
www.wrox.com

$44.99 USA
$53.99 CAN

Recommended
Computer Book

Categories

Programming Languages

PHP

ISBN: 978-0-470-49670-1

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers,
developers, and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

PHP is often considered to be the cornerstone for building
flexible and feature-rich web applications. Because
of its relatively simple initial learning curve, newer
programmers can easily create applications in PHP from
the ground up. As these applications scale, however,
the maintenance can seem daunting. Luckily, the
mature programming community has something to
offer: Design Patterns. These repeatable solutions for
common problems have been applied for years to other
programming languages. This book aims to bridge
the gap between the PHP and the older programming
language by applying those tried and tested Design
Patterns to native PHP applications.

This book starts with an introduction to Design Patterns,
describes their use and importance, and details where
you've seen them already. It continues through a host of
Design Patterns with code examples and explanations.
Finally, an in-depth case study shows you how to plan
your next application using Design Patterns, how to
program those patterns in PHP, and how to revise and
refactor an existing block of code using Design Patterns
from the book. The author approaches the concepts in
technical yet usable formats that are familiar to both
programmers who are self-taught and those with more
extensive formal education.

What you will learn from this book
● What Design Patterns are and why they matter in PHP
● Commonly established PHP Library usage of Design Patterns

● Faster and more efficient object creation with Design Patterns
like Builder, Façade, Prototype and Template

● Decoupled architecture using Data Access Object and Proxy
Design Patterns

● Better code flow and control using the Delegate, Factory and
Singleton Design Patterns

● How to implement Visitor and Decorator Design Patterns to
enhance objects without modifying their core

● Comprehensive plug-in creation techniques using Observer
Design Pattern

● How to plan application architecture using Design Patterns

● How to program a case study web site from start to finish with
Design Pattern based coding

● How to recognize architectural benefits from Design Patterns in
an existing application

● Methods to further strengthen code from case study analysis

Who this book is for
This book is for experienced PHP programmers who are looking to
enhance the quality of their code architecture with Design Patterns.

Professional

PHP Design Patterns
Saray

spine=.5625"

P
H

P
 D

esig
n P

atterns

Professional

Updates, source code, and Wrox technical support at www.wrox.com

PHP
Design Patterns
Aaron Saray

Professional

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

ffirs.indd ivffirs.indd iv 7/16/09 9:11:09 AM7/16/09 9:11:09 AM

Professional PHP Design Patterns

Introduction .. xxi

Part I: Getting Acquainted with Design Patterns and PHP

Chapter 1: Understanding Design Patterns ..3

Chapter 2: Using Tools Already In Your Arsenal ..11

Part II: Reference Material

Chapter 3: Adapter Pattern ...25

Chapter 4: Builder Pattern ..31

Chapter 5: Data Access Object Pattern ...37

Chapter 6: Decorator Pattern ..43

Chapter 7: Delegate Pattern ...49

Chapter 8: Façade Pattern ..55

Chapter 9: Factory Pattern ...61

Chapter 10: Interpreter Pattern ...67

Chapter 11: Iterator Pattern ...73

Chapter 12: Mediator Pattern ...79

Chapter 13: Observer Pattern ...85

Chapter 14: Prototype Pattern ..91

Chapter 15: Proxy Pattern ..97

Chapter 16: Singleton Pattern...103

Chapter 17: Strategy Pattern ..109

Chapter 18: Template Pattern ...115

Chapter 19: Visitor Pattern ...121
Continues

ffirs.indd iffirs.indd i 7/16/09 9:11:08 AM7/16/09 9:11:08 AM

Part III: PHP Design Case Study

Chapter 20: Requirements Analysis .. 129

Chapter 21: Choosing Design Patterns and Planning141

Chapter 22: Programming the Application ...159

Chapter 23: Improving with More Design Patterns 227

Index ...241

ffirs.indd iiffirs.indd ii 7/16/09 9:11:09 AM7/16/09 9:11:09 AM

Professional

PHP Design Patterns

ffirs.indd iiiffirs.indd iii 7/16/09 9:11:09 AM7/16/09 9:11:09 AM

ffirs.indd ivffirs.indd iv 7/16/09 9:11:09 AM7/16/09 9:11:09 AM

Professional

PHP Design Patterns

Aaron Saray

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 7/16/09 9:11:09 AM7/16/09 9:11:09 AM

Professional PHP Design Patterns
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-49670-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warran-
ties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2009931463

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd viffirs.indd vi 7/16/09 9:11:09 AM7/16/09 9:11:09 AM

To the big one for always being a
little bit better, and the little one for

reminding me that I can be.

ffirs.indd viiffirs.indd vii 7/16/09 9:11:10 AM7/16/09 9:11:10 AM

ffirs.indd viiiffirs.indd viii 7/16/09 9:11:10 AM7/16/09 9:11:10 AM

About the Author
Aaron Saray was introduced to a second-hand Commodore 64, with no persistent storage, when he was
8 years old. This fueled his appetite for computer science which carried him through many different
languages and computers. Aaron finally settled on PHP as his language of choice in 2001. From then on,
he continued to pepper in various other web languages such as HTML, CSS and JavaScript while
continually building on his PHP expertise. Along his career path, Aaron has designed and maintained
web site tools for an Internet Service Provider, created web based account management tools for
subscribers of a major dental insurance company and led the development efforts of back-office websites
for Internet connected Point of Sales systems. After becoming a Zend Certified Engineer, Aaron started
his own web development company based around open source software. He continues to release open
source software and keeps an updated PHP centric blog at aaronsaray.com.

ffirs.indd ixffirs.indd ix 7/16/09 9:11:10 AM7/16/09 9:11:10 AM

ffirs.indd xffirs.indd x 7/16/09 9:11:10 AM7/16/09 9:11:10 AM

Credits
Acquisitions Editor
Jenny Watson

Project Editor
Maureen Spears

Technical Editor
Steve Suehring

Production Editor
Kathleen Wisor

Copy Editor
Foxxe Editorial Services

Editorial Director
Robyn Siesky

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Dr. Nate Pritts, Word One

Indexer
Robert Swanson

ffirs.indd xiffirs.indd xi 7/16/09 9:11:10 AM7/16/09 9:11:10 AM

ffirs.indd xiiffirs.indd xii 7/16/09 9:11:11 AM7/16/09 9:11:11 AM

Acknowledgments

My technical people: Steve Suehring, James Rodenkirch, Billy Gilbert, Bruce Crevensten, Jason Keup
and Jared Alfson

My friends and family: The Gorals/Cains/Sarays, The Cichons, The Delta Ladies, and Mikey’s Crew

ffirs.indd xiiiffirs.indd xiii 7/16/09 9:11:11 AM7/16/09 9:11:11 AM

ffirs.indd xivffirs.indd xiv 7/16/09 9:11:11 AM7/16/09 9:11:11 AM

Contents

Introduction xxi

Part I: Getting Acquainted with Design Patterns and PHP

Chapter 1: Understanding Design Patterns 3

What Are They? 3
An All Too Common Example 3
Design Patterns Are Solving the Same Problem 4
Design Patterns Are Around You All the Time 5
The Common Parts of a Design Pattern 6

What Design Patterns Are Not 7
Design Patterns Are Not Plug and Play 7
Design Patterns are Maintainable But Not Always Most Efficient 8
Design Patterns are a Vehicle, Not a Refactoring End 8

Design Pattern Demonstration 8
Why Use Design Patterns in PHP? 9
Summary 9

Chapter 2: Using Tools Already In Your Arsenal 11

Patterns in Existing Frameworks 11
Design Patterns in PEAR 12
Design Patterns in the Zend Framework 13
Design Patterns in Doctrine 15

The Standard PHP Library 15
SPL Observer and SPL Subject 15
SPL Iterators 15

Using Eclipse PDT with Patterns 17
Code Snippets in Eclipse PDT 17

Summary 22

ftoc.indd xvftoc.indd xv 7/17/09 12:20:24 PM7/17/09 12:20:24 PM

Contents

xvi

Part II: Reference Material

Chapter 3: Adapter Pattern 25

Problem and Solution 25
UML 27
Code Examples 27

Chapter 4: Builder Pattern 31

Problem and Solution 31
UML 33
Code Example 34

Chapter 5: Data Access Object Pattern 37

Problem and Solution 37
UML 38
Code Example 39

Chapter 6: Decorator Pattern 43

Problem and Solution 43
UML 45
Code Example 45

Chapter 7: Delegate Pattern 49

Problem and Solution 49
UML 50
Code Example 51

Chapter 8: Façade Pattern 55

Problem and Solution 55
UML 56
Code Example 57

Chapter 9: Factory Pattern 61

Problem and Solution 61
UML 62
Code Example 63

ftoc.indd xviftoc.indd xvi 7/17/09 12:20:25 PM7/17/09 12:20:25 PM

Contents

xvii

Chapter 10: Interpreter Pattern 67

Problem and Solution 67
UML 69
Code Example 69

Chapter 11: Iterator Pattern 73

Problem and Solution 73
UML 75
Code Example 75

Chapter 12: Mediator Pattern 79

Problem and Solution 79
UML 80
Code Example 81

Chapter 13: Observer Pattern 85

Problem and Solution 86
UML 87
Code Example 87

Chapter 14: Prototype Pattern 91

Problem and Solution 91
UML 93
Code Example 93

Chapter 15: Proxy Pattern 97

Problem and Solution 97
UML 99
Code Example 99

Chapter 16: Singleton Pattern 103

Problem and Solution 103
UML 105
Code Example 105

ftoc.indd xviiftoc.indd xvii 7/17/09 12:20:25 PM7/17/09 12:20:25 PM

Contents

xviii

Chapter 17: Strategy Pattern 109

Problem and Solution 109
UML 111
Code Example 111

Chapter 18: Template Pattern 115

Problem and Solution 115
UML 117
Code Example 117

Chapter 19: Visitor Pattern 121

Problem and Solution 121
UML 123
Code Example 123

Part III: PHP Design Case Study

Chapter 20: Requirements Analysis 129

Initial Requirements 130
Executive Summary 130
Scope 130
Assumptions/Constraints 131
Detailed Requirements 131

Initial Requirements Analysis 132
Size/User Scale 133
Type of Contact Information 133
Application Access 134
Contacts Sync 135
User Credentials 136

Updated Requirements Document 136
Executive Summary 136
Assumptions/Constraints 137
Detailed Requirements 137

Updated Requirements Discussion 138
Summary 139

ftoc.indd xviiiftoc.indd xviii 7/17/09 12:20:25 PM7/17/09 12:20:25 PM

Contents

xix

Chapter 21: Choosing Design Patterns and Planning 141

Designing the Core 141
Designing User Interaction 143

Authentication and Authorization 143
Creating, Editing, and Deleting Users 148
Providing Admin Access to All Users 149

Designing Contact Administration 151
Working with Contacts and Information 152
Contact Information Relationships 153
Importing Contacts 153
Viewing Contacts 155

Summary 158

Chapter 22: Programming the Application 159

Information Preparation 159
Application Programming 161

Programming the Core of the Application 161
Programming User Interaction and Administration 175
Programming Contact Administration 197

Summary 226

Chapter 23: Improving with More Design Patterns 227

 Working with Contacts Import 227
 Outlook Contact Adapter 228
 Building the Contacts Array 231

Removing Logic from Views 233
 Modifying the Single View of a Contact 234

Try Implementing Design Patterns 236
 Design Patterns and Error Checking 237
 Design Patterns and Contact Administration 237
 Design Patterns and View Types 237
 Design Patterns and Deleting Objects 238
 Share Your Design Pattern Work 238

Summary 238

Index 241

ftoc.indd xixftoc.indd xix 7/17/09 12:20:25 PM7/17/09 12:20:25 PM

ftoc.indd xxftoc.indd xx 7/17/09 12:20:26 PM7/17/09 12:20:26 PM

 Introduction

 PHP is mainstream. Wherever you look, you will see PHP meet - ups, job openings, and major companies
using this open source language to support their business. An open source language with such humble
beginnings is now heavily rooted in the enterprise world. PHP is brushing shoulders with the “ the big
kids ” now — the enterprise - level languages with support from companies like IBM and Microsoft. This
friendly confluence brings in new blood and new ideas. One of the most notable new pushes is to
develop PHP applications in a more robust, scalable, businessworthy deployment. Programmers who
have been around much longer than PHP have introduced great concepts to the PHP audience along
these lines. In this book, the focus is on one major concept: Design Patterns.

 Who This Book Is For
 When determining a target audience for this book, I had to make some difficult decisions. Should I write
for the beginning coder who is just learning PHP and its features and concepts, or should I focus more
on the programmers with many years of experience? Should any assumptions be made about the level of
expertise the reader has with PHP ’ s object - oriented features? Do I need to continue to include support
for PHP4? (It may be easy to answer that last question: “ No, PHP4 is no longer supported. ” However,
considering that it is still deployed in the wild, with developers still tasked to create new functionality,
the answer isn ’ t so easily decided.) In order for the book to reach the widest audience for implementing
Design Patterns in PHP, while not becoming a PHP language reference, the following guidelines apply to
the audience requirements of this book.

 The reader:

 Must be thoroughly experienced in the PHP language or at least have http://php.net
bookmarked. Some examples may use functions that a beginning programmer may not have
run into before.

 Must have an intermediate to advanced understanding of Object Oriented Programming (OOP)
techniques in PHP. Intermediate - level OOP programmers will find Chapter 2 ’ s investigation
into the more advanced OO features of PHP very useful.

 Must be using PHP5 or above to both have the full set of object - oriented features available as
well as execute the examples and case study code .

 Should be familiar with the Universal Modeling Language (UML) .

 Simply put, the examples and concepts used in this book are going to be most useful to programmers
who have some experience building interactive applications at least as complex as a blog. If you ’ ve only
used PHP for very simple things like templating or contact forms, you may find it harder to follow the
pattern chapters.

❑

❑

❑

❑

flast.indd xxiflast.indd xxi 7/16/09 9:12:06 AM7/16/09 9:12:06 AM

Introduction

xxii

 How This Book Is Structured
 There are three parts to this book: Introductory Chapters, Reference Chapters, and Case Study Chapters.
Each follows a different cadence with its own emphasis.

 Introduction Chapters
 The first chapter is both an introduction to Design Patterns and a call to be dedicated to using them in
PHP. Those talented PHP programmers out in the world are always hungry for new knowledge. This
chapter aims to expand their realm of hunger from just PHP - based concepts to the more architecturally
sound Design Patterns realm.

 The second chapter focuses more on the tools that are available in PHP to build the roots of these Design
Pattern concepts. Reviewing such things as the intermediate and advanced OOP features of PHP, the
Standard PHP Library, and the existing open source PHP frameworks that are common will help make
concrete the coupling of PHP and Design Patterns.

 Reference Chapters
 The reference chapters are the middle chapters or the actual Design Pattern meat - and - potato portion of
the book. They will be broken down into four main parts: the name, the problem and solution, UML
diagrams, and finally a quick object - oriented code example. These cover the main functional portions of
Design Pattern, while not being overly verbose. (If you ’ re familiar with other books on Design Patterns,
you may recognize my approach as being more simplistic than the 8 to 10 sections included in most
other documentation standards.)

 The Case Study
 The last portion of the book is an in - depth case study, where I cover the exact specifications of the project
and proposal, the analysis of the patterns available, and then the step - by - step approach for applying
these.

 Feature Analysis
 Generally, when you receive a set of specifications, they ’ re not in final form. During your initial review,
your mind should already be spinning with ideas about the architecture. You ’ ll want to explore the
requirements to determine if it is a singular instance only ever used once or an extensible project. What
kinds of features are planned for the future? In cases where you ’ re not a subject matter expert, you may
need to obtain answers to specific questions that are assumed to be known by the business analysts.

 In the case study, you ’ ll receive the specifications from the client. I ’ m going to iterate through the
thought process of reviewing the specifications, asking questions, and getting clarifications. This section
will end with the updated specifications document.

 Pattern Analysis
 Any project that you do should start with an analysis phase. I ’ ve seen too many instances where
programmers hit the ground running, either blaming it on such a short timetable or just being overly

flast.indd xxiiflast.indd xxii 7/16/09 9:12:06 AM7/16/09 9:12:06 AM

Introduction

xxiii

exuberant to get the project going. It ’ s important to take a step back, look at the specifications, and start
to determine a plan of attack.

 In the case study pattern analysis, you ’ re going to sketch your basic design and business flow, and then
turn to the architecture. You ’ ll compare different ways to solve the problem using the pattern arsenal and
create UML diagrams of your patterns customized with specific business logic and rules.

 Step - by - Step Code Creation
 This is the section of the case study that goes a bit awry from the main expectations set for this book.
This section contains extensive code examples based on UML diagrams. It steps you through the exact
thought process behind building each portion of the application from the pattern level. The focus isn ’ t
the analysis of language specific features, however. Intermediate programmers may need to reference the
PHP manual from time to time.

 With the completion of the code, you ’ ll take a run back over your application and review all your choices
to make sure that no other pattern is a better fit now that you have the whole picture in place. Design
Patterns are not meant to be strict rules that you must adhere to but building blocks and framing points
for your application. It ’ s not unheard of or “ illegal ” to swap out a Design Pattern farther along into the
project to create a more architecturally sound code base.

 What You Need to Use This Book
 Because a good portion of this book is more conceptual than practical, the requirements are pretty
simple:

 Windows or Linux operating system

 PHP 5.2 or above

 MySQL 5.0 or above

 Chances are that most of the sample code will work even if you don ’ t stick to these requirements.
However, the last case study will require these specific versions.

 Conventions
 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of
conventions throughout the book.

 Boxes like this one hold important, not - to - be forgotten information that is directly rele-
vant to the surrounding text.

 Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

❑

❑

❑

flast.indd xxiiiflast.indd xxiii 7/16/09 9:12:07 AM7/16/09 9:12:07 AM

Introduction

xxiv

 As for styles in the text:

 We highlight new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show filenames, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that’s particularly important in the
present context.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com . Once at the site, simply locate the book ’ s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book ’ s
detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 49670 - 1.

 Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher -
 quality information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book ’ s errata, is also available at www.wrox.com/misc - pages/booklist
.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We ’ ll check the information and,
if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions of the
book.

❑

❑

❑

❑

flast.indd xxivflast.indd xxiv 7/16/09 9:12:07 AM7/16/09 9:12:07 AM

Introduction

xxv

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At http://p2p.wrox.com , you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum e -
 mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxvflast.indd xxv 7/16/09 9:12:07 AM7/16/09 9:12:07 AM

flast.indd xxviflast.indd xxvi 7/16/09 9:12:08 AM7/16/09 9:12:08 AM

Professional

PHP Design Patterns

flast.indd xxviiflast.indd xxvii 7/16/09 9:12:08 AM7/16/09 9:12:08 AM

flast.indd xxviiiflast.indd xxviii 7/16/09 9:12:08 AM7/16/09 9:12:08 AM

Part I

Getting Acquainted
with Design Patterns

and PHP

Chapter 1: Understanding Design Patterns

Chapter 2: Using Tools Already In Your Arsenal

c01.indd 1c01.indd 1 7/17/09 12:17:41 PM7/17/09 12:17:41 PM

c01.indd 2c01.indd 2 7/17/09 12:17:43 PM7/17/09 12:17:43 PM

 Understanding Design
Patterns

 Usually when I pick up a book and see a chapter longer than five pages about a topic that I ’ m not
the most familiar with, I tend to get scared. More than five pages may see me dropping the book
and running away, flailing my arms and shouting about how tough these computers are! While
this chapter may be longer than five pages, don ’ t be discouraged. The term Design Pattern is just a
fancy name for something that is not all that complex. A good portion of this chapter is taking
what you may already know and use regularly and refining it to a more concise definition. So, let ’ s
jump in and see what Design Patterns really are.

 What Are They?
 The story of Steve that follows helps describe Design Patterns in a real - world context. I ’ m hoping
that you ’ re not too familiar with this story!

 An All Too Common Example
 Steve works at a large insurance firm. His most recent task was developing a way to show customer
information to the call center representatives over a web interface. He designed a complex system
that would allow the reps to search for a customer, enter call logs, update customer coverage
information, and process payments. The system went into place smoothly, minus the few bumps
and hiccups that a new installation in a production environment always runs into. Steve is happy,
relaxed, and ready to sit back in the break room sipping his free coffee.

 Overnight, the insurance company triples in size from its most recent investment. Not only is Steve
called back to work on providing new scalability and enhancements to the call center software but
there has also been buzz about adding some new features to the corporate site to support the new
acquisition ’ s customers. Steve ’ s department is also increased to include two new developers, Andy
and Jason.

c01.indd 3c01.indd 3 7/17/09 12:17:43 PM7/17/09 12:17:43 PM

Part I: Getting Acquainted with Design Patterns and PHP

4

 The news comes down from the vice president that the corporate site needs to allow customers to
process their payments after they have completed a successful, secure user log in. Additionally, the
system needs to show how many times the customer has called in to the call center. Finally, it needs to
show an audit log of every change the call center has made to the customer ’ s account.

 Steve knows that he can easily update the call center software to provide the audit log and then copy
over the code, tweak it, and make use of the payment processing. However, the new programmers need
to be tasked without much time to get up to speed on the new system. Steve ’ s boss has assigned them
the portions of the project that Steve is most familiar with. Since Steve is the rock - star PHP programmer
with the most experience, his boss needs him to work on the other portions of the corporate site as soon
as possible after which he ’ ll then come around and make use of the new programmers ’ changes to the
auditing on the call center software. In the end, it will be his responsibility to provide hooks for the new
payment - processing portion of the user login screen.

 Steve ’ s code isn ’ t bad, but it seems to be taking Jason a bit longer to follow through and port the
payment - processing portion into the corporate site. Instead, he determines he could finish faster by
writing it in his own method. He mentions this to Steve and continues on his way. Andy is also
struggling. Since his Master ’ s in computer science is newly acquired, he hasn ’ t had much time to gain
experience with the jumbled code that sometimes supports existing enterprises.

 Through much struggle and late nights, the team is successful and deploys the new code changes. Andy
feels like everything could have been architected better. Steve thinks that if the other programmers
would have just copied and pasted his code, things would have gone must faster; Jason and Andy just
needed to make a few tweaks and it would have been solid. Jason mentioned that he was confused about
why some functionality was implemented in one way in one section of the code and in a different way in
a different piece. That is what threw him off.

 As the website continues to gain more visitors, the performance begins to suffer. Steve ’ s boss suggests
that the team take a few days and look at the code for optimization.

 Jason discovers that the method that he wrote for payment processing is nearly the same as Steve ’ s. Jason
combines and tweaks the methods into one class. Steve is starting to see similarities between the
authentication code that he wrote for the call center site and the classes he authored for the corporate
site ’ s user login. Andy is realizing that every PHP page they create has the same set of function calls at the
top of it. He creates a bootstrap type class to bring this all into one location to reduce code duplication.

 From outside this example, you can objectively see many things. Steve ’ s code could have benefited from
commonality in its approach. Andy ’ s formal education in software design made him sometimes question
PHP ’ s ability to accomplish the tasks and question the architecture. Jason couldn ’ t easily understand
Steve ’ s payment system, so he opted to create his own, causing code duplication. Finally, after the
software analysis, the team started discovering patterns in their seemingly jumbled code base. This is
the beginning of this team ’ s foray into Design Patterns.

 Design Patterns Are Solving the Same Problem
 In the previous example, Steve ’ s team stumbled into the first important part of the Design Pattern
concept. Patterns are not intentionally created in software development. They are more often discovered
through practice and application in real - world situations. The payment application system and the
bootstrap type calls being consolidated into classes are examples of identifying patterns in programming.

c01.indd 4c01.indd 4 7/17/09 12:17:44 PM7/17/09 12:17:44 PM

Chapter 1: Understanding Design Patterns

5

 It was once said that every single piece of music that could be written already has been. Now, new music
creation is just the rearranging of those particular sets of notes to different tempos and speeds. It ’ s the
same with general software development, barring a few major groundbreaking exceptions. The same
problems come up repeatedly and require common solutions. This is exactly what Design Patterns
are: reusable solutions for these common problems.

 No book mentioning Design Patterns would be complete without the reference to the Gang of Four : Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, authors of the original Design Patterns book.
After a considerable amount of time in the field, they started noticing particular patterns of design
emerging from various development projects. Collectively, they gathered these ideas together to form the
initial Design Patterns concept. Recognizing these as templates for future development, they were able to
put them into an easy - to - understand reference with digestible segments for large, complex programming
concepts.

 While Design Patterns can encompass many things — from interface design to architecture, and even
marketing and metrics — this particular book will focus on development language construction using
Object Oriented Programming.

 A problem in software design consists of three parts:

 The “ what ” is considered the business and functionality requirements.

 The “ how ” is the particular design that you use to meet those requirements.

 The “ work ” is the actual implementation, or the “ how ” put into actual application and practice.

Design Patterns fit into the “ how ” of this process, and as a result, this book describes the “ how ” of
solving these problems as well as portions of the “ work ” necessary to make these solutions successful.
You can picture PHP as the vehicle behind the “ why ” of the problem solving. Once you know “ what ”
the software needs to do, and you ’ ve designed “ how ” it can do it, the “ work ” becomes a lot easier with a
lot less refactoring.

 I can ’ t stress this enough: the PHP language, your grasp of it and the way you understand its intricacies
is not the focus of this book. Instead, I bring common, time tested methodologies into focus, describe
them, and relate them to PHP.

 Patterns naturally start to come out of software development, as you saw in the example. However,
having a full playbook that references existing patterns can make the architecture planning faster and the
choices better. As an added bonus, programmers coming from different software realms may recognize
the pattern and just have to adapt to the specifics of the language. Having a clear set of patterns in your
application may also help new members of your team grasp your project, lowering your ramp - up time.

 Design Patterns Are Around You All the Time
 You ’ ve seen how Steve ’ s team was able to grasp basic patterns in their software and create reusable
items. You may also be able to draw parallels to your own software development now. How many times
have you created the same user login and authentication system using your user class? Do you have a
 db() function sitting around somewhere that you favor? These are examples of how you ’ ve already
been using patterns.

❑

❑

❑

c01.indd 5c01.indd 5 7/17/09 12:17:44 PM7/17/09 12:17:44 PM

Part I: Getting Acquainted with Design Patterns and PHP

6

 Even more detailed and closer to the root patterns are examples found in your favorite PEAR or other
framework libraries. For example, using PEAR DB is an example of putting a Design Pattern into use
(notably the factory method). The Zend Framework also uses various different patterns such as the
Singleton and the Adapter patterns.

 The Common Parts of a Design Pattern
 The Gang of Four pioneered a documentation standard for describing Design Patterns. They used this in
their book for each of the patterns that they mentioned. Authors after them have copied this exact format
and continued to propagate this form of documentation. I was a little bit less verbose with you because
I felt a lot of the sections either reiterated the sections above them or were just there for structure ’ s sake.
The introduction to this book mentions the four main parts of each pattern ’ s documentation: the name, the
problem and solution, the Universal Modeling Language (UML) diagram, and the code example.

 The Name
 The name is actually more important in Design Patterns than you may initially guess it is. Proper
descriptive naming conventions can go a long way toward explaining the behavior and relationship of
the pattern to the project and other patterns.

 In the example for this chapter, you saw how Jason mentioned to Steve that he was going to rewrite a
portion of the payment - processing system. Since Steve was the senior programmer, he may not have
necessarily agreed with the approach that Jason was using, but he certainly could have suggested some
patterns to be used in that rewrite ’ s architecture. This way, the entire team would both be familiar with
the underlying concepts of the payment system, with Jason specializing in the exact implementation.

 Problem and Solution
 As mentioned previously, Design Patterns are what emerge from solving the same problem with the
same general solution. This section of the description covers the main problem or problems in your
project and then shows how this particular Design Pattern is one of the better solutions.

 As you may have noticed, I didn ’ t use the phrase “ the best solution ” because no one can say this
definitively. Even if you find what you believe is the best Design Pattern for a particular problem, you ’ re
going to have to apply a certain amount of tweaking to it in order for it to fit perfectly into your project.

 UML Diagram
 The UML diagram will show the general structure of the pattern. In some cases, it may be necessary to
generate more than one diagram to show additional implementations of the pattern or to illustrate a
complex concept in easier - to - understand segments.

 What is UML?
 Unified Modeling Language (UML) diagrams should be a staple in your programming
arsenal. UML is a standard way to diagram programming actions, objects and use
cases. This helps communicate your design when building complex software in PHP.
For a quick refresher on UML, visit the http://Wikipedia.org/wiki/Unified_
Modeling_Language page on Wikipedia .

c01.indd 6c01.indd 6 7/17/09 12:17:45 PM7/17/09 12:17:45 PM

Chapter 1: Understanding Design Patterns

7

 You may find that the building blocks for generating your own UML diagrams for your project can be
loosely based on these generic pattern diagrams. Of course, your method names, class names, and
attributes will vary and be more complex than those in the example.

 The Code Example
 Hands - on PHP programmers are finally rejoicing: the code examples. These are going to be relatively
simple examples of the Design Pattern concept put into PHP code. The bonus here in having a PHP -
 based Design Patterns book is that you don ’ t necessarily need to know another language to see an
example of this pattern. (Other books focusing on Enterprise Design Patterns have used Java or C
examples, somewhat taking away the effectiveness of the example to a sole - language programmer.)

 I continue to reiterate: the code examples are simply that. They are not meant to be plug and play. They
may not contain error logging or handling, auditing, or wholly secure programming techniques. This is
not to say that I don ’ t appreciate high - quality, secure programming (previous teammate programmers of
mine can confirm that I ’ m a stickler for details), but it would distract from the main concept that I ’ m
trying to explain.

 What Design Patterns Are Not
 It ’ s important to rein in the explanation of Design Patterns by also talking about what they don ’ t
encompass. Up until now, you may have noticed that I ’ ve created a pretty large umbrella of coverage for
the Design Pattern definition.

 Design Patterns Are Not Plug and Play
 If you ’ re expecting to flip to the Design Pattern pages of this book and see full examples that you can
quickly copy and paste for your next project, you will be sadly disappointed. Design Patterns are not just
a simple plug and play solution to your programming project.

 Design Patterns are not the actual implementation or even the algorithm for solving the problem. For
example, you may create a design such that every house you construct has windows in the south to let in
more heat and light. You are not actually doing the constructing with exact measurements and locations
of the windows. You just hand over your design to the builder (programmer in our case), and they
implement it.

 Another analogous way to view Design Patterns is to compare them to musical notes on a scale. You
may know all the notes in a minor scale, but playing them exactly in order and in the same tempo does
not make an enjoyable song. You can ’ t open up a scale book, grab the scale, play it on guitar, and expect
everyone to think you ’ re an amazing song writer. It would be quite boring and wouldn ’ t solve the
problem your music is made for: to demonstrate a specific set of emotions via art. In this way, Design
Patterns are like those scales in the book. While they are the building blocks of a great solo, it is up to
you to apply them, tweak them, and create a great song.

c01.indd 7c01.indd 7 7/17/09 12:17:45 PM7/17/09 12:17:45 PM

Part I: Getting Acquainted with Design Patterns and PHP

8

 Design Patterns are Maintainable But Not Always
Most Efficient

 Design patterns don ’ t always lend themselves to the greatest efficiency and speed in applications either.
The goal of a Design Pattern is to help you design a solution in an easily repeatable and reusable way.
This means the Pattern may not be specifically tailored to your situation but will have greater code
maintainability and understandability.

 Design Patterns are a Vehicle, Not a Refactoring End
 A particular supervisor of mine just finished reading a book by Joshua Kerievsky and came to me with
his newly acquired knowledge. He told me that we need to refactor our code base to use all Design
Patterns. We had a discussion about what refactoring really meant, especially in our context.

 While respecting Kerievsky and not disagreeing, I do feel that a greater distinction should be maintained
when coupling Design Patterns to refactoring. Refactoring approaches both creating a more efficient
code base and improving the maintainability and clarity of the code. Design Patterns are a great vehicle
for your refactoring approach, but shouldn ’ t be the destination. While I ’ m in favor of starting a project
with a highly detailed set of Design Pattern architecture specs, I don ’ t want to force something into a
pattern for patterns ’ sake. Imagine if the first rock bands in existence threw a piano into the mix just
because everyone else in music was doing it, and they thought they had to. You wouldn ’ t have that
classic guitar - driven rock music that we ’ ve come to love!

 Design Pattern Demonstration
 Most examples of Design Patterns historically have been very sparse and theoretical so as not to have the
reader confuse the core concepts with language - agnostic features. Readers who have studied Design
Patterns, or even Object Oriented Programming before will be very familiar with the ever - present
square, circle, and oval object examples.

 The debate rages on about Design Pattern books using simple objects like squares or people in their
examples. Purists say you should detail the Design Pattern concepts and practice and give the
simplest examples possible so as not to distract from the actual implementation of the pattern.
(These are the people that hated story problems in math class because of all the extra information!) In my
experience, self - taught PHP programmers prefer to see more thorough examples of the concept in code
form. (They probably learned a lot by copy and paste coding when they first started.)

 The Design Patterns in this book do contain small to medium - sized examples of PHP code to
demonstrate the pattern. This dual - phased approach combines the actual conceptual explanation of the
pattern for those who need that particular structure with the example - based pattern demonstration for
those who are more hands - on learners.

 The reference pages of this book will be more satisfying to the purists, while the case study section at the
end will satisfy the code - example - hungry readers. For more information on the references pages, skip to
the next section to see how they will be laid out.

c01.indd 8c01.indd 8 7/17/09 12:17:46 PM7/17/09 12:17:46 PM

Chapter 1: Understanding Design Patterns

9

 Why Use Design Patterns in PHP?
 PHP has a very easy beginner ’ s learning curve with the backing of an enterprise - ready engine. Chances
are that you ventured into PHP by inserting a few lines of code into an existing HTML document. Simply
change the extension from .html to .php , add your quick snippet of code, deploy it to a PHP server, and
you ’ re a bona - fide PHP programmer. Up until the advent of the Zend Certified Engineer (ZCE)
certification, there was no real measurement of a PHP programmer ’ s prowess. Even after becoming a
ZCE, programmers can still lack some of the essentials for developing enterprise - ready, architecturally
sound application software.

 As if the example in the beginning of the chapter weren ’ t enough encouragement, more business - class
players are coming on board with PHP. PHP ’ s humble roots have left it somewhat devoid of the
limelight of major enterprise - level programming languages. However, the hard work of Zend as well as
the adoption of PHP by large Internet companies (such as Yahoo! and Amazon) has shown that PHP is
enterprise ready. With the introduction of enterprise - level software requirements, enterprise - level
methodology is to follow.

 PHP now has support for a lot of the building blocks behind the concepts you ’ re going to study. Perhaps
during the era of PHP3 or PHP/FI, applying these styles of patterns may have been more difficult if not
impossible. Don ’ t get me wrong; there are always patterns in language; it ’ s just that this book and its
examples wouldn ’ t have been nearly as useful!

 Summary
 This chapter discussed the prevalence of patterns in your normal programming by using an everyday
programming example. By extending your understanding of patterns, you can make correlations to
actual Design Patterns. Examining the realm that Design Patterns encompass, and what they do not,
provided a more concise definition. Finally, the case was made for using Design Patterns in PHP by
pointing out PHP ’ s support for building base Design Patterns as well as mentioning PHP ’ s position
among some of the greater enterprise partners.

 Now that you have an understanding of what Design Patterns are, let ’ s move on to discovering what
PHP already has available to help you out.

c01.indd 9c01.indd 9 7/17/09 12:17:46 PM7/17/09 12:17:46 PM

c01.indd 10c01.indd 10 7/17/09 12:17:46 PM7/17/09 12:17:46 PM

 Using Tools Already
In Your Arsenal

 Now that you ’ ve got a pretty good idea what Design Patterns are from Chapter 1, you can take a
look at your current arsenal and see where they have already infiltrated. After which, you ’ ll learn
ways to make it easier to increase that penetration.

 Common PHP frameworks and libraries such as PEAR and the Zend Framework were mentioned
in the last chapter. In this chapter, you ’ re going to look a bit deeper at those to pull out more
details of Design Patterns in use. You ’ ll then touch on an additional framework that you might also
have heard of.

 PHP 5 introduced a new standard set of classes and functions known as the SPL. After a quick
introduction, this chapter examines what functionality may be useful when creating code
examples of the Design Patterns for the reference chapters.

 Finally, you ’ ll finish up this chapter by looking at features of the Eclipse PDT IDE that can help
with Design Pattern creation and duplication.

 Patterns in Existing Frameworks
 Some of the things that make the most common PHP frameworks so successful are their careful
architecture, maintainability, and extensibility. This is all a tribute to the proper use of Design
Patterns in their initial architecture. This section pulls out a couple of examples of the use of
these patterns for each framework. The goal is to demonstrate even more the proliferation of these
patterns throughout your daily programming so that the reference chapters seem less daunting.
If you see an example of a Design Pattern being featured in one of these frameworks, feel free to
page ahead to that reference chapter to learn more about it.

c02.indd 11c02.indd 11 7/16/09 8:45:22 AM7/16/09 8:45:22 AM

12

Part I: Getting Acquainted with Design Patterns and PHP

 It is important to reiterate that a Design Pattern is simply a template for constructing your program. Not
every Design Pattern – based architecture will be one object to a pattern, nor will it follow the exact book
specifications of that pattern. You will very often find classes created with more than one Design Pattern
or that the base pattern has been heavily tweaked to fit into the particular context.

 Design Patterns in PEAR
 PEAR is one of the oldest libraries of PHP extensions. PEAR stands for PHP Extension of Application
Repository. The PEAR website ’ s quick summary of PEAR almost screams the potential for being a great
example for Design Patterns, specifically this phrasing: “ for reusable PHP components. ” While the
newest versions of PHP are no longer bundling PEAR into the core distribution, I ’ m sure that you ’ ve run
into PEAR in your existing PHP Programming experience. PEAR seems to be falling slightly behind in
the race as other frameworks gain greater traction. However, PEAR still has some great functionality and
Design Pattern – centric architecture examples.

 To examine the Design Pattern immersion of PEAR, this section reviews various PEAR libraries and
indicates which design patterns they implemented during architectural planning. There are hundreds of
PEAR classes with undoubtedly more demonstrations of Design Pattern – based design.

 PEAR Mail
 The PEAR Mail class is an interface created to send mail using various backend systems, including
PHP ’ s mail function, sendmail, and SMTP.

 In the 1.2.0b1 version of this class, the Mail.php file contains an instance of the factory class around line
49. (Chapter 9 defines the Factory Design Pattern.) You ’ ll learn about that particular pattern in the
reference pages. The good news is that, if you ’ ve used this class, you ’ ve already used the Factory pattern
in your applications!

 PEAR Mail also includes a mock object for testing the e - mail functionality. Using a function to add pre -
and post - send handlers, and calling these handlers when executing the send method, is very close to an
Observer Design Pattern. (Chapter 13 defines the Observer Design pattern.) Remember, patterns are just
the base blueprint for your architecture design. You may find during implementation that you need to
modify the pattern to fit your requirements as was done in the mock object here.

 PEAR MDB2
 PEAR MDB2 is a database abstraction layer for all of PHP ’ s supported relational database management
system (RDBMS). MDB2 ’ s documentation boasts a heavily object - oriented API that predicts a great
potential for Design Pattern – saturated architecture.

 When reviewing version 2.5.0b2, I ’ ve found that MDB2 uses the Factory pattern again at around line 377
of mdb2.php . It looks like PEAR programmers heavily relied on the Factory pattern when creating this
repository. MDB2 also protects itself from duplication by using the Singleton pattern around line 484 of
 mdb2.php . (Chapter 16 defines the Singleton Design pattern.)

 Finally, a great example of the Iterator pattern can be found in the iterator.php file around line 54.
(Chapter 11 defines the Iterator Define pattern.) This example is by far the most detailed implementation

c02.indd 12c02.indd 12 7/16/09 8:45:23 AM7/16/09 8:45:23 AM

Chapter 2: Using Tools Already In Your Arsenal

13

of a Design Pattern so far. This implementation also extends functionality from the Standard PHP
Library, which is discussed later on in this chapter.

 PEAR DB DataObject
 One of the clearest examples of a Design Pattern put into practice in PEAR is the DB DataObject .
(Chapter 5 defines the Data Access Object Design pattern.) Instead of pointing to various portions of this
class where the patterns are implemented, I suggest that you review the whole structure. From start to
finish, this is a great example of a Design Pattern implemented in a solid but not overly verbose way. As
explained in Chapter 1, code based on Design Patterns is rarely plug and play. This class pays homage to
that notion by requiring the base DataObject class to be extended by your own code to be usable.

 PEAR Log
 The PEAR Log package is an abstract logging framework with hooks for files, databases, syslog, e - mail,
Firebug, and the console. Version 1.11.3 uses the standard Factory (line 151 of Log.php) and Singleton
(line 213 of Log.php) patterns. The Log package makes use of the Observer pattern (line 769 of Log.php)
to handle some of this extensibility.

 Design Patterns in the Zend Framework
 Zend, the company behind PHP, is best known for the PHP engine. They continue to grow by offering
more professional services for PHP and additional software products like the Zend Optimizer and the
Zend Studio. With all of this experience, Zend was the perfect organization to aggregate the newest Web
2.0 functionality, Design Patterns and old staples into one framework.

 The Zend Framework is a simple, object oriented framework and library built on best practices. You can
bet you ’ ll see some of these Design Patterns built into the architecture of this framework! When
reviewing the Zend Framework, I ’ m going to focus on individual design patterns directly and indicate
which modules of the framework they ’ re part of. We will be using version 1.6 of the Zend Framework
for this book ’ s examples.

 The Singleton Pattern in Zend Framework
 One of the most common patterns demonstrated in the Zend Framework is the Singleton pattern. Briefly,
the Singleton is a Design Pattern that aims to allow only one instance of the base object.

 The Auth module uses the getInstance() method around line 68 of Auth.php to create a Singleton
instance. The Feed module uses two functions, setHttpClient() and getHttpClient() to store a
single instance of the connection. The Layout module uses a Singleton pattern to contain only one
instance of a Layout. Finally, the Registry class also uses its own getInstance() method on about line
49 of Registry.php . (Some authors have listed Registry as its own Design Pattern, but I humbly
disagree and view it as almost a language extension or an organizational pattern.)

 The Factory Pattern in Zend Framework
 The next most common design pattern in Zend Framework is the Factory pattern. The Factory pattern
basically creates an interface to instantiate different objects in a similar way.

c02.indd 13c02.indd 13 7/16/09 8:45:23 AM7/16/09 8:45:23 AM

14

Part I: Getting Acquainted with Design Patterns and PHP

 The Cache module of Zend Framework has a method named factory() , which is responsible for this
functionality. This particular method (line 82 of Cache.php) demonstrates the Factory pattern well by
looking at the exterior usage of the method compared to the complex logic contained within to generate
new classes. The Db module also uses a method named factory() to create instances of the Db
connections. Database abstraction is a great example of the need for the Factory pattern; both Zend
Framework and PEAR have proven this. The Uri module is a more traditional example of the Factory
pattern. It uses more control structures to determine the proper class to instantiate and return. The
 switch statement is located near line 107 in Uri.php .

 The Iterator Pattern in Zend Framework
 The Iterator Design Pattern is also an important pattern that is implemented in the Zend
Framework. The Iterator pattern is simply a design of an object that makes it traversable. Imagine this to
be like casting an object ’ s properties to an array in PHP.

 The Config module is used to store configuration options, which surely need to be accessed
programmatically. The necessity to make some options read - only solidifies the need to create an
 Iterator object instead of just using a plain array in PHP. This is done in PHP by implementing
the Iterator interface when the Config class is created. The Form module is another implementation
of the Iterator pattern in which the various elements of the HTML form can be stepped through. The
Paginator module is one of the most obvious candidates for iteration, as pagination has the iteration of
individual results at its core.

 The Adapter Pattern in the Zend Framework
 The Adapter Design Pattern has been instrumental in giving the Zend Framework that ease of
implementation that it boasts. (Chapter 3 defines the Adapter Design pattern.) The Adapter pattern
creates an interface that changes one object ’ s methods to something that another object expects.

 A portion of the Db suite of files located in the Zend/Db/Adapter folder contain classes that create a
simple structure for calling common functions in databases such as Db2, MySQL, and Oracle. This
pattern allows the programmer to call a method like connect() without having to worry about the
exact DSN and PHP function calls to build it. The InfoCard module has two functions, called
 setAdapter() and getAdapter() , located at line 127 and 139 in InfoCard.php . This allows each call
to the public methods to function the same regardless of the actual logic contained inside of them. The
Paginator module, in addition to using the Iterator pattern, also makes use of the Adapter pattern,
providing a unified interface for any number of items that need to be stepped through. This is
demonstrated clearly in its factory() method. (It looks like the Paginator module is very heavily
saturated with Design Patterns!)

 The Observer Pattern in Zend Framework
 Any framework makes heavy use of a plug - in type architecture — the Zend Framework being no
exception. The best way to architect this is with the Observer pattern. The Observer pattern is just a way
of requesting potential action from other objects when something happens in the source object.

 The Filter module provides a method to add actions to the filter stream using the addFilter() method
on line 51 of Filter.php . On line 65, the main filter() function runs, passing that value through
each of the objects added earlier. The Log module also makes use of the Observer pattern. The Log()
method sends the action that just happened, or the event, through to various objects waiting to process
it. When running the isValid() method of the Validate module, you are also engaging functionality

c02.indd 14c02.indd 14 7/16/09 8:45:23 AM7/16/09 8:45:23 AM

Chapter 2: Using Tools Already In Your Arsenal

15

created with the Observer pattern. The function addValidator() on line 70 of Validate.php is the
vehicle to add in the objects that will process the event.

 Design Patterns in Doctrine
 Doctrine is an object relational mapper (ORM) for PHP. This object - oriented library provides an interface
for database abstraction. It also features an implementation of the Data Access Object Design Pattern.
 “ Features an implementation ” is an understated way of saying that the entire library really is focused on
being a Data Access Object pattern.

 The main functionality of Doctrine revolves around the ability to create objects that correspond to tables
in the database. Instead of accessing this data directly by creating SQL with Select , Join , and Union
statements, objects are created with properties that reflect these predefined relationships. Then, complex
data manipulation is executed using simple public methods of objects regardless of the actual database
engine and language specifics.

 The Standard PHP Library
 The Standard PHP Library (SPL), developed by Marcus Boerger, is a useful collection of interfaces and
classes bundled with PHP as an extension. In PHP 5, this was added as part of the core distribution. The
manual states that this set of interfaces and classes is “ meant to solve standard problems. ” At first read,
this echoes the explanation given earlier of Design Patterns. Indeed, the library has an assortment of
features that does help with your creation of Design Patterns in PHP. Let ’ s review a few of the main
players of the SPL to see what you may use in your future pattern - based architecture.

 SPL Observer and SPL Subject
 The SplObserver and the SplSubject interfaces are an implementation of the Observer Design
Pattern. SplSubject contains three method declarations: attach() , detach() and notify() .
 attach() , and detach() are used to attach objects to the chain of notification and receive a
 SplObserver object. The notify() function is called whenever an action happens that the chain should
be aware of. The SplObserver interface contains one method, update() , which receives only one
parameter — an SplSubject object. This should be called whenever the SplSubject ’ s value changes.

 This may seem very vague and confusing if you ’ re not familiar with the Observer Design Pattern.
However, the main thing to remember is the existence of these methods as you continue on to study the
Design Patterns. You may find that using some of these methods may jump - start your patterns on your
next programming project.

 SPL Iterators
 When I first ran across SPL iterators, I didn ’ t directly correlate them to what I knew about Design
Patterns at the time. Even though they functioned as you would expect from an Iterator Design Pattern,
and were even named the same thing, I totally overlooked the intentional architecture. Because of this
ease of use, it is perfectly fine to review these before reviewing the actual Iterator Design pattern. After
reviewing these interfaces, an understanding of the Iterator should come naturally when it is reviewed
in the reference materials in Part II.

c02.indd 15c02.indd 15 7/16/09 8:45:24 AM7/16/09 8:45:24 AM

16

Part I: Getting Acquainted with Design Patterns and PHP

 Basically, an Iterator is an object that provides an interface for traversing some other data structure or
object. It is programmer - agnostic of the actual underlying structure. For example, if you were running an
online music store and you received your inventory list in both XML and CSV, you could create an object
that would read through each of these data sources. The public methods of this object should allow you
to travel both forward and backward through the collection of music without having to worry about
what type of data structure the incoming list was in.

 As the intent of the first part of this book is to give you building blocks to create your own Design
Pattern structures, this section only points out the more common or important interfaces and classes
used with iteration in SPL. To review the full feature list of the SPL, visit http://php.net/spl .

 Iterator, RecursiveIterator, SeekableIterator
 The Iterator interfaces in the SPL allow you to access an object much as you would an array (don ’ t
confuse this with the ArrayAccess interface, however). The member functions of the Iterator
interface are current() , key() , next() , rewind() and valid() . Being familiar with the array
functionality built into PHP, you can draw your own conclusions right away on how to use the
 Iterator interface.

 The SeekableIterator adds on one additional function to the Iterator methods: seek() . This
method allows the object to travel to an absolute position within its storage system. You can closely
equate this to accessing an array by defining its index in brackets.

 The RecursiveIterator defines an easy way to traverse hierarchical data. It contains all of the
methods of Iterator plus two additional ones: hasChildren() and getChildren() . Simply put,
the hasChildren() method notifies the user if there is an additional level below the current access
level. The getChildren() method returns a collection of objects that contain the same properties as the
parent (with an optional additional level of children). This may seem confusingly abstract at first glance.
However, just compare it to a programmatic way of accessing a multidimensional array.

 DirectoryIterator, LimitIterator, SimpleXMLIterator
 In addition to some useful interfaces that SPL provides, there is a collection of classes that can also add
useful functionality. Extending these classes can both save time and solidify the pattern - based designs in
your programming.

 The LimitIterator is functionally very similar to a LIMIT statement in MySQL. When you
provide an existing Iterator to it with an offset and a count, the LimitIterator confines the
traversal to objects to those that fit within the predefined bounds. You may find this useful when
creating objects that are responsible for featuring only the top 100 items of a collection even if
the collection is much larger. Applying the LimitIterator structures the programming to
check these bounds.

 The DirectoryIterator provides a powerful set of methods to loop through a directory
on the file system. The common set of Iterator methods such as next() and rewind() are
just the tip of the iceberg for managing a set of files. This class also integrates useful functions
like isDot() and isLink() . Additionally, each file that is returned is an instance of the
 SplFileInfo class. (The SplFileinfo class is not reviewed here; however, full documentation
of its collection of over 25 methods returning file system information is located at http://php
.net/splfileinfo .) The DirectoryIterator is one of the greatest examples of how Design
Patterns can provide the basis of a very powerful, extensible, and architecturally sound object.

❑

❑

c02.indd 16c02.indd 16 7/16/09 8:45:24 AM7/16/09 8:45:24 AM

Chapter 2: Using Tools Already In Your Arsenal

17

 The SimpleXMLIterator is an Iterator class that works directly with the SimpleXML
extension of PHP. It extends the SimpleXMLElement object. As you can predict by the name of
the class, it also implements the Iterator interface (among other interfaces), providing that
familiar next() , rewind() , valid() , and key() functionality at the very least. This creative
implementation of the Iterator pattern is an example of a reusable object that is one of the
major goals of our usage of patterns.

 Using Eclipse PDT with Patterns
 The Eclipse PDT software package is a PHP - centric distribution of the popular Eclipse IDE. With
additional features like the PHP perspective, and JavaScript and CSS syntax highlighting, Eclipse PDT is
one of the most important tools in my programming arsenal.

 The next part of this chapter is based on Eclipse PDT 2.0 in Windows. However, you can use these steps
for a standard Eclipse installation as the feature set is common to the core Eclipse distribution. If you use
a different IDE and have never tried out PDT, I suggest that you try it out now with this next tutorial.
You can acquire the newest PDT package from http://zend.com/pdt . If you continue to use a
different IDE, you may be able to adapt these steps to fit your own IDE. (Perhaps you may even want to
write these up in your own technical blog!)

 Code Snippets in Eclipse PDT
 One useful feature in Eclipse PDT is the code snippets function. Snippets allow code templates to be
created and inserted into your current file. These can range from a simple code comment template to a
complex set of function definitions for a reusable interface.

 For this example, we ’ re going to use the SPL Iterator interface. As you build your own library of
Design Pattern based modules, you may find you will need to create more code snippets.

 Creating the Iterator Interface Code
 When implementing the Iterator interface, five methods are required to be part of your object:
 current() , key() , valid() , next() , and rewind() . You need to create these stub functions. As you ’ re
a very good programmer, you ’ re going to also add documentation (albeit very sparse) to your code as
well. This is the base code sample you ’ re going to use:

 /**
 * Get the current element
 * @return mixed
 */
 public function current()
 {
 }

 /**
 * Gets the current key
 * @return mixed
 */
 public function key()

❑

c02.indd 17c02.indd 17 7/16/09 8:45:25 AM7/16/09 8:45:25 AM

18

Part I: Getting Acquainted with Design Patterns and PHP

 {
 }

 /**
 * Checks if current element exists
 * @return boolean
 */
 public function valid()
 {
 }

 /**
 * Moves pointer forward to next element
 */
 public function next()
 {
 }

 /**
 * Moves pointer to first element
 */
 public function rewind()
 {
 }

 Now that you have the base code to use, it is time to investigate the snippet functionality of Eclipse PDT.

 Creating the Snippet
 After opening Eclipse, locate the Snippets tab in your current perspective. If you cannot find this tab, it
may be necessary to activate it:

 1. Click the Window Show View Other.

 2. In the Show View dialog (see Figure 2 - 1), expand the General folder and click Snippets.

Figure 2-1

c02.indd 18c02.indd 18 7/16/09 8:45:25 AM7/16/09 8:45:25 AM

Chapter 2: Using Tools Already In Your Arsenal

19

 3. Click OK. The snippets tab should now be available on this perspective.

 Because this is your first snippet, you ’ re going to have to create a category first. To create a new category,
do the following:

 1. Right - click inside of the Snippet area and choose Customize. The Customize Palette dialog box
appears.

 2. Click the New button on the top left of the Customize Palette.

Figure 2-2

 3. Click the New Category menu item (see Figure 2 - 3).

 The Create Category dialog box appears.

Figure 2-3

c02.indd 19c02.indd 19 7/16/09 8:45:26 AM7/16/09 8:45:26 AM

20

Part I: Getting Acquainted with Design Patterns and PHP

 4. Fill in the Category name and description if desired.

 5. Click the Apply button.

 To create a new template:

 1. Again, click the New button.

 2. Click the New Item menu item.

 3. Fill in the name and description (refer to Figure 2 - 4) .

Figure 2-4

 4. Paste the code snippet from the previous section into the Template Pattern section. Your
template pattern is not done. You need to declare the class and make sure that it implements the
 Iterator interface. In this example, you don ’ t know your class name. However, the snippets
feature allows you to insert variables into the snippet.

 5. Under the Variables heading, click the New button. This should insert a generic variable name
in the table below.

 6. Click under each heading to change the values. For this example, name your variable
 ClassName , describe it as The Class Name and leave the default value blank. Variables are
inserted into a template by using a $ sign and enclosing the variable name in curly braces.

c02.indd 20c02.indd 20 7/16/09 8:45:26 AM7/16/09 8:45:26 AM

Chapter 2: Using Tools Already In Your Arsenal

21

 7. Modify your Template pattern with the class definition. Insert the following above the previous
code snippet in the Template pattern:

/**
 *
 */
class ${ClassName} implements Iterator
{

 Don ’ t forget to add the closing curly brace at the very end of the code snippet.

 8. Finally, click the OK button.

 Using the Snippet
 Now, for the moment of truth! When a new PHP file is created in Eclipse PDT and the Snippets tab is
showing, it ’ s easy to use the newly created snippet:

 1. Position the cursor where you ’ d like the class definition to start.

 2. Double - click the Snippet named Iterator under the Design Patterns category. The Insert
Template: Iterator dialog box appears (Figure 2 - 5). You may notice the variables section shows
the ClassName variable with no value.

Figure 2-5

 3. Click in the table cell, and type in your new class name. The Source box is updated with your
new class name after you press Enter.

 4. Click the Insert button, and your new template is inserted into your source file.

c02.indd 21c02.indd 21 7/16/09 8:45:27 AM7/16/09 8:45:27 AM

22

Part I: Getting Acquainted with Design Patterns and PHP

 Summary
 This chapter focused on a few tools that already exist in PHP and your IDE that can help jump - start your
Design Pattern – based programming. You learned about the Design Pattern immersion in PEAR, the
Zend Framework, and Doctrine by looking at both the usage and construction of the individual classes
in these libraries. The Standard PHP Library also houses a helpful set of interfaces and classes that
provides some necessary building blocks for applying Design Patterns in new architecture. Finally, you
created a code snippet in Eclipse PDT to make it easier to stick with these programming best practices by
reducing the need to retype code required by the Iterator interface.

 The next sections of this book are the reference chapters and focus on the specifics of some of the Design
Patterns mentioned so far as well as providing some additional ones to expand your pattern repertoire.

c02.indd 22c02.indd 22 7/16/09 8:45:27 AM7/16/09 8:45:27 AM

Part II

Reference Material

Chapter 3: Adapter Pattern

Chapter 4: Builder Pattern

Chapter 5: Data Access Object Pattern

Chapter 6: Decorator Pattern

Chapter 7: Delegate Pattern

Chapter 8: Façade Pattern

Chapter 9: Factory Pattern

Chapter 10: Interpreter Pattern

Chapter 11: Iterator Pattern

Chapter 12: Mediator Pattern

Chapter 13: Observer Pattern

Chapter 14: Prototype Pattern

Chapter 15: Proxy Pattern

Chapter 16: Singleton Pattern

Chapter 17: Strategy Pattern

Chapter 18: Template Pattern

Chapter 19: Visitor Pattern

c03.indd 23c03.indd 23 7/16/09 8:45:58 AM7/16/09 8:45:58 AM

c03.indd 24c03.indd 24 7/16/09 8:45:58 AM7/16/09 8:45:58 AM

 Adapter Pattern

 In a simple world, no software requirements would ever change. Applications and business would
not innovate. Programming would be simple, but boring. Programmers would continue to build
applications on top of the same technologies that they did years ago. They would never need to
introduce different databases, implement new best practices, or consume different APIs. But these
things do change. Luckily, programmers have the Adapter Design Pattern to help update legacy
systems with new code and functionality.

 Name: Adapter

 The Adapter Design Pattern simply adapts one object ’ s interfaces to what another object
expects.

 Problem and Solution
 In an application, you may be a working code base that is architecturally sound and stable.
However, new functionality is constantly being added that requires use of these existing objects in
a different way than they were originally designed. The roadblock may be as simple as the new
functionality expecting a different name of a function. It could also be a bit more complex scenario,
where the functionality expects slightly different original object behavior.

 The solution is to build another object, using the Adapter Design Pattern. This Adapter object
works as an intermediary between the original application and the new functionality. The Adapter
Design Pattern defines a new interface for an existing object to match what the new object requires.

c03.indd 25c03.indd 25 7/16/09 8:45:59 AM7/16/09 8:45:59 AM

Part II: Reference Material

26

For the most part, no existing functionality is lost; it ’ s just used or consumed in a different way. You can
equate this to an electrical adapter that receives a three - pronged grounded connection and conforms to a
two - prong socket. The adapter transparently forwards the alternating current from the prongs but
provides a different interface for the grounding functionality. In most common electrical adapters, the
grounding functionality is not lost but is instead provided via a grounding wire that should be
connected to the screw on the electrical socket container. In the same way, the Adapter Design Pattern
aims to help object - oriented code; it creates conversions for the object interfaces.

 While it may be tempting to modify the existing code to work in the way the new functionality expects,
you should create an adapter object instead. Quite often, it is suggested that a quick tweak to an existing
object is the fastest and most cost effective way to accomplish this task. I argue that speed and cost are
rarely an issue when creating the adapter object. No real new functionality is being created. By the time
the original object was changed and tested against regression, a quick adapter class with a few lines of
code could have been created with no possibility for regression.

 The best solution still is to create an Adapter object. This affords the possibility of parallel development
on both the new functionality and the existing code base. If your job is to integrate the new functionality
and you accomplish this by editing the existing code base, you may find yourself at odds with the team
who is developing new functionality in those initial classes. They may be adding additional private
methods and expecting them to be called by the public methods that were originally available with the
last stable release. The last thing you want to create is a complex merging scenario or a forked code base.

 The Adapter Design Pattern is also a great solution for changes to a data source. Two common problems
concern database engine changes and data file format changes:

 The project may need to change the database engine for any number of reasons. A common
scenario involves an application created with MySQL migrating to a larger database like Oracle.
Other times, licensing restrictions and costs require a different engine to be used; for example,
Postgres, when the product finally goes to distribution. If you ’ re not already using a database
abstraction layer, you will need to create Adapter objects to intercept calls to the legacy
database functionality and make those compatible with the new database. Interestingly enough,
if you examine the code of some database abstraction libraries, you ’ ll see them as nothing but a
collection of adapters as well.

 When working with third - party data providers, the data files provided may change format.
Your vendor may have been providing data in CSV format for years but will be migrating to an
XML document. An adapter can be created that will take the XML and give it in a consumable
format to the stable CSV processing objects.

 Basically, whenever there is a problem that requires the continued stability of the main platform and
doesn ’ t disrupt the existing application flow, the Adapter Design Pattern could be used in developing
the solution.

❑

❑

c03.indd 26c03.indd 26 7/16/09 8:45:59 AM7/16/09 8:45:59 AM

Chapter 3: Adapter Pattern

27

 UML
 This Unified Modified Language (UML) diagram details a class design using the Adapter Design Pattern
(see Figure 3 - 1).

MyObject OriginalConsumer doSomething()
calls methodA()
during execution

�myObjectInstance : MyObject

�methodA()

MyObjectAdapterForNewConsumer

�methodB()

NewConsumer

�myObjectInstance : MyObject

�doSomething()

�doSomething()

1

1 1

1

methodB()
calls methodA()
during execution

doSomething()
calls methodB()
during execution

 Figure 3 - 1

 Note the following about this figure:

 The MyObject class contains a public method called methodA() . OriginalConsumer acquires
an instance of MyObject and calls methodA() during its doSomething() function.

 The NewConsumer class is introduced. Its doSomething() function expects to call a public
method of the MyObject instance called methodB() during execution.

 The MyObjectAdapterForNewConsumer is created by extending the MyObject class. It then
provides a public method called methodB() as expected by NewConsumer . In this simple
example, all methodB() does is call methodA() .

 Code Examples
 In the original code base of the project, an object exists that handles all of the error messages and codes
called errorObject . The original programmers didn ’ t think their code would ever generate any errors,
so they designed the system to output the errorObject ’ s error information directly to the console.

❑

❑

❑

c03.indd 27c03.indd 27 7/16/09 8:45:59 AM7/16/09 8:45:59 AM

Part II: Reference Material

28

 In this example, a 404:Not Found error is being generated. You are going to assume that the error message
content and code may change, but the text will always stay in the same format.

class errorObject
{
 private $__error;

 public function __construct($error)
 {
 $this- > __error = $error;
 }

 public function getError()
 {
 return $this- > __error;
 }
}

class logToConsole
{
 private $__errorObject;

 public function __construct($errorObject)
 {
 $this- > __errorObject = $errorObject;
 }

 public function write()
 {
 fwrite(STDERR,$this- > __errorObject- > getError());
 }
}

/** create the new 404 error object **/
$error = new errorObject(“404:Not Found”);

/** write the error to the console **/
$log = new logToConsole($error);
$log- > write();

 In this scenario, a new network admin has been brought into the project. Best practice suggests that a
network log for monitoring software should be installed. The package the admin chose requires the
errors to be logged to a multicolumn CSV file. The CSV format calls for the first column to be the
numeric error code. The second column should be the error text.

 This new software package is familiar with the errorObject class. The vendor has provided code to
implement the proper logging format! Unfortunately, that code was created from a different version of the
 errorObject than the one the current project is using. The new errorObject had two additional public
methods, called getErrorNumber() and getErrorText() . The logToCSV class expects to use those.

c03.indd 28c03.indd 28 7/16/09 8:46:00 AM7/16/09 8:46:00 AM

Chapter 3: Adapter Pattern

29

class logToCSV
{
 const CSV_LOCATION = ‘log.csv’;

 private $__errorObject;

 public function __construct($errorObject)
 {
 $this- > __errorObject = $errorObject;
 }

 public function write()
 {
 $line = $this- > __errorObject- > getErrorNumber();
 $line .= ‘,’;
 $line .= $this- > __errorObject- > getErrorText();
 $line .= “\n”;

 file_put_contents(self::CSV_LOCATION, $line, FILE_APPEND);
 }
}

 There are two solutions to this problem:

 Alter the existing code base ’ s errorObject

 Create an Adapter object.

 Because of the need to keep these public interfaces standard, creating an Adapter object is the best
solution.

 In this adapter object, the existing errorObject functionality must be present. In addition, the
 getErrorNumber() and the getErrorText() public methods must be available. In the legacy
 logToConsole , the getError() method is called to get the error message. The adapter should make
use of that method to get the error message from the parent class and then translate that output to be
used by the two new public methods.

class logToCSVAdapter extends errorObject
{
 private $__errorNumber, $__errorText;

 public function __construct($error)
 {
 parent::__construct($error);

 $parts = explode(‘:’, $this- > getError());

 $this- > __errorNumber = $parts[0];
 $this- > __errorText = $parts[1];
 }

 public function getErrorNumber()

❑

❑

c03.indd 29c03.indd 29 7/16/09 8:46:00 AM7/16/09 8:46:00 AM

Part II: Reference Material

30

 {
 return $this- > __errorNumber;
 }

 public function getErrorText()
 {
 return $this- > __errorText;
 }
}

 Finally, to implement this adapter, the code is updated to use the adapter instead of the original
 errorObject . Then, the logToCSV class can receive the adapted class instead of the original
 errorObject so that the legacy code works as the logToCSV class expects.

/** create the new 404 error object adapted for csv **/
$error = new logToCSVAdapter(“404:Not Found”);

/** write the error to the csv file **/
$log = new logToCSV($error);
$log- > write();

 Remember, implementing an Adapter object is both best practice and a headache saver when one object ’ s
interface needs to be translated for use by another.

c03.indd 30c03.indd 30 7/16/09 8:46:00 AM7/16/09 8:46:00 AM

 Builder Pattern

 Software complexity is an interesting thing. The requirements for software are complex as are the
functionality of a software package or product. Even the code that makes up the software is
complex. The focus of the Design Pattern approach is to provide maintainability, architectural
strength and reduced complexity. With the host of complex objects making up most software
repositories, solutions involving the Builder Design Pattern have their work cut out for them.

Name: Builder

The Builder Design Pattern defines the design of an object that handles the complex building
of another object.

 Problem and Solution
 When an object is instantiated, it is technically a complete object. Some objects can be used in this
capacity and are ready to propagate throughout the code flow. However, other objects are more
complex in nature. They may require additional public methods to execute to be considered
 “ complete ” and available for the rest of the application.

 It is important to understand what the word complex means in this context. Generally, complexity
is the actual logic contained within methods of a class. However, when I refer to a complex object
in connection to object instantiation, it means the level of steps that are required to create that
complete object. The actual logical steps in each of the executed methods have no bearing on
whether these classes are complex.

 When creating complex objects, a common architecture decision revolves around the creation of
the constructor. Some programmers think that any constructor should execute the proper logic to
create the whole object. Others recognize that it makes sense to break up some of that logic into

c04.indd 31c04.indd 31 7/16/09 8:46:36 AM7/16/09 8:46:36 AM

32

Part II: Reference Material

additional methods. Constructors designed in that fashion are basically a list of methods to call on
instantiation. Neither of these solutions are very flexible. In fact, they are fundamentally wrong solutions.

 It may be necessary to construct an object based on the results of a set of business logic. In this particular
example, the base business decision rules have already been written and tested. Because of the results,
only certain parts of the object must be created. In fact, if all parts of it are defined fully, it may cause
other unforeseen results down the line. I realize this is vague. Let me give a better example.

 In ABC Co, widgets are loaded into the inventory system before they are fully priced and inventoried.
No matter if it ’ s an initial load of a widget or the generation of an HTML page with widgets, their
descriptions, and prices, the same widget object is created. The HTML page process does not show any
widgets that have a NULL value for their product ID because those aren ’ t for sale. They have not yet been
entered into the inventory system. Both new and existing inventory requests are routed the same way
through the code. By the time the data gets to the widget object, it ’ s known if the widget data is for a
new inventory item or for an existing one. Now, with what you know about the HTML page process,
you must decide how to create the widget object. You would not want any of your new inventory
widgets to accidentally show up on the website for sale. The solutions are as follows:

 Wrong solution: Duplicate the business logic inside the widget object constructor. Right now,
this may be as simple as a quick conditional statement to determine the type of data, but this
solution is wrong. With time, the chance grows that the business logic to determine if a widget is
new or for sale may change. What if a third status is introduced, such as “ Inventoried ” but no
price has been defined? This would require you to change the logic in both the other code and
this object ’ s constructor.

 Wrong solution: Set all the default values by calling all the methods in the constructor on
widget object creation. These may include methods to set the price, description, and product ID.
However, there is a potential issue here as well. You know that your HTML page process will be
looking for product IDs of not NULL . If you assign a default value to this product ID, the HTML
page will pick it up. Once again, the temptation to call all these methods, except for the product
ID setter, is there. It ’ s easier to just put a quick conditional statement around that method
making sure not to assign the property on new widget creation. However, this is also not the
proper solution.

 Best solution: Create a new object based on the Builder Design Pattern. This object is
responsible for interpreting those results from the business logic and calling only the required
functionality to build the complete widget object. Even if the required types of information or
the business rules change, the main code flow will still deal with the Builder object in the same
way. You will only need to modify the Builder object — in only one place. This saves both time
and complexity in your main code base.

 Another way to prove the benefits of the Builder Design Pattern is by examining interactions with third -
 party applications, a common one being a database wrapper. In the example, if you ’ re using version 1.0
of the database wrapper class, you may be required to call the setUsername() , setPassword() and
 setHostName() methods to have a complete instance of that object. Each time you create a connection
to the database, your code contains the instantiation of the wrapper followed by three function calls.

 In version 1.1, the third party makes the setDatabase() method mandatory. This means that every
single instance of the database wrapper instantiation in your code base now needs to be altered to have
an additional method call.

❑

❑

❑

c04.indd 32c04.indd 32 7/16/09 8:46:37 AM7/16/09 8:46:37 AM

Chapter 4: Builder Pattern

33

 The best solution when implementing the wrapper with those complex creation steps is to create a
database wrapper Builder class. Then, when version 1.1 is released, only the Builder class needs to be
modified.

 Remember, the complexity of multiple method calls may not seem so bad the very first time, but it ’ s a
slippery slope. If these methods need to be called continually, a Builder object should be created.

 UML
 This Unified Modified Language (UML) diagram details a class design using the Builder Design Pattern
(see Figure 4 - 1).

MyObject

�complexFunctionA()
�complexFunctionB()

MyObjectBuilder

-MyObject : MyObject

�createInstanceOfMyObject()
�buildMyObject(configurationOptions)
�getBuiltMyObject()

Figure 4-1

 Note the following concerning this figure:

 The MyObject class has two methods to completely finish the construction of the object. Both
 complexFunctionA() and complexFunctionB() need to be executed in order to have a
complete MyObject object.

 The MyObjectBuilder class contains a method called createInstanceOfMyObject() . This
class is responsible for creating a simple instance of the MyObject class. Note how no
configuration options have been used to further construct it. It also stores the instance privately
in that instance of the MyObjectBuilder class.

 The buildMyObject() method takes a parameter of configurationOptions . This is used to
call both complexFunctionA() and complexFunctionB() of the MyObject object stored in
the MyObjectBuilder object.

 The getBuiltMyObject() method returns the private instance of MyObject inside the
 MyObjectBuilder object, completed and built properly.

❑

❑

❑

❑

c04.indd 33c04.indd 33 7/16/09 8:46:38 AM7/16/09 8:46:38 AM

34

Part II: Reference Material

 Code Example
 The project contains a class that creates the complex product object. This class contains three methods to
completely form it. If each of these methods is not called when creating a new product object, attributes
of the class will be missing and the program will halt. These methods are setType() , setColor() , and
 setSize() . The initial version of this code was designed to create the object followed by the execution
of each of these methods.

class product
{
 protected $_type = ‘’;
 protected $_size = ‘’;
 protected $_color = ‘’;

 public function setType($type)
 {
 $this- > _type = $type;
 }

 public function setSize($size)
 {
 $this- > _size = $size;
 }

 public function setColor($color)
 {
 $this- > _color = $color;
 }
}

 To create a complete product object, the product configurations need to be passed individually to each of
the methods of the product class:

// our product configuration received from other functionality
$productConfigs = array(‘type’= > ’shirt’, ‘size’= > ’XL’, ‘color’= > ’red’);

$product = new product();
$product- > setType($productConfigs[‘type’]);
$product- > setSize($productConfigs[‘size’]);
$product- > setColor($productConfigs[‘color’]);

 Having to call each one of these methods when an object is created is not best practice. Instead, an object
based on the Builder Design Pattern should be used to create this product instance.

 The productBuilder class is designed to accept those configuration options that are required to build
the product object. It stores both the configuration parameter and a new product instance on
instantiation. The build() method is responsible for calling each of the methods in the product class to
fully complete the product object. Finally, the getProduct() method returns the completely built
 product object.

c04.indd 34c04.indd 34 7/16/09 8:46:38 AM7/16/09 8:46:38 AM

Chapter 4: Builder Pattern

35

class productBuilder
{
 protected $_product = NULL;
 protected $_configs = array();

 public function __construct($configs)
 {
 $this- > _product = new product();
 $this- > _xml = $configs;
 }

 public function build()
 {
 $this- > _product- > setSize($configs[‘size’]);
 $this- > _product- > setType($configs[‘type’]);
 $this- > _product- > setColor($configs[‘color’]);
 }

 public function getProduct()
 {
 return $this- > _product;
 }
}

 Note that this build() method hides the actual method calls from the code requesting the new
 product . If the product class changes in the future, only the build() method of the productBuilder
class needs to change. This code demonstrates the creation of the product object, using the
 productBuilder class:

$builder = new productBuilder($productConfigs);
$builder- > build();
$product = $builder- > getProduct();

 The Builder Design Pattern is meant to eliminate the complex creation of other objects. Using the Builder
Design Pattern is not only best practice but it also reduces the chances of having to repeatedly alter
pieces of code if an object ’ s construction and configuration methods change.

c04.indd 35c04.indd 35 7/16/09 8:46:39 AM7/16/09 8:46:39 AM

c04.indd 36c04.indd 36 7/16/09 8:46:39 AM7/16/09 8:46:39 AM

 Data Access Object Pattern

 The simplest web widget to the most complex online e - commerce website have one thing in
common: they deal with data. So much of programming revolves around data access and
manipulation. With the massive proliferation of the Internet, cheaper storage devices, improved
understanding of analytics, and greater expectations for information access, data is being
leveraged in more interesting and unique ways. The Data Access Object Design Pattern aims to
help construct objects that can work easily (transparently) with all of this data.

Name: Data Access Object

The Data Access Object Design Pattern describes the creation of an object that provides trans-
parent access to any data source.

 Problem and Solution
 For those who have learned PHP and MySQL together hand in hand, the Data Access Object
Design Pattern is a new and exciting concept. This Design Pattern aims to solve two specific
problems: repetition and data source abstraction.

 Programming typically can be a lot of repetition. This was especially true before more popular
frameworks started being released. Most PHP programmers can count into the double digits the
number of CRUD (create, read, update, delete) applications they ’ ve had to make. One of the major
portions of repetition in the standard create/update application is the data source manipulation.
For the rest of the discussion, I ’ m going to stop generalizing the data source and refer to it as SQL.

 In the application, a SQL statement has to be written to create the entity in the database. Next, an
additional SQL statement must be written in order to provide updates to any of the individual
features of that entity. The repetition involved in creating these SQL statements is not only boring
but also not best practice.

c05.indd 37c05.indd 37 7/16/09 8:47:26 AM7/16/09 8:47:26 AM

38

Part II: Reference Material

 Instead, an object based on the Data Access Object Design Pattern should be created. This Data Access
Object (DAO) encapsulates an intelligent way of creating those SQL calls, reducing the complexity and
repetition of the entity creation and updating process. It should be written in such a way that the
consumers of this object are not aware of the actual table structures or database engine used. Methods
that are invoked from this object should take logical parameters and handle the creation of the SQL
statements.

 An added benefit of the Data Access Object is the database abstraction layer it affords. Now, the main
processing code of the application no longer has to be aware of the database engine or table
relationships. Calling those public methods of the object can return any type of data regardless of the
underlying SQL required.

 A good way to picture this is with a relational database structure where a non - normalized table is joined
to another table to provide a certain result set. If a database administrator modifies the table structure to
be fully normalized, each of the SQL statements throughout all of the logic modules in the application
will need to be modified to add an additional join table. Using the Data Access Object, only the methods
that provide this information need to be edited. Imagine another situation in which the actual table
structure changes. A column may be named something else or an additional column may be added. The
Data Access Object is once again the only place that code needs to be edited. (SQL purists will argue that
an added table column should not affect the queries at all. They would say that named columns in the
SQL statement should be used. I agree. This won ’ t help if a column name is changed, however!)

 It is always a concern that programmers not over architect the Data Access Object. Once the full power of
these types of objects is contrasted with the ease of use, the temptation to add more functionality is
almost overwhelming. I encourage simplicity in the Data Access Object, however. Do not add in extra
functionality that is unproven or unneeded.

 A good way to manage simplicity in the Data Access Object classes is to create parent - child relationships.
First, create the base parent object. This object should be responsible for database connections, executing
queries abstractly, and communicating with children. A good way to start out with the Data Access
Object Design Pattern is to associate child classes in a one - to - one relationship with tables in the database.
These child classes hold vital information such as the table name and the primary key. Additionally,
child classes may contain specific public methods that execute the parent queries in such a way that
makes sense only to the child. For example, a child class named userAddress may contain a function
named getAddressesByZip() . Having that method in the parent DAO class would make no logical
sense and destroy the abstractness that the parent is hoping to achieve.

 When working with entities that reference specific database information, it is best practice to create a
Data Access Object.

 UML
 The following Unified Modified Language (UML) diagram details a class design using the Data Access
Object Design Pattern (see Figure 5 - 1) and is further explained in the following list:

c05.indd 38c05.indd 38 7/16/09 8:47:27 AM7/16/09 8:47:27 AM

Chapter 5: Data Access Object Pattern

39

 The BaseDAO class is an abstract class that the tableNameDAO class extends. BaseDAO has a
private method to connect to the data source named connectToDB() . This stores the connection
in the private instance variable dbConnection . BaseDAO contains two public methods, named
 fetch() and update() .

 The fetch() method expects to receive a parameter called keyItem . This references the
primary identifier of the data source that is expected to be returned. This method will perform
the proper database calls and return the result set.

 The update() method expects to receive a parameter called keyedUpdateObject . This is an
object or array that contains keys and values to update the database with. In this function, the
columns and values are extracted and the update is applied.

 The tableNameDAO class directly correlates to a table in the database. The tableName variable
stores the exact table name. This private variable is used to create the database calls in fetch()
and update() . As an example of additional features that a Data Access Object can possess
distinct from the base object, the searchBySpecificKey() function is diagramed. This method
expects to receive a variable named key . This method would create the proper database
combination of calls to the parent data access object class to obtain the specified style of return.

 Code Example
 In this example, a user entity is the focus. The user has a row in a MySQL database that contains
information specific and unique to each user. The functionality must allow us to return a user by their
primary key or by a search on their first name. Additionally, you must be able to perform updates to any
field in the user entity ’ s row.

❑

❑

❑

❑

tableNameDAO

-tableName : String

�searchBySpecificKey(key)

BaseDAO

-dbConnection : resource

-connectToDB()
�fetch(keyltem)
�update(keyedUpdateObject)

Figure 5-1

c05.indd 39c05.indd 39 7/16/09 8:47:27 AM7/16/09 8:47:27 AM

40

Part II: Reference Material

 From these requirements, two classes are needed. The first should be the base Data Access Object with
methods to fetch data and update data:

abstract class baseDAO
{
 private $__connection;

 public function __construct()
 {
 $this- > __connectToDB(DB_USER, DB_PASS, DB_HOST, DB_DATABASE);
 }

 private function __connectToDB($user, $pass, $host, $database)
 {
 $this- > __connection = mysql_connect($host, $user, $pass);
 mysql_select_db($database, $this- > __connection);
 }

 public function fetch($value, $key = NULL)
 {
 if (is_null($key)) {
 $key = $this- > _primaryKey;
 }

 $sql = “select * from {$this- > _tableName} where {$key}=’{$value}’”;
 $results = mysql_query($sql, $this- > __connection);

 $rows = array();
 while ($result = mysql_fetch_array($results)) {
 $rows[] = $result;
 }

 return $rows;
 }

 public function update($keyedArray)
 {
 $sql = “update {$this- > _tableName} set “;

 $updates = array();
 foreach ($keyedArray as $column= > $value) {
 $updates[] = “{$column}=’{$value}’”;
 }

 $sql .= implode(‘,’, $updates);
 $sql .= “where {$this- > _primaryKey}=’{$keyedArray[$this- > _primaryKey]}’”;

 mysql_query($sql, $this- > __connection);
 }
}

c05.indd 40c05.indd 40 7/16/09 8:47:28 AM7/16/09 8:47:28 AM

Chapter 5: Data Access Object Pattern

41

 The first thing to note is that this class is an abstract class. Obviously, this means that this class must be
extended in order to be used. On instantiation, the private method called __connectToDB() is executed
with the proper credentials. This simply stores that database connection inside of the object. This will be
referenced whenever a new query is executed. It is important to store this connection internally in the
class and reference it with each query call because it is quite possible that more than one database
connection could be open at the time. This Data Access Object should be referencing its own connection
solely. Generally, in more scalable models, interfaces are created to share connections.

 The next method is the public fetch() method. This accepts one required parameter and one optional
one. The required $value parameter is used in the MySQL query in the select statement specification.
The optional $key parameter defaults to the primary key of the table. If the parameter is set, however, a
more flexible query will be executed, possibly returning more results. Finally, a results array is created,
populated with results, and returned. It is important to note how abstract this method is: it doesn ’ t know
the table name, key, or value that it will be querying ahead of time. This is some of the strength that the
Data Access Object lends to the code.

 The last method in the class is the public update() method. Once again, its construction is interesting
because of the abstractness of the query it builds. This particular method expects the keyed array to have
the primary key of the entity as an array element in order to successfully update the table row.

 This abstract class is extended by any child class. Our class is referencing the user entity by pointing to
the userTable MySQL table. It also needs to have more specific functionality that only makes sense
in the user entity context.

class userDAO extends baseDAO
{
 protected $_tableName = ‘userTable’;
 protected $_primaryKey = ‘id’;

 public function getUserByFirstName($name)
 {
 $result = $this- > fetch($name, ‘firstName’);
 return $result;
 }
}

 Since this class extends the baseDAO object, it has access to all of those parent functions. This child class
is where the table name and the primary key are defined. These directly correlate to a MySQL table in
the database. At the very least, those two protected variables are the only things that need to be defined
to have a functioning Data Access Object child entity. However, part of the functionality requirements
is to be able to search the user table via first name. The public method getUserByFirstName() accepts
a name parameter to accomplish this requirement. The result is obtained by calling the parent fetch()
method and defining a column that should be queried.

 Here is an example of the Data Access Object being used:

define(‘DB_USER’, ‘user’);
define(‘DB_PASS’, ‘pass’);
define(‘DB_HOST’, ‘localhost’);

c05.indd 41c05.indd 41 7/16/09 8:47:28 AM7/16/09 8:47:28 AM

42

Part II: Reference Material

define(‘DB_DATABASE’, ‘test’);

$user = new userDAO();
$userDetailsArray = $user- > fetch(1);

$updates=array(‘id’= > 1, ‘firstName’= > ’aaron’);
$user- > update($updates);

$allAarons = $user- > getUserByFirstName(‘aaron’);

 The first section of code is defining the database credentials. (In a production system, there would obviously
be a more secure and flexible way of providing these credentials.) A new userDAO is created. The first bit of
information requested is the first user. Now you have an array with all of the details from the user entity
with a primary key of 1. Next, an update is defined. The user entity with an id of 1 will have its first name
updated to “ aaron. ” Finally, an array is built of all the users that contain a first name of “ Aaron. ”

 In order to reduce repetition and give an abstract layer to data, creating an object based on the Data
Access Object is best practice.

c05.indd 42c05.indd 42 7/16/09 8:47:28 AM7/16/09 8:47:28 AM

 Decorator Pattern

 One of the scariest phrases a programmer can hear is “ This is a living requirements document. ”
The client specifies that development needs to begin and continue throughout the requirements -
 gathering and specification creation phases. Even after these are complete, chances are that the
client will come back and ask for just a few tweaks here and there. Since those changes seem small
to the client, they do not expect the timeline for deployment to change with the addition of the
enhancements. If not handled correctly, even these small tweaks can generate headaches.
Whenever base functionality needs to be modified slightly, the Decorator Design Pattern is the
optimal pick.

Name: Decorator

The Decorator Design Pattern is best suited for altering or decorating portions of an existing
object’s content or functionality without modifying the structure of the original object.

 Problem and Solution
 When just beginning to learn about Object Oriented Programming, the first hurdle usually is
understanding the parent - child relationship through inheritance. As time goes on, this method of
programming becomes more familiar and easy. When faced with new challenges, even seasoned
object - oriented programmers can jump immediately to extending an object to add more
functionality. However, as with everything that is great, it ’ s only healthy when used in moderation.

 There is a limit to the amount of class hierarchy that a code base should have. If objects start
requiring too many children to become functional, the code sacrifices both programmer
comprehension and maintainability. Generally, I try not to ever have more than three parent - child
relationships for one object. I find when more parent - child relationships are created, the code starts
to become confusing and unwieldy. Besides, printing a UML diagram representation of any object
in your application hopefully should not require legal - sized paper.

c06.indd 43c06.indd 43 7/16/09 8:47:53 AM7/16/09 8:47:53 AM

44

Part II: Reference Material

 Another reason to be careful when generating complex class hierarchies is PHP ’ s limitation of extending
only one class. If a more comprehensive extension model existed in PHP, there might be less chance of
creating unwieldy object relationships.

 I don ’ t wish to deter you from the usage of class extension, however. There are many times when the
proper solution to the problem is extending the object. Even some examples of Design Patterns in this
book require objects to be extended. However, for some problems, classes based on the Decorator Design
Pattern are a much better solution.

 The Decorator Design Pattern fits a niche in which programmers find themselves spending a lot of their
time: quick and small changes with little impact to the rest of the application. The goal of a class
designed with the Decorator Design Pattern is to apply incremental changes to a base object without
having to overwrite any of the existing functionality. Decorators are built in such a way that one or more
should be able to be inserted directly into the main code execution stream, modify or “ decorate ” their
target object, and affect no other code stream.

 Some programmers suggest that objects based on the Decorator Design Pattern are best made by
extending existing objects. The Decorator then provides additional methods or possibly rewrites existing
methods. This not only borders on some of the base concepts of an Adaptor Design Pattern, but it really
does undo one of the main purposes of the Decorator Design Pattern. Decorators can provide a quick,
noninvasive modification to the content or functionality of an object without modifying the structure of
the object. In this particular case, extending an object adds additional functionality and modifies that
base structure. The main code stream has to be modified in all places that require that new functionality
to include the new child class. The instantiation of that parent needs to be replaced with the child ’ s class
name instead.

 One situation where the Decorator Design Pattern can be useful is passing user input to external systems.
Imagine a process that uploads a user ’ s file, associates the user internally in a database to the proper user
ID, and finally deposits them on a network storage device. The file system on the network storage device
allows mixed case filenames, so this process is pretty simple. Later, a new network storage device is
introduced with a legacy file system. This requires all filenames to exist in uppercase only. When files are
physically moved to the drive, this happens automatically. However, internally, the object is still storing
the mixed - case filename. The tight coupling is gone and may cause instability in the system.

 The best solution for this scenario is to introduce an object based on the Decorator Design Pattern. This
object modifies the user file management object directly after each file moves to the physical storage
space but before the information logs to the database. Passing a reference to the object allows the
Decorator to modify the internal data, rewriting each filename into uppercase. Then, the user file
management object continues to process the data insertion. It is very important to notice that the base
object structure is not modified at all by introducing this new requirement and Decorator solution.

 Another example of a good time to use a Decorator Design Pattern based object is when processing blog
output. Generally, a standard set of markup conditions exists: changing image links to actual images,
finding links and turning them into clickable anchors, and applying visual styles such as bold or italics.
If the blog content becomes more specialized, it may require additional items to be captured and
modified. Extra features could be added to form a better user experience. Examples of these decorations
include changing an address into a clickable link to a map and applying a style to a brand name to fit
into an advertising theme. Adding so many features in this way would make a class ’ s hierarchical
architecture way too large. These small modifications can best be executed by creating those objects
based on the Decorator Design Pattern.

c06.indd 44c06.indd 44 7/16/09 8:47:54 AM7/16/09 8:47:54 AM

Chapter 6: Decorator Pattern

45

 When requirements are introduced that require small changes to the content or functionality of an
application without compromising the stability of the existing code base, it is best practice to create a
Decorator object.

 UML
 This Unified Modified Language (UML) diagram details a class design using the Decorator Design
Pattern (see Figure 6 - 1).

MyObject

- items : Array

�showltemsFormatted()

MyObjectDecorator

<<realize>>

-MyObject : MyObject

�MyObjectDecorator(MyObject)
�decorateItems()

Figure 6-1

 Note the following about this figure:

 The MyObject is the base class with the existing functionality. It contains a public array named
items and a public method named showItemsFormatted() .

 showItemsFormatted() is responsible for taking the items array, formatting them using
predefined functionality, and presenting output.

 The MyObjectDecorator class contains a private instance of MyObject and two public
methods, named MyObjectDecorator() and decorateItems() .

 The MyObjectDecorator() method represents the constructor. It takes a parameter of type
 MyObject and stores it internally.

 The decorateItems() method modifies the items array of the MyObject instance.

 Code Example
 In this example, the application is processing compact discs (CDs). It must have a method to add tracks
to the CD and a way to show the track list from the CD. The client has specified that the CD track list
should be displayed in a single line with each track being prefixed by the track number.

❑

❑

❑

❑

❑

c06.indd 45c06.indd 45 7/16/09 8:47:55 AM7/16/09 8:47:55 AM

46

Part II: Reference Material

class CD
{
 public $trackList;

 public function __construct()
 {
 $this- > trackList = array();
 }

 public function addTrack($track)
 {
 $this- > trackList[] = $track;
 }

 public function getTrackList()
 {
 $output = ‘’;

 foreach ($this- > trackList as $num= > $track) {
 $output .= ($num + 1) . “) {$track}. “;
 }

 return $output;
 }
}

 The CD class contains a public variable called $trackList , which will store an array of tracks added
to the CD object. The constructor initializes this variable. The addTrack() method simply adds a track to
the CD object ’ s trackList array. Finally, the getTrackList() method loops through each of the tracks
on the CD and compiles them into a single string in the format that was specified.

 To use this CD object, the following code is executed:

$tracksFromExternalSource = array(‘What It Means’, ‘Brr’, ‘Goodbye’);

$myCD = new CD();

foreach ($tracksFromExternalSource as $track) {
 $myCD- > addTrack($track);
}

print “The CD contains

 This works fine for this example. However, the requirements have changed slightly. Now, each track in
the output needs to be in uppercase for just this instance of output. Because its best practice not to
modify the base class or create a new parent - child relationship for such small changes, an object based
on the Decorator Design Pattern is created.

class CDTrackListDecoratorCaps
{
 private $__cd;

 public function __construct(CD $cd)

c06.indd 46c06.indd 46 7/16/09 8:47:56 AM7/16/09 8:47:56 AM

Chapter 6: Decorator Pattern

47

 {
 $this- > __cd = $cd;
 }

 public function makeCaps()
 {
 foreach ($this- > __cd- > trackList as & $track)
 {
 $track = strtoupper($track);
 }
 }
}

 The class CDTrackListDecoratorCaps is very simple. The __construct() method simply adds the
instance of the CD class to an internal private variable named $__cd . While, initially, this may seem
cryptic and maybe even an impossible way to modify the base object by a true Decorator, PHP ’ s
handling of objects by reference makes it possible. Even though the instance is stored internally and
privately, any modifications to it will immediately be available to the main code flow.

 The makeCaps() method exists in the decorator to perform the decoration or modification that is needed.
In this case, it loops through each of the tracks and executes PHP ’ s strtoupper() function on them.

 To add the Decorator to the mix, the new CDTrackListDecoratorCaps class is added:

$myCD = new CD();

foreach ($tracksFromExternalSource as $track) {
 $myCD- > addTrack($track);
}

$myCDCaps = new CDTrackListDecoratorCaps($myCD);
$myCDCaps- > makeCaps();

print “The CD contains the following tracks: “ . $myCD- > getTrackList();

 Only two additional lines were added to the main code flow to accomplish this small change.
 $myCDCaps is created by instantiating CDTrackListDecoratorCaps with a reference to the existing CD
object. Next, the functionality is executed by calling the makeCaps() function.

 To make small modifications to content or functionality of existing objects without modifying their
structure, the Decorator Design Pattern should be used.

c06.indd 47c06.indd 47 7/16/09 8:47:56 AM7/16/09 8:47:56 AM

c06.indd 48c06.indd 48 7/16/09 8:47:56 AM7/16/09 8:47:56 AM

 Delegate Pattern

 One of the strongest features of Object Oriented Programming is its dynamic nature. With today ’ s
push of more available features, mash - ups and constantly evolving standards, dynamic code is
gaining a whole new meaning. Whether its new file storage or streaming standards, a new social
networking site or a fresh take at some of the existing Internet pioneer ’ s APIs, web programming
continues to mutate. Legacy ways of handling decisions are no longer effective when confronted
with the enormous number of options available today. The Delegate Design Pattern is made for
taking complex decisions out of the loop by moving smart objects into their place.

 Name: Delegate

 The Delegate Design Pattern removes decisions and complex functionality from the core
object by distributing or delegating them to other objects.

 Problem and Solution
 Most PHP programmers have started out working with a very procedural type of programming.
This style of programming relies heavily on flow control based on conditional statements. Object
Oriented Programming provides some avenues to move beyond traditional conditional statements
to create a more polymorphic code stream. One of the ways to implement this is by creating objects
based on the Delegate Design Pattern.

 The Delegate Design Pattern focuses on removing complexity from core objects. Instead of
designing an object to rely heavily on executing specific functionality by evaluating a conditional
statement, the object can delegate the decision to different objects. This can be as simple as having
an intermediate object to process the decision tree to as complex as having objects instantiated
dynamically to provide the desired functionality.

c07.indd 49c07.indd 49 7/16/09 8:53:59 AM7/16/09 8:53:59 AM

50

Part II: Reference Material

MyDelegateObject

�action()

MyObject

-delegateType : String
- internalDelegate : MyDelegateObject

�setDelegateType(type)
�createDelegateObject()
�runDelegateAction()

1

1

 Figure 7 - 1

 It is important not to view the Delegate Design Pattern as a direct competitor to the conditional
statement. Instead, the Delegate Design Pattern helps form the architecture in such a way that
conditional statements aren ’ t needed to invoke the proper functionality. They ’ re encouraged to reside in
the actual methods, where they can be tasked to process business rules.

 An example of when the Delegate Design Pattern should be used is when providing multiple formats for
a specific piece of data. Imagine an archive at an open source code repository. When the visitor intends
to download a portion of that code, they have the choice of two compression methods. The files are
compressed and then sent to the browser. In this particular example, I ’ m going to refer to .zip and
.tgz files.

 Traditionally, a file collection and downloading object would be made. It would have methods to gather
together the requested files and store references to them internally. Then, a method named specifically
for that type of compression might be called. If the type was “ .zip, ” the generateZip() method would
be called.

 Objects based on the Delegate Design Pattern should be used instead of these custom - named functions.
The generateZip() method ’ s functionally should be transferred to a Delegate class that executes that
functionality against the base object ’ s file list. This not only reduces the complexity of the base object, but
it also provides greater maintainability of the code. If the future brings a new compression type such as
 .dmg , only a new Delegate object needs to be created. The stable base object does not need to be edited.

 When an object contains individual portions of complex but independent functionality that must be
executed based on a decision, it is best practice to use objects based on the Delegate Design Pattern.

 UML
 This Unified Modified Language (UML) diagram details a class design using the Delegate Design
Pattern (see Figure 7 - 1).

c07.indd 50c07.indd 50 7/16/09 8:54:00 AM7/16/09 8:54:00 AM

Chapter 7: Delegate Pattern

51

 Looking at this figure, you ’ ll note that:

 The base class MyObject is aware that it will be using objects based on the Delegate Design
Pattern. It contains a private string delegateType and a private instance of
 MyDelegateObject , called internalDelegate .

 The setDelegateType() method receives a parameter named type. This is stored in the
 delegateType string.

 The createDelegateObject() method will create an instance of a delegate object named after
the delegateType variable. It then stores the instance internally by assigning it to
 internalDelegate .

 The runDelegateAction() method is responsible for running the action() method of the
 internalDelegate object.

 MyDelegateObject contains the logic responsible for this particular action. The action()
method is run by MyObject to accomplish the feature.

 Code Example
 This particular website has a feature to create playlists from MP3 files. These could come from the
visitor ’ s hard drive or from locations on the Internet. The visitor has the choice to download the playlist
in either M3U or PLS format. (The code example will only show the creation of the playlist for brevity.)

 The first step is to create the Playlist class:

class Playlist
{
 private $__songs;

 public function __construct()
 {
 $this- > __songs = array();
 }

 public function addSong($location, $title)
 {
 $song = array(‘location’= > $location, ‘title’= > $title);
 $this- > __songs[] = $song;
 }

 public function getM3U()
 {
 $m3u = “#EXTM3U\n\n”;

 foreach ($this- > __songs as $song) {
 $m3u .= “#EXTINF:-1,{$song[‘title’]}\n”;
 $m3u .= “{$song[‘location’]}\n”;
 }

❑

❑

❑

❑

❑

c07.indd 51c07.indd 51 7/16/09 8:54:00 AM7/16/09 8:54:00 AM

52

Part II: Reference Material

 return $m3u;
 }

 public function getPLS()
 {
 $pls = “[playlist]\nNumberOfEntries=” . count($this- > __songs) . “\n\n”;

 foreach ($this- > __songs as $songCount= > $song) {
 $counter = $songCount + 1;
 $pls .= “File{$counter}={$song[‘location’]}\n”;
 $pls .= “Title{$counter}={$song[‘title’]}\n”;
 $pls .= “Length{$counter}=-1\n\n”;
 }

 return $pls;
 }
}

 The Playlist object stores an array of songs, which is initialized by the constructor.

 The addSong() public method accepts two parameters, a location of the MP3 file and the title of the file.
These are formed into an associative array and then added to the internal songs array.

 The requirements state that the playlist must be available in both M3U and PLS formats. For this, the
 Playlist class has two methods, getM3U() and getPLS() . Each of them is responsible for creating
the proper header to the playlist file and looping through the internal song array to complete the playlist.
Then, each function returns the playlist in string format.

 The current code stream to execute this functionality contains the familiar if / else clause:

$playlist = new Playlist();
$playlist- > addSong(‘/home/aaron/music/brr.mp3’, ‘Brr’);
$playlist- > addSong(‘/home/aaron/music/goodbye.mp3’, ‘Goodbye’);

if ($externalRetrievedType == ‘pls’) {
 $playlistContent = $playlist- > getPLS();
}
else {
 $playlistContent = $playlist- > getM3U();
}

 A new instance of the Playlist object is created. Two song locations and titles are added. Then, an
if / else clause is created. If the type is “ pls, ” the getPLS() method is executed and its output is put
into the $playlistContent . Otherwise, the $externalRetrievedType probably contains “ m3u, ”
which is caught by the else portion of the statement.

 The Sales team for this website found out about five more playlist formats that are available.
Consequently, they started selling the features of the software before it was even created. At this point,
the programmers still don ’ t know which new playlist formats were sold.

c07.indd 52c07.indd 52 7/16/09 8:54:00 AM7/16/09 8:54:00 AM

Chapter 7: Delegate Pattern

53

 In the meantime, the code can be modified to use the Delegate Design Pattern. The aim is to eliminate
that potentially unwieldy if / else statement. Also, as more formats are added, the initial Playlist
class could become extremely large.

 The newPlaylist class is aware of the fact that it will be using the Delegate Design Pattern. PHP ’ s
ability to dynamically create class instances based on a variable will also be helpful.

class newPlaylist
{
 private $__songs;
 private $__typeObject;

 public function __construct($type)
 {
 $this- > __songs = array();
 $object = “{$type}Playlist”;
 $this- > __typeObject = new $object;
 }

 public function addSong($location, $title)
 {
 $song = array(‘location’= > $location, ‘title’= > $title);
 $this- > __songs[] = $song;
 }

 public function getPlaylist()
 {
 $playlist = $this- > __typeObject- > getPlaylist($this- > __songs);
 return $playlist;
 }
}

 The constructor of the newPlaylist object now accepts the $type parameter. In addition to initializing the
internal songs array, the constructor now dynamically creates a new instance of the specified delegate from
 $type and stores it internally in the $__typeObject variable.

 The addSongs() method is the same as the initial Playlist object. The getM3U() and getPLS()
methods are replaced by the getPlaylist() method. This method executes the getPlaylist() method
of the internally stored delegate object. It passes the song array to that object so that that object can create
and return the proper playlist.

 The two methods previously part of the Playlist object have been moved to their own delegate objects:

class m3uPlaylistDelegate
{
 public function getPlaylist($songs)
 {
 $m3u = “#EXTM3U\n\n”;

 foreach ($songs as $song) {
 $m3u .= “#EXTINF:-1,{$song[‘title’]}\n”;

c07.indd 53c07.indd 53 7/16/09 8:54:01 AM7/16/09 8:54:01 AM

54

Part II: Reference Material

 $m3u .= “{$song[‘location’]}\n”;
 }

 return $m3u;
 }
}

class plsPlaylistDelegate
{
 public function getPlaylist($songs)
 {
 $pls = “[playlist]\nNumberOfEntries=” . count($songs) . “\n\n”;

 foreach ($songs as $songCount= > $song) {
 $counter = $songCount + 1;
 $pls .= “File{$counter}={$song[‘location’]}\n”;
 $pls .= “Title{$counter}={$song[‘title’]}\n”;
 $pls .= “Length{$counter}=-1\n\n”;
 }

 return $pls;
 }
}

 Each of the delegate classes is basically just a repackaging of the original methods from the base
 Playlist class. Each delegate object has an identical named public method called getPlaylist() ,
which accepts the songs parameter. This makes it simple and dynamic for the base object to create and
access any of the delegators.

 The code to execute this new delegate - based system is much simpler:

$externalRetrievedType = ‘pls’;

$playlist = new newPlaylist($externalRetrievedType);
$playlistContent = $playlist- > getPlaylist();

 When the additional playlist formats are announced, new classes based on the Delegate Design Pattern
can be created without having to modify this code.

 To remove complexity from the core object while making the process dynamic to add more functionality,
the Delegate Design Pattern should be used.

c07.indd 54c07.indd 54 7/16/09 8:54:01 AM7/16/09 8:54:01 AM

 Fa ç ade Pattern

 If application programming were simple, anyone could do it. There would be no need for books
like this, software development would be even less glamorous, and the industry would need to
evolve to a different business model to survive. But programming is not simple. It is actually quite
complex. While acknowledging this complexity, superior programmers strive to simplify their
systems. They opt to remove complexity at every chance, using any available Design Pattern,
including the Fa ç ade Design Pattern. When they hear the term fa ç ade , most people will picture the
false fronts of older buildings. Others may think of a sly person putting up a fa ç ade in a potentially
difficult situation. The fa ç ade is this person ’ s attempt to deceive those around them. The person ’ s
actions, feelings or reactions seem very simple, hiding the complexity they may be experiencing. In
the same way, the Fa ç ade Design Pattern is designed to make dealing with complex components
appear deceptively simple.

Name: Façade

The Façade Design Pattern hides complexity from a calling object by creating a simple façade
interface in front of the collection of required logic and methods.

 Problem and Solution
 A reoccurring theme throughout this book seems to be making an effort to remove complexity
from the code. But, it ’ s not necessarily complexity in code that we ’ re trying to remove. It ’ s the
coupling of different objects that is the aim of this simplicity. Project architects should tip their hat
to the programmer of a complex subsystem, appreciate its complexity, quality, and execution, and
then plug it into their overall project. As interior component logic becomes more complex,
however, the exterior interaction seems to follow suit. The goal of the Fa ç ade Design Pattern is to

c08.indd 55c08.indd 55 7/16/09 8:54:34 AM7/16/09 8:54:34 AM

56

Part II: Reference Material

rein in the exterior intricacies and provide a simple interface to harness the power of said component.
What makes the Fa ç ade Design Pattern unique is that it ’ s designed to combine or couple multiple related
components into that simple usable interface.

 Put into more practical terms, Fa ç ade Design Pattern – based classes may provide a public interface to
execute a logical business request. This individual business request may require multiple technical logic
steps to be executed in order to complete. Business processes are not always as simple as their name
implies. For example, the process may be titled “ Make Shared Files Available on Network. ” From their
point of view, the programmer knows that they must execute the following technical processes: “ Create
File Share, ” “ Move File to File Share, ” and “ Apply Proper Permissions to File. ” The Fa ç ade Design
Pattern provides that interface called “ Make Shared Files Available on Network ” by calling each one of
those technical requirements first.

 Another reason to use objects based on the Fa ç ade Design Pattern is to interface with third - party
solutions. Remember, it is continually stressed that the object - oriented project should be just a collection
of related objects. Because of this architecture, the lead programmer may find it more prudent to use a
third - party object.

 Imagine providing a search web page for an application. This search page first searches all of the data it
has available itself for the search term. If there are fewer than 10 results, it makes a call to a third - party
service, such as Google, to retrieve additional results. These results are appended to the bottom of any
results the application found internally. The Search Fa ç ade object returns the results to the calling view
object. Internally, the Search Fa ç ade object will call methods to query the internal database. After which,
it will determine if it needs to make a web service call to Google. If so, it will also parse those results to
make one homogeneous result set to return.

 If the benefits of this architecture are not immediately clear, think about the next step of the application ’ s
evolution. The Yahoo! search engine begins to return better results than its Google counterpart. The
external web service request needs to be modified to call Yahoo! ’ s API now.

 In a traditional approach, every time a request for results was created, the Google API would need to be
replaced. However, with a Search Fa ç ade object in place, you don ’ t need to modify anything on the
calling view object. Instead, a Yahoo! Search class is created. Then, the Search Fa ç ade ’ s method is
modified to use the Yahoo! Search class instead of the Google Search class.

 To hide the complex group of methods and logic required to execute a step of the business process, a
class based on the Fa ç ade Design Pattern should be used.

 UML
 This Unified Modified Language (UML) diagram details a class design using the Fa ç ade Design Pattern
(see Figure 8 - 1).

c08.indd 56c08.indd 56 7/16/09 8:54:35 AM7/16/09 8:54:35 AM

Chapter 8: Façade Pattern

57

 For this diagram, note the following:

 The MyObject class contains a public method called doSomethingRequiresAandB() . This is
just one step in the execution of the MyObject class. doSomethingRequiresAandB() creates a
new instance of the object LogicFacade . It calls the public method named
 callRequiredLogic() , which is named abstractly enough for MyObject .

 The callRequiredLogic() method inside the LogicFacade class is then responsible for
creating an instance of LogicObjectA and calling the doSomethingA() method. It also is
responsible for creating an instance of LogicObjectB and calling the doSomethingB() method.

 All of these actions are passed back through the LogicFacade class so that they are available to
 MyObject .

 Code Example
 The website passes its inventory to a different system in the company nightly as part of a required audit.
This other system will accept the request via a post to its web service. It is an older system, however, and
works with only uppercase strings. The code needs to acquire CD objects, apply uppercase to all their
properties, and create a well - formed XML document to be posted to the web service.

 The following is a simple example of a CD class:

class CD
{
 public $tracks = array();
 public $band = ‘’;
 public $title = ‘’;

 public function __construct($title, $band, $tracks)
 {
 $this- > title = $title;
 $this- > band = $band;
 $this- > tracks = $tracks;
 }
}

❑

❑

❑

LogicObjectA

�doSomethingA()
LogicFacade

11

11

11
�callRequiredLogic()

LogicObjectB

�doSomethingB()

MyObject

�doSomethingRequiresAandB()

 Figure 8 - 1

c08.indd 57c08.indd 57 7/16/09 8:54:35 AM7/16/09 8:54:35 AM

58

Part II: Reference Material

 When a new CD is instantiated, the constructor adds the title, band, and track list to the CD object. To
build the CD object, the steps are pretty simple:

$tracksFromExternalSource = array(‘What It Means’, ‘Brrr’, ‘Goodbye’);
$title = ‘Waste of a Rib’;
$band = ‘Never Again’;

$cd = new CD($title, $band, $tracksFromExternalSource);

 To format the CD object for the external system, two additional classes will be created. The first one will
be used to prepare the properties of the CD object. The required format is uppercase. The other class
will be responsible for building an XML document out of the CD object. This class will return a string of
the entire document.

 It is important to note that two classes will be created for maximum reusability. It
may be tempting to combine both of these steps into one class, but that may require
uncoupling in the future.

 class CDUpperCase
{
 public static function makeString(CD $cd, $type)
 {
 $cd- > $type = strtoupper($cd- > $type);
 }

 public static function makeArray(CD $cd, $type)
 {
 $cd- > $type = array_map(‘strtoupper’, $cd- > $type);
 }
}

class CDMakeXML
{
 public static function create(CD $cd)
 {
 $doc = new DomDocument();

 $root = $doc- > createElement(‘CD’);
 $root = $doc- > appendChild($root);

 $title = $doc- > createElement(‘TITLE’, $cd- > title);
 $title = $root- > appendChild($title);

 $band = $doc- > createElement(‘BAND’, $cd- > band);
 $band = $root- > appendChild($band);

 $tracks = $doc- > createElement(‘TRACKS’);
 $tracks = $root- > appendChild($tracks);

 foreach ($cd- > tracks as $track) {
 $track = $doc- > createElement(‘TRACK’, $track);

c08.indd 58c08.indd 58 7/16/09 8:54:36 AM7/16/09 8:54:36 AM

Chapter 8: Façade Pattern

59

 $track = $tracks- > appendChild($track);
 }

 return $doc- > saveXML();
 }
}

 The CDUpperCase object has two public static methods. The first one, named makeString() , accepts the
 CD object and a string parameter called $type . It simply applies the strtoupper() PHP function to
the CD instance ’ s public variable, named after the content of $type . The other method, named makeArray() ,
functions similarly to makeString() . It applies the strtoupper() method to each of the items in the CD
object ’ s public array, named after the content of $type , using the array_map() function. Since the CD object
is passed in by reference in PHP, no return variables are defined. This dynamic execution of each of these
methods allows this class to be used in the future in case the CD expands to include more public properties.

 The CDMakeXML object has only one public static method, named create() . This accepts the CD object
and is responsible for returning a fully formed XML document from the CD content. Simply, it creates
elements for the title, band, and tracks using uppercase tag names.

 At first glance, the programmer may want to implement the functionality in this way:

CDUpperCase::makeString($cd, ‘title’);
CDUpperCase::makeString($cd, ‘band’);
CDUpperCase::makeArray($cd, ‘tracks’);
print CDMakeXML::create($cd);

 While this is one way to solve the problem, it is not the best way. Instead, a Fa ç ade object should be
made for the web service call:

class WebServiceFacade
{
 public static function makeXMLCall(CD $cd)
 {
 CDUpperCase::makeString($cd, ‘title’);
 CDUpperCase::makeString($cd, ‘band’);
 CDUpperCase::makeArray($cd, ‘tracks’);

 $xml = CDMakeXML::create($cd);

 return $xml;
 }
}

 The WebServiceFacade object has only one public static method, called makeXMLCall() . This accepts
the CD object and returns an XML document. The steps used to create the XML document previously
were just moved into this Fa ç ade ’ s method. Now, instead of the four lines listed previously, only one is
needed:

print WebServiceFacade::makeXMLCall($cd);

 When the next step in the application process contains many complex logical steps and method calls, it is
best practice to create an object based on the Fa ç ade Design Pattern.

c08.indd 59c08.indd 59 7/16/09 8:54:36 AM7/16/09 8:54:36 AM

c08.indd 60c08.indd 60 7/16/09 8:54:37 AM7/16/09 8:54:37 AM

 Factory Pattern

 The largest switch / case statement I ’ ve ever seen in an object - oriented program had more than
20 conditions. Upon execution, this block of code was executed one time for each condition. Each
condition was responsible for creating a new object. This object was used to communicate with
external consumers of the application ’ s API. After performing some routine troubleshooting on
one of the classes, I investigated the interface it implemented. To my surprise, each of the classes
referenced in that switch / case statement implemented the same interface! The next time a new
condition was being added to that switch / case , I suggested we move to the Factory pattern. As
indicated earlier, the names of Design Patterns are very important. They not only provide
uniformity to referencing each Design Pattern, but they also key into what the pattern exactly
does. In the case of the code I was looking at, the Factory Design Pattern was a perfect match for
this assembly line of class creation.

Name: Factory

The Factory Design Pattern provides a simple interface to acquire a new instance of an object,
while sheltering the calling code from the steps to determine which base class is actually
instantiated.

 Problem and Solution
 As PHP continues to grow and evolve as a language, its features continue to provide easier
avenues for development, using proven Design Patterns. One feature of PHP that has been
particularly helpful is the ability to create new instances of classes based on the content of a
variable. This dynamic approach to object instantiation is one of the building blocks of my
approach to the Factory Design Pattern in PHP.

c09.indd 61c09.indd 61 7/16/09 8:55:13 AM7/16/09 8:55:13 AM

62

Part II: Reference Material

 Classes based on the Factory Design Pattern help reduce conditionally based complexity in the main
code stream. Throughout applications, objects are called in many different ways. Changing just one
thing about an object ’ s creation can cause ripples through the rest of the application. Think of
instantiating one of five objects to perform some sort of functionality. One method would be to create
a conditional to determine which object to instantiate. This might be a complex if/else statement or a
 switch / case statement. This functionality can be used in many places in the application but can cause
code duplication. Then, add a sixth object to the mix or change the name of one of the existing five, and
all instances of this code need to be modified and tested again. The Factory Design Pattern helps
eliminate this headache by providing a simple interface to create any of these objects. The way the
 Factory object is called stays the same no matter if objects are changed or other objects are added.

 A practical example of this can be observed when showing a blog entry. This particular blog is very
popular and has many different ways of providing its content to consumers. These include the standard
web browser, RSS feed, mobile delivery, and the REST API. The code stream or controller that actually
retrieves the proper blog entry does not need to be concerned with the view that is being consumed. It
simply will request a new view object from the view creation Factory. Once it has that instance of that
view object, it can pass the article object into the view. Finally, it calls the rendering method that executes
the view object. Throughout the whole process, because of the usage of that Factory object, the main
code stream does not have to deal with figuring out which is the right view object to create. It blindly
calls the Factory and is presented with the correct object to work with.

 The creation of different objects is not the only thing that the Factory Design Pattern can be used for,
however. Another reason to use a class based on the Factory Design Pattern is when you are working
with collections of items. In this case, the collection of objects consists of the same base object, but each
object has different characteristics.

 A great example of using a Factory class to manage a collection of objects is an inventory system. A
music shop may have an application that shows its guitar inventory. The view was originally created to
work with a single guitar object to determine its brand and model, its color, and the number of strings.
To show multiple results in the inventory, a Guitars Factory object could be used. It could accept a
collection of IDs from the database on instantiation. It would then have a public method called
 getGuitar() . This would return a guitar object created from a single ID. In this case, the Factory
continually creates a new guitar object from the collection and returns them uniformly using a public
method.

 When you need steps to determine which type of object to create, you should use a class based on the
Factory Design Pattern to retrieve the new instance.

 UML
 This Unified Modified Language (UML) diagram details a class design using the Factory Design Pattern
(see Figure 9 - 1).

c09.indd 62c09.indd 62 7/16/09 8:55:14 AM7/16/09 8:55:14 AM

Chapter 9: Factory Pattern

63

 Note the following about this figure:

 Two base classes exist: MyObjectTypeA and MyObjectTypeB . Both have a public method called
 doSomething() , which executes the logic of that object in its own unique way. Their public
interfaces and return types are identical.

 The MyObjectFactory class exists to create an instance of either one of these base classes and
return it to the code stream. MyObjectFactory has one public method, named
 createObject() . This accepts a parameter called type . This helps determine which of the two
base classes should be created. The createObject() method then returns an instance of the
requested type class.

 Code Example
 For the mastering process of a CD, the application needs to compile the required information into the CD
object. This object will be passed on to an external vendor, who will process the actual CD creation. The
 CD object needs to contain the title, the band name, and the track list.

 This simple CD class contains methods to add the title, band, and track list:

class CD
{
 public $title = ‘’;
 public $band = ‘’;
 public $tracks = array();

 public function __construct()
 {}

 public function setTitle($title)
 {
 $this- > title = $title;
 }

 public function setBand($band)

❑

❑

MyObjectTypeA

�doSomething()
MyObjectFactory

11

11

�createObject(type)
MyObjectTypeB

�doSomething()

Figure 9-1

c09.indd 63c09.indd 63 7/16/09 8:55:14 AM7/16/09 8:55:14 AM

64

Part II: Reference Material

 {
 $this- > band = $band;
 }

 public function addTrack($track)
 {
 $this- > tracks[] = $track;
 }
}

 In order to make a complete CD object, the process is always the same. Create an instance of the CD class,
then add the title, band name, and track list:

$title = ‘Waste of a Rib’;
$band = ‘Never Again’;
$tracksFromExternalSource = array(‘What It Means’, ‘Brrr’, ‘Goodbye’);

$cd = new CD();
$cd- > setTitle($title);
$cd- > setBand($band);
foreach ($tracksFromExternalSource as $track) {
 $cd- > addTrack($track);
}

 Some artists are now releasing additional content on their CDs that can be used on the computer. These
CDs are called enhanced CDs. The first track written to the disc is a data track. The mastering software
recognizes the data track by its label of ‘ DATA TRACK ’ and will create the CD accordingly.

 The enhancedCD class is similar to the regular CD class. It has the same public methods. However, it does
add the first track to the disc in the constructor automatically:

class enhancedCD
{
 public $title = ‘’;
 public $band = ‘’;
 public $tracks = array();

 public function __construct()
 {
 $this- > tracks[] = ‘DATA TRACK’;
 }

 public function setTitle($title)
 {
 $this- > title = $title;
 }

 public function setBand($band)

c09.indd 64c09.indd 64 7/16/09 8:55:15 AM7/16/09 8:55:15 AM

Chapter 9: Factory Pattern

65

 {
 $this- > band = $band;
 }

 public function addTrack($track)
 {
 $this- > tracks[] = $track;
 }
}

 After seeing these similarities and recognizing that there are only two possible CD types, it may be
tempting to just create a conditional statement. If the type is an enhanced CD, create a new instance of
the enhancedCD class. Otherwise, create the generic CD class. However, there is a better solution. The
Factory Design Pattern should be used.

 The CDFactory class uses PHP ’ s ability to dynamically instantiate a class from a variable. The create()
method accepts the type of class requested and returns a new instance of it:

class CDFactory
{
 public static function create($type)
 {
 $class = strtolower($type) . “CD”;

 return new $class;
 }
}

 Now, the class creation and execution is changed to reflect the usage of the Factory class:

$type = ‘enhanced’;

$cd = CDFactory::create($type);
$cd- > setBand($band);
$cd- > setTitle($title);
foreach ($tracksFromExternalSource as $track) {
 $cd- > addTrack($track);
}

 The last thing one might consider is the name of the existing CD class. To make it uniform, it may make
sense to change its name to standardCD . Make sure that this won ’ t damage other functionality
anywhere else in the code. It would be best to change any new instantiation of the CD to use the
 CDFactory class.

 When requesting an instance of a class that requires some logic and steps to determine its base, it is best
practice to use a class based on the Factory Design Pattern.

c09.indd 65c09.indd 65 7/16/09 8:55:15 AM7/16/09 8:55:15 AM

c09.indd 66c09.indd 66 7/16/09 8:55:15 AM7/16/09 8:55:15 AM

 Interpreter Pattern

 Whether you loved or hated math class, those concepts equipped you to be where you are now.
Even as early as algebra, core ideas were absorbed preparing you for your programming career.
Algebra revolves around using variables to hold unknowns. Substituting values into the equation
provided an interpretation of the variables to obtain the final result. Programming languages, like
PHP, provide another form of interpretation. PHP generally is referred to as an interpreted
language because its core installation does not compile the code ahead of time. PHP has also been
referred to as a templating language. As more elaborate applications are created, this templating
and interpreting becomes more advanced. More often than not, this template approach exists to
allow the team to create entities in a less technical and complex way. The Interpreter Design
Pattern is made to review these entities and provide a replacement for or interpretation of them to
that template.

Name: Interpreter

The Interpreter Design Pattern analyzes an entity for key elements and provides its own
interpretation or action corresponding to each key.

 Problem and Solution
 The Interpreter Design Pattern is one of the few extremely common design patterns you may have
been using often without realizing it. This style of design is not limited to just the creation of
classes. The base concepts of the Interpreter Design Pattern are used throughout most of the
programming algorithms created.

c10.indd 67c10.indd 67 7/16/09 8:57:44 AM7/16/09 8:57:44 AM

68

Part II: Reference Material

 To understand how the Interpreter Design Pattern works, consider the processing of a macro language.
The commands that are written for each macro are, in themselves, collections of more commands. The
shorthand macro language makes it easier for a programmer to create something without having to
worry about the exact syntax of other system commands. In some cases, this is also done to boost
security: the programmer is not given direct access to the system commands. Instead, wrapper methods
are written to execute the system commands in a sort of sandbox. The macro language is interpreted and
translated into a set of commands to be executed.

 Another way to think of this is by examining a template system. Specific predefined keywords or
symbols are defined to represent something else. The template processor takes the code, interprets each
keyword to reference a specific set of instructions, and executes those.

 Building systems based around the Interpreter Design Pattern allows third parties or users greater
flexibility over how to present and retrieve data that the system provides. Instead of predefining method
names or specific constants to represent a type of data retrieval, a set of keywords can be used to retrieve
that data.

 For example, a third - party consuming a web service could dictate the values they wish to retrieve in
the order they wish by sending a keyword - laden request. Perhaps this request mimics an XPath query
in the way it ’ s constructed. The class based on the Interpreter Design Pattern would then retrieve each
bit of information that each key symbolizes in the order in which they were requested. The interpretation
of these keywords is done piecemeal; therefore, it does not require a complex set of predefined data set
orders. For a CD, the request may be in this form: “ band title track4. ” The interpreter knows to return the
band name, the CD title and the title of track number 4 to the requester. The next request could be
 “ track3 title ” which would send back the third track ’ s name and the title of the CD.

 The most common use of the Interpreter Design Pattern is in PHP/HTML template systems. HTML
documents are created with specific placeholders in their body. These placeholders reference a function
or property of the processing object or another template or file on the file system. These template
systems are used often when working with large collections of similar data, such as user profiles. A base
template is created with keywords referencing the user ’ s name, hometown, and picture. The processing
class then interprets each one of these keys as a request for user data and acts accordingly. In similar
fashion, the header, navigation, and footer information for a website may be duplicated throughout the
entire site. The base template is created with a key to be interpreted as the requested page ’ s output.
The processing object is responsible for interpreting that key to mark the placement of the current
request ’ s output.

 Processing requests using keys to reference functionality should be handled by an object created using
the Interpreter Design Pattern.

c10.indd 68c10.indd 68 7/16/09 8:57:44 AM7/16/09 8:57:44 AM

Chapter 10: Interpreter Pattern

69

 UML
 This Unified Modified Language (UML) diagram details a class design using the Interpreter Design
Pattern (see Figure 10 - 1).

MyInterpreter

�interpretKeys(inout content)

MyObject

-content : String

�storeContent(content)
�applyInterpretation()
�getContent()

11

 Figure 10 - 1

 Note the following about this diagram:

 MyObject deals with content that needs to be interpreted. It has a private string called content to store
the content it needs to work with.

 The storeContent() method accepts one parameter, named content . This is the content
pre - interpretation. It is then stored internally in the MyObject object.

 applyInterpretation() is called next. It creates an instance of MyInterpreter . MyInterpreter
has one public method named interpretKeys() . This method accepts the parameter named
 content . applyInterpretation() and passes its internal content to interpretKeys() .
The MyInterpreter class executes the interpretation on the content and then returns it to MyObject .
Then applyInterpretation() replaces the internal content variable.

 MyObject , finally, provides the content via the getContent() after interpretation.

 Code Example
 The website in this example has decided to jump on the bandwagon to merge the CD buying experience
and social networking. Users who sign up for the website can have their own profile page. They ’ ll be
able to add advanced functionality like HTML, widgets, and listings of their favorite CDs.

 In the first iteration, users can create their profile and add their favorite CD title to their profile. The first
piece of functionality is the User class:

class User
{
 protected $_username = ‘’;

 public function __construct($username)
 {
 $this- > _username = $username;
 }

c10.indd 69c10.indd 69 7/16/09 8:57:45 AM7/16/09 8:57:45 AM

70

Part II: Reference Material

 public function getProfilePage()
 {
 //In lieu of getting the info from the DB, we mock here
 $profile = “ < h2 > I like Never Again! < /h2 > ”;
 $profile .= “I love all of their songs. My favorite CD: < br / > ”;
 $profile .= “{{myCD.getTitle}}!!”;

 return $profile;
 }
}

 Most of the User class is mocked up for this example. When creating an instance of the User class, the
username is assigned to the protected $_username variable. In a non - mock example, some logic may be
placed here to query the database and initialize the User object with the proper values. The
 getProfilePage() function is also a mock method. It returns a hard - coded profile. The important
portion of this example to note, however, is the {{myCD.getTitle}} string. This represents the
template language that will be interpreted later. The getProfilePage() just returns what the user has
specified as their profile page.

 In order to retrieve CD information for the user, a new object is created, called userCD :

class userCD
{
 protected $_user = NULL;

 public function setUser($user)
 {
 $this- > _user = $user;
 }

 public function getTitle()
 {
 //mock here
 $title = ‘Waste of a Rib’;

 return $title;
 }
}

 Once again, this example is heavily mock based. The setUser() method accepts the user object and
stores it internally. It could probably create an instance of a CD object and store it internally in a more
robust example. The getTitle() method would retrieve the title from the CD and return it.

 It is important to note the similarity between the name of the getTitle() method and the template
language that was specified in the user ’ s profile. This will be used by the interpreter class:

class userCDInterpreter
{
 protected $_user = NULL;

 public function setUser($user)

c10.indd 70c10.indd 70 7/16/09 8:57:45 AM7/16/09 8:57:45 AM

Chapter 10: Interpreter Pattern

71

 {
 $this- > _user = $user;
 }

 public function getInterpreted()
 {
 $profile = $this- > _user- > getProfilePage();

 if (preg_match_all(‘/\{\{myCD\.(.*?)\}\}/’, $profile,
 $triggers, PREG_SET_ORDER)) {
 $replacements = array();

 foreach ($triggers as $trigger) {
 $replacements[] = $trigger[1];
 }

 $replacements = array_unique($replacements);

 $myCD = new userCD();
 $myCD- > setUser($this- > _user);

 foreach ($replacements as $replacement) {
 $profile = str_replace(“{{myCD.{$replacement}}}”,
 call_user_func(array($myCD, $replacement)), $profile);
 }

 }

 return $profile;
 }
}

 The userCDInterpreter class contains the setUser() method. This accepts a User object and stores it
internally. The only other method of the userCDInterpreter class is the public function named
 getInterpreted() .

 First, the getInterpeted() method gets the profile from the User object that is stored
internally. Next, it parses the profile for any interpretable key language that can be processed. If
any is found, an array of replacements is built. After that, a unique set of replacements is
generated.

 The next step is to create a new CD based on the userCD object. This object is created, and the
 User instance is passed into it.

 Finally, each of the replacements is looped through. A method named after the content of the
 $replacement variable belonging to the userCD instance is called. Its output is used to replace
the interpreted placeholder in the profile. After each of these interpretations is complete, the
profile is returned.

❑

❑

❑

c10.indd 71c10.indd 71 7/16/09 8:57:45 AM7/16/09 8:57:45 AM

72

Part II: Reference Material

 To actually perform this interpretation and generate a templated output is now very simple:

$username = ‘aaron’;

$user = new User($username);
$interpreter = new userCDInterpreter();
$interpreter- > setUser($user);

print “ < h1 > {$username}’s Profile < /h1 > ”;
print $interpreter- > getInterpreted();

 The user instance is created, a class based on the Interpreter Design Pattern is created, and the
interpretation is executed.

 When a set of instructions is referenced by keywords or a macro language, it is best practice to use a class
based on the Interpreter Design Pattern.

c10.indd 72c10.indd 72 7/16/09 8:57:46 AM7/16/09 8:57:46 AM

 Iterator Pattern

 One of the most valuable things a computer can do is execute a repetitive task. Always doing it the
same way without becoming “ bored ” or getting tired, a computer can chug along doing the same
thing over and over. This is one of the many reasons why computers became mainstream,
affordable, and a staple in the household. Their ability to do simple things repetitively is amazing:
anything from simple math to playing music on repeat or helping to correct a misspelled word in
this book over and over. Computer programming languages manage repetition through a
construction called a loop. Looping is used in almost every program and action now, without our
even realizing it. From a programming point of view, however, not all objects are the same when it
comes to looping. Some require complicated hash table access. Others can be handled like an array.
Because of this complexity in object interface, a common method of looping through items had to
be established. This is where the Iterator Design Pattern stands alone.

Name: Iterator

 The Iterator Design Pattern helps construct objects that can provide a single standard inter-
face to loop or iterate through any type of countable data.

 Problem and Solution
 One of the most convincing proofs that these Design Patterns make sense is their appearance in the
continued refactoring of any of the older code a programmer creates. I fondly remember creating
my first data - driven site. It used flat files to handle the data and was pretty clunky and slow. When
I learned MySQL, I migrated all of the data into a few database tables. I still had to write multiple
queries to return my data. When I progressed to an object - oriented refactor, I started creating data
objects from those MySQL queries. I still created each individual object by hand and then accessed
them later. Finally, the last step I remember was creating an object that created objects for a page. It
had a method to get the next object from the list. Little did I know it — I was on the edge of
actually implementing a Design Pattern: the Iterator Design Pattern.

c11.indd 73c11.indd 73 7/16/09 8:58:13 AM7/16/09 8:58:13 AM

74

Part II: Reference Material

 The Iterator Design Pattern helps fashion objects to handle these collections of data or other objects.
When creating a class based on the Iterator Design Pattern, a set of interfaces is created in order to
provide a unified approach to managing these collections. For example, some objects dictate the mere
creation of themselves as evidence that they are complete and available to the collection. Other objects
may require additional building before they are available to be processed as part of the collection.
The class based on the Iterator Design Pattern will provide those unified public methods to access the
collection. Inside the class, however, logic is applied to determine which object is returned from
the collection next.

 Sometimes a data set may seem simple. The programmer may not be able to predict a situation where it
might change, so he/she opts to leave the code as is and not create an Iterator. This is often the case with
calls to the database. MySQL queries are created, and the simple fetch array command is executed.
However, leaving a procedural approach like this in the code is not the best solution.

 An Iterator object should be created to deal with the MySQL result set. It may be as basic as providing a
MySQL query to the class constructor and then looping through the result sets by calling the public
methods of the object. Other, more complex, examples of the Iterator may feature additional parameters
being sent to the Iterator. Perhaps a different set of MySQL queries is executed, depending on these
conditions. No matter what, however, the exterior code stream just deals with the same public methods
to obtain the next items in the collection.

 Another example of a great use for a class based on the Iterator Design Pattern involves dealing with the
file system. Looping through the file system to present a list of available files is a common theme in
programming. Examples using this approach include providing a list of files to download and applying
plugins dynamically to a modular code base. A class based on the Iterator Design Pattern is created. Next,
it accesses the file system and provides the file information back to the calling code. This could be in the
form of a string of the file path or perhaps a file object. The Iterator may have logic to help determine
which types of files to return. For example, the download page may only want to present Zip files for
download, ignoring any of the other meta data and files in the directory. The Plugin system may be
looking to include only files ending with “ .inc, ” which is transparently handled by the Iterator. In all cases,
that Iterator provides the same public methods to the exterior code stream to retrieve the file information.
As mentioned in Chapter 2, the Standard PHP Library has an extensive set of classes based on the Iterator
Design Pattern. Visit http://php.net/spl for more information on these classes and interfaces.

 With the extensive amount of information available on the Web and the ever - increasing demand to
aggregate and present sets of data, programmers are facing new challenges. Now, instead of having just
one entity type to loop through and provide in a cumulative view, various other entities are being
injected. The Iterator Design Pattern provides a welcome tool for this challenge.

 Imagine a scenario in which a social networking site wants to display user status changes publicly to a
web page. Every minute, it runs a cycle that retrieves all of the status changes from the database. An
Iterator object is created to loop through each of these status changes and provide useful information
such as user ID and status content.

 A new way of updating the status is introduced. This comes in the form of txt messages added to a
queue. Now, in addition to querying the database, the txt message queue also needs to be checked and
looped through. A new Iterator can be created to handle the txt messages. Now, after one Iterator is
finished returning content, a new one can be created dynamically, like the txt message iterator, and
provided to that external code stream. Because of the objects created from the Iterator Design Pattern
and their common public methods, no other code needs to be modified.

c11.indd 74c11.indd 74 7/16/09 8:58:14 AM7/16/09 8:58:14 AM

Chapter 11: Iterator Pattern

75

 When dealing with countable data that needs to be traversed, creating an object based on the Iterator
Design Pattern is the best solution.

 UML
 This Unified Modified Language (UML) diagram details a class design using the Iterator Design Pattern
(see Figure 11 - 1).

MyObject

�getName()

-name : String

MyObjectCollection

�MyObjects : Array

�getMyObjects()

MyObjectCollectionIterator

-MyObjectCollection : MyObjectCollection

�hasNext()
�getNext()

0..* 1

1
1

 Figure 11 - 1

 For the figure, note that:

 MyObject is the base object, which can be collected into countable collections. MyObject has a
private string called name . This is used to represent the uniqueness of that particular object. The
public method getName() provides the interface to determine what the name of the object is by
retrieving it from the private name.

 MyObjectCollection represents a class that manages collections of the object MyObject .
The MyObjects array holds the collection of the objects. getMyObjects() provides the logic to
create the collection and store the objects in the MyObject array.

 The MyObjectCollectionIterator provides the interface to iterate over the objects stored
in the MyObjectCollection . It has two public methods. hasNext() will let the caller know if
there is another item left in the MyObjectCollection collection of MyObjects . The getNext()
method will return the next MyObject from the array in MyObjectCollection .

 Code Example
 Part of the example website ’ s job is to show all the CDs from a particular artist or band. This information
is stored in a MySQL database. Some visitors may want to search the database by the band name and get
a summary of all of the CDs that particular artist has released. This is the perfect example of the Iterator
Design Pattern in practice.

❑

❑

❑

c11.indd 75c11.indd 75 7/16/09 8:58:14 AM7/16/09 8:58:14 AM

76

Part II: Reference Material

 First, our semi - standard CD class:

class CD
{
 public $band = ‘’;
 public $title = ‘’;
 public $trackList = array();

 public function __construct($band, $title)
 {
 $this- > band = $band;
 $this- > title = $title;
 }

 public function addTrack($track)
 {
 $this- > trackList[] = $track;
 }
}

 In this example of the CD class, you ’ re using public variables for the band, title, and track list. The
constructor creates the instance and assigns the band and title internally. The addTrack() function
accepts the $track variable and uses that to add to the track list.

 The next class to make is the Iterator. In this example, the SPL Iterator is being implemented. Because of
that, you ’ re required to have the current() , key() , rewind() , next() , and valid() public methods.

class CDSearchByBandIterator implements Iterator
{
 private $__CDs = array();
 private $__valid = FALSE;

 public function __construct($bandName)
 {
 $db = mysql_connect(‘localhost’, ‘user’, ‘pass’);
 mysql_select_db(‘test’);

 $sql = “select CD.id, CD.band, CD.title, tracks.tracknum, “;
 $sql = “tracks.title as tracktitle “;
 $sql .= “from CD left join tracks on CD.id=tracks.cid where band=’”;
 $sql .= mysql_real_escape_string($bandName);
 $sql .= “’ order by tracks.tracknum”;
 $results = mysql_query($sql);

 $cdID = 0;
 $cd = NULL;

 while ($result = mysql_fetch_array($results)) {
 if ($result[‘id’] !== $cdID) {
 if (!is_null($cd)) {
 $this- > __CDs[] = $cd;
 }
 $cdID = $result[‘id’];

c11.indd 76c11.indd 76 7/16/09 8:58:15 AM7/16/09 8:58:15 AM

Chapter 11: Iterator Pattern

77

 $cd = new CD($result[‘band’], $result[‘title’]);
 }

 $cd- > addTrack($result[‘tracktitle’]);
 }

 $this- > __CDs[] = $cd;
 }

 public function next()
 {
 $this- > __valid = (next($this- > __CDs) === FALSE) ? FALSE : TRUE;
 }

 public function rewind()
 {
 $this- > __valid = (reset($this- > __CDs) === FALSE) ? FALSE : TRUE;
 }

 public function valid()
 {
 return $this- > __valid;
 }

 public function current()
 {
 return current($this- > __CDs);
 }

 public function key()
 {
 return key($this- > __CDs);
 }
}

 Compared to most of the classes used in the examples, this one is pretty verbose. However, to properly
illustrate the Iterator, especially the implementation of the SPL Iterator, this is necessary. While the code
is lengthy, it ’ s not that complex.

 The CDSearchByBandIterator class is designed to return an object that can be accessed by using some
of the PHP array functions. It is important to note that every Iterator does not need to implement the SPL
Iterator. However, in this example, it made the most sense to me.

 There are two private variables, $__CDs , which is an array that contains the collection of CD objects, and
 $__valid , which is used by the array access functions. Basically, this just stores whether there is an
available object in the collection to work with.

 The __construct() method takes one parameter named $bandName . On instantiation, a connection
to the database is created. Then, a query is created to return a MySQL result set of all the CDs and tracks
whose band column matches $bandName .

c11.indd 77c11.indd 77 7/16/09 8:58:15 AM7/16/09 8:58:15 AM

78

Part II: Reference Material

 The storage of the CDs and tracks is normalized. This means that for the result set that is retrieved, there
will be many rows of the same CD, with the same title but different track names. If the relationship were
one row of data to one CD object, a novice programmer might be even more tempted not to create an
Iterator object.

 Since you ’ re expecting to deal with CD objects, the next portion of the constructor loops through all of the
results and creates individual CD objects. Whenever there is a change in the CD ID, which is stored in
 $cdID , the current CD object stored in $cd is added to the internal result array. Then a new instance is
created. After determining if a new CD should be created, the result set ’ s track title is added to that object.
The end result, after constructing the CDSearchByBandIterator , is a complete class with an array of CD
objects whose band matches the name that was searched.

 The public next() and rewind() methods function similarly. First, the matching action using PHP ’ s
built - in array methods is executed on the internal instance of $__CDs . If that function is unable to
perform that action on the internal array, it will return FALSE . Using a simple conditional, the function
is performed, and its result is compared and added to the internal $__valid variable.

 The public valid() function is pretty straightforward. Implementing the Iterator class is required. All it
does is provide the value of the internal $__valid variable.

 The final two public methods are current() and key() . Predictably, they also execute the
corresponding internal PHP methods for array access against the internal collection of CD objects.

 To use this class, the code is pretty familiar. The CDSearchByBandIterator functions like an array. As
it ’ s traversed, it returns the CD objects that the code is expecting.

$queryItem = ‘Never Again’;

$cds = new CDSearchByBandIterator($queryItem);

print ‘ < h1 > Found the Following CDs < /h1 > ’;
print ‘ < table > < tr > < th > Band < /th > < th > Title < /th > < th > Num Tracks < /th > < /tr > ’;
foreach ($cds as $cd) {
 print “ < tr > < td > {$cd- > band} < /td > < td > {$cd- > title} < /td > < td > ”;
 print count($cd- > trackList) . ‘ < /td > < /tr > ’;
}
print ‘ < /table > ’;

 When working with a collection of countable and traversable data, it is best practice to create an object
based on the Iterator Design Pattern.

c11.indd 78c11.indd 78 7/16/09 8:58:16 AM7/16/09 8:58:16 AM

 Mediator Pattern

 Complex intertwined, or “ spaghetti, ” code just doesn ’ t get the respect it deserves. The extensive
coupling, managed interdependencies, and monolithic code streams are a testament to the beauty,
hard work, and sheer brilliance of the programmer. I can ’ t believe “ spaghetti ” code gets such a bad
rap. Programmers, from novice to experienced, will have picked up on my sarcasm by now.
However, very often, this is the mindset that one has to acquire in order to not go crazy when
working with a software application. Additional features, scope creep, and too many cooks in the
kitchen can lead to this interwoven repository of code. The term object oriented seems to be lost.
Chances are that this cluster of inseparable code was once a very sleek, fast, and modular system.
But similar objects within the system started finding out too much about each other, applying
updates to each other, and generally being too tightly coupled. But there is hope. When many
similar objects need to accept changes, without being tightly coupled, the Mediator Design Pattern
is there to lend a hand.

Name: Mediator

The Mediator Design Pattern is used to develop an object that communicates or mediates
changes to a collection of similar objects without them interacting with each other directly.

 Problem and Solution
 When objects start becoming too tightly coupled, the benefits of Object Oriented Programming
start to disappear. While still working with objects, the style begins to shift towards procedural.
The code base starts to become monolithic and cumbersome. Before the solutions can be applied,
this particular problem needs to be investigated further. It is important to understand the
underlying causes. The same problems that the Mediator Design Pattern solves can slowly creep
into other instances of the code.

c12.indd 79c12.indd 79 7/16/09 9:00:00 AM7/16/09 9:00:00 AM

80

Part II: Reference Material

 When objects that are not specifically designed to deal with each other start realizing relationships, a
problem has begun. Now, there are times when objects are created to work with child objects or
collections. This is a perfectly fine architectural choice. However, when interchangeable objects or objects
not based on the same framework start to have interdependencies, problems develop — usually when an
object is updated or its interface changes or when an update needs to be applied to an object. It may be
tempting to add a new method to update similar objects with the same information. However, by adding
this method, the object is gaining an understanding of and relationship with another object that it need
not be coupled to. The most immediate consequence comes from the other object ’ s public methods
changing. Now, not only is the other object being modified, but this unrelated object ’ s method needs to
be updated.

 Objects based on the Mediator Design Pattern provide a much needed hub for communication between
these related but uncoupled objects. A similar but unrelated object gets affected by a change. It mentions
that change to the Mediator object. The Mediator object then mediates with all other objects that could
accept this change by applying it to them. The initial changed object does not know how many, if any,
other objects are acquiring the same change. Other similar objects don ’ t know the source of the update,
just that they should apply it themselves.

 A human example of this behavior can be demonstrated by the employees and the boss. One employee
decides to learn a new skill set at their home by themselves. While they are learning this new skill set,
they are not communicating with any other employee. Once finished, they tell the boss about their new
skill. The boss decides it ’ s a good idea and notifies all the other employees that they should also learn
this new skill set. They go and learn the new skill set in their own way.

 Another way to see the Mediator Design Pattern in action might be with a sales system. This sales
system is used to sell guitars at a music shop. Each guitar in inventory is accessed by creating a guitar
object. On the sales management screen, the owner has the option to apply a discount to that particular
guitar. Since vendors tend to run special promotions, the owner also has the ability to select a check
mark to apply the discount to all guitars of this brand. If that option is checked, the update is applied
normally. However, the Mediator is notified that this change has happened and that it should be applied
to every other guitar object.

 When changes to a source object should be communicated to other related but uncoupled objects, an
object based on the Mediator Design Pattern should be used to manage the updates.

 UML
 This Unified Modified Language (UML) diagram details a class design using the Mediator Design
Pattern (see Figure 12 - 1), which is described in the following list:

c12.indd 80c12.indd 80 7/16/09 9:00:01 AM7/16/09 9:00:01 AM

Chapter 12: Mediator Pattern

81

 Two similar classes exist in this diagram: MyObjectA and MyObjectB . Both classes appear the
same externally. They may differ in their identifier, represented by the private variable named
 identifier . Both function similarly.

 During object creation, an instance of MyObjectMediator gets stored internally. Then, if a change
is requested of the object by calling the public method changeIdentifer() , the parameter
newID is applied to the object by updating the private identifier string. Then, the protected
method notifyMediator() is called to apply the mediation to the rest of the objects.

 MyObjectMediator is a hub for a list of objects. These are stored in the array
 MyObjectsToMediate . When MyObjectMediator is notified, the myObjectChanged()
method is executed. This is responsible for parsing the array MyObjectsToMediate and
applying the change to each of the other objects.

 Code Example
 The example website allows bands to come in and manage their music collection. It also allows them to
update their profile, change information about their band, and update their CD information. Recently,
artists were allowed to upload a collection of MP3s as well as ship CDs from the website. Because of this,
the website needs to keep CDs and their MP3 counterparts in sync with each other.

 The initial version of the website allowed the band to change its band name from the profile page or
from an individual CD itself. The CD object had a method that would accept the band change and update
it in the database:

class CD
{
 public $band = ‘’;
 public $title = ‘’;

 public function save()

❑

❑

❑

MyObjectA

�changeIdentifier(newID)
#notifyMediator()

1

1

1

1

- identifier : String
-mediator : MyObjectMediator

MyObjectB

�changeIdentifier(newID)
#notifyMediator()

- identifier : String
-mediator : MyObjectMediator

MyObjectMediator

�myObjectChanged()

�MyObjectsToMediate : Array

 Figure 12 - 1

c12.indd 81c12.indd 81 7/16/09 9:00:01 AM7/16/09 9:00:01 AM

82

Part II: Reference Material

 {
 //stub - writes data back to database - use this to verify
 var_dump($this);
 }

 public function changeBandName($newName)
 {
 $this- > band = $newName;
 $this- > save();
 }
}

 This simple class just demonstrates that the CD object can have a band and title. Then, the function
 changeBandName() takes a new band name parameter. It sets it in the object and then calls the save()
method. For demonstration purposes, the save() method is just a stub. You dump the instance to verify
that the changes have been made.

 With the addition of our MP3 archive, another similar object needs to be created to work with that
archive. The artist must also be able to change their band name on the MP3 archive page. The band name
must also then change in the CD that is associated with it.

 The Mediator Design Pattern should now be used. First, the CD class is modified in order to take
advantage of this. Then, the MP3 archive class is created similarly:

class CD
{
 public $band = ‘’;
 public $title = ‘’;
 protected $_mediator;

 public function __construct($mediator = null)
 {
 $this- > _mediator = $mediator;
 }

 public function save()
 {
 //stub - writes data back to database - use this to verify
 var_dump($this);
 }

 public function changeBandName($newName)
 {
 if (!is_null($this- > _mediator)) {
 $this- > _mediator- > change($this, array(‘band’= > $newName));
 }
 $this- > band = $newName;
 $this- > save();
 }
}

class MP3Archive

c12.indd 82c12.indd 82 7/16/09 9:00:02 AM7/16/09 9:00:02 AM

Chapter 12: Mediator Pattern

83

{
 public $band = ‘’;
 public $title = ‘’;
 protected $_mediator;

 public function __construct($mediator = null)
 {
 $this- > _mediator = $mediator;
 }

 public function save()
 {
 //stub - writes data back to database - use this to verify
 var_dump($this);
 }

 public function changeBandName($newName)
 {
 if (!is_null($this- > _mediator)) {
 $this- > _mediator- > change($this, array(‘band’= > $newName));
 }
 $this- > band = $newName;
 $this- > save();
 }
}

 The first change that was made to the CD object was adding a protected variable called $_mediator .
This stores the instance of the Mediator object. The constructor was added. When creating an instance
of the CD , a new Mediator object should be passed into the class. Notice, however, that the default value
for the variable is null . This allows you to create the object without a Mediator in the instance that
you ’ re using it for read - only functionality. It also ensures you don ’ t create infinite loops when using the
Mediator object to update the other classes. Next, the changeBandName() method was modified. It
checks to see if the Mediator object exists and is not null. If so, it calls the Mediator ’ s change() method,
passing in the instance of itself and a keyed array of items that will change.

 This happens before the update is applied to the object itself. It ’ s important for the Mediator to get a
snapshot of the item before it changes.

 The MP3Archive is almost identical to the CD object.

 The Mediator needs to be created next:

class MusicContainerMediator
{
 protected $_containers = array();

 public function __construct()
 {
 $this- > _containers[] = ‘CD’;
 $this- > _containers[] = ‘MP3Archive’;
 }

 public function change($originalObject, $newValue)

c12.indd 83c12.indd 83 7/16/09 9:00:02 AM7/16/09 9:00:02 AM

84

Part II: Reference Material

 {
 $title = $originalObject- > title;
 $band = $originalObject- > band;

 foreach ($this- > _containers as $container) {
 if (!($changedObject instanceof $container)) {
 $object = new $container;
 $object- > title = $title;
 $object- > band = $band;

 foreach ($newValue as $key= > $val) {
 $object- > $key = $val;
 }

 $object- > save();
 }
 }
 }
}

 The Mediator object knows about each type of Music Container that it will be mediating. The constructor
is used to build this internal array of objects it will mediate. In the future, if a new container is created, the
only change that is required in this class is to add a new element to the protected $_containers array.

 The change method accepts the original object and the new values. First, the title and band name are
retrieved from the original object. Next, all of the containers are looped through. If $originalObject is
not an instance of that container, that container is created. The reason the container is compared to
the original object is to reduce duplication. The changes will be processed to the original object after the
mediator is done. A copy of the original object does not need to be created and modified, so it is skipped
in the loop.

 If the container is created as a new object, the title and band name are set from the original object. Finally,
any of the changes from $newValue are looped through and applied to the new object. The object is
then saved.

 After this whole process, the original object then applies its own updates and saves itself.

 To use the new Mediator object, the code is simple:

$titleFromDB = ‘Waste of a Rib’;
$bandFromDB = ‘Never Again’;

$mediator = new MusicContainerMediator();
$cd = new CD($mediator);
$cd- > title = $titleFromDB;
$cd- > band = $bandFromDB;

$cd- > changeBandName(‘Maybe Once More’);

 When working with uncoupled objects that have similar properties that need to stay in sync, using an
object based on the Mediator Design Pattern is best practice.

c12.indd 84c12.indd 84 7/16/09 9:00:02 AM7/16/09 9:00:02 AM

 Observer Pattern

 Forming a company around the creation of open source software was something that was largely
unheard of a decade ago. Now, there are many successful companies who base their survival on
the same open source software that they help to create. They ’ ve come up with a business model
that works. Imagine what the first few hurdles were when this concept initially came out:

 These companies wanted to keep providing open source software and not take over the
code base.

 They had licensing restrictions to worry about if they continued to work with that
particular code base.

 Their goal was to keep the community involved. They wanted to provide a vehicle to keep
the existing strong group of individuals involved.

 These companies possessed a great amount of talent that was familiar with the code base. Because
of this, they settled on adding additional features to the application as a way to generate a profit.
With each new piece of functionality that is added, however, existing users of the software should
not be forced to update the full software package again. But these companies definitely didn ’ t
want to provide a forked version of the software either. Finally, it became clear: create a plugin
system. That way, the company could continue to develop custom proprietary software for a
profit, while encouraging other community members to contribute even more functionality via this
avenue. Because of the plugin system, the end users could determine what features they wanted in
addition to the core package. When new functionality needs to be added to a code base without
the core objects being aware of it, the Observer Design Pattern can be of use.

❑

❑

❑

Name: Observer

The Observer Design Pattern facilitates the creation of objects that watch the state of a target
object and provides state targeted functionality that is uncoupled from the core object.

c13.indd 85c13.indd 85 7/16/09 9:01:13 AM7/16/09 9:01:13 AM

86

Part II: Reference Material

 Problem and Solution
 The clearest example of the Observer Design Pattern is the plugin system. Because a good portion of the
applications that I worked on were managed by a core team of developers, I didn ’ t see many reasons to
create a plugin - based code base. In fact, I was quite reluctant to even explore the Observer pattern
further. But the plugin system is only the most common example of the Observer Design Pattern in use.
There are many other ways to implement it.

 The core concept of the Observer Design Pattern solves a very common problem. Software applications
continually need new features to stay viable. But, how can additional functionality be added to the
application without having to completely refactor some of the core objects? The Observer Design
Pattern lays out the blueprint to solve this issue from the object ’ s initial creation.

 First, it ’ s important to understand that the Observer Design Pattern is based around state changes. A
 state change is simply an object being transformed from one thing to another. This could be very simple
such as an internal method being called that alters the object ’ s properties. It could also be a more
involved process such as a complete logic path; for example, balancing an inventory object after selling
some merchandise based on another object. In either example, state changes are happening to the object.

 The core object that is based on the Observer Design Pattern is responsible for communicating these state
changes to other classes that are assigned to observe and understand them. These other observing classes
may either take external actions or modify the core object, depending on how they were designed to
handle the state communication.

 When designing an Observable class, the core object, it is important to communicate very verbosely. On
every notable state change, the Observable class should notify any object that is listening that it has
changed. It should also include what type of change has occurred. While there might not be any
observing class that “ cares ” now, additional iterations of the software application may add in new
functionality that is looking for that specific state change. The observing classes should be configured to
take action only on notifications that match their action criteria.

 Another thing to remember is that the Observable class, which is generating all of these notifications,
doesn ’ t know or care if they ’ re being acted upon. The loose coupling method here allows the Observable
class to just perform its logic process from start to finish. Anything that the observing classes are doing is
not known by the Observable class, giving the whole group that uncoupled architecture.

 As mentioned before, plugin systems are the first example of the Observer Design Pattern that
programmers think of. But, as mentioned in the first chapter, PHP is enterprise ready. Message queuing
is a big part of larger systems because of their size. Developing classes based on the Observer Design
Pattern in PHP can help facilitate this architecture as well.

 One very common example of the Observer Design Pattern in practice comes from e - commerce websites.
When a visitor purchases a client ’ s item, the sale is applied to the inventory and the stock. The sale
process can implement the Observer Design Pattern to watch for successful sales. When a successful
sale is completed, not only will the main processing of the credit card and the inventory adjustment be
applied, but the sale object will also notify any observers about what item was sold. Clients may have
opted to receive an e - mail immediately when an item is sold. They may want to actually ship the item or
prepare their own inventory list. The “ sale complete ” notification is sent to an observing class, which
takes the information and sends the e - mail to the client. Not only is this a great way to handle this
activity, but it also allows for extensibility of the notification system. Perhaps in the future, clients may

c13.indd 86c13.indd 86 7/16/09 9:01:14 AM7/16/09 9:01:14 AM

Chapter 13: Observer Pattern

87

want to be notified via a txt message. This would be as simple as adding in another observing class. The
sales system would not need to be changed.

 Another example of the Observer Design Pattern in use involves building a cache. For every new blog
post, an entry appears on an RSS feed to be consumed by RSS readers. The first way that novice
programmers approach building this RSS feed is by creating a script that searches for the top entries on
each load. Then, it formats its results in an RSS document. High - traffic sites will suffer if this design is
used. Instead, they build static RSS documents, which also contain expiration information. This creates a
nice cacheable system for providing the data to RSS readers. To update that cached RSS resource, an
observing class could be used. The successful blog post should notify any observers that it has
completed. The observing class will take that information and create a new RSS resource. Then, the cache
is updated. This keeps the cache fresh, while also reducing the server ’ s load. Instead of regenerating the
cache periodically, even if there are no changes, the cache is updated only when it ’ s observed that it
needs to be updated.

 When adding features to software that are activated by an action or state change but are loosely coupled,
objects based on the Observer Design Pattern should be created.

 UML
 The following Unified Modified Language (UML) diagram details a class design using the Observer
Design Pattern (see Figure 13 - 1) that is discussed in the following list:

MyObject

�addObserver(observerObject)
�doSomething()
�notify()

#observers : Array

MyObjectObserver

�change(MyObject)

Figure 13-1

 MyObject is the Observable object. It contains a protected array of observers called observers .
The public method addObserver() takes an instance of an observer and stores it in the array.

 The doSomething() public method is called. doSomething() applies a state change to the
 MyObject . It then calls the notify() public method, which loops through the array of
observers.

 MyObjectObserver has a public method called change() , which accepts an instance of MyObject .
This particular observer then does something with the content of the MyObject . The notify()
method of MyObject directly calls this method when it encounters it in the array of observers.

 Code Example
 The music website has some social networking type features available to the visitors of the website. The
newest feature to integrate is an activity stream, which shows the most recent purchases on the home
page. The hope is that people will click through to recent purchases, possibly buying their own copy.

❑

❑

❑

c13.indd 87c13.indd 87 7/16/09 9:01:14 AM7/16/09 9:01:14 AM

88

Part II: Reference Material

 The first step to putting the sales of CDs into the activity stream is having a CD object that is based on the
Observer Design Pattern:

class CD
{
 public $title = ‘’;
 public $band = ‘’;
 protected $_observers = array();

 public function __construct($title, $band)
 {
 $this- > title = $title;
 $this- > band = $band;
 }

 public function attachObserver($type, $observer)
 {
 $this- > _observers[$type][] = $observer;
 }

 public function notifyObserver($type)
 {
 if (isset($this- > _observers[$type])) {
 foreach ($this- > _observers[$type] as $observer)
 {
 $observer- > update($this);
 }
 }
 }

 public function buy()
 {
 //stub actions of buying

 $this- > notifyObserver(‘purchased’);
 }
}

 The constructor simply assigns the title and band name to the public variables of $title and $band .

 The attachObserver() public method takes two parameters. The first is the $type parameter. Because
there are many types of state changes that a CD can have, the type of notification is further specialized by
having the $type parameter. The second parameter is the Observer class that will be added to the
protected $_observers array. Note, the $type variable determines the key of the first level of the array.
Then all types of observers of that $type are added to that particular level sequentially.

 The public method notifyObserver() accepts one parameter, called $type . This is used to acquire the
proper key of the protected $_observers array. Each one of the observers is accessed. Its public
 update() method is executed with a parameter of the current instance of the object.

 The buy() method simply has a stub comment for the process to purchase the CD . Once this is done, the
 notifyObserver() method is called with the type set to “ purchased.”

c13.indd 88c13.indd 88 7/16/09 9:01:15 AM7/16/09 9:01:15 AM

Chapter 13: Observer Pattern

89

 Next, an observer to publish this information to the activity stream is required:

class buyCDNotifyStreamObserver
{
 public function update(CD $cd)
 {
 $activity = “The CD named {$cd- > title} by “;
 $activity .= “{$cd- > band} was just purchased.”;
 activityStream::addNewItem($activity);
 }
}

 This class has one public method, called update() , which accepts the CD instance. It simply builds the
content that you ’ ll publish to the stream. It gathers this information from the CD instance.

 The last two things to detail are the activityStream class and the way we initiate the CD sale with observers:

class activityStream
{
 public static function addNewItem($item)
 {
 //stub functions
 print $item;
 }
}

$title = ‘Waste of a Rib’;
$band = ‘Never Again’;
$cd = new CD($title, $band);

$observer = new buyCDNotifyStreamObserver();
$cd- > attachObserver(‘purchased’, $observer);

$cd- > buy();

 The activityStream class contains the public method addNewItem() . This simply prints the $item
parameter to the screen. In a full example, it might write it to a database or a cacheable XML file.

 To execute the sale, the code is pretty straightforward:

 1. A new CD is created using the $title and $band .

 2. A new observer instance of buyCDNotifyStreamObserver is instantiated. This is added to the CD
object by using the attachObserver() method. It is dictated as a “ purchased ” type of observer.

 3. The CD is bought.

 When creating objects whose core functionality may contain actionable state changes, creating other
classes to interact with the target object based on the Observer Design Pattern is best practice.

c13.indd 89c13.indd 89 7/16/09 9:01:15 AM7/16/09 9:01:15 AM

c13.indd 90c13.indd 90 7/16/09 9:01:16 AM7/16/09 9:01:16 AM

 Prototype Pattern

 There is one particular thing that I ’ ve been reminded of over and over again while programming
in object - oriented languages. This reminder peaks its head above all the rest with its ever - insistent
mentions in most books and articles. What is the point that no object - oriented programmer should
forget? Keep your objects small, modular, uncoupled, and streamlined. There are two times when
one might find contradictory objects, however:

 When inheriting code from someone else. Sometimes you just don ’ t have the time or
budget to refactor this code into something that you find more acceptable.

 When code just can ’ t be slimmed down any further. This is pretty concrete. The expense
comes in when this object has to be uniquely created and used multiple times in one code
stream.

In situations where a resource intensive object needs to be created often, the Prototype Pattern
provides a welcome route to faster execution.

❑

❑

 Name: Prototype

 The Prototype Design Pattern creates objects in such a way that an initial object or prototype
can be copied and cloned more efficiently than creating a new instance.

 Problem and Solution
 As applications become more advanced, the core objects seem to follow suit. While it still may be a
fully modular approach to creating these standard objects, the path to build a proper object has
perhaps grown tenfold. Other times the code base is not as perfectly streamlined as the
programmer would wish. Either way, some objects start to become expensive to create. The extra

c14.indd 91c14.indd 91 7/16/09 9:03:07 AM7/16/09 9:03:07 AM

92

Part II: Reference Material

time needed to construct this object or the amount of memory it consumes is the expense that should try
to be avoided. A good way to recognize this is that it seems like it might be simpler to create a new type
of object that mimics the behaviors of a core object without all of the complexity. When it starts becoming
obvious that the cost for creating these objects is becoming prohibitive, there are two ways to move
forward. The first is refactoring. As alluded to earlier, there might become a point where refactoring is no
longer practical or even possible. The other path to investigate involves modifying the objects so that
they can be duplicated using the Prototype Design Pattern.

 The Prototype Design Pattern maps out a way to reduce the expense of creating complicated objects. It
does this not by removing the intricacies of the object itself but by creating an interface to preserve those
properties through duplication. The Prototype Design Pattern is useful, especially when complex objects
will not change their state throughout the code stream. That is to say, the initial state that they hold when
created will always be the same during this one session. However, each individual copy may be able to
take on different and individual characteristics. A good example of this would be an object that has
rendered a large XML document to protected properties of itself. Further along in the code, some
properties may be modified but most of the nodes will stay the same.

 The levels of implementation of the Prototype Design Pattern range from simply creating a duplicate to
an elaborate cloning method. You may find that some objects ’ initial state easily translates to a unique
version of that object. For others it is more difficult. Imagine an object that has a unique identifier, such
as a Globally Unique Identifier (GUID), as a base property. During the duplication process, it won ’ t need
to modify every other property. It will need to acquire a new GUID, though.

 To understand the actual benefit of using the Prototype Design Pattern, picture a group of employees
working in a factory in a sparsely populated area. When the workload increases, new employees are
needed. To acquire new workers, the factory needs to train new individuals. The ramp - up time is pretty
expensive. During that time, more and more work is queuing. Wouldn ’ t it be easier to just copy one of the
hardworking employees into a new worker clone? This is precisely what the Prototype Design Pattern is
detailing. That exemplary worker is the Prototype that all new employees should be made from.

 A good technical example showing the merits of the Prototype Design Pattern is a Community Library
book catalog system. The application may be made for each library in a 50 - library system. Each software
application is deployed in the same way. The dynamic portion of it is the actual library branch ’ s name
and location. This information is stored in an XML file on the file system after deployment. Because this
shared group of libraries provides interloan capability, they all need to be aware of which books are
checked out. It makes most sense to have this information in one central storage system such as a
MySQL database. When a book is viewed by a patron on the system, they can choose to check it out.
They may even check out multiple ones. Before they can leave with their books, the system needs to
update the central database with the checkout information. The first thing that happens is a prototype
book object is created. It grabs the library information from the file system. Then, for each individual
book that is in the queue to be checked out, a clone of that initial prototype book object is created. It still
has the information from the XML file that was initially retrieved. Then, it receives the custom
information, such as the book title or ISBN. The book object based on the Prototype Design Pattern saves
queries of the file system to retrieve that information from the XML file. It can be reasonably assumed
that during checkout, that information will not change and, therefore, can be applied to the prototype
object similarly to a cache.

 Another way to understand the benefits of the Prototype Design Pattern is more abstract. Imagine an
object that has a significant amount of setters and getters. To build this object requires a painstakingly
detailed set of steps. Many different setters need to be called in a particular order to complete the object.

c14.indd 92c14.indd 92 7/16/09 9:03:08 AM7/16/09 9:03:08 AM

Chapter 14: Prototype Pattern

93

Instead of executing this series of events identically whenever a new object is needed, it may make more
sense to build that initial object based on the Prototype Design Pattern. Then, the first instance still
retains the labyrinthine composition. Objects that will actually become part of the logic in the main code
stream will just be duplicates of that initial prototype, thus reducing the number of times this complex
process needs to occur.

 When objects whose creation is expensive need to be created multiple times, it may be more efficient to
build objects based on the Prototype Design Pattern.

 UML
 This Unified Modified Language (UML) diagram details a class design using the Prototype Design
Pattern (see Figure 14 - 1). Refer to the following list:

 The MyObject class has been assembled using the Prototype Design Pattern. It has one public
method called requestClone() . This method is used to generate a copy of the MyObject
instance.

 The ClonedObject object represents a copied instance of the MyObject class. Note that, since it
is an exact duplicate, it also has the requestClone() public method.

 Many instances of ClonedObject can be created by calling the requestClone() method of
 MyObject .

❑

❑

❑

MyObject ClonedObject

�requestClone() �requestClone()
1 0..*

 Figure 14 - 1

 Code Example
 The music sales website has made a deal with many of the artists on the site to create “ mix tapes ” of
their band ’ s music. Currently, this functionality is restricted to all of the available tracks from only one
band. To start creating a variety CD, there are many avenues. The most popular is the option that is
available when a visitor is viewing a band ’ s CD page. A link exists to start the process of building a new
mix CD. The process sends an ID that corresponds to that specific CD whose band has tracks that will be
used.

 The first building block of the process is the CD class. Generally, to construct a CD object, the information
is retrieved from the database that matches the ID that was requested:

class CD
{
 public $band = ‘’;
 public $title = ‘’;
 public $trackList = array();

c14.indd 93c14.indd 93 7/16/09 9:03:08 AM7/16/09 9:03:08 AM

94

Part II: Reference Material

 public function __construct($id)
 {
 $handle = mysql_connect(‘localhost’, ‘user’, ‘pass’);
 mysql_select_db(‘CD’, $handle);

 $query = “select band, title, from CDs where id={$id}”;

 $results = mysql_query($query, $handle);

 if ($row = mysql_fetch_assoc($results)) {
 $this- > band = $row[‘band’];
 $this- > title = $row[‘title’];
 }
 }

 public function buy()
 {
 //cd buying magic here
 var_dump($this);
 }
}

 This class has the standard public properties of the $band , $title , and $trackList .

 The constructor takes the ID in the form of the $id parameter and executes a query against that
database. When that specific CD is found, the band and title are assigned to the public properties $band
and $title , respectively.

 One additional function named buy() exists. This is simply a stub method to display this instance of the
 CD for the example. In the production code, this method might be tasked to process the CD and send it off
for purchase.

 The next class that needs to be created represents the Mix CD entity. This particular object will take
advantage of PHP ’ s cloning ability:

class MixtapeCD extends CD
{
 public function __clone()
 {
 $this- > title = ‘Mixtape’;
 }
}

 Since the MixtapeCD is really just a specialized CD, it extends the CD object.

 When PHP ’ s clone command is executed, the magic method __clone() is executed on the object. In
the MixtapeCD object, the title property of the initial CD is being overwritten. This MixtapeCD is no
longer coupled to a band and title CD combination. It is now still associated with the $band , but has a
new title: ‘ Mixtape .’

c14.indd 94c14.indd 94 7/16/09 9:03:09 AM7/16/09 9:03:09 AM

Chapter 14: Prototype Pattern

95

 This particular example will showcase a user ordering two mixes based on this band:

$externalPurchaseInfoBandID = 12;
$bandMixProto = new MixtapeCD($externalPurchaseInfoBandID);

$externalPurchaseInfo = array();
$externalPurchaseInfo[] = array(‘brrr’, ‘goodbye’);
$externalPurchaseInfo[] = array(‘what it means’, ‘brrr’);

foreach ($externalPurchaseInfo as $mixed) {
 $cd = clone $bandMixProto;
 $cd- > trackList = $mixed;
 $cd- > buy();
}

 The $bandMixProto object is created from a new instance of the MixtapeCD . The parameter
 $externalPurchaseInfoBandID is passed in to be used in the query that is actually executed from the
 CD constructor.

 Once that Prototype is created, the track lists for the mix CDs that this visitor can be looped through. For
each instance of the foreach() loop, $cd is assigned a new clone of the original $bandMixProto . Then,
that particular track list is added to the object. Since cloning was used, each new loop does not require a
new query to the database. All that information is stored already and is available to the cloned object the
same way it was to the original. Finally, the $cd is bought by executing the buy() public method.

 When working with objects whose creation is expensive and whose initial configuration stays relatively
the same through new instances, using duplicate classes made with the Prototype Design Pattern is best
practice.

c14.indd 95c14.indd 95 7/16/09 9:03:09 AM7/16/09 9:03:09 AM

c14.indd 96c14.indd 96 7/16/09 9:03:09 AM7/16/09 9:03:09 AM

 Proxy Pattern

 My first foray into the world of AJAX was filled with both exciting triumphs and frustrating
moments. I stumbled across this new technology that was going to revolutionize the way that I
designed and created my web pages. I was so excited to be able to use this tool to move from web
pages to web applications. The first thing I attempted to do was make a mash - up of weather and
upcoming bands. I wanted to know if I went to an outdoor show, if I ’ d need a jacket. I initially
designed the project to read the XML feeds using PHP on the server side. Once I knew it could be
done, I wanted to migrate the functionality to the browser side so I could take advantage of the
cool effects of the AJAX object. As you probably know, I ran into a snag right away. The XML feeds
would just not load with my AJAX request. The XMLHttpRequest object was not able to load
cross - site requests. It wasn ’ t immediately clear to me how I could accomplish retrieving this data
from these remote sites. Finally, I came across the solution, which involved designing a proxy PHP
object to retrieve the remote data and provide it locally. When working with data and objects that
require special attention or access considerations, the Proxy Design Pattern can help.

Name: Proxy

The Proxy Design Pattern builds an object that is positioned transparently within two other
objects in order to intercept or proxy the communication or access.

 Problem and Solution
 The Proxy Design Pattern has always seemed like second nature to me. I remember hiding in my
parent ’ s basement, on the old computer, and reading some material about security exploits and
penetration testing. The one thing that everyone harped on over and over was to use a proxy.
Whenever a security exploit was tested, the use of a proxy was expected to provide a layer of
anonymity between the tester and the target system. A proxy, by design, accepts and then
retransmits the data it receives. In this case, the hope was that the origin of the test was shadowed
by the intermediate usage of proxies.

c15.indd 97c15.indd 97 7/16/09 9:03:48 AM7/16/09 9:03:48 AM

98

Part II: Reference Material

 Other more upright and common implementations of proxies exist, however. Proxy servers, which work
as a web resource cache, are in place on some corporate networks. The internal network browsers
communicate directly to the proxy server. It then checks its cache to determine if it has the resource on its
local disk. If it does, it replies with that. Otherwise, it forwards the request transparently. Other networks
take this a step further by installing a content - filtering proxy. This watches the traffic for websites that are
against company policy. If the proxy finds a website that employees should be restricted from viewing, it
stops the attempt. All other requests are sent transparently through. From the browsers ’ point of view,
they don ’ t know they ’ re surfing through a proxy — well, that is until they try to go to a restricted page!

 The Proxy Design Pattern is the building block for an object that can intercept communication between
two or more other objects. The exterior interface of the Proxy object is identical to the class it belongs to.
Calling objects cannot tell the difference between the original object and the Proxy object. At the core of
the Proxy Design Pattern, there are any of three objectives. These are there to provide access, to incur
expense only on demand, and to persist storage.

 Granting access to a specific resource can be a tricky undertaking. Various business rules may need to be
applied. Credentials need to be verified or retrieved. Identities or even locations need to be verified and
validated. As with good object - oriented design, the base object should not be concerned with who can
access it. It should only be a container of programming that accomplishes the task. This is where the
Proxy Design Pattern fits nicely. A Proxy object can step in and determine access restrictions based on
other exterior properties. For example, a Proxy object may dictate that the current user does not have the
proper authority to execute the command and refuse the execution. Access conditions are not restricted
only to credential validation, however. In a distributed and segmented network, certain resources may
exist outside the standard reach of the current set of objects. The Proxy object can intercept these
requests and act as that bridge to connect to the remote systems.

 Some objects have a great deal of expense in their creation. It may be from many remote calls to a
database or just a giant memory footprint. If it is possible not to instantiate that object right away, an
object based on the Proxy Design Pattern might be created. This Proxy object will request the creation of
the expensive object only when needed. It may be a situation where the whole code execution may be
able to finish without actually needing to create that object. Other times, it may make more sense to
create the larger object later when other object ’ s memory spaces have been deallocated.

 Finally, Proxy objects can work as a method of persistent storage. Whenever a caching method is put
into place, the basis of this is an object created using the Proxy Design Pattern. The Proxy will determine
if it has a store of the object from a previous request. If it does, it will provide that resource. If not, it will
forward the initial request transparently.

 One particularly common example of the Proxy Design Pattern can be seen with web interfaces to
external devices. Consider the web application that controls a cable box and TV for remote viewing.
When it receives the request from the web page to change to Channel 5, a specific Proxy object intercepts
this request. Depending on the type of TV, it may send a sequence of ‘ 0005 < enter > ’ or simply
 ‘ 5 < enter > ’ to the remote receiver. Without the Proxy intercepting the communication, the TV could
ignore the single “ 5 ” that was sent because it wasn ’ t in a format that it expected.

 Another example of the Proxy Design Pattern in action can be examined in access restrictions to
publishing information. A particular social networking site allows users to create a profile page. They
can either keep it private or publish it publicly. This system is fully tested and in good working order. No
one wants to edit any of the code. Then, a new memo is passed throughout the company. No company
employee is allowed to create a profile and publish it publicly. The programmers have been tasked with
creating a system to keep employees from publishing their profiles publicly. They decide to create a

c15.indd 98c15.indd 98 7/16/09 9:03:49 AM7/16/09 9:03:49 AM

Chapter 15: Proxy Pattern

99

 Proxy object that intercepts the request to publish the profile. If the user is in a list of employees, the
request is stopped. Otherwise, it gets forwarded. The publishing object is blissfully unaware that it is
being filtered by a proxy.

 When communication between two objects needs to be filtered or enhanced, this can be accomplished by
an object based on the Proxy Design Pattern.

 UML
 This Unified Modified Language (UML) diagram details a class design using the Proxy Design Pattern
(see Figure 15 - 1). Note the following concerning this pattern:

 MyObject is the base object that clients normally interact with. It has one public method, called
 doSomething() .

 MyProxyObject is the Proxy for MyObject . It contains one public method, named
 doSomething() , and one protected one, named provideProxyFeature() .

 When MyProxyObject is substituted in for MyObject , the doSomething() method still can be
called. MyProxyObject executes the provideProxyFeature() method before possibly
forwarding the request to the doSomething() method of MyObject .

❑

❑

❑

MyObject MyProxyObject

�doSomething() �doSomething()
#provideProxyFeature()

1 1

Figure 15-1

 Code Example
 Because the web site is so great, sales have grown at the CD store. Expansion is inevitable. The website
has been executing normal sales every day. The good working code is simple. First, you have the object
that represents a CD that a visitor can purchase:

class CD
{
 protected $_title = ‘’;
 protected $_band = ‘’;
 protected $_handle = null;

 public function __construct($title, $band)
 {
 $this- > _title = $title;
 $this- > _band = $band;
 }

 public function buy()

c15.indd 99c15.indd 99 7/16/09 9:03:49 AM7/16/09 9:03:49 AM

100

Part II: Reference Material

 {
 $this- > _connect();

 $query = “update CDs set bought=1 where band=’”;
 $query .= mysql_real_escape_string($this- > _band, $this- > _handle);
 $query .= “’ and title=’”;
 $query .= mysql_real_escape_string($this- > _title, $this- > _handle);
 $query .= “’”;

 mysql_query($query, $this- > _handle);
 }

 protected function _connect()
 {
 $this- > _handle = mysql_connect(‘localhost’, ‘user’, ‘pass’);
 mysql_select_db(‘CD’, $this- > _handle);
 }
}

 The constructor builds the CD by assigning its two parameters, $title and $band , to the protected
variables $_title and $_band , respectively.

 The other public method is called buy() . This executes the sale. The first step is calling the protected _
connect() method. _connect() creates a connection to the local MySQL database using the proper
credentials. Next, buy() creates a query to update the CD row and set it to bought. Finally, the query is
executed, and the CD purchase is complete.

 The current code to buy a CD is pretty streamlined:

$externalTitle = ‘Waste of a Rib’;
$externalBand = ‘Never Again’;

$cd = new CD($externalTitle, $externalBand);
$cd- > buy();

 A new instance of the CD is created. Then the public method buy() is executed, and the CD is bought.

 Because you have had such great sales, you ’ ve expanded your server capacity. You now need to access
data from the Dallas, Texas, location. This will require a Proxy object acting in an access capacity. It
needs to intercept the connection to the local database and connect to the Dallas Network Operations
Center instead.

 The Proxy object simply extends the base CD object. It replaces functionality, however:

class DallasNOCCDProxy extends CD
{
 protected function _connect()
 {
 $this- > _handle = mysql_connect(‘dallas’, ‘user’, ‘pass’);
 mysql_select_db(‘CD’);
 }
}

c15.indd 100c15.indd 100 7/16/09 9:03:50 AM7/16/09 9:03:50 AM

Chapter 15: Proxy Pattern

101

 The protected _connect() method is being overwritten by this Proxy object. Instead of connecting
to the localhost , it is now connecting to the dallas host. The calling code has no idea it ’ s actually
working with a Proxy. The calling code is now only slightly modified:

$externalTitle = ‘Waste of a Rib’;
$externalBand = ‘Never Again’;

$cd = new DallasNOCCDProxy($externalTitle, $externalBand);
$cd- > buy();

 When there is a need to intercept communication between two objects, using a new object based on the
Proxy Design Pattern is best practice.

c15.indd 101c15.indd 101 7/16/09 9:03:50 AM7/16/09 9:03:50 AM

c15.indd 102c15.indd 102 7/16/09 9:03:50 AM7/16/09 9:03:50 AM

 Singleton Pattern

 My boss came to me one day and told me customers were complaining about the website being
slow. I decided to do a few tests on the responsiveness of the website under a heavy load. I started
out with 25 concurrent users. This was enough to crash the MySQL server. Through trial and error
— and a very upset networking team — I was able to find that magic number where the website
started showing strain. Six simultaneous users were all it could handle. Obviously, my boss told
me to find out why. I was eager to solve this problem, too. The page I tested was rendering content
from a Content Management System, which was nothing too complicated. After some
investigation, I found out that two specific database systems were queried to build the front page.
However, each page opened up more than ten connections to the same MySQL server and two to
the same DB2 server. I examined the queries that were used to build these pages and discovered
that their state did not need to persist throughout the whole page. The connection was opened, the
information retrieved, and the link was then abandoned. Later on, a new connection was
forced open for a new query. The only good news was that the code base was using an object -
 oriented approach to connect to the databases. After some refactoring, the objects used only one
shared database connection to each type of server. Instead of generating a new connection
whenever the database was called, I forced the objects to reuse themselves. To accomplish this,
I used the Singleton Design Pattern.

Name: Singleton

The Singleton Design Pattern is used to restrict the number of times a specific object can be
created to a single time by providing access to a shared instance of itself.

 Problem and Solution
 The Singleton Design Pattern is one of the most used Design Patterns I ’ ve seen. This particular
architecture type provides leverage to object - oriented design that exists normally only in global
and procedural programming. Objects created from the Singleton Design Pattern will normally

c16.indd 103c16.indd 103 7/16/09 9:04:48 AM7/16/09 9:04:48 AM

104

Part II: Reference Material

only allow one instance of themselves to be created. On the initial instantiation, the object stores itself
internally. Then, it provides a reference to that stored instance. On each new request for a new object,
it simply checks its storage. If it already has an instance of itself, it returns that reference. Otherwise, it
follows the new object request detailed previously.

 Singletons that allow only one instance of themselves are the most common. They are considered
exclusive to the one runtime. They should not be allowed to generate clones of themselves.

 Design Patterns are great base blueprints for architecting objects. However, as I keep reiterating, they do
provide flexibility. Another type of object that exists restricts the number of copies of itself allowed at
any one time. The initial architecture is based on the Singleton Design Pattern but is slightly modified.
For example, this object may store up to five instances of itself. If a sixth is requested, it may have to wait
or just provide a reference to one of the initial five that was created. This type of architecture is especially
useful in queued requests.

 Regardless of the type of Singleton being designed, there is one base characteristic that needs to be
applied. The constructor of the object should be a protected method. This will not allow anything but the
class itself to create an instance of it. Then it can make a public method to actually create, store, and
provide that instance.

 Objects based on the Singleton Design Pattern provide a welcome object - oriented defense to the use of
global variables. Many PHP packages have been guilty of having a strong object - oriented core but still
making use of the $GLOBALS array. The most common reason they implement the global variable usage
is for configuration options. Instead, a configuration object could be created as a Singleton. Whenever a
configuration option was required, the code would request a new configuration object. If there was no
existing one stored internally, a new instance would be created. This constructor could have logic that is
executed to determine and make available all the configuration options. Then, the requesting object
could make use of the object to retrieve the configuration options. Since this is a reference to one instance
that all requests will be using, an object could update the configuration options on demand and make it
available to other requesters. This would completely replace the use of a global variable for configuration
options. As an added bonus, since this is an object and not a normal variable, security measures could be
added to restrict certain configuration options from being modified after initial instantiation.

 The most common use of the Singleton Design Pattern is for architecting database connection objects. The
database access object may be responsible for creating a connection to the database on instantiation. Then,
whenever a particular method of the object is called, it uses the connection it has created. Since creating a
connection to a database server can be expensive (time consuming and resource intensive), the code
should make as few as possible. For the most part, the database connection ’ s state no longer needs to be
preserved after the data is retrieved. With both of these concerns in mind, it makes the most sense to make
the database access object a Singleton. Then, each time a new instance of the object is requested for a new
query, you can be assured that the object will be reused and no additional connections will be made.

 When making multiple instances of an object should be prohibited, that object should be created using
the Singleton Design Pattern.

c16.indd 104c16.indd 104 7/16/09 9:04:49 AM7/16/09 9:04:49 AM

Chapter 16: Singleton Pattern

105

 UML
 This Unified Modified Language (UML) diagram details a class design using the Singleton Design
Pattern (see Figure 16 - 1). The following list details this pattern:

 MyObject is designed as a Singleton. The constructor named MyObject() is a protected
method.

 The public method getInstance() is responsible for checking the protected variable named
 instance . If instance contains an instance of MyObject , it would simply return that instance.
However, if instance is NULL , getInstance() will execute the protected MyObject() to
construct a new MyObject . Then, it will store that instance of MyObject in the instance
variable. Finally, it will return that instance variable.

❑

❑

MyObject

#instance : MyObject

#MyObject()
�getInstance()

Figure 16-1

 Code Example
 Visitors to the CD Website can purchase more than one CD at a time. In fact, they ’ re encouraged to do
just that. You should provide a shopping cart for them to store their purchases in. Since you work with a
live inventory, it is important to update the inventory listing as soon as the CDs are purchased. To do
this, you need to connect to the MySQL database and update the quantity for that CD. With your object -
 oriented approach, you could potentially create multiple connections to the database that are not needed.
Instead, the inventory connection is based on the Singleton Design Pattern:

class InventoryConnection
{
 protected static $_instance = NULL;

 protected $_handle = NULL;

 public static function getInstance()
 {
 if (!self::$_instance instanceof self) {
 self::$_instance = new self;
 }

 return self::$_instance;
 }

 protected function __construct()

c16.indd 105c16.indd 105 7/16/09 9:04:49 AM7/16/09 9:04:49 AM

106

Part II: Reference Material

 {
 $this- > _handle = mysql_connect(‘localhost’, ‘user’, ‘pass’);
 mysql_select_db(‘CD’, $this- > _handle);
 }

 public function updateQuantity($band, $title, $number)
 {
 $query = “update CDS set amount=amount+” . intval($number);
 $query .= “ where band=’” . mysql_real_escape_string($band) . “’”;
 $query .= “ and title=’” . mysql_real_escape_string($title) . “’”;

 mysql_query($query, $this- > _handle);
 }
}

 The first public method of the InventoryConnection class is a static method called getInstance() .
This checks to see if the protected static variable named $_instance has an instance of the class itself.
If it does not, then a new instance of the class itself is assigned to the $_instance variable. Then,
regardless of if the new instance needed to be created or not on this particular call, the last step is to
return the instance from that protected $_instance variable.

 The constructor is a protected method. This does not allow any other object besides this one to call it.
__construct() makes a connection to the database and stores the instance locally in the protected
$_handle variable.

 The public method updateQuantity() takes three parameters. The band name, the title and the
number to change the quantity by are used in a MySQL query that is created. Finally, the object executes
the query using the internally stored handle.

 InventoryConnection whenever a CD is purchased:

class CD
{
 protected $_title = ‘’;
 protected $_band = ‘’;

 public function __construct($title, $band)
 {
 $this- > _title = $title;
 $this- > _band = $band;
 }

 public function buy()
 {
 $inventory = InventoryConnection::getInstance();
 $inventory- > updateQuantity($this- > _band, $this- > _title, -1);
 }
}

c16.indd 106c16.indd 106 7/16/09 9:04:50 AM7/16/09 9:04:50 AM

Chapter 16: Singleton Pattern

107

 The CD object is pretty standard. However, the buy() method is of interest. First, it calls the
 getInstance() method of InventoryConnection to obtain an instance of that class. Once that
instance is received, it subtracts one from the quantity of that specific CD by calling the
 updateQuantity() method of the InventoryConnection object.

 The sample code to use these objects is probably pretty familiar:

$boughtCDs = array();
$boughtCDs[] = array(‘band’= > ’Never Again’, ‘Waste of a Rib’);
$boughtCDs[] = array(‘band’= > ’Therapee’, ‘Long Road’);

foreach ($boughtCDs as $boughtCD) {
 $cd = new CD($boughtCD[‘title’], $boughtCD[‘band’]);
 $cd- > buy();
}

 In this example, the $boughtCDs array represents the items from the visitor’s cart. The code loops
through each of the purchased CDs. First, it creates a new CD object. Then, it requests to buy() that CD.
Since this can happen one too many times, it is a good thing that the InventoryConnection object is a
Singleton. It would not be a good idea to open up a new connection to the database for each CD
purchased.

 When the instantiation of an object should only be allowed to happen one time during the code stream,
using the Singleton Design Pattern is best practice.

c16.indd 107c16.indd 107 7/16/09 9:04:50 AM7/16/09 9:04:50 AM

c16.indd 108c16.indd 108 7/16/09 9:04:50 AM7/16/09 9:04:50 AM

 Strategy Pattern

 The worst few months of my career were completely unavoidable. I tackled a big project with a
large code base. New requirements kept popping up, and I did what any inexperienced junior
programmer would do: I just added on to my objects. My classes started becoming monolithic.
I kept obliterating my unit tests. As luck would have it, I was just learning about object inheritance
in PHP. From then on, I started creating more but smaller classes, each extending others to add
additional functionality. My problem went from having a few single giant classes to having way
too many smaller classes to keep track of. The issues continued. If it wasn ’ t the sheer size of the list
of objects in my repository, it was the convoluted naming scheme I had to develop to keep those
objects organized. I found that there was also a lot of bloat in my classes. There were methods that
were not called in most instances of the class. My next refactoring step involved removing some of
this logic from these base classes and adding it to individual classes that would only be created
when need be. This is where the Strategy Design Pattern really shines.

Name: Strategy

The Strategy Design Pattern helps architect an object that can make use of algorithms in other
objects on demand in lieu of containing the logic itself.

 Problem and Solution
 The beauty of Object Oriented Programming can sometimes be disfigured by its incorrect usage.
Many programmers can grasp the modularization of individual entities as objects. But object -
 oriented architecture does not stop at just entity architecture. Any task, whether it ’ s the creation of
the entity or a modification to said entity, can be encompassed in an object. The Strategy Design
Pattern is a great example of taking the object - oriented approach to this next level.

c17.indd 109c17.indd 109 7/16/09 9:05:15 AM7/16/09 9:05:15 AM

110

Part II: Reference Material

 The Strategy Design Pattern details the construction of an object so that it is lighter weight by removing
complex logic from itself. Instead of holding a set of logic internally, the object can invoke algorithms
from other classes on the fly.

 When first examining the Strategy Design Pattern, programmers may mistake the construction of this
functionality for standard object inheritance. One of the most common uses of Object Oriented
Programming consists of building objects that extend each other. This way, the core object is smaller,
with all child objects having additional sets of logic.

 Functionally, this can cause a headache. Imagine an object that has multiple children, each of which
modify the base object in a specific way. If there is just one single instance of the modification to take
place, extending a child class may seem the easiest route to take. The problem comes in when that
particular object needs to have multiple modifications. Since the parent/child relationship is already
made, a new instance of the object would need to be created to add a new child ’ s functionality to the
base object. For example, a base object might have a public property. One child object may want to make
that property capital letters. Another child object may want to translate it into a different language.
Chaining multiple children together to the base parent object will most likely also be clunky or
impossible. Each child ’ s method names would have to be distinct so as to not overwrite another child ’ s
functionality.

 The Strategy Design Pattern takes the approach of removing the functionality from the parent object,
much as in the parent/child relationship. However, instead of building objects that extend the parent,
the logic is modified to be a self - contained algorithm. This class, then, is a complete object, whose sole
use is executing that functionality. When architected properly, the parent object can choose which one of
the logic objects it wants to use to modify itself during runtime. Besides the obvious benefits of the base
object being lighter weight, the other Strategy objects are now more reusable and flexible.

 The Strategy objects can be reused with various different types of base objects. These replace building
a complex set of inherited classes with the potential to duplicate code among each different type of base
object ’ s child classes. Since the Strategy object is a self - contained algorithm, it should be able to take an
object that it knows little to nothing about and apply its changes. The only level of coupling comes when
specific algorithms require a specific object to complete. In general, this is an acceptable level of
dependency.

 An example of a great use for the Strategy Design Pattern is calculating shipping charges. A specific item
may be represented by an object in the code. The object has certain properties such as length, width,
height, and weight. When the purchase method is invoked on the object, additional protected methods
may be executed to determine the shipping charges by calling the U.S. Postal Service (USPS) API. If
another item becomes available for sale, there would most likely be code duplication in those protected
methods. Instead, that calculation is pulled out and created as a Strategy object. The USPS Shipping
Strategy object accepts an object that communicates its physical properties. The Strategy object calls the
API and applies the shipping charge to the base object. This same Strategy object can now be used on
either of the items available for sale. Additional items will also make use of this Strategy object. As an
added bonus, having the shipping calculation as a Strategy object adds additional flexibility for future
expansion. If the site decides to start shipping via the United Parcel Service (UPS), a new Strategy
object is created. None of the original objects needs to be modified. The main calling code will then just
determine if a USPS Strategy or a UPS Strategy should be applied to that object to update the shipping
charges.

c17.indd 110c17.indd 110 7/16/09 9:05:16 AM7/16/09 9:05:16 AM

Chapter 17: Strategy Pattern

111

 Another way to use the Strategy Design Pattern involves creating pattern replacements. Imagine an
object that holds the profile information for a user of the website. Placeholders exist in the profile
information to display the user ’ s favorite instant messaging client information. The Profile
object would have a method that sets the type of instant messaging vendor the user prefers. Then,
the corresponding Strategy object would be applied to the Profile object. It would recognize the
placeholder and replace it with a link to interact with the user. It could even be as complex as retrieving
status information from an API of that service. Since the Profile object uses the Strategy Design
Pattern, it can execute faster and with a lighter footprint. Instead of needing to encompass the simple
functionality for one instant messaging vendor and the complex bloated logic to display another, it
contains neither. It retrieves those values at runtime by instantiating only the Strategy objects it needs.

 When objects can remove algorithms from themselves and place them in other self - contained objects to
be invoked only when needed, the Strategy Design Pattern should be used.

 UML
 This Unified Modified Language (UML) diagram (see Figure 17 - 1) and following list detail a class design
using the Strategy Design Pattern.

 MyObject contains a public property called name . This represents the property of MyObject that
normally accepts modification. The public method setName() receives one parameter, called
 name . This is assigned to the MyObject name property.

 MyObjectStrategy is the self - contained algorithm object. It has one public method, named
 change() . This accepts a parameter of MyObject . change() and executes that specific logic
against the MyObject by modifying its public name variable.

❑

❑

MyObject MyObjectStrategy

�setName(name)

�name : String

�change(MyObject)
1 1

 Figure 17 - 1

 Code Example
 The website works heavily with AJAX. From time to time, it ’ s necessary for the CD object to generate an
XML version of itself. This is returned to the JavaScript front end to be processed.

 The CD object is:

class CD
{
 public $title = ‘’;
 public $band = ‘’;

 public function __construct($title, $band)

c17.indd 111c17.indd 111 7/16/09 9:05:16 AM7/16/09 9:05:16 AM

112

Part II: Reference Material

 {
 $this- > title = $title;
 $this- > band = $band;
 }

 public function getAsXML()
 {
 $doc = new DomDocument();
 $root = $doc- > createElement(‘CD’);
 $root = $doc- > appendChild($root);
 $title = $doc- > createElement(‘TITLE’, $this- > title);
 $title = $root- > appendChild($title);
 $band = $doc- > createElement(‘BAND’, $this- > band);
 $band = $root- > appendChild($band);

 return $doc- > saveXML();
 }
}

 The constructor takes two parameters, the $title and $band , and assigns them to the public properties
of the class. The getAsXML() public method creates a new DomDocument . It then builds each individual
node and adds it to the DomDocument . Finally, the saveXML() method is called, which returns a string
representation of the XML file. This is sent as the return parameter from the getAsXML() method.

 To use this, the code is pretty straightforward:

$externalBand = ‘Never Again’;
$externalTitle = ‘Waste of a Rib’;

$cd = new CD($externalTitle, $externalBand);

print $cd- > getAsXML();

 A new developer has joined the team. He has some great experience with AJAX and says that you could
be doing this a little bit better. Additional flexibility is needed for the website ’ s AJAX functionality,
including being able to generate the CD as a JavaScript Object Notation (JSON) entity.

 The first implementation of the CD will not be flexible enough to generate this new output type.
Additionally, you know that you may need to keep creating more types of representations of the CD
object for other uses. Some web services may require a different format besides XML or JSON. This is the
perfect time to use the Strategy Design Pattern.

 The first step is to modify the CD object to remove the XML functionality. It should also be able to execute
any Strategy objects that you create:

class CDusesStrategy
{
 public $title = ‘’;
 public $band = ‘’;

 protected $_strategy;

 public function __construct($title, $band)

c17.indd 112c17.indd 112 7/16/09 9:05:17 AM7/16/09 9:05:17 AM

Chapter 17: Strategy Pattern

113

 {
 $this- > title = $title;
 $this- > band = $band;
 }

 public function setStrategyContext($strategyObject)
 {
 $this- > _strategy = $strategyObject;
 }

 public function get()
 {
 return $this- > _strategy- > get($this);
 }
}

 The first part of the CDusesStrategy class is relatively similar to the CD class earlier. There are two
additional public methods and one protected property, however. The setStrategyContext() accepts
one parameter, named $strategyObject . This object is stored in the object by being assigned to the
protected $_strategy variable. This will hold an instance of a Strategy object. The other public
method, get() , can be thought of as replacing the getAsXML() method from the CD class. It ’ s name is
much more abstract because it applies the Strategy object. The Strategy object stored in the protected
 $_strategy variable has a get() function of its own, which is executed here. It is important to note that
an instance of this base class is being passed into the Strategy object.

 Next, the Strategy objects for the XML and JSON formats need to be created:

class CDAsXMLStrategy
{
 public function get(CDusesStrategy $cd)
 {
 $doc = new DomDocument();
 $root = $doc- > createElement(‘CD’);
 $root = $doc- > appendChild($root);
 $title = $doc- > createElement(‘TITLE’, $cd- > title);
 $title = $root- > appendChild($title);
 $band = $doc- > createElement(‘BAND’, $cd- > band);
 $band = $root- > appendChild($band);

 return $doc- > saveXML();
 }
}

class CDAsJSONStrategy
{
 public function get(CDusesStrategy $cd)
 {
 $json = array();
 $json[‘CD’][‘title’] = $cd- > title;
 $json[‘CD’][‘band’] = $cd- > band;

 return json_encode($json);
 }
}

c17.indd 113c17.indd 113 7/16/09 9:05:17 AM7/16/09 9:05:17 AM

114

Part II: Reference Material

 The CDAsXMLStrategy class has only one public method, named get() . Earlier, it was noted that this
method was called from the CDusesStrategy get() method. This get() method accepts an instance of
 CDusesStrategy . Then, the logic is pretty much the same as the logic of the getAsXML() method from
the CD object, except that it uses $cd instead of $this .

 CDAsJSONStrategy is designed nearly identically to the CDAsXMLStrategy class. The obvious
difference is the construction of the $json array instead of a DomDocument . The information is retrieved
from the $cd variable, which is that instance of CDusesStrategy . Finally, the encoded JSON version of
the CD is returned.

 Executing the code using these Strategy objects is not complicated:

$cd = new CDusesStrategy($externalTitle, $externalBand);

//xml output
$cd- > setStrategyContext(new CDAsXMLStrategy());
print $cd- > get();

//json output
$cd- > setStrategyContext(new CDAsJSONStrategy());
print $cd- > get($cd);

 As is probably familiar, a new instance of a CD is created by instantiating CDusesStrategy .
For the XML output, the setStrategyContext() method is called. It is sent a new instance of the
corresponding Strategy object. It is important to note that any new functionality now comes in
the method of a new Strategy object that is assigned using setStrategyContext() .

 When it ’ s possible to create interchangeable objects made of self - contained algorithms to be applied to a
base object, it is best practice to use the Strategy Design Pattern.

c17.indd 114c17.indd 114 7/16/09 9:05:17 AM7/16/09 9:05:17 AM

 Template Pattern

 The phrase “ too many cooks in the kitchen ” has been used by me a few times when examining a
new code base. Whether because of time constraints or to use developers ’ strengths in areas where
they excel, there are often times when a set of similar functionalities in development are broken up
between programmers and teams. Unfortunately, this sometimes generates inconsistencies in the
public interfaces of some of the programming. Superiorly architected code bases dictate base
classes to build individual functionality from. To create these base classes, which enforce a specific
set of interfaces and behavior, the Template Design Pattern is the way to go.

Name: Template

The Template Design Pattern creates an abstract object that enforces a set of methods and
functionality that will be used in common by child classes as a template for their own design.

 Problem and Solution
 Some programmers do not immediately see a need to implement the Template Design Pattern.
Generally, these are programmers who rely heavily on the inheritance of objects without
understanding the actual intent of inheritance. Their catch - all answer to a parent method ’ s not
doing everything that they need it to do is to simply overwrite it. While some of this theory is used
in the Template Design Pattern, it provides a more robust solution.

 The Template Design Pattern creates a class that is intended to be used as a parent for another
class. It is designed to enforce the existence of certain functionality and methods in the child
classes. The Template object is a bit leaner than other classes with less bundled functionality. In
most cases, it also strongly discourages or restricts instantiation of itself directly. This usually is
achieved by making the class abstract.

c18.indd 115c18.indd 115 7/16/09 9:06:24 AM7/16/09 9:06:24 AM

Chapter 18: Template Pattern

116

 Generally, the Template object defines a shared public method that is common to the goal of any other
child class. Inside of that method, it calls the basic steps of the design by requesting other methods
belonging to the object. These methods, which will belong to a child object, are either required or
optional. If they are required, the class will define that the child class needs to have them. If they
are optional for the child class, the Template class may create them as a stub so as not to disable the
operation of the shared public method. Another way to accomplish the inclusion of an optional method
is to check for the method ’ s existence, and if it exists, invoke it.

 Child classes then extend the Template object to accept that design or template themselves. They are
responsible for creating any required methods that the Template object defines. Since these methods
are predefined in the Template object, any child object can be assumed to have all of them and function
externally the same way. The internal logic of the method is specified by each individual object in its
own way. Basically, the abstract steps that the Template object defines are now detailed in - depth in the
child object.

 The Template Design Pattern is a little bit different from most design methodologies. This particular
pattern defines a concrete set of steps in the parent object, giving much of the control to the parent. This
contrasts with a lot of the other patterns that rely on child classes to give added structure and direction
to the object. This is to say that most patterns define an individual or peer - to - peer approach. The
Template Design Pattern heavily emphasizes the parent/child relationship. Another way to think about
it is that the Template object is the coach of a football team. The coach defines what the play is and what
team members will be involved. The coach tells the quarterback to retrieve the ball from the center and
then to throw it down field to a receiver. It ’ s up to quarterback, or the child of the coach, to know how
hard and high to throw it in order for the open receiver to catch the ball.

 One place that the Template Design Pattern could be used is in a social networking site. This example
features a base Template object called an Entity. Entities can be created, shared, or deleted. To promote
the social aspect of the website, entities can also be created publicly and shared with everyone on the
site. In the social network, entities can be links, blogs, or pictures. The base Entity object is an abstract
 Template class. It contains three abstract methods called create() , share() , and delete() . These
will be the responsibility of the child classes to define. The Entity class also has a public final method
called generatePublicly() , which uses two of the abstract methods. First, it may call create() . Then,
it retrieves a list of the owner ’ s friends and calls share() with each one. A child class, such as the Blog
object, will then extend the base Entity . It will need to define the logic inside of the create() ,
 share() , and delete() methods. Later, when a new blog is being created for a member of the site, the
 Blog object ’ s inherited generatePublicly() method is called. This is a perfect example of setting up a
framework for new items added in the future to function the same. Adding new functionality won ’ t
require any additional changes to the calling logic or to the base Entity class.

 Another example of the Template Design Pattern in use is an online banking website. A bank can deal
with many different types of accounts. In general, all accounts function the same way. They accept
deposits, provide payments, and possibly have additional logic to increase or decrease the balance. This
could be low - balance fees on a checking account or interest on deposits on an investment account. The
base account is created as a Template object. This object might have a final method called
 applyAdjustment() . This would call the abstract method it defines, named
 retrieveAdjustmentOnBalance() . Then it would either call the abstract add() or subtract()
method. In the case of a checking account, the child class Checking will extend the main template. Its
 retrieveAdjustmentOnBalance() may generate a 10 - dollar fee if the balance of the account is below

c18.indd 116c18.indd 116 7/16/09 9:06:25 AM7/16/09 9:06:25 AM

Chapter 18: Template Pattern

117

$100. Then, when the parent Template object calls the subtract() method, it will apply that fee to the
total balance of the account. There is an even more important reason to generate these Template - based
children when it comes to certificate of deposit accounts. When interest is added to the account using the
 add() method, the owner could be e - mailed a new statement at the request of that child ’ s add()
method.

 When it is important to generate a strict set of guidelines for behavior while making the actual logic
separate and flexible, the Template Design Pattern should be used.

 UML
 The following Unified Modified Language (UML) diagram details a class design using the Template
Design Pattern (see Figure 18 - 1). The following list details this pattern:

 The MyTemplate class has two public methods. The first is the final public method, named
 doCalculation() . This method will call the other method named logicA() to apply logic
during the calculation. In MyTemplate , the method should be abstract.

 The MyObject class extends the MyTemplate class. It actually contains the logic that the
 logicA() method in MyTemplate referred to.

❑

❑

MyTemplate

�doCalculation()
�logicA()

MyObject

�logicA()
1 1

Figure 18-1

 Code Example
 The e - commerce website has expanded. Visitors to the website can now order many new items,
including cases of cereal endorsed by the band. Who knew that these would be in high demand! Now,
you can create classes that can hold the price for themselves as well as add tax. You used to be able to
apply a flat tax — but now with food sales — each class has to hold the tax for itself. Additionally, some
items are pretty large. For example, some of the cases of product require a premium to cover handling.
This is added to the final purchase price.

 This particular example will differ from most by having more structure. Generally, the simplest version
of a class demonstrating a design pattern is created. Best practices, such as enforcing access using
interfaces, are generally skipped. However, for this particular design pattern, the controls are so strongly
specified that I thought it would be best to illustrate it with a more structured approach using abstract
classes and methods.

c18.indd 117c18.indd 117 7/16/09 9:06:26 AM7/16/09 9:06:26 AM

Chapter 18: Template Pattern

118

 The first step is to define a base class using the Template Design Pattern to process any of the sale items:

abstract class SaleItemTemplate
{
 public $price = 0;

 public final function setPriceAdjustments()
 {
 $this- > price += $this- > taxAddition();
 $this- > price += $this- > oversizedAddition();
 }

 protected function oversizedAddition()
 {
 return 0;
 }

 abstract protected function taxAddition();
}

 The SaleItemTemplate is a simple class. It is an abstract class, so it enforces the requirement to be
extended. The public property $price is set to 0. The one public method it defines is
 setPriceAdjustment() . This method is final so as not to allow it to be overwritten by any of the
children. It enforces the modification of the price by calling both taxAddition() and
 oversizedAddition() .

 The protected method oversizedAddition() exists in this template class because it ’ s optional that the
child classes define it. Most items won ’ t be oversized, so it does not make sense to create an
 oversizedAddition() method in each that would return 0.

 Finally, the abstract protected method taxAddition() exists. Each child object could either be taxable or
not. Whereas only some items will need to define surcharges for being oversized, many more need to
define whether they are taxable or not. Therefore, this method is created as abstract to enforce its creation
in the child element.

 The next step is to modify our CD object from its normal state as well as create a new cereal object:

class CD extends SaleItemTemplate
{
 public $band;
 public $title;

 public function __construct($band, $title, $price)
 {
 $this- > band = $band;
 $this- > title = $title;
 $this- > price = $price;
 }

 protected function taxAddition()
 {
 return round($this- > price * .05, 2);
 }

c18.indd 118c18.indd 118 7/16/09 9:06:26 AM7/16/09 9:06:26 AM

Chapter 18: Template Pattern

119

}

class BandEndorsedCaseOfCereal extends SaleItemTemplate
{
 public $band;

 public function __construct($band, $price)
 {
 $this- > band = $band;
 $this- > price = $price;
 }

 protected function taxAddition()
 {
 return 0;
 }

 protected function oversizedAddition()
 {
 return round($this- > price * .20, 2);
 }
}

 The CD object extends the SaleItemTemplate . Its constructor sets the band, title, and price to the object.
Since the taxAddition() method was defined as abstract in SaleItemTemplate , it has to be defined in
the CD class as well. Here, the taxAddition() figures 5 percent tax on the price of the object and returns
that amount.

 The BandEndorsedCaseOfCereal object also extends the SaleItemTemplate . Its constructor sets the
band and price similarly to the CD object. Next, it defines the taxAddition() method by necessity. In
this case, since the item is food related, there is no tax. The taxAddition() method returns 0. However,
a case of cereal is a pretty large item. In order to account for this, a surcharge of 20 percent will need to
be added to the total price. The protected method oversizedAddition() , which exists in
 BandEndorsedCaseOfCereal , overwrites the one defined in the Template. It returns 20 percent of the
current price.

 The following code demonstrates how these classes are used:

$externalTitle = “Waste of a Rib”;
$externalBand = “Never Again”;
$externalCDPrice = 12.99;
$externalCerealPrice = 90;

$cd = new CD($externalBand, $externalTitle, $externalCDPrice);
$cd- > setPriceAdjustments();

print ‘The total cost for CD item is: $’ . $cd- > price . ‘ < br / > ’;

$cereal = new BandEndorsedCaseOfCereal($externalBand, $externalCerealPrice);
$cereal- > setPriceAdjustments();

print ‘The total cost for the Cereal case is: $’ . $cereal- > price;

c18.indd 119c18.indd 119 7/16/09 9:06:26 AM7/16/09 9:06:26 AM

Chapter 18: Template Pattern

120

 Both examples create a new child class that extends the Template object. They call the
 setPriceAdjustments() method, which applies the possible changes to the public $price property.
Then, the output shows the adjusted price of the item.

 When creating an object where the general steps of a design are defined but the actual logic is left to be
detailed by a child class, using the Template Design Pattern is best practice.

c18.indd 120c18.indd 120 7/16/09 9:06:26 AM7/16/09 9:06:26 AM

 Visitor Pattern

 Society keeps driving for more features and more value with everything they obtain. The days of
being happy with a simple set of features or the “ classic ” item is nearly gone. Programming and
applications are not immune to this trend. Companies are finding that the demand for new
features is so intense that extra programmers are needed. They have independent consultants
come visit the main office and request to have the application “ made better. ” Each consultant is
basically told the same thing — create a new feature — and they provide the same product: the
finished feature. However, internally, they all take different routes to accomplish this goal. In this
same way, some sets of objects are designed to visit the application logic and “ make it better ” in
their own unique way. This is where the Visitor Design Pattern becomes useful.

Name: Visitor

The Visitor Design Pattern constructs distinct objects containing an algorithm that, when
consumed by a parent object in a standard way, apply that algorithm to the parent object.

 Problem and Solution
 The Visitor Design Pattern helps take the complexity out of base objects. Basically, it is a separation
of the algorithm from the object that it applies to. This seems to be a common goal of a lot of the
design patterns in this book. However, the Visitor Design Pattern tackles this in a unique way.

 The name Visitor has been given to this design pattern for a reason. While some other approaches
to designing self - contained algorithm classes apply themselves externally, the Visitor object is
designed to be incorporated into the object it intends to modify. After visiting or entering the
object, a standard method call is executed with an instance of the base class being sent into that
Visitor class. Because of this, the Visitor Design Pattern enforces a unified way of accessing these
visiting objects ’ logic. Basically, each Visitor is asked the same thing, but what they do internally to
accomplish the task is different.

c19.indd 121c19.indd 121 7/16/09 9:07:01 AM7/16/09 9:07:01 AM

122

Part II: Reference Material

 One of the major benefits of this design pattern is the ability to add new functionality to an object
without modifying that object. If the base object is built to accept Visitors, any new bit of logic can be
applied through the Visitor acceptance method. Unit tests on the base object never need to be changed.
Any new functionality is in the form of Visitors who are distinct from the base object and have their own
testing methods. This provides a great flexibility for future development: any new feature set will be
constructed as a visit with its own unique flavor.

 Visiting objects in PHP will only be able to modify the public properties of an object, however. They also
will only be able to access the public methods. Private and protected properties and methods are still out
of scope.

 One example that can make use of objects based on the Visitor Design Pattern is a blog. After the proper
request is placed, an object representing the blog entry will be created. Normally, public properties are
retrieved by the view class and used to display the item. The blog entry object contains an author
property, which contains the username of the author. Since the owner of the blog website now wants to
use full names, a Visitor object is created. It visits the blog object, which calls the Visitor ’ s visit method,
passing the reference to itself into the Visitor. The Visitor then does a query based on the username to
retrieve the full name. This is then applied to the author property of the blog object. The visit is then
over. Later on, Visitors might have noticed that all entry times are in Coordinated Universal Time (UTC).
A new Visitor can be created to visit the blog object and change the public timestamp property to the
time zone that the author is from. In both examples, the base object ’ s properties were modified.
However, the class itself was never changed.

 Another example of the Visitor Design Pattern in action is an open source code serving website. An
object is created to represent the code file to be downloaded. It contains public properties such as the
project name, the location on the server, and the author. Since the demand for these open source code
files is so high, additional mirrors are brought in after the site launched. The file object needs to provide
the file from one of three new mirrors. Since the file object has been functioning flawlessly, it may make
sense not to modify it. Instead, a new Visitor can be constructed that creates a random selection between
the source and the three additional mirrors. Then, when it visits the file object, it modifies the location
object to replace the original link with one that belongs to a mirror. As time goes on, there is an initiative
to accept only files that are compressed in Tarred and GZipped file (TGZ) format. All of the files on all
mirrors are compressed into that archive. New files are accepted only in that format. Now, a new Visitor
is created to check if the public file location property actually exists. If it doesn ’ t, it will check to see if the
TGZ version exists. If so, it ’ ll modify that location property to point to the newly compressed TGZ.

 One of the things that I try to reiterate as often as possible is that Design Patterns are a base for projects.
They can always be modified and enhanced. Additionally, the design itself is a proven method — but the
applications are just theoretical. When considering the Visitor Design Pattern, the standard approach
may be to consider Visitors to be something that always apply a set of functionality to an object.
However, it could also be possible to create a Visitor with a different intent. In the previous example, the
Visitor could have been created to apply updates to the database when the new TGZ file was found.
Once all files have been converted, it may be removed from the equation again. I just want to stress that
the design is the most important thing — the actual usage can vary.

 When creating functionality that is enclosed in exterior classes that can be applied to a main class in a
standard way, the Visitor Design Pattern can be used.

c19.indd 122c19.indd 122 7/16/09 9:07:02 AM7/16/09 9:07:02 AM

Chapter 19: Visitor Pattern

123

 UML
 This Unified Modified Language (UML) diagram details a class design using the Visitor Design Pattern
(see Figure 19 - 1). Note the following about this diagram:

 The MyObject class can be visited. It is the base class. It has one public method
called acceptVisitor() . This method accepts a parameter called Visitor . Internally, the
 acceptVisitor() class calls the public method visit() from the Visitor parameter object
that it is passed. It passes in an instance of itself.

 The MyVisitor class is the Visitor in this diagram. All Visitors are required to have the public
method visit() . This method accepts an instance of MyObject . The visit() method may call
additional logic, such as the protected doSomething() method. This is the unique portion of
the visiting class.

❑

❑

MyObject

�acceptVisitor(Visitor)

MyVisitor

�visit(MyObject)
#doLogic()

1 0..*

Figure 19-1

 Code Example
 For auditing, each new CD purchase on your e - commerce website must be logged. This information is
then archived. In the case that there are ever any inconsistent inventory counts, the log file can be
examined to see if a CD was actually purchased.

 In order to accomplish this, the CD object must accept Visitors:

class CD
{
 public $band;
 public $title;
 public $price;

 public function __construct($band, $title, $price)
 {
 $this- > band = $band;
 $this- > title = $title;
 $this- > price = $price;
 }

 public function buy()
 {
 //stub
 }

 public function acceptVisitor($visitor)

c19.indd 123c19.indd 123 7/16/09 9:07:02 AM7/16/09 9:07:02 AM

124

Part II: Reference Material

 {
 $visitor- > visitCD($this);
 }
}

 The CD object receives the band, title, and price of the CD on instantiation. The constructor applies each
of those to the public $band , $title , and $price properties.

 The CD also has a public method called buy() . In this example, the purchase logic is left out. This stub
method is for demonstration purposes.

 The CD has one more public method, called acceptVisitor() . This method is required in order to
comply with the Visitor Design Pattern. It accepts an instance of a Visitor from the $visitor parameter.
Inside the method, the Visitor ’ s public visitCD() method is called. It is passed an instance of the CD
class, using the $this variable.

 The logging Visitor contains the following code:

class CDVisitorLogPurchase
{
 public function visitCD($cd)
 {
 $logline = “{$cd- > title} by {$cd- > band} was purchased for {$cd- > price} “;
 $logline .= “at “ . sdate(‘r’) . “\n”;

 file_put_contents(‘/logs/purchases.log’, $logline, FILE_APPEND);
 }
}

 The class contains the one public method that is called from the CD class: visitCD() . This accepts a
parameter called $cd , which is an instance of the CD object. Next, the $logline variable is created by
combining a log message with some of the CD object ’ s public methods. It is important to note that the
logging could have been done inside of the buy() method. However, if the logging style was changed or
additional logging was requested, the CD object would need to be modified again. This would not be
optimal. Finally, the $logline variable is written to the log file.

 To purchase this CD and log the sale, the following code is used:

$externalBand = ‘Never Again’;
$externalTitle = ‘Waste of a Rib’;
$externalPrice = 9.99;

$cd = new CD($externalBand, $externalTitle, $externalPrice);
$cd- > buy();
$cd- > acceptVisitor(new CDVisitorLogPurchase());

 The CD object is created with the properties of the CD to be purchased. The buy() method is then called.
Finally, the CD accepts a Visitor object in the form of a new CDVisitorLogPurchase being passed into
the acceptVisitor() method of the CD class. This last call is where the logging is actually being
executed.

c19.indd 124c19.indd 124 7/16/09 9:07:03 AM7/16/09 9:07:03 AM

Chapter 19: Visitor Pattern

125

 A new study was released that said that Visitors who view the home page are actually looking for
discount CDs instead of the standard - priced ones. Because of this, it was decided that the front page
should have a live updated list of CDs that were purchased that were discounted. A discounted CD is
considered to be a CD that is under $10.

 To accomplish this task, a new Visitor is created:

class CDVisitorPopulateDiscountList
{
 public function visitCD($cd)
 {
 if ($cd- > price < 10) {
 $this- > _populateDiscountList($cd);
 }
 }

 protected function _populateDiscountList($cd)
 {
 //stub connects to sqlite and logs
 }
}

 The CDVisitorPopulateDiscountList class also has the public visitCD() method. As with all of the
Visitors created, this one also accepts an instance of the CD object using the parameter $cd . If the price
property of the CD is less than 10, the protected method _populateDiscountList() is called. That
function is passed an instance of the CD .

 The _populateDiscountList() method is only invoked when the main visiting logic has determined
that the CD qualifies as a discount CD. This particular example shows this method to be a stub method.
However, in a real working class, this may be writing out the CD ’ s details to a SQLite database or an
XML file, which would be accessed by the front page.

 The purchasing code has this new Visitor added:

$cd = new CD($externalBand, $externalTitle, $externalPrice);
$cd- > buy();
$cd- > acceptVisitor(new CDVisitorLogPurchase());
$cd- > acceptVisitor(new CDVisitorPopulateDiscountList());

 When objects containing algorithms to be applied to an object in a standard way are required, using the
Visitor Design Pattern is best practice.

c19.indd 125c19.indd 125 7/16/09 9:07:03 AM7/16/09 9:07:03 AM

c19.indd 126c19.indd 126 7/16/09 9:07:03 AM7/16/09 9:07:03 AM

Part III

PHP Design Case Study

Chapter 20: Requirements Analysis

Chapter 21: Choosing Design Patterns and Planning

Chapter 22: Programming the Application

Chapter 23: Improving with More Design Patterns

c20.indd 127c20.indd 127 7/16/09 9:07:27 AM7/16/09 9:07:27 AM

c20.indd 128c20.indd 128 7/16/09 9:07:27 AM7/16/09 9:07:27 AM

 Requirements Analysis

 I ’ ve always found that programmers in the open source world, especially when immersed in PHP,
benefit from hands on teaching. While I would love to visit each reader ’ s house, crack open some
drinks, and program PHP, that ’ s not really feasible. Instead, I ’ m going to further the analysis of
PHP Design Patterns with a case study.

 This particular case study will be broken up into several parts as the book introduction says. First,
in this chapter, I ’ ll examine the requirements. I ’ ll try to rule out any assumptions and ask any other
questions I can of the stakeholders of this case study. Chapter 21 will be the analysis of the features
compared to what Design Patterns that were detailed in the reference chapters. The final chapters
(Chapter 22 and 23) will cover the code creation, using the Design Patterns and Unified Modeling
Language (UML) diagrams that I developed.

 Completing this book with a case study is very important. In addition to providing a sort of
 “ hands - on ” training tool, there are three other important things that I hope you gather:

 First, it is important to follow along in a requirements analysis. There is a careful balance
to maintain between flying by the seat of your pants and analyzing a project to death.
I aim to show where the balance should fall with this analysis.

 The second thing to observe is the pre - programming analysis. Back in the book ’ s
introduction, I mentioned my distaste for those who jump right into programming using
lack of time as an excuse. As with the requirement analysis, the programming planning is
also a balance. It is critical to attain the proper ratio of time spent designing before
programming to the actual time spent programming. The horror stories I have about
projects going over time and over budget because of a lack of design in the beginning are
sadly numerous.

 The final thing that I want to demonstrate is a real programmer ’ s approach to
programming the application. One thing that frustrated me about other books was their
lack of complete application creation. They show a lot of code snippets and examples but
never put together a completed project.

❑

❑

❑

c20.indd 129c20.indd 129 7/16/09 9:07:28 AM7/16/09 9:07:28 AM

Part III: PHP Design Case Study

130

 I also plan to approach the last segment of the case study in a somewhat controversial manner — I plan
to make mistakes. My experience has shown me that the first round of the code base is never perfect. It
usually will go through a few refactorings before it is released or even built upon further. Most books
that do feature a completed project seem to have perfect code the first time around. Maybe the authors
are better programmers than I? Chances are, however, that they ’ ve refactored their code before it hit the
book. I plan to put in enough rough code to show value in the refactoring while not wasting your time.
I think it ’ s important to demonstrate the flexibility of Design Patterns by analyzing if the one I ’ m using
makes the most sense. In some cases, it may make sense to change the code slightly and swap out the
architecture to an object built with a different Design Pattern. This controversial approach to allowing
 “ mistakes ” in the code will come to a complete and accurate finale I assure you. The last version of the
code will be the final architecture, fully working and accurate.

 Now that you know what you ’ re in for, let ’ s talk a bit more about the actual content of the case study. To
premise this situation, I want to detail a bit of background information for the example. I will be coding
for the fictional ACME Company. I will have a direct supervisor who is my one and only point of
contact. (Those who have been in the industry for a while right now are probably chuckling. Who really
has just one point of contact during a project? But, the case study is about the project, not the business
practices. I get to take these liberties!) He will be the one who supplies the requirements, is responsible
for answering any of my questions, and makes any final decisions. I will be the only programmer on
this project. This means that not only am I the lead architect, but I will also be creating the code as well.
The project will be an online contact manager.

 The first step in the case study is to review the requirements document that the boss presents.

 Initial Requirements
 The following sections will be the requirements document that my boss at ACME Company gave to me
for the Contacts Manager.

 Executive Summary
 ACME Company will be shifting all of its employees ’ contacts to an online web page. This online contact
manager will be accessible via Internet Explorer or a mobile phone. The contact manager will hold most
features of the company ’ s current e - mail system ’ s address book. The online contact manager will be
accessible to any company employee using their own credentials.

 Scope
 The following table contains the scope items:

c20.indd 130c20.indd 130 7/16/09 9:07:28 AM7/16/09 9:07:28 AM

Chapter 20: Requirements Analysis

131

 Scope Scope Items

 In Scope Creating an online contact system

 Separating user accounts with distinct credentials

 Providing an interface for Internet Explorer

 Providing an interface for a mobile browser

 Method to import contacts from existing e - mail system

 Allow contact information to be used directly via links.

❑

❑

❑

❑

❑

❑

 Out of Scope Keeping the old and new contacts systems in sync and up to date

 Using the same credentials as the network

❑

❑

 Assumptions/Constraints
 The assumptions and constraints that should be made are that the project:

 Will not incur any additional licensing costs.

 Must make use of the existing web server only.

 Detailed Requirements
 The following section details the objective specifics for the project.

 Website Availability
 The website should be available to the entire Internet. It should not be restricted to the company
intranet. The website should be able to be viewed using Internet Explorer as a web browser. Employees
using smart phones should be able to access the web page via their phone ’ s browser as well.

 Contact Information
 A contact should be able to be created, updated, or deleted on the website. Each contact should have the
following information available:

 First, Middle, and Last Names

 Personal E - Mail Address

 Personal Address

 Personal Phone/Cell phone

 Business Name

 Business Title

 Business E - Mail Address

❑

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 131c20.indd 131 7/16/09 9:07:28 AM7/16/09 9:07:28 AM

Part III: PHP Design Case Study

132

 Business Address

 Business Phone/Extension/Cell Phone

 Business Social Network URL

 Instant Messenger Name

 Website

 Contacts should appear on the application with a label of their First, Middle, and Last names.

 Contact Sync
 The website should be able to take the existing contact information from the company e - mail system and
import it directly into this system.

 Initial Requirements Analysis
 The boss at ACME Company presents me with the preceding requirements document. While it ’ s a good
starting point, I still have plenty of questions. The next step is to consider my approach.

 There are two ways to approach a requirements document that you have questions about:

 Create a list of questions and send them back to the stakeholders. Then one
of three things will happen. You may receive answers back, you may just receive an
updated requirements document, or you may receive answers back with direction to update
the requirements document yourself.

 Gather the questions together and send them off to the stakeholders with a stipulation: you plan
to update the requirements document for their review based upon the answers to these
questions. This second way is usually the way that I try to approach the analysis. This way,
everyone is clearly informed of what the next steps in the process are.

 I should really interject a reminder here: this book is about Design Patterns and not business practice.
However, some of these steps are required steps to make good decisions when choosing the Design
Patterns for the PHP application. Without getting the clarification that is needed, the architecture may
suffer. It may take longer to make the right decisions. Or, even worse, it ’ s possible to make too many
assumptions and create a wholly inaccurate architecture. I want to make sure to get clear requirements
in the first step of the case study in order to make the rest of the project run smoother. As an added
bonus, detailing my thought process may help you learn from my process how to perfect your own
analysis process.

 In this example, I ’ ve already alerted my boss that I ’ m going to approach this project by creating a list of
questions and then updating the requirements document. In the next sections, I ’ m going to review the
requirements document and break out my list of clarification points. For brevity ’ s sake, I ’ m going to
include the “ answer ” or “ response ” from the boss in each section.

❑

❑

❑

❑

❑

❑

❑

c20.indd 132c20.indd 132 7/16/09 9:07:29 AM7/16/09 9:07:29 AM

Chapter 20: Requirements Analysis

133

 Size/User Scale
 The first thing I want to know about is the size of this application and the scale that is planned for
growth. How many employees will be using it at first? What will that grow to? Will it be opened up to
more companies? I did note that there is a constraint to not increase licensing costs and to use our
current web server. This will impose some limits. It is my responsibility to determine if the predicted
scale can be hosted on the existing hardware.

 Question : How many users in the company will be using this application in total? How many
users do you predict will be using it at one time? Are there any planned hires coming up? Are
there any plans to make it immediately available to other companies or individuals besides the
ACME Company?

 Answer : Our company employs two shifts of 25 employees. Our growth is steady — about two
new employees every quarter. We have no immediate plans to release the software to anyone
else. If it is super - successful, it ’ s not out of the question to sell access to it.

 After reviewing this answer, I can make some assumptions.

 First, the company has 50 total employees. At any one time, half of them should be using the software.
The company also plans on growing two employees every quarter. Because I don ’ t know which shift
those employees will be placed in, I ’ ll plan on them all being added to one shift. This gives us 33 users at
a time in the next year. In my experience, management has a tendency to round numbers of total
employees either under or over. I ’ m going to safely move my assumption to 40 users at one time, with 80
total initial users.

 Next, as far as the initial design is concerned, they plan to keep the distribution in house and small. It ’ s
not out of the question that this application will need to scale immensely, but it seems to be predictably
small for a while. What I ’ ve learned is to always plan for scaling, even when the stakeholders don ’ t
predict it. If they ’ re even a little bit open to the idea, the chances increase that the product will be made
available to more than the predicted number of users sooner rather than later.

 Type of Contact Information
 The requirements were very specific in the listing of contact. These items were broken down into
personal and business contact information. Some items seemed to overlap. I think it ’ s making a severe
gamble that, for example, only one e - mail address will be available for personal e - mail. Also, some of the
company ’ s clientele may even have things like beach houses as well as personal residences. Just seeing
the requirements listed so succinctly makes me wary. I think I ’ d like to clarify what the real requirements
are. It seems to me that in order to demonstrate their need for flexibility (having both personal and
business information readily available), they have unfortunately developed requirements that
pigeonhole that flexibility into predefined fields.

 Question : I noticed business and personal address, e - mail, and phone information listed in the
requirements. Would you say that you want to restrict that information to only one of each? Or
would you rather have the primary options to suggest a business and personal address — while
allowing the user to specify more than one of each? Also, I noticed only one listing for things
like personal e - mail address or IM client. Would you like to provide the option for more than
one of these under each category?

❑

❑

❑

c20.indd 133c20.indd 133 7/16/09 9:07:29 AM7/16/09 9:07:29 AM

Part III: PHP Design Case Study

134

 Answer : As long as users can set up both personal and business information, do what you think
is best. Contacts could have two or three IM clients. You can allow them to add more than one.

 By suggesting alternatives in the question, I determined what the actual need is. There is no requirement
to limit the interface to only personal and business information. It is just a requirement to make sure that
they can add that information easily.

 The other portion of the answer demonstrates that the stakeholders may not have thought that standard
contacts may have more than one of each type of contact information. It appears that they ’ re okay with
having more than one of each featured in the interface.

 From a design point of view, I ’ ve gathered some very important information. I now know that I can
develop groups of contact information. The requirements would suggest that groups named “ Business ”
and “ Personal ” should be suggested first. Also, I ’ m going to make the assumption that, since they would
allow more than one IM client, they really would be fine with allowing more than one of any type of
field in the group.

 Application Access
 As an open source user, you probably join me cringing whenever you see Internet Explorer mentioned
in a requirement document. Since that particular browser has such a large market share, it is definitely
not a browser that can be ignored. However, in the same way that people tend to use the brand name
Kleenex to refer to facial tissue, I want to determine if the requirement is actually Internet Explorer, or if
they are trying to say that the most common web browsers should be able to use it.

 Another view that was mentioned was the mobile phone. The requirements document talked about
using a smart phone to access the application. It is important to determine what type of smart phones
they ’ re referring to. The scope could be as grand as any mobile access device or as refined as Internet
Explorer on Windows Mobile 6 and above. This is something that I need to clarify.

 Both of these clarification steps are particularly delicate to discuss with most ordinary stakeholders.
Business requirements should be based on application needs and not technical specifications as much as
possible. However, by determining more technical needs up front, I ’ m hoping to extract some of the
other ones that have sneaked their way into the requirements document. The delicateness comes in
communicating with the stakeholders in a way that doesn ’ t overly complicate things technically.

 Finally, the last thing I want to know about is any additional views. One that I can think of that might be
overlooked during this phase is the web service. With the mention of a possibility of selling access, it
seems as if a web service view may be an eventuality.

 Question : Internet Explorer was mentioned as the browser to view the application with. I
understand that this may be the most familiar browser to you. Would I be correct in assuming
that you ’ d like to make sure the application could be accessed over the Internet using the most
popular browsers — which of course includes Internet Explorer? Also, smart phones were
mentioned. Can you point to any specific models of phones that should be supported? Finally,
should any bit of the application be available immediately in a Software as a Service method by
using web services? Or would you rather have this in a future iteration?

❑

❑

c20.indd 134c20.indd 134 7/16/09 9:07:29 AM7/16/09 9:07:29 AM

Chapter 20: Requirements Analysis

135

 Answer : We weren ’ t aware of anyone using other browsers besides Internet Explorer in our
organization. Access does not need to be restricted to Internet Explorer, just don ’ t extend the
budget to support other browsers. The mobile phones should be our company issued phones.
The SaaS application would be nice but is not required.

 These weren ’ t exactly the answers I wanted, but they will help me progress through updating the
requirements document. I personally was disappointed with the lack of making additional browser
support a priority. However, by wording my question the way I did, I think I can help remove some of
the specificity in the requirements and move the primary browser support to the constraints section.

 The mobile phone answer requires me to find out what the standard issued company phones are. In this
case, they are a few different brands — all of which have the Windows Mobile OS installed.

 I can tell by the wording of the response that the primary objective of this project is to help facilitate
business functionality. The fact that the application will be available outside of the company intranet is
just a bonus. It is most important to focus on making sure that the core business deployment hardware
and software function with the application flawlessly. Any extra functionality and compatibility is just a
surprising bonus.

 Contacts Sync
 From the wording of the requirements document, the contacts sync process wasn ’ t completely clear to
me. Is it two - way sync? Is it ongoing? Should it be automated? Also, there is mention of the company
e - mail system. I should get clarification on this as well.

 Question : One requirement is to have a way to import the contacts from the existing company
e - mail system. When you say existing e - mail system, do you mean the instance of Outlook
installed on each computer? Also, should this import be ongoing? Should this application
support synching in both directions?

 Answer : The main reason we ’ re building this application is to replace our existing e - mail and
contact infrastructure. The licensing costs have become too great. Another team is working on a
webmail application. We hope these will be integrated in the future. Right now, we ’ re fine with
them being standalone. The import should be a one - time import from the Outlook on the user ’ s
computer to the application. After that, we will be asking them to delete their Microsoft
Address Book.

 Woah! By answering this way, my boss has armed me with a lot more objective than was specified in the
original requirements document. Now I have an idea how my application fits in with the grand scheme
of development at ACME company.

 I ’ ve learned that the import will only be one - way, one time, from Outlook. Luckily, I happen to know
that Outlook can export contacts in CSV format. (Forgive me for that technical “ outburst ” during
requirements - gathering phase!)

 I also learned that the future of my application will be to integrate with a webmail application. This is
something that is useful to keep in mind during the design phase.

❑

❑

❑

c20.indd 135c20.indd 135 7/16/09 9:07:30 AM7/16/09 9:07:30 AM

Part III: PHP Design Case Study

136

 User Credentials
 One of the out - of - scope items was using the same login credentials as the network. I happen to know
that the network has an LDAP server. From my experience, I have found that integrating the login with
LDAP is not that hard.

 This type of clarification can also be particularly difficult. I want to find out more about this out - of - scope
requirement. It seems odd to me that it is out of scope and not a requirement. From a user ’ s point of
view, it seems like it would be a great benefit to keep the credentials the same. Asking the client about
this particular requirement may have the potential of being interpreted as snide or even argumentative.
I want to make sure that it comes off as a clarification point, not a discussion on the stakeholders ’ ability
to make decisions or as an attempt to increase the budget of the project.

 Question : One of the out - of - scope items was using the same network credentials to access this
application. If it ’ s not synchronizing with the network, can you detail any requirements for the
credentials I may need to know?

 Answer : Right now we haven ’ t determined if we should integrate the login system with the
webmail application or if it should be integrated with the network. The webmail team
mentioned that they had a few issues with using the network. As of right now, the login system
can be standalone.

 This answer has given me more fodder for the design portion of the project than the actual requirements
document. I know that I have to make sure that the authentication method is very pluggable. It should
be able to be swapped out easily. The out - of - scope option seems like a viable option to leave there.

 Updated Requirements Document
 Now that I ’ ve completed analyzing the requirements and receiving answers to my questions, it ’ s time to
start putting together my finalized requirement document. I ’ m going to take their original one and
modify it to include the answers to the questions I asked as well as adding additional clarifications.

 Let ’ s take a look.

 Executive Summary
 ACME Company will be shifting all of its employees ’ contacts to an online web page. This online contact
manager will be accessible via most common web browsers as well as the company - issued mobile
phones. The contact manager will be a direct replacement for the company ’ s current address book
software. The online contact manager will be accessible to any company employee using the Internet by
providing their own credentials. The following table shows the in scope and out of scope features.

❑

❑

c20.indd 136c20.indd 136 7/16/09 9:07:30 AM7/16/09 9:07:30 AM

Chapter 20: Requirements Analysis

137

 Scope Scope Item

 In Scope Creating an online contact system

 Replacing the current Outlook address book functionality with this
application

 Separating user accounts with distinct credentials

 Providing an interface for most common web browsers

 Providing an interface for company - issued mobile phone browsers

 Method to execute one - time import of contacts from Outlook ’ s address book

 Allow contact information to be used directly via links

 Flexible authentication system to allow multiple ways to authenticate

❑

❑

❑

❑

❑

❑

❑

❑

 Out of Scope Providing contact information to legacy Outlook system

 Forcing the use of the same credentials as the network

 Web service access to the application at this time

❑

❑

❑

 Assumptions/Constraints
 The assumptions and constraints that should be made are that the project:

 Will not incur any additional licensing costs

 Must make use of the existing web server only

 Will have an application that focuses on compatibility with Internet Explorer

 Detailed Requirements
 The following section details the objective specifics for the project.

 Website Availability
 The website should be available to the entire Internet. It should not be restricted to the company
intranet. The website should be able to be viewed using the most common web browsers,
specifically Internet Explorer. Employees using company - issued Windows Mobile phones should be
able to access the web page via their phone ’ s browser.

 Contact Information
 A contact should be able to be created, updated, or deleted on the website. The contact should retain a
singular First, Middle, and Last name.

 Each contact can have unlimited groupings of information. The first group suggested is “ Business. ”
Additional group names can be specified by the user.

❑

❑

❑

c20.indd 137c20.indd 137 7/16/09 9:07:30 AM7/16/09 9:07:30 AM

Part III: PHP Design Case Study

138

 Each group has at least one label for contact information. Each label can have one or more items
associated with it. The specified labels are as follows:

 E - Mail Address

 Street Address, including City, State, and Zip

 Telephone with optional extension

 Mobile Phone

 Organization Name

 Title at Organization

 Social Network URL

 Instant Messenger Name

 Website

 For example, John Smith can have a group called Personal, which features two mobile phones, one
e - mail address, and three Instant Messenger names.

 Contacts should appear on the application with their personal picture, if it exists, followed by a label
with their First, Middle, and Last names.

 Initial Contact Import
 The website should be able to take the existing contact information from Outlook and import it one time.

 Updated Requirements Discussion
 A few of the changes I ’ ve made to the requirements documentation bear the need of some discussion:

 I refer to the Outlook application directly. I think it ’ s important to detail this throughout the
requirements. The executive summary still stays brief, but the scope and specifics mention the
application by name. This is important because the executive summary only needs to mention
what the objective is. The details should nail down what the company “ address book system ”
really is. It ’ s quite possible that not everyone uses the same address book software. Since the
stakeholders have identified the Outlook software as the official address book I should consider,
designating this particular software in the requirements protects my interests. I am not expected
to develop more than one type of import sequence initially.

 I removed the mention of Internet Explorer from some of the requirements. Instead, it ’ s a
constraint that I should focus on Internet Explorer compatibility first. I did not want to make the
requirements falsely state that Internet Explorer was the only browser that could be used to
view the application.

 In regard to the mobile browser, since the only supported mobile phones are those issued by the
company, it was important to mention this. With Java - based browsers, Safari - based browsers,
and other operating systems hitting phones, it ’ s good to tighten up this requirement. The
foremost functionality is business based, so we want to continually urge focusing on business -
 related applications only.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c20.indd 138c20.indd 138 7/16/09 9:07:31 AM7/16/09 9:07:31 AM

Chapter 20: Requirements Analysis

139

 I changed the wording from “ contact sync ” to “ initial contact import. ” After I found out that the
process was less of a sync and more of an import, I wanted to make sure that there would be no
false assumptions about this functionality. It is only one type of import one time per user.

 One of the biggest changes I made was in the contact information section. Instead of limiting
this to personal and business information, I changed the method to grouping. The Business
group will be suggested first. However, users can have unlimited groups. This could allow users
to specify multiple business names for contacts who have more than one job.

 The subsections of each of these groups were also modified. Instead of focusing on information
that seems as if it would be limited to a specific group, I made the information more generic.
Also, since a user can have an unlimited number of subtypes, we solve the problem of someone
having more than one personal e - mail address or multiple IM names.

 I also included a small example detailing this functionality. It has been my experience that when
the requirements appear to have changed to the stakeholders, providing an explanation goes a
long way to getting them accepted. Another thing I discovered from the response I received from
my question about the contact information was the stakeholders ’ naive interpretation of contact
details. It seemed as if they might not have considered a situation where a contact could have
more than one of a specific type of detail. Because I was helping them make this jump in this
requirements document, I felt a quick demonstration or example added to the document would
help. (I know that some pure project manager types may disagree with me on this point — and
that ’ s fine. I ’ m merely giving you the steps I tend to take on my successful projects.)

 In this case study, I sent the requirements document back to my boss. And, as if by magic, or because
they know I ’ m writing this book, the stakeholders all agreed 100%. (How lucky!)

 Summary
 In this chapter, I introduced my version of a case study. I discussed how I plan to cover the business
requirements, planning, and actual building of the application throughout the case study. I also detailed
my unique way to approaching a case study. Then, I reviewed a sample business requirements document
for an online contacts manager for the fictional ACME company. I showed how to pull out questions
about the requirements, open a dialog with the stakeholders, and apply that feedback to the
requirements. Finally, I created an updated requirements document, which will be the basis of our next
few sections. Next up, planning our architecture and choosing some Design Patterns.

❑

❑

❑

❑

c20.indd 139c20.indd 139 7/16/09 9:07:31 AM7/16/09 9:07:31 AM

c20.indd 140c20.indd 140 7/16/09 9:07:31 AM7/16/09 9:07:31 AM

 Choosing Design Patterns
and Planning

 With a set of requirements that are clearer, it is time to continue with the planning portion of this
project. I ’ m going to step through each section of the application, detailing my thoughts as well as
providing UML diagrams. I know it ’ s tempting to just jump in and code right away and hope to
sprinkle in some Design Patterns. However, the benefits of preplanning this application will
hopefully become very apparent as I analyze each step.

 In general, I ’ m making some assumptions about the sections and pieces of this application. I ’ m
going to draw UML diagrams to keep for the programming portion. Experience has taught me that
these blueprints both encourage me to remember to use my collection of Design Patterns and give
me a roadmap for development. An added benefit is the chance to provide an updated estimate on
the project after the pieces are clearly laid out.

 The sections of the application as I see it are:

 Main core

 User interaction and administration

 Contact administration

 Let ’ s begin with the core of our application.

 Designing the Core
 The steps to becoming a great programmer revolve around the core of the application:

 1. You program procedurally using a collection of includes.

 2. Next you build your own framework to use as a base for your next project.

 3. You then abandon your framework and leveraging existing proven frameworks
in your project.

❑

❑

❑

c21.indd 141c21.indd 141 7/16/09 9:07:57 AM7/16/09 9:07:57 AM

Part III: PHP Design Case Study

142

 Normally, I move forward using what I ’ ve learned by getting to step 3 and would recommend one of the
frameworks mentioned in Chapter 2. However, because I ’ m trying to demonstrate the usage of Design
Patterns from an initial planning perspective, I am opting to create a very simple framework. While
existing frameworks would jumpstart this application, the code is already written by someone else.
I can only make guesses as to the thought processes of the original programmers.

 A type of architecture I favor is Model - View - Controller, or MVC. To begin the core of the application,
I ’ m going to build three objects, a controller, a module (or model), and a view object.

Module

�action() : String

Controller

�construct()
�render() : String

1 1

 Figure 21 - 1

view

�start()
�end() : String
�show(type : String,params : Array) : String
�findviewtype()

 Figure 21 - 2

 The Controller object (Figure 21 - 1) will be responsible for determining what type of action the
application is trying to accomplish from the web request. It has two public methods, __construct()
and render() . __construct() will be responsible for making sense of the web request. It will also
process any posted information. render() will be responsible for executing the proper module action
and returning the output of that action, if any.

 The Module object (Figure 21 - 1) simply is a building block for each of the sections of the website. Module
contains at least one public method to be executed by the Controller object. The Module class has been
designed using a variation of the Template Design Pattern. Each section of the website will be creating its
own type of Module similar to the base class.

 The last element for our core is the view object (Figure 21 - 2).

 The view object will have both a start() and end() public method. In my own experience, I ’ ve
developed many different styles of views. I usually settle on using PHP ’ s ob_start() method when
generating views. It ’ s reasonable to assume that the start() method will contain a call to ob_start() .
The end() method should probably return whatever has been captured in the buffer.

 The view object also has a public static method called show() . This accepts a string for the type of view
to show. It also accepts a parameter array. The show() method needs to find the proper view based
on the type string. Then, it would pass any of those parameters to the view that it ’ s attempting to show.

c21.indd 142c21.indd 142 7/16/09 9:07:58 AM7/16/09 9:07:58 AM

Chapter 21: Choosing Design Patterns and Planning

143

 My first thought is to have the show() method create view objects based on a Template object. It could
then pass in the parameter array to the object or assign it directly as public properties. But after more
consideration, I think that would be creating objects just for the sake of creating objects and would
introduce too much overhead. Instead, the views will be included files on the file system with the
parameter array as local variables.

 I added the public static findviewtype() method as well. This will be used to set the current view type
so that the show() method can reference it. Remember, the application has to support both conventional
browsers and mobile browsers. The thought is to be able to call the show() method from any module
without having to worry about what browser is being used. The view object should take care of that
transparently for me.

 After looking at just the first few objects I ’ ve diagramed, I know that I ’ m going to have a lot of work
ahead of me! The programming step should be interesting. Let ’ s continue with the next section of the
application.

 Designing User Interaction
 Now that the core has been designed, the next section can be architected. The user interaction section
will be a set of modules to provide an interface to the user. The interactions that are needed are:

 Authentication/authorization

 Creating, editing, deleting users

 Providing admin access to all users

 Authentication and Authorization
 When users access the first page of the site, there are two possible outcomes (Figure 21 - 3). If they are
authenticated, they will see a listing of their contacts. If they are not authenticated, they will be
redirected to a login page.

❑

❑

❑

IndexModule
1

1

1

1

�default()

contactscollection

Module

Figure 21-3

c21.indd 143c21.indd 143 7/16/09 9:07:58 AM7/16/09 9:07:58 AM

Part III: PHP Design Case Study

144

 The IndexModule object will be an instance of the Module that I detailed in the core section. It has one
public method, called default() , which is the action that the Controller object would execute during
a call to render() . This method needs to make a decision whether to show a collection of contacts or to
do the redirect.

 Logically, I ’ m going to assume that the next step is to provide the login view for the user. (I ’ ll discuss
 contactscollection later, but suffice it to say it ’ s used if the current user is already authenticated.)

 Login functionality will be provided by a module (Figure 21 - 4).

LoginModule

User dao

Module

�showLogin() : String
�process()

1

1

1

1 1

1

Figure 21-4

 LoginModule has two public methods. The showLogin() method will return a string. This will make
use of the view object ’ s show() method. I ’ m going to plan that every public method of a module that is
tasked with showing something and returning a string will be executing at least one call to the view
object ’ s show() method. Public methods that I name with a prefix of “ process ” probably won ’ t make use
of the view object.

 Whatever view is displayed by showLogin() will accept a username and password. This will be for an
employee user to log in to the website. One of the requirements of the application was to have a flexible
authentication system. So far, it should still be pretty flexible. If later there is a need to show an e - mail
address field, a different view could be shown by this module. Even further down the line, the
 process() public method could be called directly for things like Single Sign - On.

 When the login screen is submitted, the process() method of the LoginModule object will be executed.
Since the Controller object handles any data that is posted, LoginModule will need to interact with the
 Controller object to obtain the data submitted from the last view. It ’ s important to note that I ’ m
expecting to create a User object with this data. My thought is to attempt to create a User and then
authenticate the User object with the password. If authentication fails, the User object will be discarded.
My assumption is that more often than not, the User will be authenticated successfully so that it can be
passed through to the rest of the system. It would be more wasteful to try to do a query against the user
database to first determine if the password matched. If it did, I ’ d have to make a new User object anyway
(which probably would execute another query!). It just seems better to create the user right away.

c21.indd 144c21.indd 144 7/16/09 9:07:59 AM7/16/09 9:07:59 AM

Chapter 21: Choosing Design Patterns and Planning

145

 User is an instance of the dao object, which is based on the Data Access Object Design Pattern. Since the
 process() method of the LoginModule will be creating a new User object, which extends the dao
object, the next step is to diagram how I ’ m going to attempt to implement the Data Access Object Design
Pattern (see Figure 21 - 5).

User dao

#table : String
�id : Integer
�username : String
�password : String
�admin : Integer

#values : Array

�construct(qualifier : String)
� set(name : String,value : Mixed)
� get(name : String) : MIxed
#populate(qualifier : Array)
�save()
#update()
#create()

1 1

Figure 21-5

 The User class extends the dao class. A User is identified by the four public attributes: id , username ,
 password , and admin . The protected property table will be used by the dao class when it tries to access
the data source.

 The dao object ’ s constructor takes a qualifier. If that qualifier is blank, nothing will happen. This will
allow a new blank dao object to be created and later saved. However, to retrieve a dao object, some
qualifier would be sent to the constructor of dao . The constructor would then call the protected
 populate() method with an array of qualifiers. I ’ m going to predict that I would either send in a
username or an ID to retrieve a User . Because of this, I would expect the dao constructor to take the
qualifier and determine a mapping based on what the child class ’ s table variable is. The most logical
approach is to match the public properties of the class to columns of the table. If all tables are created
using a similar pattern, this could be a nearly automatic process. After that mapping is created, that
information would be passed to the populate() method so that it can build a query.

 The populate() method would be responsible for filling the protected values array with the
information for that object. Then, PHP ’ s magic __set() and __get() methods would be used to access
that data to mimic properties for the child object ’ s usage. I chose to do it this way, instead of just using
properties, because I may, at some point in the future, want to add a few of my own public properties to
the dao object. I wouldn ’ t want to overwrite them with a child object ’ s properties.

 Looking at the User object UML diagram, I can see where it might be confusing that I ’ ve defined the
public properties while mentioning above that it won ’ t actually have any. Moving forward, public
properties on any object extending the dao should be taken as inferred properties and not defined. This
way, the __get() and __set() methods of the dao object will still be executed.

 The public save() method of the dao object is called on demand when any change occurs to the child
object. It is responsible for knowing if it should be updating an element or creating a new one. It calls
either the protected update() or the protected create() method.

c21.indd 145c21.indd 145 7/16/09 9:08:00 AM7/16/09 9:08:00 AM

Part III: PHP Design Case Study

146

 Both the update() and create() methods need to communicate with a database. Because the
requirements right now include using the existing server, I know that I have access to MySQL. However,
I want to make this abstract enough so that I can swap various database systems if need be. At some
point, the software may be moving to a different platform, so this flexibility is necessary.

 Because of this requirement, the first Design Pattern that pops out is the Factory Design Pattern. Right
now, I ’ ll be asking for a MySQL instance of a database connection. However, in the future, I could be
asking the factory for a different database connection. Because I want to keep all data connections
consistent so that no other modifications need to be made when swapping to a different one, it makes
sense to also use the Template Design Pattern. The main db class will be a template for any of the specific
database objects as well as provide the Factory to build them (Figure 21 - 6).

db mysql

#instance : db
#link

�execute(query : String)
�getArray(query : String) : Array
�insertGetID(query : String) : Integer
�clean(item : String) : String

�factory(type : String) : db

�getInstance() : mysql

��intereface��
singleton

�getInstance()

construct()
�execute(query : String)
�getArray(query : String) : Array
�insertGetID(query : String) : Integer
�clean(item : String) : String

1 1

Figure 21-6

 The db object has a public method called factory() . It accepts a string parameter to determine what
type of database connection object it should be creating. Then, it will return an instance of that database
connection object, which is really an instance of db through inheritance.

 The remaining four methods are public methods declared abstractly. These are the building blocks of
that Template Design Pattern. The execute() command will accept a query and run it. The getArray()
method will accept a query, run it, and return the results as an array. The insertGetID() method will
accept a query, run it, and return the ID of that insert, which is most likely the primary key. Finally, the
 clean() method will be responsible for filtering the content of a string item to remove any chance of
SQL database injection.

 The first database connection object I plan to create is the mysql object. It will extend the db object. The
 mysql object will be based on the Singleton Design Pattern and will implement the singleton interface.
The first method of mysql is the public static getInstance() method required by the singleton
interface. This will return an instance of itself that was stored in the protected static instance variable.

c21.indd 146c21.indd 146 7/16/09 9:08:00 AM7/16/09 9:08:00 AM

Chapter 21: Choosing Design Patterns and Planning

147

 Each page on the website should only connect to the data source one time. This seems to suggest
designing each database connection object using the Singleton Design Pattern. True to Singleton form,
the __construct() method of mysql is protected. This will make it impossible to create a new instance
of the class outside of itself — solidifying the need for the getInstance() method. A Singleton interface
will force the existence of this needed method. Finally, the mysql object has the four abstract methods
that were defined in the db object.

 Reviewing my login module, I find that I am nearly there! I can now display a login screen, accept user
input, and create a user using a Data Access Object – designed class. The last step is to handle
authentication of the user.

 During requirements gathering and analysis, I found out that the authentication method was not set in
stone (Figure 21 - 7). Right now the method is unique from anything else in the company. However, I have
to plan that it could be Single Sign - On, integrated with the webmail system or make use of the company
network authentication system in the future. Because of this, I need that flexibility provided by the
Factory method again.

auth

authstandard

�authenticate(user : User,password : String) : Boolean

��interface��

�authenticate(user : User,password : String) : Boolean

authenticatorinterface

#factory()
�isloggedin() : Boolean
�isadmin() : Boolean
�authenticateusingfactory(user : User, passowrd : String) : Boolean

1

1

Figure 21-7

 Instead of providing a public factory method again, I made it protected instead. My thought is that the
 auth object really only needs static methods anyway. So, to make it simpler, I ’ ll just call the
 authenticateusingfactory() method directly. This will accept a User and a string of a password.
Internally, the method will be tasked with getting an instance of an authenticator by calling the
 factory() method.

c21.indd 147c21.indd 147 7/16/09 9:08:01 AM7/16/09 9:08:01 AM

Part III: PHP Design Case Study

148

 For lack of a better name, I ’ m calling the current authentication scheme “ standard. ” The authstandard
object is an example of an authenticator that could be used. Every authenticator needs to function the
same on the exterior. This will require all to implement the authenticatorinterface . This interface
defines only one method, named authenticate() . No matter the internal workings of the authenticator,
they will all have the public authenticate() method that the authenticateusingfactory() method
expects.

 The thought is that a conditional comparison will be done using the static authenticateusingfactory()
method. This will get an instance of an authenticator by using the factory() method. Then, without
knowing anything else about the authenticator, it will return the output of the authenticate() method
of the authenticator. The authenticateusingfactory() method would have to forward the User and
password string to the authenticate() method, however.

 After all this authentication is done, the user is logged in and forwarded back to the index module.
The index module will now show the contactscollection object. I ’ ll discuss this object more in an
upcoming section.

 Finally, two other things that are needed are accomplished with the remaining two public methods. The
index module needs to know if a user is logged in. isloggedin() will determine this and return a
Boolean return type. For user administration, the site needs to know if the current user is an admin. The
 isadmin() method will be used. It will probably return a Boolean type based on the admin property of
the current User object.

 It ’ s important not to forget the opposite action of everything just planned: the logout. This will also be
handled by a simple module (Figure 21 - 8).

LogoutModule Module

�logOut()
1 1

Figure 21-8

 The LogoutModule will just have one public method that corresponds to its only action: logout() .
This method will log out the current user and then redirect them back to the index module.

 The authentication user creation sections overlap a little bit because of the creation of a User object
during authentication. However, in this step, I ’ ll define more of the User object interaction.

 Creating, Editing, and Deleting Users
 Administrators of the site should be able to create, edit, and delete authorized users of the system.
This will be handled by the UsersModule (Figure 21 - 9).

c21.indd 148c21.indd 148 7/16/09 9:08:01 AM7/16/09 9:08:01 AM

Chapter 21: Choosing Design Patterns and Planning

149

 This module has six public methods that correspond to the six actions that I ’ ve planned for users. The
 add() and edit() methods will display a view for adding a user and editing a user, respectively.
The show() method will display a view of all User objects that the current User has access to by
using the UsersCollection object.

 The processadd() and processedit() methods will interact with the User object. They will populate
the public properties of the User object and then call the save() method on that dao . Because of the
design of the dao object ’ s save() method, it will know whether to add the object using the create()
method or to invoke the update() method.

 The processdelete() method will create a query to delete the user specified. It doesn ’ t make sense to
create a User object just to delete it. It seems that this process would probably take two queries instead
of just forming one as I planned. I expect to work directly with a query and the db object in this method.

 This concludes the methods that would work with an individual User object. The next section involves
creating the administration interface to work with User objects. Then, the preceding processes can be
executed.

 Providing Admin Access to All Users
 Since the show() method of the UsersModule works with the UsersCollection to display users that
the current User has access to, the next step is to architect the collection class.

 Since User is just a specialized instance of the dao object, it makes the most sense for the Users
Collection to be a specialized instance of a daocollection . Because I ’ m creating a collection of
objects contained inside of another object, the Iterator Design Pattern is the best choice. Since there will
be different specialized collections, the Template Design Pattern will also influence the design of the
 daocollection object (Figure 21 - 10).

UsersModule

�show()
�edit()
�add()
�processadd()
�processedit()
�processdelete()

UsersCollection

User db

module

1 1

1 1

1

1

1

0..*

Figure 21-9

c21.indd 149c21.indd 149 7/16/09 9:08:02 AM7/16/09 9:08:02 AM

Part III: PHP Design Case Study

150

 The daocollection class is an abstract object. It also implements the PHP ’ s SPL Iterator interface
named Iterator . Because of this, the following five public methods must be present: current() ,
 key() , next() , rewind() , and valid() . In order to provide the functionality for these methods, two
protected properties are added to the class. The first is the storage array, which will hold all of the dao
objects that are collected. The other property is the position integer, which stores the location inside of
the storage array that we ’ re currently keyed into. Each of the previous methods will be tasked with
updating or accessing the position and storage properties.

 The protected populate() method accepts two parameters: a data array and a dao object type string. Basically,
I envision it taking an array of data, probably gathered using something like the db object ’ s getArray() .
Then for each of the elements in the array, it ’ ll create a new dao named after the second parameter and assign
all values from the first array to that object. Finally, it will add the dao to the internal storage array.

 The last method is an abstract public method called getwithdata() . Each specific type of daocollection
child will have its own type of query to interact with the data source. Making this an abstract method of the
 daocollection object enforces its existence in accordance with the Template Design Pattern.

 After further analysis, I ’ ve decided that every collection should have an owner. The collection should be
a set of child dao objects for that owner. So, each daocollection child will need to accept a dao object
when it ’ s created. I figure that some properties of this owner will be used in order to determine the dao
objects to populate the collection with.

 The UsersCollection object (Figure 21 - 11) is the first collection that I ’ m planning to make.
It extends the daocollection object I just described. It will also implement the daocollection
interface.

daocollection

#position : Integer
#storage : Array

�getwithdata()
#populate(data : Array,objecttype : String)
�saveall()
�current() : Mixed
�key() : Integer
�next()
�rewind()
�valid() : Boolean

��Interface��
Iterator

Figure 21-10

c21.indd 150c21.indd 150 7/16/09 9:08:03 AM7/16/09 9:08:03 AM

Chapter 21: Choosing Design Patterns and Planning

151

 The daocollection interface specifies that the daocollection child should have a constructor that
accepts a dao owner object.

 UsersCollection has two public methods. The first, whose existence is enforced by the
 daocollection interface, is the constructor. __construct() accepts the current User as a parameter.
I will probably use the current user instance to determine if the collection should even be made. Only
admin type users should be able to see other users on the system. Remember, the User object has the
public admin property.

 The second public method is getwithdata() , which was defined as abstract in the daocollection
object. This will get a database connection, build a query to get all of the users on the system, and then call
the populate() method from the parent daocollection , passing in the retrieved results. It should also
send in the string “ User ” to specify that the data should be used to create a collection of User dao objects.

 With the UsersCollection object complete, this marks the end of the planning needed for user
interaction. However, any user can have contacts in the system. The logical next step in planning is the
final section of the application: contact administration.

 Designing Contact Administration
 Because of the extreme flexibility that the application will demonstrate, this next section works with a
more complex set of relationships. In addition to these relationships, interfaces need to be created to add,
edit, and delete any of those objects. Another interface needs to be created to adapt a set of contacts from
Outlook into new contacts in this system. Finally, users need to be able to view the contacts that they own.

 This contact administration is broken up into the following steps:

 Working with contacts and information

 Contact information relationships

 Importing contacts

 Viewing contacts

❑

❑

❑

❑

UsersCollection

1 1
� construct(currentuser : dao)
�getwithdata()

daocollection

��interface��
daocollection

� construct(owner : dao)

Figure 21-11

c21.indd 151c21.indd 151 7/16/09 9:08:03 AM7/16/09 9:08:03 AM

Part III: PHP Design Case Study

152

ContactsModule

�import()
�processimport()
�add()
�processadd()
�edit()
�processedit()
�processdelete()
#addmethods(groupandmethoddata : Array,contact : contact)
#deletemethods(contact : contact)
�view()

importcontactscollectionbuilder
decoratoremail

user

Module

contactscollection

...and the rest
of the import-
based objects

...and the rest
of the decorators

...and the rest of
the contact related
collections

...and the rest
of the contact and
related dao’s

1
1

1 1

1 1

1

1

0..*

0..*

Figure 21-12

 Working with Contacts and Information
 The root of the contacts interaction is the ContactsModule . I ’ m going to start by defining this module
(Figure 21 - 12).

 Predictably, the ContactsModule is an instance of a Module object. It has eight public methods.
Displaying and processing additions, edits, and deletions are represented. Methods for accepting and
processing the contacts to be imported are also defined. Finally, the view() method will be used to show
an individual contact. There are two protected methods, addmethods() and deletemethods() .

 addmethods() will accept two parameters. One will be the current Contact that the application is adding
methods to. The other will be an array of group and method information. My thought is that the add
screen will have a set of boxes that allow the user to specify a group name and at least one method. Because
there will be one or more groups, it seems like the best way to handle this would be an array. The name of
the HTML input field would be able to use the opening and closing brackets to indicate an array to PHP.

 The deletemethods() method takes a Contact object. It will delete all of the contact methods
associated with that Contact , which in turn will delete all groups. Initially, I planned to send some sort
of indicator or ID with the request to handle deleting only certain methods. But after further analysis, I
think that would be too much overhead. During an edit, I ’ ll provide all of the existing information. Then,
all existing information will be deleted during the update. Any posted information will take its place.

 There are many other classes that will be associated with this module. The User dao will be needed to
know who owns the Contact that is being worked with. The contactscollection object will be used
to show the entire list of contacts. The importcontactscollectionbuilder object will also be

c21.indd 152c21.indd 152 7/16/09 9:08:04 AM7/16/09 9:08:04 AM

Chapter 21: Choosing Design Patterns and Planning

153

user

1
1

1

1 1 1..*0..*

1

1

111

contact

daodao dao dao

contactgroup contactmethod

#table : String
�id : Integer
�username : String
�password : String
�admin : Integer

#table : String
�id : Integer
�ownerid : Integer
�firstname : String
�middlename : String
�lastname : String

#table : String
�id : Integer
�label : String
�contactid : Integer

#table : String
�id : Integer
�groupid : Integer
�type : String
�value : String

Figure 21-13

available to handle the Outlook contact imports. Finally, decorators to add functionality to the contact
method information will be used in the view() method. These decorators will accomplish the
requirement to be able to use contact information by clicking links directly inside of the application.

 Contact Information Relationships
 Earlier, I hinted at the complex relationship of the following items. Let ’ s see this in UML (Figure 21 - 13).

 As I mentioned, any public attributes of these dao children classes should be inferred. They will
reference columns in the database and will not be defined in the class itself.

 A User object can own any number of Contact objects. A Contact can own any number of contactgroup
objects as long as the group has at least one contactmethod . If no contact methods exist in the group, the
 contactgroup is not created. A contactgroup can own one or more contactmethod objects.

 Importing Contacts
 During the creation of this application, no contacts will be available for testing immediately. Because of
this, the next logical step in planning is determining how contacts will be created.

 A good source of contacts to prepopulate the application for my testing will be my Outlook contacts.
This will be handled in the ContactModule object ’ s processimport() public method.

 Since this application works with collections of dao child objects, I need an object to convert import of
contacts into that collection. Since the import format is complex and very much different from the dao
collection, I ’ m going to use an object based on the Builder Design Pattern. My imports - processing
method need not be concerned with how it obtains the collection, just that it has one. The builder will
take the imported information — in this case a string from the outlook .csv file — and assign it to its
protected importedstring property. The buildcollection() public method will return a collection
of contact information.

c21.indd 153c21.indd 153 7/16/09 9:08:04 AM7/16/09 9:08:04 AM

Part III: PHP Design Case Study

154

 After looking at the data in the .csv file from Outlook, I noticed that the storage mechanism for unique
contact information and contact group information is different from our application ’ s methods. The first,
middle and last names are just named differently, so a simple object based on the Adapter Design Pattern
will work. However, the grouping is a little bit more convoluted. An interpreter will be used to try to
determine what groups, if any, exist (Figure 21 - 14).

importcontactscollectionbuilder

contactimportgroupinterpreter

outlookcontactimportadapter

contactgroup

#importedstring : String

#import : Array

�firstname : String
�middlename : String
�lastname : String

� construct(import : Array)
�getgroup(groupname : String) : contactgroup

� construct(importedstring : String)
�buildcollection()

� construct(imported : Array)

1 0..*

Figure 21-14

 My thought is that the outlookcontactimportadapter object will be an adapter over the
 User dao . Because of this, it will require the firstname , middlename , and lastname public
variables. Since this is not a true dao object, these properties will be defined and are not inferred.
The constructor of the adapter will take an array representing the imported contact. This will probably
be output from the importcontactscollectionbuilder . I think the contacts collection from the
 importcontactscollectionbuilder may not be a true contact until this adapter is applied to them.

 The .csv stores information for groups by prefixing the information column with the group name. So,
for phone number, there are a few variations: “ Home Phone, “ Business Phone, ” and “ Other Phone. ” The
interpreter will take this contact information in array format, similarly to the adapter I just planned, and
return a contactgroup based on a name that is supplied to the getgroup() public method.

 The interpreter will need to make some decisions based on the contact information and the parameter it
receives. First, if it is passed “ Home, ” it would need to look for columns like “ Home Phone ” to
determine if there is a potential “ Home ” contactgroup . If I always pass in “ Home ” and “ Business ” to
the interpreter, it would always return two groups because those columns will always exist in the .csv
file. However, those columns may not actually have any contact information. The next decision the
interpreter needs to make is whether it should actually create the contactgroup . This is based on
the requirement that a contactgroup must have at least one contact method. If the “ Home ” set of
columns does not have any information specified, it would not create the “ Home ” contactgroup .

 Since the interpreter is already making sense of groups, it seems that it would be the best place for creating
contact methods as well. It will generate import methods from the group it has defined and create them.

 Now that the import contacts have been added, the next step is actually showing the contacts to the user.

c21.indd 154c21.indd 154 7/16/09 9:08:05 AM7/16/09 9:08:05 AM

Chapter 21: Choosing Design Patterns and Planning

155

 Viewing Contacts
 The IndexModule referenced the contactscollection class. To display this information (Figure 21 - 15),
I ’ ll use the contactmodule object ’ s view() method. Since there are possibly a collection of Contact dao
objects, a corresponding daocollection object needs to be created.

daocollectioncontactscollection

#user : dao

��interface��
daocollectioninterface

� construct(user : dao)
�getwithdata()

� construct(owner : dao)

1 1

Figure 21-15

 The contactscollection object is very similar to the userscollection object. It extends the
 daocollection object and implements the daocollecitoninterface . The one difference here is that
the constructor ’ s parameter is a User dao object. This User is the owner of the collection of contact
objects. The getwithdata() method would use some identifying information from the User object to
develop a query. From looking at the Contact dao , it is most logical to use the User dao object ’ s ID
property to build this relationship.

 Now that I can deal with a collection of contacts, I need to focus on the single Contact and its collections
of groups and methods. As demonstrated earlier, a Contact can have any number of contactgroup
objects associated with it. Because of that, a contactgroupscollection object must exist (Figure 21 - 16).

daocollectioncontactmethodscollection
1 1

#group : dao

� construct(group : dao)
�getwithdata()

� construct() : dao

��interface��
daocollectioninterface

Figure 21-16

c21.indd 155c21.indd 155 7/16/09 9:08:05 AM7/16/09 9:08:05 AM

Part III: PHP Design Case Study

156

 This object is similar to every other collection by extending the daocollection and implementing the
 daocollectioninterface . The specialty to this collection is the constructor ’ s dao object. In this case,
it ’ s a contact dao , which represents the owner of all of the contactgroup objects in the collection.
After looking at the relationship in an earlier diagram, I ’ m planning to include the getwithdata()
method to make use of the contact dao object ’ s public id property rather than the contactgroup
dao object ’ s contactid property.

 Finally, the last building block of this relationship is the contactmethod dao . And, as with every other
 dao I ’ m dealing with, a corresponding collection object will be created (Figure 21 - 17).

 The contactmethodscollection object extends the daocollection and implements the
 daocollectioninterface as expected. The constructor accepts a contactgroup dao object.
The getwithdata() method will use the contactgroup dao object ’ s id property to compare to the
 contactmethod dao object ’ s contactgroupid property.

 Stepping back to the section “ Working with Contacts and Information, ” it should be pretty apparent that
it will be easy for the ContactsModule object ’ s processadd() , processedit() , and
 processdelete() methods to build the proper relationships. Inserting the data should also be easy
because of the features built into each dao . Finally, managing the collection should be simple because of
the daocollection object ’ s implementation of the Iterator interface.

 Moving back to viewing the contact, I noted in the UML diagram for the ContactsModule a reference
to an object named after the Decorator Design Pattern. The requirements of the application are to make
sure that the information is available for interaction from the web page. This means users would like to
click a link to a website instead of having to copy and paste it into an address bar. They should be able
to click an e - mail address to send to it and so on.

 Because there is information that I want to modify the display of — but not the actual content — the
Decorator Design Pattern makes the most sense. These objects will accept the information and add some
sort of functionality or markup to them.

 Looking back, I notice that this requirement document wasn ’ t entirely clear about what all of the
expected functionality should be. I ’ m going to do some brainstorming and make some assumptions
as to what functionality is needed.

daocollectioncontactgroupscollection
1 1

#contact : dao

� construct(contact : dao)
�getwithdata()

� construct(owner : dao)

��interface��
daocollectioninterface

 Figure 21 - 17

c21.indd 156c21.indd 156 7/16/09 9:08:06 AM7/16/09 9:08:06 AM

Chapter 21: Choosing Design Patterns and Planning

157

 This is the interaction list I developed:

 mailto: link for e - mail

 Clickable link for website

 Clickable link for social network

 Link to map for address

 Direct dial using mobile phone

 The only one that really seems to have any complexity would be the direct dial using the mobile phone. I
would have to make sure that that the decorator is familiar with what view the current user is using. All
the other decorators are just adding additional information to the data.

 To keep all of the objects based on the Decorator Design Pattern the same, I ’ ll create an interface called
 decoratorinterface that will be implemented by each of them. It will be the responsibility of the
 ContactsModule object ’ s view() method to apply each of the decorators shown in Figure 21 - 18 to
the contactmethod object ’ s output.

❑

❑

❑

❑

❑

decoratoraddress

�decorate(item : String)

decoratormobilephone

�decorate(item : String)

decoratorsocialnetwork

�decorate(item : String)

decoratorwebsite

�decorate(item : String)

��interface��
decoratorinterface

�decorate(item : String)

decoratoremail

�decorate(item : String)

Figure 21-18

 With the completion of the decorators, I think I ’ ve reached the end of my planning. As I mentioned
earlier, I plan to use these UML diagrams as a blueprint and pattern for the actual programming, which
will be discussed in the next chapter. Reviewing these UML diagrams, I can tell I have a complex task
ahead of me. I would be completely surprised if all of the objects and methods turned out exactly the
way I planned. I will make my best attempt to follow what I ’ ve planned, however. If things change, I ’ ll
make the changes in the programming, and continue on my way. Purists may argue that the UML
diagrams should be updated whenever a change in architecture is discovered during the programming
phase. While I can see this point, this is not something that I practice.

 The next steps are the fun ones: moving from design to the actual application!

c21.indd 157c21.indd 157 7/16/09 9:08:06 AM7/16/09 9:08:06 AM

Part III: PHP Design Case Study

158

 Summary
 This chapter was an exploration of the planning steps needed to develop a plan for morphing a
requirements document into an application. I discussed the three main parts of the application and their
use. Starting with the core of the application, I demonstrated with the UML diagrams how I will create
the logic and views for the application. As I moved through the user interaction and management
section of the application, more objects emerged. Data access objects, collections and database
manipulation objects were diagramed. Additionally, the main module pattern was defined for
interacting with the web visitor. Finally, the most complex section of the application was addressed. The
relationship of users and contacts was described. Additionally, the contact, group, and contact method
object relationship was diagramed. The import method from the existing company contact system was
also described. Decorators were also defined to provide the required interaction with contact methods.
The next chapter will take all of this information and step through the process of coding the application.

c21.indd 158c21.indd 158 7/16/09 9:08:07 AM7/16/09 9:08:07 AM

 Programming the
Application

 This is the chapter that every programmer has been looking forward to — the actual programming
used to build this application. The requirements have been gathered and solidified, and the
application plan and UML diagrams have been finished.

 The first part of this chapter will be a quick reminder on how to prepare any of the information
that will be needed for the application. In this particular case, it is only gathering the export from
Outlook. Next, I ’ ll pull up the previous chapter ’ s plan and UML diagrams to begin programming
each object using the design patterns I ’ ve specified. Along with the PHP, programming in
JavaScript, HTML, and MySQL will also be detailed. The primary focus will be on PHP, however.
This really means that non - PHP programming will be shown and only quickly explained. This
supporting code is not the focus of this book.

 The analysis of the completed program for any bugs or enhancements will appear in Chapter 23.
Let ’ s start with the information preparation.

 Information Preparation
 The requirements stated that any user of the application would need to import their contacts from
the company ’ s existing contact management software, Microsoft Outlook. Early in the plan, I made
an assumption that this would be processed as a comma - separated value export.

 In this case study, the company is using Outlook 2007 on Microsoft Windows. In order to produce
my testing .csv file, I used the following process:

 1. Open Microsoft Outlook 2007.

 2. Click File Import and Export . . .

c22.indd 159c22.indd 159 7/16/09 9:08:38 AM7/16/09 9:08:38 AM

160

Part III: PHP Design Case Study

 3. Choose the Export to a file option from the Import and Export Wizard window.

 4. Click the Next button.

 5. Choose the Comma Separated Values (DOS) option.

 6. Click the Next button.

 7. Select the Contacts item under the Personal Folders parent item.

 8. Click the Next button,

 9. Type a location and name in the field labeled with Save exported file as. I used “ c:\test.csv . ”

 10. Click the Next button.

 11. Click the Finish button to complete the process.

 After this process, a new test .csv file should have been made. This is the process the users of the
application would need to follow before they could choose to import their contacts.

 The actual export file I ’ m going to use for testing has far too many columns to insert into the body of this
book easily. (It can be downloaded with the other program files on this book ’ s companion website.)
However, for reference purposes while programming, I ’ ll show a few excerpts from the file as follows
(refer to Table 22-1 and 22-2).

Table 22-1: First Record Excerpt

First Name Last Name Home Street Home City Home State Home Postal Code

John Smith 123 Fourth Street Beverly Hills CA 90210

 There are many more columns in the excerpt. However, these two rows demonstrate that some contacts
may have Home information or Business information. Contacts could have all of these fields filled in.

 Now that the only external data needed to build the application has been gathered, I can continue on
with the application programming.

Table 22-2: Second Record Excerpt

First
Name

Middle
Name

Last
Name Company Job Title

Business
Street

Business
City

Business
State

Business
Postal
Code

William Henry Gates Bill &
Melinda
Gates
Foundation

Trustee PO Box
23350

Seattle WA 98102

c22.indd 160c22.indd 160 7/16/09 9:08:39 AM7/16/09 9:08:39 AM

Chapter 22: Programming the Application

161

 Application Programming
 Just like the planning phase, the programming portion of this chapter will be broken up into steps. These
steps will be nearly identical to the steps discussed in the previous chapter. As mentioned before, the
UML diagrams make great blueprints to move the programming of the application forward.

 Three main sections will focus on:

 Main Core

 User Interaction and Administration

 Contact Administration

 The Main Core section will address the UML diagrams of the objects that need to be created.
Additionally, the file system layout and any other additional configuration options to make use of the
objects will be described. The User Interaction and Administration section will continue on in this
fashion. The UML diagrams will be transformed to PHP. Any additional testing processes and
configurations will be mentioned. Finally, the Contact Administration process will conclude this
chapter ’ s application programming section by following the similar pattern. The Contact Administration
section will make use of that .csv file that was created earlier.

 Programming the Core of the Application
 The core of the application is needed to launch any of the functionality in the User and Contacts section. The
core is a necessity to having the website function but doesn ’ t heavily showcase any of the design patterns
specified in the reference chapters. Patiently follow me through creating the core of the application so that
I can get to the sections demonstrating those design patterns in PHP.

 The web server that is being used is serving pages using PHP 5.2.5, Apache 2.2.11 and MySQL 5.1.31. The
application is designed to work on at least the Major/Minor versions of the previously listed software.
The main reason I ’ m mentioning this is because of the next step regarding an Apache configuration file.

 This application expects to be in the Document Root of your Apache instance. If you already have a
website running in this instance, create a new Virtual Host and place the code there. The code uses the
 $_SERVER[‘ DOCUMENT_ROOT ’] value throughout which will not work properly if the application is in a
subdirectory.

 Generate an .htaccess File for Specialized URLs
 In this application, I ’ m planning on having human readable URLs. This URL scheme will also be used to
directly reference specific module function names. As mentioned during planning, the controller object
will be responsible for actually making sense and executing these calls.

 In the root of the application, I will add the following file named .htaccess . Its content is shown here:

 < IfModule !mod_rewrite.c >
 ErrorDocument 500 “mod_rewrite must be enabled”
 < /IfModule >
RewriteEngine on

❑

❑

❑

c22.indd 161c22.indd 161 7/16/09 9:08:40 AM7/16/09 9:08:40 AM

162

Part III: PHP Design Case Study

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ /index.php?u=$1

 This file does two things. First, it makes sure that the mod_rewrite functionality is active on the server.
If not, a suitable error is generated. The other feature of this file is to take any request that is not directly
a file or a directory and rewrite the request to call the main index.php file with the request as a Get
parameter. The index.php file will have access to the controller and will grab the actions requested from
the $_GET[‘ u ’] variable. This .htacess file will go in the root of the application directory.

 If you receive a “ 404 - Not Found ” error when attempting to view the application through a browser,
there may be an issue parsing the .htaccess file. Make sure that the file exists in the root directory of
the application. Additionally, verify that your Apache configuration allows override. See http://httpd
.apache.org/docs/2.0/mod/core.html#allowoverride for more information on Apache ’ s .htaccess
configuration options.

 index.php, Managing Includes, Exceptions, and Controller
 From my planning stage, I know that I will need to have included files. For the general functions used to
build the core, I ’ m going to make a subdirectory called “ includes. ” I will also make a subdirectory called
 “ dataobjects ” for the dao objects. Finally, I will make one named “ modules ” for each of the modules.

 Next, I will make a file called index.php . This is the file that the .htaccess file will be redirecting all of
the requests to. This file will be making use of the controller object. I ’ m planning on putting this object
inside of the “ includes ” directory. I ’ ve decided to use an autoloader scheme to include any of the files
from the three subdirectories I ’ ve already made. The index.php file will need to only ask for one
include — the file where the autoloading logic exists. I also know that I will want to be using the session
mechanism in PHP. index.php will take care of that.

 This is the contents of index.php so far:

 < ?php
require ‘includes/autoloader.php’;
session_start();

 For the autoloader.php file, I ’ m using the SPL Autoload functionality. The contents of includes/
autoloader.php are as follows:

 < ?php
class autoloader
{
 public static function moduleautoloader($class)
 {
 $path = $_SERVER[‘DOCUMENT_ROOT’] . “/modules/{$class}.php”;
 if (is_readable($path)) require $path;
 }

 public static function daoautoloader($class)
 {
 $path = $_SERVER[‘DOCUMENT_ROOT’] . “/dataobjects/{$class}.php”;
 if (is_readable($path)) require $path;
 }

c22.indd 162c22.indd 162 7/16/09 9:08:40 AM7/16/09 9:08:40 AM

Chapter 22: Programming the Application

163

 public static function includesautoloader($class)
 {
 $path = $_SERVER[‘DOCUMENT_ROOT’] . “/includes/{$class}.php”;
 if (is_readable($path)) require $path;
 }
}
spl_autoload_register(‘autoloader::includesautoloader’);
spl_autoload_register(‘autoloader::daoautoloader’);
spl_autoload_register(‘autoloader::moduleautoloader’);

 The autoloader class contains three static methods. Each of these methods is responsible for trying to
locate a specific type of include file. The one named moduleautoloader() tries to load modules. The
descriptive names make their functionality self - explanatory.

 The method to determine where a class exists is simple. The class exists inside of a PHP file named
after the class. Since the SPL Autoload functionality allows multiple autoloader functions to be added to
the stack, care is taken in each method to make sure no fatal errors are generated. If the method can
find the desired class, whether it be include, module or a data object, it will require() it and code
execution will go on. Only after all three methods have executed without finding a class named file will
a fatal error be generated.

 At the end of the file after the class declaration, each of the three autoloader static methods are registered
using the spl_autoload_register() method.

 Moving back to the index.php file, my next step would be to create an instance of the controller
object. However, since I know this object will not only process the requested action but also make
available any additional query information from the request, I would like to store this object somewhere
where any method can access it.

 I ’ m going to make a generic class called lib , which will contain a set of static methods. These will be
methods that I may use to set and get information, modify objects or just do an action multiple times
agnostic of their context. I ’ ll create the /includes/lib.php file with the following contents:

class lib
{
 const SETTING_AN_ARRAY = TRUE;

 const NO_PERSISTENT_STORAGE = FALSE;

 public static function getitem($name, $persist = TRUE)
 {
 $return = NULL;

 if (isset($_SESSION[$name])) {
 $return = $_SESSION[$name];
 if (!$persist) unset($_SESSION[$name]);
 }

 return $return;
 }

 public static function setitem($name, $value, $array = false)

c22.indd 163c22.indd 163 7/16/09 9:08:41 AM7/16/09 9:08:41 AM

164

Part III: PHP Design Case Study

 {
 if ($array) {
 if (!isset($_SESSION[$name])) {
 $_SESSION[$name] = array();
 $_SESSION[$name][] = $value;
 }
 }
 else {
 $_SESSION[$name] = $value;
 }
 }
}

 The getitem() and setitem() methods will be working directly with the $_SESSION variable so that I
don ’ t have to. The first method to look at is setitem() . It will accept three parameters: $name will
signify the key for the information, $value will be the information to store and $array is a Boolean
variable dictating if the item is really another value being added on to an array named after $name . By
default, this is not something that I ’ ll be doing. However, there are times when I might find it useful.
 $array , therefore, is set to false in the method declaration. The method simply assigns the value to a
named key in the PHP session.

 The getitem() method is used to retrieve information possibly set with the setitem() method. It takes
two parameters: $name , representing the name of the value to retrieve, and $persist , which is a
Boolean variable dictating if the item should continue to exist after being retrieved. The return value is
set to NULL initially. Then, if it exists in the PHP session, the return value is set to that value. Finally, if
 $persist is false, that key in the $_SESSION variable is unset.

 Two other things unique to this class are the constant declarations. In an effort to make more readable
code, I like to define constants to be used in place of Boolean parameters that are set as default. Imagine
implementing a call to setitem() using an array value and retrieving it without persistence. This
normally would look like this:

lib::setitem(‘test’, 123, TRUE);
$test_once = lib::getitem(‘test’, FALSE);

 While this does exactly what we want it to do, it ’ s not very readable. Instead, using the constants I
defined, my version of this code would look like this:

lib::setitem(‘test’, 123, lib::SETTING_AN_ARRAY);
$test_once = lib::getitem(‘test’, lib::NO_PERSISTENT_STORAGE);

 I find this much easier to read and easier to debug.

 Moving on, I ’ ll add the following line to index.php :

lib::setitem(‘controller’, new controller($_GET[‘u’]));

 I use the setitem() method of the lib class to store an instance of a new controller object.
The controller object is constructed with access to the $_GET[‘ u ’] string that the .htaccess file
provided. I ’ m expecting my includesautoloader() method of the autoloader class to find the
file named /includes/controller.php , which will contain the following contents:

c22.indd 164c22.indd 164 7/16/09 9:08:41 AM7/16/09 9:08:41 AM

Chapter 22: Programming the Application

165

 < ?php
class controller
{
 protected $parts;
 public $params;

 public function __construct($urlString)
 {
 $urlString = strtolower($urlString);

 if (substr($urlString, -1, 1) == ‘/’) {
 $urlString = substr($urlString, 0, strlen($urlString) - 1);
 }

 $parts = explode(‘/’, $urlString);
 if (empty($parts[0])) {
 $parts[0] = ‘index’;
 }
 if (empty($parts[1])) {
 $parts[1] = ‘defaultaction’;
 }

 $this- > parts = $parts;
 $this- > sectionaction = $parts[0] . ‘/’ . $parts[1];
 array_shift($parts);
 array_shift($parts);
 $this- > params = $parts;
 }

 public function render()
 {
 if (!class_exists($this- > parts[0])) {
 throw new SectionDoesntExistException(“{$this- > parts[0]} is “ .
 “not a valid module.”);
 }

 if (!method_exists($this- > parts[0], $this- > parts[1])) {
 throw new ActionDoesntExistException(“{$this- > parts[1]} of “ .
 “module {$this- > parts[0]} is not a valid action.”);
 }

 $called = call_user_func_array(array(new $this- > parts[0],
 $this- > parts[1]), array($parts));

 if ($called === FALSE) {
 throw new ActionFailedException(“{$this- > parts[1]} of section “ .
 “{$this- > parts[0]} failed to execute properly.”);
 }
 }
}

 The controller has two public methods like the UML diagram in Figure 21 - 1 of Chapter 21 dictated:
 __construct() and render() .

c22.indd 165c22.indd 165 7/16/09 9:08:41 AM7/16/09 9:08:41 AM

166

Part III: PHP Design Case Study

 __construct() accepts a single parameter named $urlstring . Since it ’ s responsible for taking this
string and executing a module ’ s method, some manipulation needs to be done to this string. First, the
string will be converted to lowercase. Next, any ending forward slash will be removed. Finally, the string
will be split into an array using the forward slash delimiter. Since its possible to not have any string at all
by going to the root of the website, “ index ” is defined as the default module to process a request if none
is given. It ’ s also possible for a user to navigate to a module ’ s URL without specifying an action. If this is
the case, the action will be set to “ defaultaction .” This $parts array will be set to the protected
 $parts property of the controller object for later use in the render() method. The module and action
portions of the $parts array are removed and the remainder of the array is added to the public $params
array that any module ’ s method could use. Remember, since this instance of the controller object was
assigned to the session using setitem() , any of those methods will have the ability to retrieve it and
access the public $params property.

 The render() method ’ s job is pretty simple. It first determines if the module exists by calling PHP ’ s
 class_exist() on the first item in the $parts array. class_exist() will call each of the autoloaders
trying to find that class. If it does not exist, a custom exception will be thrown. The same process is
performed using method_exists() by accessing both the array element representing the module and
the array element representing the action. Remember, every action is directly correlated to a method of
the module. If the method is not found, a custom exception is thrown. Finally, this module and method
are executed. If they fail to execute, a custom exception is thrown.

 Before I go any farther, I want to define each of the custom exceptions that I ’ ve used in the controller by
creating the file /includes/exceptions.php with the following content:

 < ?php
class SectionDoesntExistException extends Exception {}
class ActionDoesntExistException extends Exception {}
class ActionFailedException extends Exception {}
class InternalException extends Exception {}

 I added a fourth exception named InternalException that I plan to use whenever anything
unexpected comes up in my programming. I hope to never use it! Finally, since this file doesn ’ t follow
the standard includes naming convention (it would be silly to create four nearly empty files for each of
these exceptions), I need to add the following line to the index.php file:

require ‘includes/exceptions.php’;

 This will make sure that the exceptions are available for the controller and any other class that may make
use of InternalException .

 Creating the View Object
 With the completion of the controller object, the next step is creating the view object. According to the
UML diagram in Figure 21 - 2 of chapter 21, it will have four public methods. The start() method will
make use of PHP ’ s ob_start() function and end() will make use of the content - gathering mechanism.
In the middle of these two steps, the controller will need to call the module and action specified. With
this in mind, I can add the following lines to index.php :

$view = new view();
lib::getitem(‘controller’)- > render();
$content = $view- > finish();

c22.indd 166c22.indd 166 7/16/09 9:08:42 AM7/16/09 9:08:42 AM

Chapter 22: Programming the Application

167

 A new instance of the view object is created, I access the stored controller object and call render() , and
finish by capturing the output into the $content variable. The view object will be loaded by the
includes autoloader. The contents of /includes/view.php so far are this:

class view
{
 public function __construct()
 {
 ob_start();
 }

 public function finish()
 {
 $content = ob_get_clean();
 return $content;
 }
}

 This is a very simple way to gather the output from the rendered module action.

 The next function to add to the view object is the static setviewtype() method. I will have the show()
method accessing a protected static variable named $viewtype to find the include files it needs.
 setviewtype() will be executed the first time show() is executed. I will add the following method to
the view class:

 protected static function setviewtype()
 {
 switch (TRUE) {
 case stripos($_SERVER[‘HTTP_USER_AGENT’], ‘Windows CE’)
 ! == FALSE:
 self::$viewtype = ‘mobile’;
 break;
 default:
 self::$viewtype = ‘default’;
 }
 }

 This method is built to determine the view based on the HTTP User Agent. Since it ’ s required to support
the Windows Mobile platform, I look for that particular identifier. If that ’ s found, I set the view to
mobile. Otherwise, it ’ s the default view type. The structure of this method is built to easily allow for
more views to be added by adding another case in the switch statement.

 In this particular case, the HTTP User Agent header provides the proper information to identify this
type of view. This will not always be the case, however. The HTTP User Agent can be modified or
misreported by a user ’ s browser. Additionally, future versions of Windows Mobile may not include the
string ‘ Windows CE ’ in their header. Currently, this method works accurately because of the controlled
nature of the browsers accessing the application: business issued standard mobile devices. If this
application was distributed to other parties, this would be a portion of code that may need to be revisited.

 The show() method presented some interesting decisions that I had to make. I finally decided that I ’ d
like to make as few duplicate views as possible. For the most part, if I ’ m programming proper HTML,
the biggest differences in my mobile view verses my browser view should be CSS - based. I also may not

c22.indd 167c22.indd 167 7/16/09 9:08:42 AM7/16/09 9:08:42 AM

168

Part III: PHP Design Case Study

allow certain functionality in the mobile version. So, my thought was to build a browser based
application. Then, if something besides the default browser view is requested, I ’ ll check for that type
of view. If it does not exist, I ’ ll continue with rendering the default view. This way, I reduce the
duplicity of views if not needed.

 The show() method should also be able to locate the view file on the file system automatically based on
the $viewtype variable. Because of this, I decided to make a subdirectory in the application root called
 “ views. ” It would contain subdirectories for each type of view. In the first iteration of the application,
two subdirectories would exist: default and mobile.

 Finally, the show() method should be able to allow variables to be passed into the included view file
to be evaluated. Since these are being evaluated on the fly, output buffering should be used as well —
 much like the start() and end() methods of the view object. This is what the static show() method
code will be:

 public static function show($location, $params = array())
 {
 if (empty(self::$viewtype)) {
 self::setviewtype();
 }

 $views = array();

 if (self::$viewtype != ‘default’) {
 $views[] = $_SERVER[‘DOCUMENT_ROOT’] . ‘/views/’ .
 self::$viewtype .
 ‘/’ . $location . ‘.php’;
 }
 $views[] = $_SERVER[‘DOCUMENT_ROOT’] . ‘/views/default/’ .
 $location . ‘.php’;

 $content = ‘’;

 foreach ($views as $viewlocation) {
 if (is_readable($viewlocation)) {
 $view = $params;

 ob_start();
 include $viewlocation;
 $content = ob_get_clean();
 break;
 }
 }

 return $content;
 }

 The show() method accepts two parameters, the location of the view and any parameters to pass to the
view. The location variable could just as easily been a name for a view, but I felt that an organizational
method of grouping views in folders might work better. This location string will mirror that
organization. For example:

 echo show(‘login/form’);
 // this would reference /views/default/login/form.php

c22.indd 168c22.indd 168 7/16/09 9:08:42 AM7/16/09 9:08:42 AM

Chapter 22: Programming the Application

169

 The first step in the show() method is to check to make sure that the view type is set. If it is not, the
 setviewtype() method created earlier is executed.

 Next, an array of view locations is created. This will be looped through to try to find an include file to
use. If the current view is not default, a path representing the view type is added to the array. After all
this, the default path is also added.

 Next, each of the possible views are looped through. The function checks to see if the path is readable. If
the path and file is found to be available, output buffering is turned on, the $params array is added as a
local variable, it ’ s included, and $content receives the output. Then, no more instances of the loop
happen. This type of loop solves the decision to only create certain views for the mobile view.

 It is important to note that this method never generates a fatal error or exception if the view is not found.
I debated generating an error because I felt it may be sloppy programming otherwise. In the end, I
decided to leave it as it is. This way, I can add extra views that don ’ t exist right now as placeholders to be
modified later. If the team grew larger in a real enterprise, the lead architect could generate view
locations while assigning other team members the actual creation of said views. Finally, this method
returns the $content variable.

 The final step to be added to index.php is a call to show the content of the controller object ’ s
 render() method using the view objects show() method. Since I ’ ve incrementally built the index.php
file, I ’ ll show the final product here:

 < ?php
require ‘includes/autoloader.php’;
require ‘includes/exceptions.php’;
session_start();

lib::setitem(‘controller’, new controller($_GET[‘u’]));

$view = new view();
lib::getitem(‘controller’)- > render();
$content = $view- > finish();

echo view::show(‘shell’, array(‘body’= > $content));

 Creating the Main Views
 Now that I ’ m moving on to making actual output for the screen, I ’ m adding a new subdirectory called
 “ assets. ” This will be the location of any CSS and JavaScript files.

 The last line of index.php references the view location called “ shell. ” This is the main shell of the
website. There are two locations for this file: the default location for the browser and a slimmed down
version for the mobile view.

 The contents of /views/default/shell.php :

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” / >

c22.indd 169c22.indd 169 7/16/09 9:08:43 AM7/16/09 9:08:43 AM

170

Part III: PHP Design Case Study

 < link rel=”stylesheet” type=”text/css” href=”/assets/main.css” / >
 < title > Acme Company Contact Manager < /title >
 < script type=”text/javascript” src=”/assets/jquery-1.3.2.min.js” >
 < /script >
 < /head >
 < body >
 < div id=”header” > < ?php echo view::show(‘standard/header’); ? > < /div >
 < div id=”body” >
 < ?php echo $view[‘body’] ? >
 < /div >
 < div id=”footer” > < ?php echo view::show(‘standard/footer’); ? > < /div >
 < /body >
 < /html >

 The contents of /views/mobile/shell.php :

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” / >
 < link rel=”stylesheet” type=”text/css” href=”/assets/main.css” / >
 < title > < ?php echo view::show(‘standard/title’)? > < /title >
 < /head >
 < body >
 < div id=”header” > < ?php echo view::show(‘standard/header’); ? > < /div >
 < div id=”body” >
 < ?php echo $view[‘body’] ? >
 < /div >
 < div id=”footer” > < ?php echo view::show(‘standard/footer’); ? > < /div >
 < /body >
 < /html >

 In this particular example, the only difference between these two files is the lack of JQuery in the mobile
view. Because of this, I ’ ll base my discussion on the default shell.php file.

 This view builds the standard web page. It includes HTML tags for the title, for including the CSS and
the JavaScript. A header block, body, and footer are also included in the content before the HTML file is
closed.

 The first thing to note is the reference to $view[‘ body ’] . Since output buffering is being used, these
included files can show content that is passed to them by using echo or print. This will be added in the
middle of this HTML much like a standard PHP file. The $view variable is the local instance of the
parameters that the show() method of the view object made available to the included PHP file.

 Notice the other calls to the view object ’ s show() method. I ’ m including a header and footer view as
well. Because of the architecture of the show() method using output buffering, these recursive calls to
itself are possible.

c22.indd 170c22.indd 170 7/16/09 9:08:43 AM7/16/09 9:08:43 AM

Chapter 22: Programming the Application

171

 The contents of /assets/main.css follow. (It may be useful to bookmark this page of this chapter and
flip back now and then to keep these CSS declarations fresh in your memory.)

body {
 font: 14px tahoma, verdana, sans-serif;
 padding: 0;
 margin: 0;
 background-color: #f9f9f9;
}
table {
 border-collapse: collapse;
}
table td {
 border: 1px solid #ccc;
 padding: 3px;
}
hr {
 clear: both;
 margin: 20px 0;
}
fieldset, legend {
 padding: 3px;
 border: 1px solid #aaa;
}
legend {
 font-weight: bold;
 background-color: #ddd;
 margin-bottom: 6px;
}
fieldset {
 margin-bottom: 10px;
}
form div.row {
 clear: left;
 display: block;
 margin: 5px 0 0;
 padding: 1px 3px;
}
label {
 display: block;
 float: left;
 width: 150px;
 font-weight: bold;
 text-align: right;
 margin: 0 0 5px;
 padding: 3px 5px;
}
input {
 border: 1px solid #ccc;
 padding: 1px 3px;
 width: 200px;
 float: left;
}

c22.indd 171c22.indd 171 7/16/09 9:08:43 AM7/16/09 9:08:43 AM

172

Part III: PHP Design Case Study

select {
 float: left;
 margin-right: 2px;
}
input:focus, select:focus {
 background-color: #f9f9f9;
}
input.submitbutton {
 border: 2px solid #333;
 background-color: #369;
 color: #fff;
 cursor: pointer;
 font-weight: bold;
 width: auto;
}
input.radio {
 width: auto;
 border: none;
 float: none;
}
.radiooption {
 margin-right: 10px;
}
.error {
 color: #f00;
}
#header {
 border-bottom: 1px solid #ccc;
}
#footer {
 text-align: center;
 clear: both;
}
#header, #footer {
 background-color: #333;
 padding: 5px;
}
#header ul {
 list-style: none;
 margin: 0px;
 padding: 0px;
}
#header li {
 display: inline;
 margin-right: 10px;
}
#header a, #header a:visited, #footer a, #footer a:visited {
 color: #eee;
}
#body {
 width: 990px;
 margin: 0px auto;
 border: solid #ccc;

c22.indd 172c22.indd 172 7/16/09 9:08:44 AM7/16/09 9:08:44 AM

Chapter 22: Programming the Application

173

 border-width: 0 1px;
 padding: 5px;
 background-color: #fff;
 min-height: 500px;
}
.sidebar {
 padding: 5px;
 float: right;
}
a.featured {
 padding: 10px;
 color: #000;
 font-weight: bold;
 background-color: #6f6;
 margin: 5px;
}
a.featured:hover {
 background-color: #292;
 color: #fff;
}
.sidebar a.removal {
 background-color: #f66;
}
.contactgrouping {
 border: 1px solid #ccc;
 background-color: #f9f9ff;
 margin-bottom: 10px;
}
.contactgrouping a, .contactgrouping a:visited {
 display: block;
 font-size: 10px;
 color: #00f;
}
.contactgrouping a.addcontactgrouping,
 .contactgrouping a.deletecontactgrouping {
 padding-top: 20px;
 clear: both;
}
.methodboxvaluebox {
 display: none;
}
#contactgroupingcontainer {
 display: none;
}
.hasvalue {
 display: block;
}
#browsecontacts a {
 padding: 5px;
 border: 1px solid #f4f4f4;
 display: block;
 font-weight: bold;
 color: #000;
}

c22.indd 173c22.indd 173 7/16/09 9:08:44 AM7/16/09 9:08:44 AM

174

Part III: PHP Design Case Study

#browsecontacts a:hover {
 border-color: #69f;
 background-color: #def;
}
#loginbox {
 margin: 0 auto;
 width: 500px;
}

 Since I ’ ve already planned out the auth object in the UML diagram in Figure 21 - 7 of Chapter 21, I can
write the header view from start to finish. Granted, if I ran it right now, there would a fatal error.
However, I can make a pretty good assumption on how to use the methods I ’ ve already diagramed.

 The contents of /views/default/standard/header.php :

 < ?php
if (auth::isloggedin()) {
 $links = array(‘/’= > ’Home’,
 ‘/contacts/add’= > ’Add Contact’,
 ‘/contacts/import’= > ’Import Contacts’);

 if (auth::isadmin()) {
 $links[‘/users’] = ‘User Admin’;
 }
 $links[‘/logout’] = ‘Log Out’;

 echo ‘ < ul > ’;
 foreach ($links as $link= > $title) {
 echo ‘ < li > < a href=”’ . $link . ‘” > ’ . $title . ‘ < /a > < /li > ’;
 }
 echo ‘ < /ul > ’;
}

 This view basically checks to see if the user is logged in. If they are not, nothing happens. However, if
they are logged in, a menu is built and displayed as an unordered list. If the user is an admin, an
additional link is added to the menu.

 The browser version of this is stripped down. (I promise there won ’ t be this many duplicate views going
forward!) The contents of /views/mobile/standard/header.php :

 < ?php
if (auth::isloggedin()) {
 $links = array(‘/’= > ’Home’, ‘/logout’= > ’Log Out’);

 echo ‘ < ul > ’;
 foreach ($links as $link= > $title) {
 echo ‘ < li > < a href=”’ . $link . ‘” > ’ . $title . ‘ < /a > < /li > ’;
 }
 echo ‘ < /ul > ’;
}

 The mobile view simply doesn ’ t give options for the User or Contact administration. The rest is the
same.

c22.indd 174c22.indd 174 7/16/09 9:08:44 AM7/16/09 9:08:44 AM

Chapter 22: Programming the Application

175

 The footer view, located only at /views/default/standard/footer.php , has the following contents:

 < a href=”http://www.acmecompany.com” > Corporate Site < /a >
| < a href=”mailto:helpdesk@acmecompany.com” > Contact Helpdesk < /a >

 While the application still can ’ t load a single page, you ’ ve made progress! The core is built and some
views are generated. The next section will focus on the modules and their actions. That is where you ’ ll
start to see the fruits of this hard work.

 Programming User Interaction and Administration
 The core is in place. The next step in our UML diagrams is to build the index module. Although the
UML diagrams in Chapter 21 shows that each of the modules extend a Module class, I haven ’ t really
found a good use for that. So far, I haven ’ t been able to determine a set of shared methods or properties
that would require this. Because of this, I ’ m just going to create each module independently.

 Index and Login Modules
 The modules subdirectory was created to hold any of the modules. The content of /modules/index.
php is:

class index
{
 public function defaultaction()
 {
 if (!auth::isloggedin()) {
 lib::sendto(‘/login’);
 }
 else {
 $contacts = new contactscollection(lib::getitem(‘user’));
 $contacts- > getwithdata();

 echo view::show(‘contacts/browse’, array(‘contacts’= >
 $contacts));
 }
 }
}

 Remember, the controller object assigns the “ index ” module as the section if none is specified. And, if no
action is specified, the action is defined as defaultaction . Because of this, and the fact that the index
view is a simple forward slash on the URI, the only method needed in the index module is
 defaultaction() .

 The defaultaction() method makes the decision to show the contactscollection object or to
redirect the user to the login screen. Once again, I am referencing the auth object ’ s static isloggedin()
method. According to my planning, that will return a Boolean. I will work with this after the login
process is programmed. The reason I ’ m putting this off is because I want to figure out how to actually
log in a user first. This will be decided when programming the login module. After that, I ’ ll have my
template for dealing with authenticated users, so the isloggedin() method will be an easy addition.

c22.indd 175c22.indd 175 7/16/09 9:08:45 AM7/16/09 9:08:45 AM

176

Part III: PHP Design Case Study

 I ’ ve created another static method in the lib class to handle any of my redirects called sendto() :

 public static function sendto($url = ‘’)
 {
 if (empty($url)) {
 $url = ‘/’;
 }

 die(header(‘Location: ‘ . $url));
 }

 This method simply accepts an URL to redirect the user to using an HTTP header. If no URL is specified,
the user is redirected to the index page.

 Since the URL that is being sent to sendto() contains the word “ login, ” the next module to program is
the login module. The contents of /modules/login.php so far is:

class login
{
 public function defaultaction()
 {
 echo view::show(‘login/form’);
 }
}

 Remember, since the request URI only contains “ /login, ” the defaultaction() public method is
implied and will be executed. The default action of the login module is to show the login form. The
following content makes up the /views/default/login/form.php file:

 < div id=”loginbox” >
 < h1 > Login < /h1 >
 < ?php
 echo view::show(‘standard/errors’);
 ? >
 < form action=”/login/process” method=”post” >
 < div class=”row” >
 < label for=”username” > Username: < /label >
 < input type=”text” name=”username” id=”username”
 value=” < ?php echo lib::getitem(‘username’)? > ” / >
 < /div >
 < div class=”row” >
 < label for=”password” > Password: < /label >
 < input type=”password” name=”password” id=”password” / >
 < /div >
 < div class=”row” >
 < label for=”submit” > < /label >
 < input id=”submit” type=”submit” value=”login”
 class=”submitbutton” / >
 < /div >
 < /form >
 < /div >

c22.indd 176c22.indd 176 7/16/09 9:08:45 AM7/16/09 9:08:45 AM

Chapter 22: Programming the Application

177

 This view simply displays a login form. The login form will submit to the URL /login/process which
will be the process() method of the login module. Another view is inserted at the top that will be
used to show any errors. I can imagine that users may accidentally type their password wrong, so they
need to be notified of this. Finally, the only other notable item is the value of the username HTML Input
item. The getitem() method of the lib class is executed here. If the user has not previously submitted
a username, NULL will be returned and nothing will be printed. I need to make sure to set the username
using lib::setitem() in the process() method, however.

 The view that was inserted is located at /views/default/standard/errors.php :

 < ?php
 $errors = lib::getitem(‘error’, lib::NO_PERSISTENT_STORAGE);
 if (is_array($errors)) {
 print ‘ < ul class=”error” > < li > ’ .
 implode(‘ < /li > < li > ’, $errors) . ‘ < /li > < /ul > ’;
 }

 This view will try to retrieve the error key from the session. Note, it will only allow the error key to exist
once. Then, after retrieving it, the extra parameter passed to lib::getitem() will make sure it ’ s unset.
If the result is an array, it ’ s looped through and displayed.

 After this is complete, you should be able to see a screen very similar to the one in Figure 22 - 1.

Figure 22-1

c22.indd 177c22.indd 177 7/16/09 9:08:45 AM7/16/09 9:08:45 AM

178

Part III: PHP Design Case Study

 The next method is the process() method of the login module. Without planning, this would be a pretty
hit and miss programming excursion. However, I ’ ve planned out enough about my User and Auth
objects that I can write this method start to finish pretty simply. Here is the content of process() — a
public method of the login module:

 public function process()
 {
 $username = $_POST[‘username’];
 $password = $_POST[‘password’];

 if (empty($username)) {
 lib::seterror(‘Please enter a username.’);
 lib::sendto(‘/login’);
 }

 if (empty($password)) {
 lib::setitem(‘username’, $username);
 lib::seterror(‘Please enter a password.’);
 lib::sendto(‘/login’);
 }

 $user = new user(array(‘username’= > $username));

 if (auth::authenticate($user, $password)) {
 lib::setitem(‘user’, $user);
 lib::sendto();
 }
 else {
 lib::setitem(‘username’, $username);
 lib::seterror(‘Invalid username or password.’);
 lib::sendto(‘/login’);
 }
 }

 This method is also pretty simple. It retrieves the username and password from the posted content. If
either of them is empty, an error is set and the user is redirected back to the login page. Don ’ t forget to
set the username if the password was empty. The newest edition here is a static method called
 seterror() to the lib class. I wanted to save some time by creating a method to easily set errors that
my errors view would parse through. The content of the lib::seterror() method is:

 public static function seterror($error)
 {
 self::setitem(‘error’, $error, self::SETTING_AN_ARRAY);
 }

 This method is just a quick call to the existing setitem() static method using its array feature.

 The last few steps of the process() method were earlier notes of discussion. I tried to determine which
would be better: creating a user and then authenticating it or authenticating the credentials and then
creating a user . Because of my decision, the next step is to make a new user object. The planning of my
project told me that the dao object that user is based on can accept a qualifier that maps to the user
table. In this case, I ’ m sending the $username variable in to be used to locate a user by the username
column.

c22.indd 178c22.indd 178 7/16/09 9:08:46 AM7/16/09 9:08:46 AM

Chapter 22: Programming the Application

179

 Next, the authenticate() public method of the auth object is executed. My auth UML diagram in
Figure 21 - 7 in chapter 21 shows this to be the only method that I need to call. Choosing the proper
authentication scheme will all be handled by the factory call inside of this method. If authenticate()
returns false, I ’ ll store the username and redirect the user back to the login page. If it returns a success,
I ’ ll store the current user object to the session. This way, I ’ ll know about the current user when it comes
to building the contactscollection object. This also gives me a hint on how to build my auth::
isloggedin() and auth::isadmin() methods: they need to access the stored user object by executing
 lib::getitem() . Seems pretty simple! The next step is to figure out exactly how that dao user object
was created.

 Data Access Object and User Object
 Since a necessity of the Login module was creating a new User object, I need to reference that set of
UML diagrams in Figure 21 - 5 of Chapter 21. The first class I ’ m going to build is the abstract dao class.
Since this is not an actual data object but an included class to build from, it will be located at /
includes/dao.php with the following content:

class dao
{
 protected $values = array();

 public function __construct($qualifier = NULL)
 {
 if (!is_null($qualifier)) {

 $conditional = array();

 if (is_numeric($qualifier)) {
 $conditional = array(‘id’= > $qualifier);
 }
 else if (is_array($qualifier)) {
 $conditional = $qualifier;
 }
 else {
 throw new Exception(‘Invalid type of qualifier given’);
 }

 $this- > populate($conditional);
 }
 }

 public function __set($name, $value)
 {
 $this- > values[$name] = $value;
 }

 public function __get($name)
 {
 if (isset($this- > values[$name])) {
 return $this- > values[$name];
 }
 else {
 return null;
 }

c22.indd 179c22.indd 179 7/16/09 9:08:46 AM7/16/09 9:08:46 AM

180

Part III: PHP Design Case Study

 }

 protected function populate($conditional)
 {
 $connection = db::factory(‘mysql’);

 $sql = “select * from {$this- > table} where “;
 $qualifier = ‘’;

 foreach ($conditional as $column= > $value) {
 if (!empty($qualifier)) {
 $qualifier .= ‘ and ‘;
 }
 $qualifier .= “`{$column}`=’” . $connection- > clean(
 $value) . “’ “;
 }

 $sql .= $qualifier;
 $valuearray = $connection- > getArray($sql);
 if (!isset($valuearray[0])) {
 $valuearray[0] = array();
 }

 foreach ($valuearray[0] as $name= > $value) {
 $this- > $name = $value;
 }
 }

 public function save()
 {
 if (!$this- > id) {
 $this- > create();
 }
 else {
 $this- > update();
 }
 }

 protected function create()
 {
 $connection = db::factory(‘mysql’);

 $sql = “insert into {$this- > table} (`”;
 $sql .= implode(‘`, `’, array_keys($this- > values));
 $sql .= “`) values (‘”;

 $clean = array();
 foreach ($this- > values as $value) {
 $clean[] = $connection- > clean($value);
 }

 $sql .= implode(“’, ‘”, $clean);
 $sql .= “’)”;

 $this- > id = $connection- > insertGetID($sql);

c22.indd 180c22.indd 180 7/16/09 9:08:46 AM7/16/09 9:08:46 AM

Chapter 22: Programming the Application

181

 }

 protected function update()
 {
 $connection = db::factory(‘mysql’);

 $sql = “update {$this- > table} set “;

 $updates = array();
 foreach ($this- > values as $key= > $value) {
 $updates[] = “`{$key}`=’” . $connection- > clean($value) . “’”;
 }

 $sql .= implode(‘,’, $updates);
 $sql .= “where id={$this- > id}”;

 $connection- > execute($sql);
 }
}

 The UML diagram showed that the dao object would have a lot of methods, so don ’ t be surprised by the
length of this code snippet. It breaks down pretty easily — especially if you remember the decisions and
planning that I mentioned in the previous chapter.

 The first method is the constructor. This accepts an optional qualifier. If it is NULL , nothing besides the
initial creation of the object will happen. However, if it is sent, a conditional is built. If a single numeric
variable is sent, it ’ s assumed that that will be the primary key of the table labeled “ id. ” Otherwise, the
array of the qualifier is sent through as is. This allows the creation of a new dao object — such as user —
 in multiple ways:

$u = new user(12); //by primary ID = 12
$u = new user(array(‘username’= > ’ted’)); //username column = ted
$u = new user(array(‘username’= > ’ty’, ‘admin’= > 1));
 //username column=aaron,admin=1

 Then, the qualifier/conditional information is sent to the protected populate() method to fill the
properties of the dao object.

 The protected method property() of the dao class deals directly with the data source. In this case, I ’ m
using the factory method of the db object to retrieve a connection to the MySQL database. Then, the SQL
statement is built.

 Three important things should be noted about the creation of the query. First, it references the table
property of the class. Any of the children of the dao object must define this property in order for
the query to be created successfully. The next thing to notice is the way the conditional is applied to the
statement. Because the class accepts or converts the qualifier into an array, the SQL statement can
anonymously build this query. The final thing to notice is the call to the clean() method of the db
object. I will leave it up to the database object to determine how to sanitize the user input.

c22.indd 181c22.indd 181 7/16/09 9:08:46 AM7/16/09 9:08:46 AM

182

Part III: PHP Design Case Study

 The last step of the populate() method is executing the query. If a result is attained, each of the values
of that array are assigned to public properties of the dao object. During the planning phase of the dao
object and children classes, I decided that the class should take advantage of the PHP magic methods of
 __get() and __set() . Each just executes operations against the protected $values array of the object.

 The public save() method determines if the object is new or needs to be updated. Then, it calls either
 create() or save() as I planned. Both share similarities with the populate() method by their
acquisition of the database object and the automation of the query building. The only thing that should
be noted is the assignment of the primary key “ id ” to the object after it is created for the first time.

 With the creation of the parent dao class, I can now shift to creating the User dao object located at /
dataobjects/user.php :

 < ?php
class user extends dao
{
 protected $table = __CLASS__;
}

 Right now, the only thing this object needs to do is define the protected $table property that the
 populate() , update() , and create() methods need. I ’ ve decided to name the table for the User dao
object “ user ” in the MySQL database. The following statement is used to create the database:

CREATE TABLE `contacts`.`user` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `username` varchar(64) NOT NULL,
 `password` varchar(40) NOT NULL,
 `admin` tinyint(3) unsigned NOT NULL DEFAULT ‘0’,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

 Database Connection Objects
 Obviously, the dao object relies heavily on the database. Moving along to the next UML diagram in
Chapter 21, Figure 21 - 6, I can see my plans for the db , mysql , and singleton objects.

 The first thing I want to create is the db object. Most of this class is abstract, so the definition should be
quite short. It is located in the /includes/db.php file :

abstract class db
{
 public static function factory($type)
 {
 return call_user_func(array($type, ‘getInstance’));
 }

 abstract public function execute($query);
 abstract public function getArray($query);
 abstract public function insertGetID($query);
 abstract public function clean($string);
}

c22.indd 182c22.indd 182 7/16/09 9:08:47 AM7/16/09 9:08:47 AM

Chapter 22: Programming the Application

183

 Just like the UML diagram specified, the db class is abstract and so are the four public methods named
 execute() , getArray() , insertGetID() , and clean() . The only method defined in this class is
named factory() because it is based on the Factory Design Pattern. It simply returns the results of
calling the getInstance() method of a class named after the $type parameter.

 For more on the Factory Design Pattern, see Chapter 9.

 In the dao object, I asked for an instance of the mysql database connection object. This is located at /
includes/mysql.php and has the following contents:

 < ?php
class mysql extends db implements singletoninterface
{
 protected static $instance = null;
 protected $link;

 public static function getInstance()
 {
 if (is_null(self::$instance)) {
 self::$instance = new self;
 }

 return self::$instance;
 }

 protected function __construct()
 {
 $user = ‘user’;
 $pass = ‘pass’;
 $host = ‘localhost’;
 $db = ‘contacts’;

 $this- > link = mysql_connect($host, $user, $pass);
 mysql_select_db($db, $this- > link);
 }

 public function clean($string)
 {
 return mysql_real_escape_string($string, $this- > link);
 }

 public function getArray($query)
 {
 $result = mysql_query($query, $this- > link);

 $return = array();

 if ($result) {
 while ($row = mysql_fetch_array($result, MYSQL_ASSOC)) {
 $return[] = $row;
 }
 }

 return $return;

c22.indd 183c22.indd 183 7/16/09 9:08:47 AM7/16/09 9:08:47 AM

184

Part III: PHP Design Case Study

 }

 public function execute($query)
 {
 mysql_query($query, $this- > link);
 }

 public function insertGetID($query)
 {
 $this- > execute($query);
 return mysql_insert_id($this- > link);
 }
}

 The first method defined is the public static getInstance() . The UML diagram defines it, the db
object ’ s factory() method will call it and the singleton interface (which I ’ ll discuss next) requires it.
This method simply checks to see if the protected static property of $instance is holding an instance of
the mysql object. If not, it creates an instance and assigns it to $instance . Then, the method ends by
returning the reference to that mysql object by using $instance as its return property.

 The constructor of the mysql object simply creates a connection to the database. It then stores the link to
the database in the protected $link property. Finally, it selects the proper database. The link property
will be used whenever queries are executed or strings are cleaned.

 When working with possibly multiple data sources, it ’ s good to explicitly reference the link you ’ d like to
work with. Otherwise, the query could execute using a different connection, possibly destroying a
buffered request. Additionally, if character encoding types are different on the databases, cleaning of the
string based on one encoding may still leave troublesome characters in the string for the other
connection ’ s encoding.

 The other four public methods are required to be defined by their definition as abstract in the db object.
I ’ ll thank the Template Design Pattern for that helpful bit. The first is the clean() method. It accepts the
 “ dirty ” string, executes the MySQL string sanitization function, and returns the “ clean ” string. The next
is the execute() method. It simply runs the query passed in via the $query parameter. The
 insertGetID() method is also very short. It calls the execute() method, followed by returning the ID
retrieved by calling mysql_insert_id() on the MySQL connection link that execute() used.

 For more on the Template Design Pattern, see Chapter 18.

 The final method is getArray() . It executes the MySQL query and holds on to the result pointer. Then,
it loops through all of the results and builds a numeric keyed array of associative keyed arrays from the
results. Finally, it sends this out by returning the $return array.

 The last piece of the UML diagram was the singleton interface. This simple interface is located at /
includes/singletoninterface.php :

 < ?php
interface singletoninterface
{
 public static function getInstance();
}

c22.indd 184c22.indd 184 7/16/09 9:08:47 AM7/16/09 9:08:47 AM

Chapter 22: Programming the Application

185

 This interface just forces the db child objects to have that getInstance() method that db::factory()
is expecting.

 Authentication Objects
 It seems like ages ago when I last touched the Login module. However, I ’ m still in the middle of this
module ’ s process() method. The last undefined portions are the auth object ’ s methods.

 The three public methods of the UML diagram ’ s representation of the auth object have already been
used in the code base (see Chapter 21, Figure 21 - 7 for the diagram). I ’ m going to create /includes/
auth.php with the following contents:

 < ?php
class auth
{
 public static function isloggedin()
 {
 return !is_null(lib::getitem(‘user’));
 }

 public static function isadmin()
 {
 return self::isloggedin() & & (1 == lib::getitem(‘user’)- > admin);
 }

 public static function authenticate(user $user, $password)
 {
 $authenticator = self::factory(‘standard’);
 return $authenticator- > authenticate($user, $password);
 }

 protected static function factory($type)
 {
 $class = “auth{$type}”;
 if (class_exists($class)) {
 return new $class;
 }
 else {
 throw new InternalException($type . ‘ is not a defined
 auth module.’);
 }
 }
}

 The first public static method is named isloggedin() . This was both used in the header view as well as
the Login Module. Since I already created the successful version of authentication, which is storing the
current User object into the session, this method is simple. It simply checks to see if there is a user object
in the session. If there is, the user had logged in successfully.

 The next public static method is named isadmin() . You may remember this being used earlier in the
header view to add additional menu options to the header. After making sure the user is logged in, this
method checks the current user object ’ s admin property. If it is set to 1 , it is assumed the user is an
admin.

c22.indd 185c22.indd 185 7/16/09 9:08:48 AM7/16/09 9:08:48 AM

186

Part III: PHP Design Case Study

 I mentioned earlier that sometimes programming changes slightly after the planning steps. In the UML
diagram, I identified the next method to be named authenticateusingfactory() . However, when
coding this object, I decided that calling it authenticate() would make more sense and be easier to
read. This method executes the factory() method of the auth object to obtain an instance of a standard
authenticator. In the future, if more authenticators are added, this statement may become more dynamic.
Then, the authenticate() method ’ s parameters are forwarded to the new authenticator ’ s
 authenticate() method. The result of this process is sent as the return property.

 The last method is the protected factory() method. It builds the name of the authenticator class. If it
exists, it returns a new instance of it. Otherwise, an exception is thrown. By the format defined here, I can
tell that my class for the standard authentication will be called authstandard . If I created one using
LDAP, it might be named authLDAP . The factory() method would be called using a parameter of
 “ LDAP. ”

 Since I know that every authenticator will have to have an authenticate() method and that the auth
objects authenticate() method will call it regardless, I am going to enforce this method with an
interface. The authenticatorinterface interface is located in the /includes/
authenticatorinterface.php file with this content:

 < ?php
interface authenticatorinterface
{
 public function authenticate(user $user, $password);
}

 It simply forces that each authenticator will work with a User dao object and a password.

 Finally, I can take a look at the authstandard class requested by the factory() method in the auth
object. This is located at /includes/authstandard.php with the following contents:

 < ?php
class authstandard implements authenticatorinterface
{
 public function authenticate(user $user, $password)
 {
 if ($user- > password == lib::makehashedpassword($user,
 $password)) {
 return true;
 }
 else {
 return false;
 }
 }
}

 When the User dao object is created, it obtains the password column from the table regardless if it ’ s
authenticated or not. This method makes a hashed version of the submitted password and compares it to
the one owned by the user object. If they match, the user is authenticated.

c22.indd 186c22.indd 186 7/16/09 9:08:48 AM7/16/09 9:08:48 AM

Chapter 22: Programming the Application

187

 I added one more method to the lib class named makehashedpassword() . At first I thought that I
might add it to this authenticator as a protected method. But, the User administration sections may also
need access to it. The best solution right now seems to put the following mechanism in the lib class:

 public static function makehashedpassword(user $user, $password)
 {
 return sha1($user- > username . $password);
 }

 The mechanism I ’ m choosing to hash passwords with is SHA - 1. I combine the user object ’ s username
property and the password string and return the SHA - 1 hashed version of this.

 To test the application, it is necessary to insert the first user by hand. Use the following MySQL
statement:

insert into `contacts`.`user` (`username`, `password`, `admin`)
values (‘admin’, ‘ efacc4001e857f7eba4ae781c2932dedf843865e’, 1);

 This will allow you to login with the username of ‘ admin ’ with the password of ‘ password ’ .

 With these steps complete, I can now log in as a User dao object. The Index Module would now be able
to execute the code to create the contactscollection object and show the user ’ s contacts. However, I
think I want to follow my plan and start working on the LogOut module next. I ’ m going to comment out
the code inside of the else portion of the conditional of the Index Module object ’ s defaultaction()
method. I may just have it print out “ You are Here. ” By doing so, I ’ ll be able to test my login process and
access the menu options without executing code that is not yet completed. I ’ m going to continue on with
creating the logout functionality next.

 The LogOut Module
 If users can log in, they may want to log out at some point. Because of this, the header view contains a
link to the log out URL: /logout . From the module pattern that I ’ ve developed combined with my UML
planning in Figure 21 - 8 of Chapter 21, I can create a LogOut module. This module is located at /
modules/logout.php with the following contents:

 < ?php
class logout
{
 public function defaultaction()
 {
 lib::setitem(‘user’, NULL);
 lib::sendto();
 }
}

 This is by far the simplest module I ’ ve yet created. When this module is accessed, it basically undoes
storing the current user object in the session. Then, it redirects the user to the index page, completing
the loop.

c22.indd 187c22.indd 187 7/16/09 9:08:48 AM7/16/09 9:08:48 AM

188

Part III: PHP Design Case Study

 Administration with UserModule and Userscollection
 I ’ ve already created a User dao object for the login process. This becomes more useful now because I ’ ve
planned that certain User dao objects can have access to other users. This is determined by the property
of $admin of the User object. The header view checks if the current user has access by calling the
 isadmin() method. If the user is an admin, they have the ability to go to the User administration
sections.

 The link added to the header references the Users module. According to the UML diagram in Figure 21 -
 9 of Chapter 21, the UsersModule object will have six public methods: three to show views and three to
process action on a User . The first of these methods is the show() method. Similarly, to how I ’ ve
planned the ContactsModule , the default action of UsersModule should be to show a collection of
 User dao objects that the current User has access to. This will reference a collection object.

 Since I know that the Contacts Module will be dealing with a UsersCollection object, I ’ m going to
program that first. The UML diagrams in Figure 21 - 10 and 21 - 11 of Chapter 21 show that an abstract
 daocollection object needs to be created. The UsersCollection will extend this class. The
 daocollection class can be found at /includes/daocollection.php with the following contents:

 < ?php
abstract class daocollection implements Iterator
{
 protected $position = 0;
 protected $storage = array();

 abstract public function getwithdata();

 protected function populate($array, $dataobject)
 {
 foreach ($array as $item) {
 $object = new $dataobject;
 foreach ($item as $key= > $val) {
 $object- > $key = $val;
 }
 $this- > storage[] = $object;
 }
 }

 public function saveall()
 {
 foreach ($this as $item) {
 $item- > save();
 }
 }

 public function current()
 {
 return $this- > storage[$this- > position];
 }

 public function key()
 {
 return $this- > position;

c22.indd 188c22.indd 188 7/16/09 9:08:49 AM7/16/09 9:08:49 AM

Chapter 22: Programming the Application

189

 }

 public function next()
 {
 $this- > position++;
 }

 public function rewind()
 {
 $this- > position = 0;
 }

 public function valid()
 {
 return isset($this- > storage[$this- > position]);
 }
}

 According to the Template Design Pattern, in addition to declaring the whole class abstract, the public
 getwithdata() method is defined as abstract.

 The Template Design Pattern was discussed in Chapter 18.

 The populate() public method is interesting. It takes an array of information and a string that
represents a data access object class. Because this daocollection is really a collection of dao objects,
this makes sense. Next, it loops through each element of the data array. It then creates a new data access
object based on the name that was passed in. It, then, assigns the public values to the dao object. This is
one of the reasons why I defined the dao abstract class to accept the qualifier optionally and not to force
it to exist. In this particular case, I have all of the information I need to create the dao — so no additional
calls to the database are required. Finally, each element is stored to the class.

 The five public methods named current() , key() , next() , rewind() , and valid() are required by
PHP ’ s Iterator interface, which the daocollection implements. As I determined during planning,
I have stored the array of information in the protected $storage array.

 The final method created in this class is the saveall() public method. It simply loops through each of
 $this and executes the save() method on that object. Since $this is a PHP iterator, the previous
mentioned methods will take care of returning the proper dao object when treating $this as an array.
Since each data object must have a save() method, this can be called worry free. This particular method
could be used later during an implementation of the Mediator Design Pattern. I may run across a scenario
where I need to make some modifications to the whole collection. Then, each would need to be saved.

 For more on using the Mediator Design Pattern, see Chapter 12.

 Just a few more steps and I can revisit the Users module object. First, however, review the UML diagram
in Figure 21 - 11 of Chapter 21. This one shows the UsersCollection extending the daocollection
object that was just created. Additionally, it implements a daocollection interface to make sure that
each daocollection child class accepts an owner dao object.

c22.indd 189c22.indd 189 7/16/09 9:08:49 AM7/16/09 9:08:49 AM

190

Part III: PHP Design Case Study

 The contents of the daocollectioninterface can be located in the file at /includes/
daocollectioninterface.php :

 < ?php
interface daocollectioninterface
{
 public function __construct(dao $item);
}

 The last step is creating the userscollection class, located at /includes/userscollection.php ,
with the following content:

 < ?php
class userscollection extends daocollection implements
 daocollectioninterface
{
 public function __construct(dao $currentuser)
 {
 $this- > currentuser = $currentuser;
 }

 public function getwithdata()
 {
 $connection = db::factory(‘mysql’);

 $sql = “select * from user order by username”;
 $results = $connection- > getArray($sql);

 $this- > populate($results, ‘user’);
 }
}

 The constructor simply sets the owner dao to a public property of the collection object. Initially, I don ’ t
have any restrictions to apply. If the accessing user is an admin, they will retrieve all user dao objects. In
the future, additional requirements or restrictions may be introduced. Then, I ’ ll be happy to have this
current user object stored and available to access.

 The only abstract method in the daocollection , getwithdata() , is defined in this class. The
 daocollection object ’ s child class populates itself with data similarly to the way that the dao does.
This particular one generates a query to retrieve all user objects from the system from the user table.
Then, that information, which is retrieved in the array format, is passed into the populate() method of
the daocollection class. The last parameter sent in is the string ‘ user ’ because I ’ m expecting a
collection of User dao objects.

 With the collection object build, I can revisit the Users module. The following content is located at /
modules/users.php :

 < ?php
class users
{
 public function defaultaction()
 {

c22.indd 190c22.indd 190 7/16/09 9:08:50 AM7/16/09 9:08:50 AM

Chapter 22: Programming the Application

191

 $users = new userscollection(lib::getitem(‘user’));
 $users- > getwithdata();

 echo view::show(‘users/show’, array(‘users’= > $users));
 }

 public function add()
 {
 echo view::show(‘users/add’);
 }

 public function edit()
 {
 $controller = lib::getitem(‘controller’);

 if (empty($controller- > params[0])) {
 lib::sendto();
 }
 else {
 $user = new user((int) $controller- > params[0]);
 echo view::show(‘users/edit’, array(‘user’= > $user));
 }
 }
}

 Since the header view supplies a URI that contains only the module name, the defaultaction()
method will take the place of show() in the UML diagram in Figure 21 - 9 of Chapter 21. This method will
create a new instance of the userscollection module. I can retrieve the current user dao object using
the same method that I used to check to see if the user was logged in or an admin. Then, the
 userscollection object is populated by calling the getwithdata() method. Finally, a view is shown.
The call to the show() static method sends an array to be forwarded as parameters to the view. This
parameter array contains the userscollection object I just created.

 The contents of /views/default/users/show.php is:

 < div class=”sidebar” > < br / >
 < a class=”featured” href=”/users/add” > Add User < /a >
 < /div >

 < h1 > User Admin < /h1 >
 < p >
 Create, Edit or Delete users of the Contact System here.
 < /p >
 < table >
 < tr >
 < th > Username < /th >
 < th > Admin? < /th >
 < th > < /th >
 < th > < /th >
 < /tr >
 < ?php

c22.indd 191c22.indd 191 7/16/09 9:08:50 AM7/16/09 9:08:50 AM

192

Part III: PHP Design Case Study

foreach ($view[‘users’] as $user) {
 echo view::show(‘users/row’, array(‘user’= > $user));
}
? >
 < /table >
 < script type=”text/javascript” src=”/assets/removal.js” > < /script >

 This view provides the option to add a new user. Then, it generates a table to view the existing users on
the system. The userscollection object is iterated through using another view to show each user in a
row. Note how the current user dao object from the collection is passed into the next view in the
parameters array.

 The file /views/default/users/row.php has the following content:

 < ?php
echo ‘ < tr > ’;
echo “ < td > {$view[‘user’]- > username} < /td > < td > ”;
echo $view[‘user’]- > admin == 1 ? ‘Yes’ : ‘No’;
echo “ < /td > < td > < a href=’/users/edit/{$view[‘user’]- > id}’ > Edit < /a > < /td > ”;
echo “ < td > < a class=’removal’ href=’/users/processdelete/
 {$view[‘user’]- > id}’ > ”;
echo “Delete < /a > < /td > ”;
echo ‘ < /tr > ’;

 This view simply takes the current user dao object and displays the username and admin status. It also
adds links to access different methods of the Users module for editing and deleting the current user.

 The last line of the users/show view was a link to include the following JavaScript content:

if (typeof jQuery != ‘undefined’) {
 $(function() {
 $(“.removal”).click(function(){
 if (!confirm(‘You really want to delete this?’)) {
 return false;
 }
 });
 });
}

 This simply prompts the user to agree to continue if they click any link that has the class of ‘ removal ’
— like the Delete User link does. I wanted to add a safeguard for the administrators of the site. This was
the easiest way to do it.

 With this step completed, I can now log in and click the User administration link. It shows the collection
of Users on the system in a table. My view looks like Figure 22 - 2.

c22.indd 192c22.indd 192 7/16/09 9:08:50 AM7/16/09 9:08:50 AM

Chapter 22: Programming the Application

193

 The next step is to create the user addition view which is referenced by the add() public method of the
 Users module.

 I think that the addition of a user and the editing of a user will be very similar. Because of this, I think I
can create one interface and just customize it for the add or edit functionality. The contents of the /
views/default/users/add.php file are:

 < ?php
 echo view::show(‘users/manage’,
 array(‘title’= > ’Add User’,
 ‘action’= > ’/users/processadd’));

 The shared interface I ’ m referring to will be the users/manage view. The two things that I need to
customize are the heading and the action of the form. As is probably obvious, the user addition version
of this will want to reference the processadd() method, so the form action reflects this. The contents of
 /views/default/users/manage.php is a bit more complex:

 < ?php
 echo ‘ < h1 > ’ . $view[‘title’] . ‘ < /h1 > ’;

 echo view::show(‘standard/errors’);

 echo ‘ < form method=”post” action=”’ . $view[‘action’] . ‘” > ’;

 if (!is_null($view[‘user’])) {
 echo ‘ < input type=”hidden” name=”id” value=”’ .
 $view[‘user’]- > id . ‘” / > ’;
 }

 echo ‘ < div class=”row” > < label for=”username” > Username: < /label > ’;
 $value = $view[‘user’]- > username;

Figure 22-2

c22.indd 193c22.indd 193 7/16/09 9:08:51 AM7/16/09 9:08:51 AM

194

Part III: PHP Design Case Study

 echo ‘ < input type=”text” name=”username” id=”username” value=”’ .
 $value . ‘” / > < /div > ’;

 echo ‘ < div class=”row” > < label for=”password” > Password: < /label > ’;
 echo ‘ < input type=”password” name=”password” id=”password” / > < /div > ’;

 echo ‘ < div class=”row” > < label > Is Admin? < /label > ’;

 $options = array(‘No’, ‘Yes’);
 $value = (int) $view[‘user’]- > admin;

 foreach ($options as $key= > $option) {
 echo ‘ < input class=”radio” type=”radio” name=”admin” value=”’
 . $key . ‘” ‘;
 if ($value == $key) echo ‘checked=”checked”’;
 echo ‘ / > < span class=”radiooption” > ’ . $option . ‘ < /span > ’;
 }

 echo ‘ < /div > ’;

 echo ‘ < div class=”row” > < label for=”submit” > < /label >
 < input id=”submit” type=”submit” class=”submitbutton” value=”’
 . $view[‘title’] . ‘” / > < /div > ’;

 echo ‘ < /form > ’;

 The first step is printing that header that was passed in with the parameter array. Next, the familiar
 standard/errors view is added. Remember, this will show any errors that the processadd() or
 processedit() decide to generate. The last predictable thing is the creation of the HTML form tag. This
accepts the action parameter from the call to this view.

 If I ’ m using this in an edit user capacity, I will pass in a user dao object in the parameters as well. So,
the view checks to see if this exists. If the user dao object parameter does exist, the view generates a
hidden input to track the user object ’ s id property. The primary key ID will be needed when the update
is processed.

 A username and password field are generated. If a user dao object was passed in, this username value
is populated. It is good security policy to never pre - populate a password field, so this field is left blank
whether I ’ m adding or editing a user.

 Finally, the admin option is presented using a HTML radio input. If there is no user object, the admin
property will evaluate as zero. Otherwise, the user object ’ s public admin property is evaluated — and it
still may end up being zero. This is used to automatically check the proper radio button. Then the form
is completed. See Figure 22 - 3 to review how this form should look.

c22.indd 194c22.indd 194 7/16/09 9:08:51 AM7/16/09 9:08:51 AM

Chapter 22: Programming the Application

195

 Now that the building blocks to create a new user are in place, it ’ s time to add the public processadd()
method to the users module:

 public function processadd()
 {
 $username = $_POST[‘username’];
 $password = $_POST[‘password’];
 $admin = $_POST[‘admin’];

 $user = new user(array(‘username’= > $username));

 if (!is_null($user- > id)) {
 lib::seterror($username . ‘ is already in use’);
 lib::sendto(‘/users/add’);
 }

 $user- > username = $username;
 $user- > password = lib::makehashedpassword($user, $password);
 $user- > admin = $admin;
 $user- > save();

 lib::sendto(‘/users’);
 }

Figure 22-3

c22.indd 195c22.indd 195 7/16/09 9:08:52 AM7/16/09 9:08:52 AM

196

Part III: PHP Design Case Study

 This method accepts the three posted items. It then tries to create a new user object using the
 $username variable. If the user gets populated successfully, the user already exists. An error is generated
and the user is sent back to the add screen. Otherwise, the username and admin are added to the user
dao object. A hashed password is also added to the object. Finally, the user object is saved and created
using the dao parent object ’ s save() method. The user is then sent back to the display of the
 userscollection to view the fruits of their labor.

 Next I ’ ll move on to editing a user object. The edit() method of the users module above should be
pretty easy to follow. Each row showing a user dao object had an edit link that featured the user
object ’ s ID property in the URL. This would translate into the first parameter stored by the controller .
The edit() method retrieves the controller object and checks for this parameter. If it doesn ’ t exist,
the user is just sent out of the process. Hopefully, there should never be a time that this code is executed,
so I ’ m fine with not presenting an error message. Once this parameter is retrieved, a new user dao
object is created using this ID. Then, the users/edit view accepts the user and is shown.

 The contents of this view are similar to the users/add view with only a few exceptions. This view is
found at /views/users/edit.php :

 < ?php
 echo view::show(‘users/manage’,
 array(‘title’= > ’Edit User’,
 ‘action’= > ’/users/processedit’,
 ‘user’= > $view[‘user’]));

 This time, the title and the action of the form are different. Additionally, the users/manage view now
gets the instance of a user dao object that it was looking for.

 In order to handle the edit, the processedit() method is added to the users module:

 public function processedit()
 {
 $id = $_POST[‘id’];
 $username = $_POST[‘username’];
 $password = $_POST[‘password’];
 $admin = $_POST[‘admin’];

 $user = new user($id);
 $user- > username = $username;
 if (!empty($password)) {
 $user- > password = lib::makehashedpassword($user, $password);
 }
 $user- > admin = $admin;
 $user- > save();

 lib::sendto(‘/users’);
 }

 Just as with the processadd() method, the username, password, and admin status are retrieved.
Additionally, the unique ID element is also retrieved. A new instance of the user dao object is created
using this ID. Then the username and admin status are updated. If a password was sent from the
previous screen, a new hashed password is assigned to the user . Otherwise, the password property is

c22.indd 196c22.indd 196 7/16/09 9:08:52 AM7/16/09 9:08:52 AM

Chapter 22: Programming the Application

197

not modified. Finally, the user object ’ s parent dao object save() method is executed, which invokes the
 update() protected method. The user is then redirected back to the userscollection view to see their
updated user in the list.

 The last thing to do is make the ability to delete users. You may have noticed that there was not a
method called delete() . I decided that the JavaScript prompt would be enough of a confirmation. I did
not need to generate a new view for this action. Each row displaying a user has a delete URL that points
to the users module ’ s processdelete() method. The URL ends with the ID property of the user dao
object just like the edit link does. The processdelete() method should be added onto the users
module with the following content:

 public function processdelete()
 {
 $controller = lib::getitem(‘controller’);

 if (empty($controller- > params[0])) {
 lib::sendto();
 }
 else {
 $userid = (int) $controller- > params[0];

 $connection = db::factory(‘mysql’);

 $sql = “delete u.* from user u
 where u.id = {$userid}”;

 $connection- > execute($sql);

 lib::sendto(‘/users’);
 }
 }

 Just like processedit() , the same method is used to retrieve the id of the user that will be modified.
However, the next statements is where processdelete() differs from the other two similar methods.
Instead of creating that user dao object and then deleting it, a query is generated to directly work in the
database. I felt like this was the most efficient way of handling this process. The query is created and
executed using the connection object from the db object ’ s factory() method. Finally, the user is
redirected to the view of the userscollection to verify that the user is no longer available.

 This marks the end of the User administration section of the application. While the actual process of
administrating a User compared to a Contact is far simpler, a lot of the required building blocks for the
entire application were created in this section. Because of this, I can expect the next section to continue
smoothly.

 Programming Contact Administration
 Users can now successfully use the application. However, the application isn ’ t very exciting yet — it ’ s
just a shell. The next step is to start programming the Contact Administration portions. This will allow
the user to actually import contacts, manage, and view them. They ’ ll have a reason to actually log in!

c22.indd 197c22.indd 197 7/16/09 9:08:52 AM7/16/09 9:08:52 AM

198

Part III: PHP Design Case Study

 Generating Relationships, Creating Data Access Objects
 My UML diagram and planning show that the ContactsModule needs to be created next. However, I ’ m
going to skip ahead and create all the other data access objects and their associated MySQL tables.
Sometimes it makes more sense to create things in a different order than they were planned in.

 I ’ ve already created my User dao object. I ’ ve determined that a user can have zero or more contact
dao objects associated with them. The contact dao object is located at /dataobjects/contact.php
with the following content:

 < ?php
class contact extends dao
{
 protected $table = __CLASS__;
}

 The contact data access object is created in identical fashion to the User dao object. In fact, the rest of
the data access objects in the relationship will also be created this way. The following statement is used
to create the MySQL table that matches with the UML diagram in Figure 21 - 13 in Chapter 21 for this
object:

CREATE TABLE `contacts`.`contact` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `ownerid` int(10) unsigned NOT NULL,
 `firstname` tinytext NOT NULL,
 `middlename` tinytext NOT NULL,
 `lastname` tinytext NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

 A contact can have zero or more groups of contact information referred to as a contactgroup object.
The following content is located in /dataobjects/contactgroup.php file:

 < ?php
class contactgroup extends dao
{
 protected $table = __CLASS__;
}

 The following MySQL statement is used to create the table according to the properties from the UML
diagram:

CREATE TABLE `contacts`.`contactgroup` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `contactid` int(10) unsigned NOT NULL,
 `label` text NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

 In order to exist, however, the contactgroup must have at least one contactmethod object assigned to
it. This integrity is enforced in the application and not in the database, however. The content of /
dataobjects/contactmethod.php is as follows:

c22.indd 198c22.indd 198 7/16/09 9:08:53 AM7/16/09 9:08:53 AM

Chapter 22: Programming the Application

199

 < ?php
class contactmethod extends dao
{
 protected $table = __CLASS__;
}

 The following MySQL statement is used to create the table according to the properties from the UML
diagram:

CREATE TABLE `contacts`.`contactmethod` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `contactgroupid` int(10) unsigned NOT NULL,
 `type` tinytext NOT NULL,
 `value` text NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

 Now that I have the remaining data access objects created, I can start working with viewing and
managing them.

 Programming Contacts Collection
 Earlier in this chapter, I commented the code inside of the defaultaction() method of the index
module. It referenced the contactscollection object that I had not created.

 After creating the parent abstract daocollection object and the userscollection object, the
 contactscollection object should be easier. Most of the building blocks are already created.
The contactscollection class is located in the /includes/contactscollection.php file with the
following content:

 < ?php
class contactscollection extends daocollection implements
 daocollectioninterface
{
 protected $user;

 public function __construct(dao $user)
 {
 $this- > user = $user;
 }

 public function getwithdata()
 {
 $connection = db::factory(‘mysql’);

 $sql = “select * from contact where ownerid=” . $this- > user- > id
 . ‘ order by firstname’;
 $results = $connection- > getArray($sql);

 $this- > populate($results, ‘contact’);
 }
}

c22.indd 199c22.indd 199 7/16/09 9:08:53 AM7/16/09 9:08:53 AM

200

Part III: PHP Design Case Study

 Similarly to the userscollection , the contactscollection object extends the functionality of the
 daocollection . The Template Design Pattern nature of the daocollection requires the public
 getwithdata() method to be defined. The daocollectioninterface is also implemented forcing the
constructor to accept a dao object.

 For more on the Template Design Pattern, see Chapter 18.

 The contactscollection object __construct() method assigns the user that it was passed to a
protected property. This will be used in the getwithdata() method.

 The getwithdata() method gets the connection to the database. Then, a query is built to collect all of
the rows from the contact table in MySQL that belong to the protected $user object. Finally, the parent
 populate() method is executed using the contact object as the target dao object for the collection. It ’ s
good to see that all of the hard work and planning around the userscollection object makes making
new collections very easy!

 Viewing the Contacts Collection
 Now that the contactscollection object is complete, I am going to restore the index module ’ s
 defaultaction() method to the following code:

 public function defaultaction()
 {
 if (!auth::isloggedin()) {
 lib::sendto(‘/login’);
 }
 else {
 $contacts = new contactscollection(lib::getitem(‘user’));
 $contacts- > getwithdata();

 echo view::show(‘contacts/browse’,
 array(‘contacts’= > $contacts));
 }
 }

 If the user is logged in, a new instance of the contactscollection object is created. The current
logged - in user ’ s user dao is sent to the collection object. The getwithdata() method makes use of
that by gathering the requested collection of contact objects. Finally, that collection is passed to a new
view called contacts/browse .

 The contacts/browse view is located at /views/default/contacts/browse.php with the following
contents:

 < h1 > Your Contacts < /h1 >
 < div id=”browsecontacts” >
 < ?php
 foreach ($view[‘contacts’] as $contact) {
 echo view::show(‘contacts/small’, array(‘contact’= > $contact));
 }

c22.indd 200c22.indd 200 7/16/09 9:08:53 AM7/16/09 9:08:53 AM

Chapter 22: Programming the Application

201

 echo ‘ < /div > ’;

 if (!isset($contact)) {
 echo view::show(‘index/welcome’);
 }

 This view creates the heading called Your Contacts. Then, it loops through the contactscollection
that was passed into it. Just as when viewing the users on the site, each contact has its own view as
well. This is called contacts/small and accepts a contact dao as a parameter. This view, located at /
views/default/contacts/small.php , has the following content:

 < ?php
echo ‘ < a href=”/contacts/view/’ . $view[‘contact’]- > id . ‘” > ’;
echo “{$view[‘contact’]- > firstname} “;
echo “{$view[‘contact’]- > middlename} {$view[‘contact’]- > lastname}”;
echo ‘ < /a > ’;

 All this smaller view does is generate a link to the contacts module ’ s view() action using the contact
dao object ’ s id property as a parameter. It labels the link with the contact ’ s first, middle and last name.

 The last portion of the contacts/browse view checks to see if any contacts were actually retrieved. If
none were, a friendly welcome message in the /views/default/index/welcome.php file is displayed:

 < div class=”sidebar” >
 < br / >
 < a class=”featured” href=”/contacts/add” > Add Contact < /a >
 < a class=”featured” href=”/contacts/import” > Import Contacts < /a >
 < /div >
 < h2 > Welcome To Acme Company Contact Manager < /h2 >
 < p >
 Welcome to the replacement system for the Outlook Address book.
 < /p >
 < p >
 Cool things to know:
 < /p >
 < ul >
 < li > You can easily < a href=”/contacts/add” > add contacts < /a > < /li >
 < li >
 You can < a href=”/contacts/import” > import your address book < /a >
 from Outlook
 < /li >
 < li > You can view this using your mobile phone < /li >
 < li >
 You can send email directly to a contact by clicking their
 email address.
 < /li >
 < /ul >
 < p >
 If you have any questions, please contact the help desk.
 < /p >

 This just informs the user who probably has not used the system before what options that they have
available.

c22.indd 201c22.indd 201 7/16/09 9:08:54 AM7/16/09 9:08:54 AM

202

Part III: PHP Design Case Study

 Programming Contacts Module and Import Functionality
 The contacts module is one of the most important parts of the application. Because of this, it is also the
largest module in the application. I ’ m going to split it up into steps so as not to get overwhelmed.

 The first thing I know I want to do is create the import functionality. The fastest way for me to get a large
amount of testing data will be to import my own Outlook .csv file. Besides, the welcome message is
encouraging me to do so with the /contacts/import link.

 The contacts module is located at /modules/contacts.php . I ’ m going to start it out with just the
 import() and processimport() methods:

 < ?php
class contacts
{
 public function import()
 {
 echo view::show(‘contacts/import’);
 }

 public function processimport()
 {
 if (is_uploaded_file($_FILES[‘csv’][‘tmp_name’])) {
 $contents = file_get_contents($_FILES[‘csv’][‘tmp_name’]);
 unlink ($_FILES[‘csv’][‘tmp_name’]);

 $builder = new importcontactsarraybuilder($contents);

Figure 22-4

 Now, I can successfully log in and view all of my contacts, however, I ’ m being presented with the
welcome message because I have none. Figure 22 - 4 shows this.

c22.indd 202c22.indd 202 7/16/09 9:08:54 AM7/16/09 9:08:54 AM

Chapter 22: Programming the Application

203

 $imports = $builder- > buildarray();

 $currentuser = lib::getitem(‘user’);

 foreach ($imports as $import) {
 $contact = new contact();
 $adaptor = new outlookcontactimportadapter($import);

 $contact- > firstname = $adaptor- > firstname;
 $contact- > middlename = $adaptor- > middlename;
 $contact- > lastname = $adaptor- > lastname;
 $contact- > ownerid = $currentuser- > id;
 $contact- > save();
 $possiblegroups = array(‘Business’, ‘Home’);

 foreach ($possiblegroups as $groupname) {
 $groupfinder =
 new contactimportgroupinterpreter($import);
 $group = $groupfinder- > getgroup($groupname);
 if ($group instanceof contactgroup) {
 $group- > contactid = $contact- > id;
 $group- > save();

 $methods = new contactmethodscollection($group);
 $methods- > generateimportmethods($import);
 $methods- > saveall();
 }
 }
 }

 lib::sendto();
 }
 else {
 lib::seterror(array(‘Please upload a file.’));
 lib::sendto(‘/contacts/import’);
 }
 }
}

 The public add() method simply shows a new view. This view should contain an HTML element to
upload a file. This view is located at /views/default/contacts/import.php with the following
content:

 < h1 > Import Your Contacts < /h1 >
 < p >
 Upload a .csv file from Outlook. Contact helpdesk for assistance.
 < /p >
 < ?php
 echo view::show(‘standard/errors’);
? >
 < form action=”/contacts/processimport” method=”post”
 enctype=”multipart/form-data” >
 < div class=”row” >
 < label for=”csv” > CSV File: < /label > < input type=”file”

c22.indd 203c22.indd 203 7/16/09 9:08:54 AM7/16/09 9:08:54 AM

204

Part III: PHP Design Case Study

 id=”csv” name=”csv” / >
 < /div >
 < div class=”row” >
 < label for=”submit” > < /label >
 < input id=”submit” type=”submit” class=”submitbutton”
 value=”Upload” / >
 < /div >
 < /form >

 The view tells the user to upload their .csv file. In the future, I can imagine the help desk asking to have
instructions on this page. However, it wasn ’ t in the requirements, so I ’ m just putting a helpful reminder
to contact them for assistance. Next, the standard errors view is added to display any errors that happen
during the file upload. These errors could be that no file was uploaded or the file isn ’ t the right format.

 The last step in this view is generating a form with the proper encoding type to accept file uploads. The
important thing to note is the name of the input element whose type is “ file. ” It is named “ csv. ” I use this
name in the processimport() method, which I ’ ll take a look at next.

 The first thing that the public method processingimport() does is make sure that the file did
successfully upload. If the result from PHP ’ s is_uploaded_file() function is false, an appropriate
error will be set and the user will be redirected back to the previous view. The errors view will display
the message that the file did not successfully upload.

 Next, the contents of the file are retrieved and the file itself is deleted. This is followed by a new instance
of the importcontactsarraybuilder class. As I defined in the UML Diagram in Figure 21 - 14 of
chapter 21, this class is based on the Builder Design Pattern. The instance is created with the full contents
of the uploaded file. Finally, the class ’ buildcollection() public method is called and its results are
stored in the $imports variable.

 For more on the Builder Design Pattern, see Chapter 4.

 The importcontactsarraybuilder class is located at /includes/importcontactsarraybuilder.php
with the following contents:

 < ?php
class importcontactsarraybuilder
{
 protected $importedstring;

 public function __construct($importedstring)
 {
 $this- > importedstring = $importedstring;
 }

 public function buildarray()
 {
 $lines = explode(“\n”, $this- > importedstring);
 $keys = explode(‘,’, array_shift($lines));

 $array = array();

 foreach ($lines as $line) {

c22.indd 204c22.indd 204 7/16/09 9:08:55 AM7/16/09 9:08:55 AM

Chapter 22: Programming the Application

205

 if (!empty($line)) {
 $keyed = array_combine($keys, explode(‘,’, $line));
 $array[] = $keyed;
 }
 }

 return $array;
 }
}

 Initially, in this UML diagram, this class had the term “ collection ” in its name and method names. In
other parts of the application, the term collection was used synonymously to an instance of a
 daocollection object. I felt that this could be confusing considering this class is actually building an
array and not a collection of dao objects.

 The constructor of the class assigns its parameter to the protected property $imported string. The public
method named buildarray() is where the actual manipulation happens. First, new lines are used to
separate the string (which is the contents of the .csv file) into lines. The first line should be the headings
of the document and is removed and stored in its own array named $keys . Then, the rest of the document
is iterated through. The $keys array is combined with the current line to make a new associative array.
Once this is complete, it is added to the return parameter $array . The end process of this method is an
associative keyed array whose keys are the first line of the file and content is the rest of the file.

 Continuing on with the processimport() method of the contacts module, the current user is
retrieved. Then, the $imports array, which contains the contents of the buildarray() method ’ s return
parameter, is looped through.

 For each instance of the import array, a new contact dao is created. Next, a new instance of
 outlookcontactimportadapter is created. During planning, I recognized that the imported array
would not be in a format the contact dao could understand and use. The content of the /includes/
outlookcontactimportadapter.php file is:

 < ?php
class outlookcontactimportadapter
{
 public function __construct($import)
 {
 $this- > firstname = $import[‘First Name’];
 $this- > middlename = $import[‘Middle Name’];
 $this- > lastname = $import[‘Last Name’];
 }
}

 This adapter is simply using what it knows about the import array and assigning public properties
identical to those that a user dao would have. This is useful in the next step of the processimport()
method, where the contact dao object ’ s properties are assigned from this instance of this adapter object.

 Finally, the contact gets its owner ID property from the current user . The contact dao object ’ s
 save() method completes the creation of the object.

c22.indd 205c22.indd 205 7/16/09 9:08:55 AM7/16/09 9:08:55 AM

206

Part III: PHP Design Case Study

 The next step in the process is determining if this contact has a need for any contactgroup objects to
be created. The two groups I know about in the Outlook .csv file are prefixed with “ Business ” and
 “ Home. ” For each of those group names, the next process is executed.

 An instance of contactimportgroupinterpreter is created. The intent is that the import array will
have a certain set of keys that can be interpreted as the building blocks of a group. This object was based
on the Interpreter Design Pattern during planning to resolve this issue. After a new instance is passed
the import array, the $group variable receives the return parameter from a call to the
 contactimportgroupinterpreter object ’ s public getgroup() method. Note how the current group
name in the loop is being sent into this method.

 For more on the Interpreter Design Pattern, see Chapter 10.

 The contactimportgroupinterpreter class exists in the /includes/
contactimportgroupinterpreter.php file:

 < ?php
class contactimportgroupinterpreter
{
 protected $import;

 public function __construct($import)
 {
 $this- > import = $import;
 }

 public function getgroup($groupname)
 {
 $contactgroup = NULL;

 if (!empty($this- > import[“{$groupname} Street”])) {
 $contactgroup = new contactgroup();
 $contactgroup- > label = $groupname;
 }

 return $contactgroup;
 }
}

 Similar to the adapter class I created earlier, the constructor of this method just has to assign it received
to a protected property of the class. The getgroup() public method is where the interpretation starts.

 To determine that a contact group should exist, I ’ m checking for content in the array for the group
name ’ s street. The two columns that I know about in the .csv file are “ Business Street ” and “ Home
Street. ” My assumption is that if a value is in this field, the whole address probably exists. That will
make a contactmethod dao possible later on. This means that this contactgroup object can be
created. So, if that field is found to have content, a new contactgroup object, whose label is assigned
from the $groupname variable, is created and returned. If the field is empty, NULL is returned.

c22.indd 206c22.indd 206 7/16/09 9:08:55 AM7/16/09 9:08:55 AM

Chapter 22: Programming the Application

207

 Since it ’ s possible that NULL will be returned, the next line of the processimport() method checks to
see if the $group variable is really a contactgroup object. If it is not, nothing else happens and the next
group name is tried.

 If a valid contactgroup object was found, it is updated with the contact object ’ s id property as its
owner ID. Then, the dao parent class ’ s save() method is called to finish the creation of this
 contactgroup object.

 The last step is adding the contact methods to the group. An instance of the
 contactsmethodscollection daocollection is created. The owner element, the contactgroup , is
passed into the constructor. The import array is then sent as a parameter to a call to the public
 generateimportmethods() . Finally, the first use of the saveall() public method of the
 daocollection object is executed. The plan is to create a normal collection object just like the
 userscollection object. The extra method named generateimportmethods() should be able to
generate a collection of contactmethod dao objects, similar to the way that a call to getwithdata()
would, but the objects would have their content based on the import array instead of an array generated
by a MySQL query.

 The content of the /includes/contactmethodscollection.php file is:

 < ?php
class contactmethodscollection extends daocollection
implements daocollectioninterface
{
 protected $group;

 public function __construct(dao $group)
 {
 $this- > group = $group;
 }

 public function getwithdata()
 {
 $connection = db::factory(‘mysql’);

 $sql = “select * from contactmethod where contactgroupid=”
 . $this- > group- > id . ‘ order by type’;
 $results = $connection- > getArray($sql);

 $this- > populate($results, ‘contactmethod’);
 }

 public function generateimportmethods($import)
 {
 $results = array();

 $addressline = $import[“{$this- > group- > label} Street”] . ‘ ‘ .
 $import[“{$this- > group- > label} Street 2”] . ‘ ‘ .
 $import[“{$this- > group- > label} Street 3”] . ‘ ‘ .
 $import[“{$this- > group- > label} City”] . ‘ ‘ .
 $import[“{$this- > group- > label} State”] . ‘ ‘ .
 $import[“{$this- > group- > label} Postal Code”];

c22.indd 207c22.indd 207 7/16/09 9:08:56 AM7/16/09 9:08:56 AM

208

Part III: PHP Design Case Study

 $results[] = array(‘type’= > ’address’, ‘value’= > $addressline,
 ‘contactgroupid’= > $this- > group- > id);

 $this- > populate($results, ‘contactmethod’);
 }
}

 The constructor of this daocollection acts as expected. It assigns the owner dao object to a protected
property. The next public method, named getwithdata() , is also built in a familiar way. It generates a
query that retrieves the rows from the MySQL table that the group dao object owns. The call to the
 daocollection object ’ s populate() method is used to make new contactmethod dao objects.

 The generateimportmethods() public method is very similar to the getwithdata() method. But
instead of retrieving results from the MySQL connection, this method builds a result type using what I
know about the import array ’ s keys. Then, this is morphed into an array identically to the way that the
 db objects getArray() method would return SQL result sets. Then, the populate() method is called.
The populate() method processes this information identically to the way that it ’ s executed in the
 getwithdata() method.

 After each group and contact method is added to the contact , the contacts module redirects the user
to the home page. Here, they will be able to see all of the newly imported contacts.

 With the contact import functionality completed, I now have a good base of contacts to continue my
testing with. Figure 22 - 5 shows my test group so far.

Figure 22-5

c22.indd 208c22.indd 208 7/16/09 9:08:56 AM7/16/09 9:08:56 AM

Chapter 22: Programming the Application

209

 The next steps will be finishing up the rest of the contacts module. I will be able to add and edit
contacts, and their groups and methods, or delete a whole contact. Since I want to continue my testing
and verify my results, I think the next thing to create is the single contact view. I ’ ll continue with this
programming in the next section.

 Moving from the Contacts List to a Single Contact View
 The index module does a great job of iterating through a contactscollection object and showing
links to access each contact. The link to view the individual contact begins with /contacts/view . This
means that the view() public method of the contacts module is being called. I already created the
 import() and processimport() methods. I ’ ll add the view() method:

 public function view()
 {
 $controller = lib::getitem(‘controller’);

 if (empty($controller- > params[0])) {
 lib::sendto();
 }
 else {
 $contact = new contact((int) $controller- > params[0]);
 $groups = new contactgroupscollection($contact);
 $groups- > getwithdata();

 echo view::show(‘contacts/view’,
 array(‘contact’= > $contact,
 ‘groups’= > $groups));
 }
 }

 Since the contact ID property is passed as a parameter on the URL, the same process used to edit and
delete user dao objects is used in this method. After that parameter is retrieved, a new instance of a
 contact dao object is created passing in that ID. This should populate the $contact variable with the
 contact object. Next, a new instance of the contactgroupscollection object is created. Since this is a
 daocollection object, the next step is calling its getwithdata() public method. Finally, a view is
shown with the contact object and its contactgroups collection.

 The contactgroupscollection object is going to be very similar to the other daocollection child
classes I ’ ve created. It is located in the /includes/contactgroupscollection.php file with this
content:

 < ?php
class contactgroupscollection extends daocollection
implements daocollectioninterface
{
 protected $contact;

 public function __construct(dao $contact)
 {
 $this- > contact = $contact;
 }

 public function getwithdata()

c22.indd 209c22.indd 209 7/16/09 9:08:57 AM7/16/09 9:08:57 AM

210

Part III: PHP Design Case Study

 {
 $connection = db::factory(‘mysql’);

 $sql = “select * from contactgroup where contactid=”
 . $this- > contact- > id . ‘ order by label’;
 $results = $connection- > getArray($sql);

 $this- > populate($results, ‘contactgroup’);
 }
}

 The contact dao owner object is assigned to the protected $contact property by the constructor.
Then, all rows from the contactgroup MySQL table are retrieved whose contactid column match the
owner contact objects ID property. The populate() method creates a collection of contactgroup
objects out of this data.

 Both the contact object and the contactgroups daocollection object were passed to the contacts/
view view. This view located at /views/default/contacts/view.php has the following contents:

 < ?php
 $contactname = “{$view[‘contact’]- > firstname}
 {$view[‘contact’]- > middlename}
 {$view[‘contact’]- > lastname}”;

 echo view::show(‘contacts/viewsidebar’,
 array(‘contactname’= > $contactname,
 ‘id’= > $view[‘contact’]- > id));

 print “ < h1 > {$contactname} < /h1 > ”;

 foreach ($view[‘groups’] as $group) {
 print “ < fieldset > < legend > {$group- > label} < /legend > ”;

 $methods = new contactmethodscollection($group);
 $methods- > getwithdata();

 print ‘ < table > ’;
 foreach ($methods as $method) {
 $decoratorclass = “decorator{$method- > type}”;

 if (class_exists($decoratorclass)) {
 $decorator = new $decoratorclass;
 $method- > value = $decorator- > decorate($method- > value);
 }

 print “ < tr > < td > {$method- > type}: < /td > < td >
 {$method- > value} < /td > < /tr > ”;
 }
 print ‘ < /table > ’;

 print “ < /fieldset > ”;
 }
? >
 < script type=”text/javascript” src=”/assets/removal.js” > < /script >

c22.indd 210c22.indd 210 7/16/09 9:08:57 AM7/16/09 9:08:57 AM

Chapter 22: Programming the Application

211

 This is probably the most involved view created so far. First, a nicely formatted contact name was
created. Then, another view is displayed, called contacts/viewsidebar . This view will have links to
edit and delete this particular contact. I ’ ll look at this later.

 The next step is to loop through each of the contact groups that the contact has. The $view[‘ groups ’]
variable is a reference to the contactgroups object that was created outside this view. Each group
follows this same next process.

 First, the label property of the group dao is displayed. So far, I have the possibility of using “ Business ”
or “ Home ” here. However, when I create the interface to add contact information by hand, I could see
duplicate “ Business ” labels or even more exotic descriptions. The next step is to get a collection of contact
methods from this current group. I created this class earlier with the import functionality. This should
populate the $methods variable with a daocollection object full of contactmethod dao objects.

 For each of the methods retrieved, a row is added to the table. Before the value is displayed, however,
I will look for the existence of a decorator class. In my planning process, I had brainstormed a bunch of
decorators that I could apply to the contact method information. The UML diagrams in Figure 21 - 18 of
chapter 21 show some what I ’ ll have to create next. Given the way this is created, however, if I never
created a single decorator, the method would still execute fine. It ’ s not a requirement to have a decorator.
Moving on, if the decorator exists, its instantiated and the method ’ s value is decorated using the
decorator ’ s decorate() method. The last step of this loop is printing the row with the type of method
and the possibly decorated value.

 At the very bottom of the view, the removal.js script is added again. This is because the contacts/
viewsidebar will have a delete link for the current contact.

 The missing piece of the view puzzle is the contacts/viewsidebar view. This is located at /views/
default/contacts/viewsidebar.php with the following content:

 < ?php
 print ‘ < div class=”sidebar” > < br / > < a class=”featured”
 href=”/contacts/edit/’;
 print $view[‘id’] . ‘” > Edit ‘ . $view[‘contactname’] . ‘ < /a > ’;
 print ‘ < a class=”featured removal” href=”/contacts/processdelete/’;
 print $view[‘id’] . ‘” > Delete ‘ . $view[‘contactname’] . ‘ < /a > ’;
 print ‘ < /div > ’;

 It simply generates an edit and delete link for the current contact. In a few more sections, I ’ ll be creating
the methods to deal with each of these links.

 Because of the extensive JavaScript that I plan to have on the Add and Edit Contact pages, I ’ ve opted to
not provide these options to the mobile browsers. In order to provide an alternate view for the mobile
browser, I ’ ve created a view at /views/mobile/contacts/viewsidebar.php with the following
content:

 < div class=”sidebar” > < br / > Editing is restricted to the browser only < /div >

 With these views complete, I can now see that my import process worked successfully. I can see the
contact, its groups, and the methods associated with it. The methods are looking kind of bland, however.
This will be solved in the next section.

c22.indd 211c22.indd 211 7/16/09 9:08:57 AM7/16/09 9:08:57 AM

212

Part III: PHP Design Case Study

 Programming the Decorators
 The UML diagram in Figure 21 - 18 of Chapter 21 shows that I have five decorators to create as well as a
decorator interface. The decorator interface is the first element I want to create. It will simply enforce the
existence of the decorate() method that the contacts module ’ s view() method expects to call. This
interface is located at /includes/decoratorinterface.php :

 < ?php
interface decoratorinterface
{
 public function decorate($item);
}

 The next step is to create each of the decorators themselves. The first one is for addresses. I wanted to
make the address a link to Google Maps with that location featured. I did a bit of research on the Maps
link and was able to figure out how the URL worked. The decoratoraddress class exists at /
includes/decoratoraddress.php with just one method:

 < ?php
class decoratoraddress implements decoratorinterface
{
 public function decorate($item)
 {
 $return = ‘ < a href=”http://maps.google.com/maps?q=’ .
 urlencode($item)
 . ‘” > ’ . $item . ‘ < /a > ’;
 return $return;
 }
}

 All of these decorators will be very similar. Each will implement the decorator interface. They will accept
the item to decorate and modify it somehow. The final step is sending the modified item as a return
parameter. This decorator creates the properly encoded URL for the Google Maps link and gives it the
address label.

 The next decorator is the decoratoremail class. It will modify the email address to be a “ mailto ” link.
This class is located at /includes/decoratoremail.php with this content:

 < ?php
class decoratoremail implements decoratorinterface
{
 public function decorate($item)
 {
 $return = ‘ < a href=”mailto:’ . $item . ‘” > ’ . $item . ‘ < /a > ’;
 return $return;
 }
}

 Some mobile phones support the Wireless Telephone Applications Interface. The company - issued
Windows Mobile phones support the WTAI protocol, so I ’ ve created a decorator to make use of this
when a mobile phone number is the contact method. It will generate a link that the mobile browser will

c22.indd 212c22.indd 212 7/16/09 9:08:58 AM7/16/09 9:08:58 AM

Chapter 22: Programming the Application

213

be able to use to dial a call. This decorator will make sure that the current view is actually a mobile view.
If it isn ’ t being accessed by a mobile browser, the WTAI protocol would have no effect, so it ’ s not
executed. The content of /includes/decoratormobilephone.php is:

 < ?php
class decoratormobilephone implements decoratorinterface
{
 public function decorate($item)
 {
 $return = $item;

 if (view::$viewtype == ‘mobile’) {
 $return = ‘ < a href=”wtai://wp/mc;’ . $item . ‘” > ’ .
 $item . ‘ < /a > ’;
 }

 return $return;
 }
}

 The next decorator is for the social network URL. Since this is just expected to be a simple hyperlink, it
will be created to a HTML Anchor element. The decoratorsocialnetwork class is located at /
includes/decoratorsocialnetwork.php with the following code:

 < ?php
class decoratorsocialnetwork implements decoratorinterface
{
 public function decorate($item)
 {
 $return = ‘ < a href=”’ . $item . ‘” > ’ . $item . ‘ < /a > ’;
 return $return;
 }
}

 The final decorator is for the website contact method. This currently is identical to the social network
decorator. It is located at /includes/decoratorwebsite.php :

 < ?php
class decoratorwebsite implements decoratorinterface
{
 public function decorate($item)
 {
 $return = ‘ < a href=”’ . $item . ‘” > ’ . $item . ‘ < /a > ’;
 return $return;
 }
}

 This completes my collection of decorators that I had brainstormed during planning. This also gives me
a robust view of a contact. In Figure 22 - 6, I ’ m viewing one of the imported contacts.

c22.indd 213c22.indd 213 7/16/09 9:08:58 AM7/16/09 9:08:58 AM

214

Part III: PHP Design Case Study

 I still have to develop the method to add a contact, edit them, and delete them. This will be covered in
the next sections.

 Adding a Contact
 I liked the way that I was able to make use of the same users/manage view for the User management
section. I ’ m going to try to use the same sort of mechanism with the Contact management. The first step
in this process is to show the view for the link /contacts/add that is featured in the header. To do this,
I ’ m going to add the following method to the contacts module:

 public function add()
 {
 echo view::show(‘contacts/add’);
 }

 This simply loads the content of the file located at /views/default/contacts/add.php , which is:

 < ?php
echo view::show(‘contacts/manage’, array(‘title’= > ’Add Contacts’,
 ‘action’= > ’/contacts/processadd’,
 ‘formid’= > ’addform’,
 ‘type’= > ’add’));

 Similar to the add user view, this view is building parameters for a shared view called contacts/
manage . The title is defined and a form action is specified. Two additional parameters, called formid
and type , are also sent forward to that view. Next, I ’ ll create the contents of the /views/default/
contacts/manage.php file:

 < h2 > < ?php echo $view[‘title’]? > < /h2 >
 < form action=” < ?php echo $view[‘action’]? > ” method=”post”
 id=” < ?php echo $view[‘formid’]? > ” >

Figure 22-6

c22.indd 214c22.indd 214 7/16/09 9:08:58 AM7/16/09 9:08:58 AM

Chapter 22: Programming the Application

215

 < ?php
 echo ‘ < input type=”hidden” name=”id” value=”’ .
 $view[‘contact’]- > id;
 echo ‘” / > ’;

 $vals = array(‘firstname’= > ’First Name’,
 ‘middlename’= > ’Middle Name’,
 ‘lastname’= > ’Last Name’);

 foreach ($vals as $name= > $label) {
 echo ‘ < div class=”row” > < label for=”’ . $name . ‘” > ’
 . $label . ‘: < /label > ’;
 echo ‘ < input name=”’ . $name . ‘” id=”’ . $name .
 ‘”value=”’;
 echo $view[‘contact’]- > $name;
 echo ‘” / > < /div > ’;
 }
 ? >
 < hr / >

 < ?php
 if (isset($view[‘groups’])) {
 foreach ($view[‘groups’] as $counter= > $group) {
 echo view::show(‘contacts/group’,
 array(‘group’= > $group,
 ‘counter’= > $counter,
 ‘type’= > $view[‘type’]));
 }
 $counter++;
 $group = null;
 }
 else {
 $counter = 0;
 $group = new stdClass;
 $group- > label = ‘Business’;
 }
 echo view::show(‘contacts/group’,
 array(‘group’= > $group, ‘counter’= > $counter,
 ‘type’= > ’add’));
 ? >

 < hr id=”lastclone” / >
 < div > < label for=”submit” > < /label >
 < input id=”submit” type=”submit” value=” < ?php echo
 $view[‘title’]? > ”
 class=”submitbutton” / >
 < /div >
 < /form >
 < div id=”contactgroupingcontainer” >
 < ?php echo view::show(‘contacts/group’,
 array(‘label’= > ’Business’, ‘counter’= > 0))? >
 < /div >
 < script type=”text/javascript” src=”/assets/managecontact.js” > < /script >
 < script type=”text/javascript” >
var groupcount = < ?php echo $counter? > ;
 < /script >

c22.indd 215c22.indd 215 7/16/09 9:08:59 AM7/16/09 9:08:59 AM

216

Part III: PHP Design Case Study

 Before I go through this step by step, let me talk about the basic idea. The idea is to have first name,
middle name, and last name fields. Then, a box for each contact group will be featured. If no contact
groups exist, which would be the case when creating a new contact, one is created and named
 “ Business ” per the requirements. Each group has the link to create a new group box. This process will
basically duplicate the blank hidden group box.

 Now, each group box has one contact method specified. The value is blank, however. If the user chooses
not to add a contact method, the processing method will make sure not to include this group. Each
contact method also has a link to create another contact method. This is done with a similar duplication
method to the groups. Now, let ’ s step through the lines of this complicated view.

 The first few lines are pretty simple. The title is retrieved and displayed. In the case of the add()
method, the title will reflect that the user is adding a contact. Then, the form is built with the action and
 id parameters.

 When editing a contact, I ’ m planning to pass in a contact dao with the parameters. The next line
attempts to retrieve the id property of that contact and store it as a hidden HTML Input element.
When adding a contact, this field will be blank.

 Next, the First Name, Last Name, and Middle Name elements are added to the form. In each case, the
 contact dao public properties are retrieved to fill in the default values for each of these fields.

 The next section of the form supports the contactgroup architecture. When editing a contact, a
 contactgroups daocollection will be passed into this view. The next step is to check to see if this exists.
If it does exist, each of the collection ’ s dao objects are accessed and passed to a new view called contacts/
group . This view expects to receive a contactgroup , a counter variable, and a type of view this is.

 In the case that there are no groups sent and the contact is being added for the first time, a standard class
is created. This is designed to mock the public properties of a contactgroup . Notice how the label is set
to “ Business ” to fit the requirement of the first group being named “ Business ” This will be used outside
of the conditional statement.

 Before I create the contacts/group view, I want to examine the last line of this section. The last line
generates another call to the contacts/group view. In the case where the user is creating a new
 contact , the group object whose label is “ Business ” is sent into the view. There are obviously no other
attributes to this object, so this will create the default blank “ Business ” group. If the user is editing a
contact, multiple calls to the view may have already occurred. The last step of that loop was to increase
the counter and set the group variable to NULL . Then, when this last view is executed, a new contact
group box is created, but its label is blank because the $group it is passed does not have any public
properties.

 Before I create the contacts/group view, I ’ m going to finish stepping through this view. After the
group boxes are created, another horizontal rule is added, this time with an id attribute. This will be
used by the JavaScript when generating clones. A submit button completes the form.

 Below the form, I generate a new HTML Div with the id attribute set to contactgroupingcontainer .
This will be used as a key for the JavaScript to find an instance of a contact group box to duplicate and
put before the “ lastclone ” horizontal rule. Inside of this div, one more call to the contacts/group view
is executed. This will be the contact group box that is actually cloned.

c22.indd 216c22.indd 216 7/16/09 9:08:59 AM7/16/09 9:08:59 AM

Chapter 22: Programming the Application

217

 Finally, two JavaScript snippets are added. The variable groupcount will be used by the JavaScript
located in /assets/managecontacts.js . I ’ ll look at this JavaScript quickly after I ’ ve completed all of
the views in PHP.

 Because of the unique relationship that I ’ ve developed with the contact , contactgroup and
 contactmethod objects, the views are understandably nested. So far, I ’ ve created the contact view.
Next, I need to focus on the group view which is located at /views/default/contacts/group.php :

 < div class=”contactgrouping” >
 < div class=”row” > < label > Grouping: < /label >
 < input name=”type[< ?php echo $view[‘counter’]? >][label]”
 value=” < ?php echo $view[‘group’]- > label? > ” / > < /div >
 < div >
 < ?php
 if ($view[‘group’] instanceof contactgroup) {
 $methods =
 new contactmethodscollection($view[‘group’]);
 $methods- > getwithdata();
 foreach ($methods as $method) {
 echo view::show(‘contacts/method’,
 array(‘method’= > $method,
 ‘counter’= > $view[‘counter’]));
 }
 }
 echo view::show(‘contacts/method’,
 array(‘method’= > null,
 ‘counter’= > $view[‘counter’]));
 ? >
 < /div >

 < ?php
 if ($view[‘type’] == ‘edit’) {
 echo ‘ < a href=”#” class=”deletecontactgrouping” >
 Delete this group < /a > ’;
 }
 else {
 echo ‘ < a href=”#” class=”addcontactgrouping” >
 Add Another Grouping < /a > ’;
 }
 ? >
 < /div >

 Each contact group is enclosed in a div with the “ contactgrouping ” class. The first step is defining the
label of the group . When editing a contact , I had passed in a full contactgroup object, which has a
public property of label. When creating a new one, the default “ Business ” label was sent in on a standard
class. This is where I make use of it.

 Recognizing that the group parameter might not be a contactgroup dao , a quick conditional checks
this. The architecture of this duplicate box for methods is very similar to that of the groups ’ boxes. On
the parent view, I looped through any groups, and then displayed a blank group box. Here, if the group
is a contactgroup , I know that there must be at least one contactmethod . I loop through each of those
and display them with the proper method. Then, no matter what, a blank method box is generated.

c22.indd 217c22.indd 217 7/16/09 9:08:59 AM7/16/09 9:08:59 AM

218

Part III: PHP Design Case Study

 Inside of the conditional to determine if the group parameter is a contactgroup , a new
 contactmethodscollection object is created. As required, the owner contactgroup is sent into the
constructor and the data is retrieved using getwithdata() . Then, for each of the contactmethod dao
in the collection, the contacts/method view is shown.

 Before I look at that last nested method, I will finish this one. If the user is editing a contact , the option
to delete the group box is displayed. Otherwise, the option to add a new group is shown. The JavaScript
will have to make sense of these links to provide the proper action.

 The last nested view is located at /views/default/contacts/method.php with the following content:

 < ?php
 echo ‘ < div class=”row” > < label > Info: < /label >
 < select name=”type[‘ . $view[‘counter’] . ‘][methodtype][]” > ’;

 $options = array(
 ‘’ = > ‘-Choose One-’,
 ‘organization’ = > ‘Organization’,
 ‘title’ = > ‘Title’,
 ‘email’ = > ‘Email’,
 ‘website’ = > ‘Website’,
 ‘address’ = > ‘Complete Address’,
 ‘telephone’ = > ‘Telephone’,
 ‘mobilephone’ = > ‘Mobile Phone’,
 ‘socialnetwork’ = > ‘Social Network URL’,
 ‘im’ = > ‘IM Name’
);
 foreach ($options as $value= > $description) {
 echo ‘ < option value=”’ . $value . ‘” ‘;
 if ($view[‘method’]- > type == $value) echo ‘selected=”selected”’;
 echo ‘ > ’ . $description . ‘ < /option > ’;
 }

 echo ‘ < /select > ’;

 echo ‘ < span class=”methodboxvaluebox ‘;
 if ($view[‘method’]- > value) {
 echo ‘hasvalue’;
 }

 echo ‘” > < input name=”type[‘ . $view[‘counter’] .
 ‘][methodvalue][]” value=”’ . $view[‘method’]- > value .
 ‘” / > ’;

 if ($view[‘method’]- > value) {
 echo ‘ < a href=”#” class=”deletecontactmethod” > Delete this
 Info < /a > ’;
 }
 else {
 echo ‘ < a href=”#” class=”addcontactmethod” > Add More Info < /a > ’;
 }

 echo ‘ < /span > < /div > ’;

c22.indd 218c22.indd 218 7/16/09 9:09:00 AM7/16/09 9:09:00 AM

Chapter 22: Programming the Application

219

 The counter variable is used to keep track of which contact method goes with which group. The select box is
generated next using a list of predefined contact methods. Since I ’ m adding these all in a select box, building
the HTML Input element ’ s name with brackets (which will be translated into an array when posted to
PHP), I am meeting the requirement to allow more than one of each type of contact method per group.

 Just as with the group view, I share this view between the adding and editing methods. When the select
box is being generated, it keeps checking the contactmethod parameter ’ s type property. If a user is
editing a method, the contactmethod object is passed in using this parameter. If it ’ s a new method,
nothing exists and this match is never successful.

 When the method type is blank, I don ’ t want to feature the HTML Input element. Because of this, I ’ m
enclosing it in the span with the class of methodboxvaluebox . This has particular styling including
some making it invisible. However, if the method parameter has a value, the ‘ hasvalue ’ class is added
on. This class supersedes the previous class with a request to have the box displayed.

 The HTML Input element is created with a name similar to the HTML Select elements. This will help
them stay in sync. The contactmethod object ’ s value is inserted into the element, if it exists. Finally,
similar to the group box, one of two links is shown. If the method exists, an option to delete it will be
shown. Otherwise, a link to add another method will be shown. JavaScript will need to make sense of
these links and execute the proper functionality.

 Finally, the method box is completed with the closing HTML Span and Div tags. This completes the
design of the three nested views needed to add or edit a contact . The last step is to create the JavaScript
to execute the cloning and change of visibility features. This is located at /assets/managecontact.js
and was included in the contacts/manage view. Its content is:

if (typeof jQuery != ‘undefined’) {
 $(function() {
 $(“select”).change(function(){
 if (this.value) {
 $(this).next().show().children(‘input’).focus();
 }
 else {
 $(this).next().hide().children(‘input’).val(‘’);
 }
 });

 $(“.addcontactgrouping”).click(function(){
 groupcount++;
 var cloning =
 $(“#contactgroupingcontainer”).children(‘div’);
 var myclone = cloning.clone(true);

 myclone.find(‘input,select’).each(function() {
 this.value = ‘’;
 this.name = this.name.replace(/\[\d*\]/, ‘
 [‘ +groupcount + ‘]’);
 });

 myclone.insertBefore($(“#lastclone”));

 $(this).html(‘Delete this group’).unbind(‘click’).blur();

c22.indd 219c22.indd 219 7/16/09 9:09:00 AM7/16/09 9:09:00 AM

220

Part III: PHP Design Case Study

 $(this).click(function(){
 $(this).parent(‘div’).remove();
 });

 return false;
 });

 $(“.deletecontactgrouping”).click(function(){
 $(this).parent(‘div’).remove();
 return false;
 });

 $(“.addcontactmethod”).click(function() {
 var cloning = $(this).parent().parent();
 var myclone = cloning.clone(true);

 myclone.children(‘select’).val(‘’).trigger(‘change’);
 myclone.children(‘span’).children(‘input’).val(‘’);

 myclone.insertAfter(cloning);

 $(this).html(‘Delete this info’).unbind(‘click’).blur();
 $(this).click(function(){
 $(this).parent().parent().remove();
 });

 return false;
 });
 $(“.deletecontactmethod”).click(function(){
 $(this).parent().parent().remove();

 return false;
 });

 });
}

 I ’ ll just quickly go through this functionality to give an idea of what is happening. First, the HTML
 Select element is watched. Whenever it changes, it looks to see if it ’ s set to a value. If there is no value,
the next sibling, which is the HTML Span element that contains the Input element, is hidden. That Input
element ’ s content is also removed. Conversely, if a value exists, the Span element is shown and the
 Input element is focused.

 The next function watches for the links to add a contact group based on a class. It increases the
 groupcount variable, which is used to associate each of the child methods to the group. It then clones the
contact group box that is a child of the HTML Div element that was set up as a container. It then changes
the names of each of the HTML Input and Select elements in that clone to reflect the new group
counter. Finally, it inserts the clone right before the horizontal rule with the ID of ‘ lastclone. ’ To the user
this looks like a new box was added below the one that hosts the link that they just clicked. The last step
of this function is to change the text of this link to “ Delete this group ” and unset this action, which was
just executed. It changes the functionality of that link to now remove this group if the user requests it.

c22.indd 220c22.indd 220 7/16/09 9:09:00 AM7/16/09 9:09:00 AM

Chapter 22: Programming the Application

221

 When editing groups, the link generated was labeled “ Delete this group ” with the class of
 “ deletecontactgrouping ” . The next function looks for this link and removes the contact group that
holds the link that was clicked.

 The next method does a similar process but on a smaller level. It duplicates the method box. It is executed
by the link to the right of the contact method HTML Input element. It basically makes a clone of the
HTML Div element that holds it and inserts it after that same Div . It also makes sure to unset the values
of the cloned element by changing the HTML Select element to no value and triggering the change
event. Finally, it modifies the link that was just clicked to have the reverse behavior and matching text.

 The last method is executed when the “ Delete this info ” link appears when editing existing methods. It
simply removes the parent HTML Div element successfully removing that contact method from the
HTML form.

 In Figure 22 - 7, I ’ m demonstrating some of the interactive features of adding a contact.

Figure 22-7

 With all of the interfaces complete, the next step is the processing method. The form is submitted to /
contacts/processadd , which means that the contacts module must have a public processadd()
method. I ’ m going to add the following method to the contacts module:

 public function processadd()
 {
 $firstname = $_POST[‘firstname’];
 $middlename = $_POST[‘middlename’];
 $lastname = $_POST[‘lastname’];

c22.indd 221c22.indd 221 7/16/09 9:09:01 AM7/16/09 9:09:01 AM

222

Part III: PHP Design Case Study

 $contact = new contact();
 $contact- > firstname = $firstname;
 $contact- > lastname = $lastname;
 $contact- > middlename = $middlename;

 $currentuser = lib::getitem(‘user’);

 $contact- > ownerid = $currentuser- > id;
 $contact- > save();

 $this- > addMethods($_POST[‘type’], $contact);

 lib::sendto(“/contacts/view/{$contact- > id}”);
 }

 For the most part, this method is pretty simple. The real magic happens in the call to the addMethods()
protected method. However, I don ’ t mean to neglect the important steps that this method accomplishes.

 The First, Middle, and Last names are retrieved from the post. A new contact dao is created and the
names are assigned to it. The last step in creating this contact dao from this posted data is assigning
the ownerid property. The current user is retrieved and that user object ’ s id property is assigned to
this contact . Finally, the dao object ’ s save() method is called. This will populate the id property of the
 contact object. The user is then sent to an URL built to view the contact that they just created.

 Before the user is forwarded to the final product, however, the addMethods() method is called. It is
passed two parameters, the posted ’ type ’ array and the contact object. I ’ m going to add the
 addMethods() method to the contacts module:

protected function addMethods($types, contact $contact)
{
 foreach ($types as $groupid= > $type) {
 if (!empty($type[‘label’])) {
 $group = new contactgroup();
 $group- > contactid = $contact- > id;
 $group- > label = $type[‘label’];

 foreach ($type[‘methodtype’] as $methodtypekey= > $methodtype) {
 if (!empty($methodtype)
 & & !empty($type[‘methodvalue’][$methodtypekey])){
 if (is_null($group- > id)) $group- > save();
 $method = new contactmethod();
 $method- > contactgroupid = $group- > id;
 $method- > type = $methodtype;
 $method- > value = $type[‘methodvalue’][$methodtypekey];
 $method- > save();
 }
 }
 }
 }
}

c22.indd 222c22.indd 222 7/16/09 9:09:01 AM7/16/09 9:09:01 AM

Chapter 22: Programming the Application

223

 Because of the way the names of the HTML Input and Select elements were created, a nice
multidimensional array named ’ types ’ was built. This method loops through each of the elements that
exist in the $types parameter. First, if the label is blank, it is skipped. The label key is the first HTML
 Input in the contact group box. Because I allow for them to be generated without requiring any content,
this step needs to be here.

 Next, a new contactgroup is created. The owner contact id property is retrieved from the contact
dao that was the second parameter of this method. The label is also added. A very important thing to
note is that the contactgroup object is not saved yet! Because I should never have a contactgroup if it
doesn ’ t have at least one contactmethod child, I can ’ t write it to the database. And since I don ’ t know if
there are any contact methods yet, it will have to remain unsaved.

 The next step is to loop through each of the method type keys. For each of these, a conditional is created
to make sure that the type is set and that there is actually some value being assigned to that type. If that
conditional passes, only then will I consider making a new contactmethod object.

 The next step inside of that conditional is to check on the contactgroup object. If it does not have a
public id property, I know this must be the first contact method that passed the test and it needs to be
saved. Note that this calculation is done based on the existence of the id property and not the
 $methodtypekey variable. It is possible to have a set of blank methods ahead of a valid method. Or it
could be a set of all blank methods. Because of this, I can never take the $methodtypekey value to
actually mean this is a legitimate first method.

 A new contactmethod object is created. It receives its required values of the contactgroup owner ID,
the type, and the value assigned with that type. Finally, that contactmethod is saved.

 This completes the whole process of creating a new contact . With this solidified, the editing of a
 contact will be much easier. I ’ ll look at that next.

 Editing a Contact
 Each row of contacts has an edit link. This link references the public edit() method of the contacts
module. The last part of the link contains the id property of the user dao that is meant to be
manipulated. I ’ m going to add the following code to the contacts module:

 public function edit()
 {
 $controller = lib::getitem(‘controller’);

 if (empty($controller- > params[0])) {
 lib::sendto();
 }
 else {
 $contact = new contact((int) $controller- > params[0]);
 $contactgroups = new contactgroupscollection($contact);
 $contactgroups- > getwithdata();
 echo view::show(‘contacts/edit’,
 array(‘contact’= > $contact,
 ‘groups’= > $contactgroups));
 }
 }

c22.indd 223c22.indd 223 7/16/09 9:09:02 AM7/16/09 9:09:02 AM

224

Part III: PHP Design Case Study

 The same method as in the process to edit a user is used to retrieve the id property from the URL, using
the stored controller object. If it ’ s empty, the user is simply sent to their index page. Otherwise, a new
instance of a contact dao is created, using the retrieved id property. Then, an instance of
 contactgroupscollection is created, using that contact as the owner object. This is followed by the
call to the method to populate the object. Finally, view named contacts/edit is displayed. The
 contact dao and the contactgroupscollection object are passed in as parameters. Since I ’ ve
developed the system to share the manage view, you may already be able to predict the contents of the /
views/default/contacts/edit.php file:

 < ?php
echo view::show(‘contacts/manage’,
 array(‘title’= > ’Edit Contact’,
 ‘action’= > ’/contacts/processedit’,
 ‘formid’= > ’editform’,
 ‘type’= > ’edit’,
 ‘contact’= > $view[‘contact’],
 ‘groups’= > $view[‘groups’]));

 The call to the contacts/manage view is heavily populated with additional parameters. The first four
are similar to the contact addition process. The title and form action are set. The HTML Form id
attribute is also specified. Finally, the type is set to “ edit. ”

 The big difference with this view is the contact dao and groups daocollection being passed through
to the view. Now, the manage view has objects to use when trying to pre - populate itself.

 The action of the form refers to the processedit() public method of the contacts module. I ’ ll add the
following code to create this method:

 public function processedit()
 {
 $firstname = $_POST[‘firstname’];
 $middlename = $_POST[‘middlename’];
 $lastname = $_POST[‘lastname’];
 $id = $_POST[‘id’];

 $contact = new contact($id);
 $contact- > firstname = $firstname;
 $contact- > lastname = $lastname;
 $contact- > middlename = $middlename;
 $contact- > save();

 $this- > deleteMethods($contact);

 $this- > addMethods($_POST[‘type’], $contact);

 lib::sendto(“/contacts/view/{$contact- > id}”);
 }

 This method is very similar to the processadd() method that I created earlier. The First, Middle, and
Last names are retrieved from the post. Additionally, the id of the current contact object is also
retrieved and used to create a new instance of that object. Then, the names are overwritten and the object
is saved.

c22.indd 224c22.indd 224 7/16/09 9:09:02 AM7/16/09 9:09:02 AM

Chapter 22: Programming the Application

225

 I decided that it would be easier to just delete all of the contact methods from the user. This would be
easier than trying to parse through each of the ones that currently exist and update them. Besides, any
contact method that the user wants this contact to have should have been displayed on the previous
form. A call to the deleteMethods() protected method is called passing the current contact dao to it.
Then, the addMethods() protected method is called and the user is forwarded to the single contact view
page to view their changes.

 The content of the deleteMethods() protected method is just a quick MySQL operation. I ’ ll add the
following content to the contacts module:

 protected function deleteMethods(contact $contact)
 {
 $connection = db::factory(‘mysql’);

 $sql = “delete g.*, m.* from contactgroup g
 left join contactmethod m on g.id=m.contactgroupid
 where contactid={$contact- > id}”;

 $results = $connection- > execute($sql);
 }

 A new instance of the mysql database connection object is retrieved. Then, a MySQL query using the
owner contact dao object ’ s public id property is created. This query takes into account the
relationship between the groups and methods. The last step is executing this delete statement.

 With this method complete, the whole Contact Administration portion of the application is complete!
The use of various different Design Patterns made this a breeze. I noticed that throughout the entire
programming process, when I knew what Design Pattern I had planned to use, the creation of the object
itself was almost instinctual. I didn ’ t have to put in a lot of extra thought.

 This was a long process. I can see many places where I can make improvements. I see a few places where
I could have added some extra security and error checking. I need to make one immediate change,
however, before calling this first iteration of this project complete.

 Data Integrity in the User Administration
 Because of the set of relationships I ’ ve developed in the Contact Administration section, I see one miss
that I had in the User administration section. When deleting a user , only the user dao object ’ s table
row was removed. It ’ s quite possible that this user has some of these contact , contactgroup , and
 contactmethod dao objects in the system. I should remove those as well.

 In the previous section, I worked with the users module. I created a public method called
 processdelete() , which would handle deleting the user objects. However, I find that I need to replace
the MySQL statement with a more robust version. The final step in creating this application is making
this change to the processdelete() method of the users module:

 $sql = “
 delete u.*, c.*, g.*, m.* from user u
 left join contact c on c.ownerid = u.id
 left join contactgroup g on g.contactid=c.id
 left join contactmethod m on g.id=m.contactgroupid
 where u.id = {$userid}
 “;

c22.indd 225c22.indd 225 7/16/09 9:09:02 AM7/16/09 9:09:02 AM

226

Part III: PHP Design Case Study

 This will not only delete the user object but will also follow the relationship through to the other objects
and delete them as well. This final step was needed to make sure that no orphan dao objects were left in
the system. I don ’ t think I could have done this properly without finishing the whole Contact
Administration section first.

 Summary
 Congratulations on completing this case study! The goal of this case study was to show how a PHP
application could be created using Design Patterns. The use of Design Patterns not only made the
process quicker but also helped develop the application so that it is more structurally sound.

 The application made use of a slew of PHP Design Patterns. The Data Access Object Design Pattern was
used in the contact , contactgroup , contactmethod and user classes. The Iterator Design Pattern
was used in the userscollection , contactscollection , contactgroupscollection , and
 contactmethodscollection classes. The Factory Design Pattern was used in the auth and db classes.
The Singleton Design Pattern was used in the mysql class. The Decorator Design Pattern was used in
the decoratoraddress , decoratoremail , decoratormobilephone , decoratorsocialnetwork ,
and decoratorwebsite classes. A form of the Builder Design Pattern was used in the
 importcontactsarraybuilder class. An Adapter Design Pattern was used to create
the outlookcontactimportadapter class.

 Now, a complete iteration of the ACME Company Contact Manager application has been programmed.
As with most programming, however, the first version is not perfect. The next chapter will diagnose any
bugs, fix security issues, and identify any areas where the Design Pattern – based programming could be
improved. Because I already have a solid code base based on PHP Design Patterns, I predict the hardest
part of the next step will be finding the issues, not fixing them!

c22.indd 226c22.indd 226 7/16/09 9:09:03 AM7/16/09 9:09:03 AM

 Improving with More
Design Patterns

 The first iteration of the application is complete. A fully functioning prototype has been created
and is theoretically ready for bug testing. However, there are still things that I can change using
the help of some more Design Patterns.

 The first thing I want to look at is the Contact Import functionality. I made this particular portion
of the application very coupled to the requirements. While this may seem acceptable in theory,
requirements don ’ t always stay as solid as we ’ d like them to be. It ’ s possible to have the
requirements change along the way to allow more types of contact imports. If the requirements
don ’ t change, it may be one of the soonest requested feature updates. Couple this with the
foresight that I have that access to this application may be sold to different parties; I should have
created this section of the application more abstract. I ’ m going to look through some Design
Patterns that can assist me with this task.

 The second area I ’ m going to look at is the view system. There should be a clear separation
between the creation of objects and the displaying of the user interface. The contents for one
particular view of the contract were difficult to create. I mistakenly allowed some object creation
and data retrieval method calls to enter this view. I ’ ll use a pattern from my arsenal to fix this issue
as well.

 Let ’ s tackle the Contact Import functionality first.

 Working with Contacts Impor t
 Even though the specifications said that only one type of import would be specified, I ’ ve decided
to be more safe than sorry. Currently, the requirement is to accept contact imports from the official
company address book in the Microsoft Outlook program. However, after some of
the employees see the ease with which this tool can be used, I am predicting that a need for other

c23.indd 227c23.indd 227 7/16/09 9:10:11 AM7/16/09 9:10:11 AM

Part III: PHP Design Case Study

228

unofficial address book migrations will arise. As much as the company has tried to make a piece of
software the official supported tool, there will always be users using other pieces of software (especially
us in IT).

 There are two parts to this process that remain tightly coupled. The first is the Adapter object that
manipulates the Contact name information. The other is the object that builds an array of items to
traverse from the file ’ s contents. I ’ ll look at each of these individually next.

 Outlook Contact Adapter
 Right now, the import is being accepted as a .csv file that was exported from Outlook. I don ’ t want to
confuse the users of the software by giving them too many options that aren ’ t available, however. I am
going to modify the processing portions of the code to be more flexible, using some Design Patterns. The
view for the import will look relatively the same.

 I ’ ve created the following UML diagram (Figure 23 - 1):

importadapter outlookcontactimportadapter

�firstname : String
�middlename : String
�lastname : String

�setcontents(contents : String)

�setcontents(contents : String)

<<realize>>

<<interface>>
importadapterinaterface

�factory(type : String)

 Figure 23 - 1

 The importadapter class will have a method called factory() which is an implementation of the
Factory Design Pattern. This will accept a string parameter named type . This will be used to create the
new instance of the adapter object.

 The outlookcontactimportadapter class will be modified to have a setcontents() method instead
of doing all of the logic in the constructor.

 Finally, the outlookcontactimportadapter class will implement the importadapterinterface
interface. This will keep consistency among any future adapter objects.

 The first thing I am going to do is specify the ‘ type ’ of import the user is doing. I ’ ll accomplish this by
adding a hidden field to the form. Additionally, I ’ m going to name the HTML File Input element a little
bit more vague. It ’ s definitely possible that future uploads won ’ t be .csv - based files.

c23.indd 228c23.indd 228 7/16/09 9:10:11 AM7/16/09 9:10:11 AM

Chapter 23: Improving with More Design Patterns

229

 The changes I ’ ve made are in the /views/default/contacts/import.php file:

 < h1 > Import Your Contacts < /h1 >
 < p >
 Upload a .csv file from Outlook. Contact helpdesk for assistance.
 < /p >
 < ?php
 echo view::show(‘standard/errors’);
? >
 < form action=”/contacts/processimport” method=”post” enctype=”multipart/form-data” >
 < input type=”hidden” name=”importtype” value=”outlook” / >
 < div class=”row” >
 < label for=”contactsfile” > Contacts File: < /label >
 < input type=”file” id=”contactsfile” name=”contactsfile” / >
 < /div >
 < div class=”row” >
 < label for=”submit” > < /label >
 < input id=”submit” type=”submit” class=”submitbutton” value=”Upload” / >
 < /div >
 < /form >

 The addition of the hidden HTML Input element named ‘ importtype ’ is the first change. This will
contain a value of ‘ outlook ’ to specify the type of import that is being created.

 The next changes are the name and id attributes of the HTML File Input element. There values are
now ‘ contactsfile ’ to be more abstract.

 Now that the view has been modified, the next step is the contacts module ’ s processimport()
method. Instead of creating a new instance of the outlookcontactimportadapter class, I ’ m going to
create a new class that features an implementation of the Factory Design Pattern. First, here are the
relevant changes to the processimport() method:

 if (is_uploaded_file($_FILES[‘contactsfile’][‘tmp_name’])) {
 $contents = file_get_contents($_FILES[‘contactsfile’][‘tmp_name’]);
 unlink ($_FILES[‘contactsfile’][‘tmp_name’]);

 $builder = new importcontactsarraybuilder($contents);
 $imports = $builder- > buildarray();

 $currentuser = lib::getitem(‘user’);

 foreach ($imports as $import) {
 $contact = new contact();
 $adaptor = importadapter::factory($_POST[‘type’]);
 $adaptor- > setcontents($import);

 $contact- > firstname = $adaptor- > firstname;
 $contact- > middlename = $adaptor- > middlename;

 For more on the Factory Design Pattern, see Chapter 9.

 The conditional to check for the uploaded file has a small change. It is now checking for a file named
 “ contactsfile ” instead of “ csv. ” This matches the changes to the view I applied.

c23.indd 229c23.indd 229 7/16/09 9:10:12 AM7/16/09 9:10:12 AM

Part III: PHP Design Case Study

230

 Moving down a few lines, the first line of the import loop is still the same. Now, instead of creating the
new instance of outlookcontactimportadapter , the public static method factory() of the
 importadapter class is called. It is passed the posted ‘ type ’ value. This should contain the string
 ‘ outlook ’ , which was specified in the view I modified earlier. Next, the setcontents() method of
that particular adapter is executed with the contents of the import. Then, the method continues as in the
previous iteration of the code.

 The next step I ’ m going to perform is to create the importadapter class. This is located at /includes/
importadapter.php with the following content:

 < ?php
class importadapter
{
 public static function factory($type)
 {
 $classname = “{$type}contactimportadapter”;
 return new $classname;
 }
}

 The importadapter class has one public static function, called factory() . This accepts a single
parameter, which is used to build the name of the contact import adapter class. Then, this class is created
and returned to the caller function.

 Finally, in order for it to function correctly with the changes, I had to modify the
 outlookcontactimportadapter class. The file at /includes/outlookcontactimportadapter.php
now contains:

 < ?php
class outlookcontactimportadapter implements importadapterinterface
{
 public function setcontents($import)
 {
 $this- > firstname = $import[‘First Name’];
 $this- > middlename = $import[‘Middle Name’];
 $this- > lastname = $import[‘Last Name’];
 }
}

 There were only two simple changes to this class necessary to make it function with the importadapter
Factory Design Pattern addition. First, the constructor was renamed setcontents() . There was no other
change to that function. The other change was the implementation of the importadapterinterface .
Since I ’ m predicting that more of these will be created in the future, and I don ’ t want to change the
contacts module, I wanted to enforce the existence of the setcontents() method.

 The content of /includes/importadapterinterface.php is:

 < ?php
interface importadapterinterface
{
 public function setcontents($contents);
}

c23.indd 230c23.indd 230 7/16/09 9:10:12 AM7/16/09 9:10:12 AM

Chapter 23: Improving with More Design Patterns

231

 With these changes complete, the adapter is far more flexible, while still providing the Outlook - based
functionality in the requirements.

 Building the Contacts Array
 Continuing with the same vein of making the contact import more abstract, I noticed another area where
I can put my collection of Design Patterns to use. When the initial file is uploaded, a PHP array is built
from the contents of the file. This logic is executed in a method that is specific to the Outlook .csv file. I
like the way this array is built, but think this logic shouldn ’ t be in this class. This is the perfect time to
use the Delegate Design Pattern. I ’ m going to have the array - building class delegate the actual
responsibility of parsing the string to an array to a different class.

 For more on the Delegate Design Pattern, see Chapter 7.

 During my analysis, I made the following UML diagram (Figure 23 - 2):

importcontactsarraybuilder

<<realize>>

<<interface>>
importcontactarrayinterface

outlookimportcontactarraydelegate

#contents : String

�buildarray(type : String) �setcontents(contents : String)
�getArray()

�getArray()
�setcontents(contents : String)

Figure 23-2

 The importcontactsarraybuilder class will be created to build the array from the input string. It has
a method called buildarray() which will accept a type string to generate the proper calls to build
the array.

 The outlookimportcontactarraydelegate class is used to process the Outlook form of the contact
import. It stores the contacts in its protected property named contents . It has two public methods. The
first is setcontents() which is responsible for taking the contact import string and assigning it to the
object. The second is getArray() which will be responsible for processing the contents of the protected
 contents property and returning an array.

 Finally, the importcontactarrayinterface is needed to force consistency in all delegate objects.

c23.indd 231c23.indd 231 7/16/09 9:10:12 AM7/16/09 9:10:12 AM

Part III: PHP Design Case Study

232

 The first change will be applied to the processimport() method of the contacts module again:

 unlink ($_FILES[‘contactsfile’][‘tmp_name’]);

 $builder = new importcontactsarraybuilder($contents);
 $imports = $builder- > buildarray($_POST[‘type’]);

 $currentuser = lib::getitem(‘user’);

 The first two lines are the same and given for context. The change is the way the buildarray() public
method of the importcontactsarraybuilder class is called. Now, I am sending in the posted “ type ”
of the import. This will be set to ‘ outlook ’ from the changes in the last section to the view.

 Next, a few changes have been made to the /includes/importcontactsarraybuilder.php file. The
 buildcollection() method now has this content:

 public function buildcollection($type)
 {
 $classname = “{$type}importcontactsarraydelegate”;

 $delegate = new $classname;
 $delegate- > setcontents($this- > importedstring);
 $array = $delegate- > getArray();

 return $array;
 }

 The method is now accepting a single parameter named $type . Then, a new class name is built using
this parameter. A new instance of this class is assigned to the $delegate variable. The imported content
is then passed into the class based on the Delegate Design Pattern by calling its setcontents() public
method with the content as a parameter. Finally, the object ’ s getArray() method is called to retrieve the
 $array variable. The last line of this method is familiar: it sends the $array variable as a return
parameter.

 Looking at the construction of the $classname variable and knowing that the only value I can receive
will be “ outlook, ” I will create a new class named outlookimportcontactarraydelegate . I ’ ve
removed the logic from the buildcollection() method and will be inserting it into the new class. This
class can be found at /includes/outlookimportcontactsarraydelegate.php with the following
content:

 < ?php
class outlookimportcontactarraydelegate implements importcontactarrayinterface
{
 protected $contents;

 public function setcontents($contents)
 {
 $this- > contents = $contents;
 }

 public function getArray()
 {

c23.indd 232c23.indd 232 7/16/09 9:10:13 AM7/16/09 9:10:13 AM

Chapter 23: Improving with More Design Patterns

233

 $lines = explode(“\n”, $this- > contents);
 $keys = explode(‘,’, array_shift($lines));

 $array = array();

 foreach ($lines as $line) {
 if (!empty($line)) {
 $keyed = array_combine($keys, explode(‘,’, $line));
 $array[] = $keyed;
 }
 }

 return $array;
 }
}

 The class contains only two methods, both public methods that the importcontactarraybuilder class
had called. The first, setcontents() , accepts a parameter named $contents . This is assigned to the
protected $contents variable in this class.

 The getArray() method should look very familiar. It is a direct copy of the previous content of the
 buildcollection() method. I ’ ve only changed the first line to reference $this - > contents instead of
 $this - > importedstring .

 Finally, since more than one Delegate object may be created, the exterior interface should be the same.
The file /includes/importcontactarrayinterface.php contains the following interface to enforce
the public methods:

 < ?php
interface importcontactarrayinterface
{
 public function getArray();
 public function setcontents($contents);
}

 Using the Delegate Design Pattern inside of the array building class is a great idea. The Outlook .csv
file is pretty easy to parse. However, if other types get added, they may not be as easy. Delegating this
logic to exterior objects is the best practice for a scenario like this.

 Removing Logic from Views
 I strive to keep my logic outside of the view of the application. However, whether because of an
oversight or programmer laziness, a few lines sometimes sneak in. This is very bad: the view should
never have to perform any data or object manipulation duties. Instead, the entire set of information
should be provided to the view. The view can make decisions on which bits of that information
to display.

 In this application, the requirement to have more than one view right away makes this doubly
important. If the default view contains some logic to build an object, the mobile view must contain this

c23.indd 233c23.indd 233 7/16/09 9:10:13 AM7/16/09 9:10:13 AM

Part III: PHP Design Case Study

234

exact same logic. If a third view is added, this logic must also be copied to that view as well. This creates
code duplication and is not best practice.

 In this application, I made the mistake of allowing the complexity of the contact dao relationship
retrieval process to deter me from what I knew was best practice. This next section describes where this
problem happened and how to fix it.

 Modifying the Single View of a Contact
 When building the view for looking at a single contact, gathering the information together ahead of time
outside of the view became very complex. This should have been a dead give away to use one of the Design
Patterns to deal with this complexity. Instead, I created a contact dao and a contactgroupscollection
object. Inside of the view, I created individual contactmethodcollection objects. The way I look at this,
I was executing logic inside of the views. Instead, all of this information should have been passed to the
view so that it could display it. It shouldn ’ t be responsible for having to acquire new objects to do its job.

 Since gathering together all of the contact information is a complex process, I decided to use the Fa ç ade
Design Pattern. Instead of creating a bunch of logic before the single contact view is executed, I will
create a new Fa ç ade object to do all of this for me. Then, I ’ ll pass in the required information to the view.

 For more on the Fa ç ade Design Pattern, see Chapter 8.

 The following UML Diagram details my vision for the changes (Figure 23 - 3):

facadecontactinformation

�contact : contact
�groups : contactgroupscollection
�methods : Array

�__construct(id)
#populategroups()
#populategmethods()

Figure 23-3

 The facadecontactinformation class has the potential to be pretty complex. However, the
instantiation of the object will be relatively simple, and such is the beauty of the Fa ç ade design pattern.
The public function __construct() will take one parameter. This will be the integer ID of the contact
 dao that is requested. It will assign the contact dao to the public contact property. Then, it will call
the two protected methods.

 The protected method populategroups() will be responsible for creating an instance of the
 contactgroupscollection object for the contact dao belonging to this object. It will assign that
 contactgroupscollection object to the public groups property.

c23.indd 234c23.indd 234 7/16/09 9:10:14 AM7/16/09 9:10:14 AM

Chapter 23: Improving with More Design Patterns

235

 Finally, the protected method populatemethods() will be called. This will be responsible for creating
all the necessary instances of the contactmethodscollection objects for each group dao in the
 contactgroupscollection object stored in this class. Each of the contactmethodscollection
objects will be added to the public methods array property.

 The first area to change is the contacts module. The view() method has the logic to display a single
contact. I ’ ve changed it to the following content:

 public function view()
 {
 $controller = lib::getitem(‘controller’);

 if (empty($controller- > params[0])) {
 lib::sendto();
 }
 else {
 $params = new facadecontactinformation((int) $controller- > params[0]);
 echo view::show(‘contacts/view’,
 array(‘contact’= > $params- > contact,
 ‘groups’= > $params- > groups,
 ‘methods’= > $params- > methods));
 }
 }

 The method is still the same through the first portion of the conditional. However, now instead of
creating a new contact dao and a new contactgroupscollection object, a new instance of the
 facadecontactinformation class is created. This is passed the identifier from the controller like the
previous contact dao had accepted.

 The line that shows the view has changed as well. Instead of pointing to local variables, the parameters
are now public properties of the facadecontactinformation object. In addition to the ‘ contact ’ and
 ‘ groups ’ keys, the ’ methods ’ key is defined with the associated public attribute.

 The next step is to take a look at the Fa ç ade object located at /includes/
facadecontactinformation.php :

 < ?php
class facadecontactinformation
{
 public $contact;
 public $groups;
 public $methods = array();

 public function __construct($id)
 {
 $this- > contact = new contact($id);
 $this- > populategroups();
 $this- > populatemethods();
 }

 protected function populategroups()
 {
 $this- > groups = new contactgroupscollection($this- > contact);

c23.indd 235c23.indd 235 7/16/09 9:10:14 AM7/16/09 9:10:14 AM

Part III: PHP Design Case Study

236

 $this- > groups- > getwithdata();
 }

 protected function populatemethods()
 {
 foreach ($this- > groups as $group) {
 $this- > methods[$group- > id] = new contactmethodscollection($group);
 $this- > methods[$group- > id]- > getwithdata();
 }
 }
}

 This class starts out by defining the three public properties that will be retrieved to display the view.
Next, the constructor is defined to accept a single parameter named $id . This is used to assign a new
instance of the contact dao to the public $contact property. Then, in true Fa ç ade form, the next bit of
logic is sheltered by calling two additional protected methods.

 The populategroups() protected method probably looks similar. It is a near complete copy of the logic
from the contacts module. Instead of using the local $contact variable, however, it is using the
 $contact property from the current instance. The contactgroupscollection object is assigned to the
public $groups property.

 To replace the logic in the view, the populatemethods() protected method is created. A loop similar to
the one located in the view is created. Then, for reach group that is part of this instance ’ s $group
property, an entry is made to the $methods property. The array is keyed by the current group object ’ s id
property. Then, the value is set to an instance of the contactmethodscollection object built from the
current group. Finally, the getwithdata() method of the contactmethodscollection object is called.
This generates a fully populated $methods property associated with each contact group this contact has.

 The final change that is required to make use of this new Fa ç ade object is to modify the contacts/view
view. I ’ ve modified the following lines of the /views/default/contacts/view.php file:

 print “ < fieldset > < legend > {$group- > label} < /legend > ”;

 print ‘ < table > ’;
 foreach ($view[‘methods’][$group- > id] as $method) {

 I ’ ve removed the two lines after the label of the group. It is no longer necessary to create a new instance
of the contactmethodscollection object. Then, I ’ ve modified the next foreach loop to refer to the
proper key of the ‘ methods ’ parameter that was sent into the view.

 With these changes in place, this view is no longer working directly with object creation. This is now a
good example of keeping logic separate from the view.

 Try Implementing Design Patterns
 While I ’ m not a fan of “ homework, ” I am a fan of hands - on learning. You ’ ve seen me take this
application through a portion of a second iteration by applying more Design Patterns to the code. The
work is not done, however. I encourage you to take a look at the following areas that can be based on

c23.indd 236c23.indd 236 7/16/09 9:10:14 AM7/16/09 9:10:14 AM

Chapter 23: Improving with More Design Patterns

237

some Design Patterns. Try your hand at implementing your own version of the Design Pattern against
this working code base.

 Design Patterns and Error Checking
 A good portion of the application is void of error checking. The only real error checking put in place is in
user creation. The process simply makes sure that the user does not exist. What other ways could you
implement error checking using PHP Design Patterns?

 You may investigate into using the Strategy Design Pattern to check various types of strings for a valid
type. For example, knowing that a username or a password should not be a blank string, a Strategy
class validating that the string contains at least one character could be created.

 For more on the Strategy Design Pattern, see Chapter 17.

 Another route to take would be to have a Visitor object visit the instance of the dao before the save()
method is called. The visitor could validate the required fields and flag the dao as valid or not. This
could happen during both the creation and modification processes.

 You might also create a method named isvalid() , which makes use of some Delegate objects to check
various properties of the object. Then, the Boolean response to this could be used to determine if the dao
should call its save() method.

 Design Patterns and Contact Administration
 In the second section of this chapter, I talked about the best practice of removing logic from the views in
the application. Unfortunately, this application still has one particular view with object logic in it: the
contacts/manage view. How would you remove the logic from this view?

 Creating an instance of a Fa ç ade object similar to that in the single view of a contact is an acceptable
solution. Once this Fa ç ade is built in the edit() method of the contacts module, the logic could be
removed from the contacts/manage view.

 Design Patterns and View Types
 The view class has a static method named setviewtype() . This particular method is pretty simple right
now. However, as time goes on and more view types are requested, this particular method will become
more complex. What Design Patterns could you use to handle this complexity?

 The Delegate Design Pattern could be used to create an object to try to deduce the view type. This object
could be called within the setviewtype() method.

 If a common method of identifying the view type is requested, such as analyzing the HTTP User Agent
for an identifier, the Interpreter Design Pattern could also be used. This class would be used to interpret
the view type based on the information it was passed.

 For more on the Delegate Design Pattern, see Chapter 7. For more on the Interpreter Design Pattern,
see Chapter 10.

c23.indd 237c23.indd 237 7/16/09 9:10:15 AM7/16/09 9:10:15 AM

Part III: PHP Design Case Study

238

 Design Patterns and Deleting Objects
 The current process to delete an object from the data source is to create a complex MySQL statement. If
the application had to be migrated to a different data source, these statements might need to be
modified. What other types of Design Pattern – based objects could be used to provide this flexibility?

 The Mediator Design Pattern would be a great choice. When deleting a user, it would also notify each
 contact dao that it should also be deleted. In a similar case, the deletion of a contact dao would
trickle down with the mediators ’ help to the contactgroup and contactmethod objects that the
contact owned.

 For more on the Mediator Design Pattern, see Chapter 12.

 Share Your Design Pattern Work
 Try your best to come up with some Design Pattern – based solutions for the areas of the application I ’ ve
mentioned above. This practice will help train you to use these Design Patterns the next time you are
programming your own application.

 When you come up with new ways to solve existing problems using PHP Design Patterns, tell everyone!
Share them with your colleagues or post them on your blog. When you do this, you are killing two birds
with one stone. You are contributing to the open source community as well as encouraging your fellow
developers to practice better coding practices.

 After you ’ ve looked through this code, created your own versions of the solutions, or just modified this
application, tell me about it! Come out and comment on my blog at http://aaronsaray.com/blog . Tell me
what you ’ ve learned, share with everyone your newest creations, or even show me how you ’ ve modified
my Design Pattern – based code to fit into best practices.

 Summary
 In this chapter, I focused on continuing to strengthen the architecture of the application. Existing code
was updated to use new objects based on some of the PHP Design Patterns I covered in the reference
chapters.

 The import contacts functionality was the first area to modify. I aimed to uncouple the Outlook
requirements from the actual contact import logic. An object based on the Factory Design Pattern was
created to generate the Adapter object instead of forcing an instance of the one designed around
Outlook. Next, a Delegate object was introduced to construct an array of information from the contact
file import. Similar to the Factory object, this moved code from a tightly coupled object into a more
specific Delegate – based object. These few changes allow for enormous flexibility.

 The other area I focused on was the view system. In one specific view, I allowed object creation to
happen. A Fa ç ade object was created to accomplish some of the existing logic in a more encapsulated
way. Then, I was able to migrate the code from the view into that Fa ç ade . This generated a simple way
to gather the Contact information, while solidifying the barriers between the views and the logic.

c23.indd 238c23.indd 238 7/16/09 9:10:15 AM7/16/09 9:10:15 AM

Chapter 23: Improving with More Design Patterns

239

 The last section of this chapter directed your attention to other areas of the application that could benefit
from some Design Pattern – based objects. Various opportunities were presented with possible solutions. I
encourage you to continue updating this application with those suggestions to attain some of that hands -
 on learning.

 Congratulations on completing this book. It is both an honor and a privilege to share this knowledge
with you. I hope you join me in the excitement I feel to see PHP continuing to move forward and mature.
Please continue to create open source software applications using PHP Design Patterns so that proper
design and architecture can flourish in the PHP community!

c23.indd 239c23.indd 239 7/16/09 9:10:15 AM7/16/09 9:10:15 AM

c23.indd 240c23.indd 240 7/16/09 9:10:16 AM7/16/09 9:10:16 AM

Index

In
de

x

A
acceptVisitor(), 123, 124
action(), 51
activityStream, 89
Adapter, 25–26, 228
Adapter Design Pattern, 25–30

contact importing, 154
Zend Framework, 14

add(), 116–117
HTML, 203
Users, 193
UsersModule, 149

addFilter(), 14
addMethods(), 222
addmethods(), 152
addNewItem(), 89
addObserver(), 87
addSong(), 52
addSongs(), 53
addTrack(), 46, 76
addValidator(), 15
admin access, 149–151
admin status, 195
AJAX

Proxy Design Pattern, 97
Strategy Design Pattern, 111–112

algorithms
Interpreter Design Pattern, 67
Strategy Design Pattern, 110, 111, 114
Visitor Design Pattern, 125

Anchor, 213
Apache, 161
application access, 134
application core, 141–143

programming, 161–175
application programming, 159–226

authentication, 185–187
contact information, 197–226
index, 175–179
login, 175–179

applyAdjustment(), 116
applyInterpretation(), 69
$array, 164, 205, 232
ArrayAccess, 16
array_map(), 59
arrays, 73

contact information, 231–233
Delegate Design Pattern, 231
importing, 205
Iterator Design Pattern, 78
Mediator Design Pattern, 84
setitem(), 178
$values, 182

/assets/main.css, 171
/assets/managecontact.js, 219
/assets/managecontacts.js, 216
assumptions, 131, 137
attach(), 15
attachObserver(), 88–89
Auth, 178
auth, 147
authenticate(), 179
isloggedin(), 175
process(), 185
UML, 174, 179

Auth module, 13
authenticate(), 148
auth, 179
contactcollection, 179
factory(), 186
username, 179

authenticateusingfactory(),
147, 148, 186

authentication, 143–148
application programming, 185–187
contactcollection, 148
Factory Design Pattern, 147
isloggedin(), 175
templates, 175
User, 144, 185
user, 178

Index

bindex.indd 241bindex.indd 241 7/16/09 9:12:37 AM7/16/09 9:12:37 AM

242

authenticatorinterface, 186
auth::isadmin(), 179
auth::isloggedin(), 179
authorization, 143–148
authstandard, 148, 186
autoloader.php, 162–163

B
$band, 88

Prototype Design Pattern, 94
Proxy Design Pattern, 100
Strategy Design Pattern, 112
Visitor Design Pattern, 124

BandEndorsedCaseOfCereal, 119
$bandMixProto, 95
$bandName, 77
banking, Template Design Pattern, 116–117
baseDAO, 39, 41
Blog, 116
blogs

Decorator Design Pattern, 44
Factory Design Pattern, 62
Observer Design Pattern, 87
Visitor Design Pattern, 122

Boerger, Marcus, 15
$boughtCDs, 107
build(), 34–35
buildarray(), 205, 231
buildcollection(), 153, 204, 232
Builder, 32–33
Builder Design Pattern, 31–35, 153, 204
buildMyObject(), 33
buy(), 95, 100, 107, 124
buyCDNotifyStreamObserver, 89

C
C, Design Patterns, 7
Cache module, 14
Cache.php, 14
caching

Observer Design Pattern, 87
Proxy Design Pattern, 98

callRequiredLogic(), 57
CD, 46

Façade Design Pattern, 57–59
Factory Design Pattern, 63–65
Iterator Design Pattern, 76–78
Mediator Design Pattern, 81–84

Observer Design Pattern, 88–89
Prototype Design Pattern, 93–95
Proxy Design Pattern, 99–101
SaleItemTemplate, 119
Singleton Design Pattern, 107
Strategy Design Pattern, 111
Template Design Pattern, 118–119
Visitor Design Pattern, 123–125
XML, 58

$cd, 95, 114, 124
$_CD, 47
CDAsJSONStrategy, 114
CDAsXMLStrategy, 114
CDFactory, 65
$cdID, 78
CDs. See compact discs
$_CDs, 77
CDSearchByBandIterator, 77–78
CDTrackListDecoratorCaps, 47
CDUpperCase, 59
CDusesStrategy, 113
CDusesStrategyget(), 114
CDVisitorPopulateDiscountList, 125
change(), 83
changeBandName(), 82, 83
changeIdentifier(), 81
Checking, 116
child. See parent-child relationship
class extensions, 44
classes

Factory Design Pattern, 61–62
_get(), 182
Interpreter Design Pattern, 67
Iterator Design Pattern, 74
Mediator Design Pattern, 82
Observer Design Pattern, 86
_set(), 182
Singleton Design Pattern, 106
SQL, 181
Strategy Design Pattern, 110
Template Design Pattern, 116, 117, 119–120
Visitor Design Pattern, 123

class_exist(), 166
Classname, 21
$classname, 232
clean(), 181, 183, 184
_clone(), 94
ClonedObject, 93
code

Adapter Design Pattern, 27–30

authenticatorinterface

bindex.indd 242bindex.indd 242 7/16/09 9:12:38 AM7/16/09 9:12:38 AM

243

In
de

x

Builder Design Pattern, 34–35
Data Access Object Pattern, 39–42
Decorator Design Pattern, 45–47
Delegate Design Pattern, 51–54
Design Patterns, 7
Façade Design Pattern, 57–59
Factory Design Pattern, 63–65
Interpreter Design Pattern, 69–72
Iterator Design Pattern, 75–78
Mediator Design Pattern, 81–84
Observer Design Pattern, 87–89
Prototype Design Pattern, 91, 93–95
Proxy Design Pattern, 99–101
Singleton Design Pattern, 105–107
Strategy Design Pattern, 111–113
Template Design Pattern, 117–120
Visitor Design Pattern, 123–125

code snippets
dao, 181
Eclipse PDT, 17–21
templates, 20

collection, 209
Community Library, 92
compact discs (CDs), 45–47

Interpreter Design Pattern, 69–72
Iterator Design Pattern, 75–78
Mediator Design Pattern, 81–84
Observer Design Pattern, 87–89
Prototype Design Pattern, 93–95
Proxy Design Pattern, 99–101
Singleton Design Pattern, 105
Visitor Design Pattern, 123–125

complexFunctionA(), 33
complexFunctionB(), 33
conditional statements
dao, 181
Delegate Design Pattern, 50

Config, 14
Config module, 14
configurationOptions, 33
connect(), 14, 100
_connect(), Proxy Design Pattern,

100–101
_connectionToDB(), 41
constraints, 131, 137
_construct(), 47, 142, 146, 150, 165
contactscollection, 200
Iterator Design Pattern, 77
Singleton Design Pattern, 106
$urlstring, 166

Contact, 152
contact
$contact, 210
contactgroup, 206, 209
id, 216
save(), 205
User, 198

$contact, 210
contact information, 131–132, 133–134,

137–138
adding, 214–223
administration, 151–157
application programming, 197–226
arrays, 231–233
Design Patterns, 237
editing, 223–225
importing, 153–154, 202–209, 227–233
relationships, 153
viewing, 155–157

contact sync, 139
contactcollection, 144
authenticate(), 179
authentication, 148
daocollection, 199–200
defaultactation(), 175
Index, 187
usercollection, 155

contactgroup, 153, 154
contact, 206, 209
contactmethod, 198, 206, 217, 223
contactmethodcollection, 216
id, 223
NULL, 206–207
populate(), 210

contactgroupcontainer, 216
contactgroupid, 156
contactgrouping, 216
contactgroupscollection, 234–235
contactid, 156
contactimportgroupinterpreter, 206
contactmethod, 153
contactgroup, 198, 206, 217, 223
dao, 156

contactmethodscollection, 156, 235–236
contactmodule, 155
Contacts, 188
contacts
addMethods(), 222
edit(), 223
processadd(), 221

contacts

bindex.indd 243bindex.indd 243 7/16/09 9:12:38 AM7/16/09 9:12:38 AM

244

contacts (continued)
processedit(), 224
processimport(), 205, 229

contacts sync, 132, 135
/contacts/add, 214
contacts/browse, 200, 201
contactscollection, 152, 155, 200
getwithdata(), 200
looping, 201

contacts/edit, 224
‘contactsfile’, 229
contacts/group, 216
/contacts/import.php, 202
contacts/manage, 214, 219
ContactsModule
Module, 152
MySQL, 198
view(), 152, 157

contacts/processadd, 221
/contacts/view, 209
contacts/viewsidebar, 211
content, 69
$content, 166, 169
content.applyInterpretation(), 69
content-filtering proxy, 98
contents, 231
$contents, 233
Controller, 142, 144
controller
edit(), 195
index.php, 163, 169
render(), 169

Coordinated Universal Time (UTC), 122
create, read, update, delete applications

(CRUD), 37
create(), 59

databases, 145
Factory Design Pattern, 65
save(), 145, 182
$table, 182
Template Design Pattern, 116
UsersModule, 149

Create Category, 19–20
createObject(), 63
credentials, 98, 136
CRUD. See create, read, update, delete

applications
CSS, 166, 169, 170
CSV

Adapter Design Pattern, 26

errorObject, 28
.csv, 153
Input, 228
Outlook, 154, 159–160, 202
processimport(), 204

current(), 16, 17–18, 76
daocollection, 150
Iterator, 189
public methods, 189

Customize Palette, 19

D
DAO. See Data Access Object
dao, 149

code snippets, 181
conditional statements, 181
contactmethod, 156
dataobjects, 162
NULL, 181
parent-child relationship, 181
populate(), 181, 182
property(), 181
save(), 145
UML, 181
User, 145, 152, 179–182, 186
user, 178, 179

daocollection, 155, 156
contactcollection, 199–200
contactmethodscollection, 156
getwithdata(), 189
Iterator, 150, 156
Iterator Design Pattern, 149
parent-child relationship, 150, 189
populate(), 189, 208
Template Design Pattern, 149, 150
UML, 188
usercollection, 199–200
UsersCollection, 188

daocollectioninterface, 156
Data Access Object (DAO), 38, 147
Data Access Object Design Pattern, 15,

37–42, 145
‘DATA TRACK’, 64
databases

abstraction, 15
connections, 104
create(), 145
Template Design Pattern, 145
update(), 145

contacts (continued)

bindex.indd 244bindex.indd 244 7/16/09 9:12:39 AM7/16/09 9:12:39 AM

245

In
de

x

DataObject, 13
dataobjects, 162
/dataobjects/contactgroup.php, 198
/dataobjects/contactmethod.php, 198
/dataobjects/user.php, 182
db(), 5
db, 145
clean(), 181, 183
execute(), 183
factory(), 184
Factory Design Pattern, 181
getArray(), 150, 183
insertGetID(), 183
MySQL, 181
public methods, 184
UML, 182

Db module, 14
DB2, 14, 103
dbConnection, 39
decorate(), 212
decorateItems(), 45
Decorator Design Pattern, 43–47,

156–157
decoratorinterface, 157
decoratorsocialnetwork, 213
default(), 144
defaultaction, 166
defaultaction()
contactcollection, 175
Index, 187
index, 199
login, 176
show(), 191

$delegate, 232
Delegate Design Pattern, 49–54, 231
setviewtype(), 237

delegateType, 51
delete(), 116, 197
Delete user, 192
“deletecontactgrouping”, 221
deleteMethods(), 225
deletemethods(), 152
Design Patterns, 3–9. See also Specific

Design Patterns
C, 7
choosing and planning, 141–158
code, 7
contact information, 237
deleting objects, 238
error checking, 237

Java, 7
name, 6
PEAR, 12
plug and play, 7, 13
problems, 6
refactoring, 8
solutions, 6
templates, 5
Zend Framework, 13

detach(), 15
detailed requirements,

137–138
DirectoryIterator, 16
Div, 216, 219–221
.dmg, 50
doCalculation(), 117
Doctrine, 15
DomDocument, 112
doSomething(), 27, 87, 99
doSomethingA(), 57
doSomethingB(), 57
doSomethingRequiresAandB(), 57

E
Eclipse PDT, 11, 17–21
e-commerce

Observer Design Pattern, 86–87
Template Design Pattern,

117–120
edit()
contacts, 223
controller, 195
Façade, 237
users, 195
UsersModule, 149

else, 52
end(), 142, 168
enhancedCD, 64–65
Entity, 116
error checking, 237
errorObject, 27–30
execute(), 145
db, 183
insertGetID(), 184
$query, 184

executive summary, 136–137
$externalPurchaseInfoBandID, 95
$externalRetrievedType, 52

executive summary

bindex.indd 245bindex.indd 245 7/16/09 9:12:39 AM7/16/09 9:12:39 AM

246

F
Façade, 59, 237
Façade Design Pattern, 55–59
facadecontactinformation, 234
Factory, 62, 65
factory(), 14, 145, 147
authenticate(), 186
authstandard, 186
db, 184
getInstance(), 183
getInstance, 184
importadapter, 228, 230
LDAP, 186

Factory Design Pattern, 61–65,
183, 229

authentication, 147
db, 181
MySQL, 145, 181
PEAR Mail, 12
PEAR MDB2, 12
Zend Framework, 13–14

fetch(), 39, 41
$fgroupname, 206
File Input, 229
file systems

Iterator Design Pattern, 74
looping, 74
Prototype Design Pattern, 92

Filter.php, 14
findviewtype(), 143
firstname, 154
Form module, 14
formid, 214

G
Gamma, Erich, 5
generateimportmethods(), 207, 208
generatePublicly(), 116
generateZip(), 50
get(), 113–114
_get(), 145, 182
getAddressByZip(), 38
getArray(), 145
$array, 232
contents, 231
db, 150, 183
MySQL, 184
$return, 184

getAsXML(), 112–113
getBuiltMyObject(), 33
getChildren(), 16
getContent(), 69
getErrorNumber(), 28–29
getErrorText(), 28–29
getgroup(), 154, 206
getGuitar(), 62
getHttpClient(), 13
getInstance(), 13, 183, 184
mysql, 145
Registry, 13
singleton, 184
Singleton Design Pattern, 105, 106, 107
$type, 183

getinstance(), 184
getitem(), 164, 177
getM3U(), 52–53
getMyObjects(), 75
getName(), 75
getNext(), 75
getPlaylist(), 53–54
getPLS(), 52–53
getProduct(), 34
getProfilePage(), 70
getTitle(), 70
getTrackList(), 46
$GET[‘u’], 162
$_GET[‘u’], 164
getUserByFirstName(), 41
getwithdata(), 150, 155, 207
contactmethodscollection,

235–236
contactscollection, 200
daocollection, 189
generateimportmethods(), 208
Template Design Pattern, 189
userscolection, 191

Globally Unique Identifier (GUID), 92
$GLOBALS, 104
Google, 56
Google Maps, 212
group
NULL, 216
/views/default/contacts/group
.php, 216

groupcount, 220
groups, 234
GUID. See Globally Unique Identifier
Guitars, 62

Façade

bindex.indd 246bindex.indd 246 7/16/09 9:12:40 AM7/16/09 9:12:40 AM

247

In
de

x

H
$_handle, 106
handlers, 12
hasChildren(), 16
hash tables, 73
hasNext(), 75
Helm, Richard, 5
.HTACCESS, 161–162
.htaccess, 162
.htaccess, $_GET[‘u’], 164
HTML, 166
add(), 203
Div, 216, 219–221
id, 224
Input, 177, 216, 219–221, 223
Interpreter Design Pattern, 68
Select, 219–221, 223
Span, 219–221

.html, 9
HTTP, 176
HTTP User Agent, 166

I
id
contact, 216
contactgroup, 223
contactgroupcontainer, 216
HTML, 224
JavaScript, 216

$id, 236
identifier, 81
if/else, 52–53, 62
import(), 202
importadapter
factory(), 228, 230
setcontents(), 230

importcontactarraybuilder, 233
importcontactarrayinterface, 231
importcontactsarraybuilder, 204, 231
importcontactscollectionbuilder, 152
importedstring, 153
importing

arrays, 205
Builder Design Pattern, 204
contact information, 153–154, 202–209,

227–233
Interpreter Design Pattern, 206
Outlook, 227–228

$imports, 204, 205
‘importtype’, 229
/includes/authenticatorinterface

.php, 186
/includes/auth.php, 185
includesautoloader(), 164
/includes/contactgroupscollection

.php, 209
/includes/contactscollection

.php, 199
/includes/controller.php, 164
/includes/daocollection.php, 188
/includes/dao.php, 179
/includes/db.php, 182
/includes/decoratoraddress

.php, 212
/includes/decoratorinterface

.php, 212
/includes/decoratormobilephone

.php, 213
/includes/decoratorsocialnetwork

.php, 213
/includes/decoratorwebsite.php, 213
/includes/exceptions.php, 166
/includes/importadapter.php, 230
/includes/importcontactsarraybuilder

.php, 204, 232
/includes/lib.php, 163
/includes/mysql..php, 183
/includes/outlookcontactimportadapter

.php, 205, 230
/includes/outlookimportcontact

sarraydelegate.php, 232
/includes/singletoninterface

.php, 184
Index, 187
index, 175–179, 199
indexcontacts, 209
IndexModule, 144, 155
index.php, 162–166, 169
controller, 163, 169
.htaaccess, 162
view, 166

InfoCard, 14
InfoCard.php, 14
initial contact import, 138, 139
initial requirements analysis, 132–136
Input
.csv, 228
HTML, 177, 216, 219–221, 223

Input

bindex.indd 247bindex.indd 247 7/16/09 9:12:40 AM7/16/09 9:12:40 AM

248

insertGetID(), 145, 183, 184
instance, 105
$instance, 184
$_instance, 106
internalDelegate, 51
InternalException, 166
Internet Explorer, 134–135
Interpreter Design Pattern, 67–72, 237

importing, 206
interpretKeys(), 69
inventory system, Factory Design Pattern, 62
InventoryConnection, 106–107
isadmin(), 148, 185
isDot(), 16
isLink(), 16
isloggedin(), 148, 175
Login, 185

is_uploaded_file(), 204
isValid(), 14
Iterator, 14, 16
current(), 189
daocollection, 150, 156
Eclipse PDT, 17–18
key(), 189
next(), 189
rewind(), 189
valid(), 189

Iterator Design Pattern, 73–78
daocollection, 149
Zend Framework, 14

iterator.php, 12

J
Java, 7
JavaScript, 169, 170
/assets/managecontacts.js, 216
id, 216
Strategy Design Pattern, 111

JavaScript Object Notation (JSON), 112
Johnson, Ralph, 5
Join, 15
JSON. See JavaScript Object Notation

K
Kerievsky, Joshua, 8
key(), 16, 17, 189
daocollection, 150

Eclipse PDT, 17–18
Iterator Design Pattern, 76

keyedUpdateObject, 39
keyItem, 39
$keys, 205
keywords, 68

L
lastname, 154
LDAP, 136, 186
lib, 163
getitem(), 177
makehashedpassword(), 187
sendto(), 176
seterror(), 178
setitem(), 164

lib:getitem(), 177
lib::seterror(), 178
lib::setitem(), 177
LimitIterator, 16
$link, 184
living requirements document, 43
Log(), 14
logicA(), 117
LogicFacade, 57
Login, 179, 185
login

application programming, 175–179
defaultaction(), 176
process(), 178
public methods, 178

LoginModule, 144
/login/process, 177
$logline, 124
LogOut, 187
LogoutModule, 148
Log.php, 13
logToCSV, 28, 30
looping, 73
contactscollection, 201
file systems, 74
MySQL, 74

M
M3U, 51
macro language, 67
mail, 12

insertGetID()

bindex.indd 248bindex.indd 248 7/16/09 9:12:41 AM7/16/09 9:12:41 AM

249

In
de

x

Mail.php, 12
main filter(), 14
main views, 169–175
makeArray(), 59
makeCaps(), 47
makehashedpassword(), 187
makeString(), 59
makeXMLCall(), 59
mbd2.php, 12
$_mediator, 83
Mediator Design Pattern, 79–84

deleting objects, 238
methodA(), 27
methodB(), 27
methodboxvaluebox, 219
method_exists(), 166
$methods, 236
$methodtypekey, 223
middlename, 154
MixtapeCD, 94–95
mobile access, 134
mock

Interpreter Design Pattern, 70
PEAR Mail, 12

Model-View-Controller (MVC), 142
mod_rewrite, 162
Module, 142, 144, 152
moduleautoloader(), 163
/modules/contacts.php, 202
/modules/login.php, 176
/modules/users.php, 189
MP3, 51–53

Mediator Design Pattern, 81–84
MP3Archive, 83
MVC. See Model-View-Controller
$myCDCaps, 47
{{myCD.getTitle}}, 70
MyDelegateObject(), 51
MyDelegateObject, 51
MyInterpreter, 69
MyObject(), 105
MyObject

Builder Design Pattern, 33
Decorator Design Pattern, 45
Delegate Design Pattern, 51
Façade Design Pattern, 57
Interpreter Design Pattern, 69
Iterator Design Pattern, 75
Observer Design Pattern, 87
Prototype Design Pattern, 93

Proxy Design Pattern, 99
Singleton Design Pattern, 105
Strategy Design Pattern, 111
Visitor Design Pattern, 123

MyObjectA, 81
MyObjectAdapterForNewConsumer, 27
MyObjectB, 81
MyObjectBuilder, 33
MyObject.change(), 111
myObjectChanged(), 81
MyObjectCollection, 75
MyObjectCollectionIterator, 75
MyObjectDecorator, 45
MyObjectDecorator(), 45
MyObjectFactory, 63
MyObjectMediator, 81
MyObjectsToMediate, 81
MyObjectStrategy, 111
MyObjectTypeA, 63
MyObjectTypeB, 63
MyProxyObject, 99
MySQL, 14, 161

Adapter Design Pattern, 26
clean(), 184
ContactsModule, 198
Data Access Object Design Pattern, 39–42
db, 181
deleteMethods(), 225
Factory Design Pattern, 145, 181
getArray(), 184
Iterator Design Pattern, 74, 75–78
looping, 74
Prototype Design Pattern, 92
Proxy Design Pattern, 100
Singleton Design Pattern, 103, 105
$user, 200

mysql, 225
getInstance(), 145
getinstance(), 184
$link, 184
Singleton Design Pattern, 145
UML, 182

mysql_insert_id(), 184
MyTemplate, 117
MyVisitor, 123

N
name, 75, 229
$name, 164

$name

bindex.indd 249bindex.indd 249 7/16/09 9:12:41 AM7/16/09 9:12:41 AM

250

newID, 81
newPlaylist, 53
$newValue, 84
next(), 16, 17
daocollection, 150
Eclipse PDT, 17–18
Iterator, 189
Iterator Design Pattern, 76, 78
public methods, 189

notify(), 15, 87
notifyMediator(), 81
notifyObserver(), 88
NULL, 32, 164
contactgroup, 206–207
dao, 181
getitem(), 177
group, 216
Singleton Design Pattern, 105

null, 83

O
Object Oriented Programming, 5

Delegate Design Pattern, 49
Mediator Design Pattern, 79
parent-child relationship, 43
Prototype Design Pattern, 91
Singleton Design Pattern, 104
Strategy Design Pattern, 109–110

object relational mapper (ORM), 15
Observer Design Pattern, 13, 85–89

Zend Framework, 14–15
observers, 87
$_observers, 88
ob_start(), 142, 166
open source software, 85

Visitor Design Pattern, 122
Oracle, 14, 26
OriginalConsumer, 27
$originalObject, 84
ORM. See object relational mapper
Outlook, 135, 138
.csv, 154, 159–160, 202
importing, 227–228

‘outlook’, 229
outlookcontacctimportadapter, 154, 230
outlookcontactcollectionbuilder, 154
outlookcontactimportadapter, 205, 228
output buffering, 170
oversizedAddition(), 118–119

P
parent-child relationship

DAO, 38
dao, 181
daocollection, 150, 189
Object Oriented Programming, 43
sav(), 145
Strategy Design Pattern, 110
Template Design Pattern, 116

$parts, 166
passwords, 144, 147, 195

SHA-1, 187
username, 178

PEAR, 6, 11, 12
PEAR DB, 13
PEAR Log, 13
PEAR Mail, 12

Factory Design Pattern, 12
handlers, 12
mock, 12

PEAR MDB2, 12–13
$persist, 164
.php, 9
PHP Extension of Application.

See PEAR
Playlist, 51–54
$playlistContent, 52
PLS, 51
plug and play, 7, 13
plugin system, 86
populate(), 145, 150
contactgroup, 210
dao, 181, 182
daocollection, 189, 208
$table, 182

_populateDiscountList(), 125
populategroups(), 234
populatemethods(), 235, 236
position, 150
$price, 118, 120, 124
problems

Adapter Design Pattern, 25–26
Builder Design Pattern, 31–33
Decorator Design Pattern, 43–45
Delegate Design Pattern, 49–50
Design Patterns, 6
Façade Design Pattern, 55–56
Factory Design Pattern, 61–62
Interpreter Design Pattern, 67–68

newID

bindex.indd 250bindex.indd 250 7/16/09 9:12:42 AM7/16/09 9:12:42 AM

251

In
de

x

Iterator Design Pattern, 73–74
Mediator Design Pattern, 79–80
Observer Design Pattern, 86–87
Prototype Design Pattern, 91–93
Proxy Design Pattern, 97–99
Singleton Design Pattern, 103–104
Strategy Design Pattern, 109–111
Template Design Pattern, 115–117
Visitor Design Pattern, 121–122

process(), 144
Auth, 178
auth, 185
lib::setitem(), 177
login, 178
/login/process, 177
User, 178

processadd(), 149, 156, 193, 224
contacts, 221
standard/errors, 194
users, 195

processdelete(), 149, 156, 197
processedit(), 149, 156, 194,

195, 224
processimport(), 153, 202,

205, 229
.csv, 204

processingimport(), 204
product, 34–35
productBuilder, 34–35
Profile, 111
property(), 181
protected method

Singleton Design Pattern,
104, 105

Visitor Design Pattern, 122
Prototype Design Pattern, 91–95
provideProxyFeature(), 99
Proxy, 98
Proxy Design Pattern, 97–101
public methods, 144
current(), 189
db, 184
isadmin(), 185
key(), 189
login, 178
next(), 189
rewind(), 189
saveall(), 189
Template Design Pattern, 116
valid(), 189

Q
$query, 184

R
RDBMS. See relational database

management system
RecursiveIterator, 16
refactoring

Design Patterns, 8
Observer Design Pattern, 86
Prototype Design Pattern, 92
Strategy Design Pattern, 109

Registry, 13
Registry.php, 13
regression, Adapter Design Pattern, 26
relational database management system

(RDBMS), 12
removal, 192
removal.js, 211
render(), 142, 165
class_exist(), 166
Controller, 144
controller, 169
view, 166

$replacement, 71
requestClone(), 93
require(), 163
requirements analysis, 129–139
REST API, 62
retrievedAdjustmentOnBalance(), 116
$return, 184
rewind(), 16, 17
daocollection, 150
Eclipse PDT, 17–18
Iterator, 189
Iterator Design Pattern, 76, 78
public methods, 189

RSS feeds
Factory Design Pattern, 62
Observer Design Pattern, 87

runDelegateAction(), 51

S
SaleItemTemplate, 118, 119
save(), 82, 145
contact, 205
create(), 145, 182

save()

bindex.indd 251bindex.indd 251 7/16/09 9:12:42 AM7/16/09 9:12:42 AM

252

save() (continued)
dao, 145
update(), 145, 197
UsersModule, 149

saveall(), 189
scope creep, 79
scope items, 131, 137
Search Façade, 56
searchBySpecificKey(), 39
security

Interpreter Design Pattern, 67
Singleton Design Pattern, 104

Seek(), 16
SeekableIterator, 16
Select, 15, 219–221, 223
select, 41
sendto()
lib, 176
URLs, 176

$_SERVER[‘DOCUMENT_ROOT’], 161
$_SESSION, 164
_set(), 145, 182
setAdapter(), 14
setColor(), 34
setcontents(), 228
$contents, 233
importadapter, 230

setDatabase(), 32
setDelegateType(), 51
seterror(), 178
setHostName(), 32
setHttpClient(), 13
setitem(), 164, 178
setPassword(), 32
setPriceAdjustment(), 118
setPriceAdjustments(), 120
setSize(), 34
setStrategyContext(), 113–114
setType(), 34
setUser(), 70–71
setUsername(), 32
setviewtype(), 166

Delegate Design Pattern, 237
show(), 169

SHA-1, 187
share(), 116
shell, 169
shell.php, 170
show(), 142–143
defaultaction(), 191

end(), 168
setviewtype(), 169
start(), 168
UsersModule, 149
$view, 170
$viewtype, 166, 168

showItemsFormatted(), 45
showLogin(), 144
SimpleXMLElement, 17
SimpleXMLIterator, 17
Single Sign-On, 144, 147
singleton, 182, 184
Singleton Design Pattern, 103–107
mysql, 145
Zend Framework, 13

SMTP, 12
social networking

decorators, 213
Iterator Design Pattern, 74
Observer Design Pattern, 87–89
Proxy Design Pattern, 98–99
Template Design Pattern, 116

solutions
Adapter Design Pattern, 25–26
Builder Design Pattern, 31–33
Decorator Design Pattern, 43–45
Delegate Design Pattern, 49–50
Design Patterns, 6
Façade Design Pattern, 55–56
Factory Design Pattern, 61–62
Interpreter Design Pattern, 67–68
Iterator Design Pattern, 73–74
Mediator Design Pattern, 79–80
Observer Design Pattern, 86–87
Prototype Design Pattern, 91–93
Proxy Design Pattern, 97–99
Singleton Design Pattern, 103–104
Strategy Design Pattern, 109–111
Template Design Pattern, 115–117
Visitor Design Pattern, 121–122

Span, 219–221
SPL. See Standard PHP Library
spl_autoload_register(), 163
SplFileinfo, 16
SplObserver, 15
SplSubject, 15
SQL

classes, 181
Data Access Object Design Pattern,

37–38

save() (continued)

bindex.indd 252bindex.indd 252 7/16/09 9:12:43 AM7/16/09 9:12:43 AM

253

In
de

x

Doctrine, 15
Visitor Design Pattern, 125

stakeholders, 132, 134
Standard PHP Library (SPL), 11, 13,

15–17, 74
standardCD, 65
standard/errors, 194
start(), 142
ob_start(), 166
show(), 168

state change, 86
storage, 150
storeContent(), 69
Strategy, 110–114
$_strategy, 113
Strategy Design Pattern, 109–114
$strategyObject, 113
strtoupper(), 47, 59
subtract(), 116–117
switch/case, 62
symbols, Interpreter Design Pattern, 68

T
table, 145
$table
create(), 182
populate(), 182
update(), 182

tableName, 39
tableNameDAO, 39
Tarred and GZipped (TGZ), 122
taxAddition(), 118–119
Template, 115–120
Template Design Pattern, 115–120
daocollection, 149, 150
databases, 145
getwithdata(), 189

templates
authentication, 175
code snippets, 20
Design Patterns, 5
Interpreter Design Pattern, 67, 68
isloggedin(), 175
variables, 20

TGZ. See Tarred and GZipped
.tgz, 50
third-parties

Façade Design Pattern, 56
Interpreter Design Pattern, 68

$this, 124, 189
$this->contents, 233
$this->importedstring, 233
$title, 88

Prototype Design Pattern, 94
Proxy Design Pattern, 100
Strategy Design Pattern, 112
Visitor Design Pattern, 124

$track, 76
trackList, 46
$trackList, 46, 94
TV, Proxy Design Pattern, 98
txt, 74
type, 63, 142, 214
$type, 53
buildcollection(), 232
Façade Design Pattern, 59
getInstance(), 183
Observer Design Pattern, 88

‘type’, 228
‘types’, 223

U
UML. See Unified Modeling Language
uncoupled objects

Mediator Design Pattern, 84
Observer Design Pattern, 85

Unified Modeling Language (UML), 6
Adapter Design Pattern, 27
auth, 174, 179
Builder Design Pattern, 33
contact viewing, 157
dao, 181
daocollection, 188
Data Access Object Design Pattern, 38–39
db, 182
Decorator Design Pattern, 45
Delegate Design Pattern, 50–51
diagram, 6–7
Façade Design Pattern, 56–57
Factory Design Pattern, 62–63
Interpreter Design Pattern, 69
Iterator Design Pattern, 75
Mediator Design Pattern, 80–81
mysql, 182
Observer Design Pattern, 87
Prototype Design Pattern, 93
Proxy Design Pattern, 99
singleton, 182, 184

Unifi ed Modeling Language (UML)

bindex.indd 253bindex.indd 253 7/16/09 9:12:43 AM7/16/09 9:12:43 AM

254

Unified Modeling Language (UML) (continued)
Singleton Design Pattern, 105
Strategy Design Pattern, 111
Template Design Pattern, 117
Visitor Design Pattern, 123

Union, 15
unit tests, Visitor Design Pattern, 122
United Parcel Service (UPS), 110
update(), 39, 41

databases, 145
Observer Design Pattern, 88–89
save(), 145, 197
$table, 182
UsersModule, 149

updated requirements
discussion, 138–139
document, 136–138

updateQuantity(), 106, 107
UPS. See United Parcel Service
Uri module, 14
Uri.php, 14
URLs
.HTAACCESS, 161–162
HTTP, 176
sendto(), 176

$urlstring, _construct(), 166
User, 147

authentication, 144, 185
contact, 198
dao, 145, 152, 179–182, 186
Data Access Object Design Pattern, 145
Interpreter Design Pattern, 69–70
Login, 179
process(), 178

user
authentication, 178
dao, 178, 179
isadmin(), 185
$username, 178, 195

$user, 200
user interface

designing, 143–151
Façade Design Pattern, 56

userAddress, 38
userCD, 71
userCDInterpreter, 71
usercollection, 155, 199–200
username, 195
authenticate(), 179
passwords, 178

$username, 178, 195
$_username, 70
users

admin access, 149–151
creating, 148–149
deleting, 148–149
editing, 148–149

Users, add(), 193
users
edit(), 195
processadd(), 195
processdelete(), 197
processedit(), 195

UsersCollection, 149, 188–197
daocollection, 188

userscollection, getwithdata(), 191
users/edit, 195
users/manage, 193, 195, 214
UsersModule, 148–149, 188–197
add(), 149
create(), 149
edit(), 149
save(), 149
show(), 149
update(), 149

userTable, 41
USPS, 110
UTC. See Coordinated Universal Time

V
valid(), 16, 17
daocollection, 150
Eclipse PDT, 17–18
Iterator, 189
Iterator Design Pattern, 76, 78
public methods, 189

$_valid, 77–78
Validate.php, 15
$value, 41
$values, 182
view, 166–169
view()
contactmodule, 155
ContactsModule, 152, 157
/contacts/view, 209

$view, 170
$view[‘body’], 170
$view[‘groups’], 211

Unifi ed Modeling Language (UML) (continued)

bindex.indd 254bindex.indd 254 7/16/09 9:12:44 AM7/16/09 9:12:44 AM

255

In
de

x

/views/default/contacts/browse
.php, 200

/views/default/contacts/group
.php, 216

/views/default/contacts/import
.php, 203

/views/default/contacts/manage
.php, 214

/views/default/contacts/method.php, 216
/views/default/contacts/view.php, 210
/views/default/contacts/viewsidebar

.php, 211
/views/default/index/welcome.php, 201
/views/default/login/form.php, 176
/views/default/standard/header.php,

174–175
/views/default/users/manage.php, 193
/views/default/users/show.php, 191
/views/deffault/users/add.php, 193
$viewtype, 166, 168
visit(), 123
visitCD(), 124
Visitor, 123
$visitor, 124
Visitor Design Pattern, 121–125
Vlissides, John, 5

W
WebServiceFacade, 59
website availability, 131, 137
Windows Mobile, 134–135, 212
WTAI, 212

X
XML

Adapter Design Pattern, 26
CD, 58
Façade Design Patterrn, 57
Observer Design Pattern, 89
Prototype Design Pattern, 92
Proxy Design Pattern, 97
Strategy Design Pattern, 111–113
Visitor Design Pattern, 125

XMLHttpRequest, 97
XPath, 68

Y
Yahoo!, 56
Your Contacts, 201

Z
ZCE. See Zend Certified Engineering
Zend Certified Engineering (ZCE), 9
Zend Framework, 6, 11

Adapter Design Pattern, 14
Design Patterns, 13
Factory Design Pattern, 13–14
Iterator Design Pattern, 14
Observer Design Pattern, 14–15
Singleton Design Pattern, 13

Zend Optimizer, 13
Zend Studio, 13
.zip, 50

.zip

bindex.indd 255bindex.indd 255 7/16/09 9:12:44 AM7/16/09 9:12:44 AM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 260badvert.indd 260 7/16/09 8:43:53 AM7/16/09 8:43:53 AM

www.wrox.com

$44.99 USA
$53.99 CAN

Recommended
Computer Book

Categories

Programming Languages

PHP

ISBN: 978-0-470-49670-1

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers,
developers, and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

PHP is often considered to be the cornerstone for building
flexible and feature-rich web applications. Because
of its relatively simple initial learning curve, newer
programmers can easily create applications in PHP from
the ground up. As these applications scale, however,
the maintenance can seem daunting. Luckily, the
mature programming community has something to
offer: Design Patterns. These repeatable solutions for
common problems have been applied for years to other
programming languages. This book aims to bridge
the gap between the PHP and the older programming
language by applying those tried and tested Design
Patterns to native PHP applications.

This book starts with an introduction to Design Patterns,
describes their use and importance, and details where
you've seen them already. It continues through a host of
Design Patterns with code examples and explanations.
Finally, an in-depth case study shows you how to plan
your next application using Design Patterns, how to
program those patterns in PHP, and how to revise and
refactor an existing block of code using Design Patterns
from the book. The author approaches the concepts in
technical yet usable formats that are familiar to both
programmers who are self-taught and those with more
extensive formal education.

What you will learn from this book
● What Design Patterns are and why they matter in PHP
● Commonly established PHP Library usage of Design Patterns

● Faster and more efficient object creation with Design Patterns
like Builder, Façade, Prototype and Template

● Decoupled architecture using Data Access Object and Proxy
Design Patterns

● Better code flow and control using the Delegate, Factory and
Singleton Design Patterns

● How to implement Visitor and Decorator Design Patterns to
enhance objects without modifying their core

● Comprehensive plug-in creation techniques using Observer
Design Pattern

● How to plan application architecture using Design Patterns

● How to program a case study web site from start to finish with
Design Pattern based coding

● How to recognize architectural benefits from Design Patterns in
an existing application

● Methods to further strengthen code from case study analysis

Who this book is for
This book is for experienced PHP programmers who are looking to
enhance the quality of their code architecture with Design Patterns.

Professional

PHP Design Patterns
Saray

spine=.5625"

P
H

P
 D

esig
n P

atterns

Professional

Updates, source code, and Wrox technical support at www.wrox.com

PHP
Design Patterns
Aaron Saray

Professional

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

	Professional PHP Design Patterns
	About the Author
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: Getting Acquainted with Design Patterns and PHP
	Chapter 1: Understanding Design Patterns
	What Are They?
	What Design Patterns Are Not
	Design Pattern Demonstration
	Why Use Design Patterns in PHP?
	Summary

	Chapter 2: Using Tools Already In Your Arsenal
	Patterns in Existing Frameworks
	The Standard PHP Library
	Using Eclipse PDT with Patterns
	Summary

	Part II: Reference Material
	Chapter 3: Adapter Pattern
	Problem and Solution
	UML
	Code Examples

	Chapter 4: Builder Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 5: Data Access Object Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 6: Decorator Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 7: Delegate Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 8: Façade Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 9: Factory Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 10: Interpreter Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 11: Iterator Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 12: Mediator Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 13: Observer Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 14: Prototype Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 15: Proxy Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 16: Singleton Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 17: Strategy Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 18: Template Pattern
	Problem and Solution
	UML
	Code Example

	Chapter 19: Visitor Pattern
	Problem and Solution
	UML
	Code Example

	Part III: PHP Design Case Study
	Chapter 20: Requirements Analysis
	Initial Requirements
	Initial Requirements Analysis
	Updated Requirements Document
	Updated Requirements Discussion
	Summary

	Chapter 21: Choosing Design Patterns and Planning
	Designing the Core
	Designing User Interaction
	Designing Contact Administration
	Summary

	Chapter 22: Programming the Application
	Information Preparation
	Application Programming
	Summary

	Chapter 23: Improving with More Design Patterns
	Working with Contacts Import
	Removing Logic from Views
	Try Implementing Design Patterns
	Summary

	Index

