

Rockablepress.com
Envato.com

© Rockable Press 2012

All rights reserved. No part of this publication may be
reproduced or redistributed in any form without
the prior written permission of the publishers.

http://Rockablepress.com
http://Envato.com

Acknowledgement3

Acknowledgement
There might be only one name on the cover, but no one writes a
book alone. I am eternally grateful to the following parties:

•	 God, for orchestrating not just the making of this book,
but my whole life, really.

•	 Dad and Mom — as well as my siblings and grandpar-
ents — for their support and encouragement throughout
the entire process. They were, and always have been,
willing springboards for ideas and invaluable advisors.
There’s no exaggeration in saying that without them, the
book wouldn’t exist.

•	 The whole Envato crew and contractors, but especially
Jeffrey, for taking me on as a writer when I’d never done
any tech- or tutorial-writing before and encouraging me
(whether he knows it or not) to continually become a better
writer and developer; Naysan, for suggesting I write this
book, and for organizing the legalities and logistics so
that I could focus on the writing; Peter, for being a meticu-
lous editor, and reigning me in when I tried to do crazy
things with the English language; and the book design
and layout folks, who made all this tough-on-the-brain
teaching so easy on the eyes.

•	 And finally, you, the reader, without whom the efforts of
the aforementioned parties would be a complete waste.

Table of Contents4

Contents

Acknowledgement 3

Chapter 1 8

What is PHP? 8
Who is this Book For? 9
How Do You Install PHP? 10
Installing PHP on Windows 11
Installing PHP on Mac OS X 13
PHP on Your Server 15
The Example Files 16
Summary 17

Chapter 2 19

PHP Files 19
Variables 20
Values 21

Strings 22
Numbers 23
Booleans 24
Null 24
Array 24

Comments 26
Operators 27

Arithmetic Operators 27
The String Operator 28
Assignment Operators 29
Incrementing / Decrementing Operators 29
Comparison Operators 30
Logical Operators 32
Conditional Operator 34

Functions 34
Code Style 36
Summary 37

Table of Contents5

Chapter 3 39

Control Structures 39
if and else (and elseif) 39
for / foreach 41

return / break / continue 45
switch 47
require / include / require_once / include_once 49

Final Thought on Control Structures 52
PHP Internal Functions 53

String Functions 53
Breaking Up and Getting Together 54
A Case of Changed Case 55
Keeping Thing Trimmed 56
Replacements 56
How Long? 57
Needle in a Haystack 57
Et Cetera 58

Array Functions 58
Pushin’ and Poppin’ 58
Mappin’ and Walkin’ 60
Searching High and Low 61
Slicin’ and Dicin’ 62
Sorting Things Out 64
Counting Your Chickens (After They Hatch) 64
Summing it all Up 65

Date and Time Functions 65
parse_date 65
time 66
strftime 66

Math Functions 67
max / min 67
mt_rand 67
round / ceil / floor 68
JSON Functions 68

File Functions 69
fopen 69
Reading a File 70

Table of Contents6

Writing a File 72
fclose 72
The Oddities 73

Summary 73

Chapter 4 76

Scope 76
Superglobals 77
$_GET 79
$_POST 83

Persistence 85
Cookies 85
Sessions 89
Databases 91

Summary 103

Chapter 5 105

Keeping Things Safe 105
When Things Go Wrong 110

Errors 110
Warnings 111
Notices 112
Handling Errors 113

.htaccess 113
Frameworks 114
Deploying 115
Conclusion 116

Appendix A: What We Didn’t Cover 118

Appendix B: Further Resources 119

About the Author 120

Chapter 18

Chapter 1
It’s more than fair to say that PHP is one of the mainstays of the
Internet. It’s been around for over a decade and a half, and in that
time it’s become the default first foray into the world of server-side
coding for many. If you’re attempting to make that move now, I
hope this book will prove a worthy guide.

So, let’s go! Please keep your hands in the book or on your key-
board at all times; eating and drinking is permitted, but no flash
photography.

What is PHP?
Before we actually get started, I want to make sure you know what
you’re getting into. After all, it’d be a crying shame for you to read
two-thirds of the book before realizing that PHP isn’t what you
wanted to learn.

So, what is PHP? First off, the name PHP stands for “PHP: Hyper-
text Preprocessor.” Ignoring the mind-bending recursive part
(https://en.wikipedia.org/wiki/Recursive_acronym), this means that
PHP is primarily used for preprocessing hypertext. You’ll often
intermix PHP with HTML; the HTML isn’t processed until it gets to
the browser, but the PHP is executed on the server, and its output
(typically HTML or some other text) replaces the PHP code.

This tells us two things: firstly, PHP is a server-side language. None
of your PHP ever hits the browser — it’s processed on the server.
The other thing that might not be entirely obvious if you’ve just
worked with HTML and CSS previously is that PHP is a program-
ming language. It’s not like HTML and CSS at all: when you’re
writing PHP, you’re writing real code that will perform some task,
usually based on some input or variable conditions. Of course, this
could be just outputting some text or HTML, but often it’s more.

https://en.wikipedia.org/wiki/Recursive_acronym

Chapter 19

Who is this Book For?
There’s no way that a single book could meet every single PHP
programmer wannabe where they are and help them learn the
ropes. And this book doesn’t need to do that, since there are
plenty of other books, websites, and tutorials that are top-notch.
Here’s who I imagine the audience of this book to be: it’s the
designer who wants to learn PHP so that he or she can use some
of the great PHP-based content management systems in their
client work. It’s the front-end developer who’s good with HTML,
CSS, jQuery, and maybe some raw JavaScript, and wants to start
building more dynamic websites from scratch. If you’re someone
who understands the front-end of the web pretty well, but you
wouldn’t really call yourself a “programmer,” then this book will, I
hope, be helpful to you.

So, yes, I’m aiming for beginners, but I’m also aiming for short: this
book is meant to be read in a weekend (okay, maybe a long week-
end). This means that there’s plenty of PHP goodness that I just
don’t have room to address. To make amends for this, I’ve included
two appendices. Appendix A is a list of topics that we didn’t dis-
cuss: it’s a good list of things to check out. Appendix B is a list of
resources to check out: blogs, books, and more.

Why Learn PHP?
Just in case you’re still on the fence about learning PHP at all, let’s
take a minute to talk about what you can do with it. The problem
here is that asking what can be done with PHP is like asking what
can be done with a paintbrush. My little sister can mess around
with one and do something pretty creative. But give one to Van
Gogh or Picasso, and, well, that’s a completely different story.

It’s the same with PHP. After reading this book, you should be able
to do some basic, yet really handy things that will improve your
websites. However, don’t forget that there are very popular libraries

Chapter 110

and frameworks that use PHP. Some of the biggest websites
you’ve ever visited are coded in PHP; ever heard of Facebook?

So, what will you be able to do with PHP? Check this out:

•	 You’ll be able to change values on your site based on user
input or other values (e.g. change the greeting based on the
time of day.)

•	 You’ll be able to use the information that a user enters into
a form, maybe by giving them appropriate content based on
that info (think search results) or by storing that information
within a database.

•	 You’ll be able to let your users upload files to your server.

•	 You’ll be able to build pages “on the fly” by combining tem-
plates with content from a database, all right as the viewer
requests that specific page.

If any of these things sound enticing, good! And if they don’t,
maybe they’ve made you think of something else that you’ve
wanted to do with your websites. Whatever your aspirations may
be, there’s a pretty good chance you can achieve them with PHP.

One thing to note: PHP is a regular programming language, and
as such, it’s capable of more than just adding some punch to your
website. You could use it to write scripts and programs that have
nothing to do with the web and servers. This isn’t overly common,
but it can be done. However, the plan here is to stick to PHP in the
context of the web, deal?

How Do You Install PHP?
Still with me? Good. So, you’ve decided that you really do want
to learn PHP? Well, then, we’d better get it installed. Since PHP
is a server-side language, and the language doesn’t execute in
your browser, you need to install the PHP interpreter on your local
machine if you want to develop in PHP. While it’s a pretty similar

Chapter 111

process on both Windows and Mac OS X, I’ll walk you through
both. In both cases, there are great packages that bring all the
necessary pieces to the game and make it incredibly easy to start
playing.

Installing PHP on Windows
On a Windows computer, the best
way to get PHP onto your system is
by installing WAMP; besides PHP, this
package has Apache2 for a web server
and MySQL for databases. You prob-
ably aren’t familiar with these technolo-
gies but don’t worry; we’ll explore them
later.

We’ll begin by heading over to the
WAMP Homepage (http://wampserver.
com/en).

Click Start Experimenting WAMPServer. This will bring you to the
downloads section of the page. Choose the correct download,
depending on whether you’re running a 32- or 64-bit rig. A form will

You’ve probably figured
out what WAMP stands for,
right: Windows, Apache2,
MySQL and PHP.

http://wampserver.com/en

Chapter 112

pop up, but you don’t have to fill it out, just click the link “download
it directly.” Once it’s downloaded, run that puppy.

It’s a pretty normal installation process; the only parts that might
trip you up are the last few steps. The installer will ask you to
choose your default browser; just browse to the right .exe file and
hit Open. Then, it will ask you to set some PHP mail parameters;
just leave the defaults. After you’re finished, WAMP Server should
launch automatically (if you haven’t unchecked that box). Hence-
forth, you’ll find a Start WAMP Server item in your programs menu.
Once you choose that, you’ll see an icon in your task bar:

If you click on that icon, you’ll get a menu that looks like this:

See that Put Online option? Click that. In a second or so, your
servers will be online. Then, click the Localhost option, at the top of
that menu. This will open your browser to the WAMP start page.

To use WAMP, you’ll have to put your PHP code in the right place.
That right place is the www folder, which you’ll find at C:\Program
Files\WAMP\www (you’ve got a shortcut to the www folder in the

Chapter 113

WAMP task bar menu). Any folders that you make in that directory
will show up as projects on the WAMP start page. Or, you can just
send your browser to http://localhost/YOUR_FOLDER_NAME to
see your work.

Installing PHP on Mac OS X
If you’re running Mac OS X, using MAMP is the best way to get up
and running with PHP. Load the MAMP homepage (http://www.
mamp.info/) and click the Download Now button under the grey
MAMP logo (you won’t need MAMP Pro today).

The WAMP start page.

http://www.mamp.info/

Chapter 114

Once the rather large zip file has
finished downloading, open it up
and run the MAMP.pkg. Walk through
that installer; there shouldn’t be
any surprises. Once you’re done,
launch the MAMP app found at
/Applications/MAMP/MAMP.app within
your applications folder. You’ll get a
window that looks like this:

The servers will start up immediately, and a “Welcome to MAMP”
page should open. That’s it! You’ve installed MAMP and have a
working version of PHP on your Mac.

You might want to check out the MAMP start page; you can bring it
up in your default browser by clicking the Open start page button.

Yes, that’s right: MAMP
stands for Mac, Apache2,
MySQL and PHP.

Chapter 115

This start page has some information about your PHP installa-
tion and some of the other components installed with MAMP.
Later, in Chapter 4, we’ll come back here briefly when we look at
databases.

To actually use your MAMP installation, you’ll have to put your proj-
ects in the htdocs folder. This resides at /Applications/MAMP/
htdocs/. A folder here named my_project could then be viewed
at http://localhost:8888/my_project.

There’s one more thing to do: MAMP has the option to display PHP
errors turned off by default. Let’s turn that on. Open up the file
/Applications/MAMP/bin/php/php5.3.6/conf/php.ini and find
the line that says this:

display_errors = Off

Change that to this:

display_errors = On

If you have MAMP running, you’ll have to stop the servers and
restart them. Now, you’ll see any PHP error messages that come
up from typos, misspelled PHP statements, and other things along
the way. We’ll discuss PHP errors at the top of Chapter 5.

PHP on Your Server
Obviously, having PHP on your local system only helps you in
development. Once you are ready to deploy your website, you’ll
need PHP on your server. The good news here is that most of the
web hosting services you’ll find already have PHP installed for you.
For the most part, you’ll just have to FTP your freshly made PHP
files up to that server and they’ll work just fine. Be aware that some
complications could arise; we’ll tackle them right at the end of
the book.

Chapter 116

The Example Files
You’ll notice many diverse and sundry code examples herein. You
can get your hands on those examples: they’re in the package you
downloaded when you bought this book.

Once you’ve got the examples folder, you’ll have to put them in a
folder in the www (for Windows) or htdocs (for Mac) folder. Then,
load up localhost/examples/index.php. From there, you’ll find
links to add the examples, with the headings for the examples in
the book matching those link names. Note that if a code snippet
doesn’t have a heading like the following example, it’s not impor-
tant enough to have an example page:

Example 1-1

echo "The code will go here";

Note that some code snippets are broken into multiple chunks;
those ones are have a letter in the title, like so:

Example 1-2-a

echo "part 1";

Example 1-2-b

echo "part 2";

This is only done for the more complex snippets, which I will
explain piece by piece. Finally, some examples are actually multiple
files, so they have a full word instead of just a letter.

Example 1-3 file_one

echo "file one";

Example 1-3 file_two

echo "file two";

Chapter 117

Summary
In this chapter we’ve looked at what PHP is and why you should be
excited about learning it. We’ve also discussed installing it on your
machine. Now, don’t you dare move on to Chapter 2 until you’re
ready to start learning PHP.

Chapter 219

Chapter 2
So, you’re ready to start writing some real code, are you? No
reason to waste another moment; let’s begin!

PHP Files
We’ll start with the most basic of things: obviously, PHP is text, and
it will therefore be stored in regular text files. These files usually
have a .php file extension; while there are other extensions that
PHP uses, that’s the most common, and the only one that you’ll
use for a long time.

You’ll probably recall that I mentioned in Chapter 1 that we could
add bits of PHP to an HTML file. That’s the truth; in fact, you can
even add bits of PHP to CSS or JavaScript files. Part of the trick
here is to give the file that .php extension; that’s how the PHP
interpreter knows which file to process before sending it to the
browser. But, how does it know what lines of code to parse?

That’s where the PHP opening and closing tags come in. You just
wrap your lines of PHP in <?php and ?>. The interpreter will pro-
cess only those parts of the text as PHP, replacing them with the
output of your code. Here’s a quick example. Open up your text
editor of choice and put in this text:

Example 2-1

<h1> Hello PHP! </h1>

<?php

 echo "<p>I'm getting good with PHP.</p>";

?>

Don’t worry too much about what exactly this does; for now,
just know that the echo command will print out whatever text
we pass to it. Now, remember how we said that all of your
PHP projects will be folders in that www / htdocs folder that

Chapter 220

WAMP/MAMP created? Well, create a folder named php_book
in there, and save this text file as index.php. Then, load up
http://localhost:8888/php_book/ in your browser (if you’re
on a PC with WAMP, you don’t need the port number: just
localhost/php_book should do it). You should see something like
this:

(Of course, you could just load up example 2-1 from the example
files.)

As you can see, the HTML portion of our file loaded normally.
Then, the PHP portion is interpreted and the correct output is,
well, put out. If you view the page source, you’ll see that it’s plain
HTML, as if the PHP was never there. Note that the line-breaks
aren’t essential; we could have just as easily put <?php echo
"<p>I'm getting good with PHP.</p>"; ?> on a single line.

So, that’s how you can mix together some HTML and PHP. Just
note that from now on, I’ll not show the PHP tags in our code
examples unless we’re mixing it with HTML.

Variables
Now that you have some idea of how you’d work with a PHP file,
let’s actually start learning the language. We’re going to start with
variables. Now, I’m not expecting you to know much about pro-
gramming, so we’re starting from the very beginning. You can think
of a variable as a storage place for a value. You aren’t familiar with
values yet, but for now, think of them as pieces of data, like some
text or a number. In our little example above, the text we output
into our page was a value. Let’s use that text as an example.

Chapter 221

So, a variable is a storage place; it’s something you can come back
to, to get the same value again. Here’s an example:

$message = "<p>I'm getting good with PHP.</p>";

We have the name of the variable first:
it begins with a dollar sign and can
be followed by any letters, numbers,
or underscores (as long as the first
character after the dollar sign isn’t a
number). That’s followed by an equal
sign, and then the value we want to
store in the variable. We end the line
with a semicolon.

Now, anywhere you’d like to use the
text of the message, you can just use
the variable $message. For example:

Example 2-2

$message = "<p>I'm getting good with PHP.</p>";

echo $message;

If variables aren’t making sense to you yet, don’t worry. As we go
on, you’ll see more about how they are used and where they are
useful. But now, let’s talk about the values that get stored in those
variables.

Values
The real name for values is types. As in, different types of data
(sometimes, they’re called datatypes). While you can make your
own datatypes in PHP, there are a bunch of basic ones built in, and
we’re going to get acquainted with them now.

Most lines of PHP end with
a semicolon. I say “most”
because it isn’t actually
lines that end with a
semicolon, but statements.
That’s harder to explain
at your level, so for now,
just know that if the line
doesn’t end with a curly
brace, it should probably
end with a semicolon.

Chapter 222

Strings

You remember the text that we used in our previous examples?
Well, that was a string. A string is any characters between two
quotes. For example,

"this is a string"

You’ll notice that that string is delimited by double quotes. You can
also delimit strings with single quotes:

'this is also a string'

Now, let’s say we wanted to do something radical, like put a single
quote inside a string that’s delimited with single quotes, or a
double quote inside a string delimited with double quotes. Pretty
radical, eh? A little thinking might help you come up with the right
answer: just use the other type of quote around the string content:

"That's how you do it. 'Gotcha,' you reply."

That will work… some of the time. But, there will be times you can’t
switch the type of quote on the outside (more on that in a second).
When that’s the case, you’ll have to escape the quote inside of the
string. To escape a character means to preface it with a backslash.
This is done in pretty much every programming language, and it
lets the interpreter know that the character following the backslash
shouldn’t be processed the way it normally would.

'That\'ll do it.'

Normally, the above string would end when it comes to that second
single quote. But that backslash keeps that from happening.

Now, you’re probably curious about the times that you can’t just
switch the wrapping quotes to the other type. The secret here
is that double and single quoted strings were not created equal.
Double quoted strings have special magic powers; they can do
interpolation.

Chapter 223

Interpolation isn’t actually all that magical, but it is powerful. Here’s
the idea: when using double quotes around a string, you can put
variables right inside the string and the values of those variables
will be put inside the string. See here:

Example 2-3

$name = "Sherlock";

echo "Hello, $name.";

If you try to run this code, you should see the output “Hello, Sher-
lock.” That’s string interpolation. If we had wrapped that string in
single quotes, we’d have gotten “Hello, $name” instead. Note that
it doesn’t matter whether the string being interpolated (that is, the
value “in” the variable) used double or single quotes.

Numbers

In many programming languages, numbers can be pretty confusing
for beginners. This is because what we humans think of as “just
numbers” are actually extremely complicated for computers. They
divide them into categories depending on whether they are whole
numbers, decimals, positive numbers, negative numbers, or num-
bers within certain ranges. It can be pretty tough to keep track of.

Thankfully, PHP makes it fairly simple for the beginner. There are
only two types of numbers: integers (whole numbers) and floating
point numbers (also called floats: they’re fractional numbers, with
digits after the decimal point). But, you don’t even have to worry
about those types, because PHP will convert back and forth when
necessary. So, when you want to use a number, use it just like
you normally would. Of course, you don’t separate numbers every
three digits with commas or space or anything (like 1,234,567 or 8
901); the only non-number characters you use is the decimal point,
a minus sign (for negative numbers), or an E (or e) for scientific
notation.

Chapter 224

1001.234

-10

1.234e5

The last one is just a shorter way to write 123400. And that’s all you
need to know to get started with numbers.

Booleans

There isn’t an easier type than the Boolean. This is because it
only has two values: true, or false. Those words are keywords
in PHP, which means you can’t use them for anything other than a
Boolean value. Oh, and they’re not case-sensitive either, so TRUE
and FALSE. One thing to know, however, is that every value in PHP
evaluates to either true or false. More on this in the section below
on logical operators.

Null

This one you might find confusing at first, but just store this away
for later. This is the data type that represents nothing: the valueless
value. It’s simple null. That’s a keyword too, and it’s also case-
insensitive. One place null pops up is when you create a variable,
but don’t give it a value: it defaults to the value NULL.

$will_be_null;

Array

Here’s the last data type that we’ll look at for now. It’s the most
complex type that we’ve looked at yet, and that’s partly because
it can be made up of the other variable types that we’ve looked
at. See, in its most basic form, an array is just a list. Let’s see how
this works:

$an_array = array("HTML", "CSS", "JavaScript", "PHP");

Chapter 225

Here we see an array of strings, four strings to be exact. Notice
how we set up the array: we use the word array, followed by an
open parenthesis. Then, we have the items in our list; each one
is followed by a comma, except the final one. Then, we close our
parentheses. What you don’t know yet is that the array() part of
this is actually a function call; just keep this on a side burner until
we discuss functions in a couple of minutes.

So, that’s one way to create an array. But, let’s thicken the plot
here. Many programming languages have two types of arrays:
numeric arrays and associative arrays. See, there are two things
to remember about arrays: they’re ordered and they’re indexed.
Ordered means that the order of the items is important: so in our
example above, HTML will always be the first item in that array, and
PHP will always be the last. Indexed means that each item in the
array has a number or string that allows us to get to that value in
the array. The difference here is that numeric arrays use numbers
to retrieve values, and associative arrays use strings.

By default, arrays use numeric indices; also by default, the indices
start at 0, not 1. So, based on that array up there, $an_array[0]
holds the value HTML, and $an_array[2] is JavaScript. That’s
the notation for getting an item out of the array. After the variable
name, square brackets encase the index number. You could almost
think of the bracketed number as a “sub-variable.”

Oh, I mentioned associative arrays, didn’t I? Well, associative
arrays use strings as their indices. Of course, you have to define a
string for each value you put in the array:

$person = array(

 "name" => "Sherlock Holmes",

 "birthdate" => "January 6, 1854",

 "married" => false,

 "interests" => array("reading", "chemistry", "crime",

 "violin")

);

Chapter 226

Instead of just a single value between commas, we have a bit
more. It follows the pattern key => value. Those are important
terms, too: when you use a string as the index, it’s called the key.
You’ll find the key-value pair to be something you’ll run into often
in programming languages. Between the key and the value is a
=>, known as a T_DOUBLE_ARROW (what? No, I think that’s a great
name *rolls eyes*). And, you can get array items here just like
with the numerically indexed arrays: so $person["name"] will be
"Sherlock Holmes".

In the case of both numeric and associative arrays, you can use
that square-bracket syntax not just to retrieve values, but to assign
values as well:

$an_array[4] = "SQL";

$person["best friend"] = "John Watson";

I’ll note one more thing about arrays before we leave them for a
while. You might have picked this up already, but PHP arrays are
not confined to one data type per array. You can mix and match,
just like we did with $person: we have two string values, a Boolean
value, and another array. Mixing data types within arrays is per-
fectly legal and legitimate.

Those aren’t the only data types that PHP has, but they’re the
basic ones, and they’re all you need to know for now. Let’s change
directions and look at something a bit different next.

Comments
Every modern programming language that I’ve ever heard of lets
the programmer write notes within the code for later reference (or
for others who might be reading the code). That’s called comment-
ing. There are several ways to define a comment in PHP. For single
line comments, begin the line with a number sign and write your
commend after that. Alternatively, you can start the line with two
back-slashes, like you might do in JavaScript.

Chapter 227

this is a comment

// this is also a comment

For a multi-line comment, begin with a slash and then an asterisk.
To close the comment, reverse that. See here:

/* this is

a multiline

comment */

In both cases, you don’t have to worry about starting the comment
at the beginning of the line; you can actually have some code, and
then start the comment after that.

$name = "Sherlock"; # Holmes, of course. Who else?

Of course, these are bad examples of comments. Good comments
document a feature, remind you to make a change, or explain
some quirky code. Use them sparingly, but use them well.

Operators
Now, let’s move on to operators. You couldn’t have a programming
language without operators; they’re the glue that brings all of your
variables and values together into one cohesive living thing. As you
might guess, operators help us operate on values. Sound abstract?
Don’t worry; it’s very straightforward.

Arithmetic Operators

If you’re old enough to have been through grade 1 or 2 (hey, I wel-
come all ages), this will be old hat to you. The arithmetic operators
perform arithmetic on your numbers. It couldn’t be simpler. Check
this out.

Chapter 228

Example 2-4

$num = 10;

$num = $num + 10; # Addition

$num = $num - 5; # Subtraction

$num = $num / 2; # Division

$num = $num * 0.2; # Multiplication

echo $num; # outputs 1.5

Above are four most common arithmetic operators, which I expect
you’ll be very familiar with. As you can see, we can take any two
numbers and use the operators to work on them. In this case,
we’re redefining the value of the variable $num every time; there’s
no rule against changing the value of a variable.

There’s one more arithmetic operator: modulus (%). It’s a little trick-
ier; it returns the remainder of the first number when it is divided by
the second number. So,

5 % 3; # 2

The modulus operator is a great way to
find out if a number is odd or even. If
$num % 2 returns 0, it’s even; if it returns
1, it’s odd.

The String Operator

There’s only one operator for strings,
and that’s the concatenation operator.
The symbol is . (a period or full-stop).
When you want to concatenate more
than one string, here’s how:

"first string " . "second string";

This will give you (or “return”) "first string second string".
This is handy in edge cases where you can’t exactly use string
interpolation. Oh, and if you work with other languages like

You’d better get familiar
with the term “returning.”
If some piece of code
returns a value, that
value is the result of
that execution, the value
you get back. So, 2 + 2

“returns” 4.

Chapter 229

Java Script, be sure not to accidentally use + to concatenate
strings; that doesn’t work in PHP.

Assignment Operators

You’re already familiar with the first assignment operator; that’s =
(equal sign). This operator simply assigns the value on the right to
the variable (or array position) on the left.

But wait, there’s more. The arithmetic operators and the string
operator have combined assignment versions. Remember our
example for the arithmetic operators? Here it is again with the
combined assignment operators instead:

Example 2-5

$num = 10;

$num += 10; # Addition

$num -= 5; # Subtraction

$num /= 2; # Division

$num *= 0.2; # Multiplication

echo $num; # outputs 1.5

Notice what we do: $num = $num + 10 becomes $num += 10. These
operators are useful when you want to perform an operation on
a variable and reassign the new value to that variable. They just
reduce the amount of typing you have to do.

Incrementing / Decrementing Operators

Okay, these are the last arithmetic operators. By now, this line is
easy for you:

$num = $num + 1;

We’re just adding 1 to the value of $num. But with what you just
learned, you can improve that line:

$num += 1;

Chapter 230

Pretty smooth, eh? Well, excuse me while I knock your socks off,
because there’s an even shorter way to do that:

$num++;

That’s right; the incrementing operator (++) adds 1 to a number,
updating the actual value of that variable. There’s the decrementing
operator too: $num--.

But there’s something to be aware of; as you might have guessed,
every operator returns a value. So, let’s say $num = 5. Here’s the
curious part: $num++ sets $num to 6; however, it returns 5. This is
called the post-increment operator, because it performs the incre-
menting after it returns. However, there’s the pre-increment version
that does the incrementing first, and then returns. It’s as simple as
putting the double plus signs in front of the variable. When we do
++$num, it returns 6, and sets $num to 6. Of course, all this goes for
the decrement operator as well.

Comparison Operators

Next up is a set of operators that are useful whenever you want
to compare two values. All the comparison operators return a
Boolean: either true or false. If after reading this section you’re
confused about where these would be useful, just wait. They’re
mainly used with control structures, which we’ll look at in the next
chapter; once you understand those, comparison operators will
make a lot more sense.

First, we have two different operators for checking if two values are
equal. (Why two different operators? You’ll see.) There are double-
equals (==) and triple-equals (===). Let’s begin with an example:

1 == 1; # true

"can" == "cannot"; # false

10 === 20; # false

"something" === "something"; # true

Chapter 231

As you can see, we can compare pretty much any type of value.
But what’s the difference between double-equals and triple-
equals? Well, double-equals (also called the equal operator)
tries to convert both values to the same type before comparing.
Because of that, 1 == "1" is true, even though the “1” on the
right — because it’s enclosed in quotation marks — is technically
a string. The opposite value — which is not enclosed in quotation
marks — is a number; PHP realized that we can convert that string
to a number and still have it make sense (which would not be pos-
sible with a string like "one"). Triple-equals (known as the identity
operator) doesn’t try to interpret and convert values into matching
data types: 1 === "1" will always be false. Which one you want
to use depends on the situation, but you’ll probably be looking for
triple-equals most often.

There’s also the reverse of the equal and identical operators: the
not equal and not identical operators. They work exactly as the
others do, but in reverse:

10 != "10"; # false, because it converts the string to a

 number

10 !== "10"; # true

However, there’s more than just equality to test. How about
greater-than and less-than operators?

5 > 10; # false

5 < 10; # true

Two left: greater-than-or-equal-to and less-than-or-equal-to.

5 >= 10; # true

4 <= 4; # true

The difference with these is that if the operands are equal, it
returns true. As in the last example, 4 is not less than 4, but it is
equal to 4, making the statement true.

Chapter 232

Logical Operators

There’s another type of operator to discuss here, and that’s the
logical operators. This might be somewhat confusing at first, but
you should know them. They’re most useful with conditional state-
ments, so once you learn about those in the next chapter, this part
should become much more clear. Before, you meet ’em, remember
two things: first, as we’ve seen, many pieces of PHP code return
a value. These pieces are called expressions. Second, every value
can be interpreted as being either true or false. Most values are
true: the false ones are these:

•	 "" (empty string)

•	 0

•	 false (of course)

•	 null

•	 array() (an empty array)

Now, let’s learn three logical operators. The logical operators
always return a Boolean value (you might know that some of
JavaScript’s logical operators don’t work this way).

The first one is pretty simple: it’s the Not operator, and it simply
returns the opposite Boolean value of whatever value you use it on.
An example clarifies:

$name = "Sherlock";

! $name # false

$married = false;

!$married; # true

As you can see, you just preface the value with an exclamation
point (or “bang”), and it reverses the value’s Boolean value. What’s
this useful for? When you learn about conditional statement’s next
chapter, you’ll find out that you might want to do something “if a
value is true” or “if a value is not true.” The Not operator is useful

Chapter 233

in simplifying the wording of your code by reserving the Boolean
value.

Then, there’s the And operator. You use two values with the And
operator, one before it and one after it. The And operator is useful
in conditional statements when you want to make sure that two
things are true: It will only return true if both operands (the values
you use with it) are true. For example:

$name = "Sherlock";

$detective = true;

$married = false;

$name === "Sherlock" && $detective # true

$married && $name === "Sherlock" # false

Pretty simple, isn’t it? If both statements are true, it returns true,
otherwise it returns false. Note also that we can use our other
comparison operators as one of the operands: that side of the
operator just equates to whatever Boolean value would come out
of the comparison.

The last logical operator, the Or operator, works very much in the
same way as the And operator: however, it returns true if only one
of the operands is true. So:

$name = "Sherlock";

$criminal = false;

$married = false;

$name === "Sherlock" || $criminal # true

$criminal || $married # false

There’s an important thing to note about the And and Or operators:
they don’t work any harder than they have to. This means that if the
first operand decides the whole case, the second one isn’t evalu-
ated. For example, if the first operand in a use of the And opera-
tor is false, then there’s no sense in evaluating the second one,
because the And operator requires both to be true. Similarly, if the
first operand in a use of the Or operator is true, there’s no need to

Chapter 234

go on to the second one. It’s important to remember this if you’re
using functions as operands. You’ll learn in the next section that
functions return values similarly to operators: keep in mind that if
the function call is the second operand, it won’t be called unless it
needs to be.

Conditional Operator

The last operator we’ll look at is the conditional operator. It’s also
called the ternary operator, because it’s the only operator that
takes three operands. Here’s how it works.

conditional ? if_true : if_false;

We start with a conditional statement, followed by a question mark.
Then, we have another expression that is executed if the condition
is true. After a colon, there’s a second expression that executes
only if the condition is false. This is useful if you want to set a vari-
able based on a condition. See here:

$message = $logged_in ? "Welcome, $username" : "Please

 log in.";

Note that sometimes people will wrap the conditional statement in
parentheses, just to keep their code cleaner.

Functions
We’re finally at the last section of this chapter. Let’s discuss func-
tions. Sounds ominous, I know, but you’ll find otherwise, I hope.

First, of course, you’ll want to know what a PHP function is. And
so I introduce to you my Two Paradigms of Functions, which I
find useful when explaining functions. First, think of a function
as simply a bunch of lines of code, wrapped into a single entity.
Often, you’ll want to perform the same action or task several times.
Do you want to write the lines of code that perform that action
again and again? No. So, you write them once and put them in a

Chapter 235

function. Then, you can call that function whenever you want to do
that thing.

The Second Paradigm of Functions is that a function is like a black
box: you’ll put values into it and get a value out of it, but you can’t
really control what happens inside. Of course, you can control
what’s inside the function when you write the function, but I’m
talking about when you use it. You’ll hand values to the function (or
sometimes, hand it nothing), and get a value back.

So, what’s the syntax for writing one of these functions?

function say_hi ($name) {

 return "Hello, $name";

}

We start with the keyword function, followed by the name we
want to give our function. Functions follow the same naming rules
as variables: use letters, numbers, and underscores. After that,
we have a set of parentheses. What’s between those parentheses
is important; that’s the entrance for any values that you want to
pass into the function. These are called parameters: in the example
above, we have one parameter, $name. Notice that it’s defined just
like a variable. We can then use those values inside the function.
A terminology tip: using a value or variable as a function parameter
is sometimes termed as passing the value as a parameter.

After the parentheses, there’s a set of curly braces. Between those
braces are the lines of code that make up the body of the function.
Notice we’re using the word return; whatever value comes after
that keyword is what is returned from the function, the output of
the black box.

Where are functions useful? They’ll be useful when you need to
perform the same action repeatedly. Depending on the way you’re
organizing your code, functions are often used to break huge
chunks of code into smaller, more manageable more reusable

Chapter 236

pieces that each do a single job. You’ll see functions in use as we
go on.

Code Style
Let’s close out this chapter with a few comments on style. Of
course, we could write a book on PHP code style, but I only want
to mention two things. First, we should discuss the naming of
variables and functions. If you’re familiar with JavaScript, you’ve
probably named your variables and functions with camelCase:
messagesSent and sayHello. However, most PHP developers use
underscores: messages_sent and say_hello. Of course, there
are no real rules on how you name your variables and functions.
Just be aware that underscores are, in general, the way it’s done
in PHP.

The other thing involves the placement of the curly braces in func-
tions (this goes for control structure too, which we’ll discuss in the
next chapter). In the example above, I put the opening curly brace
on the same line I started the function on.

function fn () {

 return "fn";

}

Some PHP developers put that opening curly brace on the next
line, like so:

function fn ()

{

 return "fn";

}

I don’t think either one is clearly used more. Just be aware that, for
the most part, the whitespace between these characters and state-
ments doesn’t affect how they work.

Chapter 237

Summary
It’s been a long chapter, eh? I’ve thrown a lot at you in these few
pages, so don’t feel bad if you need to re-read this chapter. Make
sure you have a good handle on the stuff we’ve covered here,
because, sister, it ain’t getting any easier.

Chapter 339

Chapter 3
By this time, you should be getting pretty comfy with PHP; so, now
it’s time to layer on the complexity. Not only are we going to be
learning some of the most important parts of the language, we’re
going to be using examples that will begin to get you familiar with
seeing more than one line of PHP at a time.

Control Structures
Apart from the basic language concepts that we’ve already cov-
ered, control structures really are the bread and butter of any
language. Here’s why: it’s a rare case indeed when you’re only
required to perform a single, simple action using PHP. More often,
you’ll either want to follow a carefully-designed process over and
over (maybe to a list of items or values), or you’ll want to do some-
thing different depending on another value (maybe some user
input). It’s in these cases that you turn to control structures. Let’s
meet ’em.

if and else (and elseif)

The most basic control structure is the if-statement. It allows us to
find out if a certain condition is true before we execute some code.
For example, let’s say I have only one friend (yes, on the whole
planet); we’ll call him Watson. I could use this code to determine
what to say when I meet a person on the street:

Example 3-1

$person = array("name" => "Watson");

if ($person["name"] === "Watson") {

 echo "Hello, Watson!";

}

If the person I meet has the name of “Watson”, I will respond with
“Hello, Watson!” If you run the above code, you should get the

Chapter 340

right output. The syntax goes like this: the if keyword comes first,
then a set of parentheses. Inside the parentheses, we have the
condition; this is where the conditional operators we talked about
last chapter come in to play. In this case, we’re using the equality
operator to check to see if $person["name"] is equal to the string
“Watson”. The final part is the curly braces. It’s kind of like a func-
tion in the sense that all of the code within those braces executes,
as long as the preceding control structure returns “true.”

Hey, but what happens if I meet someone who isn’t my old pal
Watson? I don’t want to just ignore them; in fact, since I’ve only got
one friend, I probably want to try to meet some folks. This is where
the else keyword comes in handy:

Example 3-2

$person = array("name" => "Mycroft");

if ($person["name"] === "Watson") {

 echo "Hello, Watson!";

} else {

 echo "Hi, I'm Andrew! What's your name?";

}

This time, I’m meeting Mycroft, not Watson. So the condition in
our if-statement won’t be true; it will be false. Because it’s false,
the code in those curly braces won’t execute. This time, however,
we’ve added an else statement. The else-statement executes only
if the condition is false, only if the if-statement code block doesn’t
execute. Run that code and you’ll get “Hi, I’m Andrew! What’s your
name?”

Now, let’s say I get to know Mycroft; I’ve just doubled my friends!
But we all have some friends that, you know, you talk to a bit differ-
ently. Well, Mycroft is one of those friends. Ponder this one:

Chapter 341

Example 3-3

$person = array("name" => "Mycroft");

if ($person["name"] === "Watson") {

 echo "Hello, Watson!";

} elseif ($person["name"] === "Mycroft") {

 echo "Hey, Mycroft! How are ya?";

} else {

 echo "Hi, I'm Andrew! What's your name?";

}

Now, I’ve got a custom greeting for each of my friends. Here’s what
we’ve done: we’ve added an elseif statement between our if
statement and our else statement. We can have as many of these
as we want; after the keyword elseif (oh, that can also be two
words: else if), we have another conditional statement in paren-
theses, just like with the if statement. And then, of course, there’s
the code block, which gets executed if the condition passes.

That’s the if statement and his buddies for you. There is one
more thing to remember as we go on with these control; there’s no
reason you can’t put an if statement inside of an if statement,
or place any of the other control structures within other control
structures. Let’s look at some more control structures that we can
combine into nested, dynamic programming statements.

for / foreach

Well, I’ve been getting out more, recently, and my list of friends has
grown:

$friends = array("Watson", "Mycroft", "Sherlock", "Lestrade");

Let’s say I want to list all four of my friends. This is where our next
control structure comes in handy: for loops. The name makes
sense: you loop over the same code again and again, once for
each item in a list. Let’s look at an example:

Chapter 342

Example 3-4

$friends = array("Watson", "Mycroft", "Sherlock", "Lestrade");

echo "";

for ($i = 0; $i < 4; $i++) {

 echo " $friends[$i] ";

}

echo "";

You should be able to cope with most of this code, but… woah.
Woah is right. That for loop is quite a bit more complex than the
if statements. You should understand the for keyword, and the
block enclosed in curly braces: the code in there is what is exe-
cuted for each item in our list. But what exactly is going on in those
parentheses?

Well, to start, notice that there are three expressions in the paren-
theses; the first two have to have a semicolon at the end, so they’re
separated from the one ahead of them. Here’s how these three
expressions work: the first one is evaluated (or executed, run)
before the looping begins. The second one is evaluated before
each loop begins; if the value it returns is true (or evaluates to true)
the loop is run. The third expression is run after each looping.

What’s up with all these expressions? Well, their “standard” usage
is what I’ve shown above: the first expression creates any variables
we need for the loop. We’ll need an iteration variable, to keep track
of the index of item we’re looping on. As you can see, we create
a variable $i which starts with the value 0. Since arrays are zero-
based, that’s the index of the first item in the array. Before the loop
executes, we evaluate the second expression: in this case $i < 4
is true, so the loop executes and we output a list item with the
name of a friend: in this case, that’s Watson, since he’s at index 0.
Finally, the last expression is executed, since the loop has finished
its first execution: we increment $i by 1, so it now equals 1. Then,
the second expression is evaluated to see if we should repeat the
loop: $i < 4 is still true, so we loop again. This continues until the

Chapter 343

second expression is false. In this example, that will be when $i
equals 4.

That’s your basic for loop. However, the for loop is an incredibly
flexible construct; in fact, all those expressions are optional. You
can check out the official documentation (http://php.net/manual/
en/control-structures.for.php) for examples of how to use the for-
loop in more complex ways.

Oh, one more thing; normally, you wouldn’t hard-code the number
in the second expression, as we did up there. You would usually
use the count function which returns the number equal to the total
items within the array. Let me demonstrate with the first part of a
for loop.

for ($i = 0; $i < count($friends); $i++)

That’s better, but let’s take it one step further. That way, we have to
call count($friends) before every loop. We should save the value
in a variable and use that for our comparison:

for ($i = 0, $length = count($friends); $i < $length; $i++)

As you can see, we can make multiple variable declarations in one
expression by separating them with a comma. We used count to
determine the total number of items in the array, and then we set
up a variable to keep track of how many times we have run the
loop. Once we’ve run the loop for every single item in the array, the
conditions return false, and the loop stops.

But, what about looping over associative arrays? You know, the
ones with strings instead of numbers as indices. Since those
don’t have number indices, it doesn’t make sense to use a normal
for-loop. For these, there is another looping construct that works
better: the foreach-loop. See here:

http://php.net/manual/en/control-structures.for.php

Chapter 344

Example 3-5

$person = array(

 "name" => "Sherlock Holmes",

 "job" => "Private Detective",

 "birthdate" => "January 6, 1854"

);

echo "";

foreach($person as $value) {

 echo "$value";

}

echo "";

Here’s a similar snippet to the one we had with the for-loop.
Instead of the for keyword, we use the foreach keyword. And,
instead of the three statements inside the parentheses, we have
something different: the array variable, the keyword as, and a new
variable, which will be the value of an item in the array, one for
each loop. Running that code should give you a list of the values of
the array:

However, what about the keys (indices) of that array? That could be
important info, right? Well, the foreach-loop allows us to get at that
too. Try replacing the loop above with this one:

Example 3-6

foreach($person as $key => $value) {

 echo "His $key is $value.";

}

We use the same syntax as you do inside an associative array:
now, we have two variables to use inside the loop: $key and
$value.

Chapter 345

There’s only one more thing to mention about foreach loops.
That’s this: you can use them for regular numeric arrays as well,
both with and without the keys.

return / break / continue
Next, we’ve got a few keywords that shake things up a lot. First is
return, which we’ve already met back when discussing functions.
To formalize this introduction, I’ll tell you that the return statement
ends whatever function it is part of; there’s no point in putting any
code after return, because it won’t be run. Whatever value you
pass to the return statement is the value that will be returned to
wherever the function was called. For example,

Example 3-7

function make_greeting ($name) {

 return "Hello, $name";

}

$greeting = make_greeting("Watson");

echo $greeting;

The above code will output “Hello, Watson”, because that’s what
was returned from the function.

The next two movers-and-shakers are pretty similar; and they’re
both used inside looping structures. First, let’s meet continue.
This keyword skips the rest of the loop that it’s a part of, and it
starts the next iteration. For example, if I want to print out a list of
my friends’ names, I could do the following:

$friends = array("Watson", "Mycroft", "Sherlock", "Lestrade");

foreach($friends as $friend) {

 echo "$friend, ";

}

Chapter 346

That’s second nature to you now, right? But let’s say Mycroft and
I have had a little, oh, a “falling out,” shall we call it? Well, here’s
what I can do:

Example 3-8

foreach($friends as $friend) {

 if ($friend === "Mycroft") {

 continue;

 }

 echo "$friend, ";

}

Here, if $friend equal “Mycroft”, then we continue. This means
we skip the rest of this loop and start the next iteration. This will
output: “Watson, Sherlock, Lestrade,”: that’s continue at work.

Then there’s break. Sounds more destructive, and I guess you
could say it is. That’s because break acts just like continue, but
ends the entire loop, not just one cycle. For example, let’s change
continue in our above example to break:

Example 3-9

$friends = array("Watson", "Mycroft", "Sherlock", "Lestrade");

foreach($friends as $friend) {

 if ($friend == "Mycroft") {

 break;

 }

 echo "$friend, ";

}

Now, the output is just “Watson,”; break completely ends the
foreach loop.

As mentioned above, both continue and break work with all loop-
ing constructs.

Chapter 347

switch

Remember back to my list of friends? And how I had a differ-
ent greeting for Watson than for Mycroft? Well, as you know, I’ve
gotten a few more friends since then, and I have a custom greeting
for each of them. So, what’s the best way to give them each their
own custom greeting?

With what we’ve learned so far, that’d be the if-statement, right?

Example 3-10

$friend = "Watson";

if ($friend === "Watson") {

 echo "Hello, Watson.";

} elseif ($friend === "Mycroft") {

 echo "'sup, Mycroft?";

} elseif ($friend === "Sherlock") {

 echo "Good day, Sherlock!";

} elseif ($friend === "Lestrade") {

 echo "How are you, Lestrade?";

} else {

echo "Hi, I'm Andrew! What's your name?";

}

That works fine… but don’t you think it’s a bit wordy? Notice two
things about this code: first, there’s a lot of elseif statements.
Second, all the conditional statements (within the parentheses)
are pretty similar: they all compare the variable to another string.
There’s actually a special conditional construct for situations like
this, and it’s called the switch statement. Check this out:

Example 3-11

$friend = "Watson";

switch ($friend) {

 case "Watson":

 echo "Hello, Watson.";

Chapter 348

 break;

 case "Mycroft":

 echo "'sup, Mycroft?";

 break;

 case "Sherlock":

 echo "Good day, Sherlock!";

 break;

 case "Lestrade":

 echo "How are you, Lestrade?";

 break;

 default:

 echo "Hi, I'm Andrew! What's your name?";

}

Checked it out? Now let’s discuss it: We start with the switch
keyword, and the value in question within the parentheses. Then,
inside the curly braces, we have a bunch of cases. Each case
works like this: the case keyword, the value to compare the
first value to, then a colon. After that, we have the lines that will
run if the comparison matches. You’ll notice that we end each
code block with break. This is because the switch statement
is somewhat deceiving by default. You might think that only the
code “under” a given case is executed when the case matches.
However, that’s not the case (pun unintended). When a case is
matched, the code from there to the end of the switch state-
ment is executed. In our above example, if we removed the break
statements, all the greetings would be printed, because $friend
matches the first case. Go on, try it. By including a break for each
case, then we can keep this from happening.

One more point of interest: notice the last case: default. This
case will run no matter what (assuming the switch statement isn’t
broken before it hits default). So, if no other case matches, the
code under default, at the very least, will be executed.

Chapter 349

Final thought: the switch statement works with any value, not just
strings. Of course, it only works when comparing equality (it’s the
equivalent of the equality operator, ==).

require / include / require_once / include_once

Next up are a posse of players that are of paramount importance.
Without these guys, writing PHP would be pretty messy. That’s
because these guys allow us to separate our PHP into multiple
files, keeping it strictly organized.

Try this: let’s put our list of friends in a separate file, friends.php:

friends.php

$friends = array("Watson", "Mycroft", "Sherlock", "Lestrade");

$friend = array_rand($friends);

The second line just puts one of my friends in the variable $friend.
That array_rand function just returns to us a random item from
the array we pass it.

Now, in our index.php file, we’ll do this:

Example 3-12

include "friends.php";

echo $friend; # or, you can put the switch statement from

 above here.

See that include statement? For our purposes, you can think of
that as simply pulling the code from that file it mentions into the file
that has the include statement. Run that example and it’s just as
though the code from the friends.php file was put in the example
file itself: any variables and functions accessible in friends.php
are now accessible from the example file.

Chapter 350

This is what all four of these control structures do, and you use
them in the same way, but they each have their own twist (kind of
like my friends). Here’s the list:

•	 include

•	 require

•	 include_once

•	 require_once

The main difference lies in what happens when the file can’t be
found. If include can’t find the file, it will output a warning, but
go on executing the code after the include statement. If require
can’t find the file, it will issue a fatal error and not execute any more
code. Don’t worry, we’ll talk about warnings and errors in the last
chapter.

What’s up with include_once and require_once? These work
just like their normal counterparts, except for one thing: if the file in
question has already been included or required in that file, they
won’t bring it in again. So, if you execute the following example,
you’ll get three names: a friend from my list, Moriarty, and another
friend from my list:

Example 3-13

include("friends.php");

echo "$friend
";

$friend = "Moriarty";

echo "$friend
";

include("friends.php");

echo $friend;

However, what do you think this will do?

Chapter 351

Example 3-14

include_once("friends.php");

echo "$friend
";

$friend = "Moriarty";

echo "$friend
";

include_once("friends.php");

echo $friend;

If you run this one, you’ll get Moriarty twice; this is because the
second include_once will know that friends.php has already
been included, and won’t include it again, so the $friend variable
isn’t re-set again.

I should mention that you aren’t restricted to pulling in files from
the same directory. These structures actually check a few places
when they’re trying to locate the file, but for now, you only need to
know that you can use regular file paths to show where the file is:

•	 utilities/ui_messages.php

•	 ../controllers/home.php

Oh, by the way, you may see any of these used with parentheses
when you’re looking at code out in the wild:

•	 include("friends.php");

•	 require("config.php");

•	 include_once("models/user.php");

•	 require_once("config/database.php");

Because these aren’t functions (they’re language constructs), they
don’t require the parentheses, at least not for this simple, straight-
forward use. But you might see them included, so just know that
it’s all good.

Chapter 352

Final Thought on Control
Structures
I’ve got two final interesting points about control structures. First,
there’s an alternative syntax that you might run into when looking
at other programmers’ control structures:

Example 3-15

$friend = "Watson";

if ($friend === "Watson"):

 echo "Hello, Watson.";

elseif ($friend === "Mycroft"):

 echo "'sup, Mycroft?";

else:

 echo "Hi!";

endif;

Notice that instead of curly braces delimiting the blocks, we have a
colon at the start, and endif at the end. For the in-between blocks,
they have no ending mark. This alternative syntax can be used for
more than if statements: there’s also endfor, endforeach, and
endswitch to replace the ending curly brace of the other control
structures. All of them use a colon instead of the opening curly
brace.

The other interesting point is that you can use HTML right inside
control structures. Remember how we can have snippets of HTML
and PHP interspersed in one file? Get a load of this:

Example 3-16

<?php

$friend = "Mycroft";

if ($friend === "Watson"): ?>

 <p>Hello, Watson.</p>

<?php elseif ($friend === "Mycroft"): ?>

Chapter 353

 <p>Hey, Mycroft! How are you?</p>

<?php else: ?>

 <p>Hi!</p>

<?php endif; ?>

Here, we start with PHP, switch to HTML, and continue going back
and forth. Pretty nifty, eh, how we can go back and forth right
within an if statement. Of course, this works for the other control
structures, too.

Usually, you’ll see these two things together: the alternate syntax
and the interspersed HTML and PHP. I guess this is because it
might be confusing to have <?php } ?> in your code, especially if
you’ve got several nested control structures mixed in with HTML,
where indenting can get a tad messy.

PHP Internal Functions
We’ve already talked about creating our own functions. But PHP
has many internal, or built-in, functions: these are the ones that
“come with” PHP. We’ve already seen two of ’em: count and
array_rand. But there are many more: depending on how you
slice it, there are hundreds, thousands, or maybe hundreds of
thousands of functions that PHP offers. Of course, we can’t look
at them all in this book, and many of them you may never use. But,
you can’t write much PHP without knowing a bunch of these func-
tions, so let’s check out enough of them to give you a solid handle
on basic PHP.

String Functions

Let’s start with string functions; you’ll be using strings a lot, so
these are good to know.

Outputting Strings

While we haven’t really talked about outputting strings yet, we’ve
certainly done a lot of that using echo, remember? echo isn’t a

Chapter 354

real function; it’s a language construct, but we use it similarly to a
function. It’s pretty simple: whatever string you pass to echo will be
outputted. You can actually pass multiple strings to it and they will
be concatenated and outputted. There’s also print (another lan-
guage construct), which is like echo, but only takes a single string.

While this next one isn’t just a string function, I’ll put this in here:
there’s another outputting function named print_r: it stands for
“print readable,” and it’s useful for outputting things like arrays
and objects (which we aren’t discussing in this book, but are like
a combination of related variables and functions). Load up this
example and check out what’s printed out:

Example 3-17

$person = array("name" => "Sherlock Holmes", "job" =>

 "detective");

echo "<pre>";

print_r($person);

echo "</pre>";

Output

Array(

 [name] => Sherlock Holmes

 [job] => detective

)

To get the full benefit of print_r, you need to output <pre> HTML
tags around it. This way, the whitespace will be kept.

Many of the example files for the functions below use print_r to
show the result of the function; however, I haven’t put the print_r
line in the examples, just to keep things clean.

Breaking Up and Getting Together

If you want to break up a string, there’s no better function to use
than explode. Pass it a string and a character to divide on, like so:

Chapter 355

Example 3-18

$str = "This is a string.";

$arr = explode(" ", $str); # returns array("This", "is",

 "a" "string");

We want to split that string on its spaces, so, we pass a string
with a single space as the delimiting parameter. The explode
function returns a new array with the parts of the fractured string.
Of course, that delimiter can be more than a single character, so
explode("is a", $str) in the above context returns an array with
two items: “This ” and “ string” (note the following and preceed-
ing space in each of those items, respectively).

Then there’s the reverse: impode (also known by its alias join).
Pass it a “glue” parameter and an array: the array items are pasted
into a string, with the glue between every two items:

Example 3-19

$arr = array("123", "456", "7890");

$phone_number = implode("-", $arr); # "123-456-7890";

Couldn’t be simpler.

A Case of Changed Case

Ever want to change the case of a letter, or a word? This friendly
fellowship of functions is at your service; all these next examples
return true:

•	 lcfirst changes the first letter of the string to lowercase:
lcfirst("Andrew") === "andrew"

•	 ucfirst changes the first letter of the string to uppercase:
ucfirst("andrew") === "Andrew"

•	 ucwords changes the first letter of every word in the string
to uppercase: ucwords("getting good with PHP") ===
"Getting Good With PHP"

Chapter 356

•	 strtolower changes the whole string to lowercase:
strtolower("HEY THERE, WATSON") === "hey there,
watson"

•	 strtoupper changes the whole string to uppercase:
strtoupper("hey there, watson") === "HEY THERE,
WATSON"

Keeping Thing Trimmed

There are three super-simple functions that you’ll find immensely
useful when processing user input. You’ll find that users are waste-
ful creatures, always leaving extra whitespace around the string
values they submit. Pretty simple:

Example 3-20

trim(" string with much padding ");

 # returns "string with much padding"

There’s also the ltrim and rtrim, with only trim whitespace from
the left or right side of the string, respectively. As a handy bonus,
all three of these functions can take a second parameter, a string
of characters that can be trimmed:

Example 3-21

trim("_#_#_#_#_content_#_#_#_#_", "#_"); # returns "content"

Replacements

What programming language is complete without a way to replace
sections of strings? Well, PHP has it: str_replace. Give this func-
tion three parameters: a string to search for, a string to replace it
with, and a string to do the searching and replacing on. As you
might expect, str_replace returns a modified string.

Chapter 357

Example 3-22

$str = "The original string";

echo str_replace("original", "modified", $str); # outputs

 "The modified string"

There’s also str_ireplace (notice the i in there). It works identi-
cally, except that it’s case-insensitive.

How Long?

You’ve already met the strlen function, remember? It simply
returns the number of characters in the string:

Example 3-23

echo strlen("Getting Good with PHP"); # returns 21

Needle in a Haystack

There will be times when you want to find a string within a string,
and those times are the times when you will want to use the
strpos function. It takes two parameters: the haystack, or the
string in which to search, and the needle, what substring to search
for. If the search term is found, you’ll get a number back, that
number being the position within the original string where the sub-
string begins.

Example 3-24

echo strpos("They call this string a haystack", "t");

 # returns 10

If you want to start the string searching at a specific point, you can
pass that number as the third parameter. So, if we want to skip the
first “t”, we can do this:

Chapter 358

Example 3-25

echo strpos("They call this string a haystack", "t", 11);

 # returns 16

Et Cetera

PHP is a huge language, as you might have guessed. There is a
plethora of functions for manipulating strings, and the point of
this book isn’t to provide you with a comprehensive resource. It’s
meant to give you enough to feel confident doing the basics. For
more string function goodness, check out the string function docu-
mentation (http://ca2.php.net/manual/en/ref.strings.php).

Array Functions
Next, for your viewing pleasure, we have a wonderful array of array
functions. Once again, we’re hardly going to scratch the surface.
I’ve hand-picked this mini-selection of array functions that I think
will be most useful to you as you get started. Let’s go!

Pushin’ and Poppin’

Adding and removing items is one the most common things you’ll
do with your arrays. Here are four handy methods that help with
that:

array_push is the quickest way to add one or more items to the
end of the array:

Example 3-26

$friends = array("Watson", "Mycroft");

array_push($friends, "Sherlock");

This function (and most array functions) modifies the array you
pass it, instead of returning a new array. This means that $friends
now has three items: “Watson”, “Mycroft”, and “Sherlock”. You can

http://ca2.php.net/manual/en/ref.strings.php
http://ca2.php.net/manual/en/ref.strings.php

Chapter 359

add as many items as you want at a time simply by passing more
parameters.

array_pop is the opposite of array_push: it pulls the last item off
of the array and returns it.

Example 3-27

$friends = array("Watson", "Mycroft");

echo array_pop($friends); # Mycroft

If you run that, the name “Mycroft” will be echoed, and $friends
will only contain one item.

Then, there’s array_unshift: this function adds an item (or sev-
eral) to the beginning of the array.

Example 3-28

$friends = array("Watson", "Mycroft");

array_unshift($friends, "Sherlock", "Lestrade");

Now, $friends will be equal to array("Sherlock", "Lestrade",
"Watson", "Mycroft"): the new items have been put onto the
front of the original array. Of course, you can use array_unshift
to prepend a single item too.

Finally, array_shift: if you’re following the pattern, you might
guess that this pulls the first item off the front of the array and
returns it. You’d be right:

Example 3-29

$friends = array("Watson", "Mycroft");

echo array_shift($friends);

This outputs “Watson” and leaves Mycroft in the array alone.

Chapter 360

Mappin’ and Walkin’

Very often, you’ll want to do something to every item in an array;
we’ve seen how for and foreach loops are good for that. But,
let’s say you want to do something to every item in the array and
collect the results within a new array. Sure, you can do that with a
loop, but the array_map function makes it easier. You simply hand
it the name of a function, and the array you want it to operate on:

Example 3-30

$friends = array("Watson", "Mycroft", "Sherlock");

$F = array_map("strtoupper", $friends);

echo "<pre>";

print_r($F);

echo "</pre>";

Here’s the output:

Array(

 [0] => WATSON

 [1] => MYCROFT

 [2] => SHERLOCK

)

As you can see, the strtoupper function was called on each of
the items in the original array. Note two things: first, a new array is
returned and the original array is undamaged. Second, we pass the
name of the function as a string (as the first parameter); of course,
you can give it the names of your own functions, not just the built-
in ones:

Example 3-31

function alternate_case($str) {

 $str = str_split($str);

 foreach($str as $k => $v) {

 $str[$k] = ($k % 2 == 0) ? strtoupper($v) : strtolower($v);

 }

Chapter 361

 return join("", $str);

}

$friends = array("Watson", "Mycroft", "Sherlock");

$F = array_map("alternate_case", $friends);

echo "<pre>";

print_r($F);

echo "</pre>";

Here’s a little homework for you: run the above code and see the
output. Then, come back and figure out what exactly is going on in
that function. You’ve learned about all the parts that I’ve used here:
you just need to figure out how they work together! (Feel free to
catch me on Twitter if you’re having trouble.)

If you like array_map, but don’t need to collect values into an
array, try array_walk. Pretty much the same, but only true or false
is returned, based on if the function was successfully run or not.
Don’t miss the fact the function name is passed as the second
parameter, unlike array_map.

Example 3-32

function greet ($name) {

 echo "Hello, $name!
";

}

$friends = array("Watson", "Mycroft", "Sherlock");

array_walk($friends, "greet");

Searching High and Low

What about searching within arrays? That’s something you’ll want
to do, right? Well, there are two methods that you can use. The one
that’s probably more useful is array_search. Pass it a value to
search for and an array to search within, and it will return the key
for the appropriate item in the array.

Chapter 362

Example 3-33

$friends = array("Watson", "Mycroft", "Sherlock");

echo array_search("Sherlock", $friends); # 2

That’ll output the number 2; the index of the searched-for item in
the array.

If you just want to find out if something is within an array, but not
actually do anything about it, there’s the in_array function. Same
parameters and all, it just returns true or false, depending on
whether the item exists or not:

Example 3-34

$friends = array("Watson", "Mycroft", "Sherlock");

var_dump(in_array("Lestrade", $friends));

Try that: you should get bool(false). The var_dump function is
similar to print_r; however, it can output Booleans and print_r
can’t.

Slicin’ and Dicin’

Sometimes, you’ll have an array that you want to perform some
madness on. For example, how about slicing out part of that array?
The array_slice function can help with that. It takes an array as
the first parameter. The second parameter is the offset: that’s the
index that the slice will start at. If it’s a negative number, it will be
counted from the end of the array. But beware: the first item in the
array has an index of 0, but the last item isn’t -0, it’s -1.

The third parameter is simply the length of the slice. Run this to get
the idea:

Example 3-35

$friends = array("Watson", "Mycroft", "Sherlock", "Lestrade");

echo "<pre>";

print_r(array_slice($friends, 1,1)); # "Mycroft"

Chapter 363

print_r(array_slice($friends, -1, 2)); # "Lestrade"

print_r(array_slice($friends, 0, 3)); # "Watson",

 "Mycroft", "Sherlock"

echo "</pre>";

After each line, you can see what items are in the outputted arrays.
Notice the second one in particular: I gave it a length of 2, but it
only has one item. That’s because we started at the last item, and
there aren’t any items after it, so we only get the one.

Then there’s array_splice; parameter-wise, it’s pretty similar to
array_slice. You hand it an array, a starting point, and a length.
But this time, there’s a fourth parameter: either a single value or an
array of values that will replace the values that are being sliced out.

Example 3-36

$friends = array("Watson", "Mycroft", "Sherlock", "Lestrade");

array_splice($friends, 0, 3, "Mrs. Hudson");

It’s important to realize that array_splice returns an array of
the values that are sliced from the parameter array, just like
array_slice. The changes are actually made in the original array.
Run this to see what I mean:

Example 3-37

$friends = array("Watson", "Mycroft", "Sherlock", "Lestrade");

echo "<pre>";

print_r(array_splice($friends, -1, 1, array("Gregory",

 "Irene")));

print_r($friends);

print_r(array_splice($friends, 0, 3, "Mrs. Hudson"));

print_r($friends);

echo "</pre>";

Chapter 364

Sorting Things Out

If you want to sort the items in an array, that’s possible too. Start
with the asort function: You just pass it an array, and it sorts the
array by value, alphabetically. Of course, the indices are kept in
with their appropriate values:

Example 3-38

$person = array("name" => "Sherlock", "job" =>

 "Detective", "age" => "Unknown");

asort($person);

print_r($person);

This outputs the following:

Array ([job] => Detective [name] => Sherlock [age] =>

 Unknown)

This also works for arrays with numeric indices: just like with the
associative arrays, though, the indices are kept with their values.

Example 3-39

$a = array("z", "x", "r", "a");

asort($a);

print_r($a); # Array ([3] => a [2] => r [1] => x [0] => z)

There’s also arsort, which sorts reverse-alphabetically.

Counting Your Chickens (After They Hatch)

We’ve already met the count function, but let’s formalize this intro-
duction. This function simply takes an array as a parameter and
returns the total number of items there are in the array. No more
to say.

Chapter 365

Example 3-40

$arr = array(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);

echo count($arr); # 17

Summing it all Up

Last one: if you ever want to add up the numbers in an array, you
know who to call: array_sum:

Example 3-41

$arr = array(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);

echo array_sum($arr); # 136

As you can see, it’s pretty straightforward. End of story, I guess.

Date and Time Functions
There’s a good chance you’ll have to work with dates or times at
one time or another. So, it’s a good idea to know a few functions
for working with them.

parse_date

Let say you’re getting a date from a site user, and they’re giving
it to you as a string. You could request that they input the date in
a specific format, but there will always be that one person who
ignores the rules. This is where the parse_date function will come
in handy. It takes a date string and returns to you an associative
array with details of the date.

Example 3-42

print_r(date_parse("2012-03-07 13:46"));

Here’s part of the output (I’ve omitted a few keys/values relating to
the timezone and any error that occurred (none in this case)).

Chapter 366

Array(

 [year] => 2012

 [month] => 3

 [day] => 7

 [hour] => 13

 [minute] => 46

)

time

If you’re doing any work at all with dates and times, you’ll soon
have to get familiar with Unix timestamps. A Unix timestamp is
simply a number: it’s the number of seconds that have passed
since January 1, 1970. To get the current Unix timestamp, you can
use the time function.

Example 3-43

echo time(); # for me, 1331147363

You can read more about Unix timestamps on Wikipedia (https://
en.wikipedia.org/wiki/Unix_time).

strftime

Obviously, Unix timestamps are not very user-friendly. For practical
date formats, we turn to the strftime function. Many program-
ming languages have this function, and they all work the same way,
for the most part. You pass this function a string with tokens that
tell it how to format the date. You can pass a timestamp as the
second parameter: if you don’t, it will use the current time as the
default.

Example 3-44

echo strftime("%B %d, %Y"); # March 7, 2012

As you can see, we’re using three tokens in the format string: %B
stands for the month name, %d stands for the day of the month,

https://en.wikipedia.org/wiki/Unix_time

Chapter 367

and %Y stands for the year. There are a heap of other tokens that
you can use: to learn them, check out the handy little website
http://strfti.me/, which gives you a quick reference and a textbox to
test your format strings in.

Math Functions
You can’t be a programmer without doing at least a little math, so
here are a handful of math helper functions that you’ll probably find
invaluable:

max / min

You can probably guess what the max and min functions do: you
hand them a bunch of number parameters, and they’ll return the
highest or lowest number, respectively. You can also pass them an
array of numbers instead of individual parameters:

Example 3-45

echo max(12, 9, 4,16, 2, 3.14); # 16

echo min(array(7, 1, 11, 5, 9)); # 1

mt_rand

Need a random number? mt_rand is your function. If you want a
number within a specific range, pass the min and max values as
parameters. Otherwise, mt_rand will return a number somewhere
between 0 and the highest value that your computer hardware can
support.

Example 3-46

echo mt_rand();

echo mt_rand(0, 10);

http://strfti.me/

Chapter 368

Why mt_rand, and not just rand? Well, there is a rand function,
but mt_rand uses the Mersenne Twister algorithm to generate a
random number faster than rand.

round / ceil / floor

Need to round numbers? There are three functions available for
that. First, there’s round, which, when handed a float (remember,
that’s a number with digits after the decimal point), will return the
integer (whole number) closest to that one, using the rounding
rules you learned back in school.

Example 3-47 (a)

echo round(5.5); # 6

echo round(5.4); # 5

If you want to keep a certain number of digits after the decimal
point, pass that number as the second parameter:

Example 3-47 (b)

echo round(3.14159, 2); # 3.14

The functions ceil and floor are simpler: they only round up or
down respectively, regardless of what’s after the decimal point:

Example 3-47 (c)

echo ceil(5.4); # 6

echo floor(5.5); # 5

JSON Functions

JSON is a great way to pass data around, especially if you’re doing
AJAX from the browser. If you’re familiar with JavaScript, you’ll
know that JavaScript objects (which become JSON) are actually
very similar to PHP’s associative arrays (or PHP objects).

Chapter 369

To convert an associative array to JSON, you pass it to the
json_encode function:

Example 3-48

$person = array("name" => "Sherlock Holmes", "job" =>

 "detective");

print_r(json_encode($person)); # {"name":"Sherlock

 Holmes","job":"detective"}

To convert JSON to a PHP object, you use the function json_
decode, and pass the JSON string as the first parameter. But we’re
kind of ignoring objects in this book, so you can pass true as a
second parameter to get an associative array back instead.

Example 3-49

$arr = json_decode('{"name":"Sherlock Holmes","job": ▶

 "detective"}', true);

print_r($arr); # Array() [name] => Sherlock Holmes [job]

 => detective)

File Functions
Reading and writing files is something that you’ll surely need to do,
so let’s finish by covering that.

fopen

Before doing anything with a file, you’ll need to open it. It’s very
simple: there’s an fopen function that opens a file. The first param-
eter is the path to the file. The second parameter is the mode you
want to open it in. Here are a couple of the modes:

•	 r opens to read.

•	 r+ opens to read and write, with the pointer at the beginning
of the file.

Chapter 370

•	 w opens to write; clears all content from the file, or creates
the file if it doesn’t exist.

•	 w+ opens to read and write; clears all content from the file
or creates the file if it doesn’t exist.

•	 a opens to write, with the pointer at the end of the file.

•	 a+ opens to read and write, with the pointer at the end. It
creates the file if it doesn’t exist.

What’s all this pointer business? Well, the pointer points to the
place in the file where the next string will be written. For example, if
you open a new file for writing, the pointer will be at the beginning
of that file. After you write some text to the file, the pointer will be
at the end of that text, so that next time you write text to the file,
the text you wrote the first time will not be overwritten.

So, we use the fopen function to open a file; that function returns
to us a handle for the file. We’ll use that in some of the other
functions.

The following file functions will help you manipulate files in certain
ways. Let’s say we want to read from a file.

Reading a File

There are three functions for reading a file. Your choice of which
one you use depends on how much of the file you want read. First,
there’s get_file_contents: this one reads the entire file into a
string for you. So, let’s say I have this text file

quote.txt

You will not apply my precept," he said, shaking

his head. "How often have I said to you that when

you have eliminated the impossible, whatever

remains, however improbable, must be the truth?

If we want to read that all into a single string, we just do this:

Chapter 371

Example 3-50

$quote = file_get_contents("./quote.txt");

echo $quote;

This function is actually the odd one out of the three, because it
doesn’t require you to use fopen first: you just pass it the path to
the file, and you’re done.

Then, there’s fgets. This function takes a file handle as a param-
eter, and returns one line of the file. Of course, the pointer is moved
forward, so that the next file you call that function with that file
handle, you’ll get the next line.

Example 3-51

$file = fopen("./quote.txt", "r");

$line1 = fgets($file);

$line2 = fgets($file);

echo $line1;

echo $line2;

Run that example, and you’ll see the first two lines of the file
echoed out.

Finally, there’s fread. This one takes two parameters: the file
handle and a number. That number is the number of bytes that the
function will read out. If you put a number that’s larger than the
number of bytes in the file, fread will read the whole file.

Example 3-52

$file = fopen("./quote.txt", "r");

echo fread($file, 29);

This example should print out the phrase “You will not apply my
precept.”

So, those functions will help when reading a file. What about writ-
ing one?

Chapter 372

Writing a File

Handily, PHP has three functions for writing to a file, all of which
are equivalents to the three functions for reading the file. Let’s look
at them in the same order, shall we?

First, there’s file_put_contents: just like file_get_contents,
we don’t need to use fopen. Just pass the function two strings: the
first is the file path, the second is the string that’s to be written to
the file.

Example 3-53

$str = "this is the content that will be written to the

 file.";

file_put_contents("new_file.txt", $str);

echo file_get_contents("new_file.txt");

If you run this example, you’ll see the contents of the $str outputt-
ted to the browser.

That leaves fputs and fwrite. These two functions are actually
the same function: fputs is just an alias for fwrite. So, how do we
use fwrite? It’s very simple: two parameters. The first is the file
handle, the second is the string to write:

Example 3-54

$file = fopen("quote2.txt", "w+");

fwrite($file, "So shines a good deed in a weary world.");

echo file_get_contents("quote2.txt");

Now, you should see the quote printed to the browser. And now,
you can write files!

fclose

One more to go, and that’s fclose. This takes a file handle as a
parameter and closes the handle. With the basic file work we’ve

Chapter 373

done so far, it actually isn’t necessary, but it’s a good idea to get
into the habit of using it. It will save you from any unfortunate file
errors down the line.

There’s no point in having an example here: every example we have
above that uses fopen to create a file handler should use fclose
to close it.

The Oddities

You may have noticed that there’s a rather significant range of
differences among the names of functions we’ve looked at. For
example, some names separate their “words” with underscores
(str_replace) while others don’t (strtolower). Some use full
words (array_splice) while some use abbreviations (arsort). This
is just something you’ll have to get used to; the many functions and
extensions that are part of PHP are pretty diverse and inconsistent,
but don’t let that get you down. As you work with PHP, you’ll simply
memorize the functions that you use the most.

That brings me to a final word about functions. Don’t — not for one
second — think that you need to memorize every PHP function.
There’s absolutely no shame in using the PHP documentation. And
let me tell you, that’s some of the best documentation I have ever
seen; it’s so complete and comprehensive. Lastly, there are so
many functions that I haven’t even mentioned in this chapter, so I
recommend two things. First, take the time to look around the PHP
function list (http://php.net/docs.php), just to get the feel for what’s
available. Second, when you need to do something that seems like
it might have a built-in function, just Google it. You’d be surprised
how often there is an internal function for what you want to do.

Summary
In this chapter, we’ve looked at some of the control structures
that PHP gives us to make our code more complex. We’ve also

http://php.net/docs.php
http://php.net/docs.php

Chapter 374

seen a handful of functions that you’ll use pretty often in your
programming.

Next up, we’re going to move to working with PHP on the web!

Chapter 476

Chapter 4
Up until this point, the PHP that we’ve discussed isn’t specifically
for the web. But, now we’re going to turn a corner and talk about
the specific ways that PHP is used on the web. But first, we’ll take
an important rabbit-trail through the topic of scope (which isn’t just
for the web).

Scope
Scope is basically the context in which you can use a given vari-
able. For example, you know quite well that if we create a variable,
we can then use it from within that file.

$friend = "Watson";

echo "Hello $friend!";

However, what about from within a function that exists in the same
file? Try this:

Example 4-1

$friend = "Watson";

function greet () {

 echo "Hello $friend!";

}

greet();

If you run this, you’ll get a notice telling you that the variable
$friend was undefined. What? Well, PHP is a bit awkward in that
variables from outside a function aren’t available within a func-
tion by default. If we want to use the $friend variable, we have to
explicitly say that we know it’s coming from the outside:

Chapter 477

Example 4-2

$friend = "Watson";

function greet () {

 global $friend;

 echo "Hello $friend!";

}

greet();

That’ll work for you; you just have to use the global keyword to
let PHP know that the variable is from outside the function. This
works the other way as well: use global on variables you’re going
to define within a function to make them available from outside that
function.

Another thing about scope: remember how we looked at including
and requiring files? Well, any variables within the included / required
files are available just as if they were made in the first that required
them.

And that’s all you need to know for now about scope!

Superglobals
Superglobals can sound pretty intimidating, I’d say. But, they’re
actually pretty simple. Basically, they are a group of variables that
are available in all scopes: as you know, this means that superglo-
bals are available inside and outside of functions. They’re all asso-
ciative arrays, and most are there to offer you special information.
We’ll meet them all quickly now, and then we’ll do a deep dive into
a few important ones.

So, here they are:

•	 $GLOBALS: Any global variables you make are also items in
this associative array. Instead of declaring them with global,
as we did above, you could just access them through the
$GLOBALS array; so, using our above example, we could

Chapter 478

have just used $GLOBALS["friend"] instead of prefacing
the function with global $friend.

•	 $_SERVER: This one includes a bunch of information about
the server that’s running your instance of PHP, and also any
important info about the execution environment.

•	 $_GET: This variable holds any HTTP GET request variables;
more on this later.

•	 $_POST: And this one holds any HTTP POST request vari-
ables; again, stay tuned.

•	 $_FILES: This is where any HTTP file uploads are stored.

•	 $_REQUEST: Here’s your info about the HTTP Request that
requested this file.

•	 $_SESSION: This array is where you’ll store variables that
you’ll need across multiple pages; more coming.

•	 $_ENV: This is where they keep the environmental
information.

•	 $_COOKIE: HTTP cookie information; yes, more on this
one too.

Now that you’ve met them all, we’ll look at a few important ones
that you’ll use often.

But, let’s first step back a moment and look at the big picture. One
of the main reasons that you want to learn PHP is so that you can
build more dynamic websites. In many cases, this dynamic-ness
will come from responding to user input. The main way this user
input comes is via variables in the HTTP requests. If you aren’t
familiar with HTTP requests, that’s okay. I’ll show you how the data
goes from the browser to the server (where your PHP gets it).

Chapter 479

$_GET

An HTTP GET request (often just called a GET request) is what
is sent from your browser to the server when you type a URL or
click on a link. In cases like these, you probably aren’t sending any
data to the server with that request, but you certainly can. Here’s a
good example of a GET request in action: DuckDuckGo is a search
engine, similar to Google1. When I perform a search for “learn
PHP” here’s the URL that I’m sent to:

https://duckduckgo.com/?q=learn+PHP

The important part here is everything after the question mark (?):
that portion of the URL is called the query string, and it holds the
data. The data is in key-value form, with the key coming first, then
an equal sign, and then the value (which has been URL-encoded,
of course). If I open the Chrome web inspector, I can inspect this
HTTP GET request:

We can see the one query string parameter, in this case. If there
were multiple parameters, they would be separated in the URL by
ampersands, like this: https://duckduckgo.com/?q=learn+php&
other=something_else.

Now, how are these query strings created? Well, you could write
them yourself, and sometimes that’s appropriate. But most often,
you’ll use an HTML form, which will do it for you. Let’s look at an
example:

Example 4-3

<?php

if(isset($_GET["name"])): ?>

 <p>Hello, <?php echo $_GET["name"] ?>!</p>

1 I’m not using Google for this example because their query strings are several
hundred characters long.

https://duckduckgo.com/

Chapter 480

<?php else: ?>

 <form action="./" method="GET">

 <p> Please write your name below:</p>

 <p> <input type="text" name="name" /></p>

 <p> <button type="submit"> Submit </button></p>

 </form>

<?php endif; ?>

We’re doing a few interesting things here. First, we’re mixing HTML
and PHP. Second, we’re using the alternative syntax for if-state-
ments. Third, we’re altering the content of the page based on the
whether or not the variable name was sent via a GET request. We’re
using the isset function, which returns true if the variable you
pass into the function exists and is not NULL. So, if $_GET["name"]
has been set, we know its value comes from the GET request that
requested this page. Therefore, we can output a message. If it has
not been sent, we output a form that allows the user to send that
data. Notice the <form> tag: you must set the action and method
attributes. The action attribute tells the form what URL to send
the request to; in this case, we’re just requesting the same page,
although we could send the request to a different page without any
problem. The method attribute is the HTTP method that should
be used in this request. We’re using GET here (we’ll use POST
later). This tells the browser how to send the data. Since it’s a GET
request, it will put the data into a query string and append it to the
end of the URL. So, if I open http://localhost:8888/ggwp4/ in
my browser, I’ll get the form.

I then fill in my name and click Submit. The request is sent, and the
URL changes to http://localhost:8888/ggwp4/?name=

Chapter 481

Andrew+Burgess. Notice the attached query string. Now, the name
parameter is set, and so I see the message.

Note that there’s nothing special going on behind the scenes with
the query string. You could just type the URL http://localhost:
8888/ggwp4/?name=Sherlock+Holmes into your browser and
you’ll get the message. (You know, of course, that these URLs
would work just the same with index.php in there, after ggwp4/.)

It’s really that simple to make a GET request with parameters and
use them with PHP. What’s this good for? Well, since you can
see the parameters right in the URL, you don’t want to use it for
anything private, like logging a user in or changing data on the
server. But, any task where you want to take some not-so-private
data from the user, GET is great. Here are some usage examples,
coupled with example query strings:

•	 signing them up for an email newsletter:
name=Andrew&email=andrew@example.com

•	 asking their location so you can provide the appropriate
content: zip=12345

•	 taking search results: query=learning+PHP

•	 showing a specific product: prodid=123 or product=pc-12

You aren’t familiar with the POST request yet, but know that the
data it passes to the server is not passed as part of the URL, but
more discretely in the HTTP headers instead (I’ll explain more
later). Of course, this is why it’s better for sensitive data. However,
there’s a benefit to having the data in the URL: it makes them
bookmark-able. More on this in the POST section.

It’s common for beginners to get all excited about the idea of
having dynamic user input, and take the idea too far. For example,
there’s technically nothing stopping you from having a single

Chapter 482

index.php file on your website, and using an if / else or switch
statement to show different content depending on the query string.
You might have these pages:

•	 example.com/index.php as your home page

•	 example.com/index.php?page=about as your about page

•	 example.com/index.php?page=portfolio as your portfolio
page

Should you do this? I wouldn’t do it for two reasons: 1) I prefer nice
clean URLs, and 2) I think having the markup for an entire website
in one file would get rather messy. Sure, as you’re learning, I’d give
it a try. The wonderful thing about it is that you don’t have to repeat
your header and footer code:

<!doctype html>

<html>

<head>

 <title> Example Site </title>

</head>

<body>

 <h1> Example Site Header </h1>

 Home

 About

 Portfolio

 <?php if (isset($_GET["page"])) {

 $name = $_GET["page"]; ?>

 <?php if ($name == "about") { ?>

 <p> All about whatever </p>

 <?php } elseif ($name == "portfolio") { ?>

 <p> My greatest works. </p>

 <?php }

 } else { ?>

 <p> Normal Homepage Material </p>

Chapter 483

 <?php } ?>

</body>

</html>

You should know enough by now to figure that out. Play around
with it, but I don’t recommend the one-single-PHP-page approach
for real sites. Notice that I used the standard syntax for if-
statements here: try writing that kind of thing once and you’ll be
convinced that the alternate syntax is the only way to go for inter-
spersed PHP and HTML :).

$_POST

A lot of what you’ve just learned about using GET requests is very
applicable to POST requests. In fact, to make our previous exam-
ple work with POST instead of GET, there’s only three changes
to make. That’s changing every instance of “GET” to “POST”:
it’s found twice in the superglobal name, and a third time in the
<form>’s method attribute.

Example 4-4

<?php if(isset($_POST["name"])): ?>

 <p>Hello, <?php echo $_POST["name"] ?>!</p>

<?php else: ?>

 <form action="./" method="POST">

 <p> Please write your name below:</p>

 <p> <input type="text" name="name" /></p>

 <p> <button type="submit"> Submit </button></p>

 </form>

<?php endif; ?>

Now, try out the example. You’ll notice that when we click the
Submit button, the page refreshes, but the URL doesn’t change.
As you know, this is because we’re POSTing to the same file. If I
open up the network panel on Chrome’s web inspector, and look at
that POST request, I can see that the data shows under the “form
data” section:

Chapter 484

Now, here’s a twist: try hitting the refresh button on your browser.
You’ll probably get a message asking you to verify that you want to
resubmit the data that you already submitted.

Why the prompt? Well, let’s just say that if the first POST request
did something like submit an order to an online store, refreshing
the page would send that data again and make a second order.
That’s rarely what you want: so, browsers will make you double-
check that refresh.

So, as we’ve already said, POST requests are better for sending
secure data, because the data is only stored within the headers.
However, this means our users can’t bookmark that page. For
example, let’s say we have a search box on our website, when the
user types in a search query and hits Search, we pass their query
to our PHP via a POST request to /search.php. In the PHP, we’ll
probably use that query to pull the right data out of a database,
format it into HTML results, and output that to the user. However, if
our user then bookmarks that page and comes back to it later, we’ll
have a problem: when clicking a bookmark, the URL is requested
via a GET request; and anyway, we don’t know what data was sent
to that page (because it was in the HTTP headers, which aren’t
saved with the bookmark), so even if we could do a POST request,
we wouldn’t know what data to send. So, that search.php page is
in a predicament: it didn’t receive the appropriate POST variables,
so it can’t do its job. This is why a well written PHP script will use
isset to see if the GET or POST variables that it needs are set; if

Chapter 485

they aren’t, it can provide a sensible fallback. In our search exam-
ple, it would be a much better idea to send that data as a GET
request. There’s really no need to hide the user’s search query, and
it makes the page bookmark-able.

There is one more concept to clarify about GET and POST
requests: by default, it doesn’t make a difference to the PHP file
which method was used to get the file. As the programmer, you
must choose a method based on the sensitivity of the data, book-
marking ability, and other factors. Once you choose a method, you
can then choose what to do if POST or GET variables are set.

Finally, where does AJAX fit into all this? If you’ve ever made an
AJAX request from JavaScript, you’ll know that you must specify
whether you want to make a GET request or a POST request. On
the server side, it really doesn’t make that much of a difference
whether the request was from a browser or via AJAX. The dif-
ference is that whatever would be displayed in the browser will
instead be the response data of the AJAX request. This is one
place where those JSON functions we talked about would be
useful.

Persistence
One thing about the web is that there’s no persistence. By that, I
mean that if you request a page from a server, and then 10 sec-
onds later request another page, that server doesn’t know, by
default, that the same person made both of those requests. Pass-
ing values from page to page via GET and POST help with this a
little bit, but let’s step it up a notch. There are two other ways to
create a persistent browsing experience: cookies and sessions.

Cookies

With PHP, we can set cookies. Cookies are just little bits of infor-
mation that we can store in the browser. Then, at future visits, we
can retrieve and utilize that information.

Chapter 486

Let’s build a small example. Let’s say we have a web store that
sells office supplies (well, in our example, just pens). Let’s start
with the pen product page:

Example 4-5 (e4-5-pen.php)

<?php

setcookie("product", "pens", time() + 60*60*24*30);

setcookie("time", time(), time() + 60*60*24*30);

?>

<p> Some info about pens. </p>

<p>← Back</p>

We’re setting two cookies on this page: the setcookie function
takes a number of parameters. The first parameter is the name of
the cookie, and the second is the value that we want to store. In
this case, we’re storing a product name and the current time. The
third parameter is when we want the cookie to expire: we’re set-
ting it here by getting the current time (in seconds, remember) and
adding the number of seconds in one month (just a little multiplica-
tion). Of course, after all that, we have some information about the
pens we’re selling. Let me note one thing about cookies here: The
information that sets the cookies in the browser is sent as an HTTP
header. Therefore, if you plan to set a cookie, you’ll have to do it
before you start to output anything. Cookies come first: no HTML
or using echo, print, etc. until the cookies are set.

So, how do we use these cookies? Well, that will be on the homep-
age. Here’s the scenario we’re creating: a visitor will visit our site
and look at the pens. Then, some time later, they will return. When
they hit the homepage, they’ll get a message saying that we are
now offering some new pens (assuming we are). So:

Example 4-5 (e4-5-index.php)

<?php

if (isset($_COOKIE["category"]) && isset($_COOKIE[▶

 "time"])) {

Chapter 487

 if (new_item($_COOKIE["category"], $_COOKIE["time"])) {

 $new_items = true;

 }

}

function new_item ($category, $time) {

 if (latest_product_time($category) > $time) {

 return true;

 }

}

function latest_product_time($cat) {

 return time() - 60;

}

?>

 Pens

<?php if (isset($new_items)) {

 echo "<p> Hey! Since you were last here, we got some new

 {$_COOKIE["category"]}.</p>";

 echo "<p> Check out the

 {$_COOKIE["category"]}</p>";

} ?>

Yes, that’s a lot of code, so take a deep breath before you get
dizzy. At the top, we start by checking to see if the cookies that
we set on the pen page were actually set. This is where the
$_COOKIES superglobal array comes in: any cookies that you set
via setcookie will become an item in the $_COOKIES array; this is
how we read cookies.

If we don’t find the cookies, that means that the visitor has either
never been to that page, or it has been over 30 days since they
last visited (in which case, we won’t give them any special mes-
sage). If we do find those cookies, then we’ll pass them both to a
function called new_item. This function just checks to see if we’ve
received new items in that category since the visitor was last here.
As you’ll see, we call another function: latest_product_time.
This function takes a category and returns the time that we added

Chapter 488

the latest product in that category to the website. In the real world,
this would probably connect to a database and get the info that
way. However, we’re just returning time() - 60, which is one
minute before now. This way, if you go back to the home page
immediately, you won’t get the message… but wait 60 seconds
and refresh.

Notice that we don’t output the message in our initial if-statement:
we just set $new_items to true. Then, at the bottom of our markup,
we check to see if that variable is set. If so, we output the mes-
sage. When the visitor goes to see the new pens, we will send
them new cookies; one will be the same, but the time cookies will
be updated.

So, how do you get rid of a cookie? Eat it! Actually, you just reset
it and set the expiry date to a date in the past. It’s pretty easy; just
subtract anything from time():

setcookie("mycookie", "whatever", time() - 60);

So, now you’ve got a pretty good idea of how cookies work…
but where are they useful? Well, anywhere you want to remember
some information about your users. For example, if your site allows
any customizations like making the font larger or smaller, or chang-
ing the background color or image, that info will be stored in a
cookie. Many site analytics scripts use cookies for recording data;
several content management systems (such as WordPress) will use
cookies for things like the name and email address you use when
making comments. Also, any website where you log in and stay
logged in for a while (like, several days), stores that login informa-
tion in the form of cookies.

You should be able to dig up the list of cookies that all the sites
you’ve visited have stored in your browser (Google a bit if you need
help). Don’t worry if you find their names and values cryptic: they’re
probably encrypted for security. Keep in mind that users can
clear cookies from their browser at any time, so you should never
depend on them for critical information.

Chapter 489

Sessions

Perhaps cookies are a little too persistent for what you have
planned. Let’s say that you want be able to set values that you can
use across several pages (and not pass them back and forth), but
you don’t want them to be remembered beyond the user’s visit.
For example, you know how many websites have a “remember
me” checkbox when you’re signing in? If you check that box, they’ll
store the login info needed to keep you from having to log in on
every page as cookies. However, if you don’t check the box, they
want to store the information temporarily; just for your visit. After
you close the browser, they want that information to be lost. This is
where sessions come in handy: they store whatever info you give
them only for that browsing session: once you close the browser,
your “session” is over and all session information is gone.

So, how do we create and use sessions? Well, it’s pretty different
from cookies. On any page where you plan to use session vari-
ables, you start by calling:

session_start();

I should note that even if you just want to read (and not write) ses-
sion variables on a given page, you still have to call that function.
After that, you can just set and get items in the superglobal array
$_SESSION. Session variables will persist until the user closes their
browser. Here’s a simple example:

Example 4-6

<?php

session_start();

if (isset($_GET["name"])) {

 $_SESSION["name"] = $_GET["name"];

?>

<p>Thanks! Go here for your message

 .</p>

Chapter 490

<?php } else if (isset($_SESSION["name"])) {

 echo "Hi {$_SESSION["name"]}!";

} else { ?>

 <form action="e4-6.php" method="GET">

 <p>Name: <input type="text" name="name" /></p>

 <input type="submit" value="submit"/>

 </form>

<?php } ?>

Of course, we begin by starting the
session. We then check for a GET
request parameter name; if that exists,
we’ll set the session variable name to
the same value, and ask the user to go
to session.php (without the GET query
string) so they can see the message.
There’s where the next part of the if-
statement comes in. If there’s a session
variable name, we’ll use that to output
a message. Otherwise, we’ll output
a form, which will allow the visitor to
put in their name and submit the GET
request.

Load up that example and put in your name. Once you get the
message, refresh the page a few times to make sure you get the
message each time; you could even browse to a different website.
If you’re using a tabbed browser (and who doesn’t these days?), try
closing the tab and going to a page in a new tab (browsers typi-
cally share one “session” across all tabs). You should always get
the message. Now, quit the browser completely (don’t just close
the window), reopen it, and go to our example page. Now you
should get the form instead of the message, indicating that you’ve
started a brand new session.

You can remove a session variable by using the unset function
(this will un-set any variable, not just session variables):

You’ll notice I’m once
again mixing PHP and
HTML. I’m trying to get you
comfortable with seeing
and reading that, because
it’s pretty common, and
it’s something you’ll be
doing often.

Chapter 491

unset($_SESSION["name"]);

You can get rid of all the current session variables and the session
info (which we aren’t going into) by calling session_destroy.

Now, how about a bit of homework? (It’s not required, but you
might find it interesting.) I want you to try something: Load up our
session example, and get to the point where it is showing you the
message. Then, manually add a query string to the URL so that the
current value of the session variable name will be overwritten with
something new.

Databases

Along the same lines of persistence, we have databases. Of
course, you don’t use a database to store quite the same data that
you store in a session or within cookies: databases are quite a dif-
ferent dragon to slay. Let’s talk about this.

Just in case you haven’t had anything to do with a database
before, let’s take a minute to discuss what exactly a database is.
Sure, you know it’s a way to store data, but that doesn’t tell you
much. Several types of databases have become popular, so you
might see names like “noSQL” when reading about databases. We
can’t cover everything here, so what we’ll be talking about are reli-
able old relational databases.

You might find it easier to get your
mind around relational databases if you
think about how they’re similar to your
regular old spreadsheet. Here is some
basic-but-important terminology.

•	 The database is the single entity
where all the data you’re work-
ing with is stored. It’s a lot like a
spreadsheet file in how it orga-
nizes information.

Why are they called
relational? According
to Wikipedia (https://
en.wikipedia.org/wiki/
Relational_database), it’s
because they conform to
a relation model theory.

https://en.wikipedia.org/wiki/Relational_database

Chapter 492

•	 A table is akin to a sheet in a spreadsheet, and like any
other table of data you’ve ever seen, it has rows and col-
umns. A database can have many tables, which can be
related in different ways. A table houses many records.

•	 A record is a group of related values; it usually has a value
that corresponds to every field in the table. This is analo-
gous to a single row in a spreadsheet.

•	 A field in a database is the column in a spreadsheet. It is
the “title” for a single piece of information in a record.

•	 A data value is like a single cell: it’s the intersection of a
record and a field.

Based on this knowledge, let’s create a faux database; check this
out:

Here’s a database with several tables. The table we’re looking at
right now has three fields: ID, First Name, Last Name, and Occu-
pation. It has four records: one for each person. Every cell in this
table is a data value.

But wait, there’s more (as they say). There are pretty strict rules for
creating a database. First, you must define what data type every
field should hold; more on data types later. Also, every table must
have a field that will be unique for every record: this is called a
primary key. That’s what the leftmost ID field in the above table is.

Alright: I think you have enough database background to start
using one. Here’s the micro-project that we’ll work on together to

Chapter 493

give you a taste of working with databases: we’ll see if we can build
an HTML table that shows us data from a table in our database.
We’ll make this match the example table I showed you above.

The first step is to actually build our database. This means we
need database software; thankfully, when you installed WAMP or
MAMP at the beginning of this book, you also installed and config-
ured MySQL Server. MySQL is a database management system,
and while there are other systems available, there’s no doubt that
MySQL is the top banana, at least as far as the number of users
goes. MySQL uses SQL (Structured Query Language) to build
databases and work with the data inside them. But we’ve installed
WAMP / MAMP, we’ve installed phpMyAdmin, which is a decent
user interface for building databases, so we’ll be using that to build
our database.

So, we’ll start by opening the start page of either WAMP or MAMP.
Find the phpMyAdmin link, click that, and you should see some-
thing like this:

There’s a lot here that we won’t be discussing at all. Right now, just
type “php_book” in the textbox under Create new database; then
click Create:

Chapter 494

Great! You’ve created your first database. There are three interest-
ing bits of information on the next screen:

First, notice the left sidebar: it has the text “php_book (0)”; this tells
us that the database php_book currently has 0 tables. Second,
see that green bar near the top that said, “Database php_book has
been created”? Right under that, you’ll see the SQL code that you
would have written to do what you just did via the UI. You’ll see
this a lot in phpMyAdmin, and it’s a good idea to pay attention to
it. Even though we won’t be learning SQL in this book, find a few
good tutorials on line to learn the basic commands and syntax, and
then do things in phpMyAdmin and inspect the SQL it shows you
afterwards.

Third, at the bottom, we can create a table in our php_book data-
base. We’ll give it the name characters (as in, the characters in a
story, not in a string), and type 4 in the Number of fields textbox.
Hit Go.

Yes, this is a poor database name, but it will do for now.

Chapter 495

Now you’ll see a table with empty text boxes and drop-down
menus. This is where we defined the properties of the four fields
that we said our table should have. Have a look at what I’ve filled
in, and then we’ll discuss:

I haven’t done much, but I’ve defined more than you think. Each
row in this table corresponds to a field in our database table. The
first column is for the field titles, and you can see, I’ve set them up
to match our example table image above. The next column is the
data type. The default is VARCHAR, which stands for variable char-
acter. Basically, VARCHAR is the data type for strings. For the id
field, we’ll change the type to INT: the ideal data type for integers,
or whole numbers. The rest of the fields will stay at the default
of VARCHAR: however, we need to define the longest length the
string can be (databases are strict this way). As you can see, we
choose 100 characters in the third column. The fourth column is
titled Default: it lets us define what the default value for these fields
should be. The default default (ha!) is None, which means the field
will be left blank, and we won’t change that.

For now, don’t worry about the Collation and Attributes columns.
But, what’s the Null column about? If that box is checked, the field
is allowed to be blank. In our case, only the firstName field can be
blank.

The Index column is important; there are several different types of
indices; remember the primary key we talked about? Well, that’s
also known as the primary index; make the id field our “primary”
index. Finally, we have the A_I column, which stands for “auto-
increment.” We’ll check this box for the id field. This way, when we
make a new record but don’t fill the id field, it will automatically be

Chapter 496

filled with the next number. This is how we get this field to be the
unique primary key: this is very important, because the primary
key must be a unique identifier: no two records can have the same
primary key.

All right! Click Save at the bottom, and you should see an overview
of our newly-created table:

Now, let’s insert a record or two. Up near the top, click the Insert
tab. You’ll see forms for two records; so, fill ’em out!

After clicking Go, you’ll get some confirmation. Head up to the
Browse tab and click that. You should see the data that we’ve
added to our table.

Chapter 497

Now, we’re ready to head back to the PHP and write some code to
pull this data out. Let’s start with this:

Example 4-7 (a)

for MAMP

$mysqli = mysqli_connect("localhost", "root", "root",

 "php_book");

or, for WAMP

$mysqli = mysqli_connect("localhost", "root", "",

 "php_book");

Woah, woah, right? I’ll explain: we’re using the MySQL Improved
(mysqli) extension here; it a pretty powerful PHP extension
designed specifically for working with databases. What we’re doing
above is creating a connection to the MySQL database that we just
made via the mysqli_connect function. We’re passing four param-
eters to it:

•	 host – Remember how I said MySQL is a server? Well, that
means it has a host name or IP address that points to it.
Since MySQL server is running on the same computer that
is running the PHP, we just use the host name localhost.

•	 username – This is the name of a user on the server, the
one you are logging in as. By default, there’s only one user:
root. On a real website, you’ll want to create a different user
with the right privileges, but for now, using root is fine.

•	 password – Every user has a password: by default, the
password for the root user is root. On WAMP, however,
there’s no password: it’s a blank string.

•	 database name – This is the name of the database you
want to connect to. In our case, that’s php_book.

This should connect successfully. The $mysqli variable now holds
our connection object. Oh, that’s right: we aren’t really discussing
objects in this book. For now, think of an object as a collection of

Chapter 498

related variables and functions. Its variables are called properties
and the functions are called methods.

Now we’re ready to start querying the database. We do so by call-
ing the query method on the $mysqli object, like so:

Example 4-7 (b)

$result = $mysqli->query("SELECT * FROM characters");

You call a method with this syntax:

$object->method_name();

Between the object variable and the method name, you use a dash
and greater-than sign. So, in our $mysqli->query call, we’re call-
ing the query method, passing it a single string as our parameter.
We’re storing the return value in the variable $result.

But what about that string parameter? Let’s look at it again:

"SELECT * FROM characters"

This is an SQL query. There’s no way I could make you an SQL
query expert in this book, so I’ll just explain this one for now. The
SELECT keyword tells the database what action we want to per-
form: we want to select records from the database; this means we
want to read them. The next part tells the database what fields we
want to get. In our case, we want to get them all, and so we use
the asterisk, which stands for “all fields” in this position. The FROM
keyword prefaces the part of the query that tells the database
which data table we want to get the records from; in this query,
we’re saying we want to find values within the character table.

So, after all that, the $results variable will be a mysqli_result
object that has several useful properties and methods. If the query
failed for some reason, $results would be false. Therefore, we
should make sure we have our object:

Chapter 499

Example 4-7 (c)

if ($results) : ?>

 <table>

 <tr>

 <th> ID </th>

 <th> First Name </th>

 <th> Last Name </th>

 <th> Occupation </th>

 </tr>

 </table>

<?php endif; ?>

I’m again using the alternate syntax for the if-statement, because
we’re mixing PHP and HTML. As you can see, if $results is the
object, then we output the table opening and closing. In between
that, we’ll output the table rows. Put this after the closing </tr>
and the closing </table> .

Example 4-7 (d)

<?php while ($row = $result->fetch_object()) : ?>

 <tr>

 <td><?php echo $row->id; ?></td>

 <td><?php echo $row->firstName; ?></td>

 <td><?php echo $row->lastName; ?></td>

 <td><?php echo $row->occupation; ?></td>

 </tr>

<?php endwhile; ?>

This code is a little more complex than you’re used to, but hang on.
First, we’re using a control structure that you haven’t learned yet:
the while-loop. Here’s the normal syntax:

while (condition) {

 // code

}

Chapter 4100

While the condition is true, the code in the block will continue to
execute. In our case, we’re not really using a normal condition:
we’re assigning a variable.

$row = $result->fetch_object();

The fetch_object method will return each of the records we
got from the database, one at a time. So, the first time you call
the method, you’ll get the first record; the second time, you’ll
get the second record, and so on. When we’re out of records,
fetch_object will return NULL. You can imagine how this works
with our while loop: when the condition is first evaluated, we call
fetch_object for the first time and assign its value to $row. Since
that will be a record object, which equates to true, we’ll execute
the code in the loop. Next time you come around to evaluating
the condition, $row will be assigned the next record, and the loop
repeats. When we’re out of records, $row will be assigned to NULL,
and the while loop will stop.

Inside the loop, we’ve got some HTML, with some PHP inside that.
You can see how the $row has a property (just like a variable) for
every field in our database table, that we’re outputting into the
table.

To finish off the example, throw a bit of CSS at the top of the file:

Example 4-7 (e)

<style>

table {

 font-family: helvetica;

 border-collapse:collapse;

}

th {

 background: #ccc;

}

td, th {

 border:1px solid #aaa;

Chapter 4101

 padding: 10px;

}

</style>

Now, when you launch this in the browser, you should see this:

How about adding data to the database using PHP? Well, there are
a bunch of ways to do it, and unfortunately, the more secure your
chosen method is, the more complex the code will be. I’m going to
show you an extremely basic way that you probably shouldn’t use
very often; I’ll mention a better way to do it afterwards, and you’ll
be able to research it yourself.

Remember how we used the query method of the $mysqli object
to select records from our database? Well, we can pass any type
of SQL query to that method. So, let’s learn about inserting data
with SQL.

First things first: we need to choose which table in our database to
insert the data into. It’s not a hard choice here, because we have
only one table: characters. Here’s the start:

INSERT INTO characters

Next, we can choose which fields we’re submitting data for. You
might think we’re submitting data for all fields, but we’re actually
going to ignore the id field, since that gets set automatically. We
can also ignore the order of the fields in the table, if we want, but
we do have to get the field names right. Now we’re up to this:

INSERT INTO characters (firstName, lastName, occupation)

Chapter 4102

If we plan to insert a value for every field, and we’re inserting them
in the order that the fields are in the database, then that part — the
field names in parentheses — is actually optional.

Finally, we need to include the values that we want to put into the
database. They must be added in the same order as the fields you
listed in the last step:

INSERT INTO characters (firstName, lastName, occupation)

 VALUES ("Mycroft", "Holmes", "auditor");

So, how do we use this with our PHP? Check this out:

Example 4-8

<?php

$mysqli = new mysqli("localhost", "root", "root",

 "php_book");

$firstName = "Irene";

$lastName = "Adler";

$occupation = "Singer";

$result = $mysqli->query("INSERT INTO characters

 (firstName, lastName, occupation) VALUES ('$firstName',

 '$lastName', '$occupation')");

if ($result) : ?>

 <p>Added a record for Irene Adler, the singer.</p>

 Now go see your new record in

 action.

<?php endif; ?>

We begin as before, by connecting to the database. Then, we
create three variables to hold the data that we want to put into
our database; sure, we don’t need to put them into variables, but
remember that most often you’ll be getting this data from the
user, so it will come from a form (most likely via $_POST). Next, we
write our insert SQL query in the $mysqli->query method. Notice
that although our variables are strings, we still need to put single

Chapter 4103

quotes around them in the VALUES section; this is so that the data-
base knows that they’re strings.

If the data was inserted correctly, you’ll get a link that will take you
to our table output page. If you click that, you should see that we
now have a third row.

As I said, to teach you everything
about PHP and databases would take
a tome and a half. I’ve shown you the
basics here. There’s so much more you
can learn, and there are better, more
advanced, and more secure ways to do
a lot of what we’ve done. Check Appen-
dix A at the end for a list of database
topics to research.

Summary
Well, that’s another chapter wrapped
up. We’ve covered some pretty impor-
tant topics in this chapter. Without
those $_GET and $_POST superglobals, without cookies and ses-
sion, without databases, PHP wouldn’t be much more than a toy
that glitzes up your sites. However, PHP isn’t all fun and games.
For our final chapter, we’ll dive into the more serious aspects of
PHP: staying secure and dealing with errors.

In the real world, it’s a
terrible practice to take
data that the user has
given you and stick it right
into an SQL query without
doing anything to it. You
absolutely must sanitize
it first, and you probably
want to validate it too.
We’ll discuss these things
in the next chapter.

Chapter 5105

Chapter 5
This is it: we’re at the last chapter. But, before we wrap things up,
there are a few more basics to learn, so let’s not waste any time!

Keeping Things Safe
You might recall from just a few minutes ago (What? You aren’t
reading the book in one sitting?) that I said never to take input from
the user and put it directly into the database. In fact, it’s never a
good idea to simply accept user input, no matter what you’re going
to do with it. Why? Two reasons:

1. Users will make mistakes in their input. They aren’t being
malicious; they’re just making mistakes. But those mistakes
can cause problems later on.

2. Hackers will try to wreak havoc on your site by using trick-
ily-worded input. They are being malicious: they want to do
things like destroy your database or read whatever private
data is in there.

So, how can we make sure that the input the user has given us is
safe before we start using it? Well, for starters, you can get pretty
far by just making sure that the input is of the type you expected.
If you expect a certain piece of input to be a number, pass it to the
is_numeric function, to see if it is:

is_numeric("123.45"); # true

is_number("two"); # false

There are several other functions in the same category as
is_numeric: for example, is_array, is_string, is_null,
is_bool, is_float, and is_int. However, these aren’t quite
the same as is_numeric. For example is_bool("true"),
is_float("3.14") and is_int("123") are all false: they don’t
try to convert the way is_numeric does. These functions aren’t

Chapter 5106

as useful for validation, because we usually get data from the
user in the form of a string (even if that string holds a number, for
example).

So, how do we deal with that form of data? Like I said, the problem
here is that most of them will be a specially formatted string. For
example, here are a few things you might ask a user for that would
come to you as a string:

•	 a name

•	 a date

•	 an email address

•	 a link

•	 a phone number

I’m sure you can think of others. So now the question is, how can
we verify that a piece of user input is in the format we want, and
not some malicious hack?

This is where PHP’s handy filter_var function comes in handy.
For our purposes, this function will take two parameters. The first
is the piece of data we want to check out. The second is the ID of a
filter. Let’s check out a few of these filters.

If we want to make sure our input is a valid email address, we can
use FILTER_VALIDATE_EMAIL.

Example 5-1

$email = filter_var($_POST['email'], FILTER_VALIDATE_EMAIL);

You should know that the filter_var function will return the data
(the first parameter) if the validation passes; otherwise, it will return
false. This method will make sure that a user has submitted a
properly formatted email address.

How about a URL?

Chapter 5107

Example 5-2

$link = filter_var($_POST["url"], FILTER_VALIDATE_URL);

Similar to the email address validation, this example will make sure
that a user has submitted a properly formatted URL.

Then, there are filters for validating integers and floating point
numbers:

Example 5-3

filter_var("123", FILTER_VALIDATE_INT);

filter_var("123.45", FILTER_VALDATE_FLOAT);

Notice how all of those filter IDs were prefixed with FILTER_
VALIDATE. They didn’t change the data in any way; they just told
you whether the data you gave them matched a certain pattern.
But there are a couple of other filter IDs that actually do clean up
the data for you. And they all start with the FILTER_SANITIZE
prefix.

Want to remove unwanted characters from an email address?

Example 5-4

filter_var("johndoe@gmail.com", FILTER_SANITIZE_EMAIL);

 # johndoe@gmail.com

How about replacing special characters with their HTML-safe
entities?

Example 5-5

filter_var(" Holmes & Watson ", FILTER_SANITIZE_ ▶

 SPECIAL_CHARS); # Holmes & Watson

If you want to get rid of those HTML tags altogether, you should
use this FILTER_SANITIZE_STRING:

Chapter 5108

Example 5-6

filter_var(" Holmes & Watson ", FILTER_SANITIZE_ ▶

 STRING); # Holmes and Watson

And for numbers, We’ve got FILTER_SANITIZE_NUMBER_INT,
which takes out everything except numbers and plus or minus
signs.

Example 5-7

filter_var("+123,4a5b6.56", FILTER_SANITIZE_NUMBER_INT);

 # +12345656

Now, here's something a bit more complex, There's a FILTER_
SANITIZE_NUMBER_FLOAT that is for more complex numbers.
However, by default, it puts out the same thing that FILTER_
SANITIZE_NUMBER_INT would:

Example 5-8

filter_var("+123,4a5b6.56", FILTER_SANITIZE_NUMBER_FLOAT);

 # +12345656

This is where a few options (called flags) will come in handy. There
are a few ways to use the options, but we can do it by adding the
options as an extra parameter. There are three option IDs that go
with FILTER_SANITIZE_NUMBER_FLOAT:

•	 FILTER_FLAG_ALLOW_FRACTION – This option keeps any
periods (decimal points) it finds.

•	 FILTER_FLAG_ALLOW_THOUSAND – This option keeps any
commas it finds.

•	 FILTER_FLAG_ALLOW_SCIENTIFIC – This options keeps the
characters e and E, for numbers in scientific notation.

Let’s use the first two flags. We just add them as the third param-
eter, separating each flag with a vertical bar (“ | ”):

Chapter 5109

filter_var(“+123,4a5b6.56”, FILTER_SANITIZE_NUMBER_FLOAT,

 FILTER_FLAG_ALLOW_FRACTION | FILTER_FLAG_ALLOW_THOUSAND);

 # +123,456.56

Many of the other filters offer flags, and other options as well.

I leave the topic of filter_var with a word of warning: use the
sanitization filters cautiously. It isn’t always wise to change the
input the user gives you. For example, if a user’s email address
has taboo characters, then you probably want to ask them to re-
enter it, so you can be sure it’s correct. On the other hand, you can
probably safely take extra characters out of a number.

There’s one more sanitization function you need to know about;
well, it’s a set of functions, kind of. Whenever you’re using user
input with a database query, you always want to use that data-
base’s escape function on the input. In our examples, we’ve been
using a MySQL database, so we would use the mysql_real_
escape_string. This escapes any questionable characters so
that no one can attack our database by typing malicious code into
our form fields. For more on this, check out SQL Injection Attacks
(https://en.wikipedia.org/wiki/SQL_injection).

Example 5-10

mysql_real_escape_string("' OR ''='"); # \' OR \'\'=\'

Just run any values you get from the users through that, and they’ll
be safe for use. Of course, if you’re using a different type of data-
base, you’ll use a different function. For example, if you’re using
PostgreSQL, you’d use pg_escape_string; if you’re using Sqlite,
you’d use sqlite_escape_string.

We talked about filtering data just a moment ago, so I want to
wrap up our discussion of sanitization and validation with a look
at a more complex way of validating. Let’s say that the standard
methods of validation that PHP gives us aren’t quite enough. Let’s
say we want to make sure we receive a date string in this format:

https://en.wikipedia.org/wiki/SQL_injection

Chapter 5110

YYYY-MM-DD. This is a good place to use PHP’s regular expres-
sion functions. If you aren’t familiar with regular expressions, you’ll
find plenty of good tutorials online; they’re pretty complex, and not
something I can teach you here.

For our use, the preg_match function will work fine. We pass it two
parameters: the regular expression pattern we want to match, and
the string we want to match it in. If the pattern is found, the func-
tion returns 1; otherwise, it returns 0. For example:

Example 5-11

preg_match('/^\d{4}-\d{2}-\d{2}$/', "2012-05-12"); # return 1

preg_match('/^\d{4}-\d{2}-\d{2}$/', "May 12, 2012"); # return 0

There are more ways to use this function, as well as other regular
expression functions, but, really, regular expressions go beyond
the scope of this book.

When Things Go Wrong
As a PHP beginner, you’re going to make mistakes. Back in Chap-
ter 1, I showed you how to make sure MAMP or WAMP would dis-
play any errors. Now, let’s talk briefly about errors in PHP.

First off, PHP offers more than just errors. There are actually three
message types: errors, warnings, and notices. Let’s look at what
each looks like, what it does, and what you should do about it.

Errors

An error is the most severe message you can get: when PHP
throws (yes, that’s the technical term) an error, the execution of
code stops, and any code after the code that causes the error will
not be executed.

What could cause such an error? Well, often it will be a mistake on
your part: you know, typos and such. For example, if you mistype

Chapter 5111

some syntax, leave off a semicolon, or try to use a function that
hasn’t been defined, you’ll get an error. See here:

Example 5-12

require "file_does_not_exist.php";

echo "This text won't ever appear";

Running that code results in the following message:

We’re actually getting both a warning and an error in this case,
but both point to the same problem: PHP couldn’t find the file that
I was requiring. Notice that the message after the require line
is never executed, because errors stop execution. This is also a
good time to say that PHP errors can sometimes be pretty cryptic,
especially when you’re learning. However, they always include a
line number, which is a good place to start looking for problems. Of
course, read the error message: that’ll give you a good start. In this
case, I can see that PHP “Failed opening required ‘file_does_not_
exist.php’” and that there’s “No such file or directory.”

Warnings

A warning is a bit less severe than an error; when part of your code
outputs a warning, the file will continue to execute: the problem
isn’t bad enough to grind everything to a halt. What causes a warn-
ing? Well, include-ing a file that doesn’t exist, using an incorrect
parameter when connecting to a database, and dividing by zero
are good examples. See here:

Chapter 5112

Example 5-13

echo date("F j, Y", 1234567890, "something else");

echo date("F j, Y", 1234567890);

Here we’re using the date function. This function takes a format
string (where “F” stands for the month name, etc.) and an optional
timestamp. However, the function doesn’t take a third parameter.
When we give it a third, we get a warning:

Notice that the second line above still executes, because warnings
don’t stop the execution of the file.

Notices

Notices are a step down from warnings; these are for things that
might indicate an error (or might not). Trying to use a variable or
array item that doesn’t exist will cause a notice. Also, using a dep-
recated function will cause a notice (although, it’s not labeled that
way):

Example 5-14

$a = split(" ", "a b c");print_r($a);

Array ([0] => a [1] => b [2] => c)

Here we’re using the split method, which has been deprecated;
this means that it’s not recommended to use this function, it’s been
replaced with something better, and it will probably be taken out of
future versions of PHP. What it does is split the second parameter
(a string) by the regular expression pattern or string given as the
first parameter. If you run the above code you’ll see that we get a
“Deprecated” message.

Chapter 5113

Handling Errors

So, what can we do about these errors, warnings, and notices?
You obviously don’t want errors showing up when visitors are
coming to your site, right? To start with, as much as possible you
should follow the clues that the messages and line numbers gives
you and try to eradicate those errors.

In some cases, though, you can’t be sure that you’ll never get an
error. For example, when using a database, what happens if the
database server is down? You can’t connect. But you don’t want
the users to see that warning. Well, there is a way to suppress
warnings, but that’s still not enough in this case, because we can’t
perform the action the user is expecting. This is why many func-
tions like mysqli_connect will return false if something goes
wrong. That lets you do something like this:

$mysqli = mysqli_connect(/* params */);

if ($mysqli) {

 # standard code

} else {

 # user-friendly explanation

}

If you’re really in a fix, there’s the error control operator. Just put
an at-sign (@) at the beginning of an expression (remember, an
expression is anything that returns a value). However, be careful
with this: you’re usually better off fixing the error, or refactoring
your code so you can fix the error.

.htaccess
Here’s a thought: you won’t always have access to your PHP set-
tings file. If you’re using a shared hosting service, for example,
you’re just one user among many others using their PHP instal-
lation: any settings you change will affect everyone else on that

Chapter 5114

server. But what if you want to make a few changes to your PHP
settings?

There’s a neat little thing called an .htaccess file, and here’s how
it works: an .htaccess file that goes inside any directory on your
server can hold settings for your web server, Apache. And, when
you’re running PHP as an Apache module (which is usually the
case on a shared host), you can configure many PHP options from
that .htaccess file. This can get pretty complicated, well beyond
beginner-level stuff, but I mention it for this reason. If you need to
turn error reporting on or off on your website, for testing or produc-
tion, this will be a good way to do it. Try this: you should have error
reporting turned on (we did that in the first chapter). Now, create a
file named .htaccess (starting with the dot) and put this in it:

Example 5-15-htaccess

php_flag display_startup_errors off

php_flag display_errors off

php_flag html_errors off

Then, save that file into a directory in
your htdocs folder. Create a PHP file
with a warning or notice, and you won’t
see the message. Create a PHP file with
an error, and you’ll get a 500 server
error.

There’s a lot more you can do with
.htaccess files, but that’s so far out of
the scope of this book; I’d encourage
you to look ’em up, though. They can
be handy.

Frameworks
Perhaps you’ve heard of some of the many PHP frameworks…
or maybe you haven’t. In that case, listen up: you could think of a

htaccess? htdocs? See
a pattern. The “ht” stands
for Hyper Text… just like
HTML.

Chapter 5115

framework as a collection of pre-written code that works together
to make your job of making a website much easier. They’re more
useful when you’re building a full web-app: many of them offer the
MVC (Model, View, Controller) architecture. While you can certainly
use them for a smaller website, you might find them a bit hefty.

You already know that we won’t be getting into frameworks in
this book, but you should know that they exist, and that they’re
extremely helpful for large projects. Besides including their custom
application code, they usually have many other helpful methods
that make writing an app pretty simple.

If you’re interested in learning about frameworks, there are reams
of great tutorials on the web; in fact, they all have great documen-
tation as well. Check these ones out sometime:

•	 CodeIgniter (http://codeigniter.com/)

•	 Kohana (http://kohanaframework.org/)

•	 Zend Framework (http://framework.zend.com/)

Deploying
When building PHP websites, you’ll probably do so locally: on your
own computer, running it with a package like MAMP or WAMP.
What happens when you’re ready to release it out into the wild?
When you’re just beginning, this will probably mean firing up your
FTP client and moving the site to your web server. Pretty much
every web host you’ll find today will support PHP, and, for the most
part, you shouldn’t have any problems. However, programming is
never perfect, and issues are sure to come up sooner or later. It’s
impossible for me to help you with every situation right here, but let
me give you some tips that will help:

•	 First, make sure things are set up correctly. For example, if
you’re having trouble connecting to the database on your
hosting server, check out your host’s documentation, or see

http://codeigniter.com/
http://kohanaframework.org/
http://framework.zend.com/

Chapter 5116

if they have a support email address, chat room, or even
phone number. If you’re using a good host, they should be
happy to help.

•	 If the very same code that worked fine on your local machine
is throwing errors on your server, figure out what’s causing
the errors. This might involve configuring something via an
.htaccess file, or contacting your host to see if they can
configure something on their end.

•	 If you’re still can’t figure something out, do a few web
searches. Often, searching for “PHP” plus the error mes-
sage you’re getting will bring up a workable solution.

•	 If all else fails, reach out to the PHP community. Ask about
your problem on forums or on Twitter: chances are, you’ll
find someone who’s both friendly and helpful.

Conclusion
That brings this whirlwind beginner’s guide to PHP to a close. I
hope you’ve enjoyed the trip, and that you’re ready to start using
some PHP on your own projects. But remember, it’s a huge lan-
guage that seems almost endless: there’s so much more that you
can learn, and if you’re ready to start, you can check Appendix A
for a list of topics to search for.

Well, my job is done. But your job, as a PHP developer, is only just
beginning.

APPENDICES

Appendix A118

Appendix A:
What We Didn’t Cover
I mentioned a few times that there’s no way we could cover every
PHP topic, so here’s a super-short list of topics you might want to
look into if you’re interested in pursuing PHP. Don’t forget, you can
also learn so much more about the topics we did discuss.

•	 Headers

•	 Regular Expressions

•	 Image Processing (with ImageMagick or other extensions)

•	 Object Oriented PHP

•	 PDO (PHP Data Objects)

•	 XML Manipulation

•	 Encryption

•	 SQL Injection Attacks

•	 Mail: sending and receiving via IMAP or POP3, etc.

•	 Internationalization / Localization

•	 PHP on the Command Line

Appendix B119

Appendix B:
Further Resources

•	 PHP.net (http://php.net/) is, without doubt, the best
resource for information about what’s what in PHP.
Unparalleled documentation.

•	 PHP for Absolute Beginners, written by Jason Lengstorf
and published by Apress, is a great book for beginners.
It’ll take you from knowing nothing to almost a little bit of
everything as you build a blog in PHP. It’s pretty big —
408 pages — but you’ll learn a lot. http://www.apress.
com/9781430224730

•	 PHP Cookbook, 2nd Edition is another great resource.
Written by Adam Trachtenberg and David Sklar and pub-
lished by O’Reilly, this 816-pager covers both basic and
advanced material: everything from strings to using and
building REST and SOAP web services: http://shop.oreilly.
com/product/9780596101015.do. O’Reilly has been kind
enough to put the first edition up on the web for free: http://
commons.oreilly.com/wiki/index.php/PHP_Cookbook

•	 PHP Tutorials at Nettuts+: (http://net.tutsplus.com/cat-
egory/php/) Nettuts+ offers some of the best PHP tutorials
around. Okay, maybe I’m somewhat biased as a staff writer,
so you be the judge.

•	 All over the web, there are bunches of great sites with
great PHP tutorials. If you’re ever stuck, just do a search,
and you’re almost guaranteed to find a solution.

http://php.net/
http://www.apress.com/9781430224730
http://www.apress.com/9781430224730
http://shop.oreilly.com/product/9780596101015.do
http://shop.oreilly.com/product/9780596101015.do
http://commons.oreilly.com/wiki/index.php/PHP_Cookbook
http://commons.oreilly.com/wiki/index.php/PHP_Cookbook
http://net.tutsplus.com/category/php/
http://net.tutsplus.com/category/php/

About the Author
Andrew Burgess is a Canadian web
developer, university student, and
staff writer for Nettuts+, where he
has published numerous popular
tutorials and screencasts. Andrew
is also the author of the Rockable
titles “Getting Good with Git,” and
“Getting Good with JavaScript.” As
a web developer, he specializes in
JavaScript and Ruby. Andrew lives
with his family in Oshawa, Canada.

Check out Andrew’s personal site: http://andrewburgess.ca

Or follow him on Twitter: @andrew8088

http://andrewburgess.ca/
https://twitter.com/#/andrew8088

Now that you’ve finished

Getting Good with PHP
check out these related eBooks from the

Rockable Press library:

Getting Good with
JavaScript

by ANDREW BURGESS

Getting Good with Git

by ANDREW BURGESS

MORE EBOOKS

http://rockablepress.com/books/getting-good-with-git
http://rockablepress.com/books/getting-good-with-javascript
http://rockablepress.com/books/getting-good-with-javascript
http://rockablepress.com/books/getting-good-with-git
http://rockablepress.com/books
http://rockablepress.com/books

	Contents
	Acknowledgement
	Chapter 1
	What is PHP?
	Who is this Book For?
	How Do You Install PHP?
	Installing PHP on Windows
	Installing PHP on Mac OS X
	PHP on Your Server
	The Example Files
	Summary

	Chapter 2
	PHP Files
	Variables
	Values
	Strings
	Numbers
	Booleans
	Null
	Array

	Comments
	Operators
	Arithmetic Operators
	The String Operator
	Assignment Operators
	Incrementing / Decrementing Operators
	Comparison Operators
	Logical Operators
	Conditional Operator

	Functions
	Code Style
	Summary

	Chapter 3
	Control Structures
	if and else (and elseif )
	for / foreach

	return / break / continue
	switch
	require / include / require_once / include_once

	Final Thought on Control Structures
	PHP Internal Functions
	String Functions
	Breaking Up and Getting Together
	A Case of Changed Case
	Keeping Thing Trimmed
	Replacements
	How Long?
	Needle in a Haystack
	Et Cetera

	Array Functions
	Pushin’ and Poppin’
	Mappin’ and Walkin’
	Searching High and Low
	Slicin’ and Dicin’
	Sorting Things Out
	Counting Your Chickens (After They Hatch)
	Summing it all Up

	Date and Time Functions
	parse_date
	time
	strftime

	Math Functions
	max / min
	mt_rand
	round / ceil / floor
	JSON Functions

	File Functions
	fopen
	Reading a File
	Writing a File
	fclose
	The Oddities

	Summary

	Chapter 4
	Scope
	Superglobals
	$_GET
	$_POST

	Persistence
	Cookies
	Sessions
	Databases

	Summary

	Chapter 5
	Keeping Things Safe
	When Things Go Wrong
	Errors
	Warnings
	Notices
	Handling Errors

	.htaccess
	Frameworks
	Deploying
	Conclusion

	Appendix A:
What We Didn’t Cover
	Appendix B:
Further Resources
	About the Author

