[Red, Red, Blue]")::[Color]
[Red,Red,Blue]
ghci> Red == Red
True
ghci> Red == Blue
False
ghci> Data.List.sort [Blue,Green,Blue,Red]
[Red,Green,Blue,Blue]
ghci> Red < Blue
True
Notice that the sort order for Color was based on the order in which the
      constructors were defined.
Automatic derivation is not always
      possible. For instance, if you defined a type data MyType = MyType (Int -> Bool),
      the compiler will not be able to derive an instance of Show because it doesn’t know how to render a
      function. We will get a compilation error in such a situation.
When we automatically derive an instance
      of some typeclass, the types that we refer to in our data declaration must also be instances of
      that typeclass (manually or automatically):
-- file: ch06/AutomaticDerivation.hs
data CannotShow = CannotShow
                deriving (Show)

-- will not compile, since CannotShow is not an instance of Show
data CannotDeriveShow = CannotDeriveShow CannotShow
                        deriving (Show)

data OK = OK

instance Show OK where
    show _ = "OK"

data ThisWorks = ThisWorks OK
                 deriving (Show)

Typeclasses at Work: Making JSON Easier to Use



The JValue type that we introduced in Representing JSON Data in Haskell
      is not especially easy to work with. Here is a truncated and tidied
      snippet of some real JSON data, produced by a well-known search
      engine:
{
  "query": "awkward squad haskell",
  "estimatedCount": 3920,
  "moreResults": true,
  "results":
  [{
    "title": "Simon Peyton Jones: papers",
    "snippet": "Tackling the awkward squad: monadic input/output ...",
    "url": "http://research.microsoft.com/~simonpj/papers/marktoberdorf/",
   },
   {
    "title": "Haskell for C Programmers | Lambda the Ultimate",
    "snippet": "... the best job of all the tutorials I've read ...",
    "url": "http://lambda-the-ultimate.org/node/724",
   }]
}
And here’s a further slimmed down fragment
      of that data, represented in Haskell:
-- file: ch05/SimpleResult.hs
import SimpleJSON

result :: JValue
result = JObject [
  ("query", JString "awkward squad haskell"),
  ("estimatedCount", JNumber 3920),
  ("moreResults", JBool True),
  ("results", JArray [
     JObject [
      ("title", JString "Simon Peyton Jones: papers"),
      ("snippet", JString "Tackling the awkward ..."),
      ("url", JString "http://.../marktoberdorf/")
     ]])
  ]
Because Haskell doesn’t natively support
      lists that contain types of different values, we can’t directly
      represent a JSON object that contains values of different types.
      Instead, we must wrap each value with a JValue constructor,
      which limits our flexibility—if we want to change the number
      3920 to a string "3,920", we must change the
      constructor that we use to wrap it from JNumber to
      JString.
Haskell’s typeclasses offer a tempting
      solution to this problem:
-- file: ch06/JSONClass.hs
type JSONError = String

class JSON a where
    toJValue :: a -> JValue
    fromJValue :: JValue -> Either JSONError a

instance JSON JValue where
    toJValue = id
    fromJValue = Right
Now, instead of applying a constructor
      such as JNumber to a value in order to wrap it, we apply
      the toJValue function. If we change
      a value’s type, the compiler will choose a suitable implementation of
      toJValue to use with it.
We also provide a fromJValue function, which attempts to
      convert a JValue into a value of our desired type.
More Helpful Errors



The return type of our fromJValue function uses the
        Either type. Like Maybe, this type is
        predefined for us. We’ll often use it to represent a computation that
        could fail.
While Maybe is useful for
        this purpose, it gives us no information if a failure occurs: we
        literally have Nothing. The Either type has
        a similar structure, but instead of Nothing, the “something bad
        happened” constructor is named Left, and it takes
        a parameter:
-- file: ch06/DataEither.hs
data Maybe a = Nothing
             | Just a
               deriving (Eq, Ord, Read, Show)

data Either a b = Left a
                | Right b
                  deriving (Eq, Ord, Read, Show)
Quite often, the type we use for the
        a parameter value is
        String, so we can provide a useful description if
        something goes wrong. To see how we use the Either type
        in practice, let’s look at a simple instance of our typeclass:
-- file: ch06/JSONClass.hs
instance JSON Bool where
    toJValue = JBool
    fromJValue (JBool b) = Right b
    fromJValue _ = Left "not a JSON boolean"

Making an Instance with a Type Synonym



The Haskell 98 standard does not allow us to write an
        instance of the following form, even though it seems perfectly
        reasonable:
-- file: ch06/JSONClass.hs
instance JSON String where
    toJValue               = JString

    fromJValue (JString s) = Right s
    fromJValue _           = Left "not a JSON string"
Recall that String is a
        synonym for [Char], which in turn is the type
        [a] where Char is substituted for the type
        parameter a. According to Haskell 98’s
        rules, we are not allowed to supply a type in place of a type
        parameter when we write an instance. In other words, it would be legal
        for us to write an instance for [a], but not for
        [Char].
While GHC follows the Haskell 98 standard by
        default, we can relax this particular restriction by placing a
        specially formatted comment at the top of our source file:
-- file: ch06/JSONClass.hs
{-# LANGUAGE TypeSynonymInstances #-}
This comment is a directive to the
        compiler, called a pragma, which tells it to
        enable a language extension. The TypeSynonymInstances language extension
        makes the preceding code legal.
        We’ll encounter a few other language extensions in this chapter, and a
        handful more later in this book.


Living in an Open World



Haskell’s typeclasses are intentionally designed to let us create new instances
      of a typeclass whenever we see fit:
-- file: ch06/JSONClass.hs
doubleToJValue :: (Double -> a) -> JValue -> Either JSONError a
doubleToJValue f (JNumber v) = Right (f v)
doubleToJValue _ _ = Left "not a JSON number"

instance JSON Int where
    toJValue = JNumber . realToFrac
    fromJValue = doubleToJValue round

instance JSON Integer where
    toJValue = JNumber . realToFrac
    fromJValue = doubleToJValue round

instance JSON Double where
    toJValue = JNumber
    fromJValue = doubleToJValue id
We can add new instances anywhere; they
      are not confined to the module where we define a typeclass. This feature
      of the typeclass system is referred to as its open world
      assumption. If we had a way to express a notion of “the
      following are the only instances of this typeclass that can exist,” we
      would have a closed world.
We would like to be able to turn a list
      into what JSON calls an array. We won’t worry about implementation
      details just yet, so let’s use undefined as the bodies of
      the instance’s methods:
-- file: ch06/BrokenClass.hs
instance (JSON a) => JSON [a] where
    toJValue = undefined
    fromJValue = undefined
It would also be convenient if we could
      turn a list of name/value pairs into a JSON object:
-- file: ch06/BrokenClass.hs
instance (JSON a) => JSON [(String, a)] where
    toJValue = undefined
    fromJValue = undefined
When Do Overlapping Instances Cause Problems?



If we put these definitions into a source file and load them into
        ghci, everything seems fine
        initially:
ghci> :load BrokenClass
[1 of 2] Compiling SimpleJSON       ( ../ch05/SimpleJSON.hs, interpreted )
[2 of 2] Compiling BrokenClass      ( BrokenClass.hs, interpreted )
Ok, modules loaded: BrokenClass, SimpleJSON.

However, once we try to
        use the list-of-pairs instance, we run into
        trouble:
ghci> toJValue [("foo","bar")]

<interactive>:1:0:
    Overlapping instances for JSON [([Char], [Char])]
      arising from a use of `toJValue' at <interactive>:1:0-23
    Matching instances:
      instance (JSON a) => JSON [a]
        -- Defined at BrokenClass.hs:(44,0)-(46,25)
      instance (JSON a) => JSON [(String, a)]
        -- Defined at BrokenClass.hs:(50,0)-(52,25)
    In the expression: toJValue [("foo", "bar")]
    In the definition of `it': it = toJValue [("foo", "bar")]

This problem of overlapping
        instances is a consequence of Haskell’s open world assumption.
        Here’s a simpler example that makes it clearer what’s going on:
-- file: ch06/Overlap.hs
class Borked a where
    bork :: a -> String

instance Borked Int where
    bork = show

instance Borked (Int, Int) where
    bork (a, b) = bork a ++ ", " ++ bork b

instance (Borked a, Borked b) => Borked (a, b) where
    bork (a, b) = ">>" ++ bork a ++ " " ++ bork b ++ "<<"
We have two instances of the typeclass
        Borked for pairs: one for a pair of Ints and
        another for a pair of anything else that’s Borked.
Suppose that we want to bork a pair of Int values. To
        do so, the compiler must choose an instance to use. Because these
        instances are right next to each other, it may seem that it could
        simply choose the more specific instance.
However, GHC is conservative by default and
        insists that there must be only one possible instance that it can use.
        It will thus report an error if we try to use
        bork.
When do overlapping instances matter?
As we mentioned earlier, we can
          scatter instances of a typeclass across several modules.
          GHC does not complain
          about the mere existence of overlapping instances. Instead, it
          complains only when we try to use a method of the affected
          typeclass, when it is forced to make a decision about which instance
          to use.


Relaxing Some Restrictions on Typeclasses



Normally, we cannot write an instance of a typeclass for a
        specialized version of a polymorphic type. The [Char]
        type is the polymorphic type [a] specialized to the type
        Char. We are thus prohibited from declaring
        [Char] to be an instance of a typeclass. This is highly
        inconvenient, since strings are ubiquitous in real code.
The TypeSynonymInstances
        language extension removes this restriction, permitting us to
        write such instances.
GHC supports another useful language
        extension, OverlappingInstances, which addresses the
        problem we saw with overlapping instances. When there are multiple
        overlapping instances to choose from, this extension causes the
        compiler to pick the most specific one.
We frequently use this extension
        together with TypeSynonymInstances. Here’s an example:
-- file: ch06/SimpleClass.hs
{-# LANGUAGE TypeSynonymInstances, OverlappingInstances #-}

import Data.List

class Foo a where
    foo :: a -> String

instance Foo a => Foo [a] where
    foo = concat . intersperse ", " . map foo

instance Foo Char where
    foo c = [c]

instance Foo String where
    foo = id
If we apply foo to a String, the compiler
        will use the String-specific implementation. Even though
        we have an instance of Foo for [a] and
        Char, the instance for String is more
        specific, so GHC chooses
        it. For other types of list, we will see the behavior specified for
        [a].
With the
        OverlappingInstances extension enabled, GHC
        will still reject code if it finds more than one equally specific
        instance.
When to use the OverlappingInstances extension
Here’s an important point:
          GHC treats
          OverlappingInstances as affecting the declaration of an
          instance, not a location where we use the
          instance. In other words, when we define an instance that we wish to
          allow to overlap with another instance, we must enable the extension
          for the module that contains the definition. When it compiles the
          module, GHC will record
          that instance as “can be overlapped with other instances.”
Once we import this module and use
          the instance, we won’t need to enable
          OverlappingInstances in the importing module.
          GHC will already know
          that the instance was marked as “OK to overlap” when it
          was defined.
This behavior is useful when we are
          writing a library: we can choose to create overlappable instances,
          but users of our library do not need to enable any special language
          extensions.


How Does Show Work for Strings?



The OverlappingInstances
        and TypeSynonymInstances language extensions are specific
        to GHC, and by definition
        were not present in Haskell 98. However, the familiar Show typeclass from
        Haskell 98 somehow renders a list of Char differently
        from a list of Int. It achieves this via a clever, but
        simple, trick.
The Show class defines both a show method, which renders one value, and a
        showList method, which renders a
        list of values. The default implementation of showList renders a list using square
        brackets and commas.
The instance of Show for
        [a] is implemented using showList. The instance of Show
        for Char provides a special implementation of showList that uses double quotes and
        escapes non-ASCII-printable characters.
As a result, if someone applies
        show to a [Char]
        value, the implementation of showList will be chosen, and it will
        correctly render the string using quotes.
At least sometimes, then, we can avoid
        the need for the OverlappingInstances extension with a
        little bit of lateral thinking.


How to Give a Type a New Identity



In addition to the familiar data keyword, Haskell provides us with another
      way to create a new type, using the newtype keyword:
-- file: ch06/Newtype.hs
data DataInt = D Int
    deriving (Eq, Ord, Show)

newtype NewtypeInt = N Int
    deriving (Eq, Ord, Show)
The purpose of a newtype declaration is to
      rename an existing type, giving it a distinct identity. As we can see,
      it is similar in appearance to a type declared using the data keyword.
The type and newtype keywords
Although their names are similar, the
        type and newtype
        keywords have different purposes. The type keyword gives us another way of
        referring to a type, like a nickname for a friend. We and the compiler
        know that [Char] and String names refer to
        the same type.
In contrast, the newtype
        keyword exists to hide the nature of a type.
        Consider a UniqueID type:
-- file: ch06/Newtype.hs
newtype UniqueID = UniqueID Int
    deriving (Eq)
The compiler treats
        UniqueID as a different type from Int. As a
        user of a UniqueID, we know only that we have a unique
        identifier; we cannot see that it is implemented as an
        Int.

When we declare a newtype,
      we must choose which of the underlying type’s typeclass instances we
      want to expose. Here, we’ve elected to make NewtypeInt
      provide Int’s instances for Eq,
      Ord, and Show. As a result, we can compare and
      print values of type NewtypeInt:
ghci> N 1 < N 2
True

Since we are not
      exposing Int’s Num or Integral
      instances, values of type NewtypeInt are not numbers. For
      instance, we can’t add them:
ghci> N 313 + N 37

<interactive>:1:0:
    No instance for (Num NewtypeInt)
      arising from a use of `+' at <interactive>:1:0-11
    Possible fix: add an instance declaration for (Num NewtypeInt)
    In the expression: N 313 + N 37
    In the definition of `it': it = N 313 + N 37

As with the data keyword, we can
      use a newtype’s value constructor to create a new value or
      to pattern match on an existing value.
If a newtype does not use
      automatic deriving to expose the underlying type’s implementation of a
      typeclass, we are free to either write a new instance or leave the
      typeclass unimplemented.
Differences Between Data and Newtype Declarations



The newtype keyword exists
        to give an existing type a new identity, and it has more restrictions
        on its uses than the data keyword.
        Specifically, a newtype can have only one value
        constructor, which must have exactly one field:
-- file: ch06/NewtypeDiff.hs
-- ok: any number of fields and constructors
data TwoFields = TwoFields Int Int

-- ok: exactly one field
newtype Okay = ExactlyOne Int

-- ok: type parameters are no problem
newtype Param a b = Param (Either a b)

-- ok: record syntax is fine
newtype Record = Record {
      getInt :: Int
    }

-- bad: no fields
newtype TooFew = TooFew

-- bad: more than one field
newtype TooManyFields = Fields Int Int

-- bad: more than one constructor
newtype TooManyCtors = Bad Int
                     | Worse Int
Beyond this, there’s another important
        difference between data and
        newtype. A type created with the data keyword has a bookkeeping cost at
        runtime, for example, in order to track which constructor created a
        value. A newtype value, on the other hand, can have only
        one constructor and so does not need this overhead. This makes it more
        space- and time-efficient at runtime.
Because a newtype’s
        constructor is used only at compile time and does not even exist at
        runtime, pattern matching on undefined behaves
        differently for types defined using newtype than for
        those that use data.
To understand the difference, let’s
        first review what we might expect with a normal data type. We are
        already familiar with the idea that if undefined is
        evaluated at runtime, it causes a crash:
ghci> undefined
*** Exception: Prelude.undefined

Here is a pattern match where we
        construct a DataInt using the D constructor
        and put undefined inside:
ghci> case D undefined of D _ -> 1
1

Since our pattern matches against the constructor but doesn’t inspect the
        payload, undefined remains unevaluated and does not cause
        an exception to be thrown.
In this example, we’re not using the
        D constructor, so the unprotected undefined
        is evaluated when the pattern match occurs, and we throw an
        exception:
ghci> case undefined of D _ -> 1
*** Exception: Prelude.undefined

When we use the N
        constructor for the NewtypeInt type, we see the same
        behavior that we did with the DataInt type’s
        D constructor—no exception:
ghci> case N undefined of N _ -> 1
1

The crucial difference arises when we
        get rid of the N constructor from the expression and
        match against an unprotected undefined:
ghci> case undefined of N _ -> 1
1

We don’t crash! Because there’s no
        constructor present at runtime, matching against N _ is
        in fact equivalent to matching against the plain wild card
        (_). Since the wild card always matches, the expression
        does not need to be evaluated.
Another perspective on newtype constructors
Even though we use the value
          constructor for a newtype in the same way as that of a
          type defined using the data
          keyword, all it does is coerce a value between its
          “normal” type and its newtype type.
In other words, when we apply the
          N constructor in an expression, we coerce an expression
          from type Int to type NewtypeInt as far as
          we and the compiler are concerned, but absolutely nothing occurs at
          runtime.
Similarly, when we match on the
          N constructor in a pattern, we coerce an expression
          from type NewtypeInt to Int, but again
          there’s no overhead involved at runtime.


Summary: The Three Ways of Naming Types



Here’s a brief recap of Haskell’s three
        ways to introduce new names for types:
	The data keyword
            introduces a truly new algebraic data type.

	The type keyword gives
            us a synonym to use for an existing type. We can use the type and
            its synonym interchangeably.

	The newtype keyword
            gives an existing type a distinct identity. The original type and
            the new type are not interchangeable.





JSON Typeclasses Without Overlapping Instances



Enabling GHC’s support
      for overlapping instances is an effective and quick way to make our JSON
      code happy. In more complex cases, we will occasionally be faced with
      several equally good instances for some typeclass, in which case,
      overlapping instances will not help us and we will need to put some
      newtype declarations into place. To see what’s involved,
      let’s rework our JSON typeclass instances to use newtypes
      instead of overlapping instances.
Our first task, then, is to help the
      compiler to distinguish between [a], the representation we
      use for JSON arrays, and [(String,[a])], which we use for
      objects. These were the types that gave us problems before we learned
      about OverlappingInstances. We wrap up the list type so
      that the compiler will not see it as a list:
-- file: ch06/JSONClass.hs
newtype JAry a = JAry {
      fromJAry :: [a]
    } deriving (Eq, Ord, Show)
When we export this type from our module,
      we’ll export the complete details of the type. Our module header will
      look like this:
-- file: ch06/JSONClassExport.hs
module JSONClass
    (
      JAry(..)
    ) where
The (..) following the
      JAry name means “export all details of this type.”
A Slight Deviation from Normal Use
Usually, when we export a newtype, we will
        not export its data constructor, in order to keep
        the details of the type abstract. Instead, we would define a function
        to apply the constructor for us:
-- file: ch06/JSONClass.hs
jary :: [a] -> JAry a
jary = JAry
We would then export the type constructor, the deconstructor
        function, and our construction function, but not the data
        constructor:
-- file: ch06/JSONClassExport.hs
module JSONClass
    (
      JAry(fromJAry)
    , jary
    ) where
When we don’t export a type’s data
        constructor, clients of our library can only use the functions we
        provide to construct and deconstruct values of that type. This gives
        us, the library authors, the liberty to change our internal
        representation if we need to.
If we export the data constructor,
        clients are likely to start depending on it, for instance by using it
        in patterns. If we later wish to change the innards of our type, we’ll
        risk breaking any code that uses the constructor.
In our circumstances here, we have
        nothing to gain by making the array wrapper abstract, so we may as
        well simply export the entire definition of the type.

We provide another wrapper type that
      hides our representation of a JSON object:
-- file: ch06/JSONClass.hs
newtype JObj a = JObj {
      fromJObj :: [(String, a)]
    } deriving (Eq, Ord, Show)
With these types defined, we make small
      changes to the definition of our JValue type:
-- file: ch06/JSONClass.hs
data JValue = JString String
            | JNumber Double
            | JBool Bool
            | JNull
            | JObject (JObj JValue)   -- was [(String, JValue)]
            | JArray (JAry JValue)    -- was [JValue]
              deriving (Eq, Ord, Show)
This change doesn’t affect the instances
      of the JSON typeclass that we’ve already written, but we
      will want to write instances for our new JAry and
      JObj types:
-- file: ch06/JSONClass.hs
jaryFromJValue :: (JSON a) => JValue -> Either JSONError (JAry a)

jaryToJValue :: (JSON a) => JAry a -> JValue

instance (JSON a) => JSON (JAry a) where
    toJValue = jaryToJValue
    fromJValue = jaryFromJValue
Let’s take a slow walk through the
      individual steps of converting a JAry a to a
      JValue. Given a list where we know that everything inside
      is a JSON instance, converting it to a list of
      JValues is easy:
-- file: ch06/JSONClass.hs
listToJValues :: (JSON a) => [a] -> [JValue]
listToJValues = map toJValue
Taking this and wrapping it to become a
      JAry JValue is just a matter of applying the
      newtype’s type constructor:
-- file: ch06/JSONClass.hs
jvaluesToJAry :: [JValue] -> JAry JValue
jvaluesToJAry = JAry
(Remember, this has no performance cost.
      We’re just telling the compiler to hide the fact that we’re using a
      list.) To turn this into a JValue, we apply another type
      constructor:
-- file: ch06/JSONClass.hs
jaryOfJValuesToJValue :: JAry JValue -> JValue
jaryOfJValuesToJValue = JArray
Assemble these pieces using function
      composition, and we get a concise one-liner for converting to a
      JValue:
-- file: ch06/JSONClass.hs
jaryToJValue = JArray . JAry . map toJValue . fromJAry
We have more work to do to convert
      from a JValue to a JAry
      a, but we’ll break it into reusable parts. The basic function is
      straightforward:
-- file: ch06/JSONClass.hs
jaryFromJValue (JArray (JAry a)) =
    whenRight JAry (mapEithers fromJValue a)
jaryFromJValue _ = Left "not a JSON array"
The whenRight function inspects its argument. It
      calls a function on the argument if it was created with the
      Right constructor, and leaves a Left value
      untouched:
-- file: ch06/JSONClass.hs
whenRight :: (b -> c) -> Either a b -> Either a c
whenRight _ (Left err) = Left err
whenRight f (Right a) = Right (f a)
More complicated is mapEithers. It acts like the regular
      map function, but if it ever
      encounters a Left value, it returns that immediately,
      instead of continuing to accumulate a list of Right
      values:
-- file: ch06/JSONClass.hs
mapEithers :: (a -> Either b c) -> [a] -> Either b [c]
mapEithers f (x:xs) = case mapEithers f xs of
                        Left err -> Left err
                        Right ys -> case f x of
                                      Left err -> Left err
                                      Right y -> Right (y:ys)
mapEithers _ _ = Right []
Because the elements of the list hidden
      in the JObj type have a little more structure, the code to
      convert to and from a JValue is a bit more complex.
      Fortunately, we can reuse the functions that we just defined:
-- file: ch06/JSONClass.hs
import Control.Arrow (second)

instance (JSON a) => JSON (JObj a) where
    toJValue = JObject . JObj . map (second toJValue) . fromJObj

    fromJValue (JObject (JObj o)) = whenRight JObj (mapEithers unwrap o)
      where unwrap (k,v) = whenRight ((,) k) (fromJValue v)
    fromJValue _ = Left "not a JSON object"
Exercises
	Load the Control.Arrow module into ghci and find out what the second function does.

	What is the type of (,)? When you use it in ghci, what does it do? What about
            (,,)?





The Dreaded Monomorphism Restriction



The Haskell 98 standard has a subtle feature that can
      sometimes bite us in unexpected circumstances. Here’s a simple function
      definition that illustrates the issue:
-- file: ch06/Monomorphism.hs
myShow = show
If we try to load this definition into
      ghci, it issues a peculiar
      complaint:
ghci> :load Monomorphism
[1 of 1] Compiling Main             ( Monomorphism.hs, interpreted )

Monomorphism.hs:2:9:
    Ambiguous type variable `a' in the constraint:
      `Show a' arising from a use of `show' at Monomorphism.hs:2:9-12
    Possible cause: the monomorphism restriction applied to the following:
      myShow :: a -> String (bound at Monomorphism.hs:2:0)
    Probable fix: give these definition(s) an explicit type signature
                  or use -fno-monomorphism-restriction
Failed, modules loaded: none.

The monomorphism
      restriction to which the error message refers is a part of
      the Haskell 98 standard. Monomorphism is
      simply the opposite of polymorphism: it indicates that an expression has
      exactly one type. The restriction lies in the fact
      that Haskell sometimes forces a declaration to be less polymorphic than
      we would expect.
We mention the monomorphism restriction
      here because although it isn’t specifically related to typeclasses, they
      usually provide the circumstances in which it crops up.
Tip
It’s possible that you will not run
        into the monomorphism restriction in real code for a long time. We
        don’t think you need to try to remember the details of this section.
        It should suffice to make a mental note of its existence, until
        eventually GHC complains
        with something such as the just shown error message. If that occurs,
        simply remember that you read about the error in this chapter, and
        come back for guidance.

We won’t attempt to explain the
      monomorphism restriction.[15] The consensus within the Haskell community is that it
      doesn’t arise often, it is tricky to explain, and it provides almost no
      practical benefit. So, it mostly serves to trip people up. For an
      example of its trickiness, while the definition provided previously
      falls afoul of it, the following two compile without problems:
-- file: ch06/Monomorphism.hs
myShow2 value = show value

myShow3 :: (Show a) => a -> String
myShow3 = show
As these alternative definitions suggest,
      if GHC complains about the
      monomorphism restriction, we have three easy ways to address the
      error:
	Make the function’s arguments
          explicit, instead of leaving them implicit.

	Give the definition an explicit type
          signature, instead of making the compiler infer its type.

	Leave the code untouched and compile
          the module with the language extension
          NoMonomorphismRestriction enabled. This disables the
          monomorphism restriction.



Because the monomorphism restriction is
      unwanted and unloved, it will almost certainly be dropped from the next
      revision of the Haskell standard. This does not quite mean that
      compiling with NoMonomorphismRestriction is always the
      right thing to do—some Haskell compilers (including older versions of
      GHC) do not understand this
      extension, but they’ll accept either of the other approaches to making
      the error disappear. If this degree of portability isn’t a concern to
      you, then by all means enable the language extension.

Conclusion



In this chapter, you learned about the
      need for typeclasses and how to use them. We talked about defining our
      own typeclasses and then covered some of the important typeclasses that
      are defined in the Haskell library. Finally, we showed how to have the
      Haskell compiler automatically derive instances of certain typeclasses
      for your types.



[12] We provided a default implementation
          of both functions, which gives an implementer of instances a choice:
          he can pick which one he implements. We could have provided a
          default for only one function, which would force users to implement
          the other every time. As it is, a user can implement one or both, as
          he sees fit.

[13] As you will see in Lazy I/O, Haskell doesn’t actually read the entire
            file at this point. But for the purposes of this example, we can
            ignore that distinction.

[15] If you simply
          must read the gory details, see section
          4.5.5 of the Haskell 98 Report.



Chapter 7. I/O



It should be obvious that most, if not all, programs are
    devoted to gathering data from outside, processing it, and providing
    results back to the outside world. That is, input and output are
    key.
Haskell’s I/O system is powerful and
    expressive. It is easy to work with and important to understand. Haskell
    strictly separates pure code from code that could cause things to occur in
    the world. That is, it provides a complete isolation from side effects in
    pure code. Besides helping programmers to reason about the correctness of
    their code, it also permits compilers to automatically introduce
    optimizations and parallelism.
We’ll begin this chapter with simple,
    standard-looking I/O in Haskell. Then we’ll discuss some of the more
    powerful options, as well as provide more detail on how I/O fits into the
    pure, lazy, functional Haskell world.
Classic I/O in Haskell



Let’s get started with I/O in Haskell by
      looking at a program that appears to be surprisingly similar to I/O in
      other languages such as C or Perl:
-- file: ch07/basicio.hs
main = do
       putStrLn "Greetings!  What is your name?"
       inpStr <- getLine
       putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!"
Note
The $ operator is a bit of syntactic sugar
        that is equivalent to putting everything after it inside a pair of
        parentheses.

You can compile this program to a
      standalone executable, run it with runghc, or
      invoke main from within ghci. Here’s a
      sample session using runghc:
$ runghc basicio.hs
Greetings!  What is your name?
John
Welcome to Haskell, John!
That’s a fairly simple, obvious result.
      You can see that putStrLn writes
      out a String, followed by an
      end-of-line character. getLine reads
      a line from standard input. The <-
      syntax may be new to you. Put simply, that binds the result from
      executing an I/O action to a name.[16] We use the simple list concatenation operator ++ to join the
      input string with our own text.
Let’s take a look at the types of putStrLn and getLine. You can find that information in the
      library reference, or just ask ghci:
ghci> :type putStrLn
putStrLn :: String -> IO ()
ghci> :type getLine
getLine :: IO String
Notice that both of these types have IO in their return value. That is your
      key to knowing that they may have side effects, or they may return
      different values even when called with the same arguments, or both. The
      type of putStrLn looks like a
      function. It takes a parameter of type String and returns value of type IO (). Just what is an IO () though?
Anything that is type IO something is an
      I/O action. You can store it and nothing will
      happen. I could say writefoo = putStrLn
      "foo" and nothing happens right then. But if I later use
      writefoo in the middle of another I/O
      action, the writefoo action will be
      executed when its parent action is executed—I/O actions can be glued
      together to form bigger I/O actions. The () is an empty tuple (pronounced
      “unit”), indicating that there is no return value from
      putStrLn. This is similar to void in Java or C.[17]
Tip
Actions can be created, assigned, and
        passed anywhere. However, they may only be performed (executed) from
        within another I/O action.

Let’s look at this with ghci:
ghci> let writefoo = putStrLn "foo"
ghci> writefoo
foo
In this example, the output foo is not a return value from putStrLn. Rather, it’s the side effect of
      putStrLn actually writing foo to the terminal.
Notice one other thing: ghci actually executed writefoo. This means that, when given an I/O
      action, ghci will perform it for you
      on the spot.
What is an I/O action?
Actions:
	Have the type IO t.

	Are first-class values in Haskell
            and fit seamlessly with Haskell’s type system.

	Produce an effect when
            performed, but not when
            evaluated. That is, they produce an effect
            only when called by something else in an I/O context.

	Any expression may produce an action
            as its value, but the action will not perform I/O until it is
            executed inside another I/O action (or it is main).

	Performing (executing) an action of
            type IO t may perform I/O and
            will ultimately deliver a result of type t.




The type of getLine may look strange to you. It looks like
      a value, rather than a function. And in fact, that is one way to look at
      it: getLine is storing an I/O action.
      When that action is performed, you get a String. The <- operator is
      used to “pull out” the result from performing an I/O action and store it
      in a variable.
main
      itself is an I/O action with type IO
      (). You can only perform I/O actions from within other I/O
      actions. All I/O in Haskell programs is driven from the top at main, which is where execution of every
      Haskell program begins. This, then, is the mechanism that provides
      isolation from side effects in Haskell: you perform I/O in your IO actions, and call pure (non-I/O) functions
      from there. Most Haskell code is pure; the I/O actions perform I/O and
      call that pure code.
do is a
      convenient way to define a sequence of actions. As you’ll see later,
      there are other ways. When you use do
      in this way, indentation is significant; make sure you line up your
      actions properly.
You need to use do only if you have more than one action that
      you need to perform. The value of a do block is the value of the last action
      executed. For a complete description of do syntax, see Desugaring of do Blocks.
Let’s consider an example of calling pure
      code from within an I/O action:
-- file: ch07/callingpure.hs
name2reply :: String -> String
name2reply name =
    "Pleased to meet you, " ++ name ++ ".\n" ++
    "Your name contains " ++ charcount ++ " characters."
    where charcount = show (length name)

main :: IO ()
main = do
       putStrLn "Greetings once again.  What is your name?"
       inpStr <- getLine
       let outStr = name2reply inpStr
       putStrLn outStr
Notice the name2reply function in this example. It is a
      regular Haskell function and obeys all the rules we’ve told you about:
      it always returns the same result when given the same input, it has no
      side effects, and it operates lazily. It uses other Haskell functions:
      (++), show, and length.
Down in main, we bind the result of name2reply inpStr to outStr. When you’re working in a do block, use <- to get results from IO
      actions and let to get results from
      pure code. When used in a do block,
      you should not put in after your
      let statement.
You can see here how we read the person’s
      name from the keyboard. Then, that data got passed to a pure function,
      and its result was printed. In fact, the last two lines of main could have been replaced with putStrLn (name2reply inpStr). So, while
      main did have side effects—it caused
      things to appear on the terminal, for instance—name2reply did not and could not. That’s
      because name2reply is a pure
      function, not an action.
Let’s examine this with ghci:
ghci> :load callingpure.hs
[1 of 1] Compiling Main             ( callingpure.hs, interpreted )
Ok, modules loaded: Main.
ghci> name2reply "John"
"Pleased to meet you, John.\nYour name contains 4 characters."
ghci> putStrLn (name2reply "John")
Pleased to meet you, John.
Your name contains 4 characters.
The \n
      within the string is the end-of-line (newline) character, which causes
      the terminal to begin a new line in its output. Just calling name2reply "John" in ghci will show you the \n literally, because it is using show to display the return value. But using
      putStrLn sends it to the terminal,
      and the terminal interprets \n to
      start a new line.
What do you think will happen if you
      simply type main at the ghci prompt? Give it a try.
After looking at these example programs,
      you may be wondering if Haskell is really imperative rather than pure,
      lazy, and functional. Some of these examples look like a sequence of
      actions to be followed in order. There’s more to it than that, though.
      We’ll discuss that question later in this chapter in Is Haskell Really Imperative? and Lazy I/O.
Pure Versus I/O



Table 7-1
        is a comparison table to help you understand the differences between pure code and I/O.
        When we speak of pure code, we are talking about Haskell functions
        that always return the same result when given the same input and have
        no side effects. In Haskell, only the execution of I/O actions avoid
        these rules.
Table 7-1. Pure versus impure
	Pure	Impure
	Always produces the same result when given the same
                parameters	May produce different results for the same
                parameters
	Never has side effects	May have side effects
	Never alters state	May alter the global state of the program, system, or
                world




Why Purity Matters



In this section, we’ve discussed how Haskell, unlike most languages,
        draws a clear distinction between pure code and I/O actions. In
        languages such as C or Java, there is no such thing as a function that
        is guaranteed by the compiler to always return the same result for the
        same arguments or a function that is guaranteed to never have side
        effects. The only way to know if a given function has side effects is
        to read its documentation and hope that it’s accurate.
Many bugs in programs are caused by
        unanticipated side effects. Still more are caused by misunderstanding
        circumstances in which functions may return different results for the same input. As
        multithreading and other forms of parallelism grow increasingly
        common, it becomes more difficult to manage global side
        effects.
Haskell’s method of isolating side
        effects into I/O actions provides a clear boundary. You can always
        know which parts of the system may alter state and which won’t. You
        can always be sure that the pure parts of your program aren’t having
        unanticipated results. This helps you to think about the program. It
        also helps the compiler to think about it. Recent versions of ghc, for instance, can provide a level of
        automatic parallelism for the pure parts of your code—something of a
        holy grail for computing.
For more discussion on this topic, refer
        to Side Effects with Lazy I/O.


Working with Files and Handles



So far, you’ve seen how to interact with the user at the
      computer’s terminal. Of course, you’ll often need to manipulate specific
      files. That’s easy to do, too.
Haskell defines quite a few basic
      functions for I/O, many of which are similar to functions seen in other
      programming languages. The library reference for System.IO provides
      a good summary of all the basic I/O functions, should you need one that
      we aren’t touching upon here.
You will generally begin by using openFile, which will give you a file Handle. That Handle is then used to perform specific
      operations on the file. Haskell provides functions such as hPutStrLn that
      work just like putStrLn but take
      an additional argument, a Handle,
      that specifies which file to operate upon. When you’re done, you’ll use
      hClose to close the Handle. These functions are all defined in
      System.IO, so you’ll need to import
      that module when working with files. There are “h” functions
      corresponding to virtually all of the non-“h” functions; for instance,
      there is print for
      printing to the screen and hPrint for
      printing to a file.
Let’s start with an imperative way to read
      and write files. This should seem similar to a while loop that you may find in other
      languages. This isn’t the best way to write it in Haskell; later, you’ll
      see examples of more Haskellish approaches.
-- file: ch07/toupper-imp.hs
import System.IO
import Data.Char(toUpper)

main :: IO ()
main = do 
       inh <- openFile "input.txt" ReadMode
       outh <- openFile "output.txt" WriteMode
       mainloop inh outh
       hClose inh
       hClose outh

mainloop :: Handle -> Handle -> IO ()
mainloop inh outh = 
    do ineof <- hIsEOF inh
       if ineof
           then return ()
           else do inpStr <- hGetLine inh
                   hPutStrLn outh (map toUpper inpStr)
                   mainloop inh outh
Like every Haskell program, execution of
      this program begins with main. Two
      files are opened: input.txt is
      opened for reading, and output.txt
      is opened for writing. Then we call mainloop to process the file.
mainloopbegins by checking to see if we’re at the end of file (EOF) for the input. If not, we read a line
      from the input. We write out the same line to the output, after first
      converting it to uppercase. Then we recursively call mainloop again to continue processing the
      file.[18]
Notice that return call. This is not really the same as return in C or Python. In those languages,
      return is used to terminate execution
      of the current function immediately, and to return a value to the
      caller. In Haskell, return is the
      opposite of <-. That is, return takes a pure value and wraps it inside
      IO. Since every I/O action must return some IO
      type, if your result came from pure computation, you must use return to wrap it in IO. As an
      example, if 7 is an Int, then return
      7 would create an action stored in a value of type IO Int. When executed, that action would
      produce the result 7. For more
      details on return, see The True Nature of Return.
Let’s try running the program. We’ve got a
      file named input.txt that looks
      like this:
This is ch07/input.txt

Test Input
I like Haskell
Haskell is great
I/O is fun

123456789
Now, you can use runghc toupper-imp.hs and you’ll find output.txt in your directory. It should look
      like this:
THIS IS CH07/INPUT.TXT

TEST INPUT
I LIKE HASKELL
HASKELL IS GREAT
I/O IS FUN

123456789
More on openFile



Let’s use ghci to check on the type of openFile:
ghci> :module System.IO
ghci> :type openFile
openFile :: FilePath -> IOMode -> IO Handle
FilePath is simply another name for String. It is used in the types of I/O
        functions to help clarify that the parameter is being used as a
        filename, and not as regular data.
IOMode specifies how the file is to be
        managed. The possible values for IOMode are listed in Table 7-2.
Table 7-2. Possible IOMode values
	IOMode	Can read?	Can write?	Starting position	Notes
	ReadMode	Yes	No	Beginning of file	File must exist already.
	WriteMode	No	Yes	Beginning of file	File is truncated (completely emptied) if it already
                existed.
	ReadWriteMode	Yes	Yes	Beginning of file	File is created if it didn’t exist; otherwise, existing
                data is left intact.
	AppendMode	No	Yes	End of file	File is created if it didn’t exist; otherwise, existing
                data is left intact.



While we are mostly working with text
        examples in this chapter, binary files can also be used in Haskell. If
        you are working with a binary file, you should use openBinaryFile instead
        of openFile. Operating systems such
        as Windows process files differently if they are opened as binary
        instead of as text. On operating systems such as Linux, both openFile and openBinaryFile perform the same operation.
        Nevertheless, for portability, it is still wise to always use openBinaryFile if you will be dealing with
        binary data.

Closing Handles



You’ve already seen that hClose is used to close file handles. Let’s
        take a moment and think about why this is important.
As you’ll see in Buffering, Haskell maintains internal buffers for
        files. This provides an important performance boost. However, it means
        that until you call hClose on a
        file that is open for writing, your data may not be flushed out to the
        operating system.
Another reason to make sure to hClose files is that open files take up
        resources on the system. If your program runs for a long time, and
        opens many files but fails to close them, it is conceivable that your
        program could even crash due to resource exhaustion. All of this is no
        different in Haskell than in other languages.
When a program exits, Haskell will
        normally take care of closing any files that remain open. However,
        there are some circumstances in which this may not happen,[19] so once again, it is best to be responsible and call
        hClose all the time.
Haskell provides several tools for you
        to use to easily ensure this happens, regardless of whether errors are
        present. You can read about finally
        in Extended Example: Functional I/O and Temporary Files and bracket in The Acquire-Use-Release Cycle.

Seek and Tell



When reading and writing from a Handle that corresponds to a file on disk,
        the operating system maintains an internal record of the current
        position. Each time you do another read, the operating system returns
        the next chunk of data that begins at the current position, and
        increments the position to reflect the data that you read.
You can use hTell to find out your current position in the file. When the
        file is initially created, it is empty and your position will be 0.
        After you write out 5 bytes, your position will be 5, and so on.
        hTell takes a Handle and returns an IO Integer with your position.
The companion to hTell is hSeek. hSeek lets you change the file position. It takes three parameters:
        a Handle, a SeekMode, and a position.
SeekMode can be one of three different values, which specify how the
        given position is to be interpreted. AbsoluteSeek means that the position is a
        precise location in the file. This is the same kind of information
        that hTell gives you. RelativeSeek means to seek from the current
        position. A positive number requests going forwards in the file, and a
        negative number means going backwards. Finally, SeekFromEnd will seek to the specified
        number of bytes before the end of the file. hSeek handle SeekFromEnd 0 will take you to
        the end of the file. For an example of hSeek, refer to Extended Example: Functional I/O and Temporary Files.
Not all Handles are seekable. A Handle usually corresponds to a file, but it
        can also correspond to other things such as network connections, tape
        drives, or terminals. You can use hIsSeekable to see if a given Handle is seekable.

Standard Input, Output, and Error



Earlier, we pointed out that for each non-“h” function, there is
        usually also a corresponding “h” function that works on any Handle. In fact, the non-“h” functions are
        nothing more than shortcuts for their “h” counterparts.
There are three predefined Handles in System.IO. These Handles are always
        available for your use. They are stdin, which corresponds to
        standard input; stdout for
        standard output; and stderr for
        standard error. Standard input normally refers to the keyboard,
        standard output to the monitor, and standard error also normally goes
        to the monitor.
Functions such as getLine can thus be trivially defined like
        this:
getLine = hGetLine stdin
putStrLn = hPutStrLn stdout
print = hPrint stdout
Tip
We’re using partial application here.
          If this isn’t making sense, consult Partial Function Application and Currying
          for a refresher.

Earlier, we told you what the three
        standard file handles “normally” correspond to. That’s because some
        operating systems let you redirect the file handles to come from (or
        go to) different places—files, devices, or even other programs. This
        feature is used extensively in shell scripting on POSIX (Linux, BSD,
        Mac) operating systems, but can also be used on Windows.
It often makes sense to use standard
        input and output instead of specific files. This lets you interact
        with a human at the terminal. But it also lets you work with input and
        output files—or even combine your code with other programs—if that’s
        what’s requested.[20]
As an example, we can provide input to
        callingpure.hs in advance like
        this:
$ echo John|runghc callingpure.hs
Greetings once again.  What is your name?
Pleased to meet you, John.
Your name contains 4 characters.
While callingpure.hs was running, it did not wait
        for input at the keyboard; instead it received John from the echo program. Notice also that the output
        didn’t contain the word John on a
        separate line as it did when this program was run at the keyboard. The
        terminal normally echoes everything you type back to you, but that is
        technically input and not included in the output stream.

Deleting and Renaming Files



So far in this chapter, we’ve discussed the contents of the files. Let’s now
        talk a bit about the files themselves.
System.Directory provides two functions you may find useful. removeFile takes a single argument, a
        filename, and deletes that file.[21] renameFile takes two
        filenames: the first is the old name and the second is the new name.
        If the new filename is in a different directory, you can also think of
        this as a move. The old filename must exist prior to the call to
        renameFile. If the new file already
        exists, it is removed before the rename takes place.
Like many other functions that take a
        filename, if the “old” name doesn’t exist, renameFile will raise an exception.
        More information on exception handling can be found in Chapter 19.
There are many other functions in
        System.Directory for doing things
        such as creating and removing directories, finding lists of files in
        directories, and testing for file existence. These are discussed in
        Directory and File Information.

Temporary Files



Programmers frequently need temporary files. These files may be
        used to store large amounts of data needed for computations, data to
        be used by other programs, or any number of other uses.
While you could craft a way to manually
        open files with unique names, the details of doing this in a secure
        way differ from platform to platform. Haskell provides a convenient
        function called openTempFile
        (and a corresponding openBinaryTempFile) to handle the difficult
        bits for you.
openTempFile takes two parameters: the
        directory in which to create the file, and a “template” for naming the
        file. The directory could simply be "." for the current working directory. Or you could use
        System.Directory.getTemporaryDirectory to
        find the best place for temporary files on a given machine. The
        template is used as the basis for the filename; it will have some
        random characters added to it to ensure that the result is truly
        unique. It guarantees that it will be working on a unique filename, in
        fact.
The return type of openTempFile is IO
        (FilePath, Handle). The first part of the tuple is the name
        of the file created, and the second is a Handle opened in ReadWriteMode over that file. When you’re
        done with the file, you’ll want to hClose it and then call removeFile to delete it. See the following
        example for a sample function to use.


Extended Example: Functional I/O and Temporary Files



Here’s a larger example that puts
      together some concepts from this chapter, from some earlier chapters,
      and a few you haven’t seen yet. Take a look at the program and see if
      you can figure out what it does and how it works:
-- file: ch07/tempfile.hs
import System.IO
import System.Directory(getTemporaryDirectory, removeFile)
import System.IO.Error(catch)
import Control.Exception(finally)

-- The main entry point.  Work with a temp file in myAction.
main :: IO ()
main = withTempFile "mytemp.txt" myAction

{- The guts of the program.  Called with the path and handle of a temporary
   file.  When this function exits, that file will be closed and deleted
   because myAction was called from withTempFile. -}
myAction :: FilePath -> Handle -> IO ()
myAction tempname temph = 
    do -- Start by displaying a greeting on the terminal
       putStrLn "Welcome to tempfile.hs"
       putStrLn $ "I have a temporary file at " ++ tempname

       -- Let's see what the initial position is
       pos <- hTell temph
       putStrLn $ "My initial position is " ++ show pos

       -- Now, write some data to the temporary file
       let tempdata = show [1..10]
       putStrLn $ "Writing one line containing " ++ 
                  show (length tempdata) ++ " bytes: " ++
                  tempdata
       hPutStrLn temph tempdata

       -- Get our new position.  This doesn't actually modify pos
       -- in memory, but makes the name "pos" correspond to a different 
       -- value for the remainder of the "do" block.
       pos <- hTell temph
       putStrLn $ "After writing, my new position is " ++ show pos

       -- Seek to the beginning of the file and display it
       putStrLn $ "The file content is: "
       hSeek temph AbsoluteSeek 0

       -- hGetContents performs a lazy read of the entire file
       c <- hGetContents temph

       -- Copy the file byte-for-byte to stdout, followed by \n
       putStrLn c

       -- Let's also display it as a Haskell literal
       putStrLn $ "Which could be expressed as this Haskell literal:"
       print c

{- This function takes two parameters: a filename pattern and another
   function.  It will create a temporary file, and pass the name and Handle
   of that file to the given function.

   The temporary file is created with openTempFile.  The directory is the one
   indicated by getTemporaryDirectory, or, if the system has no notion of
   a temporary directory, "." is used.  The given pattern is passed to
   openTempFile.

   After the given function terminates, even if it terminates due to an
   exception, the Handle is closed and the file is deleted. -}
withTempFile :: String -> (FilePath -> Handle -> IO a) -> IO a
withTempFile pattern func =
    do -- The library ref says that getTemporaryDirectory may raise on
       -- exception on systems that have no notion of a temporary directory.
       -- So, we run getTemporaryDirectory under catch.  catch takes
       -- two functions: one to run, and a different one to run if the
       -- first raised an exception.  If getTemporaryDirectory raised an
       -- exception, just use "." (the current working directory).
       tempdir <- catch (getTemporaryDirectory) (\_ -> return ".")
       (tempfile, temph) <- openTempFile tempdir pattern 

       -- Call (func tempfile temph) to perform the action on the temporary
       -- file.  finally takes two actions.  The first is the action to run.
       -- The second is an action to run after the first, regardless of
       -- whether the first action raised an exception.  This way, we ensure
       -- the temporary file is always deleted.  The return value from finally
       -- is the first action's return value.
       finally (func tempfile temph) 
               (do hClose temph
                   removeFile tempfile)
Let’s start looking at this program from
      the end. The withTempFile function
      demonstrates that Haskell doesn’t forget its functional nature when I/O
      is introduced. This function takes a String and another function. The function
      passed to withTempFile is invoked
      with the name and Handle of a
      temporary file. When that function exits, the temporary file is closed
      and deleted. So even when dealing with I/O, we can still find the idiom
      of passing functions as parameters to be convenient. Lisp programmers
      might find our withTempFile function
      similar to Lisp’s with-open-file
      function.
There is some exception handling going on
      to make the program more robust in the face of errors. You normally want
      the temporary files to be deleted after processing completes, even if
      something went wrong. So we make sure that happens. For more on
      exception handling, see Chapter 19.
Let’s return to the start of the program.
      main is defined simply as withTempFile "mytemp.txt" myAction. myAction, then, will be invoked with the name
      and Handle of the temporary
      file.
myAction displays some information to the
      terminal, writes some data to the file, seeks to the beginning of the
      file, and reads the data back with hGetContents.[22] It then displays the contents of the file byte for byte
      and also as a Haskell literal via print
      c. That’s the same as putStrLn (show
      c).
Let’s look at the output:
$ runhaskell tempfile.hs
Welcome to tempfile.hs
I have a temporary file at /tmp/mytemp8572.txt
My initial position is 0
Writing one line containing 22 bytes: [1,2,3,4,5,6,7,8,9,10]
After writing, my new position is 23
The file content is:
[1,2,3,4,5,6,7,8,9,10]

Which could be expressed as this Haskell literal:
"[1,2,3,4,5,6,7,8,9,10]\n"
Every time you run this program, your
      temporary filename should be slightly different, since it contains a
      randomly generated component. Looking at this output, there are a few
      questions that might occur to you:
	Why is your position 23 after writing
          a line with 22 bytes?

	Why is there an empty line after the
          file content display?

	Why is there a \n at the end of the Haskell literal
          display?



You might be able to guess that the
      answers to all three questions are related. See if you can work out the
      answers for a moment. If you need some help, here are the explanations:
	Because we used hPutStrLn instead of hPutStr to write the data. hPutStrLn always terminates the line by
          writing a \n at the end, which
          didn’t appear in tempdata.

	We used putStrLn c to display the file contents
          c. Because the data was written
          originally with hPutStrLn,
          c ends with the newline
          character, and putStrLn adds a
          second newline character. The result is a blank line.

	The \n is the newline character from the
          original hPutStrLn.



As a final note, the byte counts may be
      different on some operating systems. Windows, for instance, uses the
      two-byte sequence \r\n as the
      end-of-line marker, so you may see differences on that platform.

Lazy I/O



So far in this chapter, you’ve seen examples of fairly
      traditional I/O. Each line, or block of data, is requested and processed
      individually.
Haskell has another approach available to
      you as well. Since Haskell is a lazy language, meaning that any given
      piece of data is only evaluated when its value must be known, there are
      some novel ways of approaching I/O.
hGetContents



One novel way to approach I/O is with the hGetContents function.[23] hGetContents has the
        type Handle -> IO String. The
        String it returns represents all of
        the data in the file given by the Handle.[24]
In a strictly evaluated language, using
        such a function is often a bad idea. It may be fine to read the entire
        contents of a 2 KB file, but if you try to read the entire contents of
        a 500 GB file, you are likely to crash due to lack of RAM to store all
        that data. In these languages, you would traditionally use mechanisms
        such as loops to process the file’s entire data.
But hGetContents is different. The String it returns is evaluated lazily. At the moment you call hGetContents, nothing is actually read. Data
        is only read from the Handle as the
        elements (characters) of the list are processed. As elements of the
        String are no longer used,
        Haskell’s garbage collector automatically frees that memory. All of
        this happens completely transparently to you. And since you have what
        looks like (and, really, is) a pure String, you can pass it to pure
        (non-IO) code.
Let’s take a quick look at an example.
        Back in Working with Files and Handles, you saw an imperative program
        that converted the entire content of a file to uppercase. Its
        imperative algorithm was similar to what you’d see in many other
        languages. Here now is the much simpler algorithm that exploits lazy
        evaluation:
-- file: ch07/toupper-lazy1.hs
import System.IO
import Data.Char(toUpper)

main :: IO ()
main = do 
       inh <- openFile "input.txt" ReadMode
       outh <- openFile "output.txt" WriteMode
       inpStr <- hGetContents inh
       let result = processData inpStr
       hPutStr outh result
       hClose inh
       hClose outh

processData :: String -> String
processData = map toUpper
Notice that hGetContents handled
        all of the reading for us. Also, take a look at
        processData.
        It’s a pure function since it has no side effects and always returns
        the same result each time it is called. It has no need to know—and no
        way to tell—that its input is being read lazily from a file in this
        case. It can work perfectly well with a 20-character literal or a 500
        GB data dump on disk.
You can even verify that with ghci:
ghci> :load toupper-lazy1.hs
[1 of 1] Compiling Main             ( toupper-lazy1.hs, interpreted )
Ok, modules loaded: Main.
ghci> processData "Hello, there!  How are you?"
"HELLO, THERE!  HOW ARE YOU?"
ghci> :type processData
processData :: String -> String
ghci> :type processData "Hello!"
processData "Hello!" :: String
Warning
If we had tried to hang on to inpStr in the example just shown past the
          one place where it was used (the call to processData), the program would have lost
          its memory efficiency. That’s because the compiler would have been
          forced to keep inpStr’s value in
          memory for future use. Here it knows that inpStr will never be reused and frees the
          memory as soon as it is done with it. Just remember: memory is only
          freed after its last use.

This program was a bit verbose to make
        it clear that there was pure code in use. Here’s a bit more concise
        version, which we will build on in the following examples:
-- file: ch07/toupper-lazy2.hs
import System.IO
import Data.Char(toUpper)

main = do 
       inh <- openFile "input.txt" ReadMode
       outh <- openFile "output.txt" WriteMode
       inpStr <- hGetContents inh
       hPutStr outh (map toUpper inpStr)
       hClose inh
       hClose outh
You are not required to ever consume all
        the data from the input file when using hGetContents. Whenever the Haskell system
        determines that the entire string hGetContents returned can be garbage
        collected—which means it will never be used again—the file is closed
        for you automatically. The same principle applies to data read from
        the file. Whenever a given piece of data will never again be needed,
        the Haskell environment releases the memory it was stored within.
        Strictly speaking, we wouldn’t have to call hClose at all in this example program.
        However, it is still a good practice to get into, as later changes to
        a program could make the call to hClose important.
Warning
When using hGetContents, it is important to remember
          that even though you may never again explicitly reference Handle directly in the rest of the
          program, you must not close the Handle until you have finished consuming
          its results via hGetContents.
          Doing so would cause you to miss on some or all of the file’s data.
          Since Haskell is lazy, you generally can assume that you have
          consumed input only after you have output the result of the
          computations involving the input.


readFile and writeFile



Haskell programmers use hGetContents as a filter quite often. They read from one file, do
        something to the data, and write the result out elsewhere. This is so
        common that there are some shortcuts for doing it. readFile and writeFile are shortcuts for working with
        files as strings. They handle all the details of opening files,
        closing files, reading data, and writing data. readFile uses hGetContents internally.
Can you guess the Haskell types of these
        functions? Let’s check with ghci:
ghci> :type readFile
readFile :: FilePath -> IO String
ghci> :type writeFile
writeFile :: FilePath -> String -> IO ()
Now, here’s an example program that uses
        readFile and writeFile:
-- file: ch07/toupper-lazy3.hs
import Data.Char(toUpper)

main = do 
       inpStr <- readFile "input.txt"
       writeFile "output.txt" (map toUpper inpStr)
Look at that—the guts of the program
        take up only two lines! readFile
        returned a lazy String, which we
        stored in inpStr. We then took
        that, processed it, and passed it to writeFile for writing.
Neither readFile nor writeFile ever provide a Handle for you to work with, so there is
        nothing to ever hClose. readFile uses hGetContents internally, and the underlying
        Handle will be
        closed when the returned String is
        garbage-collected or all the input has been consumed. writeFile will close its underlying Handle when the entire String supplied to it has been
        written.

A Word on Lazy Output



By now, you should understand how lazy
        input works in Haskell. But what about laziness during output?
As you know, nothing in Haskell is
        evaluated before its value is needed. Since functions such as writeFile and putStr write out the entire String passed to them, that entire String must be evaluated. So you are
        guaranteed that the argument to putStr will be evaluated in full.[25]
But what does that mean for laziness of
        the input? In the earlier examples, will the call to putStr or
        writeFile force the entire input
        string to be loaded into memory at once, just to be written
        out?
The answer is no. putStr (and all the similar output
        functions) write out data as it becomes available. They also have no
        need for keeping around data already written, so as long as nothing
        else in the program needs it, the memory can be freed immediately. In
        a sense, you can think of the String between readFile and writeFile as a pipe linking the two. Data
        goes in one end, is transformed some way, and flows back out the
        other.
You can verify this yourself by
        generating a large input.txt for
        toupper-lazy3.hs. It may take a bit
        to process, but you should see a constant—and low—memory usage while
        it is being processed.

interact



You learned that readFile and writeFile address the common situation of
        reading from one file, making a conversion, and writing to a different
        file. There’s a situation that’s even more common than that: reading
        from standard input, making a conversion, and writing the result to
        standard output. For that situation, there is a function called
        interact. The type of interact is (String
        -> String) -> IO (). That is, it takes one argument: a
        function of type String ->
        String. That function is passed the result of getContents—that is, standard input read
        lazily. The result of that function is sent to standard output.
We can convert our example program to
        operate on standard input and standard output by using interact. Here’s one way to do that:
-- file: ch07/toupper-lazy4.hs
import Data.Char(toUpper)

main = interact (map toUpper)
Look at that—one
        line of code to achieve our transformation! To achieve the same effect
        as with the previous examples, you could run this one like
        this:
$ runghc toupper-lazy4.hs < input.txt > output.txt
Or, if you’d like to see the output
        printed to the screen, you could type:
$ runghc toupper-lazy4.hs < input.txt
If you want to see that Haskell output
        truly does write out chunks of data as soon as they are received, run
        runghc toupper-lazy4.hs without any
        other command-line parameters. You should see each character echoed
        back out as soon as you type it, but in uppercase. Buffering may
        change this behavior; see Buffering for more on
        buffering. If you see each line echoed as soon as you type it, or even
        nothing at all for a while, buffering is causing this behavior.
You can also write simple interactive
        programs using interact. Let’s
        start with a simple example—adding a line of text before the uppercase
        output:
-- file: ch07/toupper-lazy5.hs
import Data.Char(toUpper)

main = interact (map toUpper . (++) "Your data, in uppercase, is:\n\n")
Tip
If the use of the . operator is confusing, you might wish to
          refer to Code Reuse Through Composition.

Here we add a string at the beginning of
        the output. Can you spot the problem, though?
Since we’re calling map on the result of
        (++), that header itself will
        appear in uppercase. We can fix that in this way:
-- file: ch07/toupper-lazy6.hs
import Data.Char(toUpper)

main = interact ((++) "Your data, in uppercase, is:\n\n" . 
                 map toUpper)
This moved the header outside of the
        map.
Filters with interact



Another common use of interact is filtering. Let’s say that you want to write a program that reads
          a file and prints out every line that contains the character “a”.
          Here’s how you might do that with interact:
-- file: ch07/filter.hs
main = interact (unlines . filter (elem 'a') . lines)
This may have introduced three
          functions that you aren’t familiar with yet. Let’s inspect their
          types with ghci:
ghci> :type lines
lines :: String -> [String]
ghci> :type unlines
unlines :: [String] -> String
ghci> :type elem
elem :: (Eq a) => a -> [a] -> Bool
Can you guess what these functions do
          just by looking at their types? If not, you can find them explained
          in Warming Up: Portably Splitting Lines of Text and Special String-Handling Functions. You’ll frequently see lines and unlines used with I/O. Finally, elem takes a element and a list and
          returns True if that element
          occurs anywhere in the list.
Try running this over our standard
          example input:
$ runghc filter.hs < input.txt
I like Haskell
Haskell is great
Sure enough, you got back the two
          lines that contain an “a”. Lazy filters are a powerful way to use
          Haskell. When you think about it, a filter—such as the standard Unix
          program grep—sounds a lot like a
          function. It takes some input, applies some computation, and
          generates a predictable output.



The IO Monad



You’ve seen a number of examples of I/O in Haskell by this
      point. Let’s take a moment to step back and think about how I/O relates
      to the broader Haskell language.
Since Haskell is a pure language, if you
      give a certain function a specific argument, the function will return
      the same result every time you give it that argument. Moreover, the
      function will not change anything about the program’s overall
      state.
You may be wondering, then, how I/O fits
      into this picture. Surely if you want to read a line of input from the
      keyboard, the function to read input can’t possibly return the same
      result every time it is run, right? Moreover, I/O is all about changing
      state. I/O could cause pixels on a terminal to light up, cause paper to
      start coming out of a printer, or even to cause a package to be shipped
      from a warehouse on a different continent. I/O doesn’t just change the state of a
      program. You can think of I/O as changing the state of the world.
Actions



Most languages do not make a distinction
        between a pure function and an impure one. Haskell has functions in
        the mathematical sense: they are purely computations that cannot be
        altered by anything external. Moreover, the computation can be
        performed at any time—or even never, if its result is never
        needed.
Clearly, then, we need some other tool
        to work with I/O. That tool in Haskell is called actions. Actions resemble
        functions. They do nothing when they are defined, but perform some
        task when they are invoked. I/O actions are defined within the
        IO monad. Monads are a powerful way of chaining functions
        together purely and are covered in Chapter 14. It’s not
        necessary to understand monads in order to understand I/O. Just
        understand that the result type of actions is “tagged” with
        IO. Let’s take a look at some types:
ghci> :type putStrLn
putStrLn :: String -> IO ()
ghci> :type getLine
getLine :: IO String
The type of putStrLn is just like any other function. The function takes one
        parameter and returns an IO ().
        This IO () is the action. You can
        store and pass actions in pure code if you wish, though this isn’t
        frequently done. An action doesn’t do anything until it is invoked.
        Let’s look at an example of this:
-- file: ch07/actions.hs
str2action :: String -> IO ()
str2action input = putStrLn ("Data: " ++ input)

list2actions :: [String] -> [IO ()]
list2actions = map str2action

numbers :: [Int]
numbers = [1..10]

strings :: [String]
strings = map show numbers

actions :: [IO ()]
actions = list2actions strings

printitall :: IO ()
printitall = runall actions

-- Take a list of actions, and execute each of them in turn.
runall :: [IO ()] -> IO ()
runall [] = return ()
runall (firstelem:remainingelems) = 
    do firstelem
       runall remainingelems

main = do str2action "Start of the program"
          printitall
          str2action "Done!"
str2action is a function that takes one
        parameter and returns an IO (). As
        you can see at the end of main, you
        could use this directly in another action and it will print out a line
        right away. Or, you can store—but not execute—the action from pure
        code. You can see an example of that in list2actions—we use map over str2action and return a list of actions,
        just like we would with other pure data. You can see that everything
        up through printitall is built up
        with pure tools.
Although we define printitall, it doesn’t get executed until
        its action is evaluated somewhere else. Notice in main how we use str2action as an I/O action to be executed,
        but earlier we used it outside of the I/O monad and assembled results
        into a list.
You could think of it this way: every
        statement, except let, in a
        do block must yield an I/O action
        that will be executed.
The call to printitall finally executes all those
        actions. Actually, since Haskell is lazy, the actions aren’t generated
        until here either.
When you run the program, your output
        will look like this:
Data: Start of the program
Data: 1
Data: 2
Data: 3
Data: 4
Data: 5
Data: 6
Data: 7
Data: 8
Data: 9
Data: 10
Data: Done!
We can actually write this in a much
        more compact way. Consider this revision of the example:
-- file: ch07/actions2.hs
str2message :: String -> String
str2message input = "Data: " ++ input

str2action :: String -> IO ()
str2action = putStrLn . str2message

numbers :: [Int]
numbers = [1..10]

main = do str2action "Start of the program"
          mapM_ (str2action . show) numbers
          str2action "Done!"
Notice in str2action the use of the standard function
        composition operator. In main,
        there’s a call to mapM_. This
        function is similar to map. It
        takes a function and a list. The function supplied to mapM_ is an I/O action that is executed for
        every item in the list. mapM_
        throws out the result of the function, though you can use mapM to return a list of I/O results if you
        want them. Take a look at their types:
ghci> :type mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :type mapM_
mapM_ :: (Monad m) => (a -> m b) -> [a] -> m ()
Tip
These functions actually work for more
          than just I/O; they work for any Monad. For now, wherever you see “M,” just
          think “IO.” Also, functions that end with an underscore typically
          discard their result.

Why a mapM when we already have map? Because map is a pure function that returns a list.
        It doesn’t—and can’t—actually execute actions directly. mapM is a utility that lives in the
        IO monad and thus can actually execute the
        actions.[26]
Going back to main, mapM_ applies (str2action . show) to every element in
        numbers. show converts each number to a String and str2action converts each String to an action. mapM_ combines these individual actions into
        one big action that prints out lines.

Sequencing



do
        blocks are actually shortcut notations for joining together
        actions. There are two operators that you can use instead of do blocks:
        >> and >>=. Let’s look at their types in
        ghci:
ghci> :type (>>)
(>>) :: (Monad m) => m a -> m b -> m b
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
The >> operator sequences two actions
        together: the first action is performed, and then the second. The
        result of the computation is the result of the second action. The
        result of the first action is thrown away. This is similar to simply
        having a line in a do block. You
        might write putStrLn "line 1" >> putStrLn "line 2" to test
        this out. It will print out two lines, discard the result from the
        first putStrLn, and provide the
        result from the second.
The >>= operator runs an action, and then
        passes its result to a function that returns an action. That second
        action is run as well, and the result of the entire expression is the
        result of that second action. As an example, you could write getLine >>=
        putStrLn, which would read a line from the keyboard and then
        display it back out.
Let’s rewrite one of our examples to
        avoid do blocks. Remember this
        example from the start of the chapter?
-- file: ch07/basicio.hs
main = do
       putStrLn "Greetings!  What is your name?"
       inpStr <- getLine
       putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!"
Let’s write that without a do block:
-- file: ch07/basicio-nodo.hs
main =
    putStrLn "Greetings!  What is your name?" >>
    getLine >>=
    (\inpStr -> putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!")
The Haskell compiler internally performs
        a translation just like this when you define a do block.
Tip
Forgetting how to use \ (lambda expressions)? See Anonymous (lambda) Functions.


The True Nature of Return



Earlier in this chapter, we mentioned that return is probably not what it looks like.
        Many languages have a keyword named return that aborts execution of a function
        immediately and returns a value to the caller.
The Haskell return function is quite different. In
        Haskell, return is used to wrap
        data in a monad. When speaking about I/O, return is used to take pure data and bring
        it into the IO monad.
Now, why would we want to do that?
        Remember that anything whose result depends on I/O must be within the
        IO monad. So if we are writing a
        function that performs I/O, and then a pure computation, we
        will need to use return to make
        this pure computation the proper return value of the function.
        Otherwise, a type error would occur. Here’s an example:
-- file: ch07/return1.hs
import Data.Char(toUpper)

isGreen :: IO Bool
isGreen =
    do putStrLn "Is green your favorite color?"
       inpStr <- getLine
       return ((toUpper . head $ inpStr) == 'Y')
We have a pure computation that yields a
        Bool. That computation is passed to
        return, which puts it into the
        IO monad. Since it is the last value in the do block, it becomes the return value of
        isGreen, but this is not because we
        used the return function.
Here’s a version of the same program
        with the pure computation broken out into a separate function. This
        helps keep the pure code separate and can also make the intent more
        clear:
-- file: ch07/return2.hs
import Data.Char(toUpper)

isYes :: String -> Bool
isYes inpStr = (toUpper . head $ inpStr) == 'Y'

isGreen :: IO Bool
isGreen =
    do putStrLn "Is green your favorite color?"
       inpStr <- getLine
       return (isYes inpStr)
Finally, here’s a contrived example to
        show that return truly does not
        have to occur at the end of a do
        block. In practice, it usually does, but it need not be so.
-- file: ch07/return3.hs
returnTest :: IO ()
returnTest =
    do one <- return 1
       let two = 2
       putStrLn $ show (one + two)
Notice that we used <- in combination with return, but let in combination with the simple literal.
        That’s because we needed both values to be pure in order to add them,
        and <- pulls things out of
        monads, effectively reversing the effect of return. Run this in ghci and you’ll see 3 displayed, as expected.


Is Haskell Really Imperative?



These do blocks may look a lot like an imperative
      language. After all, you’re giving commands to run in sequence most of
      the time.
But Haskell remains a lazy language at its
      core. While it is sometimes necessary to sequence actions for I/O, this
      is done using tools that are part of Haskell already. Haskell achieves a
      nice separation of I/O from the rest of the language through the
      IO monad as well.

Side Effects with Lazy I/O



Earlier in this chapter, you read about
      hGetContents. We explained that the
      String it returns can be used in pure
      code.
We need to get a bit more specific about
      what side effects are. When we say Haskell has no side effects, what
      exactly does that mean?
At a certain level, side effects are
      always possible. A poorly written loop, even if written in pure code,
      could cause the system’s RAM to be exhausted and the machine to crash.
      Or it could cause data to be swapped to disk.
When we speak of no side effects, we mean
      that pure code in Haskell can’t run commands that trigger side effects.
      Pure functions can’t modify a global variable, request I/O, or run a
      command to take down a system.
When you have a String from hGetContents that is passed to a pure
      function, the function has no idea that this String is backed by a disk file. It will
      behave just as it always would, but processing that String may cause the environment to issue I/O
      commands. The pure function isn’t issuing them; they are happening as a
      result of the processing the pure function is doing, just as with the
      example of swapping RAM to disk.
In some cases, you may need more control
      over exactly when your I/O occurs. Perhaps you are reading data
      interactively from the user, or via a pipe from another program, and
      need to communicate directly with the user. In those cases, hGetContents will probably not be
      appropriate.

Buffering



The I/O subsystem is one of the slowest parts of a modern computer.
      Completing a write to disk can take thousands of times as long as a
      write to memory. A write over the network can be hundreds or thousands
      of times slower yet. Even if your operation doesn’t directly communicate
      with the disk—perhaps because the data is cached—I/O still involves a system call, which
      slows things down by itself.
For this reason, modern operating systems
      and programming languages both provide tools to help programs perform
      better where I/O is concerned. The operating system typically performs
      caching—storing frequently used pieces of data in memory for faster
      access.
Programming languages typically perform
      buffering. This means that they may request one large chunk of data from
      the operating system, even if the code underneath is processing data one
      character at a time. By doing this, they can achieve remarkable
      performance gains because each request for I/O to the operating system
      carries a processing cost. Buffering allows us to read the same amount
      of data with far fewer I/O requests.
Haskell, too, provides buffering in its
      I/O system. In many cases, it is even on by default. Up until now, we
      have pretended it isn’t there. Haskell usually is good about picking a
      good default buffering mode, but it is rarely the fastest. If you have
      speed-critical I/O code, changing
      buffering could have a significant impact on your program.
Buffering Modes



There are three different buffering
        modes in Haskell. They are defined as the BufferMode type: NoBuffering, LineBuffering, and BlockBuffering.
NoBuffering does just what it sounds like—no
        buffering. Data read via functions like hGetLine will be read from the OS one
        character at a time. Data written will be written immediately, and
        also often will be written one character at a time. For this reason,
        NoBuffering is usually a very poor
        performer and not suitable for general-purpose use.
LineBuffering causes the output buffer to be
        written whenever the newline character is output, or whenever it gets
        too large. On input, it will usually attempt to read whatever data is
        available in chunks until it first sees the newline character. When
        reading from the terminal, it should return data immediately after
        each press of Enter. It is often a reasonable default.
BlockBuffering causes Haskell to read or
        write data in fixed-size chunks when possible. This is the best
        performer when processing large amounts of data in batch, even if that
        data is line-oriented. However, it is unusable for interactive
        programs because it will block input until a full block is read.
        BlockBuffering accepts one
        parameter of type Maybe; if
        Nothing, it will use an
        implementation-defined buffer size. Or, you can use a setting such as
        Just 4096 to set the buffer to 4096
        bytes.
The default buffering mode is dependent
        upon the operating system and Haskell implementation. You can ask the
        system for the current buffering mode by calling hGetBuffering. The
        current mode can be set with hSetBuffering, which accepts a Handle and BufferMode. You can say hSetBuffering stdin
        (BlockBuffering Nothing), for example.

Flushing The Buffer



For any type of buffering, you may
        sometimes want to force Haskell to write out any data that has been
        saved up in the buffer. There are a few times when this will happen
        automatically: a call to hClose,
        for instance. Sometimes you may want to instead call hFlush, which will force any pending data to be written
        immediately. This could be useful when the Handle is a network socket and you want the
        data to be transmitted immediately, or when you want to make the data
        on disk available to other programs that might be reading it
        concurrently.


Reading Command-Line Arguments



Many command-line programs are interested in the parameters passed on the command
      line. System.Environment.getArgs
      returns IO [String] listing each
      argument. This is the same as argv in
      C, starting with argv[1]. The program
      name (argv[0] in C) is available from
      System.Environment.getProgName.
The System.Console.GetOpt module provides some
      tools for parsing command-line options. If you have a program with
      complex options, you may find it useful. You can find an example of its
      use in Command-Line Parsing.

Environment Variables



If you need to read environment
      variables, you can use one of two functions in System.Environment:
      getEnv or getEnvironment. getEnv looks for a specific variable and
      raises an exception if it doesn’t exist. getEnvironment returns the whole environment
      as a [(String, String)], and then you
      can use functions such as lookup to
      find the environment entry you want.
Setting environment variables is not
      defined in a cross-platform way in Haskell. If you are on a POSIX
      platform such as Linux, you can use putEnv or setEnv from the System.Posix.Env module. Environment
      setting is not defined for Windows.



[16] You will later see that it has a more
          broad application, but it is sufficient to think of it in these
          terms for now.

[17] The type of the value () is also ().

[18] Imperative programmers might be
          concerned that such a recursive call would consume large amounts of
          stack space. In Haskell, recursion is a common idiom, and the
          compiler is smart enough to avoid consuming much stack by optimizing
          tail-recursive functions.

[19] If there was a bug in the C part of
            a hybrid program, for instance.

[20] For more information on
            interoperating with other programs with pipes, see Extended Example: Piping.

[21] POSIX programmers may be interested
            to know that this corresponds to unlink() in C.

[22] hGetContents is discussed in Lazy I/O

[23] There is also a shortcut function
            called getContents that
            operates on standard input.

[24] More precisely, it is the entire
            data from the current position of the file pointer to the end of
            the file.

[25] Excepting I/O errors such as a full
            disk, of course.

[26] Technically speaking, mapM combines a bunch of separate I/O
            actions into one big action. The separate actions are executed
            when the big action is.



Chapter 8. Efficient File Processing, Regular Expressions, and Filename
    Matching



Efficient File Processing



This simple microbenchmark reads a text file full of numbers and
      prints their sum:
-- file: ch08/SumFile.hs
main = do
    contents <- getContents
    print (sumFile contents)
  where sumFile = sum . map read . words
Although the String type is
      the default used for reading and writing files, it is not efficient, so
      a simple program like this will perform badly.
A String is represented as a list of Char values; each
      element of a list is allocated individually and has some bookkeeping
      overhead. These factors affect the memory consumption and performance of
      a program that must read or write text or binary data. On simple
      benchmarks like this, even programs written in interpreted languages
      such as Python can outperform Haskell code that uses String
      by an order of magnitude.
The bytestring
      library provides a fast, cheap alternative to the
      String type. Code written with bytestring can
      often match or exceed the performance and memory footprint of C, while
      maintaining Haskell’s expressivity and conciseness.
The library supplies two modules—each
      defines functions that are nearly drop-in replacements for their String
      counterparts:
	Data.ByteString
	Defines a strict type named ByteString. This represents a
            string of binary or text data in a single array.

	Data.ByteString.Lazy
	Provides a lazy type, also named
            ByteString. This represents a string of data as a list of chunks, arrays of up to 64
            KB in size.



Each ByteString type
      performs better under particular circumstances. For streaming a large
      quantity (hundreds of megabytes to terabytes) of data, the lazy
      ByteString type is usually best. Its chunk size is tuned to
      be friendly to a modern CPU’s L1 cache, and a garbage collector can
      quickly discard chunks of streamed data that are no longer being
      used.
The strict ByteString type
      performs best for applications that are less concerned with memory
      footprint or that need to access data randomly.
Binary I/O and Qualified Imports



Let’s develop a small function to illustrate some of the
        ByteString API. We will determine if a file is
        an ELF object file—this is the format used for executables
        on almost all modern Unix-like systems.
This is a simple matter of looking at
        the first four bytes in the file and seeing if they match a specific
        sequence of bytes. A byte sequence that identifies a file’s type is
        often known as a magic number:
-- file: ch08/ElfMagic.hs
import qualified Data.ByteString.Lazy as L

hasElfMagic :: L.ByteString -> Bool
hasElfMagic content = L.take 4 content == elfMagic
    where elfMagic = L.pack [0x7f, 0x45, 0x4c, 0x46]
We import the ByteString
        modules using Haskell’s qualified import
        syntax, the import qualified that we just saw. This lets us refer to a module with a name
        of our choosing.
For instance, when we want to refer to
        the lazy ByteString module’s take function, we must write L.take, since we imported the module under
        the name L. If we are not explicit about which version
        of, for example, take we want,
        the compiler will report an error.
We will always use qualified import
        syntax with the ByteString modules, because they provide
        many functions that have the same names as Prelude functions.
Tip
Qualified imports make it easy to
          switch between ByteString types. All you should need to
          do is modify an import declaration at the top of your
          source file; the rest of your code will probably not need any
          changes. You can thus handily benchmark the two types, to see which
          is best suited to your application’s needs

Whether or not we use qualified
        imports, we can always use the entire name of a module to identify
        something unambiguously. Both Data.ByteString.Lazy.length and L.length, for instance, identify the same
        function, as do Prelude.sum and
        sum.
The lazy and strict
        ByteString modules are intended for binary I/O. The
        Haskell data type for representing bytes is Word8; if we
        need to refer to it by name, we import it from the
        Data.Word module.
The L.pack
        function takes a list of Word8 values, and packs
        them into a lazy ByteString. (The L.unpack function performs the reverse
        conversion.) Our hasElfMagic
        function simply compares the first four bytes of a
        ByteString against a magic number.
We are writing in classic Haskell
        style, where our hasElfMagic
        function does not perform I/O. Here is the function that uses it on a
        file:
-- file: ch08/ElfMagic.hs
isElfFile :: FilePath -> IO Bool
isElfFile path = do
  content <- L.readFile path
  return (hasElfMagic content)
The L.readFile function is the lazy ByteString equivalent of
        readFile. It operates lazily,
        reading the file as data is demanded. It is also efficient, reading
        chunks of up to 64 KB at once. The lazy ByteString is a
        good choice for our task: since we only need to read at most the first
        four bytes of the file, we can safely use this function on a file of
        any size.

Text I/O



For convenience, the bytestring library provides two other
        modules with limited text I/O capabilities,
        Data.ByteString.Char8 and
        Data.ByteString.Lazy.Char8. These expose individual string elements as Char
        instead of Word8.
Warning
The functions in these modules only
          work with byte-sized Char values, so they are only
          suitable for use with ASCII and some European character sets. Values
          above 255 are truncated.

The character-oriented
        bytestring modules provide useful functions for text
        processing. Here is a file that contains monthly stock prices for a
        well-known Internet company from mid-2008:
ghci> putStr =<< readFile "prices.csv"
Date,Open,High,Low,Close,Volume,Adj Close
2008-08-01,20.09,20.12,19.53,19.80,19777000,19.80
2008-06-30,21.12,21.20,20.60,20.66,17173500,20.66
2008-05-30,27.07,27.10,26.63,26.76,17754100,26.76
2008-04-30,27.17,27.78,26.76,27.41,30597400,27.41

How can we find the highest closing
        price from a series of entries like this? Closing prices are in the
        fifth comma-separated column. This function obtains a closing price
        from one line of data:
-- file: ch08/HighestClose.hs
import qualified Data.ByteString.Lazy.Char8 as L

closing = readPrice . (!!4) . L.split ','
Since this function is written in
        point-free style, we read from right to left. The L.split function splits a lazy ByteString into a list of
        them, every time it finds a matching character. The (!!) operator
        retrieves the kth element of a list. Our
        readPrice function turns a string
        representing a fractional price into a whole number:
-- file: ch08/HighestClose.hs
readPrice :: L.ByteString -> Maybe Int
readPrice str =
    case L.readInt str of
      Nothing             -> Nothing
      Just (dollars,rest) ->
        case L.readInt (L.tail rest) of
          Nothing           -> Nothing
          Just (cents,more) ->
            Just (dollars * 100 + cents)
We use the L.readInt function, which parses an integer. It returns both the integer and the
        remainder of the string once a run of digits is consumed. Our
        definition is slightly complicated by L.readInt returning Nothing if
        parsing fails.
Our function for finding the highest
        closing price is straightforward:
-- file: ch08/HighestClose.hs
highestClose = maximum . (Nothing:) . map closing . L.lines

highestCloseFrom path = do
    contents <- L.readFile path
    print (highestClose contents)
We use one trick to work around the
        fact that we cannot supply an empty list to the maximum
        function:
ghci> maximum [3,6,2,9]
9
ghci> maximum []
*** Exception: Prelude.maximum: empty list
Since we do not want our code to throw
        an exception if we have no stock data, the (Nothing:)
        expression ensures that the list of Maybe Int values that
        we supply to maximum will never
        be empty:
ghci> maximum [Nothing, Just 1]
Just 1
ghci> maximum [Nothing]
Nothing
Does our function work?
ghci> :load HighestClose
[1 of 1] Compiling Main             ( HighestClose.hs, interpreted )
Ok, modules loaded: Main.
ghci> highestCloseFrom "prices.csv"
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Just 2741
Since we have separated our I/O from
        our logic, we can test the no-data case without having to create an
        empty file:
ghci> highestClose L.empty
Nothing



Filename Matching



Many systems-oriented programming languages provide library
      routines that let us match a filename against a pattern, or that will
      give a list of files that match the pattern. In other languages, this
      function is often named fnmatch.
      Although Haskell’s standard library generally has good systems
      programming facilities, it doesn’t provide these kinds of pattern
      matching functions. We’ll take this as an opportunity to develop our
      own.
The kinds of patterns we’ll be dealing
      with are commonly referred to as glob patterns (the term we’ll use),
      wild card patterns, or shell-style patterns. They have just a few simple
      rules. You probably already know them, but we’ll quickly recap
      here:
	Matching a string against a pattern
          starts at the beginning of the string, and finishes at the
          end.

	Most literal characters match
          themselves. For example, the text foo in a pattern will match foo, and only foo, in an input string.

	The * (asterisk) character means “match anything”; it will match
          any text, including the empty string. For instance, the pattern
          foo* will match any string that begins with
          foo, such as foo itself,
          foobar, or foo.c. The pattern
          quux*.c will match any string that begins with
          quux and ends in .c, such as
          quuxbaz.c.

	The ? (question mark) character matches any single character. The pattern
          pic??.jpg will match names like picaa.jpg
          or pic01.jpg.

	A [
          (open square bracket) character begins a character
          class, which is ended by a ]. Its meaning is “match any
          character in this class”. A character class can be
          negated by following the opening [ with a !, so that it means “match any
          character not in this class”.
As a shorthand, a character
          followed by a -
          (dash), followed by another character, denotes a
          range: “match any character within this
          set.”
Character classes have an added
          subtlety; they can’t be empty. The first character after the opening
          [ or [! is part of the class, so we can write a
          class containing the ] character
          as []aeiou]. The pattern
          pic[0-9].[pP][nN][gG] will match a name consisting of
          the string pic, followed by a single digit, followed by
          any capitalization of the string .png.



While Haskell doesn’t provide a way to
      match glob patterns among its standard libraries, it provides a good
      regular expression matching library. Glob patterns are nothing more than
      cut-down regular expressions with slightly different syntax. It’s easy
      to convert glob patterns into regular expressions, but to do so, we must
      first understand how to use regular expressions in Haskell.

Regular Expressions in Haskell



In this section, we assume that you are already familiar with regular
      expressions by way of some other language, such as Python, Perl, or
      Java.[27]
For brevity, we will abbreviate “regular
      expression” as regexp from here on.
Rather than introduce regexps as
      something new, we will focus on what’s different about regexp handling
      in Haskell, compared to other languages. Haskell’s regular expression
      matching libraries are a lot more expressive than those of other
      languages, so there’s plenty to talk about.
To begin our exploration of the regexp
      libraries, the only module we’ll need to work with is Text.Regex.Posix.
      As usual, the most convenient way to explore this module is by
      interacting with it via ghci:
ghci> :module +Text.Regex.Posix
The only function that we’re likely to
      need for normal use is the regexp matching function, an infix operator
      named (=~) (borrowed from Perl).
      The first hurdle to overcome is that Haskell’s regexp libraries make
      heavy use of polymorphism. As a result, the type signature of the
      (=~) operator is difficult to understand, so we will not explain it
      here.
The =~ operator uses typeclasses for both of its
      arguments and also for its return type. The first argument (on the left
      of the =~) is the text to match;
      the second (on the right) is the regular expression to match against. We
      can pass either a String or a ByteString as
      argument.
The Many Types of Result



The =~ operator is polymorphic in its return
        type, so the Haskell compiler needs some way to know what type of
        result we would like. In real code, it may be able to infer the right
        type, due to the way we subsequently use the result. But such cues are
        often lacking when we’re exploring with ghci. If we omit
        a specific type for the result, we’ll get an error from the
        interpreter, as it does not have enough information to successfuly
        infer the result type.
When ghci can’t infer the target type, we tell it what we’d like the
        type to be. If we want a result of type Bool, we’ll get a
        pass/fail answer:
ghci> "my left foot" =~ "foo" :: Bool
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
True
ghci> "your right hand" =~ "bar" :: Bool
False
ghci> "your right hand" =~ "(hand|foot)" :: Bool
True
In the bowels of the regexp libraries,
        there’s a typeclass named RegexContext that describes
        how a target type should behave;
        the base library defines many instances of this typeclass for us. The
        Bool type is an instance of this typeclass, so we get
        back a usable result. Another such instance is Int, which
        gives us a count of the number of times the regexp matches:
ghci> "a star called henry" =~ "planet" :: Int
0
ghci> "honorificabilitudinitatibus" =~ "[aeiou]" :: Int
13
If we ask for a String
        result, we’ll get the first substring that matches or an empty string
        if nothing matches:
ghci> "I, B. Ionsonii, uurit a lift'd batch" =~ "(uu|ii)" :: String
"ii"
ghci> "hi ludi, F. Baconis nati, tuiti orbi" =~ "Shakespeare" :: String
""
Another valid type of result is
        [String], which returns a list of
        all matching strings:
ghci> "I, B. Ionsonii, uurit a lift'd batch" =~ "(uu|ii)" :: [String]
["ii","uu"]
ghci> "hi ludi, F. Baconis nati, tuiti orbi" =~ "Shakespeare" :: [String]
[]
Warning
Some versions of regular expression support in Haskell do not
          support [String] and
          [[String]] return values from pattern
          matching.

Watch out for String results
If you want a result that’s a plain
          String, beware. Since (=~) returns an empty string to signify
          “no match”, this poses an obvious difficulty if the
          empty string could also be a valid match for the regexp. If such a
          case arises, you should use a different return type instead, such as
          [String].

That’s about it for
        “simple” result types, but we’re not by any means
        finished. Before we continue, let’s use a single pattern for our
        remaining examples. We can define this pattern as a variable in
        ghci, to save a little
        typing:
ghci> let pat = "(foo[a-z]*bar|quux)"
We can obtain quite a lot of information
        about the context in which a match occurs. If we ask for a
        (String, String, String) tuple, we’ll get back the text
        before the first match, the text
        of that match, and the text that
        follows it:
ghci> "before foodiebar after" =~ pat :: (String,String,String)
("before ","foodiebar"," after")

If the match fails, the entire text is
        returned as the “before” element of the tuple, with the
        other two elements left empty:
ghci> "no match here" =~ pat :: (String,String,String)
("no match here","","")

Asking for a four-element tuple gives us
        a fourth element that’s a list of all groups in the pattern that
        matched:
ghci> "before foodiebar after" =~ pat :: (String,String,String,[String])
("before ","foodiebar"," after",["foodiebar"])

We can get numeric information about
        matches, too. A pair of Ints gives us the starting offset
        of the first match, and its length. If we ask for a list of these
        pairs, we’ll get this information for all matches:
ghci> "before foodiebar after" =~ pat :: (Int,Int)
(7,9)
ghci> "i foobarbar a quux" =~ pat :: [(Int,Int)]
[(2,9),(14,4)]
A failed match is represented by the
        value -1 as the first element of
        the tuple (the match offset) if we’ve asked for a single tuple, or an
        empty list if we’ve asked for a list of tuples:
ghci> "eleemosynary" =~ pat :: (Int,Int)
(-1,0)
ghci> "mondegreen" =~ pat :: [(Int,Int)]
[]
This is not a comprehensive list of
        built-in instances of the RegexContext
        typeclass. For a complete list, see the documentation for the
        Text.Regex.Base.Context
        module.
This ability to make a function
        polymorphic in its result type is an unusual feature for a statically
        typed language.


More About Regular Expressions



Mixing and Matching String Types



As we noted earlier, the =~ operator uses typeclasses for its argument types and its return
        type. We can use either String or strict
        ByteString values for both the regular expression and the
        text to match against:
ghci> :module +Data.ByteString.Char8
ghci> :type pack "foo"
pack "foo" :: ByteString
We can then try using different
        combinations of String and
        ByteString:
ghci> pack "foo" =~ "bar" :: Bool
False
ghci> "foo" =~ pack "bar" :: Int
0
ghci> pack "foo" =~ pack "o" :: [(Int, Int)]
[(1,1),(2,1)]
However, we need to be aware that if we
        want a string value in the result of a match, the text we’re matching
        against must be the same type of string. Let’s see what this means in
        practice:
ghci> pack "good food" =~ ".ood" :: [ByteString]
["good","food"]

In the above example, we’ve used the
        pack to turn a
        String into a ByteString. The type checker
        accepts this because ByteString appears in the result
        type. But if we try getting a String out, that
        won’t work:
ghci> "good food" =~ ".ood" :: [ByteString]

<interactive>:1:0:
    No instance for (Text.Regex.Base.RegexLike.RegexContext
                       Regex [Char] [ByteString])
      arising from a use of `=~' at <interactive>:1:0-20
    Possible fix:
      add an instance declaration for
      (Text.Regex.Base.RegexLike.RegexContext Regex [Char] [ByteString])
    In the expression: "good food" =~ ".ood" :: [ByteString]
    In the definition of `it':
        it = "good food" =~ ".ood" :: [ByteString]

We can easily fix this problem by making
        the string types of the lefthand side and the result match once
        again:
ghci> "good food" =~ ".ood" :: [String]
["good","food"]

This restriction does
        not apply to the type of the regexp we’re
        matching against. It can be either a String or
        ByteString, unconstrained by the other types in
        use.

Other Things You Should Know



When you look through Haskell library
        documentation, you’ll see several regexp-related modules. The modules under
        Text.Regex.Base define the common
        API adhered to by all of the other regexp modules. It’s possible to
        have multiple implementations of the regexp API installed at one time.
        At the time of this writing, GHC is bundled with one implementation,
        Text.Regex.Posix. As its name
        suggests, this package provides POSIX regexp semantics.
Perl and POSIX Regular Expressions
If you’re coming to Haskell from a language like Perl, Python,
          or Java, and you’ve used regular expressions in one of those
          languages, you should be aware that the POSIX regexps handled by the
          Text.Regex.Posix module are
          different in some significant ways from Perl-style regexps. Here are
          a few of the more notable differences.
Perl regexp engines perform
          left-biased matching when matching alternatives, whereas POSIX
          engines choose the greediest match. What this means is that given a
          regexp of (foo|fo*) and a text
          string of foooooo, a Perl-style
          engine will give a match of foo
          (the leftmost match), while a POSIX engine will match the entire
          string (the greediest match).
POSIX regexps have less uniform syntax
          than Perl-style regexps. They also lack a number of capabilities
          provided by Perl-style regexps, such as zero-width assertions and
          control over greedy matching.

Other Haskell regexp packages are
        available for download from Hackage. Some provide better performance
        than the current POSIX engine (e.g., regex-tdfa); others
        provide the Perl-style matching that most programmers are now familiar
        with (e.g., regex-pcre). All follow the standard API that
        we have covered in this section.


Translating a glob Pattern into a Regular Expression



Now that we’ve seen the myriad of ways to match text against
      regular expressions, let’s turn our attention back to glob patterns. We
      want to write a function that will take a glob pattern and return its
      representation as a regular expression. Both glob patterns and regexps
      are text strings, so the type that our function ought to have seems
      clear:
-- file: ch08/GlobRegex.hs
module GlobRegex
    (
      globToRegex
    , matchesGlob
    ) where

import Text.Regex.Posix ((=~))

globToRegex :: String -> String
The regular expression that we generate
      must be anchored so that it starts
      matching from the beginning of a string and finishes at the end:
-- file: ch08/GlobRegex.hs
globToRegex cs = '^' : globToRegex' cs ++ "$"
Recall that the String is
      just a synonym for [Char], a list of Chars.
      The : operator puts a
      value (the ^ character in this case)
      onto the front of a list, where the list is the value returned by the
      yet-to-be-seen globToRegex'
      function.
Using a value before defining it
Haskell does not require that a value or
        function be declared or defined in a source file before it’s used.
        It’s perfectly normal for a definition to come
        after the first place it’s used. The Haskell
        compiler doesn’t care about ordering at this level. This grants us the
        flexibility to structure our code in the manner that makes most
        logical sense to us, rather than follow an order that makes the
        compiler writer’s life easiest.
Haskell module writers often use this
        flexibility to put “more important” code earlier in a
        source file, relegating “plumbing” to later. This is
        exactly how we are presenting the globToRegex function and its helpers
        here.

With the regular expression rooted, the
      globToRegex' function will do the
      bulk of the translation work. We’ll use the convenience of Haskell’s
      pattern matching to enumerate each of the cases we’ll need to
      cover:
-- file: ch08/GlobRegex.hs
globToRegex' :: String -> String
globToRegex' "" = ""

globToRegex' ('*':cs) = ".*" ++ globToRegex' cs

globToRegex' ('?':cs) = '.' : globToRegex' cs

globToRegex' ('[':'!':c:cs) = "[^" ++ c : charClass cs
globToRegex' ('[':c:cs)     = '['  :  c : charClass cs
globToRegex' ('[':_)        = error "unterminated character class"

globToRegex' (c:cs) = escape c ++ globToRegex' cs
Our first clause stipulates that if we hit
      the end of our glob pattern (by which time we’ll be looking at the empty
      string), we return $, the regular
      expression symbol for “match end-of-line.” Following this is a series of
      clauses that switch our pattern from glob syntax to regexp syntax. The
      last clause passes every other character through, possibly escaping it
      first.
The escape function ensures that the regexp
      engine will not interpret certain characters as pieces of regular
      expression syntax:
-- file: ch08/GlobRegex.hs
escape :: Char -> String
escape c | c `elem` regexChars = '\\' : [c]
         | otherwise = [c]
    where regexChars = "\\+()^$.{}]|"
The charClass helper function only checks that a
      character class is correctly terminated. It passes its input through
      unmodified until it hits a ], when it
      hands control back to globToRegex':
-- file: ch08/GlobRegex.hs
charClass :: String -> String
charClass (']':cs) = ']' : globToRegex' cs
charClass (c:cs)   = c : charClass cs
charClass []       = error "unterminated character class"
Now that we’ve finished defining globToRegex and its helpers, let’s load it
      into ghci and try it out:
ghci> :load GlobRegex.hs
[1 of 1] Compiling GlobRegex        ( GlobRegex.hs, interpreted )
Ok, modules loaded: GlobRegex.
ghci> :module +Text.Regex.Posix
ghci> globToRegex "f??.c"
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
"^f..\\.c$"
Sure enough, that looks like a reasonable
      regexp. Can we use it to match against a string?
ghci> "foo.c" =~ globToRegex "f??.c" :: Bool
True
ghci> "test.c" =~ globToRegex "t[ea]s*" :: Bool
True
ghci> "taste.txt" =~ globToRegex "t[ea]s*" :: Bool
True
It works! Now let’s play around a little
      with ghci. We can create a temporary
      definition for fnmatch and try it
      out:
ghci> let fnmatch pat name  =  name =~ globToRegex pat :: Bool
ghci> :type fnmatch
fnmatch :: (Text.Regex.Base.RegexLike.RegexLike Regex source1) =>
           String -> source1 -> Bool
ghci> fnmatch "d*" "myname"
False
The name fnmatch doesn’t really have the “Haskell
      nature,” though. By far the most common Haskell style is for functions
      to have descriptive, “camel cased” names. Camel casing concatenates words, capitalizing all but
      possibly the first word. For instance, the words “filename
      matches” would become the name fileNameMatches. The
      name “camel case” comes from the “humps”
      introduced by the capital letters. In our library, we’ll give this
      function the name matchesGlob:
-- file: ch08/GlobRegex.hs
matchesGlob :: FilePath -> String -> Bool
name `matchesGlob` pat = name =~ globToRegex pat
You may have noticed that most of the
      names that we have used for variables so far have been short. As a rule
      of thumb, descriptive variable names are more useful in longer function
      definitions, as they aid readability. For a two-line function, a long
      variable name has less value.
Exercises
	Use ghci to explore what
            happens if you pass a malformed pattern, such as [, to globToRegex. Write a small function
            that calls globToRegex, and
            pass it a malformed pattern. What happens?

	While filesystems on Unix are usually case-sensitive (e.g.,
            “G” vs. “g”) in filenames, Windows
            filesystems are not. Add a parameter to the globToRegex and matchesGlob functions that allows
            control over case sensitive matching.





An important Aside: Writing Lazy Functions



In an imperative language, the globToRegex' function is one that we’d
      usually express as a loop. For example, Python’s standard
      fnmatch module includes a function named translate that does exactly the same job as
      our globToRegex function. It’s
      written as a loop.
If you’ve been exposed to functional
      programming through a language such as Scheme or ML, you’ve probably had
      drilled into your head the notion that “the way to emulate a loop is via
      tail recursion.”
Looking at the globToRegex' function, we can see that it is
      not tail recursive. To see why, examine its final
      clause again (several of its other clauses are structured
      similarly):
-- file: ch08/GlobRegex.hs
globToRegex' (c:cs) = escape c ++ globToRegex' cs
It applies itself recursively, and the
      result of the recursive application is used as a parameter to the (++) function.
      Since the recursive application isn’t the last
      thing the function does, globToRegex' is not tail recursive.
Why is our definition of this function not
      tail recursive? The answer lies with Haskell’s nonstrict evaluation
      strategy. Before we start talking about that, let’s quickly talk about
      why, in a traditional language, we’d try to avoid this kind of recursive
      definition. Here is a simpler definition of the (++) operator. It is recursive, but not tail
      recursive:
-- file: ch08/append.hs
(++) :: [a] -> [a] -> [a]

(x:xs) ++ ys = x : (xs ++ ys)
[]     ++ ys = ys
In a strict language, if we evaluate
      "foo" ++ "bar", the entire list is constructed, and then
      returned. Non-strict evaluation defers much of the work until it is
      needed.
If we demand an element of the expression
      "foo" ++ "bar", the first pattern of the function’s
      definition matches, and we return the expression x : (xs ++
      ys). Because the (:) constructor is nonstrict, the
      evaluation of xs ++ ys can be deferred: we generate more
      elements of the result at whatever rate they are demanded. When we
      generate more of the result, we will no longer be using
      x, so the garbage collector can reclaim it. Since we
      generate elements of the result on demand, and do not hold onto parts
      that we are done with, the compiler can evaluate our code in constant
      space.

Making Use of Our Pattern Matcher



It’s all very well to have a function that
      can match glob patterns, but we’d like to be able to put this to
      practical use. On Unix-like systems, the glob function returns the names of all files
      and directories that match a given glob pattern. Let’s build a similar
      function in Haskell. Following the Haskell norm of descriptive naming,
      we’ll call our function namesMatching:
-- file: ch08/Glob.hs
module Glob (namesMatching) where
We specify that namesMatching is the only name that users of
      our Glob module will be able to see.
This function will obviously have to
      manipulate filesystem paths a lot, splicing and joining them as it goes.
      We’ll need to use a few previously unfamiliar modules along the
      way.
The System.Directory module provides standard
      functions for working with directories and their contents:
-- file: ch08/Glob.hs
import System.Directory (doesDirectoryExist, doesFileExist,
                         getCurrentDirectory, getDirectoryContents)
The System.FilePath module abstracts the details
      of an operating system’s path name conventions. The (</>) function joins two path
      components:
ghci> :m +System.FilePath
ghci> "foo" </> "bar"
Loading package filepath-1.1.0.0 ... linking ... done.
"foo/bar"
The name of the dropTrailingPathSeparator function is
      perfectly descriptive:
ghci> dropTrailingPathSeparator "foo/"
"foo"

The splitFileName function splits a path at the
      last slash:
ghci> splitFileName "foo/bar/Quux.hs"
("foo/bar/","Quux.hs")
ghci> splitFileName "zippity"
("","zippity")
Using System.FilePath
      together with the System.Directory
      module, we can write a portable namesMatching function that will run on both
      Unix-like and Windows systems:
-- file: ch08/Glob.hs
import System.FilePath (dropTrailingPathSeparator, splitFileName, (</>))
In this module, we’ll be emulating a
      “for” loop; getting our first taste of exception handling
      in Haskell; and of course using the matchesGlob function we just wrote:
-- file: ch08/Glob.hs
import Control.Exception (handle)
import Control.Monad (forM)
import GlobRegex (matchesGlob)
Since directories and files live in the
      “real world” of activities that have effects, our globbing
      function will have to have IO in its result
      type.
If the string we’re passed contains no
      pattern characters, we simply check that the given name exists in the
      filesystem. (Notice that we use Haskell’s function guard syntax here to
      write a nice tidy definition. An “if” would do but isn’t as
      aesthetically pleasing.)
-- file: ch08/Glob.hs
isPattern :: String -> Bool
isPattern = any (`elem` "[*?")

namesMatching pat
  | not (isPattern pat) = do
    exists <- doesNameExist pat
    return (if exists then [pat] else [])
The name doesNameExist refers to a function that we
      will define shortly.
What if the string is
      a glob pattern? Our function definition continues:
-- file: ch08/Glob.hs
  | otherwise = do
    case splitFileName pat of
      ("", baseName) -> do
          curDir <- getCurrentDirectory
          listMatches curDir baseName
      (dirName, baseName) -> do
          dirs <- if isPattern dirName
                  then namesMatching (dropTrailingPathSeparator dirName)
                  else return [dirName]
          let listDir = if isPattern baseName
                        then listMatches
                        else listPlain
          pathNames <- forM dirs $ \dir -> do
                           baseNames <- listDir dir baseName
                           return (map (dir </>) baseNames)
          return (concat pathNames)
We use splitFileName to split the string into a pair
      of “everything but the final name” and “the final name.” If
      the first element is empty, we’re looking for a pattern in the current
      directory. Otherwise, we must check the directory name and see if it
      contains patterns. If it does not, we create a singleton list of the
      directory name. If it contains a pattern, we list all of the matching
      directories.
Things to watch out for
The System.FilePath module can be a little tricky. The example just shown is a
        case in point; the splitFileName
        function leaves a trailing slash on the end of the directory name that
        it returns:
ghci> :module +System.FilePath
ghci> splitFileName "foo/bar"
Loading package filepath-1.1.0.0 ... linking ... done.
("foo/","bar")
If we didn’t remember (or know enough)
        to remove that slash, we’d recurse endlessly in namesMatching, because of the following
        behavior of splitFileName:
ghci> splitFileName "foo/"
("foo/","")

(You can guess what happened to us that
        led us to add this note!)

Finally, we collect all matches in every
      directory, giving us a list of lists, and concatenate them into a single
      list of names.
The unfamiliar forM function above acts a little like a
      “for” loop: it maps its second argument (an action) over
      its first (a list), and returns the list of results.
We have a few loose ends to clean up. The
      first is the definition of the doesNameExist function, used above. The
      System.Directory module doesn’t let us check to see if a name exists in the
      filesystem. It forces us to decide whether we want to check for a file
      or a directory. This API is ungainly, so we roll the two checks into a
      single function. In the name of performance, we make the check for a
      file first, since files are far more common than directories:
-- file: ch08/Glob.hs
doesNameExist :: FilePath -> IO Bool

doesNameExist name = do
    fileExists <- doesFileExist name
    if fileExists
      then return True
      else doesDirectoryExist name
We have two other functions to define,
      each of which returns a list of names in a directory. The listMatches function returns a list of all
      files matching the given glob pattern in a directory:
-- file: ch08/Glob.hs
listMatches :: FilePath -> String -> IO [String]
listMatches dirName pat = do
    dirName' <- if null dirName
                then getCurrentDirectory
                else return dirName
    handle (const (return [])) $ do
        names <- getDirectoryContents dirName'
        let names' = if isHidden pat
                     then filter isHidden names
                     else filter (not . isHidden) names
        return (filter (`matchesGlob` pat) names')

isHidden ('.':_) = True
isHidden _       = False
The listPlain function returns either an empty or
      singleton list, depending on whether the single name it’s passed
      exists:
-- file: ch08/Glob.hs
listPlain :: FilePath -> String -> IO [String]
listPlain dirName baseName = do
    exists <- if null baseName
              then doesDirectoryExist dirName
              else doesNameExist (dirName </> baseName)
    return (if exists then [baseName] else [])
If we look closely at the definition of
      listMatches, we’ll see a call to a
      function named handle. Earlier on,
      we imported this from the Control.Exception module; as that import
      implies, this gives us our first taste of exception handling in Haskell.
      Let’s drop into ghci and see what we
      can find out:
ghci> :module +Control.Exception
ghci> :type handle
handle :: (Exception -> IO a) -> IO a -> IO a
This is telling us that handle takes two arguments. The first is a
      function that is passed an exception value, and can have side effects
      (see the IO type in its return value); this is the handler
      to run if an exception is thrown. The second argument is the code that
      might throw an exception.
As for the exception handler, the type of
      the handle constrains it to return
      the same type of value as the body of code that threw the exception. So
      its choices are to either throw an exception or, as in our case, return
      a list of Strings.
The const function takes two arguments—it always
      returns its first argument, no matter what its second argument
      is:
ghci> :type const
const :: a -> b -> a
ghci> :type return []
return [] :: (Monad m) => m [a]
ghci> :type handle (const (return []))
handle (const (return [])) :: IO [a] -> IO [a]
We use const to write an exception handler that
      ignores the exception it is passed. Instead, it causes our code to
      return an empty list if we catch an exception.
We won’t have anything more to say about
      exception handling here. There’s plenty more to cover, though, so we’ll
      be returning to the subject of exceptions in Chapter 19.
Exercises
	Although we’ve gone to some lengths to write a portable
            namesMatching function, the
            function uses our case sensitive globToRegex function. Find a way to
            modify namesMatching to be
            case-sensitive on Unix, and case insensitive on Windows, without
            modifying its type signature. (Hint: consider
            reading the documentation for System.FilePath to look for a variable
            that tells us whether we’re running on a Unix-like system or on
            Windows.)

	If you’re on a Unix-like system, look through the
            documentation for the System.Posix.Files module, and see if you
            can find a replacement for the doesNameExist function.

	The * wild card matches
            names only within a single directory. Many shells have an extended
            wild card syntax, **, that
            matches names recursively in all directories. For example,
            **.c would mean “match a
            name ending in .c in this
            directory or any subdirectory at any depth”. Implement
            matching on ** wild
            cards.





Handling Errors Through API Design



It’s not necessarily a disaster if our globToRegex is passed a malformed pattern.
      Perhaps a user mistyped a pattern, in which case, we’d like to be able
      to report a meaningful error message.
Calling the error function when this kind of problem occurs can be a drastic
      response (exploring its consequences was the focus of Exercises). The error throws an exception. Pure Haskell code
      cannot deal with exceptions, so control is going to rocket out of our
      pure code into the nearest caller that lives in
      IO and has an appropriate exception handler
      installed. If no such handler is installed, the Haskell runtime will
      default to terminating our program (or print a nasty error message, in
      ghci).
So calling error is a little like pulling the handle of
      a fighter plane’s ejection seat. We’re bailing out of a catastrophic
      situation that we can’t deal with gracefully, and there’s likely to be a
      lot of flaming wreckage strewn about by the time we hit the
      ground.
We’ve established that error is for disasters, but we’re still using
      it in globToRegex. In that case,
      malformed input should be rejected, but not turned into a big deal. What
      would be a better way to handle this?
Haskell’s type system and libraries to the
      rescue! We can encode the possibility of failure in the type signature
      of globToRegex using the predefined
      Either type:
-- file: ch08/GlobRegexEither.hs
type GlobError = String

globToRegex :: String -> Either GlobError String
A value returned by globToRegex will now be either Left "an error message" or Right "a valid regexp". This return type
      forces our callers to deal with the possibility of error. (You’ll find
      that this use of the Either type occurs frequently in
      Haskell code.)
Exercises
	Write a version of globToRegex that uses the type
            signature shown earlier.

	Modify the type signature of namesMatching so that it encodes the
            possibility of a bad pattern, and make it use your rewritten
            globToRegex function.



Tip
You may find the amount of work involved to be surprisingly
          large. Don’t worry; we will introduce more concise and sophisticated
          ways of dealing with errors in later chapters.



Putting Our Code to Work



The namesMatching function isn’t very exciting by
      itself, but it’s a useful building block. Combine it with a few more
      functions, and we can start to do interesting things.
Here’s one such example. Let’s define a
      renameWith function that, instead
      of simply renaming a file, applies a function to the file’s name, and
      renames the file to whatever that function returns:
-- file: ch08/Useful.hs
import System.FilePath (replaceExtension)
import System.Directory (doesFileExist, renameDirectory, renameFile)
import Glob (namesMatching)

renameWith :: (FilePath -> FilePath)
           -> FilePath
           -> IO FilePath

renameWith f path = do
    let path' = f path
    rename path path'
    return path'
Once again, we work around the ungainly
      file/directory split in System.Directory with a helper
      function:
-- file: ch08/Useful.hs
rename :: FilePath -> FilePath -> IO ()

rename old new = do
    isFile <- doesFileExist old
    let f = if isFile then renameFile else renameDirectory
    f old new
The System.FilePath module provides many useful
      functions for manipulating filenames. These functions mesh nicely with
      our renameWith and namesMatching functions, so that we can
      quickly use them to create functions with complex behavior. As an
      example, this terse function changes the filename suffixing convention
      for C++ source files:
-- file: ch08/Useful.hs
cc2cpp =
  mapM (renameWith (flip replaceExtension ".cpp")) =<< namesMatching "*.cc"
The cc2cpp function uses a few functions we’ll
      see over and over. The flip
      function takes another function as argument and swaps the order of its
      arguments (inspect the type of replaceExtension in ghci to see why). The =<< function feeds the result of the action on its right side to the
      action on
      its left.
Exercise
	Glob patterns are simple enough to interpret that it’s easy
            to write a matcher directly in Haskell, rather than going through
            the regexp machinery. Give it a try.







[27] If you are not acquainted with regular expressions,
          we recommend Jeffrey Friedl’s book Mastering Regular
          Expressions (O’Reilly).



Chapter 9. I/O Case Study: A Library for Searching the Filesystem



The problem of “I know I have this file, but I don’t know
    where it is” has been around for as long as computers have had
    hierarchical filesystems. The fifth edition of Unix introduced the
    find command in 1974; it remains indispensable today. The state of the
    art has come a long way: modern operating systems ship with advanced
    document indexing and search capabilities.
There’s still a valuable place for find-like capability in the programmer’s
    toolbox. In this chapter, we’ll develop a library that gives us many of
    find’s capabilities, without leaving
    Haskell. We’ll explore several different approaches to writing this
    library, each with different strengths.
The find Command



If you don’t use a Unix-like operating
      system, or you’re not a heavy shell user, it’s quite possible you may
      not have heard of find. Given a list
      of directories, it searches each one recursively and prints the name of
      every entry that matches an expression.
Individual expressions can take such forms
      as “name matches this glob pattern,” “entry is a plain file,” “last
      modified before this date,” and many more. They can be stitched together
      into more complex expressions using “and” and
      “or” operators.

Starting Simple: Recursively Listing a Directory



Before we plunge into designing our library, let’s solve a few smaller
      issues. Our first problem is to recursively list the contents of a
      directory and its subdirectories:
-- file: ch09/RecursiveContents.hs
module RecursiveContents (getRecursiveContents) where

import Control.Monad (forM)
import System.Directory (doesDirectoryExist, getDirectoryContents)
import System.FilePath ((</>))

getRecursiveContents :: FilePath -> IO [FilePath]

getRecursiveContents topdir = do
  names <- getDirectoryContents topdir
  let properNames = filter (`notElem` [".", ".."]) names
  paths <- forM properNames $ \name -> do
    let path = topdir </> name
    isDirectory <- doesDirectoryExist path
    if isDirectory
      then getRecursiveContents path
      else return [path]
  return (concat paths)
The filter expression ensures that a listing for
      a single directory won’t contain the special directory names . or ..,
      which refer to the current and parent directory, respectively. If we
      forgot to filter these out, we’d recurse endlessly.
We encountered forM in the previous chapter; it is mapM with its arguments flipped:
ghci> :m +Control.Monad
ghci> :type mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :type forM
forM :: (Monad m) => [a] -> (a -> m b) -> m [b]
The body of the loop checks to see whether
      the current entry is a directory. If it is, it recursively calls
      getRecursiveContents to list that
      directory. Otherwise, it returns a single-element list that is the name of
      the current entry. (Don’t forget that the return function has a unique meaning in
      Haskell: it wraps a value with the monad’s type constructor.)
Another thing worth pointing out is the
      use of the variable isDirectory. In an imperative
      language such as Python, we’d normally write if
      os.path.isdir(path). However, the doesDirectoryExist function is an
      action; its return type is IO Bool,
      not Bool. Since an if
      expression requires an expression of type Bool, we have to
      use <- to get the Bool result of the action
      out of its IO wrapper so that we can use the plain,
      unwrapped Bool in the if.
Each iteration of the loop body yields a
      list of names, so the result type of forM here is IO [[FilePath]]. We
      use concat to flatten it into a
      single list.
Revisiting Anonymous and Named Functions



In Anonymous (lambda) Functions, we listed some reasons not to use anonymous functions,
        and yet here we are, using one as the body of a loop. This is one of
        the most common uses of anonymous functions in Haskell.
We’ve already seen from their types that
        forM and mapM take functions as arguments. Most loop
        bodies are blocks of code that appear only once in a program. Since
        we’re most likely to use a loop body in one place only, why give it a
        name?
Of course, it sometimes happens that we
        need to deploy exactly the same code in several different loops.
        Rather than cutting and pasting the same anonymous function, it makes
        sense in such cases to give a name to an existing anonymous
        function.

Why Provide Both mapM and forM?



It might seem a bit odd that there exist two functions that are
        identical but for the order in which they accept their arguments.
        However, mapM and forM are convenient in different circumstances.
Consider our previous example, using an
        anonymous function as a loop body. If we were to use mapM instead of forM, we’d have to place the variable
        properNames after the body of the function. In
        order to get the code to parse correctly, we’d have to wrap the entire
        anonymous function in parentheses, or replace it with a named function
        that would otherwise be unnecessary. Try it yourself: copy the code
        just shown, replacing forM with
        mapM, and see what this does to
        the readability of the code.
By contrast, if the body of the loop was
        already a named function, and the list over which we were looping was
        computed by a complicated expression, we’d have a good case for using
        mapM instead.
The stylistic rule of thumb to follow
        here is to use whichever of mapM
        or forM lets you write the
        tidiest code. If the loop body and the expression computing the data
        over which you’re looping are both short, it doesn’t matter which you
        use. If the loop is short, but the data is long, use mapM. If the loop is long, but the data
        short, use forM. And if both are
        long, use a let or where clause to make one of them short. With
        just a little practice, it will become obvious which of these
        approaches is best in every instance.


A Naive Finding Function



We can use our getRecursiveContents function as the basis
      for a simple-minded file finder:
-- file: ch09/SimpleFinder.hs
import RecursiveContents (getRecursiveContents)

simpleFind :: (FilePath -> Bool) -> FilePath -> IO [FilePath]

simpleFind p path = do
  names <- getRecursiveContents path
  return (filter p names)
This function takes a predicate that we
      use to filter the names returned by getRecursiveContents. Each name passed to the
      predicate is a complete path, so how can we perform a common operation
      such as “find all files ending in the extension .c”?
The System.FilePath
      module contains numerous invaluable functions that help us to
      manipulate filenames. In this case, we want takeExtension:
ghci> :m +System.FilePath
ghci> :type takeExtension
takeExtension :: FilePath -> String
ghci> takeExtension "foo/bar.c"
Loading package filepath-1.1.0.0 ... linking ... done.
".c"
ghci> takeExtension "quux"
""
This gives us a simple matter of writing a
      function that takes a path, extracts its extension, and compares it with
      .c:
ghci> :load SimpleFinder
[1 of 2] Compiling RecursiveContents ( RecursiveContents.hs, interpreted )
[2 of 2] Compiling Main             ( SimpleFinder.hs, interpreted )
Ok, modules loaded: RecursiveContents, Main.
ghci> :type simpleFind (\p -> takeExtension p == ".c")
simpleFind (\p -> takeExtension p == ".c") :: FilePath -> IO [FilePath]
While simpleFind works, it has a few glaring
      problems. The first is that the predicate is not very expressive. It can
      only look at the name of a directory entry; it cannot, for example, find
      out whether it’s a file or a directory. This means that our attempt to
      use simpleFind will list
      directories ending in .c as well as
      files with the same extension.
The second problem is that simpleFind gives us no control over how it
      traverses the filesystem. To see why this is significant, consider the
      problem of searching for a source file in a tree managed by the
      Subversion revision control system. Subversion maintains a private
      .svn directory in every directory
      that it manages; each one contains many subdirectories and files that
      are of no interest to us. While we can easily filter out any path
      containing .svn, it’s more
      efficient to simply avoid traversing these directories in the first
      place. For example, one of us has a Subversion source tree containing
      45,000 files, 30,000 of which are stored in 1,200 different .svn directories. It’s cheaper to avoid
      traversing those 1,200 directories than to filter out the 30,000 files
      they contain.
Finally, simpleFind is strict, because it consists of
      a series of actions executed in the IO monad. If we have a
      million files to traverse, we encounter a long delay, and then receive
      one huge result containing a million names. This is bad for both
      resource usage and responsiveness. We might prefer a lazy stream of
      results delivered as they arrive.
In the sections that follow, we’ll
      overcome each one of these problems.

Predicates: From Poverty to Riches, While Remaining Pure



Our predicates can only look at filenames. This excludes a
      wide variety of interesting behaviors—for instance, what if we’d like to
      list files greater than a given size?
An easy reaction to this is to reach for
      IO: instead of our predicate being of type FilePath
      -> Bool, why don’t we change it to FilePath -> IO
      Bool? This would let us perform arbitrary I/O as part of our
      predicate. As appealing as this might seem, it’s also potentially a
      problem: such a predicate could have arbitrary side effects, since a
      function with return type IO a can have whatever side
      effects it pleases.
Let’s enlist the type system in our quest
      to write more predictable, less buggy code; we’ll keep predicates pure
      by avoiding the taint of “IO.” This will ensure that they can’t have any
      nasty side effects. We’ll feed them more information, too, so that they
      can gain the expressiveness we want without also becoming potentially
      dangerous.
Haskell’s portable
      System.Directory module provides a useful, albeit limited,
      set of file metadata:
ghci> :m +System.Directory
We can use doesFileExist and
      doesDirectoryExist to determine
      whether a directory entry is a file or a directory. There are not yet
      portable ways to query for other file types that have become widely
      available in recent years, such as named pipes, hard links, and symbolic
      links:
ghci> :type doesFileExist
doesFileExist :: FilePath -> IO Bool
ghci> doesFileExist "."
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
False
ghci> :type doesDirectoryExist
doesDirectoryExist :: FilePath -> IO Bool
ghci> doesDirectoryExist "."
True
The getPermissions function
      lets us find out whether certain operations on a file or directory are
      allowed:
ghci> :type getPermissions
getPermissions :: FilePath -> IO Permissions
ghci> :info Permissions
data Permissions
  = Permissions {readable :: Bool,
                 writable :: Bool,
                 executable :: Bool,
                 searchable :: Bool}
  	-- Defined in System.Directory
instance Eq Permissions -- Defined in System.Directory
instance Ord Permissions -- Defined in System.Directory
instance Read Permissions -- Defined in System.Directory
instance Show Permissions -- Defined in System.Directory
ghci> getPermissions "."
Permissions {readable = True, writable = True, executable = False, searchable = True}
ghci> :type searchable
searchable :: Permissions -> Bool
ghci> searchable it
True
Finally, getModificationTime
      tells us when an entry was last modified:
ghci> :type getModificationTime
getModificationTime :: FilePath -> IO System.Time.ClockTime
ghci> getModificationTime "."
Sat Aug 23 22:28:16 PDT 2008
If we stick with portable, standard
      Haskell code, these functions are all we have at our disposal. (We can
      also find a file’s size using a small hack; see below.) They’re also
      quite enough to let us illustrate the principles we’re interested in,
      without letting us get carried away with an example that’s too
      expansive. If you need to write more demanding code, the System.Posix and
      System.Win32 module families provide much more detailed
      file metadata for the two major modern computing platforms. There also
      exists a unix-compat package on Hackage, which provides a Unix-like API on
      Windows.
How many pieces of data does our new,
      richer predicate need to see? Since we can find out whether an entry is
      a file or a directory by looking at its Permissions, we
      don’t need to pass in the results of doesFileExist or doesDirectoryExist. We thus have four pieces
      of data that a richer predicate needs to look at:
-- file: ch09/BetterPredicate.hs
import Control.Monad (filterM)
import System.Directory (Permissions(..), getModificationTime, getPermissions)
import System.Time (ClockTime(..))
import System.FilePath (takeExtension)
import Control.Exception (bracket, handle)
import System.IO (IOMode(..), hClose, hFileSize, openFile)

-- the function we wrote earlier
import RecursiveContents (getRecursiveContents)

type Predicate =  FilePath      -- path to directory entry
               -> Permissions   -- permissions
               -> Maybe Integer -- file size (Nothing if not file)
               -> ClockTime     -- last modified
               -> Bool
Our Predicate type is just a
      synonym for a function of four arguments. It will save us a little
      keyboard work and screen space.
Notice that the return value of this
      predicate is Bool, not IO Bool: the predicate
      is pure and cannot perform I/O. With this type in hand, our more
      expressive finder function is still quite trim:
-- file: ch09/BetterPredicate.hs
-- soon to be defined
getFileSize :: FilePath -> IO (Maybe Integer)

betterFind :: Predicate -> FilePath -> IO [FilePath]

betterFind p path = getRecursiveContents path >>= filterM check
    where check name = do
            perms <- getPermissions name
            size <- getFileSize name
            modified <- getModificationTime name
            return (p name perms size modified)
Let’s walk through the code. We’ll talk
      about getFileSize in some detail
      soon, so let’s skip over it for now.
We can’t use filter to call our predicate
      p, as p’s purity means it cannot
      do the I/O needed to gather the metadata it requires.
This leads us to the unfamiliar function
      filterM. It behaves like the normal
      filter function, but in this case
      it evaluates its predicate in the IO monad, allowing the
      predicate to perform I/O:
ghci> :m +Control.Monad
ghci> :type filterM
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
Our check predicate is an I/O-capable wrapper for
      our pure predicate p. It does all the
      “dirty” work of I/O on p’s behalf so
      that we can keep p incapable of unwanted side
      effects. After gathering the metadata, check calls p, and then
      uses return to wrap
      p’s result with IO.

Sizing a File Safely



Although System.Directory doesn’t let us find out how
      large a file is, we can use the similarly portable
      System.IO module to do this. It contains a function named hFileSize, which returns the size in bytes of
      an open file. Here’s a simple function that wraps it:
-- file: ch09/BetterPredicate.hs
simpleFileSize :: FilePath -> IO Integer

simpleFileSize path = do
  h <- openFile path ReadMode
  size <- hFileSize h
  hClose h
  return size
While this function works, it’s not yet
      suitable for us to use. In betterFind, we call getFileSize unconditionally on any directory
      entry; it should return Nothing if an entry is not a plain
      file, or it returns the size wrapped by Just otherwise.
      This function instead throws an exception if an entry is not a plain
      file or could not be opened (perhaps due to insufficient permissions),
      and returns the size unwrapped.
Here’s a safer version of this
      function:
-- file: ch09/BetterPredicate.hs
saferFileSize :: FilePath -> IO (Maybe Integer)

saferFileSize path = handle (\_ -> return Nothing) $ do
  h <- openFile path ReadMode
  size <- hFileSize h
  hClose h
  return (Just size)
The body of the function is almost
      identical, save for the handle
      clause.
Our exception handler ignores the
      exception it’s passed and returns Nothing. The only change
      to the body that follows is that it wraps the file size with Just.
The saferFileSize function now has the correct
      type signature, and it won’t throw any exceptions. But it’s still not
      completely well behaved. There are directory entries on which openFile will succeed, but hFileSize will throw an exception. This can
      happen with, for example, named pipes. Such an exception will be caught
      by handle, but our call to
      hClose will never occur.
A Haskell implementation will
      automatically close the file handle when it notices that the handle is
      no longer being used. That will not occur until the garbage collector
      runs, and the delay until the next garbage collection pass
      is not predictable.
File handles are scarce resources,
       enforced by the underlying operating system. On Linux,
      for example, a process is by default allowed to have only 1,024 files
      open simultaneously.
It’s not hard to imagine a scenario in
      which a program that called a version of betterFind that used saferFileSize could crash due to betterFind exhausting the supply of open file
      handles before enough garbage file handles could be closed.
This is a particularly pernicious kind of
      bug: it has several aspects that combine to make it incredibly difficult
      to track down. It will only be triggered if betterFind visits a sufficiently large number of nonfiles to
      hit the process’s limit on open file handles, and then returns to a
      caller that tries to open another file before any of the accumulated
      garbage file handles are closed.
To make matters worse, any subsequent error will be
      caused by data that is no longer reachable from within the program and
      has yet to be garbage-collected. Such a bug is thus dependent on the
      structure of the program, the contents of the filesystem, and how close
      the current run of the program is to triggering the garbage
      collector.
This sort of problem is easy to overlook
      during development, and when it later occurs in the field (as these
      awkward problems always seem to do), it will be much harder to
      diagnose.
Fortunately, we can avoid this kind of
      error very easily, while also making our function
      shorter.
The Acquire-Use-Release Cycle



We need hClose to
        always be called if openFile
        succeeds. The Control.Exception module provides the bracket function for exactly this
        purpose:
ghci> :type bracket
bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

The bracket function takes three actions as arguments. The first action
        acquires a resource. The second releases the resource. The third runs
        in between, while the resource is acquired; let’s call this the
        “use” action. If the “acquire” action
        succeeds, the “release” action is
        always called. This guarantees that the resource
        will always be released. The “use” and
        “release” actions are each passed the resource acquired
        by the “acquire” action.
If an exception occurs while the
        “use” action is executing, bracket calls the “release”
        action and rethrows the exception. If the “use” action
        succeeds, bracket calls the
        “release” action and returns the value returned by the
        “use” action.
We can now write a function that is
        completely safe—it will not throw exceptions, neither will it
        accumulate garbage file handles that could cause spurious failures
        elsewhere in our program:
-- file: ch09/BetterPredicate.hs
getFileSize path = handle (\_ -> return Nothing) $
  bracket (openFile path ReadMode) hClose $ \h -> do
    size <- hFileSize h
    return (Just size)
Look again closely at the arguments of
        bracket. The first opens the file
        and returns the open file handle. The second closes the handle. The
        third simply calls hFileSize
        on the handle and wraps the result in Just.
We need to use both bracket and handle for this function to operate
        correctly. The former ensures that we don’t accumulate garbage file
        handles, while the latter gets rid of exceptions.
Exercise
	Is the order in which we call bracket and handle important? Why?






A Domain-Specific Language for Predicates



Let’s take a stab at writing a predicate that will check for a
      C++ source file that is over 128 KB in size:
-- file: ch09/BetterPredicate.hs
myTest path _ (Just size) _ =
    takeExtension path == ".cpp" && size > 131072
myTest _ _ _ _ = False
This isn’t especially pleasing. The
      predicate takes four arguments, always ignores two of them, and requires
      two equations to define. Surely we can do better. Let’s create some code
      that will help us write more concise predicates.
Sometimes, this kind of library is
      referred to as an embedded domain-specific
      language: we use our programming language’s native facilities
      (hence embedded) to write code that lets us solve
      some narrow problem (hence domain-specific)
      particularly elegantly.
Our first step is to write a function that
      returns one of its arguments. This one extracts the path from the
      arguments passed to a Predicate:
-- file: ch09/BetterPredicate.hs
pathP path _ _ _ = path
If we don’t provide a type signature, a
      Haskell implementation will infer a very general type for this function.
      This can later lead to error messages that are difficult to interpret,
      so let’s give pathP a type:
-- file: ch09/BetterPredicate.hs
type InfoP a =  FilePath        -- path to directory entry
             -> Permissions     -- permissions
             -> Maybe Integer   -- file size (Nothing if not file)
             -> ClockTime       -- last modified
             -> a

pathP :: InfoP FilePath
We’ve created a type synonym that we can
      use as shorthand for writing other, similarly structured functions. Our
      type synonym accepts a type parameter so that we can specify different
      result types:
-- file: ch09/BetterPredicate.hs
sizeP :: InfoP Integer
sizeP _ _ (Just size) _ = size
sizeP _ _ Nothing     _ = -1
(We’re being a little sneaky here and
      returning a size of –1 for entries that are not files or that we
      couldn’t open.)
In fact, a quick glance shows that the
      Predicate type that we defined near the beginning of this
      chapter is the same type as InfoP Bool. (We could thus
      legitimately get rid of the Predicate type.)
What use are pathP and sizeP? With a little more glue, we can use
      them in a predicate (the P suffix on each name is intended
      to suggest “predicate”). This is where things start to get
      interesting:
-- file: ch09/BetterPredicate.hs
equalP :: (Eq a) => InfoP a -> a -> InfoP Bool
equalP f k = \w x y z -> f w x y z == k
The type signature of equalP deserves a little attention. It takes an InfoP a type, which is
      compatible with both pathP and
      sizeP. It next takes an
      a and returns an InfoP Bool type, which we
      already observed is a synonym for Predicate. In other
      words, equalP constructs a
      predicate.
The equalP function works by returning an
      anonymous function. That one takes the arguments accepted by a
      predicate, passes them to f, and compares the result
      to k.
This equation for equalP emphasizes the fact that we think of
      it as taking two arguments. Since Haskell curries all functions, writing
      equalP in this way is not actually
      necessary. We can omit the anonymous function and rely on currying to
      work on our behalf, letting us write a function that behaves
      identically:
-- file: ch09/BetterPredicate.hs
equalP' :: (Eq a) => InfoP a -> a -> InfoP Bool
equalP' f k w x y z = f w x y z == k
Before we continue with our explorations,
      let’s load our module into ghci:
ghci> :load BetterPredicate
[1 of 2] Compiling RecursiveContents ( RecursiveContents.hs, interpreted )
[2 of 2] Compiling Main             ( BetterPredicate.hs, interpreted )
Ok, modules loaded: RecursiveContents, Main.

Let’s see if a simple predicate
      constructed from these functions will work:
ghci> :type betterFind (sizeP `equalP` 1024)
betterFind (sizeP `equalP` 1024) :: FilePath -> IO [FilePath]

Notice that we’re not actually calling
      betterFind, we’re merely making
      sure that our expression typechecks. We now have a more expressive way
      to list all files that are exactly some size. Our success gives us
      enough confidence to continue.
Avoiding Boilerplate with Lifting



Besides equalP, we’d like to be able to write other binary functions. We’d
        prefer not to write a complete definition of each one, because that
        seems unnecessarily verbose.
To address this, let’s put Haskell’s
        powers of abstraction to use. We’ll take the definition of equalP, and instead of calling (==) directly, we’ll pass in as another argument the binary function
        that we want to call:
-- file: ch09/BetterPredicate.hs
liftP :: (a -> b -> c) -> InfoP a -> b -> InfoP c
liftP q f k w x y z = f w x y z `q` k

greaterP, lesserP :: (Ord a) => InfoP a -> a -> InfoP Bool
greaterP = liftP (>)
lesserP = liftP (<)
This act of taking a function, such as
        (>), and transforming it into another function that operates
        in a different context (here greaterP) is referred to as
        lifting it into that context. (This explains the presence of
        lift in the function’s name.) Lifting lets us reuse code
        and reduce boilerplate. We’ll be using it a lot, in different guises,
        throughout the rest of this book.
When we lift a function, we’ll often
        refer to its original and new versions as
        unlifted and lifted,
        respectively.
By the way, our placement of
        q (the function to lift) as the first argument to
        liftP was quite deliberate. This
        made it possible for us to write such concise definitions of greaterP and lesserP. Partial application makes finding
        the “best” order for arguments a more important part of
        API design in Haskell than in other languages. In languages without
        partial application, argument ordering is a matter of taste and
        convention. Put an argument in the wrong place in Haskell, however,
        and we lose the concision that partial application gives.
We can recover some of that conciseness
        via combinators. For instance, forM was not added to the
        Control.Monad module until 2007. Prior to that, people
        wrote flip mapM instead:
ghci> :m +Control.Monad
ghci> :t mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :t forM
forM :: (Monad m) => [a] -> (a -> m b) -> m [b]
ghci> :t flip mapM
flip mapM :: (Monad m) => [a] -> (a -> m b) -> m [b]

Gluing Predicates Together



If we want to combine predicates, we
        can, of course, follow the obvious path of doing so by hand:
-- file: ch09/BetterPredicate.hs
simpleAndP :: InfoP Bool -> InfoP Bool -> InfoP Bool
simpleAndP f g w x y z = f w x y z && g w x y z
Now that we know about lifting, it
        becomes more natural to reduce the amount of code we must write by
        lifting our existing Boolean operators:
-- file: ch09/BetterPredicate.hs
liftP2 :: (a -> b -> c) -> InfoP a -> InfoP b -> InfoP c
liftP2 q f g w x y z = f w x y z `q` g w x y z

andP = liftP2 (&&)
orP = liftP2 (||)
Notice that liftP2 is very similar to our earlier
        liftP. In fact, it’s more
        general, because we can write liftP in terms of liftP2:
-- file: ch09/BetterPredicate.hs
constP :: a -> InfoP a
constP k _ _ _ _ = k

liftP' q f k w x y z = f w x y z `q` constP k w x y z
Combinators
In Haskell, we refer to functions that
          take other functions as arguments and return new functions
          as combinators.

Now that we have some helper functions
        in place, we can return to the myTest function we defined earlier:
-- file: ch09/BetterPredicate.hs
myTest path _ (Just size) _ =
    takeExtension path == ".cpp" && size > 131072
myTest _ _ _ _ = False
How will this function look if we write
        it using our new combinators?
-- file: ch09/BetterPredicate.hs
liftPath :: (FilePath -> a) -> InfoP a
liftPath f w _ _ _ = f w

myTest2 = (liftPath takeExtension `equalP` ".cpp") `andP`
          (sizeP `greaterP` 131072)
We’ve added one final combinator,
        liftPath, since manipulating
        filenames is such a common activity.

Defining and Using New Operators



We can take our domain-specific language further by defining new infix
        operators:
-- file: ch09/BetterPredicate.hs
(==?) = equalP
(&&?) = andP
(>?) = greaterP

myTest3 = (liftPath takeExtension ==? ".cpp") &&? (sizeP >? 131072)
We chose names such as (==?) for the lifted functions specifically
        for their visual similarity to their unlifted counterparts.
The parentheses in our definition are
        necessary, because we haven’t told Haskell about the precedence or
        associativity of our new operators. The language specifies that
        operators without fixity declarations should be treated as
        infixl 9, i.e., evaluated from left to right at the
        highest precedence level. If we were to omit the parentheses, the
        expression would thus be parsed as (((liftPath takeExtension)
        ==? ".cpp") &&? sizeP) >? 131072, which is horribly
        wrong.
We can respond by writing fixity
        declarations for our new operators. Our first step is to find out what
        the fixities of the unlifted operators are, so that we can mimic
        them:
ghci> :info ==
class Eq a where
  (==) :: a -> a -> Bool
  ...
  	-- Defined in GHC.Base
infix 4 ==
ghci> :info &&
(&&) :: Bool -> Bool -> Bool 	-- Defined in GHC.Base
infixr 3 &&
ghci> :info >
class (Eq a) => Ord a where
  ...
  (>) :: a -> a -> Bool
  ...
  	-- Defined in GHC.Base
infix 4 >
With these in hand, we can now write a
        parenthesis-free expression that will be parsed identically to
        myTest3:
-- file: ch09/BetterPredicate.hs
infix 4 ==?
infixr 3 &&?
infix 4 >?

myTest4 = liftPath takeExtension ==? ".cpp" &&? sizeP >? 131072


Controlling Traversal



When traversing the filesystem,
      we’d like to give ourselves more control over which directories we
      enter, and when. An easy way in which we can allow this is to pass in a
      function that takes a list of subdirectories of a given directory and
      returns another list. This list can have elements removed, or it can be
      ordered differently than the original list, or both. The simplest such
      control function is id, which will
      return its input list unmodified.
For variety, we’re going to change a few
      aspects of our representation here. Instead of the elaborate function
      type InfoP a, we’ll use a normal algebraic data type to substantially
      represent the same information:
-- file: ch09/ControlledVisit.hs
data Info = Info {
      infoPath :: FilePath
    , infoPerms :: Maybe Permissions
    , infoSize :: Maybe Integer
    , infoModTime :: Maybe ClockTime
    } deriving (Eq, Ord, Show)

getInfo :: FilePath -> IO Info
We’re using record syntax to give
      ourselves “free” accessor functions, such as infoPath. The type of our traverse function is simple, as we just
      proposed. To obtain Info about a file or directory, we call
      the getInfo action:
-- file: ch09/ControlledVisit.hs
traverse :: ([Info] -> [Info]) -> FilePath -> IO [Info]
The definition of traverse is short, but dense:
-- file: ch09/ControlledVisit.hs
traverse order path = do
    names <- getUsefulContents path
    contents <- mapM getInfo (path : map (path </>) names)
    liftM concat $ forM (order contents) $ \info -> do
      if isDirectory info && infoPath info /= path
        then traverse order (infoPath info)
        else return [info]

getUsefulContents :: FilePath -> IO [String]
getUsefulContents path = do
    names <- getDirectoryContents path
    return (filter (`notElem` [".", ".."]) names)

isDirectory :: Info -> Bool
isDirectory = maybe False searchable . infoPerms
While we’re not introducing any new
      techniques here, this is one of the densest function definitions we’ve
      yet encountered. Let’s walk through it almost line by line, explaining
      what is going on.
The first couple of lines hold no mystery, as they’re almost
      verbatim copies of code we’ve already seen. Things begin to get
      interesting when we assign to the variable contents.
      Let’s read this line from right to left. We already know that
      names is a list of directory entries. We make sure
      that the current directory is prepended to every element of the list and
      included in the list itself. We use mapM to apply getInfo to the resulting paths.
The line that follows is even more dense.
      Again reading from right to left, we see that the last element of the
      line begins the definition of an anonymous function that continues to
      the end of the paragraph. Given one Info value, this
      function either visits a directory recursively (there’s an extra check
      to make sure we don’t visit path again), or returns
      that value as a single-element list (to match the result type of
      traverse).
We use forM to apply this function to each element
      of the list of Info values returned by
      order, the user-supplied traversal control
      function.
At the beginning of the line, we use the
      technique of lifting in a new context. The liftM function takes a regular function, concat, and lifts it into the IO
      monad. In other words, it takes the result of forM (of type IO [[Info]]) out
      of the IO monad, applies concat to it (yielding a result of type
      [Info], which is what we need), and puts the result back
      into the IO monad.
Finally, we mustn’t forget to define our
      getInfo function:
-- file: ch09/ControlledVisit.hs
maybeIO :: IO a -> IO (Maybe a)
maybeIO act = handle (\_ -> return Nothing) (Just `liftM` act)

getInfo path = do
  perms <- maybeIO (getPermissions path)
  size <- maybeIO (bracket (openFile path ReadMode) hClose hFileSize)
  modified <- maybeIO (getModificationTime path)
  return (Info path perms size modified)
The only noteworthy thing here is a useful
      combinator, maybeIO, which turns an
      IO action that might throw an exception into one that wraps
      its result in Maybe.
Exercises
	What should you pass to traverse to traverse a directory tree
            in reverse alphabetic order?

	Using id as a control
            function, traverse id performs a
            preorder traversal of a tree: it returns a
            parent directory before its children. Write a control function
            that makes traverse perform a
            postorder traversal, in which it returns
            children before their parent.

	Take the predicates and combinators from Gluing Predicates Together and make them work with our
            new Info type.

	Write a wrapper for traverse that lets you control
            traversal using one predicate and filter results using
            another.





Density, Readability, and the Learning Process



Code as dense as traverse is not unusual in Haskell. The gain in expressiveness is
      significant, and it requires a relatively small amount of practice to be
      able to fluently read and write code in this style.
For comparison, here’s a less dense
      presentation of the same code (this might be more typical of a less
      experienced Haskell programmer):
-- file: ch09/ControlledVisit.hs
traverseVerbose order path = do
    names <- getDirectoryContents path
    let usefulNames = filter (`notElem` [".", ".."]) names
    contents <- mapM getEntryName ("" : usefulNames)
    recursiveContents <- mapM recurse (order contents)
    return (concat recursiveContents)
  where getEntryName name = getInfo (path </> name)
        isDirectory info = case infoPerms info of
                             Nothing -> False
                             Just perms -> searchable perms
        recurse info = do
            if isDirectory info && infoPath info /= path
                then traverseVerbose order (infoPath info)
                else return [info]
All we’ve done here is make a few
      substitutions. Instead of liberally using partial application and function composition,
      we’ve defined some local functions in a where block. In place of the maybe combinator, we’re using a case expression. And instead of using
      liftM, we’re manually lifting
      concat ourselves.
This is not to say that density is a
      uniformly good property. Each line of the original traverse function is short. We introduce a
      local variable (usefulNames) and a local function
      (isDirectory) specifically to keep
      the lines short and the code clearer. Our names are descriptive. While
      we use function composition and pipelining, the longest pipeline
      contains only three elements.
The key to writing maintainable Haskell
      code is to find a balance between density and readability. Where your
      code falls on this continuum is likely to be influenced by your level of
      experience, as detailed here:
	As a beginning Haskell programmer,
          Andrew doesn’t know his way around the standard libraries very well.
          As a result, he unwittingly duplicates a lot of existing
          code.

	Zack has been programming for a few
          months and has mastered the use of (.) to compose long pipelines of code.
          Every time the needs of his program change slightly, he has to
          construct a new pipeline from scratch; he can’t understand the
          existing pipeline any longer, and it is in any case too fragile to
          change.

	Monica has been coding for a while.
          She’s familiar enough with Haskell libraries and idioms to write
          tight code, but she avoids a hyperdense style. Her code is
          maintainable, and she finds it easy to refactor when faced with
          changing requirements.




Another Way of Looking at Traversal



While the traverse function gives us more control than our original betterFind function, it still has a
      significant failing: we can avoid recursing into directories, but we
      can’t filter other names until after we’ve generated the entire list of
      names in a tree. If we are traversing a directory containing 100,000
      files of which we care about only 3, we’ll allocate a 100,000-element
      list before we have a chance to trim it down to the 3 we really
      want.
One approach would be to provide a filter
      function as a new argument to traverse, which we would apply to the list of
      names as we generate it. This would allow us to allocate a list of only
      as many elements as we need.
However, this approach also has a
      weakness. Say we know that we want at most 3 entries from our list, and
      that those 3 entries happen to be the first 3 of the 100,000 that we
      traverse. In this case, we’ll needlessly visit 99,997 other entries.
      This is not by any means a contrived example: for instance, the Maildir
      mailbox format stores a folder of email messages as a directory of
      individual files. It’s common for a single directory representing a
      mailbox to contain tens of thousands of files.
We can address the weaknesses of our two
      prior traversal functions by taking a different perspective: what if we
      think of filesystem traversal as a fold over the
      directory hierarchy?
The familiar folds, foldr and foldl', neatly generalize the idea of
      traversing a list while accumulating a result. It’s hardly a stretch to
      extend the idea of folding from lists to directory trees, but we’d like
      to add an element of control to our fold. We’ll
      represent this control as an algebraic data type:
-- file: ch09/FoldDir.hs
data Iterate seed = Done     { unwrap :: seed }
                  | Skip     { unwrap :: seed }
                  | Continue { unwrap :: seed }
                    deriving (Show)

type Iterator seed = seed -> Info -> Iterate seed
The Iterator type gives us a convenient alias for the function that we fold
      with. It takes a seed and an Info value representing a
      directory entry, and returns both a new seed and an instruction for our
      fold function, where the instructions are represented as the
      constructors of the Iterate type:
	If the instruction is
          Done, traversal should cease immediately. The value
          wrapped by Done should be returned as the
          result.

	If the instruction is
          Skip and the current Info type represents
          a directory, traversal will not recurse into that directory.

	Otherwise, the traversal should
          continue, using the wrapped value as the input to the next call to
          the fold function.



Our fold is logically a kind of left fold,
      because we start folding from the first entry we encounter. The seed for
      each step is the result of the prior step:
-- file: ch09/FoldDir.hs
foldTree :: Iterator a -> a -> FilePath -> IO a

foldTree iter initSeed path = do
    endSeed <- fold initSeed path
    return (unwrap endSeed)
  where
    fold seed subpath = getUsefulContents subpath >>= walk seed

    walk seed (name:names) = do
      let path' = path </> name
      info <- getInfo path'
      case iter seed info of
        done@(Done _) -> return done
        Skip seed'    -> walk seed' names
        Continue seed'
          | isDirectory info -> do
              next <- fold seed' path'
              case next of
                done@(Done _) -> return done
                seed''        -> walk (unwrap seed'') names
          | otherwise -> walk seed' names
    walk seed _ = return (Continue seed)
There are a few interesting things about
      the way this code is written. The first is the use of scoping to avoid
      having to pass extra parameters around. The top-level foldTree function is just a wrapper for
      fold that peels off the constructor
      of the fold’s final result.
Because fold is a local function, we don’t have to
      pass foldTree’s
      iter variable into it; it can already access it in
      the outer scope. Similarly, walk
      can see path in its outer scope.
Another point to note is that walk is a tail recursive loop, instead of an
      anonymous function called by forM
      as in our earlier functions. By taking the reins ourselves, we can stop
      early if we need to, which lets us drop out when our iterator returns
      Done.
Although fold calls walk, walk calls fold recursively to traverse subdirectories.
      Each function returns a seed wrapped in an Iterate: when
      fold is called by walk and returns, walk examines its result to see whether it
      should continue or drop out because it returned Done. In
      this way, a return of Done from the
      caller-supplied iterator immediately terminates all mutually recursive
      calls between the two functions.
What does an iterator look like in
      practice? Here’s a somewhat complicated example that looks for at most
      three bitmap images and won’t recurse into Subversion metadata
      directories:
-- file: ch09/FoldDir.hs
atMostThreePictures :: Iterator [FilePath]

atMostThreePictures paths info
    | length paths == 3
      = Done paths
    | isDirectory info && takeFileName path == ".svn"
      = Skip paths
    | extension `elem` [".jpg", ".png"]
      = Continue (path : paths)
    | otherwise
      = Continue paths
  where extension = map toLower (takeExtension path)
        path = infoPath info
To use this, we’d call foldTree
      atMostThreePictures [], giving us a return value of type IO
      [FilePath].
Of course, iterators don’t have to be this
      complicated. Here’s one that counts the number of directories it
      encounters:
-- file: ch09/FoldDir.hs
countDirectories count info =
    Continue (if isDirectory info
              then count + 1
              else count)
Here, the initial seed that we pass to
      foldTree should be the number
      zero.
Exercises
	Modify foldTree to
            allow the caller to change the order of traversal of entries in a
            directory.

	The foldTree function
            performs preorder traversal. Modify it to allow the caller to
            determine the order of traversal.

	Write a combinator library that makes it possible to express
            the kinds of iterators that foldTree accepts. Does it make the
            iterators you write any more succinct?





Useful Coding Guidelines



While many good Haskell
      programming habits come with experience, we have a few general
      guidelines to offer so that you can write readable code more
      quickly.
As we already mentioned in A Note About Tabs Versus Spaces, never use tab characters in Haskell source
      files. Use spaces.
If you find yourself proudly thinking that
      a particular piece of code is fiendishly clever, stop and consider
      whether you’ll be able to understand it again after you’ve stepped away
      from it for a month.
The conventional way of naming types and
      variables with compound names is to use camel case, i.e.,
      myVariableName. This style is almost universal in
      Haskell code. Regardless of your opinion of other naming practices, if
      you follow a nonstandard convention, your Haskell code will be somewhat
      jarring to the eyes of other readers.
Until you’ve been working with Haskell for
      a substantial amount of time, spend a few minutes searching for library
      functions before you write small functions. This applies particularly to
      ubiquitous types such as lists, Maybe, and
      Either. If the standard libraries don’t already provide
      exactly what you need, you might be able to combine a few functions to
      obtain the result you desire.
Long pipelines of composed functions are
      hard to read, where long means a series of more
      than three or four elements. If you have such a pipeline, use a let or where block to break it into smaller parts.
      Give each one of these pipeline elements a meaningful name, and then
      glue them back together. If you can’t think of a meaningful name for an
      element, ask yourself if you can even describe what it does. If the
      answer is “no,” simplify your code.
Even though it’s easy to resize a text
      editor window far beyond 80 columns, this width is still very common.
      Wider lines are wrapped or truncated in 80-column text editor windows,
      which severely hurts readability. Treating lines as no more than 80
      characters long limits the amount of code you can cram onto a single
      line. This helps to keep individual lines less complicated, and
      therefore easier to understand.
Common Layout Styles



A Haskell implementation won’t make a
        fuss about indentation as long as your code follows the layout rules
        and can hence be parsed unambiguously. That said, some layout patterns
        are widely used.
The in keyword is usually aligned directly under the let keyword, with the expression immediately
        following it:
-- file: ch09/Style.hs
tidyLet = let foo = undefined
              bar = foo * 2
          in undefined
While it’s legal to
        indent the in differently, or to
        let it “dangle” at the end of a series of equations, the
        following would generally be considered odd:
-- file: ch09/Style.hs
weirdLet = let foo = undefined
               bar = foo * 2
    in undefined

strangeLet = let foo = undefined
                 bar = foo * 2 in
    undefined
In contrast, it’s usual to let a
        do dangle at the end of a line,
        rather than sit at the beginning of one:
-- file: ch09/Style.hs
commonDo = do
  something <- undefined
  return ()

-- not seen very often
rareDo =
  do something <- undefined
     return ()
Curly braces and semicolons, though
        legal, are almost never used. There’s nothing wrong with them; they
        just make code look strange due to their rarity. They’re really
        intended to let programs generate Haskell code without having to
        implement the layout rules and are not meant for human use.
-- file: ch09/Style.hs
unusualPunctuation =
    [ (x,y) | x <- [1..a], y <- [1..b] ] where {
                                           b = 7;
 a = 6 }

preferredLayout = [ (x,y) | x <- [1..a], y <- [1..b] ]
    where b = 7
          a = 6
If the righthand side of an equation
        starts on a new line, it’s usually indented a small number of spaces
        relative to the name of the variable or function that it’s
        defining:
-- file: ch09/Style.hs
normalIndent =
    undefined

strangeIndent =
                           undefined
The actual number of spaces used to
        indent varies, sometimes within a single file. Depths of two, three,
        and four spaces are about equally common. A single space is legal but
        not very visually distinctive, so it’s easy to misread.
When indenting a where clause, it’s best to make it
        eye-catching:
-- file: ch09/Style.hs
goodWhere = take 5 lambdas
    where lambdas = []

alsoGood =
    take 5 lambdas
  where
    lambdas = []

badWhere =           -- legal, but ugly and hard to read
    take 5 lambdas
    where
    lambdas = []
Exercises
	Although the file-finding code we described in this
              chapter is a good vehicle for learning, it’s not ideal for real
              systems programming tasks, because Haskell’s portable I/O
              libraries don’t expose enough information to let us write
              interesting and complicated queries.
Port the code from this chapter to your platform’s native
              API, either System.Posix or
              System.Win32.

	Add the ability to find out who owns a directory entry to
              your code. Make this information available to predicates.







Chapter 10. Code Case Study: Parsing a Binary Data Format



In this chapter, we’ll discuss a common task: parsing a binary file. We will
    use it for two purposes. Our first is indeed to talk a little about
    parsing, but our main goal is to talk about program organization,
    refactoring, and “boilerplate removal.” We will demonstrate how you can
    tidy up repetitious code, and set the stage for our discussion of monads
    in Chapter 14.
The file formats that we will work with come
    from the netpbm suite, an ancient and venerable collection of programs and file
    formats for working with bitmap images. These file formats have the dual
    advantages of being widely used and being fairly easy, though not
    completely trivial, to parse. Most importantly for our convenience, netpbm
    files are not compressed.
Grayscale Files



The name of netpbm’s grayscale file format is PGM (portable
      gray map). It is actually not one format, but two; the
      plain (or P2) format is encoded as ASCII, while the more common raw (P5) format is mostly binary.
A file of either format starts with a
      header, which in turn begins with a “magic” string
      describing the format. For a plain file, the string is P2, and for raw, it’s P5. The magic string is followed by
      whitespace, and then by three numbers: the width, height, and maximum
      gray value of the image. These numbers are represented as ASCII decimal
      numbers, separated by whitespace.
After the maximum gray value comes the
      image data. In a raw file, this is a string of binary values. In a plain
      file, the values are represented as ASCII decimal numbers separated by
      single-space characters.
A raw file can contain a sequence of
      images, one after the other, each with its own header. A plain file
      contains only one image.

Parsing a Raw PGM File



For our first try at a parsing function,
      we’ll only worry about raw PGM files. We’ll write our PGM parser as a
      pure function. It’s won’t be responsible for obtaining the data to parse,
      just for the actual parsing. This is a common approach in Haskell
      programs. By separating the reading of the data from what we
      subsequently do with it, we gain flexibility in where we take the data
      from.
We’ll use the ByteString
      type to store our graymap data, because it’s compact. Since
      the header of a PGM file is ASCII text but its body is binary, we import
      both the text- and binary-oriented ByteString
      modules:
-- file: ch10/PNM.hs
import qualified Data.ByteString.Lazy.Char8 as L8
import qualified Data.ByteString.Lazy as L
import Data.Char (isSpace)
For our purposes, it doesn’t matter
      whether we use a lazy or strict ByteString, so we’ve
      somewhat arbitrarily chosen the lazy kind.
We’ll use a straightforward data type to
      represent PGM images:
-- file: ch10/PNM.hs
data Greymap = Greymap {
      greyWidth :: Int
    , greyHeight :: Int
    , greyMax :: Int
    , greyData :: L.ByteString
    } deriving (Eq)
Normally, a Haskell Show
      instance should produce a string representation that we can read back by
      calling read. However, for a bitmap
      graphics file, this would potentially produce huge text strings, for
      example, if we were to show a
      photo. For this reason, we’re not going to let the compiler
      automatically derive a Show instance for us; we’ll write
      our own and intentionally simplify it:
-- file: ch10/PNM.hs
instance Show Greymap where
    show (Greymap w h m _) = "Greymap " ++ show w ++ "x" ++ show h ++
                             " " ++ show m
Because our Show instance
      intentionally avoids printing the bitmap data, there’s no point in
      writing a Read instance, as we can’t reconstruct a valid
      Greymap from the result of show.
Here’s an obvious type for our parsing
      function:
-- file: ch10/PNM.hs
parseP5 :: L.ByteString -> Maybe (Greymap, L.ByteString)
This will take a ByteString,
      and if the parse succeeds, it will return a single parsed
      Greymap, along with the string that remains after parsing.
      That residual string will be available for future parses.
Our parsing function has to consume a
      little bit of its input at a time. First, we need to assure ourselves
      that we’re really looking at a raw PGM file; then we need to parse the
      numbers from the remainder of the header; and then we consume the bitmap
      data. Here’s an obvious way to express this, which we will use as a base
      for later improvements:
-- file: ch10/PNM.hs
matchHeader :: L.ByteString -> L.ByteString -> Maybe L.ByteString

-- "nat" here is short for "natural number"
getNat :: L.ByteString -> Maybe (Int, L.ByteString)

getBytes :: Int -> L.ByteString
         -> Maybe (L.ByteString, L.ByteString)

parseP5 s =
  case matchHeader (L8.pack "P5") s of
    Nothing -> Nothing
    Just s1 ->
      case getNat s1 of
        Nothing -> Nothing
        Just (width, s2) ->
          case getNat (L8.dropWhile isSpace s2) of
            Nothing -> Nothing
            Just (height, s3) ->
              case getNat (L8.dropWhile isSpace s3) of
                Nothing -> Nothing
                Just (maxGrey, s4)
                  | maxGrey > 255 -> Nothing
                  | otherwise ->
                      case getBytes 1 s4 of
                        Nothing -> Nothing
                        Just (_, s5) ->
                          case getBytes (width * height) s5 of
                            Nothing -> Nothing
                            Just (bitmap, s6) ->
                              Just (Greymap width height maxGrey bitmap, s6)
This is a very literal piece of code,
      performing all of the parsing in one long staircase of case expressions. Each function returns the
      residual ByteString left over after it has consumed all it
      needs from its input string. We pass each residual string along to the
      next step. We deconstruct each result in turn, either returning
      Nothing if the parsing step fails, or building up a piece
      of the final result as we proceed. Here are the bodies of the functions
      that we apply during parsing (their types are commented out because we
      already presented them):
-- file: ch10/PNM.hs
-- L.ByteString -> L.ByteString -> Maybe L.ByteString
matchHeader prefix str
    | prefix `L8.isPrefixOf` str
        = Just (L8.dropWhile isSpace (L.drop (L.length prefix) str))
    | otherwise
        = Nothing

-- L.ByteString -> Maybe (Int, L.ByteString)
getNat s = case L8.readInt s of
             Nothing -> Nothing
             Just (num,rest)
                 | num <= 0    -> Nothing
                 | otherwise -> Just (fromIntegral num, rest)

-- Int -> L.ByteString -> Maybe (L.ByteString, L.ByteString)
getBytes n str = let count           = fromIntegral n
                     both@(prefix,_) = L.splitAt count str
                 in if L.length prefix < count
                    then Nothing
                    else Just both

Getting Rid of Boilerplate Code



While our parseP5 function
      works, the style in which we wrote it is somehow not pleasing. Our code
      marches steadily to the right of the screen, and it’s clear that a
      slightly more complicated function would soon run out of visual real
      estate. We repeat a pattern of constructing and then deconstructing
      Maybe values, only continuing if a particular value matches
      Just. All of the similar case expressions act as boilerplate
      code, busywork that obscures what we’re really trying to do.
      In short, this function is begging for some abstraction and
      refactoring.
If we step back a little, we can see two
      patterns. First is that many of the functions that we apply have similar
      types. Each takes a ByteString as its last argument and
      returns Maybe something else. Second, every step in the
      “ladder” of our parseP5 function deconstructs a
      Maybe value, and either fails or passes the unwrapped
      result to a function.
We can quite easily write a function that
      captures this second pattern:
-- file: ch10/PNM.hs
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>? _ = Nothing
Just v  >>? f = f v
The (>>?) function acts very simply: it takes a value as its left argument,
      and a function as its right. If the value is not Nothing, it applies the function to whatever
      is wrapped in the Just constructor. We have defined our
      function as an operator so that we can use it to chain functions
      together. Finally, we haven’t provided a fixity declaration for
      (>>?), so it defaults to
      infixl 9 (left-associative, strongest operator precedence).
      In other words, a >>? b >>? c will be evaluated
      from left to right, as (a >>? b) >>? c).
With this chaining function in hand, we
      can take a second try at our parsing function:
-- file: ch10/PNM.hs
parseP5_take2 :: L.ByteString -> Maybe (Greymap, L.ByteString)
parseP5_take2 s =
    matchHeader (L8.pack "P5") s      >>?
    \s -> skipSpace ((), s)           >>?
    (getNat . snd)                    >>?
    skipSpace                         >>?
    \(width, s) ->   getNat s         >>?
    skipSpace                         >>?
    \(height, s) ->  getNat s         >>?
    \(maxGrey, s) -> getBytes 1 s     >>?
    (getBytes (width * height) . snd) >>?
    \(bitmap, s) -> Just (Greymap width height maxGrey bitmap, s)

skipSpace :: (a, L.ByteString) -> Maybe (a, L.ByteString)
skipSpace (a, s) = Just (a, L8.dropWhile isSpace s)
The key to understanding this function is
      to think about the chaining. On the left side of each (>>?) is a Maybe value; on
      the right is a function that returns a Maybe value. Each
      left-and-right-side expression is thus of type Maybe,
      suitable for passing to the following (>>?) expression.
The other change that we’ve made to
      improve readability is add a skipSpace function. With these changes, we’ve
      halved the number of lines of code compared to our original parsing
      function. By removing the boilerplate case expressions, we’ve made the code easier
      to follow.
While we warned against overuse of
      anonymous functions in Anonymous (lambda) Functions, we use several
      in our chain of functions here. Because these functions are so small, we
      wouldn’t improve readability by giving them names.

Implicit State



We’re not yet out of the woods. Our code explicitly passes
      pairs around, using one element for an intermediate part of the parsed
      result and the other for the current residual ByteString.
      If we want to extend the code, for example, to track the number of bytes
      we’ve consumed so that we can report the location of a parse failure, we
      already have eight different spots that we will need to modify, just to
      pass a three-tuple around.
This approach makes even a small body of
      code difficult to change. The problem lies with our use of pattern
      matching to pull values out of each pair: we have embedded the knowledge
      that we are always working with pairs straight into our code. As
      pleasant and helpful as pattern matching is, it can lead us in some
      undesirable directions if we do not use it carefully.
Let’s do something to address the
      inflexibility of our new code. First, we will change the type of state
      that our parser uses:
-- file: ch10/Parse.hs
data ParseState = ParseState {
      string :: L.ByteString
    , offset :: Int64           -- imported from Data.Int
    } deriving (Show)
In our switch to an algebraic data type,
      we added the ability to track both the current residual string and the
      offset into the original string since we started parsing. The more
      important change was our use of record syntax: we can now
      avoid pattern matching on the pieces of state that
      we pass around and use the accessor functions string and offset instead.
We have given our parsing state a name.
      When we name something, it can become easier to reason about. For
      example, we can now look at parsing as a kind of function: it consumes a
      parsing state and produces both a new parsing state and some other piece
      of information. We can directly represent this as a Haskell type:
-- file: ch10/Parse.hs
simpleParse :: ParseState -> (a, ParseState)
simpleParse = undefined
To provide more help to our users, we
      would like to report an error message if parsing fails. This requires
      only a minor tweak to the type of our parser:
-- file: ch10/Parse.hs
betterParse :: ParseState -> Either String (a, ParseState)
betterParse = undefined
In order to future-proof our code, it is
      best if we do not expose the implementation of our parser to our users.
      When we explicitly used pairs for state earlier, we found ourselves in
      trouble almost immediately, once we considered extending the
      capabilities of our parser. To stave off a repeat of that difficulty, we
      will hide the details of our parser type using a newtype
      declaration:
-- file: ch10/Parse.hs
newtype Parse a = Parse {
      runParse :: ParseState -> Either String (a, ParseState)
    }
Remember that the newtype
      definition is just a compile-time wrapper around a function, so it has
      no runtime overhead. When we want to use the function, we will apply the
      runParse accessor.
If we do not export the Parse
      value constructor from our module, we can ensure that nobody else will
      be able to accidentally create a parser, nor will they be able to
      inspect its internals via pattern matching.
The Identity Parser



Let’s try to define a simple parser, the
        identity parser. All it does is turn whatever it is passed into the
        result of the parse. In this way, it somewhat resembles the id function:
-- file: ch10/Parse.hs
identity :: a -> Parse a
identity a = Parse (\s -> Right (a, s))
This function leaves the parse state
        untouched and uses its argument as the result of the parse. We wrap
        the body of the function in our Parse type to satisfy the
        type checker. How can we use this wrapped function to parse
        something?
The first thing we must do is peel off
        the Parse wrapper so that we can get at the function inside. We do so
        using the runParse
        function. We also need to construct a ParseState,
        and then run our parsing function on it. Finally, we’d like to
        separate the result of the parse from the final
        ParseState:
-- file: ch10/Parse.hs
parse :: Parse a -> L.ByteString -> Either String a
parse parser initState
    = case runParse parser (ParseState initState 0) of
        Left err          -> Left err
        Right (result, _) -> Right result
Because neither the identity parser nor the parse function examines the parse state, we
        don’t even need to create an input string in order to try our
        code:
ghci> :load Parse
[1 of 2] Compiling PNM              ( PNM.hs, interpreted )
[2 of 2] Compiling Parse            ( Parse.hs, interpreted )
Ok, modules loaded: Parse, PNM.
ghci> :type parse (identity 1) undefined
parse (identity 1) undefined :: (Num t) => Either String t
ghci> parse (identity 1) undefined
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Right 1
ghci> parse (identity "foo") undefined
Right "foo"
A parser that doesn’t even inspect its
        input might not seem interesting, but we will see shortly that in fact
        it is useful. Meanwhile, we have gained confidence that our types are
        correct and that we understand the basic workings of our code.

Record Syntax, Updates, and Pattern Matching



Record syntax is useful for more than just accessor functions—we can use
        it to copy and partly change an existing value. In use, the notation
        looks like this:
-- file: ch10/Parse.hs
modifyOffset :: ParseState -> Int64 -> ParseState
modifyOffset initState newOffset =
    initState { offset = newOffset }
This creates a new
        ParseState value identical to
        initState, but with its offset field
        set to whatever value we specify for newOffset:
ghci> let before = ParseState (L8.pack "foo") 0
ghci> let after = modifyOffset before 3
ghci> before
ParseState {string = Chunk "foo" Empty, offset = 0}
ghci> after
ParseState {string = Chunk "foo" Empty, offset = 3}
We can set as many fields as we want
        inside the curly braces, separating them using commas.

A More Interesting Parser



Let’s focus now on writing a parser
        that does something meaningful. We’re not going to get too ambitious
        yet—all we want to do is parse a single byte:
-- file: ch10/Parse.hs
-- import the Word8 type from Data.Word
parseByte :: Parse Word8
parseByte =
    getState ==> \initState ->
    case L.uncons (string initState) of
      Nothing ->
          bail "no more input"
      Just (byte,remainder) ->
          putState newState ==> \_ ->
          identity byte
        where newState = initState { string = remainder,
                                     offset = newOffset }
              newOffset = offset initState + 1
There are a number of new functions in
        our definition.
The L8.uncons function takes the first element
        from a ByteString:
ghci> L8.uncons (L8.pack "foo")
Just ('f',Chunk "oo" Empty)
ghci> L8.uncons L8.empty
Nothing
Our getState function retrieves the current
        parsing state, while putState
        replaces it. The bail function
        terminates parsing and reports an error. The (==>) function chains parsers together. We will cover each of these
        functions shortly.
Hanging lambdas
The definition of parseByte has a visual style that we
          haven’t discussed before. It contains anonymous functions in which
          the parameters and -> sit at the end of a line, with
          the function’s body following on the next line.
This style of laying out an anonymous
          function doesn’t have an official name, so let’s call it a “hanging
          lambda.” Its main use is to make room for more text in the body of
          the function. It also makes it more visually clear that there’s a
          relationship between a function and the one that follows it. Often,
          for instance, the result of the first function is being passed as a
          parameter to the second.


Obtaining and Modifying the Parse State



Our parseByte function doesn’t take the parse state as an argument. Instead, it
        has to call getState to get a
        copy of the state and putState to
        replace the current state with a new one:
-- file: ch10/Parse.hs
getState :: Parse ParseState
getState = Parse (\s -> Right (s, s))

putState :: ParseState -> Parse ()
putState s = Parse (\_ -> Right ((), s))
When reading these functions, recall
        that the left element of the tuple is the result of a
        Parse, while the right is the current
        ParseState. This makes it easier to follow what these
        functions are doing.
The getState function extracts the current
        parsing state so that the caller can access the string. The putState function replaces the current
        parsing state with a new one. This becomes the state that will be seen
        by the next function in the (==>) chain.
These functions let us move explicit
        state handling into the bodies of only those functions that need it.
        Many functions don’t need to know what the current state is, and so
        they’ll never call getState or
        putState. This lets us write more
        compact code than our earlier parser, which had to pass tuples around
        by hand. We will see the effect in some of the code that
        follows.
We’ve packaged up the details of the
        parsing state into the ParseState type, and we work with
        it using accessors instead of pattern matching. Now that the parsing
        state is passed around implicitly, we gain a further benefit. If we
        want to add more information to the parsing state, all we need to do
        is modify the definition of ParseState and the bodies of
        whatever functions need the new information. Compared to our earlier
        parsing code, where all of our state was exposed through pattern
        matching, this is much more modular: the only code we affect is code
        that needs the new information.

Reporting Parse Errors



We carefully defined our
        Parse type to accommodate the possibility of failure. The
        (==>) combinator checks for a
        parse failure and stops parsing if it runs into a failure. But we
        haven’t yet introduced the bail
        function, which we use to report a parse error:
-- file: ch10/Parse.hs
bail :: String -> Parse a
bail err = Parse $ \s -> Left $
           "byte offset " ++ show (offset s) ++ ": " ++ err
After we call bail, (==>) will successfully pattern match on
        the Left constructor that it wraps the error message
        with, and it will not invoke the next parser in the chain. This will
        cause the error message to percolate back through the chain of prior
        callers.

Chaining Parsers Together



The (==>) function serves a similar purpose
        to our earlier (>>?)
        function—it is “glue” that lets us chain functions
        together:
-- file: ch10/Parse.hs
(==>) :: Parse a -> (a -> Parse b) -> Parse b

firstParser ==> secondParser  =  Parse chainedParser
  where chainedParser initState   =
          case runParse firstParser initState of
            Left errMessage ->
                Left errMessage
            Right (firstResult, newState) ->
                runParse (secondParser firstResult) newState
The body of (==>) is interesting and ever so
        slightly tricky. Recall that the Parse type represents
        really a function inside a wrapper. Since (==>) lets us chain two
        Parse values to produce a third, it must return a
        function, in a wrapper.
The function doesn’t really
        “do” much, it just creates a closure
        to remember the values of firstParser and
        secondParser.
Tip
A closure is simply the pairing of a
          function with its environment, the bound
          variables that it can see. Closures are commonplace in Haskell. For
          instance, the section (+5) is a
          closure. An implementation must record the value 5 as
          the second argument to the (+)
          operator so that the resulting function can add 5 to
          whatever value it is passed.

This closure will not be unwrapped and
        applied until we apply parse. At
        that point, it will be applied with a ParseState. It will
        apply firstParser and inspect its result. If that
        parse fails, the closure will fail too. Otherwise, it will pass the
        result of the parse and the new ParseState to
        secondParser.
This is really quite fancy and subtle
        stuff. We’re effectively passing the ParseState down the
        chain of Parse values in a hidden argument. (We’ll be
        revisiting this kind of code in a few chapters, so don’t fret if this
        description seems dense.)


Introducing Functors



We’re by now thoroughly familiar with
      the map function, which applies a
      function to every element of a list, returning a list of possibly a
      different type:
ghci> map (+1) [1,2,3]
[2,3,4]
ghci> map show [1,2,3]
["1","2","3"]
ghci> :type map show
map show :: (Show a) => [a] -> [String]
This map-like activity can be useful in other
      instances. For example, consider a binary tree:
-- file: ch10/TreeMap.hs
data Tree a = Node (Tree a) (Tree a)
            | Leaf a
              deriving (Show)
If we want to take a tree of strings and
      turn it into a tree containing the lengths of those strings, we could
      write a function to do this:
-- file: ch10/TreeMap.hs
treeLengths (Leaf s) = Leaf (length s)
treeLengths (Node l r) = Node (treeLengths l) (treeLengths r)
Now that our eyes are attuned to looking
      for patterns that we can turn into generally useful functions, we can
      see a possible case of this here:
-- file: ch10/TreeMap.hs
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf a)   = Leaf (f a)
treeMap f (Node l r) = Node (treeMap f l) (treeMap f r)
As we might hope, treeLengths and treeMap length give the same results:
ghci> let tree = Node (Leaf "foo") (Node (Leaf "x") (Leaf "quux"))
ghci> treeLengths tree
Node (Leaf 3) (Node (Leaf 1) (Leaf 4))
ghci> treeMap length tree
Node (Leaf 3) (Node (Leaf 1) (Leaf 4))
ghci> treeMap (odd . length) tree
Node (Leaf True) (Node (Leaf True) (Leaf False))
Haskell provides a well-known typeclass to
      further generalize treeMap. This
      typeclass is named Functor, and it defines one function,
      fmap:
-- file: ch10/TreeMap.hs
class Functor f where
    fmap :: (a -> b) -> f a -> f b
We can think of fmap as a kind of
      lifting function, as we introduced in Avoiding Boilerplate with Lifting. It takes a function over ordinary
      values a -> b, and lifts it to become a function over
      containers f a -> f b, where f is the
      container type.
If we substitute Tree for the
      type variable f, for example, then the type of
      fmap is identical to the type of
      treeMap, and in fact we can use
      treeMap as the implementation of
      fmap over
      Trees:
-- file: ch10/TreeMap.hs
instance Functor Tree where
    fmap = treeMap
We can also use map as the implementation of fmap for lists:
-- file: ch10/TreeMap.hs
instance Functor [] where
    fmap = map
We can now use fmap over different container types:
ghci> fmap length ["foo","quux"]
[3,4]
ghci> fmap length (Node (Leaf "Livingstone") (Leaf "I presume"))
Node (Leaf 11) (Leaf 9)
The Prelude defines instances of
      Functor for several common types, notably lists and
      Maybe:
-- file: ch10/TreeMap.hs
instance Functor Maybe where
    fmap _ Nothing  = Nothing
    fmap f (Just x) = Just (f x)
The instance for Maybe makes
      it particularly clear what an fmap
      implementation needs to do. The implementation must have a sensible
      behavior for each of a type’s constructors. If a value is wrapped in
      Just, for example, the fmap implementation calls the function on the
      unwrapped value, then rewraps it in Just.
The definition of Functor
      imposes a few obvious restrictions on what we can do with fmap. For example, we can only make instances
      of Functor from types that have
      exactly one type parameter.
We can’t write an fmap implementation for Either a
      b or (a, b), for example, because these have two
      type parameters. We also can’t write one for Bool or
      Int, as they have no type parameters.
In addition, we can’t place any
      constraints on our type definition. What does this mean? To illustrate,
      let’s first look at a normal data
      definition and its Functor instance:
-- file: ch10/ValidFunctor.hs
data Foo a = Foo a
           
instance Functor Foo where
    fmap f (Foo a) = Foo (f a)
When we define a new type, we can add a
      type constraint just after the data
      keyword as follows:
-- file: ch10/ValidFunctor.hs
data Eq a => Bar a = Bar a

instance Functor Bar where
    fmap f (Bar a) = Bar (f a)
This says that we can only put a type
      a into a Foo if a is a member of the Eq typeclass.
      However, the constraint renders it impossible to write a
      Functor instance for Bar:
ghci> :load ValidFunctor
[1 of 1] Compiling Main             ( ValidFunctor.hs, interpreted )

ValidFunctor.hs:12:12:
    Could not deduce (Eq a) from the context (Functor Bar)
      arising from a use of `Bar' at ValidFunctor.hs:12:12-16
    Possible fix:
      add (Eq a) to the context of the type signature for `fmap'
    In the pattern: Bar a
    In the definition of `fmap': fmap f (Bar a) = Bar (f a)
    In the definition for method `fmap'

ValidFunctor.hs:12:21:
    Could not deduce (Eq b) from the context (Functor Bar)
      arising from a use of `Bar' at ValidFunctor.hs:12:21-29
    Possible fix:
      add (Eq b) to the context of the type signature for `fmap'
    In the expression: Bar (f a)
    In the definition of `fmap': fmap f (Bar a) = Bar (f a)
    In the definition for method `fmap'
Failed, modules loaded: none.

Constraints on Type Definitions Are Bad



Adding a constraint to a type definition is essentially never a good idea.
        It has the effect of forcing you to add type constraints to
        every function that will operate on values of
        that type. Let’s say that we need a stack data structure that we want
        to be able to query to see whether its elements obey some ordering.
        Here’s a naive definition of the data type:
-- file: ch10/TypeConstraint.hs
data (Ord a) => OrdStack a = Bottom
                           | Item a (OrdStack a)
                             deriving (Show)
If we want to write a function that
        checks the stack to see whether it is increasing (i.e., every element
        is bigger than the element below it), we’ll obviously need an
        Ord constraint to perform the pairwise
        comparisons:
-- file: ch10/TypeConstraint.hs
isIncreasing :: (Ord a) => OrdStack a -> Bool
isIncreasing (Item a rest@(Item b _))
    | a < b     = isIncreasing rest
    | otherwise = False
isIncreasing _  = True
However, because we wrote the type
        constraint on the type definition, that constraint ends up infecting
        places where it isn’t needed. We need to add the Ord
        constraint to push, which does
        not care about the ordering of elements on the stack:
-- file: ch10/TypeConstraint.hs
push :: (Ord a) => a -> OrdStack a -> OrdStack a
push a s = Item a s
Try removing that Ord
        constraint, and the definition of push will fail to typecheck.
This is why our attempt to write a
        Functor instance for Bar failed earlier: it
        would have required an Eq constraint to somehow get
        retroactively added to the signature of fmap.
Now that we’ve tentatively established
        that putting a type constraint on a type definition is a misfeature of
        Haskell, what’s a more sensible alternative? The answer is simply to
        omit type constraints from type definitions, and instead place them on
        the functions that need them.
In this example, we can drop the
        Ord constraints from OrdStack and push. It needs to stay on isIncreasing, which otherwise couldn’t call
        (<). We now have the
        constraints where they actually matter. This has the further benefit
        of making the type signatures better document the true requirements of
        each function.
Most Haskell container types follow this
        pattern. The Map type in the Data.Map module
        requires that its keys be ordered, but the type itself does not have
        such a constraint. The constraint is expressed on functions such as
        insert, where it’s actually
        needed, and not on size, where
        ordering isn’t used.

Infix Use of fmap



Quite often, you’ll see fmap called as
        an operator:
ghci> (1+) `fmap` [1,2,3] ++ [4,5,6]
[2,3,4,4,5,6]

Perhaps strangely, plain old map is almost never used in this
        way.
One possible reason for the stickiness
        of the fmap-as-operator meme is
        that this use lets us omit parentheses from its second argument. Fewer
        parentheses leads to reduced mental juggling while reading a
        function:
ghci> fmap (1+) ([1,2,3] ++ [4,5,6])
[2,3,4,5,6,7]

If you really want to use fmap as an operator, the
        Control.Applicative module contains an operator (<$>) that is an alias for fmap. The $ in its name
        appeals to the similarity between applying a function to its arguments
        (using the ($)
        operator) and lifting a function into a functor. We will see that
        this works well for parsing when we return to the code that we have
        been writing.

Flexible Instances



You might hope that we could write a Functor instance for the
        type Either Int b, which has one type parameter:
-- file: ch10/EitherInt.hs
instance Functor (Either Int) where
    fmap _ (Left n) = Left n
    fmap f (Right r) = Right (f r)
However, the type system of Haskell 98
        cannot guarantee that checking the constraints on such an instance
        will terminate. A nonterminating constraint check may send a compiler
        into an infinite loop, so instances of this form are forbidden:
ghci> :load EitherInt
[1 of 1] Compiling Main             ( EitherInt.hs, interpreted )

EitherInt.hs:2:0:
    Illegal instance declaration for `Functor (Either Int)'
        (All instance types must be of the form (T a1 ... an)
         where a1 ... an are type *variables*,
         and each type variable appears at most once in the instance head.
         Use -XFlexibleInstances if you want to disable this.)
    In the instance declaration for `Functor (Either Int)'
Failed, modules loaded: none.

GHC has a more powerful type system than
        the base Haskell 98 standard. It operates in Haskell 98 compatibility
        mode by default, for maximal portability. We can instruct it to allow
        more flexible instances using a special compiler directive:
-- file: ch10/EitherIntFlexible.hs
{-# LANGUAGE FlexibleInstances #-}

instance Functor (Either Int) where
    fmap _ (Left n)  = Left n
    fmap f (Right r) = Right (f r)
The directive is embedded in the
        specially formatted LANGUAGE pragma.
With our Functor instance
        in hand, let’s try out fmap on
        Either Int:
ghci> :load EitherIntFlexible
[1 of 1] Compiling Main             ( EitherIntFlexible.hs, interpreted )
Ok, modules loaded: Main.
ghci> fmap (== "cheeseburger") (Left 1 :: Either Int String)
Left 1
ghci> fmap (== "cheeseburger") (Right "fries" :: Either Int String)
Right False

Thinking More About Functors



We’ve made a few implicit
        assumptions about how functors ought to work. It’s helpful to make
        these explicit and to think of them as rules to follow, because this
        lets us treat functors as uniform, well-behaved objects. We have only
        two rules to remember, and they’re simple:
	Our first rule is functors must preserve identity. That is, applying
            fmap id to a value should give us back an identical
            value:
ghci> fmap id (Node (Leaf "a") (Leaf "b"))
Node (Leaf "a") (Leaf "b")


	Our second rule is functors must be
            composable. That is, composing two uses of fmap should give the same result as one
            fmap with the same functions
            composed:
ghci> (fmap even . fmap length) (Just "twelve")
Just True
ghci> fmap (even . length) (Just "twelve")
Just True



Another way of looking at these two
        rules is that functors must preserve shape.
        The structure of a collection should not be affected by
        a functor; only the values that it contains should change:
ghci> fmap odd (Just 1)
Just True
ghci> fmap odd Nothing
Nothing
If you’re writing a Functor
        instance, it’s useful to keep these rules in mind, and indeed to test
        them, because the compiler can’t check the rules we’ve just listed. On
        the other hand, if you’re simply using functors,
        the rules are “natural” enough that there’s no need to
        memorize them. They just formalize a few intuitive notions of “do what
        I mean.” Here is a pseudocode representation of the expected
        behavior:
-- file: ch10/FunctorLaws.hs
fmap id       ==  id
fmap (f . g)  ==  fmap f . fmap g


Writing a Functor Instance for Parse



For the types we have surveyed so
      far, the behavior we ought to expect of fmap has been obvious. This is a little less
      clear for Parse, due to its complexity. A reasonable guess is that the
      function we’re fmapping should be
      applied to the current result of a parse, and leave the parse state
      untouched:
-- file: ch10/Parse.hs
instance Functor Parse where
    fmap f parser = parser ==> \result ->
                    identity (f result)
This definition is easy to read, so let’s
      perform a few quick experiments to see if we’re following our rules for
      functors.
First, we’ll check that identity is
      preserved. Let’s try this first on a parse that ought to fail—parsing a
      byte from an empty string (remember that (<$>) is fmap):
ghci> parse parseByte L.empty
Left "byte offset 0: no more input"
ghci> parse (id <$> parseByte) L.empty
Left "byte offset 0: no more input"
Good. Now for a parse that should
      succeed:
ghci> let input = L8.pack "foo"
ghci> L.head input
102
ghci> parse parseByte input
Right 102
ghci> parse (id <$> parseByte) input
Right 102
Inspecting these results, we can also see
      that our Functor instance is obeying our second rule of
      preserving shape. Failure is preserved as failure, and success as
      success.
Finally, we’ll ensure that composability
      is preserved:
ghci> parse ((chr . fromIntegral) <$> parseByte) input
Right 'f'
ghci> parse (chr <$> fromIntegral <$> parseByte) input
Right 'f'
On the basis of this brief inspection, our
      Functor instance appears to be well behaved.

Using Functors for Parsing



All this talk of functors has a purpose: they often let us write tidy, expressive
      code. Recall the parseByte function
      that we introduced earlier. In recasting our PGM parser to use our new
      parser infrastructure, we’ll often want to work with ASCII characters
      instead of Word8 values.
While we could write a parseChar function that has a similar structure to parseByte, we can now avoid this code
      duplication by taking advantage of the functor nature of
      Parse. Our functor takes the result of a parse and applies
      a function to it, so what we need is a function that turns a
      Word8 into a Char:
-- file: ch10/Parse.hs
w2c :: Word8 -> Char
w2c = chr . fromIntegral

-- import Control.Applicative
parseChar :: Parse Char
parseChar = w2c <$> parseByte
We can also use functors to write a
      compact “peek” function. This returns Nothing
      if we’re at the end of the input string. Otherwise, it returns the next
      character without consuming it (i.e., it inspects, but doesn’t disturb,
      the current parsing state):
-- file: ch10/Parse.hs
peekByte :: Parse (Maybe Word8)
peekByte = (fmap fst . L.uncons . string) <$> getState
The same lifting trick that let us define
      parseChar lets us write a compact
      definition for peekChar:
-- file: ch10/Parse.hs
peekChar :: Parse (Maybe Char)
peekChar = fmap w2c <$> peekByte
Notice that peekByte and peekChar each make two calls to fmap, one of which is disguised as (<$>). This is necessary because the
      type Parse (Maybe a) is a functor within a functor. We thus
      have to lift a function twice to “get it into” the inner
      functor.
Finally, we’ll write another generic
      combinator, which is the Parse analogue of the familiar
      takeWhile. It consumes its input
      while its predicate returns True:
-- file: ch10/Parse.hs
parseWhile :: (Word8 -> Bool) -> Parse [Word8]
parseWhile p = (fmap p <$> peekByte) ==> \mp ->
               if mp == Just True
               then parseByte ==> \b ->
                    (b:) <$> parseWhile p
               else identity []
Once again, we’re using functors in
      several places (doubled up, when necessary) to reduce the verbosity of
      our code. Here’s a rewrite of the same function in a more direct style
      that does not use functors:
-- file: ch10/Parse.hs
parseWhileVerbose p =
    peekByte ==> \mc ->
    case mc of
      Nothing -> identity []
      Just c | p c ->
                 parseByte ==> \b ->
                 parseWhileVerbose p ==> \bs ->
                 identity (b:bs)
             | otherwise ->
                 identity []
The more verbose definition is likely
      easier to read when you are less familiar with functors. However, use of
      functors is sufficiently common in Haskell code that the more compact
      representation should become second nature (both to read and to write)
      fairly quickly.

Rewriting Our PGM Parser



With our new parsing code, what does the
      raw PGM parsing function look like now?
-- file: ch10/Parse.hs
parseRawPGM =
    parseWhileWith w2c notWhite ==> \header -> skipSpaces ==>&
    assert (header == "P5") "invalid raw header" ==>&
    parseNat ==> \width -> skipSpaces ==>&
    parseNat ==> \height -> skipSpaces ==>&
    parseNat ==> \maxGrey ->
    parseByte ==>&
    parseBytes (width * height) ==> \bitmap ->
    identity (Greymap width height maxGrey bitmap)
  where notWhite = (`notElem` " \r\n\t")
This definition makes use of a few more
      helper functions that we present here, following a pattern that should
      be familiar by now:
-- file: ch10/Parse.hs
parseWhileWith :: (Word8 -> a) -> (a -> Bool) -> Parse [a]
parseWhileWith f p = fmap f <$> parseWhile (p . f)

parseNat :: Parse Int
parseNat = parseWhileWith w2c isDigit ==> \digits ->
           if null digits
           then bail "no more input"
           else let n = read digits
                in if n < 0
                   then bail "integer overflow"
                   else identity n

(==>&) :: Parse a -> Parse b -> Parse b
p ==>& f = p ==> \_ -> f

skipSpaces :: Parse ()
skipSpaces = parseWhileWith w2c isSpace ==>& identity ()

assert :: Bool -> String -> Parse ()
assert True  _   = identity ()
assert False err = bail err
The (==>&) combinator chains parsers such
      as (==>), but the righthand side
      ignores the result from the left. The assert function lets us check a property and
      abort parsing with a useful error message if the property is
      False.
Notice how few of the functions that we
      have written make any reference to the current parsing state. Most
      notably, where our old parseP5
      function explicitly passed two-tuples down the chain of dataflow, all of
      the state management in parseRawPGM
      is hidden from us.
Of course, we can’t completely avoid
      inspecting and modifying the parsing state. Here’s a case in point, the
      last of the helper functions needed by parseRawPGM:
-- file: ch10/Parse.hs
parseBytes :: Int -> Parse L.ByteString
parseBytes n =
    getState ==> \st ->
    let n' = fromIntegral n
        (h, t) = L.splitAt n' (string st)
        st' = st { offset = offset st + L.length h, string = t }
    in putState st' ==>&
       assert (L.length h == n') "end of input" ==>&
       identity h

Future Directions



Our main theme in this chapter has been
      abstraction. We found passing explicit state down a chain of functions
      to be unsatisfactory, so we abstracted this detail away. We noticed some
      recurring needs as we worked out our parsing code, and abstracted those
      into common functions. Along the way, we introduced the notion of a
      functor, which offers a generalized way to map over a parameterized
      type.
We will revisit parsing in Chapter 16, when we discuss Parsec, a widely used and flexible parsing
      library. And in Chapter 14, we will return to our theme
      of abstraction, where we will find that much of the code that we have
      developed in this chapter can be further simplified by the use of
      monads.
For efficiently parsing binary data
      represented as a ByteString, a number of packages are
      available via the Hackage package database. At the time of this writing,
      the most popular is binary, which is easy to use and offers
      high
      performance.
Exercises
	Write a parser for “plain” PGM files.

	In our description of “raw” PGM files, we
            omitted a small detail. If the “maximum gray” value
            in the header is less than 256, each pixel is represented by a
            single byte. However, it can range up to 65,535, in which case,
            each pixel will be represented by 2 bytes, in big-endian order
            (most significant byte first).
Rewrite the raw PGM parser to accommodate both the single-
            and double-byte pixel formats.

	Extend your parser so that it can identify a raw or plain
            PGM file, and then parse the appropriate file type.






Chapter 11. Testing and Quality Assurance



Building real systems means caring
    about quality control, robustness, and correctness. With the
    right quality assurance mechanisms in place, well-written code can feel
    like a precision machine, with all functions performing their tasks
    exactly as specified. There is no sloppiness around the edges, and the
    final result can be code that is self-explanatory—and obviously
    correct—the kind of code that inspires confidence.
In Haskell, we have several tools at our
    disposal for building such precise systems. The most obvious tool, and one
    built into the language itself, is the expressive type system, which
    allows for complicated invariants to be enforced statically—making it
    impossible to write code violating chosen constraints. In addition, purity
    and polymorphism encourage a style of code that is modular, refactorable,
    and testable. This is the kind of code that just doesn’t go wrong.
Testing plays a key role in keeping code on
    the straight-and-narrow path. The main testing mechanisms in Haskell are
    traditional unit testing (via the HUnit library) and its more powerful descendant, type-based
    “property” testing, with QuickCheck, an open source testing
    framework for Haskell. Property-based testing that encourages a high-level
    approach to testing in the form of abstract invariants functions should
    satisfy universally, with the actual test data generated for the
    programmer by the testing library. In this way, code can be hammered with
    thousands of tests that would be infeasible to write by hand, often
    uncovering subtle corner cases that wouldn’t be found otherwise.
In this chapter, we’ll look at how to use
    QuickCheck to establish invariants in code, and then re-examine the pretty
    printer developed in previous chapters, testing it with the framework.
    We’ll also see how to guide the testing process with GHC’s code coverage tool: HPC.
QuickCheck: Type-Based Testing



To get an overview of how property-based testing works, we’ll begin with a simple
      scenario: you’ve written a specialized sorting function and want to test
      its behavior.
First, we import the QuickCheck
      library,[28] and any other modules we need:
-- file: ch11/QC-basics.hs
import Test.QuickCheck
import Data.List
And the function we want to test—a custom
      sort routine:
-- file: ch11/QC-basics.hs
qsort :: Ord a => [a] -> [a]
qsort []     = []
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs
    where lhs = filter  (< x) xs
          rhs = filter (>= x) xs
This is the classic Haskell sort
      implementation: a study in functional programming elegance, if not
      efficiency (this isn’t an inplace sort). Now, we’d like to check that
      this function obeys the basic rules a good sort should follow. One
      useful invariant to start with, and one that comes up in a lot of purely
      functional code, is idempotency—applying a function
      twice has the same result as applying it only once. For our sort
      routine—a stable sort algorithm—this should certainly be true, or things
      have gone horribly wrong! This invariant can be encoded as a property
      simply, as follows:
-- file: ch11/QC-basics.hs
prop_idempotent xs = qsort (qsort xs) == qsort xs
We’ll use the QuickCheck convention of
      prefixing test properties with prop_ in order to
      distinguish them from normal code. This idempotency property is written
      simply as a Haskell function stating an equality that must hold for any
      input data that is sorted. We can check this makes sense for a few
      simple cases by hand:
ghci> prop_idempotent []       
True
ghci> prop_idempotent [1,1,1,1]  
True
ghci> prop_idempotent [1..100]
True
ghci> prop_idempotent [1,5,2,1,2,0,9]
True
Looks good. However, writing out the input
      data by hand is tedious and violates the moral code of the efficient
      functional programmer: let the machine do the work! To automate this,
      the QuickCheck library comes with a set of data generators for all the
      basic Haskell data types. QuickCheck uses the Arbitrary
      typeclass to present a uniform interface to (pseudo)random data
      generation with the type system used to resolve the question of which
      generator to use. QuickCheck normally hides the data generation
      plumbing; however, we can also run the generators by hand to get a sense
      for the distribution of data that QuickCheck produces. For example, to
      generate a random list of Boolean values:
ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Bool]
[False,False,False,False,False,True]

QuickCheck generates test data such as
      this and passes it to the property of our choosing, via the
      quickCheck function. The type of the property itself
      determines which data generator is used. quickCheck then
      checks that for all the test data produced, the property is satisfied.
      Now, since our idempotency test is polymorphic in the list element type,
      we need to pick a particular type for which to generate test data, which
      we write as a type constraint on the property. To run the test, we just
      call quickCheck with our property function, which is set to
      the required data type (otherwise, the list element type will default to
      the uninteresting () type):
ghci> :type quickCheck
quickCheck :: (Testable a) => a -> IO ()
ghci> quickCheck (prop_idempotent :: [Integer] -> Bool)
 passed 100 tests.
For the 100 different lists generated, our
      property held—great! When developing tests, it is often useful to see
      the actual data generated for each test. To do this, we would replace
      quickCheck with its sibling, verboseCheck, to
      see (verbose) output for each test. Now, let’s look at more
      sophisticated properties that our function might satisfy.
Testing for Properties



Good libraries consist of a set of
        orthogonal primitives having sensible relationships to each other. We
        can use QuickCheck to specify the relationships between functions in
        our code, helping us find a good library interface by developing
        functions that are interrelated via useful properties. QuickCheck in
        this way acts as an API “lint” tool—it provides machine support for
        ensuring that our library API makes sense.
The list sorting function should
        certainly have a number of interesting properties that tie it to other
        list operations. For example, the first element in a sorted list
        should always be the smallest element of the input list. We might be
        tempted to specify this intuition in Haskell, using the
        List library’s minimum function:
-- file: ch11/QC-basics.hs
prop_minimum xs         = head (qsort xs) == minimum xs
Testing this, though, reveals an
        error:
ghci> quickCheck (prop_minimum :: [Integer] -> Bool)
** Exception: Prelude.head: empty list

The property failed when sorting an
        empty list, for which head and minimum
        aren’t defined, as we can see from their definition:
-- file: ch11/minimum.hs
head       :: [a] -> a
head (x:_) = x
head []    = error "Prelude.head: empty list"

minimum    :: (Ord a) => [a] -> a
minimum [] =  error "Prelude.minimum: empty list"
minimum xs =  foldl1 min xs
So this property will only hold for
        nonempty lists. QuickCheck, thankfully, comes with a full property
        writing embedded language, so we can specify more precisely our
        invariants, filtering out values we don’t want to consider. For the
        empty list case, we really want to say if the
        list is nonempty, then the first element of the
        sorted result is the minimum. This is done using the
        (==>) implication function, which filters out invalid data before running
        the property:
-- file: ch11/QC-basics.hs
prop_minimum' xs         = not (null xs) ==> head (qsort xs) == minimum xs
The result is quite clean. By separating
        out the empty list case, we can now confirm that the property does in
        fact hold:
ghci> quickCheck (prop_minimum' :: [Integer] -> Property)
 passed 100 tests.

Note that we had to change the type of
        the property from being a simple Bool result to the more
        general Property type (the property itself is now a
        function that filters nonempty lists, before testing them, rather than
        a simple Boolean constant).
We can now complete the basic property
        set for the sort function with some other invariants that it should
        satisfy: the output should be ordered (each element should be smaller
        than, or equal to, its successor); the output should be a permutation
        of the input (which we achieve via the list difference function,
        (\\)); the last sorted element should be the largest element;
        and if we find the smallest element of two different lists, that
        should be the first element if we append and sort those lists. These
        properties can be stated as:
-- file: ch11/QC-basics.hs
prop_ordered xs = ordered (qsort xs)
    where ordered []       = True
          ordered [x]      = True
          ordered (x:y:xs) = x <= y && ordered (y:xs)

prop_permutation xs = permutation xs (qsort xs)
    where permutation xs ys = null (xs \\ ys) && null (ys \\ xs)

prop_maximum xs         =
    not (null xs) ==>
        last (qsort xs) == maximum xs

prop_append xs ys       =
    not (null xs) ==>
    not (null ys) ==>
        head (qsort (xs ++ ys)) == min (minimum xs) (minimum ys)

Testing Against a Model



Another technique for gaining confidence
        in some code is to test it against a model implementation. We can tie
        our implementation of list sort to the reference sort function in the
        standard list library, and, if they behave the same, we gain
        confidence that our sort does the right thing:
-- file: ch11/QC-basics.hs
prop_sort_model xs      = sort xs == qsort xs
This kind of model-based testing
        is extremely powerful. Often, developers will have a
        reference implementation or prototype that, while inefficient, is
        correct. This can then be kept around and used to ensure that
        optimized production code conforms to the reference. By building a
        large suite of these model-based tests and running them regularly (on
        every commit, for example), we can cheaply ensure the precision of our
        code. Large Haskell projects often come bundled with property suites
        comparable in size to the project itself, with thousands of invariants
        tested on every change, keeping the code tied to the specification,
        and ensuring that it behaves as required.


Testing Case Study: Specifying a Pretty Printer



Testing individual functions for their natural properties is one
      of the basic building blocks that guides development of large systems in
      Haskell. We’ll look now at a more complicated scenario: taking the
      pretty-printing library developed in earlier chapters and building a
      test suite for it.
Generating Test Data



Recall that the pretty printer is built
        around the Doc, an algebraic data type that represents well-formed
        documents:
-- file: ch11/Prettify2.hs

data Doc = Empty
         | Char Char
         | Text String
         | Line
         | Concat Doc Doc
         | Union Doc Doc
         deriving (Show,Eq)
The library itself is implemented as a
        set of functions that build and transform values of this document
        type, before finally rendering the finished document to a
        string.
QuickCheck encourages an approach to testing where the developer specifies
        invariants that should hold for any data we can throw at the code. To
        test the pretty-printing library, then, we’ll need a source of input
        data. To do this, we take advantage of the small combinator suite for
        building random data that QuickCheck provides via the
        Arbitrary class. The class provides a function, arbitrary, to
        generate data of each type. With it, we can define our data generator
        for our custom data types:[29]
-- file: ch11/Arbitrary.hs
class Arbitrary a where
  arbitrary   :: Gen a
One thing to notice is that the
        generators run in a Gen environment, indicated by the type. This is a simple state-passing
        monad that is used to hide the random number generator state that is
        threaded through the code. We’ll look thoroughly at monads in later
        chapters, but for now it suffices to know that, as Gen is
        defined as a monad, we can use do syntax to write new
        generators that access the implicit random number source. To actually
        write generators for our custom type, we use any of a set of functions
        defined in the library for introducing new random values and gluing
        them together to build up data structures of the type we’re interested
        in. The types of the key functions are:
-- file: ch11/Arbitrary.hs
  elements :: [a] -> Gen a
  choose   :: Random a => (a, a) -> Gen a
  oneof    :: [Gen a] -> Gen a
The function elements,
        for example, takes a list of values and returns a generator
        of random values from that list. (We’ll use choose and
        oneof later.) With it, we can start writing generators
        for simple data types. For example, if we define a new data type for
        ternary logic:
-- file: ch11/Arbitrary.hs
data Ternary
    = Yes
    | No
    | Unknown
    deriving (Eq,Show)
we can write an Arbitrary
        instance for the Ternary type by defining a function that picks elements from a list
        of the possible values of the Ternary type:
-- file: ch11/Arbitrary.hs
instance Arbitrary Ternary where
  arbitrary     = elements [Yes, No, Unknown]
Another approach to data generation is
        to generate values for one of the basic Haskell types and then
        translate those values into the type we’re actually interested in. We
        could have written the Ternary instance by generating
        integer values from 0 to 2 instead, using choose, and
        then mapping them onto the ternary values:
-- file: ch11/Arbitrary2.hs
instance Arbitrary Ternary where
  arbitrary     = do
      n <- choose (0, 2) :: Gen Int
      return $ case n of
                    0 -> Yes
                    1 -> No
                    _ -> Unknown
For simple sum
        types, this approach works well, as the integers map nicely
        onto the constructors of the data type. For
        product types (such as structures and tuples), we
        need to instead generate each component of the product separately (and
        recursively for nested types),
        and then combine the components. For example, to generate random pairs
        of random values:
-- file: ch11/Arbitrary.hs
instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b) where
  arbitrary = do
      x <- arbitrary
      y <- arbitrary
      return (x, y)
So let’s now write a generator for all
        the different variants of the Doc type. We’ll start by
        breaking the problem down, first generating random constructors for
        each type, and then, depending on the result, the components of each
        field. The most complicated case are the union and concatenation
        variants.
First, though, we need to write an
        instance for generating random characters—QuickCheck doesn’t have a default
        instance for characters, due to the abundance of different text
        encodings we might want to use for character tests. We’ll write our
        own, and, as we don’t care about the actual text content of the
        document, a simple generator of alphabetic characters and punctuation
        will suffice (richer generators are simple extensions of this basic
        approach):
-- file: ch11/QC.hs
instance Arbitrary Char where
    arbitrary = elements (['A'..'Z'] ++ ['a' .. 'z'] ++ " ~!@#$%^&*()")
With this in place, we can now write an
        instance for documents by enumerating the constructors and filling in
        the fields. We choose a random integer to represent which document
        variant to generate, and then dispatch based on the result. To
        generate concat or union document nodes, we just recurse on
        arbitrary, letting type inference determine which
        instance of Arbitrary we mean:
-- file: ch11/QC.hs
instance Arbitrary Doc where
    arbitrary = do
        n <- choose (1,6) :: Gen Int
        case n of
             1 -> return Empty

             2 -> do x <- arbitrary
                     return (Char x)

             3 -> do x <- arbitrary
                     return (Text x)

             4 -> return Line

             5 -> do x <- arbitrary
                     y <- arbitrary
                     return (Concat x y)

             6 -> do x <- arbitrary
                     y <- arbitrary
                     return (Union x y)
That was fairly straightforward, and we
        can clean it up some more by using the oneof function,
        whose type we saw earlier, to pick between different generators in a
        list (we can also use the monadic combinator, liftM, in
        order to avoid naming intermediate results from each
        generator):
-- file: ch11/QC.hs
instance Arbitrary Doc where
    arbitrary =
        oneof [ return Empty
              , liftM  Char   arbitrary
              , liftM  Text   arbitrary
              , return Line
              , liftM2 Concat arbitrary arbitrary
              , liftM2 Union  arbitrary arbitrary ]
The latter is more concise—just picking
        between a list of generators—but they describe the same data either
        way. We can check that the output makes sense, by generating a list of
        random documents (seeding the pseudorandom generator with an initial
        seed of 2):
ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Doc]
[Line,Empty,Union Empty Line,Union (Char 'R') (Concat (Union Line (Concat 
(Text "i@BmSu") (Char ')'))) (Union (Concat (Concat (Concat (Text "kqV!iN") 
Line) Line) Line) Line)),Char 'M',Text "YdwVLrQOQh"]

Looking at the output, we see a good
        mix of simple base cases and some more complicated nested documents.
        We’ll be generating hundreds of these each test run so that should do
        a pretty good job. We can now write some generic properties for our
        document functions.

Testing Document Construction



Two of the basic functions on documents
        are the null document constant (a nullary function),
        empty, and the append function. Their types are:
-- file: ch11/Prettify2.hs
empty :: Doc
(<>)  :: Doc -> Doc -> Doc
Together, these should have a nice property:
        appending or prepending the empty list onto a second list should leave
        the second list unchanged. We can state this invariant as a
        property:
-- file: ch11/QC.hs
prop_empty_id x =
    empty <> x == x
  &&
    x <> empty == x
Confirming that this is indeed true,
        we’re now underway with our testing:
ghci> quickCheck prop_empty_id
 passed 100 tests.

Use this in order to look at what
        actual test documents were generated (by replacing
        quickCheck with verboseCheck). If we look at
        a good mixture of both simple and complicated cases, we see a good
        mixture being generated. We can refine the data generation further,
        with constraints on the proportion of generated data, if
        desirable.
Other functions in the API are also
        simple enough to have their behavior fully described via properties.
        By doing so we can maintain an external, checkable description of the
        function’s behavior, so later changes won’t break these basic
        invariants.
-- file: ch11/QC.hs

prop_char c   = char c   == Char c

prop_text s   = text s   == if null s then Empty else Text s

prop_line     = line     == Line

prop_double d = double d == text (show d)
These properties are enough to fully
        test the structure returned by the basic document operators. Testing
        the rest of the library will require more work.

Using Lists as a Model



Higher order functions are the basic glue of reusable programming,
        and our pretty-printer library is no exception—a custom fold function
        is used internally to implement both document concatenation and
        interleaving separators between document chunks. The fold
        defined for documents takes a list of document pieces and glues them
        all together with a supplied combining function:
-- file: ch11/Prettify2.hs
fold :: (Doc -> Doc -> Doc) -> [Doc] -> Doc
fold f = foldr f empty
We can write tests in isolation for
        specific instances of fold easily. Horizontal concatenation of
        documents, for example, is easy to specify by writing a reference
        implementation on lists:
-- file: ch11/QC.hs

prop_hcat xs = hcat xs == glue xs
    where
        glue []     = empty
        glue (d:ds) = d <> glue ds
It is a similar story for
        punctuate, where we can model inserting punctuation with
        list interspersion (from Data.List,
        intersperse is a function that takes an element and
        interleaves it between other elements of a list):
-- file: ch11/QC.hs

prop_punctuate s xs = punctuate s xs == intersperse s xs
While this looks fine, running it
        reveals a flaw in our reasoning:
ghci>  quickCheck prop_punctuate
Falsifiable, after 6 tests:
Empty
[Line,Text "",Line]

The pretty-printing library optimizes
        away redundant empty documents, something the model implementation
        doesn’t do, so we’ll need to augment our model to match reality.
        First, we can intersperse the punctuation text throughout the document
        list, and then a little loop to clean up the Empty
        documents scattered through, like so:
-- file: ch11/QC.hs
prop_punctuate' s xs = punctuate s xs == combine (intersperse s xs)
    where
        combine []           = []
        combine [x]          = [x]

        combine (x:Empty:ys) = x : combine ys
        combine (Empty:y:ys) = y : combine ys
        combine (x:y:ys)     = x `Concat` y : combine ys
Running this in GHCi, we can confirm
        the result. It is reassuring to have the test framework spot the flaws
        in our reasoning about the code—exactly what we’re looking for:
ghci> quickCheck prop_punctuate'
passed 100 tests.


Putting It All Together



We can put all these tests together in
        a single file and run them simply using one of QuickCheck’s driver
        functions. Several exist, including elaborate parallel ones. The basic
        batch driver is often good enough, however. All we need do is set up
        some default test parameters, and then list the functions we want to
        test:
-- file: ch11/Run.hs
import Prettify2
import Test.QuickCheck.Batch

options = TestOptions
      { no_of_tests         = 200
      , length_of_tests     = 1
      , debug_tests         = False }

main = do
    runTests "simple" options
        [ run prop_empty_id
        , run prop_char
        , run prop_text
        , run prop_line
        , run prop_double
        ]

    runTests "complex" options
        [ run prop_hcat
        , run prop_puncutate'
        ]
We’ve structured the code here as a
        separate, standalone test script, with instances and properties in
        their own file, separate from the library source. This is typical for
        library projects, where the tests are kept apart from the library
        itself, and where they import the library via the module system. The
        test script can then be compiled and executed:
$ ghc --make Run.hs
$ ./Run 
                 simple : .....                            (1000)
                complex : ..                               (400)
A total of 1,400 individual tests were
        created, which is comforting. We can increase the depth easily enough,
        but to find out exactly how well the code is being tested, we should
        turn to the built-in code coverage tool, HPC, which can state
        precisely what is going on.


Measuring Test Coverage with HPC



HPC (Haskell Program Coverage) is an extension to the compiler to observe what parts of
      the code were actually executed during a given program run. This is
      useful in the context of testing, as it lets us observe exactly which
      functions, branches, and expressions were evaluated. The result is
      precise knowledge about the percent of code tested that’s easy to
      obtain. HPC comes with a simple utility to generate useful graphs of
      program coverage, making it easy to zoom in on weak spots in the test
      suite.
To obtain test coverage data, all we need to do is add the -fhpc
      flag to the command line when compiling the tests:
$ ghc -fhpc Run.hs --make
Then run the tests as normal:
$ ./Run
                 simple : .....                            (1000)
                complex : ..                               (400)
During the test run, the trace of the
      program is written to .tix and
      .mix files in the current directory. Afterwards, these files are
      used by the command-line tool, hpc, to display various
      statistics about what happened. The basic interface is textual. To
      begin, we can get a summary of the code tested during the run using the
      report flag to hpc. We’ll exclude the test programs themselves (using the
      --exclude flag), so as to concentrate only on code in
      the pretty-printer library. Entering the following into the
      console:
$ hpc report Run --exclude=Main --exclude=QC
  18% expressions used (30/158)
   0% boolean coverage (0/3)
        0% guards (0/3), 3 unevaluated
        100% 'if' conditions (0/0)
        100% qualifiers (0/0)
   23% alternatives used (8/34)
    0% local declarations used (0/4)
   42% top-level declarations used (9/21)
we see that, on the last line, 42% of
      top-level definitions were evaluated during the test run. Not too bad
      for a first attempt. As we test more and more functions from the
      library, this figure will rise. The textual version is useful for a
      quick summary, but to really see what’s going on, it is best to look at
      the marked up output. To generate this, use the markup flag
      instead:
$ hpc markup Run --exclude=Main --exclude=QC
This will generate one HTML file for each
      Haskell source file, and some index files. Loading the file
      hpc_index.html into a browser, we can see some pretty
      graphs of the code coverage. See Figure 11-1.
[image: Revised coverage for module Prettify2: 52% of top-level definitions (up from 42%), 23% of alternatives, 18% of expressions]

Figure 11-1. Revised coverage for module Prettify2: 52% of top-level
        definitions (up from 42%), 23% of alternatives, 18% of
        expressions

Not too bad. Clicking through to the
      pretty module itself, we see the actual source of the program (see Figure 11-2). It is marked up in bold yellow
      for code that wasn’t tested, and marked simply bold for code that was
      tested.
[image: Screenshot of annotated coverage output, displaying the Monoid instance for Doc in bold yellow (not tested), and other code nearby in bold (was executed)]

Figure 11-2. Screenshot of annotated coverage output, displaying the Monoid
        instance for Doc in bold yellow (not tested), and other code nearby in
        bold (was executed)

We forgot to test the Monoid
      instance, for example, and some of the more complicated functions.
      HPC helps keep our test suite honest. Let’s add a test for the typeclass
      instance of Monoid, which is the class of types that
      support appending and empty elements:
-- file: ch11/QC.hs
prop_mempty_id x =
    mempty `mappend` x == x
  &&
    x `mappend` mempty == (x :: Doc)
Run this property in ghci, to check it is correct:
ghci> quickCheck prop_mempty_id
 passed 100 tests.

We can now recompile and run the test
      driver. It is important to remove the old .tix file first though, or an error will
      occur as HPC tries to combine the statistics from separate runs:
  $ ghc -fhpc Run.hs --make -no-recomp
  $ ./Run 
  Hpc failure: inconsistent number of tick boxes
  (perhaps remove Run.tix file?)
  $ rm *.tix
  $ ./Run   
                     simple : .....                            (1000)
                    complex : ...                              (600)
Another 200 tests were added to the
      suite, and our coverage statistics improves to 52% of the code base (see
      Figure 11-3).
[image: Coverage for module Prettify2: 42% of top-level definitions, 23% of alternatives, 18% of expressions]

Figure 11-3. Coverage for module Prettify2: 42% of top-level definitions,
        23% of alternatives, 18% of expressions

HPC ensures that we’re honest in our
      testing, as anything less than 100% coverage will be pointed out in
      glaring color. In particular, it ensures the programmer has to think
      about error cases, complicated branches with obscure conditions, and all
      forms of code smell. When combined with a saturating test generation
      system such as QuickCheck’s, testing becomes a rewarding activity and a
      core part of Haskell development.



[28] Throughout this chapter, we’ll use
          QuickCheck 1.0 (classic QuickCheck). It should be kept in mind that
          some functions may differ in later releases of the library.

[29] The class also defines a method,
            coarbitrary, which, given a value of some type,
            yields a function for new generators. We can disregard this for
            now, as it is only needed for generating random values of function
            type. One result of disregarding coarbitrary is that
            GHC will warn about it not being defined. However, it is safe to
            ignore these warnings.



Chapter 12. Barcode Recognition



In this chapter, we’ll make use of the image-parsing library we developed
    in Chapter 10 to build a barcode recognition application.
    Given a picture of the back of a book taken with a camera phone, we could
    use this to extract its ISBN number.
A Little Bit About Barcodes



The vast majority of packaged and
      mass-produced consumer goods sold have a barcode somewhere on them.
      Although there are dozens of barcode systems used across a variety of
      specialized domains, consumer products typically use either UPC-A or EAN-13. UPC-A was developed in the United
      States, while EAN-13 is European in origin.
EAN-13 was developed after UPC-A and is a
      superset of UPC-A. (In fact, UPC-A has been officially declared obsolete
      since 2005, though it’s still widely used within the United States.) Any
      software or hardware that can understand EAN-13 barcodes will
      automatically handle UPC-A barcodes. This neatly reduces our descriptive
      problem to one standard.
As the name suggests, EAN-13 describes a
      13-digit sequence, which is broken into four groups:
	Number system
	The first two digits. This can either indicate the nationality of the
            manufacturer or describe one of a few other categories, such as
            ISBN (book identifier) numbers.

	Manufacturer ID
	The next five digits. These are assigned by a country’s
            numbering authority.

	Product ID
	The next five digits. These are assigned by the
            manufacturer. (Smaller manufacturers may have a longer
            manufacturer ID and shorter product ID, but they still add up to
            10 digits.)

	Check digit
	The last digit. This allows a scanner to validate the digit
            string it scans.



The only way in which an EAN-13 barcode
      differs from a UPC-A barcode is that the latter uses a single digit to
      represent its number system. EAN-13 barcodes retain UPC-A compatibility by setting the first
      number system digit to zero.
EAN-13 Encoding



Before we worry about decoding an EAN-13
        barcode, we need to understand how they are encoded. The system EAN-13
        uses is a little involved. We start by computing the check digit,
        which is the last digit of a string:
-- file: ch12/Barcode.hs
checkDigit :: (Integral a) => [a] -> a
checkDigit ds = 10 - (sum products `mod` 10)
    where products = mapEveryOther (*3) (reverse ds)

mapEveryOther :: (a -> a) -> [a] -> [a]
mapEveryOther f = zipWith ($) (cycle [f,id])
This is one of those algorithms that is
        more easily understood via the code than a verbal description. The
        computation proceeds from the right of the string. Each successive
        digit is either multiplied by three or left alone (the cycle function repeats its input list
        infinitely). The check digit is the difference between their sum,
        modulo 10, and the number 10.
A barcode is a series of fixed-width
        bars, where black represents a binary “one” bit, and
        white a “zero.” A run of the same digits thus looks like a thicker
        bar.
The sequence of bits in a barcode is as
        follows:
	The leading guard sequence, encoded
            as 101.

	A group of six digits, each seven
            bits wide.

	Another guard sequence, encoded as
            01010.

	A group of six more digits.

	The trailing guard sequence, encoded
            as 101.



The digits in the left and right groups
        have separate encodings. On the left, digits are encoded with parity
        bits. The parity bits encode the 13th digit of the barcode.


Introducing Arrays



Before we continue, here are all of the imports that we will be using in the
      remainder of this chapter:
-- file: ch12/Barcode.hs
import Data.Array (Array(..), (!), bounds, elems, indices,
                   ixmap, listArray)

import Control.Applicative ((<$>))
import Control.Monad (forM_)
import Data.Char (digitToInt)
import Data.Ix (Ix(..))
import Data.List (foldl', group, sort, sortBy, tails)
import Data.Maybe (catMaybes, listToMaybe)
import Data.Ratio (Ratio)
import Data.Word (Word8)
import System.Environment (getArgs)
import qualified Data.ByteString.Lazy.Char8 as L
import qualified Data.Map as M

import Parse                    -- from chapter 10
The barcode encoding process can largely
      be table-driven, in which we use small tables of bit patterns to decide
      how to encode each digit. Haskell’s bread-and-butter—data types, lists,
      and tuples—are not well-suited to use for tables whose elements may be
      accessed randomly. A list has to be traversed linearly to reach the
      kth element. A tuple doesn’t have this problem, but
      Haskell’s type system makes it difficult to write a function that takes
      a tuple and an element offset and returns the element at that offset
      within the tuple. (We’ll explore why in the exercises that
      follow.)
The usual data type for constant-time
      random access is of course the array. Haskell provides several array
      data types. We’ll thus represent our encoding tables as arrays of
      strings.
The simplest array type is in the
      Data.Array module, which we’re using here. This presents arrays that can
      contain values of any Haskell type. Like other common Haskell types,
      these arrays are immutable. An immutable array is
      populated with values just once, when it is created. Its contents cannot
      subsequently be modified. (The standard libraries also provide other
      array types, some of which are mutable, but we won’t cover those for a
      while.)
-- file: ch12/Barcode.hs
leftOddList = ["0001101", "0011001", "0010011", "0111101", "0100011",
               "0110001", "0101111", "0111011", "0110111", "0001011"]

rightList = map complement <$> leftOddList
    where complement '0' = '1'
          complement '1' = '0'

leftEvenList = map reverse rightList

parityList = ["111111", "110100", "110010", "110001", "101100",
              "100110", "100011", "101010", "101001", "100101"]

listToArray :: [a] -> Array Int a
listToArray xs = listArray (0,l-1) xs
    where l = length xs

leftOddCodes, leftEvenCodes, rightCodes, parityCodes :: Array Int String

leftOddCodes = listToArray leftOddList
leftEvenCodes = listToArray leftEvenList
rightCodes = listToArray rightList
parityCodes = listToArray parityList
The Data.Array module’s
      listArray function populates an array from a list. It takes as its first
      parameter the bounds of the array to create; the second is the values
      with which to populate it.
An unusual feature of the
      Array type is that its type is parameterized over both the
      data it contains and the index type. For example, the type of a
      one-dimensional array of String is Array Int
      String, but a two-dimensional array would have the type
      Array (Int,Int) String:
ghci> :m +Data.Array
ghci> :type listArray
listArray :: (Ix i) => (i, i) -> [e] -> Array i e
We can construct an array easily:
ghci> listArray (0,2) "foo"
array (0,2) [(0,'f'),(1,'o'),(2,'o')]

Notice that we have to specify the lower
      and upper bounds of the array. These bounds are inclusive, so an array
      from 0 to 2 has elements 0, 1, and 2:
ghci> listArray (0,3) [True,False,False,True,False]
array (0,3) [(0,True),(1,False),(2,False),(3,True)]
ghci> listArray (0,10) "too short"
array (0,10) [(0,'t'),(1,'o'),(2,'o'),(3,' '),(4,'s'),(5,'h'),(6,'o'),
(7,'r'),(8,'t'),(9,*** Exception: (Array.!): undefined array element
Once an array is constructed, we can use
      the (!) operator to access its elements by index:
ghci> let a = listArray (0,14) ['a'..]
ghci> a ! 2
'c'
ghci> a ! 100
*** Exception: Error in array index
Since the array construction function lets
      us specify the bounds of an array, we don’t have to use the zero-based
      array indexing that is familiar to C programmers. We can choose whatever
      bounds are convenient for our purposes:
ghci> let a = listArray (-9,5) ['a'..]
ghci> a ! (-2)
'h'
The index type can be any member of the
      Ix type. This lets us use, for example, Char as the index
      type:
ghci> let a = listArray ('a', 'h') [97..]
ghci> a ! 'e'
101
To create a higher-dimensioned array, we
      use a tuple of Ix instances as the index type. The Prelude makes tuples of up to five elements
      members of the Ix class. To illustrate, here’s a small
      three-dimensional array:
ghci> let a = listArray ((0,0,0), (9,9,9)) [0..]
ghci> a ! (4,3,7)
437
Arrays and Laziness



The list that we use to populate the array must contain at least as
        many elements as are in the array. If we do not provide enough
        elements, we’ll get an error at runtime. When the error occurs depends
        on the nature of the array.
Here, we are using an array type that
        is nonstrict in its elements. If we provide a list of three values to
        an array that we specify as containing more than three elements, the
        remaining elements will undefined. We will not get an error unless we
        access an element beyond the third:
ghci> let a = listArray (0,5) "bar"
ghci> a ! 2
'r'
ghci> a ! 4
*** Exception: (Array.!): undefined array element
Haskell also provides strict arrays,
        which behave differently. We will discuss the tradeoffs between the
        two kinds of arrays in Unboxing, Lifting, and Bottom.

Folding over Arrays



The bounds function returns a tuple describing the bounds that we used to
        create the array. The indices
        function returns a list of every index. We can use these to define
        some useful folds, since the Data.Array module doesn’t define any fold functions itself:
-- file: ch12/Barcode.hs
-- | Strict left fold, similar to foldl' on lists.
foldA :: Ix k => (a -> b -> a) -> a -> Array k b -> a
foldA f s a = go s (indices a)
    where go s (j:js) = let s' = f s (a ! j)
                        in s' `seq` go s' js
          go s _ = s

-- | Strict left fold using the first element of the array as its
-- starting value, similar to foldl1 on lists.
foldA1 :: Ix k => (a -> a -> a) -> Array k a -> a
foldA1 f a = foldA f (a ! fst (bounds a)) a
You might wonder why the array modules
        don’t already provide such useful things as folding functions. There
        are some obvious correspondences between a one-dimensional array and a list. For
        instance, there are only two natural ways in which we can fold
        sequentially: left-to-right and right-to-left. Additionally, we can
        only fold over one element at a time.
This does not translate even to
        two-dimensional arrays. First of all, there are several kinds of fold that make
        sense. We might still want to fold over single elements, but we now
        have the possibility of folding over rows or columns, too. On top of
        this, for element-at-a-time folding, there are no longer just two
        sequences for traversal.
In other words, for two-dimensional
        arrays, there are enough permutations of possibly useful behavior that
        there aren’t many compelling reasons to choose a handful for a
        standard library. This problem is only compounded for higher
        dimensions, so it’s best to let developers write folds that suit the
        needs of their applications. As we can see from our examples, this is
        not hard to do.

Modifying Array Elements



While
        “modification” functions exist for immutable arrays, they are not very
        practical. For example, the accum
        function takes an array and a list of (index,
        value) pairs and returns a new array with the values at the
        given indices replaced.
Since arrays are immutable, modifying
        even one element requires copying the entire array. This quickly
        becomes prohibitively expensive on arrays of even modest size.
Another array type,
        DiffArray in the Data.Array.Diff module,
        attempts to offset the cost of small modifications by
        storing deltas between successive versions of an array. Unfortunately,
        it is not implemented efficiently at the time of this writing, and it
        is currently too slow to be of practical use.
Don’t lose hope
It is in fact
          possible to modify an array efficiently in Haskell, using the
          ST monad. We’ll return to this subject in Chapter 26.

Exercises
Let’s briefly explore the suitability of tuples as stand-ins
          for arrays:
	Write a function that takes two arguments: a four-element
              tuple and an integer. With an integer argument of zero, it
              should return the leftmost element of the tuple. With an
              argument of one, it should return the next element. And so on.
              What restrictions do you have to put on the types of the
              arguments in order to write a function that typechecks
              correctly?

	Write a similar function that takes a six-tuple as its
              first argument.

	Try refactoring the two functions to share any common code
              you can identify. How much shared code are you able to
              find?






Encoding an EAN-13 Barcode



Even though our goal is to
      decode a barcode, it’s useful to have an encoder for reference. This will
      allow us to, for example, ensure that our code is correct by checking
      that the output of decode . encode is the same as its
      input:
-- file: ch12/Barcode.hs
encodeEAN13 :: String -> String
encodeEAN13 = concat . encodeDigits . map digitToInt

-- | This function computes the check digit; don't pass one in.
encodeDigits :: [Int] -> [String]
encodeDigits s@(first:rest) =
    outerGuard : lefties ++ centerGuard : righties ++ [outerGuard]
  where (left, right) = splitAt 5 rest
        lefties = zipWith leftEncode (parityCodes ! first) left
        righties = map rightEncode (right ++ [checkDigit s])

leftEncode :: Char -> Int -> String
leftEncode '1' = (leftOddCodes !)
leftEncode '0' = (leftEvenCodes !)

rightEncode :: Int -> String
rightEncode = (rightCodes !)

outerGuard = "101"
centerGuard = "01010"
The string to encode is 12 digits long,
      with encodeDigits adding a 13th
      check digit.
The barcode is encoded as two groups of
      six digits, with a guard sequence in the middle and
      “outside” sequences on either side. But if we have two
      groups of six digits, what happened to the missing digit?
Each digit in the left group is encoded
      using either odd or even parity, with the parity chosen based on the
      bits of the first digit in the string. If a bit of the first digit is
      zero, the corresponding digit in the left group is encoded with even
      parity. A one bit causes the digit to be encoded with odd parity. This
      encoding is an elegant hack, chosen to make EAN-13 barcodes
      backwards-compatible with the older UPC-A standard.

Constraints on Our Decoder



Before we talk about decoding, let’s set a few practical
      limitations on what kinds of barcode images we can work with.
Phone cameras and webcams generally output
      JPEG images, but writing a JPEG decoder would take us several chapters.
      We’ll simplify our parsing problem by handling the netpbm file format. We will use the parsing
      combinators we developed earlier in Chapter 10.
We’d like to deal with real images from
      the kinds of cheap, fixed-focus cameras that come with low-end cell
      phones. These images tend to be out of focus, noisy, low in contrast,
      and of poor resolution. Fortunately, it’s not hard to write code that
      can handle noisy, defocused VGA-resolution (640×480) images with
      terrible contrast ratios. We’ve verified that the code in this chapter
      captures barcodes from real books, using pictures taken by authentically
      mediocre cameras.
We will avoid any image-processing
      heroics, because that’s another chapter-consuming subject. We won’t
      correct perspective (such as in Figure 12-1). Neither will we sharpen images
      taken from too near to the subject (Figure 12-2), which causes narrow bars to fade
      out; or from too far (Figure 12-3), which
      causes adjacent bars to blur together.
[image: Barcode image distorted by perspective, due to photo being taken from an angle]

Figure 12-1. Barcode image distorted by perspective, due to photo being
        taken from an angle

[image: Barcode image blurred by being taken from inside the focal length of the camera lens, causing bars to run together]

Figure 12-2. Barcode image blurred by being taken from inside the focal
        length of the camera lens, causing bars to run together

[image: Barcode image contains insufficient detail, due to poor resolution of camera lens and CCD]

Figure 12-3. Barcode image contains insufficient detail, due to poor
        resolution of camera lens and CCD


Divide and Conquer



Our task is to take a camera image and
      extract a valid barcode from it. Given such a nonspecific description,
      it can be hard to see how to make progress. However, we can break the
      big problem into a series of subproblems, each of which is
      self-contained and more tractable:
	Convert color data into a form we can
          easily work with.

	Sample a single scan line from the
          image and extract a set of guesses as to what the encoded digits in
          this line could be.

	From the guesses, create a list of
          valid decodings.



Many of these subproblems can be further
      divided, as we’ll see.
You might wonder how closely this approach
      of subdivision mirrors the actual work we did when writing the code that
      we present in this chapter. The answer is that we’re far from
      image-processing gurus, and when we started writing this chapter, we
      didn’t know exactly what our solution was going to look like.
We made some early educated guesses as to
      what a reasonable solution might appear as and came up with the subtasks
      just listed. We were then able to start tackling those parts that we
      knew how to solve, using our spare time to think about the bits that we
      had no prior experience with. We certainly didn’t have a preexisting
      algorithm or master plan in mind.
Dividing the problem up like this helped
      us in two ways. By making progress on familiar ground, we had the
      psychological advantage of starting to solve the problem, even when we
      didn’t really know where we were going. And as we started to work on a
      particular subproblem, we found ourselves able to further subdivide it
      into tasks of varying familiarity. We continued to focus on easier
      components, deferring ones we hadn’t thought about in enough detail yet,
      and jumping from one element of the master list to another. Eventually,
      we ran out of problems that were both unfamiliar and unsolved, and we
      had a complete idea of our eventual solution.

Turning a Color Image into Something Tractable



Since we want to work with barcodes (which are sequences of
      black and white stripes) and we want to write a simple decoder, an easy
      representation to work with will be a monochrome image, in which each
      pixel is either black or white.
Parsing a Color Image



As we mentioned earlier, we’ll work with
        netpbm images. The netpbm color image format is only slightly more complicated
        than the grayscale image format that we parsed in Chapter 10. The
        identifying string in a header is “P6,” with the rest of the header
        layout identical to the grayscale format. In the body of an image,
        each pixel is represented as three bytes, one each for red, green, and
        blue.
We’ll represent the image data as a
        two-dimensional array of pixels. We’re using arrays here purely to
        gain experience with them. For this application, we could just as well
        use a list of lists. The only advantage of an array is slight—we can
        efficiently extract a row:
-- file: ch12/Barcode.hs
type Pixel = Word8
type RGB = (Pixel, Pixel, Pixel)

type Pixmap = Array (Int,Int) RGB
We provide a few type synonyms to make
        our type signatures more readable.
Since Haskell gives us considerable
        freedom in how we lay out an array, we must choose a representation.
        We’ll play it safe and follow a popular convention: indices begin at
        zero. We don’t need to store the dimensions of the image explicitly,
        since we can extract them using the bounds
        function.
The actual parser is mercifully short,
        thanks to the combinators we developed in Chapter 10:
-- file: ch12/Barcode.hs
parseRawPPM :: Parse Pixmap
parseRawPPM =
    parseWhileWith w2c (/= '\n') ==> \header -> skipSpaces ==>&
    assert (header == "P6") "invalid raw header" ==>&
    parseNat ==> \width -> skipSpaces ==>&
    parseNat ==> \height -> skipSpaces ==>&
    parseNat ==> \maxValue ->
    assert (maxValue == 255) "max value out of spec" ==>&
    parseByte ==>&
    parseTimes (width * height) parseRGB ==> \pxs ->
    identity (listArray ((0,0),(width-1,height-1)) pxs)

parseRGB :: Parse RGB
parseRGB = parseByte ==> \r ->
           parseByte ==> \g ->
           parseByte ==> \b ->
           identity (r,g,b)

parseTimes :: Int -> Parse a -> Parse [a]
parseTimes 0 _ = identity []
parseTimes n p = p ==> \x -> (x:) <$> parseTimes (n-1) p
The only function of note here is
        parseTimes, which calls another parser a given number of times, building
        up a list of results.

Grayscale Conversion



Now that we have a color image in hand,
        we need to convert the color data into monochrome. An intermediate step is to
        convert the data to grayscale. There’s a simple, widely used
        formula[30] for converting an RGB image into a grayscale image, based on the
        perceived brightness of each color channel:
-- file: ch12/Barcode.hs
luminance :: (Pixel, Pixel, Pixel) -> Pixel
luminance (r,g,b) = round (r' * 0.30 + g' * 0.59 + b' * 0.11)
    where r' = fromIntegral r
          g' = fromIntegral g
          b' = fromIntegral b
Haskell arrays are members of the
        Functor typeclass, so we can simply use fmap to turn an entire image, or a single
        scanline, from color into grayscale:
-- file: ch12/Barcode.hs
type Greymap = Array (Int,Int) Pixel

pixmapToGreymap :: Pixmap -> Greymap
pixmapToGreymap = fmap luminance
This pixmapToGreymap function is just for
        illustration. Since we’ll only be checking a few rows of an image for
        possible barcodes, there’s no reason to do the extra work of
        converting data we’ll never subsequently use.

Grayscale to Binary and Type Safety



Our next subproblem is to convert the
        grayscale image into a two-valued image, where each pixel is either on
        or off.
In an image-processing application,
        where we’re juggling lots of numbers, it would be easy to reuse the
        same numeric type for several different purposes. For example, we
        could use the Pixel type to represent on/off states,
        using the convention that the digit one represents a bit that’s “on,”
        and zero represents “off.”
However, reusing types for multiple
        purposes in this way quickly leads to potential confusion. To see
        whether a particular “Pixel” is a number or an on/off value, we can no longer simply
        glance at a type signature. We could easily use a value containing
        “the wrong kind of number” in some context, and the
        compiler wouldn’t catch it because the types work out.
We could try to work around this by
        introducing a type alias. In the same way that we declared
        Pixel to be a synonym of Word8, we could
        declare a Bit type as a synonym of Pixel.
        While this might help readability, type synonyms still don’t make the
        compiler do any useful work on our behalf.
The compiler would treat
        Pixel and Bit as exactly the same type, so
        it could not catch a mistake such as using a Pixel value
        of 253 in a function that expects Bit values of zero or
        one.
If we define the monochrome type
        ourselves, the compiler will prevent us from accidentally mixing our
        types up like this:
-- file: ch12/Barcode.hs
data Bit = Zero | One
           deriving (Eq, Show)

threshold :: (Ix k, Integral a) => Double -> Array k a -> Array k Bit
threshold n a = binary <$> a
    where binary i | i < pivot  = Zero
                   | otherwise  = One
          pivot    = round $ least + (greatest - least) * n
          least    = fromIntegral $ choose (<) a
          greatest = fromIntegral $ choose (>) a
          choose f = foldA1 $ \x y -> if f x y then x else y
Our threshold function computes the minimum and
        maximum values in its input array. It takes these and a threshold
        valued between zero and one, and computes a “pivot”
        value. Then for each value in the array, if that value is less than
        the pivot, the result is Zero; otherwise,
        One. Notice that we use one of the folding functions that
        we wrote in Folding over Arrays.


What Have We Done to Our Image?



Let’s step back for a moment and
      consider what we did to our image when we converted it from color to
      monochrome. Figure 12-4 shows an image captured
      from a VGA-resolution camera. All
      we’ve done is crop it down to the barcode.
[image: Barcode photo, somewhat blurry and dim]

Figure 12-4. Barcode photo, somewhat blurry and dim

The encoded digit string, 9780132114677,
      is printed below the barcode. The left group encodes the digits 780132,
      with 9 encoded in their parity. The right group encodes the digits
      114677, where the final 7 is the check digit. Figure 12-5 shows a clean encoding of this
      barcode, from one of the many websites that offers barcode image
      generation for free.
[image: Automatically generated image of the same barcode]

Figure 12-5. Automatically generated image of the same barcode

In Figure 12-6, we’ve chosen a row from the
      captured image and stretched it out vertically to make it easier to see.
      We’ve superimposed this on top of the perfect image and stretched it out
      so that the two are aligned.
[image: Photographic and generated images of barcode juxtaposed to illustrate the variation in bar brightness and resolution]

Figure 12-6. Photographic and generated images of barcode juxtaposed to
        illustrate the variation in bar brightness and resolution

The luminance-converted row from the photo
      is in the dark gray band. It is low in contrast and poor in quality,
      with plenty of blurring and noise. The paler band is the same row with
      the contrast adjusted.
Somewhat below these two bands is another:
      this shows the effect of thresholding the luminance-converted row.
      Notice that some bars have gotten thicker, others thinner, and many bars
      have moved a little to the left or right.
Clearly, any attempt to find exact matches
      in an image with problems such as these is not going to succeed very
      often. We must write code that’s robust in the face of bars that are too
      thick, too thin, or not exactly where they’re supposed to be. The widths
      of our bars will depend on how far our book was from the camera, so we
      can’t make any assumptions about widths, either.

Finding Matching Digits



Our first problem is to find the digits
      that might be encoded at a given position. For the
      next while, we’ll make a couple simplifying assumptions. The first is
      that we’re working with a single row. The second is that we know exactly
      where in a row the left edge of a barcode begins.
Run Length Encoding



How can we overcome the problem of not
        even knowing how thick our bars are? The answer is to run length
        encode (instead of repeating a value some number of times, run length
        encoding presents it once, with a count of the number of consecutive
        repeats):
-- file: ch12/Barcode.hs
type Run = Int
type RunLength a = [(Run, a)]

runLength :: Eq a => [a] -> RunLength a
runLength = map rle . group
    where rle xs = (length xs, head xs)
The group function takes sequences of identical elements in a list and
        groups them into sublists:
ghci> group [1,1,2,3,3,3,3]
[[1,1],[2],[3,3,3,3]]

Our runLength function represents each group as
        a pair of its length and first element:
ghci> let bits = [0,0,1,1,0,0,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0]
ghci> runLength bits
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
[(2,0),(2,1),(2,0),(2,1),(6,0),(4,1),(4,0)]
Since the data we’re run length encoding
        are just ones and zeros, the encoded numbers will simply alternate
        between one and zero. We can throw the encoded values away without
        losing any useful information, keeping only the length of each
        run:
-- file: ch12/Barcode.hs
runLengths :: Eq a => [a] -> [Run]
runLengths = map fst . runLength
ghci> runLengths bits
[2,2,2,2,6,4,4]

The bit patterns aren’t random; they’re
        the left outer guard and first encoded digit of a row from our
        captured image. If we drop the guard bars, we’re left with the run
        lengths [2,6,4,4]. How do we find matches for these in
        the encoding tables we wrote in Introducing Arrays?

Scaling Run Lengths, and Finding Approximate Matches



One possible approach is to scale the
        run lengths so that they sum to one. We’ll use the Ratio
        Int type instead of the usual Double to manage
        these scaled values, as Ratios print out more readably in
        ghci. This makes interactive
        debugging and development much easier:
-- file: ch12/Barcode.hs
type Score = Ratio Int

scaleToOne :: [Run] -> [Score]
scaleToOne xs = map divide xs
    where divide d = fromIntegral d / divisor
          divisor = fromIntegral (sum xs)
-- A more compact alternative that "knows" we're using Ratio Int:
-- scaleToOne xs = map (% sum xs) xs

type ScoreTable = [[Score]]

-- "SRL" means "scaled run length".
asSRL :: [String] -> ScoreTable
asSRL = map (scaleToOne . runLengths)

leftOddSRL = asSRL leftOddList
leftEvenSRL = asSRL leftEvenList
rightSRL = asSRL rightList
paritySRL = asSRL parityList
We use the Score type
        synonym so that most of our code won’t have to care what the
        underlying type is. Once we’re done developing our code and poking
        around with ghci, we could, if we
        wish, go back and turn the Score type synonym into
        Doubles without changing any code.
We can use scaleToOne to scale a sequence of digits
        that we’re searching for. We’ve now corrected for variations in bar
        widths due to distance, as there should be a pretty close match
        between an entry in a scaled run length encoding table and a run
        length sequence pulled from an image.
The next question is how we turn the
        intuitive idea of “pretty close” into a measure of “close
        enough.” Given two scaled run length sequences, we can calculate an
        approximate “distance” between them as follows:
-- file: ch12/Barcode.hs
distance :: [Score] -> [Score] -> Score
distance a b = sum . map abs $ zipWith (-) a b
An exact match will give a distance of
        zero, with weaker matches resulting in larger distances:
ghci> let group = scaleToOne [2,6,4,4]
ghci> distance group (head leftEvenSRL)
13%28
ghci> distance group (head leftOddSRL)
17%28
Given a scaled run length table, we
        choose the best few matches in that table for a given input
        sequence:
-- file: ch12/Barcode.hs
bestScores :: ScoreTable -> [Run] -> [(Score, Digit)]
bestScores srl ps = take 3 . sort $ scores
    where scores = zip [distance d (scaleToOne ps) | d <- srl] digits
          digits = [0..9]

List Comprehensions



The new notation that we introduced in the previous example is
        an illustration of a list comprehension, which
        creates a list from one or more other lists:
ghci> [ (a,b) | a <- [1,2], b <- "abc" ]
[(1,'a'),(1,'b'),(1,'c'),(2,'a'),(2,'b'),(2,'c')]

The expression on the left of the
        vertical bar is evaluated for each combination of generator expressions on the
        right. A generator expression binds a variable on the left of a
        <- to an element of the list on
        the right. As the preceding example shows, the combinations of
        generators are evaluated in depth first order: for the first element
        of the first list, we evaluate every element of the second, and so
        on.
In addition to generators, we can also
        specify guards on the right of a list comprehension. A guard is a
        Bool expression. If it evaluates to False,
        that element is skipped over:
ghci> [ (a,b) | a <- [1..6], b <- [5..7], even (a + b ^ 2) ]
[(1,5),(1,7),(2,6),(3,5),(3,7),(4,6),(5,5),(5,7),(6,6)]

We can also bind local variables using
        a let expression:
ghci> let vowel = (`elem` "aeiou")
ghci> [ x | a <- "etaoin", b <- "shrdlu", let x = [a,b], all vowel x ]
["eu","au","ou","iu"]
If a pattern match fails in a generator
        expression, no error occurs. Instead, that list element is
        skipped:
ghci> [ a | (3,a) <- [(1,'y'),(3,'e'),(5,'p')] ]
"e"

List comprehensions are powerful and
        concise. As a result, they can be difficult to read, but when used
        with care, they can make code easier to follow:
-- file: ch12/Barcode.hs
-- our original
zip [distance d (scaleToOne ps) | d <- srl] digits

-- the same expression, expressed without a list comprehension
zip (map (flip distance (scaleToOne ps)) srl) digits

-- the same expression, written entirely as a list comprehension
[(distance d (scaleToOne ps), n) | d <- srl, n <- digits]

Remembering a Match’s Parity



For each match in the left group, we
        have to remember whether we found it in the even parity table or the
        odd table:
-- file: ch12/Barcode.hs
data Parity a = Even a | Odd a | None a
                deriving (Show)

fromParity :: Parity a -> a
fromParity (Even a) = a
fromParity (Odd a) = a
fromParity (None a) = a

parityMap :: (a -> b) -> Parity a -> Parity b
parityMap f (Even a) = Even (f a)
parityMap f (Odd a) = Odd (f a)
parityMap f (None a) = None (f a)

instance Functor Parity where
    fmap = parityMap
We wrap a value in the parity with which
        it was encoded, and then make it a Functor instance so
        that we can easily manipulate parity-encoded values.
We would like to be able to sort
        parity-encoded values based on the values they contain. The Data.Function module provides a lovely
        combinator that we can use for this, named on:
-- file: ch12/Barcode.hs
on :: (a -> a -> b) -> (c -> a) -> c -> c -> b
on f g x y = g x `f` g y

compareWithoutParity = compare `on` fromParity
In case it’s unclear, try thinking of
        on as a function of two
        arguments, f and g, which return
        a function of two arguments, x and
        y. It applies g to x and to
        y, then f on
        the two results (hence the name on).
Wrapping a match in a parity value is
        straightforward:
-- file: ch12/Barcode.hs
type Digit = Word8

bestLeft :: [Run] -> [Parity (Score, Digit)]
bestLeft ps = sortBy compareWithoutParity
              ((map Odd (bestScores leftOddSRL ps)) ++
               (map Even (bestScores leftEvenSRL ps)))

bestRight :: [Run] -> [Parity (Score, Digit)]
bestRight = map None . bestScores rightSRL
Once we have the best lefthand matches
        from the even and odd tables, we sort them based only on the quality
        of each match.
Another kind of laziness, of the keyboarding variety



In our definition of the
          Parity type, we could have used Haskell’s record syntax
          to avoid the need to write a fromParity function. In
          other words, we could have written it as follows:
-- file: ch12/Barcode.hs
data AltParity a = AltEven {fromAltParity :: a}
                 | AltOdd  {fromAltParity :: a}
                 | AltNone {fromAltParity :: a}
                   deriving (Show)
Why did we not do this? The answer is
          slightly shameful and has to do with interactive debugging in
          ghci. When we tell GHC to automatically derive a
          Show instance for a type, it produces different code
          depending on whether or not we declare the type with record
          syntax:
ghci> show $ Even 1
"Even 1"
ghci> show $ AltEven 1
"AltEven {fromAltParity = 1}"
ghci> length . show $ Even 1
6
ghci> length . show $ AltEven 1
27
The Show instance for the
          variant that uses record syntax is considerably more verbose. This
          creates much more noise that we must scan through when we’re trying
          to read, say, a list of parity-encoded values output by ghci.
Of course, we could write our own,
          less noisy, Show instance. It’s simply less effort to
          avoid record syntax and write our own fromParity
          function instead, letting GHC derive a more terse
          Show instance for us. This isn’t an especially
          satisfying rationale, but programmer laziness can lead in odd
          directions at times.


Chunking a List



A common aspect of working with lists is
        needing to “chunk” them. For example, each digit in a
        barcode is encoded using a run of four digits. We can turn the flat
        list that represents a row into a list of four-element lists as
        follows:
-- file: ch12/Barcode.hs
chunkWith :: ([a] -> ([a], [a])) -> [a] -> [[a]]
chunkWith _ [] = []
chunkWith f xs = let (h, t) = f xs
                 in h : chunkWith f t

chunksOf :: Int -> [a] -> [[a]]
chunksOf n = chunkWith (splitAt n)
It’s somewhat rare that we need to write
        generic list manipulation functions such as this. Often, a glance
        through the Data.List module will find us a function that
        does exactly or close enough to what we need.

Generating a List of Candidate Digits



With our small army of helper functions
        deployed, the function that generates lists of candidate matches for
        each digit group is easy to write. First of all, we take care of a few
        early checks to determine whether matching even makes sense. A list of
        runs must start on a black (Zero) bar, and contain enough
        bars. Here are the first few equations of our function:
-- file: ch12/Barcode.hs
candidateDigits :: RunLength Bit -> [[Parity Digit]]
candidateDigits ((_, One):_) = []
candidateDigits rle | length rle < 59 = []
If any application of bestLeft or bestRight results in an empty list, we
        can’t possibly have a match. Otherwise, we throw away the scores, and
        return a list of lists of parity-encoded candidate digits. The outer
        list is 12 elements long, 1 per digit in the barcode. The digits in
        each sublist are ordered by match quality.
Here is the remainder of the definition
        of our function:
-- file: ch12/Barcode.hs
candidateDigits rle
    | any null match = []
    | otherwise      = map (map (fmap snd)) match
  where match = map bestLeft left ++ map bestRight right
        left = chunksOf 4 . take 24 . drop 3 $ runLengths
        right = chunksOf 4 . take 24 . drop 32 $ runLengths
        runLengths = map fst rle
Let’s take a glance at the candidate
        digits chosen for each group of bars, from a row taken from Figure
        12-5:
ghci> :type input
input :: [(Run, Bit)]
ghci> take 7 input
[(2,Zero),(2,One),(2,Zero),(2,One),(6,Zero),(4,One),(4,Zero)]
ghci> mapM_ print $ candidateDigits input
[Even 1,Even 5,Odd 7,Odd 1,Even 2,Odd 5]
[Even 8,Even 7,Odd 1,Odd 2,Odd 0,Even 6]
[Even 0,Even 1,Odd 8,Odd 2,Odd 4,Even 9]
[Odd 1,Odd 0,Even 8,Odd 2,Even 2,Even 4]
[Even 3,Odd 4,Odd 5,Even 7,Even 0,Odd 2]
[Odd 2,Odd 4,Even 7,Even 0,Odd 1,Even 1]
[None 1,None 5,None 0]
[None 1,None 5,None 2]
[None 4,None 5,None 2]
[None 6,None 8,None 2]
[None 7,None 8,None 3]
[None 7,None 3,None 8]


Life Without Arrays or Hash Tables



In an imperative language, the array is as much a “bread
      and butter” type as a list or tuple in Haskell. We take it for
      granted that an array in an imperative language is usually mutable; we
      can change an element of an array whenever it suits us.
As we mentioned in Modifying Array Elements, Haskell arrays are
      not mutable. This means that to
      “modify” a single array element, a copy of the entire array
      is made, with that single element set to its new value. Clearly, this
      approach is not a winner for performance.
The mutable array is a building block for another ubiquitous imperative data
      structure, the hash table. In the typical implementation, an array acts
      as the “spine” of the table, with each element containing a
      list of elements. To add an element to a hash table, we hash the element
      to find the array offset and modify the list at that offset to add the
      element to it.
If arrays aren’t mutable for updating a
      hash table, we must create a new one. We copy the array, putting a new
      list at the offset indicated by the element’s hash. We don’t need to
      copy the lists at other offsets, but we’ve already dealt performance a
      fatal blow simply by having to copy the spine.
At a single stroke, then, immutable arrays
      have eliminated two canonical imperative data
      structures from our toolbox. Arrays are somewhat less useful in pure
      Haskell code than in many other languages. Still, many array codes
      update an array only during a build phase, and subsequently use it in a
      read-only manner.
A Forest of Solutions



This is not the calamitous situation
        that it might seem, though. Arrays and hash tables are often used as
        collections indexed by a key, and in Haskell we use
        trees for this purpose.
Implementing a naive tree type is
        particularly easy in Haskell. Beyond that, more useful tree types are
        also unusually easy to implement. Self-balancing structures, such as
        red-black trees, have struck fear into generations of undergraduate
        computer science students, because the balancing algorithms are
        notoriously hard to get right.
Haskell’s combination of algebraic data
        types, pattern matching, and guards reduce even the hairiest of
        balancing operations to a few lines of code. We’ll bite back our
        enthusiasm for building trees, however, and focus on why they’re
        particularly useful in a pure functional language.
The attraction of a tree to a functional
        programmer is cheap modification. We don’t break
        the immutability rule: trees are immutable just like everything else.
        However, when we modify a tree, thus creating a new tree, we can share
        most of the structure between the old and new versions. For example,
        in a tree containing 10,000 nodes, we might expect that the old and
        new versions will share about 9,985 elements when we add or remove
        one. In other words, the number of elements modified per update
        depends on the height of the tree or the logarithm of the size of the
        tree.
Haskell’s standard libraries provide two
        collection types that are implemented using balanced trees behind the
        scenes: Data.Map for key/value pairs and
        Data.Set for sets of values. As we’ll be using
        Data.Map in the sections that follow, we’ll give a quick
        introduction to it next. Data.Set is sufficiently similar
        that you should be able to pick it up quickly.
A word about performance
Compared to a hash table, a
          well-implemented purely functional tree data structure will perform
          competitively. You should not approach trees with the assumption
          that your code will pay a performance penalty.


A Brief Introduction to Maps



The Data.Map
        module provides a parameterized type, Map k a,
        that maps from a key type k to a value
        type a. Although it is internally a
        size-balanced binary tree, the implementation is not visible to
        us.
Map is strict in its keys,
        but nonstrict in its values. In other words, the spine, or structure, of the map
        is always kept up-to-date, but values in the map aren’t evaluated
        unless we force them to be.
It is very important to remember this,
        as Map’s laziness over values is a frequent source of
        space leaks among coders who are not expecting it.
Because the Data.Map module
        contains a number of names that clash with Prelude names, it’s usually imported in
        qualified form. Earlier in this chapter, we imported it using the
        prefix M.
Type constraints



The Map type doesn’t place any explicit constraints on its key
          type, but most of the module’s useful functions require that keys be
          instances of Ord. This is noteworthy, as it’s an
          example of a common design pattern in Haskell code: type constraints
          are pushed out to where they’re actually needed, not necessarily
          applied at the point where they’d result in the least typing for a
          library’s author.
Neither the Map type nor
          any functions in the module constrain the types that can be used as
          values.

Partial application awkwardness



For some reason, the type signatures
          of the functions in Data.Map are not generally friendly
          to partial application. The map
          parameter always comes last, whereas it would be easier to partially
          apply if it were first. As a result, code that uses partially
          applied map functions almost always contains adapter functions to
          fiddle with argument ordering.

Getting started with the API



The Data.Map module has a
          large “surface area”: it exports dozens of functions.
          Just a handful of these comprise the most frequently used core of
          the module.
To create an empty map, we use
          empty. For a map containing one
          key/value pair, we use singleton:
ghci> M.empty
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
fromList []
ghci> M.singleton "foo" True
fromList [("foo",True)]
Since the implementation is abstract,
          we can’t pattern match on Map values. Instead, it
          provides a number of lookup functions, of which two are particularly
          widely used. The lookup
          function has a slightly tricky type signature,[31] but don’t worry—all will become clear in Chapter 14:
ghci> :type M.lookup
M.lookup :: (Ord k, Monad m) => k -> M.Map k a -> m a

Most often, the type parameter
          m in the result is
          Maybe. In other words, if the map contains a value for
          the given key, lookup will
          return the value wrapped in Just. Otherwise, it will return
          Nothing:
ghci> let m = M.singleton "foo" 1 :: M.Map String Int
ghci> case M.lookup "bar" m of { Just v -> "yay"; Nothing -> "boo" }
"boo"
The findWithDefault function takes a value to
          return if the key isn’t in the map.
Beware the partial functions!
There exists a (!) operator that performs a lookup and returns the unadorned
            value associated with a key (i.e., not wrapped in
            Maybe or whatever). Unfortunately, it is not a total
            function: it calls error if
            the key is not present in the map.

To add a key/value pair to the map,
          the most useful functions are insert and insertWith'. The insert function simply inserts a value
          into the map, overwriting any matching value that may already have
          been present.
ghci> :type M.insert
M.insert :: (Ord k) => k -> a -> M.Map k a -> M.Map k a
ghci> M.insert "quux" 10 m
fromList [("foo",1),("quux",10)]
ghci> M.insert "foo" 9999 m
fromList [("foo",9999)]
The insertWith' function takes a further combining function as
          its argument. If no matching key was present in the map, the new
          value is inserted verbatim. Otherwise, the combining function is
          called on the new and old values, and its result is inserted into
          the map:
ghci> :type M.insertWith'
M.insertWith' :: (Ord k) => (a -> a -> a) -> k -> a -> M.Map k a -> M.Map k a
ghci> M.insertWith' (+) "zippity" 10 m
fromList [("foo",1),("zippity",10)]
ghci> M.insertWith' (+) "foo" 9999 m
fromList [("foo",10000)]
As the tick at the end of its name
          suggests, insertWith' evaluates
          the combining function strictly, allowing us to avoid space leaks.
          While there exists a lazy variant (insertWith without the trailing tick in
          the name), it’s rarely what we’ll actually want.
The delete function deletes the given key from the map. It returns the
          map unmodified if the key is not present:
ghci> :type M.delete
M.delete :: (Ord k) => k -> M.Map k a -> M.Map k a
ghci> M.delete "foo" m
fromList []
Finally, there are several efficient
          functions for performing set-like operations on maps. Of these,
          we’ll be using union. This
          function is left-biased—if two maps contain the same key, the result will
          contain the value from the left map:
ghci> m `M.union` M.singleton "quux" 1
fromList [("foo",1),("quux",1)]
ghci> m `M.union` M.singleton "foo" 0
fromList [("foo",1)]
We have barely covered ten percent of
          the Data.Map API. We will cover maps and similar data
          structures in greater detail in Chapter 13. For further
          inspiration, we encourage you to browse the module documentation.
          The module is impressively thorough.


Further Reading



Purely Functional Data
        Structures by Chris Okasaki (Cambridge University Press)
        gives a wonderful and thorough implementor’s tour of many pure
        functional data structures, including several kinds of balanced trees.
        It also provides valuable insight into reasoning about the performance
        of purely functional data structures and lazy evaluation.
We recommend Okasaki’s book as essential
        reading for functional programmers. If you’re not convinced, Okasaki’s
        Ph.D. thesis, Purely Functional Data Structures
        (see http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf), is a
        less complete and polished version of the book, and it is available
        for free online.


Turning Digit Soup into an Answer



We’ve got yet another problem to solve.
      We have many candidates for the last 12 digits of the barcode. In
      addition, we need to use the parities of the first six digits to figure
      out what the first digit is. Finally, we need to ensure that our
      answer’s check digit makes sense.
This seems quite challenging! We have a
      lot of uncertain data; what should we do? It’s reasonable to ask if we
      could perform a brute-force search. Given the candidates we saw in th
      preceding ghci session, how many
      combinations would we have to examine?
ghci> product . map length . candidateDigits $ input
34012224

So much for that idea. Once again, we’ll
      initially focus on a subproblem that we know how to solve and postpone
      worrying about the rest.
Solving for Check Digits in Parallel



Let’s abandon the idea of searching for
        now, and focus on computing a check digit. The check digit for a
        barcode can assume 1 of 12 possible values. For a given parity digit,
        which input sequences can cause that digit to be computed?
-- file: ch12/Barcode.hs
type Map a = M.Map Digit [a]
In this map, the key is a check digit,
        and the value is a sequence that evaluates to this check digit. We
        have two further map types based on this definition:
-- file: ch12/Barcode.hs
type DigitMap = Map Digit
type ParityMap = Map (Parity Digit)
We’ll generically refer to these as
        solution maps, because they show us the digit sequence that “solves
        for” each check digit.
Given a single digit, here’s how we can
        update an existing solution map:
-- file: ch12/Barcode.hs
updateMap :: Parity Digit       -- ^ new digit
          -> Digit              -- ^ existing key
          -> [Parity Digit]     -- ^ existing digit sequence
          -> ParityMap          -- ^ map to update
          -> ParityMap
updateMap digit key seq = insertMap key (fromParity digit) (digit:seq)

insertMap :: Digit -> Digit -> [a] -> Map a -> Map a
insertMap key digit val m = val `seq` M.insert key' val m
    where key' = (key + digit) `mod` 10
With an existing check digit drawn from
        the map, the sequence that solves for it, and a new input digit, this
        function updates the map with the new sequence that leads to the new
        check digit.
This might seem a bit much to digest,
        but an example will make it clear. Let’s say the check digit we’re
        looking at is 4, the sequence leading to it is
        [1,3], and the digit we want to add to the map is
        8. The sum of 4 and 8, modulo
        10, is 2, so this is the key we’ll be inserting into the
        map. The sequence that leads to the new check digit 2 is
        thus [8,1,3], so this is what we’ll insert as the
        value.
For each digit in a sequence, we’ll
        generate a new solution map, using that digit and an older solution
        map:
-- file: ch12/Barcode.hs
useDigit :: ParityMap -> ParityMap -> Parity Digit -> ParityMap
useDigit old new digit =
    new `M.union` M.foldWithKey (updateMap digit) M.empty old
Once again, let’s illustrate what this
        code is doing using some examples. This time, we’ll use ghci:
ghci> let single n = M.singleton n [Even n] :: ParityMap
ghci> useDigit (single 1) M.empty (Even 1)
fromList [(2,[Even 1,Even 1])]
ghci> useDigit (single 1) (single 2) (Even 2)
fromList [(2,[Even 2]),(3,[Even 2,Even 1])]
The new solution map that we feed to
        useDigits starts out empty. We
        populate it completely by folding useDigits over a sequence of input
        digits:
-- file: ch12/Barcode.hs
incorporateDigits :: ParityMap -> [Parity Digit] -> ParityMap
incorporateDigits old digits = foldl' (useDigit old) M.empty digits
This generates a complete new solution
        map from an old one:
ghci> incorporateDigits (M.singleton 0 []) [Even 1, Even 5]
fromList [(1,[Even 1]),(5,[Even 5])]

Finally, we must build the complete
        solution map. We start out with an empty map, then fold over each
        digit position from the barcode in turn. For each position, we create
        a new map from our guesses at the digits in that position. This
        becomes the old map for the next round of the fold:
-- file: ch12/Barcode.hs
finalDigits :: [[Parity Digit]] -> ParityMap
finalDigits = foldl' incorporateDigits (M.singleton 0 [])
            . mapEveryOther (map (fmap (*3)))
(From the checkDigit function that we defined in
        EAN-13 Encoding, we remember that the check digit
        computation requires that we multiply every other digit by
        3.)
How long is the list with which we call
        finalDigits? We don’t yet know
        what the first digit of our sequence is, so obviously we can’t provide
        that. And we don’t want to include our guess at the check digit, so
        the list must be 11 elements long.
Once we’ve returned from finalDigits, our solution map is
        necessarily incomplete, because we haven’t yet figured out what the
        first digit is.

Completing the Solution Map with the First Digit



We haven’t yet discussed how we should
        extract the value of the first digit from the parities of the left
        group of digits. This is a straightforward matter of reusing code that
        we’ve already written:
-- file: ch12/Barcode.hs
firstDigit :: [Parity a] -> Digit
firstDigit = snd
           . head
           . bestScores paritySRL
           . runLengths
           . map parityBit
           . take 6
  where parityBit (Even _) = Zero
        parityBit (Odd _) = One
Each element of our partial solution map
        now contains a reversed list of digits and parity data. Our next task
        is to create a completed solution map, by computing the first digit in
        each sequence, and using it to create that last solution map:
-- file: ch12/Barcode.hs
addFirstDigit :: ParityMap -> DigitMap
addFirstDigit = M.foldWithKey updateFirst M.empty

updateFirst :: Digit -> [Parity Digit] -> DigitMap -> DigitMap
updateFirst key seq = insertMap key digit (digit:renormalize qes)
  where renormalize = mapEveryOther (`div` 3) . map fromParity
        digit = firstDigit qes
        qes = reverse seq
Along the way, we get rid of the
        Parity type and reverse our earlier multiplications by
        three. Our last step is to complete the check digit
        computation:
-- file: ch12/Barcode.hs
buildMap :: [[Parity Digit]] -> DigitMap
buildMap = M.mapKeys (10 -)
         . addFirstDigit
         . finalDigits

Finding the Correct Sequence



We now have a map of all possible
        checksums and the sequences that lead to each. All that remains is to
        take our guesses at the check digit, and then see if we have a
        corresponding solution map entry:
-- file: ch12/Barcode.hs
solve :: [[Parity Digit]] -> [[Digit]]
solve [] = []
solve xs = catMaybes $ map (addCheckDigit m) checkDigits
    where checkDigits = map fromParity (last xs)
          m = buildMap (init xs)
          addCheckDigit m k = (++[k]) <$> M.lookup k m
Let’s try this out on the row we picked
        from our photo and see if we get a sensible answer:
ghci> listToMaybe . solve . candidateDigits $ input
Just [9,7,8,0,1,3,2,1,1,4,6,7,7]

Excellent! This is exactly the string
        encoded in the barcode that we photographed.


Working with Row Data



We’ve mentioned repeatedly that we are taking a single row from our
      image. Here’s how:
-- file: ch12/Barcode.hs
withRow :: Int -> Pixmap -> (RunLength Bit -> a) -> a
withRow n greymap f = f . runLength . elems $ posterized
    where posterized = threshold 0.4 . fmap luminance . row n $ greymap
The withRow function takes a row, converts it to
      monochrome, and then calls another function on the run length encoded
      row data. To get the row data, it calls row:
-- file: ch12/Barcode.hs
row :: (Ix a, Ix b) => b -> Array (a,b) c -> Array a c
row j a = ixmap (l,u) project a
    where project i = (i,j)
          ((l,_), (u,_)) = bounds a
This function takes a bit of explaining.
      Whereas fmap transforms the
      values in an array, ixmap transforms the
      indices of an array. It’s a very powerful function that lets us
      “slice” an array however we please.
The first argument to ixmap is the bounds of the new array. These
      bounds can be of a different dimension than the source array. In
      row, for example, we’re extracting a one-dimensional array
      from a two-dimensional array.
The second argument is a
      projection function. This takes an index from the new array and returns an
      index into the source array. The value at that projected index then
      becomes the value in the new array at the original index. For example,
      if we pass 2 into the projection function and it returns
      (2,2), the element at index 2 of the new array
      will be taken from element (2,2) of the source
      array.

Pulling It All Together



Our candidateDigits function gives an empty
      result unless we call it at the beginning of a barcode sequence. We can
      easily scan across a row until we get a match as follows:
-- file: ch12/Barcode.hs
findMatch :: [(Run, Bit)] -> Maybe [[Digit]]
findMatch = listToMaybe
          . filter (not . null)
          . map (solve . candidateDigits)
          . tails
Here, we’re taking advantage of lazy
      evaluation. The call to map over
      tails will only be evaluated until
      it results in a nonempty list.
Next, we choose a row from an image and
      try to find a barcode in it:
-- file: ch12/Barcode.hs
findEAN13 :: Pixmap -> Maybe [Digit]
findEAN13 pixmap = withRow center pixmap (fmap head . findMatch)
  where (_, (maxX, _)) = bounds pixmap
        center = (maxX + 1) `div` 2
Finally, here’s a very simple wrapper that
      prints barcodes from whatever netpbm image files we pass into our
      program on the command line:
-- file: ch12/Barcode.hs
main :: IO ()
main = do
  args <- getArgs
  forM_ args $ \arg -> do
    e <- parse parseRawPPM <$> L.readFile arg
    case e of
      Left err ->     print $ "error: " ++ err
      Right pixmap -> print $ findEAN13 pixmap
Notice that, of the more than 30 functions
      we’ve defined in this chapter, main
      is the only one that lives in IO.

A Few Comments on Development Style



You may have noticed that many of the
      functions we presented in this chapter were short functions at the top
      level of the source file. This is no accident. As we mentioned earlier,
      when we started writing this chapter, we didn’t know what form our
      solution was going to take.
Quite often, then, we had to explore a
      problem space in order to figure out where we were going. To do this, we
      spent a lot of time fiddling about in ghci, performing tiny experiments on
      individual functions. This kind of exploration requires that a function
      be declared at the top level of a source file; otherwise, ghci won’t be able to see it.
Once we were satisfied that individual
      functions were behaving themselves, we started to glue them together,
      again investigating the consequences in ghci. This is where our devotion to writing
      type signatures paid back, as we immediately discovered when a
      particular composition of functions couldn’t possibly work.
At the end of this process, we were left
      with a large number of very small top-level functions, each with a type
      signature. This isn’t the most compact representation possible; we could
      have hoisted many of those functions into let or where blocks when we were done with them.
      However, we find that the added vertical space, small function bodies,
      and type signatures make the code far more readable, so we generally
      avoided “golfing” functions after we wrote them.[32]
Working in a language with strong, static
      typing does not at all interfere with incrementally and fluidly
      developing a solution to a problem. We find the turnaround between
      writing a function and getting useful feedback from ghci to be very rapid; it greatly assists us
      in writing good code quickly.



[30] The formula originates in ITU-R
            Recommendation 601.

[31] Starting with GHC 6.10.1, the type of this function has
              been simplified to k -> M.Map k a
              -> Maybe a.

[32] Our use of the word
          golf comes from a game originally played by
          Perl hackers, in which programmers try to create the smallest piece
          of code for some purpose. The code with the fewest (key)strokes
          wins.



Chapter 13. Data Structures



Association Lists



Often, we have to deal with data that is unordered but is indexed by
      a key. For instance, a Unix administrator might have a list of numeric UIDs (user IDs) and the
      textual usernames that they correspond to. The value of this list lies
      in being able to look up a textual username for a given UID, not in the
      order of the data. In other words, the UID is a key into a
      database.
In Haskell, there are several ways to
      handle data that is structured in this way. The two most common are
      association lists and the Map type provided by Data.Map module. Association lists are handy
      because they are simple. They are standard Haskell lists, so all the
      familiar list functions work with them. However, for large data sets,
      Map will have a considerable performance advantage over
      association lists. We’ll use both in this chapter.
An association list is just a normal list containing (key,
      value) tuples. The type of a list of mappings from UID to username might
      be [(Integer, String)]. We could use
      just about any type[33] for both the key and the value.
We can build association lists just like
      we do any other list. Haskell comes with one built-in function called
      Data.List.lookup to look up data in an association list. Its type is Eq a => a -> [(a, b)] ->
      Maybe b. Can you guess how it works from that type? Let’s take
      a look in ghci:
ghci> let al = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]
ghci> lookup 1 al
Just "one"
ghci> lookup 5 al
Nothing
The lookup function is really simple. Here’s one
      way we could write it:
-- file: ch13/lookup.hs
myLookup :: Eq a => a -> [(a, b)] -> Maybe b
myLookup _ [] = Nothing
myLookup key ((thiskey,thisval):rest) =
    if key == thiskey
       then Just thisval
       else myLookup key rest
This function returns Nothing if passed the empty list. Otherwise,
      it compares the key with the key we’re looking for. If a match is found,
      the corresponding value is returned; otherwise, it searches the rest of
      the list.
Let’s take a look at a more complex
      example of association lists. On Unix/Linux machines, there is a file
      called /etc/passwd that stores
      usernames, UIDs, home directories, and various other data. We will write
      a program that parses such a file, creates an association list, and lets
      the user look up a username with a UID:
-- file: ch13/passwd-al.hs
import Data.List
import System.IO
import Control.Monad(when)
import System.Exit
import System.Environment(getArgs)

main = do
    -- Load the command-line arguments
    args <- getArgs

    -- If we don't have the right amount of args, give an error and abort
    when (length args /= 2) $ do
        putStrLn "Syntax: passwd-al filename uid"
        exitFailure

    -- Read the file lazily
    content <- readFile (args !! 0)

    -- Compute the username in pure code
    let username = findByUID content (read (args !! 1))

    -- Display the result
    case username of 
         Just x -> putStrLn x
         Nothing -> putStrLn "Could not find that UID"

-- Given the entire input and a UID, see if we can find a username.
findByUID :: String -> Integer -> Maybe String
findByUID content uid =
    let al = map parseline . lines $ content
        in lookup uid al

-- Convert a colon-separated line into fields
parseline :: String -> (Integer, String)
parseline input =
    let fields = split ':' input
        in (read (fields !! 2), fields !! 0)

{- | Takes a delimiter and a list.  Break up the list based on the
-  delimiter. -}
split :: Eq a => a -> [a] -> [[a]]

-- If the input is empty, the result is a list of empty lists.
split _ [] = [[]]
split delim str =
    let -- Find the part of the list before delim and put it in "before".
        -- The rest of the list, including the leading delim, goes
        -- in "remainder".
        (before, remainder) = span (/= delim) str
        in
        before : case remainder of
                      [] -> []
                      x -> -- If there is more data to process,
                           -- call split recursively to process it
                           split delim (tail x)
Let’s look at this program. The heart of
      it is findByUID, which is a simple
      function that parses the input one line at a time, then calls lookup over the result. The remaining program
      is concerned with parsing the input. The input file looks like
      this:
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
jgoerzen:x:1000:1000:John Goerzen,,,:/home/jgoerzen:/bin/bash
Its fields are separated by colons and
      include a username, numeric user ID, numeric group ID, full name, home
      directory, and shell. No field may contain an internal colon.

Maps



The Data.Map module provides a Map type with behavior that is
      similar to association lists but has much better performance.
Maps give us the same capabilities as
      hash tables do in other languages. Internally, a map is
      implemented as a balanced binary tree. Compared to a hash table, this is
      a much more efficient representation in a language with immutable data.
      This is the most visible example of how deeply pure functional
      programming affects how we write code: we choose data structures and
      algorithms that we can express cleanly and that perform efficiently, but
      our choices for specific tasks are often different from their
      counterparts in imperative languages.
Some functions in the
      Data.Map module have the same names as those in the
      Prelude. Therefore, we will import it
      with import qualified Data.Map as Map
      and use Map.name to refer
      to names in that module. Let’s start our tour of Data.Map by taking a look at some ways to
      build a map:
-- file: ch13/buildmap.hs
import qualified Data.Map as Map

-- Functions to generate a Map that represents an association list
-- as a map

al = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]

{- | Create a map representation of 'al' by converting the association
-  list using Map.fromList -}
mapFromAL =
    Map.fromList al

{- | Create a map representation of 'al' by doing a fold -}
mapFold =
    foldl (\map (k, v) -> Map.insert k v map) Map.empty al

{- | Manually create a map with the elements of 'al' in it -}
mapManual =
    Map.insert 2 "two" . 
    Map.insert 4 "four" .
    Map.insert 1 "one" .
    Map.insert 3 "three" $ Map.empty
Functions such as Map.insert work in the usual Haskell way: they return a copy of the input
      data, with the requested change applied. This is quite handy with maps.
      It means that you can use foldl to
      build up a map as in the mapFold
      example. Or, you can chain together calls to Map.insert as in the mapManual example. Let’s use ghci to verify that all of these maps are as
      expected:
ghci> :l buildmap.hs
[1 of 1] Compiling Main             ( buildmap.hs, interpreted )
Ok, modules loaded: Main.
ghci> al
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
[(1,"one"),(2,"two"),(3,"three"),(4,"four")]
ghci> mapFromAL
fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]
ghci> mapFold
fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]
ghci> mapManual
fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]
Notice that the output from mapManual differs from the order of the list
      we used to construct the map. Maps do not guarantee that they will
      preserve the original ordering.
Maps operate similarly in concept to
      association lists. The Data.Map
      module provides functions for adding and removing data from maps. It
      also lets us filter them, modify them, fold over them, and convert to
      and from association lists. The library documentation for this module is
      good, so instead of going into detail on each function, we will present
      an example that ties together many of the concepts we’ve discussed in
      this chapter.

Functions Are Data, Too



Part of Haskell’s power is the ease with which it lets us create and
      manipulate functions. Let’s take a look at a record that stores a
      function as one of its fields:
-- file: ch13/funcrecs.hs
{- | Our usual CustomColor type to play with -}
data CustomColor =
  CustomColor {red :: Int,
               green :: Int,
               blue :: Int}
  deriving (Eq, Show, Read)

{- | A new type that stores a name and a function.

The function takes an Int, applies some computation to it, and returns
an Int along with a CustomColor -}
data FuncRec =
    FuncRec {name :: String,
             colorCalc :: Int -> (CustomColor, Int)}

plus5func color x = (color, x + 5)

purple = CustomColor 255 0 255

plus5 = FuncRec {name = "plus5", colorCalc = plus5func purple}
always0 = FuncRec {name = "always0", colorCalc = \_ -> (purple, 0)}
Notice the type of the colorCalc field: it’s a function. It takes an
      Int and returns a tuple of (CustomColor, Int). We create two FuncRec records: plus5 and always0. Notice that the colorCalc for both of them will always return
      the color purple. FuncRec itself has
      no field to store the color in, yet that value somehow becomes part of
      the function itself. This is called a closure.
      Let’s play with this a bit:
ghci> :l funcrecs.hs
[1 of 1] Compiling Main             ( funcrecs.hs, interpreted )
Ok, modules loaded: Main.
ghci> :t plus5
plus5 :: FuncRec
ghci> name plus5
"plus5"
ghci> :t colorCalc plus5
colorCalc plus5 :: Int -> (CustomColor, Int)
ghci> (colorCalc plus5) 7
(CustomColor {red = 255, green = 0, blue = 255},12)
ghci> :t colorCalc always0
colorCalc always0 :: Int -> (CustomColor, Int)
ghci> (colorCalc always0) 7
(CustomColor {red = 255, green = 0, blue = 255},0)
That worked well enough, but you might
      wonder how to do something more advanced, such as making a piece of data
      available in multiple places. A type construction function can be
      helpful. Here’s an example:
-- file: ch13/funcrecs2.hs
data FuncRec =
    FuncRec {name :: String,
             calc :: Int -> Int,
             namedCalc :: Int -> (String, Int)}

mkFuncRec :: String -> (Int -> Int) -> FuncRec
mkFuncRec name calcfunc =
    FuncRec {name = name,
             calc = calcfunc,
             namedCalc = \x -> (name, calcfunc x)}

plus5 = mkFuncRec "plus5" (+ 5)
always0 = mkFuncRec "always0" (\_ -> 0)
Here we have a function called mkFuncRec that takes a String and another function as parameters, and
      then returns a new FuncRec record.
      Notice how both parameters to mkFuncRec are used in multiple places. Let’s
      try it out:
ghci> :l funcrecs2.hs
[1 of 1] Compiling Main             ( funcrecs2.hs, interpreted )
Ok, modules loaded: Main.
ghci> :t plus5
plus5 :: FuncRec
ghci> name plus5
"plus5"
ghci> (calc plus5) 5
10
ghci> (namedCalc plus5) 5
("plus5",10)
ghci> let plus5a = plus5 {name = "PLUS5A"}
ghci> name plus5a
"PLUS5A"
ghci> (namedCalc plus5a) 5
("plus5",10)
Notice the creation of plus5a. We changed the name field, but not the namedCalc field. That’s why name has the new name, but namedCalc still returns the name that was
      passed to mkFuncRec; it doesn’t
      change unless we explicitly change it.

Extended Example: /etc/passwd



In order to illustrate the usage of a number of different data
      structures together, we’ve prepared an extended example. This example
      parses and stores entries from files in the format of a typical
      /etc/passwd file:
-- file: ch13/passwdmap.hs
import Data.List
import qualified Data.Map as Map
import System.IO
import Text.Printf(printf)
import System.Environment(getArgs)
import System.Exit
import Control.Monad(when)

{- | The primary piece of data this program will store.
   It represents the fields in a POSIX /etc/passwd file -}
data PasswdEntry = PasswdEntry {
    userName :: String,
    password :: String,
    uid :: Integer,
    gid :: Integer,
    gecos :: String,
    homeDir :: String,
    shell :: String}
    deriving (Eq, Ord)

{- | Define how we get data to a 'PasswdEntry'. -}
instance Show PasswdEntry where
    show pe = printf "%s:%s:%d:%d:%s:%s:%s" 
                (userName pe) (password pe) (uid pe) (gid pe)
                (gecos pe) (homeDir pe) (shell pe)

{- | Converting data back out of a 'PasswdEntry'. -}
instance Read PasswdEntry where
    readsPrec _ value =
        case split ':' value of
             [f1, f2, f3, f4, f5, f6, f7] ->
                 -- Generate a 'PasswdEntry' the shorthand way:
                 -- using the positional fields.  We use 'read' to convert
                 -- the numeric fields to Integers.
                 [(PasswdEntry f1 f2 (read f3) (read f4) f5 f6 f7, [])]
             x -> error $ "Invalid number of fields in input: " ++ show x
        where 
        {- | Takes a delimiter and a list.  Break up the list based on the
        -  delimiter. -}
        split :: Eq a => a -> [a] -> [[a]]

        -- If the input is empty, the result is a list of empty lists.
        split _ [] = [[]]
        split delim str =
            let -- Find the part of the list before delim and put it in
                -- "before".  The rest of the list, including the leading 
                -- delim, goes in "remainder".
                (before, remainder) = span (/= delim) str
                in
                before : case remainder of
                              [] -> []
                              x -> -- If there is more data to process,
                                   -- call split recursively to process it
                                   split delim (tail x)

-- Convenience aliases; we'll have two maps: one from UID to entries
-- and the other from username to entries
type UIDMap = Map.Map Integer PasswdEntry
type UserMap = Map.Map String PasswdEntry

{- | Converts input data to maps.  Returns UID and User maps. -}
inputToMaps :: String -> (UIDMap, UserMap)
inputToMaps inp =
    (uidmap, usermap)
    where
    -- fromList converts a [(key, value)] list into a Map
    uidmap = Map.fromList . map (\pe -> (uid pe, pe)) $ entries
    usermap = Map.fromList . 
              map (\pe -> (userName pe, pe)) $ entries
    -- Convert the input String to [PasswdEntry]
    entries = map read (lines inp)

main = do
    -- Load the command-line arguments
    args <- getArgs

    -- If we don't have the right number of args,
    -- give an error and abort

    when (length args /= 1) $ do
        putStrLn "Syntax: passwdmap filename"
        exitFailure

    -- Read the file lazily
    content <- readFile (head args)
    let maps = inputToMaps content
    mainMenu maps

mainMenu maps@(uidmap, usermap) = do
    putStr optionText
    hFlush stdout
    sel <- getLine
    -- See what they want to do.  For every option except 4,
    -- return them to the main menu afterwards by calling
    -- mainMenu recursively
    case sel of
         "1" -> lookupUserName >> mainMenu maps
         "2" -> lookupUID >> mainMenu maps
         "3" -> displayFile >> mainMenu maps
         "4" -> return ()
         _ -> putStrLn "Invalid selection" >> mainMenu maps

    where 
    lookupUserName = do
        putStrLn "Username: "
        username <- getLine
        case Map.lookup username usermap of
             Nothing -> putStrLn "Not found."
             Just x -> print x
    lookupUID = do
        putStrLn "UID: "
        uidstring <- getLine
        case Map.lookup (read uidstring) uidmap of
             Nothing -> putStrLn "Not found."
             Just x -> print x
    displayFile = 
        putStr . unlines . map (show . snd) . Map.toList $ uidmap
    optionText = 
          "\npasswdmap options:\n\
           \\n\
           \1   Look up a user name\n\
           \2   Look up a UID\n\
           \3   Display entire file\n\
           \4   Quit\n\n\
           \Your selection: "
This example maintains two maps: one from
      username to PasswdEntry and another
      one from UID to PasswdEntry. Database
      developers may find it convenient to think of this as having two
      different indices into the data to speed searching on different
      fields.
Take a look at the Show and Read instances for PasswdEntry. There is already a standard
      format for rendering data of this type as a string: the colon-separated
      version the system already uses. So our Show function displays a PasswdEntry in the format, and Read parses that format.

Extended Example: Numeric Types



We’ve told you how powerful and expressive Haskell’s type
      system is. We’ve shown you a lot of ways to use that power. Here’s a
      chance to really see that in action.
Back in Numeric Types, we showed the numeric
      typeclasses that come with Haskell. Let’s see what we can do by defining
      new types and utilizing the numeric typeclasses to integrate them with
      basic mathematics in Haskell.
To begin let’s think through what we’d
      like to see out of ghci when we
      interact with our new types. To start with, it might be nice to render
      numeric expressions as strings, making sure to indicate proper
      precedence. Perhaps we could create a function called prettyShow to do that. We’ll show you how to
      write it in a bit, but first we’ll look at how we might use it:
ghci> :l num.hs
[1 of 1] Compiling Main             ( num.hs, interpreted )
Ok, modules loaded: Main.
ghci> 5 + 1 * 3
8
ghci> prettyShow $ 5 + 1 * 3
"5+(1*3)"
ghci> prettyShow $ 5 * 1 + 3
"(5*1)+3"
That looks nice, but it wasn’t all that
      smart. We could easily simplify out the 1
      * part of the expression. How about a function to do some very
      basic simplification?
ghci> prettyShow $ simplify $ 5 + 1 * 3
"5+3"

How about converting a numeric
      expression to Reverse Polish Notation (RPN)?
      RPN is a postfix notation that never requires parentheses and is
      commonly found on HP calculators. RPN is a stack-based notation. We push
      numbers onto the stack, and when we enter operations, they pop the most
      recent numbers off the stack and place the result on the stack:
ghci> rpnShow $ 5 + 1 * 3
"5 1 3 * +"
ghci> rpnShow $ simplify $ 5 + 1 * 3
"5 3 +"
Maybe it would be nice to be able to
      represent simple expressions with symbols for the unknowns:
ghci> prettyShow $ 5 + (Symbol "x") * 3
"5+(x*3)"

It’s often important to track units of
      measure when working with numbers. For instance, when you see the number
      5, does it mean 5 meters, 5 feet, or 5 bytes? Of course, if you divide 5
      meters by 2 seconds, the system ought to be able to figure out the
      appropriate units. Moreover, it should stop you from adding 2 seconds to
      5 meters:
ghci> 5 / 2
2.5
ghci> (units 5 "m") / (units 2 "s")
2.5_m/s
ghci> (units 5 "m") + (units 2 "s")
*** Exception: Mis-matched units in add or subtract
ghci> (units 5 "m") + (units 2 "m")
7_m
ghci> (units 5 "m") / 2
2.5_m
ghci> 10 * (units 5 "m") / (units 2 "s")
25.0_m/s
If we define an expression or a function
      that is valid for all numbers, we should be able to calculate the
      result, or render the expression. For instance, if we define test to have type Num
      a => a—and, say, test = 2 * 5 +
      3, then we ought to be able to do this:
ghci> test
13
ghci> rpnShow test
"2 5 * 3 +"
ghci> prettyShow test
"(2*5)+3"
ghci> test + 5
18
ghci> prettyShow (test + 5)
"((2*5)+3)+5"
ghci> rpnShow (test + 5)
"2 5 * 3 + 5 +"
Since we have units, we should be able to
      handle some basic trigonometry as well. Many of these operations operate
      on angles. Let’s make sure that we can handle both degrees and
      radians:
ghci> sin (pi / 2)
1.0
ghci> sin (units (pi / 2) "rad")
1.0_1.0
ghci> sin (units 90 "deg")
1.0_1.0
ghci> (units 50 "m") * sin (units 90 "deg")
50.0_m
Finally, we ought to be able to put all
      this together and combine different kinds of expressions:
ghci> ((units 50 "m") * sin (units 90 "deg")) :: Units (SymbolicManip Double)
50.0*sin(((2.0*pi)*90.0)/360.0)_m
ghci> prettyShow $ dropUnits $ (units 50 "m") * sin (units 90 "deg")
"50.0*sin(((2.0*pi)*90.0)/360.0)"
ghci> rpnShow $ dropUnits $ (units 50 "m") * sin (units 90 "deg")
"50.0 2.0 pi * 90.0 * 360.0 / sin *"
ghci> (units (Symbol "x") "m") * sin (units 90 "deg")
x*sin(((2.0*pi)*90.0)/360.0)_m
Everything you’ve just seen is possible
      with Haskell types and classes. In fact, you’ve been reading a real
      ghci session demonstrating num.hs, which you’ll see shortly.
First Steps



Let’s think about how we would
        accomplish everything just shown. To start with, we might use ghci to check the type of (+), which is Num a
        => a -> a -> a. If we want to make some custom
        behavior for the plus operator possible, then we will have to define a
        new type and make it an instance of Num. This type will need to store an
        expression symbolically. We can start by thinking of operations such
        as addition. To store that, we will need to store the operation
        itself, its left and right sides. The left and right sides could
        themselves be expressions.
We can therefore think of an expression
        as a sort of tree. Let’s start with some simple types:
-- file: ch13/numsimple.hs
-- The "operators" that we're going to support
data Op = Plus | Minus | Mul | Div | Pow
        deriving (Eq, Show)

{- The core symbolic manipulation type -}
data SymbolicManip a = 
          Number a           -- Simple number, such as 5
        | Arith Op (SymbolicManip a) (SymbolicManip a)
          deriving (Eq, Show)

{- SymbolicManip will be an instance of Num.  Define how the Num
operations are handled over a SymbolicManip.  This will implement things
like (+) for SymbolicManip. -}
instance Num a => Num (SymbolicManip a) where
    a + b = Arith Plus a b
    a - b = Arith Minus a b
    a * b = Arith Mul a b
    negate a = Arith Mul (Number (-1)) a
    abs a = error "abs is unimplemented"
    signum _ = error "signum is unimplemented"
    fromInteger i = Number (fromInteger i)
First, we define a type called Op, which simply represents some of the
        operations we will support. Next, there is a definition for SymbolicManip a. Because of the Num a constraint, any Num can be used for the a. So a full type may be something like
        SymbolicManip Int.
A SymbolicManip type can be a plain number or
        some arithmetic operation. The type for the Arith constructor is recursive, which is
        perfectly legal in Haskell. Arith
        creates a SymbolicManip out of an
        Op and two other SymbolicManip items. Let’s look at an
        example:
ghci> :l numsimple.hs
[1 of 1] Compiling Main             ( numsimple.hs, interpreted )
Ok, modules loaded: Main.
ghci> Number 5
Number 5
ghci> :t Number 5
Number 5 :: (Num t) => SymbolicManip t
ghci> :t Number (5::Int)
Number (5::Int) :: SymbolicManip Int
ghci> Number 5 * Number 10
Arith Mul (Number 5) (Number 10)
ghci> (5 * 10)::SymbolicManip Int
Arith Mul (Number 5) (Number 10)
ghci> (5 * 10 + 2)::SymbolicManip Int
Arith Plus (Arith Mul (Number 5) (Number 10)) (Number 2)
You can see that we already have a very
        basic representation of expressions working. Notice how Haskell
        “converted” 5 * 10 + 2 into a
        SymbolicManip, and even handled
        order of evaluation properly. This wasn’t really a true conversion;
        SymbolicManip is a first-class
        number now. Integer numeric literals are internally treated as being
        wrapped in fromInteger anyway, so
        5 is just as valid as a SymbolicManip Int as it as an Int.
From here, then, our task is simple:
        extend the SymbolicManip type to be
        able to represent all the operations we will want to perform,
        implement instances of it for the other numeric typeclasses, and
        implement our own instance of Show
        for SymbolicManip that renders this
        tree in a more accessible fashion.

Completed Code



Here is the completed num.hs, which was used with the ghci examples at the beginning of this
        chapter. Let’s look at this code one piece at a time:
-- file: ch13/num.hs
import Data.List

--------------------------------------------------
-- Symbolic/units manipulation
--------------------------------------------------

-- The "operators" that we're going to support
data Op = Plus | Minus | Mul | Div | Pow
        deriving (Eq, Show)

{- The core symbolic manipulation type.  It can be a simple number,
a symbol, a binary arithmetic operation (such as +), or a unary
arithmetic operation (such as cos)

Notice the types of BinaryArith and UnaryArith: it's a recursive
type.  So, we could represent a (+) over two SymbolicManips. -}
data SymbolicManip a = 
          Number a           -- Simple number, such as 5
        | Symbol String      -- A symbol, such as x
        | BinaryArith Op (SymbolicManip a) (SymbolicManip a)
        | UnaryArith String (SymbolicManip a)
          deriving (Eq)
In this section of code, we define an
        Op that is identical to the one we
        used earlier. We also define SymbolicManip, which is similar to what we
        used before. In this version, we now support unary arithmetic
        operations (those which take only one parameter) such as abs or cos. Next we define our instance of Num:
-- file: ch13/num.hs
{- SymbolicManip will be an instance of Num.  Define how the Num
operations are handled over a SymbolicManip.  This will implement things
like (+) for SymbolicManip. -}
instance Num a => Num (SymbolicManip a) where
    a + b = BinaryArith Plus a b
    a - b = BinaryArith Minus a b
    a * b = BinaryArith Mul a b
    negate a = BinaryArith Mul (Number (-1)) a
    abs a = UnaryArith "abs" a
    signum _ = error "signum is unimplemented"
    fromInteger i = Number (fromInteger i)
This is pretty straightforward and also
        similar to our earlier code. Note that earlier we weren’t able to
        properly support abs, but now with
        the UnaryArith constructor, we can.
        Next we define some more instances:
-- file: ch13/num.hs
{- Make SymbolicManip an instance of Fractional -}
instance (Fractional a) => Fractional (SymbolicManip a) where
    a / b = BinaryArith Div a b
    recip a = BinaryArith Div (Number 1) a
    fromRational r = Number (fromRational r)

{- Make SymbolicManip an instance of Floating -}
instance (Floating a) => Floating (SymbolicManip a) where
    pi = Symbol "pi"
    exp a = UnaryArith "exp" a
    log a = UnaryArith "log" a
    sqrt a = UnaryArith "sqrt" a
    a ** b = BinaryArith Pow a b
    sin a = UnaryArith "sin" a
    cos a = UnaryArith "cos" a
    tan a = UnaryArith "tan" a
    asin a = UnaryArith "asin" a
    acos a = UnaryArith "acos" a
    atan a = UnaryArith "atan" a
    sinh a = UnaryArith "sinh" a
    cosh a = UnaryArith "cosh" a
    tanh a = UnaryArith "tanh" a
    asinh a = UnaryArith "asinh" a
    acosh a = UnaryArith "acosh" a
    atanh a = UnaryArith "atanh" a
This section of code defines some
        fairly straightforward instances of Fractional and Floating. Now let’s work on converting our
        expressions to strings for display:
-- file: ch13/num.hs
{- Show a SymbolicManip as a String, using conventional
algebraic notation -}
prettyShow :: (Show a, Num a) => SymbolicManip a -> String

-- Show a number or symbol as a bare number or serial
prettyShow (Number x) = show x
prettyShow (Symbol x) = x

prettyShow (BinaryArith op a b) =
    let pa = simpleParen a
        pb = simpleParen b
        pop = op2str op
        in pa ++ pop ++ pb
prettyShow (UnaryArith opstr a) = 
    opstr ++ "(" ++ show a ++ ")"

op2str :: Op -> String
op2str Plus = "+"
op2str Minus = "-"
op2str Mul = "*"
op2str Div = "/"
op2str Pow = "**"

{- Add parentheses where needed.  This function is fairly conservative
and will add parenthesis when not needed in some cases.
    
Haskell will have already figured out precedence for us while building
up the SymbolicManip. -}
simpleParen :: (Show a, Num a) => SymbolicManip a -> String
simpleParen (Number x) = prettyShow (Number x)
simpleParen (Symbol x) = prettyShow (Symbol x)
simpleParen x@(BinaryArith _ _ _) = "(" ++ prettyShow x ++ ")"
simpleParen x@(UnaryArith _ _) = prettyShow x

{- Showing a SymbolicManip calls the prettyShow function on it -}
instance (Show a, Num a) => Show (SymbolicManip a) where
    show a = prettyShow a
We start by defining a function prettyShow. It renders an expression using
        conventional style. The algorithm is fairly simple: bare numbers and
        symbols are rendered bare; binary arithmetic is rendered with the two
        sides plus the operator in the middle, and, of course, we handle the
        unary operators as well. op2str
        simply converts an Op to a String. In simpleParen, we have a quite conservative
        algorithm that adds parentheses to keep precedence clear in the
        result. Finally, we make SymbolicManip an instance of Show, using prettyShow to accomplish that. Now let’s
        implement an algorithm that converts an expression to a string in RPN
        format:
-- file: ch13/num.hs
{- Show a SymbolicManip using RPN.  HP calculator users may
find this familiar. -}
rpnShow :: (Show a, Num a) => SymbolicManip a -> String
rpnShow i =
    let toList (Number x) = [show x]
        toList (Symbol x) = [x]
        toList (BinaryArith op a b) = toList a ++ toList b ++
           [op2str op]
        toList (UnaryArith op a) = toList a ++ [op]
        join :: [a] -> [[a]] -> [a]
        join delim l = concat (intersperse delim l)
    in join " " (toList i)
Fans of RPN will note how much simpler this algorithm
        is compared to the algorithm used to render with conventional
        notation. In particular, we didn’t have to worry about where to add
        parentheses, because RPN can, by definition, be evaluated only one
        way. Next, let’s see how we might implement a function to do some
        rudimentary simplification on expressions:
-- file: ch13/num.hs
{- Perform some basic algebraic simplifications on a SymbolicManip. -}
simplify :: (Num a) => SymbolicManip a -> SymbolicManip a
simplify (BinaryArith op ia ib) = 
    let sa = simplify ia
        sb = simplify ib
        in
        case (op, sa, sb) of 
                (Mul, Number 1, b) -> b
                (Mul, a, Number 1) -> a
                (Mul, Number 0, b) -> Number 0
                (Mul, a, Number 0) -> Number 0
                (Div, a, Number 1) -> a
                (Plus, a, Number 0) -> a
                (Plus, Number 0, b) -> b
                (Minus, a, Number 0) -> a
                _ -> BinaryArith op sa sb
simplify (UnaryArith op a) = UnaryArith op (simplify a)
simplify x = x
This function is pretty simple. For certain binary
        arithmetic operations—for instance, multiplying any value by 1—we are
        able to easily simplify the situation. First, we obtain simplified
        versions of both sides of the calculation (this is where recursion
        hits) and then simplify the result. We have little to do with unary
        operators, so we just simplify the expression they act upon.
From here on, we will add support for
        units of measure to our established library. This will let us
        represent quantities such as “5 meters.” We start, as before, by
        defining a type:
-- file: ch13/num.hs
{- New data type: Units.  A Units type contains a number
and a SymbolicManip, which represents the units of measure.
A simple label would be something like (Symbol "m") -}
data Num a => Units a = Units a (SymbolicManip a)
           deriving (Eq)
So, Units contains a number and a label that is
        itself a SymbolicManip. Next, it
        will probably come as no surprise to see an instance of Num for Units:
-- file: ch13/num.hs
{- Implement Units for Num.  We don't know how to convert between
arbitrary units, so we generate an error if we try to add numbers with
different units.  For multiplication, generate the appropriate
new units. -}
instance (Num a) => Num (Units a) where
    (Units xa ua) + (Units xb ub) 
        | ua == ub = Units (xa + xb) ua
        | otherwise = error "Mis-matched units in add or subtract"
    (Units xa ua) - (Units xb ub) = (Units xa ua) + (Units (xb * (-1)) ub)
    (Units xa ua) * (Units xb ub) = Units (xa * xb) (ua * ub)
    negate (Units xa ua) = Units (negate xa) ua
    abs (Units xa ua) = Units (abs xa) ua
    signum (Units xa _) = Units (signum xa) (Number 1)
    fromInteger i = Units (fromInteger i) (Number 1)
Now it may be clear why we use a
        SymbolicManip instead of a String to store the unit of measure. As
        calculations such as multiplication occur, the unit of measure also
        changes. For instance, if we multiply 5 meters by 2 meters, we obtain
        10 square meters. We force the units for addition to match and
        implement subtraction in terms of addition. Let’s look at more typeclass
        instances for Units:
-- file: ch13/num.hs
{- Make Units an instance of Fractional -}
instance (Fractional a) => Fractional (Units a) where
    (Units xa ua) / (Units xb ub) = Units (xa / xb) (ua / ub)
    recip a = 1 / a
    fromRational r = Units (fromRational r) (Number 1)

{- Floating implementation for Units.

Use some intelligence for angle calculations: support deg and rad
-}
instance (Floating a) => Floating (Units a) where
    pi = (Units pi (Number 1))
    exp _ = error "exp not yet implemented in Units"
    log _ = error "log not yet implemented in Units"
    (Units xa ua) ** (Units xb ub) 
        | ub == Number 1 = Units (xa ** xb) (ua ** Number xb)
        | otherwise = error "units for RHS of ** not supported"
    sqrt (Units xa ua) = Units (sqrt xa) (sqrt ua)
    sin (Units xa ua) 
        | ua == Symbol "rad" = Units (sin xa) (Number 1)
        | ua == Symbol "deg" = Units (sin (deg2rad xa)) (Number 1)
        | otherwise = error "Units for sin must be deg or rad"
    cos (Units xa ua) 
        | ua == Symbol "rad" = Units (cos xa) (Number 1)
        | ua == Symbol "deg" = Units (cos (deg2rad xa)) (Number 1)
        | otherwise = error "Units for cos must be deg or rad"
    tan (Units xa ua)
        | ua == Symbol "rad" = Units (tan xa) (Number 1)
        | ua == Symbol "deg" = Units (tan (deg2rad xa)) (Number 1)
        | otherwise = error "Units for tan must be deg or rad"
    asin (Units xa ua) 
        | ua == Number 1 = Units (rad2deg $ asin xa) (Symbol "deg")
        | otherwise = error "Units for asin must be empty"
    acos (Units xa ua)
        | ua == Number 1 = Units (rad2deg $ acos xa) (Symbol "deg")
        | otherwise = error "Units for acos must be empty"
    atan (Units xa ua)
        | ua == Number 1 = Units (rad2deg $ atan xa) (Symbol "deg")
        | otherwise = error "Units for atan must be empty"
    sinh = error "sinh not yet implemented in Units"
    cosh = error "cosh not yet implemented in Units"
    tanh = error "tanh not yet implemented in Units"
    asinh = error "asinh not yet implemented in Units"
    acosh = error "acosh not yet implemented in Units"
    atanh = error "atanh not yet implemented in Units"
We didn’t supply implementations for
        every function, but quite a few have been defined. Now let’s define a
        few utility functions for working with units:
-- file: ch13/num.hs
{- A simple function that takes a number and a String and returns an
appropriate Units type to represent the number and its unit of measure -}
units :: (Num z) => z -> String -> Units z
units a b = Units a (Symbol b)

{- Extract the number only out of a Units type -}
dropUnits :: (Num z) => Units z -> z
dropUnits (Units x _) = x
                                                    
{- Utilities for the Unit implementation -}
deg2rad x = 2 * pi * x / 360
rad2deg x = 360 * x / (2 * pi)
First, we have units, which makes it easy to craft simple
        expressions. It’s faster to say units 5
        "m" than Units 5 (Symbol
        "m"). We also have a corresponding dropUnits, which discards the unit of
        measure and returns the embedded bare Num. Finally, we define some functions for
        use by our earlier instances to convert between degrees and radians.
        Next, we just define a Show
        instance for Units:
-- file: ch13/num.hs
{- Showing units: we show the numeric component, an underscore,
then the prettyShow version of the simplified units -}
instance (Show a, Num a) => Show (Units a) where
    show (Units xa ua) = show xa ++ "_" ++ prettyShow (simplify ua)
That was simple. For one last piece, we
        define a variable test to
        experiment with:
-- file: ch13/num.hs
test :: (Num a) => a
test = 2 * 5 + 3
So, looking back over all this code, we
        have done what we set out to accomplish: implement more instances for SymbolicManip. We have also introduced
        another type called Units, which
        stores a number and a unit of measure. We employed several show-like
        functions, which render the SymbolicManip or Units in different ways.
There is one other point that this
        example drives home: every language—even those with objects and
        overloading—has parts that are special in some way. In Haskell, the
        “special” bits are extremely small. We just developed a new
        representation for something as fundamental as a number, and it was
        really quite easy. Our new type is first-class, and the compiler knows
        what functions to use with it at compile time. Haskell takes code
        reuse and interchangeability to the extreme. It is easy to make code
        generic and work on things of many different types. It’s also easy to
        create new types and automatically make them first-class features
        of the system.
Remember our ghci examples at the beginning of the
        chapter? All of them were made with the code in this example. You
        might want to try them out for yourself and see how they work.
Exercise
	Extend the prettyShow
              function to remove unnecessary parentheses.






Taking Advantage of Functions as Data



In an imperative language, appending two lists is cheap and
      easy. Here’s a simple C structure in which we maintain a pointer to the
      head and tail of a list:
struct list {
    struct node *head, *tail;
};
When we have one list and want to append
      another list onto its end, we modify the last node of the existing list
      to point to its head node, and then update its
      tail pointer to point to its tail node.
Obviously, this approach is off limits to
      us in Haskell if we want to stay pure. Since pure data is immutable, we
      can’t go around modifying lists in place. Haskell’s (++) operator appends two lists by creating a new one:
-- file: ch13/Append.hs
(++) :: [a] -> [a] -> [a]
(x:xs) ++ ys = x : xs ++ ys
_      ++ ys = ys
From inspecting the code, we can see that
      the cost of creating a new list depends on the length of the initial
      one.[34]
We often need to append lists over and
      over in order to construct one big list. For instance, we might be
      generating the contents of a web page as a String, emitting
      a chunk at a time as we traverse some data structure. Each time we have
      a chunk of markup to add to the page, we will naturally want to append
      it onto the end of our existing String.
If a single append has a cost proportional
      to the length of the initial list, and each repeated append makes the
      initial list longer, we end up in an unhappy situation: the cost of all
      of the repeated appends is proportional to the
      square of the length of the final list.
To understand this, let’s dig in a little.
      The (++) operator is
      right-associative:
ghci> :info (++)
(++) :: [a] -> [a] -> [a] 	-- Defined in GHC.Base
infixr 5 ++

This means that a Haskell implementation
      will evaluate the expression "a" ++ "b" ++ "c" as though we
      had put parentheses around it as follows: "a" ++ ("b" ++
      "c"). This makes good performance sense, because it keeps the
      left operand as short as possible.
When we repeatedly append onto the end of
      a list, we defeat this associativity. Let’s say we start with the list
      "a" and append "b", and save the result as our
      new list. If we later append "c" onto this new list, our
      left operand is now "ab". In this scheme, every time we
      append, our left operand gets longer.
Meanwhile, the imperative programmers are
      cackling with glee, because the cost of their
      repeated appends depends only on the number that they perform. They have
      linear performance; ours is quadratic.
When something as common as repeated
      appending of lists imposes such a performance penalty, it’s time to look
      at the problem from another angle.
The expression ("a"++) is a
      section, a partially applied function. What is its type?
ghci> :type ("a" ++)
("a" ++) :: [Char] -> [Char]

Since this is a function, we can use the
      (.) operator to compose it with another section, let’s say
      ("b"++):
ghci> :type ("a" ++) . ("b" ++)
("a" ++) . ("b" ++) :: [Char] -> [Char]

Our new function has the same type. What
      happens if we stop composing functions, and instead provide a
      String to the function we’ve created?
ghci> let f = ("a" ++) . ("b" ++)
ghci> f []
"ab"
We’ve appended the strings! We’re using
      these partially applied functions to store data, which we can retrieve
      by providing an empty list. Each partial application of (++) and (.) represents an
      append, but it doesn’t actually perform the
      append.
There are two very interesting things
      about this approach. The first is that the cost of a partial application
      is constant, so the cost of many partial applications is linear. The
      second is that when we finally provide a [] value to unlock
      the final list from its chain of partial applications, application
      proceeds from right to left. This keeps the left operand (++) small, and so the overall cost of all
      of these appends is linear, not quadratic.
By choosing an unfamiliar data
      representation, we’ve avoided a nasty performance quagmire, while
      gaining a new perspective on the usefulness of treating functions as
      data. By the way, this is an old trick, and it’s usually called a
      difference list.
We’re not yet finished, though. As
      appealing as difference lists are in theory, ours won’t be very pleasant
      in practice if we leave all the plumbing of (++), (.), and partial applications exposed. We
      need to turn this mess into something pleasant to work with.
Turning Difference Lists into a Proper Library



Our first step is to use a
        newtype declaration to hide the underlying type from our
        users. We’ll create a new type and call it DList, and
        like a regular list, it will be a parameterized type:
-- file: ch13/DList.hs
newtype DList a = DL {
      unDL :: [a] -> [a]
    }
The unDL function is our deconstructor, which
        removes the DL constructor. When we go back and decide
        what we want to export from our module, we will omit our data
        constructor and deconstruction function, so the DList
        type will be completely opaque to our users. They’ll only be able to
        work with the type using the other functions we export:
-- file: ch13/DList.hs
append :: DList a -> DList a -> DList a
append xs ys = DL (unDL xs . unDL ys)
Our append function may seem a little
        complicated, but it’s just performing some book-keeping around the
        same use of the (.) operator that
        we demonstrated earlier. To compose our functions, we must first
        unwrap them from their DL constructor—hence the use of
        unDL. We then re-wrap the
        resulting function with the DL constructor so that it
        will have the right type.
Here’s another way of writing the same
        function, in which we perform the unwrapping of xs
        and ys via pattern matching:
-- file: ch13/DList.hs
append' :: DList a -> DList a -> DList a
append' (DL xs) (DL ys) = DL (xs . ys)
Our DList type won’t be
        much use if we can’t convert back and forth between the
        DList representation and a regular list:
-- file: ch13/DList.hs
fromList :: [a] -> DList a
fromList xs = DL (xs ++)

toList :: DList a -> [a]
toList (DL xs) = xs []
Once again, compared to the original
        versions of these functions that we wrote, all we’re doing is a little
        bookkeeping to hide the plumbing.
If we want to make DList
        useful as a substitute for regular lists, we need to provide some more
        of the common list operations:
-- file: ch13/DList.hs
empty :: DList a
empty = DL id

-- equivalent of the list type's (:) operator
cons :: a -> DList a -> DList a
cons x (DL xs) = DL ((x:) . xs)
infixr `cons`

dfoldr :: (a -> b -> b) -> b -> DList a -> b
dfoldr f z xs = foldr f z (toList xs)
Although the DList approach
        makes appends cheap, not all list-like operations are easily
        available. The head function has
        constant cost for lists. Our DList equivalent requires
        that we convert the entire DList to a regular list, so it
        is much more expensive than its list counterpart—its cost is linear in
        the number of appends we have performed to construct the
        DList:
-- file: ch13/DList.hs
safeHead :: DList a -> Maybe a
safeHead xs = case toList xs of
                (y:_) -> Just y
                _ -> Nothing
To support an equivalent of map, we can make our DList
        type a functor:
-- file: ch13/DList.hs
dmap :: (a -> b) -> DList a -> DList b
dmap f = dfoldr go empty
    where go x xs = cons (f x) xs

instance Functor DList where
    fmap = dmap
Once we decide that we have written
        enough equivalents of list functions, we go back to the top of our
        source file and add a module header:
-- file: ch13/DList.hs
module DList
    (
      DList
    , fromList
    , toList
    , empty
    , append
    , cons
    , dfoldr
    ) where

Lists, Difference Lists, and Monoids



In abstract algebra, there is a simple abstract structure called a
        monoid. Many mathematical objects are monoids,
        because the “bar to entry” is very low. In order to be
        considered a monoid, an object must have two properties:
	An associative binary operator
	Let’s call it (*):
              the expression a * (b * c) must give the same
              result as (a * b) * c.

	An identity value
	If we call this e, it must obey two
              rules: a * e == a and e * a ==
              a.



The rules for monoids don’t say what the
        binary operator must do, merely that such an operator must exist.
        Because of this, lots of mathematical objects are monoids. If we take
        addition as the binary operator and zero as the identity value,
        integers form a monoid. With multiplication as the binary operator and
        one as the identity value, integers form a different monoid.
Monoids are ubiquitous in
        Haskell.[35] The Monoid typeclass is defined in
        the Data.Monoid
        module:
-- file: ch13/Monoid.hs
class Monoid a where
    mempty  :: a                -- the identity
    mappend :: a -> a -> a      -- associative binary operator
If we take (++) as the binary operator and
        [] as the identity, lists forms a monoid:
-- file: ch13/Monoid.hs
instance Monoid [a] where
    mempty  = []
    mappend = (++)
Since lists and DLists are
        so closely related, it follows that our DList type must
        be a monoid, too:
-- file: ch13/DList.hs
instance Monoid (DList a) where
    mempty = empty
    mappend = append
Let’s try out the methods of the
        Monoid typeclass in ghci:
ghci> "foo" `mappend` "bar"
"foobar"
ghci> toList (fromList [1,2] `mappend` fromList [3,4])
[1,2,3,4]
ghci> mempty `mappend` [1]
[1]
Writing Multiple Monoid Instances
Although from a mathematical
          perspective, integers can be monoids in two different ways, we can’t
          write two differing Monoid instances for
          Int in Haskell—the compiler would complain about
          duplicate instances.
In those rare cases where we really
          need several Monoid instances for the same type, we can
          use some newtype trickery to create distinct types for
          the purpose:
-- file: ch13/Monoid.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
                   
newtype AInt = A { unA :: Int }
    deriving (Show, Eq, Num)

-- monoid under addition
instance Monoid AInt where
    mempty = 0
    mappend = (+)

newtype MInt = M { unM :: Int }
    deriving (Show, Eq, Num)

-- monoid under multiplication
instance Monoid MInt where
    mempty = 1
    mappend = (*)
We’ll then get different behavior depending on the type we
          use:
ghci> 2 `mappend` 5 :: MInt
M {unM = 10}
ghci> 2 `mappend` 5 :: AInt
A {unA = 7}

We will have more to say about
        difference lists and their monoidal nature in The Writer Monad and Lists.
Enforcing the monoid rules
As with the rules for functors,
          Haskell cannot check the rules for monoids on our behalf. If we’re
          defining a Monoid instance, we can easily write
          QuickCheck properties to give us high statistical confidence that
          our code is following the monoid rules.



General-Purpose Sequences



Both Haskell’s built-in list type and
      the DList type that we defined earlier have poor
      performance characteristics under some circumstances. The
      Data.Sequence module defines a Seq container type that gives good
      performance for a wider variety of operations.
As with other modules,
      Data.Sequence is intended to be used via qualified
      import:
-- file: ch13/DataSequence.hs
import qualified Data.Sequence as Seq
We can construct an empty
      Seq using empty and a
      single-element container using singleton:
ghci> Seq.empty
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
fromList []
ghci> Seq.singleton 1
fromList [1]
We can create a Seq from a
      list using fromList:
ghci> let a = Seq.fromList [1,2,3]
The Data.Sequence module
      provides some constructor functions in the form of operators. When we
      perform a qualified import, we must qualify the name of an operator in
      our code (which is ugly):
ghci> 1 Seq.<| Seq.singleton 2
fromList [1,2]

If we import the operators explicitly, we
      can avoid the need to qualify them:
-- file: ch13/DataSequence.hs
import Data.Sequence ((><), (<|), (|>))
By removing the qualification from the
      operator, we improve the readability of our code:
ghci> Seq.singleton 1 |> 2
fromList [1,2]

A useful way to remember the (<|) and (|>) functions is that the “arrow” points to the element
      we’re adding to the Seq. The element will be added on the
      side to which the arrow points: (<|) adds on the left, (|>) on the right.
Both adding on the left and adding on the
      right are constant-time operations. Appending two Seqs is
      also cheap, occurring in time proportional to the logarithm of whichever
      is shorter. To append, we use the (><)
      operator:
ghci> let left = Seq.fromList [1,3,3]
ghci> let right = Seq.fromList [7,1]
ghci> left >< right
fromList [1,3,3,7,1]
If we want to create a list from a
      Seq, we must use the Data.Foldable
      module, which is best imported qualified:
-- file: ch13/DataSequence.hs
import qualified Data.Foldable as Foldable
This module defines a typeclass,
      Foldable, which Seq implements:
ghci> Foldable.toList (Seq.fromList [1,2,3])
[1,2,3]

If we want to fold over a Seq, we use the
      fold functions from the Data.Foldable module:
ghci> Foldable.foldl' (+) 0 (Seq.fromList [1,2,3])
6

The Data.Sequence module
      provides a number of other useful list-like functions. Its documentation
      is very thorough, giving time bounds for each operation.
If Seq has so many desirable
      characteristics, why is it not the default sequence type? Lists are
      simpler and have less overhead, and so quite often they are good enough
      for the task at hand. They are also well suited to a lazy setting,
      whereas Seq does not fare well.



[33] The type we use for the key must be a
          member of the Eq
          typeclass.

[34] Nonstrict evaluation makes the cost
          calculation more subtle. We pay for an append only if we actually
          use the resulting list. Even then, we pay only for as much as we
          actually use.

[35] Indeed, monoids are ubiquitous
            throughout programming. The difference is that in Haskell, we
            recognize, and talk about them.



Chapter 14. Monads







In Chapter 7, we talked about the IO monad, but we
      intentionally kept the discussion narrowly focused on how to communicate
      with the outside world. We didn’t discuss what a monad
      is.
We’ve already seen in Chapter 7 that the IO monad is easy to work with.
      Notational differences aside, writing code in the IO monad
      isn’t much different from coding in any other imperative
      language.
When we had practical problems to solve in
      earlier chapters, we introduced structures that, as we will soon see,
      are actually monads. We aim to show you that a monad is often an
      obvious and useful tool to
      help solve a problem. We’ll define a few monads in this chapter, to show
      how easy it is.

Revisiting Earlier Code Examples



Maybe Chaining



Let’s take another look at the parseP5 function that we wrote in Chapter 10:
-- file: ch10/PNM.hs
matchHeader :: L.ByteString -> L.ByteString -> Maybe L.ByteString

-- "nat" here is short for "natural number"
getNat :: L.ByteString -> Maybe (Int, L.ByteString)

getBytes :: Int -> L.ByteString
         -> Maybe (L.ByteString, L.ByteString)

parseP5 s =
  case matchHeader (L8.pack "P5") s of
    Nothing -> Nothing
    Just s1 ->
      case getNat s1 of
        Nothing -> Nothing
        Just (width, s2) ->
          case getNat (L8.dropWhile isSpace s2) of
            Nothing -> Nothing
            Just (height, s3) ->
              case getNat (L8.dropWhile isSpace s3) of
                Nothing -> Nothing
                Just (maxGrey, s4)
                  | maxGrey > 255 -> Nothing
                  | otherwise ->
                      case getBytes 1 s4 of
                        Nothing -> Nothing
                        Just (_, s5) ->
                          case getBytes (width * height) s5 of
                            Nothing -> Nothing
                            Just (bitmap, s6) ->
                              Just (Greymap width height maxGrey bitmap, s6)
When we introduced this function, it
        threatened to march off the right side of the page if it got much more
        complicated. We brought the staircasing under control using the (>>?)
        function:
-- file: ch10/PNM.hs
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>? _ = Nothing
Just v  >>? f = f v
We carefully chose the type of (>>?) to let us chain together
        functions that return a Maybe value. So long as the
        result type of one function matches the parameter of the next, we can
        chain functions returning Maybe together indefinitely.
        The body of (>>?) hides the
        details of whether the chain of functions we build is short-circuited
        somewhere, due to one returning Nothing, or whenever it
        is completely evaluated.

Implicit State



Useful as (>>?) was for cleaning up the structure of parseP5, we had to incrementally consume
        pieces of a string as we parsed it. This forced us to pass the current
        value of the string down our chain of Maybes, wrapped up
        in a tuple. Each function in the chain put a result into one element
        of the tuple and the unconsumed remainder of the string into the
        other:
-- file: ch10/PNM.hs
parseP5_take2 :: L.ByteString -> Maybe (Greymap, L.ByteString)
parseP5_take2 s =
    matchHeader (L8.pack "P5") s      >>?
    \s -> skipSpace ((), s)           >>?
    (getNat . snd)                    >>?
    skipSpace                         >>?
    \(width, s) ->   getNat s         >>?
    skipSpace                         >>?
    \(height, s) ->  getNat s         >>?
    \(maxGrey, s) -> getBytes 1 s     >>?
    (getBytes (width * height) . snd) >>?
    \(bitmap, s) -> Just (Greymap width height maxGrey bitmap, s)

skipSpace :: (a, L.ByteString) -> Maybe (a, L.ByteString)
skipSpace (a, s) = Just (a, L8.dropWhile isSpace s)
Once again, we were faced with a pattern
        of repeated behavior: consume some string, return a result, and return
        the remaining string for the next function to consume. However, this
        pattern was more insidious. If we wanted to pass another piece of
        information down the chain, we’d have to modify nearly every element
        of the chain, turning each two-tuple into a three-tuple!
We addressed this by moving the
        responsibility for managing the current piece of string out of the
        individual functions in the chain, and into the function that we used
        to chain them together:
-- file: ch10/Parse.hs
(==>) :: Parse a -> (a -> Parse b) -> Parse b

firstParser ==> secondParser  =  Parse chainedParser
  where chainedParser initState   =
          case runParse firstParser initState of
            Left errMessage ->
                Left errMessage
            Right (firstResult, newState) ->
                runParse (secondParser firstResult) newState
We also hid the details of the parsing
        state in the ParseState type. Even the getState and putState functions don’t inspect the
        parsing state, so any modification to ParseState will
        have no effect on any existing code.


Looking for Shared Patterns



When we look at the preceding examples in detail, they don’t
      seem to have much in common. Obviously, they’re both concerned with
      chaining functions together and hiding details to let us write tidier
      code. However, let’s take a step back and consider them in
      less detail.
First, let’s look at the type
      definitions:
-- file: ch14/Maybe.hs
data Maybe a = Nothing
             | Just a
-- file: ch10/Parse.hs
newtype Parse a = Parse {
      runParse :: ParseState -> Either String (a, ParseState)
    }
The common feature of these two types is
      that each has a single type parameter on the left of the definition,
      which appears somewhere on the right. These are thus generic types,
      which know nothing about their payloads.
Next, we’ll examine the chaining functions
      that we wrote for the two types:
ghci> :type (>>?)
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b

ghci> :type (==>)
(==>) :: Parse a -> (a -> Parse b) -> Parse b

These functions have strikingly similar
      types. If we were to turn those type constructors into a type variable,
      we’d end up with a single more abstract type:
-- file: ch14/Maybe.hs
chain :: m a -> (a -> m b) -> m b
Finally, in each case, we have a function
      that takes a “plain” value and “injects” it
      into the target type. For Maybe, this function is simply
      the value constructor Just, but the injector for
      Parse is more complicated:
-- file: ch10/Parse.hs
identity :: a -> Parse a
identity a = Parse (\s -> Right (a, s))
Again, it’s not the details or complexity
      that we’re interested in, it’s the fact that each of these types
      has an “injector” function, which looks like
      this:
-- file: ch14/Maybe.hs
inject :: a -> m a
It is exactly these
      three properties, and a few rules about how we can use them together,
      that define a monad in Haskell. Let’s revisit the preceding list in
      condensed form:
	A type constructor m.

	A function of type m a -> (a
          -> m b) -> m b for chaining the output of one function
          into the input of another.

	A function of type a -> m
          a for injecting a normal value into the chain, that is, it
          wraps a type a with the type constructor
          m.



The properties that make the
      Maybe type a monad are its type constructor Maybe
      a, our chaining function (>>?), and the injector function
      Just.
For Parse, the corresponding
      properties are the type constructor Parse a, the chaining
      function (==>), and the injector
      function identity.
We intentionally have said nothing about
      how the chaining and injection functions of a monad should behave,
      because this almost doesn’t matter. In fact, monads are ubiquitous in Haskell code precisely
      because they are so simple. Many common programming patterns have a
      monadic structure: passing around implicit data or short-circuiting a chain of evaluations if one
      fails, to choose but two.

The Monad Typeclass



We can capture the notions of chaining and injection, and the
      types that we want them to have, in a Haskell typeclass. The standard
      Prelude already defines just such a
      typeclass, named Monad:
-- file: ch14/Maybe.hs
class Monad m where
    -- chain
    (>>=)  :: m a -> (a -> m b) -> m b
    -- inject
    return :: a -> m a
Here, (>>=) is our chaining function. We’ve already been introduced to it in
      Sequencing. It’s often referred to as bind, as it binds the
      result of the computation on the left to the parameter of the one on the
      right.
Our injection function is return. As we noted in The True Nature of Return, the choice of the name return is a little unfortunate. That name is
      widely used in imperative languages, where it has a fairly
      well-understood meaning. In Haskell, its behavior is much less
      constrained. In particular, calling return in the middle of a chain of functions
      won’t cause the chain to exit early. A useful way to link its behavior
      to its name is that it returns a pure value (of
      type a) into a monad (of type m a). But
      really, “inject” would be a better name.
While (>>=) and return are the core functions of the
      Monad typeclass, it also defines two other functions. The first is
      (>>). Like (>>=), it performs chaining, but it
      ignores the value on the left:
-- file: ch14/Maybe.hs
    (>>) :: m a -> m b -> m b
    a >> f = a >>= \_ -> f
We use this function when we want to
      perform actions in a certain order, but don’t care what the result of
      one is. This might seem pointless: why would we not care what a
      function’s return value is? Recall, though, that we defined a (==>&) combinator earlier to express
      exactly this. Alternatively, consider a function such as print, which provides a placeholder result
      that we do not need to inspect:
ghci> :type print "foo"
print "foo" :: IO ()

If we use plain (>>=), we have to provide, as its
      righthand side, a function that ignores its argument:
ghci> print "foo" >>= \_ -> print "bar"
"foo"
"bar"

But if we use (>>), we can omit the needless function:
ghci> print "baz" >> print "quux"
"baz"
"quux"

As we just showed, the default
      implementation of (>>) is
      defined in terms of (>>=).
The second noncore Monad
      function is fail, which takes an error message and does something to make
      the chain of functions fail:
-- file: ch14/Maybe.hs
    fail :: String -> m a
    fail = error
Beware of fail
Many Monad instances don’t
        override the default implementation of fail that we show here, so in those monads,
        fail uses error. Calling error is usually highly undesirable, since
        it throws an exception that callers either cannot catch or will not
        expect.
Even if you know that right now you’re
        executing in a monad that has fail do something more sensible, we still
        recommend avoiding it. It’s far too easy to cause yourself a problem
        later when you refactor your code and forget that a previously safe
        use of fail might be dangerous in
        its new context.

To revisit the parser that we developed in
      Chapter 10, here is its Monad
      instance:
-- file: ch10/Parse.hs
instance Monad Parse where
    return = identity
    (>>=) = (==>)
    fail = bail

And Now, a Jargon Moment



There are a few terms of art around monads
      that you may not be familiar with. These aren’t formal, but they’re
      commonly used, so it’s helpful to know about them:
	Monadic simply
          means “pertaining to monads.” A monadic type is
          an instance of the Monad typeclass; a monadic
          value has a monadic type.

	When we say that a type “is a monad,”
          this is really a shorthand way of saying that it’s an instance of
          the Monad typeclass. Being an instance of
          Monad gives us the necessary monadic triple of type
          constructor, injection function, and chaining function.

	In the same way, a reference to
          “the Foo monad” implies that we’re talking
          about the type named Foo and that it’s an instance of
          Monad.

	An action
          is another name for a monadic value. This use of the
          word probably originated with the introduction of monads for I/O,
          where a monadic value such as print "foo" can
          have an observable side effect. A function with a monadic return
          type might also be referred to as an action, though this is a little
          less common.




Using a New Monad: Show Your Work!



In our introduction to monads, we showed
      how some preexisting code was already monadic in form. Now that we are
      beginning to grasp what a monad is and have seen the Monad
      typeclass, let’s build a monad with foreknowledge of what we’re doing.
      We’ll start out by defining its interface, and then we’ll put it to use.
      Once we have those out of the way, we’ll finally build it.
Pure Haskell code is wonderfully clean to
      write, but, of course, it can’t perform I/O. Sometimes, we’d like to
      have a record of decisions we made, without writing log information to a file. Let’s develop a
      small library to help with this.
Recall the globToRegex function that we developed in
      Translating a glob Pattern into a Regular Expression. We will modify it so that it keeps a
      record of each of the special pattern sequences that it translates. We
      are revisiting familiar territory for a reason: it lets us compare
      nonmonadic and monadic versions of the same code.
To start off, we’ll wrap our result type
      with a Logger type constructor:
-- file: ch14/Logger.hs
globToRegex :: String -> Logger String
Information Hiding



We’ll intentionally keep the internals
        of the Logger module abstract:
-- file: ch14/Logger.hs
module Logger
    (
      Logger
    , Log
    , runLogger
    , record
    ) where
Hiding the details like this has two
        benefits: it grants us considerable flexibility in how we implement
        our monad, and more importantly, it gives users a simple
        interface.
Our Logger type is purely a
        type constructor. We don’t export the
        value constructor that a user would need to
        create a value of this type. All they can use Logger for
        is writing type signatures.
The Log type is just a
        synonym for a list of strings, to make a few signatures more readable.
        We use a list of strings to keep the implementation simple:
-- file: ch14/Logger.hs
type Log = [String]
Instead of giving our users a value
        constructor, we provide them with a function, runLogger, that evaluates a logged action.
        This returns both the result of an action and whatever was logged
        while the result was being computed:
-- file: ch14/Logger.hs
runLogger :: Logger a -> (a, Log)

Controlled Escape



The Monad typeclass doesn’t
        provide any means for values to escape their monadic shackles. We can
        inject a value into a monad using return. We can extract a value from a monad
        using (>>=) but the function on the right, which can see an unwrapped
        value, has to wrap its own result back up again.
Most monads have one or more runLogger-like functions. The notable
        exception is of course IO, which we usually escape from
        simply by exiting a program.
A monad execution function runs the code
        inside the monad and unwraps its result. Such functions are usually
        the only means provided for a value to escape from its monadic
        wrapper. The author of a monad thus has complete control over how
        whatever happens inside the monad gets out.
Some monads have several execution
        functions. In our case, we can imagine a few alternatives to runLogger: one might return only the log
        messages, whereas another might return just the result and drop the
        log messages.

Leaving a Trace



When executing inside a
        Logger action, the user code calls record to record something:
-- file: ch14/Logger.hs
record :: String -> Logger ()
Since recording occurs in the plumbing
        of our monad, our action’s result supplies no information.
Usually, a monad will provide one or
        more helper functions such as our record. These are our means for accessing
        the special behaviors of that monad.
Our module also defines the
        Monad instance for the Logger type. These
        definitions are all that a client module needs in order to be able to
        use this monad.
Here is a preview, in ghci, of how our monad will behave:
ghci> let simple = return True :: Logger Bool
ghci> runLogger simple
(True,[])
When we run the logged action using
        runLogger, we get back a pair.
        The first element is the result of our code; the second is the list of
        items logged while the action executed. We haven’t logged anything, so
        the list is empty. Let’s fix that:
ghci> runLogger (record "hi mom!" >> return 3.1337)
(3.1337,["hi mom!"])


Using the Logger Monad



Here’s how we kick off our
        glob-to-regexp conversion inside the Logger monad:
-- file: ch14/Logger.hs
globToRegex cs =
    globToRegex' cs >>= \ds ->
    return ('^':ds)
There are a few coding style issues
        worth mentioning here. The body of the function starts on the line
        after its name. This gives us some horizontal whitespace. We’ve also
        “hung” the parameter of the anonymous function at the end
        of the line. This is common practice in monadic code.
Remember the type of (>>=): it extracts the value on the
        left from its Logger wrapper, and passes the unwrapped
        value to the function on the right. The function on the right must, in
        turn, wrap its result with the
        Logger wrapper. This is exactly what return does. It takes a pure value, and
        wraps it in the monad’s type constructor:
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type (globToRegex "" >>=)
(globToRegex "" >>=) :: (String -> Logger b) -> Logger b
Even when we write a function that does
        almost nothing, we must call return to wrap the result with the correct
        type:
-- file: ch14/Logger.hs
globToRegex' :: String -> Logger String
globToRegex' "" = return "$"
When we call record to save a log entry, we
        use (>>) instead
        of (>>=) to chain it with
        the following action:
-- file: ch14/Logger.hs
globToRegex' ('?':cs) =
    record "any" >>
    globToRegex' cs >>= \ds ->
    return ('.':ds)
Recall that this is a variant of
        (>>=) that ignores the
        result on the left. We know that the result of record will always be (), so
        there’s no point in capturing it.
We can use do notation, which we first encountered in
        Sequencing, to tidy up our code somewhat:
-- file: ch14/Logger.hs
globToRegex' ('*':cs) = do
    record "kleene star"
    ds <- globToRegex' cs
    return (".*" ++ ds)
The choice of do notation versus explicit (>>=) with anonymous functions is
        mostly a matter of taste, although almost everyone’s taste is to use
        do notation for anything longer
        than about two lines. There is one significant difference between the
        two styles, though, which we’ll return to in Desugaring of do Blocks.
Parsing a character class mostly follows
        the same pattern that we’ve already seen:
-- file: ch14/Logger.hs
globToRegex' ('[':'!':c:cs) =
    record "character class, negative" >>
    charClass cs >>= \ds ->
    return ("[^" ++ c : ds)
globToRegex' ('[':c:cs) =
    record "character class" >>
    charClass cs >>= \ds ->
    return ("[" ++ c : ds)
globToRegex' ('[':_) =
    fail "unterminated character class"


Mixing Pure and Monadic Code



Based on the code we’ve seen so far,
      monads seem to have a substantial shortcoming: the type constructor that
      wraps a monadic value makes it tricky to use a normal, pure function on
      a value trapped inside a monadic wrapper. Here’s a simple illustration
      of the apparent problem. Let’s say we have a trivial piece of code that
      runs in the Logger monad and returns a string:
ghci> let m = return "foo" :: Logger String
If we want to find out the length of that
      string, we can’t simply call length. The string is wrapped, so the types
      don’t match up:
ghci> length m

<interactive>:1:7:
    Couldn't match expected type `[a]'
           against inferred type `Logger String'
    In the first argument of `length', namely `m'
    In the expression: length m
    In the definition of `it': it = length m

So far, to work around this, we’ve
      something like the following:
ghci> :type   m >>= \s -> return (length s)
m >>= \s -> return (length s) :: Logger Int

We use (>>=) to unwrap the string, and then
      write a small anonymous function that calls length and rewraps the result using return.
This need crops up often in Haskell code.
      You won’t be surprised to learn that a shorthand already exists: we use
      the lifting technique that we introduced for
      functors in Introducing Functors. Lifting a pure function
      into a functor usually involves unwrapping the value inside the functor,
      calling the function on it, and rewrapping the result with the same
      constructor.
We do exactly the same thing with a monad.
      Because the Monad typeclass already provides the (>>=) and return functions that know how to unwrap and
      wrap a value, the liftM function
      doesn’t need to know any details of a monad’s implementation:
-- file: ch14/Logger.hs
liftM :: (Monad m) => (a -> b) -> m a -> m b
liftM f m = m >>= \i ->
            return (f i)
When we declare a type to be an instance
      of the Functor typeclass, we have to write our own version
      of fmap specially tailored to that
      type. By contrast, liftM doesn’t
      need to know anything of a monad’s internals, because they’re abstracted
      by (>>=) and return. We need to write it only once, with the appropriate type
      constraint.
The liftM function is predefined for us in the
      standard Control.Monad module.
To see how liftM can help readability, we’ll compare two
      otherwise identical pieces of code. First, we’ll look at the familiar
      kind that does not use liftM:
-- file: ch14/Logger.hs
charClass_wordy (']':cs) =
    globToRegex' cs >>= \ds ->
    return (']':ds)
charClass_wordy (c:cs) =
    charClass_wordy cs >>= \ds ->
    return (c:ds)
Now we can eliminate the (>>=) and anonymous function cruft with
      liftM:
-- file: ch14/Logger.hs
charClass (']':cs) = (']':) `liftM` globToRegex' cs
charClass (c:cs) = (c:) `liftM` charClass cs
As with fmap, we often use liftM in infix form. An easy way to read such
      an expression is “apply the pure function on the left to the result of
      the monadic action on the right.”
The liftM function is so useful that
      Control.Monad defines several variants, which combine
      longer chains of actions. We can see one in the last clause of our
      globToRegex' function:
-- file: ch14/Logger.hs
globToRegex' (c:cs) = liftM2 (++) (escape c) (globToRegex' cs)

escape :: Char -> Logger String
escape c
    | c `elem` regexChars = record "escape" >> return ['\\',c]
    | otherwise           = return [c]
  where regexChars = "\\+()^$.{}]|"
The liftM2 function that we use here is defined
      as follows:
-- file: ch14/Logger.hs
liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c
liftM2 f m1 m2 =
    m1 >>= \a ->
    m2 >>= \b ->
    return (f a b)
It executes the first action, then the
      second, and then combines their results using the pure function
      f, and wraps that result. In addition to liftM2, the variants in Control.Monad go up to liftM5.

Putting a Few Misconceptions to Rest



We’ve now seen enough examples of monads
      in action to have some feel for what’s going on. Before we continue,
      there are a few oft-repeated myths about monads that we’re going to
      address. You’re bound to encounter these assertions “in the wild,” so
      you might as well be prepared with a few good retorts:
	Monads can be hard to understand
	We’ve already shown that monads “fall out
            naturally” from several problems. We’ve found that the best
            key to understanding them is to explain several concrete examples,
            and then talk about what they have in common.

	Monads are only useful for I/O and imperative coding
	While we use monads for I/O in Haskell, they’re valuable for
            many other purposes as well. We’ve already used them for
            short-circuiting a chain of computations, hiding complicated
            state, and logging. Even so, we’ve barely scratched the
            surface.

	Monads are unique to Haskell
	Haskell is probably the language that makes the most
            explicit use of monads, but people write them in other languages,
            too, ranging from C++ to OCaml. They happen to be particularly
            tractable in Haskell, due to do
            notation, the power and inference of the type system, and the
            language’s syntax.

	Monads are for controlling the order of evaluation
	




Building the Logger Monad



The definition of our Logger
      type is very simple:
-- file: ch14/Logger.hs
newtype Logger a = Logger { execLogger :: (a, Log) }
It’s a pair, where the first element is
      the result of an action, and the second is a list of messages logged
      while that action was run.
We’ve wrapped the tuple in a
      newtype to make it a distinct type. The runLogger function extracts the tuple from
      its wrapper. The function that we’re exporting to execute a logged
      action, runLogger, is just a
      synonym for execLogger:
-- file: ch14/Logger.hs
runLogger = execLogger
Our record helper function creates a singleton
      list of the message that we pass it:
-- file: ch14/Logger.hs
record s = Logger ((), [s])
The result of this action is
      (), so that’s the value we put in the result slot.
Let’s begin our Monad
      instance with return, which is
      trivial. It logs nothing and stores its input in the result slot of the
      tuple:
-- file: ch14/Logger.hs
instance Monad Logger where
    return a = Logger (a, [])
Slightly more interesting is (>>=), which is the heart of the monad.
      It combines an action and a monadic function to give a new result and a
      new log:
-- file: ch14/Logger.hs
    -- (>>=) :: Logger a -> (a -> Logger b) -> Logger b
    m >>= k = let (a, w) = execLogger m
                  n      = k a
                  (b, x) = execLogger n
              in Logger (b, w ++ x)
Let’s spell out explicitly what is going
      on. We use runLogger to extract the
      result a from the action m, and we
      pass it to the monadic function k. We extract the
      result b from that in turn, and put it into the
      result slot of the final action. We concatenate the logs
      w and x to give the new
      log.
Sequential Logging, Not Sequential Evaluation



Our definition of (>>=) ensures that messages logged on
        the left will appear in the new log before those on the right.
        However, it says nothing about when the values a
        and b are evaluated: (>>=) is lazy.
Like most other aspects of a monad’s
        behavior, strictness is under the control of the implementor. It is
        not a constant shared by all monads. Indeed, some monads come in
        multiple flavors, each with different levels of strictness.

The Writer Monad



Our Logger monad is a
        specialized version of the standard Writer monad, which
        can be found in the Control.Monad.Writer module of the
        mtl package. We will present a Writer
        example in Using Typeclasses.


The Maybe Monad



The Maybe type is very nearly
      the simplest instance of Monad. It represents a computation
      that might not produce a result:
-- file: ch14/Maybe.hs
instance Monad Maybe where
    Just x >>= k  =  k x
    Nothing >>= _ =  Nothing

    Just _ >> k   =  k
    Nothing >> _  =  Nothing

    return x      =  Just x

    fail _        =  Nothing
If, when we chain together a number of
      computations over Maybe using (>>=) or (>>), any of them returns
      Nothing, we don’t evaluate any of the remaining computations.
Note, though, that the chain is not
      completely short-circuited. Each (>>=) or (>>) in the chain will still match a
      Nothing on its left and produce a Nothing on its right, all the way to the end.
      It’s easy to forget this point: when a computation in the chain fails,
      the subsequent production, chaining, and consumption of
      Nothing values are cheap at runtime, but they’re not
      free.
Executing the Maybe Monad



A function suitable for executing the
        Maybe monad is maybe. (Remember that
        “executing” a monad involves evaluating it and returning
        a result that’s had the monad’s type wrapper removed.)
-- file: ch14/Maybe.hs
maybe :: b -> (a -> b) -> Maybe a -> b
maybe n _ Nothing  = n
maybe _ f (Just x) = f x
Its first parameter is the value to
        return if the result is Nothing. The second is a function
        to apply to a result wrapped in the Just constructor; the
        result of that application is then returned.
Since the Maybe type is so
        simple, it’s about as common to simply pattern match on a
        Maybe value as it is to call maybe. Each one is more readable in
        different circumstances.

Maybe at Work, and Good API Design



Here’s an example of Maybe
        in use as a monad. Given a customer’s name, we want to find the
        billing address of her mobile phone carrier:
-- file: ch14/Carrier.hs
import qualified Data.Map as M

type PersonName = String
type PhoneNumber = String
type BillingAddress = String
data MobileCarrier = Honest_Bobs_Phone_Network
                   | Morrisas_Marvelous_Mobiles
                   | Petes_Plutocratic_Phones
                     deriving (Eq, Ord)

findCarrierBillingAddress :: PersonName
                          -> M.Map PersonName PhoneNumber
                          -> M.Map PhoneNumber MobileCarrier
                          -> M.Map MobileCarrier BillingAddress
                          -> Maybe BillingAddress
Our first version is the dreaded ladder
        of code marching off the right of the screen, with many boilerplate
        case expressions:
-- file: ch14/Carrier.hs
variation1 person phoneMap carrierMap addressMap =
    case M.lookup person phoneMap of
      Nothing -> Nothing
      Just number ->
          case M.lookup number carrierMap of
            Nothing -> Nothing
            Just carrier -> M.lookup carrier addressMap
The Data.Map module’s
        lookup function has a monadic
        return type:
ghci> :module +Data.Map
ghci> :type Data.Map.lookup
Data.Map.lookup :: (Ord k, Monad m) => k -> Map k a -> m a
In other words, if the given key is
        present in the map, lookup
        injects it into the monad using return. Otherwise, it calls fail. This is an interesting piece of API
        design, though one that we think was a poor choice:
	On the positive side, the behaviors
            of success and failure are automatically customized to our needs,
            based on the monad from which we’re calling lookup. Better yet, lookup itself doesn’t know or care what
            those behaviors are.
The case expressions just shown typecheck
            because we’re comparing the result of lookup against values of type
            Maybe.

	The hitch is, of course, that using
            fail in the wrong monad
            throws a bothersome exception. We have already warned against the
            use of fail, so we will not
            repeat ourselves here.



In practice,
        everyone uses Maybe as the result
        type for lookup. The result type
        of such a conceptually simple function provides generality where it is
        not needed: lookup should have
        been written to return Maybe.
Let’s set aside the API question and
        deal with the ugliness of our code. We can make more sensible use of
        Maybe’s status as a monad:
-- file: ch14/Carrier.hs
variation2 person phoneMap carrierMap addressMap = do
  number <- M.lookup person phoneMap
  carrier <- M.lookup number carrierMap
  address <- M.lookup carrier addressMap
  return address
If any of these lookups fails, the
        definitions of (>>=) and
        (>>) mean that the result
        of the function as a whole will be Nothing, just as it
        was for our first attempt that used case explicitly.
This version is much tidier, but the
        return isn’t necessary.
        Stylistically, it makes the code look more regular, and perhaps more
        familiar to the eyes of an imperative programmer, but behaviorally
        it’s redundant. Here’s an equivalent piece of code:
-- file: ch14/Carrier.hs
variation2a person phoneMap carrierMap addressMap = do
  number <- M.lookup person phoneMap
  carrier <- M.lookup number carrierMap
  M.lookup carrier addressMap
When we introduced maps, we mentioned in
        Partial application awkwardness that the type signatures of
        functions in the Data.Map module often make them awkward
        to partially apply. The lookup
        function is a good example. If we flip its arguments, we can write the
        function body as a one-liner:
-- file: ch14/Carrier.hs
variation3 person phoneMap carrierMap addressMap =
    lookup phoneMap person >>= lookup carrierMap >>= lookup addressMap
  where lookup = flip M.lookup


The List Monad



While the Maybe type can represent either no value
      or one, there are many situations where we might want to return some
      number of results that we do not know in advance. Obviously, a list is
      well suited to this purpose. The type of a list suggests that we might
      be able to use it as a monad, because its type constructor has one free
      variable. And sure enough, we can use a list as a monad.
Rather than simply present the Prelude’s Monad instance for the
      list type, let’s try to figure out what an instance
      ought to look like. This is easy to do: we’ll look
      at the types of (>>=)
      and return, perform some
      substitutions, and see if we can use a few familiar list
      functions.
The more obvious of the two functions is
      return. We know that it takes a type a, and wraps it in a type constructor m to give the type m
      a. We also know that the type constructor here is
      []. Substituting this type constructor for the type
      variable m gives us the type []
      a (yes, this really is valid notation!), which we can rewrite in
      more familiar form as [a].
We now know that return for lists should have the type a
      -> [a]. There are only a few sensible possibilities for an
      implementation of this function. It might return the empty list, a
      singleton list, or an infinite list. The most appealing behavior, based
      on what we know so far about monads, is the singleton list—it doesn’t
      throw away information, nor does it repeat it infinitely:
-- file: ch14/ListMonad.hs
returnSingleton :: a -> [a]
returnSingleton x = [x]
If we perform the same substitution trick
      on the type of (>>=) as we
      did with return, we discover that it
      should have the type [a] -> (a -> [b]) -> [b].
      This seems close to the type of map:
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type map
map :: (a -> b) -> [a] -> [b]
The ordering of the types in map’s arguments doesn’t match, but that’s
      easy to fix:
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type flip map
flip map :: [a] -> (a -> b) -> [b]
We’ve still got a problem: the second
      argument of flip map has the type a -> b,
      whereas the second argument of (>>=) for lists has the type a
      -> [b]. What do we do about this?
Let’s do a little more substitution and
      see what happens with the types. The function flip map can
      return any type b as its result. If we
      substitute [b] for b in both places where it appears in flip
      map’s type signature, its type signature reads as a ->
      (a -> [b]) -> [[b]]. In other words, if we map a function
      that returns a list over a list, we get a list of lists back:
ghci> flip map [1,2,3] (\a -> [a,a+100])
[[1,101],[2,102],[3,103]]

Interestingly, we haven’t really changed
      how closely our type signatures match. The type of (>>=) is [a] -> (a -> [b])
      -> [b], while that of flip map when the mapped
      function returns a list is [a] -> (a -> [b]) ->
      [[b]]. There’s still a mismatch in one type term—we’ve just moved
      that term from the middle of the type signature to the end. However, our
      juggling wasn’t in vain—we now need a function that takes a
      [[b]] and returns a [b], and one readily
      suggests itself in the form of concat:
ghci> :type concat
concat :: [[a]] -> [a]

The types suggest that we should flip the
      arguments to map, and then
      concat the results to give a single
      list:
ghci> :type \xs f -> concat (map f xs)
\xs f -> concat (map f xs) :: [a] -> (a -> [a1]) -> [a1]

This is exactly the definition of
      (>>=) for lists:
-- file: ch14/ListMonad.hs
instance Monad [] where
    return x = [x]
    xs >>= f = concat (map f xs)
It applies f to every
      element in the list xs, and concatenates the results
      to return a single list.
With our two core Monad
      definitions in hand, the implementations of the noncore definitions that
      remain, (>>) and fail, ought to be obvious:
-- file: ch14/ListMonad.hs
    xs >> f = concat (map (\_ -> f) xs)
    fail _ = []
Understanding the List Monad



The list monad is similar to a familiar
        Haskell tool, the list comprehension. We can illustrate this
        similarity by computing the Cartesian product of two lists. First,
        we’ll write a list comprehension:
-- file: ch14/CartesianProduct.hs
comprehensive xs ys = [(x,y) | x <- xs, y <- ys]
For once, we’ll use bracketed notation
        for the monadic code instead of layout notation. This will highlight
        how structurally similar the monadic code is to the list comprehension:
-- file: ch14/CartesianProduct.hs
monadic xs ys = do { x <- xs; y <- ys; return (x,y) }
The only real difference is that the
        value we’re constructing comes at the end of the sequence of
        expressions, instead of at the beginning as in the list comprehension.
        Also, the results of the two functions are identical:
ghci> comprehensive [1,2] "bar"
[(1,'b'),(1,'a'),(1,'r'),(2,'b'),(2,'a'),(2,'r')]
ghci> comprehensive [1,2] "bar" == monadic [1,2] "bar"
True
It’s easy to be baffled by the list
        monad early on, so let’s walk through our monadic Cartesian product
        code again in more detail. This time, we’ll rearrange the function to
        use layout instead of brackets:
-- file: ch14/CartesianProduct.hs
blockyDo xs ys = do
    x <- xs
    y <- ys
    return (x, y)
For every element in the list
        xs, the rest of the function is evaluated once,
        with x bound to a different value from the list
        each time. Then for every element in the list ys,
        the remainder of the function is evaluated once, with
        y bound to a different value from the list each
        time.
What we really have here is a doubly
        nested loop! This highlights an important fact about monads: you
        cannot predict how a block of monadic code will
        behave unless you know what monad it will execute in.
We’ll now walk through the code even
        more explicitly, but first let’s get rid of the do notation to make the underlying structure
        clearer. We’ve indented the code a little unusually to make the loop
        nesting more obvious:
-- file: ch14/CartesianProduct.hs
blockyPlain xs ys =
    xs >>=
    \x -> ys >>=
    \y -> return (x, y)

blockyPlain_reloaded xs ys =
    concat (map (\x ->
                 concat (map (\y ->
                              return (x, y))
                         ys))
            xs)
If xs has the value
        [1,2,3], the two lines that follow are evaluated with
        x bound to 1, then to 2,
        and finally to 3. If ys has the
        value [True, False], the final line is evaluated
        six times: once with x as
        1 and y as True; again
        with x as 1 and y
        as False; and so on. The return expression wraps each tuple in a
        single-element list.

Putting the List Monad to Work



Here is a simple brute-force constraint
        solver. Given an integer, it finds all pairs of positive integers
        that, when multiplied, give that value (this is the constraint being
        solved):
-- file: ch14/MultiplyTo.hs
guarded :: Bool -> [a] -> [a]
guarded True  xs = xs
guarded False _  = []

multiplyTo :: Int -> [(Int, Int)]
multiplyTo n = do
  x <- [1..n]
  y <- [x..n]
  guarded (x * y == n) $
    return (x, y)
Let’s try this in ghci:
ghci> multiplyTo 8
[(1,8),(2,4)]
ghci> multiplyTo 100
[(1,100),(2,50),(4,25),(5,20),(10,10)]
ghci> multiplyTo 891
[(1,891),(3,297),(9,99),(11,81),(27,33)]


Desugaring of do Blocks



Haskell’s do syntax is an
      example of syntactic sugar: it provides an
      alternative way of writing monadic code, without using (>>=) and anonymous functions.
      Desugaring is the translation of syntactic sugar
      back to the core language.
The rules for desugaring a do block are easy to follow. We can think of a
      compiler as applying these rules mechanically and repeatedly to a
      do block until no more do keywords remain.
A do
      keyword followed by a single action is translated to that action by
      itself:
-- file: ch14/Do.hs            -- file: ch14/Do.hs 
doNotation1 =                  translated1 =
    do act                         act
A do
      keyword followed by more than one action is translated to the first
      action, then (>>), followed
      by a do keyword and the remaining
      actions. When we apply this rule repeatedly, the entire do block ends up chained together by
      applications of (>>):
-- file: ch14/Do.hs            -- file: ch14/Do.hs
doNotation2 =                  translated2 =
    do act1                        act1 >>
       act2                        do act2
       {- ... etc. -}                 {- ... etc. -}
       actN                           actN

                              finalTranslation2 =
                                  act1 >>
                                  act2 >>
                                  {- ... etc. -}
                                  actN
The <- notation has a translation that’s worth paying close attention to.
      On the left of the <- is a normal
      Haskell pattern. This can be a single variable or something more
      complicated, but a guard expression is not allowed:
-- file: ch14/Do.hs            -- file: ch14/Do.hs
doNotation3 =                  translated3 =
    do pattern <- act1             let f pattern = do act2
       act2                                           let f pattern = do act2
       {- ... etc. -}                                 actN
       actN                            f _     = fail "..."
                                   in act1 >>= f
This pattern is translated into a let binding that declares a local function
      with a unique name (we’re just using f as an
      example). The action on the right of the <- is then chained with this function using
      (>>=).
What’s noteworthy about this translation
      is that if the pattern match fails, the local function calls the monad’s
      fail implementation. Here’s an
      example using the Maybe monad:
-- file: ch14/Do.hs
robust :: [a] -> Maybe a
robust xs = do (_:x:_) <- Just xs
               return x
The fail implementation in the Maybe
      monad simply returns Nothing. If the pattern match in the
      preceding function fails, we thus get Nothing as our
      result:
ghci> robust [1,2,3]
Just 2
ghci> robust [1]
Nothing
Finally, when we write a let expression in a do block, we can omit the usual in keyword.
      Subsequent actions in the block must be lined up with the let keyword:
-- file: ch14/Do.hs            -- file: ch14/Do.hs
doNotation4 =                  translated4 =
    do let val1 = expr1            let val1 = expr1
           val2 = expr2                val2 = expr2
           {- ... etc. -}              valN = exprN
           valN = exprN            in do act1
       act1                              act2
       act2                              {- ... etc. -}
       {- ... etc. -}                    actN       
       actN
Monads as a Programmable Semicolon



Earlier in The Offside Rule Is Not Mandatory, we mentioned that layout is the
        norm in Haskell, but it’s not required.
        We can write a do block using
        explicit structure instead of layout:
-- file: ch14/Do.hs            -- file: ch14/Do.hs
semicolon = do                 semicolonTranslated =
  {                                act1 >>
    act1;                          let f val1 = let val2 = expr1
    val1 <- act2;                               in actN
    let { val2 = expr1 };              f _ = fail "..."
    actN;                          in act2 >>= f
  }
Even though this use of explicit
        structure is rare, the fact that it uses semicolons to separate
        expressions has given rise to an apt slogan: monads are a kind of
        “programmable semicolon,”
        because the behaviors of (>>) and (>>=) are different in each monad.

Why Go Sugar-Free?



When we write (>>=) explicitly in our code, it reminds us that we’re
        stitching functions together using combinators, not simply sequencing
        actions.
As long as you feel like a novice with
        monads, we think you should prefer to explicitly write (>>=) over the syntactic sugar of
        do notation. The repeated
        reinforcement of what’s really happening seems, for many programmers,
        to help keep things clear. (It can be easy for an imperative
        programmer to relax a little too much from exposure to the
        IO monad and assume that a do block means nothing more than a simple
        sequence of actions.)
Once you’re feeling more familiar with
        monads, you can choose whichever style seems more appropriate for
        writing a particular function. Indeed, when you read other people’s
        monadic code, you’ll see that it’s unusual, but by no means rare, to
        mix both do
        notation and (>>=) in a
        single function.
The (=<<) function shows up frequently whether or not we use do notation. It is a flipped version of
        (>>=):
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type (=<<)
(=<<) :: (Monad m) => (a -> m b) -> m a -> m b
It comes in handy if we want to compose
        monadic functions in the usual Haskell right-to-left style:
-- file: ch14/CartesianProduct.hs
wordCount = print . length . words =<< getContents


The State Monad



We discovered earlier in this chapter that Parse from
      Chapter 10 was a monad. It has two logically distinct
      aspects. One is the idea of a parse failing and providing a message with
      the details (we represented this using the Either type).
      The other involves carrying around a piece of implicit state, in our
      case, the partially consumed ByteString.
This need for a way to read and write
      state is common enough in Haskell programs that the standard libraries
      provide a monad named State that is dedicated to this
      purpose. This monad lives in the Control.Monad.State
      module.
Where our Parse type carried
      around a ByteString as its piece of state, the
      State monad can carry any type of state. We’ll refer to the
      state’s unknown type as s.
What’s an obvious and general thing we
      might want to do with a state? Given a state value, we inspect it, and
      then produce a result and a new state value. Let’s say the result can be
      of any type a. A type signature that
      captures this idea is s -> (a, s). Take a state s, do something with it, and return a result
      a and possibly a new state s.
Almost a State Monad



Let’s develop some simple code that’s
        almost the State monad, and then
        take a look at the real thing. We’ll start with our type definition,
        which has exactly the obvious type that we just described:
-- file: ch14/SimpleState.hs
type SimpleState s a = s -> (a, s)
Our monad is a function that transforms
        one state into another, yielding a result when it does so. Because of
        this, the State monad is sometimes
        called the state transformer monad.
Yes, this is a type synonym, not a new
        type, and so we’re cheating a little. Bear with us for now; this
        simplifies the description that follows.
Earlier in this chapter, we said that a
        monad has a type constructor with a single type variable, and yet
        here we have a type with two parameters. The key is to understand that
        we can partially apply a type just as we can
        partially apply a normal function. This is easiest to follow with an
        example:
-- file: ch14/SimpleState.hs
type StringState a = SimpleState String a
Here, we’ve bound the type variable
        s to String. The type
        StringState still has a type parameter a, though. It’s now more obvious that we have a
        suitable type constructor for a monad. In other words, our monad’s
        type constructor is SimpleState s, not
        SimpleState alone.
The next ingredient we need to make a
        monad is a definition for the return function:
-- file: ch14/SimpleState.hs
returnSt :: a -> SimpleState s a
returnSt a = \s -> (a, s)
All this does is take the result and the
        current state and “tuple them up.” You may now be used to the idea
        that a Haskell function with multiple parameters is just a chain of
        single-parameter functions, but just in case you’re not, here’s a more
        familiar way of writing returnSt
        that makes it more obvious how simple this function is:
-- file: ch14/SimpleState.hs
returnAlt :: a -> SimpleState s a
returnAlt a s = (a, s)
Our final piece of the monadic puzzle is
        a definition for (>>=).
        Here it is, using the actual variable names from the
        standard library’s definition of (>>=) for State:
-- file: ch14/SimpleState.hs
bindSt :: (SimpleState s a) -> (a -> SimpleState s b) -> SimpleState s b
bindSt m k = \s -> let (a, s') = m s
                   in (k a) s'
Those single-letter variable names
        aren’t exactly a boon to readability, so let’s see if we can
        substitute some more meaningful names:
-- file: ch14/SimpleState.hs
-- m == step
-- k == makeStep
-- s == oldState

bindAlt step makeStep oldState =
    let (result, newState) = step oldState
    in  (makeStep result) newState
To understand this definition, remember
        that step is a function with the type s ->
        (a, s). When we evaluate this, we get a tuple, which we have to
        use to return a new function of type s -> (a, s). This
        is perhaps easier to follow if we get rid of the
        SimpleState type synonyms from bindAlt’s type signature, and then examine
        the types of its parameters and result:
-- file: ch14/SimpleState.hs
bindAlt :: (s -> (a, s))        -- step
        -> (a -> s -> (b, s))   -- makeStep
        -> (s -> (b, s))        -- (makeStep result) newState

Reading and Modifying the State



The definitions of (>>=) and return for the State monad simply act as plumbing:
        they move a piece of state around, but they don’t touch it in any way.
        We need a few other simple functions to actually do useful work with
        the state:
-- file: ch14/SimpleState.hs
getSt :: SimpleState s s
getSt = \s -> (s, s)

putSt :: s -> SimpleState s ()
putSt s = \_ -> ((), s)
The getSt function simply takes the current
        state and returns it as the result, while putSt ignores the current state and replaces it with a new
        one.

Will the Real State Monad Please Stand Up?



The only simplifying trick we played in
        the previous section was to use a type synonym instead of a type
        definition for SimpleState. If we had introduced a
        newtype wrapper at the same time, the extra wrapping and
        unwrapping would have made our code harder to follow.
In order to define a Monad
        instance, we have to provide a proper type constructor as well as
        definitions for (>>=) and
        return. This leads us to the
        real definition of State:
-- file: ch14/State.hs
newtype State s a = State {
      runState :: s -> (a, s)
    }
All we’ve done is wrap our s ->
        (a, s) type in a State constructor. We’re
        automatically given a runState
        function that will unwrap a State value from its
        constructor when we use Haskell’s record syntax to define the type.
        The type of runState is
        State s a -> s -> (a, s).
The definition of return is almost the same as for
        SimpleState, except we wrap our function with a
        State constructor:
-- file: ch14/State.hs
returnState :: a -> State s a
returnState a = State $ \s -> (a, s)
The definition of (>>=) is a little more complicated,
        because it has to use runState to
        remove the State wrappers:
-- file: ch14/State.hs
bindState :: State s a -> (a -> State s b) -> State s b
bindState m k = State $ \s -> let (a, s') = runState m s
                              in runState (k a) s'
This function differs from our earlier
        bindSt only in adding the
        wrapping and unwrapping of a few values. By separating the “real
        work” from the bookkeeping, we’ve hopefully made it clearer
        what’s really happening.
We modify the functions for reading and
        modifying the state in the same way, by adding a little
        wrapping:
-- file: ch14/State.hs
get :: State s s
get = State $ \s -> (s, s)

put :: s -> State s ()
put s = State $ \_ -> ((), s)

Using the State Monad: Generating Random Values



We’ve already used Parse, our precursor to the
        State monad, to parse binary data. In that case, we wired
        the type of the state we were manipulating directly into the
        Parse type.
The State monad, by
        contrast, accepts any type of state as a parameter. We supply the type
        of the state to give, for example, State
        ByteString.
The State monad will
        probably feel more familiar to you than many other monads if you have
        a background in imperative languages. After all, imperative languages
        are all about carrying around some implicit state, reading some parts,
        and modifying others through assignment, which is just what the
        State monad is for.
So instead of unnecessarily cheerleading
        for the idea of using the State monad, we’ll begin by
        demonstrating how to use it for something simple: pseudorandom value
        generation. In an imperative language, there’s usually an
        easily available source of uniformly distributed pseudorandom numbers.
        For example, in C, there’s a standard rand function that generates a pseudorandom
        number, using a global state that it updates.
Haskell’s standard random value
        generation module is named System.Random. It allows the
        generation of random values of any type, not just numbers. The module
        contains several handy functions that live in the IO
        monad. For example, a rough equivalent of C’s rand function would be the
        following:
-- file: ch14/Random.hs
import System.Random

rand :: IO Int
rand = getStdRandom (randomR (0, maxBound))
(The randomR function takes an inclusive range within which the generated
        random value should lie.)
The System.Random module
        provides a typeclass, RandomGen, that lets us define new
        sources of random Int values. The type
        StdGen is the standard RandomGen instance.
        It generates pseudorandom values. If we had an external source of
        truly random data, we could make it an instance of
        RandomGen and get truly random, instead of merely pseudorandom, values.
Another typeclass, Random,
        indicates how to generate random values of a particular type. The
        module defines Random instances for all of the usual
        simple types.
Incidentally, the definition of
        rand here reads and modifies a
        built-in global random generator that inhabits the IO
        monad.

A First Attempt at Purity



After all of our emphasis so far on avoiding the IO monad wherever
        possible, it would be a shame if we were dragged back into it just to
        generate some random values. Indeed, System.Random
        contains pure random number generation functions.
The traditional downside of purity is
        that we have to get or create a random number generator, and then ship
        it from the point we created it to the place where it’s needed. When
        we finally call it, it returns a new random
        number generator—we’re in pure code, remember, so we can’t modify the
        state of the existing generator.
If we forget about immutability and
        reuse the same generator within a function, we get back exactly the
        same “random” number every time:
-- file: ch14/Random.hs
twoBadRandoms :: RandomGen g => g -> (Int, Int)
twoBadRandoms gen = (fst $ random gen, fst $ random gen)
Needless to say, this has unpleasant
        consequences:
ghci> twoBadRandoms `fmap` getStdGen
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
(639600350314210417,639600350314210417)

The random function uses an implicit range
        instead of the user-supplied range employed by randomR. The getStdGen function retrieves the current
        value of the global standard number generator from the IO
        monad.
Unfortunately, correctly passing around
        and using successive versions of the generator does not make for
        palatable reading. Here’s a simple example:
-- file: ch14/Random.hs
twoGoodRandoms :: RandomGen g => g -> ((Int, Int), g)
twoGoodRandoms gen = let (a, gen') = random gen
                         (b, gen'') = random gen'
                     in ((a, b), gen'')
Now that we know about the
        State monad, though, it looks like a fine candidate to
        hide the generator. The State monad lets us manage our
        mutable state tidily, while guaranteeing that our code will be free of
        other unexpected side effects, such as modifying files or making
        network connections. This makes it easier to reason about the behavior
        of our code.

Random Values in the State Monad



Here’s a State monad that carries around a
        StdGen as its piece of state:
-- file: ch14/Random.hs
type RandomState a = State StdGen a
The type synonym is, of course, not
        necessary, but it’s handy. It saves a little keyboarding, and if we
        want to swap another random generator for StdGen, it
        would reduce the number of type signatures we’d need to change.
Generating a random value is now a
        matter of fetching the current generator, using it, then modifying the
        state to replace it with the new generator:
-- file: ch14/Random.hs
getRandom :: Random a => RandomState a
getRandom =
  get >>= \gen ->
  let (val, gen') = random gen in
  put gen' >>
  return val
We can now use some of the monadic
        machinery that we saw earlier to write a much more concise function
        for giving us a pair of random numbers:
-- file: ch14/Random.hs
getTwoRandoms :: Random a => RandomState (a, a)
getTwoRandoms = liftM2 (,) getRandom getRandom
Exercise
	Rewrite getRandom to
              use do notation.





Running the State Monad



As we’ve already mentioned, each monad has its own specialized
        evaluation functions. In the case of the State monad, we
        have several to choose from:
	runState
	Returns both the result and the final state

	evalState
	Returns only the result, throwing away the final
              state

	execState
	Throws the result away, returning only the final
              state



The evalState and execState functions are simply compositions
        of fst and snd with runState, respectively. Thus, of the three,
        runState is the one most worth
        remembering.
Here’s a complete example of how to
        implement our getTwoRandoms
        function:
-- file: ch14/Random.hs
runTwoRandoms :: IO (Int, Int)
runTwoRandoms = do
  oldState <- getStdGen
  let (result, newState) = runState getTwoRandoms oldState
  setStdGen newState
  return result
The call to runState follows a standard pattern: we
        pass it a function in the State monad and an initial
        state. It returns the result of the function and the final
        state.
The code surrounding the call to
        runState merely obtains the
        current global StdGen value, and then replaces it
        afterwards so that subsequent calls to runTwoRandoms or other random generation
        functions will pick up the updated state.

What About a Bit More State?



It’s a little hard to imagine writing
        much interesting code in which there’s only a single state value to
        pass around. When we want to track multiple pieces of state at once,
        the usual trick is to maintain them in a data type. The following is
        an example of keeping track of how many of random numbers we are
        handing out:
-- file: ch14/Random.hs
data CountedRandom = CountedRandom {
      crGen :: StdGen
    , crCount :: Int
    }

type CRState = State CountedRandom

getCountedRandom :: Random a => CRState a
getCountedRandom = do
  st <- get
  let (val, gen') = random (crGen st)
  put CountedRandom { crGen = gen', crCount = crCount st + 1 }
  return val
This example happens to consume both
        elements of the state, and it constructs a completely new state, every
        time we call into it. More frequently, we’re likely to read or modify
        only part of a state. This function gets the number of random values
        generated so far:
-- file: ch14/Random.hs
getCount :: CRState Int
getCount = crCount `liftM` get
This example illustrates why we used
        record syntax to define our CountedRandom state. It gives
        us accessor functions that we can glue together with get to read specific pieces of the
        state.
If we want to partially update a state,
        the code doesn’t come out quite so appealingly:
-- file: ch14/Random.hs
putCount :: Int -> CRState ()
putCount a = do
  st <- get
  put st { crCount = a }
Here, instead of a function, we’re using
        record update syntax. The expression st {
        crCount = a } creates a new value that’s an identical copy of
        st, except in its crCount field, which
        is given the value a. Because this is a syntactic
        hack, we don’t get the same kind of flexibility as with a function.
        Record syntax may not exhibit Haskell’s usual elegance, but it at
        least gets the job done.
There is a function named modify that combines the get and put steps. It takes as argument a state
        transformation function, but it’s hardly more satisfactory—we still
        can’t escape from the clumsiness of record update syntax:
-- file: ch14/Random.hs
putCountModify :: Int -> CRState ()
putCountModify a = modify $ \st -> st { crCount = a }


Monads and Functors



Functors and monads are closely related. The terms are borrowed
      from a branch of mathematics called category theory, but they did
      not make the transition to Haskell completely unscathed.
In category theory, a monad is built from
      a functor. You might expect that in Haskell, the Monad
      typeclass would thus be a subclass of Functor, but it isn’t
      defined as such in the standard Prelude—an unfortunate oversight.
However, authors of Haskell libraries use
      a workaround: when programmers define an instance of Monad
      for a type, they almost always write a Functor instance for
      it, too. You can expect that you’ll be able to use the
      Functor typeclass’s fmap function with any monad.
If we compare the type signature of
      fmap with those of
      some of the standard monad functions that we’ve already seen, we get a
      hint as to what fmap on a monad
      does:
ghci> :type fmap
fmap :: (Functor f) => (a -> b) -> f a -> f b
ghci> :module +Control.Monad
ghci> :type liftM
liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r
Sure enough, fmap lifts a pure function into the monad,
      just as liftM does.
Another Way of Looking at Monads



Now that we know about the relationship
        between functors and monads, if we look back at the list monad,
        we can see something interesting. Specifically, take a look at the
        definition of (>>=) for
        lists:
-- file: ch14/ListMonad.hs
instance Monad [] where
    return x = [x]
    xs >>= f = concat (map f xs)
Recall that f has
        type a -> [a]. When we call map f xs, we
        get back a value of type [[a]], which we have to
        “flatten” using concat.
Consider what we could do if
        Monad was a subclass of Functor. Since fmap for lists is defined to be map, we could replace map with fmap in the definition of (>>=). This is not very interesting
        by itself, but suppose we go further.
The concat function is of type [[a]]
        -> [a]. As we mentioned, it flattens the nesting of lists.
        We could generalize this type signature from lists to monads, giving
        us the “remove a level of nesting” type m (m a)
        -> m a. The function that has this type is conventionally
        named join.
If we had definitions of join and fmap, we wouldn’t need to write a
        definition of (>>=) for
        every monad, because it would be completely generic. Here’s what an
        alternative definition of the Monad typeclass might look
        like, along with a definition of (>>=):
-- file: ch14/AltMonad.hs
import Prelude hiding ((>>=), return)

class Functor m => AltMonad m where
    join :: m (m a) -> m a
    return :: a -> m a

(>>=) :: AltMonad m => m a -> (a -> m b) -> m b
xs >>= f = join (fmap f xs)
Neither definition of a monad is
        “better,” because if we have join
        we can write (>>=) and vice
        versa, but the different perspectives can be refreshing.
Removing a layer of monadic wrapping can, in fact, be useful in
        realistic circumstances. We can find a generic definition of join in the Control.Monad
        module:
-- file: ch14/MonadJoin.hs
join :: Monad m => m (m a) -> m a
join x = x >>= id
Here are some examples of what it
        does:
ghci> join (Just (Just 1))
Just 1
ghci> join Nothing
Nothing
ghci> join [[1],[2,3]]
[1,2,3]


The Monad Laws and Good Coding Style



In Thinking More About Functors, we introduced two rules for how
      functors should always behave:
-- file: ch14/MonadLaws.hs
fmap id        ==   id 
fmap (f . g)   ==   fmap f . fmap g
There are also rules for how monads ought
      to behave. The three laws described in the following paragraphs are
      referred to as the monad laws. A Haskell implementation doesn’t enforce
      these laws—it’s up to the author of a Monad instance to
      follow them.
The monad laws are simply formal ways of saying “a monad
      shouldn’t surprise me.” In principle, we could probably get away with
      skipping over them entirely. It would be a shame if we did, however,
      because the laws contain gems of wisdom that we might otherwise
      overlook.
Reading the laws
You can read each of the following laws
        as “the expression on the left of the === is
        equivalent to that on the right.”

The first law states that return is a left identity for (>>=):
-- file: ch14/MonadLaws.hs
return x >>= f            ===   f x
Another way to phrase this is that there’s
      no reason to use return to wrap up a
      pure value if all you’re going to do is unwrap it again with (>>=). It’s actually a common style
      error among programmers new to monads to wrap a value with return, and then unwrap it with (>>=) a few lines later in the same
      function. Here’s the same law written with do notation:
-- file: ch14/MonadLaws.hs
do y <- return x
   f y                    ===   f x
This law has practical consequences for
      our coding style: we don’t want to write unnecessary code, and the law
      lets us assume that the terse code will be identical in its effect to
      the more verbose version.
The second monad law states that return is a
      right identity for (>>=):
-- file: ch14/MonadLaws.hs
m >>= return              ===   m
This law also has style consequences in
      real programs, particularly if you’re coming from an imperative
      language: there’s no need to use return if the last action in a block would
      otherwise be returning the correct result. Let’s look at this law in
      do notation:
-- file: ch14/MonadLaws.hs
do y <- m
   return y               ===   m
Once again, if we assume that a monad
      obeys this law, we can write the shorter code with the knowledge that it
      will have the same effect as the longer code.
The final law is concerned with
      associativity:
-- file: ch14/MonadLaws.hs
m >>= (\x -> f x >>= g)   ===   (m >>= f) >>= g
This law can be a little more difficult to
      follow, so let’s look at the contents of the parentheses on each side of
      the equation. We can rewrite the expression on the left as
      follows:
-- file: ch14/MonadLaws.hs
m >>= s
  where s x = f x >>= g
On the right, we can also rearrange
      things:
-- file: ch14/MonadLaws.hs
t >>= g
  where t = m >>= f
We’re now claiming that the following two
      expressions are equivalent:
-- file: ch14/MonadLaws.hs
m >>= s                   ===   t >>= g
This means that if we want to break up an
      action into smaller pieces, it doesn’t matter which subactions we hoist
      out to make new actions, provided we preserve their ordering. If we have
      three actions chained together, we can substitute the first two and
      leave the third in place, or we can replace the second two and leave the
      first in place.
Even this more complicated law has a
      practical consequence. In the terminology of software refactoring,
      the extract method technique is a
      fancy term for snipping out a piece of inline code, turning it into a
      function, and calling the function from the site of the snipped code.
      This law essentially states that this technique can be applied to
      monadic Haskell code.
We’ve now seen how each of the monad laws
      offers us an insight into writing better monadic code. The first two
      laws show us how to avoid any unnecessary use of return. The third suggests that we can safely
      refactor a complicated action into several simpler ones. We can now
      safely let the details fade, with the knowledge that our “do what
      I mean” intuitions won’t be violated when we use properly written
      monads.
Incidentally, a Haskell compiler cannot
      guarantee that a monad actually follows the monad laws. It is the
      responsibility of a monad’s author to satisfy—or, preferably, prove
      to—himself that his code follows the laws.


Chapter 15. Programming with Monads



Golfing Practice: Association Lists



Web clients and servers often pass information around as a
      simple textual list of key-value pairs:
name=Attila+%42The+Hun%42&occupation=Khan
The encoding is named application/x-www-form-urlencoded, and
      it’s easy to understand. Each key-value pair is separated by an &
      character. Within a pair, a key is a series of characters, followed by
      an =, followed by a value.
We can obviously represent a key as a
      String, but the HTTP specification is not clear about
      whether a key must be followed by a value. We can capture this ambiguity
      by representing a value as a Maybe String. If we use
      Nothing for a value, then there is no value present. If we
      wrap a string in Just, then there is a value. Using
      Maybe lets us distinguish between “no value”
      and “empty value.”
Haskell programmers use the name association list for the type
      [(a, b)], where we can think of each element as an
      association between a key and a value. The name originates in the Lisp
      community, where it’s usually abbreviated as an
      alist. We could thus represent the preceding string
      as the following Haskell value:
-- file: ch15/MovieReview.hs
    [("name",       Just "Attila \"The Hun\""),
     ("occupation", Just "Khan")]
In Parsing a URL-Encoded Query String, we’ll parse an
      application/x-www-form-urlencoded string, and we will
      represent the result as an alist of [(String, Maybe
      String)]. Let’s say we want to use one of these alists to fill
      out a data structure:
-- file: ch15/MovieReview.hs
data MovieReview = MovieReview {
      revTitle :: String
    , revUser :: String
    , revReview :: String
    }
We’ll begin by belaboring the obvious with
      a naive function:
-- file: ch15/MovieReview.hs
simpleReview :: [(String, Maybe String)] -> Maybe MovieReview
simpleReview alist =
  case lookup "title" alist of
    Just (Just title@(_:_)) ->
      case lookup "user" alist of
        Just (Just user@(_:_)) ->
          case lookup "review" alist of
            Just (Just review@(_:_)) ->
                Just (MovieReview title user review)
            _ -> Nothing -- no review
        _ -> Nothing -- no user
    _ -> Nothing -- no title
It returns a MovieReview only
      if the alist contains all of the necessary values, and they’re all
      nonempty strings. However, the fact that it validates its inputs is its
      only merit. It suffers badly from the “staircasing” that
      we’ve learned to be wary of, and it knows the intimate details of the
      representation of an alist.
Since we’re now well acquainted with the
      Maybe monad, we can tidy up the staircasing:
-- file: ch15/MovieReview.hs
maybeReview alist = do
    title <- lookup1 "title" alist
    user <- lookup1 "user" alist
    review <- lookup1 "review" alist
    return (MovieReview title user review)

lookup1 key alist = case lookup key alist of
                      Just (Just s@(_:_)) -> Just s
                      _ -> Nothing
Although this is much neater, we’re still
      repeating ourselves. We can take advantage of the fact that the
      MovieReview constructor acts as a normal, pure function by
      lifting it into the monad, as we discussed in Mixing Pure and Monadic Code:
-- file: ch15/MovieReview.hs
liftedReview alist =
    liftM3 MovieReview (lookup1 "title" alist)
                       (lookup1 "user" alist)
                       (lookup1 "review" alist)
We still have some repetition here, but
      it is dramatically reduced and also more difficult to remove.

Generalized Lifting



Although using liftM3 tidies up our code, we can’t use a liftM-family function to solve this sort of
      problem in general, because the standard libraries define them only up
      to liftM5. We could write variants
      up to whatever number we pleased, but that would amount to
      drudgery.
If we had a constructor or pure function
      that takes, say, 10 parameters, and decided to stick with the standard
      libraries, you might think we’d be out of luck.
Of course, our toolbox isn’t empty yet. In
      Control.Monad, there’s a function named ap
      with an interesting type signature:
ghci> :m +Control.Monad
ghci> :type ap
ap :: (Monad m) => m (a -> b) -> m a -> m b
You might wonder who would put a
      single-argument pure function inside a monad, and why. Recall, however,
      that all Haskell functions really take only one
      argument, and you’ll begin to see how this might relate to the
      MovieReview constructor:
ghci> :type MovieReview
MovieReview :: String -> String -> String -> MovieReview

We can just as easily write that type
      as:
String -> (String -> (String -> MovieReview))
If we use plain old liftM to
      lift MovieReview into the Maybe monad, we’ll
      have a value of type:
Maybe (String -> (String -> (String -> MovieReview)))
We can now see that this type is suitable as an argument for
      ap, in which case, the result type
      will be:
        Maybe (String -> (String -> MovieReview))
We can pass this, in turn, to ap, and continue to chain until we end up
      with this definition:
-- file: ch15/MovieReview.hs
apReview alist =
    MovieReview `liftM` lookup1 "title" alist
                   `ap` lookup1 "user" alist
                   `ap` lookup1 "review" alist
We can chain applications of ap such as this as many times as we need to,
      thereby bypassing the liftM family
      of functions.
Another helpful way to look at ap is that it’s the monadic equivalent of the
      familiar ($) operator; think of
      pronouncing ap as
      apply. We can see this clearly when we compare the
      type signatures of the two functions:
ghci> :type ($)
($) :: (a -> b) -> a -> b
ghci> :type ap
ap :: (Monad m) => m (a -> b) -> m a -> m b
In fact, ap is usually defined as either liftM2
      id or liftM2 ($).

Looking for Alternatives



Here’s a simple representation of a
      person’s phone numbers:
-- file: ch15/VCard.hs
data Context = Home | Mobile | Business
               deriving (Eq, Show)

type Phone = String

albulena = [(Home, "+355-652-55512")]

nils = [(Mobile, "+47-922-55-512"), (Business, "+47-922-12-121"),
        (Home, "+47-925-55-121"), (Business, "+47-922-25-551")]

twalumba = [(Business, "+260-02-55-5121")]
Suppose we want to get in touch with
      someone to make a personal call. We don’t want his business number, and
      we’d prefer to use his home number (if he has one) instead of their
      mobile number:
-- file: ch15/VCard.hs
onePersonalPhone :: [(Context, Phone)] -> Maybe Phone
onePersonalPhone ps = case lookup Home ps of
                        Nothing -> lookup Mobile ps
                        Just n -> Just n
Of course, if we use Maybe as
      the result type, we can’t accommodate the possibility that someone might
      have more than one number that meets our criteria. For that, we switch
      to a list:
-- file: ch15/VCard.hs
allBusinessPhones :: [(Context, Phone)] -> [Phone]
allBusinessPhones ps = map snd numbers
    where numbers = case filter (contextIs Business) ps of
                      [] -> filter (contextIs Mobile) ps
                      ns -> ns

contextIs a (b, _) = a == b
Notice that these two functions structure
      their case expressions similarly—one
      alternative handles the case where the first lookup returns an empty
      result, while the other handles the nonempty case:
ghci> onePersonalPhone twalumba
Nothing
ghci> onePersonalPhone albulena
Just "+355-652-55512"
ghci> allBusinessPhones nils
["+47-922-12-121","+47-922-25-551"]
Haskell’s Control.Monad
      module defines a typeclass, MonadPlus, that lets us
      abstract the common pattern out of our case expressions:
-- file: ch15/VCard.hs
class Monad m => MonadPlus m where
   mzero :: m a	
   mplus :: m a -> m a -> m a
The value mzero represents an
      empty result, while mplus combines
      two results into one. Here are the standard definitions of
      mzero and mplus for
      Maybe and lists:
-- file: ch15/VCard.hs
instance MonadPlus [] where
   mzero = []
   mplus = (++)

instance MonadPlus Maybe where
   mzero = Nothing

   Nothing `mplus` ys  = ys
   xs      `mplus` _ = xs
We can now use mplus to get rid of our case expressions entirely. For variety, let’s
      fetch one business and all personal phone numbers:
-- file: ch15/VCard.hs
oneBusinessPhone :: [(Context, Phone)] -> Maybe Phone
oneBusinessPhone ps = lookup Business ps `mplus` lookup Mobile ps

allPersonalPhones :: [(Context, Phone)] -> [Phone]
allPersonalPhones ps = map snd $ filter (contextIs Home) ps `mplus`
                                 filter (contextIs Mobile) ps
In these functions, because we know that
      lookup returns a value of type
      Maybe, and filter
      returns a list, it’s obvious which version of mplus is going to be used in each
      case.
What’s more interesting is that we can use
      mzero and mplus to
      write functions that will be useful for any
      MonadPlus instance. As an example, here’s the standard
      lookup function, which returns a
      value of type Maybe:
-- file: ch15/VCard.hs
lookup :: (Eq a) => a -> [(a, b)] -> Maybe b
lookup _ []                      = Nothing
lookup k ((x,y):xys) | x == k    = Just y
                     | otherwise = lookup k xys
We can easily generalize the result type
      to any instance of MonadPlus as follows:
-- file: ch15/VCard.hs
lookupM :: (MonadPlus m, Eq a) => a -> [(a, b)] -> m b
lookupM _ []    = mzero
lookupM k ((x,y):xys)
    | x == k    = return y `mplus` lookupM k xys
    | otherwise = lookupM k xys
This lets us get either no result or one,
      if our result type is Maybe; all results, if our result
      type is a list; or something more appropriate for some other exotic
      instance of MonadPlus.
For small functions, such as those we
      present here, there’s little benefit to using mplus. The advantage lies in more complex
      code and in code that is independent of the monad in which it executes.
      Even if you don’t find yourself needing MonadPlus for your
      own code, you are likely to encounter it in other people’s
      projects.
The Name mplus Does Not Imply Addition



Even though the mplus function contains the text “plus,” you should not think of it as
        necessarily implying that we’re trying to add two values.
Depending on the monad we’re working in,
        mplus may
        implement an operation that looks like addition. For example,
        mplus in the list monad is
        implemented as the (++)
        operator:
ghci> [1,2,3] `mplus` [4,5,6]
[1,2,3,4,5,6]

However, if we switch to another monad,
        the obvious similarity to addition falls away:
ghci> Just 1 `mplus` Just 2
Just 1
-

Rules for Working with MonadPlus



Instances of the MonadPlus typeclass must follow a
        few simple rules in addition to the usual monad rules.
An instance must short-circuit if mzero appears on
        the left of a bind expression. In other words, an expression
        mzero >>= f must evaluate to the same result as
        mzero alone:
-- file: ch15/MonadPlus.hs
    mzero >>= f == mzero
An instance must short-circuit if mzero appears on
        the right of a sequence expression:
-- file: ch15/MonadPlus.hs
    v >> == mzero

Failing Safely with MonadPlus



When we introduced the fail function in The Monad Typeclass, we took pains to warn against its use: in
        many monads, it’s implemented as a call to error, which has unpleasant
        consequences.
The MonadPlus typeclass
        gives us a gentler way to fail a computation, without fail or error blowing up in our faces. The rules
        that we just introduced allow us to introduce an mzero
        into our code wherever we need to, and computation will short-circuit
        at that point.
In the Control.Monad
        module, the standard function guard packages up this idea in a convenient
        form:
-- file: ch15/MonadPlus.hs
guard        :: (MonadPlus m) => Bool -> m ()
guard True   =  return ()
guard False  =  mzero
As a simple example, here’s a function
        that takes a number x and computes its value modulo
        some other number n. If the result is zero, it
        returns x; otherwise, the current monad’s
        mzero:
-- file: ch15/MonadPlus.hs
x `zeroMod` n = guard ((x `mod` n) == 0) >> return x


Adventures in Hiding the Plumbing



In Using the State Monad: Generating Random Values,
      we showed how to use the State monad to give ourselves
      access to random numbers in a way that is easy to use.
A drawback of the code we developed is
      that it’s leaky:  Users know that they’re executing inside the
      State monad. This means that they can inspect and modify
      the state of the random number generator just as easily as we, the
      authors, can.
Human nature dictates that if we leave our
      internal workings exposed, someone will surely come along and monkey
      with them. For a sufficiently small program, this may be fine, but in a
      larger software project, when one consumer of a library modifies its
      internals in a way that other consumers are not prepared for, the
      resulting bugs can be among the most difficult to track down. These bugs
      occur at a level where we’re unlikely to question our basic assumptions
      about a library until long after we’ve exhausted all other avenues of
      inquiry.
Even worse, once we leave our
      implementation exposed for a while, and some well-intentioned person
      inevitably bypasses our APIs and uses the implementation directly, we
      have a nasty quandary if we need to fix a bug or make an enhancement.
      Either we can modify our internals and break code that depends on them;
      or we’re stuck with our existing internals and must try to find some
      other way to make the change that we need.
How can we revise our random number monad
      so that the fact that we’re using the State monad is
      hidden? We need to somehow prevent our users from being able to call
      get or put. This is not difficult to do, and
      it introduces some tricks that we’ll reuse often in day-to-day Haskell
      programming.
To widen our scope, we’ll move beyond
      random numbers and implement a monad that supplies unique values of
      any kind. The name we’ll give to our monad is
      Supply. We’ll provide the execution function, runSupply, with a list of values (it will be
      up to us to ensure that each one is unique):
-- file: ch15/Supply.hs
runSupply :: Supply s a -> [s] -> (a, [s])
The monad won’t care what the values are.
      They might be random numbers, or names for temporary files, or
      identifiers for HTTP cookies.
Within the monad, every time a consumer
      asks for a value, the next action
      will take the next one from the list and give it to the consumer. Each
      value is wrapped in a Maybe constructor in case the list
      isn’t long enough to satisfy the demand:
-- file: ch15/Supply.hs
next :: Supply s (Maybe s)
To hide our plumbing, in our module
      declaration, we export only the type constructor, the execution
      function, and the next
      action:
-- file: ch15/Supply.hs
module Supply
    (
      Supply
    , next
    , runSupply
    ) where
Since a module that imports the library
      can’t see the internals of the monad, it can’t manipulate them.
Our plumbing is exceedingly simple. We use
      a newtype declaration to wrap the existing
      State monad:
-- file: ch15/Supply.hs
import Control.Monad.State

newtype Supply s a = S (State [s] a)
The s
      parameter is the type of the unique values we are going to supply, and
      a is the usual type parameter that we
      must provide in order to make our type a monad.
Our use of newtype for the
      Supply type and our module header join forces to prevent
      our clients from using the State monad’s get and set actions. Because our module does not
      export the S data constructor, clients have no programmatic
      way to see that we’re wrapping the State monad, or to
      access it.
At this point, we’ve got a type,
      Supply, that we need to make an instance of the
      Monad typeclass. We could follow the usual pattern of
      defining (>>=) and return, but this would be pure boilerplate
      code. All we’d be doing is wrapping and unwrapping the
      State monad’s versions of (>>=) and return using our S value
      constructor. Here is how such code would look:
-- file: ch15/AltSupply.hs
unwrapS :: Supply s a -> State [s] a
unwrapS (S s) = s

instance Monad (Supply s) where
    s >>= m = S (unwrapS s >>= unwrapS . m)
    return = S . return
Haskell programmers are not fond of
      boilerplate, and sure enough, GHC has a lovely language extension that
      eliminates the work. To use it, we add the following directive to the
      top of our source file, before the module header:
-- file: ch15/Supply.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
Usually, we can only automatically derive
      instances of a handful of standard typeclasses, such as
      Show and Eq. As its name suggests,
      the GeneralizedNewtypeDeriving
      extension broadens our ability to derive typeclass instances, and
      it is specific to newtype
      declarations. If the type we’re wrapping is an instance of any
      typeclass, the extensions can automatically make our new type an
      instance of that typeclass as follows:
-- file: ch15/Supply.hs
    deriving (Monad)
This takes the underlying type’s
      implementations of (>>=) and
      return, adds the necessary wrapping and unwrapping with our
      S data constructor, and uses the new versions of those
      functions to derive a Monad instance for us.
What we gain here is very useful beyond
      just this example. We can use newtype to wrap any
      underlying type; we selectively expose only those typeclass instances
      that we want; and we expend almost no effort to create these narrower,
      more specialized types.
Now that we’ve seen the
      GeneralizedNewtypeDeriving technique, all that remains is
      to provide definitions of next and
      runSupply:
-- file: ch15/Supply.hs
next = S $ do st <- get
              case st of
                [] -> return Nothing
                (x:xs) -> do put xs
                             return (Just x)

runSupply (S m) xs = runState m xs
If we load our module into ghci, we can try it out in a few simple
      ways:
ghci> :load Supply
[1 of 1] Compiling Supply           ( Supply.hs, interpreted )
Ok, modules loaded: Supply.
ghci> runSupply next [1,2,3]
Loading package mtl-1.1.0.1 ... linking ... done.
(Just 1,[2,3])
ghci> runSupply (liftM2 (,) next next) [1,2,3]
((Just 1,Just 2),[3])
ghci> runSupply (liftM2 (,) next next) [1]
((Just 1,Nothing),[])
We can also verify that the
      State monad has not somehow leaked out:
ghci> :browse Supply
data Supply s a
next :: Supply s (Maybe s)
runSupply :: Supply s a -> [s] -> (a, [s])
ghci> :info Supply
data Supply s a 	-- Defined at Supply.hs:17:8-13
instance Monad (Supply s) -- Defined at Supply.hs:17:8-13
Supplying Random Numbers



If we want to use our
        Supply monad as a source of random numbers, we have a
        small difficulty to face. Ideally, we’d like to be able to provide it
        with an infinite stream of random numbers. We can get a
        StdGen in the IO monad, but we must “put back” a different
        StdGen when we’re done. If we don’t, the next piece of
        code to get a StdGen will get the same state as we did.
        This means it will generate the same random numbers as we did, which
        is potentially catastrophic.
From the parts of the
        System.Random module we’ve seen so far, it’s difficult to reconcile these
        demands. We can use getStdRandom,
        whose type ensures that when we get a StdGen, we
        put one back:
ghci> :type getStdRandom
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

We can use random to get back a new
        StdGen when they give us a random number. And we can use
        randoms to get an infinite list
        of random numbers. But how do we get both an infinite list of random
        numbers and a new StdGen?
The answer lies with the
        RandomGen typeclass’s split function, which takes one random number generator and turns it
        into two generators. Splitting a random generator such as this is a
        most unusual thing to be able to do: it’s obviously tremendously
        useful in a pure functional setting, but it is essentially either
        never necessary an impure language, or the language doesn’t provide
        for it.
With the split function, we can use one
        StdGen to generate an infinite list of random numbers to
        feed to runSupply, while we give
        the other back to the IO monad:
-- file: ch15/RandomSupply.hs
import Supply
import System.Random hiding (next)

randomsIO :: Random a => IO [a]
randomsIO =
    getStdRandom $ \g ->
        let (a, b) = split g
        in (randoms a, b)
If we’ve written this function properly,
        our example ought to print a different random number on each
        invocation:
ghci> :load RandomSupply
[1 of 2] Compiling Supply           ( Supply.hs, interpreted )
[2 of 2] Compiling RandomSupply     ( RandomSupply.hs, interpreted )
Ok, modules loaded: RandomSupply, Supply.
ghci> (fst . runSupply next) `fmap` randomsIO

<interactive>:1:17:
    Ambiguous occurrence `next'
    It could refer to either `Supply.next', imported from Supply at RandomSupply.hs:4:
                                              (defined at Supply.hs:32:0)
                          or `System.Random.next', imported from System.Random
ghci> (fst . runSupply next) `fmap` randomsIO

<interactive>:1:17:
    Ambiguous occurrence `next'
    It could refer to either `Supply.next', imported from Supply at RandomSupply.hs:4:
                                              (defined at Supply.hs:32:0)
                          or `System.Random.next', imported from System.Random
Recall that our runSupply function returns both the result
        of executing the monadic action and the unconsumed remainder of the
        list. Since we passed it an infinite list of random numbers, we
        compose with fst to ensure that
        we don’t get drowned in random numbers when ghci tries to print the result.

Another Round of Golf



The pattern of applying a function to
        one element of a pair and constructing a new pair with the other
        original element untouched is common enough in Haskell code that it
        has been turned into standard code.
Two functions, first and second, perform this operation in the Control.Arrow module:
ghci> :m +Control.Arrow
ghci> first (+3) (1,2)
(4,2)
ghci> second odd ('a',1)
('a',True)
(Indeed, we already encountered
        second in JSON Typeclasses Without Overlapping Instances.) We can use first to golf our definition of randomsIO, turning it into a
        one-liner:
-- file: ch15/RandomGolf.hs
import Control.Arrow (first)

randomsIO_golfed :: Random a => IO [a]
randomsIO_golfed = getStdRandom (first randoms . split)


Separating Interface from Implementation



In the previous section, we saw how to hide the fact that we’re
      using a State monad to hold the state for our
      Supply monad.
Another important way to make code more
      modular involves separating its interface (what the
      code can do) from its implementation—how it does
      it.
The standard random number generator in
      System.Random is known to be quite slow. If we use our
      randomsIO function to provide it
      with random numbers, then our next
      action will not perform well.
One simple and effective way that we could
      deal with this is to provide Supply with a better source of
      random numbers. Let’s set this idea aside, though, and consider an
      alternative approach, one that is useful in many settings. We will
      separate the actions we can perform with the monad from how it works
      using a typeclass:
-- file: ch15/SupplyClass.hs
class (Monad m) => MonadSupply s m | m -> s where
    next :: m (Maybe s)
This typeclass defines the interface that
      any supply monad must implement. It bears careful inspection, since it
      uses several unfamiliar Haskell language extensions. We will cover each
      one in the sections that follow.
Multiparameter Typeclasses



How should we read the snippet
        MonadSupply s m in the typeclass? If we add parentheses,
        an equivalent expression is (MonadSupply s) m, which is a
        little clearer. In other words, given some type variable
        m that is a Monad, we can make it an
        instance of the typeclass MonadSupply s. Unlike a regular
        typeclass, this one has a parameter.
As this language extension allows a
        typeclass to have more than one parameter, its name is MultiParamTypeClasses. The parameter
        s serves the same purpose as the
        Supply type’s parameter of the same name: it represents
        the type of the values handed out by the next function.
Notice that we don’t need to mention
        (>>=) or return in the definition of
        MonadSupply s, since the typeclass’s context (superclass)
        requires that a MonadSupply s must already be a
        Monad.

Functional Dependencies



To revisit a snippet that we ignored
        earlier, | m -> s is a functional
        dependency, often called a fundep. We
        can read the vertical bar | as “such that,” and the arrow
        -> as “uniquely determines.” Our functional dependency
        establishes a relationship between
        m and s.
The FunctionalDependencies language pragma
        governs the availability of functional dependencies.
The purpose behind us declaring a
        relationship is to help the type checker. Recall that a Haskell type
        checker is essentially a theorem prover, and that it is conservative
        in how it operates: it insists that its proofs must terminate. A
        nonterminating proof results in the compiler either giving up or
        getting stuck in an infinite loop.
With our functional dependency, we are
        telling the type checker that every time it sees some monad
        m being used in the context of a MonadSupply
        s, the type s is the only acceptable type to
        use with it. If we were to omit the functional dependency, the type
        checker would simply give up with an error message.
It’s hard to picture what the
        relationship between m and s
        really means, so let’s look at an instance of this typeclass:
-- file: ch15/SupplyClass.hs
import qualified Supply as S

instance MonadSupply s (S.Supply s) where
    next = S.next
Here, the type variable
        m is replaced by the type S.Supply s.
        Thanks to our functional dependency, the type checker now knows that
        when it sees a type S.Supply s, the type can be used as
        an instance of the typeclass MonadSupply s.
If we didn’t have a functional
        dependency, the type checker would not be able to figure out the
        relationship between the type parameter of the class MonadSupply
        s and that of the type Supply s, and it would
        abort compilation with an error. The definition itself would compile;
        the type error would not arise until the first time we tried to use
        it.
To strip away one final layer of
        abstraction, consider the type S.Supply Int. Without a
        functional dependency, we could declare this an instance of
        MonadSupply s. However, if we try to write code using
        this instance, the compiler would not be able to figure out that the
        type’s Int parameter needs to be the same as the
        typeclass’s s parameter, and it would report an
        error.
Functional dependencies can be tricky to
        understand, and once we move beyond simple uses, they often prove
        difficult to work with in practice. Fortunately, the most frequent use
        of functional dependencies is in situations as simple as ours, where
        they cause little trouble.

Rounding Out Our Module



If we save our typeclass and instance in
        a source file named SupplyClass.hs, we’ll need to add a module
        header such as the following:
-- file: ch15/SupplyClass.hs
{-# LANGUAGE FlexibleInstances, FunctionalDependencies,
             MultiParamTypeClasses #-}

module SupplyClass
    (
      MonadSupply(..)
    , S.Supply
    , S.runSupply
    ) where
The FlexibleInstances extension is necessary so
        that the compiler will accept our instance declaration. This extension
        relaxes the normal rules for writing instances in some circumstances,
        in a way that still lets the compiler’s type checker guarantee that it
        will terminate. Our need for FlexibleInstances here is
        caused by our use of functional dependencies, but the details are
        unfortunately beyond the scope of this book.
How to know when a language extension is needed
If GHC cannot compile a piece of code
          because it would require some language extension to be enabled, it
          will tell us which extension we should use. For example, if it
          decides that our code needs flexible instance support, it will
          suggest that we try compiling with the -XFlexibleInstances option. A
          -X option has the same effect as a LANGUAGE directive: it enables a
          particular extension.

Finally, notice that we’re re-exporting
        the runSupply and
        Supply names from this module. It’s perfectly legal to
        export a name from one module even though it’s defined in another. In
        our case, it means that client code needs only to import the
        SupplyClass module, without also importing the
        Supply module. This reduces the number of “moving
        parts” that a user of our code needs to keep in mind.

Programming to a Monad’s Interface



Here is a simple function that fetches
        two values from our Supply monad, formats them as a
        string, and returns them:
-- file: ch15/Supply.hs
showTwo :: (Show s) => Supply s String
showTwo = do
  a <- next
  b <- next
  return (show "a: " ++ show a ++ ", b: " ++ show b)
This code is tied by its result type to
        our Supply monad. We can easily generalize to any monad
        that implements our MonadSupply interface by modifying
        our function’s type. Notice that the body of the function remains
        unchanged:
-- file: ch15/SupplyClass.hs
showTwo_class :: (Show s, Monad m, MonadSupply s m) => m String
showTwo_class = do
  a <- next
  b <- next
  return (show "a: " ++ show a ++ ", b: " ++ show b)


The Reader Monad



The State monad lets us
      plumb a piece of mutable state through our code. Sometimes, we would
      like to be able to pass some immutable state
      around, such as a program’s configuration data. We could use the
      State monad for this purpose, but we might then find
      ourselves accidentally modifying data that should remain
      unchanged.
Let’s forget about monads for a moment and
      think about what a function with our desired
      characteristics ought to do. It should accept a value of some type
      e (for environment) that represents the data that
      we’re passing in, and return a value of some other type a as its result. The overall type we want is
      e -> a.
To turn this type into a convenient
      Monad instance, we’ll wrap it in a
      newtype:
-- file: ch15/SupplyInstance.hs
newtype Reader e a = R { runReader :: e -> a }
Making this into a Monad
      instance doesn’t take much work:
-- file: ch15/SupplyInstance.hs
instance Monad (Reader e) where
    return a = R $ \_ -> a
    m >>= k = R $ \r -> runReader (k (runReader m r)) r
We can think of our value of type e as an environment in which we’re evaluating some
      expression. The return action should
      have the same effect no matter what the environment is, so our version
      ignores its environment.
Our definition of (>>=) is a little more complicated, but
      only because we have to make the environment—here the variable
      r—available both in the current computation and in
      the computation we’re chaining into.
How does a piece of code executing in this
      monad find out what’s in its environment? It simply has to ask:
-- file: ch15/SupplyInstance.hs
ask :: Reader e e
ask = R id
Within a given chain of actions, every
      invocation of ask will return the
      same value, since the value stored in the environment doesn’t change.
      Our code is easy to test in ghci:
ghci> runReader (ask >>= \x -> return (x * 3)) 2
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
6

The Reader monad is included
      in the standard mtl library, which is usually bundled with
      GHC. You can find it in the
      Control.Monad.Reader module. The motivation for this monad
      may initially seem a little thin, because it is most often useful in
      complicated code. We’ll often need to access a piece of configuration
      information deep in the bowels of a program; passing that information in
      as a normal parameter would require a painful restructuring of our code.
      By hiding this information in our monad’s plumbing, intermediate
      functions that don’t care about the configuration information don’t need
      to see it.
The clearest motivation for the
      Reader monad will come in Chapter 18,
      when we discuss combining several monads to build a new monad. There,
      we’ll see how to gain finer control over state, so that our code can
      modify some values via the State monad, while other values
      remain immutable, courtesy of the Reader monad.

A Return to Automated Deriving



Now that we know about the
      Reader monad, let’s use it to create an instance of our
      MonadSupply typeclass. To keep our example simple, we’ll
      violate the spirit of MonadSupply here: our next action will always return the same
      value, instead of always returning a different one.
It would be a bad idea to directly make
      the Reader type an instance of the MonadSupply
      class, because then any Reader could
      act as a MonadSupply. This would usually not make any
      sense.
Instead, we create a newtype
      based on Reader. The newtype hides the fact
      that we’re using Reader internally. We must now make our
      type an instance of both of the typeclasses we care about. With the
      GeneralizedNewtypeDeriving extension enabled, GHC will do most of the hard work for
      us:
-- file: ch15/SupplyInstance.hs
newtype MySupply e a = MySupply { runMySupply :: Reader e a }
    deriving (Monad)

instance MonadSupply e (MySupply e) where
    next = MySupply $ do
             v <- ask
             return (Just v)

    -- more concise:
    -- next = MySupply (Just `liftM` ask)
Notice that we must make our type an
      instance of MonadSupply e, not MonadSupply. If
      we omit the type variable, the compiler will complain.
To try out our MySupply type,
      we’ll first create a simple function that should work with any
      MonadSupply instance:
-- file: ch15/SupplyInstance.hs
xy :: (Num s, MonadSupply s m) => m s
xy = do
  Just x <- next
  Just y <- next
  return (x * y)
If we use this with our
      Supply monad and randomsIO function, we get a different answer
      every time, as we expect:
ghci> (fst . runSupply xy) `fmap` randomsIO
3155268008533561605104245047686121354
ghci> (fst . runSupply xy) `fmap` randomsIO
1764220767702892260034822063450517650
Because our MySupply monad
      has two layers of newtype wrapping, we can write a custom
      execution function for it to make it easier to use:
-- file: ch15/SupplyInstance.hs
runMS :: MySupply i a -> i -> a
runMS = runReader . runMySupply
When we apply our xy action using this execution function, we
      get the same answer every time. Our code remains the same, but because
      we are executing it in a different implementation of
      MonadSupply, its behavior has changed:
ghci> runMS xy 2
4
ghci> runMS xy 2
4
Like our MonadSupply
      typeclass and Supply monad, almost all of the common
      Haskell monads are built with a split between interface and
      implementation. For example, the get and put functions that we introduced as
      “belonging to” the State monad are actually
      methods of the MonadState typeclass; the State
      type is an instance of this class.
Similarly, the standard
      Reader monad is an instance of the MonadReader
      typeclass, which specifies the ask
      method.
While the separation of interface and
      implementation that we discussed is appealing for its architectural
      cleanliness, it has important practical applications that will become
      clearer later. When we start combining monads in Chapter 18, we will save a lot of effort through the use of
      GeneralizedNewtypeDeriving and typeclasses.

Hiding the IO Monad



The blessing and curse of the IO monad is that
      it is extremely powerful. If we believe that careful use of types helps
      us to avoid programming mistakes, then the IO monad should
      be a great source of unease. Because the IO monad imposes
      no restrictions on what we can do, it leaves us vulnerable to all kinds
      of accidents.
How can we tame its power? Let’s say that
      we would like to guarantee to ourselves that a piece of code can read
      and write files on the local filesystem, but it will not access the
      network. We can’t use the plain IO monad, because it won’t
      restrict us.
Using a newtype



Let’s create a module that provides a
        small set of functionality for reading and writing files:
-- file: ch15/HandleIO.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module HandleIO
    (
      HandleIO
    , Handle
    , IOMode(..)
    , runHandleIO
    , openFile
    , hClose
    , hPutStrLn
    ) where
    
import System.IO (Handle, IOMode(..))
import qualified System.IO
Our first approach to creating a
        restricted version of IO is to wrap it with a
        newtype:
-- file: ch15/HandleIO.hs
newtype HandleIO a = HandleIO { runHandleIO :: IO a }
    deriving (Monad)
We do the by now familiar trick of
        exporting the type constructor and the runHandleIO execution function from our
        module, but not the data constructor. This will prevent code running
        within the HandleIO monad from getting hold of the
        IO monad that it wraps.
All that remains is for us to wrap each
        of the actions that we want our monad to allow. This is a simple
        matter of wrapping each IO with a HandleIO
        data constructor:
-- file: ch15/HandleIO.hs
openFile :: FilePath -> IOMode -> HandleIO Handle
openFile path mode = HandleIO (System.IO.openFile path mode)

hClose :: Handle -> HandleIO ()
hClose = HandleIO . System.IO.hClose

hPutStrLn :: Handle -> String -> HandleIO ()
hPutStrLn h s = HandleIO (System.IO.hPutStrLn h s)
We can now use our restricted
        HandleIO monad to perform I/O:
-- file: ch15/HandleIO.hs
safeHello :: FilePath -> HandleIO ()
safeHello path = do
  h <- openFile path WriteMode
  hPutStrLn h "hello world"
  hClose h
To run this action, we use runHandleIO:
ghci> :load HandleIO
[1 of 1] Compiling HandleIO         ( HandleIO.hs, interpreted )
Ok, modules loaded: HandleIO.
ghci> runHandleIO (safeHello "hello_world_101.txt")
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
ghci> :m +System.Directory
ghci> removeFile "hello_world_101.txt"
If we try to sequence an action that
        runs in the HandleIO monad with one that is not
        permitted, the type system will forbid it:
ghci> runHandleIO (safeHello "goodbye" >> removeFile "goodbye")

<interactive>:1:36:
    Couldn't match expected type `HandleIO a'
           against inferred type `IO ()'
    In the second argument of `(>>)', namely `removeFile "goodbye"'
    In the first argument of `runHandleIO', namely
        `(safeHello "goodbye" >> removeFile "goodbye")'
    In the expression:
        runHandleIO (safeHello "goodbye" >> removeFile "goodbye")


Designing for Unexpected Uses



There’s one small, but significant,
        problem with our HandleIO monad: it doesn’t take into
        account the possibility that we might occasionally need an escape
        hatch. If we define a monad such as this, it is likely that we will
        occasionally need to perform an I/O action that isn’t allowed for by the
        design of our monad.
Our purpose in defining a monad like
        this is to make it easier for us to write solid code in the common
        case, not to make corner cases impossible. Let’s give ourselves a way
        out.
The Control.Monad.Trans
        module defines a “standard escape hatch,” the
        MonadIO typeclass. This defines a single function, liftIO, which lets us embed an
        IO action in another monad:
ghci> :m +Control.Monad.Trans
ghci> :info MonadIO
class (Monad m) => MonadIO m where liftIO :: IO a -> m a
  	-- Defined in Control.Monad.Trans
instance MonadIO IO -- Defined in Control.Monad.Trans
Our implementation of this typeclass is
        trivial; we just wrap IO with our data constructor:
-- file: ch15/HandleIO.hs
import Control.Monad.Trans (MonadIO(..))

instance MonadIO HandleIO where
    liftIO = HandleIO
With judicious use of liftIO, we can escape our shackles and
        invoke IO actions where necessary:
-- file: ch15/HandleIO.hs
tidyHello :: FilePath -> HandleIO ()
tidyHello path = do
  safeHello path
  liftIO (removeFile path)
Automatic derivation and MonadIO
We could have had the compiler
          automatically derive an instance of MonadIO for us by
          adding the typeclass to the deriving clause of
          HandleIO. In fact, in production code, this would be
          our usual strategy. We avoided that here simply to separate the
          presentation of the earlier material from that of
          MonadIO.


Using Typeclasses



The disadvantage of hiding IO in another monad is that we’re still
        tied to a concrete implementation. If we want to swap
        HandleIO for some other monad, we must change the type of
        every action that uses HandleIO.
As an alternative, we can create a
        typeclass that specifies the interface we want from a monad that
        manipulates files:
-- file: ch15/MonadHandle.hs
{-# LANGUAGE FunctionalDependencies, MultiParamTypeClasses #-}

module MonadHandle (MonadHandle(..)) where

import System.IO (IOMode(..))

class Monad m => MonadHandle h m | m -> h where
    openFile :: FilePath -> IOMode -> m h
    hPutStr :: h -> String -> m ()
    hClose :: h -> m ()
    hGetContents :: h -> m String

    hPutStrLn :: h -> String -> m ()
    hPutStrLn h s = hPutStr h s >> hPutStr h "\n"
Here, we’ve chosen to abstract away both
        the type of the monad and the type of a file handle. To satisfy the
        type checker, we’ve added a functional dependency: for any instance of
        MonadHandle, there is exactly one handle type that we can
        use. When we make the IO monad an instance of this class,
        we use a regular Handle:
-- file: ch15/MonadHandleIO.hs
{-# LANGUAGE FunctionalDependencies, MultiParamTypeClasses #-}

import MonadHandle
import qualified System.IO

import System.IO (IOMode(..))
import Control.Monad.Trans (MonadIO(..), MonadTrans(..))
import System.Directory (removeFile)

import SafeHello

instance MonadHandle System.IO.Handle IO where
    openFile = System.IO.openFile
    hPutStr = System.IO.hPutStr
    hClose = System.IO.hClose
    hGetContents = System.IO.hGetContents
    hPutStrLn = System.IO.hPutStrLn
Because any MonadHandle
        must also be a Monad, we can write code that manipulates
        files using normal do notation,
        without caring what monad it will finally execute in:
-- file: ch15/SafeHello.hs
safeHello :: MonadHandle h m => FilePath -> m ()
safeHello path = do
  h <- openFile path WriteMode
  hPutStrLn h "hello world"
  hClose h
Because we made IO an
        instance of this typeclass, we can execute this action from ghci:
ghci> safeHello "hello to my fans in domestic surveillance"
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
ghci> removeFile "hello to my fans in domestic surveillance"
The beauty of the typeclass approach is
        that we can swap one underlying monad for another without touching
        much code, as most of our code doesn’t know or care about the
        implementation. For instance, we could replace IO with a
        monad that compresses files as it writes them out.
Defining a monad’s interface through a
        typeclass has a further benefit. It lets another user hide our
        implementation in a newtype wrapper and automatically
        derive instances of just the typeclasses she wants to expose.

Isolation and Testing



In fact, because our safeHello function doesn’t use the
        IO type, we can even use a monad that
        can’t perform I/O. This allows us to test code
        that would normally have side effects in a completely pure, controlled
        environment.
To do this, we will create a monad that
        doesn’t perform I/O but instead logs every file-related event for
        later processing:
-- file: ch15/WriterIO.hs
data Event = Open FilePath IOMode
           | Put String String
           | Close String
           | GetContents String
             deriving (Show)
Although we already developed a
        Logger type in Using a New Monad: Show Your Work!, here
        we’ll use the standard, and more general, Writer monad.
        Like other mtl monads, the API provided by
        Writer is defined in a typeclass—in this case,
        MonadWriter. Its most useful method is tell, which logs a value:
ghci> :m +Control.Monad.Writer
ghci> :type tell
tell :: (MonadWriter w m) => w -> m ()
The values we log can be of any
        Monoid type. Since the list type is a
        Monoid, we’ll log to a list of Event.
We could make Writer
        [Event] an instance of MonadHandle, but it’s
        cheap, easy, and safer to make a special-purpose monad:
-- file: ch15/WriterIO.hs
newtype WriterIO a = W { runW :: Writer [Event] a }
    deriving (Monad, MonadWriter [Event])
Our execution function simply removes
        the newtype wrapper we added, and then calls the normal
        Writer monad’s execution function:
-- file: ch15/WriterIO.hs
runWriterIO :: WriterIO a -> (a, [Event])
runWriterIO = runWriter . runW
When we try this code out in ghci, it gives us a log of the function’s
        file activities:
ghci> :load WriterIO
[1 of 3] Compiling MonadHandle      ( MonadHandle.hs, interpreted )
[2 of 3] Compiling SafeHello        ( SafeHello.hs, interpreted )
[3 of 3] Compiling WriterIO         ( WriterIO.hs, interpreted )
Ok, modules loaded: MonadHandle, SafeHello, WriterIO.
ghci> runWriterIO (safeHello "foo")
((),[Open "foo" WriteMode,Put "foo" "hello world",Put "foo" "\n",Close "foo"])

The Writer Monad and Lists



The Writer monad uses the Monoid’s
        mappend function every time we
        use tell. Because mappend for lists is (++), lists are not a good practical choice
        for use with Writer: repeated appends are expensive. We
        used lists previously purely for simplicity.
In production code, if you want to use
        the Writer monad and you need list-like behavior, use a
        type with better append characteristics. One such type is the
        difference list, which we introduced in Taking Advantage of Functions as Data.
        You don’t need to roll your own difference list implementation: a
        well-tuned library is available for download from Hackage, the Haskell
        package database. Alternatively, you can use the Seq type
        from the Data.Sequence module, which we introduced in
        General-Purpose Sequences.

Arbitrary I/O Revisited



If we use the typeclass approach to restricting IO, we may still
        want to retain the ability to perform arbitrary I/O actions. We might
        try adding MonadIO as a constraint on our
        typeclass:
-- file: ch15/MonadHandleIO.hs
class (MonadHandle h m, MonadIO m) => MonadHandleIO h m | m -> h

instance MonadHandleIO System.IO.Handle IO

tidierHello :: (MonadHandleIO h m) => FilePath -> m ()
tidierHello path = do
  safeHello path
  liftIO (removeFile path)
This approach has a problem, though: the
        added MonadIO constraint strips us of the ability to test
        our code in a pure environment, because we can no longer tell whether
        a test might have damaging side effects. The alternative is to move
        this constraint from the typeclass—where it “infects” all
        functions—to only those functions that really need to perform
        I/O:
-- file: ch15/MonadHandleIO.hs
tidyHello :: (MonadIO m, MonadHandle h m) => FilePath -> m ()
tidyHello path = do
  safeHello path
  liftIO (removeFile path)
We can use pure property tests on the
        functions that lack MonadIO constraints and traditional
        unit tests on the rest.
Unfortunately, we’ve substituted one
        problem for another: we can’t invoke code with both
        MonadIO and MonadHandle constraints from
        code that has the MonadHandle constraint alone. If we
        find that somewhere deep in our MonadHandle-only code
        that we really need the MonadIO constraint, we must add
        it to all the code paths that lead to this point.
Allowing arbitrary I/O is risky, and it
        has a profound effect on how we develop and test our code. When we
        have to choose between being permissive on the one hand, and easier
        reasoning and testing on the other, we usually opt for the latter.
Exercises
	Using QuickCheck, write a test for an action in the
              MonadHandle monad, in order to see if it tries to
              write to a file handle that is not open. Try it out on safeHello.

	Write an action that tries to write to a file handle that
              it has closed. Does your test catch this bug?

	In a form-encoded string, the same key may appear several
              times, with or without values, e.g.,
              key&key=1&key=2. What type might you use to
              represent the values associated with a key in this sort of
              string? Write a parser that correctly captures all of the
              information.







Chapter 16. Using Parsec



Parsing  a file, or data of various types, is a common task for
    programmers. We already learned about Haskell’s support for regular
    expressions back in Regular Expressions in Haskell. Regular expressions are nice for many tasks, but they
    rapidly become unwieldy, or cannot be used at all, when dealing with a
    complex data format. For instance, we cannot use regular expressions to
    parse source code from most programming languages.
Parsec is a useful parser combinator
    library, with which we combine small parsing functions to build more
    sophisticated parsers. Parsec provides some simple parsing functions, as
    well as functions to tie them all together. It should come as no surprise
    that this parser library for Haskell is built around the notion of
    functions.
It’s helpful to know where Parsec fits
    compared to the tools used for parsing in other languages. Parsing is
    sometimes divided into two stages: lexical analysis (the domain of tools
    such as flex) and parsing
    itself (performed by programs such as bison). Parsec can perform both lexical analysis
    and parsing.
First Steps with Parsec: Simple CSV Parsing



Let’s jump right in and write some code for parsing a CSV file. CSV files are often used as a plain-text
      representation of spreadsheets or databases. Each line is a record, and
      each field in the record is separated from the next by a comma. There
      are ways of dealing with fields that contain commas, but we won’t worry
      about that now.
This first example is much longer than it
      really needs to be. We will soon introduce more Parsec features that
      will shrink the parser down to only four lines!
-- file: ch16/csv1.hs
import Text.ParserCombinators.Parsec

{- A CSV file contains 0 or more lines, each of which is terminated
   by the end-of-line character (eol). -}
csvFile :: GenParser Char st [[String]]
csvFile = 
    do result <- many line
       eof
       return result

-- Each line contains 1 or more cells, separated by a comma
line :: GenParser Char st [String]
line = 
    do result <- cells
       eol                       -- end of line
       return result
       
-- Build up a list of cells.  Try to parse the first cell, then figure out 
-- what ends the cell.
cells :: GenParser Char st [String]
cells = 
    do first <- cellContent
       next <- remainingCells
       return (first : next)

-- The cell either ends with a comma, indicating that 1 or more cells follow,
-- or it doesn't, indicating that we're at the end of the cells for this line
remainingCells :: GenParser Char st [String]
remainingCells =
    (char ',' >> cells)            -- Found comma?  More cells coming
    <|> (return [])                -- No comma?  Return [], no more cells

-- Each cell contains 0 or more characters, which must not be a comma or
-- EOL
cellContent :: GenParser Char st String
cellContent = 
    many (noneOf ",\n")
       

-- The end of line character is \n
eol :: GenParser Char st Char
eol = char '\n'

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input
Let’s take a look at the code for this
      example. We didn’t use many shortcuts here, so remember that this will
      get shorter and simpler!
We’ve built it from the top down, so our
      first function is csvFile. The type
      of this function is GenParser Char st
      [[String]]. This means that the type of the input is a
      sequence of characters, which is exactly what a Haskell string is, since
      String is the same as [Char]. It also means that we will return a
      value of type [[String]]: a list of a
      list of strings. The st can be
      ignored for now.
Parsec programmers often omit type
      declarations, since we write so many small functions. Haskell’s type
      inference can figure it out. We’ve listed the types for the first
      example, here so you can get a better idea of what’s going on. You can
      always use :t in ghci to inspect types as well.
The csvFile uses a do block. As this implies, Parsec is a monadic
      library: it defines its own special parsing monad,[36] GenParser.
We start by running many line. many is a function that takes a function as an
      argument. It tries to repeatedly parse the input using the function
      passed to it. It gathers up the results from all that repeated parsing
      and returns a list of them. So, here, we are storing the results of
      parsing all lines in result. Then we
      look for the end-of-file indicator, called eof. Finally, we return the result. So, a CSV file is made up of many
      lines, and then the end of file. We can often read out Parsec functions
      in plain English just like this.
Now we must answer the question: what is a
      line? We define the line function to
      do just that. Reading the function, we can see that a line consists of
      cells followed by the end-of-line character.
So what are cells? We defined them in the
      cells function. The cells of a line
      start with the content of the first cell, and then continue with the
      content of the remaining cells, if any. The result is simply the first
      cell and the remaining cells assembled into a list.
Let’s skip over remainingCells for a minute and look at
      cellContent. A cell contains any
      number of characters, but each character must not be a comma or
      end-of-line character. The noneOf
      function matches one item, so long as it isn’t in the list of items that
      we pass. So, saying many (noneOf
      ",\n") defines a cell the way we want it.
Back in remainingCells, we have the first example of a
      choice in Parsec. The choice operator is <|>. This operator behaves like this: it
      will try the parser on the left, and if it consumes no input,[37] it will try the parser on the right.
So, in remainingCells, our task is to come up with
      all the cells after the first. Recall that cellContent uses noneOf ",\n". So it will not consume the comma
      or end-of-line character from the input. If we see a comma after parsing
      a cell, it means that at least one more cell follows. Otherwise, we’re
      done. So, our first choice in remainingCells is char ','. This parser simply matches the
      passed character in the input. If we find a comma, we want this function
      to return the remaining cells on the line. At this point, the “remaining
      cells” looks exactly like the start of the line, so we call cells recursively to parse them. If we don’t
      find a comma, we return the empty list, signifying no remaining cells on
      the line.
Finally, we must define what the
      end-of-line indicator is. We set it to char
      '\n', which will suit our purposes fine for now.
At the very end of the program, we define
      a function parseCSV that takes a
      String and parses it as a CSV file.
      This function is just a shortcut that calls Parsec’s parse function, filling in a few parameters.
      parse returns Either ParseError [[String]] for the CSV file.
      If there is an error, the return value will be Left with the error; otherwise, it will be
      Right with the result.
Now that we understand this code, let’s
      play with it a bit and see what it does:
ghci> :l csv1.hs
[1 of 1] Compiling Main             ( csv1.hs, interpreted )
Ok, modules loaded: Main.
ghci> parseCSV ""
Loading package parsec-2.1.0.1 ... linking ... done.
Right []
That makes sense—parsing the empty string
      returns an empty list. Let’s try parsing a single cell:
ghci> parseCSV "hi"
Left "(unknown)" (line 1, column 3):
unexpected end of input
expecting "," or "\n"

Look at that. Recall how we defined that
      each line must end with the end-of-line character, and we didn’t give
      it. Parsec’s error message helpfully indicated the line number and
      column number of the problem, and even told us what it was expecting!
      Let’s give it an end-of-line character and continue
      experimenting:
ghci> parseCSV "hi\n"
Right [["hi"]]
ghci> parseCSV "line1\nline2\nline3\n"
Right [["line1"],["line2"],["line3"]]
ghci> parseCSV "cell1,cell2,cell3\n"
Right [["cell1","cell2","cell3"]]
ghci> parseCSV "l1c1,l1c2\nl2c1,l2c2\n"
Right [["l1c1","l1c2"],["l2c1","l2c2"]]
ghci> parseCSV "Hi,\n\n,Hello\n"
Right [["Hi",""],[""],["","Hello"]]
You can see that parseCSV is doing exactly what we want it to
      do. It’s even handling empty cells and empty lines properly.

The sepBy and endBy Combinators



We promised you earlier that we could simplify our CSV
      parser significantly by using a few Parsec helper functions. There are
      two that will dramatically simplify this code.
The first tool is the sepBy function. This function takes two functions as arguments: the first
      parses some sort of content, while the second parses a separator.
      sepBy starts by trying to parse
      content, and then separators, and alternates back and forth until it
      can’t parse a separator. It returns a list of all the content that it
      was able to parse.
The second tool is endBy. It’s similar to sepBy, but
      expects the very last item to be followed by the separator. That is, it
      continues parsing until it can’t parse any more content.
So, we can use endBy to parse lines, since every line must
      end with the end-of-line character. We can use sepBy to parse cells, since the last cell will
      not end with a comma. Take a look at how much simpler our parser is
      now:
-- file: ch16/csv2.hs
import Text.ParserCombinators.Parsec

csvFile = endBy line eol
line = sepBy cell (char ',')
cell = many (noneOf ",\n")
eol = char '\n'

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input
This program behaves exactly the same as
      the first one. We can verify this by using ghci to rerun our examples from the earlier
      example. We’ll get the same result from every one. Yet the program is
      much shorter and more readable. It won’t be long before you can
      translate Parsec code such as this into a file format definition in
      plain English. As you read over this code, you can see that:
	A CSV file contains zero or more
          lines, each of which is terminated by the end-of-line
          character.

	A line contains one or more cells,
          separated by a comma.

	A cell contains zero or more
          characters, which must be neither the comma nor the end-of-line character.

	The end-of-line character is the
          newline, \n.




Choices and Errors



Different operating systems use different
      characters to mark the end of line. Unix/Linux systems,
      and Windows in text mode, use simply "\n". DOS and Windows systems use "\r\n", and Macs traditionally use "\r". We could add support for "\n\r" too, just in case
      anybody uses that.
We could easily adapt our example to be
      able to handle all these types of line endings in a single file. We
      would need to make two modifications: adjust eol to recognize the different endings, and
      adjust the noneOf pattern in cell to ignore \r.
This must be done carefully. Recall that
      our earlier definition of eol was
      simply char
      '\n'. There is a parser called string that we can use to match the
      multicharacter patterns. Let’s start by thinking of how we would add
      support for \n\r.
Our first attempt might look like
      this:
-- file: ch16/csv3.hs
-- This function is not correct!
eol = string "\n" <|> string "\n\r"
This isn’t quite right. Recall that the
      <|> operator always tries the left alternative first. Looking for the
      single character \n will match both
      types of line endings, so it will look to the system that the following
      line begins with \r. Not what we
      want. Try it in ghci:
ghci> :m Text.ParserCombinators.Parsec
ghci> let eol = string "\n" <|> string "\n\r"
Loading package parsec-2.1.0.1 ... linking ... done.
ghci> parse eol "" "\n"
Right "\n"
ghci> parse eol "" "\n\r"
Right "\n"
It may seem like the parser worked for
      both endings, but actually looking at it this way, we can’t tell. If it
      left something unparsed, we don’t know, because we’re not trying to
      consume anything else from the input. So let’s look for the end of file
      after our end of line:
ghci> parse (eol >> eof) "" "\n\r"
Left (line 2, column 1):
unexpected "\r"
expecting end of input
ghci> parse (eol >> eof) "" "\n"
Right ()
As expected, we got an error from the
      \n\r ending. So the next temptation
      may be to try it this way:
-- file: ch16/csv4.hs
-- This function is not correct!
eol = string "\n\r" <|> string "\n"
This also isn’t right. Recall that
      <|> attempts the option on the
      right only if the option on the left consumes no input. But by the time
      we are able to see if there is a \r
      after the \n, we’ve already consumed
      the \n. This time, we fail on the
      other case in ghci:
ghci> :m Text.ParserCombinators.Parsec
ghci> let eol = string "\n\r" <|> string "\n"
Loading package parsec-2.1.0.1 ... linking ... done.
ghci> parse (eol >> eof) "" "\n\r"
Right ()
ghci> parse (eol >> eof) "" "\n"
Left (line 1, column 1):
unexpected end of input
expecting "\n\r"
We’ve stumbled upon the lookahead problem.
      It turns out that, when writing parsers, it’s often very convenient to
      be able to “look ahead” at the data that’s coming in. Parsec supports this, but
      before showing you how to use it, let’s see how you would have to write
      this to get along without it. You’d have to manually expand all the
      options after the \n like
      this:
-- file: ch16/csv5.hs
eol = 
    do char '\n'
       char '\r' <|> return '\n'
This function first looks for \n. If it finds it, then it will look for
      \r, consuming it if possible. Since
      the return type of char '\r' is a
      Char, the alternative action is to
      simply return a Char without
      attempting to parse anything. Parsec has a function option that can also express this idiom as
      option '\n' (char '\r'). Let’s test
      this with ghci:
ghci> :l csv5.hs
[1 of 1] Compiling Main             ( csv5.hs, interpreted )
Ok, modules loaded: Main.
ghci> parse (eol >> eof) "" "\n\r"
Loading package parsec-2.1.0.1 ... linking ... done.
Right ()
ghci> parse (eol >> eof) "" "\n"
Right ()
This time, we got the right result! But we
      could have done it easier with Parsec’s lookahead support.
Lookahead



Parsec has a function called try that is used to express lookaheads. try takes one function, a parser, and
        applies it. If the parser doesn’t succeed, try behaves as if it hadn’t consumed any
        input at all. So, when you use try
        on the left side of <|>,
        Parsec will try the option on the right even if the left side failed
        after consuming some input. try has
        an effect only if it is on the left of a <|>. Keep in mind, though, that many functions use <|> internally. Here’s a way to add
        expanded end-of-line support to our CSV parser using try:
-- file: ch16/csv6.hs
import Text.ParserCombinators.Parsec

csvFile = endBy line eol
line = sepBy cell (char ',')
cell = many (noneOf ",\n\r")

eol =   try (string "\n\r")
    <|> try (string "\r\n")
    <|> string "\n"
    <|> string "\r"

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input
Here we put both of the two-character
        endings first, and run both tests under try. Both of them occur to the left of a
        <|>, so they will do the
        right thing. We could have put string
        "\n" within a try, but it
        wouldn’t have altered any behavior since they look at only one
        character anyway. We can load this up and test the eol function in
        ghci:
ghci> :l csv6.hs
[1 of 1] Compiling Main             ( csv6.hs, interpreted )
Ok, modules loaded: Main.
ghci> parse (eol >> eof) "" "\n\r"
Loading package parsec-2.1.0.1 ... linking ... done.
Right ()
ghci> parse (eol >> eof) "" "\n"
Right ()
ghci> parse (eol >> eof) "" "\r\n"
Right ()
ghci> parse (eol >> eof) "" "\r"
Right ()
All four endings were handled properly.
        You can also test the full CSV parser with some different endings like
        this:
ghci> parseCSV "line1\r\nline2\nline3\n\rline4\rline5\n"
Right [["line1"],["line2"],["line3"],["line4"],["line5"]]

As you can see, this program even
        supports different line endings within a single file.

Error Handling



At the beginning of this chapter, you saw how Parsec could
        generate error messages that list the location where the error
        occurred as well as what was expected. As parsers get more complex,
        the list of what was expected can become cumbersome. Parsec provides a
        way for you to specify custom error messages in the event of parse
        failures.
Let’s look at what happens when our
        current CSV parser encounters an error:
ghci> parseCSV "line1"
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting ",", "\n\r", "\r\n", "\n" or "\r"

That’s a pretty long, and technical,
        error message. We could make an attempt to resolve this using the
        monad fail function, like
        so:
-- file: ch16/csv7.hs
eol =   try (string "\n\r")
    <|> try (string "\r\n")
    <|> string "\n"
    <|> string "\r"
    <|> fail "Couldn't find EOL"
Under ghci, we can see the result:
ghci> :l csv7.hs
[1 of 1] Compiling Main             ( csv7.hs, interpreted )
Ok, modules loaded: Main.
ghci> parseCSV "line1"
Loading package parsec-2.1.0.1 ... linking ... done.
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting ",", "\n\r", "\r\n", "\n" or "\r"
Couldn't find EOL
We added to the error result but didn’t
        really help clean up the output. Parsec has an <?> operator that is designed for just these situations. It is
        similar to <|> in that it
        first tries the parser on its left. Instead of trying another parser
        in the event of a failure, it presents an error message. Here’s how
        we’d use it:
-- file: ch16/csv8.hs
eol =   try (string "\n\r")
    <|> try (string "\r\n")
    <|> string "\n"
    <|> string "\r"
    <?> "end of line"
Now, when you generate an error, you’ll
        get more helpful output:
ghci> :l csv8.hs
[1 of 1] Compiling Main             ( csv8.hs, interpreted )
Ok, modules loaded: Main.
ghci> parseCSV "line1"
Loading package parsec-2.1.0.1 ... linking ... done.
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting "," or end of line
That’s pretty helpful! The general rule
        of thumb is that you put a human description of what you’re looking
        for to the right of <?>.


Extended Example: Full CSV Parser



Our earlier CSV examples have had an
      important flaw—they weren’t able to handle cells that contain a comma.
      CSV generating programs typically put quotation marks around such data.
      But then you have another problem: what to do if a cell contains a
      quotation mark and a comma. In these cases, the embedded quotation marks
      are doubled up.
Here is a full CSV parser. You can use
      this from ghci, or if you compile it
      to a standalone program, it will parse a CSV file on standard input and
      convert it to a different format on output:
-- file: ch16/csv9.hs
import Text.ParserCombinators.Parsec

csvFile = endBy line eol
line = sepBy cell (char ',')
cell = quotedCell <|> many (noneOf ",\n\r")

quotedCell = 
    do char '"'
       content <- many quotedChar
       char '"' <?> "quote at end of cell"
       return content

quotedChar =
        noneOf "\""
    <|> try (string "\"\"" >> return '"')

eol =   try (string "\n\r")
    <|> try (string "\r\n")
    <|> string "\n"
    <|> string "\r"
    <?> "end of line"

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input

main =
    do c <- getContents
       case parse csvFile "(stdin)" c of
            Left e -> do putStrLn "Error parsing input:"
                         print e
            Right r -> mapM_ print r
That’s a full-featured CSV parser in just
      21 lines of code, plus an additional 10 lines for the parseCSV and main utility functions.
Let’s look at the changes in this program
      from the previous versions. First, a cell may now be either a bare cell
      or a quoted cell. We give the quotedCell option first, because we want to
      follow that path if the first character in a cell is the quote
      mark.
The quotedCell begins and ends with a quote mark
      and contains zero or more characters. These characters can’t be copied
      directly, though, because they may contain embedded, doubled-up quote
      marks themselves, so we define a custom quotedChar to process them.
When we’re processing characters inside a
      quoted cell, we first say noneOf
      "\"". This will match and return any single character as long
      as it’s not the quote mark. Otherwise, if it is the quote mark, we see
      if we have two in a row. If so, we return a single quote mark to go on
      our result string.
Notice that try in quotedChar is on the
      right side of <|>. Recall that we said that try has an effect only if it is on the left
      side of <|>. This try does occur on the left side of a <|>, but on the
      left of one that must be within the implementation of many.
This try is important. Let’s say we are parsing a
      quoted cell and are getting towards the end of it. There will be another
      cell following. So we will expect to see a quote to end the current
      cell, followed by a comma. When we hit quotedChar, we will fail the noneOf test and proceed to the test that looks
      for two quotes in a row. We’ll also fail that one because we’ll have a
      quote, and then a comma. If we hadn’t used try, we’d crash with an error at this point,
      saying that it was expecting the second quote, because the first quote
      was already consumed. Since we use try, this is properly recognized as not part
      of the cell, so it terminates the many
      quotedChar expression as expected. Lookahead has once again
      proven very useful, and the fact that it is so easy to add makes it a
      remarkable tool in Parsec.
We can test this program with ghci over some quoted cells:
ghci> :l csv9.hs
[1 of 1] Compiling Main             ( csv9.hs, interpreted )
Ok, modules loaded: Main.
ghci> parseCSV "\"This, is, one, big, cell\"\n"
Loading package parsec-2.1.0.1 ... linking ... done.
Right [["This, is, one, big, cell"]]
ghci> parseCSV "\"Cell without an end\n"
Left "(unknown)" (line 2, column 1):
unexpected end of input
expecting "\"\"" or quote at end of cell
Let’s run it over a real CSV file. Here’s
      one generated by a spreadsheet program:
"Product","Price"
"O'Reilly Socks",10
"Shirt with ""Haskell"" text",20
"Shirt, ""O'Reilly"" version",20
"Haskell Caps",15
Now, we can run this under our test
      program and watch:
$ runhaskell csv9.hs < test.csv
["Product","Price"]
["O'Reilly Socks","10"]
["Shirt with \"Haskell\" text","20"]
["Shirt, \"O'Reilly\" version","20"]
["Haskell Caps","15"]

Parsec and MonadPlus



Parsec’s GenParser
      monad is an instance of the MonadPlus typeclass
      that we introduced in Looking for Alternatives. The value
      mzero represents a parse failure, while mplus combines two alternative parses into
      one, using (<|>):
-- file: ch16/ParsecPlus.hs
instance MonadPlus (GenParser tok st) where
    mzero = fail "mzero"
    mplus = (<|>)

Parsing a URL-Encoded Query String



When we introduced application/x-www-form-urlencoded
      text in Golfing Practice: Association Lists, we mentioned that we’d
      write a parser for these strings. We can quickly and easily do this
      using Parsec.
Each key-value pair is separated by the & character:
-- file: ch16/FormParse.hs
p_query :: CharParser () [(String, Maybe String)]
p_query = p_pair `sepBy` char '&'
Notice that in the type signature, we’re
      using Maybe to represent a value: the HTTP specification is
      unclear about whether a key must have an associated
      value, and we’d like to be able to distinguish between “no
      value” and “empty value”:
-- file: ch16/FormParse.hs
p_pair :: CharParser () (String, Maybe String)
p_pair = do
  name <- many1 p_char
  value <- optionMaybe (char '=' >> many p_char)
  return (name, value)
The many1 function is similar to many: it applies its parser repeatedly,
      returning a list of results. While many will succeed and return an empty list if
      its parser never succeeds, many1
      will fail if its parser never succeeds and will otherwise return a list
      of at least one element.
The optionMaybe function modifies the behavior of
      a parser. If the parser fails, optionMaybe doesn’t: it returns
      Nothing. Otherwise, it wraps the parser’s successful result
      with Just. This gives us the ability to distinguish between
      “no value” and “empty value,” as we mentioned
      earlier.
Individual characters can be encoded in
      one of several ways:
-- file: ch16/FormParse.hs
p_char :: CharParser () Char
p_char = oneOf urlBaseChars
     <|> (char '+' >> return ' ')
     <|> p_hex

urlBaseChars = ['a'..'z']++['A'..'Z']++['0'..'9']++"$-_.!*'(),"

p_hex :: CharParser () Char
p_hex = do
  char '%'
  a <- hexDigit
  b <- hexDigit
  let ((d, _):_) = readHex [a,b]
  return . toEnum $ d
Some characters can be represented
      literally. Spaces are treated specially, using a +
      character. Other characters must be encoded as a %
      character followed by two hexadecimal digits. The Numeric
      module’s readHex parses a hex
      string as a number:
ghci> parseTest p_query "foo=bar&a%21=b+c"
Loading package parsec-2.1.0.1 ... linking ... done.
[("foo",Just "bar"),("a!",Just "b c")]

As appealing and readable as this parser
      is, we can profit from stepping back and taking another look at some of
      our building blocks.

Supplanting Regular Expressions for Casual Parsing



In many popular languages, people tend to put regular expressions
      to work for “casual” parsing. They’re notoriously tricky
      for this purpose: hard to write, difficult to debug, nearly
      incomprehensible after a few months of neglect, and they provide no
      error messages on failure.
If we can write compact Parsec parsers,
      we’ll gain in readability, expressiveness, and error reporting. Our
      parsers won’t be as short as regular expressions, but they’ll be close
      enough to negate much of the temptation of regexps.

Parsing Without Variables



A few of our parsers just shown use
      do notation and bind the result of an
      intermediate parse to a variable for later use. One such function is
      p_pair:
-- file: ch16/FormParse.hs
p_pair :: CharParser () (String, Maybe String)
p_pair = do
  name <- many1 p_char
  value <- optionMaybe (char '=' >> many p_char)
  return (name, value)
We can get rid of the need for explicit
      variables by using the liftM2
      combinator from Control.Monad:
-- file: ch16/FormParse.hs
p_pair_app1 =
    liftM2 (,) (many1 p_char) (optionMaybe (char '=' >> many p_char))
This parser has exactly the same type and
      behavior as p_pair, but it’s one
      line long. Instead of writing our parser in a “procedural”
      style, we’ve simply switched to a programming style that emphasizes that
      we’re applying parsers and
      combining their results.
We can take this applicative style of
      writing a parser much further. In most cases, the extra compactness that
      we will gain will not come at any cost in
      readability, beyond the initial effort of coming to grips with the
      idea.

Applicative Functors for Parsing



The standard Haskell libraries include a module named
      Control.Applicative, which we already encountered in Infix Use of fmap. This module defines a typeclass named
      Applicative, which represents an applicative functor. This is a
      little bit more structured than a functor, but a little bit less than a
      monad. It also defines Alternative, which is similar to
      MonadPlus.
As usual, we think that the best way to
      introduce applicative functors is to put them to work. In theory, every
      monad is an applicative functor, but not every applicative functor is a
      monad. Because applicative functors were added to the standard Haskell
      libraries long after monads, we often don’t get an
      Applicative instance for free; frequently, we have to
      declare the monad we’re using to be Applicative or
      Alternative.
To do this for Parsec, we’ll
      write a small module that we can import instead of the normal
      Parsec module:
-- file: ch16/ApplicativeParsec.hs
module ApplicativeParsec
    (
      module Control.Applicative
    , module Text.ParserCombinators.Parsec
    ) where

import Control.Applicative
import Control.Monad (MonadPlus(..), ap)
-- Hide a few names that are provided by Applicative.
import Text.ParserCombinators.Parsec hiding (many, optional, (<|>))

-- The Applicative instance for every Monad looks like this.
instance Applicative (GenParser s a) where
    pure  = return
    (<*>) = ap

-- The Alternative instance for every MonadPlus looks like this.
instance Alternative (GenParser s a) where
    empty = mzero
    (<|>) = mplus
For convenience, our module’s export
      section exports all the names we imported from both the
      Applicative and Parsec modules. Because we hid
      Parsec’s version of (<|>)
      when importing, the one that will be exported is from
      Control.Applicative—as we would like.

Applicative Parsing by Example



We’ll start by rewriting our existing form
      parser from the bottom up, beginning with p_hex, which parses a hexadecimal escape
      sequence. Here’s the code in normal do-notation style:
-- file: ch16/FormApp.hs
p_hex :: CharParser () Char
p_hex = do
  char '%'
  a <- hexDigit
  b <- hexDigit
  let ((d, _):_) = readHex [a,b]
  return . toEnum $ d
And here’s our applicative version:
-- file: ch16/FormApp.hs
a_hex = hexify <$> (char '%' *> hexDigit) <*> hexDigit
    where hexify a b = toEnum . fst . head . readHex $ [a,b]
Although the individual parsers are mostly
      untouched, the combinators that we’re gluing them together with have
      changed. The only familiar one is (<$>), which we already know is a synonym for fmap.
From our definition of
      Applicative, we know that (<*>) is ap.
The remaining unfamiliar combinator is
      (*>), which applies its first argument, throws away its result, and then
      applies the second and returns its result. In other words, it’s
      similar to (>>).
A handy tip about angle brackets
Before we continue, here’s a useful aid
        for remembering what all the angle brackets are for in the combinators
        from Control.Applicative: if there’s an angle bracket
        pointing to a side, the result from that side should be used.
For example, (*>) returns the result on its right;
        (<*>) returns results from
        both sides; and (<*)—which we
        have not seen yet—returns the result on its left.

Although the concepts here should mostly
      be familiar from our earlier coverage of functors and monads, we’ll walk
      through this function to explain what’s happening. First, to get a grip
      on our types, we’ll hoist hexify to
      the top level and give it a signature:
-- file: ch16/FormApp.hs
hexify :: Char -> Char -> Char
hexify a b = toEnum . fst . head . readHex $ [a,b]
Parsec’s hexDigit parser parses a single hexadecimal
      digit:
ghci> :type hexDigit
hexDigit :: CharParser st Char

Therefore, char '%' *>
      hexDigit has the same type, since (*>) returns the result on its right. (The
      CharParser type is nothing more than a synonym for
      GenParser Char.)
ghci> :type char '%' *> hexDigit
char '%' *> hexDigit :: GenParser Char st Char

The expression hexify <$>
      (char '%' *> hexDigit) is a parser that matches a % character followed by hexDigit,
      and whose result is a function:
ghci> :type hexify <$> (char '%' *> hexDigit)
hexify <$> (char '%' *> hexDigit) :: GenParser Char st (Char -> Char)

Finally, (<*>) applies the parser on its left,
      and then the parser on its right, and then applies the function that’s
      the result of the left parse to the value that’s the result of the
      right.
If you’ve been able to follow this, you
      understand the (<*>) and
      ap combinators—(<*>) is plain old ($) lifted to applicative functors, and
      ap is the same thing lifted to
      monads:
ghci> :type ($)
($) :: (a -> b) -> a -> b
ghci> :type (<*>)
(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b
ghci> :type ap
ap :: (Monad m) => m (a -> b) -> m a -> m b
Next, we’ll consider the p_char parser:
-- file: ch16/FormApp.hs
p_char :: CharParser () Char
p_char = oneOf urlBaseChars
     <|> (char '+' >> return ' ')
     <|> p_hex

urlBaseChars = ['a'..'z']++['A'..'Z']++['0'..'9']++"$-_.!*'(),"
This remains almost the same in an
      applicative style, save for one piece of convenient notation:
-- file: ch16/FormApp.hs
a_char = oneOf urlBaseChars
     <|> (' ' <$ char '+')
     <|> a_hex
Here, the (<$) combinator uses the value on the left
      if the parser on the right succeeds.
Finally, the equivalent of p_pair_app1 is almost identical:
-- file: ch16/FormParse.hs
p_pair_app1 =
    liftM2 (,) (many1 p_char) (optionMaybe (char '=' >> many p_char))
All we’ve changed is the combinator we use
      for lifting—the liftA functions act
      in the same way as their liftM
      cousins:
-- file: ch16/FormApp.hs
a_pair :: CharParser () (String, Maybe String)
a_pair = liftA2 (,) (many1 a_char) (optionMaybe (char '=' *> many a_char))

Parsing JSON Data



To give ourselves a better feel for parsing with applicative functors, and
      to explore a few more corners of Parsec, we’ll write a JSON parser that
      follows the definition in RFC 4627.
At the top level, a JSON value must be
      either an object or an array:
-- file: ch16/JSONParsec.hs
p_text :: CharParser () JValue
p_text = spaces *> text
     <?> "JSON text"
    where text = JObject <$> p_object
             <|> JArray <$> p_array
These are structurally similar, with an
      opening character, followed by one or more items separated by commas,
      followed by a closing character. We capture this similarity by writing a
      small helper function:
-- file: ch16/JSONParsec.hs
p_series :: Char -> CharParser () a -> Char -> CharParser () [a]
p_series left parser right =
    between (char left <* spaces) (char right) $
            (parser <* spaces) `sepBy` (char ',' <* spaces)
Here, we finally have a use for the
      (<*) combinator that we introduced earlier. We use it to skip over any
      whitespace that might follow certain tokens. With this p_series function, parsing an array is
      simple:
-- file: ch16/JSONParsec.hs
p_array :: CharParser () (JAry JValue)
p_array = JAry <$> p_series '[' p_value ']'
Dealing with a JSON object is hardly more
      complicated, requiring just a little additional effort to produce a
      name/value pair for each of the object’s fields:
-- file: ch16/JSONParsec.hs
p_object :: CharParser () (JObj JValue)
p_object = JObj <$> p_series '{' p_field '}'
    where p_field = (,) <$> (p_string <* char ':' <* spaces) <*> p_value
Parsing an individual value is a matter of
      calling an existing parser, and then wrapping its result with the
      appropriate JValue constructor:
-- file: ch16/JSONParsec.hs
p_value :: CharParser () JValue
p_value = value <* spaces
  where value = JString <$> p_string
            <|> JNumber <$> p_number
            <|> JObject <$> p_object
            <|> JArray <$> p_array
            <|> JBool <$> p_bool
            <|> JNull <$ string "null"
            <?> "JSON value"

p_bool :: CharParser () Bool
p_bool = True <$ string "true"
     <|> False <$ string "false"
The choice combinator allows us to represent this
      kind of ladder-of-alternatives as a list. It returns the result of the
      first parser to succeed:
-- file: ch16/JSONParsec.hs
p_value_choice = value <* spaces
  where value = choice [ JString <$> p_string
                       , JNumber <$> p_number
                       , JObject <$> p_object
                       , JArray <$> p_array
                       , JBool <$> p_bool
                       , JNull <$ string "null"
                       ]
                <?> "JSON value"
This leads us to the two most interesting
      parsers, for numbers and strings. We’ll deal with numbers first, since
      they’re simpler:
-- file: ch16/JSONParsec.hs
p_number :: CharParser () Double
p_number = do s <- getInput
              case readSigned readFloat s of
                [(n, s')] -> n <$ setInput s'
                _         -> empty
Our trick here is to take advantage of
      Haskell’s standard number parsing library functions, which are defined
      in the Numeric module. The readFloat function reads an unsigned
      floating-point number; readSigned
      takes a parser for an unsigned number and turns it into a parser for
      possibly signed numbers.
Since these functions know nothing about
      Parsec, we have to work with them specially. Parsec’s getInput function gives us direct access to
      Parsec’s unconsumed input stream. If readSigned readFloat
      succeeds, it returns both the parsed number and the rest of the unparsed
      input. We then use setInput to give
      this back to Parsec as its new unconsumed input stream.
Parsing a string isn’t difficult, merely
      detailed:
-- file: ch16/JSONParsec.hs
p_string :: CharParser () String
p_string = between (char '\"') (char '\"') (many jchar)
    where jchar = char '\\' *> (p_escape <|> p_unicode)
              <|> satisfy (`notElem` "\"\\")
We can parse and decode an escape sequence
      with the help of the choice
      combinator that we just met:
-- file: ch16/JSONParsec.hs
p_escape = choice (zipWith decode "bnfrt\\\"/" "\b\n\f\r\t\\\"/")
    where decode c r = r <$ char c
Finally, JSON lets us encode a Unicode
      character in a string as \u, followed
      by four hexadecimal digits:
-- file: ch16/JSONParsec.hs
p_unicode :: CharParser () Char
p_unicode = char 'u' *> (decode <$> count 4 hexDigit)
    where decode x = toEnum code
              where ((code,_):_) = readHex x
The only piece of functionality that
      applicative functors are missing, compared to monads, is the ability to
      bind a value to a variable, which we need here in order to be able to
      validate the value we’re trying to decode.
This is the one place in our parser that
      we’ve needed to use a monadic function. This pattern extends to more
      complicated parsers, too—only infrequently do we need the extra bit of
      power that monads offer.
As of this writing, applicative functors
      are still quite new to Haskell, and people are only beginning to explore
      the possible uses for them beyond the realm of parsing.

Parsing a HTTP Request



As another example of applicative parsing, we will develop a
      basic parser for HTTP requests:
-- file: ch16/HttpRequestParser.hs
module HttpRequestParser
    (
      HttpRequest(..)
    , Method(..)
    , p_request
    , p_query
    ) where

import ApplicativeParsec
import Numeric (readHex)
import Control.Monad (liftM4)
import System.IO (Handle)
An HTTP request consists of a method, an
      identifier, a series of headers, and an optional body. For simplicity,
      we’ll focus on just two of the six method types specified by the HTTP
      1.1 standard. A POST method has a body; a GET has none:
-- file: ch16/HttpRequestParser.hs
data Method = Get | Post
          deriving (Eq, Ord, Show)

data HttpRequest = HttpRequest {
      reqMethod :: Method
    , reqURL :: String
    , reqHeaders :: [(String, String)]
    , reqBody :: Maybe String
    } deriving (Eq, Show)
Because we’re writing in an applicative
      style, our parser can be both brief and readable. Readable, that is, if
      you’re becoming used to the applicative parsing notation:
-- file: ch16/HttpRequestParser.hs
p_request :: CharParser () HttpRequest
p_request = q "GET" Get (pure Nothing)
        <|> q "POST" Post (Just <$> many anyChar)
  where q name ctor body = liftM4 HttpRequest req url p_headers body
            where req = ctor <$ string name <* char ' '
        url = optional (char '/') *>
              manyTill notEOL (try $ string " HTTP/1." <* oneOf "01")
              <* crlf
Briefly, the q helper function accepts a method name, the
      type constructor to apply to it, and a parser for a request’s optional
      body. The url helper does not
      attempt to validate a URL, because the HTTP specification does not state
      what characters a URL contain. The function just consumes input until
      either the line ends or it reaches an HTTP version identifier.
Backtracking and Its Discontents



The try combinator has to hold onto input in case it needs to restore it
        so that an alternative parser can be used. This practice is referred
        to as backtracking. Because try must save input, it is expensive to
        use. Sprinkling a parser with unnecessary uses of try is a very effective way to slow it
        down, sometimes to the point of unacceptable performance.
The standard way to avoid the need for
        backtracking is to tidy up a parser so that we can decide whether it
        will succeed or fail using only a single token of input. In this case,
        the two parsers consume the same initial tokens, so we turn them into
        a single parser:
ghci> let parser = (++) <$> string "HT" <*> (string "TP" <|> string "ML")
ghci> parseTest parser "HTTP"
"HTTP"
ghci> parseTest parser "HTML"
"HTML"
Even better, Parsec gives us an improved
        error message if we feed it nonmatching input:
ghci> parseTest parser "HTXY"
parse error at (line 1, column 3):
unexpected "X"
expecting "TP" or "ML"


Parsing Headers



Following the first line of a HTTP
        request is a series of zero or more headers. A header begins
        with a field name, followed by a colon, followed by the content. If
        the lines that follow begin with spaces, they are treated as
        continuations of the current content:
-- file: ch16/HttpRequestParser.hs
p_headers :: CharParser st [(String, String)]
p_headers = header `manyTill` crlf
  where header = liftA2 (,) fieldName (char ':' *> spaces *> contents)
        contents = liftA2 (++) (many1 notEOL <* crlf)
                               (continuation <|> pure [])
        continuation = liftA2 (:) (' ' <$ many1 (oneOf " \t")) contents
        fieldName = (:) <$> letter <*> many fieldChar
        fieldChar = letter <|> digit <|> oneOf "-_"

crlf :: CharParser st ()
crlf = (() <$ string "\r\n") <|> (() <$ newline)

notEOL :: CharParser st Char
notEOL = noneOf "\r\n"
Exercises
	Our HTTP request parser is too simple to be useful in real
              deployments. It is missing vital functionality and is not
              resistant to even the most basic denial-of-service
              attacks.
Make the parser honor the Content-Length
              field properly, if it is present.

	A popular denial-of-service attack against naive web
              servers is simply to send unreasonably long headers. A single
              header might contain 10s or 100s of megabytes of garbage text,
              causing a server to run out of memory.
Restructure the header parser so that it will fail if any
              line is longer than 4,096 characters. It must fail immediately
              when this occurs; it cannot wait until the end of a line
              eventually shows up.

	Add the ability to honor the Transfer-Encoding:
              chunked header if it is present. See section
              3.6.1 of RFC 2616 for details.

	Another popular attack is to open a connection and either
              leave it idle or send data extremely slowly.
Write a wrapper in the IO monad that will
              invoke the parser. Use the System.Timeout module to close the
              connection if the parser does not complete within 30 seconds.








[36] For more on monads, refer to Chapter 14.

[37] For information on dealing with
          choices that may consume some input before failing, see Lookahead.



Chapter 17. Interfacing with C: The FFI



Programming languages do not exist in perfect isolation. They inhabit
    an ecosystem of tools and libraries, built up over decades, and often
    written in a range of programming languages. Good engineering practice
    suggests we reuse that effort. The Haskell Foreign Function Interface
    (the FFI) is the means by which Haskell code can use, and be used by, code
    written in other languages. In this chapter, we’ll look at how the FFI
    works and how to produce a Haskell binding to a C library, including how
    to use an FFI preprocessor to automate much of the work. The challenge:
    take PCRE, the standard Perl-compatible regular expression
    library, and make it usable from Haskell in an efficient and
    functional way. Throughout, we’ll seek to abstract out manual effort
    required by the C implementation, delegating that work to Haskell to make
    the interface more robust, yielding a clean, high-level binding. We assume
    only some basic familiarity with regular expressions.
Binding one language to another is a
    nontrivial task. The binding language needs to understand the calling
    conventions, type system, data structures, memory allocation mechanisms,
    and linking strategy of the target language, just to get things working.
    The task is to carefully align the semantics of both languages so that
    both can understand the data that passes between them.
For Haskell, this technology stack is
    specified by FFI to the
    Haskell report. The FFI report describes how to correctly bind Haskell and
    C together and how to extend bindings to other languages. The standard is
    designed to be portable so that FFI bindings will work reliably across
    Haskell implementations, operating
    systems, and C compilers.
All implementations of Haskell support the
    FFI, and it is a key technology when using Haskell in a new field. Instead
    of reimplementing the standard libraries in a domain, we just bind to
    existing ones written in languages other than Haskell.
The FFI adds a new dimension of flexibility
    to the language: if we need to access raw hardware for some reason (say
    we’re programming new hardware or implementing an operating system), the
    FFI lets us get access to that hardware. It also gives us a performance
    escape hatch: if we can’t get a code hot spot fast enough, there’s always
    the option of trying again in C. So let’s look at what the FFI actually
    means for writing code.
Foreign Language Bindings: The Basics



The most common operation we’ll want to
      do, unsurprisingly, is call a C function from Haskell. So let’s do that,
      by binding to some functions from the standard C math library. We’ll put
      the binding in a source file, and then compile it into a Haskell binary
      that makes use of the C code.
To start with, we need to enable the FFI
      extension, as the FFI addendum support isn’t enabled by default. We do
      this, as always, via a LANGUAGE pragma at the top of our
      source file:
-- file: ch17/SimpleFFI.hs
{-# LANGUAGE ForeignFunctionInterface #-}
The LANGUAGE pragmas
      indicate which extensions to Haskell 98 a module uses. We bring just the FFI extension in play
      this time. It is important to track which extensions to the language you
      need. Fewer extensions generally means more portable, more robust code.
      Indeed, it is common for Haskell programs written more than a decade ago
      to compile perfectly well today, thanks to standardization, despite
      changes to the language’s syntax, type system, and core
      libraries.
The next step is to import the Foreign modules, which provide
      useful types (such as pointers, numerical types, and arrays) and utility
      functions (such as malloc and alloca)
      for writing bindings to other languages:
-- file: ch17/SimpleFFI.hs
import Foreign
import Foreign.C.Types
For extensive work with foreign
      libraries, a good knowledge of the Foreign module is
      essential. Other useful modules include Foreign.C.String,
      Foreign.Ptr, and Foreign.Marshal.Array.
Now we can get down to work calling C
      functions. To do this, we need to know three things: the name of the C
      function, its type, and its associated header file. Additionally, for
      code that isn’t provided by the standard C library, we’ll need to know
      the C library’s name for linking purposes. The actual binding work is
      done with a foreign import declaration, like
      so:
-- file: ch17/SimpleFFI.hs
foreign import ccall "math.h sin"
     c_sin :: CDouble -> CDouble
This defines a new Haskell function,
      c_sin, whose concrete implementation is in C, via the sin
      function. When c_sin is called, a call to the actual
      sin will be made (using the standard C calling convention,
      indicated by ccall). The Haskell runtime passes control to C, which returns
      its results back to Haskell. The result is then wrapped up as a Haskell
      value of type CDouble.
A common idiom when writing FFI bindings
      is to expose the C function with the prefix c_, distinguishing it from more user-friendly,
      higher-level functions. The raw C function is specified by the
      math.h header, where it is declared to have the
      type:
double sin(double x);
When writing the binding, the programmer
      has to translate C type signatures such as this into their Haskell FFI
      equivalents, making sure that the data representations match up. For
      example, double in C corresponds to CDouble in
      Haskell. We need to be careful here, since if a mistake is made, the
      Haskell compiler will happily generate incorrect code to call C! The
      poor Haskell compiler doesn’t know anything about what types the C
      function actually requires, so if instructed to, it will call the C
      function with the wrong arguments. At best this will lead to C compiler
      warnings, and more likely, it will end with a runtime crash. At worst
      the error will silently go unnoticed until some critical failure occurs.
      So make sure you use the correct FFI types, and don’t be wary of using
      QuickCheck to test your C code via the bindings.[38]
The most important primitive C types are
      represented in Haskell with the somewhat intuitive names (for signed and
      unsigned types) CChar, CUChar,
      CInt, CUInt, CLong,
      CULong, CSize, CFloat, and
      CDouble. More are defined in the FFI standard and can be
      found in the Haskell base library under Foreign.C.Types. It
      is also possible to define your own Haskell-side representation types
      for C, as we’ll see later.
Be Careful of Side Effects



One point to note is that we bound
        sin as a pure function in Haskell, one with no side effects. That’s fine in
        this case, since the sin function in C is referentially
        transparent. By binding pure C functions to pure Haskell functions,
        the Haskell compiler is taught something about the C code—namely, that
        it has no side effects, making optimizations easier. Pure code is also
        more flexible for the Haskell programmer, as it yields naturally
        persistent data structures and threadsafe functions. However, while
        pure Haskell code is always threadsafe, this is harder to guarantee of
        C. Even if the documentation indicates the function is likely to
        expose no side effects, there’s little to ensure it is also
        threadsafe, unless explicitly documented as “reentrant.” Pure,
        threadsafe C code, while rare, is a valuable commodity. It is the
        easiest flavor of C to use from Haskell.
Of course, code with side effects is
        more common in imperative languages, where the explicit sequencing of
        statements encourages the use of effects. It is much more common in C
        for functions to return different values, given the same arguments,
        due to changes in global or local state, or to have other side
        effects. Typically, this is signalled in C by the function returning
        only a status value or some void type, rather than a useful result
        value. This indicates that the real work of the function was in its
        side effects. For such functions, we’ll need to capture those side
        effects in the IO monad (by changing the return type to IO
        CDouble, for example). We also need to be very careful with
        pure C functions that aren’t also reentrant, as multiple threads are
        extremely common in Haskell code, in comparison to C. We might need to
        moderate access to the FFI binding with a transactional lock, or by
        duplicating the underlying C state to make nonreentrant code safe for
        use.

A High-Level Wrapper



With the foreign imports out of the way, the next step is to
        convert the C types we pass to and receive from the foreign language
        call into native Haskell types, wrapping the binding so that it appears
        as a normal Haskell function:
-- file: ch17/SimpleFFI.hs
fastsin :: Double -> Double
fastsin x = realToFrac (c_sin (realToFrac x))
The main thing to remember when writing
        convenient wrappers over bindings such as this is to correctly convert
        input and output back to normal Haskell types. To convert between
        floating-point values, we can use realToFrac, which lets us translate
        different floating-point values to each other (and these conversions,
        such as from CDouble to Double, are usually
        free, as the underlying representations are unchanged). For integer
        values, fromIntegral is available. For
        other common C data types, such as arrays, we may need to unpack the
        data to a more workable Haskell type (such as a list), or possibly
        leave the C data opaque and operate on it indirectly only (perhaps via
        a ByteString). The choice depends on how costly the
        transformation is and the functions that are available on the source
        and destination types.
We can now proceed to use the bound
        function in a program. For example, we can apply the C
        sin function to a Haskell list of 10ths:
-- file: ch17/SimpleFFI.hs
main = mapM_ (print . fastsin) [0/10, 1/10 .. 10/10]
This simple program prints each result
        as it is computed. Putting the complete binding in the file SimpleFFI.hs allows us to run it in
        ghci:
$ ghci SimpleFFI.hs
*Main> main
0.0
9.983341664682815e-2
0.19866933079506122
0.2955202066613396
0.3894183423086505
0.479425538604203
0.5646424733950354
0.644217687237691
0.7173560908995227
0.7833269096274833
0.8414709848078964
Alternatively, we can compile the code
        to an executable, dynamically linked against the corresponding C
        library:
$ ghc -O --make SimpleFFI.hs
[1 of 1] Compiling Main             ( SimpleFFI.hs, SimpleFFI.o )
Linking SimpleFFI ...

and then run that:
$ ./SimpleFFI 
0.0
9.983341664682815e-2
0.19866933079506122
0.2955202066613396
0.3894183423086505
0.479425538604203
0.5646424733950354
0.644217687237691
0.7173560908995227
0.7833269096274833
0.8414709848078964
We’re well on our way now, with a full
        program, statically linked against C, which interleaves C and Haskell
        code and passes data across the language boundary. Simple bindings
        such as the one just shown are almost trivial, as the standard
        Foreign library provides convenient aliases for common
        types such as CDouble. In the next section, we’ll look at
        a larger engineering task: binding to the PCRE library, which brings
        up issues of memory management and type safety.


Regular Expressions for Haskell: A Binding for PCRE



As we’ve seen in previous sections, Haskell programs have
      something of a bias towards lists as a foundational data structure. List
      functions are a core part of the base library, and convenient syntax for
      constructing and taking apart list structures is wired into the
      language. Strings are, of course, simply lists of characters (rather
      than, for example, flat arrays of characters). This flexibility is all
      well and good, but it results in a tendency for the standard library to
      favor polymorphic list operations at the expense of string-specific operations.
Indeed, many common tasks can be solved
      via regular-expression-based string processing, yet support for regular
      expressions isn’t part of the Haskell Prelude. So let’s look at how we’d take an
      off-the-shelf regular expression library, PCRE, and provide a natural,
      convenient Haskell binding to it, giving us useful regular expressions
      for Haskell.
PCRE itself is a ubiquitous C library
      implementing Perl-style regular expressions. It is widely available and
      preinstalled on many systems. You can find it at http://www.pcre.org/. In the following sections, we’ll
      assume the PCRE library and headers are available on the machine.
Simple Tasks: Using the C Preprocessor



The simplest task when setting out to write a new FFI binding from Haskell
        to C is to bind constants defined in C headers to equivalent Haskell values. For example, PCRE
        provides a set of flags for modifying how the core pattern matching
        system works (such as ignoring case or allowing matching on newlines).
        These flags appear as numeric constants in the PCRE header
        files:
/* Options */

#define PCRE_CASELESS           0x00000001
#define PCRE_MULTILINE          0x00000002
#define PCRE_DOTALL             0x00000004
#define PCRE_EXTENDED           0x00000008
To export these values to Haskell, we
        need to insert them into a Haskell source file somehow. One obvious
        way to do this is by using the C preprocessor to substitute
        definitions from C into the Haskell source, which we then compile as a
        normal Haskell source file. Using the preprocessor, we can even
        declare simple constants, via textual substitutions on the Haskell
        source file:
-- file: ch17/Enum1.hs
{-# LANGUAGE CPP #-}

#define N 16

main = print [ 1 .. N ]
The file is processed with the
        preprocessor in a similar manner to C source (with CPP run for us by the Haskell compiler, when it
        spots the LANGUAGE pragma), resulting in program
        output:
$ runhaskell Enum.hs
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

However, relying on CPP is a rather
        fragile approach. The C preprocessor isn’t aware it is processing a
        Haskell source file and will happily include text, or transform
        source, in such a way as to make our Haskell code invalid. We need to
        be careful not to confuse CPP. If we were to include C headers, we
        risk substituting unwanted symbols, or inserting C type information
        and prototypes into the Haskell source, resulting in a broken
        mess.
To solve these problems, the binding
        preprocessor hsc2hs is distributed with GHC. It provides
        a convenient syntax for including C binding information in Haskell, as
        well as letting us safely operate with headers. It is the tool of
        choice for the majority of Haskell FFI bindings.

Binding Haskell to C with hsc2hs



To use hsc2hs as an intelligent binding tool for Haskell, we need to
        create an .hsc file, Regex.hsc, which will hold the Haskell
        source for our binding, along with hsc2hs processing
        rules, C headers, and C type information. To start off, we need some
        pragmas and imports:
-- file: ch17/Regex-hsc.hs
{-# LANGUAGE CPP, ForeignFunctionInterface #-}

module Regex where

import Foreign
import Foreign.C.Types

#include <pcre.h>
The module begins with a typical
        preamble for an FFI binding: enable CPP, enable the FFI syntax,
        declare a module name, and then import some things from the base
        library. The unusual item is the final line, where we include the C
        header for PCRE. This wouldn’t be valid in a .hs source file, but is fine in .hsc code.

Adding Type Safety to PCRE



Next we need a type to represent PCRE compile-time flags. In C, these
        are integer flags to the compile function, so we could
        just use CInt to represent them. All we know about the
        flags is that they’re C numeric constants, so CInt is the
        appropriate representation.
As a Haskell library writer though,
        this feels sloppy. The type of values that can be used as regex flags
        contains fewer values than CInt allows for. Nothing would
        prevent the end user from passing illegal integer values as arguments,
        or mixing up flags that should be passed only at regex compile time,
        with runtime flags. It is also possible to do arbitrary math on flags
        or to make other mistakes where integers and flags are confused. We
        really need to more precisely specify that the type of flags is
        distinct from its runtime representation as a numeric value. If we can
        do this, we can statically prevent a class of bugs relating to misuse
        of flags.
Adding such a layer of type safety is
        relatively easy, and a great use case for newtype, the
        type introduction declaration. newtype lets us create a
        type with an identical runtime representation type to another type,
        but which is treated as a separate type at compile time. We can
        represent flags as CInt values, but at compile time they’ll
        be tagged distinctly for the type checker. This makes it a type error
        to use invalid flag values (as we specify only those valid flags and
        prevent access to the data constructor), or to pass flags to functions
        expecting integers. We get to use the Haskell type system to introduce
        a layer of type safety to the C PCRE API.
To do this, we define a
        newtype for PCRE compile-time options, whose
        representation is actually that of a CInt value, like
        so:
-- file: ch17/Regex-hsc.hs
-- | A type for PCRE compile-time options. These are newtyped CInts,
-- which can be bitwise-or'd together, using '(Data.Bits..|.)'
--
newtype PCREOption = PCREOption { unPCREOption :: CInt }
    deriving (Eq,Show)
The type name is
        PCREOption, and it has a single constructor, also named
        PCREOption, which lifts a CInt value into a
        new type by wrapping it in a constructor. We can also happily define
        an accessor, unPCREOption, using the Haskell record
        syntax to access the underlying
        CInt. That’s a lot of convenience in one line. While
        we’re here, we can also derive some useful typeclass operations for
        flags (equality and printing). We need to remember to export the data
        constructor abstractly from the source module, ensuring that users
        can’t construct their own PCREOption values.

Binding to Constants



Now that we’ve pulled in the required modules, turned on the language features
        we need, and defined a type to represent PCRE options, we need to
        actually define some Haskell values corresponding to those PCRE
        constants.
We can do this in two ways with
        hsc2hs. The first is to use the #const
        keyword hsc2hs provides. This lets us name constants to
        be provided by the C preprocessor. We can bind to the constants
        manually by listing the CPP symbols for them using the
        #const keyword:
-- file: ch17/Regex-hsc-const.hs
caseless       :: PCREOption
caseless       = PCREOption #const PCRE_CASELESS

dollar_endonly :: PCREOption
dollar_endonly = PCREOption #const PCRE_DOLLAR_ENDONLY

dotall         :: PCREOption
dotall         = PCREOption #const PCRE_DOTALL
This introduces three new constants on
        the Haskell side, caseless, dollar_endonly,
        and dotall, corresponding to the similarly named C
        definitions. We immediately wrap the constants in a newtype constructor, so they’re exposed to
        the programmer as abstract PCREOption types only.
Creating a .hsc file is the first step. We now need to
        actually create a Haskell source file, with the C preprocessing done.
        Time to run hsc2hs over the .hsc file:
$ hsc2hs Regex.hsc
This creates a new output file,
        Regex.hs, where the CPP variables
        have been expanded, yielding valid Haskell code:
-- file: ch17/Regex-hsc-const-generated.hs
caseless       :: PCREOption
caseless       = PCREOption 1
{-# LINE 21 "Regex.hsc" #-}

dollar_endonly :: PCREOption
dollar_endonly = PCREOption 32
{-# LINE 24 "Regex.hsc" #-}

dotall         :: PCREOption
dotall         = PCREOption 4
{-# LINE 27 "Regex.hsc" #-}
Notice how the original line in the
        .hsc file is listed next to each expanded definition via the
        LINE pragma. The compiler uses this information to report errors in
        terms of their source, in the original file, rather than in the
        generated one. We can load this generated .hs file into the interpreter and play with
        the results:
$ ghci Regex.hs
*Regex> caseless
PCREOption {unPCREOption = 1}
*Regex> unPCREOption caseless
1
*Regex> unPCREOption caseless + unPCREOption caseless
2
*Regex> caseless + caseless
interactive>:1:0:
    No instance for (Num PCREOption)
So things are working as expected. The
        values are opaque, we get type errors if we try to break the
        abstraction, and we can unwrap them and operate on them if needed. The
        unPCREOption accessor is used to unwrap the boxes. That’s
        a good start, but let’s see how we can simplify this task
        further.

Automating the Binding



Clearly, manually listing all the C
        defines and wrapping them is tedious and error prone. Wrapping all the
        literals in newtype constructors is also annoying. This
        kind of binding is such a common task that hsc2hs
        provides convenient syntax to automate it: the #enum
        construct.
We can replace our list of top-level
        bindings with the equivalent:
-- file: ch17/Regex-hsc.hs
-- PCRE compile options
#{enum PCREOption, PCREOption
  , caseless             = PCRE_CASELESS
  , dollar_endonly       = PCRE_DOLLAR_ENDONLY
  , dotall               = PCRE_DOTALL
  }
This is much more concise! The
        #enum construct gives us three fields to work with. The first is the
        name of the type we’d like the C defines to be treated as. This lets
        us pick something other than just CInt for the binding.
        We chose PCREOption’s to construct.
The second field is an optional
        constructor to place in front of the symbols. This is specifically for
        the case we want to construct newtype values, and where
        much of the grunt work is saved. The final part of the
        #enum syntax is self-explanatory: it just defines Haskell
        names for constants to be filled in via CPP.
Running this code through
        hsc2hs, as before, generates a Haskell file with the
        following binding code produced (with LINE pragmas
        removed for brevity):
-- file: ch17/Regex.hs
caseless              :: PCREOption
caseless              = PCREOption 1
dollar_endonly        :: PCREOption
dollar_endonly        = PCREOption 32
dotall                :: PCREOption
dotall                = PCREOption 4
Perfect. Now we can do something in
        Haskell with these values. Our aim here is to treat flags as abstract
        types, not as bit fields in integers in C. Passing multiple flags in C
        would be done by bitwise or-ing multiple flags together. For an
        abstract type though, that would expose too much information. In order
        to preserve the abstraction and give it a Haskell flavor, we’d prefer
        that users pass in flags in a list that the library itself combined.
        This is achievable with a simple fold:
-- file: ch17/Regex.hs
-- | Combine a list of options into a single option, using bitwise (.|.)
combineOptions :: [PCREOption] -> PCREOption
combineOptions = PCREOption . foldr ((.|.) . unPCREOption) 0
This simple loop starts with an initial
        value of 0, unpacks each flag, and uses
        bitwise-or—(.|.)—on the underlying CInt, to
        combine each value with the loop accumulator. The final accumulated
        state is then wrapped up in the PCREOption
        constructor.
Let’s turn now to actually compiling
        some regular expressions.


Passing String Data Between Haskell and C



The next task is to write a binding to the PCRE regular
      expression compile function. Let’s look at its type,
      straight from the pcre.h
      header file:
pcre *pcre_compile(const char *pattern,
                   int options,
                   const char **errptr,
                   int *erroffset,
                   const unsigned char *tableptr);
This function compiles a regular
      expression pattern into some internal format, taking the pattern as an
      argument, along with some flags and some variables for returning status
      information.
We need to work out what Haskell types to
      represent each argument with. Most of these types are covered by
      equivalents defined for us by the FFI standard and are available in
      Foreign.C.Types. The first argument, the regular expression itself, is passed
      as a null-terminated char pointer to C, equivalent to the
      Haskell CString type. We’ve already chosen PCRE
      compile-time options to represent the abstract PCREOption
      newtype, whose runtime representation is a
      CInt. As the representations are guaranteed to be
      identical, we can pass the newtype safely. The other
      arguments are a little more complicated and require some work to
      construct and take apart.
The third argument, a pointer to a C
      string, will be used as a reference to any error message generated when
      compiling the expression. The value of the pointer will be modified by
      the C function to point to a custom error string. We can represent this
      with a Ptr CString type. Pointers in Haskell are
      heap-allocated containers for raw addresses and can be created and
      operated on with a number of allocation primitives in the FFI library.
      For example, we can represent a pointer to a C int as
      Ptr CInt, and a pointer to an unsigned char as a Ptr
      Word8.
A note about pointers
Once we have a Haskell Ptr value handy, we can do various pointer-like things with it.
        We can compare it for equality with the null pointer, represented with
        the special nullPtr constant. We can cast a pointer from one type to a pointer to
        another, or we can advance a pointer by an offset in bytes with
        plusPtr. We can even modify the value pointed to, using
        poke, and, of course, dereference a pointer yielding that
        which it points to, with peek. In the majority of
        circumstances, a Haskell programmer doesn’t need to operate on
        pointers directly, but when they are needed, these tools come in
        handy.

The question then is how to represent the
      abstract pcre pointer returned when we compile the regular
      expression. We need to find a Haskell type that is as abstract as the C
      type. Since the C type is treated abstractly, we can assign any
      heap-allocated Haskell type to the data, as long as it has few or no
      operations on it. This is a common trick for arbitrarily typed foreign
      data. The idiomatic simple type to use to represent unknown foreign data
      is a pointer to the () type. We can use a type synonym to
      remember the binding:
-- file: ch17/PCRE-compile.hs
type PCRE = ()
That is, the foreign data is some
      unknown, opaque object, and we’ll just treat it as a pointer to
      (), knowing full well that we’ll never actually dereference
      that pointer. This gives us the following foreign import binding for
      pcre_compile, which must be in IO, as the
      pointer returned will vary on each call, even if the returned object is
      functionally equivalent:
-- file: ch17/PCRE-compile.hs
foreign import ccall unsafe "pcre.h pcre_compile"
    c_pcre_compile  :: CString
                    -> PCREOption
                    -> Ptr CString
                    -> Ptr CInt
                    -> Ptr Word8
                    -> IO (Ptr PCRE)
Typed Pointers



We can increase safety in the binding futher by using a
        typed pointer, instead of using the
        () type. That is, a unique type, distinct from the unit
        type, that has no meaningful runtime representation. A type for which
        no data can be constructed, making dereferencing it a type error. One
        good way to build such provably uninspectable data types is with a
        nullary data type:
-- file: ch17/PCRE-nullary.hs
data PCRE
A note about safety
When making a foreign import declaration, we can optionally
          specify a safety level to use when making the
          call, using either the safe or unsafe
          keyword. A safe call is less efficient but guarantees that the
          Haskell system can be safely called into from C. An unsafe call has
          far less overhead, but the C code that is called must not call back
          into Haskell. By default, foreign imports are safe, but in practice
          it is rare for C code to call back into Haskell, so for efficiency
          we mostly use unsafe calls.

This requires the
        EmptyDataDecls language extension. This type clearly contains no values! We can only ever
        construct pointers to such values, as there are no concrete values
        (other than bottom) that have this type.
We can also achieve the same thing,
        without requiring a language extension, using a recursive
        newtype:
-- file: ch17/PCRE-recursive.hs
newtype PCRE = PCRE (Ptr PCRE)
Again, we can’t really do anything with
        a value of this type, as it has no runtime representation. Using typed
        pointers in these ways is just another way to add safety to a Haskell
        layer over what C provides. What would require discipline on the part
        of the C programmer (remembering never to dereference a PCRE pointer)
        can be enforced statically in the type system of the Haskell binding.
        If this code compiles, the type checker has given us a proof that the
        PCRE objects returned by C are never dereferenced on the Haskell
        side.
We have the foreign import declaration
        sorted out now, and the next step is to marshal data into the right
        form so that we can finally call the C code.

Memory Management: Let the Garbage Collector Do the
        Work



One question that isn’t resolved yet is how to manage the memory
        associated with the abstract PCRE structure returned by
        the C library. The caller didn’t have to allocate it—the library took
        care of that by allocating memory on the C side. At some point,
        though, we’ll need to deallocate it. This, again, is an opportunity to
        abstract the tedium of using the C library by hiding the complexity
        inside the Haskell binding.
We’ll use the Haskell garbage collector
        to automatically deallocate the C structure once it is no longer in
        use. To do this, we’ll make use of Haskell garbage collector
        finalizers and the ForeignPtr type.
We don’t want users to have to manually
        deallocate the Ptr PCRE value returned by the foreign
        call. The PCRE library specifically states that structures are
        allocated on the C side with malloc and need to be freed
        when no longer in use, or we risk leaking memory. The Haskell garbage
        collector already goes to great lengths to automate the task of
        managing memory for Haskell values. Cleverly, we can also assign our
        hardworking garbage collector the task of looking after C’s memory for
        us. The trick is to associate a piece of Haskell data with the foreign
        allocator data and to give the Haskell garbage collector an arbitrary
        function that is to deallocate the C resource once it notices that the
        Haskell data is finished.
We have two tools at our disposal
        here—the opaque ForeignPtr data type and the
        newForeignPtr function, which has type:
-- file: ch17/ForeignPtr.hs
newForeignPtr :: FinalizerPtr a -> Ptr a -> IO (ForeignPtr a)
The function takes two arguments: a
        finalizer to run when the data goes out of scope and a pointer to the
        associated C data. It returns a new managed pointer, which will have
        its finalizer run once the garbage collector decides the data is no
        longer in use. What a lovely abstraction!
These finalizable pointers are
        appropriate whenever a C library requires the user to explicitly
        deallocate, or otherwise clean up a resource, when it is no longer in
        use. It is a simple piece of equipment that goes a long way towards
        making the C library binding more natural, more functional, and in
        flavor.
So with this in mind, we can hide the
        manually managed Ptr PCRE type inside an automatically managed data structure.
        This yields us the data type used to represent regular expressions
        that users will see:
-- file: ch17/PCRE-compile.hs
data Regex = Regex !(ForeignPtr PCRE)
                   !ByteString
        deriving (Eq, Ord, Show)
This new Regex data type
        consists of two parts. The first is an abstract
        ForeignPtr, which we’ll use to manage the underlying
        PCRE data allocated in C. The second component is a
        strict ByteString, which is the string representation of
        the regular expression that we compiled. By keeping the user-level
        representation of the regular expression handy inside the
        Regex type, it’ll be easier to print friendly error
        messages and show the Regex itself in a meaningful
        way.

A High-Level Interface: Marshaling Data



The challenge when writing FFI bindings, once the Haskell types have
        been decided upon, is to convert regular data types that a Haskell
        programmer will be familiar with into low-level pointers to arrays and
        other C types. What would an ideal Haskell interface to regular expression
        compilation look like? We have some design intuitions to guide
        us.
For starters, the act of compilation
        should be a referentially transparent operation: passing the same
        regex string will yield functionally the same compiled pattern each
        time, although the C library will give us observably different
        pointers to functionally identical expressions. If we can hide these
        memory management details, we should be able to represent the binding
        as a pure function. The ability to represent a C function in Haskell
        as a pure operation is a key step towards flexibility, and an
        indicator that the interface will be easy to use (as it won’t require
        complicated state to be initialized before it can be used).
Despite being pure, the function can
        still fail. If the regular expression input the user provides is
        ill-formed, an error string is returned. A good data type to represent
        optional failure with an error value is Either. That is,
        either we return a valid compiled regular expression or we return an
        error string. Encoding the results of a C function in a familiar,
        foundational Haskell type such as this is another useful step to make
        the binding more idiomatic.
For the user-supplied parameters, we’ve
        already decided to pass compilation flags in as a list. We can choose
        to pass the input regular expression either as an efficient
        ByteString or as a regular String. An
        appropriate type signature, then, for referentially transparent
        compilation success with a value or failure with an error string would
        be:
-- file: ch17/PCRE-compile.hs
compile :: ByteString -> [PCREOption] -> Either String Regex
The input is a ByteString,
        available from the Data.ByteString.Char8 module (and
        we’ll import this qualified to avoid name clashes),
        containing the regular expression and a list of flags (or the empty
        list if there are no flags to pass). The result is either an error
        string, or a new, compiled regular expression.

Marshaling ByteStrings



Given this type, we can sketch out the compile function: the
        high-level interface to the raw C binding. At its heart, it will call
        c_pcre_compile. Before it does that, it has to marshal
        the input ByteString into a CString. This is
        done with the ByteString library’s
        useAsCString function, which copies the input
        ByteString into a null-terminated C array (there is also
        an unsafe, zero copy variant, which assumes the
        ByteString is already null-terminated):
-- file: ch17/ForeignPtr.hs
useAsCString :: ByteString -> (CString -> IO a) -> IO a
This function takes a
        ByteString as input. The second argument is a
        user-defined function that will run with the resulting
        CString. We see here another useful idiom: data
        marshaling functions that are naturally scoped via closures. Our
        useAsCString function will convert the input data to a C
        string, which we can then pass to C as a pointer. Our burden then is
        to supply it with a chunk of code to call C.
Code in this style is often written in
        a dangling do-block notation. The
        following pseudocode illustrates
        this structure:
-- file: ch17/DoBlock.hs
useAsCString str $ \cstr -> do
   ... operate on the C string
   ... return a result
The second argument here is an
        anonymous function, a lambda, with a monadic do block for a body. It is common to use the
        simple ($) application operator to avoid the need for
        parentheses when delimiting the code block argument. This is a useful
        idiom to remember when dealing with code block parameters such as
        this.

Allocating Local C Data: The Storable Class



We can happily marshal
        ByteString data to C-compatible types, but the pcre_compile
        function also needs some pointers and arrays in which to place its
        other return values. These should only exist briefly, so we don’t need
        complicated allocation strategies. Such short-lifetime C data can be
        created with the alloca function:
-- file: ch17/ForeignPtr.hs
alloca :: Storable a => (Ptr a -> IO b) -> IO b
This function takes a code block
        accepting a pointer to some C type as an argument and arranges to call
        that function with the unitialized data of the right shape, allocated
        freshly. The allocation mechanism mirrors local stack variables in
        other languages. The allocated memory is released once the argument
        function exits. In this way, we get lexically scoped allocation of
        low-level data types, which are guaranteed to be released once the
        scope is exited. We can use it to allocate any data types that have an
        instance of the Storable typeclass. An implication of
        overloading the allocation operator such as this is that the data type
        allocated can be inferred from type information, based on use! Haskell
        will know what to allocate based on the functions we use on that
        data.
To allocate a pointer to a
        CString, for example, which will be updated to point to a
        particular CString by the called function, we would call
        alloca, in pseudocode as:
-- file: ch17/DoBlock.hs
alloca $ \stringptr -> do
   ... call some Ptr CString function
   peek stringptr
This locally allocates a Ptr
        CString and applies the code block to that pointer, which then
        calls a C function to modify the pointer contents. Finally, we
        dereference the pointer with the Storable class
        peek function, yielding a CString.
We can now put it all together, to
        complete our high-level PCRE compilation wrapper.

Putting It All Together



We’ve decided what Haskell type to
        represent the C function with, what the result data will be
        represented by, and how its memory will be managed. We’ve chosen a
        representation for flags to the pcre_compile function and
        worked out how to get C strings to and from code inspecting it. So
        let’s write the complete function for compiling PCRE regular
        expressions from Haskell:
-- file: ch17/PCRE-compile.hs
compile :: ByteString -> [PCREOption] -> Either String Regex
compile str flags = unsafePerformIO $
  useAsCString str $ \pattern -> do
    alloca $ \errptr       -> do
    alloca $ \erroffset    -> do
        pcre_ptr <- c_pcre_compile pattern (combineOptions flags) errptr 
        erroffset nullPtr
        if pcre_ptr == nullPtr
            then do
                err <- peekCString =<< peek errptr
                return (Left err)
            else do
                reg <- newForeignPtr finalizerFree pcre_ptr -- release with free()
                return (Right (Regex reg str))
That’s it! Let’s carefully walk through
        the details here, since it is rather dense. The first thing that
        stands out is the use of unsafePerformIO, a rather
        infamous function, with a very unusual type, imported from the ominous
        System.IO.Unsafe:
-- file: ch17/ForeignPtr.hs
unsafePerformIO :: IO a -> a
This function does something odd. It
        takes an IO value and converts it
        to a pure one! After warning about the danger of effects for so long,
        here we have the very enabler of dangerous effects in one line. Used
        unwisely, this function lets us sidestep all safety guarantees that
        the Haskell type system provides, inserting arbitrary side effects
        into a Haskell program, anywhere. The dangers in doing this are
        significant. We can break optimizations, modify arbitrary locations in
        memory, remove files on the user’s machine, or launch nuclear missiles
        from our Fibonacci sequences. So why does this function exist at
        all?
It exists precisely to enable Haskell
        to bind to C code that we know to be referentially transparent, but
        can’t prove the case to the Haskell type system. It lets us say to the
        compiler, “I know what I’m doing—this code really is pure.” For
        regular expression compilation, we know this to be the case: given the
        same pattern, we should get the same regular expression matcher every
        time. However, proving that to the compiler is beyond the Haskell type
        system, so we’re forced to assert that this code is pure. Using
        unsafePerformIO allows us to do just that.
However, if we know the C code is pure, why don’t we just
        declare it as such, by giving it a pure type in the import
        declaration? We don’t because we have to allocate local memory for the
        C function to work with, which must be done in the IO monad, as it is a local side effect.
        Those effects won’t escape the code surrounding the foreign call,
        though, so when wrapped, we use unsafePerformIO to
        reintroduce purity.
The argument to
        unsafePerformIO is the actual body of our compilation
        function, which consists of four parts: marshaling Haskell data to C
        form; calling into the C library; checking the return values; and
        finally, constructing a Haskell value from the results.
We marshal with
        useAsCString and alloca, setting up the data
        we need to pass to C, and use combineOptions, developed
        previously, to collapse the list of flags into a single
        CInt. Once that’s all in place, we can finally call
        c_pcre_compile with the pattern, flags, and pointers for
        the results. We use nullPtr for the character-encoding
        table, which is unused in this case.
The result returned from the C call is
        a pointer to the abstract PCRE structure. We then test
        this against the nullPtr. If there is a problem with the
        regular expression, we have to dereference the error pointer, yielding
        a CString. We then unpack that to a normal Haskell list
        with the library function, peekCString. The final result
        of the error path is a value of Left err, indicating
        failure to the caller.
If the call succeeds, however, we
        allocate a new storage-managed pointer, with the C function using a
        ForeignPtr. The special value finalizerFree
        is bound as the finalizer for this data, which uses the standard C
        free to deallocate the data. This is then wrapped as an
        opaque Regex value. The successful result is tagged as
        such with Right, and then returned to the user. And now
        we’re done!
We need to process our source file with
        hsc2hs, and then load the function in ghci.
        However, doing this results in an error on the first attempt:
$ hsc2hs Regex.hsc
$ ghci Regex.hs

During interactive linking, GHCi couldn't find the following symbol:
  pcre_compile
This may be due to you not asking GHCi to load extra object files,
archives, or DLLs needed by your current session.  Restart GHCi, specifying
the missing library using the -L/path/to/object/dir and -lmissinglibname
flags, or simply by naming the relevant files on the GHCi command line.
A little scary. However, this is just
        because we didn’t link the C library we wanted to call to the Haskell
        code. Assuming the PCRE library has been installed on the system in
        the default library location, we can let ghci know about
        it by adding -lpcre to the ghci command
        line. Now we can try out the code on some regular expressions, looking
        at the success and error cases:
$ ghci Regex.hs -lpcre
*Regex> :m + Data.ByteString.Char8
*Regex Data.ByteString.Char8> compile (pack "a.*b") []
Right (Regex 0x00000000028882a0 "a.*b")
*Regex Data.ByteString.Char8> compile (pack "a.*b[xy]+(foo?)") []
Right (Regex 0x0000000002888860 "a.*b[xy]+(foo?)")
*Regex Data.ByteString.Char8> compile (pack "*") []
Left "nothing to repeat"
The regular expressions are packed into
        byte strings and marshaled to C, where they are compiled by the PCRE
        library. The result is then handed back to Haskell, where we display
        the structure using the default Show instance. Our next
        step is to pattern match some strings with these compiled regular
        expressions.


Matching on Strings



The second part of a good regular expression library is the
      matching function. Given a compiled regular expression, this function
      does the matching of the compiled regex against some input, indicating
      whether it matched, and if so, what parts of the string matched. In
      PCRE, this function is pcre_exec, which has type:
int pcre_exec(const pcre *code,
              const pcre_extra *extra,
              const char *subject,
              int length,
              int startoffset,
              int options,
              int *ovector,
              int ovecsize);
The most important arguments are the
      input pcre pointer structure (which we obtained from
      pcre_compile) and the subject string. The other flags let
      us provide bookkeeping structures and space for return values. We can
      directly translate this type to the Haskell import declaration:
-- file: ch17/RegexExec.hs
foreign import ccall "pcre.h pcre_exec"
    c_pcre_exec     :: Ptr PCRE
                    -> Ptr PCREExtra
                    -> Ptr Word8
                    -> CInt
                    -> CInt
                    -> PCREExecOption
                    -> Ptr CInt
                    -> CInt
                    -> IO CInt
We use the same method as before to
      create typed pointers for the PCREExtra structure, and a
      newtype to represent flags passed at regex execution time.
      This lets us ensure that users don’t pass compile-time flags incorrectly
      at regex runtime.
Extracting Information About the Pattern



The main complication involved in
        calling pcre_exec is the array of int
        pointers used to hold the offsets of matching substrings found by the
        pattern matcher. These offsets are held in an offset vector, whose
        required size is determined by analyzing the input regular expression
        to determine the number of captured patterns it contains. PCRE
        provides a function, pcre_fullinfo, for determining much information about the regular
        expression, including the number of patterns. We’ll need to call this,
        and now, we can directly write down the Haskell type for binding to
        pcre_fullinfo as:
-- file: ch17/RegexExec.hs
foreign import ccall "pcre.h pcre_fullinfo"
    c_pcre_fullinfo :: Ptr PCRE
                    -> Ptr PCREExtra
                    -> PCREInfo
                    -> Ptr a
                    -> IO CInt
The most important arguments to this
        function are the compiled regular expression and the
        PCREInfo flag, which indicates which information we’re
        interested in. In this case, we care about the captured pattern count.
        The flags are encoded in numeric constants, and we need to use
        specifically the PCRE_INFO_CAPTURECOUNT value. There is a
        range of other constants that determine the result type of the
        function, which we can bind to using the #enum construct
        as before. The final argument is a pointer to a location to store the
        information about the pattern (whose size depends on the flag argument
        passed in!).
Calling pcre_fullinfo to
        determine the captured pattern count is pretty easy:
-- file: ch17/RegexExec.hs
capturedCount :: Ptr PCRE -> IO Int
capturedCount regex_ptr =
    alloca $ \n_ptr -> do
         c_pcre_fullinfo regex_ptr nullPtr info_capturecount n_ptr
         return . fromIntegral =<< peek (n_ptr :: Ptr CInt)
This takes a raw PCRE pointer and
        allocates space for the CInt count of the matched
        patterns. We then call the information function and peek into the
        result structure, finding a CInt. Finally, we convert
        this to a normal Haskell Int and pass it back to the
        user.

Pattern Matching with Substrings



Let’s now write the regex matching function. The Haskell type for
        matching is similar to that for compiling regular expressions:
-- file: ch17/RegexExec.hs
match :: Regex -> ByteString -> [PCREExecOption] -> Maybe [ByteString]
This function is how users will match
        strings against compiled regular expressions. Again, the main design
        point is that it is a pure function. Matching is a pure function:
        given the same input regular expression and subject string, it will
        always return the same matched substrings. We convey this information
        to the user via the type signature, indicating no side effects will
        occur when you call this function.
The arguments are a compiled
        Regex, a strict ByteString (containing the
        input data), and a list of flags that modify the regular expression
        engine’s behavior at runtime. The result is either no match at all,
        indicated by a Nothing value, or just a list of matched
        substrings. We use the Maybe type to clearly indicate in
        the type that matching may fail. Using strict ByteStrings
        for the input data, we can extract matched substrings in constant
        time, without copying, which makes the interface rather efficient. If
        substrings are matched in the input, the offset vector is populated
        with pairs of integer offsets into the subject string. We’ll need to
        loop over this result vector, reading offsets, and building
        ByteString slices as we go.
The implementation of the match wrapper
        can be broken into three parts. At the top level, our function takes
        apart the compiled Regex structure, yielding the
        underlying PCRE pointer:
-- file: ch17/RegexExec.hs
match :: Regex -> ByteString -> [PCREExecOption] -> Maybe [ByteString]
match (Regex pcre_fp _) subject os = unsafePerformIO $ do
  withForeignPtr pcre_fp $ \pcre_ptr -> do
    n_capt <- capturedCount pcre_ptr

    let ovec_size = (n_capt + 1) * 3
        ovec_bytes = ovec_size * sizeOf (undefined :: CInt)
As it is pure, we can use
        unsafePerformIO to hide any allocation effects internally. After pattern
        matching on the PCRE type, we need to take apart the
        ForeignPtr that hides our C-allocated raw PCRE data. We
        can use withForeignPtr. This holds onto the Haskell data associated with the PCRE
        value while the call is being made, preventing it from being collected
        for at least the time it is used by this call. We then call the
        information function and use that value to compute the size of the
        offset vector (the formula for which is given in the PCRE
        documentation). The number of bytes we need is the number of elements
        multiplied by the size of a CInt. To portably compute C
        type sizes, the Storable class provides a
        sizeOf function, which takes some arbitrary value of the
        required type (and we can use the undefined value here to
        do our type dispatch).
The next step is to allocate an offset
        vector of the size we computed, in order to convert the input
        ByteString into a pointer to a C char array.
        Finally, we call pcre_exec with all the required
        arguments:
-- file: ch17/RegexExec.hs
    allocaBytes ovec_bytes $ \ovec -> do

        let (str_fp, off, len) = toForeignPtr subject
        withForeignPtr str_fp $ \cstr -> do
            r <- c_pcre_exec
                         pcre_ptr
                         nullPtr
                         (cstr `plusPtr` off)
                         (fromIntegral len)
                         0
                         (combineExecOptions os)
                         ovec
                         (fromIntegral ovec_size)
For the offset vector, we use
        allocaBytes to control exactly the size of the allocated
        array. It is like alloca, but rather than using the
        Storable class to determine the required size, it takes
        an explicit size in bytes to allocate. Taking apart
        ByteStrings, yielding the underlying pointer to memory
        that the Bytestrings contain, is done with toForeignPtr, which converts our nice
        ByteString type into a managed pointer. Using withForeignPtr on the result gives us a
        raw Ptr CChar, which is exactly what we need to pass the
        input string to C. Programming in Haskell is often just solving a type
        puzzle!
We then just call
        c_pcre_exec with the raw PCRE pointer, the input string
        pointer at the correct offset, its length, and the result vector
        pointer. A status code is returned, and, finally, we analyze the
        result:
-- file: ch17/RegexExec.hs
            if r < 0
                then return Nothing
                else let loop n o acc =
                            if n == r
                              then return (Just (reverse acc))
                              else do
                                    i <- peekElemOff ovec o
                                    j <- peekElemOff ovec (o+1)
                                    let s = substring i j subject
                                    loop (n+1) (o+2) (s : acc)
                     in loop 0 0 []

  where
    substring :: CInt -> CInt -> ByteString -> ByteString
    substring x y _ | x == y = empty
    substring a b s = end
        where
            start = unsafeDrop (fromIntegral a) s
            end   = unsafeTake (fromIntegral (b-a)) start
If the result value is less than zero,
        there was an error, or no match, so we return Nothing to
        the user. Otherwise, we need a loop peeking pairs of offsets from the
        offset vector (via peekElemOff). Those offsets are used
        to find the matched substrings. To build substrings, we use a helper
        function that, given a start and end offset, drops the surrounding
        portions of the subject string, yielding just the matched portion. The
        loop runs until it has extracted the number of substrings we were told
        the matcher found.
The substrings are accumulated in a
        tail recursive loop, building up a reverse list of each string. Before
        returning the substrings of the user, we need to flip that list around
        and wrap it in a successful Just tag. Let’s try it
        out!

The Real Deal: Compiling and Matching Regular
        Expressions



If we take this function and its surrounding hsc2hs definitions and data
        wrappers, and process it with hsc2hs, we can load the
        resulting Haskell file in GHCi and try out our code (we need to import
        Data.ByteString.Char8 so we can build ByteStrings from string
        literals):
$ hsc2hs Regex.hsc
$ ghci Regex.hs -lpcre
*Regex> :t compile
compile :: ByteString -> [PCREOption] -> Either String Regex
*Regex> :t match
match :: Regex -> ByteString -> Maybe [ByteString]
Things seem to be in order. Now let’s
        try some compilation and matching. First, something easy:
*Regex> :m + Data.ByteString.Char8
*Regex Data.ByteString.Char8> let Right r = compile (pack "the quick brown fox") []
*Regex Data.ByteString.Char8> match r (pack "the quick brown fox") []
Just ["the quick brown fox"]
*Regex Data.ByteString.Char8> match r (pack "The Quick Brown Fox") []
Nothing
*Regex Data.ByteString.Char8> match r (pack "What
  do you know about the quick brown fox?") []
Just ["the quick brown fox"]
(We could also avoid the
        pack calls by using the OverloadedStrings
        extensions). Or we can be more adventurous:
*Regex Data.ByteString.Char8> let Right r = compile 
(pack "a*abc?xyz+pqr{3}ab{2,}xy{4,5}pq{0,6}AB{0,}zz") []
*Regex Data.ByteString.Char8> match r (pack "abxyzpqrrrabbxyyyypqAzz") []
Just ["abxyzpqrrrabbxyyyypqAzz"]
*Regex Data.ByteString.Char8> let Right r = compile 
(pack "^([^!]+)!(.+)=apquxz\\.ixr\\.zzz\\.ac\\.uk$") []
*Regex Data.ByteString.Char8> match r (pack "abc!pqr=apquxz.ixr.zzz.ac.uk") []
Just ["abc!pqr=apquxz.ixr.zzz.ac.uk","abc","pqr"]
That’s pretty awesome. The full power
        of Perl regular expressions in Haskell, at your fingertips.
In this chapter, we’ve looked at how to
        declare bindings that let Haskell code call C functions, how to
        marshal different data types between the two languages, how to
        allocate memory at a low level (by allocating locally or via C’s
        memory management), and how to exploit the Haskell type system and
        garbage collector to automate much of the hard work of dealing with C.
        Finally, we looked at how FFI preprocessors can ease much of the labor
        of constructing new bindings. The result is a natural Haskell API that
        is actually implemented primarily in C.
The majority of FFI tasks fall into
        these categories. Other advanced techniques that we are unable to
        cover include linking Haskell into C programs, registering callbacks
        from one language to another, and the c2hs preprocessing
        tool. You can find more information about these topics online.




[38] Some more advanced binding tools
          provide greater degrees of type checking. For example,
          c2hs is able to parse the C header, and generate the
          binding definition for you, and it is especially suited for large
          projects where the full API is specified.



Chapter 18. Monad Transformers



Motivation: Boilerplate Avoidance



Monads provide a powerful way to build computations with
      effects. Each of the standard monads is specialized to do exactly one
      thing. In real code, we often need to be able to use several effects at
      once.
Recall the Parse
      type that we developed in Chapter 10, for
      instance. When we introduced monads, we mentioned that this type was a
      State monad in disguise. Our monad is more complex than the standard
      State monad, because it uses the Either
      type to allow the possibility of a parsing failure. In our
      case, if a parse fails early on, we want to stop parsing, not continue
      in some broken state. Our monad combines the effect of carrying state
      around with the effect of early exit.
The normal State monad
      doesn’t let us escape in this way; it carries state only. It uses the
      default implementation of fail:
      this calls error, which throws an
      exception that we can’t catch in pure code. The State monad
      thus appears to allow for failure, without that
      capability actually being any use. (Once again, we recommend that you
      almost always avoid using fail!)
It would be ideal if we could somehow take
      the standard State monad and add failure handling to it,
      without resorting to the wholesale construction of custom monads by
      hand. The standard monads in the mtl library don’t allow us to combine them. Instead, the library
      provides a set of monad transformers[39] to achieve the same result.
A monad transformer is similar to a
      regular monad, but it’s not a standalone entity. Instead, it modifies
      the behavior of an underlying monad. Most of the monads in the
      mtl library have transformer equivalents. By convention,
      the transformer version of a monad has the same name, with a
      T stuck on the end. For example, the transformer equivalent
      of State is StateT; it adds mutable state to
      an underlying monad. The WriterT monad transformer makes it
      possible to write data when stacked on top of another monad.

A Simple Monad Transformer Example



Before we introduce monad transformers,
      let’s look at a function written using techniques we are already
      familiar with. The function that follows recurses into a directory tree
      and returns a list of the number of entries it finds at each level of
      the tree:
-- file: ch18/CountEntries.hs
module CountEntries (listDirectory, countEntriesTrad) where

import System.Directory (doesDirectoryExist, getDirectoryContents)
import System.FilePath ((</>))
import Control.Monad (forM, liftM)

listDirectory :: FilePath -> IO [String]
listDirectory = liftM (filter notDots) . getDirectoryContents
    where notDots p = p /= "." && p /= ".."

countEntriesTrad :: FilePath -> IO [(FilePath, Int)]
countEntriesTrad path = do
  contents <- listDirectory path
  rest <- forM contents $ \name -> do
            let newName = path </> name
            isDir <- doesDirectoryExist newName
            if isDir
              then countEntriesTrad newName
              else return []
  return $ (path, length contents) : concat rest
We’ll now look at using the Writer monad to achieve the same goal. Since
      this monad lets us record a value wherever we want, we don’t need to
      explicitly build up a result.
As our function must execute in the
      IO monad so that it can traverse directories, we can’t use
      the Writer monad directly. Instead, we use
      WriterT to add the recording capability to IO.
      We will find the going easier if we look at the types involved.
The normal Writer monad has
      two type parameters, so it’s more properly written Writer w
      a. The first parameter w is the
      type of the values to be recorded, and a
      is the usual type that the Monad typeclass requires. Thus
      Writer [(FilePath, Int)] a is a writer monad that records a
      list of directory names and sizes.
The WriterT transformer has a
      similar structure, but it adds another type parameter m: this is the underlying monad whose behavior we
      are augmenting. The full signature of WriterT is
      WriterT w m a.
Because we need to traverse directories,
      which requires access to the IO monad, we’ll stack our
      writer on top of the IO monad. Our combination of monad
      transformer and underlying monad will thus have the type WriterT
      [(FilePath, Int)] IO a. This stack of monad transformer and monad
      is itself a monad:
-- file: ch18/CountEntriesT.hs
module CountEntriesT (listDirectory, countEntries) where

import CountEntries (listDirectory)
import System.Directory (doesDirectoryExist)
import System.FilePath ((</>))
import Control.Monad (forM_, when)
import Control.Monad.Trans (liftIO)
import Control.Monad.Writer (WriterT, tell)

countEntries :: FilePath -> WriterT [(FilePath, Int)] IO ()
countEntries path = do
  contents <- liftIO . listDirectory $ path
  tell [(path, length contents)]
  forM_ contents $ \name -> do
    let newName = path </> name
    isDir <- liftIO . doesDirectoryExist $ newName
    when isDir $ countEntries newName
This code is not terribly different from
      our earlier version. We use liftIO
      to expose the IO monad where necessary and use tell to record a visit to a directory.
To run our code, we must use one of
      WriterT’s execution functions:
ghci> :type runWriterT
runWriterT :: WriterT w m a -> m (a, w)
ghci> :type execWriterT
execWriterT :: (Monad m) => WriterT w m a -> m w
These functions execute the action, and
      then remove the WriterT wrapper and give a result that is
      wrapped in the underlying monad. The runWriterT function gives both the result of
      the action and whatever was recorded as it ran, while execWriterT throws away the result and just
      gives us what was recorded:
ghci> :type countEntries ".."
countEntries ".." :: WriterT [(FilePath, Int)] IO ()
ghci> :type execWriterT (countEntries "..")
execWriterT (countEntries "..") :: IO [(FilePath, Int)]
ghci> take 4 `liftM` execWriterT (countEntries "..")
[("..",30),("../ch05",28),("../ch05/dist",3),("../ch05/dist/build",9)]
We use a WriterT on top of
      IO because there is no IOT monad transformer.
      Whenever we use the IO monad with one or more monad
      transformers, IO will always be at the bottom of the
      stack.

Common Patterns in Monads and Monad Transformers



Most of the monads and monad transformers in the mtl library follow a few common
      patterns around naming and typeclasses.
To illustrate these rules, we will focus
      on a single straightforward monad: the reader monad. The
      reader monad’s API is detailed by the
      MonadReader typeclass. Most mtl monads have similarly named
      typeclasses. MonadWriter defines the API of the writer
      monad, and so on:
-- file: ch18/Reader.hs
class (Monad m) => MonadReader r m | m -> r where
    ask   :: m r
    local :: (r -> r) -> m a -> m a
The type variable r represents the immutable state that the reader
      monad carries around. The Reader r monad is an instance of
      the MonadReader class, as is the ReaderT r m
      monad transformer. Again, this pattern is repeated by other
      mtl monads: there usually exist both a concrete monad and a
      transformer, each of which are instances of the typeclass that defines
      the monad’s API.
Returning to the specifics of the reader
      monad, we haven’t touched upon the local function before. It temporarily
      modifies the current environment using the r -> r
      function, and then executes its action in the modified environment. To
      make this idea more concrete, here is a simple example:
-- file: ch18/LocalReader.hs
import Control.Monad.Reader

myName step = do
  name <- ask
  return (step ++ ", I am " ++ name)

localExample :: Reader String (String, String, String)
localExample = do
  a <- myName "First"
  b <- local (++"dy") (myName "Second")
  c <- myName "Third"
  return (a, b, c)
If we execute the localExample action in ghci, we can see that the effect of modifying
      the environment is confined to one place:
ghci> runReader localExample "Fred"
Loading package mtl-1.1.0.1 ... linking ... done.
("First, I am Fred","Second, I am Freddy","Third, I am Fred")

When the underlying monad m is an instance of MonadIO, the
      mtl library provides an instance for ReaderT r
      m and also for a number of other typeclasses. Here are a
      few:
-- file: ch18/Reader.hs
instance (Monad m) => Functor (ReaderT r m) where
    ...

instance (MonadIO m) => MonadIO (ReaderT r m) where
    ...

instance (MonadPlus m) => MonadPlus (ReaderT r m) where
    ...
Once again, most mtl monad
      transformers define instances such as these, in order to make it easier
      for us to work with them.

Stacking Multiple Monad Transformers



As we have already mentioned, when we stack a monad transformer
      on a normal monad, the result is another monad. This suggests the
      possibility that we can again stack a monad transformer on top of our
      combined monad, in order to get a new monad and in fact, this is a
      common thing to do. Under what circumstances might we want to create
      such a stack?
	If we need to talk to the outside
          world, we’ll have IO at the base of the stack.
          Otherwise, we will have some normal monad.

	If we add a ReaderT
          layer, we give ourselves access to read-only configuration
          information.

	Add a StateT layer,
          and we gain a global state that we can modify.

	Should we need the ability to log
          events, we can add a WriterT layer.



The power of this approach is that we can
      customize the stack to our exact needs, specifying which kinds of
      effects we want to support.
As a small example of stacked monad
      transformers in action, here is a reworking of the countEntries function we developed earlier. We will modify it to recurse no
      deeper into a directory tree than a given amount and to record the
      maximum depth it reaches:
-- file: ch18/UglyStack.hs
import System.Directory
import System.FilePath
import Control.Monad.Reader
import Control.Monad.State

data AppConfig = AppConfig {
      cfgMaxDepth :: Int
    } deriving (Show)

data AppState = AppState {
      stDeepestReached :: Int
    } deriving (Show)
We use ReaderT to store
      configuration data, in the form of the maximum depth of recursion we
      will perform. We also use StateT to record the maximum
      depth we reach during an actual traversal:
-- file: ch18/UglyStack.hs
type App = ReaderT AppConfig (StateT AppState IO)
Our transformer stack has IO
      on the bottom, then StateT, with ReaderT on
      top. In this particular case, it doesn’t matter whether we have
      ReaderT or WriterT on top, but IO
      must be on the bottom.
Even a small stack of monad transformers
      quickly develops an unwieldy type name. We can use a type alias to reduce the lengths of the type
      signatures that we write.
Where’s the Missing Type Parameter?
You might have noticed that our type synonym doesn’t have the usual type
        parameter a that we associate with a monadic
        type:
-- file: ch18/UglyStack.hs
type App2 a = ReaderT AppConfig (StateT AppState IO) a
Both App and
        App2 work fine in normal type signatures. The difference
        arises when we try to construct another type from one of these. Say we
        want to add another monad transformer to the stack: the compiler will
        allow WriterT [String] App a, but reject WriterT
        [String] App2 a.
The reason for this is that Haskell does
        not allow us to partially apply a type synonym. The synonym
        App doesn’t take a type parameter, so it doesn’t pose a
        problem. However, because App2 takes a type parameter, we
        must supply some type for that parameter if we want to use
        App2 to create another type.
This restriction is limited to type
        synonyms. When we create a monad transformer stack, we usually wrap it
        with a newtype (as we will see shortly). As a result, we
        will rarely run into this problem in practice.

The execution function for our monad stack
      is simple:
-- file: ch18/UglyStack.hs
runApp :: App a -> Int -> IO (a, AppState)
runApp k maxDepth =
    let config = AppConfig maxDepth
        state = AppState 0
    in runStateT (runReaderT k config) state
Our application of runReaderT removes the ReaderT
      transformer wrapper, while runStateT removes the StateT
      wrapper, leaving us with a result in the IO monad.
Compared to earlier versions, the only
      complications we added to our traversal function are slight. We track
      our current depth, and record the maximum depth we reach:
-- file: ch18/UglyStack.hs
constrainedCount :: Int -> FilePath -> App [(FilePath, Int)]
constrainedCount curDepth path = do
  contents <- liftIO . listDirectory $ path
  cfg <- ask
  rest <- forM contents $ \name -> do
            let newPath = path </> name
            isDir <- liftIO $ doesDirectoryExist newPath
            if isDir && curDepth < cfgMaxDepth cfg
              then do
                let newDepth = curDepth + 1
                st <- get
                when (stDeepestReached st < newDepth) $
                  put st { stDeepestReached = newDepth }
                constrainedCount newDepth newPath
              else return []
  return $ (path, length contents) : concat rest
Our use of monad transformers here is
      admittedly a little contrived. Because we’re writing a single
      straightforward function, we’re not really winning anything. What’s
      useful about this approach, though, is that it
      scales to bigger programs.
We can write most of an application’s
      imperative-style code in a monad stack similar to our App
      monad. In a real program, we’d carry around more complex configuration
      data, but we’d still use ReaderT to keep it read-only and
      hidden except when needed. We’d have more mutable state to manage, but
      we’d still use StateT to encapsulate it.
Hiding Our Work



We can use the usual
        newtype technique to erect a solid barrier between the
        implementation of our custom monad and its interface:
-- file: ch18/UglyStack.hs
newtype MyApp a = MyA {
      runA :: ReaderT AppConfig (StateT AppState IO) a
    } deriving (Monad, MonadIO, MonadReader AppConfig,
                MonadState AppState)

runMyApp :: MyApp a -> Int -> IO (a, AppState)
runMyApp k maxDepth =
    let config = AppConfig maxDepth
        state = AppState 0
    in runStateT (runReaderT (runA k) config) state
If we export the MyApp type
        constructor and the runMyApp
        execution function from a module, client code will not be able to tell
        that the internals of our monad is a stack of monad
        transformers.
The large deriving clause
        requires the GeneralizedNewtypeDeriving
        language pragma. It seems somehow magical that the compiler can
        derive all of these instances for us. How does this work?
Earlier, we mentioned that the
        mtl library provides instances of a number of typeclasses
        for each monad transformer. For example, the IO monad
        implements MonadIO. If the underlying monad is an
        instance of MonadIO, mtl makes
        StateT an instance, too, and likewise for
        ReaderT.
There is thus no magic going on: the
        top-level monad transformer in the stack is an instance of all of the
        typeclasses that we’re rederiving with our deriving
        clause. This is a consequence of mtl providing a
        carefully coordinated set of typeclasses and instances that fit
        together well. There is nothing more going on than the usual automatic
        derivation that we can perform with newtype
        declarations.
Exercises
	Modify the App type synonym to swap the order
              of ReaderT and WriterT. What effect
              does this have on the runApp execution function?

	Add the WriterT transformer to the
              App monad transformer stack. Modify runApp to work with this new
              setup.

	Rewrite the constrainedCount function to record
              results using the WriterT transformer in your new
              App stack.






Moving Down the Stack



So far, our uses of monad
      transformers have been simple, and the plumbing of the mtl
      library has allowed us to avoid the details of how a stack of monads is
      constructed. Indeed, we already know enough about monad transformers to
      simplify many common programming tasks.
There are a few useful ways in which we
      can depart from the comfort of mtl. Most often, a custom
      monad sits at the bottom of the stack, or a custom monad transformer
      lies somewhere within the stack. To understand the potential difficulty,
      let’s look at an example.
Suppose we have a custom monad
      transformer, CustomT:
-- file: ch18/CustomT.hs
newtype CustomT m a = ...
In the framework that mtl
      provides, each monad transformer in the stack makes the API of a lower
      level available by providing instances of a host of typeclasses. We
      could follow this pattern and write a number of boilerplate
      instances:
-- file: ch18/CustomT.hs
instance MonadReader r m => MonadReader r (CustomT m) where
    ...

instance MonadIO m => MonadIO (CustomT m) where
    ...
If the underlying monad was an instance of
      MonadReader, we would write a MonadReader
      instance for CustomT in which each function in the API
      passes through to the corresponding function in the underlying instance.
      This would allow higher-level code to only care that the stack as a
      whole is an instance of MonadReader, without knowing or
      caring about which layer provides the real
      implementation.
Instead of relying on all of these
      typeclass instances to work for us behind the scenes, we can be
      explicit. The MonadTrans typeclass defines a useful
      function named lift:
ghci> :m +Control.Monad.Trans
ghci> :info MonadTrans
class MonadTrans t where lift :: (Monad m) => m a -> t m a
  	-- Defined in Control.Monad.Trans
This function takes a monadic action from
      one layer down the stack, and turns it—in other words,
      lifts it—into an action in the current monad
      transformer. Every monad transformer is an instance of
      MonadTrans.
We use the name lift based on its similarity of purpose
      to fmap and liftM. In each case,
      we hoist something from a lower level of the type system to the level
      we’re currently working in. The different options are described
      here:
	fmap
	Elevates a pure function to the level of functors

	liftM
	Takes a pure function to the level of monads

	lift
	Raises a monadic action from one level beneath in the
            transformer stack to the current one



Let’s revisit the App monad
      stack we defined earlier (before we wrapped it with a newtype):
-- file: ch18/UglyStack.hs
type App = ReaderT AppConfig (StateT AppState IO)
If we want to access the
      AppState carried by the StateT, we would
      usually rely on mtl’s typeclasses and instances to handle
      the plumbing for us:
-- file: ch18/UglyStack.hs
implicitGet :: App AppState
implicitGet = get
The lift function lets us achieve the same
      effect, by lifting get from
      StateT into ReaderT:
-- file: ch18/UglyStack.hs
explicitGet :: App AppState
explicitGet = lift get
Obviously, when we can let
      mtl do this work for us, we end up with cleaner code, but
      this is not always possible.
When Explicit Lifting Is Necessary



One case in which we
        must use lift is when we create a monad transformer
        stack in which instances of the same typeclass appear at multiple
        levels:
-- file: ch18/StackStack.hs
type Foo = StateT Int (State String)
If we try to use the put action of the MonadState
        typeclass, the instance we will get is that of StateT
        Int, because it’s at the top of the stack:
-- file: ch18/StackStack.hs
outerPut :: Int -> Foo ()
outerPut = put
In this case, the only way we can access
        the underlying State monad’s put is through use of lift:
-- file: ch18/StackStack.hs
innerPut :: String -> Foo ()
innerPut = lift . put
Sometimes, we need to access a monad
        more than one level down the stack, in which case we must compose
        calls to lift. Each composed use
        of lift gives us access to one
        deeper level:
-- file: ch18/StackStack.hs
type Bar = ReaderT Bool Foo

barPut :: String -> Bar ()
barPut = lift . lift . put
When we need to use lift, it can be good style to write wrapper
        functions that do the lifting for us, as just shown, and to use those.
        The alternative of sprinkling explicit uses of lift throughout our code tends to look
        messy. Worse, it hardwires the details of the layout of our monad
        stack into our code, which will complicate any subsequent modifications.


Understanding Monad Transformers by Building One



To give ourselves some insight into how monad transformers in
      general work, we will create one and describe its machinery as we go.
      Our target is simple and useful: MaybeT. Surprisingly, though, it is missing
      from the mtl library.
This monad transformer modifies the
      behavior of an underlying monad m a by wrapping its type
      parameter with Maybe, in order to get m (Maybe
      a). As with the Maybe monad, if we call fail in the MaybeT monad
      transformer, execution terminates early.
In order to turn m (Maybe a)
      into a Monad instance, we must make it a distinct type, via
      a newtype declaration:
-- file: ch18/MaybeT.hs
newtype MaybeT m a = MaybeT {
      runMaybeT :: m (Maybe a)
    }
We now need to define the three standard
      monad functions. The most complex is (>>=), and its innards shed the most
      light on what we are actually doing. Before we delve into its operation,
      let us first take a look at its type:
-- file: ch18/MaybeT.hs
bindMT :: (Monad m) => MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b
To understand this type signature, hark
      back to our discussion of multiparameter typeclasses in Multiparameter Typeclasses. The thing that we intend to make a
      Monad instance is the partial type
      MaybeT m; this has the usual single type parameter, a, that
      satisfies the requirements of the Monad typeclass.
The trick to understanding the body of our
      (>>=) implementation is that
      everything inside the do block
      executes in the underlying monad m,
      whatever that is:
-- file: ch18/MaybeT.hs
x `bindMT` f = MaybeT $ do
                 unwrapped <- runMaybeT x
                 case unwrapped of
                   Nothing -> return Nothing
                   Just y -> runMaybeT (f y)
Our runMaybeT function unwraps the result
      contained in x. Next, recall that the
      <- symbol desugars to (>>=): a monad transformer’s (>>=) must use the underlying monad’s
      (>>=). The final bit of case
      analysis determines whether we short-circuit or chain our computation.
      Finally, look back at the top of the body. Here, we must wrap the result
      with the MaybeT constructor, in order to once again hide
      the underlying monad.
The do
      notation just shown might be pleasant to read, but it hides the fact
      that we are relying on the underlying monad’s (>>=) implementation. Here is a more
      idiomatic version of (>>=)
      for MaybeT that makes this clearer:
-- file: ch18/MaybeT.hs
x `altBindMT` f =
    MaybeT $ runMaybeT x >>= maybe (return Nothing) (runMaybeT . f)
Now that we understand what (>>=) is doing, our implementations of
      return and fail need no explanation, and neither does
      our Monad instance:
-- file: ch18/MaybeT.hs
returnMT :: (Monad m) => a -> MaybeT m a
returnMT a = MaybeT $ return (Just a)

failMT :: (Monad m) => t -> MaybeT m a
failMT _ = MaybeT $ return Nothing
 
instance (Monad m) => Monad (MaybeT m) where
  return = returnMT
  (>>=) = bindMT
  fail = failMT
Creating a Monad Transformer



To turn our type into a monad transformer, we must provide an instance
        of the MonadTrans class so that a user can
        access the underlying monad:
-- file: ch18/MaybeT.hs
instance MonadTrans MaybeT where
    lift m = MaybeT (Just `liftM` m)
The underlying monad starts out with a
        type parameter of a: we “inject” the
        Just constructor so that it will acquire the type that we
        need, Maybe a. We then hide the monad with our
        MaybeT constructor.

More Typeclass Instances



Once we have an instance for MonadTrans defined, we can
        use it to define instances for the umpteen other mtl
        typeclasses:
-- file: ch18/MaybeT.hs
instance (MonadIO m) => MonadIO (MaybeT m) where
  liftIO m = lift (liftIO m)

instance (MonadState s m) => MonadState s (MaybeT m) where
  get = lift get
  put k = lift (put k)

-- ... and so on for MonadReader, MonadWriter, etc ...
Because several of the mtl
        typeclasses use functional dependencies, some of our instance
        declarations require us to considerably relax GHC’s usual strict type checking rules.
        (If we were to forget any of these directives, the compiler would
        helpfully advise us which ones we needed in its error
        messages.)
-- file: ch18/MaybeT.hs
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses,
             UndecidableInstances #-}
Is it better to use lift explicitly or to spend time writing
        these boilerplate instances? That depends on what we expect to do with
        our monad transformer. If we’re going to use it in just a few
        restricted situations, we can get away with providing an instance for
        MonadTrans alone. In this case, a few more instances
        might still make sense, such as MonadIO. On the other
        hand, if our transformer is going to pop up in diverse situations
        throughout a body of code, spending a dull hour to write those
        instances might be a good investment.

Replacing the Parse Type with a Monad Stack



Now that we have developed a monad
        transformer that can exit early, we can use it to bail if, for
        example, a parse fails partway through. We could thus replace the
        Parse type that we developed in Implicit State with a monad customized to our
        needs:
-- file: ch18/MaybeTParse.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module MaybeTParse
    (
      Parse
    , evalParse
    ) where

import MaybeT
import Control.Monad.State
import Data.Int (Int64)
import qualified Data.ByteString.Lazy as L

data ParseState = ParseState {
      string :: L.ByteString
    , offset :: Int64
    } deriving (Show)

newtype Parse a = P {
      runP :: MaybeT (State ParseState) a
    } deriving (Monad, MonadState ParseState)

evalParse :: Parse a -> L.ByteString -> Maybe a
evalParse m s = evalState (runMaybeT (runP m)) (ParseState s 0)
Exercise
	Our Parse monad is not a perfect replacement
              for its earlier counterpart. Because we are using
              Maybe instead of Either to represent a
              result, we can’t report any useful information if a parse
              fails.
Create an EitherT sometype monad transformer,
              and use it to implement a more capable Parse monad
              that can report an error message if parsing fails.



Tip
If you like to explore the Haskell libraries for fun, you
            may have run across an existing Monad instance for
            the Either type in the
            Control.Monad.Error module. We suggest that you do
            not use that as a guide. Its design is too restrictive: it turns
            Either String into a monad, when you could use a type
            parameter instead of String.
Hint: if you follow this suggestion,
            you’ll probably need to use the FlexibleInstances
            language extension in your definition.




Transformer Stacking Order Is Important



From our early examples using monad transformers such as ReaderT and StateT, it
      might be easy to conclude that the order in which we stack monad
      transformers doesn’t matter.
When we stack StateT on top
      of State, it should be clearer that order can indeed make a
      difference. The types StateT Int (State String) and
      StateT String (State Int) might carry around the same
      information, but we can’t use them interchangeably. The ordering
      determines when we need to use lift
      to get at one or the other piece of state.
Here’s a case that more dramatically
      demonstrates the importance of ordering. Suppose we have a computation
      that might fail, and we want to log the circumstances under which it
      does so:
-- file: ch18/MTComposition.hs
{-# LANGUAGE FlexibleContexts #-}
import Control.Monad.Writer
import MaybeT

problem :: MonadWriter [String] m => m ()
problem = do
  tell ["this is where i fail"]
  fail "oops"
Which of these monad stacks will give us
      the information we need?
-- file: ch18/MTComposition.hs
type A = WriterT [String] Maybe

type B = MaybeT (Writer [String])

a :: A ()
a = problem

b :: B ()
b = problem
Let’s try the alternatives in ghci:
ghci> runWriterT a
Loading package mtl-1.1.0.1 ... linking ... done.
Nothing
ghci> runWriter $ runMaybeT b
(Nothing,["this is where i fail"])
This difference in results should not come
      as a surprise—just look at the signatures of the execution
      functions:
ghci> :t runWriterT
runWriterT :: WriterT w m a -> m (a, w)
ghci> :t runWriter . runMaybeT
runWriter . runMaybeT :: MaybeT (Writer w) a -> (Maybe a, w)
Our
      WriterT-on-Maybe stack has Maybe
      as the underlying monad, so runWriterT must give us back a result of type
      Maybe. In our test case, we get to see only the log of what
      happened if nothing actually went wrong!
Stacking monad transformers is analogous
      to composing functions. If we change the order in which we apply
      functions and then get different results, we won’t be surprised. So it
      is with monad transformers, too.

Putting Monads and Monad Transformers into Perspective



It’s useful to step back from details for
      a few moments and look at the weaknesses and strengths of programming
      with monads and monad transformers.
Interference with Pure Code



Probably the biggest practical irritation of working with monads is that a
        monad’s type constructor often gets in our way when we’d like to use
        pure code. Many useful pure functions need monadic counterparts,
        simply to tack on a placeholder parameter m for
        some monadic type constructor:
ghci> :t filter
filter :: (a -> Bool) -> [a] -> [a]
ghci> :i filterM
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
  	-- Defined in Control.Monad
However, the coverage is incomplete: the
        standard libraries don’t always provide monadic versions of pure
        functions.
The reason for this lies in history.
        Eugenio Moggi introduced the idea of using monads for programming in 1988,
        around the time the Haskell 1.0 standard was being developed. Many of
        the functions in today’s Prelude date back to Haskell
        1.0, which was released in 1990. In 1991, Philip Wadler started
        writing for a wider functional programming audience about the
        potential of monads, at which point, they began to be put in
        use.
Not until 1996 and the release of
        Haskell 1.3 did the standard acquire support for monads. By this time,
        the language designers were already constrained by backwards
        compatibility: they couldn’t change the signatures of functions in the
        Prelude, because it would have broken existing
        code.
Since then, the Haskell community has
        learned a lot about creating suitable abstractions, so that we can
        write code that is less affected by the pure/monadic divide. You can
        find modern distillations of these ideas in the
        Data.Traversable and Data.Foldable modules. As appealing as those modules are, we do not cover them
        in this book. This is in part for want of space, but also because if
        you’re still following us at this point, you won’t have trouble
        figuring them out for yourself.
In an ideal world, would we make a break
        from the past and switch over Prelude to use
        Traversable and Foldable types? Probably
        not. Learning Haskell is already a stimulating enough adventure for
        newcomers. The Foldable and Traversable
        abstractions are easy to pick up when we already understand functors
        and monads, but they would put early learners on too pure a diet of
        abstraction. For teaching the language, it’s good
        that map operates on lists, not
        on functors.

Overdetermined Ordering



One of the principal reasons that we use
        monads is that they let us specify an ordering for effects. Look again
        at a small snippet of code we wrote earlier:
-- file: ch18/MTComposition.hs
{-# LANGUAGE FlexibleContexts #-}
import Control.Monad.Writer
import MaybeT

problem :: MonadWriter [String] m => m ()
problem = do
  tell ["this is where i fail"]
  fail "oops"
Because we are executing in a monad, we
        are guaranteed that the effect of the tell will occur before the effect of
        fail. The problem is that we get
        this guarantee of ordering even when we don’t necessarily want it: the
        compiler is not free to rearrange monadic code, even if doing so would
        make it more efficient.

Runtime Overhead



Finally, when we use monads and monad
        transformers, we can pay an efficiency tax. For instance, the
        State monad carries its state around in a closure.
        Closures might be cheap in a Haskell implementation, but they’re not
        free.
A monad transformer adds its own
        overhead to that of whatever is underneath. Our MaybeT
        transformer has to wrap and unwrap Maybe values every
        time we use (>>=). A stack
        of MaybeT on top of StateT over
        ReaderT thus has a lot of bookkeeping to do for each
        (>>=).
A sufficiently smart compiler might make
        some or all of these costs vanish, but that degree of sophistication
        is not yet widely available.
There are relatively simple techniques
        to avoid some of these costs, though we lack space to do more than
        mention them by name. For instance, using a continuation monad, we can
        avoid the constant wrapping and unwrapping in (>>=), paying only for effects when
        we use them. Much of the complexity of this approach has already been
        packaged up in libraries. This area of work is still under lively
        development as of this writing. If you want to make your use of monad
        transformers more efficient, we recommend looking on Hackage or asking
        for directions on a mailing list or IRC.

Unwieldy Interfaces



If we use the mtl library
        as a black box, all of its components mesh quite nicely. However, once
        we start developing our own monads and monad transformers, and also
        using them with those provided by mtl, some deficiencies
        start to show.
For example, if we create a new monad
        transformer FooT and want to follow the same pattern as
        mtl, we’ll have it implement a typeclass
        MonadFoo. If we really want to integrate it cleanly into
        the mtl, we’ll have to provide instances for each of the
        dozen or so mtl typeclasses.
On top of that, we’ll have to declare
        instances of MonadFoo for each of the mtl
        transformers. Most of those instances will be almost identical, and
        quite dull to write. If we want to keep integrating new monad
        transformers into the mtl framework, the number of moving
        parts we must deal with increases with the square
        of the number of new transformers!
In fairness, this problem matters to a
        tiny number of people only. Most users of mtl don’t need
        to develop new transformers at all, so they are not affected.
This weakness of mtl’s
        design lies with the fact that it was the first library of monad
        transformers that was developed. Given that its designers were
        plunging into the unknown, they did a remarkable job of producing a
        powerful library that is easy for most users to understand and work
        with.
A newer library of monads and
        transformers, monadLib, corrects many of the design flaws
        in mtl. If at some point you turn into a hardcore hacker
        of monad transformers, it is well worth looking at.
The quadratic instances definition is
        actually a problem with the approach of using monad transformers.
        There have been many other approaches put forward for composing monads
        that don’t have this problem, but none of them seem as convenient to
        the end user as monad transformers. Fortunately, there simply aren’t
        that many foundational, generically useful monad transformers.

Pulling It All Together



Monads are not by any means the end of
        the road when it comes to working with effects and types. What they
        are is the most practical resting point we have reached so far.
        Language researchers are always working on systems that try to provide
        similar advantages, without the
        same compromises.
Although we must make compromises when
        we use them, monads and monad transformers still offer a degree of
        flexibility and control that has no precedent in an imperative
        language. With just a few declarations, we can rewire something as
        fundamental as the semicolon to give it a new meaning.




[39] The name mtl stands for
          “monad transformer library.”



Chapter 19. Error Handling



Error handling is one of the most important—and overlooked—topics for
    programmers, regardless of the language used. In Haskell, you will find
    two major types of error handling employed: pure error handling and
    exceptions.
When we speak of pure error handling, we are
    referring to algorithms that do not require anything from the
    IO monad. We can often implement error handling for them
    simply by using Haskell’s expressive data type system to our advantage.
    Haskell also has an exception system. Due to the complexities of lazy
    evaluation, exceptions in Haskell can be thrown anywhere, but caught only
    within the IO monad. In this chapter, we’ll consider
    both.
Error Handling with Data Types



Let’s begin our discussion of error handling with a very simple function. Let’s say
      that we wish to perform division on a series of numbers. We have a
      constant numerator but wish to vary the denominator. We might come up
      with a function like this:
-- file: ch19/divby1.hs
divBy :: Integral a => a -> [a] -> [a]
divBy numerator = map (numerator `div`)
Very simple, right? We can play around
      with this a bit in ghci:
ghci> divBy 50 [1,2,5,8,10]
[50,25,10,6,5]
ghci> take 5 (divBy 100 [1..])
[100,50,33,25,20]
This behaves as expected: 50 / 1 is 50, 50 / 2
      is 25, and so forth.[40] This even worked with the infinite list [1..]. What happens if we sneak a 0 into our list somewhere?
ghci> divBy 50 [1,2,0,8,10]
[50,25,*** Exception: divide by zero

Isn’t that interesting? ghci started displaying the output, and then
      stopped with an exception when it got to the zero. That’s lazy
      evaluation at work—it calculated results as needed.
As we will see later in this chapter, in
      the absence of an explicit exception handler, this exception will crash
      the program. That’s obviously not desirable, so let’s consider better
      ways we could indicate an error in this pure function.
Use of Maybe



One immediately recognizable and easy
        way to indicate failure is to use Maybe.[41] Instead of just returning a list and throwing an
        exception on failure, we can return Nothing if the input list contains a zero
        anywhere, or return Just with the
        results otherwise. Here’s an implementation of such an
        algorithm:
-- file: ch19/divby2.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy _ [] = Just []
divBy _ (0:_) = Nothing
divBy numerator (denom:xs) =
    case divBy numerator xs of
      Nothing -> Nothing
      Just results -> Just ((numerator `div` denom) : results)
If you try it out in ghci, you’ll see that it works:
ghci> divBy 50 [1,2,5,8,10]
Just [50,25,10,6,5]
ghci> divBy 50 [1,2,0,8,10]
Nothing
The function that calls divBy can now use a case statement to see if the call was
        successful, just as divBy does when
        it calls itself.
Tip
You may note that you could use a
          monadic implementation of the preceding example, like so:
-- file: ch19/divby2m.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy numerator denominators = 
    mapM (numerator `safeDiv`) denominators
    where safeDiv _ 0 = Nothing
          safeDiv x y = x `div` y
We will avoid the monadic
          implementation in this chapter for simplicity but wanted to point
          out that it exists.

Loss and preservation of laziness



The use of Maybe is convenient, but it has come at a
          cost. divBy can no longer handle
          infinite lists as input. Since the result is Maybe [a], the entire input list must be
          examined before we can be sure that we won’t be returning Nothing due to a zero somewhere in it. You
          can verify this is the case by attempting one of our earlier
          examples:
ghci> divBy 100 [1..] 
*** Exception: stack overflow

Note that you don’t start seeing
          partial output here; you get no output. Notice
          that at each step in divBy
          (except for the case of an empty input list or a zero at the start
          of the list), the results from every subsequent element must be
          known before the results from the current element can be known. Thus
          this algorithm can’t work on infinite lists, and it is also not very
          space-efficient for large finite lists.
Having said all that, Maybe is often a fine choice. In this
          particular case, we don’t know whether there will be a problem until
          we get into evaluating the entire input. Sometimes we know of a
          problem up front—for instance, tail
          [] in ghci produces an
          exception. We could easily write an infinite-capable tail that doesn’t have this
          problem:
-- file: ch19/safetail.hs
safeTail :: [a] -> Maybe [a]
safeTail [] = Nothing
safeTail (_:xs) = Just xs
This simply returns Nothing if given an empty input list or
          Just with the result for anything
          else. Since we have only to make sure the list is nonempty before
          knowing whether or not we have an error, using Maybe here doesn’t reduce our laziness. We
          can test this out in ghci and see
          how it compares with regular tail:
ghci> tail [1,2,3,4,5]
[2,3,4,5]
ghci> safeTail [1,2,3,4,5]
Just [2,3,4,5]
ghci> tail []
*** Exception: Prelude.tail: empty list
ghci> safeTail []
Nothing
Here, we can see our safeTail performed as expected. But what
          about infinite lists? We don’t want to print out an infinite number
          of results, so we can test with take 5
          (tail [1..]) and a similar construction with safeTail:
ghci> take 5 (tail [1..])
[2,3,4,5,6]
ghci> case safeTail [1..] of {Nothing -> Nothing; Just x -> Just (take 5 x)}
Just [2,3,4,5,6]
ghci> take 5 (tail [])
*** Exception: Prelude.tail: empty list
ghci> case safeTail [] of {Nothing -> Nothing; Just x -> Just (take 5 x)}
Nothing
Here you can see that both tail and safeTail handled infinite lists just fine.
          Note that we were able to deal better with an empty input list;
          instead of throwing an exception, we decided to return Nothing in that situation. We were able to
          achieve error handling at no expense to laziness.
But how do we apply this to our
          divBy example? Let’s consider the
          situation there. Failure is a property of an individual bad input,
          not of the input list itself. How about making failure a property of
          an individual output element, rather than the output list itself?
          That is, instead of a function of type a -> [a] -> Maybe [a], we will
          have a -> [a] -> [Maybe a].
          This will have the benefit of preserving laziness, plus the caller
          will be able to determine exactly where in the list the problem
          is—or even just filter out the problem results if desired. Here’s an
          implementation:
-- file: ch19/divby3.hs
divBy :: Integral a => a -> [a] -> [Maybe a]
divBy numerator denominators =
    map worker denominators
    where worker 0 = Nothing
          worker x = Just (numerator `div` x)
Take a look at this function. We’re
          back to using map, which is a
          good thing for both laziness and simplicity. We can try it out in
          ghci and see that it works for
          finite and infinite lists just fine:
ghci> divBy 50 [1,2,5,8,10]
[Just 50,Just 25,Just 10,Just 6,Just 5]
ghci> divBy 50 [1,2,0,8,10]
[Just 50,Just 25,Nothing,Just 6,Just 5]
ghci> take 5 (divBy 100 [1..])
[Just 100,Just 50,Just 33,Just 25,Just 20]
We hope that you can take from this
          discussion the point that there is a distinction between the input
          not being well-formed (as in the case of safeTail) and the input potentially
          containing some bad data, as in the case of divBy. These two cases can often justify
          different handling of the results.

Usage of the Maybe monad



Back in Use of Maybe, we had an example program named divby2.hs. This example didn’t preserve
          laziness but returned a value of type Maybe
          [a]. The exact same algorithm could be expressed using a
          monadic style. For more information and important background on
          monads, please refer to Chapter 14. Here’s our new
          monadic-style algorithm:
-- file: ch19/divby4.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy _ [] = return []
divBy _ (0:_) = fail "division by zero in divBy"
divBy numerator (denom:xs) =
    do next <- divBy numerator xs
       return ((numerator `div` denom) : next)
The Maybe monad makes the expression of this
          algorithm look nicer. For the Maybe monad, return is the same as Just, and fail _
          = Nothing, so our error explanation string is never
          actually seen anywhere. We can test this algorithm with the same
          tests we used against divby2.hs
          if we want:
ghci> divBy 50 [1,2,5,8,10]
Just [50,25,10,6,5]
ghci> divBy 50 [1,2,0,8,10]
Nothing
ghci> divBy 100 [1..] 
*** Exception: stack overflow
The code we wrote actually isn’t
          specific to the Maybe monad. By
          simply changing the type, we can make it work for
          any monad. Let’s try it:
-- file: ch19/divby5.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy = divByGeneric

divByGeneric :: (Monad m, Integral a) => a -> [a] -> m [a]
divByGeneric _ [] = return []
divByGeneric _ (0:_) = fail "division by zero in divByGeneric"
divByGeneric numerator (denom:xs) =
    do next <- divByGeneric numerator xs
       return ((numerator `div` denom) : next)
The divByGeneric function contains the same
          code as divBy did before; we just
          gave it a more general type. This is, in fact, the type that
          ghci infers if no type is given.
          We also defined a convenience function divBy with a more specific type.
Let’s try this out in ghci:
ghci> :l divby5.hs
[1 of 1] Compiling Main             ( divby5.hs, interpreted )
Ok, modules loaded: Main.
ghci> divBy 50 [1,2,5,8,10]
Just [50,25,10,6,5]
ghci> (divByGeneric 50 [1,2,5,8,10])::(Integral a => Maybe [a])
Just [50,25,10,6,5]
ghci> divByGeneric 50 [1,2,5,8,10]
[50,25,10,6,5]
ghci> divByGeneric 50 [1,2,0,8,10]
*** Exception: user error (division by zero in divByGeneric)
The first two inputs both produce the
          same output that we saw earlier. Since divByGeneric doesn’t have a specific
          return type, we must either give one or let the interpreter infer
          one from the environment. If we don’t give a specific return type,
          ghci infers the IO
          monad. You can see that in the third and fourth examples. The
          IO monad converts fail into an exception, as you can see
          with the fourth example.
The Control.Monad.Error module in the mtl package
          makes Either String into a monad
          as well. If you use Either, you
          can get a pure result that preserves the error message, like
          so:
ghci> :m +Control.Monad.Error
ghci> (divByGeneric 50 [1,2,5,8,10])::(Integral a => Either String [a])
Loading package mtl-1.1.0.1 ... linking ... done.
Right [50,25,10,6,5]
ghci> (divByGeneric 50 [1,2,0,8,10])::(Integral a => Either String [a])
Left "division by zero in divByGeneric"
This leads us into our next topic of
          discussion: using Either for
          returning error information.


Use of Either



The Either type is similar to the Maybe type, with one key difference: it can
        carry attached data both for an error and a success (“the
        Right answer”).[42] Although the language imposes no restrictions, by
        convention, a function returning an Either uses a Left return value to indicate an error, and it uses Right to indicate success. If it helps you
        remember, you can think of getting the Right answer. We can start with our
        divby2.hs example from the
        earlier section on Maybe and adapt
        it to work with Either:
-- file: ch19/divby6.hs
divBy :: Integral a => a -> [a] -> Either String [a]
divBy _ [] = Right []
divBy _ (0:_) = Left "divBy: division by 0"
divBy numerator (denom:xs) =
    case divBy numerator xs of
      Left x -> Left x
      Right results -> Right ((numerator `div` denom) : results)
This code is almost identical to the
        Maybe code; we’ve substituted
        Right for every Just. Left compares to Nothing, but now it can carry a message.
        Let’s check it out in ghci:
ghci> divBy 50 [1,2,5,8,10]
Right [50,25,10,6,5]
ghci> divBy 50 [1,2,0,8,10]
Left "divBy: division by 0"
Custom data types for errors



While a String indicating the cause of an error may be useful to humans down
          the road, it’s often helpful to define a custom error type that we
          can use to programmatically decide on a course of action based upon
          exactly what the problem was. For instance, let’s say that for some
          reason, besides 0, we also don’t want to divide by 10 or 20. We
          could define a custom error type like so:
-- file: ch19/divby7.hs
data DivByError a = DivBy0
                 | ForbiddenDenominator a
                   deriving (Eq, Read, Show)

divBy :: Integral a => a -> [a] -> Either (DivByError a) [a]
divBy _ [] = Right []
divBy _ (0:_) = Left DivBy0
divBy _ (10:_) = Left (ForbiddenDenominator 10)
divBy _ (20:_) = Left (ForbiddenDenominator 20)
divBy numerator (denom:xs) =
    case divBy numerator xs of
      Left x -> Left x
      Right results -> Right ((numerator `div` denom) : results)
Now, in the event of an error, the
          Left data could be inspected to find the exact cause. Or, it could
          simply be printed out with show,
          which will generate a reasonable idea of the problem as well. Here’s
          this function in action:
ghci> divBy 50 [1,2,5,8]
Right [50,25,10,6]
ghci> divBy 50 [1,2,5,8,10]
Left (ForbiddenDenominator 10)
ghci> divBy 50 [1,2,0,8,10]
Left DivBy0
Warning
All of these Either examples suffer from the lack of
            laziness that our early Maybe
            examples suffered from. We address that in an exercise question at
            the end of this chapter.


Monadic use of Either



Back in Usage of the Maybe monad, we showed you how to use Maybe in a monad. Either can be used in a monad too, but it
          can be slightly more complicated. The reason is that fail is hardcoded to accept only a
          String as the failure code, so we
          have to have a way to map such a string into whatever type we used
          for Left. As you saw earlier,
          Control.Monad.Error
          provides built-in support for Either
          String a, which involves no mapping for the argument to
          fail. Here’s how we can set up
          our example to work with Either
          in the monadic style:
-- file: ch19/divby8.hs
{-# LANGUAGE FlexibleContexts #-}

import Control.Monad.Error

data Show a => 
    DivByError a = DivBy0
                  | ForbiddenDenominator a
                  | OtherDivByError String
                    deriving (Eq, Read, Show)

instance Error (DivByError a) where
    strMsg x = OtherDivByError x

divBy :: Integral a => a -> [a] -> Either (DivByError a) [a]
divBy = divByGeneric

divByGeneric :: (Integral a, MonadError (DivByError a) m) =>
                 a -> [a] -> m [a]
divByGeneric _ [] = return []
divByGeneric _ (0:_) = throwError DivBy0
divByGeneric _ (10:_) = throwError (ForbiddenDenominator 10)
divByGeneric _ (20:_) = throwError (ForbiddenDenominator 20)
divByGeneric numerator (denom:xs) =
    do next <- divByGeneric numerator xs
       return ((numerator `div` denom) : next)
Here, we needed to turn on the FlexibleContexts language extension in
          order to provide the type signature for divByGeneric. The divBy function works exactly the same as
          before. For divByGeneric, we make
          divByError a member of the
          Error class by defining what
          happens when someone calls fail
          (the strMsg function). We also
          convert Right to return and Left to throwError to enable this to be
          generic.



Exceptions



Note
Version 6.10.1 of GHC was released as this book went to press.
        It introduces an extensible exception system. In the sections that
        follow, we document the older exception system. The two are similar,
        but not completely compatible.

Exception handling is found in many programming languages,
      including Haskell. It can be useful because, when a problem occurs,
      exception handling can provide an easy way of handling it, even if it
      occurs several layers down through a chain of function calls. With
      exceptions, it’s not necessary to check the return value of every
      function call for errors, and we must take care to produce a return
      value that reflects the error, as C programmers must do. In Haskell,
      thanks to monads and the Either and
      Maybe types, we can often achieve the
      same effects in pure code without the need to use exceptions and
      exception handling.
Some problems—especially those involving
      I/O—call for working with exceptions. In Haskell, exceptions may be
      thrown from any location in the program. However, due to the unspecified
      evaluation order, they can only be caught in the IO monad.
      Haskell exception handling doesn’t involve special syntax as it does in
      Python or Java. Rather, the mechanisms to catch and handle exceptions
      are—surprise—functions.
First Steps with Exceptions



In the Control.Exception module, various functions and types relating to exceptions are defined. There is an
        Exception type defined there; all exceptions are of type Exception. There are
        also functions for catching and handling exceptions. Let’s start by
        looking at try, which has type
        IO a -> IO (Either Exception a).
        This wraps an IO action with exception handling. If an
        exception is thrown, it will return a Left value with the exception; otherwise, it
        returns a Right value with the
        original result. Let’s try this out in ghci. We’ll first trigger an unhandled
        exception, and then try to catch it:
ghci> :m Control.Exception
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> print x
*** Exception: divide by zero
ghci> print y
5
ghci> try (print x)
Left divide by zero
ghci> try (print y)
5
Right ()
Notice that no exception was thrown by the let statements. That’s to be expected due to lazy evaluation; the division by
        zero won’t be attempted until it is demanded by the attempt to print
        out x. Also, notice that there were
        two lines of output from try
        (print y). The
        first line was produced by print,
        which displayed the digit 5 on the
        terminal. The second was produced by ghci and shows us that print y returned () and didn’t throw an exception.

Laziness and Exception Handling



Now that you know how try works, let’s try another experiment.
        Let’s say we want to catch the result of try for future evaluation, so we can handle
        the result of division. Perhaps we would do it like this:
ghci> result <- try (return x)
Right *** Exception: divide by zero

What happened here? Let’s try to piece
        it together, and illustrate with another attempt:
ghci> let z = undefined
ghci> try (print z)
Left Prelude.undefined
ghci> result <- try (return z)
Right *** Exception: Prelude.undefined
As before, assigning
        undefined to z was not
        a problem. The key to this puzzle, and to the division puzzle, lies
        with lazy evaluation. Specifically, it lies with return, which does not force the evaluation
        of its argument; it only wraps it up. So, the result of try (return undefined) would be Right undefined. Now, ghci wants to display this result on the
        terminal. It gets as far as printing out "Right ", but we can’t print out
        undefined (or the result of division by zero). So when we
        see the exception message, it’s coming from ghci, not your program.
This is a key point. Let’s think about
        why our earlier example worked and this one didn’t. Earlier, we put
        print x inside try. Printing the value of something, of
        course, requires it to be evaluated, so the exception was detected at
        the right place. But simply using return does not force evaluation. To solve
        this problem, the Control.Exception
        module defines the evaluate
        function. It behaves just like return but forces its argument to be
        evaluated immediately. Let’s try it:
ghci> let z = undefined
ghci> result <- try (evaluate z)
Left Prelude.undefined
ghci> result <- try (evaluate x)
Left divide by zero
There, that’s what was expected. This
        worked for both undefined and our division by zero
        example.
Tip
Remember: whenever you are trying to
          catch exceptions thrown by pure code, use evaluate instead of return inside your exception-catching
          function.


Using handle



Often, you may wish to perform one
        action if a piece of code completes without an exception, and
        perform a different action otherwise. For situations such as this,
        there’s a function called handle.
        This function has type (Exception -> IO a)
        -> IO a -> IO a. That is, it takes two parameters. The
        first is a function to call in the event where there is an exception
        while performing the second. Here’s one way we could use it:
ghci> :m Control.Exception
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> handle (\_ -> putStrLn "Error calculating result") (print x)
Error calculating result
ghci> handle (\_ -> putStrLn "Error calculating result") (print y)
5
This way, we can print out a nice message if there is
        an error in the calculations. It’s nicer than having the program crash
        with a division by zero error, for sure.

Selective Handling of Exceptions



One problem with the previous example is that it prints "Error calculating result" for
        any exception. There may have been an exception
        other than a division by zero exception. For instance, there may have
        been an error displaying the output, or some other exception could
        have been thrown by the pure code.
There’s a function handleJust for these situations. It lets you specify a test to see
        whether you are interested in a given exception. Let’s take a
        look:
-- file: ch19/hj1.hs
import Control.Exception

catchIt :: Exception -> Maybe ()
catchIt (ArithException DivideByZero) = Just ()
catchIt _ = Nothing

handler :: () -> IO ()
handler _ = putStrLn "Caught error: divide by zero"

safePrint :: Integer -> IO ()
safePrint x = handleJust catchIt handler (print x)
catchIt defines a function that decides
        whether or not we’re interested in a given exception. It returns
        Just if so, and Nothing if not. Also, the value attached to
        Just will be passed to our handler.
        We can now use safePrint
        nicely:
ghci> :l hj1.hs
[1 of 1] Compiling Main             ( hj1.hs, interpreted )
Ok, modules loaded: Main.
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> safePrint x
Caught error: divide by zero
ghci> safePrint y
5
The Control.Exception module also presents a number of functions that we can use as
        part of the test in handleJust to
        narrow down the kinds of exceptions we care about. For instance, there
        is a function arithExceptions of
        type Exception -> Maybe ArithException that
        will pick out any ArithException,
        but ignore any other one. We could use it like this:
-- file: ch19/hj2.hs
import Control.Exception

handler :: ArithException -> IO ()
handler e = putStrLn $ "Caught arithmetic error: " ++ show e

safePrint :: Integer -> IO ()
safePrint x = handleJust arithExceptions handler (print x)
In this way, we can catch all types of
        ArithException, but still let other
        exceptions pass through unmodified and uncaught. We can see it work
        like so:
ghci> :l hj2.hs
[1 of 1] Compiling Main             ( hj2.hs, interpreted )
Ok, modules loaded: Main.
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> safePrint x
Caught arithmetic error: divide by zero
ghci> safePrint y
5
Of particular interest is the ioErrors test, which corresponds to the
        large class of I/O-related exceptions.

I/O Exceptions



Perhaps the largest source of exceptions in any program is I/O.
        All sorts of things can go wrong when dealing with the outside world:
        disks can be full, networks can go down, or files can be empty when
        you expect them to have data. In Haskell, an I/O exception is just
        like any other exception in that the Exception data type can represent it. On the
        other hand, because there are so many types of I/O exceptions, a
        special module, System.IO.Error,
        exists for dealing with them.
System.IO.Error defines two functions,
        catch and try, that, like their counterparts in Control.Exception, are used to deal with
        exceptions. Unlike the Control.Exception functions, however, these
        functions will trap only I/O errors and will pass all other exceptions
        through uncaught. In Haskell, I/O errors all have type IOError, which is defined as the same as
        IOException.
Be careful which names you use
Because both System.IO.Error and Control.Exception define functions with
          the same names, if you import both in your program, you will get an
          error message about an ambiguous reference to a function. You can
          import one or the other module qualified, or hide the symbols from one
          module or the other.
Note that Prelude exports System.IO.Error’s version of catch, not the
          version provided by Control.Exception. Remember that
          the former can catch only I/O errors, while the latter can catch all
          exceptions. In other words, the catch in Control.Exception is
          almost always the one you will want, but it is
          not the one you will get by default.

Let’s take a look at one approach to
        using exceptions in the I/O system to our benefit. Back in Working with Files and Handles, we presented a program that used an imperative
        style to read lines from a file one by one. Although we subsequently
        demonstrated more compact, “Haskelly” ways to solve that problem,
        let’s revisit that example here. In the mainloop function, we had to explicitly test
        if we were at the end of the input file before each attempt to read a
        line from it. Instead, we could check if the attempt to read a line
        resulted in an EOF error, like so:
-- file: ch19/toupper-impch20.hs
import System.IO
import System.IO.Error
import Data.Char(toUpper)

main :: IO ()
main = do 
       inh <- openFile "input.txt" ReadMode
       outh <- openFile "output.txt" WriteMode
       mainloop inh outh
       hClose inh
       hClose outh

mainloop :: Handle -> Handle -> IO ()
mainloop inh outh = 
    do input <- try (hGetLine inh)
       case input of
         Left e -> 
             if isEOFError e
                then return ()
                else ioError e
         Right inpStr ->
             do hPutStrLn outh (map toUpper inpStr)
                mainloop inh outh
Here, we use the System.IO.Error version of try to check whether hGetLine threw an IOError. If it did, we use isEOFError (defined in System.IO.Error) to see if the thrown
        exception indicated that we reached the end of the file. If it did, we
        exit the loop. If the exception was something else, we call ioError to rethrow it.
There are many such tests and ways to
        extract information from IOError
        defined in System.IO.Error. We
        recommend that you consult that page in the library reference when you
        need to know about them.

Throwing Exceptions



Thus far, we have talked in
        detail about handling exceptions. There is another piece to the
        puzzle: throwing exceptions.[43] In the examples we have visited so far in this chapter,
        the Haskell system throws exceptions for you. However, it is possible
        to throw any exception yourself. We’ll show you how.
You’ll notice that most of these functions appear to
        return a value of type a or
        IO a. This means that the function
        can appear to return a value of any type. In fact, because these
        functions throw exceptions, they never “return” anything in the normal
        sense. These return values let you use these functions in various
        contexts where various different types are expected.
Let’s start our tour of ways to throw
        exceptions with the functions in Control.Exception. The most generic
        function is throw, which has
        type Exception -> a. This
        function can throw any Exception,
        and can do so in a pure context. There is a companion
        function—throwIO with type Exception -> IO a—that throws an
        exception in the IO monad. Both functions require an
        Exception to throw. You can craft
        an Exception by hand or reuse an
        Exception that was previously
        created.
There is also a function ioError, which is defined identically in
        Control.Exception and System.IO.Error with type IOError -> IO a. This is used when you
        want to generate an arbitrary I/O-related exception.

Dynamic Exceptions



Dynamic Exceptions make use of two little-used Haskell modules: Data.Dynamic and Data.Typeable. We will not go into a great level of detail on those
        modules here, but we will give you the tools you need to craft and use
        your own dynamic exception type.
In Chapter 21, you
        will see that the HDBC database library uses dynamic exceptions to
        indicate errors from SQL databases back to applications. Errors from
        database engines often have
        three components: an integer that represents an error code, a state,
        and a human-readable error message. We will build up our own
        implementation of the HDBC SqlError
        type here. Let’s start with the data structure representing the error
        itself:
-- file: ch19/dynexc.hs
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Dynamic
import Control.Exception

data SqlError = SqlError {seState :: String,
                          seNativeError :: Int,
                          seErrorMsg :: String}
                deriving (Eq, Show, Read, Typeable)
By deriving the Typeable
        typeclass, we’ve made this type available for dynamically typed
        programming. In order for GHC to automatically generate a
        Typeable instance, we had to enable the
        DeriveDataTypeable language extension.[44]
Now, let’s define a catchSql and a handleSql that can be used to catch an
        exception that is an SqlError (note
        that the regular catch and handle functions cannot catch our SqlError, because it is not a type of
        Exception):
-- file: ch19/dynexc.hs
{- | Execute the given IO action.

If it raises a 'SqlError', then execute the supplied 
handler and return its return value.  Otherwise, proceed
as normal. -}
catchSql :: IO a -> (SqlError -> IO a) -> IO a
catchSql = catchDyn

{- | Like 'catchSql', with the order of arguments reversed. -}
handleSql :: (SqlError -> IO a) -> IO a -> IO a
handleSql = flip catchSql
These functions are simply thin
        wrappers around catchDyn, which has
        type Typeable exception => IO a ->
        (exception -> IO a) -> IO a. We simply restrict the
        type of this here so that it catches only SQL exceptions.
Normally, when an exception is thrown
        but not caught anywhere, the program will crash and display the
        exception to standard error. With a dynamic exception, however, the
        system will not know how to display this, so we will simply see an
        unhelpful “unknown exception” message. We can provide a utility so
        that application writers can simply say main
        = handleSqlError $ do ... and have confidence that any
        exceptions thrown (in that thread) will be displayed. Here’s how to
        write handleSqlError:
-- file: ch19/dynexc.hs
{- | Catches 'SqlError's, and re-raises them as IO errors with fail.
Useful if you don't care to catch SQL errors, but want to see a sane
error message if one happens.  One would often use this as a 
high-level wrapper around SQL calls. -}
handleSqlError :: IO a -> IO a
handleSqlError action =
    catchSql action handler
    where handler e = fail ("SQL error: " ++ show e)
Finally, here’s an example of how to
        throw an SqlError as an exception.
        Here’s a function that will do just that:
-- file: ch19/dynexc.hs
throwSqlError :: String -> Int -> String -> a
throwSqlError state nativeerror errormsg =
    throwDyn (SqlError state nativeerror errormsg)

throwSqlErrorIO :: String -> Int -> String -> IO a
throwSqlErrorIO state nativeerror errormsg =
    evaluate (throwSqlError state nativeerror errormsg)
Tip
As a reminder, evaluate is like return but forces the evaluation of its
          argument.

This completes our dynamic exception
        support. That was a lot of code, and you may not have needed that
        much, but we wanted to give you an example of the dynamic exception
        itself and the utilities that often go with it. In fact, these
        examples reflect almost exactly what is present in the HDBC library.
        Let’s play with these in ghci for a
        bit:
ghci> :l dynexc.hs
[1 of 1] Compiling Main             ( dynexc.hs, interpreted )
Ok, modules loaded: Main.
ghci> throwSqlErrorIO "state" 5 "error message"
*** Exception: (unknown)
ghci> handleSqlError $ throwSqlErrorIO "state" 5 "error message"
*** Exception: user error (SQL error: SqlError {seState = "state", seNativeError = 5,
seErrorMsg = "error message"})
ghci> handleSqlError $ fail "other error"
*** Exception: user error (other error)
From this, you can see that ghci doesn’t know how to display an SQL
        error by itself. However, you can also see that our handleSqlError function helped out with that
        but also passed through other errors unmodified. Let’s finally try out
        a custom handler:
ghci> handleSql (fail . seErrorMsg) (throwSqlErrorIO "state" 5 "my error")
*** Exception: user error (my error)

Here, we defined a custom error handler
        that threw a new exception, consisting of the message in the seErrorMsg field of the SqlError. You can see that it worked as
        intended.
Exercise
	Take the Either example
              and made it work with laziness in the style of the Maybe example.






Error Handling in Monads



Because we must catch exceptions in the IO monad, if
      we try to use them inside a monad, or in a stack of monad transformers,
      we’ll get bounced out to the IO monad. This is almost never
      what we would actually like.
We defined a MaybeT transformer in Understanding Monad Transformers by Building One, but it is more useful as an aid to
      understanding than a programming tool. Fortunately, a dedicated—and more
      useful—monad transformer already exists: ErrorT, which is
      defined in the Control.Monad.Error module.
The ErrorT
      transformer lets us add exceptions to a monad, but it uses its own
      special exception machinery, separate from that provided the
      Control.Exception module. It gives us some interesting
      capabilities:
	If we stick with the
          ErrorT interfaces, we can both throw and catch
          exceptions within this monad.

	Following the naming pattern of other
          monad transformers, the execution function is named runErrorT. An uncaught
          ErrorT exception will stop propagating upwards when it
          reaches runErrorT. We will not
          be kicked out to the IO monad.

	We control the type that our
          exceptions will have.



Do not confuse ErrorT with regular exceptions
If we use the throw function from
        Control.Exception inside ErrorT (or if we
        use error or
        undefined), we will still be bounced
        out to the IO monad.

As with other mtl monads,
      the interface that ErrorT provides is defined by a
      typeclass:
-- file: ch19/MonadError.hs
class (Monad m) => MonadError e m | m -> e where
    throwError :: e             -- error to throw
               -> m a

    catchError :: m a           -- action to execute
               -> (e -> m a)    -- error handler
               -> m a
The type variable e represents the error type that we want to use.
      Whatever our error type is, we must make it an instance of the
      Error typeclass:
-- file: ch19/MonadError.hs
class Error a where
    -- create an exception with no message
    noMsg  :: a

    -- create an exception with a message
    strMsg :: String -> a
ErrorT’s implementation of
      fail uses the strMsg function. It throws strMsg as an exception, passing it the string
      argument that it received. As for noMsg, it is used to provide an mzero implementation for the
      MonadPlus typeclass.
To support the strMsg and noMsg functions, our ParseError
      type will have a Chatty constructor. This will be used as
      the constructor if, for example, someone calls fail in our monad.
One last piece of plumbing that we need
      to know about is the type of the execution function
      runErrorT:
ghci> :t runErrorT
runErrorT :: ErrorT e m a -> m (Either e a)

A Tiny Parsing Framework



To illustrate the use of
        ErrorT, let’s develop the bare bones of a parsing library
        similar to Parsec:
-- file: ch19/ParseInt.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Error
import Control.Monad.State
import qualified Data.ByteString.Char8 as B

data ParseError = NumericOverflow
                | EndOfInput
                | Chatty String
                  deriving (Eq, Ord, Show)

instance Error ParseError where
    noMsg  = Chatty "oh noes!"
    strMsg = Chatty
For our parser’s state, we will create
        a very small monad transformer stack. A State
        monad carries around the ByteString to parse,
        and ErrorT is stacked on top to provide error
        handling:
-- file: ch19/ParseInt.hs
newtype Parser a = P {
      runP :: ErrorT ParseError (State B.ByteString) a
    } deriving (Monad, MonadError ParseError)
As usual, we have wrapped our monad
        stack in a newtype. This costs us nothing in performance
        but adds type safety. We deliberately avoided deriving an instance of
        MonadState B.ByteString. This means that users of the
        Parser monad will not be able to use get or put to query or modify the parser’s state.
        As a result, we force ourselves to do some manual lifting to get at
        the State monad in our stack. This is, however, very easy
        to do:
-- file: ch19/ParseInt.hs
liftP :: State B.ByteString a -> Parser a
liftP m = P (lift m)

satisfy :: (Char -> Bool) -> Parser Char
satisfy p = do
  s <- liftP get
  case B.uncons s of
    Nothing         -> throwError EndOfInput
    Just (c, s')
        | p c       -> liftP (put s') >> return c
        | otherwise -> throwError (Chatty "satisfy failed")
The catchError function is useful for tasks beyond simple error handling. For
        instance, we can easily defang an exception, turning it into a more
        friendly form:
-- file: ch19/ParseInt.hs
optional :: Parser a -> Parser (Maybe a)
optional p = (Just `liftM` p) `catchError` \_ -> return Nothing
Our execution function merely plugs
        together the various layers and rearranges the result into a tidier
        form:
-- file: ch19/ParseInt.hs
runParser :: Parser a -> B.ByteString
          -> Either ParseError (a, B.ByteString)
runParser p bs = case runState (runErrorT (runP p)) bs of
                   (Left err, _) -> Left err
                   (Right r, bs) -> Right (r, bs)
If we load this into ghci, we can put it through its paces:
ghci> :m +Data.Char
ghci> let p = satisfy isDigit
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
ghci> runParser p (B.pack "x")
Left (Chatty "satisfy failed")
ghci> runParser p (B.pack "9abc")
Right ('9',"abc")
ghci> runParser (optional p) (B.pack "x")
Right (Nothing,"x")
ghci> runParser (optional p) (B.pack "9a")
Right (Just '9',"a")
Exercises
	Write a many parser,
              with type Parser a -> Parser [a]. It should
              apply a parser until it fails.

	Use many to write an
              int parser, with type
              Parser Int. It should accept negative and positive
              integers.

	Modify your int
              parser to throw a NumericOverflow exception if it
              detects a numeric overflow while parsing.








[40] We’re using integral division here, so
          50 / 8 shows as 6 instead of 6.25. We’re not using floating-point
          arithmetic in this example because division by zero with a Double produces the special value Infinity rather than an error.

[41] For an introduction to Maybe, refer to A More Controlled Approach.

[42] For more information on Either, refer to Handling Errors Through API Design.

[43] In some other languages, throwing
            an exception is referred to as raising
            it.

[44] It is possible to derive
            Typeable instances by hand, but that is
            cumbersome.



Chapter 20. Systems Programming in Haskell



So far, we’ve been talking mostly about high-level concepts. Haskell can also
    be used for lower-level systems programming. It is quite possible to write
    programs that interface with the operating system at a low level using
    Haskell.
In this chapter, we are going to attempt
    something ambitious: a Perl-like “language” that is valid Haskell,
    implemented in pure Haskell, that makes shell scripting easy. We are going to implement piping, easy
    command invocation, and some simple tools to handle tasks that might
    otherwise be performed with grep or
    sed.
Specialized modules exist for different
    operating systems. In this chapter, we will use generic OS-independent
    modules as much as possible. However, we will be focusing on the POSIX
    environment for much of the chapter. POSIX is a standard for Unix-like
    operating systems such as Linux, FreeBSD, MacOS X, or Solaris. Windows
    does not support POSIX by default, but the Cygwin environment provides a
    POSIX compatibility layer for Windows.
Running External Programs



It is possible to invoke external commands from Haskell. To do that, we
      suggest using rawSystem from
      the System.Cmd module. This will
      invoke a specified program, with the specified arguments, and return the
      exit code from that program. You can play with it in ghci:
ghci> :module System.Cmd
ghci> rawSystem "ls" ["-l", "/usr"]
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package unix-2.3.0.1 ... linking ... done.
Loading package process-1.0.0.1 ... linking ... done.
total 408
drwxr-xr-x   2 root root  94208 2008-08-22 04:51 bin
drwxr-xr-x   2 root root   4096 2008-04-07 14:44 etc
drwxr-xr-x   2 root root   4096 2008-04-07 14:44 games
drwxr-xr-x 155 root root  16384 2008-08-20 20:54 include
drwxr-xr-x   4 root root   4096 2007-11-01 21:31 java
drwxr-xr-x   6 root root   4096 2008-03-18 11:38 kerberos
drwxr-xr-x  70 root root  36864 2008-08-21 04:52 lib
drwxr-xr-x 212 root root 126976 2008-08-21 04:53 lib64
drwxr-xr-x  23 root root  12288 2008-08-21 04:53 libexec
drwxr-xr-x  15 root root   4096 2008-04-07 14:44 local
drwxr-xr-x   2 root root  20480 2008-08-21 04:53 sbin
drwxr-xr-x 347 root root  12288 2008-08-21 11:01 share
drwxr-xr-x   5 root root   4096 2008-04-07 14:44 src
lrwxrwxrwx   1 root root     10 2008-05-16 15:01 tmp -> ../var/tmp
drwxr-xr-x   2 root root   4096 2007-04-10 11:01 X11R6
ExitSuccess
Here, we run the equivalent of the shell
      command ls -l /usr. rawSystem does not parse arguments from a
      string or expand wild cards.[45] Instead, it expects every argument to be contained in a
      list. If you don’t want to pass any arguments, you can simply pass an
      empty list like this:
ghci> rawSystem "ls" []
calendartime.ghci  modtime.ghci    rp.ghci	  RunProcessSimple.hs
cmd.ghci	   posixtime.hs    rps.ghci	  timediff.ghci
dir.ghci	   rawSystem.ghci  RunProcess.hs  time.ghci
ExitSuccess


Directory and File Information



The System.Directory module contains quite a few functions that can be used to obtain
      information from the filesystem. You can get a list of files in a
      directory, rename or delete files, copy files, change the current
      working directory, or create new directories. System.Directory is portable and works on any
      platform where GHC itself works.
The library
      reference for System.Directory provides a
      comprehensive list of the functions available. Let’s use ghci to demonstrate a few of them. Most of these functions are
      straightforward equivalents to C library calls or shell commands:
ghci> :module System.Directory
ghci> setCurrentDirectory "/etc"
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
ghci> getCurrentDirectory
"/etc"
ghci> setCurrentDirectory ".."
ghci> getCurrentDirectory
"/"
Here we saw commands to change the current
      working directory and obtain the current working directory from the
      system. These are similar to the cd
      and pwd commands in the POSIX
      shell:
ghci> getDirectoryContents "/"
["dev",".vmware","mnt","var","etc","net","..","lib","srv","media","lib64","opt",
".ccache","bin","selinux",".","lost+found","proc",".autorelabel",".autofsck",
"sys","misc","home","tmp","boot",".bash_history","root","sbin","usr"]

getDirectoryContents returns a list for every
      item in a given directory. Note that on POSIX systems, this list
      normally includes the special values "." and "..". You will usually want to filter these
      out when processing the content of the directory, perhaps like
      this:
ghci> getDirectoryContents "/" >>= return . filter (`notElem` [".", ".."])
["dev",".vmware","mnt","var","etc","net","lib","srv","media","lib64","opt",
".ccache","bin","selinux","lost+found","proc",".autorelabel",".autofsck",
"sys","misc","home","tmp","boot",".bash_history","root","sbin","usr"]

Tip
For a more detailed discussion of
        filtering the results of getDirectoryContents, refer to Chapter 8.
Is the filter
        (`notElem` [".", ".."]) part confusing? That could also be
        written as filter (\c -> not $ elem c
        [".", ".."]). The backticks in this case effectively let us
        pass the second argument to notElem; see Infix Functions for more information on backticks.

You can also query the system about the
      location of certain directories. This query will ask the underlying
      operating system for the information:
ghci> getHomeDirectory
"/home/bos"
ghci> getAppUserDataDirectory "myApp"
"/home/bos/.myApp"
ghci> getUserDocumentsDirectory
"/home/bos"

Program Termination



Developers often write individual programs to accomplish particular
      tasks. These individual parts may be combined to accomplish larger
      tasks. A shell script or another program may execute them. The calling
      script often needs a way to discover whether the program was able to
      complete its task successfully. Haskell automatically indicates a
      nonsuccessful exit whenever a program is aborted by an exception.
However, you may need more fine-grained
      control over the exit code than that. Perhaps you need to return
      different codes for different types of errors. The System.Exit module provides a way to exit the program and return a specific
      exit status code to the caller. You can call exitWith ExitSuccess to return a code
      indicating a successful termination (0 on POSIX systems). Or, you can
      call something like exitWith (ExitFailure
      5), which will return code 5 to the calling program.

Dates and Times



Everything from file timestamps to business transactions involve
      dates and times. Haskell provides ways for manipulating dates and times,
      as well as features for obtaining date and time information from the
      system.
ClockTime and CalendarTime



In Haskell, the System.Time module is primarily responsible for date and time handling. It
        defines two types: ClockTime and
        CalendarTime.
ClockTime is the Haskell version of the
        traditional POSIX epoch. A ClockTime represents a time relative to
        midnight the morning of January 1, 1970, Coordinated Universal Time
        (UTC). A negative ClockTime
        represents a number of seconds prior to that date, while a positive
        number represents a count of seconds after it.
ClockTime is convenient for computations.
        Since it tracks  UTC, it doesn’t have to adjust for local time zones,
        daylight saving time, or other special cases in time handling. Every
        day is exactly (60 * 60 * 24) or 86,400 seconds,[46] which makes time interval calculations simple. You can,
        for instance, check the ClockTime at the start of a long task,
        again at the end, and simply subtract the start time from the end time
        to determine how much time elapsed. You can then divide by 3,600 and
        display the elapsed time as a count of hours if you wish.
ClockTime is ideal for answering questions
        such as these:
	How much time has elapsed?

	What will be the ClockTime 14 days ahead of this precise
            instant?

	When was the file last
            modified?

	What is the precise time right
            now?



These are good uses of ClockTime because they refer to precise,
        unambiguous moments in time. However, ClockTime is not as easily used for
        questions such as:
	Is today Monday?

	What day of the week will May 1 fall
            on next year?

	What is the current time in my local
            time zone, taking the potential presence of Daylight Saving Time (DST) into account?



CalendarTime stores time the way humans do:
        with a year, month, day, hour, minute, second, time zone, and DST
        information. It’s easy to convert this into a conveniently displayable
        string, or to answer questions about the local time.
You can convert between ClockTime and CalendarTime at will. Haskell includes
        functions to convert a ClockTime to
        a CalendarTime in the local time
        zone or to a CalendarTime representing UTC.
Using ClockTime



ClockTime is defined in System.Time like this:
data ClockTime = TOD Integer Integer
The first Integer represents the number of seconds
          since the epoch. The second Integer represents an additional
          number of picoseconds. Because ClockTime in Haskell uses the unbounded
          Integer type, it can effectively
          represent a date range limited only by computational
          resources.
Let’s look at some ways to use
          ClockTime. First, there is the
          getClockTime function that
          returns the current time according to the system’s clock:
ghci> :module System.Time
ghci> getClockTime
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Sat Aug 23 22:30:03 PDT 2008
If you wait a second and run getClockTime again, it will return an updated time. Notice that the output
          from this command is a nice-looking string, complete with
          day-of-week information. That’s due to the Show instance for ClockTime. Let’s look at the ClockTime at a lower
          level:
ghci> TOD 1000 0
Wed Dec 31 16:16:40 PST 1969
ghci> getClockTime >>= (\(TOD sec _) -> return sec)
1219555803
Here we first construct a ClockTime representing the point in time
          1,000 seconds after midnight on January 1, 1970, UTC. That moment in
          time is known as the epoch. Depending on your
          time zone, this moment in time may correspond to the evening of
          December 31, 1969, in your local time zone.
In the second example we pull the
          number of seconds out of the value returned by getClockTime. We can now manipulate it,
          like so:
ghci> getClockTime >>= (\(TOD sec _) -> return (TOD (sec + 86400) 0))
Sun Aug 24 22:30:03 PDT 2008

This will display what the time will
          be exactly 24 hours from now in your local time zone, since there
          are 86,400 seconds in 24 hours.

Using CalendarTime



As its name implies, CalendarTime represents time like we would on a calendar. It has fields for
          information such as year, month, and day. CalendarTime and its associated types are
          defined like this:
data CalendarTime = CalendarTime
   {ctYear :: Int,         -- Year (post-Gregorian)
    ctMonth :: Month, 
    ctDay :: Int,          -- Day of the month (1 to 31)
    ctHour :: Int,         -- Hour of the day (0 to 23)
    ctMin :: Int,          -- Minutes (0 to 59)
    ctSec :: Int,          -- Seconds (0 to 61, allowing for leap seconds)
    ctPicosec :: Integer,  -- Picoseconds
    ctWDay :: Day,         -- Day of the week
    ctYDay :: Int,         -- Day of the year (0 to 364 or 365)
    ctTZName :: String,    -- Name of timezone
    ctTZ :: Int,           -- Variation from UTC in seconds
    ctIsDST :: Bool        -- True if Daylight Saving Time in effect
   }

data Month = January | February | March | April | May | June 
             | July | August | September | October | November | December

data Day = Sunday | Monday | Tuesday | Wednesday
           | Thursday | Friday | Saturday
There are a few things about these
          structures that should be highlighted:
	ctWDay, ctYDay, and ctTZName are generated by the library functions that create a
              CalendarTime but are not used
              in calculations. If you are creating a CalendarTime by hand, it is not
              necessary to put accurate values into these fields, unless your
              later calculations will depend upon them.

	All of these three types are
              members of the Eq, Ord, Read, and Show typeclasses. In addition,
              Month and Day are declared as members of the Enum and
              Bounded typeclasses. For more
              information on these typeclasses, refer to Important Built-in Typeclasses.
You can generate CalendarTime values several ways. You
              could start by converting a ClockTime to a CalendarTime such as this:
ghci> :module System.Time
ghci> now <- getClockTime
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Sat Aug 23 22:29:59 PDT 2008
ghci> nowCal <- toCalendarTime now
CalendarTime {ctYear = 2008, ctMonth = August, ctDay = 23, ctHour = 22, 
ctMin = 29,ctSec = 59, ctPicosec = 877577000000, ctWDay = Saturday, 
ctYDay = 235, ctTZName ="PDT", ctTZ = -25200, ctIsDST = True}
ghci> let nowUTC = toUTCTime now
ghci> nowCal
CalendarTime {ctYear = 2008, ctMonth = August, ctDay = 23, ctHour = 22, 
ctMin = 29, ctSec = 59, ctPicosec = 877577000000, ctWDay = Saturday, 
ctYDay = 235, ctTZName = "PDT", ctTZ = -25200, ctIsDST = True}
ghci> nowUTC
CalendarTime {ctYear = 2008, ctMonth = August, ctDay = 24, ctHour = 5, 
ctMin = 29, ctSec = 59, ctPicosec = 877577000000, ctWDay = Sunday, 
ctYDay = 236, ctTZName = "UTC", ctTZ = 0, ctIsDST = False}
We used getClockTime to obtain the current
              ClockTime from the system’s
              clock. Next, toCalendarTime
              converts the ClockTime to a
              CalendarTime representing the
              time in the local time zone. toUTCtime performs a similar
              conversion, but its result is in the UTC time zone instead of
              the local time zone.
Notice that toCalendarTime is an IO function, but toUTCTime is not. The reason is that
              toCalendarTime returns a
              different result depending upon the locally configured time
              zone, but toUTCTime will
              return the exact same result whenever it is passed the same
              source ClockTime.
It’s easy to modify a CalendarTime value:
ghci> nowCal {ctYear = 1960}
CalendarTime {ctYear = 1960, ctMonth = August, ctDay = 23, 
ctHour = 22, ctMin = 29, ctSec = 59, ctPicosec = 877577000000,
ctWDay = Saturday, ctYDay = 235, ctTZName = "PDT", 
ctTZ = -25200, ctIsDST = True}
ghci> (\(TOD sec _) -> sec) (toClockTime nowCal)
1219555799
ghci> (\(TOD sec _) -> sec) (toClockTime (nowCal {ctYear = 1960}))
-295209001
In this example, we first took the
              CalendarTime value from
              earlier and simply switched its year to 1960. Then, we used
              toClockTime to convert the
              unmodified value to a ClockTime, and then the modified
              value, so you can see the difference. Notice that the modified
              value shows a negative number of seconds once converted to
              ClockTime. That’s to be
              expected, since a ClockTime
              is an offset from midnight on January 1, 1970, UTC, and this
              value is in 1960.
You can also create CalendarTime values manually:
ghci> let newCT = CalendarTime 2010 January 15 12 30 0 0 Sunday 0 "UTC" 0 False
ghci> newCT
CalendarTime {ctYear = 2010, ctMonth = January, ctDay = 15, ctHour = 12, 
ctMin = 30, ctSec = 0, ctPicosec = 0, ctWDay = Sunday, ctYDay = 0, 
ctTZName = "UTC", ctTZ = 0, ctIsDST = False}
ghci> (\(TOD sec _) -> sec) (toClockTime newCT)
1263558600
Note that even though January 15,
              2010, isn’t a Sunday—and isn’t day 0 in the year—the system was
              able to process this just fine. In fact, if we convert the value
              to a ClockTime and then back
              to a CalendarTime, you’ll
              find those fields properly filled in:
ghci> toUTCTime . toClockTime $ newCT
CalendarTime {ctYear = 2010, ctMonth = January, ctDay = 15, ctHour = 12, 
ctMin = 30, ctSec = 0, ctPicosec = 0, ctWDay = Friday, ctYDay = 14, 
ctTZName = "UTC", ctTZ = 0, ctIsDST = False}





TimeDiff for ClockTime



Because it can be difficult to
          manage differences between ClockTime values in a human-friendly way,
          the System.Time module includes a
          TimeDiff type. TimeDiff can be used, where convenient, to
          handle these differences. It is defined like this:
data TimeDiff = TimeDiff
   {tdYear :: Int,
    tdMonth :: Int,
    tdDay :: Int,
    tdHour :: Int,
    tdMin :: Int,
    tdSec :: Int,
    tdPicosec :: Integer}
Functions such as diffClockTimes and addToClockTime take a ClockTime and a
          TimeDiff and
          handle the calculations internally by converting to a CalendarTime in UTC, applying the
          differences, and converting back to a ClockTime.
Let’s see how it works:
ghci> :module System.Time
ghci> let feb5 = toClockTime $ CalendarTime 2008 February 5 0 0 0 0 Sunday 0
"UTC" 0 False
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
ghci> feb5
Mon Feb  4 16:00:00 PST 2008
ghci> addToClockTime (TimeDiff 0 1 0 0 0 0 0) feb5
Tue Mar  4 16:00:00 PST 2008
ghci> toUTCTime $ addToClockTime (TimeDiff 0 1 0 0 0 0 0) feb5
CalendarTime {ctYear = 2008, ctMonth = March, ctDay = 5, ctHour = 0,
ctMin = 0, ctSec = 0, ctPicosec = 0, ctWDay = Wednesday, ctYDay = 64, 
ctTZName = "UTC", ctTZ = 0, ctIsDST = False}
ghci> let jan30 = toClockTime $ CalendarTime 2009 January 30 0 0 0 0 
Sunday 0 "UTC" 0 False
ghci> jan30
Thu Jan 29 16:00:00 PST 2009
ghci> addToClockTime (TimeDiff 0 1 0 0 0 0 0) jan30
Sun Mar  1 16:00:00 PST 2009
ghci> toUTCTime $ addToClockTime (TimeDiff 0 1 0 0 0 0 0) jan30
CalendarTime {ctYear = 2009, ctMonth = March, ctDay = 2, ctHour = 0, ctMin = 0, 
ctSec = 0, ctPicosec = 0, ctWDay = Monday, ctYDay = 60, ctTZName = "UTC", ctTZ = 
0, ctIsDST = False}
ghci> diffClockTimes jan30 feb5
TimeDiff {tdYear = 0, tdMonth = 0, tdDay = 0, tdHour = 0, tdMin = 0, tdSec = 31104000, 
tdPicosec = 0}
ghci> normalizeTimeDiff $ diffClockTimes jan30 feb5
TimeDiff {tdYear = 0, tdMonth = 12, tdDay = 0, tdHour = 0, tdMin = 0, tdSec = 0, 
tdPicosec = 0}
We started by generating a ClockTime representing midnight February
          5, 2008 in UTC. Note that, unless your time zone is the same as UTC,
          when this time is printed out on the display, it may show up as the
          evening of February 4 because it is formatted for your local time
          zone.
Next, we add one month to it
          by calling addToClockTime. 2008 is a leap year, but
          the system handled that properly and we get a result that has the
          same date and time in March. Using toUTCTime, we can see the effect on this
          in the original UTC time zone.
For a second experiment, we set up a
          time representing midnight on January 30, 2009 in UTC. 2009 is not a
          leap year, so we might wonder what will happen when trying to add
          one month to it. We can see that, since neither February 29 or 30
          exist in 2009, we wind up with March 2.
Finally, we can see how diffClockTimes turns two ClockTime values into a TimeDiff,
          though only the seconds and picoseconds are filled in. The normalizeTimeDiff function takes such a
          TimeDiff and reformats it as a
          human might expect to see it.


File Modification Times



Many programs need to find out when particular files were last
        modified. Programs such as ls or
        graphical file managers typically display the modification time of
        files. The System.Directory
        module contains a cross-platform getModificationTime function. It takes a
        filename and returns a ClockTime
        representing the time the file was last modified. For instance:
ghci> :module System.Directory
ghci> getModificationTime "/etc/passwd"
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Mon Jul 14 04:06:29 PDT 2008
POSIX platforms maintain not just a
        modification time (known as mtime), but also the time of last read or
        write access (atime) and the time of last status change (ctime). Since
        this information is POSIX-specific, the cross-platform System.Directory module does not provide
        access to it. Instead, you will need to use functions in System.Posix.Files.
        Here is an example function to do that:
-- file: ch20/posixtime.hs
-- posixtime.hs

import System.Posix.Files
import System.Time
import System.Posix.Types

-- | Given a path, returns (atime, mtime, ctime)
getTimes :: FilePath -> IO (ClockTime, ClockTime, ClockTime)
getTimes fp =
    do stat <- getFileStatus fp
       return (toct (accessTime stat),
               toct (modificationTime stat),
               toct (statusChangeTime stat))

-- | Convert an EpochTime to a ClockTime
toct :: EpochTime -> ClockTime
toct et = 
    TOD (truncate (toRational et)) 0
Notice that call to getFileStatus. That call maps directly to
        the C function stat(). Its return
        value stores a vast assortment of information, including file type,
        permissions, owner, group, and the three time values we’re interested
        in. System.Posix.Files provides
        various functions, such as accessTime, that extract the information
        we’re interested out of the opaque FileStatus type returned by getFileStatus.
The functions such as accessTime return data in a POSIX-specific
        type called EpochTime, which converts to a ClockTime using the toct function. System.Posix.Files also provides a
        setFileTimes function to set the atime and mtime for a file.[47]


Extended Example: Piping



We’ve  just seen how to invoke external
      programs. Sometimes we need more control than that. Perhaps we need to
      obtain the output from those programs, provide input, or even chain
      together multiple external programs. Piping can help with all of these
      needs. Piping is often used in shell scripts. When you set up a pipe in
      the shell, you run multiple programs. The output of the first program is
      sent to the input of the second. Its output is sent to the third as
      input, and so on. The last program’s output normally goes to the
      terminal, or it could go to a file. Here’s an example session with the
      POSIX shell to illustrate piping:
$ ls /etc | grep 'm.*ap' | tr a-z A-Z
IDMAPD.CONF
MAILCAP
MAILCAP.ORDER
MEDIAPRM
TERMCAP
This command runs three programs, piping
      data between them. It starts with ls /etc, which outputs a list of all
      files or directories in /etc. The
      output of ls is sent as input to
      grep. We gave grep a regular expression that will cause it
      to output only the lines that start with 'm' and then contain "ap" somewhere in the line. Finally, the
      result of that is sent to tr. We gave
      tr options to convert everything to
      uppercase. The output of tr isn’t set
      anywhere in particular, so it is displayed on the screen.
In this situation, the shell handles
      setting up all the pipelines between programs. By using some of the
      POSIX tools in Haskell, we can accomplish the same thing.
Before describing how to do this, we
      should first warn you that the System.Posix modules expose a very low-level
      interface to Unix systems. The interfaces can be complex and their
      interactions can be complex as well, regardless of the programming
      language you use to access them. The full nature of these low-level
      interfaces has been the topic of entire books themselves, so we will
      just scratch the surface in this chapter.
Using Pipes for Redirection



POSIX defines a function that creates a pipe. This function returns two file
        descriptors (FDs), which are similar in concept to a Haskell Handle. One FD is the reading end of the
        pipe, and the other is the writing end. Anything that is written to
        the writing end can be read by the reading end. The data is “shoved
        through a pipe.” In Haskell, you call createPipe to access this interface.
Having a pipe is the first step to being
        able to pipe data between external programs. We must also be able to
        redirect the output of a program to a pipe and the input of another
        program from a pipe. The Haskell function dupTo accomplishes this. It takes an FD and
        makes a copy of it at another FD number. POSIX FDs for standard input,
        standard output, and standard error have the predefined FD numbers of
        0, 1, and 2, respectively. By renumbering an endpoint of a pipe to one
        of those numbers, we effectively can cause programs to have their
        input or output redirected.
There is another piece of the puzzle,
        however. We can’t just use dupTo
        before a call such as rawSystem
        because that would mess up the standard input or output of our main
        Haskell process. Moreover, rawSystem blocks until the invoked program
        executes, leaving us no way to start multiple processes running in
        parallel. To make this happen, we must use forkProcess. This is a very special function. It actually makes a
        copy of the program currently running and we wind up with two copies
        of the program running at the same time. Haskell’s forkProcess function takes a function to
        execute in the new process (known as the child). We have that function
        call dupTo. After it has done that,
        it calls executeFile to actually
        invoke the command. This is also a special function: if all goes well,
        it never returns. That’s because executeFile
        replaces the running process with a different program. Eventually, the
        original Haskell process will call getProcessStatus to wait for the child processes to terminate and learn of
        their exit codes.
Whenever you run a command on POSIX
        systems, whether you’ve just typed ls on the command line or used rawSystem in Haskell, under the hood,
        forkProcess, executeFile, and
        getProcessStatus (or their C
        equivalents) are always being used. To set up pipes, we duplicate the
        process that the system uses to start up programs, and add a few steps
        involving piping and redirection along the way.
There are a few other housekeeping
        things we must be careful about. When you call forkProcess, just about everything about
        your program is cloned.[48] That includes the set of open file descriptors
        (handles). Programs detect when they’re done receiving input from a
        pipe by checking the end-of-file indicator. When the process at the
        writing end of a pipe closes the pipe, the process at the reading end
        will receive an end-of-file indication. However, if the writing file
        descriptor exists in more than one process, the end-of-file indicator
        won’t be sent until all processes have closed that particular FD.
        Therefore, we must keep track of which FDs are opened so that we can
        close them all in the child processes. We must also close the child
        ends of the pipes in the parent process as soon as possible.
Here is an initial implementation of a
        system of piping in Haskell:
-- file: ch20/RunProcessSimple.hs
{-# OPTIONS_GHC -fglasgow-exts #-}
-- RunProcessSimple.hs

module RunProcessSimple where

import System.Process
import Control.Concurrent
import Control.Concurrent.MVar
import System.IO
import System.Exit
import Text.Regex
import System.Posix.Process
import System.Posix.IO
import System.Posix.Types

{- | The type for running external commands.  The first part
of the tuple is the program name.  The list represents the
command-line parameters to pass to the command. -}
type SysCommand = (String, [String])

{- | The result of running any command -}
data CommandResult = CommandResult {
    cmdOutput :: IO String,              -- ^ IO action that yields the output
    getExitStatus :: IO ProcessStatus    -- ^ IO action that yields exit result
    }

{- | The type for handling global lists of FDs to always close in the clients
-}
type CloseFDs = MVar [Fd]

{- | Class representing anything that is a runnable command -}
class CommandLike a where
    {- | Given the command and a String representing input,
         invokes the command.  Returns a String
         representing the output of the command. -}
    invoke :: a -> CloseFDs -> String -> IO CommandResult

-- Support for running system commands
instance CommandLike SysCommand where
    invoke (cmd, args) closefds input =
        do -- Create two pipes: one to handle stdin and the other
           -- to handle stdout.  We do not redirect stderr in this program.
           (stdinread, stdinwrite) <- createPipe
           (stdoutread, stdoutwrite) <- createPipe

           -- We add the parent FDs to this list because we always need
           -- to close them in the clients.
           addCloseFDs closefds [stdinwrite, stdoutread]

           -- Now, grab the closed FDs list and fork the child.
           childPID <- withMVar closefds (\fds ->
                          forkProcess (child fds stdinread stdoutwrite))

           -- Now, on the parent, close the client-side FDs.
           closeFd stdinread
           closeFd stdoutwrite

           -- Write the input to the command.
           stdinhdl <- fdToHandle stdinwrite
           forkIO $ do hPutStr stdinhdl input
                       hClose stdinhdl

           -- Prepare to receive output from the command
           stdouthdl <- fdToHandle stdoutread

           -- Set up the function to call when ready to wait for the
           -- child to exit.
           let waitfunc = 
                do status <- getProcessStatus True False childPID
                   case status of
                       Nothing -> fail $ "Error: Nothing from getProcessStatus"
                       Just ps -> do removeCloseFDs closefds 
                                          [stdinwrite, stdoutread]
                                     return ps
           return $ CommandResult {cmdOutput = hGetContents stdouthdl,
                                   getExitStatus = waitfunc}

        -- Define what happens in the child process
        where child closefds stdinread stdoutwrite = 
                do -- Copy our pipes over the regular stdin/stdout FDs
                   dupTo stdinread stdInput
                   dupTo stdoutwrite stdOutput

                   -- Now close the original pipe FDs
                   closeFd stdinread
                   closeFd stdoutwrite

                   -- Close all the open FDs we inherited from the parent
                   mapM_ (\fd -> catch (closeFd fd) (\_ -> return ())) closefds

                   -- Start the program
                   executeFile cmd True args Nothing

-- Add FDs to the list of FDs that must be closed post-fork in a child
addCloseFDs :: CloseFDs -> [Fd] -> IO ()
addCloseFDs closefds newfds =
    modifyMVar_ closefds (\oldfds -> return $ oldfds ++ newfds)

-- Remove FDs from the list
removeCloseFDs :: CloseFDs -> [Fd] -> IO ()
removeCloseFDs closefds removethem =
    modifyMVar_ closefds (\fdlist -> return $ procfdlist fdlist removethem)

    where
    procfdlist fdlist [] = fdlist
    procfdlist fdlist (x:xs) = procfdlist (removefd fdlist x) xs

    -- We want to remove only the first occurance ot any given fd
    removefd [] _ = []
    removefd (x:xs) fd 
        | fd == x = xs
        | otherwise = x : removefd xs fd

{- | Type representing a pipe.  A 'PipeCommand' consists of a source
and destination part, both of which must be instances of
'CommandLike'. -}
data (CommandLike src, CommandLike dest) => 
     PipeCommand src dest = PipeCommand src dest 

{- | A convenient function for creating a 'PipeCommand'. -}
(-|-) :: (CommandLike a, CommandLike b) => a -> b -> PipeCommand a b
(-|-) = PipeCommand

{- | Make 'PipeCommand' runnable as a command -}
instance (CommandLike a, CommandLike b) =>
         CommandLike (PipeCommand a b) where
    invoke (PipeCommand src dest) closefds input =
        do res1 <- invoke src closefds input
           output1 <- cmdOutput res1
           res2 <- invoke dest closefds output1
           return $ CommandResult (cmdOutput res2) (getEC res1 res2)

{- | Given two 'CommandResult' items, evaluate the exit codes for
both and then return a "combined" exit code.  This will be ExitSuccess
if both exited successfully.  Otherwise, it will reflect the first
error encountered. -}
getEC :: CommandResult -> CommandResult -> IO ProcessStatus 
getEC src dest =
    do sec <- getExitStatus src
       dec <- getExitStatus dest
       case sec of
            Exited ExitSuccess -> return dec
            x -> return x

{- | Execute a 'CommandLike'. -}
runIO :: CommandLike a => a -> IO ()
runIO cmd =
    do -- Initialize our closefds list
       closefds <- newMVar []

       -- Invoke the command
       res <- invoke cmd closefds []

       -- Process its output
       output <- cmdOutput res
       putStr output

       -- Wait for termination and get exit status
       ec <- getExitStatus res
       case ec of
            Exited ExitSuccess -> return ()
            x -> fail $ "Exited: " ++ show x
Let’s experiment with this in ghci a bit before looking at how it
        works:
ghci> :load RunProcessSimple.hs
[1 of 1] Compiling RunProcessSimple ( RunProcessSimple.hs, interpreted )
Ok, modules loaded: RunProcessSimple.
ghci> runIO $ ("pwd", []::[String])
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package unix-2.3.0.1 ... linking ... done.
Loading package process-1.0.0.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
Loading package regex-compat-0.71.0.1 ... linking ... done.
/home/bos/src/darcs/book/examples/ch20
ghci> runIO $ ("ls", ["/usr"])
bin
etc
games
include
java
kerberos
lib
lib64
libexec
local
sbin
share
src
tmp
X11R6
ghci> runIO $ ("ls", ["/usr"]) -|- ("grep", ["^l"])
lib
lib64
libexec
local
ghci> runIO $ ("ls", ["/etc"]) -|- ("grep", ["m.*ap"]) -|- ("tr", ["a-z", "A-Z"])
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
We start by running a simple command,
        pwd, which just prints the name of the current working directory.
        We pass [] for the list of
        arguments, because pwd doesn’t need
        any arguments. Due to the typeclasses used, Haskell can’t infer the
        type of [], so we specifically
        mention that it’s a String.
Then we get into more complex commands.
        We run ls, sending it through
        grep. At the end, we set up a pipe
        to run the exact same command that we ran via a shell-built pipe at
        the start of this section. It’s not yet as pleasant as it was in the
        shell, but then again our program is still relatively simple when
        compared to the shell.
Let’s look at the program. The very
        first line has a special OPTIONS_GHC clause. This is the same as passing -fglasgow-exts to ghc or ghci. We are using a GHC extension that
        permits us to use a (String,
        [String]) type as an instance of a typeclass.[49] Putting it in the source file means we don’t have to
        remember to specify it every time we use this module.
After the import lines, we define a few types. First,
        we define type SysCommand = (String,
        [String]) as an alias. This is the type a command to be
        executed by the system will take. We used data of this type for each
        command in the example execution above. The CommandResult type represents the result
        from executing a given command, and the CloseFDs type represents the list of FDs
        that we must close upon forking a new child process.
Next, we define a class named CommandLike, which will be used to run
        “things,” where a “thing” might be a standalone program, a pipe set up
        between two or more programs, or in the future, even pure Haskell
        functions. To be a member of this class, only one function—invoke—needs to be present for a given type.
        This will let us use runIO to start
        either a standalone command or a pipeline. It will also be useful for
        defining a pipeline, since we may have a whole stack of commands on
        one or both sides of a given command.
Our piping infrastructure is going to
        use strings as the way of sending data from one process to another. We
        can take advantage of Haskell’s support for lazy reading via hGetContents while reading data, and use
        forkIO to let writing occur in the
        background. This will work well, although not as fast as connecting
        the endpoints of two processes directly together.[50] It makes implementation quite simple, however. We need
        only take care to do nothing that would require the entire String to be buffered, and let Haskell’s
        laziness do the rest.
Next, we define an instance of CommandLike for SysCommand. We create two pipes: one to use
        for the new process’s standard input, and the other for its standard
        output. This creates four endpoints, and thus four file descriptors.
        We add the parent file descriptors to the list of those that must be
        closed in all children. These would be the write end of the child’s
        standard input, and the read end of the child’s standard output. Next,
        we fork the child process. In the parent, we can then close the file
        descriptors that correspond to the child. We can’t do that before the
        fork, because they wouldn’t be available to the child. We obtain a
        handle for the stdinwrite file
        descriptor, and start a thread via forkIO to write the input data to it. We
        then define waitfunc, which is the
        action that the caller will invoke when it is ready to wait for the
        called process to terminate. Meanwhile, the child uses dupTo, closes the file descriptors it
        doesn’t need, and executes the command.
Next, we define some utility functions
        to manage the list of file descriptors. After that, we define the
        tools that help set up pipelines. First, we define a new type PipeCommand that has a source and
        destination. Both the source and destination must be members of
        CommandLike. We also define the
        -|- convenience operator. Then, we
        make PipeCommand an instance of CommandLike. Its invoke implementation starts the first
        command with the given input, obtains its output, and passes that
        output to the invocation of the second command. It then returns the
        output of the second command and causes the getExitStatus function to wait for and check
        the exit statuses from both commands.
We finish by defining runIO. This function establishes the list of
        FDs that must be closed in the client, starts the command, displays
        its output, and checks its exit status.

Better Piping



Our previous example solved the basic
        need of letting us set up shell-like pipes. There are some other
        features that it would be nice to have though:
	Support more shell-like
            syntax

	The ability to let people pipe data
            into external programs or regular Haskell functions, freely mixing
            and matching the two

	The ability to return the final
            output and exit code in a way that Haskell programs can readily
            use



Fortunately, we already have most of the
        pieces to support this in place. We need only to add a few more
        instances of CommandLike to support
        this and a few more functions similar to runIO. Here is a revised example that
        implements all of these features:
-- file: ch20/RunProcess.hs
{-# OPTIONS_GHC -fglasgow-exts #-}

module RunProcess where

import System.Process
import Control.Concurrent
import Control.Concurrent.MVar
import Control.Exception(evaluate)
import System.Posix.Directory
import System.Directory(setCurrentDirectory)
import System.IO
import System.Exit
import Text.Regex
import System.Posix.Process
import System.Posix.IO
import System.Posix.Types
import Data.List
import System.Posix.Env(getEnv)

{- | The type for running external commands.  The first part
of the tuple is the program name.  The list represents the
command-line parameters to pass to the command. -}
type SysCommand = (String, [String])

{- | The result of running any command -}
data CommandResult = CommandResult {
    cmdOutput :: IO String,              -- ^ IO action that yields the output
    getExitStatus :: IO ProcessStatus    -- ^ IO action that yields exit result
    }

{- | The type for handling global lists of FDs to always close in the clients
-}
type CloseFDs = MVar [Fd]

{- | Class representing anything that is a runnable command -}
class CommandLike a where
    {- | Given the command and a String representing input,
         invokes the command.  Returns a String
         representing the output of the command. -}
    invoke :: a -> CloseFDs -> String -> IO CommandResult

-- Support for running system commands
instance CommandLike SysCommand where
    invoke (cmd, args) closefds input =
        do -- Create two pipes: one to handle stdin and the other
           -- to handle stdout.  We do not redirect stderr in this program.
           (stdinread, stdinwrite) <- createPipe
           (stdoutread, stdoutwrite) <- createPipe

           -- We add the parent FDs to this list because we always need
           -- to close them in the clients.
           addCloseFDs closefds [stdinwrite, stdoutread]

           -- Now, grab the closed FDs list and fork the child.
           childPID <- withMVar closefds (\fds ->
                          forkProcess (child fds stdinread stdoutwrite))

           -- Now, on the parent, close the client-side FDs.
           closeFd stdinread
           closeFd stdoutwrite

           -- Write the input to the command.
           stdinhdl <- fdToHandle stdinwrite
           forkIO $ do hPutStr stdinhdl input
                       hClose stdinhdl

           -- Prepare to receive output from the command
           stdouthdl <- fdToHandle stdoutread

           -- Set up the function to call when ready to wait for the
           -- child to exit.
           let waitfunc = 
                do status <- getProcessStatus True False childPID
                   case status of
                       Nothing -> fail $ "Error: Nothing from getProcessStatus"
                       Just ps -> do removeCloseFDs closefds 
                                          [stdinwrite, stdoutread]
                                     return ps
           return $ CommandResult {cmdOutput = hGetContents stdouthdl,
                                   getExitStatus = waitfunc}

        -- Define what happens in the child process
        where child closefds stdinread stdoutwrite = 
                do -- Copy our pipes over the regular stdin/stdout FDs
                   dupTo stdinread stdInput
                   dupTo stdoutwrite stdOutput

                   -- Now close the original pipe FDs
                   closeFd stdinread
                   closeFd stdoutwrite

                   -- Close all the open FDs we inherited from the parent
                   mapM_ (\fd -> catch (closeFd fd) (\_ -> return ())) closefds

                   -- Start the program
                   executeFile cmd True args Nothing

{- | An instance of 'CommandLike' for an external command.  The String is
passed to a shell for evaluation and invocation. -}
instance CommandLike String where
    invoke cmd closefds input =
        do -- Use the shell given by the environment variable SHELL,
           -- if any.  Otherwise, use /bin/sh
           esh <- getEnv "SHELL"
           let sh = case esh of
                       Nothing -> "/bin/sh"
                       Just x -> x
           invoke (sh, ["-c", cmd]) closefds input

-- Add FDs to the list of FDs that must be closed post-fork in a child
addCloseFDs :: CloseFDs -> [Fd] -> IO ()
addCloseFDs closefds newfds =
    modifyMVar_ closefds (\oldfds -> return $ oldfds ++ newfds)

-- Remove FDs from the list
removeCloseFDs :: CloseFDs -> [Fd] -> IO ()
removeCloseFDs closefds removethem =
    modifyMVar_ closefds (\fdlist -> return $ procfdlist fdlist removethem)

    where
    procfdlist fdlist [] = fdlist
    procfdlist fdlist (x:xs) = procfdlist (removefd fdlist x) xs

    -- We want to remove only the first occurance ot any given fd
    removefd [] _ = []
    removefd (x:xs) fd 
        | fd == x = xs
        | otherwise = x : removefd xs fd

-- Support for running Haskell commands
instance CommandLike (String -> IO String) where
    invoke func _ input =
       return $ CommandResult (func input) (return (Exited ExitSuccess))

-- Support pure Haskell functions by wrapping them in IO
instance CommandLike (String -> String) where
    invoke func = invoke iofunc
        where iofunc :: String -> IO String
              iofunc = return . func

-- It's also useful to operate on lines.  Define support for line-based
-- functions both within and without the IO monad.

instance CommandLike ([String] -> IO [String]) where
    invoke func _ input =
           return $ CommandResult linedfunc (return (Exited ExitSuccess))
       where linedfunc = func (lines input) >>= (return . unlines)

instance CommandLike ([String] -> [String]) where
    invoke func = invoke (unlines . func . lines)

{- | Type representing a pipe.  A 'PipeCommand' consists of a source
and destination part, both of which must be instances of
'CommandLike'. -}
data (CommandLike src, CommandLike dest) => 
     PipeCommand src dest = PipeCommand src dest 

{- | A convenient function for creating a 'PipeCommand'. -}
(-|-) :: (CommandLike a, CommandLike b) => a -> b -> PipeCommand a b
(-|-) = PipeCommand

{- | Make 'PipeCommand' runnable as a command -}
instance (CommandLike a, CommandLike b) =>
         CommandLike (PipeCommand a b) where
    invoke (PipeCommand src dest) closefds input =
        do res1 <- invoke src closefds input
           output1 <- cmdOutput res1
           res2 <- invoke dest closefds output1
           return $ CommandResult (cmdOutput res2) (getEC res1 res2)

{- | Given two 'CommandResult' items, evaluate the exit codes for
both and then return a "combined" exit code.  This will be ExitSuccess
if both exited successfully.  Otherwise, it will reflect the first
error encountered. -}
getEC :: CommandResult -> CommandResult -> IO ProcessStatus 
getEC src dest =
    do sec <- getExitStatus src
       dec <- getExitStatus dest
       case sec of
            Exited ExitSuccess -> return dec
            x -> return x

{- | Different ways to get data from 'run'.

 * IO () runs, throws an exception on error, and sends stdout to stdout.

 * IO String runs, throws an exception on error, reads stdout into
   a buffer, and returns it as a string.

 * IO [String] is same as IO String, but returns the results as lines.

 * IO ProcessStatus runs and returns a ProcessStatus with the exit
   information.  stdout is sent to stdout.  Exceptions are not thrown.

 * IO (String, ProcessStatus) is like IO ProcessStatus, but also
   includes a description of the last command in the pipe to have
   an error (or the last command, if there was no error).

 * IO Int returns the exit code from a program directly.  If a signal
   caused the command to be reaped, returns 128 + SIGNUM.

 * IO Bool returns True if the program exited normally (exit code 0,
   not stopped by a signal) and False otherwise.

-}
class RunResult a where
    {- | Runs a command (or pipe of commands), with results presented
       in any number of different ways. -}
    run :: (CommandLike b) => b -> a

-- | Utility function for use by 'RunResult' instances
setUpCommand :: CommandLike a => a -> IO CommandResult
setUpCommand cmd = 
    do -- Initialize our closefds list
       closefds <- newMVar []

       -- Invoke the command
       invoke cmd closefds []

instance RunResult (IO ()) where
    run cmd = run cmd >>= checkResult

instance RunResult (IO ProcessStatus) where
    run cmd = 
        do res <- setUpCommand cmd

           -- Process its output
           output <- cmdOutput res
           putStr output

           getExitStatus res
           
instance RunResult (IO Int) where
    run cmd = do rc <- run cmd
                 case rc of
                   Exited (ExitSuccess) -> return 0
                   Exited (ExitFailure x) -> return x
                   Terminated x -> return (128 + (fromIntegral x))
                   Stopped x -> return (128 + (fromIntegral x))

instance RunResult (IO Bool) where
    run cmd = do rc <- run cmd
                 return ((rc::Int) == 0)

instance RunResult (IO [String]) where
    run cmd = do r <- run cmd
                 return (lines r)

instance RunResult (IO String) where
    run cmd =
        do res <- setUpCommand cmd

           output <- cmdOutput res

           -- Force output to be buffered
           evaluate (length output)

           ec <- getExitStatus res
           checkResult ec
           return output

checkResult :: ProcessStatus -> IO ()
checkResult ps =
    case ps of
         Exited (ExitSuccess) -> return ()
         x -> fail (show x)

{- | A convenience function.  Refers only to the version of 'run'
that returns @IO ()@.  This prevents you from having to cast to it
all the time when you do not care about the result of 'run'.
-}
runIO :: CommandLike a => a -> IO ()
runIO = run

------------------------------------------------------------
-- Utility Functions
------------------------------------------------------------
cd :: FilePath -> IO ()
cd = setCurrentDirectory
 
{- | Takes a string and sends it on as standard output.
The input to this function is never read. -}
echo :: String -> String -> String
echo inp _ = inp

-- | Search for the regexp in the lines.  Return those that match.
grep :: String -> [String] -> [String]
grep pat = filter (ismatch regex)
    where regex = mkRegex pat
          ismatch r inp = case matchRegex r inp of
                            Nothing -> False
                            Just _ -> True

{- | Creates the given directory.  A value of 0o755 for mode would be typical.
An alias for System.Posix.Directory.createDirectory. -}
mkdir :: FilePath -> FileMode -> IO ()
mkdir = createDirectory

{- | Remove duplicate lines from a file (like Unix uniq).
Takes a String representing a file or output and plugs it through 
lines and then nub to uniqify on a line basis. -}
uniq :: String -> String
uniq = unlines . nub . lines

-- | Count number of lines.  wc -l
wcL, wcW :: [String] -> [String]
wcL inp = [show (genericLength inp :: Integer)]

-- | Count number of words in a file (like wc -w)
wcW inp = [show ((genericLength $ words $ unlines inp) :: Integer)]

sortLines :: [String] -> [String]
sortLines = sort

-- | Count the lines in the input
countLines :: String -> IO String
countLines = return . (++) "\n" . show . length . lines
Here’s what has changed:
	A new CommandLike instance for String that uses the shell to evaluate
            and invoke the string.

	New CommandLike instances for String -> IO String and various other
            types that are implemented in terms of this one. These process
            Haskell functions as commands.

	A new RunResult typeclass that defines a
            function run that returns
            information about the command in many different ways. See the
            comments in the source for more information. runIO is now just an alias for one
            particular RunResult
            instance.

	A few utility functions providing
            Haskell implementations of familiar Unix shell commands.



Let’s try out the new shell features.
        First, let’s make sure that the command we used in the previous
        example still works. Then, let’s try it using a more shell-like
        syntax.
ghci> :load RunProcess.hs
[1 of 1] Compiling RunProcess       ( RunProcess.hs, interpreted )
Ok, modules loaded: RunProcess.
ghci> runIO $ ("ls", ["/etc"]) -|- ("grep", ["m.*ap"]) -|- ("tr", ["a-z", "A-Z"])
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package unix-2.3.0.1 ... linking ... done.
Loading package process-1.0.0.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
Loading package regex-compat-0.71.0.1 ... linking ... done.
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
ghci> runIO $ "ls /etc" -|- "grep 'm.*ap'" -|- "tr a-z A-Z"
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
That was a lot easier to type. Let’s try
        substituting our native Haskell implementation of grep and try out some other new features as
        well:
ghci> runIO $ "ls /etc" -|- grep "m.*ap" -|- "tr a-z A-Z"
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
ghci> run $ "ls /etc" -|- grep "m.*ap" -|- "tr a-z A-Z" :: IO String
"IDMAPD.CONF\nMAILCAP\nPM-UTILS-HD-APM-RESTORE.CONF\n"
ghci> run $ "ls /etc" -|- grep "m.*ap" -|- "tr a-z A-Z" :: IO [String]
["IDMAPD.CONF","MAILCAP","PM-UTILS-HD-APM-RESTORE.CONF"]
ghci> run $ "ls /nonexistant" :: IO String
ls: cannot access /nonexistant: No such file or directory
*** Exception: user error (Exited (ExitFailure 2))
ghci> run $ "ls /nonexistant" :: IO ProcessStatus
ls: cannot access /nonexistant: No such file or directory
Exited (ExitFailure 2)
ghci> run $ "ls /nonexistant" :: IO Int
ls: cannot access /nonexistant: No such file or directory
2
ghci> runIO $ echo "Line1\nHi, test\n" -|- "tr a-z A-Z" -|- sortLines
HI, TEST
LINE1

Final Words on Pipes



We have developed a sophisticated system
        here. We warned you earlier that POSIX can be complex. One other thing
        we need to highlight: you must always make sure to evaluate the
        String returned by these functions
        before you attempt to evaluate the exit code of the child process. The
        child process will often not exit until it can write all of its data,
        and if you do this in the wrong order, your program will hang.
In this chapter, we developed, from the
        ground up, a simplified version of HSH. If you wish to use these
        shell-like capabilities in your own programs, we recommend HSH instead
        of the example developed here due to optimizations present in HSH. HSH
        also comes with a larger set of utility functions and more
        capabilities, but the source code behind the library is much more
        complex and large. Some of the utility functions presented here, in
        fact, were copied verbatim from HSH. HSH is available at http://software.complete.org/hsh.




[45] There is also a function system that takes only a single string and
          passes it through the shell to parse. We recommend using rawSystem instead, because the shell
          attaches special meaning to certain characters, which could lead to
          security issues or unexpected behavior.

[46] Some will note that UTC defines leap
            seconds at irregular intervals. The POSIX standard, which Haskell
            follows, states that every day is exactly 86,400 seconds in length
            in its representation, so you need not be concerned about leap
            seconds when performing routine calculations. The exact manner of
            handling leap seconds is system-dependent and complex, though
            usually it can be explained as having a “long second.” This nuance
            is generally only of interest when performing precise subsecond
            calculations.

[47] It is not normally possible to set
            the ctime on POSIX systems.

[48] The main exception is threads, which
            are not cloned.

[49] This extension is well-supported in
            the Haskell community; Hugs users can access the same thing with
            hugs -98 +o.

[50] The Haskell library HSH provides a
            similar API to that presented here, but it uses a more efficient
            (and much more complex) mechanism of connecting pipes directly
            between external processes without the data needing to pass
            through Haskell. This is the same approach that the shell takes,
            and it reduces the CPU load of handling piping.



Chapter 21. Using Databases



Everything from web forums to podcatchers or even backup programs
    frequently use databases for persistent storage. SQL-based databases are
    often quite convenient: they are fast, can scale from tiny to massive
    sizes, can operate over the network, often help handle locking and
    transactions, and can even provide failover and redundancy improvements for applications. Databases
    come in many different shapes: the large commercial databases such as
    Oracle, open source engines such as PostgreSQL or MySQL, and even
    embeddable engines such as Sqlite.
Because databases are so important, Haskell
    support for them is important as well. In this chapter, we will introduce
    you to one of the Haskell frameworks for working with databases. We will
    also use this framework to begin building a podcast downloader, which we
    will further develop in Chapter 22.
Overview of HDBC



At the bottom of the database stack is
      the database engine, which is
      responsible for actually storing data on disk. Well-known database
      engines include PostgreSQL, MySQL, and Oracle.
Most modern database engines support
      the Structured Query Language (SQL) as a standard way of
      getting data into and out of relational databases. This book will not
      provide a tutorial on SQL or relational database management.[51]
Once you have a database engine that
      supports SQL, you need a way to communicate with it. Each database has
      its own protocol. Since SQL is reasonably constant across databases, it
      is possible to make a generic interface that uses drivers for each
      individual protocol.
Haskell has several different database
      frameworks available, some providing high-level layers atop others. For
      this chapter, we will concentrate on the Haskell DataBase Connectivity
      system (HDBC). HDBC is a database abstraction library. That is, you can
      write code that uses HDBC and can access data stored in almost any SQL
      database with little or no modification.[52] Even if you never need to switch underlying database
      engines, the HDBC system of drivers makes a large number of choices
      available to you with a single interface.
Another database abstraction library for
      Haskell is HSQL, which shares a similar purpose with HDBC. There is also
      a higher-level framework called HaskellDB, which sits atop either HDBC
      or HSQL and is designed to help insulate the programmer from the details
      of working with SQL. However, it does not have as broad appeal because
      its design limits it to certain—albeit quite common—database access
      patterns. Finally, Takusen is a framework that uses a “left fold”
      approach to reading data from the database.

Installing HDBC and Drivers



To connect to a given database with HDBC,
      you need at least two packages: the generic interface and a
      driver for your specific database. You can obtain the generic HDBC
      package, and all of the other drivers, from Hackage.[53] For this chapter, we will use HDBC version 1.1.3.
You’ll also need a database backend and a
      backend driver. For this chapter, we’ll use Sqlite version 3. Sqlite is
      an embedded database, so it doesn’t require a separate server and is
      easy to set up. Many operating systems already ship with Sqlite version
      3. If yours doesn’t, you can download it from http://www.sqlite.org/. The HDBC home page has a link to
      known HDBC backend drivers. The specific driver for Sqlite version 3 can
      be obtained from Hackage.
If you want to use HDBC with other
      databases, check out the HDBC Known Drivers page at http://software.complete.org/hdbc/wiki/KnownDrivers.
      There you will find a link to the ODBC binding, which lets you connect
      to virtually any database on virtually any platform (Windows, POSIX, and
      others). You will also find a PostgreSQL binding. MySQL is supported via
      the ODBC binding, and specific information for MySQL users can be found
      in the HDBC-ODBC
      API documentation.

Connecting to Databases



To connect to a database, you will use a connection function from a
      database backend driver. Each database has its own unique method of
      connecting. The initial connection is generally the only time you will
      call anything from a backend driver module directly.
The database connection function will
      return a database handle. The precise type of this handle may vary from
      one driver to the next, but it will always be an instance of the
      IConnection typeclass. All of the functions you will use to operate on databases
      will work with any type that is an instance of IConnection. When you’re done talking to the
      database, call the disconnect
      function to disconnect from it. Here’s an example of making a
      connection to an Sqlite database:
ghci> :module Database.HDBC Database.HDBC.Sqlite3
ghci> conn <- connectSqlite3 "test1.db"
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package HDBC-1.1.4 ... linking ... done.
Loading package HDBC-sqlite3-1.1.4.0 ... linking ... done.
ghci> :type conn
conn :: Connectionghci> disconnect conn

Transactions



Most modern SQL databases have a notion of transactions. A transaction is designed
      to ensure that all components of a modification get applied, or that
      none of them do. Furthermore, transactions help prevent other processes
      accessing the same database from seeing partial data from modifications
      that are in progress.
Many databases require you to either
      explicitly commit all your changes before they appear on disk, or to run
      in an autocommit mode. Autocommit mode runs an implicit commit after every
      statement. This may make the adjustment to transactional databases
      easier for programmers not accustomed to them, but it is just a
      hindrance to people who actually want to use multistatement
      transactions.
HDBC intentionally does not support
      autocommit mode. When you modify data in your databases, you must
      explicitly cause it to be committed to disk. There are two ways to do
      that in HDBC: you can call commit
      when you’re ready to write the data to disk, or you can use the withTransaction function to wrap around your modification code. withTransaction will cause data to be
      committed upon successful completion of your function.
Sometimes a problem will occur while you
      are working on writing data to the database. Perhaps you get an error
      from the database or discover a problem with the data. In these
      instances, you can “roll back” your changes. This will cause all changes
      you made since your last commit or
      rollback to be forgotten. In HDBC, you can call the rollback function to do
      this. If you are using withTransaction, any uncaught exception will
      cause a rollback to be issued.
Note that a roll back operation rolls back
      only the changes since the last commit, rollback, or withTransaction. A database does not maintain
      an extensive history like a version-control system. You will see
      examples of commit later in this
      chapter.
Warning
One popular database, MySQL, does not
        support transactions with its default table type. In its default
        configuration, MySQL will silently ignore calls to commit or rollback and will commit all changes to disk
        immediately. The HDBC ODBC driver has instructions for configuring MySQL to indicate to
        HDBC that it does not support transactions, which will cause commit and rollback to generate errors. Alternatively,
        you can use InnoDB tables with MySQL, which do support transactions.
        InnoDB tables are recommended for use with HDBC.


Simple Queries



Some of the simplest queries in SQL involve statements that don’t
      return any data. These queries can be used to create tables, insert
      data, delete data, and set database parameters.
The most basic function for sending
      queries to a database is run. This
      function takes an IConnection, a
      String representing the query itself,
      and a list of parameters. Let’s use it to set up some things in our
      database:
ghci> :module Database.HDBC Database.HDBC.Sqlite3
ghci> conn <- connectSqlite3 "test1.db"
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package HDBC-1.1.4 ... linking ... done.
Loading package HDBC-sqlite3-1.1.4.0 ... linking ... done.
ghci> run conn "CREATE TABLE test (id INTEGER NOT NULL, desc VARCHAR(80))" []
0
ghci> run conn "INSERT INTO test (id) VALUES (0)" []
1
ghci> commit conn
ghci> disconnect conn
In this example, after connecting to the
      database, we first created a table called test. Then we inserted one row of data into
      the table. Finally, we committed the changes and disconnected from the
      database. Note that if we hadn’t called commit, no final change would have been
      written to the database at all.
The run
      function returns the number of rows that each query modified. For the
      first query, which created a table, no rows were modified. The second
      query inserted a single row, so run
      returned 1.

SqlValue



Before proceeding, we need to discuss a data type introduced in HDBC: SqlValue. Since both Haskell and SQL are
      strongly typed systems, HDBC tries to preserve type information as much
      as possible. At the same time, Haskell and SQL types don’t exactly
      mirror each other. Furthermore, different databases have different ways
      of representing things such as dates or special characters in
      strings.
SqlValue is a data type that has a number of
      constructors such as SqlString,
      SqlBool, SqlNull, SqlInteger, and more. This lets you represent
      various types of data in argument lists to the database and see various
      types of data in the results coming back, and still store it all in a
      list. There are convenience functions, toSql and fromSql, that you will normally use. If you
      care about the precise representation of data, you can still manually
      construct SqlValue data if you need
      to.

Query Parameters



HDBC, like most databases, supports a notion of replaceable parameters in queries.
      There are three primary benefits of using replaceable parameters: they
      prevent SQL injection attacks or trouble when the input contains quote
      characters, they improve performance when executing similar queries
      repeatedly, and they permit easy and portable insertion of data into
      queries.
Let’s say you want to add thousands of
      rows into our new table test. You
      could issue queries that look like INSERT INTO
      test VALUES (0, 'zero') and INSERT
      INTO test VALUES (1, 'one'). This forces the database server
      to parse each SQL statement individually. If you could replace the two
      values with a placeholder, the server could parse the SQL query once and
      just execute it multiple times with the different data.
A second problem involves escaping
      characters. What if you want to insert the string "I don't like 1"? SQL uses the single quote
      character to show the end of the field. Most SQL databases would require
      you to write this as 'I don''t like
      1'. But rules for other special characters such as backslashes
      differ between databases. Rather than trying to code this yourself, HDBC
      can handle it all for you. Let’s look at an example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> run conn "INSERT INTO test VALUES (?, ?)" [toSql 0, toSql "zero"]
1
ghci> commit conn
ghci> disconnect conn
The question marks in the INSERT
      query in this example are the placeholders. We then pass the
      parameters that are going to go there. run takes a list of SqlValue, so we use toSql to convert each item into an SqlValue. HDBC automatically handles
      conversion of the String "zero" into the appropriate representation for
      the database in use.
This approach won’t actually achieve any
      performance benefits when inserting large amounts of data. For that, we
      need more control over the process of creating the SQL query. We’ll
      discuss that in the next section.
Using replaceable parameters
Replaceable parameters work only for
        parts of the queries where the server is expecting a value, such as a
        WHERE clause in a SELECT statement or a value for an INSERT statement.
        You cannot say run "SELECT * from ?" [toSql
        "tablename"] and expect it to work. A table name is not a
        value, and most databases will not accept this syntax. That’s not a
        big problem in practice, because there is rarely a call for replacing
        things in this way that aren’t values.


Prepared Statements



HDBC defines a function prepare that
      will prepare a SQL query, but it does not yet bind the parameters to the
      query. prepare returns a Statement representing the compiled
      query.
Once you have a Statement, you can do a number of things with
      it. You can call execute on it one or more times. After
      calling execute on a query that
      returns data, you can use one of the fetch functions to retrieve that
      data. Functions such as run and
      quickQuery' use statements and
      execute internally; they are simply
      shortcuts to let you perform common tasks quickly. When you need more
      control over what’s happening, you can use a Statement instead of a function such as
      run.
Let’s look at using statements to insert
      multiple values with a single query. Here’s an example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> stmt <- prepare conn "INSERT INTO test VALUES (?, ?)"
ghci> execute stmt [toSql 1, toSql "one"]
1
ghci> execute stmt [toSql 2, toSql "two"]
1
ghci> execute stmt [toSql 3, toSql "three"]
1
ghci> execute stmt [toSql 4, SqlNull]
1
ghci> commit conn
ghci> disconnect conn
Here, we create a prepared statement and
      call it stmt. We then execute that
      statement four times and pass different parameters each time. These
      parameters are used, in order, to replace the question marks in the
      original query string. Finally, we commit the changes and disconnect the
      database.
HDBC also provides a function, executeMany, that can be useful in situations
      such as this. executeMany simply
      takes a list of rows of data to call the statement with. Here’s an
      example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> stmt <- prepare conn "INSERT INTO test VALUES (?, ?)"
ghci> executeMany stmt [[toSql 5, toSql "five's nice"], [toSql 6, SqlNull]]
ghci> commit conn
ghci> disconnect conn
More efficient execution
On the server, most databases will have
        an optimization that they can apply to executeMany so that they only have to
        compile this query string once, rather than twice.[54] This can lead to a dramatic performance gain when
        inserting large amounts of data at one time. Some databases can also
        apply this optimization to execute,
        but not all.


Reading Results



So far, we have discussed queries that
      insert or change data. Let’s now go over getting data back out of the
      database. The type of the function quickQuery' looks very similar to run,
      but it returns a list of results instead of a count of changed rows.
      quickQuery' is normally
      used with SELECT statements. Let’s see an example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> quickQuery' conn "SELECT * from test where id < 2" []
[[SqlString "0",SqlNull],[SqlString "0",SqlString "zero"],
[SqlString "1",SqlString "one"],[SqlString "0",SqlNull],
[SqlString "0",SqlString "zero"],[SqlString "1",SqlString "one"]]
ghci> disconnect conn
quickQuery' works with replaceable parameters,
      as we just discussed. In this case, we aren’t using any, so the set of
      values to replace is the empty list at the end of the quickQuery' call. quickQuery' returns a list of rows, where each
      row is itself represented as [SqlValue]. The values in the row are listed
      in the order returned by the database. You can use fromSql to convert them into regular Haskell
      types as needed.
It’s a bit hard to read that output. Let’s
      extend this example to format the results nicely. Here’s some code to do
      that:
-- file: ch21/query.hs
import Database.HDBC.Sqlite3 (connectSqlite3)
import Database.HDBC

{- | Define a function that takes an integer representing the maximum
id value to look up.  Will fetch all matching rows from the test database
and print them to the screen in a friendly format. -}
query :: Int -> IO ()
query maxId = 
    do -- Connect to the database
       conn <- connectSqlite3 "test1.db"

       -- Run the query and store the results in r
       r <- quickQuery' conn
            "SELECT id, desc from test where id <= ? ORDER BY id, desc"
            [toSql maxId]

       -- Convert each row into a String
       let stringRows = map convRow r
                        
       -- Print the rows out
       mapM_ putStrLn stringRows

       -- And disconnect from the database
       disconnect conn

    where convRow :: [SqlValue] -> String
          convRow [sqlId, sqlDesc] = 
              show intid ++ ": " ++ desc
              where intid = (fromSql sqlId)::Integer
                    desc = case fromSql sqlDesc of
                             Just x -> x
                             Nothing -> "NULL"
          convRow x = fail $ "Unexpected result: " ++ show x
This program does mostly the same thing as
      our example with ghci but with a new
      addition: the convRow function. This
      function takes a row of data from the database and converts it to a
      String. This string can then be
      easily printed out.
Notice how we took intid from fromSql directly but processed fromSql sqlDesc as a Maybe String type. If you recall, we declared
      that the first column in this table can never contain a NULL value but
      that the second column could. Therefore, we can safely ignore the
      potential for a NULL in the first column but not in the second. It is
      possible to use fromSql to convert
      the second column to a String
      directly, and it would even work—until a row with a NULL in that
      position is encountered. This would cause a runtime exception. So, we
      convert a SQL NULL value into the string "NULL". When printed, this will be
      indistinguishable from a SQL string 'NULL', but that’s acceptable for this
      example. Let’s try calling this function in ghci:
ghci> :load query.hs
[1 of 1] Compiling Main             ( query.hs, interpreted )
Ok, modules loaded: Main.
ghci> query 2
0: NULL
0: NULL
0: zero
0: zero
1: one
1: one
2: two
2: two
Reading with Statements



As we discussed in Prepared Statements, you can use statements for reading.
        There are a number of ways of reading data from statements that can be
        useful in certain situations. Like run, quickQuery' is a convenience function that
        in fact uses statements to accomplish its task.
To create a statement for reading, we
        use prepare just as we would for a
        statement that will be used to write data. You also use execute to execute it on the database
        server. Then, we can use various functions to read data from the
        Statement. The fetchAllRows' function returns [[SqlValue]], just like quickQuery'. There is also a function called
        sFetchAllRows', which converts
        every column’s data to Maybe String
        before returning it. Finally, there is fetchAllRowsAL', which returns (String, SqlValue) pairs for each column.
        The String is the column name as
        returned by the database; see Database Metadata
        for other ways to obtain column names.
You can also read data one row at a time
        by calling fetchRow, which returns
        IO (Maybe [SqlValue]). It will be
        Nothing if all the results have
        already been read, or one row otherwise.

Lazy Reading



Back in Lazy I/O, we
        talked about lazy I/O from files. It is also possible to read data lazily from databases.
        This can be particularly useful when dealing with queries that return
        an exceptionally large amount of data. By reading data lazily, you can
        still use convenient functions such as fetchAllRows instead of having to manually
        read each row as it comes in. If we are careful in our use of the
        data, we can avoid having to buffer all of the results in
        memory.
Lazy reading from a database, however,
        is more complex than reading from a file. When we’re done reading data
        lazily from a file, the file is closed—which is generally fine. When
        we’re done reading data lazily from a database, the database
        connection is still open—you may be submitting other queries with it,
        for instance. Some databases can even support multiple simultaneous
        queries, so HDBC can’t just close the connection when we’re
        done.
When using lazy reading, it is
        critically important that we finish reading the entire data set before
        we attempt to close the connection or execute a new query. We
        encourage you to use the strict functions, or row-by-row processing,
        wherever possible to minimize complex interactions with lazy
        reading.
Tip
If you are new to HDBC or the concept
          of lazy reading but have lots of data to read, repeated calls to
          fetchRow may be easier to
          understand. Lazy reading is a powerful and useful tool, but must be
          used correctly.

To read lazily from a database, we use
        the same functions we used before, without the apostrophe. For
        instance, use fetchAllRows instead
        of fetchAllRows'. The types of the
        lazy functions are the same as their strict cousins. Here’s an example
        of lazy reading:
ghci> conn <- connectSqlite3 "test1.db"
ghci> stmt <- prepare conn "SELECT * from test where id < 2"
ghci> execute stmt []
0
ghci> results <- fetchAllRowsAL stmt
[[("id",SqlString "0"),("desc",SqlNull)],[("id",SqlString "0"),
("desc",SqlString "zero")],[("id",SqlString "1"),("desc",SqlString "one")]
,[("id",SqlString "0"),("desc",SqlNull)],[("id",SqlString "0"),
("desc",SqlString "zero")],[("id",SqlString "1"),("desc",SqlString "one")]]
ghci> mapM_ print results
[("id",SqlString "0"),("desc",SqlNull)]
[("id",SqlString "0"),("desc",SqlString "zero")]
[("id",SqlString "1"),("desc",SqlString "one")]
[("id",SqlString "0"),("desc",SqlNull)]
[("id",SqlString "0"),("desc",SqlString "zero")]
[("id",SqlString "1"),("desc",SqlString "one")]ghci> disconnect conn
Note that you could have used fetchAllRowsAL' here as well. However, if you had a large data set to read,
        it would consume a lot of memory. By reading the data lazily, we can
        print out extremely large result sets using a constant amount of
        memory. With the lazy version, results will be evaluated in chunks;
        with the strict version, all results are read up front, stored in RAM,
        and then printed.


Database Metadata



Sometimes it can be useful for a program to learn information about
      the database itself. For instance, a program may want to see what tables
      exist so that it can automatically create missing tables or upgrade the
      database schema. In some cases, a program may need to alter its behavior
      depending on the database backend in use.
First, there is a getTables function that will obtain a list of defined tables in a database.
      You can also use the describeTable
      function, which will provide information about the defined columns
      in a given table.
You can learn about the database server in
      use by calling dbServerVer and
      proxiedClientName, for instance. The
      dbTransactionSupport function can be
      used to determine whether or not a given database supports transactions.
      Let’s look at an example of some of these items:
ghci> conn <- connectSqlite3 "test1.db"
ghci> getTables conn
["test"]
ghci> proxiedClientName conn
"sqlite3"
ghci> dbServerVer conn
"3.5.6"
ghci> dbTransactionSupport conn
Trueghci> disconnect conn
You can also learn about the results of a
      specific query by obtaining information from its statement. The describeResult function returns [(String, SqlColDesc)], a list of pairs. The
      first item gives the column name, and the second provides information
      about the column: the type, the size, and whether it may be NULL. The
      full specification is given in the HDBC API reference.
Note
Some databases may not be able to provide all this metadata. In
        these circumstances, an exception will be raised. Sqlite3, for
        instance, does not support describeResult or describeTable as of this writing.


Error Handling



HDBC will raise exceptions when
      errors occur. The exceptions have type SqlError. They convey information from the underlying SQL engine, such
      as the database’s state, the error message, and the database’s numeric
      error code, if any.
ghci does not know how to display an
      SqlError on the screen when it
      occurs. While the exception will cause the program to terminate, it will
      not display a useful message. Here’s an example:
ghci> conn <- connectSqlite3 "test1.db"
ghci> quickQuery' conn "SELECT * from test2" []
*** Exception: (unknown)
ghci> disconnect conn
Here we tried to SELECT data from a table
      that didn’t exist. The error message we got wasn’t helpful. There’s a
      utility function, handleSqlError,
      that will catch an SqlError and re-raise it as an IOError. In this form, it will be printable
      onscreen, but it will be more difficult to extract specific pieces of
      information programmatically. Let’s look at its usage:
ghci> conn <- connectSqlite3 "test1.db"
ghci> handleSqlError $ quickQuery' conn "SELECT * from test2" []
*** Exception: user error (SQL error: SqlError {seState = "", seNativeError = 1, 
seErrorMsg = "prepare 20: SELECT * from test2: no such table: test2"})
ghci> disconnect conn
Here we got more information, including a
      message saying that there is no such table as test2. This is much more
      helpful. Many HDBC programmers make it a standard practice to start
      their programs with main = handleSqlError $
      do, which will ensure that every uncaught SqlError will be printed in a helpful
      manner.
There are also catchSql and handleSql—similar to the standard catch and handle functions. catchSql and handleSql will intercept HDBC errors only.
      For more
      information on error handling, refer to Chapter 19.



[51] Alan Beaulieu’s Learning
          SQL and Kevin Kline et al.’s SQL in a
          Nutshell (both O’Reilly) may be useful if you don’t have
          experience with SQL.

[52] This assumes that you restrict
          yourself to using standard SQL.

[53] For more information on installing Haskell
          software, please refer to Installing Haskell Software.

[54] HDBC emulates this behavior for
            databases that do not provide it, offering programmers a unified
            API for running queries repeatedly.



Chapter 22. Extended Example: Web Client Programming



By this point, you’ve seen how to interact with a database, parse things,
    and handle errors. Let’s now take this a step farther and introduce a web
    client library to the mix.
We’ll develop a real application in this
    chapter: a podcast downloader, or podcatcher. The idea of a podcatcher
    is simple. It is given a list of URLs to process. Downloading each of
    these URLs results in an XML file in the RSS format. Inside this XML file, we’ll find references to URLs for
    audio files to download.
Podcatchers usually let the user subscribe
    to podcasts by adding RSS URLs to their configuration. Then, the user can
    periodically run an update operation. The podcatcher will download the RSS
    documents, examine them for audio file references, and download any audio
    files that haven’t already been downloaded on behalf of this user.
Tip
Users often call the RSS document a
      podcast or the podcast feed, and call each individual audio file an
      episode.

To make this happen, we need to have several
    things:
	An HTTP client library to download
        files

	An XML parser

	A way to specify and persistently store
        which podcasts we’re interested in

	A way to persistently store which
        podcast episodes we’ve already downloaded



The last two items can be accommodated via a
    database that we’ll set up using HDBC. The first two can be accommodated
    via other library modules we’ll introduce in this chapter.
Tip
The code in this chapter was written
      specifically for this book, but is based on code written for hpodder, an
      existing podcatcher written in Haskell. hpodder has many more features
      than the examples presented here, which make it too long and complex to
      cover in this book. If you are interested in studying hpodder, its
      source code is freely available at http://software.complete.org/hpodder.

We’ll write the code for this chapter in
    pieces. Each piece will be its own Haskell module. You’ll be able to play
    with each piece by itself in ghci. At
    the end, we’ll write the final code that ties everything together into a
    finished application. We’ll start with the basic types that we’ll need to
    use.
Basic Types



The first thing to do is have some idea of
      the basic information that will be important to the application. This
      will generally be information about the podcasts the user is interested
      in, plus information about episodes that we have seen and processed.
      It’s easy enough to change this later if needed, but since we’ll be
      importing it just about everywhere, we’ll define it first:
-- file: ch22/PodTypes.hs
module PodTypes where

data Podcast =
    Podcast {castId :: Integer, -- ^ Numeric ID for this podcast
             castURL :: String  -- ^ Its feed URL
            }
    deriving (Eq, Show, Read)

data Episode = 
    Episode {epId :: Integer,     -- ^ Numeric ID for this episode
             epCast :: Podcast,   -- ^ The ID of the podcast it came from
             epURL :: String,     -- ^ The download URL for this episode
             epDone :: Bool       -- ^ Whether or not we are done with this ep
            }
    deriving (Eq, Show, Read)
We’ll be storing this information in a
      database. Having a unique identifier for both a podcast and an episode
      makes it easy to find which episodes belong to a particular podcast,
      load information for a particular podcast or episode, or handle future
      cases such as changing URLs for podcasts.

The Database



Next, we’ll write the code to make
      possible persistent storage in a database. We’ll primarily be interested
      in moving data between the Haskell structures that we defined in
      PodTypes.hs and the database on disk. Also, the
      first time the user runs the program, the user will need to create the
      database tables that he will use to store our data.
We’ll use HDBC (see Chapter 21) to interact with a Sqlite database. Sqlite is
      lightweight and self-contained, which makes it perfect for this project.
      For information on installing HDBC and Sqlite, consult Installing HDBC and Drivers:
-- file: ch22/PodDB.hs
module PodDB where

import Database.HDBC
import Database.HDBC.Sqlite3
import PodTypes
import Control.Monad(when)
import Data.List(sort)

-- | Initialize DB and return database Connection
connect :: FilePath -> IO Connection
connect fp =
    do dbh <- connectSqlite3 fp
       prepDB dbh
       return dbh

{- | Prepare the database for our data.

We create two tables and ask the database engine to verify some pieces
of data consistency for us:

* castid and epid both are unique primary keys and must never be duplicated
* castURL also is unique
* In the episodes table, for a given podcast (epcast), there must be only
  one instance of each given URL or episode ID
-}
prepDB :: IConnection conn => conn -> IO ()
prepDB dbh =
    do tables <- getTables dbh
       when (not ("podcasts" `elem` tables)) $
           do run dbh "CREATE TABLE podcasts (\
                       \castid INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,\
                       \castURL TEXT NOT NULL UNIQUE)" []
              return ()
       when (not ("episodes" `elem` tables)) $
           do run dbh "CREATE TABLE episodes (\
                       \epid INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,\
                       \epcastid INTEGER NOT NULL,\
                       \epurl TEXT NOT NULL,\
                       \epdone INTEGER NOT NULL,\
                       \UNIQUE(epcastid, epurl),\
                       \UNIQUE(epcastid, epid))" []
              return ()
       commit dbh

{- | Adds a new podcast to the database.  Ignores the castid on the
incoming podcast, and returns a new object with the castid populated.

An attempt to add a podcast that already exists is an error. -}
addPodcast :: IConnection conn => conn -> Podcast -> IO Podcast
addPodcast dbh podcast = 
    handleSql errorHandler $
      do -- Insert the castURL into the table.  The database
         -- will automatically assign a cast ID.
         run dbh "INSERT INTO podcasts (castURL) VALUES (?)"
             [toSql (castURL podcast)]
         -- Find out the castID for the URL we just added.
         r <- quickQuery' dbh "SELECT castid FROM podcasts WHERE castURL = ?"
              [toSql (castURL podcast)]
         case r of
           [[x]] -> return $ podcast {castId = fromSql x}
           y -> fail $ "addPodcast: unexpected result: " ++ show y
    where errorHandler e = 
              do fail $ "Error adding podcast; does this URL already exist?\n"
                     ++ show e

{- | Adds a new episode to the database. 

Since this is done by automation instead of by user request, we will
simply ignore requests to add duplicate episodes.  This way, when we are
processing a feed, each URL encountered can be fed to this function,
without having to first look it up in the DB.

Also, we generally won't care about the new ID here, so don't bother
fetching it. -}
addEpisode :: IConnection conn => conn -> Episode -> IO ()
addEpisode dbh ep =
    run dbh "INSERT OR IGNORE INTO episodes (epCastId, epURL, epDone) \
                \VALUES (?, ?, ?)"
                [toSql (castId . epCast $ ep), toSql (epURL ep),
                 toSql (epDone ep)]
    >> return ()
       
{- | Modifies an existing podcast.  Looks up the given podcast by
ID and modifies the database record to match the passed Podcast. -}
updatePodcast :: IConnection conn => conn -> Podcast -> IO ()
updatePodcast dbh podcast =
    run dbh "UPDATE podcasts SET castURL = ? WHERE castId = ?" 
            [toSql (castURL podcast), toSql (castId podcast)]
    >> return ()

{- | Modifies an existing episode.  Looks it up by ID and modifies the
database record to match the given episode. -}
updateEpisode :: IConnection conn => conn -> Episode -> IO ()
updateEpisode dbh episode =
    run dbh "UPDATE episodes SET epCastId = ?, epURL = ?, epDone = ? \
             \WHERE epId = ?"
             [toSql (castId . epCast $ episode),
              toSql (epURL episode),
              toSql (epDone episode),
              toSql (epId episode)]
    >> return ()

{- | Remove a podcast.  First removes any episodes that may exist
for this podcast. -}
removePodcast :: IConnection conn => conn -> Podcast -> IO ()
removePodcast dbh podcast =
    do run dbh "DELETE FROM episodes WHERE epcastid = ?" 
         [toSql (castId podcast)]
       run dbh "DELETE FROM podcasts WHERE castid = ?"
         [toSql (castId podcast)]
       return ()

{- | Gets a list of all podcasts. -}
getPodcasts :: IConnection conn => conn -> IO [Podcast]
getPodcasts dbh =
    do res <- quickQuery' dbh 
              "SELECT castid, casturl FROM podcasts ORDER BY castid" []
       return (map convPodcastRow res)

{- | Get a particular podcast.  Nothing if the ID doesn't match, or
Just Podcast if it does. -}
getPodcast :: IConnection conn => conn -> Integer -> IO (Maybe Podcast)
getPodcast dbh wantedId =
    do res <- quickQuery' dbh 
              "SELECT castid, casturl FROM podcasts WHERE castid = ?"
              [toSql wantedId]
       case res of
         [x] -> return (Just (convPodcastRow x))
         [] -> return Nothing
         x -> fail $ "Really bad error; more than one podcast with ID"

{- | Convert the result of a SELECT into a Podcast record -}
convPodcastRow :: [SqlValue] -> Podcast
convPodcastRow [svId, svURL] =
    Podcast {castId = fromSql svId,
             castURL = fromSql svURL}
convPodcastRow x = error $ "Can't convert podcast row " ++ show x

{- | Get all episodes for a particular podcast. -}
getPodcastEpisodes :: IConnection conn => conn -> Podcast -> IO [Episode]
getPodcastEpisodes dbh pc =
    do r <- quickQuery' dbh
            "SELECT epId, epURL, epDone FROM episodes WHERE epCastId = ?"
            [toSql (castId pc)]
       return (map convEpisodeRow r)
    where convEpisodeRow [svId, svURL, svDone] =
              Episode {epId = fromSql svId, epURL = fromSql svURL,
                       epDone = fromSql svDone, epCast = pc}
In the PodDB module, we have defined functions to
      connect to the database, create the needed tables for it, add data to
      it, query it, and remove data from it. Here is an example ghci session demonstrating interacting with
      the database. It will create a database file named poddbtest.db in the current working directory
      and add a podcast and an episode to it:
ghci> :load PodDB.hs
[1 of 2] Compiling PodTypes         ( PodTypes.hs, interpreted )
[2 of 2] Compiling PodDB            ( PodDB.hs, interpreted )
Ok, modules loaded: PodDB, PodTypes.
ghci> dbh <- connect "poddbtest.db"
ghci> :type dbh
dbh :: Connection
ghci> getTables dbh
["episodes","podcasts","sqlite_sequence"]
ghci> let url = "http://feeds.thisamericanlife.org/talpodcast"
ghci> pc <- addPodcast dbh (Podcast {castId=0, castURL=url})
Podcast {castId = 1, castURL = "http://feeds.thisamericanlife.org/talpodcast"}
ghci> getPodcasts dbh
[Podcast {castId = 1, castURL = "http://feeds.thisamericanlife.org/talpodcast"}]
ghci> addEpisode dbh (Episode {epId = 0, epCast = pc, epURL = 
"http://www.example.com/foo.mp3", epDone = False})
ghci> getPodcastEpisodes dbh pc
[Episode {epId = 1, epCast = Podcast {castId = 1, castURL = 
"http://feeds.thisamericanlife.org/talpodcast"}, epURL = "http://www.example.com/foo.mp3", 
epDone = False}]
ghci> commit dbh
ghci> disconnect dbh

The Parser



Now that we have the database component,
      we need to have code to parse the podcast feeds. These are XML files
      that contain various information. Here’s an example XML file to show you
      what they look like:
<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:itunes="http://www.itunes.com/DTDs/Podcast-1.0.dtd" version="2.0">
  <channel>
    <title>Haskell Radio</title>
    <link>http://www.example.com/radio/</link>
    <description>Description of this podcast</description>
    <item>
      <title>Episode 2: Lambdas</title>
      <link>http://www.example.com/radio/lambdas</link>
      <enclosure url="http://www.example.com/radio/lambdas.mp3"
       type="audio/mpeg" length="10485760"/>
    </item>
    <item>
      <title>Episode 1: Parsec</title>
      <link>http://www.example.com/radio/parsec</link>
      <enclosure url="http://www.example.com/radio/parsec.mp3"
       type="audio/mpeg" length="10485150"/>
    </item>
  </channel>
</rss>
Out of these files, we are mainly
      interested in two things: the podcast title and the enclosure URLs. We
      use the HaXml
      toolkit to parse the XML file. Here’s the source code for this
      component:
-- file: ch22/PodParser.hs
module PodParser where

import PodTypes
import Text.XML.HaXml
import Text.XML.HaXml.Parse
import Text.XML.HaXml.Html.Generate(showattr)
import Data.Char
import Data.List

data PodItem = PodItem {itemtitle :: String,
                  enclosureurl :: String
                  }
          deriving (Eq, Show, Read)

data Feed = Feed {channeltitle :: String,
                  items :: [PodItem]}
            deriving (Eq, Show, Read)

{- | Given a podcast and an PodItem, produce an Episode -}
item2ep :: Podcast -> PodItem -> Episode
item2ep pc item =
    Episode {epId = 0,
             epCast = pc,
             epURL = enclosureurl item,
             epDone = False}

{- | Parse the data from a given string, with the given name to use
in error messages. -}
parse :: String -> String -> Feed
parse content name = 
    Feed {channeltitle = getTitle doc,
          items = getEnclosures doc}

    where parseResult = xmlParse name (stripUnicodeBOM content)
          doc = getContent parseResult

          getContent :: Document -> Content
          getContent (Document _ _ e _) = CElem e
          
          {- | Some Unicode documents begin with a binary sequence;
             strip it off before processing. -}
          stripUnicodeBOM :: String -> String
          stripUnicodeBOM ('\xef':'\xbb':'\xbf':x) = x
          stripUnicodeBOM x = x

{- | Pull out the channel part of the document.

Note that HaXml defines CFilter as:

> type CFilter = Content -> [Content]
-}
channel :: CFilter
channel = tag "rss" /> tag "channel"

getTitle :: Content -> String
getTitle doc =
    contentToStringDefault "Untitled Podcast" 
        (channel /> tag "title" /> txt $ doc)

getEnclosures :: Content -> [PodItem]
getEnclosures doc =
    concatMap procPodItem $ getPodItems doc
    where procPodItem :: Content -> [PodItem]
          procPodItem item = concatMap (procEnclosure title) enclosure
              where title = contentToStringDefault "Untitled Episode"
                               (keep /> tag "title" /> txt $ item)
                    enclosure = (keep /> tag "enclosure") item

          getPodItems :: CFilter
          getPodItems = channel /> tag "item"

          procEnclosure :: String -> Content -> [PodItem]
          procEnclosure title enclosure =
              map makePodItem (showattr "url" enclosure)
              where makePodItem :: Content -> PodItem
                    makePodItem x = PodItem {itemtitle = title,
                                       enclosureurl = contentToString [x]}

{- | Convert [Content] to a printable String, with a default if the 
passed-in [Content] is [], signifying a lack of a match. -}
contentToStringDefault :: String -> [Content] -> String
contentToStringDefault msg [] = msg
contentToStringDefault _ x = contentToString x

{- | Convert [Content] to a printable string, taking care to unescape it.

An implementation without unescaping would simply be:

> contentToString = concatMap (show . content)

Because HaXml's unescaping works only on Elements, we must make sure that
whatever Content we have is wrapped in an Element, then use txt to
pull the insides back out. -}
contentToString :: [Content] -> String
contentToString = 
    concatMap procContent
    where procContent x = 
              verbatim $ keep /> txt $ CElem (unesc (fakeElem x))

          fakeElem :: Content -> Element
          fakeElem x = Elem "fake" [] [x]

          unesc :: Element -> Element
          unesc = xmlUnEscape stdXmlEscaper
Let’s look at this code. First, we declare
      two types: PodItem and Feed. We will be transforming the XML document
      into a Feed, which then contains
      items. We also provide a function to convert an PodItem into an Episode as defined in PodTypes.hs.
Next, it is on to parsing. The parse function takes a String representing the XML content as well as
      a String representing a name to use
      in error messages, and then returns a Feed.
HaXml is designed as a “filter” converting
      data of one type to another. It can be a simple straightforward
      conversion of XML to XML, or of XML to Haskell data, or of Haskell data
      to XML. HaXml has a data type called CFilter, which is defined like this:
type CFilter = Content -> [Content]
That is, a CFilter takes a fragment of an XML document
      and returns 0 or more fragments. A CFilter might be asked to find all children of
      a specified tag, all tags with a certain name, the literal text
      contained within a part of an XML document, or any of a number of other
      things. There is also an operator (/>) that chains CFilter functions together. All of the data
      that we’re interested in occurs within the <channel> tag, so first we want to get
      at that. We define a simple CFilter:
channel = tag "rss" /> tag "channel"
When we pass a document to channel, it will search the top level for the
      tag named rss. Then, within that, it
      will look for the channel tag.
The rest of the program follows this basic
      approach. txt extracts the literal
      text from a tag, and by using CFilter
      functions, we can get at any part of the document.

Downloading



The next part of our program is a module
      to download data. We’ll need to download two different types of data:
      the content of a podcast and the audio for each episode. In the former
      case, we’ll parse the data and update our database. For the latter,
      we’ll write the data out to a file on disk.
We’ll be downloading from HTTP servers, so
      we’ll use a Haskell HTTP
      library. For downloading podcast feeds, we’ll download the
      document, parse it, and update the database. For episode audio, we’ll
      download the file, write it to disk, and mark it downloaded in the
      database. Here’s the code:
-- file: ch22/PodDownload.hs
module PodDownload where
import PodTypes
import PodDB
import PodParser
import Network.HTTP
import System.IO
import Database.HDBC
import Data.Maybe
import Network.URI

{- | Download a URL.  (Left errorMessage) if an error,
(Right doc) if success. -}
downloadURL :: String -> IO (Either String String)
downloadURL url =
    do resp <- simpleHTTP request
       case resp of
         Left x -> return $ Left ("Error connecting: " ++ show x)
         Right r -> 
             case rspCode r of
               (2,_,_) -> return $ Right (rspBody r)
               (3,_,_) -> -- A HTTP redirect
                 case findHeader HdrLocation r of
                   Nothing -> return $ Left (show r)
                   Just url -> downloadURL url
               _ -> return $ Left (show r)
    where request = Request {rqURI = uri,
                             rqMethod = GET,
                             rqHeaders = [],
                             rqBody = ""}
          uri = fromJust $ parseURI url

{- | Update the podcast in the database. -}
updatePodcastFromFeed :: IConnection conn => conn -> Podcast -> IO ()
updatePodcastFromFeed dbh pc =
    do resp <- downloadURL (castURL pc)
       case resp of
         Left x -> putStrLn x
         Right doc -> updateDB doc

    where updateDB doc = 
              do mapM_ (addEpisode dbh) episodes
                 commit dbh
              where feed = parse doc (castURL pc)
                    episodes = map (item2ep pc) (items feed)

{- | Downloads an episode, returning a String representing
the filename it was placed into, or Nothing on error. -}
getEpisode :: IConnection conn => conn -> Episode -> IO (Maybe String)
getEpisode dbh ep =
    do resp <- downloadURL (epURL ep)
       case resp of
         Left x -> do putStrLn x
                      return Nothing
         Right doc -> 
             do file <- openBinaryFile filename WriteMode
                hPutStr file doc
                hClose file
                updateEpisode dbh (ep {epDone = True})
                commit dbh
                return (Just filename)
          -- This function ought to apply an extension based on the file type
    where filename = "pod." ++ (show . castId . epCast $ ep) ++ "." ++ 
                     (show (epId ep)) ++ ".mp3"
This module defines three functions:
      downloadURL, which simply downloads a
      URL and returns it as a String;
      updatePodcastFromFeed, which
      downloads an XML feed file, parses it, and updates the database; and
      getEpisode, which downloads a given
      episode and marks it done in the database.
Warning
The HTTP library used here does not read
        the HTTP result lazily. As a result, it can result in the consumption
        of a large amount of RAM when downloading large files such as
        podcasts. Other libraries are available that do not have this
        limitation. We used this one because it is stable, easy to install,
        and reasonably easy to use. We suggest mini-http, available from
        Hackage, for serious HTTP needs.


Main Program



Finally, we need a main program to tie it
      all together. Here’s our main module:
-- file: ch22/PodMain.hs
module Main where

import PodDownload
import PodDB
import PodTypes
import System.Environment
import Database.HDBC
import Network.Socket(withSocketsDo)

main = withSocketsDo $ handleSqlError $
    do args <- getArgs
       dbh <- connect "pod.db"
       case args of
         ["add", url] -> add dbh url
         ["update"] -> update dbh
         ["download"] -> download dbh
         ["fetch"] -> do update dbh
                         download dbh
         _ -> syntaxError
       disconnect dbh

add dbh url = 
    do addPodcast dbh pc
       commit dbh
    where pc = Podcast {castId = 0, castURL = url}

update dbh = 
    do pclist <- getPodcasts dbh
       mapM_ procPodcast pclist
    where procPodcast pc =
              do putStrLn $ "Updating from " ++ (castURL pc)
                 updatePodcastFromFeed dbh pc

download dbh =
    do pclist <- getPodcasts dbh
       mapM_ procPodcast pclist
    where procPodcast pc =
              do putStrLn $ "Considering " ++ (castURL pc)
                 episodelist <- getPodcastEpisodes dbh pc
                 let dleps = filter (\ep -> epDone ep == False)
                             episodelist
                 mapM_ procEpisode dleps
          procEpisode ep =
              do putStrLn $ "Downloading " ++ (epURL ep)
                 getEpisode dbh ep

syntaxError = putStrLn 
  "Usage: pod command [args]\n\
  \\n\
  \pod add url      Adds a new podcast with the given URL\n\
  \pod download     Downloads all pending episodes\n\
  \pod fetch        Updates, then downloads\n\
  \pod update       Downloads podcast feeds, looks for new episodes\n"
We have a very simple command-line parser
      with a function to indicate a command-line syntax error, plus small
      functions to handle the different command-line arguments.
You can compile this program with a
      command like this:
ghc --make -O2 -o pod -package HTTP -package HaXml -package network \
    -package HDBC -package HDBC-sqlite3 PodMain.hs
Alternatively, you could use a Cabal file
      as documented in Creating a Package to build this
      project:
-- ch23/pod.cabal
Name: pod
Version: 1.0.0
Build-type: Simple
Build-Depends: HTTP, HaXml, network, HDBC, HDBC-sqlite3, base

Executable: pod
Main-Is: PodMain.hs
GHC-Options: -O2
Also, you’ll want a simple Setup.hs file:
import Distribution.Simple
main = defaultMain
Now, to build with Cabal, you just run the
      following:
runghc Setup.hs configure
runghc Setup.hs build
And you’ll find a dist directory containing your output. To
      install the program system-wide, run runghc Setup.hs install.


Chapter 23. GUI Programming with gtk2hs



Throughout this book, we have been developing simple text-based tools.
    While these are often ideal interfaces, sometimes a graphical user
    interface (GUI) is required. There are several GUI toolkits available for
    Haskell. In this chapter, we will look at one of them, gtk2hs.[55]
Installing gtk2hs



Before we dive in to working with gtk2hs,
      you’ll need to get it installed. On most Linux, BSD, or other POSIX
      platforms, you will find ready-made gtk2hs packages. You will generally
      need to install the GTK+ development environment, Glade, and gtk2hs. The
      specifics of doing so vary by distribution.
Windows and Mac developers should consult
      the gtk2hs downloads site at http://www.haskell.org/gtk2hs/download/. Begin by
      downloading gtk2hs from there. Then you will also need Glade version 3. Mac developers can find this at http://www.macports.org/, while Windows developers should
      consult http://sourceforge.net/projects/gladewin32.

Overview of the GTK+ Stack



Before examining the code, let’s pause a
      brief moment and consider the architecture of the system we are going to
      use. First off, we have GTK+. GTK+ is a cross-platform GUI-building
      toolkit, implemented in C. It runs on Windows, Mac, Linux, BSDs, and
      more. It is also the toolkit beneath the GNOME desktop
      environment.
Next, we have Glade. Glade is a
      user-interface designer, which lets you graphically lay out your
      application’s windows and dialogs. Glade saves the interface in XML
      files, which your application will load at runtime.
The last piece of this puzzle is gtk2hs.
      This is the Haskell binding for GTK+, Glade, and several related
      libraries. It is one of many language bindings available for
      GTK+.

User Interface Design with Glade



In this chapter, we are going to develop a
      GUI for the podcast downloader we first developed in Chapter 22. Our first task is to design the user interface
      in Glade. Once we have accomplished that, we will write the Haskell code
      to integrate it with the application.
Because this is a Haskell book, rather
      than a GUI design book, we will move fast through some of these early
      parts. For more information on interface design with Glade, you may wish
      to refer to one of these resources:
	The Glade homepage
	Contains documentation for Glade; see http://glade.gnome.org/.

	The GTK+ homepage
	Contains information about the different widgets. Refer to
            the documentation section, and then the stable GTK documentation
            area; see http://www.gtk.org/.

	The gtk2hs homepage
	Also has a useful documentation section, which contains an
            API reference to gtk2hs as well as a glade tutorial; see http://www.haskell.org/gtk2hs/documentation/.



Glade Concepts



Glade is a user-interface design tool. It lets us use a
        graphical interface to design our graphical interface. We could build
        up the window components using a bunch of calls to GTK+ functions, but
        it is usually easier to do this with Glade.
The fundamental “thing” we work with in
        GTK+ is the widget. A widget represents any part of the GUI, and may contain
        other widgets. Some examples of widgets include a window, dialog box,
        button, and text within the button.
Glade, then, is a widget layout tool. We
        set up a whole tree of widgets, with top-level windows at the top of
        the tree. You can think of Glade and widgets in somewhat the same
        terms as HTML: you can arrange widgets in a table-like layout, set up
        padding rules, and structure the entire description in a hierarchical
        way.
Glade saves the widget descriptions
        into an XML file. Our program loads this XML file at runtime. We load the
        widgets by asking the Glade runtime library to load a widget with a
        specific name.
Figure 23-1
        shows a screenshot of an example working with Glade to design our
        application’s main screen.
[image: Screenshot of Glade, showing components of the graphical user interface]

Figure 23-1. Screenshot of Glade, showing components of the graphical user
          interface

In the downloadable material available
        for this book, you can find the full Glade XML file as podresources.glade. You can load this file
        in Glade and edit it if you wish.


Event-Driven Programming



GTK+, like many GUI toolkits, is an event-driven toolkit. That
      means that instead of, say, displaying a dialog box and waiting for the
      user to click on a button, we instead tell gtk2hs what function to call
      if a certain button is clicked, but don’t sit there waiting for a click
      in the dialog box.
This is different from the model
      traditionally used for console programs. When you think about it,
      though, it almost has to be. A GUI program could have multiple windows
      open, and writing code to sit there waiting for input in the particular
      combination of open windows could be a complicated proposition.
Event-driven programming complements
      Haskell nicely. As we’ve discussed over and over in this book,
      functional languages thrive on passing around functions. So we’ll be
      passing functions to gtk2hs that get called when certain events occur.
      These are known as callback functions.
At the core of a GTK+ program is the
      main loop. This is the part of the program that waits for actions from
      the user or commands from the program and carries them out. The GTK+
      main loop is handled entirely by GTK+. To us, it looks like an I/O
      action that we execute, which doesn’t return until the GUI has been
      disposed of.
Since the main loop is responsible for
      doing everything from handling clicks of a mouse to redrawing a window
      when it has been uncovered, it must always be available. We can’t just
      run a long-running task—such as downloading a podcast episode—from
      within the main loop. This would make the GUI unresponsive, and actions
      such as clicking a Cancel button wouldn’t be processed in a timely
      manner.
Therefore, we will be using multithreading
      to handle these long-running tasks. More information on multithreading
      can be found in Chapter 24. For now, just know that
      we will use forkIO to create new
      threads for long-running tasks such as downloading podcast feeds and
      episodes. For very quick tasks, such as adding a new podcast to the
      database, we will not bother with a separate thread since it will be
      executed so fast that the user will never notice.

Initializing the GUI



Our first steps are going to involve initializing the GUI for our
      program. For reasons that we’ll explain later in this chapter in Using Cabal, we’re going to have a small file called
      PodLocalMain.hs that loads PodMain and passes to it the path to podresources.glade, which is the XML file
      saved by Glade that gives the information about our GUI widgets:
-- file: ch23/PodLocalMain.hs
module Main where

import qualified PodMainGUI

main = PodMainGUI.main "podresources.glade"
Now, let’s consider PodMainGUI.hs. This file is the only Haskell
      source file that we had to modify from the example in Chapter 22 to make it work as a GUI. Let’s begin by looking
      at the start of our new PodMainGUI.hs file—we’ve renamed it from
      PodMain.hs for
      clarity:
-- file: ch23/PodMainGUI.hs
module PodMainGUI where

import PodDownload
import PodDB
import PodTypes
import System.Environment
import Database.HDBC
import Network.Socket(withSocketsDo)

-- GUI libraries

import Graphics.UI.Gtk hiding (disconnect)
import Graphics.UI.Gtk.Glade

-- Threading

import Control.Concurrent
This first part of PodMainGUI.hs is similar to our non-GUI
      version. We import three additional components, however. First, we have
      Graphics.UI.Gtk, which provides most of the GTK+ functions we will be using.
      Both this module and Database.HDBC
      provide a function named disconnect. Since we’ll be using the HDBC
      version, but not the GTK+ version,
      we don’t import that function from Graphics.UI.Gtk. Graphics.UI.Gtk.Glade contains functions needed for loading and working with our Glade
      file.
We also import Control.Concurrent, which has the basics needed for multithreaded programming.
      We’ll use a few functions from here as just described once we get into
      the guts of the program. Next, let’s define a type to store information
      about our GUI:
-- file: ch23/PodMainGUI.hs
-- | Our main GUI type
data GUI = GUI {
      mainWin :: Window,
      mwAddBt :: Button,
      mwUpdateBt :: Button,
      mwDownloadBt :: Button,
      mwFetchBt :: Button,
      mwExitBt :: Button,
      statusWin :: Dialog,
      swOKBt :: Button,
      swCancelBt :: Button,
      swLabel :: Label,
      addWin :: Dialog,
      awOKBt :: Button,
      awCancelBt :: Button,
      awEntry :: Entry}
Our new GUI type stores all the widgets we will care
      about in the entire program. Large programs may not wish to have a
      monolithic type like this. For this small example, it makes sense
      because it can be easily passed around to different functions, and we’ll
      know that we always have the information we need available.
Within this record, we have fields for a
      Window (a top-level window), Dialog (dialog window), Button (clickable button), Label (piece of text), and Entry (place for the user to enter text).
      Let’s now look at our main
      function:
-- file: ch23/PodMainGUI.hs
main :: FilePath -> IO ()
main gladepath = withSocketsDo $ handleSqlError $
    do initGUI                  -- Initialize GTK+ engine

       -- Every so often, we try to run other threads.
       timeoutAddFull (yield >> return True)
                      priorityDefaultIdle 100

       -- Load the GUI from the Glade file
       gui <- loadGlade gladepath

       -- Connect to the database
       dbh <- connect "pod.db"

       -- Set up our events 
       connectGui gui dbh

       -- Run the GTK+ main loop; exits after GUI is done
       mainGUI
       
       -- Disconnect from the database at the end
       disconnect dbh
Remember that the type of this main function is a little different than usual
      because it is being called by main in
      PodLocalMain.hs. We start by
      calling initGUI, which initializes
      the GTK+ system. Next, we have a call to timeoutAddFull. This call is only needed for
      multithreaded GTK+ programs. It tells the GTK+ main loop to pause to
      give other threads a chance to run every so often.
After that, we call our loadGlade function (see the following code) to
      load the widgets from our Glade XML file. Next, we connect to our
      database and call our connectGui
      function to set up our callback functions. Then, we fire up the GTK+
      main loop. We expect it could be minutes, hours, or even days before
      mainGUI returns. When it does, it
      means the user has closed the main window or clicked the Exit button.
      After that, we disconnect from the database and close the program. Now,
      let’s look at our loadGlade function:
-- file: ch23/PodMainGUI.hs
loadGlade gladepath =
    do -- Load XML from glade path.
       -- Note: crashes with a runtime error on console if fails!
       Just xml <- xmlNew gladepath

       -- Load main window
       mw <- xmlGetWidget xml castToWindow "mainWindow"

       -- Load all buttons

       [mwAdd, mwUpdate, mwDownload, mwFetch, mwExit, swOK, swCancel,
        auOK, auCancel] <-
           mapM (xmlGetWidget xml castToButton)
           ["addButton", "updateButton", "downloadButton",
            "fetchButton", "exitButton", "okButton", "cancelButton",
            "auOK", "auCancel"]
       
       sw <- xmlGetWidget xml castToDialog "statusDialog"
       swl <- xmlGetWidget xml castToLabel "statusLabel"

       au <- xmlGetWidget xml castToDialog "addDialog"
       aue <- xmlGetWidget xml castToEntry "auEntry"

       return $ GUI mw mwAdd mwUpdate mwDownload mwFetch mwExit
              sw swOK swCancel swl au auOK auCancel aue
This function starts by calling xmlNew, which loads the Glade XML file. It
      returns Nothing
      on error. Here we are using pattern matching to extract the result value
      on success. If it fails, there will be a console (not graphical)
      exception displayed; one of the exercises at the end of this chapter
      addresses this.
Now that we have Glade’s XML file loaded,
      you will see a bunch of calls to xmlGetWidget. This Glade function is used
      to load the XML definition of a widget and return a GTK+ widget type for
      that widget. We have to pass along to that function a value indicating
      what GTK+ type we expect—we’ll get a runtime error if these don’t
      match.
We start by creating a widget for the main
      window. It is loaded from the XML widget defined with name "mainWindow" and stored in the mw variable. We then use pattern matching and
      mapM to load up all the buttons.
      Then, we have two dialogs, a label, and an entry to load. Finally, we
      use all of these to build up the GUI type and return it. Next, we need
      to set up our callback functions as event handlers:
-- file: ch23/PodMainGUI.hs
connectGui gui dbh =
    do -- When the close button is clicked, terminate the GUI loop
       -- by calling GTK mainQuit function
       onDestroy (mainWin gui) mainQuit
       
       -- Main window buttons
       onClicked (mwAddBt gui) (guiAdd gui dbh)
       onClicked (mwUpdateBt gui) (guiUpdate gui dbh)
       onClicked (mwDownloadBt gui) (guiDownload gui dbh)
       onClicked (mwFetchBt gui) (guiFetch gui dbh)
       onClicked (mwExitBt gui) mainQuit

       -- We leave the status window buttons for later
We start out the connectGui function by calling onDestroy. This means that when somebody clicks on the operating system’s
      close button (typically an X in the titlebar on Windows or Linux, or a
      red circle on Mac OS X), we call the mainQuit function on the main window. mainQuit closes all GUI windows and terminates
      the GTK+ main loop.
Next, we call onClicked to register event handlers for clicking on our five different
      buttons. For buttons, these handlers are also called if the user selects
      the button via the keyboard. Clicking on these buttons will call our
      functions such as guiAdd, passing
      along the GUI record as well as a database handle.
At this point, we have completely defined
      the main window for the GUI podcatcher. It looks like the screenshot in
      Figure 23-2.
[image: Screenshot of the main window of the podcatcher application]

Figure 23-2. Screenshot of the main window of the podcatcher
        application


The Add Podcast Window



Now that we’ve covered the main
      window, let’s talk about the other windows that our application
      presents, starting with the Add Podcast window. When the user clicks the
      button to add a new podcast, we need to pop up a dialog box to prompt
      for the URL of the podcast. We have defined this dialog box in Glade, so
      all we need to do is set it up:
-- file: ch23/PodMainGUI.hs
guiAdd gui dbh = 
    do -- Initialize the add URL window
       entrySetText (awEntry gui) ""
       onClicked (awCancelBt gui) (widgetHide (addWin gui))
       onClicked (awOKBt gui) procOK
       
       -- Show the add URL window
       windowPresent (addWin gui)
    where procOK =
              do url <- entryGetText (awEntry gui)
                 widgetHide (addWin gui) -- Remove the dialog
                 add dbh url             -- Add to the DB
We start by calling entrySetText to set the contents of the entry
      box (the place where the user types in the URL) to the empty string.
      That’s because the same widget gets reused over the lifetime of the
      program, and we don’t want the last URL the user entered to remain
      there. Next, we set up actions for the two buttons in the dialog. If the
      user clicks on the cancel button, we simply remove the dialog box from
      the screen by calling widgetHide on
      it. If the user clicks the OK button, we call procOK.
procOK
      starts by retrieving the supplied URL from the entry widget. Next, it
      uses widgetHide
      to get rid of the dialog box. Finally, it calls add to add the URL to the database. This
      add is exactly the same function as
      we had in the non-GUI version of the program.
The last thing we do in guiAdd is actually display the pop-up window.
      That’s done by calling windowPresent,
      which is the opposite of widgetHide.
Note that the guiAdd function returns almost immediately. It
      just sets up the widgets and causes the box to be displayed; at no point
      does it block waiting for input. Figure 23-3 shows
      what the dialog box looks like.
[image: Screenshot of the add-a-podcast window]

Figure 23-3. Screenshot of the add-a-podcast window


Long-Running Tasks



As we think about the buttons available in
      the main window, three of them correspond to tasks that could take a
      while to complete: update, download, and fetch. While these operations
      take place, we’d like to do two things with our GUI: provide the user
      with the status of the operation and the ability to cancel the operation
      as it is in progress.
Since all three of these things are very
      similar operations, it makes sense to provide a generic way to handle
      this interaction. We have defined a single status window widget in the
      Glade file that will be used by all three of these. In our Haskell
      source code, we’ll define a generic statusWindow function that will be used by all
      three of these operations as well.
statusWindow takes four parameters: the GUI
      information, the database information, a String giving the title of the window, and a
      function that will perform the operation. This function will itself be
      passed a function that it can call to report its progress. Here’s the
      code:
-- file: ch23/PodMainGUI.hs
statusWindow :: IConnection conn =>
                GUI 
             -> conn 
             -> String 
             -> ((String -> IO ()) -> IO ())
             -> IO ()
statusWindow gui dbh title func =
    do -- Clear the status text
       labelSetText (swLabel gui) ""
       
       -- Disable the OK button, enable Cancel button
       widgetSetSensitivity (swOKBt gui) False
       widgetSetSensitivity (swCancelBt gui) True

       -- Set the title
       windowSetTitle (statusWin gui) title

       -- Start the operation
       childThread <- forkIO childTasks

       -- Define what happens when clicking on Cancel
       onClicked (swCancelBt gui) (cancelChild childThread)
       
       -- Show the window
       windowPresent (statusWin gui)
    where childTasks =
              do updateLabel "Starting thread..."
                 func updateLabel
                 -- After the child task finishes, enable OK
                 -- and disable Cancel
                 enableOK
                 
          enableOK = 
              do widgetSetSensitivity (swCancelBt gui) False
                 widgetSetSensitivity (swOKBt gui) True
                 onClicked (swOKBt gui) (widgetHide (statusWin gui))
                 return ()

          updateLabel text =
              labelSetText (swLabel gui) text
          cancelChild childThread =
              do killThread childThread
                 yield
                 updateLabel "Action has been cancelled."
                 enableOK
This function starts by clearing the label
      text from the last run. Next, we disable (gray out) the OK button and
      enable the Cancel button. While the operation is in progress, clicking
      OK doesn’t make much sense. And when it’s done, clicking Cancel also
      doesn’t make much sense.
Next, we set the title of the window. The
      title is the part that is displayed by the system in the title bar of
      the window. Finally, we start off the new thread (represented by
      childTasks) and save off its thread
      ID. Then, we define what to do if the user clicks Cancel—we call
      cancelChild, passing along the thread
      ID. Finally, we call windowPresent to show the status
      window.
In childTasks, we display a message saying that
      we’re starting the thread. Then we call the actual worker function,
      passing updateLabel as the function
      to use for displaying status messages. Note that a command-line version
      of the program could pass putStrLn
      here.
Finally, after the worker function exits,
      we call enableOK. This function
      disables the Cancel button, enables the OK button, and defines that a
      click on the OK button causes the status window to go away.
updateLabel simply calls labelSetText on the label widget to update it
      with the displayed text. Finally, cancelChild kills the thread that is
      processing the task, updates the label, and enables the OK
      button.
We now have the infrastructure in place to
      define our three GUI functions. They look like this:
-- file: ch23/PodMainGUI.hs
guiUpdate :: IConnection conn => GUI -> conn -> IO ()
guiUpdate gui dbh = 
    statusWindow gui dbh "Pod: Update" (update dbh)

guiDownload gui dbh =
    statusWindow gui dbh "Pod: Download" (download dbh)

guiFetch gui dbh =
    statusWindow gui dbh "Pod: Fetch" 
                     (\logf -> update dbh logf >> download dbh logf)
For brevity, we have given the type for
      only the first one, but all three have the same type, and Haskell can
      work them out via type inference. Notice our implementation of guiFetch. We don’t call statusWindow twice, but rather combine
      functions in its action.
The final piece of the puzzle consists of
      the three functions that do our work. add is unmodified from the command-line
      chapter. update and download are modified only to take a logging
      function instead of calling putStrLn
      for status updates.
-- file: ch23/PodMainGUI.hs
add dbh url = 
    do addPodcast dbh pc
       commit dbh
    where pc = Podcast {castId = 0, castURL = url}

update :: IConnection conn => conn -> (String -> IO ()) -> IO ()
update dbh logf = 
    do pclist <- getPodcasts dbh
       mapM_ procPodcast pclist
       logf "Update complete."
    where procPodcast pc =
              do logf $ "Updating from " ++ (castURL pc)
                 updatePodcastFromFeed dbh pc

download dbh logf =
    do pclist <- getPodcasts dbh
       mapM_ procPodcast pclist
       logf "Download complete."
    where procPodcast pc =
              do logf $ "Considering " ++ (castURL pc)
                 episodelist <- getPodcastEpisodes dbh pc
                 let dleps = filter (\ep -> epDone ep == False)
                             episodelist
                 mapM_ procEpisode dleps
          procEpisode ep =
              do logf $ "Downloading " ++ (epURL ep)
                 getEpisode dbh ep
Figure 23-4 shows
      what the final result looks like after running an update.
[image: Screenshot of a dialog box displaying the words “Update complete”]

Figure 23-4. Screenshot of a dialog box displaying the words “Update
        complete”



Using Cabal



We presented a Cabal file to build this project for the command-line
      version in Main Program. We need to make a few
      tweaks for it to work with our GUI version. First, there’s the obvious
      need to add the gtk2hs packages to the list of build dependencies. There
      is also the matter of the Glade XML file.
Earlier, we wrote a PodLocalMain.hs file that simply assumed this
      file is named podresources.glade and stored in the
      current working directory. For a real, system-wide installation, we
      can’t make that assumption. Moreover, different systems may place the
      file in different locations.
Cabal provides a way around this problem.
      It automatically generates a module that exports functions that can
      interrogate the environment. We must add a Data-files line to our Cabal description file.
      This file names all data files that will be part of a system-wide
      installation. Then, Cabal will export a Paths_pod module (the “pod” part comes from
      the Name line in the Cabal file) that
      we can interrogate for the location at runtime. Here’s our new Cabal
      description file:
-- ch24/pod.cabal
Name: pod
Version: 1.0.0
Build-type: Simple
Build-Depends: HTTP, HaXml, network, HDBC, HDBC-sqlite3, base, 
               gtk, glade
Data-files: podresources.glade

Executable: pod
Main-Is: PodCabalMain.hs
GHC-Options: -O2
And, to go with it, here’s PodCabalMain.hs:
-- file: ch23/PodCabalMain.hs
module Main where

import qualified PodMainGUI
import Paths_pod(getDataFileName)

main = 
    do gladefn <- getDataFileName "podresources.glade"
       PodMainGUI.main gladefn
Exercises
	Present a helpful GUI error message if the call to xmlNew returns Nothing.

	Modify the podcatcher to be able to run with either the GUI
            or the command-line interface from a single code base. Hint: move
            common code out of PodMainGUI.hs, then have two different
            Main modules—one for the GUI,
            and one for the command line.

	Why does guiFetch combine
            worker functions instead of calling statusWindow twice?







[55] Several alternatives also exist.
        Alongside gtk2hs, wxHaskell is also a prominent cross-platform GUI
        toolkit.



Chapter 24. Concurrent and Multicore Programming



As we write this book, the landscape of CPU architecture is
    changing more rapidly than it has in decades.
Defining Concurrency and Parallelism



A concurrent program
      needs to perform several possibly unrelated tasks at the same time.
      Consider the example of a game server: it is typically composed of
      dozens of components, each of which has complicated interactions with
      the outside world. One component might handle multiuser chat; several
      more will process players’ inputs and also feed state updates back to
      them; while yet another performs physics calculations.
The correct operation of a concurrent
      program does not require multiple cores, though they may improve
      performance and responsiveness.
In contrast, a
      parallel program solves a single problem. Consider a financial model that
      attempts to predict the next minute of fluctuations in the price of a
      single stock. If we want to apply this model to every stock listed on an
      exchange—for example, to estimate which ones we should buy and sell—we
      hope to get an answer more quickly if we run the model on 500 cores than
      if we use just 1. As this suggests, a parallel program does not usually
      depend on the presence of multiple cores to work correctly.
Another useful distinction between
      concurrent and parallel programs lies in their interaction with the outside world. By
      definition, a concurrent program deals continuously with networking
      protocols, databases, and the like. A typical parallel program is likely
      to be more focused: it streams in data, crunches it for a while (with
      little further I/O), and then streams data back out.
Many traditional languages further blur
      the already indistinct boundary between concurrent and parallel
      programming, because they force programmers to use the same primitives
      to construct both kinds of programs.
In this chapter, we will concern
      ourselves with concurrent and parallel programs that operate within the
      boundaries of a single operating system process.

Concurrent Programming with Threads



As a building block for concurrent programs, most programming languages
      provide a way of creating multiple independent threads of
      control. Haskell is no exception, though programming with
      threads in Haskell looks somewhat different than in other languages.
In Haskell, a thread is an
      IO action that executes independently from other threads.
      To create a thread, we import the Control.Concurrent
      module and use the forkIO
      function:
ghci> :m +Control.Concurrent
ghci> :t forkIO
forkIO :: IO () -> IO ThreadId
ghci> :m +System.Directory
ghci> forkIO (writeFile "xyzzy" "seo craic nua!") >> doesFileExist "xyzzy"
False
The new thread starts to execute almost
      immediately, and the thread that created it continues to execute
      concurrently. The thread will stop executing when it reaches the end of
      its IO action.
Threads Are Nondeterministic



The runtime component of GHC does not specify an order in which
        it executes threads. As a result, in the preceding example, the file
        xyzzy created by the new thread
        may or may not have been created by the time the
        original thread checks for its existence. If we try this example once,
        and then remove xyzzy and try
        again, we may get a different result the second time.

Hiding Latency



Suppose we have a large file to compress and write to disk, but
        we want to handle a user’s input quickly enough that she will perceive
        our program as responding immediately. If we use forkIO to write the file out in a separate
        thread, we can do both simultaneously:
-- file: ch24/Compressor.hs
import Control.Concurrent (forkIO)
import Control.Exception (handle)
import Control.Monad (forever)
import qualified Data.ByteString.Lazy as L
import System.Console.Readline (readline)

-- Provided by the 'zlib' package on http://hackage.haskell.org/
import Codec.Compression.GZip (compress)

main = do
    maybeLine <- readline "Enter a file to compress> "
    case maybeLine of
      Nothing -> return ()      -- user entered EOF
      Just "" -> return ()      -- treat no name as "want to quit"
      Just name -> do
           handle print $ do
             content <- L.readFile name
             forkIO (compressFile name content)
             return ()
           main
  where compressFile path = L.writeFile (path ++ ".gz") . compress
Because we’re using lazy
        ByteString I/O here, all we really do in the main thread
        is open the file. The actual reading occurs on demand in the other
        thread.
The use of handle print
        gives us a cheap way to print an error message if the user enters the
        name of a file that does not exist.


Simple Communication Between Threads



The simplest way to share information between two threads is to let them
      both use a variable. In our file compression example, the main thread shares both the name of a file
      and its contents with the other thread. Because Haskell data is
      immutable by default, this poses no risks: neither thread can modify the
      other’s view of the file’s name or contents.
We often need to have threads actively
      communicate with each other. For example, GHC does not provide a way for one thread
      to find out whether another is still executing, has completed, or has
      crashed.[56] However, it provides a synchronizing
      variable type, the MVar, which we can use to create this capability for
      ourselves.
An MVar acts like a
      single-element box: it can be either full or empty. We can put something
      into the box, making it full, or take something out, making it
      empty:
ghci> :t putMVar
putMVar :: MVar a -> a -> IO ()
ghci> :t takeMVar
takeMVar :: MVar a -> IO a
If we try to put a value into an
      MVar that is already full, our thread is put to sleep until
      another thread takes the value out. Similarly, if we try to take a value
      from an empty MVar, our thread is put to sleep until some
      other thread puts a value in:
-- file: ch24/MVarExample.hs
import Control.Concurrent

communicate = do
  m <- newEmptyMVar
  forkIO $ do
    v <- takeMVar m
    putStrLn ("received " ++ show v)
  putStrLn "sending"
  putMVar m "wake up!"
The newEmptyMVar function has a descriptive name. To create an MVar that
      starts out nonempty, we’d use newMVar:
ghci> :t newEmptyMVar
newEmptyMVar :: IO (MVar a)
ghci> :t newMVar
newMVar :: a -> IO (MVar a)
Let’s run our example in ghci:
ghci> :load MVarExample
[1 of 1] Compiling Main             ( MVarExample.hs, interpreted )
Ok, modules loaded: Main.
ghci> communicate
sending
received "wake up!"
If you’re coming from a background of
      concurrent programming in a traditional language, you can think of an
      MVar as being useful for two familiar purposes:
	Sending a message from one thread to
          another, for example, a notification.

	Providing mutual
          exclusion for a piece of mutable data that is shared
          among threads. We put the data into the MVar when it is
          not being used by any thread. One thread then takes it out
          temporarily to read or modify it.




The Main Thread and Waiting for Other Threads



GHC’s
      runtime system treats the program’s original thread of control
      differently from other threads. When this thread finishes executing, the
      runtime system considers the program as a whole to have completed. If
      any other threads are executing at the time, they are terminated.
As a result, when we have long-running threads that
      must not be killed, we need to make special arrangements to ensure that
      the main thread doesn’t complete until the others do. Let’s develop a
      small library that makes this easy to do:
-- file: ch24/NiceFork.hs
import Control.Concurrent
import Control.Exception (Exception, try)
import qualified Data.Map as M

data ThreadStatus = Running
                  | Finished         -- terminated normally
                  | Threw Exception  -- killed by uncaught exception
                    deriving (Eq, Show)

-- | Create a new thread manager.
newManager :: IO ThreadManager

-- | Create a new managed thread.
forkManaged :: ThreadManager -> IO () -> IO ThreadId

-- | Immediately return the status of a managed thread.
getStatus :: ThreadManager -> ThreadId -> IO (Maybe ThreadStatus)

-- | Block until a specific managed thread terminates.
waitFor :: ThreadManager -> ThreadId -> IO (Maybe ThreadStatus)

-- | Block until all managed threads terminate.
waitAll :: ThreadManager -> IO ()
We keep our ThreadManager type abstract
      using the usual recipe: we wrap it in a newtype and prevent clients from creating
      values of this type. Among our module’s exports, we list the type
      constructor and the IO action that constructs a manager,
      but we do not export the data constructor:
-- file: ch24/NiceFork.hs
module NiceFork
    (
      ThreadManager
    , newManager
    , forkManaged
    , getStatus
    , waitFor
    , waitAll
    ) where
For the implementation of
      ThreadManager, we maintain a map from thread ID to thread
      state. We’ll refer to this as the thread map:
-- file: ch24/NiceFork.hs
newtype ThreadManager =
    Mgr (MVar (M.Map ThreadId (MVar ThreadStatus)))
    deriving (Eq)

newManager = Mgr `fmap` newMVar M.empty
We have two levels of MVar
      at use here. We keep the Map in an MVar. This
      lets us “modify” the Map
      by replacing it with a new version. We also ensure that any thread that
      uses the Map will see a consistent view of it.
For each thread that we manage, we
      maintain an MVar. A per-thread MVar starts off
      empty, which indicates that the thread is executing. When the thread
      finishes or is killed by an uncaught exception, we put this information
      into the MVar.
To create a thread and watch its status,
      we must perform a little bit of bookkeeping:
-- file: ch24/NiceFork.hs
forkManaged (Mgr mgr) body =
    modifyMVar mgr $ \m -> do
      state <- newEmptyMVar
      tid <- forkIO $ do
        result <- try body
        putMVar state (either Threw (const Finished) result)
      return (M.insert tid state m, tid)
Safely Modifying an MVar



The modifyMVar function that we used in forkManaged in the preceding code is very
        useful. It’s a safe combination of takeMVar and putMVar:
ghci> :t modifyMVar
modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b

It takes the value from an
        MVar and passes it to a function. This function can both
        generate a new value and return a result. If the function throws an
        exception, modifyMVar puts the
        original value back into the MVar; otherwise, it puts in
        the new value. It returns the other element of the function as its own
        result.
When we use modifyMVar instead of manually managing an
        MVar with takeMVar
        and putMVar, we avoid two common
        kinds of concurrency bugs:
	Forgetting to put a value back into
            an MVar. This can result in
            deadlock, in which some thread waits forever on an
            MVar that will never have a value put into it.

	Failure to account for the
            possibility that an exception might be thrown, disrupting the flow
            of a piece of code. This can result in a call to putMVar that
            should occur, but doesn’t actually happen,
            again leading to deadlock.



Because of these nice safety
        properties, it’s wise to use modifyMVar whenever possible.

Safe Resource Management: A Good Idea, and Easy Besides



We can the take the pattern that
        modifyMVar follows and apply it
        to many other resource management situations. Here are the steps of
        the pattern:
	Acquire a resource.

	Pass the resource to a function
            that will do something with it.

	Always release the resource, even
            if the function throws an exception. If that occurs, rethrow the
            exception so application code can catch it.



Safety aside, this approach has another
        benefit: it can make our code shorter and easier to follow. As we can
        see from looking at forkManaged
        in the previous code listing, Haskell’s lightweight syntax
        for anonymous functions makes this style of coding visually
        unobtrusive.
Here’s the definition of modifyMVar so that you can see a specific
        form of this pattern:
-- file: ch24/ModifyMVar.hs
import Control.Concurrent (MVar, putMVar, takeMVar)
import Control.Exception (block, catch, throw, unblock)
import Prelude hiding (catch) -- use Control.Exception's version

modifyMVar :: MVar a -> (a -> IO (a,b)) -> IO b
modifyMVar m io = 
  block $ do
    a <- takeMVar m
    (b,r) <- unblock (io a) `catch` \e ->
             putMVar m a >> throw e
    putMVar m b
    return r
You should easily be able to adapt this
        to your particular needs, whether you’re working with network
        connections, database handles, or data managed by a C library.

Finding the Status of a Thread



Our getStatus function tells us the current state of a thread. If the thread
        is no longer managed (or was never managed in the first place), it
        returns Nothing:
-- file: ch24/NiceFork.hs
getStatus (Mgr mgr) tid =
  modifyMVar mgr $ \m ->
    case M.lookup tid m of
      Nothing -> return (m, Nothing)
      Just st -> tryTakeMVar st >>= \mst -> case mst of
                   Nothing -> return (m, Just Running)
                   Just sth -> return (M.delete tid m, Just sth)
If the thread is still running, it
        returns Just Running. Otherwise, it indicates why the
        thread terminated and stops managing the
        thread.
If the tryTakeMVar function finds that the
        MVar is empty, it returns Nothing
        immediately instead of blocking:
ghci> :t tryTakeMVar
tryTakeMVar :: MVar a -> IO (Maybe a)

Otherwise, it extracts the value from
        the MVar as usual.
The waitFor function behaves similarly, but instead of returning
        immediately, it blocks until the given thread terminates before
        returning:
-- file: ch24/NiceFork.hs
waitFor (Mgr mgr) tid = do
  maybeDone <- modifyMVar mgr $ \m ->
    return $ case M.updateLookupWithKey (\_ _ -> Nothing) tid m of
      (Nothing, _) -> (m, Nothing)
      (done, m') -> (m', done)
  case maybeDone of
    Nothing -> return Nothing
    Just st -> Just `fmap` takeMVar st
It first extracts the MVar that holds
        the thread’s state, if it exists. The Map type’s
        updateLookupWithKey
        function is useful—it combines looking up a key with modifying
        or removing the value:
ghci> :m +Data.Map
ghci> :t updateLookupWithKey
updateLookupWithKey :: (Ord k) =>
                       (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a, Map k a)
In this case, we want to always remove the
        MVar holding the thread’s state if it is present so that
        our thread manager will no longer be managing the thread. If there is
        a value to extract, we take the thread’s exit status from the
        MVar and return it.
Our final useful function simply waits for all
        currently managed threads to complete and ignores their exit
        statuses:
-- file: ch24/NiceFork.hs
waitAll (Mgr mgr) = modifyMVar mgr elems >>= mapM_ takeMVar
    where elems m = return (M.empty, M.elems m)

Writing Tighter Code



Our definition of waitFor is a little unsatisfactory, because we’re performing more or less
        the same case analysis in two places: inside the function called by
        modifyMVar, and again on its
        return value.
Sure enough, we can apply a function
        that we came across earlier to eliminate this duplication. The
        function in question is join,
        from the Control.Monad module:
ghci> :m +Control.Monad
ghci> :t join
join :: (Monad m) => m (m a) -> m a
The trick here is to see that we can
        get rid of the second case
        expression by having the first one return the IO action
        that we should perform once we return from modifyMVar. We’ll use join to execute the action:
-- file: ch24/NiceFork.hs
waitFor2 (Mgr mgr) tid =
  join . modifyMVar mgr $ \m ->
    return $ case M.updateLookupWithKey (\_ _ -> Nothing) tid m of
      (Nothing, _) -> (m, return Nothing)
      (Just st, m') -> (m', Just `fmap` takeMVar st)
This is an interesting idea: we can
        create a monadic function or action in pure code, and then pass it
        around until we end up in a monad where we can use it. This can be a
        nimble way to write code, once you develop an eye for when it makes
        sense.


Communicating over Channels



For one-shot communications
      between threads, an MVar is perfectly good. Another type,
      Chan, provides a one-way communication channel. Here is a
      simple example of its use:
-- file: ch24/Chan.hs
import Control.Concurrent
import Control.Concurrent.Chan

chanExample = do
  ch <- newChan
  forkIO $ do
    writeChan ch "hello world"
    writeChan ch "now i quit"
  readChan ch >>= print
  readChan ch >>= print
If a Chan is empty,
      readChan blocks until there is a
      value to read. The writeChan
      function never blocks; it writes a new value into a Chan
      immediately.

Useful Things to Know About



MVar and Chan Are Nonstrict



Like most Haskell container types, both MVar and
        Chan are nonstrict: neither evaluates its contents. We mention this not because it’s a problem but
        because it’s a common blind spot. People tend to assume that these
        types are strict, perhaps because they’re used in the IO
        monad.
As for other container types, the
        upshot of a mistaken guess about the strictness of an
        MVar or Chan type is often a space or
        performance leak. Here’s a plausible scenario to consider.
We fork off a thread to perform some
        expensive computation on another core:
-- file: ch24/Expensive.hs
import Control.Concurrent

notQuiteRight = do
  mv <- newEmptyMVar
  forkIO $ expensiveComputation_stricter mv
  someOtherActivity
  result <- takeMVar mv
  print result
It seems to do
        something and puts its result back into the MVar:
-- file: ch24/Expensive.hs
expensiveComputation mv = do
  let a = "this is "
      b = "not really "
      c = "all that expensive"
  putMVar mv (a ++ b ++ c)
When we take the result from the
        MVar in the parent thread and attempt to do something
        with it, our thread starts computing furiously, because we never
        forced the computation to actually occur in the other thread!
As usual, the solution is
        straightforward, once we know there’s a potential for a problem: we
        add strictness to the forked thread, in order to ensure that the
        computation occurs there. This strictness is best added in one place,
        in order to avoid the possibility that we might forget to add
        it:
-- file: ch24/ModifyMVarStrict.hs
{-# LANGUAGE BangPatterns #-}

import Control.Concurrent (MVar, putMVar, takeMVar)
import Control.Exception (block, catch, throw, unblock)
import Prelude hiding (catch) -- use Control.Exception's version

modifyMVar_strict :: MVar a -> (a -> IO a) -> IO ()
modifyMVar_strict m io = block $ do
  a <- takeMVar m
  !b <- unblock (io a) `catch` \e ->
        putMVar m a >> throw e
  putMVar m b
It’s always worth checking Hackage
In the Hackage package database, you
          will find a library, strict-concurrency, that provides strict
          versions of the MVar and Chan
          types.

The ! pattern in the
        preceding code is simple to use, but it is not always sufficient to
        ensure that our data is evaluated. For a more complete approach, see
        Separating Algorithm from Evaluation.

Chan Is Unbounded



Because writeChan always succeeds immediately, there is a potential risk to
        using a Chan. If one thread writes to a Chan
        more often than another thread reads from it, the Chan
        will grow in an unchecked manner: unread messages will pile up as the
        reader falls further and further behind.


Shared-State Concurrency Is Still Hard



Although Haskell has different primitives for sharing data between threads
      than other languages, it still suffers from the same fundamental
      problem: writing correct concurrent programs is fiendishly
      difficult. Indeed, several pitfalls of concurrent programming in other languages apply
      equally to Haskell. Two of the better-known problems are
      deadlock and
      starvation.
Deadlock



In a deadlock
        situation, two or more threads get stuck forever in a clash over
        access to shared resources. One classic way to make a multithreaded
        program deadlock is to forget the order in which we must acquire
        locks. This kind of bug is so common, it has a name: lock
        order inversion. While Haskell doesn’t provide locks, the MVar
        type is prone to the order inversion problem. Here’s a simple
        example:
-- file: ch24/LockHierarchy.hs
import Control.Concurrent

nestedModification outer inner = do
  modifyMVar_ outer $ \x -> do
    yield  -- force this thread to temporarily yield the CPU
    modifyMVar_ inner $ \y -> return (y + 1)
    return (x + 1)
  putStrLn "done"

main = do
  a <- newMVar 1
  b <- newMVar 2
  forkIO $ nestedModification a b
  forkIO $ nestedModification b a
If we run this in ghci, it will usually—but not always—print
        nothing, indicating that both threads have gotten stuck.
The problem with the nestedModification function is easy to
        spot. In the first thread, we take the MVar
        a, then b. In the second, we
        take b, then a. If the first
        thread succeeds in taking a and the second takes
        b, both threads will block; each tries to take an
        MVar that the other has already emptied, so neither can
        make progress.
Across languages, the usual way to
        solve an order inversion problem is to always follow a consistent
        order when acquiring resources. Since this approach requires manual
        adherence to a coding convention, it is easy to miss in
        practice.
To make matters more complicated, these
        kinds of inversion problems can be difficult to spot in real code. The
        taking of MVars is often spread across several functions
        in different files, making visual inspection more tricky. Worse, these
        problems are often intermittent, which makes them
        tough to even reproduce, never mind isolate and fix.

Starvation



Concurrent software is also prone to starvation, in
        which one thread “hogs” a shared resource, preventing
        another from using it. It’s easy to imagine how this might occur: one
        thread calls modifyMVar
        with a body that executes for 100 milliseconds, while another calls
        modifyMVar on the same
        MVar with a body that executes for 1 millisecond. The
        second thread cannot make progress until the first puts a value back
        into the MVar.
The nonstrict nature of the
        MVar type can either cause or exacerbate a starvation
        problem. If we put a thunk into an MVar that will be
        expensive to evaluate, and then take it out of the MVar
        in a thread that otherwise looks like it ought to
        be cheap, that thread could suddenly become computationally expensive
        if it has to evaluate the thunk. This makes the advice we gave in
        MVar and Chan Are Nonstrict particularly
        relevant.

Is There Any Hope?



Fortunately, the APIs for concurrency
        that we have covered here are by no means the end of the story. A more
        recent addition to Haskell, software transactional memory (STM), is
        both easier and safer to work with. We will discuss it in Chapter 28.
Exercises
	The Chan type is implemented using
              MVars. Use MVars to develop a
              BoundedChan library.
Your newBoundedChan
              function should accept an Int parameter, limiting
              the number of unread items that can be present in a
              BoundedChan at once.
If this limit is hit, a call to your writeBoundedChan function must block
              until a reader uses readBoundedChan to consume a
              value.

	Although we’ve already mentioned the existence of the
              strict-concurrency package in the Hackage
              repository, try developing your own, as a wrapper around the
              built-in MVar type. Following classic Haskell
              practice, make your library type safe, so that users cannot
              accidentally mix uses of strict and nonstrict
              MVars.






Using Multiple Cores with GHC



By default, GHC generates programs that use just one core, even when we write
      explicitly concurrent code. To use multiple cores, we must explicitly
      choose to do so. We make this choice at link time, when we are
      generating an executable program:
	The nonthreaded
          runtime library runs all Haskell threads in a single
          operating system thread. This runtime is highly efficient for
          creating threads and passing data around in
          MVars.

	The threaded
          runtime library uses multiple operating system threads to run
          Haskell threads. It has somewhat more overhead for creating threads
          and using MVars.



If we pass the -threaded
      option to the compiler, it will link our program against the
      threaded runtime library. We do not need to use
      -threaded when we are compiling libraries or source
      files—only when we are finally generating an executable.
Even when we select the threaded runtime
      for our program, it will still default to using only one core when we
      run it. We must explicitly tell the runtime how many cores to
      use.
Runtime Options



We can pass options to GHC’s runtime system on the command line
        of our program. Before handing control to our code, the runtime scans
        the program’s arguments for the special command-line option
        +RTS. It interprets everything that follows (until
        the special option -RTS) as an option for the runtime
        system, not our program. It hides all of these options from our code.
        When we use the System.Environment module’s getArgs function to obtain our command-line
        arguments, we will not find any runtime options in the list.
The threaded runtime accepts an option
        -N.[57] This takes one argument, which specifies the number of
        cores that GHC’s runtime
        system should use. The option parser is picky: there cannot be any
        spaces between -N and the number that follows it. The
        option -N4 is acceptable, but
        -N 4 is not.

Finding the Number of Available Cores from Haskell



The module GHC.Conc
        exports a variable, numCapabilities, that
        tells us how many cores the runtime system has been given
        with the -N RTS option:
-- file: ch24/NumCapabilities.hs
import GHC.Conc (numCapabilities)
import System.Environment (getArgs)

main = do
  args <- getArgs
  putStrLn $ "command line arguments: " ++ show args
  putStrLn $ "number of cores: " ++ show numCapabilities
If we compile and run this program, we
        can see that the options to the runtime system are not visible to the
        program, but we can see how many cores it can run on:
$ ghc -c NumCapabilities.hs
$ ghc -threaded -o NumCapabilities NumCapabilities.o
$ ./NumCapabilities +RTS -N4 -RTS foo
command line arguments: ["foo"]
number of cores: 4

Choosing the Right Runtime



The decision of which runtime to use is
        not completely clear cut. While the threaded runtime can use multiple
        cores, it has a cost: threads and sharing data between them are more
        expensive than with the nonthreaded runtime.
Furthermore, the garbage collector used
        by GHC as of version 6.8.3
        is single-threaded: it pauses all other threads while it runs and
        executes on one core. This limits the performance improvement we can
        hope to see from using multiple cores.[58] In many real-world concurrent programs, an individual
        thread will spend most of its time waiting for a network request or
        response. In these cases, if a single Haskell program serves tens of
        thousands of concurrent clients, the lower overhead of the nonthreaded
        runtime may be helpful. For example, instead of having a single server
        program use the threaded runtime on four cores, we might see better
        performance if we design our server so that we can run four copies of
        it simultaneously and use the nonthreaded runtime.
Our purpose here is not to dissuade you
        from using the threaded runtime. It is not much more expensive than
        the nonthreaded runtime—threads remain amazingly cheap compared to the
        runtimes of most other programming languages. We merely want to make
        it clear that switching to the threaded runtime will not necessarily
        result in an automatic win.


Parallel Programming in Haskell



We will now switch our focus to parallel programming. For many
      computationally expensive problems, we could calculate a result more
      quickly if we could divide the solution and evaluate it on many cores at
      once. Computers with multiple cores are already ubiquitous, but few
      programs can take advantage of the computing power of even a modern
      laptop.
In large part, this is because parallel
      programming is traditionally seen as very difficult. In a typical
      programming language, we would use the same libraries and constructs
      that we apply to concurrent programs to develop a parallel program. This
      forces us to contend with the familiar problems of deadlocks, race
      conditions, starvation, and sheer complexity.
While we could certainly use Haskell’s
      concurrency features to develop parallel code, there is a much simpler
      approach available to us. We can take a normal Haskell function, apply a
      few simple transformations to it, and have it evaluated in
      parallel.
Normal Form and Head Normal Form



The familiar seq function evaluates an expression to
        what we call head normal form (HNF). It
        stops once it reaches the outermost constructor (the head).
        This is distinct from normal form (NF),
        in which an expression is completely evaluated.
You will also hear Haskell programmers
        refer to weak head normal form (WHNF). For normal data, weak head normal
        form is the same as head normal form. The difference arises only for
        functions and is too abstruse to concern us here.

Sequential Sorting



Here is a normal Haskell function that sorts a list using a
        divide-and-conquer approach:
-- file: ch24/Sorting.hs
sort :: (Ord a) => [a] -> [a]
sort (x:xs) = lesser ++ x:greater
    where lesser  = sort [y | y <- xs, y <  x]
          greater = sort [y | y <- xs, y >= x]
sort _ = []
This function is inspired by the
        well-known Quicksort algorithm, and it is a classic among Haskell
        programmers. It is often presented as a one-liner early in a Haskell
        tutorial to tease the reader with an example of Haskell’s
        expressiveness. Here, we’ve split the code over a few lines, in order
        to make it easier to compare the serial and parallel versions.
Here is a very brief description
        of how sort
        operates:
	It chooses an element from the list. This is
            called the pivot. Any element
            would do as the pivot; the first is merely the easiest to pattern
            match on.

	It creates a sublist of all elements less than
            the pivot and recursively sorts them.

	It creates a sublist of all elements greater than
            or equal to the pivot and recursively sorts them.

	It appends the two sorted sublists.




Transforming Our Code into Parallel Code



The parallel version of the function is only a little
        more complicated than the initial version:
-- file: ch24/Sorting.hs
module Sorting where

import Control.Parallel (par, pseq)

parSort :: (Ord a) => [a] -> [a]
parSort (x:xs)    = force greater `par` (force lesser `pseq`
                                         (lesser ++ x:greater))
    where lesser  = parSort [y | y <- xs, y <  x]
          greater = parSort [y | y <- xs, y >= x]
parSort _         = []
We have barely perturbed the code—all we have added
        are three functions: par,
        pseq, and force.
The par function
        is provided by the Control.Parallel module. It serves a similar purpose to seq. It evaluates its left argument to WHNF
        and returns its right. As its name suggests, par can evaluate its left argument in
        parallel with whatever other evaluations are occurring.
As for pseq, it is similar to seq: it evaluates the expression on the
        left to WHNF before returning the expression on the right. The
        difference between the two is subtle but important for parallel
        programs: the compiler does not promise to
        evaluate the left argument of seq
        if it can see that evaluating the right argument first would improve
        performance. This flexibility is fine for a program executing on one
        core, but it is not strong enough for code running on multiple cores.
        In contrast, the compiler guarantees that
        pseq will evaluate its left
        argument before its right.
These changes to our code are
        remarkable for all the things we have not needed
        to say:
	How many cores to use

	What threads do to communicate with
            each other

	How to divide up work among the
            available cores

	Which data are shared between
            threads, and which are private

	How to determine when all the
            participants are finished




Knowing What to Evaluate in Parallel



The key to getting decent performance
        out of parallel Haskell code is to find meaningful chunks of work to
        perform in parallel. Nonstrict evaluation can get in the way of this,
        which is why we use the force
        function in our parallel sort. To best explain what the force function is for, we will first look at a mistaken
        example:
-- file: ch24/Sorting.hs
sillySort (x:xs) = greater `par` (lesser `pseq`
                                  (lesser ++ x:greater))
    where lesser   = sillySort [y | y <- xs, y <  x]
          greater  = sillySort [y | y <- xs, y >= x]
sillySort _        = []
Take a look at the small changes in
        each use of par. Instead of
        force lesser and force greater, here we
        evaluate lesser and greater.
Remember that evaluation to WHNF
        computes only enough of an expression to see its
        outermost constructor. In this mistaken example,
        we evaluate each sorted sublist to WHNF. Since the outermost
        constructor in each case is just a single list constructor, we are in
        fact forcing only the evaluation of the first element of each sorted
        sublist! Every other element of each list remains unevaluated. In
        other words, we do almost no useful work in parallel: our sillySort is nearly completely
        sequential.
We avoid this with our force function by forcing the entire spine
        of a list to be evaluated before we give back a constructor:
-- file: ch24/Sorting.hs
force :: [a] -> ()
force xs = go xs `pseq` ()
    where go (_:xs) = go xs
          go [] = 1
Notice that we don’t care what’s in the list; we walk
        down its spine to the end, and then use pseq once. There is clearly no magic
        involved here—we are just using our usual understanding of Haskell’s
        evaluation model. And because we will be using force on the lefthand side of par or pseq, we don’t need to return a meaningful
        value.
Of course, in many cases, we will need
        to force the evaluation of individual elements of the list, too.
        Below, we will discuss a typeclass-based solution to this
        problem.

What Promises Does par Make?



The par function does not actually promise to evaluate an expression in
        parallel with another. Instead, it undertakes to do so if it
        “makes sense.” This wishy-washy non-promise is actually
        more useful than a guarantee to always evaluate an expression in
        parallel. It gives the runtime system the freedom to act intelligently
        when it encounters par.
For instance, the runtime could decide
        that an expression is too cheap to be worth evaluating in parallel. Or
        it might notice that all cores are currently busy so that
        “sparking” a new parallel evaluation would lead to more
        runnable threads than there are cores available to execute
        them.
This lax specification in turn affects
        how we write parallel code. Since par may be somewhat intelligent at runtime,
        we can use it almost wherever we like, on the assumption that
        performance will not be bogged down by threads contending for busy
        cores.

Running Our Code and Measuring Performance



To try our code out, let’s save
        sort, parSort, and parSort2 to a module named
        Sorting.hs. We create a small driver program that we can
        use to time the performance of one of those sorting functions:
-- file: ch24/SortMain.hs

module Main where

import Data.Time.Clock (diffUTCTime, getCurrentTime)
import System.Environment (getArgs)
import System.Random (StdGen, getStdGen, randoms)

import Sorting

-- testFunction = sort
-- testFunction = seqSort
testFunction = parSort
-- testFunction = parSort2 2

randomInts :: Int -> StdGen -> [Int]
randomInts k g = let result = take k (randoms g)
                 in force result `seq` result

main = do
  args <- getArgs
  let count | null args = 500000
            | otherwise = read (head args)
  input <- randomInts count `fmap` getStdGen
  putStrLn $ "We have " ++ show (length input) ++ " elements to sort."
  start <- getCurrentTime
  let sorted = testFunction input
  putStrLn $ "Sorted all " ++ show (length sorted) ++ " elements."
  end <- getCurrentTime
  putStrLn $ show (end `diffUTCTime` start) ++ " elapsed."
For simplicity, we choose the sorting
        function to benchmark at compilation time, via the
        testFunction variable.
Our program accepts a single, optional
        command-line argument, the length of the random list to
        generate.
Nonstrict evaluation can turn
        performance measurement and analysis into something of a minefield.
        Here are some potential problems that we specifically work to avoid in
        our driver program:
	Measuring several things when we think we are looking at
            just one
	Haskell’s default pseudorandom number generator (PRNG)
              is slow, and the randoms function generates random
              numbers on demand.
Before we record our starting time, we force every element
              of the input list to be evaluated, and we print the length of
              the list. This ensures that we create all of the random numbers
              that we will need in advance.
If we were to omit this step, we would interleave the
              generation of random numbers with attempts to work with them in
              parallel. We would thus be measuring both the cost of sorting
              the numbers and, less obviously, the cost of generating
              them.

	Invisible data dependencies
	When we generate the list of random numbers, simply
              printing the length of the list would not perform enough
              evaluation. This would evaluate the spine
              of the list, but not its elements. The actual random numbers
              would not be evaluated until the sort compares them.
This can have serious consequences for performance. The
              value of a random number depends on the value of the preceding
              random number in the list, but we have scattered the list
              elements randomly among our processor cores. If we did not
              evaluate the list elements prior to sorting, we would suffer a
              terrible “ping pong” effect: not only would
              evaluation bounce from one core to another, performance would
              suffer.
Try snipping out the application of force from the body of main. You should find that the
              parallel code can easily end up three times
              slower than the nonparallel code.

	Benchmarking a thunk when we believe that the code is
            performing meaningful work
	To force the sort to take place, we print the length of
              the result list before we record the ending time. Without
              putStrLn demanding the
              length of the list in order to print it, the sort would not
              occur at all.



When we build the program, we enable
        optimization and ghc’s threaded runtime:
$ ghc -threaded -O2 --make SortMain
[1 of 2] Compiling Sorting          ( Sorting.hs, Sorting.o )
[2 of 2] Compiling Main             ( SortMain.hs, SortMain.o )
Linking SortMain ...
When we run the program, we must tell
        ghc’s runtime how many cores
        to use. Initially, we try the original sort, in order to establish a performance
        baseline:
$ ./Sorting +RTS -N1 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.178941s elapsed.
Enabling a second core ought to have no
        effect on performance:
$ ./Sorting +RTS -N2 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.259869s elapsed.
If we recompile and test the
        performance of parSort, the
        results are less than stellar:
$ ./Sorting +RTS -N1 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.915818s elapsed.
$ ./Sorting +RTS -N2 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
4.029781s elapsed.
We have gained nothing in performance.
        It seems that this could be due to one of two factors: either
        par is intrinsically expensive or
        we are using it too much. To help us to distinguish between the two
        possibilities, here is a sort that is identical to parSort, but it uses pseq instead of par:
-- file: ch24/Sorting.hs
seqSort :: (Ord a) => [a] -> [a]
seqSort (x:xs) = lesser `pseq` (greater `pseq`
                                (lesser ++ x:greater))
    where lesser  = seqSort [y | y <- xs, y <  x]
          greater = seqSort [y | y <- xs, y >= x]
seqSort _ = []
We also drop the use of force, so compared to our original
        sort, we should only be measuring
        the cost of using pseq. What
        effect does pseq alone have on
        performance?
$ ./Sorting +RTS -N1 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.848295s elapsed.
This suggests that par and pseq have similar costs. What can we do to
        improve performance?

Tuning for Performance



In our parSort, we perform twice as many
        applications of par as there are
        elements to sort. While par is
        cheap, as we have seen, it is not free. When
        we recursively apply parSort, we
        eventually apply par to
        individual list elements. At this fine granularity, the cost of using
        par outweighs any possible
        usefulness. To reduce this effect, we switch to our nonparallel
        sort after passing some
        threshold:
-- file: ch24/Sorting.hs
parSort2 :: (Ord a) => Int -> [a] -> [a]
parSort2 d list@(x:xs)
  | d <= 0     = sort list
  | otherwise = force greater `par` (force lesser `pseq`
                                     (lesser ++ x:greater))
      where lesser      = parSort2 d' [y | y <- xs, y <  x]
            greater     = parSort2 d' [y | y <- xs, y >= x]
            d' = d - 1
parSort2 _ _              = []
Here, we stop recursing and sparking
        new parallel evaluations at a controllable depth. If we knew the size
        of the data we were dealing with, we could stop subdividing and switch
        to the nonparallel code once we reached a sufficiently small amount of
        remaining work:
$ ./Sorting +RTS -N2 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
2.947872s elapsed.
On a dual core system, this gives us
        roughly a 25% speedup. This is not a huge number, but consider that we
        had to change only a few annotations in return for this performance
        improvement.
This sorting function is particularly
        resistant to good parallel performance. The amount of memory
        allocation it performs forces the garbage collector to run frequently.
        We can see the effect by running our program with the
        -sstderr RTS option, which prints garbage collection statistics to the
        screen. This indicates that our program spends roughly 40% of its time
        collecting garbage. Since the garbage collector in GHC 6.8 stops all threads and runs on a
        single core, it acts as a bottleneck.
You can expect more impressive
        performance improvements from less allocation-heavy code when you use
        par annotations. We have seen
        some simple numerical benchmarks run 1.8 times faster on a dual core
        system than with a single core. As of this writing, a parallel garbage
        collector is under development for GHC, which should help considerably with
        the performance of allocation-heavy code on multicore systems.
Beware a GC bug in GHC 6.8.2
The garbage collector in release
          6.8.2 of GHC has a bug
          that can cause programs using par to crash. If you want to use
          par and you are using 6.8.2, we
          suggest upgrading to at least 6.8.3.

Exercises
	It can be difficult to determine when to switch from
              parSort2 to sort. An alternative approach to the
              one we outline previously would be to decide based on the length
              of a sublist. Rewrite parList2 so that it switches to
              sort if the list contains
              more than some number of elements.

	Measure the performance of the length-based approach and
              compare it with the depth approach. Which gives better
              performance results?






Parallel Strategies and MapReduce



Within the programming community, one of the most famous
      software systems to credit functional programming for inspiration is
      Google’s MapReduce infrastructure for parallel processing of bulk
      data.
We can easily construct a greatly
      simplified, but still useful, Haskell equivalent. To focus our
      attention, we will look at processing web server logfiles, which tend to
      be both huge and plentiful.[59]As an example, here is a log entry for a page visit
      recorded by the Apache Web Server. The entry originally filled one
      line—we split it across several lines to fit:
201.49.94.87 - - [08/Jun/2008:07:04:20 -0500] "GET / HTTP/1.1"
200 2097 "http://en.wikipedia.org/wiki/Mercurial_(software)"
"Mozilla/5.0 (Windows; U; Windows XP 5.1; en-GB; rv:1.8.1.12)
Gecko/20080201 Firefox/2.0.0.12" 0 hgbook.red-bean.com
While we could create a straightforward
      implementation without much effort, we will resist the temptation to
      dive in. If we think about solving a class of
      problems instead of a single one, we may end up with more widely
      applicable code.
When we develop a parallel program, we
      always face a few “bad penny” problems, which turn up
      regardless of the underlying programming language. A few are described
      here:
	Our algorithm quickly becomes
          obscured by the details of partitioning and communication. This
          makes it difficult to understand code, which in turn makes modifying
          it risky.

	Choosing a grain
          size—the smallest unit of work parceled out to a core—can be
          difficult. If the grain size is too small, cores spend so much of
          their time on book-keeping that a parallel program can easily become
          slower than a serial counterpart. If the grain size is too large,
          some cores may lie idle due to poor load balancing.



Separating Algorithm from Evaluation



In parallel Haskell code, the clutter
        that would arise from communication code in a traditional language is
        replaced with the clutter of par
        and pseq annotations. As an
        example, this function operates similarly to map, but evaluates each element to WHNF in
        parallel as it goes:
-- file: ch24/ParMap.hs
import Control.Parallel (par)

parallelMap :: (a -> b) -> [a] -> [b]
parallelMap f (x:xs) = let r = f x
                       in r `par` r : parallelMap f xs
parallelMap _ _      = []
The type b might be a list or some other type for which
        evaluation to WHNF doesn’t do a useful amount of work. We’d prefer not
        to have to write a special parallelMap for lists and every other type
        that needs special handling.
To address this problem, we will begin
        by considering a simpler problem: how to force a value to be
        evaluated. Here is a function that forces every element of a list to
        be evaluated to WHNF:
-- file: ch24/ParMap.hs
forceList :: [a] -> ()
forceList (x:xs) = x `pseq` forceList xs
forceList _      = ()
Our function performs no computation on
        the list. (In fact, from examining its type signature, we can tell
        that it cannot perform any computation, since it
        knows nothing about the elements of the list.) Its only purpose is to
        ensure that the spine of the list is evaluated to head normal form.
        The only place that it makes any sense to apply this function is in
        the first argument of seq or
        par, as follows:
-- file: ch24/ParMap.hs
stricterMap :: (a -> b) -> [a] -> [b]
stricterMap f xs = forceList xs `seq` map f xs
This still leaves us with the elements
        of the list evaluated only to WHNF. We address this by adding a
        function as parameter that can force an element to be evaluated more
        deeply:
-- file: ch24/ParMap.hs
forceListAndElts :: (a -> ()) -> [a] -> ()
forceListAndElts forceElt (x:xs) =
    forceElt x `seq` forceListAndElts forceElt xs
forceListAndElts _        _      = ()
The
        Control.Parallel.Strategies module generalizes this idea
        into something we can use as a library. It introduces the idea
        of an evaluation strategy:
-- file: ch24/Strat.hs
type Done = ()

type Strategy a = a -> Done
An evaluation strategy performs no
        computation; it simply ensures that a value is evaluated to some
        extent. The simplest strategy is named r0, and does nothing at all:
-- file: ch24/Strat.hs
r0 :: Strategy a 
r0 _ = ()
Next is rwhnf, which evaluates a value to
        WHNF:
-- file: ch24/Strat.hs
rwhnf :: Strategy a 
rwhnf x = x `seq` ()
To evaluate a value to normal form, the
        module provides a typeclass with a method named rnf:
-- file: ch24/Strat.hs
class NFData a where
  rnf :: Strategy a
  rnf = rwhnf
Remembering those names
If the names of these functions and
          types are not sticking in your head, look at them as acronyms. The
          name rwhnf expands to reduce to
          weak head normal form; NFData becomes normal form data;
          and so on.

For the basic types, such as
        Int, weak head normal form and normal form are the same
        thing, which is why the NFData typeclass uses rwhnf as the default implementation of
        rnf. For many common types, the
        Control.Parallel.Strategies module provides instances of NFData:
-- file: ch24/Strat.hs
instance NFData Char
instance NFData Int

instance NFData a => NFData (Maybe a) where
    rnf Nothing  = ()
    rnf (Just x) = rnf x

{- ... and so on ... -}
From these examples, it should be clear
        how you might write an NFData instance for a type of your
        own. Your implementation of rnf
        must handle every constructor and apply rnf to every field of a constructor.

Separating Algorithm from Strategy



From these strategy building blocks, we
        can construct more elaborate strategies. Many are already provided by
        Control.Parallel.Strategies. For instance, parList applies an evaluation strategy in
        parallel to every element of a list:
-- file: ch24/Strat.hs
parList :: Strategy a -> Strategy [a]
parList strat []     = ()
parList strat (x:xs) = strat x `par` (parList strat xs)
The module uses this to define a
        parallel map function:
-- file: ch24/Strat.hs
parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs `using` parList strat
This is where the code becomes
        interesting. On the left of using, we have a normal application of
        map. On the right, we have an
        evaluation strategy. The using
        combinator tells us how to apply a strategy to a value, allowing us to
        keep the code separate from how we plan to evaluate it:
-- file: ch24/Strat.hs
using :: a -> Strategy a -> a
using x s = s x `seq` x
The
        Control.Parallel.Strategies module provides many other
        functions that enable fine control over evaluation. For instance,
        parZipWith that applies zipWith in parallel, using an evaluation
        strategy:
-- file: ch24/Strat.hs
vectorSum' :: (NFData a, Num a) => [a] -> [a] -> [a]
vectorSum' = parZipWith rnf (+)

Writing a Simple MapReduce Definition



We can quickly suggest a type for a mapReduce function by considering what it
        must do. We need a map component, to which we
        will give the usual type a -> b. And we need a
        reduce; this term is a synonym for
        fold. Rather than commit ourselves to using a
        specific kind of fold, we’ll use a more general type, [b] ->
        c. This type lets us use a left or right fold, so we can choose
        the one that suits our data and processing needs.
If we plug these types together, the complete type
        looks like this:
-- file: ch24/MapReduce.hs
simpleMapReduce
    :: (a -> b)      -- map function
    -> ([b] -> c)    -- reduce function
    -> [a]           -- list to map over
    -> c
The code that goes with the type is extremely
        simple:
-- file: ch24/MapReduce.hs
simpleMapReduce mapFunc reduceFunc = reduceFunc . map mapFunc

MapReduce and Strategies



Our definition of simpleMapReduce is too simple to really be
        interesting. To make it useful, we want to be able to specify that
        some of the work should occur in parallel. We’ll achieve this using
        strategies, passing in a strategy for the map phase and one for the
        reduction phase:
-- file: ch24/MapReduce.hs
mapReduce
    :: Strategy b    -- evaluation strategy for mapping
    -> (a -> b)      -- map function
    -> Strategy c    -- evaluation strategy for reduction
    -> ([b] -> c)    -- reduce function
    -> [a]           -- list to map over
    -> c
Both the type and the body of the
        function must grow a little in size to accommodate the strategy
        parameters.
-- file: ch24/MapReduce.hs
mapReduce mapStrat mapFunc reduceStrat reduceFunc input =
    mapResult `pseq` reduceResult
  where mapResult    = parMap mapStrat mapFunc input
        reduceResult = reduceFunc mapResult `using` reduceStrat

Sizing Work Appropriately



To achieve decent performance, we must ensure that
        the work that we do per application of par substantially outweighs its bookkeeping
        costs. If we are processing a huge file, splitting it on line
        boundaries gives us far too little work compared to overhead.
We will develop a way to process a file
        in larger chunks in a later section. What should those chunks consist
        of? Because a web server logfile ought to contain only ASCII text, we
        will see excellent performance with a lazy ByteString.
        This type is highly efficient and consumes little memory when we
        stream it from a file:
-- file: ch24/LineChunks.hs
module LineChunks
    (
      chunkedReadWith
    ) where

import Control.Exception (bracket, finally)
import Control.Monad (forM, liftM)
import Control.Parallel.Strategies (NFData, rnf)
import Data.Int (Int64)
import qualified Data.ByteString.Lazy.Char8 as LB
import GHC.Conc (numCapabilities)
import System.IO

data ChunkSpec = CS {
      chunkOffset :: !Int64
    , chunkLength :: !Int64
    } deriving (Eq, Show)

withChunks :: (NFData a) =>
              (FilePath -> IO [ChunkSpec])
           -> ([LB.ByteString] -> a)
           -> FilePath
           -> IO a
withChunks chunkFunc process path = do
  (chunks, handles) <- chunkedRead chunkFunc path
  let r = process chunks
  (rnf r `seq` return r) `finally` mapM_ hClose handles
  
chunkedReadWith :: (NFData a) =>
                   ([LB.ByteString] -> a) -> FilePath -> IO a
chunkedReadWith func path =
    withChunks (lineChunks (numCapabilities * 4)) func path
We consume each chunk in parallel,
        taking careful advantage of lazy I/O to ensure that we can stream
        these chunks safely.
Mitigating the risks of lazy I/O



Lazy I/O poses a few well-known hazards that we would like to
          avoid:
	We may invisibly keep a file
              handle open for longer than necessary by not forcing the
              computation that pulls data from it to be evaluated. Since an
              operating system will typically place a small, fixed limit on
              the number of files we can have open at once, if we do not
              address this risk, we can accidentally starve some other part of
              our program of file handles.

	If we do not explicitly close a
              file handle, the garbage collector will automatically close it
              for us, but it may take a long time to notice that it should
              close the file handle. This poses the same starvation risk
              mentioned earlier.

	We can avoid starvation by
              explicitly closing a file handle. If we do so too early, though,
              we can cause a lazy computation to fail if it expects to be able
              to pull more data from a closed file handle.



On top of these well-known risks, we
          cannot use a single file handle to supply data to multiple threads.
          A file handle has a single seek pointer
          that tracks the position from which it should be reading,
          but when we want to read multiple chunks, each needs to consume data
          from a different position in the file.
With these ideas in mind, let’s fill
          out the lazy I/O picture:
-- file: ch24/LineChunks.hs
chunkedRead :: (FilePath -> IO [ChunkSpec])
            -> FilePath
            -> IO ([LB.ByteString], [Handle])
chunkedRead chunkFunc path = do
  chunks <- chunkFunc path
  liftM unzip . forM chunks $ \spec -> do
    h <- openFile path ReadMode
    hSeek h AbsoluteSeek (fromIntegral (chunkOffset spec))
    chunk <- LB.take (chunkLength spec) `liftM` LB.hGetContents h
    return (chunk, h)
We avoid the starvation problem by
          explicitly closing file handles. We allow multiple threads to read
          different chunks at once by supplying each one with a distinct file
          handle, all reading the same file.
The final problem that we try to
          mitigate is that of a lazy computation having a file handle closed
          behind its back. We use rnf to
          force all of our processing to complete before we return from
          withChunks. We can then close
          our file handles explicitly, as they should no longer be read from.
          If you must use lazy I/O in a program, it is often best to
          “firewall” it like this so that it cannot cause
          problems in unexpected parts of your code.
Processing chunks via a fold
We can adapt the
            fold-with-early-termination technique from Another Way of Looking at Traversal to stream-based file processing. While this
            requires more work than the lazy I/O approach, it nicely avoids
            the problems just discussed.



Efficiently Finding Line-Aligned Chunks



Since a server logfile is line-oriented, we need an efficient way to
        break a file into large chunks, while making sure that each chunk ends
        on a line boundary. Since a chunk might be tens of megabytes in size,
        we don’t want to scan all of the data in a chunk to determine where
        its final boundary should be.
Our approach works whether we choose a
        fixed chunk size or a fixed number of chunks. Here, we opt for the
        latter. We begin by seeking to the approximate position of the end of
        a chunk, and then scan forwards until we reach a newline character. We
        next start the following chunk after the newline, and repeat the
        procedure:
-- file: ch24/LineChunks.hs
lineChunks :: Int -> FilePath -> IO [ChunkSpec]
lineChunks numChunks path = do
  bracket (openFile path ReadMode) hClose $ \h -> do
    totalSize <- fromIntegral `liftM` hFileSize h
    let chunkSize = totalSize `div` fromIntegral numChunks
        findChunks offset = do
          let newOffset = offset + chunkSize
          hSeek h AbsoluteSeek (fromIntegral newOffset)
          let findNewline off = do
                eof <- hIsEOF h
                if eof
                  then return [CS offset (totalSize - offset)]
                  else do
                    bytes <- LB.hGet h 4096
                    case LB.elemIndex '\n' bytes of
                      Just n -> do
                        chunks@(c:_) <- findChunks (off + n + 1)
                        let coff = chunkOffset c
                        return (CS offset (coff - offset):chunks)
                      Nothing -> findNewline (off + LB.length bytes)
          findNewline newOffset
    findChunks 0
The last chunk will end up a little
        shorter than its predecessors, but this difference will be
        insignificant in practice.

Counting Lines



This simple example illustrates how to
        use the scaffolding we built:
-- file: ch24/LineCount.hs
module Main where

import Control.Monad (forM_)
import Data.Int (Int64)
import qualified Data.ByteString.Lazy.Char8 as LB
import System.Environment (getArgs)

import LineChunks (chunkedReadWith)
import MapReduce (mapReduce, rnf)

lineCount :: [LB.ByteString] -> Int64
lineCount = mapReduce rnf (LB.count '\n')
                      rnf sum

main :: IO ()
main = do
  args <- getArgs
  forM_ args $ \path -> do
    numLines <- chunkedReadWith lineCount path
    putStrLn $ path ++ ": " ++ show numLines
If we compile this program with
        ghc -O2 --make -threaded, it should perform well
        after an initial run to “warm” the filesystem cache. On a
        dual-core laptop processing a logfile 248 megabytes (1.1 million
        lines) in size, this program runs in 0.576 seconds using a single
        core, and in 0.361 using two (using +RTS -N2).

Finding the Most Popular URLs



In this example, we count the number of
        times each URL is accessed. This example comes from “MapReduce:
        simplified data processing on large clusters” by Jeffrey Dean and Sanjay Ghemawat (http://labs.google.com/papers/mapreduce.html), Google’s
        original paper discussing MapReduce. In the map
        phase, for each chunk, we create a Map from a URL using
        the number of times it was accessed. In the
        reduce phase, we union-merge these maps into
        one:
-- file: ch24/CommonURLs.hs
module Main where

import Control.Parallel.Strategies (NFData(..), rwhnf)
import Control.Monad (forM_)
import Data.List (foldl', sortBy)
import qualified Data.ByteString.Lazy.Char8 as L
import qualified Data.ByteString.Char8 as S
import qualified Data.Map as M
import Text.Regex.PCRE.Light (compile, match)

import System.Environment (getArgs)
import LineChunks (chunkedReadWith)
import MapReduce (mapReduce)

countURLs :: [L.ByteString] -> M.Map S.ByteString Int
countURLs = mapReduce rwhnf (foldl' augment M.empty . L.lines)
                      rwhnf (M.unionsWith (+))
  where augment map line =
            case match (compile pattern []) (strict line) [] of
              Just (_:url:_) -> M.insertWith' (+) url 1 map
              _ -> map
        strict  = S.concat . L.toChunks
        pattern = S.pack "\"(?:GET|POST|HEAD) ([^ ]+) HTTP/"
To pick a URL out of a line of the
        logfile, we use the bindings to the PCRE regular expression library
        that we developed in Chapter 17.
Our driver function prints the 10 most
        popular URLs. As with the line-counting example, this program runs
        about 1.8 times faster with two cores than with one, taking 1.7
        seconds to process the a logfile containing 1.1 million
        entries.

Conclusions



Given a problem that fits its model
        well, the MapReduce programming model lets us write
        “casual” parallel programs in Haskell with good
        performance and minimal additional effort. We can easily extend
        the idea to use other data sources, such as collections of files or
        data sourced over the network.
In many cases, the performance
        bottleneck will be streaming data at a rate high enough to keep up
        with a core’s processing capacity. For instance, if we try to use
        either of the sample programs just shown on a file that is not cached
        in memory or streamed from a high-bandwidth storage array, we will
        spend most of our time waiting for disk I/O, gaining no benefit from
        multiple cores.




[56] As we will show later, GHC threads are extraordinarily
          lightweight. If the runtime were to provide a way to check the
          status of every thread, the overhead of every thread would increase,
          even if this information were never used.

[57] The nonthreaded runtime does not
            understand this option and will reject it with an error
            message.

[58] As of this writing, the garbage
            collector is being retooled to use multiple cores, but we cannot
            yet predict its future effect.

[59] The genesis of this idea came from
          Tim Bray.



Chapter 25. Profiling and Optimization



Haskell is a high-level language. A really
    high-level language. We can spend our days programming entirely in
    abstractions, in monoids, functors, and hylomorphisms, far removed from
    any specific hardware model of computation. The language specification
    goes to great lengths to avoid prescribing any particular evaluation
    model. These layers of abstraction let us treat Haskell as a notation for
    computation itself, letting us concentrate on the essence of the problem
    without getting bogged down in low-level implementation decisions. We get to program
    in pure thought.
However, this is a book about real-world
    programming, and in the real world, code runs on stock hardware with
    limited resources. Our programs will have time and space requirements that
    we may need to enforce. As such, we need a good knowledge of how our
    program data is represented, the precise consequences of using lazy or
    strict evaluation strategies, and techniques for analyzing and controlling
    space and time behavior.
In this chapter, we’ll look at typical
    space and time problems a Haskell programmer might encounter and how to
    methodically analyze, understand, and address them. To do this, we’ll use
    a range of techniques: time and space profiling, runtime statistics, and
    reasoning about strict and lazy evaluation. We’ll also look at the impact
    of compiler optimizations on performance and the use of advanced
    optimization techniques that become feasible in a purely functional
    language. So let’s begin with a challenge: squashing unexpected memory
    usage in some inocuous-looking code.
Profiling Haskell Programs



Let’s consider the following list manipulating program, which naively
      computes the mean of some large list of values. While only a program
      fragment (and we’ll stress that the particular algorithm we’re
      implementing is irrelevant here), it is representative of real code that
      we might find in any Haskell program: typically concise list
      manipulation code and heavy use of standard library functions. It also
      illustrates several common performance trouble spots that can catch the
      unwary:
-- file: ch25/A.hs
import System.Environment
import Text.Printf

main = do
    [d] <- map read `fmap` getArgs
    printf "%f\n" (mean [1..d])

mean :: [Double] -> Double
mean xs = sum xs / fromIntegral (length xs)
This program is very simple. We import functions for
      accessing the system’s environment (in particular, getArgs), and the Haskell version of printf, for
      formatted text output. The program then reads a numeric literal from the
      command line, using that to build a list of floating-point values, whose
      mean value we compute by dividing the list sum by its length. The result
      is printed as a string. Let’s compile this source to native code (with
      optimizations on) and run it with the time command to see
      how it performs:
$ ghc --make -O2 A.hs
[1 of 1] Compiling Main             ( A.hs, A.o )
Linking A ...
$ time ./A 1e5
50000.5
./A 1e5  0.05s user 0.01s system 102% cpu 0.059 total
$ time ./A 1e6
500000.5
./A 1e6  0.26s user 0.04s system 99% cpu 0.298 total
$ time ./A 1e7
5000000.5
./A 1e7  63.80s user 0.62s system 99% cpu 1:04.53 total
It worked well for small numbers, but the program
      really started to struggle with a list size of 10 million. From this
      alone, we know something’s not quite right, but it’s unclear what
      resources are being used. Let’s investigate.
Collecting Runtime Statistics



To get access to that kind of information, GHC lets us pass flags
        directly to the Haskell runtime, using the special +RTS
        and -RTS flags to delimit arguments reserved for the runtime system.
        The application itself won’t see those flags, as they’re immediately
        consumed by the Haskell runtime system.
In particular, we can ask the runtime
        system to gather memory and garbage collector performance numbers with
        the -s flag (as well as control the number of OS threads with
        -N or tweak the stack and heap sizes). We’ll also use
        runtime flags to enable different varieties of profiling. The complete
        set of flags the Haskell runtime accepts is documented in the GHC
        User’s Guide.
So let’s run the program with statistic
        reporting enabled, via +RTS -sstderr, yielding this result:
$ ./A 1e7 +RTS -sstderr
./A 1e7 +RTS -sstderr 
5000000.5
1,689,133,824 bytes allocated in the heap
697,882,192 bytes copied during GC (scavenged)
465,051,008 bytes copied during GC (not scavenged)
382,705,664 bytes maximum residency (10 sample(s))

       3222 collections in generation 0 (  0.91s)
         10 collections in generation 1 ( 18.69s)

        742 Mb total memory in use

  INIT  time    0.00s  (  0.00s elapsed)
  MUT   time    0.63s  (  0.71s elapsed)
  GC    time   19.60s  ( 20.73s elapsed)
  EXIT  time    0.00s  (  0.00s elapsed)
  Total time   20.23s  ( 21.44s elapsed)

  %GC time      96.9%  (96.7% elapsed)

  Alloc rate    2,681,318,018 bytes per MUT second

  Productivity   3.1% of total user, 2.9% of total elapsed

When using -sstderr, our
        program’s performance numbers are printed to the standard error
        stream, giving us a lot of information about what our program is
        doing. In particular, it tells us how much time was spent in garbage
        collection and what the maximum live memory usage was. It turns out
        that to compute the mean of a list of 10 million elements, our program
        used a maximum of 742 megabytes on the heap, and spent 96.9% of its
        time doing garbage collection! In total, only 3.1% of the program’s
        running time was spent doing productive work.
So why is our program behaving so
        badly, and what can we do to improve it? After all, Haskell is a lazy
        language—shouldn’t it be able to process the list in constant
        space?

Time Profiling



Thankfully, GHC comes with several
        tools to analyze a program’s time and space usage. In particular, we
        can compile a program with profiling enabled, which, when run yields
        useful information about what resources each function is using.
        Profiling proceeds in three steps: compile the program for profiling,
        run it with particular profiling modes enabled, and inspect the
        resulting statistics.
To compile our program for basic time
        and allocation profiling, we use the -prof flag. We also
        need to tell the profiling code which functions we’re interested in
        profiling, by adding cost centers to them. A cost
        center is a location in the program we’d like to collect statistics
        about. GHC will generate code to compute the cost of evaluating the
        expression at each location. Cost centers can be added manually to
        instrument any expression, using the SCC pragma:
-- file: ch25/SCC.hs
mean :: [Double] -> Double
mean xs = {-# SCC "mean" #-} sum xs / fromIntegral (length xs)
Alternatively, we can have the compiler
        insert the cost centers on all top-level functions for us by compiling
        with the -auto-all flag. Manual cost centers are a useful addition to automated
        cost-center profiling, as once a hot spot is been identified, we can
        precisely pin down the expensive subexpressions of a function.
One complication to be aware of is that
        in a lazy, pure language such as Haskell, values with no arguments
        need only be computed once (for example, the large list in our example
        program), and the result shared for later uses. Such values are not
        really part of the call graph of a program, as they’re not evaluated
        on each call, but we would of course still like to know how expensive
        their one-off cost of evaluation was. To get accurate numbers for
        these values, known as constant applicative forms
        (CAFs), we use the -caf-all
        flag.
Compiling our example program for
        profiling then (using the -fforce-recomp flag to force
        full recompilation):
$ ghc -O2 --make A.hs -prof -auto-all -caf-all -fforce-recomp
[1 of 1] Compiling Main             ( A.hs, A.o )
Linking A ...

We can now run this annotated program
        with time profiling enabled (and we’ll use a smaller input size for
        the time being, as the program now has additional profiling overhead):
$ time ./A  1e6 +RTS -p
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize' to increase it.
./A 1e6 +RTS -p  1.11s user 0.15s system 95% cpu 1.319 total

The program ran out of stack space!
        This is the main complication to be aware of when using profiling:
        adding cost centers to a program modifies how it is optimized,
        possibly changing its runtime behavior, as each expression now has
        additional code associated with it to track the evaluation steps. In a
        sense, observing the program that is executing modifies how it
        executes. In this case, it is simple to proceed—we use the GHC runtime
        flag, -K, to set a larger stack limit for our program
        (with the usual suffixes to indicate magnitude):
$ time ./A 1e6 +RTS -p -K100M
500000.5
./A 1e6 +RTS -p -K100M  4.27s user 0.20s system 99% cpu 4.489 total

The runtime will dump its profiling
        information into a file, A.prof
        (named after the binary that was executed), which contains the
        following information:
Time and Allocation Profiling Report  (Final)

	   A +RTS -p -K100M -RTS 1e6

	total time  =        0.28 secs   (14 ticks @ 20 ms)
	total alloc = 224,041,656 bytes  (excludes profiling overheads)

COST CENTRE  MODULE               %time %alloc

CAF:sum      Main                  78.6   25.0
CAF          GHC.Float             21.4   75.0

                                            individual    inherited
COST CENTRE MODULE         no.    entries  %time %alloc   %time %alloc

MAIN        MAIN            1           0   0.0    0.0   100.0  100.0
 main       Main          166           2   0.0    0.0     0.0    0.0
  mean      Main          168           1   0.0    0.0     0.0    0.0
 CAF:sum    Main          160           1  78.6   25.0    78.6   25.0
 CAF:lvl    Main          158           1   0.0    0.0     0.0    0.0
  main      Main          167           0   0.0    0.0     0.0    0.0
 CAF        Numeric       136           1   0.0    0.0     0.0    0.0
 CAF        Text.Read.Lex 135           9   0.0    0.0     0.0    0.0
 CAF        GHC.Read      130           1   0.0    0.0     0.0    0.0
 CAF        GHC.Float     129           1  21.4   75.0    21.4   75.0
 CAF        GHC.Handle    110           4   0.0    0.0     0.0    0.0
This gives us a view into the program’s
        runtime behavior. We can see the program’s name and the flags we ran
        it with. The total time is time actually spent
        executing code from the runtime system’s point of view, and the
        total allocation is the number of bytes allocated
        during the entire program run (not the maximum live memory, which is
        around 700 MB).
The second section of the profiling
        report is the proportion of time and space each function was
        responsible for. The third section is the cost center report,
        structured as a call graph (for example, we can see that mean was called from main). The “individual” and “inherited”
        columns give us the resources a cost center was responsible for on its
        own, and what it and its children were responsible for. Additionally,
        we see the one-off costs of evaluating constants (such as the
        floating-point values in the large list and the list itself) assigned
        to top-level CAFs.
What conclusions can we draw from this
        information? We can see that the majority of time is spent in two
        CAFs, one related to computing the sum and another for floating-point
        numbers. These alone account for nearly all allocations that occurred
        during the program run. Combined with our earlier observation about
        garbage collector stress, it begins to look like the list node
        allocations, containing floating-point values, are causing a
        problem.
For simple performance hot spot
        identification, particularly in large programs where we might have
        little idea where time is being spent, the initial time profile can
        highlight a particular problematic module and top-level function,
        which is often enough to reveal the trouble spot. Once we’ve narrowed
        down the code to a problematic section, such as our example here, we
        can use more sophisticated profiling tools to extract more
        information.

Space Profiling



Beyond basic time and allocation
        statistics, GHC is able to generate graphs of memory usage of the
        heap, over the program’s lifetime. This is perfect for revealing
        space leaks, where memory is retained unnecessarily, leading to the kind
        of heavy garbage collector activity we see in our example.
Constructing a heap profile follows the
        same procedure as constructing a normal time profile—namely, compile
        with -prof -auto-all -caf-all. But, when we execute the
        program, we’ll ask the runtime system to gather more detailed heap use
        statistics. We can break down the heap use information in several
        ways: via cost center, via module, by constructor, or by data type.
        Each has its own insights. Heap profiling A.hs logs to a file A.hp, with raw data that is in turn
        processed by the tool hp2ps, which generates a
        PostScript-based, graphical visualization of the heap over
        time.
To extract a standard heap profile from
        our program, we run it with the -hc runtime flag:
$ time ./A 1e6 +RTS -hc -p -K100M
500000.5
./A 1e6 +RTS -hc -p -K100M  4.15s user 0.27s system 99% cpu 4.432 total

A heap profiling log, A.hp, was created, with the content in the
        following form:
JOB "A 1e6 +RTS -hc -p -K100M"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
END_SAMPLE 0.00
BEGIN_SAMPLE 0.24
(167)main/CAF:lvl   48
(136)Numeric.CAF    112
(166)main   8384
(110)GHC.Handle.CAF 8480
(160)CAF:sum    10562000
(129)GHC.Float.CAF  10562080
END_SAMPLE 0.24
Samples are taken at regular intervals
        during the program run. We can increase the heap sampling frequency
        using -iN, where N is
        the number of seconds (e.g., 0.01) between heap size samples.
        Obviously, the more we sample, the more accurate the results, but the
        slower our program will run. We can now render the heap profile as a
        graph, using the hp2ps tool:
$ hp2ps -e8in -c A.hp
This produces the graph, in the file
        A.ps shown in Figure 25-1.
[image: The heap profile graph rises in a gently decreasing curve in the first half of the program’s run, drops abruptly, then trails off during the remaining third.]

Figure 25-1. The heap profile graph rises in a gently decreasing curve in
          the first half of the program’s run, drops abruptly, then trails off
          during the remaining third.


What does this graph tell us? For one,
        the program runs in two phases, spending its first half allocating
        increasingly large amounts of memory while summing values, and the
        second half cleaning up those values. The initial allocation also
        coincides with sum, doing some work, allocating a lot of
        data. We get a slightly different presentation if we break down the
        allocation by type, using -hy profiling:
$ time ./A 1e6 +RTS -hy -p -K100M
500000.5
./A 1e6 +RTS -i0.001 -hy -p -K100M  34.96s user 0.22s system 99% cpu 35.237 total
$ hp2ps -e8in -c A.hp

This yields the graph shown in Figure 25-2.
[image: Heap profiling curve, broken down by data type. Values of unknown type account for half of the first phase, with Double and lists split. The second phase is one third black holes, the rest split between Double and lists.]

Figure 25-2. Heap profiling curve, broken down by data type. Values of
          unknown type account for half of the first phase, with Double and
          lists split. The second phase is one third black holes, the rest
          split between Double and lists.


The most interesting things to notice
        here are large parts of the heap devoted to values of list type (the
        [] band) and heap-allocated Double values.
        There’s also some heap-allocated data of unknown type (represented as
        data of type *). Finally, let’s
        break it down by what constructors are being allocated, using the
        -hd flag:
$ time ./A 1e6 +RTS -hd -p -K100M
$ time ./A 1e6 +RTS -i0.001 -hd -p -K100M 
500000.5
./A 1e6 +RTS -i0.001 -hd -p -K100M  27.85s user 0.31s system 99% cpu 28.222 total

Our final graphic reveals the full
        story of what is going on. See Figure 25-3.
[image: The graph is similar in shape but reveals the unknown values to be lists.]

Figure 25-3. The graph is similar in shape but reveals the unknown values
          to be lists.


A lot of work is going into allocating
        list nodes containing double-precision floating-point values. Haskell
        lists are lazy, so the full million element list is built up over
        time. Crucially, though, it is not being deallocated as it is
        traversed, leading to increasingly large resident memory use. Finally,
        a bit over halfway through the program run, the program finally
        finishes summing the list and starts calculating the length. If we
        look at the original fragment for mean, we can see
        exactly why that memory is being retained:
-- file: ch25/Fragment.hs
mean :: [Double] -> Double
mean xs = sum xs / fromIntegral (length xs)
At first we sum our list, which
        triggers the allocation of list nodes, but we’re unable to release the
        list nodes once we’re done, as the entire list is still needed by
        length. As soon as sum is done though, and length starts consuming the list, the
        garbage collector can chase it along, deallocating the list nodes,
        until we’re done. These two phases of evaluation give two strikingly
        different phases of allocation and deallocation, and point at exactly
        what we need to do: traverse the list once only, summing and averaging
        it as we go.


Controlling Evaluation



We have a number of options if we want to
      write our loop to traverse the list only once. For example, we can write
      the loop as a fold over the list or via explicit recursion on the list
      structure. Sticking to the high-level approaches, we’ll try a fold
      first:
-- file: ch25/B.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    (n, s)     = foldl k (0, 0) xs
    k (n, s) x = (n+1, s+x)
Now, instead of taking the sum of the
      list and retaining the list until we can take its length, we left-fold
      over the list, accumulating the intermediate sum and length values in a
      pair (and we must left-fold, since a right-fold would take us to the end
      of the list and work backwards, which is exactly what we’re trying to
      avoid).
The body of our loop is the k function, which takes the intermediate loop
      state and the current element and returns a new state with the length
      increased by one and the sum increased by the current element. When we
      run this, however, we get a stack overflow:
$ ghc -O2 --make B.hs -fforce-recomp
$ time ./B 1e6
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize' to increase it.
./B 1e6  0.44s user 0.10s system 96% cpu 0.565 total
We traded wasted heap for wasted stack!
      In fact, if we increase the stack size to the size of the heap in our
      previous implementation, using the -K runtime flag, the
      program runs to completion and has similar allocation figures:
$ ghc -O2 --make B.hs -prof -auto-all -caf-all -fforce-recomp
[1 of 1] Compiling Main             ( B.hs, B.o )
Linking B ...
$ time ./B 1e6 +RTS -i0.001 -hc -p -K100M
500000.5
./B 1e6 +RTS -i0.001 -hc -p -K100M  38.70s user 0.27s system 99% cpu 39.241 total
Generating the heap profile, we see all
      the allocation is now in mean. See Figure 25-4.
[image: Graph of stack usage. The curve is shaped like a hump, with mean representing 80%, and GHC.Real.CAF the other 20%.]

Figure 25-4. Graph of stack usage. The curve is shaped like a hump, with
        mean representing 80%, and GHC.Real.CAF the other 20%.


The question is: why are we building up
      more and more allocated state, when all we are doing is folding over the
      list? This, it turns out, is a classic space leak due to excessive
      laziness.
Strictness and Tail Recursion



The problem is that our left-fold, foldl, is too lazy. What we want is a
        tail-recursive loop, which can be implemented effectively as a
        goto, with no state left on the stack. In this case
        though, rather than fully reducing the tuple state at each step, a
        long chain of thunks is being created, which is evaluated only towards
        the end of the program. At no point do we demand reduction of the loop
        state, so the compiler is unable to infer any strictness and must
        reduce the value purely lazily.
What we need to do is tune the
        evaluation strategy slightly—lazily unfolding the list, but strictly
        accumulating the fold state. The standard approach here is to replace
        foldl with foldl', from the Data.List module:
-- file: ch25/C.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    (n, s)     = foldl' k (0, 0) xs
    k (n, s) x = (n+1, s+x)
However, if we run this implementation,
        we see that we still haven’t quite got it right:
$ ghc -O2 --make C.hs
[1 of 1] Compiling Main             ( C.hs, C.o )
Linking C ...
$ time ./C 1e6
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize' to increase it.
./C 1e6  0.44s user 0.13s system 94% cpu 0.601 total
Still not strict enough! Our loop is
        continuing to accumulate unevaluated state on the stack. The problem
        here is that foldl' is only
        outermost strict:
-- file: ch25/Foldl.hs
foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f z xs = lgo z xs
    where lgo z []     = z
          lgo z (x:xs) = let z' = f z x in z' `seq` lgo z' xs
This loop uses `seq` to reduce the accumulated state at
        each step, but only to the outermost constructor on the loop state.
        That is, seq reduces an expression to weak head normal
        form (WHNF). Evaluation stops on the loop state once the first
        constructor is reached. In this case, the outermost constructor is the
        tuple wrapper, (,), which isn’t deep enough. The problem
        is still the unevaluated numeric state inside the tuple.

Adding Strictness



There are a number of ways to make this
        function fully strict. We can, for example, add our own strictness
        hints to the internal state of the tuple, yielding a truly
        tail-recursive loop:
-- file: ch25/D.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    (n, s)     = foldl' k (0, 0) xs
    k (n, s) x = n `seq` s `seq` (n+1, s+x)
In this variant, we step inside the
        tuple state and explicitly tell the compiler that each state component
        should be reduced on each step. This gives us a version that does, at
        last, run in constant space:
$ ghc -O2 D.hs --make
[1 of 1] Compiling Main             ( D.hs, D.o )
Linking D ...

If we run this, with allocation
        statistics enabled, we get the satisfying result:
$ time ./D 1e6 +RTS -sstderr
./D 1e6 +RTS -sstderr 
500000.5
256,060,848 bytes allocated in the heap
     43,928 bytes copied during GC (scavenged)
     23,456 bytes copied during GC (not scavenged)
     45,056 bytes maximum residency (1 sample(s))

        489 collections in generation 0 (  0.00s)
          1 collections in generation 1 (  0.00s)

          1 Mb total memory in use

  INIT  time    0.00s  (  0.00s elapsed)
  MUT   time    0.12s  (  0.13s elapsed)
  GC    time    0.00s  (  0.00s elapsed)
  EXIT  time    0.00s  (  0.00s elapsed)
  Total time    0.13s  (  0.13s elapsed)

  %GC time       2.6%  (2.6% elapsed)

  Alloc rate    2,076,309,329 bytes per MUT second

  Productivity  97.4% of total user, 94.8% of total elapsed

./D 1e6 +RTS -sstderr  0.13s user 0.00s system 95% cpu 0.133 total

Unlike our first version, this program
        is 97.4% efficient, spending only 2.6% of its time doing garbage
        collection, and it runs in a constant 1 megabyte of space. It
        illustrates a nice balance between mixed strict and lazy evaluation,
        with the large list unfolded lazily, while we walk over it strictly.
        The result is a program that runs in constant space, and does so
        quickly.
Normal form reduction



There are a number of other ways we
          could have addressed the strictness issue here. For deep strictness,
          we can use the rnf function, part of the parallel strategies library (along with
          using), which unlike seq reduces to the
          fully evaluated “normal form” (hence its name). We can write as such
          a deep seq fold:
-- file: ch25/E.hs
import System.Environment
import Text.Printf
import Control.Parallel.Strategies

main = do
    [d] <- map read `fmap` getArgs
    printf "%f\n" (mean [1..d])

foldl'rnf :: NFData a => (a -> b -> a) -> a -> [b] -> a
foldl'rnf f z xs = lgo z xs
    where
        lgo z []     = z
        lgo z (x:xs) = lgo z' xs
            where
                z' = f z x `using` rnf

mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    (n, s)     = foldl'rnf k (0, 0) xs
    k (n, s) x = (n+1, s+x) :: (Int, Double)
We change the implementation of
          foldl' to reduce the state to normal form, using the
          rnf strategy. This also raises an issue that we avoided
          earlier: the type inferred for the loop accumulator state.
          Previously, we relied on type defaulting to infer a numeric,
          integral type for the length of the list in the accumulator, but
          switching to rnf introduces the NFData
          class constraint, and we can no longer rely on defaulting to set the
          length type.

Bang patterns



Perhaps the cheapest way,
          syntactically, to add required strictness to code that’s excessively
          lazy is via bang patterns (whose name comes from pronunciation of
          the “!” character as “bang”), a language extension introduced with
          the following pragma:
-- file: ch25/F.hs
{-# LANGUAGE BangPatterns #-}
With bang patterns, we can hint at
          strictness on any binding form, making the function strict in that
          variable. Much as explicit type annotations can guide type
          inference, bang patterns can help guide strictness inference. Bang
          patterns are a language extension and are enabled with the
          BangPatterns language pragma. We can now rewrite the
          loop state to be simply:
-- file: ch25/F.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    (n, s)       = foldl' k (0, 0) xs
    k (!n, !s) x = (n+1, s+x)
The intermediate values in the loop
          state are now strict, and the loop runs in constant space:
$ ghc -O2 F.hs --make
$ time ./F 1e6 +RTS -sstderr
./F 1e6 +RTS -sstderr 
500000.5
256,060,848 bytes allocated in the heap
     43,928 bytes copied during GC (scavenged)
     23,456 bytes copied during GC (not scavenged)
     45,056 bytes maximum residency (1 sample(s))

        489 collections in generation 0 (  0.00s)
          1 collections in generation 1 (  0.00s)

          1 Mb total memory in use

  INIT  time    0.00s  (  0.00s elapsed)
  MUT   time    0.14s  (  0.15s elapsed)
  GC    time    0.00s  (  0.00s elapsed)
  EXIT  time    0.00s  (  0.00s elapsed)
  Total time    0.14s  (  0.15s elapsed)

  %GC time       0.0%  (2.3% elapsed)

  Alloc rate    1,786,599,833 bytes per MUT second

  Productivity 100.0% of total user, 94.6% of total elapsed

./F 1e6 +RTS -sstderr  0.14s user 0.01s system 96% cpu 0.155 total
In large projects, when we are
          investigating memory allocation hot spots, bang patterns are the
          cheapest way to speculatively modify the strictness properties of
          some code, as they’re syntactically less invasive than other
          methods.

Strict data types



Strict data types are another
          effective way to provide strictness information to the compiler. By
          default, Haskell data types are lazy, but it is easy enough to add
          strictness information to the fields of a data type that then
          propagate through the program. We can declare a new strict pair
          type, for example:
-- file: ch25/G.hs
data Pair a b = Pair !a !b
This creates a pair type whose fields
          will always be kept in WHNF. We can now rewrite our loop as:
-- file: ch25/G.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    Pair n s       = foldl' k (Pair 0 0) xs
    k (Pair n s) x = Pair (n+1) (s+x)
This implementation again has the
          same efficient, constant space behavior. At this point, to squeeze
          the last drops of performance out of this code, though, we have to
          dive a bit deeper.



Understanding Core



Besides looking at runtime profiling data, one sure way to
      determine exactly what your program is doing is to look at the final
      program source after the compiler is done optimizing it, particularly in the case of
      Haskell compilers, which can perform very aggressive transformations on
      the code. GHC uses what is humorously referred to as “a simple
      functional language”—known as Core—as the compiler intermediate
      representation. It is essentially a subset of Haskell, augmented with
      unboxed data types (raw machine types, directly corresponding to
      primitive data types in languages such as C), suitable for code
      generation. GHC optimizes Haskell by transformation, repeatedly
      rewriting the source into more and more efficient forms. The Core
      representation is the final functional version of your program, before
      translation to low-level imperative code. In other words, Core has
      the final say, and if all-out performance is your goal, it is worth
      understanding.
To view the Core version of our Haskell
      program, we compile with the -ddump-simpl flag, or use the ghc-core tool, a third-party
      utility that lets us view Core in a pager. So let’s look at the
      representation of our final fold using strict data types,
      in Core form:
$ ghc -O2 -ddump-simpl G.hs
A screenful of text is generated. If we
      look carefully at it, we’ll see a loop (here, cleaned up slightly for
      clarity):
lgo :: Integer -> [Double] -> Double# -> (# Integer, Double #)

lgo = \ n xs s ->
    case xs of
      []       -> (# n, D# s #);
      (:) x ys ->
        case plusInteger n 1 of
            n' -> case x of
                D# y -> lgo n' ys (+## s y)
This is the final version of our
      foldl', and it tells us a lot about the next steps for
      optimization. The fold itself has been entirely inlined, yielding an
      explicit recursive loop over the list. The loop state, our strict pair,
      has disappeared entirely, and the function now takes its length and sum
      accumulators as direct arguments along with the list.
The sum of the list elements is
      represented with an unboxed Double# value, a raw machine
      double kept in a floating-point register. This is ideal, as
      there will be no memory traffic involved in keeping the sum on the heap.
      However, the length of the list—since we gave no explicit type
      annotation—has been inferred to be a heap-allocated Integer, which requires a nonprimitive
      plusInteger to perform addition. If it is algorithmically
      sound to use a Int instead, we can replace
      Integer with it, via a type annotation, and GHC will then
      be able to use a raw machine Int# for the length. We can
      hope for an improvement in time and space by ensuring that both loop
      components are unboxed and kept in registers.
The base case of the loop, its end,
      yields an unboxed pair (a pair allocated only in registers), storing the
      final length of the list and the accumulated sum. Notice that the return
      type is a heap-allocated Double value, indicated by the
      D# constructor, which lifts a raw double value onto the
      heap. Again this has implications for performance, as GHC will need to
      check that there is sufficient heap space available before it can
      allocate and return from the loop.
We can use a custom pair type in the loop
      to make ghc return an unboxed Double# value,
      which avoids this final heap check. In addition, ghc
      provides an optimization that unboxes the strict fields of a data type,
      ensuring that the fields of the new pair type will be stored in
      registers. This optimization is turned on with -funbox-strict-fields.
We can make both representation changes
      by replacing the polymorphic strict pair type with one whose fields are
      fixed as Int and Double:
-- file: ch25/H.hs
data Pair = Pair !Int !Double

mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    Pair n s       = foldl' k (Pair 0 0) xs
    k (Pair n s) x = Pair (n+1) (s+x)
Compiling this with optimizations on and
      -funbox-strict-fields -ddump-simpl, we get a tighter inner
      loop in Core:
lgo :: Int# -> Double# -> [Double] -> (# Int#, Double# #)
lgo = \ n s xs ->
    case xs of
      []       -> (# n, s #)
      (:) x ys ->
        case x of 
            D# y -> lgo (+# n 1) (+## s y) ys
Now the pair we use to represent the loop
      state is represented and returned as unboxed primitive types and will be
      kept in registers. The final version now allocates heap memory for the
      list nodes only, as the list is lazily demanded. If we compile and run
      this tuned version, we can compare the allocation and time performance
      against our original program:
$ time ./H 1e7 +RTS -sstderr
./H 1e7 +RTS -sstderr 
5000000.5
1,689,133,824 bytes allocated in the heap
    284,432 bytes copied during GC (scavenged)
         32 bytes copied during GC (not scavenged)
     45,056 bytes maximum residency (1 sample(s))

       3222 collections in generation 0 (  0.01s)
          1 collections in generation 1 (  0.00s)

          1 Mb total memory in use

  INIT  time    0.00s  (  0.00s elapsed)
  MUT   time    0.63s  (  0.63s elapsed)
  GC    time    0.01s  (  0.02s elapsed)
  EXIT  time    0.00s  (  0.00s elapsed)
  Total time    0.64s  (  0.64s elapsed)

  %GC time       1.0%  (2.4% elapsed)

  Alloc rate    2,667,227,478 bytes per MUT second

  Productivity  98.4% of total user, 98.2% of total elapsed

./H 1e7 +RTS -sstderr  0.64s user 0.00s system 99% cpu 0.644 total

Our original program, when operating on a
      list of 10 million elements, took more than a minute to run and
      allocated more than 700 megabytes of memory. The final version, using a
      simple higher order fold and a strict data type, however runs in around
      half a second and allocates a total of 1 megabyte. Quite an
      improvement!
The general rules we can learn from the
      profiling and optimization process are:
	Compile to native code, with
          optimizations on.

	When in doubt, use runtime statistics
          and time profiling.

	If you suspect allocation problems,
          use heap profiling.

	A careful mixture of strict and lazy
          evaluation can yield the best results.

	Prefer strict fields for atomic data
          types (Int, Double, and similar
          types).

	Use data types with simpler machine representations
          (prefer Int over Integer).



These simple strategies are enough to
      identify and squash untoward memory use issues, and when used wisely,
      can keep them from occurring in the first place.

Advanced Techniques: Fusion



The final bottleneck in our program is the lazy list itself. While
      we can avoid allocating it all at once, there is still memory traffic
      each time around the loop, as we demand the next cons cell in the list,
      allocate it to the heap, operate on it, and continue. The list type is
      also polymorphic, so the elements of the list will be represented as
      heap-allocated Double values.
What we’d like to do is eliminate the
      list entirely, keeping just the next element we need in a register.
      Perhaps surprisingly, GHC is able to transform the list program into a
      listless version, using an optimization known as deforestation, which
      refers to a general class of optimizations that involve eliminating
      intermediate data structures. Due to the absence of side effects, a
      Haskell compiler can be extremely aggressive when rearranging code,
      reordering and transforming wholesale at times. The specific
      deforestation optimization we will use here is stream fusion.
This optimization transforms recursive
      list generation and transformation functions into nonrecursive
      unfolds. When an unfold appears next to a
      fold, the structure between them is then eliminated entirely,
      yielding a single, tight loop with no heap allocation. The optimization
      isn’t enabled by default, and it can radically change the complexity of
      a piece of code, but it is enabled by a number of data structure
      libraries, which provide rewrite rules, custom
      optimizations, that the compiler applies to functions that the library
      exports.
We’ll use the uvector
      library, which provides a suite of list-like operations that use stream
      fusion to remove intermediate data structures. Rewriting our program to
      use streams is straightforward:
-- file: ch25/I.hs
import System.Environment
import Text.Printf
import Data.Array.Vector

main = do
    [d] <- map read `fmap` getArgs
    printf "%f\n" (mean (enumFromToFracU 1 d))

data Pair = Pair !Int !Double

mean :: UArr Double -> Double
mean xs = s / fromIntegral n
  where
    Pair n s       = foldlU k (Pair 0 0) xs
    k (Pair n s) x = Pair (n+1) (s+x)
After installing the uvector
      library from Hackage, we can build our program, with -O2
      -funbox-strict-fields, and then inspect the Core that
      results:
fold :: Int# -> Double# -> Double# -> (# Int#, Double# #)
fold = \ n s t ->
    case >## t limit of {
      False -> fold (+# n 1) (+## s t) (+## t 1.0)
      True  -> (# n, s #)
This is really the optimal result! Our
      lists have been entirely fused away, yielding a tight loop where list
      generation is interleaved with accumulation, and all input and output
      variables are kept in registers. Running this, we see another
      improvement bump in performance, with runtime falling by another order
      of magnitude:
$ time ./I 1e7
5000000.5
./I 1e7  0.06s user 0.00s system 72% cpu 0.083 total
Tuning the Generated Assembly



Given that our Core is now optimal, the
        only step left to take this program further is to look directly at the
        assembly. Of course, there are only small gains left to make at this
        point. To view the generated assembly, we can use a tool such as
        ghc-core or generate assembly to standard output with the
        -ddump-asm flag to GHC. We have few levers available to adjust the
        generated assembly, but we may choose between the C and native code
        backends to GHC. And, if we then choose the C backend, which
        optimization flags to pass to GCC. Particularly with floating-point
        code, it is sometimes useful to compile via C, and enable specific
        high-performance C compiler optimizations.
For example, we can squeeze out the
        last drops of performance from our final fused loop code by using
        -funbox-strict-fields -fvia-C -optc-O2, which cuts the running time in half again (as the C compiler
        is able to optimize away some redundant move instructions in the
        program’s inner loop):
$ ghc -fforce-recomp --make -O2 -funbox-strict-fields -fvia-C -optc-O2 I.hs
[1 of 1] Compiling Main             ( I.hs, I.o )
Linking I ...
$ time ./I 1e7
5000000.5
./I 1e7  0.04s user 0.00s system 98% cpu 0.047 total
Inspecting the final x86_64 assembly (via
        -keep-tmp-files), we see the generated loop contains only six
        instructions:
go:
  ucomisd     5(%rbx), %xmm6
  ja  .L31
  addsd       %xmm6, %xmm5
  addq        $1, %rsi
  addsd       .LC0(%rip), %xmm6
  jmp go
We’ve effectively massaged the program
        through multiple source-level optimizations, all the way to the final
        assembly. There’s nowhere else to go from here. Optimizing code to
        this level is very rarely necessary, of course, and typically makes
        sense only when writing low-level libraries or optimizing particularly
        important code, where all algorithm choices have already been
        determined. For day-to-day code, choosing better algorithms is always
        a more effective strategy, but it’s useful to know we can optimize
        down to the metal if necessary.

Conclusions



In this chapter, we’ve looked at a
        suite of tools and techniques you can use to track down and identify
        problematic areas of your code, along with a variety of conventions
        that can go a long way towards keeping your code lean and efficient.
        The goal is really to program in such a way that you have good
        knowledge of what your code is doing at all levels from source through
        the compiler to the metal, and to be able to focus in on particular
        levels when requirements demand.
By sticking to simple rules, choosing
        the right data structures, and avoiding the traps of the unwary, it is
        perfectly possible to reliably achieve high performance from your
        Haskell code, while being able to develop at a very high level. The
        result is a sweet balance of productivity and ruthless efficiency.



Chapter 26. Advanced Library Design: Building a
    Bloom Filter



Introducing the Bloom Filter



A Bloom filter is a set-like data structure that is highly efficient in its
      use of space. It supports two operations only: insertion and membership
      querying. Unlike a normal set data structure, a Bloom filter can give
      incorrect answers. If we query it to see whether an element that we have
      inserted is present, it will answer affirmatively. If we query for an
      element that we have not inserted, it
      might incorrectly claim that the element is
      present.
For many applications, a low rate of
      false positives is tolerable. For instance, the job of a network traffic
      shaper is to throttle bulk transfers (e.g., BitTorrent) so that
      interactive sessions (such as ssh
      sessions or games) see good response times. A traffic shaper might use a
      Bloom filter to determine whether a packet belonging to a particular
      session is bulk or interactive. If it misidentifies 1 in 10,000 bulk
      packets as interactive and fails to throttle it, nobody will
      notice.
The attraction of a Bloom filter is its
      space efficiency. If we want to build a spell checker and have a
      dictionary of 500,000 words, a set data structure might consume 20
      megabytes of space. A Bloom
      filter, in contrast, would consume about half a megabyte, at the cost of
      missing perhaps 1% of misspelled words.
Behind the scenes, a Bloom filter is
      remarkably simple. It consists of a bit array and a handful of hash functions. We’ll use
      k for the number of hash functions. If we want to
      insert a value into the Bloom filter, we compute k
      hashes of the value and turn on those bits in the bit array. If we want
      to see whether a value is present, we compute k
      hashes and check all of those bits in the array to see if they are
      turned on.
To see how this works, let’s say we want
      to insert the strings "foo" and "bar" into a
      Bloom filter that is 8 bits wide, and we have two hash functions:
	Compute the two hashes of
          "foo", and get the values 1 and
          6.

	Set bits 1 and
          6 in the bit array.

	Compute the two hashes of
          "bar", and get the values 6 and
          3.

	Set bits 6 and
          3 in the bit array.



This example should make it clear why we
      cannot remove an element from a Bloom filter: both "foo"
      and "bar" resulted in bit 6 being set.
Suppose we now want to query the Bloom
      filter to see whether the values "quux" and
      "baz" are present:
	Compute the two hashes of
          "quux", and get the values 4 and
          0.

	Check bit 4 in the bit
          array. It is not set, so "quux" cannot be present. We
          do not need to check bit 0.

	Compute the two hashes of
          "baz" and get the values 1 and
          3.

	Check bit 1 in the bit
          array. It is set, as is bit 3, so we say that
          "baz" is present even though it is not. We have
          reported a false positive.



For a survey of some of the uses of Bloom
      filters in networking, see “Network Applications of Bloom Filters: A
      Survey” by Andrei Broder and Michael Mitzenmacher (see http://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf).

Use Cases and Package Layout



Not all users of Bloom filters have the
      same needs. In some cases, it suffices to create a Bloom filter in one
      pass, and only query it afterwards. For other applications, we may need
      to continue to update the Bloom filter after we create it. To
      accommodate these needs, we will design our library with mutable and
      immutable APIs.
We will segregate the mutable and
      immutable APIs that we publish by placing them in different modules:
      BloomFilter for the immutable code and
      BloomFilter.Mutable for the mutable code.
In addition, we will create several
      “helper” modules that won’t provide parts of the public API
      but will keep the internal code cleaner.
Finally, we will ask our API’s users to
      provide a function that can generate a number of hashes of an element.
      This function will have the type a -> [Word32]. We will
      use all of the hashes that this function returns, so the list must not
      be infinite!

Basic Design



The data structure that we use for our
      Haskell Bloom filter is a direct translation of the simple description
      we gave earlier—a bit array and a function that computes hashes:
-- file: BloomFilter/Internal.hs
module BloomFilter.Internal
    (
      Bloom(..)
    , MutBloom(..)
    ) where

import Data.Array.ST (STUArray)
import Data.Array.Unboxed (UArray)
import Data.Word (Word32)

data Bloom a = B {
      blmHash  :: (a -> [Word32])
    , blmArray :: UArray Word32 Bool
    }
When we create our Cabal package, we will
      not be exporting this BloomFilter.Internal module. It exists purely to let us
      control the visibility of names. We will import
      BloomFilter.Internal into both the mutable and immutable
      modules, but we will re-export from each module only the type that is
      relevant to that module’s API.
Unboxing, Lifting, and Bottom



Unlike other Haskell arrays, a UArray contains unboxed values.
For a normal Haskell type, a value can
        be either fully evaluated, an unevaluated thunk, or the special value
        ⊥, pronounced (and sometimes written) bottom. The
        value ⊥ is a placeholder for a computation that does not succeed. Such
        a computation could take any of several forms. It could be an infinite
        loop, an application of error, or
        the special value undefined.
A type that can contain ⊥ is referred
        to as lifted. All normal Haskell types are
        lifted. In practice, this means that we can always write error
        "eek!" or undefined in place of a normal
        expression.
This ability to store thunks or ⊥ comes
        with a performance cost: it adds an extra layer of indirection. To see
        why we need this indirection, consider the Word32 type. A
        value of this type is a full 32 bits wide, so on a 32-bit system,
        there is no way to directly encode the value ⊥ within 32 bits. The
        runtime system has to maintain, and check, some extra data to track
        whether the value is ⊥ or not.
An unboxed value does away with this
        indirection. In doing so, it gains performance but sacrifices the
        ability to represent a thunk or ⊥. Since it can be denser than a
        normal Haskell array, an array of unboxed values is an excellent
        choice for numeric data and bits.
GHC implements a UArray of
        Bool values by packing eight array elements into each
        byte, so this type is perfect for our needs.
Boxing and lifting
The counterpart of an unboxed type is
          a boxed type, which uses indirection. All lifted types are
          boxed, but a few low-level boxed types are not lifted. For instance,
          GHC’s runtime system has
          a low-level array type for which it uses boxing (i.e., it maintains
          a pointer to the array). If it has a reference to such an array, it
          knows that the array must exist, so it does not need to account for
          the possibility of ⊥. This array type is thus boxed, but not lifted.
          Boxed but unlifted types show up only at the lowest level of runtime
          hacking. We will never encounter them in normal use.



The ST Monad



Back in Modifying Array Elements, we mentioned that modifying an
      immutable array is prohibitively expensive, as it requires copying the
      entire array. Using a UArray does not change this, so what
      can we do to reduce the cost to bearable levels?
In an imperative language, we would
      simply modify the elements of the array in place—this will be our
      approach in Haskell, too.
Haskell provides a special
      monad, named ST,[60] which lets us work safely with mutable state. Compared to
      the State monad, it has some powerful added
      capabilities:
	We can thaw an
          immutable array to give a mutable array; modify the mutable array in
          place; and freeze a new immutable array when we
          are done.

	We have the ability to use
          mutable references. This lets us implement data structures that we can modify
          after construction, as in an imperative language. This ability is
          vital for some imperative data structures and algorithms, for which
          similarly efficient, purely functional alternatives have not yet
          been discovered.



The IO monad also provides
      these capabilities. The major difference between the two is that the
      ST monad is intentionally designed so that we can
      escape from it back into pure Haskell code. We
      enter the ST monad via the execution function runST (in
      the same way as most other Haskell monads do—except IO, of
      course), and we escape by returning from runST.
When we apply a monad’s execution
      function, we expect it to behave repeatably: given the same body and
      arguments, we must get the same results every time. This also applies to
      runST. To achieve this
      repeatability, the ST monad is more restrictive than the
      IO monad. We cannot read or write files, create global
      variables, or fork threads. Indeed, although we can create and work with
      mutable references and arrays, the type system prevents them from
      escaping to the caller of runST. A
      mutable array must be frozen into an immutable array before we can
      return it, and a mutable reference cannot escape at all.

Designing an API for Qualified Import



The public interfaces that we provide for
      working with Bloom filters are worth a little discussion:
-- file: BloomFilter/Mutable.hs
module BloomFilter.Mutable
    (
      MutBloom
    , elem
    , notElem
    , insert
    , length
    , new
    ) where

import Control.Monad (liftM)
import Control.Monad.ST (ST)
import Data.Array.MArray (getBounds, newArray, readArray, writeArray)
import Data.Word (Word32)
import Prelude hiding (elem, length, notElem)

import BloomFilter.Internal (MutBloom(..))
We export several names that clash with
      names the Prelude exports. This is
      deliberate: we expect users of our modules to import them with qualified
      names. This reduces the burden on the memory of our users, as they
      should already be familiar with the Prelude’s elem, notElem, and length functions.
When we use a module written in this
      style, we might often import it with a single-letter prefix—for
      instance, as import qualified BloomFilter.Mutable as M.
      This would allow us to write M.length, which stays compact and
      readable.
Alternatively, we could import the module
      unqualified and import the Prelude
      while hiding the clashing names with import Prelude hiding
      (length). This is much less useful, as it gives a reader skimming
      the code no local cue that she is not actually
      seeing the Prelude’s length.
Of course, we seem to be violating this
      precept in our own module’s header: we import the Prelude and hide some of the names it exports.
      There is a practical reason for this. We define a function named
      length. If we export this from our
      module without first hiding the Prelude’s length, the compiler will complain that it
      cannot tell whether to export our version of length or the Prelude’s.
While we could export the fully qualified
      name BloomFilter.Mutable.length to
      eliminate the ambiguity, that seems uglier in this case. This decision
      has no consequences for someone using our module, just for ourselves as
      the authors of what ought to be a “black box,” so there is little chance
      of confusion here.

Creating a Mutable Bloom Filter



We put type declaration for our mutable
      Bloom filter in the BloomFilter.Internal module, along with
      the immutable Bloom type:
-- file: BloomFilter/Internal.hs
data MutBloom s a = MB {
      mutHash :: (a -> [Word32])
    , mutArray :: STUArray s Word32 Bool
    }
The STUArray type gives us a
      mutable unboxed array that we can work with in the ST monad. To
      create an STUArray, we use the newArray function. The new function belongs in the
      BloomFilter.Mutable function:
-- file: BloomFilter/Mutable.hs
new :: (a -> [Word32]) -> Word32 -> ST s (MutBloom s a)
new hash numBits = MB hash `liftM` newArray (0,numBits-1) False
Most of the methods of
      STUArray are actually implementations of the
      MArray typeclass, which is defined in the
      Data.Array.MArray module.
Our length function is slightly complicated by
      two factors. We are relying on our bit array’s record of its own bounds,
      and an MArray instance’s getBounds function has a monadic type. We
      also have to add one to the answer, as the upper bound of the array is
      one less than its actual length:
-- file: BloomFilter/Mutable.hs
length :: MutBloom s a -> ST s Word32
length filt = (succ . snd) `liftM` getBounds (mutArray filt)
To add an element to the Bloom filter, we
      set all of the bits indicated by the hash function. We use the mod function to ensure that all of the hashes
      stay within the bounds of our array, and isolate our code that computes
      offsets into the bit array in one function:
-- file: BloomFilter/Mutable.hs
insert :: MutBloom s a -> a -> ST s ()
insert filt elt = indices filt elt >>=
                  mapM_ (\bit -> writeArray (mutArray filt) bit True)

indices :: MutBloom s a -> a -> ST s [Word32]
indices filt elt = do
  modulus <- length filt
  return $ map (`mod` modulus) (mutHash filt elt)
Testing for membership is no more
      difficult. If every bit indicated by the hash function is set, we
      consider an element to be present in the Bloom filter:
-- file: BloomFilter/Mutable.hs
elem, notElem :: a -> MutBloom s a -> ST s Bool

elem elt filt = indices filt elt >>=
                allM (readArray (mutArray filt))

notElem elt filt = not `liftM` elem elt filt
We need to write a small supporting
      function—a monadic version of all,
      which we will call allM:
-- file: BloomFilter/Mutable.hs
allM :: Monad m => (a -> m Bool) -> [a] -> m Bool
allM p (x:xs) = do
  ok <- p x
  if ok
    then allM p xs
    else return False
allM _ [] = return True

The Immutable API



Our interface to the immutable Bloom
      filter has the same structure as the mutable API:
-- file: ch26/BloomFilter.hs
module BloomFilter
    (
      Bloom
    , length
    , elem
    , notElem
    , fromList
    ) where

import BloomFilter.Internal
import BloomFilter.Mutable (insert, new)
import Data.Array.ST (runSTUArray)
import Data.Array.IArray ((!), bounds)
import Data.Word (Word32)
import Prelude hiding (elem, length, notElem)

length :: Bloom a -> Int
length = fromIntegral . len

len :: Bloom a -> Word32
len = succ . snd . bounds . blmArray

elem :: a -> Bloom a -> Bool
elt `elem` filt   = all test (blmHash filt elt)
  where test hash = blmArray filt ! (hash `mod` len filt)

notElem :: a -> Bloom a -> Bool
elt `notElem` filt = not (elt `elem` filt)
We provide an easy-to-use means to create
      an immutable Bloom filter, via a fromList function. This hides the
      ST monad from our users so that they see only the immutable
      type:
-- file: ch26/BloomFilter.hs
fromList :: (a -> [Word32])    -- family of hash functions to use
         -> Word32             -- number of bits in filter
         -> [a]                -- values to populate with
         -> Bloom a
fromList hash numBits values =
    B hash . runSTUArray $
      do mb <- new hash numBits
         mapM_ (insert mb) values
         return (mutArray mb)
The key to this function is runSTUArray. We mentioned earlier that in
      order to return an immutable array from the ST monad, we
      must freeze a mutable array. The runSTUArray function combines execution with
      freezing. Given an action that returns an STUArray, it
      executes the action using runST;
      freezes the STUArray that it returns; and returns that as a
      UArray.
The MArray typeclass
      provides a freeze function that we
      could use instead, but runSTUArray
      is both more convenient and more efficient. The efficiency lies in the
      fact that freeze must copy the
      underlying data from the STUArray to the new
      UArray, in order to ensure that subsequent modifications of
      the STUArray cannot affect the contents of the
      UArray. Thanks to the type system, runSTUArray can guarantee that an
      STUArray is no longer accessible when it uses it to create
      a UArray. It can thus share the underlying contents between
      the two arrays, avoiding the copy.

Creating a Friendly Interface



Although our immutable Bloom filter API
      is straightforward to use once we have created a Bloom
      value, the fromList function leaves
      some important decisions unresolved. We still have to choose a function
      that can generate many hash values and determine what the capacity of a
      Bloom filter should be:
-- file: BloomFilter/Easy.hs
easyList :: (Hashable a)
         => Double        -- false positive rate (between 0 and 1)
         -> [a]           -- values to populate the filter with
         -> Either String (B.Bloom a)
Here is a possible
      “friendlier” way to create a Bloom filter. It leaves
      responsibility for hashing values in the hands of a typeclass,
      Hashable. It lets us configure the Bloom filter based on a
      parameter that is easier to understand—namely the rate of false
      positives that we are willing to tolerate. And it chooses the size of
      the filter for us, based on the desired false positive rate and the
      number of elements in the input list.
This function will, of course, not always
      be usable—for example, it will fail if the length of the input list is
      too long. However, its simplicity rounds out the other interfaces we
      provide. It lets us offer our users a range of control over creation,
      from entirely imperative to completely declarative.
Re-Exporting Names for Convenience



In the export list for our module, we
        re-export some names from the base BloomFilter module. This allows casual
        users to import only the BloomFilter.Easy module and have access to
        all of the types and functions they are likely to need.
If we import both
        BloomFilter.Easy and BloomFilter, you might
        wonder what will happen if we try to use a name exported by both. We
        already know that if we import BloomFilter unqualified
        and try to use length,
        GHC will issue an error
        about ambiguity, because the Prelude also makes the name length available.
The Haskell standard requires an
        implementation to be able to tell when several names refer to the same
        “thing.” For instance, the Bloom type is exported by
        BloomFilter and BloomFilter.Easy. If we
        import both modules and try to use Bloom, GHC will be able to see that the
        Bloom re-exported from BloomFilter.Easy is
        the same as the one exported from BloomFilter, and it
        will not report an ambiguity.

Hashing Values



A Bloom filter depends on fast, high-quality hashes for good performance and a
        low false positive rate. It is surprisingly difficult to write a
        general purpose hash function that has both of these
        properties.
Luckily for us, a fellow named Bob
        Jenkins developed some hash functions that have exactly
        these properties, and he placed the code in the public domain at
        http://burtleburtle.net/bob/hash/doobs.html.[61] He wrote his hash functions in C, so we can easily use
        the FFI to create bindings to them. The specific source file that we
        need from that site is named lookup3.c. We create a cbits directory and download it to
        there.
A little editing
On line 36 of the copy of lookup3.c that you just downloaded, there
          is a macro named SELF_TEST defined. To use this source
          file as a library, you must delete this line or
          comment it out. If you forget to do so, the main function defined near the bottom of
          the file will supersede the main of any Haskell program you link this
          library against.

There remains one hitch: we will
        frequently need 7 or even 10 hash functions. We really don’t want to
        scrape together that many different functions, and fortunately we do
        not need to. In most cases, we can get away with just two. We will see
        how shortly. The Jenkins hash library includes two functions,
        hashword2 and hashlittle2, that compute two hash values.
        Here is a C header file that describes the APIs of these two
        functions. We save this to cbits/lookup3.h:
/* save this file as lookup3.h */

#ifndef _lookup3_h
#define _lookup3_h

#include <stdint.h>
#include <sys/types.h>

/* only accepts uint32_t aligned arrays of uint32_t */
void hashword2(const uint32_t *key,  /* array of uint32_t */
	       size_t length,	     /* number of uint32_t values */
	       uint32_t *pc,	     /* in: seed1, out: hash1 */
	       uint32_t *pb);	     /* in: seed2, out: hash2 */

/* handles arbitrarily aligned arrays of bytes */
void hashlittle2(const void *key,   /* array of bytes */
		 size_t length,     /* number of bytes */
		 uint32_t *pc,      /* in: seed1, out: hash1 */
		 uint32_t *pb);     /* in: seed2, out: hash2 */

#endif /* _lookup3_h */
A salt is a value
        that perturbs the hash value that the function computes. If we hash
        the same value with two different salts, we will get two different
        hashes. Since these functions compute two hashes, they accept two
        salts.
Here are our Haskell bindings to these
        functions:
-- file: BloomFilter/Hash.hs
{-# LANGUAGE BangPatterns, ForeignFunctionInterface #-}
module BloomFilter.Hash
    (
      Hashable(..)
    , hash
    , doubleHash
    ) where

import Data.Bits ((.&.), shiftR)
import Foreign.Marshal.Array (withArrayLen)
import Control.Monad (foldM)
import Data.Word (Word32, Word64)
import Foreign.C.Types (CSize)
import Foreign.Marshal.Utils (with)
import Foreign.Ptr (Ptr, castPtr, plusPtr)
import Foreign.Storable (Storable, peek, sizeOf)
import qualified Data.ByteString as Strict
import qualified Data.ByteString.Lazy as Lazy
import System.IO.Unsafe (unsafePerformIO)

foreign import ccall unsafe "lookup3.h hashword2" hashWord2
    :: Ptr Word32 -> CSize -> Ptr Word32 -> Ptr Word32 -> IO ()

foreign import ccall unsafe "lookup3.h hashlittle2" hashLittle2
    :: Ptr a -> CSize -> Ptr Word32 -> Ptr Word32 -> IO ()
We have specified that the definitions
        of the functions can be found in the lookup3.h header file that we just
        created.
For convenience and efficiency, we will
        combine the 32-bit salts consumed, and the hash values computed, by
        the Jenkins hash functions into a single 64-bit value:
-- file: BloomFilter/Hash.hs
hashIO :: Ptr a    -- value to hash
       -> CSize    -- number of bytes
       -> Word64   -- salt
       -> IO Word64
hashIO ptr bytes salt =
    with (fromIntegral salt) $ \sp -> do
      let p1 = castPtr sp
          p2 = castPtr sp `plusPtr` 4
      go p1 p2
      peek sp
  where go p1 p2
          | bytes .&. 3 == 0 = hashWord2 (castPtr ptr) words p1 p2
          | otherwise        = hashLittle2 ptr bytes p1 p2
        words = bytes `div` 4
Without explicit types around to
        describe what is happening, this code is not completely obvious. The
        with function allocates room for
        the salt on the C stack and stores the current salt value in there, so
        sp is a Ptr Word64. The pointers
        p1 and p2 are Ptr
        Word32; p1 points at the low word of
        sp, and p2 at the high word.
        This is how we chop the single Word64 salt into two
        Ptr Word32 parameters.
Because all of our data pointers are
        coming from the Haskell heap, we know that they will be aligned on an
        address that is safe to pass to either hashWord2 (which accepts only
        32-bit-aligned addresses) or hashLittle2. Since hashWord2 is the faster of the two hashing
        functions, we call it if our data is a multiple of 4 bytes in size;
        otherwise, we call hashLittle2.
Since the C hash function will write
        the computed hashes into p1 and
        p2, we need only to peek the pointer sp to
        retrieve the computed hash.
We don’t want clients of this module to
        be stuck fiddling with low-level details, so we use a typeclass to
        provide a clean, high-level interface:
-- file: BloomFilter/Hash.hs
class Hashable a where
    hashSalt :: Word64        -- ^ salt
             -> a             -- ^ value to hash
             -> Word64

hash :: Hashable a => a -> Word64
hash = hashSalt 0x106fc397cf62f64d3
We also provide a number of useful
        implementations of this typeclass. To hash basic types, we must write
        a little boilerplate code:
-- file: BloomFilter/Hash.hs
hashStorable :: Storable a => Word64 -> a -> Word64
hashStorable salt k = unsafePerformIO . with k $ \ptr ->
                      hashIO ptr (fromIntegral (sizeOf k)) salt

instance Hashable Char   where hashSalt = hashStorable
instance Hashable Int    where hashSalt = hashStorable
instance Hashable Double where hashSalt = hashStorable
We might prefer to use the
        Storable typeclass to write just one declaration, as
        follows:
-- file: BloomFilter/Hash.hs
instance Storable a => Hashable a where
    hashSalt = hashStorable
Unfortunately, Haskell does not permit
        us to write instances of this form, as allowing them would make the
        type system undecidable: they can cause the
        compiler’s type checker to loop infinitely. This restriction on
        undecidable types forces us to write out individual declarations. It
        does not, however, pose a problem for a definition such as this
        one:
-- file: BloomFilter/Hash.hs
hashList :: (Storable a) => Word64 -> [a] -> IO Word64
hashList salt xs =
    withArrayLen xs $ \len ptr ->
      hashIO ptr (fromIntegral (len * sizeOf x)) salt
  where x = head xs

instance (Storable a) => Hashable [a] where
    hashSalt salt xs = unsafePerformIO $ hashList salt xs
The compiler will accept this instance,
        so we gain the ability to hash values of many list types.[62] Most importantly, since Char is an instance
        of Storable, we can now hash String
        values.
For tuple types, we take advantage of
        function composition. We take a salt in at one end of the composition
        pipeline and use the result of hashing each tuple element as the salt
        for the next element:
-- file: BloomFilter/Hash.hs
hash2 :: (Hashable a) => a -> Word64 -> Word64
hash2 k salt = hashSalt salt k

instance (Hashable a, Hashable b) => Hashable (a,b) where
    hashSalt salt (a,b) = hash2 b . hash2 a $ salt

instance (Hashable a, Hashable b, Hashable c) => Hashable (a,b,c) where
    hashSalt salt (a,b,c) = hash2 c . hash2 b . hash2 a $ salt
To hash ByteString types,
        we write special instances that plug straight into the internals of
        the ByteString types (this gives us excellent hashing
        performance):
-- file: BloomFilter/Hash.hs
hashByteString :: Word64 -> Strict.ByteString -> IO Word64
hashByteString salt bs = Strict.useAsCStringLen bs $ \(ptr, len) ->
                         hashIO ptr (fromIntegral len) salt

instance Hashable Strict.ByteString where
    hashSalt salt bs = unsafePerformIO $ hashByteString salt bs

rechunk :: Lazy.ByteString -> [Strict.ByteString]
rechunk s
    | Lazy.null s = []
    | otherwise   = let (pre,suf) = Lazy.splitAt chunkSize s
                    in  repack pre : rechunk suf
    where repack    = Strict.concat . Lazy.toChunks
          chunkSize = 64 * 1024

instance Hashable Lazy.ByteString where
    hashSalt salt bs = unsafePerformIO $
                       foldM hashByteString salt (rechunk bs)
Since a lazy ByteString is
        represented as a series of chunks, we must be careful with the
        boundaries between those chunks. The string "foobar" can
        be represented in five different ways—for example,
        ["fo","obar"] or ["foob","ar"]. This is
        invisible to most users of the type, but not to us, as we use the
        underlying chunks directly. Our rechunk function ensures that the chunks we
        pass to the C hashing code are a uniform 64 KB in size so that we will
        give consistent hash values no matter where the original chunk
        boundaries lie.

Turning Two Hashes into Many



As we mentioned earlier, we need many more than two hashes to make effective use
        of a Bloom filter. We can use a technique called double
        hashing to combine the two values computed by the Jenkins hash functions, yielding many more hashes. The
        resulting hashes are of good enough quality for our needs and far
        cheaper than computing many distinct hashes:
-- file: BloomFilter/Hash.hs
doubleHash :: Hashable a => Int -> a -> [Word32]
doubleHash numHashes value = [h1 + h2 * i | i <- [0..num]]
    where h   = hashSalt 0x9150a946c4a8966e value
          h1  = fromIntegral (h `shiftR` 32) .&. maxBound
          h2  = fromIntegral h
          num = fromIntegral numHashes

Implementing the Easy Creation Function



In the BloomFilter.Easy
        module, we use our new doubleHash
        function to define the easyList
        function whose type we defined earlier:
-- file: BloomFilter/Easy.hs
module BloomFilter.Easy
    (
      suggestSizing
    , sizings
    , easyList

    -- re-export useful names from BloomFilter
    , B.Bloom
    , B.length
    , B.elem
    , B.notElem
    ) where

import BloomFilter.Hash (Hashable, doubleHash)
import Data.List (genericLength)
import Data.Maybe (catMaybes)
import Data.Word (Word32)
import qualified BloomFilter as B

easyList errRate values =
    case suggestSizing (genericLength values) errRate of
      Left err            -> Left err
      Right (bits,hashes) -> Right filt
        where filt = B.fromList (doubleHash hashes) bits values
This depends on a suggestSizing function that estimates the
        best combination of filter size and number of hashes to compute, based
        on our desired false positive rate and the maximum number of elements
        that we expect the filter to contain:
-- file: BloomFilter/Easy.hs
suggestSizing
    :: Integer       -- expected maximum capacity
    -> Double        -- desired false positive rate
    -> Either String (Word32,Int) -- (filter size, number of hashes)
suggestSizing capacity errRate
    | capacity <= 0                = Left "capacity too small"
    | errRate <= 0 || errRate >= 1 = Left "invalid error rate"
    | null saneSizes               = Left "capacity too large"
    | otherwise                    = Right (minimum saneSizes)
  where saneSizes = catMaybes . map sanitize $ sizings capacity errRate
        sanitize (bits,hashes)
          | bits > maxWord32 - 1 = Nothing
          | otherwise            = Just (ceiling bits, truncate hashes)
          where maxWord32 = fromIntegral (maxBound :: Word32)

sizings :: Integer -> Double -> [(Double, Double)]
sizings capacity errRate =
    [(((-k) * cap / log (1 - (errRate ** (1 / k)))), k) | k <- [1..50]]
  where cap = fromIntegral capacity
We perform some rather paranoid
        checking. For instance, the sizings function suggests pairs of array
        size and hash count, but it does not validate its suggestions. Since
        we use 32-bit hashes, we must filter out suggested array sizes that
        are too large.
In our suggestSizing function, we attempt to
        minimize only the size of the bit array, without regard for the number
        of hashes. To see why, let us interactively explore the relationship
        between array size and number of hashes.
Suppose we want to insert 10 million
        elements into a Bloom filter, with a false positive rate of
        0.1%:
ghci> let kbytes (bits,hashes) = (ceiling bits `div` 8192, hashes)
ghci> :m +BloomFilter.Easy Data.List
ghci> mapM_ (print . kbytes) . take 10 . sort $ sizings 10000000 0.001
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package rwh-bloomfilter-0.1 ... linking ... done.
(17550,10.0)
(17601,11.0)
(17608,9.0)
(17727,12.0)
(17831,8.0)
(17905,13.0)
(18122,14.0)
(18320,7.0)
(18368,15.0)
(18635,16.0)
We achieve the most compact table (just
        over 17 KB) by computing 10 hashes. If we really were hashing the data
        repeatedly, we could reduce the number of hashes to 7 at a cost of 5%
        in space. Since we are using Jenkins’s hash functions—which compute
        two hashes in a single pass—and double hashing the results to produce
        additional hashes, the cost of computing those extra hashes is tiny,
        so we will choose the smallest table size.
If we increase our tolerance for false
        positives tenfold, to 1%, the amount of space and the number of hashes
        we need go down, though not by easily predictable amounts:
ghci> mapM_ (print . kbytes) . take 10 . sort $ sizings 10000000 0.01
(11710,7.0)
(11739,6.0)
(11818,8.0)
(12006,9.0)
(12022,5.0)
(12245,10.0)
(12517,11.0)
(12810,12.0)
(12845,4.0)
(13118,13.0)



Creating a Cabal Package



We have created a moderately complicated
      library, with four public modules and one internal module. To turn this
      into a package that we can easily redistribute, we create a rwh-bloomfilter.cabal file.
Cabal allows us to describe several
      libraries in a single package. A .cabal file begins with information that is
      common to all of the libraries, which is followed by a distinct section
      for each library:
Name:               rwh-bloomfilter
Version:            0.1
License:            BSD3
License-File:       License.txt
Category:           Data
Stability:          experimental
Build-Type:         Simple
As we are bundling some C code with our
      library, we tell Cabal about our C source files:
Extra-Source-Files: cbits/lookup3.c cbits/lookup3.h
The extra-source-files
      directive has no effect on a build: it directs Cabal to bundle some
      extra files if we run runhaskell Setup
      sdist to create a source tarball for redistribution.
Property names are case-insensitive
When reading a property (the text
        before a “:”
        character), Cabal ignores case, so it treats
        extra-source-files and Extra-Source-Files
        the same.

Dealing with Different Build Setups



Prior to 2007, the standard Haskell libraries were
        organized in a handful of large packages, of which the biggest was
        named base. This organization tied many unrelated
        libraries together, so the Haskell community split the
        base package up into a number of more modular libraries.
        For instance, the array types migrated from base into a
        package named array.
A Cabal package needs to specify the other packages
        that it needs to have present in order to build. This makes it
        possible for Cabal’s command-line interface to automatically download
        and build a package’s dependencies, if necessary. We would like our
        code to work with as many versions of GHC as possible, regardless of whether
        they have the modern layout of base and numerous other
        packages. We thus need to be able to specify that we depend on the
        array package if it is present, and base
        alone otherwise.
Cabal provides a generic configurations
        feature, which we can use to selectively enable parts of a .cabal file. A build configuration is
        controlled by a Boolean-valued flag. If it is
        True, the text following an if flag
        directive is used; otherwise, the text following the associated
        else is used:
Cabal-Version:      >= 1.2

Flag split-base
  Description: Has the base package been split up?
  Default: True

Flag bytestring-in-base
  Description: Is ByteString in the base or bytestring package?
  Default: False
	The configurations feature was
            introduced in version 1.2 of Cabal, so we specify that our package
            cannot be built with an older version.

	The meaning of the
            split-base flag should be self-explanatory.

	The bytestring-in-base
            flag deals with a more torturous history. When the
            bytestring package was first created, it was bundled
            with GHC 6.4 and kept
            separate from the base package. In GHC 6.6, it was incorporated into
            the base package, but it became independent again
            when the base package was split before the release of
            GHC 6.8.1.



These flags are usually invisible to
        people building a package, because Cabal handles them automatically.
        Before we explain what happens, it will help to see the beginning of
        the Library section of our .cabal file:
Library
  if flag(bytestring-in-base)
    -- bytestring was in base-2.0 and 2.1.1
    Build-Depends: base >= 2.0 && < 2.2
  else
    -- in base 1.0 and 3.0, bytestring is a separate package
    Build-Depends: base < 2.0 || >= 3, bytestring >= 0.9

  if flag(split-base)
    Build-Depends: base >= 3.0, array
  else
    Build-Depends: base < 3.0
Cabal creates a package description
        with the default values of the flags (a missing default is assumed to
        be True). If that configuration can be built (e.g.,
        because all of the needed package versions are available), it will be
        used. Otherwise, Cabal tries different combinations of flags until it
        either finds a configuration that it can build or exhausts the
        alternatives.
For example, if we were to begin with
        both split-base and bytestring-in-base set
        to True, Cabal would select the following package
        dependencies:
Build-Depends: base >= 2.0 && < 2.2
Build-Depends: base >= 3.0, array
The base package cannot
        simultaneously be newer than 3.0 and older than
        2.2, so Cabal would reject this configuration as
        inconsistent. For a modern version of GHC, after a few attempts, it would
        discover this configuration that will indeed build:
-- in base 1.0 and 3.0, bytestring is a separate package
Build-Depends: base < 2.0 || >= 3, bytestring >= 0.9
Build-Depends: base >= 3.0, array
When we run runhaskell Setup configure, we can manually
        specify the values of flags via the --flag option,
        though we will rarely need to do so in practice.

Compilation Options and Interfacing to C



Continuing with our .cabal
        file, we fill out the remaining details of the Haskell side of our
        library. If we enable profiling when we build, we want all of our
        top-level functions to show up in any profiling output:
  GHC-Prof-Options: -auto-all
The Other-Modules property
        lists Haskell modules that are private to the library.
        Such modules will be invisible to code that uses this package.
When we build this package with
        GHC, Cabal will pass the
        options from the GHC-Options property to the
        compiler.
The -O2 option makes
        GHC optimize our code aggressively. Code compiled without
        optimization is very slow, so we should always use
        -O2 for production code.
To help ourselves write cleaner code,
        we usually add the -Wall option, which enables all of GHC’s warnings. This will cause
        GHC to issue complaints if
        it encounters potential problems, such as overlapping patterns;
        function parameters that are not used; and a myriad of other potential
        stumbling blocks. While it is often safe to ignore these warnings, we
        generally prefer to fix up our code to eliminate them. The small added
        effort usually yields code that is easier to read and maintain.
When we compile with
        -fvia-C, GHC will generate C code and use the system’s C compiler to
        compile it, instead of going straight to assembly language as it
        usually does. This slows compilation down, but sometimes the C
        compiler can further improve GHC’s optimized code, so it can be
        worthwhile.
We include -fvia-C here mainly to show how to compile
        using this option:
  C-Sources:        cbits/lookup3.c
  CC-Options:       -O3
  Include-Dirs:     cbits
  Includes:         lookup3.h
  Install-Includes: lookup3.h
For the C-Sources
        property, we need only to list files that must be compiled into our
        library. The CC-Options property contains options for the
        C compiler (-O3 specifies a high level of
        optimization). Because our FFI bindings for the Jenkins hash functions
        refer to the lookup3.h header
        file, we need to tell Cabal where to find the header file. We must
        also tell it to install the header file
        (Install-Includes); otherwise, client code will fail to
        find the header file when we try to build it.
The value of -fvia-C with the FFI
Compiling with
          -fvia-C has a useful safety benefit when we
          write FFI bindings. If we mention a header file in an FFI
          declaration (e.g., foreign import "string.h memcpy"),
          the C compiler will typecheck the generated Haskell code and ensure
          that its invocation of the C function is consistent with the C
          function’s prototype in the header file.
If we do not use
          -fvia-C, we lose that additional layer of safety,
          making it easy to let simple C type errors slip into our Haskell
          code. As an example, on most 64-bit machines, a CInt is
          32 bits wide, and a CSize is 64 bits wide. If we
          accidentally use one type to describe a parameter for an FFI binding
          when we should use the other, we are likely to cause data corruption
          or a crash.



Testing with QuickCheck



Before we pay any attention to performance, we want to establish
      that our Bloom filter behaves correctly. We can easily use QuickCheck to
      test some basic properties:
-- file: examples/BloomCheck.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Main where

import BloomFilter.Hash (Hashable)
import Data.Word (Word8, Word32)
import System.Random (Random(..), RandomGen)
import Test.QuickCheck
import qualified BloomFilter.Easy as B
import qualified Data.ByteString as Strict
import qualified Data.ByteString.Lazy as Lazy
We will not use the normal quickCheck function to test our properties, as the 100 test inputs that it
      generates do not provide much coverage:
-- file: examples/BloomCheck.hs
handyCheck :: Testable a => Int -> a -> IO ()
handyCheck limit = check defaultConfig {
                     configMaxTest = limit
                   , configEvery   = \_ _ -> ""
                   }
Our first task is to ensure that if we
      add a value to a Bloom filter, a subsequent membership test will always report it as
      present, regardless of the chosen false positive rate or input
      value.
We will use the easyList function to create a Bloom filter. The Random
      instance for Double generates numbers in the range zero to
      one, so QuickCheck can nearly supply us with
      arbitrary false positive rates.
However, we need to ensure that both zero
      and one are excluded from the false positives we test with. QuickCheck
      gives us two ways to do this:
	Construction
	We specify the range of valid values to generate. QuickCheck
            provides a forAll combinator
            for this purpose.

	Elimination
	When QuickCheck generates an arbitrary value for us, we
            filter out those that do not fit our criteria, using the (==>) operator. If we reject a value in this way, a test will
            appear to succeed.



If we can choose either method, it is
      always preferable to take the constructive approach. To see why, suppose
      that QuickCheck generates 1,000 arbitrary values for us, and we filter
      out 800 as unsuitable for some reason. We will
      appear to run 1,000 tests, but only 200 will
      actually do anything useful.
Following this idea, when we generate
      desired false positive rates, we could eliminate zeroes and ones from
      whatever QuickCheck gives us, but instead we construct values in an
      interval that will always be valid:
-- file: examples/BloomCheck.hs
falsePositive :: Gen Double
falsePositive = choose (epsilon, 1 - epsilon)
    where epsilon = 1e-6

(=~>) :: Either a b -> (b -> Bool) -> Bool
k =~> f = either (const True) f k

prop_one_present _ elt =
    forAll falsePositive $ \errRate ->
      B.easyList errRate [elt] =~> \filt ->
        elt `B.elem` filt
Our small combinator, (=~>), lets us filter out failures of
      easyList. If it fails, the test
      automatically passes.
Polymorphic Testing



QuickCheck requires properties to
        be monomorphic. Since we have many
        different hashable types that we would like to test, we want to avoid
        having to write the same test in many different ways.
Notice that although our prop_one_present function is polymorphic, it ignores its first argument. We use
        this to simulate monomorphic properties, as follows:
ghci> :load BloomCheck
[1 of 1] Compiling Main             ( BloomCheck.hs, interpreted )
Ok, modules loaded: Main.
ghci> :t prop_one_present
prop_one_present :: (Hashable a) => t -> a -> Property
ghci> :t prop_one_present (undefined :: Int)   
prop_one_present (undefined :: Int) :: (Hashable a) => a -> Property
We can supply any value as the first
        argument to prop_one_present—all
        that matters is its type, as the same type will
        be used for the first element of the second argument:
ghci> handyCheck 5000 $ prop_one_present (undefined :: Int)
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package QuickCheck-1.1.0.0 ... linking ... done.
Loading package rwh-bloomfilter-0.1 ... linking ... done.
OK, passed 5000 tests.
ghci> handyCheck 5000 $ prop_one_present (undefined :: Double)
OK, passed 5000 tests.
If we populate a Bloom filter with many
        elements, they should all be present afterwards:
-- file: examples/BloomCheck.hs
prop_all_present _ xs =
    forAll falsePositive $ \errRate ->
      B.easyList errRate xs =~> \filt ->
        all (`B.elem` filt) xs
This test also succeeds:
ghci> handyCheck 2000 $ prop_all_present (undefined :: Int)
OK, passed 2000 tests.


Writing Arbitrary Instances for ByteStrings



The QuickCheck library does not provide
        Arbitrary instances for ByteString types, so
        we must write our own. Rather than create a ByteString
        directly, we will use a pack
        function to create one from a [Word8]:
-- file: examples/BloomCheck.hs
instance Arbitrary Lazy.ByteString where
    arbitrary = Lazy.pack `fmap` arbitrary
    coarbitrary = coarbitrary . Lazy.unpack

instance Arbitrary Strict.ByteString where
    arbitrary = Strict.pack `fmap` arbitrary
    coarbitrary = coarbitrary . Strict.unpack
Also missing from QuickCheck are
        Arbitrary instances for the fixed-width types defined in
        Data.Word and Data.Int. We need to at least
        create an Arbitrary instance for
        Word8:
-- file: examples/BloomCheck.hs
instance Random Word8 where
  randomR = integralRandomR
  random = randomR (minBound, maxBound)

instance Arbitrary Word8 where
    arbitrary = choose (minBound, maxBound)
    coarbitrary = integralCoarbitrary
We support these instances with a few
        common functions so that we can reuse them when writing instances for
        other integral types:
-- file: examples/BloomCheck.hs
integralCoarbitrary n =
    variant $ if m >= 0 then 2*m else 2*(-m) + 1
  where m = fromIntegral n

integralRandomR (a,b) g = case randomR (c,d) g of
                            (x,h) -> (fromIntegral x, h)
    where (c,d) = (fromIntegral a :: Integer,
                   fromIntegral b :: Integer)

instance Random Word32 where
  randomR = integralRandomR
  random = randomR (minBound, maxBound)

instance Arbitrary Word32 where
    arbitrary = choose (minBound, maxBound)
    coarbitrary = integralCoarbitrary
With these Arbitrary
        instances created, we can try our existing properties on the
        ByteString types:
ghci> handyCheck 1000 $ prop_one_present (undefined :: Lazy.ByteString)
OK, passed 1000 tests.
ghci> handyCheck 1000 $ prop_all_present (undefined :: Strict.ByteString)
OK, passed 1000 tests.

Are Suggested Sizes Correct?



The cost of testing properties of
        easyList increases rapidly as we increase the number of
        tests to run. We would still like to have some assurance that
        easyList will behave well on huge
        inputs. Since it is not practical to test this directly, we can use a
        proxy: will suggestSizing give a
        sensible array size and number of hashes even with extreme
        inputs?
This is a slightly tricky property to
        check. We need to vary both the desired false positive rate and the
        expected capacity. When we looked at some results from the sizings function, we saw that the
        relationship between these values is not easy to predict.
We can try to ignore the
        complexity:
-- file: examples/BloomCheck.hs
prop_suggest_try1 =
  forAll falsePositive $ \errRate ->
    forAll (choose (1,maxBound :: Word32)) $ \cap ->
      case B.suggestSizing (fromIntegral cap) errRate of
        Left err -> False
        Right (bits,hashes) -> bits > 0 && bits < maxBound && hashes > 0
Not surprisingly, this gives us a test
        that is not actually useful:
ghci> handyCheck 1000 $ prop_suggest_try1
Falsifiable, after 1 tests:
0.2723862775515961
2484762599
ghci> handyCheck 1000 $ prop_suggest_try1
Falsifiable, after 3 tests:
2.390547635799778e-2
2315209155
When we plug the counterexamples that
        QuickCheck prints into suggestSizings, we can see that these
        inputs are rejected because they result in a bit array that would be
        too large:
ghci> B.suggestSizing 1678125842 8.501133057303545e-3
Left "capacity too large"

Since we can’t easily predict which
        combinations will cause this problem, we must resort to eliminating
        sizes and false positive rates before they bite us:
-- file: examples/BloomCheck.hs
prop_suggest_try2 =
    forAll falsePositive $ \errRate ->
      forAll (choose (1,fromIntegral maxWord32)) $ \cap ->
        let bestSize = fst . minimum $ B.sizings cap errRate
        in bestSize < fromIntegral maxWord32 ==>
           either (const False) sane $ B.suggestSizing cap errRate
  where sane (bits,hashes) = bits > 0 && bits < maxBound && hashes > 0
        maxWord32 = maxBound :: Word32
If we try this with a small number of
        tests, it seems to work well:
ghci> handyCheck 1000 $ prop_suggest_try2
OK, passed 1000 tests.

On a larger body of tests, we filter
        out too many combinations:
ghci> handyCheck 10000 $ prop_suggest_try2
Arguments exhausted after 2074 tests.

To deal with this, we try to reduce the
        likelihood of generating inputs that we will subsequently
        reject:
-- file: examples/BloomCheck.hs
prop_suggestions_sane =
    forAll falsePositive $ \errRate ->
      forAll (choose (1,fromIntegral maxWord32 `div` 8)) $ \cap ->
        let size = fst . minimum $ B.sizings cap errRate
        in size < fromIntegral maxWord32 ==>
           either (const False) sane $ B.suggestSizing cap errRate
  where sane (bits,hashes) = bits > 0 && bits < maxBound && hashes > 0
        maxWord32 = maxBound :: Word32
Finally, we have a robust looking
        property:
ghci> handyCheck 40000 $ prop_suggestions_sane
OK, passed 40000 tests.



Performance Analysis and Tuning



We now have a correctness base line: our
      QuickCheck tests pass. When we start tweaking performance, we can rerun
      the tests at any time to ensure that we haven’t inadvertently broken
      anything.
Our first step is to write a small test
      application that we can use for timing:
-- file: examples/WordTest.hs
module Main where

import Control.Parallel.Strategies (NFData(..))
import Control.Monad (forM_, mapM_)
import qualified BloomFilter.Easy as B
import qualified Data.ByteString.Char8 as BS
import Data.Time.Clock (diffUTCTime, getCurrentTime)
import System.Environment (getArgs)
import System.Exit (exitFailure)

timed :: (NFData a) => String -> IO a -> IO a
timed desc act = do
    start <- getCurrentTime
    ret <- act
    end <- rnf ret `seq` getCurrentTime
    putStrLn $ show (diffUTCTime end start) ++ " to " ++ desc
    return ret

instance NFData BS.ByteString where
    rnf _ = ()

instance NFData (B.Bloom a) where
    rnf filt = B.length filt `seq` ()
We borrow the rnf function that we introduced in Separating Algorithm from Evaluation to develop a simple timing harness.
      Our timed action ensures that a
      value is evaluated to normal form in order to accurately capture the
      cost of evaluating it.
The application creates a Bloom filter
      from the contents of a file, treating each line as an element to add to
      the filter:
-- file: examples/WordTest.hs
main = do
  args <- getArgs
  let files | null args = ["/usr/share/dict/words"]
            | otherwise = args
  forM_ files $ \file -> do

    words <- timed "read words" $
      BS.lines `fmap` BS.readFile file

    let len = length words
        errRate = 0.01

    putStrLn $ show len ++ " words"
    putStrLn $ "suggested sizings: " ++
               show (B.suggestSizing (fromIntegral len) errRate)

    filt <- timed "construct filter" $
      case B.easyList errRate words of
        Left errmsg -> do
          putStrLn $ "Error: " ++ errmsg
          exitFailure
        Right filt -> return filt

    timed "query every element" $
      mapM_ print $ filter (not . (`B.elem` filt)) words
We use timed to account for the costs of three
      distinct phases: reading and splitting the data into lines; populating
      the Bloom filter; and querying every element in it.
If we compile this and run it a few
      times, we can see that the execution time is just long enough to be
      interesting, while the timing variation from run to run is small. We
      have created a plausible-looking microbenchmark:
$ ghc -O2  --make WordTest
[1 of 1] Compiling Main             ( WordTest.hs, WordTest.o )
Linking WordTest ...
$ ./WordTest
0.196347s to read words
479829 words
1.063537s to construct filter
4602978 bits
0.766899s to query every element
$ ./WordTest
0.179284s to read words
479829 words
1.069363s to construct filter
4602978 bits
0.780079s to query every element
Profile-Driven Performance Tuning



To understand where our program might
        benefit from some tuning, we rebuild it and run it with profiling
        enabled.
Since we already built WordTest and have not subsequently changed
        it, if we rerun ghc to enable
        profiling support, it will quite reasonably decide to do nothing. We
        must force it to rebuild, which we accomplish by updating the
        filesystem’s idea of when we last edited the source file:
$ touch WordTest.hs
$ ghc -O2 -prof -auto-all --make WordTest
[1 of 1] Compiling Main             ( WordTest.hs, WordTest.o )
Linking WordTest ...

$ ./WordTest +RTS -p
0.322675s to read words
479829 words
suggested sizings: Right (4602978,7)
2.475339s to construct filter
1.964404s to query every element

$ head -20 WordTest.prof
total time  =          4.10 secs   (205 ticks @ 20 ms)
total alloc = 2,752,287,168 bytes  (excludes profiling overheads)

COST CENTRE                    MODULE               %time %alloc

doubleHash                     BloomFilter.Hash      48.8   66.4
indices                        BloomFilter.Mutable   13.7   15.8
elem                           BloomFilter            9.8    1.3
hashByteString                 BloomFilter.Hash       6.8    3.8
easyList                       BloomFilter.Easy       5.9    0.3
hashIO                         BloomFilter.Hash       4.4    5.3
main                           Main                   4.4    3.8
insert                         BloomFilter.Mutable    2.9    0.0
len                            BloomFilter            2.0    2.4
length                         BloomFilter.Mutable    1.5    1.0
Our doubleHash function immediately leaps out
        as a huge time and memory sink.
Always profile before—and while—you tune!
Before our first profiling run, we
          did not expect doubleHash to
          even appear in the top 10 of “hot” functions, much less
          dominate it. Without this knowledge, we would probably have started
          tuning something entirely irrelevant.

Recall that the body of doubleHash is an innocuous list
        comprehension:
-- file: BloomFilter/Hash.hs
doubleHash :: Hashable a => Int -> a -> [Word32]
doubleHash numHashes value = [h1 + h2 * i | i <- [0..num]]
    where h   = hashSalt 0x9150a946c4a8966e value
          h1  = fromIntegral (h `shiftR` 32) .&. maxBound
          h2  = fromIntegral h
          num = fromIntegral numHashes
Since the function returns a list, it makes
        some sense that it allocates so much memory, but
        when code this simple performs so badly, we should be
        suspicious.
Faced with a performance mystery, the suspicious mind
        will naturally want to inspect the output of the compiler. We don’t
        need to start scrabbling through assembly language dumps: it’s best to
        start at a higher level.
GHC’s
        -ddump-simpl option prints out the code that it produces after performing
        all of its high-level optimizations:
$ ghc -O2 -c -ddump-simpl --make BloomFilter/Hash.hs > dump.txt
[1 of 1] Compiling BloomFilter.Hash ( BloomFilter/Hash.hs )
The file thus produced is about 1,000
        lines long. Most of the names in it are mangled somewhat from their
        original Haskell representations. Even so, searching for doubleHash will immediately drop us at the
        definition of the function. For example, here is how we might start
        exactly at the right spot from a Unix shell:
$ less +/doubleHash dump.txt
It can be difficult to start reading
        the output of GHC’s
        simplifier. There are many automatically generated names, and the code
        has many obscure annotations. We can make substantial progress by
        ignoring things that we do not understand, focusing on those that look
        familiar. The Core language shares some features with regular Haskell,
        notably type signatures, let for
        variable binding, and case for
        pattern matching.
If we skim through the definition of doubleHash, we will arrive at a section
        that looks something like this:
__letrec { [image: 1]
  go_s1YC :: [GHC.Word.Word32] -> [GHC.Word.Word32] [image: 2]
  [Arity 1
   Str: DmdType S]
  go_s1YC =
    \ (ds_a1DR :: [GHC.Word.Word32]) ->
      case ds_a1DR of wild_a1DS {
	[] -> GHC.Base.[] @ GHC.Word.Word32; [image: 3]
	: y_a1DW ys_a1DX -> [image: 4]
	  GHC.Base.: @ GHC.Word.Word32 [image: 5]
	    (case h1_s1YA of wild1_a1Mk { GHC.Word.W32# x#_a1Mm -> [image: 6]
	     case h2_s1Yy of wild2_a1Mu { GHC.Word.W32# x#1_a1Mw ->
	     case y_a1DW of wild11_a1My { GHC.Word.W32# y#_a1MA ->
	     GHC.Word.W32# [image: 7]
	       (GHC.Prim.narrow32Word#
		  (GHC.Prim.plusWord# [image: 8]
		     x#_a1Mm (GHC.Prim.narrow32Word#
                              (GHC.Prim.timesWord# x#1_a1Mw y#_a1MA))))
	     }
	     }
	     })
	    (go_s1YC ys_a1DX) [image: 9]
      };
} in 
  go_s1YC [image: 10]
    (GHC.Word.$w$dmenumFromTo2
       __word 0 (GHC.Prim.narrow32Word# (GHC.Prim.int2Word# ww_s1X3)))
This is the body of the list comprehension. It may
        seem daunting, but we can look through it piece by piece and find that
        it is not, after all, so complicated:
	[image: 1] 
	A __letrec is equivalent to a normal
            Haskell let.

	[image: 2] 
	GHC
            compiled the body of our list comprehension into a loop named
            go_s1YC.

	[image: 3] 
	If our case
            expression matches the empty list, we return the empty list. This
            is reassuringly familiar.

	[image: 4] 
	This pattern would read in Haskell
            as (y_a1DW:ys_a1DX). The (:) constructor
            appears before its operands because the Core language uses prefix
            notation exclusively for simplicity.

	[image: 5] 
	This is an application of the
            (:) constructor. The
            @ notation indicates that the first operand will have
            type Word32.

	[image: 6] 
	Each of the three case expressions
            unboxes a Word32 value, to get
            at the primitive value inside. First to be unboxed is
            h1 (named h1_s1YA here),
            then h2, then the current list element,
            y.
The unboxing occurs via pattern matching:
            W32# is the constructor that boxes a primitive value.
            By convention, primitive types and values, and functions that use
            them, always contains a # somewhere in their
            name.

	[image: 7] 
	Here, we apply the W32# constructor
            to a value of the primitive type Word32#, in order to
            give a normal value of type Word32.

	[image: 8] 
	The plusWord# and timesWord# functions add and multiply
            primitive unsigned integers.

	[image: 9] 
	This is the second argument to the
            (:) constructor, in which the
            go_s1YC function applies
            itself recursively.

	[image: 10] 
	Here, we apply our list
            comprehension loop function. Its argument is the Core translation
            of the expression [0..n].



From reading the Core for this code, we
        can see two interesting behaviors:
	We are creating a list, and then
            immediately deconstructing it in the go_s1YC loop.
GHC can often spot this pattern of
            production followed immediately by consumption, and transform it
            into a loop in which no allocation occurs. This class of
            transformation is called fusion, because the
            producer and consumer become fused together. Unfortunately, it is
            not occurring here.

	The repeated unboxing of
            h1 and h2 in the body of the
            loop is wasteful.



To address these problems, we make a
        few tiny changes to our doubleHash function:
-- file: BloomFilter/Hash.hs
doubleHash :: Hashable a => Int -> a -> [Word32]
doubleHash numHashes value = go 0
    where go n | n == num  = []
               | otherwise = h1 + h2 * n : go (n + 1)

          !h1 = fromIntegral (h `shiftR` 32) .&. maxBound
          !h2 = fromIntegral h

          h   = hashSalt 0x9150a946c4a8966e value
          num = fromIntegral numHashes
We manually fused the
        [0..num] expression and the code that consumes it into a
        single loop. We added strictness annotations to h1
        and h2. And nothing more. This has turned a
        six-line function into an eight-line function. What effect does our
        change have on Core output?
__letrec {
  $wgo_s1UH :: GHC.Prim.Word# -> [GHC.Word.Word32]
  [Arity 1
   Str: DmdType L]
  $wgo_s1UH =
    \ (ww2_s1St :: GHC.Prim.Word#) ->
      case GHC.Prim.eqWord# ww2_s1St a_s1T1 of wild1_X2m {
	GHC.Base.False ->
	  GHC.Base.: @ GHC.Word.Word32
	    (GHC.Word.W32#
	     (GHC.Prim.narrow32Word#
	      (GHC.Prim.plusWord#
	       ipv_s1B2
	       (GHC.Prim.narrow32Word#
		(GHC.Prim.timesWord# ipv1_s1AZ ww2_s1St)))))
	    ($wgo_s1UH (GHC.Prim.narrow32Word#
                        (GHC.Prim.plusWord# ww2_s1St __word 1)));
	GHC.Base.True -> GHC.Base.[] @ GHC.Word.Word32
      };
} in  $wgo_s1UH __word 0
Our new function has compiled down to a
        simple counting loop. This is very encouraging, but how does it
        actually perform?
$ touch WordTest.hs
$ ghc -O2 -prof -auto-all --make WordTest
[1 of 1] Compiling Main             ( WordTest.hs, WordTest.o )
Linking WordTest ...

$ ./WordTest +RTS -p
0.304352s to read words
479829 words
suggested sizings: Right (4602978,7)
1.516229s to construct filter
1.069305s to query every element
~/src/darcs/book/examples/ch27/examples $ head -20 WordTest.prof 
total time  =        3.68 secs    (184 ticks @ 20 ms)
total alloc = 2,644,805,536 bytes (excludes profiling overheads)

COST CENTRE                    MODULE               %time %alloc

doubleHash                     BloomFilter.Hash      45.1   65.0
indices                        BloomFilter.Mutable   19.0   16.4
elem                           BloomFilter           12.5    1.3
insert                         BloomFilter.Mutable    7.6    0.0
easyList                       BloomFilter.Easy       4.3    0.3
len                            BloomFilter            3.3    2.5
hashByteString                 BloomFilter.Hash       3.3    4.0
main                           Main                   2.7    4.0
hashIO                         BloomFilter.Hash       2.2    5.5
length                         BloomFilter.Mutable    0.0    1.0
Our tweak has improved performance by
        about 11%—a good result for such a small change.
Exercises
	Our use of genericLength in easyList will cause our function to
              loop infinitely if we supply an infinite list. Fix this.

	Difficult: write a QuickCheck property that checks whether
              the observed false positive rate is close to the requested false
              positive rate.








[60] The name ST is an
          acronym for state thread.

[61] Jenkins’s hash functions have
            much better mixing properties than some other
            popular noncryptographic hash functions that you might be familiar
            with, such as FNV and
            hashpjw, so we recommend
            avoiding them.

[62] Unfortunately, we do not have room
            to explain why one of these instances is decidable, but the other
            is not.



Chapter 27. Sockets and Syslog



Basic Networking



In several earlier chapters of this book, we discussed services that
      operate over a network. Two examples are client/server databases and web
      services. When the need arises to devise a new protocol or to
      communicate with a protocol that doesn’t have an existing helper library
      in Haskell, you’ll need to use the lower-level networking tools in the
      Haskell library.
In this chapter, we will discuss these
      lower-level tools. Network communication is a broad topic with entire
      books devoted to it. We will show you how to use Haskell to apply the
      low-level network knowledge you already have.
Haskell’s networking functions almost
      always correspond directly to familiar C function calls. As most other
      languages also layer on top of C, you should find this interface
      familiar.

Communicating with UDP



UDP breaks data down into packets. It does not ensure that
      the data reaches its destination or it reaches it only once. It does use
      checksumming to ensure that packets that arrive have not been corrupted.
      UDP tends to be used in applications that are performance- or latency-sensitive, in
      which each individual packet of data is less important than the overall
      performance of the system. It may also be used where the TCP behavior
      isn’t the most efficient, such as ones that send short, discrete
      messages. Examples of systems that tend to use UDP include audio and
      video conferencing, time synchronization, network-based filesystems, and
      logging systems.
UDP Client Example: syslog



The traditional Unix syslog service
        allows programs to send log messages over a network to a central
        server that records them. Some programs are quite
        performance-sensitive and may generate a large volume of messages. In
        these programs, it could be more important to have the logging impose
        a minimal performance overhead than to guarantee every message is
        logged. Moreover, it may be desirable to continue program operation
        even if the logging server is unreachable. For this reason, UDP is one
        of the protocols syslog supports for the transmission of log messages.
        The protocol is simple; we present a Haskell implementation of a
        client here:
-- file: ch27/syslogclient.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List
import SyslogTypes

data SyslogHandle = 
    SyslogHandle {slSocket :: Socket,
                  slProgram :: String,
                  slAddress :: SockAddr}

openlog :: HostName             -- ^ Remote hostname, or localhost
        -> String               -- ^ Port number or name; 514 is default
        -> String               -- ^ Name to log under
        -> IO SyslogHandle      -- ^ Handle to use for logging
openlog hostname port progname =
    do -- Look up the hostname and port.  Either raises an exception
       -- or returns a nonempty list.  First element in that list
       -- is supposed to be the best option.
       addrinfos <- getAddrInfo Nothing (Just hostname) (Just port)
       let serveraddr = head addrinfos

       -- Establish a socket for communication
       sock <- socket (addrFamily serveraddr) Datagram defaultProtocol

       -- Save off the socket, program name, and server address in a handle
       return $ SyslogHandle sock progname (addrAddress serveraddr)

syslog :: SyslogHandle -> Facility -> Priority -> String -> IO ()
syslog syslogh fac pri msg =
    sendstr sendmsg
    where code = makeCode fac pri
          sendmsg = "<" ++ show code ++ ">" ++ (slProgram syslogh) ++
                    ": " ++ msg

          -- Send until everything is done
          sendstr :: String -> IO ()
          sendstr [] = return ()
          sendstr omsg = do sent <- sendTo (slSocket syslogh) omsg
                                    (slAddress syslogh)
                            sendstr (genericDrop sent omsg)
          
closelog :: SyslogHandle -> IO ()
closelog syslogh = sClose (slSocket syslogh)

{- | Convert a facility and a priority into a syslog code -}
makeCode :: Facility -> Priority -> Int
makeCode fac pri =
    let faccode = codeOfFac fac
        pricode = fromEnum pri 
        in
          (faccode `shiftL` 3) .|. pricode
This also requires SyslogTypes.hs, shown here:
-- file: ch27/SyslogTypes.hs
module SyslogTypes where
{- | Priorities define how important a log message is. -}

data Priority = 
            DEBUG                   -- ^ Debug messages
          | INFO                    -- ^ Information
          | NOTICE                  -- ^ Normal runtime conditions
          | WARNING                 -- ^ General Warnings
          | ERROR                   -- ^ General Errors
          | CRITICAL                -- ^ Severe situations
          | ALERT                   -- ^ Take immediate action
          | EMERGENCY               -- ^ System is unusable
                    deriving (Eq, Ord, Show, Read, Enum)

{- | Facilities are used by the system to determine where messages
are sent. -}

data Facility = 
              KERN                      -- ^ Kernel messages
              | USER                    -- ^ General userland messages
              | MAIL                    -- ^ E-Mail system
              | DAEMON                  -- ^ Daemon (server process) messages
              | AUTH                    -- ^ Authentication or security messages
              | SYSLOG                  -- ^ Internal syslog messages
              | LPR                     -- ^ Printer messages
              | NEWS                    -- ^ Usenet news
              | UUCP                    -- ^ UUCP messages
              | CRON                    -- ^ Cron messages
              | AUTHPRIV                -- ^ Private authentication messages
              | FTP                     -- ^ FTP messages
              | LOCAL0                  
              | LOCAL1
              | LOCAL2
              | LOCAL3
              | LOCAL4
              | LOCAL5
              | LOCAL6
              | LOCAL7
                deriving (Eq, Show, Read)

facToCode = [ 
                       (KERN, 0),
                       (USER, 1),
                       (MAIL, 2),
                       (DAEMON, 3),
                       (AUTH, 4),
                       (SYSLOG, 5),
                       (LPR, 6),
                       (NEWS, 7),
                       (UUCP, 8),
                       (CRON, 9),
                       (AUTHPRIV, 10),
                       (FTP, 11),
                       (LOCAL0, 16),
                       (LOCAL1, 17),
                       (LOCAL2, 18),
                       (LOCAL3, 19),
                       (LOCAL4, 20),
                       (LOCAL5, 21),
                       (LOCAL6, 22),
                       (LOCAL7, 23)
           ]

codeToFac = map (\(x, y) -> (y, x)) facToCode


{- | We can't use enum here because the numbering is discontiguous -}
codeOfFac :: Facility -> Int
codeOfFac f = case lookup f facToCode of
                Just x -> x
                _ -> error $ "Internal error in codeOfFac"

facOfCode :: Int -> Facility
facOfCode f = case lookup f codeToFac of
                Just x -> x
                _ -> error $ "Invalid code in facOfCode"
With ghci, you can send a message to a local
        syslog server. You can use either the example syslog server presented
        in this chapter or an existing syslog server like you would typically
        find on Linux or other POSIX systems. Note that most of these disable
        the UDP port by default, and you may need to enable UDP before your
        vendor-supplied syslog daemon will display received messages.
If you were sending a message to a
        syslog server on the local system, you might use a command such as
        this:
ghci> :load syslogclient.hs
[1 of 2] Compiling SyslogTypes      ( SyslogTypes.hs, interpreted )
[2 of 2] Compiling Main             ( syslogclient.hs, interpreted )
Ok, modules loaded: SyslogTypes, Main.
ghci> h <- openlog "localhost" "514" "testprog"
Loading package parsec-2.1.0.1 ... linking ... done.
Loading package network-2.2.0.0 ... linking ... done.
ghci> syslog h USER INFO "This is my message"
ghci> closelog h

UDP Syslog Server



UDP servers will bind to a specific port
        on the server machine. They will accept packets directed to that port
        and process them. Since UDP is a stateless, packet-oriented protocol,
        programmers normally use a call such as recvFrom to receive both the data and
        information about the machine that sent it, which is used for sending
        back a response:
-- file: ch27/syslogserver.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List

type HandlerFunc = SockAddr -> String -> IO ()

serveLog :: String              -- ^ Port number or name; 514 is default
         -> HandlerFunc         -- ^ Function to handle incoming messages
         -> IO ()
serveLog port handlerfunc = withSocketsDo $
    do -- Look up the port.  Either raises an exception or returns
       -- a nonempty list.  
       addrinfos <- getAddrInfo 
                    (Just (defaultHints {addrFlags = [AI_PASSIVE]}))
                    Nothing (Just port)
       let serveraddr = head addrinfos

       -- Create a socket
       sock <- socket (addrFamily serveraddr) Datagram defaultProtocol

       -- Bind it to the address we're listening to
       bindSocket sock (addrAddress serveraddr)

       -- Loop forever processing incoming data.  Ctrl-C to abort.
       procMessages sock
    where procMessages sock =
              do -- Receive one UDP packet, maximum length 1024 bytes,
                 -- and save its content into msg and its source
                 -- IP and port into addr
                 (msg, _, addr) <- recvFrom sock 1024
                 -- Handle it
                 handlerfunc addr msg
                 -- And process more messages
                 procMessages sock

-- A simple handler that prints incoming packets
plainHandler :: HandlerFunc
plainHandler addr msg = 
    putStrLn $ "From " ++ show addr ++ ": " ++ msg
You can run this in ghci. A call to serveLog "1514" plainHandler will set up a
        UDP server on port 1514 that will use plainHandler to print out every incoming UDP
        packet on that port. Ctrl-C will terminate the program.
In case of problems
Getting bind:
          permission denied when testing this? Make sure you use a
          port number greater than 1024. Some operating systems only allow the
          root user to bind to ports less
          than 1024.



Communicating with TCP



TCP is designed to make data transfer over the Internet as
      reliable as possible. TCP traffic is a stream of data. While this stream
      gets broken up into individual packets by the operating system, the
      packet boundaries are neither known nor relevant to applications. TCP
      guarantees that, if traffic is delivered to the application at all, it
      arrives intact, unmodified, exactly once, and in order. Obviously,
      things such as a broken wire can cause traffic to not be delivered, and
      no protocol can overcome those limitations.
This brings with it some trade-offs
      compared with UDP. First of all, there are a few packets that must be
      sent at the start of the TCP conversation to establish the link. For
      very short conversations, then, UDP would have a performance advantage.
      Also, TCP tries very hard to get data through. If one end of a
      conversation tries to send data to the remote but doesn’t receive an
      acknowledgment back, it will periodically retransmit the data for some
      time before giving up. This makes TCP robust in the face of dropped
      packets. However, it also means that TCP is not the best choice for
      real-time protocols that involve things such as live audio or
      video.
Handling Multiple TCP Streams



With TCP, connections are stateful. That
        means that there is a dedicated logical “channel” between a client and
        server, rather than just one-off packets as with UDP. This makes
        things easy for client developers. Server applications almost always
        will want to be able to handle more than one TCP connection at once.
        How then to do this?
On the server side, you will first
        create a socket and bind to a port, just like with UDP. Instead of
        repeatedly listening for data from any location, your main loop will
        be around the accept call. Each
        time a client connects, the server’s operating system allocates a new
        socket for it. So we have the master
        socket, used only to listen for incoming connections, and never
        to transmit data. We also have the potential for multiple
        child sockets to be used at once, each
        corresponding to a logical TCP conversation.
In Haskell, you will usually use
        forkIO to create a separate
        lightweight thread to handle each conversation with a child. Haskell
        has an efficient internal implementation of this that performs quite
        well.

TCP Syslog Server



Suppose we want to reimplement syslog
        using TCP instead of UDP. We could say that a single message is
        defined not by being in a single packet, but by a trailing newline
        character '\n'. Any given client
        could send zero or more messages to the server using a given TCP
        connection. Here’s how we might write that:
-- file: ch27/syslogtcpserver.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List
import Control.Concurrent
import Control.Concurrent.MVar
import System.IO

type HandlerFunc = SockAddr -> String -> IO ()

serveLog :: String              -- ^ Port number or name; 514 is default
         -> HandlerFunc         -- ^ Function to handle incoming messages
         -> IO ()
serveLog port handlerfunc = withSocketsDo $
    do -- Look up the port.  Either raises an exception or returns
       -- a nonempty list.  
       addrinfos <- getAddrInfo 
                    (Just (defaultHints {addrFlags = [AI_PASSIVE]}))
                    Nothing (Just port)
       let serveraddr = head addrinfos

       -- Create a socket
       sock <- socket (addrFamily serveraddr) Stream defaultProtocol

       -- Bind it to the address we're listening to
       bindSocket sock (addrAddress serveraddr)

       -- Start listening for connection requests.  Maximum queue size
       -- of 5 connection requests waiting to be accepted.
       listen sock 5

       -- Create a lock to use for synchronizing access to the handler
       lock <- newMVar ()

       -- Loop forever waiting for connections.  Ctrl-C to abort.
       procRequests lock sock

    where
          -- | Process incoming connection requests
          procRequests :: MVar () -> Socket -> IO ()
          procRequests lock mastersock = 
              do (connsock, clientaddr) <- accept mastersock
                 handle lock clientaddr
                    "syslogtcpserver.hs: client connnected"
                 forkIO $ procMessages lock connsock clientaddr
                 procRequests lock mastersock

          -- | Process incoming messages
          procMessages :: MVar () -> Socket -> SockAddr -> IO ()
          procMessages lock connsock clientaddr =
              do connhdl <- socketToHandle connsock ReadMode
                 hSetBuffering connhdl LineBuffering
                 messages <- hGetContents connhdl
                 mapM_ (handle lock clientaddr) (lines messages)
                 hClose connhdl
                 handle lock clientaddr 
                    "syslogtcpserver.hs: client disconnected"

          -- Lock the handler before passing data to it.
          handle :: MVar () -> HandlerFunc
          -- This type is the same as
          -- handle :: MVar () -> SockAddr -> String -> IO ()
          handle lock clientaddr msg =
              withMVar lock 
                 (\a -> handlerfunc clientaddr msg >> return a)

-- A simple handler that prints incoming packets
plainHandler :: HandlerFunc
plainHandler addr msg = 
    putStrLn $ "From " ++ show addr ++ ": " ++ msg
For our SyslogTypes implementation, see UDP Client Example: syslog.
Let’s look at this code. Our main loop
        is in procRequests, where we loop
        forever waiting for new connections from clients. The accept call blocks until a client connects.
        When a client connects, we get a new socket and the client’s address.
        We pass a message to the handler about that, and then use forkIO to create a thread to handle the data
        from that client. This thread runs procMessages.
When dealing with TCP data, it’s often
        convenient to convert a socket into a Haskell Handle. We do so here, and explicitly set
        the buffering—an important point for TCP communication. Next, we set
        up lazy reading from the socket’s Handle. For each incoming line, we pass it
        to handle. After there is no more
        data—because the remote end has closed the socket—we output a message
        about that.
Since we may be handling multiple
        incoming messages at once, we need to ensure that we’re not writing
        out multiple messages at once in the handler. That could result in
        garbled output. We use a simple lock to serialize access to the
        handler, and write a simple handle
        function to handle that.
We can test this with the client we’ll
        present next, or we can even use the telnet program to connect to this server.
        Each line of text we send to it will be printed on the display by the
        server. Let’s try it out:
ghci> :load syslogtcpserver.hs
[1 of 1] Compiling Main             ( syslogtcpserver.hs, interpreted )
Ok, modules loaded: Main.
ghci> serveLog "10514" plainHandler
Loading package parsec-2.1.0.0 ... linking ... done.
Loading package network-2.1.0.0 ... linking ... done.
At this point, the server will begin
        listening for connections at port 10514. It will not appear to be
        doing anything until a client connects. We could use telnet to connect
        to the server:
~$ telnet localhost 10514
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Test message
^]
telnet> quit
Connection closed.
Meanwhile, in our other terminal running
        the TCP server, you’ll see something like this:
From 127.0.0.1:38790: syslogtcpserver.hs: client connnected
From 127.0.0.1:38790: Test message
From 127.0.0.1:38790: syslogtcpserver.hs: client disconnected
This shows that a client connected from
        port 38790 on the local machine (127.0.0.1). After it connected, it
        sent one message and disconnected. When you are acting as a TCP
        client, the operating system assigns an unused port for you. This port
        number will usually be different each time you run the program.

TCP Syslog Client



Now, let’s write a client for our TCP
        syslog protocol. This client will be similar to the UDP client, but
        there are some changes. First, since TCP is a streaming protocol, we
        can send data using a Handle rather
        than using the lower-level socket operations. Second, we no longer
        need to store the destination address in the SyslogHandle, since we will be using
        connect to establish the TCP
        connection. Finally, we need a way to know where one message ends and
        the next begins. With UDP, that was easy because each message was a
        discrete logical packet. With TCP, we’ll just use the newline
        character '\n' as the
        end-of-message marker, although that means that no individual message
        may contain the newline. Here’s our code:
-- file: ch27/syslogtcpclient.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List
import SyslogTypes
import System.IO

data SyslogHandle = 
    SyslogHandle {slHandle :: Handle,
                  slProgram :: String}

openlog :: HostName             -- ^ Remote hostname, or localhost
        -> String               -- ^ Port number or name; 514 is default
        -> String               -- ^ Name to log under
        -> IO SyslogHandle      -- ^ Handle to use for logging
openlog hostname port progname =
    do -- Look up the hostname and port.  Either raises an exception
       -- or returns a nonempty list.  First element in that list
       -- is supposed to be the best option.
       addrinfos <- getAddrInfo Nothing (Just hostname) (Just port)
       let serveraddr = head addrinfos

       -- Establish a socket for communication
       sock <- socket (addrFamily serveraddr) Stream defaultProtocol

       -- Mark the socket for keep-alive handling since it may be idle
       -- for long periods of time
       setSocketOption sock KeepAlive 1

       -- Connect to server
       connect sock (addrAddress serveraddr)

       -- Make a Handle out of it for convenience
       h <- socketToHandle sock WriteMode

       -- We're going to set buffering to BlockBuffering and then
       -- explicitly call hFlush after each message, below, so that
       -- messages get logged immediately
       hSetBuffering h (BlockBuffering Nothing)
       
       -- Save off the socket, program name, and server address in a handle
       return $ SyslogHandle h progname

syslog :: SyslogHandle -> Facility -> Priority -> String -> IO ()
syslog syslogh fac pri msg =
    do hPutStrLn (slHandle syslogh) sendmsg
       -- Make sure that we send data immediately
       hFlush (slHandle syslogh)
    where code = makeCode fac pri
          sendmsg = "<" ++ show code ++ ">" ++ (slProgram syslogh) ++
                    ": " ++ msg

closelog :: SyslogHandle -> IO ()
closelog syslogh = hClose (slHandle syslogh)

{- | Convert a facility and a priority into a syslog code -}
makeCode :: Facility -> Priority -> Int
makeCode fac pri =
    let faccode = codeOfFac fac
        pricode = fromEnum pri 
        in
          (faccode `shiftL` 3) .|. pricode
We can try it out under ghci. If you still have the TCP server
        running from earlier, your session might look something like
        this:
ghci> :load syslogtcpclient.hs
Loading package base ... linking ... done.
[1 of 2] Compiling SyslogTypes      ( SyslogTypes.hs, interpreted )
[2 of 2] Compiling Main             ( syslogtcpclient.hs, interpreted )
Ok, modules loaded: Main, SyslogTypes.
ghci> openlog "localhost" "10514" "tcptest"
Loading package parsec-2.1.0.0 ... linking ... done.
Loading package network-2.1.0.0 ... linking ... done.
ghci> sl <- openlog "localhost" "10514" "tcptest"
ghci> syslog sl USER INFO "This is my TCP message"
ghci> syslog sl USER INFO "This is my TCP message again"
ghci> closelog sl
Over on the server, you’ll see something
        like this:
From 127.0.0.1:46319: syslogtcpserver.hs: client connnected
From 127.0.0.1:46319: <9>tcptest: This is my TCP message
From 127.0.0.1:46319: <9>tcptest: This is my TCP message again
From 127.0.0.1:46319: syslogtcpserver.hs: client disconnected
The <9> is the priority and facility code
        being sent along, just as it was with UDP.



Chapter 28. Software Transactional Memory



In the traditional threaded model of concurrent programming, when
    we share data among threads, we keep it consistent using locks, and we
    notify threads of changes using condition variables. Haskell’s
    MVar mechanism improves somewhat upon these tools, but it
    still suffers from all of the same problems:
	Race conditions due to forgotten
        locks

	Deadlocks resulting from inconsistent
        lock ordering

	Corruption caused by uncaught
        exceptions

	Lost wakeups induced by omitted
        notifications



These problems frequently affect even the
    smallest concurrent programs, but the difficulties they pose become far
    worse in larger code bases or under heavy load.
For instance, a program with a few big
    locks is somewhat tractable to write and debug, but contention for those
    locks will clobber us under heavy load. If we react with finer-grained
    locking, it becomes far harder to keep our software
    working at all. The additional bookkeeping will hurt performance even when
    loads are light.
The Basics



Software transactional memory (STM) gives
      us a few simple, but powerful, tools with which we can address most of
      these problems. We execute a block of actions as a transaction using the
      atomically combinator. Once we
      enter the block, other threads cannot see any modifications we make
      until we exit, nor can our thread see any changes made by other threads.
      These two properties mean that our execution is
      isolated.
Upon exit from a transaction, exactly one of the
      following things will occur:
	If no other thread concurrently
          modifies the same data as us, all of our modifications will
          simultaneously become visible to other threads.

	Otherwise, our modifications are
          discarded without being performed, and our block of actions is
          automatically restarted.



This all-or-nothing nature of an
      atomically block is referred to as
      atomic, hence the name of the combinator. If you
      have used databases that support transactions, you should find that
      working with STM feels quite familiar.

Some Simple Examples



In a multiplayer role playing game, a
      player’s character will have some state such as health, possessions, and
      money. To explore the world of STM, let’s start with a few simple
      functions and types based around working with some character state for a
      game. We will refine our code as we learn more about the API.
The STM API is provided by the
      stm package, and its modules are in the Control.Concurrent.STM hierarchy:
-- file: ch28/GameInventory.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Concurrent.STM
import Control.Monad

data Item = Scroll
          | Wand
          | Banjo
            deriving (Eq, Ord, Show)

newtype Gold = Gold Int
    deriving (Eq, Ord, Show, Num)

newtype HitPoint = HitPoint Int
    deriving (Eq, Ord, Show, Num)

type Inventory = TVar [Item]
type Health = TVar HitPoint
type Balance = TVar Gold

data Player = Player {
      balance :: Balance,
      health :: Health,
      inventory :: Inventory
    }
The TVar parameterized type
      is a mutable variable that we can read or write inside an atomically block. For simplicity, we
      represent a player’s inventory as a list of items. Notice, too, that we
      use newtype declarations so that we cannot accidentally
      confuse wealth with health.
To perform a basic transfer of money from
      one Balance to another, all we have to do is adjust the
      values in each TVar:
-- file: ch28/GameInventory.hs
basicTransfer qty fromBal toBal = do
  fromQty <- readTVar fromBal
  toQty   <- readTVar toBal
  writeTVar fromBal (fromQty - qty)
  writeTVar toBal   (toQty + qty)
Let’s write a small function to try this
      out:
-- file: ch28/GameInventory.hs
transferTest = do
  alice <- newTVar (12 :: Gold)
  bob   <- newTVar 4
  basicTransfer 3 alice bob
  liftM2 (,) (readTVar alice) (readTVar bob)
If we run this in ghci, it behaves as we should expect:
ghci> :load GameInventory
[1 of 1] Compiling Main             ( GameInventory.hs, interpreted )
Ok, modules loaded: Main.
ghci> atomically transferTest
Loading package array-0.1.0.0 ... linking ... done.
Loading package stm-2.1.1.1 ... linking ... done.
(Gold 9,Gold 7)
The properties of atomicity and isolation
      guarantee that if another thread sees a change in bob’s
      balance, they will also be able to see the modification of
      alice’s balance.
Even in a concurrent program, we strive
      to keep as much of our code as possible purely functional. This makes
      our code easier to reason about and to test. It also gives the
      underlying STM engine less work to do, since the data involved is not
      transactional. Here’s a pure function that removes an item from the list
      we use to represent a player’s inventory:
-- file: ch28/GameInventory.hs
removeInv :: Eq a => a -> [a] -> Maybe [a]
removeInv x xs =
    case takeWhile (/= x) xs of
      (_:ys) -> Just ys
      []     -> Nothing
The result uses Maybe so
      that we can tell whether the item was actually present in the player’s
      inventory.
Here is a transactional function to give
      an item to another player, slightly complicated by the need to determine
      whether the donor actually has the item in
      question:
-- file: ch28/GameInventory.hs
maybeGiveItem item fromInv toInv = do
  fromList <- readTVar fromInv
  case removeInv item fromList of
    Nothing      -> return False
    Just newList -> do
      writeTVar fromInv newList
      destItems <- readTVar toInv
      writeTVar toInv (item : destItems)
      return True

STM and Safety



If we are to provide atomic, isolated
      transactions, it is critical that we cannot either deliberately or
      accidentally escape from an atomically block. Haskell’s type system
      enforces this on our behalf, via the STM monad:
ghci> :type atomically
atomically :: STM a -> IO a

The atomically block takes an action in the STM monad, executes
      it, and makes its result available to us in the IO monad.
      This is the monad in which all transactional code executes. For
      instance, the functions that we have seen for manipulating
      TVar values operate in the STM monad:
ghci> :type newTVar
newTVar :: a -> STM (TVar a)
ghci> :type readTVar
readTVar :: TVar a -> STM a
ghci> :type writeTVar
writeTVar :: TVar a -> a -> STM ()
This is also true of the transactional
      functions we defined earlier:
-- file: ch28/GameInventory.hs
basicTransfer :: Gold -> Balance -> Balance -> STM ()
maybeGiveItem :: Item -> Inventory -> Inventory -> STM Bool
The STM monad does not let
      us perform I/O or manipulate nontransactional mutable state, such as
      MVar values. This lets us avoid operations that might
      violate the transactional guarantees.

Retrying a Transaction



The API of our maybeGiveItem function is somewhat awkward.
      It gives an item only if the character actually possesses it, which is
      reasonable, but by returning a Bool, it complicates the
      code of its callers. Here is an item sale function that has to look at
      the result of maybeGiveItem to
      decide what to do next:
-- file: ch28/GameInventory.hs
maybeSellItem :: Item -> Gold -> Player -> Player -> STM Bool
maybeSellItem item price buyer seller = do
  given <- maybeGiveItem item (inventory seller) (inventory buyer)
  if given
    then do
      basicTransfer price (balance buyer) (balance seller)
      return True
    else return False
Not only do we have to check whether the
      item was given, we have to propagate an indication of success back to
      our caller. The complexity thus cascades outwards.
There is a more elegant way to handle
      transactions that cannot succeed. The STM API provides a retry action that will immediately terminate
      an atomically block that cannot
      proceed. As the name suggests, when this occurs, execution of the block
      is restarted from scratch, with any previous modifications unperformed.
      Here is a rewrite of maybeGiveItem
      to use retry:
-- file: ch28/GameInventory.hs
giveItem :: Item -> Inventory -> Inventory -> STM ()

giveItem item fromInv toInv = do
  fromList <- readTVar fromInv
  case removeInv item fromList of
    Nothing -> retry
    Just newList -> do
      writeTVar fromInv newList
      readTVar toInv >>= writeTVar toInv . (item :)
Our basicTransfer from earlier had a different
      kind of flaw: it did not check the sender’s balance to see if she had
      sufficient money to transfer. We can use retry to correct this, while keeping the
      function’s type the same:
-- file: ch28/GameInventory.hs
transfer :: Gold -> Balance -> Balance -> STM ()

transfer qty fromBal toBal = do
  fromQty <- readTVar fromBal
  when (qty > fromQty) $
    retry
  writeTVar fromBal (fromQty - qty)
  readTVar toBal >>= writeTVar toBal . (qty +)
Now that we are using retry, our item sale function becomes
      dramatically simpler:
-- file: ch28/GameInventory.hs
sellItem :: Item -> Gold -> Player -> Player -> STM ()
sellItem item price buyer seller = do
  giveItem item (inventory seller) (inventory buyer)
  transfer price (balance buyer) (balance seller)
Its behavior is slightly different from
      our earlier function. Instead of immediately returning False if the seller doesn’t have the item, it
      will block (if necessary) until both the seller has the item and the
      buyer has enough money to pay for it.
The beauty of STM lies in the cleanliness
      of the code it lets us write. We can take two functions that work
      correctly, and use them to create a third that will also behave itself,
      all with minimal effort.
What Happens When We Retry?



The retry function doesn’t just make our code
        cleaner—its underlying behavior seems nearly magical. When we call it,
        it doesn’t restart our transaction immediately. Instead, it blocks our
        thread until one or more of the variables that we touched before
        calling retry is changed by
        another thread.
For instance, if we invoke transfer with insufficient funds, retry will automatically
        wait until our balance changes before it starts the
        atomically block again. The same
        happens with our new giveItem
        function: if the sender doesn’t currently have the item in his
        inventory, the thread will block until he does.


Choosing Between Alternatives



We don’t always want to restart an
      atomically action if it calls
      retry or fails due to concurrent
      modification by another thread. For instance, our new sellItem function will retry indefinitely as
      long as we are missing either the item or enough money, but we might
      prefer to just try the sale once.
The orElse combinator lets us perform a
      “backup” action if the main one fails:
ghci> :type orElse
orElse :: STM a -> STM a -> STM a

If sellItem fails, orElse will invoke the return
      False action, causing our sale function to return
      immediately.
Using Higher Order Code with Transactions



Imagine that we’d like to be a little
        more ambitious and buy the first item from a list that is both in the
        possession of the seller and affordable to us, but it does nothing if
        we cannot afford something right now. We could, of course, write code
        to do this in a direct manner:
-- file: ch28/GameInventory.hs
crummyList :: [(Item, Gold)] -> Player -> Player
             -> STM (Maybe (Item, Gold))
crummyList list buyer seller = go list
    where go []                         = return Nothing
          go (this@(item,price) : rest) = do
              sellItem item price buyer seller
              return (Just this)
           `orElse`
              go rest
This function suffers from the familiar
        problem of muddling together what we want to do with how we ought to
        do it. A little inspection suggests that there are two reusable
        patterns buried in this code.
The first of these is to make a
        transaction fail immediately instead of retrying:
-- file: ch28/GameInventory.hs
maybeSTM :: STM a -> STM (Maybe a)
maybeSTM m = (Just `liftM` m) `orElse` return Nothing
Second, we want to try an action over
        successive elements of a list, stopping at the first that succeeds or
        performing a retry if every one
        fails. Conveniently for us, STM is an instance of the
        MonadPlus typeclass:
-- file: ch28/STMPlus.hs
instance MonadPlus STM where
  mzero = retry
  mplus = orElse
The Control.Monad module
        defines the msum function as
        follows, which is exactly what we need:
-- file: ch28/STMPlus.hs
msum :: MonadPlus m => [m a] -> m a
msum =  foldr mplus mzero
We now have a few key pieces of
        machinery that will help us write a much clearer version of our
        function:
-- file: ch28/GameInventory.hs
shoppingList :: [(Item, Gold)] -> Player -> Player
             -> STM (Maybe (Item, Gold))
shoppingList list buyer seller = maybeSTM . msum $ map sellOne list
    where sellOne this@(item,price) = do
            sellItem item price buyer seller
            return this
Since STM is an instance of the
        MonadPlus typeclass, we can generalize maybeSTM to work over any
        MonadPlus:
-- file: ch28/GameInventory.hs
maybeM :: MonadPlus m => m a -> m (Maybe a)
maybeM m = (Just `liftM` m) `mplus` return Nothing
This gives us a function that is useful in a greater
        variety of situations.


I/O and STM



The STM monad forbids us from performing arbitrary I/O actions, because
      they can break the guarantees of atomicity and isolation that the monad
      provides. Of course, the need to perform I/O still arises—we just have
      to treat it very carefully.
Most often, we will need to perform some
      I/O action as a result of a decision we made inside an atomically block. In these cases, the right
      thing to do is usually to return a piece of data from atomically, which will tell the caller in the
      IO monad what to do next. We can even return the action to
      perform, since actions are first-class values:
-- file: ch28/STMIO.hs
someAction :: IO a

stmTransaction :: STM (IO a)
stmTransaction = return someAction

doSomething :: IO a
doSomething = join (atomically stmTransaction)
We occasionally need to perform an I/O
      operation from within STM. For instance, reading immutable
      data from a file that must exist does not violate the STM
      guarantees of isolation or atomicity. In these cases, we can use
      unsafeIOToSTM to execute an IO action. This function is
      exported by the low-level GHC.Conc module, so we must go out of our way to use it:
ghci> :m +GHC.Conc
ghci> :type unsafeIOToSTM
unsafeIOToSTM :: IO a -> STM a
The IO action that we
      execute must not start another atomically transaction. If a thread tries to
      nest transactions, the runtime system will throw an exception.
Since the type system can’t help us to
      ensure that our IO code is doing something sensible, we
      will be safest if we limit our use of unsafeIOToSTM as much as possible. Here is a
      typical error that can arise with IO in an atomically block:
-- file: ch28/STMIO.hs
launchTorpedoes :: IO ()

notActuallyAtomic = do
  doStuff
  unsafeIOToSTM launchTorpedoes
  mightRetry
If the mightRetry block causes our transaction to
      restart, we will call launchTorpedoes more than once. Indeed, we
      can’t predict how many times it will be called, since the runtime system
      handles retries for us. The solution is not to perform these kinds of
      nonidempotent[63] I/O operations inside a transaction.

Communication Between Threads



As well as the basic TVar
      type, the stm package provides two types that are more useful for communicating
      between threads. A TMVar is the STM equivalent of an MVar: it can
      hold either Just a value or Nothing. The
      TChan type is the STM
      counterpart of Chan, and it implements a typed FIFO
      channel.

A Concurrent Web Link Checker



As a practical example of using STM,
      we will develop a program that checks an HTML file for broken links—that
      is, URLs that either point to bad web pages or dead servers. This is a
      good problem to address via concurrency: if we try to talk to a dead
      server, it will take up to two minutes before our connection attempt
      times out. If we use multiple threads, we can still get useful work done
      while one or two are stuck talking to slow or dead servers.
We can’t simply create one thread per
      URL, because that may overburden either our CPU or our network
      connection if (as we expect) most of the links are live and responsive.
      Instead, we use a fixed number of worker threads, which fetch URLs to
      download from a queue:
-- file: ch28/Check.hs
{-# LANGUAGE FlexibleContexts, GeneralizedNewtypeDeriving,
             PatternGuards #-}

import Control.Concurrent (forkIO)
import Control.Concurrent.STM
import Control.Exception (catch, finally)
import Control.Monad.Error
import Control.Monad.State
import Data.Char (isControl)
import Data.List (nub)
import Network.URI
import Prelude hiding (catch)
import System.Console.GetOpt
import System.Environment (getArgs)
import System.Exit (ExitCode(..), exitWith)
import System.IO (hFlush, hPutStrLn, stderr, stdout)
import Text.Printf (printf)
import qualified Data.ByteString.Lazy.Char8 as B
import qualified Data.Set as S

-- This requires the HTTP package, which is not bundled with GHC
import Network.HTTP

type URL = B.ByteString

data Task = Check URL | Done
Our main function provides the top-level
      scaffolding for our program:
-- file: ch28/Check.hs
main :: IO ()
main = do
    (files,k) <- parseArgs
    let n = length files

    -- count of broken links
    badCount <- newTVarIO (0 :: Int)

    -- for reporting broken links
    badLinks <- newTChanIO

    -- for sending jobs to workers
    jobs <- newTChanIO

    -- the number of workers currently running
    workers <- newTVarIO k

    -- one thread reports bad links to stdout
    forkIO $ writeBadLinks badLinks

    -- start worker threads
    forkTimes k workers (worker badLinks jobs badCount)

    -- read links from files, and enqueue them as jobs
    stats <- execJob (mapM_ checkURLs files)
                     (JobState S.empty 0 jobs)

    -- enqueue "please finish" messages
    atomically $ replicateM_ k (writeTChan jobs Done)

    waitFor workers

    broken <- atomically $ readTVar badCount

    printf fmt broken
               (linksFound stats)
               (S.size (linksSeen stats))
               n
  where
    fmt   = "Found %d broken links. " ++
            "Checked %d links (%d unique) in %d files.\n"
When we are in the IO monad,
      we can create new TVar values using the
      newTVarIO function. There are also counterparts for
      creating TMVar and TChan values.
Notice that we use the printf function to print a report at the end.
      Unlike its counterpart in C, the Haskell printf function can check its argument types
      and their numbers at runtime:
ghci> :m +Text.Printf
ghci> printf "%d and %d\n" (3::Int)
3 and *** Exception: Printf.printf: argument list ended prematurely
ghci> printf "%s and %d\n" "foo" (3::Int)
foo and 3
Try evaluating printf "%d"
      True at the ghci prompt, and
      see what happens.
Several short functions support main:
-- file: ch28/Check.hs
modifyTVar_ :: TVar a -> (a -> a) -> STM ()
modifyTVar_ tv f = readTVar tv >>= writeTVar tv . f

forkTimes :: Int -> TVar Int -> IO () -> IO ()
forkTimes k alive act =
  replicateM_ k . forkIO $
    act
    `finally`
    (atomically $ modifyTVar_ alive (subtract 1))
The forkTimes function starts a number of
      identical worker threads and decreases the “alive” count
      each time a thread exits. We use a finally combinator to ensure that the count
      is always decremented, no matter how the thread terminates.
Next, the writeBadLinks function prints each broken or
      dead link to stdout:
-- file: ch28/Check.hs
writeBadLinks :: TChan String -> IO ()
writeBadLinks c =
  forever $
    atomically (readTChan c) >>= putStrLn >> hFlush stdout
We use the forever combinator in the preceding code,
      which repeats an action endlessly:
ghci> :m +Control.Monad
ghci> :type forever
forever :: (Monad m) => m a -> m ()
Our waitFor function uses check, which calls retry if its argument evaluates to
      False:
-- file: ch28/Check.hs
waitFor :: TVar Int -> IO ()
waitFor alive = atomically $ do
  count <- readTVar alive
  check (count == 0)
Checking a Link



Here is a naive function to check the
        state of a link. This code is similar to the podcatcher that we
        developed in Chapter 22, with a few small
        differences:
-- file: ch28/Check.hs
getStatus :: URI -> IO (Either String Int)
getStatus = chase (5 :: Int)
  where
    chase 0 _ = bail "too many redirects"
    chase n u = do
      resp <- getHead u
      case resp of
        Left err -> bail (show err)
        Right r ->
          case rspCode r of
            (3,_,_) ->
               case findHeader HdrLocation r of
                 Nothing -> bail (show r)
                 Just u' ->
                   case parseURI u' of
                     Nothing -> bail "bad URL"
                     Just url -> chase (n-1) url
            (a,b,c) -> return . Right $ a * 100 + b * 10 + c
    bail = return . Left

getHead :: URI -> IO (Result Response)
getHead uri = simpleHTTP Request { rqURI = uri,
                                   rqMethod = HEAD,
                                   rqHeaders = [],
                                   rqBody = "" }
We follow an HTTP redirect response
        just a few times, in order to avoid endless redirect loops. To
        determine whether a URL is valid, we use the HTTP standard’s HEAD
        verb, which uses less bandwidth than a full GET.
This code has the classic “marching off the
        right of the screen” style that we have learned to be wary of.
        Here is a rewrite that offers greater clarity via the
        ErrorT monad transformer and a few generally useful
        functions:
-- file: ch28/Check.hs
getStatusE = runErrorT . chase (5 :: Int)
  where
    chase :: Int -> URI -> ErrorT String IO Int
    chase 0 _ = throwError "too many redirects"
    chase n u = do
      r <- embedEither show =<< liftIO (getHead u)
      case rspCode r of
        (3,_,_) -> do
            u'  <- embedMaybe (show r)  $ findHeader HdrLocation r
            url <- embedMaybe "bad URL" $ parseURI u'
            chase (n-1) url
        (a,b,c) -> return $ a*100 + b*10 + c

-- This function is defined in Control.Arrow.
left :: (a -> c) -> Either a b -> Either c b
left f (Left x)  = Left (f x)
left _ (Right x) = Right x

-- Some handy embedding functions.
embedEither :: (MonadError e m) => (s -> e) -> Either s a -> m a
embedEither f = either (throwError . f) return

embedMaybe :: (MonadError e m) => e -> Maybe a -> m a
embedMaybe err = maybe (throwError err) return

Worker Threads



Each worker thread reads a task off the
        shared queue. It either checks the given URL or exits:
-- file: ch28/Check.hs
worker :: TChan String -> TChan Task -> TVar Int -> IO ()
worker badLinks jobQueue badCount = loop
  where
    -- Consume jobs until we are told to exit.
    loop = do
        job <- atomically $ readTChan jobQueue
        case job of
            Done  -> return ()
            Check x -> checkOne (B.unpack x) >> loop

    -- Check a single link.
    checkOne url = case parseURI url of
        Just uri -> do
            code <- getStatus uri `catch` (return . Left . show) 
            case code of
                Right 200 -> return ()
                Right n   -> report (show n)
                Left err  -> report err
        _ -> report "invalid URL"

        where report s = atomically $ do
                           modifyTVar_ badCount (+1)
                           writeTChan badLinks (url ++ " " ++ s)

Finding Links



We structure our link finding around a
        state monad transformer stacked on the IO monad. Our
        state tracks links that we have already seen (so we don’t check a
        repeated link more than once), the total number of links we have
        encountered, and the queue to which we should add the links that we
        will be checking:
-- file: ch28/Check.hs
data JobState = JobState { linksSeen :: S.Set URL,
                           linksFound :: Int,
                           linkQueue :: TChan Task }

newtype Job a = Job { runJob :: StateT JobState IO a }
    deriving (Monad, MonadState JobState, MonadIO)

execJob :: Job a -> JobState -> IO JobState
execJob = execStateT . runJob
Strictly speaking, for a small
        standalone program, we don’t need the newtype wrapper,
        but we include it here as an example of good practice (it costs only a
        few lines of code, anyway).
The main function maps checkURLs over each input file, so
        checkURLs needs only to read a
        single file:
-- file: ch28/Check.hs
checkURLs :: FilePath -> Job ()
checkURLs f = do
    src <- liftIO $ B.readFile f
    let urls = extractLinks src
    filterM seenURI urls >>= sendJobs
    updateStats (length urls)

updateStats :: Int -> Job ()
updateStats a = modify $ \s ->
    s { linksFound = linksFound s + a }

-- | Add a link to the set we have seen.
insertURI :: URL -> Job ()
insertURI c = modify $ \s ->
    s { linksSeen = S.insert c (linksSeen s) }

-- | If we have seen a link, return False.  Otherwise, record that we
-- have seen it, and return True.
seenURI :: URL -> Job Bool
seenURI url = do
    seen <- (not . S.member url) `liftM` gets linksSeen
    insertURI url
    return seen

sendJobs :: [URL] -> Job ()
sendJobs js = do
    c <- gets linkQueue
    liftIO . atomically $ mapM_ (writeTChan c . Check) js
Our extractLinks function doesn’t attempt to
        properly parse an HTML or text file. Instead, it looks for strings
        that appear to be URLs and treats them as “good
        enough”:
-- file: ch28/Check.hs
extractLinks :: B.ByteString -> [URL]
extractLinks = concatMap uris . B.lines
  where uris s      = filter looksOkay (B.splitWith isDelim s)
        isDelim c   = isControl c || c `elem` " <>\"{}|\\^[]`"
        looksOkay s = http `B.isPrefixOf` s
        http        = B.pack "http:"

Command-Line Parsing



To parse our command-line arguments, we
        use the System.Console.GetOpt module. It provides useful
        code for parsing arguments, but it is slightly involved to use:
-- file: ch28/Check.hs
data Flag = Help | N Int
            deriving Eq

parseArgs :: IO ([String], Int)
parseArgs = do
    argv <- getArgs
    case parse argv of
        ([], files, [])                     -> return (nub files, 16)
        (opts, files, [])
            | Help `elem` opts              -> help
            | [N n] <- filter (/=Help) opts -> return (nub files, n)
        (_,_,errs)                          -> die errs
  where
    parse argv = getOpt Permute options argv
    header     = "Usage: urlcheck [-h] [-n n] [file ...]"
    info       = usageInfo header options
    dump       = hPutStrLn stderr
    die errs   = dump (concat errs ++ info) >> exitWith (ExitFailure 1)
    help       = dump info                  >> exitWith ExitSuccess
The getOpt function takes three
        arguments:
	An argument ordering, which
            specifies whether options can be mixed with other arguments
            (Permute, which we used earlier) or must appear
            before them.

	A list of option definitions. Each
            consists of a list of short names for the option, a list of long
            names for the option, a description of the option (e.g., whether
            it accepts an argument), and an explanation for users.

	A list of the arguments and
            options, as returned by getArgs.



The function returns a triple that
        consists of the parsed options, the remaining arguments, and any error
        messages that arose.
We use the Flag algebraic
        data type to represent the options that our program can accept:
-- file: ch28/Check.hs
options :: [OptDescr Flag]
options = [ Option ['h'] ["help"] (NoArg Help)
                   "Show this help message",
            Option ['n'] []       (ReqArg (\s -> N (read s)) "N")
                   "Number of concurrent connections (default 16)" ]
Our options list
        describes each option that we accept. Each description must be able to
        create a Flag value. Take a look at our uses of
        NoArg and ReqArg in the preceding code.
        These are constructors for the GetOpt module’s
        ArgDescr type:
-- file: ch28/GetOpt.hs
data ArgDescr a = NoArg a
                | ReqArg (String -> a) String
                | OptArg (Maybe String -> a) String
The constructors have the following meanings:
	NoArg
	Accepts a parameter that will represent this option. In
              our case, if a user invokes our program with -h
              or --help, we will use the value
              Help.

	ReqArg
	Accepts a function that maps a required argument to a
              value. Its second argument is used when printing help. Here, we
              convert a string into an integer, and pass it to our
              Flag type’s N constructor.

	OptArg
	Similar to the ReqArg constructor, but it
              permits the use of options that can be used without
              arguments.




Pattern Guards



We sneaked one last language extension
        into our definition of parseArgs.
        Pattern guards let us write more concise guard expressions. They are
        enabled via the PatternGuards language extension.
        
A pattern guard has three components: a
        pattern, a <- symbol, and an expression. The
        expression is evaluated and matched against the pattern. If it
        matches, any variables present in the pattern are bound. We can mix
        pattern guards and normal Bool guard expressions in a
        single guard by separating them with commas:
-- file: ch28/PatternGuard.hs
{-# LANGUAGE PatternGuards #-}

testme x xs | Just y <- lookup x xs, y > 3 = y
            | otherwise                    = 0
In this example, we return a value from
        the alist xs if its associated key
        x is present, provided the value is greater than 3.
        This definition is equivalent to the following:
-- file: ch28/PatternGuard.hs
testme_noguards x xs = case lookup x xs of
                         Just y | y > 3 -> y
                         _              -> 0
Pattern guards let us
        “collapse” a collection of guards and case expressions into a single guard,
        allowing us to write more succinct and descriptive guards.


Practical Aspects of STM



We have so far been quiet about the
      specific benefits that STM gives us.
      Most obvious is how well it composes—to add code to
      a transaction, we just use our usual monadic building blocks, (>>=) and (>>).
The notion of composability is critical to building
      modular software. If we take two pieces of code that work correctly
      individually, the composition of the two should also be correct. While
      normal threaded programming makes composability impossible, STM restores it as a key assumption that we
      can rely upon.
The STM monad prevents us from
      accidentally performing nontransactional I/O actions. We don’t need to
      worry about lock ordering, since our code contains no locks. We can
      forget about lost wakeups, since we don’t have condition variables. If
      an exception is thrown, we can either catch it using catchSTM or be bounced out of our
      transaction, leaving our state untouched. Finally, the retry and orElse functions give us some beautiful ways
      to structure our code.
Code that uses STM will not deadlock, but it is possible for
      threads to starve each other to some degree. A long-running transaction
      can cause another transaction to retry often enough that it will make
      comparatively little progress. To address a problem such as this, make
      your transactions as short as you can, while keeping your data
      consistent.
Getting Comfortable with Giving Up Control



Whether with concurrency or memory
        management, there will be times when we must retain control: some
        software must make solid guarantees about latency or memory footprint,
        so we will be forced to spend the extra time and effort managing and
        debugging explicit code. For many interesting, practical uses of
        software, garbage collection and STM will do more than well enough.
STM
        is not a complete panacea. It is useful to compare it with the use of
        garbage collection for memory management. When we abandon explicit
        memory management in favor of garbage collection, we give up control
        in return for safer code. Likewise, with STM, we abandon the low-level details in
        exchange for code that we can better hope to understand.

Using Invariants



STM
        cannot eliminate certain classes of bugs. For instance, if we
        withdraw money from an account in one atomically block, return to the
        IO monad, and then deposit it to another account in a
        different atomically block, our
        code will have an inconsistency. There will be a window of time in
        which the money is present in neither account.
-- file: ch28/GameInventory.hs
bogusTransfer qty fromBal toBal = do
  fromQty <- atomically $ readTVar fromBal
  -- window of inconsistency
  toQty   <- atomically $ readTVar toBal
  atomically $ writeTVar fromBal (fromQty - qty)
  -- window of inconsistency
  atomically $ writeTVar toBal   (toQty + qty)

bogusSale :: Item -> Gold -> Player -> Player -> IO ()
bogusSale item price buyer seller = do
  atomically $ giveItem item (inventory seller) (inventory buyer)
  bogusTransfer price (balance buyer) (balance seller)
In concurrent programs, these kinds of
        problems are notoriously difficult to find and reproduce. For
        instance, the inconsistency that we describe here will usually only
        occur for a brief period of time. Problems such as this often refuse
        to show up during development, instead occurring only in the field
        under heavy load.
The alwaysSucceeds function lets us define an
        invariant, a property of our data that must
        always be true:
ghci> :type alwaysSucceeds
alwaysSucceeds :: STM a -> STM ()

When we create an invariant, it will
        immediately be checked. To fail, the invariant must raise an
        exception. More interestingly, the invariant will subsequently be
        checked automatically at the end
        of every transaction. If it fails at any point,
        the transaction will be aborted, and the exception raised by the
        invariant will be propagated. This means that we will get immediate
        feedback as soon as one of our invariants is violated.
For instance, here are a few functions
        to populate our game world from the beginning of this chapter with
        players:
-- file: ch28/GameInventory.hs
newPlayer :: Gold -> HitPoint -> [Item] -> STM Player
newPlayer balance health inventory =
    Player `liftM` newTVar balance
              `ap` newTVar health
              `ap` newTVar inventory

populateWorld :: STM [Player]
populateWorld = sequence [ newPlayer 20 20 [Wand, Banjo],
                           newPlayer 10 12 [Scroll] ]
This function returns an invariant that
        we can use to ensure that the world’s money balance is always
        consistent—the balance at any point in time should be the same as at
        the creation of the world:
-- file: ch28/GameInventory.hs
consistentBalance :: [Player] -> STM (STM ())
consistentBalance players = do
    initialTotal <- totalBalance
    return $ do
      curTotal <- totalBalance
      when (curTotal /= initialTotal) $
        error "inconsistent global balance"
  where totalBalance   = foldM addBalance 0 players
        addBalance a b = (a+) `liftM` readTVar (balance b)
Let’s write a small function that
        exercises this:
-- file: ch28/GameInventory.hs
tryBogusSale = do
  players@(alice:bob:_) <- atomically populateWorld
  atomically $ alwaysSucceeds =<< consistentBalance players
  bogusSale Wand 5 alice bob
If we run it in ghci, it should detect the inconsistency
        caused by our incorrect use of atomically in the bogusTransfer function we wrote:
ghci> tryBogusSale
*** Exception: inconsistent global balance





[63] An idempotent action gives the same
          result every time it is invoked, no matter how many times this
          occurs.



Appendix A. Installing GHC and Haskell Libraries



The instructions in this appendix are based on our experience installing
    GHC and other software in late
    2008. Installation instructions inevitably become dated quickly; please
    bear this in mind as you read.
Installing GHC



Because GHC
      runs on a large number of platforms, we focus on a handful of the most
      popular.
Windows



The prebuilt binary packages of GHC should work on Windows Vista and XP (even Windows 2000). We have
        installed GHC 6.8.3 under
        Windows XP Service Pack 2; the following paragraphs detail the steps
        we followed.
How much room does GHC need?
On Windows, GHC requires about 400 MB of disk
          space. The exact amount will vary from release to release.

Our first step is to visit the
        GHC at http://www.haskell.org/ghcdownload.html
        (see Figure A-1) and follow the link to the
        current stable release. Scroll down to the section entitled
        “Binary packages,” and then again to the subsection for
        Windows. Download the installer; in our case, it’s named ghc-6.8.3-i386-windows.exe.
[image: Screenshot of Firefox, displaying the GHC download page]

Figure A-1. Screenshot of Firefox, displaying the GHC download
          page

After the installer has downloaded, double-click it to
        start the installation process. This involves stepping through a
        normal Windows installer wizard (see Figure A-2).
[image: Screenshot of the GHC installation wizard on Windows]

Figure A-2. Screenshot of the GHC installation wizard on Windows

Once the installer has finished, the Start Menu’s
        “All Programs” submenu (see Figure A-3) should have a GHC folder, inside which you’ll find an
        icon that you can use to run ghci.
[image: Screenshot of the Windows XP Start menu, showing the GHC submenu]

Figure A-3. Screenshot of the Windows XP Start menu, showing the GHC
          submenu

Clicking the ghci
        icon brings up a normal Windows console window that is running
        ghci (see Figure A-4).
[image: Screenshot of the ghci interpreter running on Windows]

Figure A-4. Screenshot of the ghci interpreter running on Windows

Updating your search path
The GHC
          installer automatically modifies your user account’s
          PATH environment variable so that commands
          such as ghc will be present in
          the command shell’s search path (i.e., you can type a GHC command name without typing its
          complete path). This change will take effect the next time you open
          a command shell.


Mac OS X



We have installed GHC 6.8.3 under Mac OS X 10.5 (Leopard),
        on an Intel-based MacBook. Before installing GHC, the Xcode development system must
        already be installed.
The Xcode software installer may have
        come bundled on a DVD with your Mac. If not (or you can’t find it),
        you should be able to download it from Apple. Once you’ve finished
        installing Xcode, continue on to download GHC itself.
Visit the GHC download page
        and follow the link to the current stable release. Scroll down to the
        section entitled “Binary packages,” and then again to the
        subsection for Mac OS X. There is a single installer package
        available. Download and run it.
Terminal at your fingertips yet?
Since most of your interactions with
          GHC will be through a
          Terminal window, this
          might be a good time to add the Terminal application to your dock (if
          you haven’t already done so). You can find it in the system’s
          /Applications/Utilities
          folder.

The installation process should take a
        minute or two. Finally, you should be able to successfully run the
        ghci command from your shell prompt
        (see Figure A-5).
[image: Screenshot of the ghci interpreter running in a Terminal window on Mac OS X]

Figure A-5. Screenshot of the ghci interpreter running in a Terminal
          window on Mac OS X

Alternatives



Both the MacPorts and Fink projects
          provide builds of GHC.


Ubuntu and Debian Linux



Under both Ubuntu and Debian, you can install a minimal working version of
        GHC by running sudo aptitude install ghc6 from a shell
        prompt.
These distros maintain a small core
        GHC package, which is
        insufficient for much practical development. However, they make a
        number of additional prebuilt packages available; run apt-cache search libghc6 to find a complete
        list of these prebuilt packages. We recommend that you install at
        least the mtl package, using sudo aptitude install
        libghc6-mtl-dev.
Since you will probably want to profile
        the performance of your Haskell programs at some point, you should
        also install the ghc6-prof package.

Fedora Linux



GHC is available as a standard Fedora binary package. From a shell, all
        you need to do is run the following command:
          sudo yum -y install ghc ghc-doc ghc683-prof
The base package,
        containing the ghc and ghci commands and libraries, is ghc. The ghc-doc package
        contains the GHC user
        guide, and command and library documentation. The
        ghc683-prof package contains profiling-capable versions
        of the standard libraries (its
        version number may have changed by the time you read this).
Once installation has finished, you
        should be able to run ghci from the
        shell immediately. You won’t need to change your shell’s search path
        or set any environment variables.

FreeBSD



Under FreeBSD, run the following commands:
$ cd /usr/ports/lang/ghc
$ sudo make install clean
This will download and build
        GHC from source. You should
        expect the process to take several hours.


Installing Haskell Software



Almost all Haskell libraries are distributed using a
      standard packaging system named Cabal. You can find hundreds of Haskell
      open source libraries and programs, all of which use Cabal, at http://hackage.haskell.org/, the home of the Hackage code
      repository.
Automated Download and Installation with cabal



A command named cabal automates the job of downloading, building, and installing a
        Haskell package. It also figures out what dependencies a particular
        library needs and either makes sure that they are installed already or
        downloads and builds them first. You can install any Haskell package
        with a single cabal install
        mypackage command.
The cabal command
        is not bundled with GHC, so
        at least as of GHC version 6.8.3, you will have to download and build
        it yourself.
Installing cabal



To build the cabal command, download the sources for
          the following four packages from http://hackage.haskell.org/:
	Cabal

	HTTP

	zlib

	cabal-install



Follow the instructions in Building Packages by Hand to manually build each of these four
          packages, making sure that you leave cabal-install
          until last.
After you install the
          cabal-install package, the $HOME/.cabal/bin directory will contain
          the cabal command. You can either
          move it somewhere more convenient or add that directory to your
          shell’s search path.

Updating cabal’s package list



After installing cabal, and periodically thereafter, you
          should download a fresh list of packages from Hackage. You can do so
          as follows:
$ cabal update

Installing a library or program



To install some executable or
          library, just run the following command:
$ cabal install -p mypackage


Building Packages by Hand



If you download a tarball from Hackage,
        it will arrive in source form. Unpack the tarball and go into the
        newly created directory in a command shell. The process to build and
        install it is simple, consisting of three commands:
	Configure for system-wide
            installation (i.e., available to all users):
$ runghc Setup configure -p
Alternatively, configure to install
            only for yourself:
$ runghc Setup configure --user --prefix=$HOME -p

	Build (this will build each source
            file twice, with and without profiling support):
$ runghc Setup build

	Install if you chose system-wide
            configuration:
$ sudo runghc Setup install
Alternatively, if you chose
            configuration for yourself only:
$ runghc Setup install



If you build by hand, you will
        frequently find that the configuration step fails because some other
        library must be installed first. You may find yourself needing to
        download and build several packages before you can make progress on
        the one you really want. This is why we recommend using the cabal command instead.



Appendix B. Characters, Strings, and Escaping Rules



This appendix covers the escaping rules used
    to represent non-ASCII characters in Haskell character and string
    literals. Haskell’s escaping rules follow the pattern established by the C
    programming language, but they expand considerably upon them.
Writing Character and String Literals



A single character is surrounded by ASCII single quotes, ', and
      has type Char:
ghci> 'c'
'c'
ghci> :type 'c'
'c' :: Char
A string literal is surrounded by
      double quotes, ", and
      has type [Char] (more often written as
      String):
ghci> "a string literal"
"a string literal"
ghci> :type "a string literal"
"a string literal" :: [Char]
The double-quoted form of a string literal
      is just syntactic sugar for list notation:
ghci> ['a', ' ', 's', 't', 'r', 'i', 'n', 'g'] == "a string"
True


International Language Support



Haskell uses Unicode internally for its Char data
      type. Since String is just an alias for [Char]
      (which is a list of Chars), Unicode is also used to
      represent strings.
Different Haskell implementations place
      limitations on the character sets they can accept in source files.
      GHC allows source files to be
      written in the UTF-8 encoding of Unicode, so in a source file, you can
      use UTF-8 literals inside a character or string constant. Do be aware
      that if you use UTF-8, other Haskell implementations may not be able to
      parse your source files.
When you run the ghci interpreter interactively, it may not be
      able to deal with international characters in character or string
      literals that you enter at the keyboard.
Note
Although Haskell represents characters
        and strings internally using Unicode, there is no standardized way to
        do I/O on files that contain Unicode data. Haskell’s standard text I/O
        functions treat text as a sequence of 8-bit characters, and do not
        perform any character set conversion.
There are third-party libraries that
        will convert between the many different encodings used in files and
        Haskell’s internal Unicode representation.


Escaping Text



Some characters must be escaped to be represented inside a
      character or string literal. For example, a double-quote character
      inside a string literal must be escaped, or else it will be treated as
      the end of the string.
Single-Character Escape Codes



Haskell uses essentially the same single-character escapes as the C
        language and many other popular languages. The escape codes are shown
        in Table B-1.
Table B-1. Single-character escape codes
	Escape	Unicode	Character
	\0	U+0000	Null character
	\a	U+0007	Alert
	\b	U+0008	Backspace
	\f	U+000C	Form feed
	\n	U+000A	Newline (linefeed)
	\r	U+000D	Carriage return
	\t	U+0009	Horizontal tab
	\v	U+000B	Vertical tab
	\"	U+0022	Double-quote
	\&	n/a	Empty string
	\'	U+0027	Single quote
	\\	U+005C	Backslash




Multiline String Literals



To write a string literal that spans multiple lines, terminate one line
        with a backslash and resume the string with another backslash. An
        arbitrary amount of whitespace (of any kind) can fill the gap between
        the two backslashes:
"this is a \
	\long string,\
    \ spanning multiple lines"

ASCII Control Codes



Haskell recognizes the escaped use of the standard two- and three-letter
        abbreviations of ASCII control codes, shown in Table B-2.
Table B-2. ASCII control code abbreviations
	Escape	Unicode	Meaning
	\NUL	U+0000	Null character
	\SOH	U+0001	Start of heading
	\STX	U+0002	Start of text
	\ETX	U+0003	End of text
	\EOT	U+0004	End of transmission
	\ENQ	U+0005	Enquiry
	\ACK	U+0006	Acknowledge
	\BEL	U+0007	Bell
	\BS	U+0008	Backspace
	\HT	U+0009	Horizontal tab
	\LF	U+000A	Newline (linefeed)
	\VT	U+000B	Vertical tab
	\FF	U+000C	Form feed
	\CR	U+000D	Carriage return
	\SO	U+000E	Shift out
	\SI	U+000F	Shift in
	\DLE	U+0010	Data link escape
	\DC1	U+0011	Device control 1
	\DC2	U+0012	Device control 2
	\DC3	U+0013	Device control 3
	\DC4	U+0014	Device control 4
	\NAK	U+0015	Negative acknowledge
	\SYN	U+0016	Synchronous idle
	\ETB	U+0017	End of transmission block
	\CAN	U+0018	Cancel
	\EM	U+0019	End of medium
	\SUB	U+001A	Substitute
	\ESC	U+001B	Escape
	\FS	U+001C	File separator
	\GS	U+001D	Group separator
	\RS	U+001E	Record separator
	\US	U+001F	Unit separator
	\SP	U+0020	Space
	\DEL	U+007F	Delete




Control-with-Character Escapes



Haskell recognizes an alternate notation for control characters, which
        represents the archaic effect of pressing the Ctrl key on a keyboard
        and chording it with another key. These sequences begin with the
        characters \^, followed by a symbol
        or uppercase letter and are listed in Table B-3.
Table B-3. Control-with-character escapes
	Escape	Unicode	Meaning
	\^@	U+0000	Null character
	\^A through \^Z	U+0001 through U+001A	Control codes
	\^[	U+001B	Escape
	\^\	U+001C	File separator
	\^]	U+001D	Group separator
	\^^	U+001E	Record separator
	\^_	U+001F	Unit separator




Numeric Escapes



Haskell allows Unicode characters to be written using numeric escapes. A
        decimal character begins with a digit, e.g., \1234. A hexadecimal character begins with
        an x, e.g. \xbeef. An octal character begins with an
        o, e.g., \o1234.
The maximum value of a numeric literal
        is \1114111, which may also be
        written \x10ffff or \o4177777.

The Zero-Width Escape Sequence



String literals can contain a zero-width escape sequence, written \&. This is not a real character, as it
        represents the empty string:
ghci> "\&"
""
ghci> "foo\&bar"
"foobar"
The purpose of this escape sequence is
        to make it possible to write a numeric escape followed immediately by
        a regular ASCII digit:
ghci> "\130\&11"
"\130\&11"

Because the empty escape sequence
        represents an empty string, it is not legal in a character
        literal.



Index



A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.
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