Wrox Programmer to Programmerm™

Professional

PHP

Design Patterns

Aaron Saray

Updates, source code, and Wrox technical support at www.wrox.com

Professional PHP Design Patterns

L0 Yo L et oY XXi

Part I: Getting Acquainted with Design Patterns and PHP

Chapter 1: Understanding Design Patterns..........cccciimiiiiiiiciiiiscssciecncnnnans 3
Chapter 2: Using Tools Already In Your Arsenalcccceeireimreimnrminsresnsrnsnnsnnss 11

Part II: Reference Material

Chapter 3: Adapter Pattern........cccoeemiiiiir s s s r s s s s 25
Chapter 4: Builder Patternccveeeiiicir v s s s s r s s s s e 31
Chapter 5: Data Access Object Pattern.........ccoeeiiiiiiiiincrc s 37
Chapter 6: Decorator Pattern.........ccoeimmiiiiiiiicrr s e e 43
Chapter 7: Delegate Patternccccoviieiiiieimirincrisr s s s nm e 49
Chapter 8: Facade Pattern..........cccomimimiimiieiiirsre s nnae 55
Chapter 9: Factory Patterncccviiiiiiicri i v s s s nm e 61
Chapter 10: Interpreter Pattern........cccovviiiiiiiicic s s s s e s s s nanas 67
Chapter 11: Iterator Patternc.cooeeoiiii s s s s r s s s e 73
Chapter 12: Mediator Patterncocoeviivireiecc s s s s s s s s e e 79
Chapter 13: Observer Pattern ... s e ra e 85
Chapter 14: Prototype Pattern........cccviiiiiiiiiciiscr i e e 91
Chapter 15: Proxy Pattern.........cooiiiiiiiiiisiiisrssr s s s ss s s s nns e 97
Chapter 16: Singleton Pattern........c.ccciiiiiiiiiiiiicrcr s s e e 103
Chapter 17: Strategy Pattern.........ccoeimimiiiiiiiiiirr s e 109
Chapter 18: Template Pattern........ccccceeiiiicieicccrr s s s s e 115
Chapter 19: Visitor Pattern.........ccoeieimiicicrcnc s s s re s s s s s mn e nmnnns 121

Continues

Part lll: PHP Design Case Study

Chapter 20: Requirements AnalysiS......c.cvcvimirirrrereimsnrarr s sasasnnnas 129
Chapter 21: Choosing Design Patterns and Planning...........c.ccccvcveieieiiinianes 141
Chapter 22: Programming the Applicationcccceimiiiiiiiiincrcr e 159
Chapter 23: Improving with More Design Patterns.........ccccoveimiiiiciciiciiinnns 227

Professional

PHP Design Patterns

Professional

PHP Design Patterns

Aaron Saray

WILEY
Wiley Publishing, Inc.

Professional PHP Design Patterns

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-49670-1

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //www.wiley

.com/go/permissions.

Limit of Liability /Disclaimer of Warranty: The publisher and the author make no representations or warran-
ties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2009931463

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

To the big one for always being a
little bit better, and the little one for
reminding me that I can be.

About the Author

Aaron Saray was introduced to a second-hand Commodore 64, with no persistent storage, when he was
8 years old. This fueled his appetite for computer science which carried him through many different
languages and computers. Aaron finally settled on PHP as his language of choice in 2001. From then on,
he continued to pepper in various other web languages such as HTML, CSS and JavaScript while
continually building on his PHP expertise. Along his career path, Aaron has designed and maintained
web site tools for an Internet Service Provider, created web based account management tools for
subscribers of a major dental insurance company and led the development efforts of back-office websites
for Internet connected Point of Sales systems. After becoming a Zend Certified Engineer, Aaron started
his own web development company based around open source software. He continues to release open
source software and keeps an updated PHP centric blog at aaronsaray.com.

Credits

Acquisitions Editor Production Manager

Jenny Watson Tim Tate

Project Editor Vice President and Executive Group Publisher
Maureen Spears Richard Swadley

Technical Editor Vice President and Executive Publisher
Steve Suehring Barry Pruett

Production Editor Associate Publisher

Kathleen Wisor Jim Minatel

Copy Editor Project Coordinator, Cover

Foxxe Editorial Services Lynsey Stanford

Editorial Director Proofreader

Robyn Siesky Dr. Nate Pritts, Word One

Editorial Manager Indexer

Mary Beth Wakefield Robert Swanson

Acknowledgments

My technical people: Steve Suehring, James Rodenkirch, Billy Gilbert, Bruce Crevensten, Jason Keup
and Jared Alfson

My friends and family: The Gorals/Cains/Sarays, The Cichons, The Delta Ladies, and Mikey’s Crew

Contents

Introduction xxi

Part I: Getting Acquainted with Design Patterns and PHP

Chapter 1: Understanding Design Patterns 3
What Are They? 3
An All Too Common Example 3
Design Patterns Are Solving the Same Problem 4
Design Patterns Are Around You All the Time 5
The Common Parts of a Design Pattern 6
What Design Patterns Are Not 7
Design Patterns Are Not Plug and Play 7
Design Patterns are Maintainable But Not Always Most Efficient 8
Design Patterns are a Vehicle, Not a Refactoring End 8
Design Pattern Demonstration 8
Why Use Design Patterns in PHP? 9
Summary 9
Chapter 2: Using Tools Already In Your Arsenal 11
Patterns in Existing Frameworks 11
Design Patterns in PEAR 12
Design Patterns in the Zend Framework 13
Design Patterns in Doctrine 15
The Standard PHP Library 15
SPL Observer and SPL Subject 15
SPL Iterators 15
Using Eclipse PDT with Patterns 17
Code Snippets in Eclipse PDT 17

Summary 22

Contents

Part II: Reference Material

Chapter 3: Adapter Pattern 25
Problem and Solution 25
UML 27
Code Examples 27

Chapter 4: Builder Pattern 31
Problem and Solution 31
UML 33
Code Example 34

Chapter 5: Data Access Object Pattern 37
Problem and Solution 37
UML 38
Code Example 39

Chapter 6: Decorator Pattern 43
Problem and Solution 43
UML 45
Code Example 45

Chapter 7: Delegate Pattern 49
Problem and Solution 49
UML 50
Code Example 51

Chapter 8: Facade Pattern 55
Problem and Solution 55
UML 56
Code Example 57

Chapter 9: Factory Pattern 61
Problem and Solution 61
UML 62
Code Example 63

Xvi

Contents

Chapter 10: Interpreter Pattern 67
Problem and Solution 67
UML 69
Code Example 69

Chapter 11.: Iterator Pattern 73
Problem and Solution 73
UML 75
Code Example 75

Chapter 12: Mediator Pattern 79
Problem and Solution 79
UML 80
Code Example 81

Chapter 13: Observer Pattern 85
Problem and Solution 86
UML 87
Code Example 87

Chapter 14: Prototype Pattern 91
Problem and Solution 91
UML 93
Code Example 93

Chapter 15: Proxy Pattern 97
Problem and Solution 97
UML 29
Code Example 929

Chapter 16: Singleton Pattern 103
Problem and Solution 103
UML 105
Code Example 105

xvii

Contents

Chapter 17: Strategy Pattern 109
Problem and Solution 109
UML 111
Code Example 111

Chapter 18: Template Pattern 115
Problem and Solution 115
UML 117
Code Example 117

Chapter 19: Visitor Pattern 121
Problem and Solution 121
UML 123
Code Example 123

Part lil: PHP Design Case Study

Chapter 20: Requirements Analysis 129
Initial Requirements 130

Executive Summary 130
Scope 130
Assumptions/Constraints 131
Detailed Requirements 131
Initial Requirements Analysis 132
Size/User Scale 133
Type of Contact Information 133
Application Access 134
Contacts Sync 135
User Credentials 136
Updated Requirements Document 136
Executive Summary 136
Assumptions/Constraints 137
Detailed Requirements 137
Updated Requirements Discussion 138
Summary 139

xviii

Contents

Chapter 21.: Choosing Design Patterns and Planning 141
Designing the Core 141
Designing User Interaction 143

Authentication and Authorization 143
Creating, Editing, and Deleting Users 148
Providing Admin Access to All Users 149
Designing Contact Administration 151
Working with Contacts and Information 152
Contact Information Relationships 153
Importing Contacts 153
Viewing Contacts 155
Summary 158

Chapter 22: Programming the Application 159
Information Preparation 159
Application Programming 161

Programming the Core of the Application 161
Programming User Interaction and Administration 175
Programming Contact Administration 197
Summary 226

Chapter 23: Improving with More Design Patterns 227

Working with Contacts Import 227
Outlook Contact Adapter 228
Building the Contacts Array 231

Removing Logic from Views 233
Modifying the Single View of a Contact 234

Try Implementing Design Patterns 236
Design Patterns and Error Checking 237
Design Patterns and Contact Administration 237
Design Patterns and View Types 237
Design Patterns and Deleting Objects 238
Share Your Design Pattern Work 238

Summary 238

Index 241

Xix

Introduction

PHP is mainstream. Wherever you look, you will see PHP meet-ups, job openings, and major companies
using this open source language to support their business. An open source language with such humble
beginnings is now heavily rooted in the enterprise world. PHP is brushing shoulders with the “the big
kids” now—the enterprise-level languages with support from companies like IBM and Microsoft. This
friendly confluence brings in new blood and new ideas. One of the most notable new pushes is to
develop PHP applications in a more robust, scalable, businessworthy deployment. Programmers who
have been around much longer than PHP have introduced great concepts to the PHP audience along
these lines. In this book, the focus is on one major concept: Design Patterns.

Who This Book Is For

When determining a target audience for this book, I had to make some difficult decisions. Should I write
for the beginning coder who is just learning PHP and its features and concepts, or should I focus more
on the programmers with many years of experience? Should any assumptions be made about the level of
expertise the reader has with PHP’s object-oriented features? Do I need to continue to include support
for PHP4? (It may be easy to answer that last question: “No, PHP4 is no longer supported.” However,
considering that it is still deployed in the wild, with developers still tasked to create new functionality,
the answer isn’t so easily decided.) In order for the book to reach the widest audience for implementing
Design Patterns in PHP, while not becoming a PHP language reference, the following guidelines apply to
the audience requirements of this book.

The reader:

Q Must be thoroughly experienced in the PHP language or at least have http://php.net
bookmarked. Some examples may use functions that a beginning programmer may not have
run into before.

Q Must have an intermediate to advanced understanding of Object Oriented Programming (OOP)
techniques in PHP. Intermediate-level OOP programmers will find Chapter 2’s investigation
into the more advanced OO features of PHP very useful.

Q Must be using PHP5 or above to both have the full set of object-oriented features available as
well as execute the examples and case study code.

Q Should be familiar with the Universal Modeling Language (UML).

Simply put, the examples and concepts used in this book are going to be most useful to programmers
who have some experience building interactive applications at least as complex as a blog. If you’ve only
used PHP for very simple things like templating or contact forms, you may find it harder to follow the
pattern chapters.

Introduction

How This Book Is Structured

There are three parts to this book: Introductory Chapters, Reference Chapters, and Case Study Chapters.
Each follows a different cadence with its own emphasis.

Introduction Chapters

The first chapter is both an introduction to Design Patterns and a call to be dedicated to using them in
PHP. Those talented PHP programmers out in the world are always hungry for new knowledge. This
chapter aims to expand their realm of hunger from just PHP-based concepts to the more architecturally
sound Design Patterns realm.

The second chapter focuses more on the tools that are available in PHP to build the roots of these Design
Pattern concepts. Reviewing such things as the intermediate and advanced OOP features of PHP, the
Standard PHP Library, and the existing open source PHP frameworks that are common will help make
concrete the coupling of PHP and Design Patterns.

Reference Chapters

The reference chapters are the middle chapters or the actual Design Pattern meat-and-potato portion of
the book. They will be broken down into four main parts: the name, the problem and solution, UML
diagrams, and finally a quick object-oriented code example. These cover the main functional portions of
Design Pattern, while not being overly verbose. (If you're familiar with other books on Design Patterns,
you may recognize my approach as being more simplistic than the 8 to 10 sections included in most
other documentation standards.)

The Case Study

The last portion of the book is an in-depth case study, where I cover the exact specifications of the project
and proposal, the analysis of the patterns available, and then the step-by-step approach for applying
these.

Feature Analysis

Generally, when you receive a set of specifications, they’re not in final form. During your initial review,
your mind should already be spinning with ideas about the architecture. You'll want to explore the
requirements to determine if it is a singular instance only ever used once or an extensible project. What
kinds of features are planned for the future? In cases where you're not a subject matter expert, you may
need to obtain answers to specific questions that are assumed to be known by the business analysts.

In the case study, you'll receive the specifications from the client. I'm going to iterate through the
thought process of reviewing the specifications, asking questions, and getting clarifications. This section
will end with the updated specifications document.

Pattern Analysis

Any project that you do should start with an analysis phase. I've seen too many instances where
programmers hit the ground running, either blaming it on such a short timetable or just being overly

xxXii

Introduction

exuberant to get the project going. It’s important to take a step back, look at the specifications, and start
to determine a plan of attack.

In the case study pattern analysis, you're going to sketch your basic design and business flow, and then
turn to the architecture. You'll compare different ways to solve the problem using the pattern arsenal and
create UML diagrams of your patterns customized with specific business logic and rules.

Step-by-Step Code Creation

This is the section of the case study that goes a bit awry from the main expectations set for this book.
This section contains extensive code examples based on UML diagrams. It steps you through the exact
thought process behind building each portion of the application from the pattern level. The focus isn’t
the analysis of language specific features, however. Intermediate programmers may need to reference the
PHP manual from time to time.

With the completion of the code, you'll take a run back over your application and review all your choices
to make sure that no other pattern is a better fit now that you have the whole picture in place. Design
Patterns are not meant to be strict rules that you must adhere to but building blocks and framing points
for your application. It’s not unheard of or “illegal” to swap out a Design Pattern farther along into the
project to create a more architecturally sound code base.

What You Need to Use This Book

Because a good portion of this book is more conceptual than practical, the requirements are pretty
simple:

QO Windows or Linux operating system

Q PHP5.2 or above

Q MySQL5.0 or above

Chances are that most of the sample code will work even if you don't stick to these requirements.
However, the last case study will require these specific versions.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly rele-
vant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

xxiii

Introduction

As for styles in the text:

Q We highlight new terms and important words when we introduce them.

QO We show keyboard strokes like this: Ctrl+A.

Q We show filenames, URLs, and code within the text like so: persistence.properties.
a

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use gray highlighting to emphasize code that's particularly important in the
present context.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-49670-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher-
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist
.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information and,
if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of the
book.

XXiv

Introduction

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http:/ /p2p.wrox.com, you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:
1. Gotop2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

4. Youwill receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum e-
mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXV

Professional

PHP Design Patterns

Part |

Getting Acquainted

with Design Patterns
and PHP

Chapter 1: Understanding Design Patterns

Chapter 2: Using Tools Already In Your Arsenal

Understanding Design
Patterns

Usually when I pick up a book and see a chapter longer than five pages about a topic that I'm not
the most familiar with, I tend to get scared. More than five pages may see me dropping the book
and running away, flailing my arms and shouting about how tough these computers are! While
this chapter may be longer than five pages, don’t be discouraged. The term Design Pattern is just a
fancy name for something that is not all that complex. A good portion of this chapter is taking
what you may already know and use regularly and refining it to a more concise definition. So, let’s
jump in and see what Design Patterns really are.

What Are They?

The story of Steve that follows helps describe Design Patterns in a real-world context. I'm hoping
that you're not too familiar with this story!

An All Too Common Example

Steve works at a large insurance firm. His most recent task was developing a way to show customer
information to the call center representatives over a web interface. He designed a complex system
that would allow the reps to search for a customer, enter call logs, update customer coverage
information, and process payments. The system went into place smoothly, minus the few bumps
and hiccups that a new installation in a production environment always runs into. Steve is happy,
relaxed, and ready to sit back in the break room sipping his free coffee.

Overnight, the insurance company triples in size from its most recent investment. Not only is Steve
called back to work on providing new scalability and enhancements to the call center software but
there has also been buzz about adding some new features to the corporate site to support the new
acquisition’s customers. Steve’s department is also increased to include two new developers, Andy
and Jason.

Part |: Getting Acquainted with Design Patterns and PHP

The news comes down from the vice president that the corporate site needs to allow customers to
process their payments after they have completed a successful, secure user log in. Additionally, the
system needs to show how many times the customer has called in to the call center. Finally, it needs to
show an audit log of every change the call center has made to the customer’s account.

Steve knows that he can easily update the call center software to provide the audit log and then copy
over the code, tweak it, and make use of the payment processing. However, the new programmers need
to be tasked without much time to get up to speed on the new system. Steve’s boss has assigned them
the portions of the project that Steve is most familiar with. Since Steve is the rock-star PHP programmer
with the most experience, his boss needs him to work on the other portions of the corporate site as soon
as possible after which he’ll then come around and make use of the new programmers’ changes to the
auditing on the call center software. In the end, it will be his responsibility to provide hooks for the new
payment-processing portion of the user login screen.

Steve’s code isn’t bad, but it seems to be taking Jason a bit longer to follow through and port the
payment-processing portion into the corporate site. Instead, he determines he could finish faster by
writing it in his own method. He mentions this to Steve and continues on his way. Andy is also
struggling. Since his Master’s in computer science is newly acquired, he hasn’t had much time to gain
experience with the jumbled code that sometimes supports existing enterprises.

Through much struggle and late nights, the team is successful and deploys the new code changes. Andy
feels like everything could have been architected better. Steve thinks that if the other programmers
would have just copied and pasted his code, things would have gone must faster; Jason and Andy just
needed to make a few tweaks and it would have been solid. Jason mentioned that he was confused about
why some functionality was implemented in one way in one section of the code and in a different way in
a different piece. That is what threw him off.

As the website continues to gain more visitors, the performance begins to suffer. Steve’s boss suggests
that the team take a few days and look at the code for optimization.

Jason discovers that the method that he wrote for payment processing is nearly the same as Steve’s. Jason
combines and tweaks the methods into one class. Steve is starting to see similarities between the
authentication code that he wrote for the call center site and the classes he authored for the corporate
site’s user login. Andy is realizing that every PHP page they create has the same set of function calls at the
top of it. He creates a bootstrap type class to bring this all into one location to reduce code duplication.

From outside this example, you can objectively see many things. Steve’s code could have benefited from
commonality in its approach. Andy’s formal education in software design made him sometimes question
PHP’s ability to accomplish the tasks and question the architecture. Jason couldn’t easily understand
Steve’s payment system, so he opted to create his own, causing code duplication. Finally, after the
software analysis, the team started discovering patterns in their seemingly jumbled code base. This is

the beginning of this team’s foray into Design Patterns.

Design Patterns Are Solving the Same Problem

In the previous example, Steve’s team stumbled into the first important part of the Design Pattern
concept. Patterns are not intentionally created in software development. They are more often discovered
through practice and application in real-world situations. The payment application system and the
bootstrap type calls being consolidated into classes are examples of identifying patterns in programming.

Chapter 1: Understanding Design Patterns

It was once said that every single piece of music that could be written already has been. Now, new music
creation is just the rearranging of those particular sets of notes to different tempos and speeds. It’s the
same with general software development, barring a few major groundbreaking exceptions. The same
problems come up repeatedly and require common solutions. This is exactly what Design Patterns

are: reusable solutions for these common problems.

No book mentioning Design Patterns would be complete without the reference to the Gang of Four: Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, authors of the original Design Patterns book.
After a considerable amount of time in the field, they started noticing particular patterns of design
emerging from various development projects. Collectively, they gathered these ideas together to form the
initial Design Patterns concept. Recognizing these as templates for future development, they were able to
put them into an easy-to-understand reference with digestible segments for large, complex programming
concepts.

While Design Patterns can encompass many things — from interface design to architecture, and even
marketing and metrics — this particular book will focus on development language construction using
Object Oriented Programming.

A problem in software design consists of three parts:

Q The “what” is considered the business and functionality requirements.
Q The “how” is the particular design that you use to meet those requirements.

Q The “work” is the actual implementation, or the “how” put into actual application and practice.

Design Patterns fit into the “how” of this process, and as a result, this book describes the “how” of
solving these problems as well as portions of the “work” necessary to make these solutions successful.
You can picture PHP as the vehicle behind the “why” of the problem solving. Once you know “what”
the software needs to do, and you've designed “how” it can do it, the “work” becomes a lot easier with a
lot less refactoring.

I can’t stress this enough: the PHP language, your grasp of it and the way you understand its intricacies
is not the focus of this book. Instead, I bring common, time tested methodologies into focus, describe
them, and relate them to PHP.

Patterns naturally start to come out of software development, as you saw in the example. However,
having a full playbook that references existing patterns can make the architecture planning faster and the
choices better. As an added bonus, programmers coming from different software realms may recognize
the pattern and just have to adapt to the specifics of the language. Having a clear set of patterns in your
application may also help new members of your team grasp your project, lowering your ramp-up time.

Design Patterns Are Around You All the Time

You've seen how Steve’s team was able to grasp basic patterns in their software and create reusable
items. You may also be able to draw parallels to your own software development now. How many times
have you created the same user login and authentication system using your user class? Do you have a
db () function sitting around somewhere that you favor? These are examples of how you've already
been using patterns.

Part |: Getting Acquainted with Design Patterns and PHP

Even more detailed and closer to the root patterns are examples found in your favorite PEAR or other
framework libraries. For example, using PEAR DB is an example of putting a Design Pattern into use
(notably the factory method). The Zend Framework also uses various different patterns such as the
Singleton and the Adapter patterns.

The Common Parts of a Design Pattern

The Gang of Four pioneered a documentation standard for describing Design Patterns. They used this in
their book for each of the patterns that they mentioned. Authors after them have copied this exact format
and continued to propagate this form of documentation. I was a little bit less verbose with you because

I felt a lot of the sections either reiterated the sections above them or were just there for structure’s sake.
The introduction to this book mentions the four main parts of each pattern’s documentation: the name, the
problem and solution, the Universal Modeling Language (UML) diagram, and the code example.

The Name

The name is actually more important in Design Patterns than you may initially guess it is. Proper
descriptive naming conventions can go a long way toward explaining the behavior and relationship of
the pattern to the project and other patterns.

In the example for this chapter, you saw how Jason mentioned to Steve that he was going to rewrite a
portion of the payment-processing system. Since Steve was the senior programmer, he may not have
necessarily agreed with the approach that Jason was using, but he certainly could have suggested some
patterns to be used in that rewrite’s architecture. This way, the entire team would both be familiar with
the underlying concepts of the payment system, with Jason specializing in the exact implementation.

Problem and Solution

As mentioned previously, Design Patterns are what emerge from solving the same problem with the
same general solution. This section of the description covers the main problem or problems in your
project and then shows how this particular Design Pattern is one of the better solutions.

As you may have noticed, I didn’t use the phrase “the best solution” because no one can say this
definitively. Even if you find what you believe is the best Design Pattern for a particular problem, you're
going to have to apply a certain amount of tweaking to it in order for it to fit perfectly into your project.

UML Diagram

The UML diagram will show the general structure of the pattern. In some cases, it may be necessary to
generate more than one diagram to show additional implementations of the pattern or to illustrate a
complex concept in easier-to-understand segments.

What is UML?

Unified Modeling Language (UML) diagrams should be a staple in your programming
arsenal. UML is a standard way to diagram programming actions, objects and use
cases. This helps communicate your design when building complex software in PHP.
For a quick refresher on UML, visit the http: //Wikipedia.org/wiki/Unified_
Modeling_Language page on Wikipedia.

Chapter 1: Understanding Design Patterns

You may find that the building blocks for generating your own UML diagrams for your project can be
loosely based on these generic pattern diagrams. Of course, your method names, class names, and
attributes will vary and be more complex than those in the example.

The Code Example

Hands-on PHP programmers are finally rejoicing: the code examples. These are going to be relatively
simple examples of the Design Pattern concept put into PHP code. The bonus here in having a PHP-
based Design Patterns book is that you don’t necessarily need to know another language to see an
example of this pattern. (Other books focusing on Enterprise Design Patterns have used Java or C
examples, somewhat taking away the effectiveness of the example to a sole-language programmer.)

I continue to reiterate: the code examples are simply that. They are not meant to be plug and play. They
may not contain error logging or handling, auditing, or wholly secure programming techniques. This is
not to say that I don’t appreciate high-quality, secure programming (previous teammate programmers of
mine can confirm that I'm a stickler for details), but it would distract from the main concept that I'm
trying to explain.

What Designh Patterns Are Not

It’s important to rein in the explanation of Design Patterns by also talking about what they don’t
encompass. Up until now, you may have noticed that I've created a pretty large umbrella of coverage for
the Design Pattern definition.

Design Patterns Are Not Plug and Play

If you're expecting to flip to the Design Pattern pages of this book and see full examples that you can
quickly copy and paste for your next project, you will be sadly disappointed. Design Patterns are not just
a simple plug and play solution to your programming project.

Design Patterns are not the actual implementation or even the algorithm for solving the problem. For
example, you may create a design such that every house you construct has windows in the south to let in
more heat and light. You are not actually doing the constructing with exact measurements and locations
of the windows. You just hand over your design to the builder (programmer in our case), and they
implement it.

Another analogous way to view Design Patterns is to compare them to musical notes on a scale. You
may know all the notes in a minor scale, but playing them exactly in order and in the same tempo does
not make an enjoyable song. You can’t open up a scale book, grab the scale, play it on guitar, and expect
everyone to think you're an amazing song writer. It would be quite boring and wouldn’t solve the
problem your music is made for: to demonstrate a specific set of emotions via art. In this way, Design
Patterns are like those scales in the book. While they are the building blocks of a great solo, it is up to
you to apply them, tweak them, and create a great song.

Part |: Getting Acquainted with Design Patterns and PHP

Design Patterns are Maintainable But Not Always
Most Efficient

Design patterns don’t always lend themselves to the greatest efficiency and speed in applications either.
The goal of a Design Pattern is to help you design a solution in an easily repeatable and reusable way.
This means the Pattern may not be specifically tailored to your situation but will have greater code
maintainability and understandability.

Design Patterns are a Vehicle, Not a Refactoring End

A particular supervisor of mine just finished reading a book by Joshua Kerievsky and came to me with
his newly acquired knowledge. He told me that we need to refactor our code base to use all Design
Patterns. We had a discussion about what refactoring really meant, especially in our context.

While respecting Kerievsky and not disagreeing, I do feel that a greater distinction should be maintained
when coupling Design Patterns to refactoring. Refactoring approaches both creating a more efficient
code base and improving the maintainability and clarity of the code. Design Patterns are a great vehicle
for your refactoring approach, but shouldn’t be the destination. While I'm in favor of starting a project
with a highly detailed set of Design Pattern architecture specs, I don’t want to force something into a
pattern for patterns’ sake. Imagine if the first rock bands in existence threw a piano into the mix just
because everyone else in music was doing it, and they thought they had to. You wouldn’t have that
classic guitar-driven rock music that we’ve come to love!

Design Pattern Demonstration

Most examples of Design Patterns historically have been very sparse and theoretical so as not to have the
reader confuse the core concepts with language-agnostic features. Readers who have studied Design
Patterns, or even Object Oriented Programming before will be very familiar with the ever-present
square, circle, and oval object examples.

The debate rages on about Design Pattern books using simple objects like squares or people in their
examples. Purists say you should detail the Design Pattern concepts and practice and give the

simplest examples possible so as not to distract from the actual implementation of the pattern.

(These are the people that hated story problems in math class because of all the extra information!) In my
experience, self-taught PHP programmers prefer to see more thorough examples of the concept in code
form. (They probably learned a lot by copy and paste coding when they first started.)

The Design Patterns in this book do contain small to medium-sized examples of PHP code to
demonstrate the pattern. This dual-phased approach combines the actual conceptual explanation of the
pattern for those who need that particular structure with the example-based pattern demonstration for
those who are more hands-on learners.

The reference pages of this book will be more satisfying to the purists, while the case study section at the
end will satisfy the code-example-hungry readers. For more information on the references pages, skip to
the next section to see how they will be laid out.

Chapter 1: Understanding Design Patterns

Why Use Design Patterns in PHP?

PHP has a very easy beginner’s learning curve with the backing of an enterprise-ready engine. Chances
are that you ventured into PHP by inserting a few lines of code into an existing HTML document. Simply
change the extension from .html to . php, add your quick snippet of code, deploy it to a PHP server, and
you're a bona-fide PHP programmer. Up until the advent of the Zend Certified Engineer (ZCE)
certification, there was no real measurement of a PHP programmer’s prowess. Even after becoming a
ZCE, programmers can still lack some of the essentials for developing enterprise-ready, architecturally
sound application software.

As if the example in the beginning of the chapter weren’t enough encouragement, more business-class
players are coming on board with PHP. PHP’s humble roots have left it somewhat devoid of the
limelight of major enterprise-level programming languages. However, the hard work of Zend as well as
the adoption of PHP by large Internet companies (such as Yahoo! and Amazon) has shown that PHP is
enterprise ready. With the introduction of enterprise-level software requirements, enterprise-level
methodology is to follow.

PHP now has support for a lot of the building blocks behind the concepts you're going to study. Perhaps
during the era of PHP3 or PHP/FI, applying these styles of patterns may have been more difficult if not
impossible. Don’t get me wrong; there are always patterns in language; it’s just that this book and its
examples wouldn’t have been nearly as useful!

Summary

This chapter discussed the prevalence of patterns in your normal programming by using an everyday
programming example. By extending your understanding of patterns, you can make correlations to
actual Design Patterns. Examining the realm that Design Patterns encompass, and what they do not,
provided a more concise definition. Finally, the case was made for using Design Patterns in PHP by
pointing out PHP’s support for building base Design Patterns as well as mentioning PHP’s position
among some of the greater enterprise partners.

Now that you have an understanding of what Design Patterns are, let’s move on to discovering what
PHP already has available to help you out.

|

Using Tools Already
In Your Arsenal

Now that you've got a pretty good idea what Design Patterns are from Chapter 1, you can take a
look at your current arsenal and see where they have already infiltrated. After which, you'll learn
ways to make it easier to increase that penetration.

Common PHP frameworks and libraries such as PEAR and the Zend Framework were mentioned
in the last chapter. In this chapter, you're going to look a bit deeper at those to pull out more
details of Design Patterns in use. You'll then touch on an additional framework that you might also
have heard of.

PHP 5 introduced a new standard set of classes and functions known as the SPL. After a quick
introduction, this chapter examines what functionality may be useful when creating code
examples of the Design Patterns for the reference chapters.

Finally, you'll finish up this chapter by looking at features of the Eclipse PDT IDE that can help
with Design Pattern creation and duplication.

Patterns in Existing Frameworks

Some of the things that make the most common PHP frameworks so successful are their careful
architecture, maintainability, and extensibility. This is all a tribute to the proper use of Design
Patterns in their initial architecture. This section pulls out a couple of examples of the use of
these patterns for each framework. The goal is to demonstrate even more the proliferation of these
patterns throughout your daily programming so that the reference chapters seem less daunting.

If you see an example of a Design Pattern being featured in one of these frameworks, feel free to
page ahead to that reference chapter to learn more about it.

Part |: Getting Acquainted with Design Patterns and PHP

It is important to reiterate that a Design Pattern is simply a template for constructing your program. Not
every Design Pattern-based architecture will be one object to a pattern, nor will it follow the exact book
specifications of that pattern. You will very often find classes created with more than one Design Pattern
or that the base pattern has been heavily tweaked to fit into the particular context.

Design Patterns in PEAR

PEAR is one of the oldest libraries of PHP extensions. PEAR stands for PHP Extension of Application
Repository. The PEAR website’s quick summary of PEAR almost screams the potential for being a great
example for Design Patterns, specifically this phrasing: “for reusable PHP components.” While the
newest versions of PHP are no longer bundling PEAR into the core distribution, I'm sure that you’ve run
into PEAR in your existing PHP Programming experience. PEAR seems to be falling slightly behind in
the race as other frameworks gain greater traction. However, PEAR still has some great functionality and
Design Pattern—centric architecture examples.

To examine the Design Pattern immersion of PEAR, this section reviews various PEAR libraries and
indicates which design patterns they implemented during architectural planning. There are hundreds of
PEAR classes with undoubtedly more demonstrations of Design Pattern-based design.

PEAR Mail

The PEAR Mail class is an interface created to send mail using various backend systems, including
PHP’s mail function, sendmail, and SMTP.

In the 1.2.0b1 version of this class, the Mail.php file contains an instance of the factory class around line
49. (Chapter 9 defines the Factory Design Pattern.) You'll learn about that particular pattern in the
reference pages. The good news is that, if you’ve used this class, you've already used the Factory pattern
in your applications!

PEAR Mail also includes a mock object for testing the e-mail functionality. Using a function to add pre-
and post-send handlers, and calling these handlers when executing the send method, is very close to an
Observer Design Pattern. (Chapter 13 defines the Observer Design pattern.) Remember, patterns are just
the base blueprint for your architecture design. You may find during implementation that you need to
modify the pattern to fit your requirements as was done in the mock object here.

PEAR MDB2

12

PEAR MDB?2 is a database abstraction layer for all of PHP’s supported relational database management
system (RDBMS). MDB2’s documentation boasts a heavily object-oriented API that predicts a great
potential for Design Pattern—saturated architecture.

When reviewing version 2.5.0b2, I've found that MDB2 uses the Factory pattern again at around line 377
of mdb2 . php. It looks like PEAR programmers heavily relied on the Factory pattern when creating this
repository. MDB2 also protects itself from duplication by using the Singleton pattern around line 484 of
mdb2 . php. (Chapter 16 defines the Singleton Design pattern.)

Finally, a great example of the Iterator pattern can be found in the iterator.php file around line 54.
(Chapter 11 defines the Iterator Define pattern.) This example is by far the most detailed implementation

Chapter 2: Using Tools Already In Your Arsenal

of a Design Pattern so far. This implementation also extends functionality from the Standard PHP
Library, which is discussed later on in this chapter.

PEAR DB DataObject

One of the clearest examples of a Design Pattern put into practice in PEAR is the DB DataObject.
(Chapter 5 defines the Data Access Object Design pattern.) Instead of pointing to various portions of this
class where the patterns are implemented, I suggest that you review the whole structure. From start to
finish, this is a great example of a Design Pattern implemented in a solid but not overly verbose way. As
explained in Chapter 1, code based on Design Patterns is rarely plug and play. This class pays homage to
that notion by requiring the base DataObject class to be extended by your own code to be usable.

PEAR Log

The PEAR Log package is an abstract logging framework with hooks for files, databases, syslog, e-mail,
Firebug, and the console. Version 1.11.3 uses the standard Factory (line 151 of Log . php) and Singleton
(line 213 of Log . php) patterns. The Log package makes use of the Observer pattern (line 769 of Log . php)
to handle some of this extensibility.

Design Patterns in the Zend Framework

Zend, the company behind PHP, is best known for the PHP engine. They continue to grow by offering
more professional services for PHP and additional software products like the Zend Optimizer and the
Zend Studio. With all of this experience, Zend was the perfect organization to aggregate the newest Web
2.0 functionality, Design Patterns and old staples into one framework.

The Zend Framework is a simple, object oriented framework and library built on best practices. You can
bet you'll see some of these Design Patterns built into the architecture of this framework! When
reviewing the Zend Framework, I'm going to focus on individual design patterns directly and indicate
which modules of the framework they’re part of. We will be using version 1.6 of the Zend Framework
for this book’s examples.

The Singleton Pattern in Zend Framework

One of the most common patterns demonstrated in the Zend Framework is the Singleton pattern. Briefly,
the Singleton is a Design Pattern that aims to allow only one instance of the base object.

The Auth module uses the getInstance () method around line 68 of Auth.php to create a Singleton
instance. The Feed module uses two functions, setHttpClient () and getHttpClient () to store a
single instance of the connection. The Layout module uses a Singleton pattern to contain only one
instance of a Layout. Finally, the Registry class also uses its own getInstance () method on about line
49 of Registry.php. (Some authors have listed Registry as its own Design Pattern, but I humbly
disagree and view it as almost a language extension or an organizational pattern.)

The Factory Pattern in Zend Framework

The next most common design pattern in Zend Framework is the Factory pattern. The Factory pattern
basically creates an interface to instantiate different objects in a similar way.

13

Part |: Getting Acquainted with Design Patterns and PHP

The Cache module of Zend Framework has a method named factory (), which is responsible for this
functionality. This particular method (line 82 of Cache . php) demonstrates the Factory pattern well by
looking at the exterior usage of the method compared to the complex logic contained within to generate
new classes. The Db module also uses a method named factory () to create instances of the Db
connections. Database abstraction is a great example of the need for the Factory pattern; both Zend
Framework and PEAR have proven this. The Uri module is a more traditional example of the Factory
pattern. It uses more control structures to determine the proper class to instantiate and return. The
switch statement is located near line 107 in Uri . php.

The Iterator Pattern in Zend Framework

The Iterator Design Pattern is also an important pattern that is implemented in the Zend
Framework. The Iterator pattern is simply a design of an object that makes it traversable. Imagine this to
be like casting an object’s properties to an array in PHP.

The Config module is used to store configuration options, which surely need to be accessed
programmatically. The necessity to make some options read-only solidifies the need to create an
Iterator object instead of just using a plain array in PHP. This is done in PHP by implementing

the Iterator interface when the Config class is created. The Form module is another implementation
of the Iterator pattern in which the various elements of the HTML form can be stepped through. The
Paginator module is one of the most obvious candidates for iteration, as pagination has the iteration of
individual results at its core.

The Adapter Pattern in the Zend Framework

The Adapter Design Pattern has been instrumental in giving the Zend Framework that ease of
implementation that it boasts. (Chapter 3 defines the Adapter Design pattern.) The Adapter pattern
creates an interface that changes one object’s methods to something that another object expects.

A portion of the Db suite of files located in the Zend /Db /Adapter folder contain classes that create a
simple structure for calling common functions in databases such as Db2, MySQL, and Oracle. This
pattern allows the programmer to call a method like connect () without having to worry about the
exact DSN and PHP function calls to build it. The InfoCard module has two functions, called
setAdapter () and getAdapter (), located at line 127 and 139 in InfoCard.php. This allows each call
to the public methods to function the same regardless of the actual logic contained inside of them. The
Paginator module, in addition to using the Iterator pattern, also makes use of the Adapter pattern,
providing a unified interface for any number of items that need to be stepped through. This is
demonstrated clearly in its factory () method. (It looks like the Paginator module is very heavily
saturated with Design Patterns!)

The Observer Pattern in Zend Framework

14

Any framework makes heavy use of a plug-in type architecture — the Zend Framework being no
exception. The best way to architect this is with the Observer pattern. The Observer pattern is just a way
of requesting potential action from other objects when something happens in the source object.

The Filter module provides a method to add actions to the filter stream using the addrilter () method
on line 51 of Filter.php. On line 65, the main filter () function runs, passing that value through
each of the objects added earlier. The Log module also makes use of the Observer pattern. The Log ()
method sends the action that just happened, or the event, through to various objects waiting to process
it. When running the isvalid () method of the Validate module, you are also engaging functionality

Chapter 2: Using Tools Already In Your Arsenal

created with the Observer pattern. The function addvalidator () on line 70 of validate.php is the
vehicle to add in the objects that will process the event.

Design Patterns in Doctrine

Doctrine is an object relational mapper (ORM) for PHP. This object-oriented library provides an interface
for database abstraction. It also features an implementation of the Data Access Object Design Pattern.
“Features an implementation” is an understated way of saying that the entire library really is focused on
being a Data Access Object pattern.

The main functionality of Doctrine revolves around the ability to create objects that correspond to tables
in the database. Instead of accessing this data directly by creating SQL with Select, Join, and Union
statements, objects are created with properties that reflect these predefined relationships. Then, complex
data manipulation is executed using simple public methods of objects regardless of the actual database
engine and language specifics.

The Standard PHP Library

The Standard PHP Library (SPL), developed by Marcus Boerger, is a useful collection of interfaces and
classes bundled with PHP as an extension. In PHP 5, this was added as part of the core distribution. The
manual states that this set of interfaces and classes is “meant to solve standard problems.” At first read,
this echoes the explanation given earlier of Design Patterns. Indeed, the library has an assortment of
features that does help with your creation of Design Patterns in PHP. Let’s review a few of the main
players of the SPL to see what you may use in your future pattern-based architecture.

SPL Observer and SPL Subject

The splobserver and the Splsubject interfaces are an implementation of the Observer Design
Pattern. splSubject contains three method declarations: attach (), detach() and notify ().
attach(),and detach () are used to attach objects to the chain of notification and receive a
SplObserver object. The notify () function is called whenever an action happens that the chain should
be aware of. The splobserver interface contains one method, update (), which receives only one
parameter — an SplSubject object. This should be called whenever the Spl1Subject’s value changes.

This may seem very vague and confusing if you're not familiar with the Observer Design Pattern.
However, the main thing to remember is the existence of these methods as you continue on to study the
Design Patterns. You may find that using some of these methods may jump-start your patterns on your
next programming project.

SPL Iterators

When I first ran across SPL iterators, I didn’t directly correlate them to what I knew about Design
Patterns at the time. Even though they functioned as you would expect from an Iterator Design Pattern,
and were even named the same thing, I totally overlooked the intentional architecture. Because of this
ease of use, it is perfectly fine to review these before reviewing the actual Iterator Design pattern. After
reviewing these interfaces, an understanding of the Iterator should come naturally when it is reviewed
in the reference materials in Part II.

15

Part |: Getting Acquainted with Design Patterns and PHP

Basically, an Iterator is an object that provides an interface for traversing some other data structure or
object. It is programmer-agnostic of the actual underlying structure. For example, if you were running an
online music store and you received your inventory list in both XML and CSV, you could create an object
that would read through each of these data sources. The public methods of this object should allow you
to travel both forward and backward through the collection of music without having to worry about
what type of data structure the incoming list was in.

As the intent of the first part of this book is to give you building blocks to create your own Design
Pattern structures, this section only points out the more common or important interfaces and classes
used with iteration in SPL. To review the full feature list of the SPL, visit http: //php.net/spl.

Iterator, Recursivelterator, Seekablelterator

The Iterator interfaces in the SPL allow you to access an object much as you would an array (don’t
confuse this with the Arrayaccess interface, however). The member functions of the Tterator
interface are current (), key (), next (), rewind () and valid(). Being familiar with the array
functionality built into PHP, you can draw your own conclusions right away on how to use the
Iterator interface.

The seekableIterator adds on one additional function to the Iterator methods: seek (). This
method allows the object to travel to an absolute position within its storage system. You can closely
equate this to accessing an array by defining its index in brackets.

The RecursiveIterator defines an easy way to traverse hierarchical data. It contains all of the
methods of Tterator plus two additional ones: hasChildren () and getChildren (). Simply put,

the hasChildren () method notifies the user if there is an additional level below the current access
level. The getChildren () method returns a collection of objects that contain the same properties as the
parent (with an optional additional level of children). This may seem confusingly abstract at first glance.
However, just compare it to a programmatic way of accessing a multidimensional array.

Directorylterator, Limititerator, SimpleXMLIterator

16

In addition to some useful interfaces that SPL provides, there is a collection of classes that can also add
useful functionality. Extending these classes can both save time and solidify the pattern-based designs in
your programming.

QO TheLimitIterator is functionally very similar to a LIMIT statement in MySQL. When you
provide an existing Iterator to it with an offset and a count, the LimitIterator confines the
traversal to objects to those that fit within the predefined bounds. You may find this useful when
creating objects that are responsible for featuring only the top 100 items of a collection even if
the collection is much larger. Applying the LimitIterator structures the programming to
check these bounds.

QO TheDirectoryIterator provides a powerful set of methods to loop through a directory
on the file system. The common set of ITterator methods such as next () and rewind () are
just the tip of the iceberg for managing a set of files. This class also integrates useful functions
like isDot () and isLink (). Additionally, each file that is returned is an instance of the
SplFileInfo class. (The SplFileinfo class is not reviewed here; however, full documentation
of its collection of over 25 methods returning file system information is located at http: //php
.net/splfileinfo.) The DirectoryIterator is one of the greatest examples of how Design
Patterns can provide the basis of a very powerful, extensible, and architecturally sound object.

Chapter 2: Using Tools Already In Your Arsenal

Q The simpleXMLIterator is an Iterator class that works directly with the SimpleXML
extension of PHP. It extends the SimpleXMLElement object. As you can predict by the name of
the class, it also implements the Iterator interface (among other interfaces), providing that
familiar next (), rewind (), valid (), and key () functionality at the very least. This creative
implementation of the Iterator pattern is an example of a reusable object that is one of the
major goals of our usage of patterns.

Using Eclipse PDT with Patterns

The Eclipse PDT software package is a PHP-centric distribution of the popular Eclipse IDE. With
additional features like the PHP perspective, and JavaScript and CSS syntax highlighting, Eclipse PDT is
one of the most important tools in my programming arsenal.

The next part of this chapter is based on Eclipse PDT 2.0 in Windows. However, you can use these steps
for a standard Eclipse installation as the feature set is common to the core Eclipse distribution. If you use
a different IDE and have never tried out PDT, I suggest that you try it out now with this next tutorial.
You can acquire the newest PDT package from http: //zend. com/pdt. If you continue to use a
different IDE, you may be able to adapt these steps to fit your own IDE. (Perhaps you may even want to
write these up in your own technical blog!)

Code Snippets in Eclipse PDT

One useful feature in Eclipse PDT is the code snippets function. Snippets allow code templates to be
created and inserted into your current file. These can range from a simple code comment template to a
complex set of function definitions for a reusable interface.

For this example, we're going to use the SPL Iterator interface. As you build your own library of
Design Pattern based modules, you may find you will need to create more code snippets.

Creating the Iterator Interface Code

When implementing the Iterator interface, five methods are required to be part of your object:
current (), key (), valid (), next (), and rewind (). You need to create these stub functions. As you're
a very good programmer, you're going to also add documentation (albeit very sparse) to your code as
well. This is the base code sample you're going to use:

/**
* Get the current element
* @return mixed
*/
public function current ()
{
}

/**
* Gets the current key
* @return mixed
*/

public function key ()

17

Part |: Getting Acquainted with Design Patterns and PHP

{
}

/**

* Checks if current element exists
* @return boolean

*/

public function valid()

{

}

/**
* Moves pointer forward to next element
*/

public function next ()

{

}

/**

* Moves pointer to first element
*/

public function rewind()

{

}

Now that you have the base code to use, it is time to investigate the snippet functionality of Eclipse PDT.

Creating the Snippet

After opening Eclipse, locate the Snippets tab in your current perspective. If you cannot find this tab, it
may be necessary to activate it:

1. Click the Window = Show View = Other.

2. Inthe Show View dialog (see Figure 2-1), expand the General folder and click Snippets.

il

Itype Filker bext

El-l= General -
D:l] Bookmarks

4" Classic Search

B console

Internal Web Browser
{20 Markers

5= Mavigator

Outling

Palette

{2 Problems

G Progress

Project Explarer
Properties

=

Use FZ o display the description for a selected view,

Figure 2-1

18

Chapter 2: Using Tools Already In Your Arsenal

3. Click OK. The snippets tab should now be available on this perspective.

Because this is your first snippet, you're going to have to create a category first. To create a new category,
do the following:

1. Right-click inside of the Snippet area and choose Customize. The Customize Palette dialog box
appears.

2. C(Click the New button on the top left of the Customize Palette.

& Customize Palette i x|
e - [5: Nothing selected

Mew Delete Move Down Move Up Import Export | Select a node from the tree on the left.

(sl I Caneel Apply

Figure 2-2

3. Click the New Category menu item (see Figure 2-3).
The Create Category dialog box appears.

& Customize Palette x|

S ® [[*2 Design Patterns

Mew Delete [Move Down Move Up Import Export

Marme:

|2 Design Patterns I Design Patterns

Description:

This category contains code snippets For our Design ;I
Pattern based classes

I Hide
¥ Open drawer at start-up

™ Pin drawer open at start-up
Show/Hide Drawer

o Always show

 Ahways hide

 Cuskom:

| Browse.

’TI Cancel | Apply |

Figure 2-3

19

Part |: Getting Acquainted with Design Patterns and PHP

4. Fill in the Category name and description if desired.
5. Click the Apply button.

To create a new template:

1. Again, click the New button.
2. Click the New Item menu item.

3. Fill in the name and description (refer to Figure 2-4).

& Customize Palette x|
b b4 = {F- [Merator
Mew Delete Move Down Move Up Impork Export Tame:
- |E5 Desiagn Patterns [rerator]
-
21 Trerator Description:
This builds the Tterator Pattern
I Hide
Wariables:
Mame | Description | Deefault Yalue |
Classhlame The Class Name
Template Patkern:
/%
-
pird
class §{ClassNamwe! implements Iterator
i
7/
* Get the current element
b '
Insert Yariable Placeholder...
O I Cancel Apply
Figure 2-4

4. Paste the code snippet from the previous section into the Template Pattern section. Your
template pattern is not done. You need to declare the class and make sure that it implements the
Iterator interface. In this example, you don’t know your class name. However, the snippets
feature allows you to insert variables into the snippet.

5. Under the Variables heading, click the New button. This should insert a generic variable name
in the table below.

6. Click under each heading to change the values. For this example, name your variable
ClassName, describe it as The Class Name and leave the default value blank. Variables are
inserted into a template by using a $ sign and enclosing the variable name in curly braces.

20

Chapter 2: Using Tools Already In Your Arsenal

7. Modify your Template pattern with the class definition. Insert the following above the previous
code snippet in the Template pattern:

/**
*
*/
class ${ClassName} implements Iterator

{
Don’t forget to add the closing curly brace at the very end of the code snippet.

8. Finally, click the OK button.

Using the Snippet

Now, for the moment of truth! When a new PHP file is created in Eclipse PDT and the Snippets tab is
showing, it’s easy to use the newly created snippet:

1. DPosition the cursor where you’d like the class definition to start.

2. Double-click the Snippet named Iterator under the Design Patterns category. The Insert
Template: Iterator dialog box appears (Figure 2-5). You may notice the variables section shows
the ClassName variable with no value.

& Insert Template: Iterator 5[

Edit the walues For the wariables in the table below. The text that will be inserted is previewed in the Source

‘Wariables: Description of variable:

Varisble Name he Class Mame ;l

Source:

f*t -

*

*

class SuperCoollterator implements Iterator

{
/1‘*
* Get the current elewent
* Breturn mixed

N o
Cancel

Figure 2-5
3. Click in the table cell, and type in your new class name. The Source box is updated with your

new class name after you press Enter.

4. Click the Insert button, and your new template is inserted into your source file.

21

Part |: Getting Acquainted with Design Patterns and PHP

Summary

22

This chapter focused on a few tools that already exist in PHP and your IDE that can help jump-start your
Design Pattern-based programming. You learned about the Design Pattern immersion in PEAR, the
Zend Framework, and Doctrine by looking at both the usage and construction of the individual classes
in these libraries. The Standard PHP Library also houses a helpful set of interfaces and classes that
provides some necessary building blocks for applying Design Patterns in new architecture. Finally, you
created a code snippet in Eclipse PDT to make it easier to stick with these programming best practices by
reducing the need to retype code required by the Iterator interface.

The next sections of this book are the reference chapters and focus on the specifics of some of the Design
Patterns mentioned so far as well as providing some additional ones to expand your pattern repertoire.

Part |

Reference Material

Chapter 3: Adapter Pattern

Chapter 4: Builder Pattern

Chapter 5: Data Access Object Pattern

Chapter 6: Decorator Pattern

Chapter 7: Delegate Pattern

Chapter 8: Facade Pattern

Chapter 9: Factory Pattern

Chapter 10:
Chapter 11:
Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:
Chapter 17:
Chapter 18:

Chapter 19:

Interpreter Pattern
Iterator Pattern
Mediator Pattern
Observer Pattern
Prototype Pattern
Proxy Pattern
Singleton Pattern
Strategy Pattern
Template Pattern

Visitor Pattern

o

Adapter Pattern

In a simple world, no software requirements would ever change. Applications and business would
not innovate. Programming would be simple, but boring. Programmers would continue to build
applications on top of the same technologies that they did years ago. They would never need to
introduce different databases, implement new best practices, or consume different APIs. But these
things do change. Luckily, programmers have the Adapter Design Pattern to help update legacy
systems with new code and functionality.

Name: Adapter

The Adapter Design Pattern simply adapts one object’s interfaces to what another object
expects.

Problem and Solution

In an application, you may be a working code base that is architecturally sound and stable.
However, new functionality is constantly being added that requires use of these existing objects in
a different way than they were originally designed. The roadblock may be as simple as the new
functionality expecting a different name of a function. It could also be a bit more complex scenario,
where the functionality expects slightly different original object behavior.

The solution is to build another object, using the Adapter Design Pattern. This Adapter object
works as an intermediary between the original application and the new functionality. The Adapter
Design Pattern defines a new interface for an existing object to match what the new object requires.

Part Il: Reference Material

For the most part, no existing functionality is lost; it’s just used or consumed in a different way. You can
equate this to an electrical adapter that receives a three-pronged grounded connection and conforms to a
two-prong socket. The adapter transparently forwards the alternating current from the prongs but
provides a different interface for the grounding functionality. In most common electrical adapters, the
grounding functionality is not lost but is instead provided via a grounding wire that should be
connected to the screw on the electrical socket container. In the same way, the Adapter Design Pattern
aims to help object-oriented code; it creates conversions for the object interfaces.

While it may be tempting to modify the existing code to work in the way the new functionality expects,
you should create an adapter object instead. Quite often, it is suggested that a quick tweak to an existing
object is the fastest and most cost effective way to accomplish this task. I argue that speed and cost are
rarely an issue when creating the adapter object. No real new functionality is being created. By the time
the original object was changed and tested against regression, a quick adapter class with a few lines of
code could have been created with no possibility for regression.

The best solution still is to create an Adapter object. This affords the possibility of parallel development
on both the new functionality and the existing code base. If your job is to integrate the new functionality
and you accomplish this by editing the existing code base, you may find yourself at odds with the team
who is developing new functionality in those initial classes. They may be adding additional private
methods and expecting them to be called by the public methods that were originally available with the
last stable release. The last thing you want to create is a complex merging scenario or a forked code base.

The Adapter Design Pattern is also a great solution for changes to a data source. Two common problems
concern database engine changes and data file format changes:

Q The project may need to change the database engine for any number of reasons. A common
scenario involves an application created with MySQL migrating to a larger database like Oracle.
Other times, licensing restrictions and costs require a different engine to be used; for example,
Postgres, when the product finally goes to distribution. If you're not already using a database
abstraction layer, you will need to create Adapter objects to intercept calls to the legacy
database functionality and make those compatible with the new database. Interestingly enough,
if you examine the code of some database abstraction libraries, you'll see them as nothing but a
collection of adapters as well.

QO When working with third-party data providers, the data files provided may change format.
Your vendor may have been providing data in CSV format for years but will be migrating to an
XML document. An adapter can be created that will take the XML and give it in a consumable
format to the stable CSV processing objects.

Basically, whenever there is a problem that requires the continued stability of the main platform and

doesn’t disrupt the existing application flow, the Adapter Design Pattern could be used in developing
the solution.

26

Chapter 3: Adapter Pattern

UML

This Unified Modified Language (UML) diagram details a class design using the Adapter Design Pattern
(see Figure 3-1).

MyObject 1 OriginalConsumer [~ " ldoSomething()
calls methodA()
during execution

+myObjectinstance : MyObject

+methodA() +doSomething()

MyObjectAdapterForNewConsumer NewConsumer [~ " ldoSomething()

+myObjectinstance : MyObject call§ methods()
1 1 during execution

+methodB() +doSomething()

methodB()
calls methodA()
during execution

Figure 3-1

Note the following about this figure:
QO The MyObject class contains a public method called methoda (). OriginalConsumer acquires
an instance of MyObject and calls methoda () during its doSomething () function.

Q The NewConsumer class is introduced. Its doSomething () function expects to call a public
method of the MyObject instance called methodB () during execution.

Q The MyObjectAdapterForNewConsumer is created by extending the MyObject class. It then
provides a public method called methodB () as expected by NewConsumer. In this simple
example, all methodB () does is call methoda ().

Code Examples

In the original code base of the project, an object exists that handles all of the error messages and codes
called errorobject. The original programmers didn’t think their code would ever generate any errors,
so they designed the system to output the errorObject’s error information directly to the console.

27

Part Il: Reference Material

28

In this example, a 404:Not Found error is being generated. You are going to assume that the error message
content and code may change, but the text will always stay in the same format.

class errorObject
{

private $__error;

public function __ construct ($Serror)
{
Sthis->_ error = Serror;

}

public function getError()
{
return $this->_ error;
}
}

class logToConsole
{

private $__ _errorObject;

public function __ construct (SerrorObject)
{
Sthis->_ errorObject = $SerrorObject;

}

public function write()
{
fwrite (STDERR, $this->__ errorObject->getError());
}
}

/** create the new 404 error object **/
Serror = new errorObject("404:Not Found");

/** write the error to the console **/
$log = new logToConsole(S$Serror);
Slog->write() ;

In this scenario, a new network admin has been brought into the project. Best practice suggests that a
network log for monitoring software should be installed. The package the admin chose requires the
errors to be logged to a multicolumn CSV file. The CSV format calls for the first column to be the
numeric error code. The second column should be the error text.

This new software package is familiar with the errorobject class. The vendor has provided code to
implement the proper logging format! Unfortunately, that code was created from a different version of the
errorObject than the one the current project is using. The new errorObject had two additional public
methods, called getErrorNumber () and getErrorText (). The LogToCSV class expects to use those.

Chapter 3: Adapter Pattern

class logToCSV
{
const CSV_LOCATION = 'log.csv';

private $__ errorObject;
public function __ construct ($errorObject)
{

Sthis->_ errorObject = SerrorObject;

}

public function write()

{
$line = S$this->_ errorObject->getErrorNumber () ;
$line .= ',"';
$line .= $this->__ errorObject->getErrorText () ;
$line .= "\n";

file_put_contents(self::CSV_LOCATION, S$line, FILE_APPEND) ;

There are two solutions to this problem:

Q Alter the existing code base’s errorObject

Q Create an Adapter object.

Because of the need to keep these public interfaces standard, creating an Adapter object is the best
solution.

In this adapter object, the existing errorobject functionality must be present. In addition, the
getErrorNumber () and the getErrorText () public methods must be available. In the legacy
logToConsole, the getError () method is called to get the error message. The adapter should make
use of that method to get the error message from the parent class and then translate that output to be
used by the two new public methods.

class logToCSVAdapter extends errorObject
{

private $_ errorNumber, $_ errorText;

public function __ construct ($error)

{
parent::__ construct (Serror) ;
Sparts = explode(':', S$this->getError());
$this->_ errorNumber = Sparts([0];
Sthis->_ errorText = $parts[l];

}

public function getErrorNumber ()

29

Part Il: Reference Material

{
return $this->__ errorNumber;

}

public function getErrorText ()

{

return $this->_ errorText;

}

Finally, to implement this adapter, the code is updated to use the adapter instead of the original
errorObject. Then, the 1ogToCSV class can receive the adapted class instead of the original
errorObject so that the legacy code works as the 1ogToCSV class expects.

/** create the new 404 error object adapted for csv **/
Serror = new logToCSVAdapter ("404:Not Found");

/** write the error to the csv file **/
$log = new logToCSV (Serror) ;
Slog->write();

Remember, implementing an Adapter object is both best practice and a headache saver when one object’s
interface needs to be translated for use by another.

30

Builder Pattern

Software complexity is an interesting thing. The requirements for software are complex as are the
functionality of a software package or product. Even the code that makes up the software is
complex. The focus of the Design Pattern approach is to provide maintainability, architectural
strength and reduced complexity. With the host of complex objects making up most software
repositories, solutions involving the Builder Design Pattern have their work cut out for them.

The Builder Design Pattern defines the design of an object that handles the complex building
of another object.

Problem and Solution

When an object is instantiated, it is technically a complete object. Some objects can be used in this
capacity and are ready to propagate throughout the code flow. However, other objects are more
complex in nature. They may require additional public methods to execute to be considered
“complete” and available for the rest of the application.

It is important to understand what the word complex means in this context. Generally, complexity
is the actual logic contained within methods of a class. However, when I refer to a complex object
in connection to object instantiation, it means the level of steps that are required to create that
complete object. The actual logical steps in each of the executed methods have no bearing on
whether these classes are complex.

When creating complex objects, a common architecture decision revolves around the creation of
the constructor. Some programmers think that any constructor should execute the proper logic to
create the whole object. Others recognize that it makes sense to break up some of that logic into

Part Il: Reference Material

32

additional methods. Constructors designed in that fashion are basically a list of methods to call on
instantiation. Neither of these solutions are very flexible. In fact, they are fundamentally wrong solutions.

It may be necessary to construct an object based on the results of a set of business logic. In this particular
example, the base business decision rules have already been written and tested. Because of the results,
only certain parts of the object must be created. In fact, if all parts of it are defined fully, it may cause
other unforeseen results down the line. I realize this is vague. Let me give a better example.

In ABC Co, widgets are loaded into the inventory system before they are fully priced and inventoried.
No matter if it’s an initial load of a widget or the generation of an HTML page with widgets, their
descriptions, and prices, the same widget object is created. The HTML page process does not show any
widgets that have a NULL value for their product ID because those aren’t for sale. They have not yet been
entered into the inventory system. Both new and existing inventory requests are routed the same way
through the code. By the time the data gets to the widget object, it's known if the widget data is for a
new inventory item or for an existing one. Now, with what you know about the HTML page process,
you must decide how to create the widget object. You would not want any of your new inventory
widgets to accidentally show up on the website for sale. The solutions are as follows:

QO Wrong solution: Duplicate the business logic inside the widget object constructor. Right now,
this may be as simple as a quick conditional statement to determine the type of data, but this
solution is wrong. With time, the chance grows that the business logic to determine if a widget is
new or for sale may change. What if a third status is introduced, such as “Inventoried” but no
price has been defined? This would require you to change the logic in both the other code and
this object’s constructor.

QO Wrong solution: Set all the default values by calling all the methods in the constructor on
widget object creation. These may include methods to set the price, description, and product ID.
However, there is a potential issue here as well. You know that your HTML page process will be
looking for product IDs of not NULL. If you assign a default value to this product ID, the HTML
page will pick it up. Once again, the temptation to call all these methods, except for the product
ID setter, is there. It’s easier to just put a quick conditional statement around that method
making sure not to assign the property on new widget creation. However, this is also not the
proper solution.

0 Best solution: Create a new object based on the Builder Design Pattern. This object is
responsible for interpreting those results from the business logic and calling only the required
functionality to build the complete widget object. Even if the required types of information or
the business rules change, the main code flow will still deal with the Builder object in the same
way. You will only need to modify the Builder object — in only one place. This saves both time
and complexity in your main code base.

Another way to prove the benefits of the Builder Design Pattern is by examining interactions with third-
party applications, a common one being a database wrapper. In the example, if you're using version 1.0
of the database wrapper class, you may be required to call the setUsername (), setPassword () and
setHostName () methods to have a complete instance of that object. Each time you create a connection
to the database, your code contains the instantiation of the wrapper followed by three function calls.

In version 1.1, the third party makes the setDatabase () method mandatory. This means that every
single instance of the database wrapper instantiation in your code base now needs to be altered to have
an additional method call.

Chapter 4: Builder Pattern

The best solution when implementing the wrapper with those complex creation steps is to create a
database wrapper Builder class. Then, when version 1.1 is released, only the Builder class needs to be
modified.

Remember, the complexity of multiple method calls may not seem so bad the very first time, but it’s a
slippery slope. If these methods need to be called continually, a Builder object should be created.

UML

This Unified Modified Language (UML) diagram details a class design using the Builder Design Pattern
(see Figure 4-1).

MyObject

+complexFunctionA()
+complexFunctionB()

.

MyObjectBuilder
-MyObject : MyObject

+createlnstanceOfMyObject()
+buildMyObject(configurationOptions)
+getBuiltMyObject()

Figure 4-1

Note the following concerning this figure:

Qa

The MyObject class has two methods to completely finish the construction of the object. Both
complexFunctionA () and complexFunctionB () need to be executed in order to have a
complete MyObject object.

The MyObjectBuilder class contains a method called createInstanceOfMyObject (). This
class is responsible for creating a simple instance of the MyObject class. Note how no
configuration options have been used to further construct it. It also stores the instance privately
in that instance of the MyObjectBuilder class.

The buildMyObject () method takes a parameter of configurationOptions. This is used to
call both complexFunctiona () and complexFunctionB () of the MyObject object stored in
the MyObjectBuilder object.

The getBuiltMyObject () method returns the private instance of MyObject inside the
MyObjectBuilder object, completed and built properly.

33

Part Il: Reference Material

C

34

ode Example

The project contains a class that creates the complex product object. This class contains three methods to
completely form it. If each of these methods is not called when creating a new product object, attributes
of the class will be missing and the program will halt. These methods are setType (), setColor (), and
setSize (). The initial version of this code was designed to create the object followed by the execution
of each of these methods.

class product

{
protected $_type = '';
protected $_size v
protected $_color = '';

public function setType(S$Stype)
{

$this->_type = $type;
}

public function setSize($size)
{

Sthis->_size = $size;
}

public function setColor(Scolor)
{
Sthis->_color = $color;
}
}

To create a complete product object, the product configurations need to be passed individually to each of
the methods of the product class:

// our product configuration received from other functionality
SproductConfigs = array('type'=>'shirt', 'size'=>'XL', 'color'=>'red');

Sproduct = new product();

Sproduct->setType ($productConfigs['type']);
Sproduct->setSize ($SproductConfigs['size']);
Sproduct->setColor ($SproductConfigs['color']);

Having to call each one of these methods when an object is created is not best practice. Instead, an object
based on the Builder Design Pattern should be used to create this product instance.

The productBuilder class is designed to accept those configuration options that are required to build
the product object. It stores both the configuration parameter and a new product instance on
instantiation. The build () method is responsible for calling each of the methods in the product class to
fully complete the product object. Finally, the getProduct () method returns the completely built
product object.

Chapter 4: Builder Pattern

class productBuilder

{
protected $_product
protected $_configs

NULL;
array();

public function __ construct ($configs)
{
Sthis->_product = new product();
Sthis->_xml = Sconfigs;
}

public function build()

{
Sthis->_product->setSize(Sconfigs['size']);
Sthis->_product->setType(Sconfigs['type']);
Sthis->_product->setColor ($configs['color']);

}

public function getProduct ()
{
return $Sthis->_product;

}

Note that this build () method hides the actual method calls from the code requesting the new
product. If the product class changes in the future, only the build () method of the productBuilder
class needs to change. This code demonstrates the creation of the product object, using the
productBuilder class:

S$builder = new productBuilder ($productConfigs) ;
S$builder->build() ;
$product = Sbuilder->getProduct() ;

The Builder Design Pattern is meant to eliminate the complex creation of other objects. Using the Builder

Design Pattern is not only best practice but it also reduces the chances of having to repeatedly alter
pieces of code if an object’s construction and configuration methods change.

35

Data Access Object Pattern

The simplest web widget to the most complex online e-commerce website have one thing in
common: they deal with data. So much of programming revolves around data access and
manipulation. With the massive proliferation of the Internet, cheaper storage devices, improved
understanding of analytics, and greater expectations for information access, data is being
leveraged in more interesting and unique ways. The Data Access Object Design Pattern aims to
help construct objects that can work easily (transparently) with all of this data.

Name: Data Access Object

The Data Access Object Design Pattern describes the creation of an object that provides trans-
parent access to any data source.

Problem and Solution

For those who have learned PHP and MySQL together hand in hand, the Data Access Object
Design Pattern is a new and exciting concept. This Design Pattern aims to solve two specific
problems: repetition and data source abstraction.

Programming typically can be a lot of repetition. This was especially true before more popular
frameworks started being released. Most PHP programmers can count into the double digits the
number of CRUD (create, read, update, delete) applications they’ve had to make. One of the major
portions of repetition in the standard create/update application is the data source manipulation.
For the rest of the discussion, I'm going to stop generalizing the data source and refer to it as SQL.

In the application, a SQL statement has to be written to create the entity in the database. Next, an
additional SQL statement must be written in order to provide updates to any of the individual
features of that entity. The repetition involved in creating these SQL statements is not only boring
but also not best practice.

Part Il: Reference Material

U

38

Instead, an object based on the Data Access Object Design Pattern should be created. This Data Access
Object (DAO) encapsulates an intelligent way of creating those SQL calls, reducing the complexity and
repetition of the entity creation and updating process. It should be written in such a way that the
consumers of this object are not aware of the actual table structures or database engine used. Methods
that are invoked from this object should take logical parameters and handle the creation of the SQL
statements.

An added benefit of the Data Access Object is the database abstraction layer it affords. Now, the main
processing code of the application no longer has to be aware of the database engine or table
relationships. Calling those public methods of the object can return any type of data regardless of the
underlying SQL required.

A good way to picture this is with a relational database structure where a non-normalized table is joined
to another table to provide a certain result set. If a database administrator modifies the table structure to
be fully normalized, each of the SQL statements throughout all of the logic modules in the application
will need to be modified to add an additional join table. Using the Data Access Object, only the methods
that provide this information need to be edited. Imagine another situation in which the actual table
structure changes. A column may be named something else or an additional column may be added. The
Data Access Object is once again the only place that code needs to be edited. (SQL purists will argue that
an added table column should not affect the queries at all. They would say that named columns in the
SQL statement should be used. I agree. This won’t help if a column name is changed, however!)

It is always a concern that programmers not over architect the Data Access Object. Once the full power of
these types of objects is contrasted with the ease of use, the temptation to add more functionality is
almost overwhelming. I encourage simplicity in the Data Access Object, however. Do not add in extra
functionality that is unproven or unneeded.

A good way to manage simplicity in the Data Access Object classes is to create parent-child relationships.
First, create the base parent object. This object should be responsible for database connections, executing
queries abstractly, and communicating with children. A good way to start out with the Data Access
Object Design Pattern is to associate child classes in a one-to-one relationship with tables in the database.
These child classes hold vital information such as the table name and the primary key. Additionally,
child classes may contain specific public methods that execute the parent queries in such a way that
makes sense only to the child. For example, a child class named userAddress may contain a function
named getAddressesByzip (). Having that method in the parent DAO class would make no logical
sense and destroy the abstractness that the parent is hoping to achieve.

When working with entities that reference specific database information, it is best practice to create a
Data Access Object.

ML

The following Unified Modified Language (UML) diagram details a class design using the Data Access
Object Design Pattern (see Figure 5-1) and is further explained in the following list:

Chapter 5: Data Access Object Pattern

BaseDAO

-dbConnection : resource

-connectToDB()
+fetch(keyltem)
+update(keyedUpdateObject)

!

tableNameDAO

-tableName : String

+searchBySpecificKey(key)

Figure 5-1

Q The BaseDAO class is an abstract class that the tableNameDAO class extends. BaseDAO has a
private method to connect to the data source named connectToDB (). This stores the connection
in the private instance variable dbConnection. BaseDAO contains two public methods, named
fetch() and update ().

Q The fetch () method expects to receive a parameter called keyItem. This references the
primary identifier of the data source that is expected to be returned. This method will perform
the proper database calls and return the result set.

QO The update () method expects to receive a parameter called keyedUpdateObject. This is an
object or array that contains keys and values to update the database with. In this function, the
columns and values are extracted and the update is applied.

Q The tableNameDAO class directly correlates to a table in the database. The tableName variable
stores the exact table name. This private variable is used to create the database calls in fetch ()
and update (). As an example of additional features that a Data Access Object can possess
distinct from the base object, the searchBySpecificKey () function is diagramed. This method
expects to receive a variable named key. This method would create the proper database
combination of calls to the parent data access object class to obtain the specified style of return.

Code Example

In this example, a user entity is the focus. The user has a row in a MySQL database that contains
information specific and unique to each user. The functionality must allow us to return a user by their
primary key or by a search on their first name. Additionally, you must be able to perform updates to any
field in the user entity’s row.

39

Part Il: Reference Material

From these requirements, two classes are needed. The first should be the base Data Access Object with
methods to fetch data and update data:

abstract class baseDAO
{

private $_ connection;

public function __ construct()
{

$this->_ connectToDB(DB_USER, DB_PASS, DB_HOST, DB_DATABASE) ;
}

private function __ connectToDB(Suser, S$pass, Shost, S$database)
{
Sthis->_ connection = mysqgl_connect ($host, $Suser, $pass);
mysgl_select_db($database, S$this->_ connection) ;

}

public function fetch($value, Skey = NULL)
{
if (is_null(Skey)) {
Skey = $this->_primaryKey;
}

$sgl = "select * from {$Sthis->_tableName} where {Skey}='{Svalue}'";
Sresults = mysqgl_query($sgl, $this->_ connection) ;

Srows = array();
while (S$result = mysqgl_fetch_array(Sresults)) {
Srows[] = Sresult;

}

return S$rows;
public function update (SkeyedArray)
{

$sgl = "update {$this->_tableName} set ";

Supdates = array();
foreach ($keyedArray as S$column=>$value) {

Supdates[] = "{Scolumn}='{S$value}'";
}
Ssgl .= implode(',', Supdates);
$sqgl .= "where {$this->_primaryKey}="'{$keyedArray[$this->_primaryKey]}'";

mysgl_query($sqgl, Sthis->__ connection);

40

Chapter 5: Data Access Object Pattern

The first thing to note is that this class is an abstract class. Obviously, this means that this class must be
extended in order to be used. On instantiation, the private method called __connectToDB () is executed
with the proper credentials. This simply stores that database connection inside of the object. This will be
referenced whenever a new query is executed. It is important to store this connection internally in the
class and reference it with each query call because it is quite possible that more than one database
connection could be open at the time. This Data Access Object should be referencing its own connection
solely. Generally, in more scalable models, interfaces are created to share connections.

The next method is the public fetch () method. This accepts one required parameter and one optional
one. The required $value parameter is used in the MySQL query in the select statement specification.
The optional $key parameter defaults to the primary key of the table. If the parameter is set, however, a
more flexible query will be executed, possibly returning more results. Finally, a results array is created,
populated with results, and returned. It is important to note how abstract this method is: it doesn’t know
the table name, key, or value that it will be querying ahead of time. This is some of the strength that the
Data Access Object lends to the code.

The last method in the class is the public update () method. Once again, its construction is interesting
because of the abstractness of the query it builds. This particular method expects the keyed array to have
the primary key of the entity as an array element in order to successfully update the table row.

This abstract class is extended by any child class. Our class is referencing the user entity by pointing to
the userTable MySQL table. It also needs to have more specific functionality that only makes sense
in the user entity context.

class userDAO extends baseDAO

{
protected $_tableName = 'userTable';
protected $_primaryKey = 'id';

public function getUserByFirstName ($Sname)
{

Sresult = Sthis->fetch($Sname, 'firstName');
return Sresult;

Since this class extends the baseDa0 object, it has access to all of those parent functions. This child class
is where the table name and the primary key are defined. These directly correlate to a MySQL table in
the database. At the very least, those two protected variables are the only things that need to be defined
to have a functioning Data Access Object child entity. However, part of the functionality requirements
is to be able to search the user table via first name. The public method getUserByFirstName () accepts
a name parameter to accomplish this requirement. The result is obtained by calling the parent fetch()
method and defining a column that should be queried.

Here is an example of the Data Access Object being used:
define('DB_USER', 'user');

define('DB_PASS', 'pass');
define ('DB_HOST', 'localhost');

41

Part Il: Reference Material

42

define('DB_DATABASE', 'test');

Suser = new userDAO();
SuserDetailsArray = Suser->fetch(1l);

Supdates=array('id'=>1, 'firstName'=>'aaron');
Suser->update ($updates) ;

SallAarons = Suser->getUserByFirstName ('aaron');

The first section of code is defining the database credentials. (In a production system, there would obviously
be a more secure and flexible way of providing these credentials.) A new userDAO is created. The first bit of
information requested is the first user. Now you have an array with all of the details from the user entity
with a primary key of 1. Next, an update is defined. The user entity with an id of 1 will have its first name
updated to “aaron.” Finally, an array is built of all the users that contain a first name of “Aaron.”

In order to reduce repetition and give an abstract layer to data, creating an object based on the Data
Access Object is best practice.

Decorator Pattern

One of the scariest phrases a programmer can hear is “This is a living requirements document.”
The client specifies that development needs to begin and continue throughout the requirements-
gathering and specification creation phases. Even after these are complete, chances are that the
client will come back and ask for just a few tweaks here and there. Since those changes seem small
to the client, they do not expect the timeline for deployment to change with the addition of the
enhancements. If not handled correctly, even these small tweaks can generate headaches.
Whenever base functionality needs to be modified slightly, the Decorator Design Pattern is the
optimal pick.

Name: Decorator

The Decorator Design Pattern is best suited for altering or decorating portions of an existing
object’s content or functionality without modifying the structure of the original object.

Problem and Solution

When just beginning to learn about Object Oriented Programming, the first hurdle usually is
understanding the parent-child relationship through inheritance. As time goes on, this method of
programming becomes more familiar and easy. When faced with new challenges, even seasoned
object-oriented programmers can jump immediately to extending an object to add more
functionality. However, as with everything that is great, it’s only healthy when used in moderation.

There is a limit to the amount of class hierarchy that a code base should have. If objects start
requiring too many children to become functional, the code sacrifices both programmer
comprehension and maintainability. Generally, I try not to ever have more than three parent-child
relationships for one object. I find when more parent-child relationships are created, the code starts
to become confusing and unwieldy. Besides, printing a UML diagram representation of any object
in your application hopefully should not require legal-sized paper.

Part Il: Reference Material

44

Another reason to be careful when generating complex class hierarchies is PHP’s limitation of extending
only one class. If a more comprehensive extension model existed in PHP, there might be less chance of
creating unwieldy object relationships.

I don’t wish to deter you from the usage of class extension, however. There are many times when the
proper solution to the problem is extending the object. Even some examples of Design Patterns in this
book require objects to be extended. However, for some problems, classes based on the Decorator Design
Pattern are a much better solution.

The Decorator Design Pattern fits a niche in which programmers find themselves spending a lot of their
time: quick and small changes with little impact to the rest of the application. The goal of a class
designed with the Decorator Design Pattern is to apply incremental changes to a base object without
having to overwrite any of the existing functionality. Decorators are built in such a way that one or more
should be able to be inserted directly into the main code execution stream, modify or “decorate” their
target object, and affect no other code stream.

Some programmers suggest that objects based on the Decorator Design Pattern are best made by
extending existing objects. The Decorator then provides additional methods or possibly rewrites existing
methods. This not only borders on some of the base concepts of an Adaptor Design Pattern, but it really
does undo one of the main purposes of the Decorator Design Pattern. Decorators can provide a quick,
noninvasive modification to the content or functionality of an object without modifying the structure of
the object. In this particular case, extending an object adds additional functionality and modifies that
base structure. The main code stream has to be modified in all places that require that new functionality
to include the new child class. The instantiation of that parent needs to be replaced with the child’s class
name instead.

One situation where the Decorator Design Pattern can be useful is passing user input to external systems.
Imagine a process that uploads a user’s file, associates the user internally in a database to the proper user
ID, and finally deposits them on a network storage device. The file system on the network storage device
allows mixed case filenames, so this process is pretty simple. Later, a new network storage device is
introduced with a legacy file system. This requires all filenames to exist in uppercase only. When files are
physically moved to the drive, this happens automatically. However, internally, the object is still storing
the mixed-case filename. The tight coupling is gone and may cause instability in the system.

The best solution for this scenario is to introduce an object based on the Decorator Design Pattern. This
object modifies the user file management object directly after each file moves to the physical storage
space but before the information logs to the database. Passing a reference to the object allows the
Decorator to modify the internal data, rewriting each filename into uppercase. Then, the user file
management object continues to process the data insertion. It is very important to notice that the base
object structure is not modified at all by introducing this new requirement and Decorator solution.

Another example of a good time to use a Decorator Design Pattern based object is when processing blog
output. Generally, a standard set of markup conditions exists: changing image links to actual images,
finding links and turning them into clickable anchors, and applying visual styles such as bold or italics.
If the blog content becomes more specialized, it may require additional items to be captured and
modified. Extra features could be added to form a better user experience. Examples of these decorations
include changing an address into a clickable link to a map and applying a style to a brand name to fit
into an advertising theme. Adding so many features in this way would make a class’s hierarchical
architecture way too large. These small modifications can best be executed by creating those objects
based on the Decorator Design Pattern.

Chapter 6: Decorator Pattern

When requirements are introduced that require small changes to the content or functionality of an
application without compromising the stability of the existing code base, it is best practice to create a
Decorator object.

UML

This Unified Modified Language (UML) diagram details a class design using the Decorator Design
Pattern (see Figure 6-1).

MyObject

-items : Array

+showltemsFormatted()

JaN

|
|)

| <<realize>>
|

MyObjectDecorator

-MyObject : MyObject

+MyObjectDecorator(MyObject)
+decorateltems()

Figure 6-1

Note the following about this figure:
Q TheMyObject is the base class with the existing functionality. It contains a public array named
items and a public method named showItemsFormatted().

QO showItemsFormatted() is responsible for taking the items array, formatting them using
predefined functionality, and presenting output.

QO TheMyObjectDecorator class contains a private instance of MyObject and two public
methods, named MyObjectDecorator () and decorateItems ().

Q TheMyObjectDecorator () method represents the constructor. It takes a parameter of type
MyObject and stores it internally.

Q The decorateItems () method modifies the items array of the MyObject instance.

Code Example

In this example, the application is processing compact discs (CDs). It must have a method to add tracks
to the CD and a way to show the track list from the CD. The client has specified that the CD track list
should be displayed in a single line with each track being prefixed by the track number.

45

Part Il: Reference Material

46

class CD
{
public $trackList;

public function __ construct()
{

Sthis->trackList = array();
}

public function addTrack(Strack)
{

Sthis->trackList[] = Strack;
}

public function getTrackList ()
{
Soutput = '';

foreach ($this->trackList as Snum=>$track) {
Soutput .= ($num + 1) . ") {Strack}. ";
}

return Soutput;

The cD class contains a public variable called $trackList, which will store an array of tracks added

to the CD object. The constructor initializes this variable. The addTrack () method simply adds a track to
the CD object’s trackList array. Finally, the getTrackList () method loops through each of the tracks
on the ¢D and compiles them into a single string in the format that was specified.

To use this cD object, the following code is executed:

$tracksFromExternalSource = array('What It Means', 'Brr', 'Goodbye');
$myCD = new CD();

foreach ($tracksFromExternalSource as S$track) {
SmyCD->addTrack ($Strack) ;
}

print "The CD contains

This works fine for this example. However, the requirements have changed slightly. Now, each track in
the output needs to be in uppercase for just this instance of output. Because its best practice not to
modify the base class or create a new parent-child relationship for such small changes, an object based
on the Decorator Design Pattern is created.

class CDTrackListDecoratorCaps
{

private $__cd;

public function __ construct (CD $cd)

Chapter 6: Decorator Pattern

{
Sthis->_ cd = $cd;
}

public function makeCaps ()
{
foreach ($this->_ cd->trackList as &$track)
{
Strack = strtoupper (Strack) ;
}

}

The class cCDTrackListDecoratorCaps is very simple. The __construct () method simply adds the
instance of the CD class to an internal private variable named $__cd. While, initially, this may seem
cryptic and maybe even an impossible way to modify the base object by a true Decorator, PHP’s
handling of objects by reference makes it possible. Even though the instance is stored internally and
privately, any modifications to it will immediately be available to the main code flow.

The makeCaps () method exists in the decorator to perform the decoration or modification that is needed.
In this case, it loops through each of the tracks and executes PHP’s strtoupper () function on them.

To add the Decorator to the mix, the new CDTrackListDecoratorCaps class is added:
SmyCD = new CD();
foreach ($tracksFromExternalSource as $track) {
$myCD->addTrack (Strack) ;

}

$myCDCaps = new CDTrackListDecoratorCaps ($SmyCD) ;
$myCDCaps->makeCaps () ;

print "The CD contains the following tracks: " . $myCD->getTrackList();
Only two additional lines were added to the main code flow to accomplish this small change.
$myCDCaps is created by instantiating CDTrackListDecoratorCaps with a reference to the existing cD

object. Next, the functionality is executed by calling the makeCaps () function.

To make small modifications to content or functionality of existing objects without modifying their
structure, the Decorator Design Pattern should be used.

47

Delegate Pattern

One of the strongest features of Object Oriented Programming is its dynamic nature. With today’s
push of more available features, mash-ups and constantly evolving standards, dynamic code is
gaining a whole new meaning. Whether its new file storage or streaming standards, a new social
networking site or a fresh take at some of the existing Internet pioneer’s APIs, web programming
continues to mutate. Legacy ways of handling decisions are no longer effective when confronted
with the enormous number of options available today. The Delegate Design Pattern is made for
taking complex decisions out of the loop by moving smart objects into their place.

Name: Delegate

The Delegate Design Pattern removes decisions and complex functionality from the core
object by distributing or delegating them to other objects.

Problem and Solution

Most PHP programmers have started out working with a very procedural type of programming.
This style of programming relies heavily on flow control based on conditional statements. Object
Oriented Programming provides some avenues to move beyond traditional conditional statements
to create a more polymorphic code stream. One of the ways to implement this is by creating objects
based on the Delegate Design Pattern.

The Delegate Design Pattern focuses on removing complexity from core objects. Instead of
designing an object to rely heavily on executing specific functionality by evaluating a conditional
statement, the object can delegate the decision to different objects. This can be as simple as having
an intermediate object to process the decision tree to as complex as having objects instantiated
dynamically to provide the desired functionality.

Part Il: Reference Material

U

50

It is important not to view the Delegate Design Pattern as a direct competitor to the conditional
statement. Instead, the Delegate Design Pattern helps form the architecture in such a way that
conditional statements aren’t needed to invoke the proper functionality. They’re encouraged to reside in
the actual methods, where they can be tasked to process business rules.

An example of when the Delegate Design Pattern should be used is when providing multiple formats for
a specific piece of data. Imagine an archive at an open source code repository. When the visitor intends
to download a portion of that code, they have the choice of two compression methods. The files are
compressed and then sent to the browser. In this particular example, I'm going to refer to . zip and

. tgz files.

Traditionally, a file collection and downloading object would be made. It would have methods to gather
together the requested files and store references to them internally. Then, a method named specifically
for that type of compression might be called. If the type was “.zip,” the generateZip () method would
be called.

Objects based on the Delegate Design Pattern should be used instead of these custom-named functions.
The generatezip () method’s functionally should be transferred to a Delegate class that executes that
functionality against the base object’s file list. This not only reduces the complexity of the base object, but
it also provides greater maintainability of the code. If the future brings a new compression type such as
.dmg, only a new Delegate object needs to be created. The stable base object does not need to be edited.

When an object contains individual portions of complex but independent functionality that must be
executed based on a decision, it is best practice to use objects based on the Delegate Design Pattern.

ML

This Unified Modified Language (UML) diagram details a class design using the Delegate Design
Pattern (see Figure 7-1).

MyObject

-delegateType : String
-internalDelegate : MyDelegateObject

+setDelegateType(type)
+createDelegateObject()
+runDelegateAction()

1

1

MyDelegateObject

+action()

Figure 7-1

Chapter 7: Delegate Pattern

Looking at this figure, you'll note that:

a

The base class MyObject is aware that it will be using objects based on the Delegate Design
Pattern. It contains a private string delegateType and a private instance of
MyDelegateObject, called internalDelegate.

The setDelegateType () method receives a parameter named type. This is stored in the
delegateType string.

The createDelegateObject () method will create an instance of a delegate object named after
the delegateType variable. It then stores the instance internally by assigning it to
internalDelegate.

The runDelegateAction () method is responsible for running the action () method of the
internalDelegate object.

MyDelegateObject contains the logic responsible for this particular action. The action ()
method is run by MyObject to accomplish the feature.

Code Example

This particular website has a feature to create playlists from MP3 files. These could come from the
visitor’s hard drive or from locations on the Internet. The visitor has the choice to download the playlist
in either M3U or PLS format. (The code example will only show the creation of the playlist for brevity.)

The first step is to create the Playlist class:

class Playlist

{

private $__songs;

public function __ construct ()
{
$this->_ _songs = array();

}

public function addSong($location, Stitle)

{
$song = array('location'=>$location, 'title'=>$title);
Sthis->_ songs[] = $song;

}

public function getM3U()
{
Sm3u = "#EXTM3U\n\n";

foreach ($this->_ songs as $song) {

$m3u .= "#EXTINF:-1,{$song['title']}\n";
$Sm3u .= "{S$song['location']}\n";

51

Part Il: Reference Material

52

return $m3u;

}

public function getPLS()
{
$pls = "[playlist]\nNumberOfEntries=" . count($this->_ songs) . "\n\n";

foreach ($this->_ songs as S$songCount=>$song) {
Scounter = $songCount + 1;

Spls .= "File{$counter}={S$song['location']}\n";
Spls .= "Title{Scounter}={$song['title']}\n";
Spls .= "Length{$counter}=-1\n\n";

}

return S$Spls;

The Playlist object stores an array of songs, which is initialized by the constructor.

The addSong () public method accepts two parameters, a location of the MP3 file and the title of the file.
These are formed into an associative array and then added to the internal songs array.

The requirements state that the playlist must be available in both M3U and PLS formats. For this, the
Playlist class has two methods, getM3U () and getPLS (). Each of them is responsible for creating

the proper header to the playlist file and looping through the internal song array to complete the playlist.
Then, each function returns the playlist in string format.

The current code stream to execute this functionality contains the familiar if/else clause:

Splaylist = new Playlist();
Splaylist->addSong (' /home/aaron/music/brr.mp3', 'Brr');
S$playlist->addSong (' /home/aaron/music/goodbye.mp3', 'Goodbye');

if ($externalRetrievedType == 'pls') {
SplaylistContent = $playlist->getPLS();
}
else {
SplaylistContent = $playlist->getM3U();
}

A new instance of the Playlist object is created. Two song locations and titles are added. Then, an
if/else clause is created. If the type is “pls,” the get PLS () method is executed and its output is put
into the $playlistContent. Otherwise, the $externalRetrievedType probably contains “m3u,”
which is caught by the else portion of the statement.

The Sales team for this website found out about five more playlist formats that are available.
Consequently, they started selling the features of the software before it was even created. At this point,
the programmers still don’t know which new playlist formats were sold.

Chapter 7: Delegate Pattern

In the meantime, the code can be modified to use the Delegate Design Pattern. The aim is to eliminate
that potentially unwieldy if/else statement. Also, as more formats are added, the initial Playlist
class could become extremely large.

The newPlaylist class is aware of the fact that it will be using the Delegate Design Pattern. PHP’s
ability to dynamically create class instances based on a variable will also be helpful.

class newPlaylist

{
private $_ songs;
private $_ typeObject;

public function __ construct ($type)
{
$this->_ _songs = array();
Sobject = "{$type}Playlist";
Sthis->_ typeObject = new $object;
}

public function addSong($location, $title)

{
$song = array('location'=>$location, 'title'=>$title);
Sthis->_ songs[] = $song;

}

public function getPlaylist ()

{
Splaylist = $this->_ typeObject->getPlaylist (Sthis->__ songs);
return S$playlist;

}

The constructor of the newPlaylist object now accepts the $type parameter. In addition to initializing the
internal songs array, the constructor now dynamically creates a new instance of the specified delegate from
$type and stores it internally in the $__typeObject variable.

The addSongs () method is the same as the initial Playlist object. The getM3U () and getPLS ()
methods are replaced by the getPlaylist () method. This method executes the getPlaylist () method

of the internally stored delegate object. It passes the song array to that object so that that object can create
and return the proper playlist.

The two methods previously part of the P1laylist object have been moved to their own delegate objects:

class m3uPlaylistDelegate
{
public function getPlaylist ($songs)
{
Sm3u = "#EXTM3U\n\n";

foreach ($songs as S$song) {
Sm3u .= "#EXTINF:-1, {$song['title']l}\n";

53

Part Il: Reference Material

54

$Sm3u .= "{S$song['location']}\n";

}
return $m3u;

}

class plsPlaylistDelegate
{
public function getPlaylist ($songs)
{
S$pls = "[playlist]\nNumberOfEntries=" . count($songs) . "\n\n";

foreach ($songs as $songCount=>$song)
Scounter = $songCount + 1;

Spls .= "File{$counter}={$song['location']}\n";
$pls .= "Title{$counter}={S$song['title']}\n";
Spls .= "Length{$counter}=-1\n\n";

}

return S$Spls;

Each of the delegate classes is basically just a repackaging of the original methods from the base
Playlist class. Each delegate object has an identical named public method called getPlaylist (),
which accepts the songs parameter. This makes it simple and dynamic for the base object to create and
access any of the delegators.

The code to execute this new delegate-based system is much simpler:

SexternalRetrievedType = 'pls';

S$playlist = new newPlaylist (SexternalRetrievedType) ;
$playlistContent = S$playlist->getPlaylist();

When the additional playlist formats are announced, new classes based on the Delegate Design Pattern
can be created without having to modify this code.

To remove complexity from the core object while making the process dynamic to add more functionality,
the Delegate Design Pattern should be used.

Facade Pattern

If application programming were simple, anyone could do it. There would be no need for books
like this, software development would be even less glamorous, and the industry would need to
evolve to a different business model to survive. But programming is not simple. It is actually quite
complex. While acknowledging this complexity, superior programmers strive to simplify their
systems. They opt to remove complexity at every chance, using any available Design Pattern,
including the Fagade Design Pattern. When they hear the term fagade, most people will picture the
false fronts of older buildings. Others may think of a sly person putting up a facade in a potentially
difficult situation. The facade is this person’s attempt to deceive those around them. The person’s
actions, feelings or reactions seem very simple, hiding the complexity they may be experiencing. In
the same way, the Facade Design Pattern is designed to make dealing with complex components
appear deceptively simple.

Name: Facade

The Facade Design Pattern hides complexity from a calling object by creating a simple fagade
interface in front of the collection of required logic and methods.

Problem and Solution

A reoccurring theme throughout this book seems to be making an effort to remove complexity
from the code. But, it’s not necessarily complexity in code that we’re trying to remove. It’s the
coupling of different objects that is the aim of this simplicity. Project architects should tip their hat
to the programmer of a complex subsystem, appreciate its complexity, quality, and execution, and
then plug it into their overall project. As interior component logic becomes more complex,
however, the exterior interaction seems to follow suit. The goal of the Facade Design Pattern is to

Part Il: Reference Material

U

56

rein in the exterior intricacies and provide a simple interface to harness the power of said component.
What makes the Fagade Design Pattern unique is that it’s designed to combine or couple multiple related
components into that simple usable interface.

Put into more practical terms, Fagade Design Pattern-based classes may provide a public interface to
execute a logical business request. This individual business request may require multiple technical logic
steps to be executed in order to complete. Business processes are not always as simple as their name
implies. For example, the process may be titled “Make Shared Files Available on Network.” From their
point of view, the programmer knows that they must execute the following technical processes: “Create
File Share,” “Move File to File Share,” and “Apply Proper Permissions to File.” The Fagade Design
Pattern provides that interface called “Make Shared Files Available on Network” by calling each one of
those technical requirements first.

Another reason to use objects based on the Fagade Design Pattern is to interface with third-party
solutions. Remember, it is continually stressed that the object-oriented project should be just a collection
of related objects. Because of this architecture, the lead programmer may find it more prudent to use a
third-party object.

Imagine providing a search web page for an application. This search page first searches all of the data it
has available itself for the search term. If there are fewer than 10 results, it makes a call to a third-party
service, such as Google, to retrieve additional results. These results are appended to the bottom of any
results the application found internally. The Search Facade object returns the results to the calling view
object. Internally, the Search Facade object will call methods to query the internal database. After which,
it will determine if it needs to make a web service call to Google. If so, it will also parse those results to
make one homogeneous result set to return.

If the benefits of this architecture are not immediately clear, think about the next step of the application’s
evolution. The Yahoo! search engine begins to return better results than its Google counterpart. The
external web service request needs to be modified to call Yahoo!’s API now.

In a traditional approach, every time a request for results was created, the Google API would need to be
replaced. However, with a Search Fagade object in place, you don’t need to modify anything on the
calling view object. Instead, a Yahoo! Search class is created. Then, the Search Facade’s method is
modified to use the Yahoo! Search class instead of the Google Search class.

To hide the complex group of methods and logic required to execute a step of the business process, a
class based on the Fagade Design Pattern should be used.

ML

This Unified Modified Language (UML) diagram details a class design using the Facade Design Pattern
(see Figure 8-1).

Chapter 8: Facade Pattern

LogicObjectA
+doSomethingA()
<& LogicFacade MyObject
1 1
————®
1 1
LogicObjectB . +callRequiredLogic() +doSomethingRequiresAandB()
1 1

+doSomethingB()

Figure 8-1

For this diagram, note the following;:

Q TheMyObject class contains a public method called doSomethingRequiresaands (). This is
just one step in the execution of the MyObject class. doSomethingRequiresAandB () creates a
new instance of the object LogicFacade. It calls the public method named
callRequiredLogic (), which is named abstractly enough for Myobject.

QO The callRequiredLogic () method inside the LogicFacade class is then responsible for
creating an instance of LogicObjectA and calling the doSomethinga () method. It also is
responsible for creating an instance of LogicObjectB and calling the doSomethingB () method.

Q All of these actions are passed back through the LogicFacade class so that they are available to
MyObject.

Code Example

The website passes its inventory to a different system in the company nightly as part of a required audit.
This other system will accept the request via a post to its web service. It is an older system, however, and
works with only uppercase strings. The code needs to acquire CD objects, apply uppercase to all their
properties, and create a well-formed XML document to be posted to the web service.

The following is a simple example of a CD class:

class CD

{
public Stracks = array():
public $band = '';
public $title = '';

public function __ construct($title, $band, S$Stracks)
{

Sthis->title = S$title;

Sthis->band = S$band;

Sthis->tracks = S$tracks;

57

Part Il: Reference Material

When a new CD is instantiated, the constructor adds the title, band, and track list to the cD object. To
build the CD object, the steps are pretty simple:

StracksFromExternalSource = array('What It Means', 'Brrr', 'Goodbye');
Stitle = 'Waste of a Rib';
Sband = 'Never Again';

Scd = new CD($title, S$band, S$tracksFromExternalSource);

To format the CD object for the external system, two additional classes will be created. The first one will
be used to prepare the properties of the CD object. The required format is uppercase. The other class
will be responsible for building an XML document out of the CD object. This class will return a string of
the entire document.

It is important to note that two classes will be created for maximum reusability. It
may be tempting to combine both of these steps into one class, but that may require
uncoupling in the future.

class CDUpperCase
{
public static function makeString(CD cd, Stype)
{
Scd->Stype = strtoupper ($Scd->Stype) ;
}

public static function makeArray (CD $cd, Stype)
{
$cd->Stype = array_map ('strtoupper', $cd->Stype);
}
}

class CDMakeXML

{
public static function create(CD $cd)
{

Sdoc = new DomDocument () ;

Sroot = $doc->createElement ('CD');
Sroot = $doc->appendChild($root) ;

Stitle = $doc->createElement ('TITLE', S$cd->title);
Stitle = Sroot->appendChild($Stitle);

Sband = $doc->createElement ('BAND', $cd->band);
Sband = S$root->appendChild($band) ;

Stracks = $doc->createElement ('TRACKS') ;
Stracks = S$Sroot->appendChild(S$tracks) ;

foreach ($cd->tracks as Strack) {
Strack = $doc->createElement ('TRACK', S$track);

58

Chapter 8: Facade Pattern

Strack = $tracks->appendChild(Strack);
}

return $doc->saveXML () ;
}

The cDUpperCase object has two public static methods. The first one, named makeString (), accepts the
CD object and a string parameter called $type. It simply applies the strtoupper () PHP function to

the CD instance’s public variable, named after the content of $type. The other method, named makearray (),
functions similarly to makeString (). It applies the strtoupper () method to each of the items in the cD
object’s public array, named after the content of $type, using the array_map () function. Since the CD object
is passed in by reference in PHPF, no return variables are defined. This dynamic execution of each of these
methods allows this class to be used in the future in case the cD expands to include more public properties.

The cDMakeXML object has only one public static method, named create (). This accepts the CD object
and is responsible for returning a fully formed XML document from the CD content. Simply, it creates
elements for the title, band, and tracks using uppercase tag names.

At first glance, the programmer may want to implement the functionality in this way:

CDUpperCase: :makeString ($cd, 'title');
CDUpperCase: :makeString ($cd, 'band');
CDUpperCase: :makeArray (Scd, 'tracks');
print CDMakeXML: :create($cd);

While this is one way to solve the problem, it is not the best way. Instead, a Facade object should be
made for the web service call:

class WebServiceFacade

{
public static function makeXMLCall (CD $cd)

{
CDUpperCase: :makeString(Scd, 'title');
CDUpperCase: :makeString($Scd, 'band');
CDUpperCase: :makeArray (Scd, 'tracks');
$xml = CDMakeXML: :create($cd);
return $xml;

}

The webServiceFacade object has only one public static method, called makexMLCall (). This accepts
the cD object and returns an XML document. The steps used to create the XML document previously
were just moved into this Facade’s method. Now, instead of the four lines listed previously, only one is
needed:

print WebServiceFacade: :makeXMLCall ($cd);

When the next step in the application process contains many complex logical steps and method calls, it is
best practice to create an object based on the Facade Design Pattern.

59

Factory Pattern

The largest switch/case statement I've ever seen in an object-oriented program had more than
20 conditions. Upon execution, this block of code was executed one time for each condition. Each
condition was responsible for creating a new object. This object was used to communicate with
external consumers of the application’s API. After performing some routine troubleshooting on
one of the classes, I investigated the interface it implemented. To my surprise, each of the classes
referenced in that switch/case statement implemented the same interface! The next time a new
condition was being added to that switch/case, I suggested we move to the Factory pattern. As
indicated earlier, the names of Design Patterns are very important. They not only provide
uniformity to referencing each Design Pattern, but they also key into what the pattern exactly
does. In the case of the code I was looking at, the Factory Design Pattern was a perfect match for
this assembly line of class creation.

Name: Factory

The Factory Design Pattern provides a simple interface to acquire a new instance of an object,
while sheltering the calling code from the steps to determine which base class is actually
instantiated.

Problem and Solution

As PHP continues to grow and evolve as a language, its features continue to provide easier
avenues for development, using proven Design Patterns. One feature of PHP that has been
particularly helpful is the ability to create new instances of classes based on the content of a
variable. This dynamic approach to object instantiation is one of the building blocks of my
approach to the Factory Design Pattern in PHP.

Part Il: Reference Material

U

62

Classes based on the Factory Design Pattern help reduce conditionally based complexity in the main
code stream. Throughout applications, objects are called in many different ways. Changing just one
thing about an object’s creation can cause ripples through the rest of the application. Think of
instantiating one of five objects to perform some sort of functionality. One method would be to create

a conditional to determine which object to instantiate. This might be a complex if/else statement or a
switch/case statement. This functionality can be used in many places in the application but can cause
code duplication. Then, add a sixth object to the mix or change the name of one of the existing five, and
all instances of this code need to be modified and tested again. The Factory Design Pattern helps
eliminate this headache by providing a simple interface to create any of these objects. The way the
Factory object is called stays the same no matter if objects are changed or other objects are added.

A practical example of this can be observed when showing a blog entry. This particular blog is very
popular and has many different ways of providing its content to consumers. These include the standard
web browser, RSS feed, mobile delivery, and the REST API. The code stream or controller that actually
retrieves the proper blog entry does not need to be concerned with the view that is being consumed. It
simply will request a new view object from the view creation Factory. Once it has that instance of that
view object, it can pass the article object into the view. Finally, it calls the rendering method that executes
the view object. Throughout the whole process, because of the usage of that Factory object, the main
code stream does not have to deal with figuring out which is the right view object to create. It blindly
calls the Factory and is presented with the correct object to work with.

The creation of different objects is not the only thing that the Factory Design Pattern can be used for,
however. Another reason to use a class based on the Factory Design Pattern is when you are working
with collections of items. In this case, the collection of objects consists of the same base object, but each
object has different characteristics.

A great example of using a Factory class to manage a collection of objects is an inventory system. A
music shop may have an application that shows its guitar inventory. The view was originally created to
work with a single guitar object to determine its brand and model, its color, and the number of strings.
To show multiple results in the inventory, a Guitars Factory object could be used. It could accept a
collection of IDs from the database on instantiation. It would then have a public method called
getGuitar (). This would return a guitar object created from a single ID. In this case, the Factory
continually creates a new guitar object from the collection and returns them uniformly using a public
method.

When you need steps to determine which type of object to create, you should use a class based on the
Factory Design Pattern to retrieve the new instance.

ML

This Unified Modified Language (UML) diagram details a class design using the Factory Design Pattern
(see Figure 9-1).

Chapter 9: Factory Pattern

MyObjectTypeA
+doSomething()
<€ MyObjectFactory
1 1
+createObject(type
MyObjectTypeB ——— @ Ject{type)

+doSomething()

Figure 9-1

Note the following about this figure:

Q Two base classes exist: MyObjectTypea and MyObjectTypeB. Both have a public method called
doSomething (), which executes the logic of that object in its own unique way. Their public
interfaces and return types are identical.

Q The MyObjectFactory class exists to create an instance of either one of these base classes and
return it to the code stream. MyObjectFactory has one public method, named
createObject (). This accepts a parameter called type. This helps determine which of the two

base classes should be created. The createObject () method then returns an instance of the
requested type class.

Code Example

For the mastering process of a CD, the application needs to compile the required information into the cD
object. This object will be passed on to an external vendor, who will process the actual CD creation. The
CD object needs to contain the title, the band name, and the track list.

This simple D class contains methods to add the title, band, and track list:

class CD

{
public Stitle = '';
public $band = '';
public S$tracks = array();

public function __ construct()

{}
public function setTitle(Stitle)
{
Sthis->title = $title;
}

public function setBand(S$band)

63

Part Il: Reference Material

{
Sthis->band = $band;
}

public function addTrack (Strack)
{

Sthis->tracks[] = S$track;
}

In order to make a complete CD object, the process is always the same. Create an instance of the cD class,

then add the title, band name, and track list:

Stitle = 'Waste of a Rib';
Sband = 'Never Again';
StracksFromExternalSource = array('What It Means', 'Brrr', 'Goodbye');

Scd = new CD();

Scd->setTitle(Stitle);

Scd->setBand ($band) ;

foreach ($tracksFromExternalSource as S$track) {
Scd->addTrack (Strack) ;

Some artists are now releasing additional content on their CDs that can be used on the computer. These
CDs are called enhanced CDs. The first track written to the disc is a data track. The mastering software

recognizes the data track by its label of 'DATA TRACK' and will create the CD accordingly.

The enhancedCD class is similar to the regular cD class. It has the same public methods. However, it does

add the first track to the disc in the constructor automatically:

class enhancedCD

{
public $title = '';
public $band = '';
public Stracks = array();

public function __ construct()
{

Sthis->tracks[] = 'DATA TRACK';
}

public function setTitle(S$Stitle)
{

Sthis->title = Stitle;
}

public function setBand($band)

64

Chapter 9: Factory Pattern

{
Sthis->band = S$band;
}

public function addTrack (Strack)
{
Sthis->tracks[] = S$track;
}
}

After seeing these similarities and recognizing that there are only two possible CD types, it may be
tempting to just create a conditional statement. If the type is an enhanced CD, create a new instance of
the enhancedcD class. Otherwise, create the generic CD class. However, there is a better solution. The
Factory Design Pattern should be used.

The cDFactory class uses PHP’s ability to dynamically instantiate a class from a variable. The create ()
method accepts the type of class requested and returns a new instance of it:

class CDFactory
{
public static function create($type)
{
$class = strtolower (Stype) . "CD";

return new S$Sclass;

Now, the class creation and execution is changed to reflect the usage of the Factory class:
$type = 'enhanced';

$cd = CDFactory::create($Stype) ;

Scd->setBand ($band) ;

Scd->setTitle(Stitle);

foreach ($tracksFromExternalSource as S$track) {
Scd->addTrack (Strack) ;

}

The last thing one might consider is the name of the existing cD class. To make it uniform, it may make
sense to change its name to standardcbD. Make sure that this won’t damage other functionality
anywhere else in the code. It would be best to change any new instantiation of the CD to use the
CDFactory class.

When requesting an instance of a class that requires some logic and steps to determine its base, it is best
practice to use a class based on the Factory Design Pattern.

65

10

Interpreter Pattern

Whether you loved or hated math class, those concepts equipped you to be where you are now.
Even as early as algebra, core ideas were absorbed preparing you for your programming career.
Algebra revolves around using variables to hold unknowns. Substituting values into the equation
provided an interpretation of the variables to obtain the final result. Programming languages, like
PHP, provide another form of interpretation. PHP generally is referred to as an interpreted
language because its core installation does not compile the code ahead of time. PHP has also been
referred to as a templating language. As more elaborate applications are created, this templating
and interpreting becomes more advanced. More often than not, this template approach exists to
allow the team to create entities in a less technical and complex way. The Interpreter Design
Pattern is made to review these entities and provide a replacement for or interpretation of them to
that template.

Name: Interpreter

The Interpreter Design Pattern analyzes an entity for key elements and provides its own
interpretation or action corresponding to each key.

Problem and Solution

The Interpreter Design Pattern is one of the few extremely common design patterns you may have
been using often without realizing it. This style of design is not limited to just the creation of
classes. The base concepts of the Interpreter Design Pattern are used throughout most of the
programming algorithms created.

Part Il: Reference Material

68

To understand how the Interpreter Design Pattern works, consider the processing of a macro language.
The commands that are written for each macro are, in themselves, collections of more commands. The
shorthand macro language makes it easier for a programmer to create something without having to
worry about the exact syntax of other system commands. In some cases, this is also done to boost
security: the programmer is not given direct access to the system commands. Instead, wrapper methods
are written to execute the system commands in a sort of sandbox. The macro language is interpreted and
translated into a set of commands to be executed.

Another way to think of this is by examining a template system. Specific predefined keywords or
symbols are defined to represent something else. The template processor takes the code, interprets each
keyword to reference a specific set of instructions, and executes those.

Building systems based around the Interpreter Design Pattern allows third parties or users greater
flexibility over how to present and retrieve data that the system provides. Instead of predefining method
names or specific constants to represent a type of data retrieval, a set of keywords can be used to retrieve
that data.

For example, a third-party consuming a web service could dictate the values they wish to retrieve in

the order they wish by sending a keyword-laden request. Perhaps this request mimics an XPath query

in the way it’s constructed. The class based on the Interpreter Design Pattern would then retrieve each
bit of information that each key symbolizes in the order in which they were requested. The interpretation
of these keywords is done piecemeal; therefore, it does not require a complex set of predefined data set
orders. For a CD, the request may be in this form: “band title track4.” The interpreter knows to return the
band name, the CD title and the title of track number 4 to the requester. The next request could be
“track3 title” which would send back the third track’s name and the title of the CD.

The most common use of the Interpreter Design Pattern is in PHP/HTML template systems. HTML
documents are created with specific placeholders in their body. These placeholders reference a function
or property of the processing object or another template or file on the file system. These template
systems are used often when working with large collections of similar data, such as user profiles. A base
template is created with keywords referencing the user’s name, hometown, and picture. The processing
class then interprets each one of these keys as a request for user data and acts accordingly. In similar
fashion, the header, navigation, and footer information for a website may be duplicated throughout the
entire site. The base template is created with a key to be interpreted as the requested page’s output.

The processing object is responsible for interpreting that key to mark the placement of the current
request’s output.

Processing requests using keys to reference functionality should be handled by an object created using
the Interpreter Design Pattern.

Chapter 10: Interpreter Pattern

UML

This Unified Modified Language (UML) diagram details a class design using the Interpreter Design
Pattern (see Figure 10-1).

MyObject

Myinterpreter
-content : String

.] +storeContent(content)
+interpretKeys(inout content) +applylnterpretation()

+getContent()

[EN

Figure 10-1

Note the following about this diagram:

MyObject deals with content that needs to be interpreted. It has a private string called content to store
the content it needs to work with.

The storeContent () method accepts one parameter, named content. This is the content
pre-interpretation. It is then stored internally in the MyObject object.

applyInterpretation () is called next. It creates an instance of MyInterpreter. MyInterpreter
has one public method named interpretKeys (). This method accepts the parameter named
content. applyInterpretation () and passes its internal content to interpretKeys ().

The MyInterpreter class executes the interpretation on the content and then returns it to MyObject.
Then applyInterpretation () replaces the internal content variable.

MyObject, finally, provides the content via the getContent () after interpretation.

Code Example

The website in this example has decided to jump on the bandwagon to merge the CD buying experience
and social networking. Users who sign up for the website can have their own profile page. They’ll be
able to add advanced functionality like HTML, widgets, and listings of their favorite CDs.

In the first iteration, users can create their profile and add their favorite CD title to their profile. The first
piece of functionality is the User class:

class User

{

protected $_username = '';

public function __construct (Susername)

{

Sthis->_username = S$username;

}

69

Part Il: Reference Material

70

public function getProfilePage ()
{
//In lieu of getting the info from the DB, we mock here

Sprofile = "<h2>I like Never Again!</h2>";
Sprofile .= "I love all of their songs. My favorite CD:
";
Sprofile .= "{{myCD.getTitle}}!!";

return Sprofile;

Most of the User class is mocked up for this example. When creating an instance of the User class, the
username is assigned to the protected $_username variable. In a non-mock example, some logic may be
placed here to query the database and initialize the User object with the proper values. The
getProfilePage () function is also a mock method. It returns a hard-coded profile. The important
portion of this example to note, however, is the { {myCD.getTitle}} string. This represents the
template language that will be interpreted later. The getProfilePage () just returns what the user has
specified as their profile page.

In order to retrieve CD information for the user, a new object is created, called usercb:

class userCD

{
protected $_user = NULL;

public function setUser (Suser)
{
Sthis->_user = Suser;

}

public function getTitle()
{
//mock here
Stitle = 'Waste of a Rib';

return S$Stitle;

Once again, this example is heavily mock based. The setUser () method accepts the user object and
stores it internally. It could probably create an instance of a CD object and store it internally in a more
robust example. The getTitle () method would retrieve the title from the CD and return it.

It is important to note the similarity between the name of the getTitle () method and the template
language that was specified in the user’s profile. This will be used by the interpreter class:

class userCDInterpreter
{
protected $_user = NULL;

public function setUser (Suser)

Chapter 10: Interpreter Pattern

}

{
Sthis->_user = Suser;

}

public function getInterpreted()

{
Sprofile = $this->_user->getProfilePage();

if (preg_match_all('/\{\{myCD\. (.*?)\}\}/', $profile,
Striggers, PREG_SET_ORDER)) {
Sreplacements = array();
foreach ($triggers as S$trigger) {
Sreplacements[] = Strigger[l];
}

Sreplacements = array_unique($replacements) ;

SmyCD = new userCD();
SmyCD->setUser (Sthis->_user) ;

foreach ($Sreplacements as Sreplacement) {
Sprofile = str_replace("{{myCD.{Sreplacement}}}",
call_user_func(array($SmyCD, S$replacement)), $profile);

}

return S$profile;

The userCcDInterpreter class contains the setUser () method. This accepts a User object and stores it
internally. The only other method of the userChInterpreter class is the public function named
getInterpreted().

Q

First, the getInterpeted () method gets the profile from the User object that is stored
internally. Next, it parses the profile for any interpretable key language that can be processed. If
any is found, an array of replacements is built. After that, a unique set of replacements is
generated.

The next step is to create a new CD based on the usercCD object. This object is created, and the
User instance is passed into it.

Finally, each of the replacements is looped through. A method named after the content of the
$replacement variable belonging to the usercD instance is called. Its output is used to replace
the interpreted placeholder in the profile. After each of these interpretations is complete, the
profile is returned.

71

Part Il: Reference Material

To actually perform this interpretation and generate a templated output is now very simple:

Susername = 'aaron';
Suser = new User (Susername) ;
Sinterpreter = new userCDInterpreter();

$interpreter->setUser (Suser) ;

print "<hl>{Susername}'s Profile</hl>";
print Sinterpreter->getInterpreted() ;

The user instance is created, a class based on the Interpreter Design Pattern is created, and the

interpretation is executed.

When a set of instructions is referenced by keywords or a macro language, it is best practice to use a class
based on the Interpreter Design Pattern.

72

11

Iterator Pattern

One of the most valuable things a computer can do is execute a repetitive task. Always doing it the
same way without becoming “bored” or getting tired, a computer can chug along doing the same
thing over and over. This is one of the many reasons why computers became mainstream,
affordable, and a staple in the household. Their ability to do simple things repetitively is amazing:
anything from simple math to playing music on repeat or helping to correct a misspelled word in
this book over and over. Computer programming languages manage repetition through a
construction called a loop. Looping is used in almost every program and action now, without our
even realizing it. From a programming point of view, however, not all objects are the same when it
comes to looping. Some require complicated hash table access. Others can be handled like an array.
Because of this complexity in object interface, a common method of looping through items had to
be established. This is where the Iterator Design Pattern stands alone.

Name: Iterator

The Iterator Design Pattern helps construct objects that can provide a single standard inter-
face to loop or iterate through any type of countable data.

Problem and Solution

One of the most convincing proofs that these Design Patterns make sense is their appearance in the
continued refactoring of any of the older code a programmer creates. I fondly remember creating
my first data-driven site. It used flat files to handle the data and was pretty clunky and slow. When
Ilearned MySQL, I migrated all of the data into a few database tables. I still had to write multiple
queries to return my data. When I progressed to an object-oriented refactor, I started creating data
objects from those MySQL queries. I still created each individual object by hand and then accessed
them later. Finally, the last step I remember was creating an object that created objects for a page. It
had a method to get the next object from the list. Little did I know it — I was on the edge of
actually implementing a Design Pattern: the Iterator Design Pattern.

Part Il: Reference Material

74

The Iterator Design Pattern helps fashion objects to handle these collections of data or other objects.
When creating a class based on the Iterator Design Pattern, a set of interfaces is created in order to
provide a unified approach to managing these collections. For example, some objects dictate the mere
creation of themselves as evidence that they are complete and available to the collection. Other objects
may require additional building before they are available to be processed as part of the collection.

The class based on the Iterator Design Pattern will provide those unified public methods to access the
collection. Inside the class, however, logic is applied to determine which object is returned from

the collection next.

Sometimes a data set may seem simple. The programmer may not be able to predict a situation where it
might change, so he/she opts to leave the code as is and not create an Iterator. This is often the case with
calls to the database. MySQL queries are created, and the simple fetch array command is executed.
However, leaving a procedural approach like this in the code is not the best solution.

An Iterator object should be created to deal with the MySQL result set. It may be as basic as providing a
MySQL query to the class constructor and then looping through the result sets by calling the public
methods of the object. Other, more complex, examples of the Iterator may feature additional parameters
being sent to the Iterator. Perhaps a different set of MySQL queries is executed, depending on these
conditions. No matter what, however, the exterior code stream just deals with the same public methods
to obtain the next items in the collection.

Another example of a great use for a class based on the Iterator Design Pattern involves dealing with the
file system. Looping through the file system to present a list of available files is a common theme in
programming. Examples using this approach include providing a list of files to download and applying
plugins dynamically to a modular code base. A class based on the Iterator Design Pattern is created. Next,
it accesses the file system and provides the file information back to the calling code. This could be in the
form of a string of the file path or perhaps a file object. The Iterator may have logic to help determine
which types of files to return. For example, the download page may only want to present Zip files for
download, ignoring any of the other meta data and files in the directory. The Plugin system may be
looking to include only files ending with “.inc,” which is transparently handled by the Iterator. In all cases,
that Iterator provides the same public methods to the exterior code stream to retrieve the file information.
As mentioned in Chapter 2, the Standard PHP Library has an extensive set of classes based on the Iterator
Design Pattern. Visit http: //php . net/spl for more information on these classes and interfaces.

With the extensive amount of information available on the Web and the ever-increasing demand to
aggregate and present sets of data, programmers are facing new challenges. Now, instead of having just
one entity type to loop through and provide in a cumulative view, various other entities are being
injected. The Iterator Design Pattern provides a welcome tool for this challenge.

Imagine a scenario in which a social networking site wants to display user status changes publicly to a
web page. Every minute, it runs a cycle that retrieves all of the status changes from the database. An
Iterator object is created to loop through each of these status changes and provide useful information
such as user ID and status content.

A new way of updating the status is introduced. This comes in the form of txt messages added to a
queue. Now, in addition to querying the database, the txt message queue also needs to be checked and
looped through. A new Iterator can be created to handle the txt messages. Now, after one Iterator is
finished returning content, a new one can be created dynamically, like the txt message iterator, and
provided to that external code stream. Because of the objects created from the Iterator Design Pattern
and their common public methods, no other code needs to be modified.

Chapter 11: Iterator Pattern

When dealing with countable data that needs to be traversed, creating an object based on the Iterator
Design Pattern is the best solution.

UML

This Unified Modified Language (UML) diagram details a class design using the Iterator Design Pattern
(see Figure 11-1).

MyObject MyObjectCollection
-name : String ——< +MyObjects : Array
0..* 1
+getName() +getMyObjects()
1
1

MyObjectCollectionlterator

-MyObjectCollection : MyObjectCollection

+hasNext()
+getNext()

Figure 11-1

For the figure, note that:

Q MyObject is the base object, which can be collected into countable collections. MyObject has a
private string called name. This is used to represent the uniqueness of that particular object. The
public method getName () provides the interface to determine what the name of the object is by
retrieving it from the private name.

0 MyObjectCollection represents a class that manages collections of the object MyObject.
The MyObjects array holds the collection of the objects. getMyObjects () provides the logic to
create the collection and store the objects in the MyObject array.

Q TheMyObjectCollectionIterator provides the interface to iterate over the objects stored
in the MyObjectCollection. It has two public methods. hasNext () will let the caller know if
there is another item left in the MyObjectCollection collection of MyObjects. The getNext ()
method will return the next MyObject from the array in MyObjectCollection.

Code Example

Part of the example website’s job is to show all the CDs from a particular artist or band. This information
is stored in a MySQL database. Some visitors may want to search the database by the band name and get
a summary of all of the CDs that particular artist has released. This is the perfect example of the Iterator
Design Pattern in practice.

75

Part Il: Reference Material

First, our semi-standard cD class:

class CD
{
public $band = '';
public $title = '';
public $trackList = array();

public function __ construct ($band, S$title)
{

Sthis->band = $band;

Sthis->title = Stitle;
}

public function addTrack (Strack)

{
Sthis->trackList[] = S$track;
}

In this example of the CD class, you're using public variables for the band, title, and track list. The
constructor creates the instance and assigns the band and title internally. The addTrack () function
accepts the strack variable and uses that to add to the track list.

The next class to make is the Iterator. In this example, the SPL Iterator is being implemented. Because of
that, you're required to have the current (), key (), rewind (), next (), and valid () public methods.

class CDSearchByBandIterator implements Iterator
{

private $_ CDs = array();

private $_ valid = FALSE;

public function __ construct ($bandName)

{
Sdb = mysqgl_connect('localhost', 'user', 'pass');
mysqgl_select_db('test');

$sgl = "select CD.id, CD.band, CD.title, tracks.tracknum, ";

$sgl = "tracks.title as tracktitle ";

$sgl .= "from CD left join tracks on CD.id=tracks.cid where band='";
Ssqgl .= mysqgl_real_escape_string ($SbandName) ;

$sgl .= "' order by tracks.tracknum";

$results = mysqgl_guery($sql);

ScdID = 0;
$Scd = NULL;

while ($result = mysqgl_fetch_array(Sresults)) {

if ($result['id'] !== $cdID) {
if (!is_null(Scd)) {
$this->_ CDs[] = $cd;
}

$cdID = Sresult(['id'];

76

Chapter 11: Iterator Pattern

Scd = new CD($result['band'], S$result['title']);
}

Scd->addTrack (Sresult['tracktitle']);
}

$this->_ CDs[] = $cd;
}

public function next ()
{

Sthis->_ valid = (next(Sthis->_ CDs) === FALSE) ? FALSE : TRUE;
}

public function rewind()
{

$this->_ valid = (reset($this->_ CDs) === FALSE) ? FALSE : TRUE;
}

public function valid()
{
return S$this->_ valid;

}

public function current ()

{

return current ($this->_ CDs) ;

}

public function key ()
{
return key(Sthis->_ CDs);
}
}

Compared to most of the classes used in the examples, this one is pretty verbose. However, to properly
illustrate the Iterator, especially the implementation of the SPL Iterator, this is necessary. While the code
is lengthy, it’s not that complex.

The cDSearchByBandIterator class is designed to return an object that can be accessed by using some
of the PHP array functions. It is important to note that every Iterator does not need to implement the SPL
Iterator. However, in this example, it made the most sense to me.

There are two private variables, $__CDs, which is an array that contains the collection of CD objects, and
$__valid, which is used by the array access functions. Basically, this just stores whether there is an
available object in the collection to work with.

The __construct () method takes one parameter named $bandName. On instantiation, a connection

to the database is created. Then, a query is created to return a MySQL result set of all the CDs and tracks
whose band column matches $bandName.

77

Part Il: Reference Material

78

The storage of the CDs and tracks is normalized. This means that for the result set that is retrieved, there
will be many rows of the same CD, with the same title but different track names. If the relationship were
one row of data to one CD object, a novice programmer might be even more tempted not to create an
Iterator object.

Since you're expecting to deal with CD objects, the next portion of the constructor loops through all of the
results and creates individual cD objects. Whenever there is a change in the CD ID, which is stored in
$cd1D, the current CD object stored in $cd is added to the internal result array. Then a new instance is
created. After determining if a new CD should be created, the result set’s track title is added to that object.
The end result, after constructing the CDSearchByBandIterator, is a complete class with an array of cD
objects whose band matches the name that was searched.

The public next () and rewind () methods function similarly. First, the matching action using PHP’s
built-in array methods is executed on the internal instance of $__CDs. If that function is unable to
perform that action on the internal array, it will return FALSE. Using a simple conditional, the function
is performed, and its result is compared and added to the internal $__valid variable.

The public valid () function is pretty straightforward. Implementing the Iterator class is required. All it
does is provide the value of the internal $__valid variable.

The final two public methods are current () and key (). Predictably, they also execute the
corresponding internal PHP methods for array access against the internal collection of CD objects.

To use this class, the code is pretty familiar. The CDSearchByBandIterator functions like an array. As
it’s traversed, it returns the CD objects that the code is expecting.

SqueryItem = 'Never Again';
Scds = new CDSearchByBandIterator (SqueryItem) ;

print '<hl>Found the Following CDs</hl>';
print '<table><tr><th>Band</th><th>Title</th><th>Num Tracks</th></tr>';
foreach ($cds as $cd)