

 [image: First Edition]

 Scala Cookbook

Alvin Alexander

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

For my mom, who loves cookbooks.

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9781449339616-files/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

This is a cookbook of problem-solving recipes about Scala, the most
 interesting programming language I’ve ever used. The book contains solutions
 to more than 250 common problems, shown with possibly more than 700
 examples. (I haven’t counted, but I suspect that’s true.)
There are a few unique things about this book:
	As a cookbook, it’s intended to save you time by providing
 solutions to the most common problems you’ll encounter.

	Almost all of the examples are shown in the Scala interpreter. As
 a result, whether you’re sitting by a computer, on a plane, or reading
 in your favorite recliner, you get the benefit of seeing their exact
 output. (Which often leads to, “Ah, so that’s how that works.”)

	The book covers not only the Scala language, but also has large
 chapters on Scala tools and libraries, including SBT, actors, the
 collections library (more than 100 pages), and JSON processing.

Just prior to its release, the book was updated to cover Scala 2.10.x
 and SBT 0.12.3.

1. The Scala Language

My (oversimplified) Scala elevator pitch is that it’s a child of
 Ruby and Java: it’s light, concise, and readable like Ruby, but it
 compiles to class files that you package as JAR files that run on the JVM;
 it uses traits and mixins, and feels dynamic, but it’s statically typed.
 It uses the Actor model to simplify concurrent programming so you can keep
 those multicore processors humming. The name Scala comes from the word
 scalable, and true to that name, it’s used to power
 the busiest websites in the world, including Twitter, Netflix, Tumblr,
 LinkedIn, Foursquare, and many more.
In my opinion, Scala is not a good language for teaching a
 Programming 101 class. Instead, it’s a power language created for the
 professional programmer. Don’t let that scare you, though. If you were my
 own brother and about to start a new project and could choose any
 programming language available, without hesitation I’d say, “Use
 Scala.”
Here are a few more nuggets about Scala:
	It’s a modern programming language created by Martin Odersky
 (the father of javac), influenced
 by Java, Ruby, Smalltalk, ML, Haskell, Erlang, and others.

	It’s a pure object-oriented programming
 (OOP) language. Every variable is an object, and every “operator” is a
 method.

	It’s also a functional programming (FP) language, so you can
 pass functions around as variables. You can write your code using OOP,
 FP, or both.

	Scala code runs on the JVM and lets you use the wealth of Java
 libraries that have been developed over the years.

	You can be productive on Day 1, but the language is deep, so as
 you go along you’ll keep learning and finding newer, better ways to
 write code. Scala will change the way you think about programming—and
 that’s a good thing.

Of all of Scala’s benefits, what I like best is that it lets you
 write concise, readable code. The time a programmer spends
 reading code compared to the time spent
 writing code is said to be at least a 10:1 ratio, so
 writing code that’s concise and readable is a big deal. Because Scala has
 these attributes, programmers say that it’s
 expressive.
Solutions

I’ve always bought O’Reilly cookbooks for the solutions, and
 that’s what this book is about: solving problems.
When using a cookbook, I usually think, “I have this problem, I
 need to iterate over the elements in an Array, what’s the best way to do that?” I like
 to look at the table of contents, find a recipe, implement the solution,
 and move on. I tried to write each recipe with this use case in
 mind.
However, with a modern language like Scala, it may end up that I
 phrased my question wrong. Because of my prior programming experience I
 may have thought, “I need to iterate over the elements in an Array,” but in reality my deeper
 intent was to loop over those elements for a
 reason, such as to transform them into a new collection. So it’s nice
 when a recipe says, “Hey, I know you’re here to read about how to loop
 over the elements in an Array, here’s
 how you do that”:
for (i <- Array(1,2,3)) println(i)
“But, if what you’re really trying to do is transform those
 elements into a new collection, what you want is a for/yield expression
 or map method”:
// for/yield
scala> for (i <- Array(1,2,3)) yield i * 2
res0: Array[Int] = Array(2, 4, 6)

// map
scala> Array(1,2,3).map(_ * 2)
res1: Array[Int] = Array(2, 4, 6)
(More on that _ character
 shortly.)
To create the list of problems and solutions, I followed the
 “Eat your own dog food”
 philosophy. The recipes come from my own experience of creating Scala
 scripts, web applications, web services, Swing applications, and
 actor-based systems. As I developed the applications I needed, I
 encountered problems like these:
	Scala files tend to be very small; what’s the proper way to
 organize an application?

	It looks like SBT is the best build tool for Scala, but it’s
 different than Ant or Maven; how do I compile and package
 applications, and work with dependencies?

	Constructors are really different than Java; how do I create
 them? What code is generated when I declare constructor parameters
 and class fields?

	Actors are cool; how do I write a complete actor-based
 application?

	What, I shouldn’t use null values anymore?
 Why not? How do I code without them?

	I can pass a function around like any other variable? How do I
 do that, and what’s the benefit?

	Why are there so many collections classes, and why does each
 collection class have so many methods?

	I have all of this legacy Java code; can I still use it in
 Scala? If so, how?

	I’m starting to grok this. Now I need to know, what are the
 top five or ten “best practices” of writing Scala code?

Truthfully, I fell fast in love with everything about Scala except
 for one thing: the collections library seemed large and intimidating. I
 really enjoyed using Scala so I kept using the language, but whenever I
 needed a collection, I used a trusty old Java collection.
Then one day I got up the courage to dive into the collections
 library. I thought I’d hate it, but after struggling with it for a
 while, I suddenly “got” it. The light bulb went on over my head, and I
 suddenly understood not only the collections, but several other concepts
 I had been struggling with as well. I realized the collections library
 writers aren’t crazy; they’re brilliant.
Once I understood the collections library, I quit writing so many
 for loops, and started using
 collection methods like filter,
 foreach, and map. They made coding easier, and made my code
 more concise. These days I can’t imagine a better way to write code like
 this:
// filter the items in a list
scala> val nums = List(1,2,3,4,5).filter(_ < 4)
nums: List[Int] = List(1, 2, 3)
The _ wildcard character is
 discussed in several recipes, but as you can infer from that example,
 it’s a placeholder for each element in the collection. The filter method loops through each element in
 the list, calling your _ < 4
 function on each iteration. That Scala one-liner is the equivalent of
 this Java code:
Integer[] intArray = {1,2,3,4,5};
List<Integer> nums = Arrays.asList(intArray);
List<Integer> filteredNums = new LinkedList<Integer>();
for (int n: nums) {
 if (n < 4) filteredNums.add(n);
}
The next example takes this a step further. It filters the
 elements as in the previous example, and then multiplies each element by
 the number 2 using the map method:
// filter the items, then double them
scala> val nums = List(1,2,3,4,5).filter(_ < 4).map(_ * 2)
nums: List[Int] = List(2, 4, 6)
If you think about how much code would be required to write this
 expression in another language, I think you’ll agree that Scala is
 expressive.
(If you’re new to Scala, examples like this are broken down into
 smaller chunks in the recipes.)

Audience

This book is intended for programmers who want to be able to
 quickly find solutions to problems they’ll encounter when using Scala
 and its libraries and tools. I hope it will also be a good tool for
 developers who want to learn Scala. I’m a big believer in “learning by
 example,” and this book is chock full of examples.
I generally assume that you have some experience with another
 programming language like C, C++, Java, Ruby, C#, PHP, Python, or
 similar. My own experience is with those languages, so I’m sure my
 writing is influenced by that background.
Another way to describe the audience for this book involves
 looking at different levels of software developers. In the article at
 scala-lang.org, Martin
 Odersky defines the following levels of computer programmers:
	Level A1: Beginning application programmer

	Level A2: Intermediate application programmer

	Level A3: Expert application programmer

	Level L1: Junior library designer

	Level L2: Senior library designer

	Level L3: Expert library designer

This book is primarily aimed at the application developers in the
 A1, A2, A3, and L1 categories. While helping those developers is my
 primary goal, I hope that L2 and L3 developers can also benefit from the
 many examples in this book—especially if they have no prior experience
 with functional programming, or they want to quickly get up to speed
 with Scala and its tools and libraries.

Contents of This Book

The first three chapters in this book cover some of the nuts and
 bolts of the Scala language.
Chapter 1, Strings, provides
 recipes for working with strings. Scala gets its basic String functionality from Java, but with the
 power of implicit conversions, Scala adds new
 functionality to strings through classes like StringLike and StringOps, which let Scala treat a String as a sequence of Char. The last recipe in the chapter shows how
 to add your own behavior to a String
 (or any other class) by creating an implicit conversion.
Chapter 2, Numbers, provides
 recipes for working with Scala’s numeric types. There are no ++ and −−
 operators for working with numbers, and this chapter explains why, and
 demonstrates the other methods you can use. It also shows how to handle
 large numbers, currency, and how to compare floating-point
 numbers.
Chapter 3, Control Structures,
 demonstrates Scala’s built-in control structures, starting with if/then
 statements and for loops, and then provides solutions
 for working with for/yield loops (for comprehensions) and for expressions with embedded if statements (guards). Because match
 expressions are so important to Scala, several recipes show how to use
 them to solve a variety of problems.
The next five chapters continue to cover the Scala syntax, with an
 emphasis on organizing your projects with classes, methods, objects,
 traits, and packaging. Recipes on classes, methods, objects, and traits
 place an emphasis on object-oriented programming techniques.
Chapter 4, Classes and Properties, provides examples related to Scala
 classes and fields. Because Scala constructors are very different than
 Java constructors, several recipes show the ins and outs of writing both
 primary and auxiliary constructors. The chapter also shows how to
 override the accessor and mutator methods that Scala automatically
 generates for your val and var variables. Several recipes show what
 case classes are and how to use them, and how to
 write equals methods.
Chapter 5, Methods, shows how
 to define methods to accept parameters, return values, use parameter
 names when calling methods, set default values for method parameters,
 create varargs fields, and write methods to support a fluent style of
 programming.
Chapter 6, Objects, covers “all
 things object.” Like Java, Scala uses the word
 object to refer to an instance of a class, but
 Scala also has an object keyword.
 This chapter covers topics like class casting, how to launch an
 application with an object, how to create the equivalent of Java’s
 static members, and how to write a class with a companion object so you
 can create new instances of a class without using the new keyword.
Chapter 7, Packaging and Imports, provides examples of Scala’s package and import statements, which provide more
 capabilities than the same Java keywords. This includes how to use the
 curly brace style for packaging, how to hide and rename members when you
 import them, and more.
Chapter 8, Traits, provides
 examples of the Scala trait. It begins by showing how to use a trait
 like a Java interface, and then gets into more advanced topics, such as
 how to use traits as “mixins,” and limit which members a trait can be
 mixed into using a variety of methods.
Although much of the book demonstrates functional programming (FP)
 techniques, Chapter 9, Functional Programming, combines many FP recipes into one
 location. Solutions show how to define anonymous functions (function
 literals) and use them in a variety of situations. Recipes demonstrate
 how to define a method that accepts a function argument, how to return a
 function from a function, and how to use closures and partially applied
 functions.
The Scala collections library is rich and deep, so Chapter 10, Collections, and Chapter 11, List, Array, Map, Set (and More), provide more than 100 pages of
 collection-related solutions.
Recipes in Chapter 10, Collections, help you choose collection classes for
 specific needs, and then help you choose and use methods within a
 collection to solve specific problems, such as transforming one
 collection into a new collection, filtering a collection, and creating
 subgroups of a collection. More than 60 pages of recipes demonstrate
 solutions for writing for loops,
 for/yield expressions, using methods like filter, foreach, groupBy, map, and many more.
Chapter 11, List, Array, Map, Set (and More), continues where Chapter 10, Collections, leaves off,
 providing solutions for those specific collection types, as well as
 recipes for the Queue, Stack, and Range classes.
Chapter 12, Files and Processes,
 begins by providing solutions about reading and writing files with
 Scala, including CSV. After that, because the Scala library makes it
 much (much!) easier to work with external processes than Java, a
 collection of recipes demonstrates how to execute external commands and
 work with their I/O.
Chapter 13, Actors and Concurrency, provides solutions for the wonderful
 world of building concurrent applications (and engaging those multicore
 CPUs) with the Scala Actors library. Recipes in this chapter show
 solutions to common problems using the industrial-strength Akka Actors
 library that was integrated into the 2.10.x Scala release. Examples show
 how to build actor-based applications from the ground up, how to send
 messages to actors, how to receive and work with messages in actors, and
 how to kill actors and shut down the system. It also shows easy ways to
 run concurrent tasks with a Future, a terrific way to run simple
 computations in parallel.
Chapter 14, Command-Line Tasks,
 combines a collection of recipes centered around using Scala at the
 command line. It begins by showing tips on how to use the Scala REPL,
 and then shows how to use command-line tools like scalac, scala, scaladoc, and fsc. It also provides recipes showing how to
 use Scala as a scripting language, including how to precompile your
 Scala scripts to make them run faster.
Chapter 15, Web Services, shows
 how to use Scala on both the client and server sides of web services. On
 the server side, it shows how to use Scalatra and the Play Framework to
 develop RESTful web services, including how to use Scalatra with
 MongoDB. For both client and server code, it shows how to serialize and
 deserialize JSON and how to work with HTTP headers.
Chapter 16, Databases and Persistence, provides examples of how to interact with
 databases from Scala, including working with traditional SQL databases
 using JDBC and Spring JDBC, along with extensive coverage of how to work
 with MongoDB, a popular “NoSQL” database.
Chapter 17, Interacting with Java, shows how to solve the few problems
 you’ll encounter when working with Java code. While Scala code often
 just works when interacting with Java, there are a
 few gotchas. This chapter shows how to resolve problems related to the
 differences in the collections libraries, as well as problems you can
 run into when calling Scala code from Java.
Chapter 18, The Simple Build Tool (SBT), is a comprehensive guide to the de-facto
 build tool for Scala applications. It starts by showing several ways to
 create an SBT project directory structure, and then shows how to include
 managed and unmanaged dependencies, build your projects, generate
 Scaladoc for your projects, deploy your projects, and more. Though I
 strongly recommend learning SBT, a recipe also shows how to use Ant to
 compile Scala projects.
Chapter 19, Types, provides
 recipes for working with Scala’s powerful type system. Starting right
 from the introduction, concepts such as type variance, bounds, and
 constraints are demonstrated by
 example. Recipes demonstrate how to declare generics in class and method
 definitions, implement “duck typing,” and how to control which types
 your traits can be mixed into.
Chapter 20, Idioms, is unique
 for a cookbook, but because this is a book of solutions, I think it’s
 important to have a section dedicated to showing the best practices,
 i.e., how to write code “the Scala way.” Recipes show how to create
 methods with no side effects, how to work with immutable objects and
 collection types, how to think in terms of
 expressions (rather than statements), how to use
 pattern matching, and how to eliminate null values in
 your code.

Online Bonus Chapters

Because Scala is an incredibly rich and deep language, an
 additional three chapters consisting of more than 130 pages of
 Scala Cookbook content are available for readers
 who wish to explore Scala further. These bonus chapters are:
	XML and XPath

	Testing and Debugging

	The Play Framework

These chapters are available in PDF format, and can be downloaded
 at http://examples.oreilly.com/9781449339616-files/.

Installing the Software

Installing Scala is simple and should just take a few
 minutes.
On Unix systems (including Mac OS X), download the software from
 the Scala download page to a
 directory on your computer like $HOME/scala, and then add these lines to your
 $HOME/.bash_profile file (or its
 equivalent, depending on which login shell you’re using):
export SCALA_HOME=/Users/Al/scala
PATH=$PATH:/Users/Al/scala/bin
Once you’ve done this, when you open a new terminal window, you
 should have access to the scala and
 scalac commands at your command
 line.
You can follow a similar process if you’re using Microsoft
 Windows, or you can use an MSI installer. See the Scala download page
 for more information.

How the Code Listings Work

Most of the code listings in the book are shown in the Scala
 “Read-Eval-Print-Loop,” or REPL. If you’ve used
 irb with Ruby, the concept is the
 same: you type an expression, and the REPL evaluates the expression and
 prints the resulting output.
In the REPL examples, the code that’s shown in a bold font is what
 you type, and all the text that isn’t bold is output from the
 REPL.
You start the REPL from your operating system command line by
 executing the scala command:
$ scala
Welcome to Scala version 2.10.1
Type in expressions to have them evaluated.
Type :help for more information.

scala> _
Once the REPL has started, just type your expressions as input,
 and the REPL will evaluate them and show their output:
scala> val hello = "Hello, world"
hello: String = Hello, world

scala> Array(1,2,3).foreach(println)
1
2
3
The REPL is demonstrated more in the Chapter 1
 introduction and Recipe 14.1. Recipe 14.4 takes this a step
 further and shows how to customize the REPL environment.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width bold
	Shows commands or other text that should be typed literally
 by the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if
 this book includes code examples, you may use the code in your programs
 and documentation. You do not need to contact us for permission unless
 you’re reproducing a significant portion of the code. For example,
 writing a program that uses several chunks of code from this book does
 not require permission. Selling or distributing a CD-ROM of examples
 from O’Reilly books does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require permission.
Supplemental material (code examples, exercises, etc.) is
 available for download at https://github.com/alvinj.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Scala Cookbook by Alvin Alexander (O’Reilly).
 Copyright 2013 Alvin Alexander, 978-1-449-33961-6.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product
 mixes and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional,
 Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
 Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
 Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
 New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and
 dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at http://oreil.ly/Scala_CB.
To comment or ask technical questions about this book, send an
 email to bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Writing a book this large takes a lot of work, and I’d like to
 thank my editor, Courtney Nash, for keeping me sane during the speed
 bumps and generally being encouraging throughout the process.
Kim Cofer was the copy editor for this book, and I’d like to thank
 her for helping whip the book into shape, correcting my grammar issues
 regardless of how many times I repeated them, and for having good
 discussions about how to handle several issues in this book.
This book grew from about 540 pages during the first review to
 roughly 700 pages in its final release, and much of that was due to
 reviewers. All of the reviewers were helpful in different ways, but I’d
 especially like to thank Eric Torreborre and
 Ryan LeCompte for
 making it all the way through different versions of the book. Additional
 thanks go out to Rudi Farkas, Rahul Phulore, Jason Swartz, Hugo Sereno
 Ferreira, and Dean Wampler.
I’d also like to thank my friends and family members who
 encouraged me throughout the process. A special thanks goes to my sister
 Melissa, who helped bring my initial plain, wiki-style text into
 Microsoft Word, and styled everything correctly.
Finally, I’d like to thank Martin Odersky and his team for
 creating such an interesting programming language. I also owe his
 Programming Methods Laboratory at EFPL a special thank you for letting
 me use the Scala collections performance tables shown in Recipe 10.4.

Chapter 1. Strings

Introduction

At first glance, a Scala String
 appears to be just a Java String. For
 instance, when you work in the Scala
 Read-Evaluate-Print-Loop (REPL) environment (see
 Figure 1-1) and print the
 name of a String literal, the REPL
 feedback tells you the type is java.lang.String:
scala> "Hello, world".getClass.getName
res0: String = java.lang.String
[image: The Scala REPL is an interactive environment where you can test Scala statements]

Figure 1-1. The Scala REPL is an interactive environment where you can test
 Scala statements

Indeed, a Scala String
 is a Java String,
 so you can use all the normal Java string methods. You can create a string
 variable, albeit in the Scala way:
val s = "Hello, world"
You can get the length of a string:
s.length // 12
You can concatenate strings:
val s = "Hello" + " world"
These are all familiar operations. But because Scala offers the
 magic of implicit conversions, String instances also have access to all the
 methods of the StringOps class, so you
 can do many other things with them, such as treating a String instance as a sequence of characters. As
 a result, you can iterate over every character in the string using the
 foreach method:
scala> "hello".foreach(println)
h
e
l
l
o
You can treat a String as a
 sequence of characters in a for
 loop:
scala> for (c <- "hello") println(c)
h
e
l
l
o
You can also treat it as a sequence of bytes:
scala> s.getBytes.foreach(println)
104
101
108
108
111
Because there are many methods available on sequential collections,
 you can also use other functional methods like filter:
scala> val result = "hello world".filter(_ != 'l')
result: String = heo word
It’s an oversimplification to say that this functionality comes from
 the StringOps class, but it’s a useful
 illusion. The reality is that some of this
 functionality comes from StringOps,
 some comes from StringLike, some from
 WrappedString, and so on. If you dig
 into the Scala source code, you’ll see that the rabbit hole goes deep, but
 it begins with the implicit conversion from String to StringOps in the Predef object.
Note
When first learning Scala, take a look at the source code for the
 Predef object. It provides nice
 examples of many Scala programming features.

Figure 1-2, taken
 from the StringOps class Scaladoc page,
 shows the supertypes and type hierarchy for the StringOps class.
[image: Supertypes and type hierarchy information for the StringOps class]

Figure 1-2. Supertypes and type hierarchy information for the StringOps
 class

Add Methods to Closed Classes

Even though the String class is
 declared as final in Java, you’ve
 seen that Scala somehow adds new functionality to it. This happens
 through the power of implicit conversions. Recipe 1.9, demonstrates how to add your own methods
 to the String class using this
 technique.
As one more example of how this pattern helps a Scala String have both string and collection
 features, the following code uses the drop and take methods that are available on Scala
 sequences, along with the capitalize
 method from the StringOps
 class:
scala> "scala".drop(2).take(2).capitalize
res0: String = Al
In this chapter you’ll see examples like this, and many
 more.
How Did the Preceding Example Work?
The drop and take methods are demonstrated in Chapter 10, but in short, drop is a collection method that drops
 (discards) the number of elements that are specified from the
 beginning of the collection and keeps the remaining elements. When
 it’s called on your string as drop(2), it drops the first two characters
 from the string (sc), and returns
 the remaining elements:
scala> "scala".drop(2)
res0: String = ala
Next, the take(2) method
 retains the first two elements from the collection it’s given,and
 discards the rest:
scala> "scala".drop(2).take(2)
res1: String = al
Finally, you treat the output from the take(2) method call like a String once again and call the capitalize method to get what you
 want:
scala> "scala".drop(2).take(2).capitalize
res2: String = Al
The capitalize method is in
 the StringOps class, but as a
 practical matter, you generally don’t have to worry about that. When
 you’re writing code in an IDE like Eclipse or IntelliJ and invoke the
 code assist keystroke, the capitalize method will appear in the list
 along with all the other methods that are available on a String.
If you’re not familiar with chaining methods together like this,
 it’s known as a fluent style of programming. See
 Recipe 5.9, for more information.

1.1. Testing String Equality

Problem

You want to compare two strings to see if they’re equal, i.e.,
 whether they contain the same sequence of characters.

Solution

In Scala, you compare two String instances with the == operator. Given these strings:
scala> val s1 = "Hello"
s1: String = Hello

scala> val s2 = "Hello"
s2: String = Hello

scala> val s3 = "H" + "ello"
s3: String = Hello
You can test their equality like this:
scala> s1 == s2
res0: Boolean = true

scala> s1 == s3
res1: Boolean = true
A pleasant benefit of the ==
 method is that it doesn’t throw a NullPointerException on a basic test if a
 String is
 null:
scala> val s4: String = null
s4: String = null

scala> s3 == s4
res2: Boolean = false

scala> s4 == s3
res3: Boolean = false
If you want to compare two strings in a case-insensitive manner,
 you can convert both strings to uppercase or lowercase and compare them
 with the == method:
scala> val s1 = "Hello"
s1: String = Hello

scala> val s2 = "hello"
s2: String = hello

scala> s1.toUpperCase == s2.toUpperCase
res0: Boolean = true
However, be aware that calling a method on a
 null string can throw a NullPointerException:
scala> val s1: String = null
s1: String = null

scala> val s2: String = null
s2: String = null

scala> s1.toUpperCase == s2.toUpperCase
java.lang.NullPointerException // more output here ...
To compare two strings while ignoring their case, you can also
 fall back and use the equalsIgnoreCase of the Java String class:
scala> val a = "Marisa"
a: String = Marisa

scala> val b = "marisa"
b: String = marisa

scala> a.equalsIgnoreCase(b)
res0: Boolean = true

Discussion

In Scala, you test object equality with the == method. This is different than Java, where
 you use the equals method to compare
 two objects.
In Scala, the == method defined
 in the AnyRef class first checks for
 null values, and then calls the
 equals method on the first object
 (i.e., this) to see if the two
 objects are equal. As a result, you don’t have to check for null values when comparing strings.
Note
In idiomatic Scala, you never use null values. The discussion in this recipe
 is intended to help you understand how == works if you encounter a null value, presumably from working with a
 Java library, or some other library where null values were used.
If you’re coming from a language like Java, any time you feel
 like using a null, use an Option instead. (I find it helpful to
 imagine that Scala doesn’t even have a null keyword.) See Recipe 20.6, for more information and
 examples.

For more information on defining equals methods, see Recipe 4.15.

1.2. Creating Multiline Strings

Problem

You want to create multiline strings within your Scala source
 code, like you can with the “heredoc” syntax of other
 languages.

Solution

In Scala, you create multiline strings by surrounding your text
 with three double quotes:
val foo = """This is
 a multiline
 String"""

Discussion

Although this works, the second and third lines in this example
 will end up with whitespace at the beginning of their lines. If you
 print the string, it looks like this:
This is
 a multiline
 String
You can solve this problem in several different ways. First, you
 can left-justify every line after the first line of your string:
val foo = """This is
a multiline
String"""
A cleaner approach is to add the stripMargin method to the end of your
 multiline string and begin all lines after the first line with the pipe
 symbol (|):
val speech = """Four score and
 |seven years ago""".stripMargin
If you don’t like using the |
 symbol, you can use any character you like with the stripMargin method:
val speech = """Four score and
 #seven years ago""".stripMargin('#')
All of these approaches yield the same result, a multiline string
 with each line of the string left justified:
Four score and
seven years ago
This results in a true multiline string, with a hidden \n character after the word “and” in the first
 line. To convert this multiline string into one continuous line you can
 add a replaceAll method after the
 stripMargin call, replacing all
 newline characters with blank spaces:
val speech = """Four score and
 |seven years ago
 |our fathers""".stripMargin.replaceAll("\n", " ")
This yields:
Four score and seven years ago our fathers
Another nice feature of Scala’s multiline string syntax is that
 you can include single- and double-quotes without having to escape
 them:
val s = """This is known as a
 |"multiline" string
 |or 'heredoc' syntax.""". stripMargin.replaceAll("\n", " ")
This results in this string:
This is known as a "multiline" string or 'heredoc' syntax.

1.3. Splitting Strings

Problem

You want to split a string into parts based on a field separator,
 such as a string you get from a comma-separated value (CSV) or
 pipe-delimited file.

Solution

Use one of the split methods
 that are available on String
 objects:
scala> "hello world".split(" ")
res0: Array[java.lang.String] = Array(hello, world)
The split method returns an
 array of String elements, which you
 can then treat as a normal Scala Array:
scala> "hello world".split(" ").foreach(println)
hello
world

Discussion

The string that the split
 method takes can be a regular expression, so you can split a string on
 simple characters like a comma in a CSV file:
scala> val s = "eggs, milk, butter, Coco Puffs"
s: java.lang.String = eggs, milk, butter, Coco Puffs

// 1st attempt
scala> s.split(",")
res0: Array[java.lang.String] = Array(eggs, " milk", " butter", " Coco Puffs")
Using this approach, it’s best to trim each string. Use the
 map method to call trim on each string before returning the
 array:
// 2nd attempt, cleaned up
scala> s.split(",").map(_.trim)
res1: Array[java.lang.String] = Array(eggs, milk, butter, Coco Puffs)
You can also split a string based on a regular expression. This
 example shows how to split a string on whitespace characters:
scala> "hello world, this is Al".split("\\s+")
res0: Array[java.lang.String] = Array(hello, world,, this, is, Al)
About that split method...

The split method is
 overloaded, with some versions of the method coming from the Java
 String class and some coming from
 the Scala StringLike class. For
 instance, if you call split with a
 Char argument instead of a String argument, you’re using the split method from StringLike:
// split with a String argument
scala> "hello world".split(" ")
res0: Array[java.lang.String] = Array(hello, world)

// split with a Char argument
scala> "hello world".split(' ')
res1: Array[String] = Array(hello, world)
The subtle difference in that output—Array[java.lang.String] versus Array[String]—is a hint that something is
 different, but as a practical matter, this isn’t important. Also, with
 the Scala IDE project integrated into Eclipse, you can see where each
 method comes from when the Eclipse “code assist” dialog is displayed.
 (IntelliJ IDEA and NetBeans may show similar information.)

1.4. Substituting Variables into Strings

Problem

You want to perform variable substitution into a string, like you
 can do with other languages, such as Perl, PHP, and Ruby.

Solution

Beginning with Scala 2.10 you can use string
 interpolation in a manner similar to other languages like
 Perl, PHP, and Ruby.
To use basic string interpolation in Scala, precede your string
 with the letter s and include your
 variables inside the string, with each variable name preceded by a
 $ character. This is shown in the
 println statement in the following
 example:
scala> val name = "Fred"
name: String = Fred

scala> val age = 33
age: Int = 33

scala> val weight = 200.00
weight: Double = 200.0

scala> println(s"$name is $age years old, and weighs $weight pounds.")
Fred is 33 years old, and weighs 200.0 pounds.
According to the official Scala
 string interpolation documentation, when you precede your string
 with the letter s, you’re creating a
 processed string literal. This example uses the
 “s string interpolator,” which lets
 you embed variables inside a string, where they’re replaced by their
 values. As stated in the documentation, “Prepending s to any string literal allows the usage of
 variables directly in the string.”
Using expressions in string literals

In addition to putting variables inside strings, you can include
 expressions inside a string by placing the expression inside curly
 braces. According to the official
 string interpolation documentation, “Any arbitrary expression
 can be embedded in ${}.”
In the following example, the value 1 is added to the variable age inside the string:
scala> println(s"Age next year: ${age + 1}")
Age next year: 34
This example shows that you can use an equality expression
 inside the curly braces:
scala> println(s"You are 33 years old: ${age == 33}")
You are 33 years old: true
You’ll also need to use curly braces when printing object
 fields. The following example shows the correct approach:
scala> case class Student(name: String, score: Int)
defined class Student

scala> val hannah = Student("Hannah", 95)
hannah: Student = Student(Hannah,95)

scala> println(s"${hannah.name} has a score of ${hannah.score}")
Hannah has a score of 95
Attempting to print the values of the object fields without
 wrapping them in curly braces results in the wrong information being
 printed out:
// error: this is intentionally wrong
scala> println(s"$hannah.name has a score of $hannah.score")
Student(Hannah,95).name has a score of Student(Hannah,95).score
Because $hannah.name wasn’t
 wrapped in curly braces, the wrong information was printed; in this
 case, the toString output of the
 hannah variable.

s is a method

The s that’s placed before
 each string literal is actually a method. Though this seems slightly
 less convenient than just putting variables inside of strings, there
 are at least two benefits to this approach:
	Scala provides other off-the-shelf interpolation functions
 to give you more power.

	You can define your own string interpolation
 functions.

To see why this is a good thing, let’s look at another string
 interpolation function.

The f string interpolator (printf style formatting)

In the example in the Solution, the weight was printed as 200.0. This is okay, but what can you do if
 you want to add more decimal places to the weight, or remove them
 entirely?
This simple desire leads to the “f string interpolator,” which lets you use
 printf style formatting specifiers
 inside strings. The following examples show how to print the weight, first with two decimal
 places:
scala> println(f"$name is $age years old, and weighs $weight%.2f pounds.")
Fred is 33 years old, and weighs 200.00 pounds.
and then with no decimal places:
scala> println(f"$name is $age years old, and weighs $weight%.0f pounds.")
Fred is 33 years old, and weighs 200 pounds.
As demonstrated, to use this approach, just follow these
 steps:
	Precede your string with the letter f.

	Use printf style
 formatting specifiers immediately after your variables.

Note
The most common printf
 format specifiers are shown in Table 1-1 in the
 Discussion.

Though these examples used the println method, it’s important to note that
 you can use string interpolation in other ways. For instance, you can
 assign the result of a variable substitution to a new variable,
 similar to calling sprintf in other
 languages:
scala> val out = f"$name, you weigh $weight%.0f pounds."
out: String = Fred, you weigh 200 pounds.

The raw interpolator

In addition to the s and
 f string interpolators, Scala 2.10
 includes another interpolator named raw. The raw interpolator “performs no escaping of
 literals within the string.” The following example shows how raw compares to the s interpolator:
scala> s"foo\nbar"
res0: String =
foo
bar

scala> raw"foo\nbar"
res1: String = foo\nbar
The raw interpolator is
 useful when you want to avoid having a sequence of characters like
 \n turn into a newline
 character.

Create your own interpolator

In addition to the s,
 f, and raw interpolators that are built into Scala
 2.10, you can define your own interpolators. See the official Scala String Interpolation
 documentation for an example of how to create your own
 interpolator.
Note
String interpolation does not work with pattern-matching
 statements in Scala 2.10. This feature is planned for inclusion in
 Scala 2.11.

Discussion

Prior to version 2.10, Scala didn’t include the string
 interpolation functionality just described. If you need to use a release
 prior to Scala 2.10 for some reason, the solution is to call the
 format method on a string, as shown
 in the following examples:
scala> val name = "Fred"
name: java.lang.String = Fred

scala> val age = 33
age: Int = 33

scala> val s = "%s is %d years old".format(name, age)
s: String = Fred is 33 years old

scala> println("%s is %d years old".format(name, age))
Fred is 33 years old
Just as with the string interpolation capability shown in the
 Solution, you can use this approach anywhere you want to format a
 string, such as a toString
 method:
override def toString: String =
 "%s %s, age %d".format(firstName, lastName, age)
With either of these approaches, you can format your variables
 using all the usual printf
 specifiers. The most common format specifiers are shown in Table 1-1.
Table 1-1. Common printf style format specifiers
	Format
 specifier
	Description

	%c
	Character

	%d
	Decimal number (integer,
 base 10)

	%e
	Exponential
 floating-point number

	%f
	Floating-point
 number

	%i
	Integer (base
 10)

	%o
	Octal number (base
 8)

	%s
	A string of
 characters

	%u
	Unsigned decimal
 (integer) number

	%x
	Hexadecimal number (base
 16)

	%%
	Print a “percent”
 character

	\%
	Print a “percent”
 character

See Also

	This printf cheat sheet
 shows more format specifiers and
 examples

	This Oracle Formatter page shows examples and
 details

	The official Scala String
 Interpolation documentation

1.5. Processing a String One Character at a Time

Problem

You want to iterate through each character in a string, performing
 an operation on each character as you traverse the string.

Solution

Depending on your needs and preferences, you can use the map or foreach methods, a for loop, or other approaches. Here’s a simple
 example of how to create an uppercase string from an input string, using
 map:
scala> val upper = "hello, world".map(c => c.toUpper)
upper: String = HELLO, WORLD
As you’ll see in many examples throughout this book, you can
 shorten that code using the magic of Scala’s underscore
 character:
scala> val upper = "hello, world".map(_.toUpper)
upper: String = HELLO, WORLD
With any collection—such as a sequence of characters in a
 string—you can also chain collection methods together to achieve a
 desired result. In the following example, the filter method is called on the original
 String to create a new String with all occurrences of the lowercase
 letter “L” removed. That String is
 then used as input to the map method
 to convert the remaining characters to uppercase:
scala> val upper = "hello, world".filter(_ != 'l').map(_.toUpper)
upper: String = HEO, WORD
When you first start with Scala, you may not be comfortable with
 the map method, in which case you can
 use Scala’s for loop to achieve the
 same result. This example shows another way to print each
 character:
scala> for (c <- "hello") println(c)
h
e
l
l
o
To write a for loop to work
 like a map method, add a yield statement to the end of the loop. This
 for/yield loop is equivalent to the first two map examples:
scala> val upper = for (c <- "hello, world") yield c.toUpper
upper: String = HELLO, WORLD
Adding yield to a for loop essentially places the result from
 each loop iteration into a temporary holding area. When the loop
 completes, all of the elements in the holding area are returned as a
 single collection.
This for/yield loop achieves the same result as the third map example:
val result = for {
 c <- "hello, world"
 if c != 'l'
} yield c.toUpper
Whereas the map or for/yield
 approaches are used to transform one collection into another, the
 foreach method is typically used to
 operate on each element without returning a result. This is useful for
 situations like printing:
scala> "hello".foreach(println)
h
e
l
l
o

Discussion

Because Scala treats a string as a sequence of characters—and
 because of Scala’s background as both an object-oriented
 and functional programming language—you can iterate
 over the characters in a string with the approaches shown. Compare those
 examples with a common Java approach:
String s = "Hello";
StringBuilder sb = new StringBuilder();
for (int i = 0; i < s.length(); i++) {
 char c = s.charAt(i);
 // do something with the character ...
 // sb.append ...
}
String result = sb.toString();
You’ll see that the Scala approach is more concise, but still very
 readable. This combination of conciseness and readability lets you focus
 on solving the problem at hand. Once you get comfortable with Scala, it
 feels like the imperative code in the Java example obscures your
 business logic.
Note
Wikipedia describes imperative programming
 like this:
Imperative programming is a programming paradigm that
 describes computation in terms of statements that change a program
 state ... imperative programs define sequences of commands for the
 computer to perform.

This is shown in the Java example, which defines a series of
 explicit statements that tell a computer how to achieve a desired
 result.

Understanding how map works

Depending on your coding preferences, you can pass large blocks
 of code to a map method. These two
 examples demonstrate the syntax for passing an algorithm to a map method:
// first example
"HELLO".map(c => (c.toByte+32).toChar)

// second example
"HELLO".map{ c =>
 (c.toByte+32).toChar
}
Notice that the algorithm operates on one Char at a time. This is because the map method in this example is called on a
 String, and map treats a String as a sequential collection of
 Char elements. The map method has an implicit loop, and in that
 loop, it passes one Char at a time
 to the algorithm it’s given.
Although this algorithm it still short, imagine for a moment
 that it is longer. In this case, to keep your code clear, you might
 want to write it as a method (or function) that you can pass into the
 map method.
To write a method that you can pass into map to operate on the characters in a
 String, define it to take a single
 Char as input, then perform the
 logic on that Char inside the
 method. When the logic is complete, return whatever it is that your
 algorithm returns. Though the following algorithm is still short, it
 demonstrates how to create a custom method and pass that method into
 map:
// write your own method that operates on a character
scala> def toLower(c: Char): Char = (c.toByte+32).toChar
toLower: (c: Char)Char

// use that method with map
scala> "HELLO".map(toLower)
res0: String = hello
As an added benefit, the same method also works with the
 for/yield approach:
scala> val s = "HELLO"
s: java.lang.String = HELLO

scala> for (c <- s) yield toLower(c)
res1: String = hello
Note
I’ve used the word “method” in this discussion, but you can
 also use functions here instead of methods. What’s the difference
 between a method and a function?
Here’s a quick look at a function
 equivalent to this toLower
 method:
val toLower = (c: Char) => (c.toByte+32).toChar
This function can be passed into map in the same way the previous toLower method was used:
scala> "HELLO".map(toLower)
res0: String = hello
For more information on functions and the differences between
 methods and functions, see Chapter 9, Functional Programming.

A complete example

The following example demonstrates how to call the getBytes method on a String, and then pass a block of code into a
 foreach method to help calculate an
 Adler-32 checksum value on a String:
package tests

/**
 * Calculate the Adler-32 checksum using Scala.
 * @see http://en.wikipedia.org/wiki/Adler-32
 */
object Adler32Checksum {

 val MOD_ADLER = 65521

 def main(args: Array[String]) {
 val sum = adler32sum("Wikipedia")
 printf("checksum (int) = %d\n", sum)
 printf("checksum (hex) = %s\n", sum.toHexString)
 }

 def adler32sum(s: String): Int = {
 var a = 1
 var b = 0
 s.getBytes.foreach{char =>
 a = (char + a) % MOD_ADLER
 b = (b + a) % MOD_ADLER
 }
 // note: Int is 32 bits, which this requires
 b * 65536 + a // or (b << 16) + a
 }

}
The getBytes method returns a
 sequential collection of bytes from a String as follows:
scala> "hello".getBytes
res0: Array[Byte] = Array(104, 101, 108, 108, 111)
Adding the foreach method
 call after getBytes lets you
 operate on each Byte
 value:
scala> "hello".getBytes.foreach(println)
104
101
108
108
111
You use foreach in this
 example instead of map, because the
 goal is to loop over each Byte in
 the String, and do something with
 each Byte, but you don’t want to
 return anything from the loop.

See Also

	Under the covers, the Scala compiler translates a for loop into a foreach method call. This gets more
 complicated if the loop has one or more if statements (guards) or a yield expression. This is discussed in
 detail in Recipe 3.1 and I also provide examples on my
 website at alvinalexander.com. The full
 details are presented in Section
 6.19 of the current Scala Language Specification.

	The
 Adler-32 checksum algorithm

1.6. Finding Patterns in Strings

Problem

You need to determine whether a String contains a regular expression
 pattern.

Solution

Create a Regex object by
 invoking the .r method on a String, and then use that pattern with
 findFirstIn when you’re looking for
 one match, and findAllIn when looking
 for all matches.
To demonstrate this, first create a Regex for the pattern you want to search for,
 in this case, a sequence of one or more numeric characters:
scala> val numPattern = "[0-9]+".r
numPattern: scala.util.matching.Regex = [0-9]+
Next, create a sample String
 you can search:
scala> val address = "123 Main Street Suite 101"
address: java.lang.String = 123 Main Street Suite 101
The findFirstIn method finds
 the first match:
scala> val match1 = numPattern.findFirstIn(address)
match1: Option[String] = Some(123)
(Notice that this method returns an Option[String]. I’ll dig into that in the
 Discussion.)
When looking for multiple matches, use the findAllIn method:
scala> val matches = numPattern.findAllIn(address)
matches: scala.util.matching.Regex.MatchIterator = non-empty iterator
As you can see, findAllIn
 returns an iterator, which lets you loop over the results:
scala> matches.foreach(println)
123
101
If findAllIn doesn’t find any
 results, an empty iterator is returned, so you can still write your code
 just like that—you don’t need to check to see if the result is
 null. If you’d rather have the results as an Array, add the toArray method after the findAllIn call:
scala> val matches = numPattern.findAllIn(address).toArray
matches: Array[String] = Array(123, 101)
If there are no matches, this approach yields an empty Array. Other methods like toList, toSeq, and toVector are also available.

Discussion

Using the .r method on a
 String is the easiest way to create a
 Regex object. Another approach is to
 import the Regex class, create a
 Regex instance, and then use the
 instance in the same way:
scala> import scala.util.matching.Regex
import scala.util.matching.Regex

scala> val numPattern = new Regex("[0-9]+")
numPattern: scala.util.matching.Regex = [0-9]+

scala> val address = "123 Main Street Suite 101"
address: java.lang.String = 123 Main Street Suite 101

scala> val match1 = numPattern.findFirstIn(address)
match1: Option[String] = Some(123)
Although this is a bit more work, it’s also more obvious. I’ve
 found that it can be easy to overlook the .r at the end of a String (and then spend a few minutes wondering
 how the code I saw could possibly work).
Handling the Option returned by findFirstIn

As mentioned in the Solution, the findFirstIn method finds the first match in
 the String and returns an Option[String]:
scala> val match1 = numPattern.findFirstIn(address)
match1: Option[String] = Some(123)
The Option/Some/None pattern is discussed in detail in Recipe 20.6, but the simple
 way to think about an Option is
 that it’s a container that holds either zero or one values. In the
 case of findFirstIn, if it
 succeeds, it returns the string “123” as a Some(123), as shown in this example.
 However, if it fails to find the pattern in the string it’s searching,
 it will return a None, as shown
 here:
scala> val address = "No address given"
address: String = No address given

scala> val match1 = numPattern.findFirstIn(address)
match1: Option[String] = None
To summarize, a method defined to return an Option[String] will either return a Some(String), or a None.
The normal way to work with an Option is to use one of these
 approaches:
	Call getOrElse on the
 value.

	Use the Option in a match
 expression.

	Use the Option in a
 foreach loop.

Recipe 20.6
 describes those approaches in detail, but they’re demonstrated here
 for your convenience.
With the getOrElse approach,
 you attempt to “get” the result, while also specifying a default value
 that should be used if the method failed:
scala> val result = numPattern.findFirstIn(address).getOrElse("no match")
result: String = 123
Because an Option is a
 collection of zero or one elements, an experienced Scala developer
 will also use a foreach loop in
 this situation:
numPattern.findFirstIn(address).foreach { e =>
 // perform the next step in your algorithm,
 // operating on the value 'e'
}
A match expression also provides a very readable solution to the
 problem:
match1 match {
 case Some(s) => println(s"Found: $s")
 case None =>
}
See Recipe 20.6
 for more information.
To summarize this approach, the following REPL example shows the
 complete process of creating a Regex, searching a String with findFirstIn, and then using a foreach loop on the resulting match:
scala> val numPattern = "[0-9]+".r
numPattern: scala.util.matching.Regex = [0-9]+

scala> val address = "123 Main Street Suite 101"
address: String = 123 Main Street Suite 101

scala> val match1 = numPattern.findFirstIn(address)
match1: Option[String] = Some(123)

scala> match1.foreach { e =>
 | println(s"Found a match: $e")
 | }
Found a match: 123

See Also

	The StringOps class

	The Regex class

	Recipe 20.6 provides more information on Option

1.7. Replacing Patterns in Strings

Problem

You want to search for regular-expression patterns in a string,
 and replace them.

Solution

Because a String is immutable,
 you can’t perform find-and-replace operations directly on it, but you
 can create a new String that contains
 the replaced contents. There are several ways to do this.
You can call replaceAll on a
 String, remembering to assign the
 result to a new variable:
scala> val address = "123 Main Street".replaceAll("[0-9]", "x")
address: java.lang.String = xxx Main Street
You can create a regular expression and then call replaceAllIn on that expression, again
 remembering to assign the result to a new string:
scala> val regex = "[0-9]".r
regex: scala.util.matching.Regex = [0-9]

scala> val newAddress = regex.replaceAllIn("123 Main Street", "x")
newAddress: String = xxx Main Street
To replace only the first occurrence of a pattern, use the
 replaceFirst method:
scala> val result = "123".replaceFirst("[0-9]", "x")
result: java.lang.String = x23
You can also use replaceFirstIn
 with a Regex:
scala> val regex = "H".r
regex: scala.util.matching.Regex = H

scala> val result = regex.replaceFirstIn("Hello world", "J")
result: String = Jello world

See Also

	Recipe 1.6 for examples of how to find patterns in
 strings

1.8. Extracting Parts of a String That Match Patterns

Problem

You want to extract one or more parts of a string that match the
 regular-expression patterns you specify.

Solution

Define the regular-expression patterns you want to extract,
 placing parentheses around them so you can extract them as
 “regular-expression groups.” First, define the desired pattern:
val pattern = "([0-9]+) ([A-Za-z]+)".r
Next, extract the regex groups from the target string:
val pattern(count, fruit) = "100 Bananas"
This code extracts the numeric field and the alphabetic field from
 the given string as two separate variables, count and fruit, as shown in the Scala REPL:
scala> val pattern = "([0-9]+) ([A-Za-z]+)".r
pattern: scala.util.matching.Regex = ([0-9]+) ([A-Za-z]+)

scala> val pattern(count, fruit) = "100 Bananas"
count: String = 100
fruit: String = Bananas

Discussion

The syntax shown here may feel a little unusual because it seems
 like you’re defining pattern as a
 val field twice, but this syntax is
 more convenient and readable in a real-world example.
Imagine you’re writing the code for a search engine like Google,
 and you want to let people search for movies using a wide variety of
 phrases. To be really convenient, you’ll let them type any of these
 phrases to get a listing of movies near Boulder, Colorado:
"movies near 80301"
"movies 80301"
"80301 movies"
"movie: 80301"
"movies: 80301"
"movies near boulder, co"
"movies near boulder, colorado"
One way you can allow all these phrases to be used is to define a
 series of regular-expression patterns to match against them. Just define
 your expressions, and then attempt to match whatever the user types
 against all the possible expressions you’re willing to allow.
For example purposes, you’ll just allow these two simplified
 patterns:
// match "movies 80301"
val MoviesZipRE = "movies (\\d{5})".r

// match "movies near boulder, co"
val MoviesNearCityStateRE = "movies near ([a-z]+), ([a-z]{2})".r
Once you’ve defined the patterns you want to allow, you can match
 them against whatever text the user enters, using a match expression. In
 this example, you’ll call a fictional method named getSearchResults when a match occurs:
textUserTyped match {
 case MoviesZipRE(zip) => getSearchResults(zip)
 case MoviesNearCityStateRE(city, state) => getSearchResults(city, state)
 case _ => println("did not match a regex")
}
As you can see, this syntax makes your match expressions very
 readable. For both patterns you’re matching, you call an overloaded
 version of the getSearchResults
 method, passing it the zip field in
 the first case, and the city and
 state fields in the second
 case.
The two regular expressions shown in this example will match
 strings like this:
"movies 80301"
"movies 99676"
"movies near boulder, co"
"movies near talkeetna, ak"
It’s important to note that with this technique, the regular
 expressions must match the entire user input. With
 the regex patterns shown, the following strings will fail because they
 have a blank space at the end of the line:
"movies 80301 "
"movies near boulder, co "
You can solve this particular problem by trimming the input string
 or using a more complicated regular expression, which you’ll want to do
 anyway in the “real world.”
As you can imagine, you can use this same pattern-matching
 technique in many different circumstances, including matching date and
 time formats, street addresses, people’s names, and many other
 situations.

See Also

	Recipe 3.7 for more match expression
 examples

	Recipe 14.12 shows another example of this
 technique

1.9. Accessing a Character in a String

Problem

You want to get a character at a specific position in a
 string.

Solution

You could use the Java charAt method:
scala> "hello".charAt(0)
res0: Char = h
However, the preferred approach is to use Scala’s Array notation:
scala> "hello"(0)
res1: Char = h

scala> "hello"(1)
res2: Char = e

Discussion

When looping over the characters in a string, you’ll normally use
 the map or foreach methods, but if for some reason those
 approaches won’t work for your situation, you can treat a String as an Array, and access each character with the
 array notation shown.
The Scala array notation is different than Java because in Scala
 it’s really a method call, with some nice syntactic sugar added. You
 write your code like this, which is convenient and easy to read:
scala> "hello"(1)
res0: Char = e
But behind the scenes, Scala converts your code into this:
scala> "hello".apply(1)
res1: Char = e
This little bit of syntactic sugar is explained in detail in Recipe 6.8.

1.10. Add Your Own Methods to the String Class

Problem

Rather than create a separate library of String utility methods, like a StringUtilities class, you want to add your
 own behavior(s) to the String class,
 so you can write code like this:
"HAL".increment
Instead of this:
StringUtilities.increment("HAL")

Solution

In Scala 2.10, you define an implicit class, and then define
 methods within that class to implement the behavior you want.
You can see this in the REPL. First, define your implicit class
 and method(s):
scala> implicit class StringImprovements(s: String) {
 | def increment = s.map(c => (c + 1).toChar)
 | }
defined class StringImprovements
Then invoke your method on any String:
scala> val result = "HAL".increment
result: String = IBM
In real-world code, this is just slightly more complicated.
 According to SIP-13, Implicit
 Classes, “An implicit class must be defined in a scope where
 method definitions are allowed (not at the top level).” This means that
 your implicit class must be defined inside a class, object, or package
 object.
Put the implicit class in an object

One way to satisfy this condition is to put the implicit class
 inside an object. For instance, you can place the StringImprovements implicit class in an
 object such as a StringUtils object, as shown
 here:
package com.alvinalexander.utils

object StringUtils {
 implicit class StringImprovements(val s: String) {
 def increment = s.map(c => (c + 1).toChar)
 }
}
You can then use the increment method somewhere else in your
 code, after adding the proper import statement:
package foo.bar

import com.alvinalexander.utils.StringUtils._

object Main extends App {
 println("HAL".increment)
}

Put the implicit class in a package object

Another way to satisfy the requirement is to put the implicit
 class in a package object. With this approach,
 place the following code in a file named package.scala, in the appropriate
 directory. If you’re using SBT, you should place the file in the
 src/main/scala/com/alvinalexander
 directory of your project, containing the following code:
package com.alvinalexander

package object utils {

 implicit class StringImprovements(val s: String) {
 def increment = s.map(c => (c + 1).toChar)
 }

}
When you need to use the increment method in some other code, use a
 slightly different import statement
 from the previous example:
package foo.bar

import com.alvinalexander.utils._

object MainDriver extends App {
 println("HAL".increment)
}
Note
See Recipe 6.7 for more information about package
 objects.

Using versions of Scala prior to version 2.10

If for some reason you need to use a version of Scala prior to
 version 2.10, you’ll need to take a slightly different
 approach. In this case, define a method named increment in a normal Scala class:
class StringImprovements(val s: String) {
 def increment = s.map(c => (c + 1).toChar)
}
Next, define another method to handle the implicit
 conversion:
implicit def stringToString(s: String) = new StringImprovements(s)
The String parameter in the
 stringToString method essentially
 links the String class to the
 StringImprovements class.
Now you can use increment as
 in the earlier examples:
"HAL".increment
Here’s what this looks like in the REPL:
scala> class StringImprovements(val s: String) {
 | def increment = s.map(c => (c + 1).toChar)
 | }
defined class StringImprovements

scala> implicit def stringToString(s: String) = new StringImprovements(s)
stringToString: (s: String)StringImprovements

scala> "HAL".increment
res0: String = IBM

Discussion

As you just saw, in Scala, you can add new functionality to closed
 classes by writing implicit conversions and bringing them into scope
 when you need them. A major benefit of this approach is that you don’t
 have to extend existing classes to add the new functionality. For
 instance, there’s no need to create a new class named MyString that extends String, and then use MyString throughout your code instead of
 String; instead, you define the
 behavior you want, and then add that behavior to
 all String
 objects in the current scope when you add the import statement.
Note that you can define as many methods as you need in your
 implicit class. The following code shows both increment and decrement methods, along with a method named
 hideAll that returns a String with all characters replaced by the
 * character:
implicit class StringImprovements(val s: String) {
 def increment = s.map(c => (c + 1).toChar)
 def decrement = s.map(c => (c − 1).toChar)
 def hideAll = s.replaceAll(".", "*")
}
Notice that except for the implicit keyword before the class name, the
 StringImprovements class and its
 methods are written as usual.
By simply bringing the code into scope with an import statement, you can use these methods,
 as shown here in the REPL:
scala> "HAL".increment
res0: String = IBM
Here’s a simplified description of how this works:
	The compiler sees a string literal “HAL.”

	The compiler sees that you’re attempting to invoke a method
 named increment on the String.

	Because the compiler can’t find that method on the String class, it begins looking around for
 implicit conversion methods that are in scope and accepts a String argument.

	This leads the compiler to the StringImprovements class, where it finds
 the increment method.

That’s an oversimplification of what happens, but it gives you the
 general idea of how implicit conversions work.
Note
For more details on what’s happening here, see SIP-13, Implicit Classes.

Annotate your method return type

It’s recommended that the return type of implicit method
 definitions should be annotated. If you run into a situation where the
 compiler can’t find your implicit methods, or you just want to be
 explicit when declaring your methods, add the return type to your
 method definitions.
In the increment, decrement, and hideAll methods shown here, the return type
 of String is made explicit:
implicit class StringImprovements(val s: String) {
 // being explicit that each method returns a String
 def increment: String = s.map(c => (c + 1).toChar)
 def decrement: String = s.map(c => (c − 1).toChar)
 def hideAll: String = s.replaceAll(".", "*")
}

Returning other types

Although all of the methods shown so far have returned a
 String, you can return any type
 from your methods that you need. The following class demonstrates
 several different types of string conversion methods:
implicit class StringImprovements(val s: String) {
 def increment = s.map(c => (c + 1).toChar)
 def decrement = s.map(c => (c − 1).toChar)
 def hideAll: String = s.replaceAll(".", "*")
 def plusOne = s.toInt + 1
 def asBoolean = s match {
 case "0" | "zero" | "" | " " => false
 case _ => true
 }
}
With these new methods you can now perform Int and Boolean conversions, in addition to the
 String conversions shown
 earlier:
scala> "4".plusOne
res0: Int = 5

scala> "0".asBoolean
res1: Boolean = false

scala> "1".asBoolean
res2: Boolean = true
Note that all of these methods have been simplified to keep them
 short and readable. In the real world, you’ll want to add some
 error-checking.

Chapter 2. Numbers

Introduction

In Scala, all the numeric types are objects, including Byte, Char,
 Double, Float, Int,
 Long, and Short. These seven numeric types extend the
 AnyVal trait, as do the Unit and Boolean classes, which are considered to be
 “nonnumeric value types.”
As shown in Table 2-1, the seven built-in
 numeric types have the same data ranges as their Java primitive
 equivalents.
Table 2-1. Data ranges of Scala’s built-in numeric types
	Data type
	Range

	Char
	16-bit unsigned Unicode
 character

	Byte
	8-bit signed
 value

	Short
	16-bit signed
 value

	Int
	32-bit signed
 value

	Long
	64-bit signed
 value

	Float
	32-bit IEEE 754 single
 precision float

	Double
	64-bit IEEE 754 single
 precision float

In addition to those types, Boolean can have the values true or false.
If you ever need to know the exact values of the data ranges, you
 can find them in the Scala REPL:
scala> Short.MinValue
res0: Short = −32768

scala> Short.MaxValue
res1: Short = 32767

scala> Int.MinValue
res2: Int = −2147483648

scala> Float.MinValue
res3: Float = −3.4028235E38
In addition to these basic numeric types, it’s helpful to understand
 the BigInt and BigDecimal classes, as well as the methods in
 the scala.math package. These are all
 covered in this chapter.
Complex Numbers and Dates

If you need more powerful math classes than those that are
 included with the standard Scala distribution, check out the Spire project, which includes
 classes like Rational, Complex, Real, and more; and ScalaLab, which offers
 Matlab-like scientific computing in Scala.
For processing dates, the Java Joda Time project is
 popular and well documented. A project named nscala-time
 implements a Scala wrapper around Joda Time, and lets you write date
 expressions in a more Scala-like way, including these
 examples:
DateTime.now // returns org.joda.time.DateTime
DateTime.now + 2.months
DateTime.nextMonth < DateTime.now + 2.months
(2.hours + 45.minutes + 10.seconds).millis

2.1. Parsing a Number from a String

Problem

You want to convert a String to
 one of Scala’s numeric types.

Solution

Use the to* methods that are
 available on a String (courtesy of
 the StringLike trait):
scala> "100".toInt
res0: Int = 100

scala> "100".toDouble
res1: Double = 100.0

scala> "100".toFloat
res2: Float = 100.0

scala> "1".toLong
res3: Long = 1

scala> "1".toShort
res4: Short = 1

scala> "1".toByte
res5: Byte = 1
Be careful, because these methods can throw the usual Java
 NumberFormatException:
scala> "foo".toInt
java.lang.NumberFormatException: For input string: "foo"
 at java.lang.NumberFormatException.forInputString(NumberFormatException.java)
 at java.lang.Integer.parseInt(Integer.java:449)
 ... more output here ...
BigInt and BigDecimal instances can also be created
 directly from strings (and can also throw a NumberFormatException):
scala> val b = BigInt("1")
b: scala.math.BigInt = 1

scala> val b = BigDecimal("3.14159")
b: scala.math.BigDecimal = 3.14159
Handling a base and radix

If you need to perform calculations using bases other than
 10, you’ll find the toInt method in the Scala Int class doesn’t have a method that lets
 you pass in a base and radix. To solve this problem, use the parseInt method in the java.lang.Integer class, as shown in these
 examples:
scala> Integer.parseInt("1", 2)
res0: Int = 1

scala> Integer.parseInt("10", 2)
res1: Int = 2

scala> Integer.parseInt("100", 2)
res2: Int = 4

scala> Integer.parseInt("1", 8)
res3: Int = 1

scala> Integer.parseInt("10", 8)
res4: Int = 8
If you’re a fan of implicit conversions, you can create an
 implicit class and method to help solve the problem. As described in
 Recipe 1.10 create the implicit conversion as
 follows:
implicit class StringToInt(s: String) {
 def toInt(radix: Int) = Integer.parseInt(s, radix)
}
Defining this implicit class (and bringing it into scope) adds a
 toInt method that takes a radix
 argument to the String class, which
 you can now call instead of calling Integer.parseInt:
scala> implicit class StringToInt(s: String) {
 | def toInt(radix: Int) = Integer.parseInt(s, radix)
 | }
defined class StringToInt

scala> "1".toInt(2)
res0: Int = 1

scala> "10".toInt(2)
res1: Int = 2

scala> "100".toInt(2)
res2: Int = 4

scala> "100".toInt(8)
res3: Int = 64

scala> "100".toInt(16)
res4: Int = 256
See Recipe 1.10
 for more details on how to implement this solution outside of the
 REPL.

Discussion

If you’ve used Java to convert a String to a numeric data type, then the
 NumberFormatException is familiar.
 However, Scala doesn’t have checked exceptions, so you’ll probably want
 to handle this situation differently.
First, you don’t have to declare that Scala methods can throw an
 exception, so it’s perfectly legal to declare a Scala method like
 this:
// not required to declare "throws NumberFormatException"
def toInt(s: String) = s.toInt
If you’re going to allow an exception to be thrown like this,
 callers of your method might appreciate knowing that this can happen.
 Consider adding a Scaladoc comment to your method in this case.
If you prefer to declare that your method can throw an exception,
 mark it with the @throws annotation,
 as shown here:
@throws(classOf[NumberFormatException])
def toInt(s: String) = s.toInt
This approach is required if the method will be called from Java
 code, as described in Recipe 17.2.
However, in Scala, situations like this are often handled with the
 Option/Some/None
 pattern, as described in Recipe 20.6. With this approach, define the toInt method like this:
def toInt(s: String):Option[Int] = {
 try {
 Some(s.toInt)
 } catch {
 case e: NumberFormatException => None
 }
}
Now you can call the toInt
 method in several different ways, depending on your needs. One way is
 with getOrElse:
println(toInt("1").getOrElse(0)) // 1
println(toInt("a").getOrElse(0)) // 0

// assign the result to x
val x = toInt(aString).getOrElse(0)
Another approach is to use a match expression. You can write a
 match expression to print the toInt
 result like this:
toInt(aString) match {
 case Some(n) => println(n)
 case None => println("Boom! That wasn't a number.")
}
You can also write a match expression as follows to assign the
 result to a variable:
val result = toInt(aString) match {
 case Some(x) => x
 case None => 0 // however you want to handle this
}
If these examples haven’t yet sold you on the
 Option/Some/None
 approach, you’ll see in Chapter 10 and Chapter 11 that this pattern
 is incredibly helpful and convenient when working with
 collections.
Alternatives to Option

If you like the
 Option/Some/None
 concept, but need access to the exception information, there are
 several additional possibilities:
	Try, Success, and Failure (introduced in Scala 2.10)

	Either, Left, and Right

These alternate approaches are discussed in Recipe 20.6. (The new
 Try/Success/Failure
 approach is especially appealing.)

See Also

	Recipe 20.6

	The StringLike trait

2.2. Converting Between Numeric Types (Casting)

Problem

You want to convert from one numeric type to another, such as from
 an Int to a Double.

Solution

Instead of using the “cast” approach in Java, use the to* methods that are available on all numeric
 types. These methods can be demonstrated in the REPL (note that you need
 to hit Tab at the end of the first example):
scala> val b = a.to[Tab]
toByte toChar toDouble toFloat toInt toLong
toShort toString

scala> 19.45.toInt
res0: Int = 19

scala> 19.toFloat
res1: Float = 19.0

scala> 19.toDouble
res2: Double = 19.0

scala> 19.toLong
res3: Long = 19

scala> val b = a.toFloat
b: Float = 1945.0

Discussion

In Java, you convert from one numeric type to another by casting
 the types, like this:
int a = (int) 100.00;
But in Scala, you use the to*
 methods, as shown in this recipe.
If you want to avoid potential conversion errors when casting from
 one numeric type to another, you can use the related isValid methods to test whether the type can
 be converted before attempting the conversion. For instance, a Double object (via RichDouble) has methods like isValidInt and isValidShort:
scala> val a = 1000L
a: Long = 1000

scala> a.isValidByte
res0: Boolean = false

scala> a.isValidShort
res1: Boolean = true

See Also

	The RichDouble class

2.3. Overriding the Default Numeric Type

Problem

Scala automatically assigns types to numeric values when you
 assign them, and you need to override the default type it assigns as you
 create a numeric field.

Solution

If you assign 1 to a variable,
 Scala assigns it the type Int:
scala> val a = 1
a: Int = 1
The following examples show one way to override simple numeric
 types:
scala> val a = 1d
a: Double = 1.0

scala> val a = 1f
a: Float = 1.0

scala> val a = 1000L
a: Long = 1000
Another approach is to annotate the variable with a type, like
 this:
scala> val a = 0: Byte
a: Byte = 0

scala> val a = 0: Int
a: Int = 0

scala> val a = 0: Short
a: Short = 0

scala> val a = 0: Double
a: Double = 0.0

scala> val a = 0: Float
a: Float = 0.0
Spacing after the colon isn’t important, so you can use this
 format, if preferred:
val a = 0:Byte
According to the Scala Style
 Guide, those examples show the preferred style for annotating
 types, but personally I prefer the following syntax when assigning types
 to variables, specifying the type after the variable name:
scala> val a:Byte = 0
a: Byte = 0

scala> val a:Int = 0
a: Int = 0
You can create hex values by preceding the number with a leading
 0x or 0X, and you can store them as an Int or Long:
scala> val a = 0x20
a: Int = 32

// if you want to store the value as a Long
scala> val a = 0x20L
a: Long = 32
Note
In some rare instances, you may need to take advantage of
 type ascription. Stack Overflow shows a case where
 it’s advantageous to upcast a String to an Object. The technique is shown
 here:
scala> val s = "Dave"
s: String = Dave

scala> val p = s: Object
p: Object = Dave
As you can see, the technique is similar to this recipe. This
 upcasting is known as type ascription. The
 official Scala documentation describes type ascription as
 follows:
Ascription is basically just an up-cast performed at compile
 time for the sake of the type checker. Its use is not common, but it
 does happen on occasion. The most often seen case of ascription is
 invoking a varargs method with a
 single Seq parameter.

Discussion

It’s helpful to know about this approach when creating object
 instances. The general syntax looks like this:
// general case
var [name]:[Type] = [initial value]

// example
var a:Short = 0
This form can be helpful when you need to initialize numeric
 var fields in a class:
 class Foo {
 var a: Short = 0 // specify a default value
 var b: Short = _ // defaults to 0
 }
As shown, you can use the underscore character as a placeholder
 when assigning an initial value. This works when creating class
 variables, but doesn’t work in other places, such as inside a method.
 For numeric types this isn’t an issue—you can just assign the type the
 value zero—but with most other types, you can use this approach inside a
 method:
var name = null.asInstanceOf[String]
Better yet, use the
 Option/Some/None
 pattern. It helps eliminate null
 values from your code, which is a very good thing. You’ll see this
 pattern used in the best Scala libraries and frameworks, such as the
 Play Framework. An excellent example of this approach is shown in Recipe 12.4.
See Recipe 20.5 and Recipe 20.6 for more discussion of this important
 topic.

See Also

	The Scala Style
 Guide

	The Stack Overflow
 URL mentioned in the note in the Solution

2.4. Replacements for ++ and −−

Problem

You want to increment or decrement numbers using operators like
 ++ and −− that are available in other languages, but
 Scala doesn’t have these operators.

Solution

Because val fields are
 immutable, they can’t be incremented or decremented, but var Int fields can be mutated with the
 += and −= methods:
scala> var a = 1
a: Int = 1

scala> a += 1

scala> println(a)
2

scala> a −= 1

scala> println(a)
1
As an added benefit, you use similar methods for multiplication
 and division:
scala> var i = 1
i: Int = 1

scala> i *= 2

scala> println(i)
2

scala> i *= 2

scala> println(i)
4

scala> i /= 2

scala> println(i)
2
Note that these symbols aren’t operators; they’re implemented as
 methods that are available on Int
 fields declared as a var. Attempting
 to use them on val fields results in
 a compile-time error:
scala> val x = 1
x: Int = 1

scala> x += 1
<console>:9: error: value += is not a member of Int
 x += 1
 ^
Note
As mentioned, the symbols +=,
 −=, *=, and /= aren’t operators, they’re
 methods. This approach of building functionality
 with libraries instead of operators is a consistent pattern in Scala.
 Actors, for instance, are not built into the language, but are instead
 implemented as a library. See the Dr. Dobbs link in the See Also for
 Martin Odersky’s discussion of this philosophy.

Discussion

Another benefit of this approach is that you can call methods of
 the same name on other types besides Int. For instance, the Double and Float classes have methods of the same
 name:
scala> var x = 1d
x: Double = 1.0

scala> x += 1

scala> println(x)
2.0

scala> var x = 1f
x: Float = 1.0

scala> x += 1

scala> println(x)
2.0

See Also

	Martin Odersky discusses how Actors are added into Scala as a
 library on drdobbs.com.

2.5. Comparing Floating-Point Numbers

Problem

You need to compare two floating-point numbers, but as in some
 other programming languages, two floating-point numbers that
 should be equivalent may not be.

Solution

As in Java and many other languages, you solve this problem by
 creating a method that lets you specify the precision for your
 comparison. The following “approximately equals” method demonstrates the
 approach:
def ~=(x: Double, y: Double, precision: Double) = {
 if ((x - y).abs < precision) true else false
}
You can use this method like this:
scala> val a = 0.3
a: Double = 0.3

scala> val b = 0.1 + 0.2
b: Double = 0.30000000000000004

scala> ~=(a, b, 0.0001)
res0: Boolean = true

scala> ~=(b, a, 0.0001)
res1: Boolean = true

Discussion

When you begin working with floating-point numbers, you quickly
 learn that 0.1 plus 0.1 is 0.2:
scala> 0.1 + 0.1
res38: Double = 0.2
But 0.1 plus 0.2 isn’t exactly 0.3:
scala> 0.1 + 0.2
res37: Double = 0.30000000000000004
This subtle inaccuracy makes comparing two floating-point numbers
 a real problem:
scala> val a = 0.3
a: Double = 0.3

scala> val b = 0.1 + 0.2
b: Double = 0.30000000000000004

scala> a == b
res0: Boolean = false
As a result, you end up writing your own functions to compare
 floating-point numbers with a precision (or tolerance).
As you saw in Recipe 1.11, you can define an implicit conversion
 to add a method like this to the Double class. This makes the following code
 very readable:
if (a ~= b) ...
Or, you can add the same method to a utilities object, if you
 prefer:
object MathUtils {
 def ~=(x: Double, y: Double, precision: Double) = {
 if ((x - y).abs < precision) true else false
 }
}
which you can then invoke like a static method:
println(MathUtils.~=(a, b, 0.000001))
With an implicit conversion, the name ~= is very readable, but in a utilities object
 like this, it doesn’t look quite right, so it might be better named
 approximatelyEqual, equalWithinTolerance, or some other
 name.

See Also

	Floating-point accuracy problems

	Arbitrary-precision
 arithmetic

	What every computer scientist should know about floating-point arithmetic

2.6. Handling Very Large Numbers

Problem

You’re writing an application and need to use very large integer
 or decimal numbers.

Solution

Use the Scala BigInt and
 BigDecimal classes. You can create a
 BigInt:
scala> var b = BigInt(1234567890)
b: scala.math.BigInt = 1234567890
or a BigDecimal:
scala> var b = BigDecimal(123456.789)
b: scala.math.BigDecimal = 123456.789
Unlike their Java equivalents, these classes support all the
 operators you’re used to using with numeric types:
scala> b + b
res0: scala.math.BigInt = 2469135780

scala> b * b
res1: scala.math.BigInt = 1524157875019052100

scala> b += 1

scala> println(b)
1234567891
You can convert them to other numeric types:
scala> b.toInt
res2: Int = 1234567891

scala> b.toLong
res3: Long = 1234567891

scala> b.toFloat
res4: Float = 1.23456794E9

scala> b.toDouble
res5: Double = 1.234567891E9
To help avoid errors, you can also test them first to see if they
 can be converted to other numeric types:
scala> b.isValidByte
res6: Boolean = false

scala> b.isValidChar
res7: Boolean = false

scala> b.isValidShort
res8: Boolean = false

scala> if (b.isValidInt) b.toInt
res9: AnyVal = 1234567890

Discussion

Although the Scala BigInt and
 BigDecimal classes are backed by the
 Java BigInteger and BigDecimal classes, they are simpler to use
 than their Java counterparts. As you can see in the examples, they work
 just like other numeric types, and they’re also mutable (as you saw in
 the += example). These are nice
 improvements over the Java classes.
Before using BigInt or BigDecimal, you can check the maximum values
 that the other Scala numeric types can handle in Table 1-1, or by checking their
 MaxValue in the REPL:
scala> Byte.MaxValue
res0: Byte = 127

scala> Short.MaxValue
res1: Short = 32767

scala> Int.MaxValue
res2: Int = 2147483647

scala> Long.MaxValue
res3: Long = 9223372036854775807

scala> Double.MaxValue
res4: Double = 1.7976931348623157E308
Depending on your needs, you may also be able to use the PositiveInfinity and NegativeInfinity of the standard numeric
 types:
scala> Double.PositiveInfinity
res0: Double = Infinity

scala> Double.NegativeInfinity
res1: Double = -Infinity

scala> 1.7976931348623157E308 > Double.PositiveInfinity
res45: Boolean = false

See Also

	The Java BigInteger class

	The Scala BigInt class

	The Scala BigDecimal class

2.7. Generating Random Numbers

Problem

You need to create random numbers, such as when testing an
 application, performing a simulation, and many other
 situations.

Solution

Create random numbers with the Scala scala.util.Random class. You can create random
 integers:
scala> val r = scala.util.Random
r: scala.util.Random = scala.util.Random@13eb41e5

scala> r.nextInt
res0: Int = −1323477914
You can limit the random numbers to a maximum value:
scala> r.nextInt(100)
res1: Int = 58
In this use, the Int returned
 is between 0 (inclusive) and the
 value you specify (exclusive), so specifying 100 returns an Int from 0
 to 99.
You can also create random Float values:
// returns a value between 0.0 and 1.0
scala> r.nextFloat
res2: Float = 0.50317204
You can create random Double
 values:
// returns a value between 0.0 and 1.0
scala> r.nextDouble
res3: Double = 0.6946000981900997
You can set the seed value using an Int or Long
 when creating the Random object:
scala> val r = new scala.util.Random(100)
r: scala.util.Random = scala.util.Random@bbf4061
You can also set the seed value after a Random object has been created:
r.setSeed(1000L)

Discussion

The Random class handles all
 the usual use cases, including creating numbers, setting the maximum
 value of a random number range, and setting a seed value. You can also
 generate random characters:
// random characters
scala> r.nextPrintableChar
res0: Char = H

scala> r.nextPrintableChar
res1: Char = r
Scala makes it easy to create a random-length range of numbers,
 which is especially useful for testing:
// create a random length range
scala> var range = 0 to r.nextInt(10)
range: scala.collection.immutable.Range.Inclusive = Range(0, 1, 2, 3)

scala> range = 0 to r.nextInt(10)
range: scala.collection.immutable.Range.Inclusive = Range(0, 1)
You can add a for/yield loop
 to modify the numbers:
scala> for (i <- 0 to r.nextInt(10)) yield i * 2
res0: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 2, 4)
You can easily create random-length ranges of other types. Here’s
 a random-length collection of up to 10 Float values:
scala> for (i <- 0 to r.nextInt(10)) yield (i * r.nextFloat)
res1: scala.collection.immutable.IndexedSeq[Float] =
 Vector(0.0, 0.71370363, 1.0783684)
Here’s a random-length collection of “printable
 characters”:
scala> for (i <- 0 to r.nextInt(10)) yield r.nextPrintableChar
res2: scala.collection.immutable.IndexedSeq[Char] = Vector(x, K, ^, z, w)
Be careful with the nextPrintableChar method. A better approach
 may be to control the characters you use, as shown in my “How to create
 a list of alpha or alphanumeric characters” article, shown in the See
 Also.
Conversely, you can create a sequence of known length, filled with
 random numbers:
scala> for (i <- 1 to 5) yield r.nextInt(100)
res3: scala.collection.immutable.IndexedSeq[Int] = Vector(88, 94, 58, 96, 82)

See Also

	The Scala Random class

	Recipe 11.29,
 provides examples of how to create and use ranges

	My article on how
 to create a list of alpha or alphanumeric characters

	An additional recipe for generating random strings

2.8. Creating a Range, List, or Array of Numbers

Problem

You need to create a range, list, or array of numbers, such as in
 a for loop, or for testing
 purposes.

Solution

Use the to method of the
 Int class to create a Range with the desired elements:
scala> val r = 1 to 10
r: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3, 4, 5,
 6, 7, 8, 9, 10)
You can set the step with the by method:
scala> val r = 1 to 10 by 2
r: scala.collection.immutable.Range = Range(1, 3, 5, 7, 9)

scala> val r = 1 to 10 by 3
r: scala.collection.immutable.Range = Range(1, 4, 7, 10)
Ranges are commonly used in for
 loops:
scala> for (i <- 1 to 5) println(i)
1
2
3
4
5
When creating a Range, you can
 also use until instead of to:
scala> for (i <- 1 until 5) println(i)
1
2
3
4

Discussion

Scala makes it easy to create a range of numbers. The first three
 examples shown in the Solution create a Range. You can easily convert a Range to other sequences, such as an Array or List, like this:
scala> val x = 1 to 10 toArray
x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val x = 1 to 10 toList
x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Although this infix notation syntax is clear
 in many situations (such as for
 loops), it’s generally preferable to use this syntax:
scala> val x = (1 to 10).toList
x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val x = (1 to 10).toArray
x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
The magic that makes this process work is the to and until methods, which you’ll find in the
 RichInt class. When you type the
 following portion of the code, you’re actually invoking the to method of the RichInt class:
1 to
You can demonstrate that to is
 a method on an Int by using this
 syntax in the REPL:
1.to(10)
Note
Although the infix notation (1 to
 10) shown in most of these examples can make your code more
 readable, Rahul Phulore has a post on Stack Overflow where he advises
 against using it for anything other than internal DSLs. The link to
 that post is shown in the See Also.

Combine this with Recipe 2.7 and you can create a random-length range,
 which can be useful for testing:
scala> var range = 0 to scala.util.Random.nextInt(10)
range: scala.collection.immutable.Range.Inclusive = Range(0, 1, 2, 3)
By using a range with the for/yield
 construct, you don’t have to limit your ranges to sequential
 numbers:
scala> for (i <- 1 to 5) yield i * 2
res0: scala.collection.immutable.IndexedSeq[Int] = Vector(2, 4, 6, 8, 10)
You also don’t have to limit your ranges to just integers:
scala> for (i <- 1 to 5) yield i.toDouble
res1: scala.collection.immutable.IndexedSeq[Double] =
 Vector(1.0, 2.0, 3.0, 4.0, 5.0)

See Also

	The Scala RichInt class

	Rahul Phulore’s post, where he advises not using
 the infix notation

2.9. Formatting Numbers and Currency

Problem

You want to format numbers or currency to control decimal places
 and commas, typically for printed output.

Solution

For basic number formatting, use the f string interpolator shown in Recipe 1.4:
scala> val pi = scala.math.Pi
pi: Double = 3.141592653589793

scala> println(f"$pi%1.5f")
3.14159
A few more examples demonstrate the technique:
scala> f"$pi%1.5f"
res0: String = 3.14159

scala> f"$pi%1.2f"
res1: String = 3.14

scala> f"$pi%06.2f"
res2: String = 003.14
If you’re using a version of Scala prior to 2.10, or prefer the
 explicit use of the format method,
 you can write the code like this instead:
scala> "%06.2f".format(pi)
res3: String = 003.14
A simple way to add commas is to use the getIntegerInstance method of the java.text.NumberFormat class:
scala> val formatter = java.text.NumberFormat.getIntegerInstance
formatter: java.text.NumberFormat = java.text.DecimalFormat@674dc

scala> formatter.format(10000)
res0: String = 10,000

scala> formatter.format(1000000)
res1: String = 1,000,000
You can also set a locale with the getIntegerInstance method:
scala> val locale = new java.util.Locale("de", "DE")
locale: java.util.Locale = de_DE

scala> val formatter = java.text.NumberFormat.getIntegerInstance(locale)
formatter: java.text.NumberFormat = java.text.DecimalFormat@674dc

scala> formatter.format(1000000)
res2: String = 1.000.000
You can handle floating-point values with a formatter returned by
 getInstance:
scala> val formatter = java.text.NumberFormat.getInstance
formatter: java.text.NumberFormat = java.text.DecimalFormat@674dc

scala> formatter.format(10000.33)
res0: String = 10,000.33
For currency output, use the getCurrencyInstance formatter:
scala> val formatter = java.text.NumberFormat.getCurrencyInstance
formatter: java.text.NumberFormat = java.text.DecimalFormat@67500

scala> println(formatter.format(123.456789))
$123.46

scala> println(formatter.format(1234.56789))
$1,234.57

scala> println(formatter.format(12345.6789))
$12,345.68

scala> println(formatter.format(123456.789))
$123,456.79
This approach handles international currency:
scala> import java.util.{Currency, Locale}
import java.util.{Currency, Locale}

scala> val de = Currency.getInstance(new Locale("de", "DE"))
de: java.util.Currency = EUR

scala> formatter.setCurrency(de)

scala> println(formatter.format(123456.789))
EUR123,456.79

Discussion

This recipe falls back to the Java approach for printing currency
 and other formatted numeric fields, though of course the currency
 solution depends on how you handle currency in your applications. In my
 work as a consultant, I’ve seen most companies handle currency using the
 Java BigDecimal class, and others
 create their own custom currency classes, which are typically wrappers
 around BigDecimal.

See Also

	My printf cheat sheet.

	The Joda Money
 library is a Java library for handling currency, and is
 currently at version 0.8.

	JSR 354: Money and Currency API, is also being developed in
 the Java Community Process. See jcp.org for more
 information.

Chapter 3. Control Structures

Introduction

The control structures in Scala start off similar to their Java
 counterparts, and then diverge in some wonderful ways. For instance,
 Scala’s
 if/then/else
 structure is similar to Java, but can also be used to return a value. As a
 result, though Java has a special syntax for a ternary operator, in Scala
 you just use a normal if statement to
 achieve the ternary effect:
val x = if (a) y else z
The
 try/catch/finally
 structure is similar to Java, though Scala uses pattern matching in the
 catch clause. This differs from Java,
 but because it’s consistent with other uses of pattern matching in Scala,
 it’s easy to remember.
When you get to the for loop,
 things really start to get interesting. Its basic use is similar to Java,
 but with the addition of guards and other
 conveniences, the Scala for loop
 rapidly departs from its Java counterpart. For instance, in Scala you
 could write two for loops as follows to read every line in a
 file and then operate on each character in each line:
for (line <- source.getLines) {
 for {
 char <- line
 if char.isLetter
 } // char algorithm here ...
}
But with Scala’s for loop mojo,
 you can write this code even more concisely:
for {
 line <- source.getLines
 char <- line
 if char.isLetter
} // char algorithm here ...
The rabbit hole goes even deeper, because a Scala for
 comprehension lets you easily apply an algorithm to one
 collection to generate a new collection:
scala> val nieces = List("emily", "hannah", "mercedes", "porsche")
nieces: List[String] = List(emily, hannah, mercedes, porsche)

scala> for (n <- nieces) yield n.capitalize
res0: List[String] = List(Emily, Hannah, Mercedes, Porsche)
Similarly, in its most basic use, a Scala match
 expression can look like a Java switch statement, but because you can match any
 object, extract information from matched objects, add guards to case statements, return values, and more, match
 expressions are a major feature of the Scala language.

3.1. Looping with for and foreach

Problem

You want to iterate over the elements in a collection, either to
 operate on each element in the collection, or to create a new collection
 from the existing collection.

Solution

There are many ways to loop over Scala collections, including
 for loops, while loops, and collection methods like
 foreach, map, flatMap, and more. This solution focuses
 primarily on the for loop and
 foreach method.
Given a simple array:
val a = Array("apple", "banana", "orange")
I prefer to iterate over the array with the following for loop syntax, because it’s clean and easy
 to remember:
scala> for (e <- a) println(e)
apple
banana
orange
When your algorithm requires multiple lines, use the same for loop syntax, and perform your work in a
 block:
scala> for (e <- a) {
 | // imagine this requires multiple lines
 | val s = e.toUpperCase
 | println(s)
 | }
APPLE
BANANA
ORANGE
Returning values from a for loop

Those examples perform an operation using the elements in an
 array, but they don’t return a value you can use, such as a new array.
 In cases where you want to build a new collection from the input
 collection, use the for/yield
 combination:
scala> val newArray = for (e <- a) yield e.toUpperCase
newArray: Array[java.lang.String] = Array(APPLE, BANANA, ORANGE)
The for/yield construct
 returns a value, so in this case, the array newArray contains uppercase versions of the
 three strings in the initial array. Notice that an input Array yields an Array (and not something else, like a
 Vector).
When your algorithm requires multiple lines of code, perform the
 work in a block after the yield
 keyword:
scala> val newArray = for (e <- a) yield {
 | // imagine this requires multiple lines
 | val s = e.toUpperCase
 | s
 | }
newArray: Array[java.lang.String] = Array(APPLE, BANANA, ORANGE)

for loop counters

If you need access to a counter inside a for loop, use one of the following
 approaches. First, you can access array elements with a counter like
 this:
for (i <- 0 until a.length) {
 println(s"$i is ${a(i)}")
}
That loops yields this output:
0 is apple
1 is banana
2 is orange
Scala collections also offer a zipWithIndex method that you can use to
 create a loop counter:
scala> for ((e, count) <- a.zipWithIndex) {
 | println(s"$count is $e")
 | }
0 is apple
1 is banana
2 is orange
See Recipe 10.11, for more examples of how to use zipWithIndex.

Generators and guards

On a related note, the following example shows how to use a
 Range to execute a loop three
 times:
scala> for (i <- 1 to 3) println(i)
1
2
3
The 1 to 3 portion of the
 loop creates a Range, as shown in
 the REPL:
scala> 1 to 3
res0: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3)
Using a Range like this is
 known as using a generator. The next recipe
 demonstrates how to use this technique to create multiple loop
 counters.
Recipe 3.3
 demonstrates how to use guards (if
 statements in for loops), but
 here’s a quick preview:
scala> for (i <- 1 to 10 if i < 4) println(i)
1
2
3

Looping over a Map

When iterating over keys and values in a Map, I find this to be the most concise and
 readable for loop:
val names = Map("fname" -> "Robert",
 "lname" -> "Goren")
for ((k,v) <- names) println(s"key: $k, value: $v")
See Recipe 11.17 for more examples of how to iterate over
 the elements in a Map.

Discussion

An important lesson from the for loop examples is that when you use the
 for/yield combination with a
 collection, you’re building and returning a new collection, but when you
 use a for loop
 without yield,
 you’re just operating on each element in the
 collection—you’re not creating a new collection. The
 for/yield combination is referred
 to as a for comprehension, and in its basic use, it
 works just like the map method. It’s
 discussed in more detail in Recipe 3.4.
In some ways Scala reminds me of the Perl slogan, “There’s more
 than one way to do it,” and iterating over a collection provides some
 great examples of this. With the wealth of methods that are available on
 collections, it’s important to note that a for loop may not even be the best approach to
 a particular problem; the methods foreach, map, flatMap, collect, reduce, etc., can often be used to solve your
 problem without requiring an explicit for loop.
For example, when you’re working with a collection, you can also
 iterate over each element by calling the foreach method on the collection:
scala> a.foreach(println)
apple
banana
orange
When you have an algorithm you want to run on each element in the
 collection, just use the anonymous function syntax:
scala> a.foreach(e => println(e.toUpperCase))
APPLE
BANANA
ORANGE
As before, if your algorithm requires multiple lines, perform your
 work in a block:
scala> a.foreach { e =>
 | val s = e.toUpperCase
 | println(s)
 | }
APPLE
BANANA
ORANGE
How for loops are translated

As you work with Scala, it’s helpful to understand how for loops are translated by the compiler.
 The Scala Language
 Specification provides details on precisely how a for loop is translated under various
 conditions. I encourage you to read the Specification for details on
 the rules, but a simplification of those rules can be stated as
 follows:
	A simple for loop that
 iterates over a collection is translated to a foreach method call on the
 collection.

	A for loop with a
 guard (see Recipe 3.3) is
 translated to a sequence of a withFilter method call on the collection
 followed by a foreach
 call.

	A for loop with a
 yield expression is translated
 to a map method call on the
 collection.

	A for loop with a
 yield expression and a guard is
 translated to a withFilter
 method call on the collection, followed by a map method call.

Again, the Specification is more detailed than this, but those
 statements will help get you started in the right direction.
These statements can be demonstrated with a series of examples.
 Each of the following examples starts with a for loop, and the code in each example will
 be compiled with the following scalac command:
$ scalac -Xprint:parse Main.scala
This command provides some initial output about how the Scala
 compiler translates the for loops
 into other code.
As a first example, start with the following code in a file
 named Main.scala:
class Main {
 for (i <- 1 to 10) println(i)
}
This code is intentionally small and trivial so you can see how
 the for loop is translated by the
 compiler.
When you compile this code with the scalac -Xprint:parse command, the full
 output looks like this:
$ scalac -Xprint:parse Main.scala

[[syntax trees at end of parser]] // Main.scala
package <empty> {
 class Main extends scala.AnyRef {
 def <init>() = {
 super.<init>();
 ()
 };
 1.to(10).foreach(((i) => println(i)))
 }
}
For this example, the important part of the output is the area
 that shows the for loop was
 translated by the compiler into the following code:
1.to(10).foreach(((i) => println(i)))
As you can see, the Scala compiler translates a simple for loop over a collection into a foreach method call on the
 collection.
Note
If you compile the file with the -Xprint:all option instead of
 -Xprint:parse, you’ll see that
 the code is further translated into the following code:
scala.this.Predef.intWrapper(1).to(10).foreach[Unit]
 (((i: Int) => scala.this.Predef.println(i)))
The code continues to get more and more detailed as the
 compiler phases continue, but for this demonstration, only the first
 step in the translation process is necessary.

Note that although I use a Range in these examples, the compiler
 behaves similarly for other collections. For example, if I replace the
 Range in the previous example with
 a List, like this:
// original List code
val nums = List(1,2,3)
for (i <- nums) println(i)
the for loop is still
 converted by the compiler into a foreach method call:
// translation performed by the compiler
nums.foreach(((i) => println(i)))
Given this introduction, the following series of examples
 demonstrates how various for loops
 are translated by the Scala 2.10 compiler. Here’s the first example
 again, showing both the input code I wrote and
 the output code from the compiler:
// #1 - input (my code)
for (i <- 1 to 10) println(i)

// #1 - compiler output
1.to(10).foreach(((i) => println(i)))
Next, I’ll use the same for
 loop but add a guard condition (an if statement) to it:
// #2 - input code
for {
 i <- 1 to 10
 if i % 2 == 0
} println(i)

// #2 - translated output
1.to(10).withFilter(((i) => i.$percent(2).$eq$eq(0))).foreach(((i) =>
 println(i)))
As shown, a simple, single guard is translated into a withFilter method call on the collection,
 followed by a foreach
 call.
The same for loop with two
 guards is translated into two withFilter calls:
// #3 - input code
for {
 i <- 1 to 10
 if i != 1
 if i % 2 == 0
} println(i)

// #3 - translated output
1.to(10).withFilter(((i) => i.$bang$eq(1)))
 .withFilter(((i)
 => i.$percent(2).$eq$eq(0))).foreach(((i) => println(i)))
Next, I’ll add a yield
 statement to the initial for
 loop:
// #4 - input code
for { i <- 1 to 10 } yield i

// #4 - output
1.to(10).map(((i) => i))
As shown, when a yield
 statement is used, the compiler translates the
 for/yield code into a map method call on the collection.
Here’s the same for/yield
 combination with a guard added in:
// #5 - input code (for loop, guard, and yield)
for {
 i <- 1 to 10
 if i % 2 == 0
} yield i

// #5 - translated code
1.to(10).withFilter(((i) => i.$percent(2).$eq$eq(0))).map(((i) => i))
As in the previous examples, the guard is translated into a
 withFilter method call, and the
 for/yield code is translated
 into a map method call.
These examples demonstrate how the translations are made by the
 Scala compiler, and I encourage you to create your own examples to see
 how they’re translated by the compiler into other code. The -Xprint:parse option shows a small amount of
 compiler output, while the -Xprint:all option produces hundreds of
 lines of output for some of these examples, showing all the steps in
 the compilation process.
For more details, see the Scala Language Specification for exact
 rules on the for loop translation
 process. The details are currently in Section 6.19, “For
 Comprehensions and For Loops,” of the Specification.

See Also

	The Scala
 Language Specification in PDF format

3.2. Using for Loops with Multiple Counters

Problem

You want to create a loop with multiple counters, such as when
 iterating over a multidimensional array.

Solution

You can create a for loop with
 two counters like this:
scala> for (i <- 1 to 2; j <- 1 to 2) println(s"i = $i, j = $j")
i = 1, j = 1
i = 1, j = 2
i = 2, j = 1
i = 2, j = 2
When doing this, the preferred style for multiline
 for loops is to use curly brackets:
for {
 i <- 1 to 2
 j <- 1 to 2
} println(s"i = $i, j = $j")
Similarly, you can use three counters like this:
for {
 i <- 1 to 3
 j <- 1 to 5
 k <- 1 to 10
} println(s"i = $i, j = $j, k = $k")
This is useful when looping over a multidimensional array.
 Assuming you create a small two-dimensional array like this:
val array = Array.ofDim[Int](2,2)
array(0)(0) = 0
array(0)(1) = 1
array(1)(0) = 2
array(1)(1) = 3
you can print each element of the array like this:
scala> for {
 | i <- 0 to 1
 | j <- 0 to 1
 | } println(s"($i)($j) = ${array(i)(j)}")
(0)(0) = 0
(0)(1) = 1
(1)(0) = 2
(1)(1) = 3

Discussion

Ranges created with the <-
 symbol in for loops are referred to
 as generators, and you can easily use multiple
 generators in one loop.
As shown in the examples, the recommended style for writing longer
 for loops is to use curly
 braces:
for {
 i <- 1 to 2
 j <- 2 to 3
} println(s"i = $i, j = $j")
This style is more scalable than other styles; in this case,
 “scalable” means that it continues to be readable as you add more
 generators and guards to the expression.

See Also

	The Scala Style Guide page
 on formatting control structures

3.3. Using a for Loop with Embedded if Statements (Guards)

Problem

You want to add one or more conditional clauses to a for loop, typically to filter out some
 elements in a collection while working on the others.

Solution

Add an if statement after your
 generator, like this:
// print all even numbers
scala> for (i <- 1 to 10 if i % 2 == 0) println(i)
2
4
6
8
10
or using the preferred curly brackets style, like this:
for {
 i <- 1 to 10
 if i % 2 == 0
} println(i)
These if statements are
 referred to as filters, filter expressions, or
 guards, and you can use as many guards as are
 needed for the problem at hand. This loop shows a hard way to print the
 number 4:
for {
 i <- 1 to 10
 if i > 3
 if i < 6
 if i % 2 == 0
} println(i)

Discussion

Using guards with for loops can
 make for concise and readable code, but you can also use the traditional
 approach:
for (file <- files) {
 if (hasSoundFileExtension(file) && !soundFileIsLong(file)) {
 soundFiles += file
 }
}
However, once you become comfortable with Scala’s for loop syntax, I think you’ll find it makes
 the code more readable, because it separates the looping and filtering
 concerns from the business logic:
for {
 file <- files
 if passesFilter1(file)
 if passesFilter2(file)
} doSomething(file)
As a final note, because guards are generally intended to filter
 collections, you may want to use one of the many filtering methods that
 are available to collections (filter,
 take, drop, etc.) instead of a for loop, depending on your needs.

3.4. Creating a for Comprehension (for/yield Combination)

Problem

You want to create a new collection from an existing collection by
 applying an algorithm (and potentially one or more guards) to each
 element in the original collection.

Solution

Use a yield statement with a
 for loop and your algorithm to create
 a new collection from an existing collection.
For instance, given an array of lowercase strings:
scala> val names = Array("chris", "ed", "maurice")
names: Array[String] = Array(chris, ed, maurice)
you can create a new array of capitalized strings by combining
 yield with a for loop and a simple algorithm:
scala> val capNames = for (e <- names) yield e.capitalize
capNames: Array[String] = Array(Chris, Ed, Maurice)
Using a for loop with a
 yield statement is known as a
 for comprehension.
If your algorithm requires multiple lines of code, perform the
 work in a block after the yield
 keyword:
scala> val lengths = for (e <- names) yield {
 | // imagine that this required multiple lines of code
 | e.length
 | }
lengths: Array[Int] = Array(5, 2, 7)
Except for rare occasions, the collection type returned by a for
 comprehension is the same type that you begin with. For instance, if the
 collection you’re looping over is an ArrayBuffer:
var fruits = scala.collection.mutable.ArrayBuffer[String]()
fruits += "apple"
fruits += "banana"
fruits += "orange"
the collection your loop returns will also be an ArrayBuffer:
scala> val out = for (e <- fruits) yield e.toUpperCase
out: scala.collection.mutable.ArrayBuffer[java.lang.String] =
 ArrayBuffer(APPLE, BANANA, ORANGE)
If your input collection is a List, the
 for/yield loop will return a
 List:
scala> val fruits = "apple" :: "banana" :: "orange" :: Nil
fruits: List[java.lang.String] = List(apple, banana, orange)

scala> val out = for (e <- fruits) yield e.toUpperCase
out: List[java.lang.String] = List(APPLE, BANANA, ORANGE)

Discussion

If you’re new to using yield
 with a for loop, it can help to think
 of the loop like this:
	When it begins running, the
 for/yield loop immediately
 creates a new, empty collection that is of the same type as the
 input collection. For example, if the input type is a Vector, the output type will also be a
 Vector. You can think of this new
 collection as being like a bucket.

	On each iteration of the for loop, a new output element is created
 from the current element of the input collection. When the output
 element is created, it’s placed in the bucket.

	When the loop finishes running, the entire contents of the
 bucket are returned.

That’s a simplification of the process, but I find it helpful when
 explaining the process.
Writing a basic for/yield
 expression without a guard is just like calling the map method on a collection. For instance, the
 following for comprehension converts all the strings in the fruits collection to uppercase:
scala> val out = for (e <- fruits) yield e.toUpperCase
out: List[String] = List(APPLE, BANANA, ORANGE)
Calling the map method on the
 collection does the same thing:
scala> val out = fruits.map(_.toUpperCase)
out: List[String] = List(APPLE, BANANA, ORANGE)
When I first started learning Scala, I wrote all of my code using
 for/yield expressions until the
 map light bulb went on one
 day.

See Also

	Comparisons between for comprehensions and map are shown in more detail in Recipe 10.13 and Recipe 10.14.

	The official Scala
 website offers an introduction to sequence comprehensions

3.5. Implementing break and continue

Problem

You have a situation where you need to use a break or continue construct, but Scala doesn’t have
 break or continue keywords.

Solution

It’s true that Scala doesn’t have break and continue keywords, but it does offer similar
 functionality through scala.util.control.Breaks.
The following code demonstrates the Scala “break” and “continue”
 approach:
package com.alvinalexander.breakandcontinue

import util.control.Breaks._

object BreakAndContinueDemo extends App {

 println("\n=== BREAK EXAMPLE ===")
 breakable {
 for (i <- 1 to 10) {
 println(i)
 if (i > 4) break // break out of the for loop
 }
 }

 println("\n=== CONTINUE EXAMPLE ===")
 val searchMe = "peter piper picked a peck of pickled peppers"
 var numPs = 0
 for (i <- 0 until searchMe.length) {
 breakable {
 if (searchMe.charAt(i) != 'p') {
 break // break out of the 'breakable', continue the outside loop
 } else {
 numPs += 1
 }
 }
 }
 println("Found " + numPs + " p's in the string.")
}
Here’s the output from the code:
=== BREAK EXAMPLE ===
1
2
3
4
5

=== CONTINUE EXAMPLE ===
Found 9 p's in the string.
(The “pickled peppers” example comes from a continue example in the Java documentation.
 More on this at the end of the recipe.)
The following discussions describe how this code works.
The break example

The break example is pretty easy to reason about. Again, here’s
 the code:
breakable {
 for (i <- 1 to 10) {
 println(i)
 if (i > 4) break // break out of the for loop
 }
}
In this case, when i becomes
 greater than 4, the break “keyword” is reached. At this point an
 exception is thrown, and the for
 loop is exited. The breakable
 “keyword” essentially catches the exception, and the flow of control
 continues with any other code that might be after the breakable block.
Note that break and breakable aren’t actually keywords; they’re
 methods in scala.util.control.Breaks. In Scala 2.10,
 the break method is declared as
 follows to throw an instance of a BreakControl exception when it’s
 called:
private val breakException = new BreakControl

def break(): Nothing = { throw breakException }
The breakable method is
 defined to catch a BreakControl
 exception, like this:
def breakable(op: => Unit) {
 try {
 op
 } catch {
 case ex: BreakControl =>
 if (ex ne breakException) throw ex
 }
 }
Note
See Recipe 3.18 for
 examples of how to implement your own control structures in a manner
 similar to the Breaks library.

The continue example

Given the explanation for the break example, you can now reason about how
 the “continue” example works. Here’s the code again:
val searchMe = "peter piper picked a peck of pickled peppers"
var numPs = 0

for (i <- 0 until searchMe.length) {
 breakable {
 if (searchMe.charAt(i) != 'p') {
 break // break out of the 'breakable', continue the outside loop
 } else {
 numPs += 1
 }
 }
}

println("Found " + numPs + " p's in the string.")
Following the earlier explanation, as the code walks through the
 characters in the String variable
 named searchMe, if the current
 character is not the letter p, the
 code breaks out of the if/then
 statement, and the loop continues executing.
As before, what really happens is that the break method is reached, an exception is
 thrown, and that exception is caught by breakable. The exception serves to break out
 of the if/then statement, and
 catching it allows the for loop to
 continue executing with the next element.

General syntax

The general syntax for implementing break and continue
 functionality is shown in the following examples, which are partially
 written in pseudocode, and compared to their Java
 equivalents.
To implement a break, this Scala:
breakable {
 for (x <- xs) {
 if (cond)
 break
 }
}
corresponds to this Java:
for (X x : xs) {
 if (cond) break;
}
To implement continue functionality, this
 Scala:
for (x <- xs) {
 breakable {
 if (cond)
 break
 }
}
corresponds to this Java:
for (X x : xs) {
 if (cond) continue;
}

About that continue example...

The continue example shown is a variation of the Java continue example shown on the Oracle website. If you know Scala,
 you know that there are better ways to solve this particular problem.
 For instance, a direct approach is to use the count method with a simple anonymous
 function:
val count = searchMe.count(_ == 'p')
When this code is run, count
 is again 9.

Nested loops and labeled breaks

In some situations, you may need nested break statements. Or,
 you may prefer labeled break statements. In either case, you can
 create labeled breaks as shown in the following example:
package com.alvinalexander.labeledbreaks

object LabeledBreakDemo extends App {

 import scala.util.control._

 val Inner = new Breaks
 val Outer = new Breaks

 Outer.breakable {
 for (i <- 1 to 5) {
 Inner.breakable {
 for (j <- 'a' to 'e') {
 if (i == 1 && j == 'c') Inner.break else println(s"i: $i, j: $j")
 if (i == 2 && j == 'b') Outer.break
 }
 }
 }
 }

}
In this example, if the first if condition is met, an exception is thrown
 and caught by Inner.breakable, and
 the outer for loop continues. But
 if the second if condition is
 triggered, control of flow is sent to Outer.breakable, and both loops are exited.
 Running this object results in the following output:
i: 1, j: a
i: 1, j: b
i: 2, j: a
Use the same approach if you prefer labeled breaks. This example
 shows how you can use the same technique with just one break method call:
import scala.util.control._

val Exit = new Breaks
Exit.breakable {
 for (j <- 'a' to 'e') {
 if (j == 'c') Exit.break else println(s"j: $j")
 }
}

Discussion

If you don’t like using break
 and continue, there are several other
 ways to attack these problems.
For instance, if you want to add monkeys to a barrel, but only
 until the barrel is full, you can use a simple boolean test to break out
 of a for loop:
var barrelIsFull = false
for (monkey <- monkeyCollection if !barrelIsFull) {
 addMonkeyToBarrel(monkey)
 barrelIsFull = checkIfBarrelIsFull
}
Another approach is to place your algorithm inside a function, and
 then return from the function when the desired condition is reached. In
 the following example, the sumToMax
 function returns early if sum becomes
 greater than limit:
// calculate a sum of numbers, but limit it to a 'max' value
def sumToMax(arr: Array[Int], limit: Int): Int = {
 var sum = 0
 for (i <- arr) {
 sum += i
 if (sum > limit) return limit
 }
 sum
}
val a = Array.range(0,10)
println(sumToMax(a, 10))
A common approach in functional programming is to use recursive
 algorithms. This is demonstrated in a recursive approach to a
 factorial function, where the condition n == 1 results in a break
 from the recursion:
def factorial(n: Int): Int = {
 if (n == 1) 1
 else n * factorial(n - 1)
}
Note that this example does not use tail
 recursion and is therefore not an optimal approach,
 especially if the starting value n is
 very large. A more optimal solution takes advantage of tail
 recursion:
import scala.annotation.tailrec

def factorial(n: Int): Int = {
 @tailrec def factorialAcc(acc: Int, n: Int): Int = {
 if (n <= 1) acc
 else factorialAcc(n * acc, n - 1)
 }
 factorialAcc(1, n)
}
Note that you can use the @tailrec annotation in situations like this to
 confirm that your algorithm is tail recursive. If you use this
 annotation and your algorithm isn’t tail recursive, the compiler will
 complain. For instance, if you attempt to use this annotation on the
 first version of the factorial
 method, you’ll get the following compile-time error:
Could not optimize @tailrec annotated method factorial: it contains a recursive
call not in tail position

See Also

	The Java continue example
 mentioned can be found on the Oracle website.

There are many Scala recursive factorial examples on the Internet;
 here are two of the best discussions:
	A nice discussion about tail recursion and
 trampolines

	Tail-call optimization in
 Scala

3.6. Using the if Construct Like a Ternary Operator

Problem

You’d like to use a Scala if
 expression like a ternary operator to solve a problem in a concise,
 expressive way.

Solution

This is a bit of a trick problem, because unlike Java, in Scala
 there is no special ternary operator; just use an
 if/else expression:
val absValue = if (a < 0) -a else a
Because an if expression
 returns a value, you can embed it into a print statement:
println(if (i == 0) "a" else "b")
You can use it in another expression, such as this portion of a
 hashCode method:
hash = hash * prime + (if (name == null) 0 else name.hashCode)

Discussion

The Java documentation page shown in the See Also states that the
 Java conditional operator ?: “is
 known as the ternary operator because it uses three
 operands.” Unlike some other languages, Scala doesn’t have a special
 operator for this use case.
In addition to the examples shown, the combination of (a) if statements returning a result, and (b)
 Scala’s syntax for defining methods makes for concise code:
def abs(x: Int) = if (x >= 0) x else -x
def max(a: Int, b: Int) = if (a > b) a else b
val c = if (a > b) a else b

See Also

	“Equality, Relational, and Conditional Operators” on the
 Java Tutorials
 page

3.7. Using a Match Expression Like a switch Statement

Problem

You have a situation where you want to create something like a
 simple Java integer-based switch
 statement, such as matching the days in a week, months in a year, and
 other situations where an integer maps to a result.

Solution

To use a Scala match expression like a Java switch statement, use this approach:
// i is an integer
i match {
 case 1 => println("January")
 case 2 => println("February")
 case 3 => println("March")
 case 4 => println("April")
 case 5 => println("May")
 case 6 => println("June")
 case 7 => println("July")
 case 8 => println("August")
 case 9 => println("September")
 case 10 => println("October")
 case 11 => println("November")
 case 12 => println("December")
 // catch the default with a variable so you can print it
 case whoa => println("Unexpected case: " + whoa.toString)
}
That example shows how to take an action based on a match. A more
 functional approach returns a value from a match expression:
val month = i match {
 case 1 => "January"
 case 2 => "February"
 case 3 => "March"
 case 4 => "April"
 case 5 => "May"
 case 6 => "June"
 case 7 => "July"
 case 8 => "August"
 case 9 => "September"
 case 10 => "October"
 case 11 => "November"
 case 12 => "December"
 case _ => "Invalid month" // the default, catch-all
}
The @switch annotation

When writing simple match expressions like this, it’s recommend
 to use the @switch annotation. This
 annotation provides a warning at compile time if the switch can’t be
 compiled to a tableswitch or
 lookupswitch.
Compiling your match expression to a tableswitch or lookupswitch is better for performance,
 because it results in a branch table rather than a decision tree. When
 a value is given to the expression, it can jump directly to the result
 rather than working through the decision tree.
Here’s the official description from the @switch annotation
 documentation:
“An annotation to be applied to a match expression. If
 present, the compiler will verify that the match has been compiled
 to a tableswitch or lookupswitch, and issue an error if it instead
 compiles into a series of conditional expressions.”

The effect of the @switch
 annotation is demonstrated with a simple example. First, place the
 following code in a file named SwitchDemo.scala:
// Version 1 - compiles to a tableswitch
import scala.annotation.switch

class SwitchDemo {

 val i = 1
 val x = (i: @switch) match {
 case 1 => "One"
 case 2 => "Two"
 case _ => "Other"
 }

}
Then compile the code as usual:
$ scalac SwitchDemo.scala
Compiling this class produces no warnings and creates the
 SwitchDemo.class output file.
 Next, disassemble that file with this javap command:
$ javap -c SwitchDemo
The output from this command shows a tableswitch, like this:
16: tableswitch{ //1 to 2
 1: 50;
 2: 45;
 default: 40 }
This shows that Scala was able to optimize your match expression
 to a tableswitch. (This is a good
 thing.)
Next, make a minor change to the code, replacing the integer
 literal 2 with a value:
import scala.annotation.switch

// Version 2 - leads to a compiler warning
class SwitchDemo {

 val i = 1
 val Two = 2 // added
 val x = (i: @switch) match {
 case 1 => "One"
 case Two => "Two" // replaced the '2'
 case _ => "Other"
 }

}
Again, compile the code with scalac, but right away you’ll see a warning
 message:
$ scalac SwitchDemo.scala
SwitchDemo.scala:7: warning: could not emit switch for @switch annotated match
 val x = (i: @switch) match {
 ^
one warning found
This warning message is saying that neither a tableswitch nor lookupswitch could be generated for the
 match expression. You can confirm this by running the javap command on the SwitchDemo.class file that was generated.
 When you look at that output, you’ll see that the tableswitch shown in the previous example is
 now gone.
In his book, Scala In Depth (Manning),
 Joshua Suereth states that the following conditions must be true for
 Scala to apply the tableswitch
 optimization:
	The matched value must be a known integer.

	The matched expression must be “simple.” It can’t contain
 any type checks, if statements,
 or extractors.

	The expression must also have its value available at compile
 time.

	There should be more than two case statements.

For more information on how JVM switches work, see the
 Oracle document, Compiling Switches.

Discussion

As demonstrated in other recipes, you aren’t limited to matching
 only integers; the match expression is incredibly flexible:
def getClassAsString(x: Any): String = x match {
 case s: String => s + " is a String"
 case i: Int => "Int"
 case f: Float => "Float"
 case l: List[_] => "List"
 case p: Person => "Person"
 case _ => "Unknown"
}
Handling the default case

The examples in the Solution showed the two ways you can handle
 the default, “catch all” case. First, if you’re not concerned about
 the value of the default match, you can catch it with the _ wildcard:
case _ => println("Got a default match")
Conversely, if you are interested in what fell down to the
 default match, assign a variable name to it. You can then use that
 variable on the right side of the expression:
case default => println(default)
Using the name default often
 makes the most sense and leads to readable code, but you can use any
 legal name for the variable:
case oops => println(oops)
You can generate a MatchError
 if you don’t handle the default case. Given this match
 expression:
i match {
 case 0 => println("0 received")
 case 1 => println("1 is good, too")
}
if i is a value other than
 0 or 1, the expression throws a MatchError:
scala.MatchError: 42 (of class java.lang.Integer)
 at .<init>(<console>:9)
 at .<clinit>(<console>)
 much more error output here ...
So unless you’re intentionally writing a partial
 function, you’ll want to handle the default case. (See
 Recipe 9.8, for more information on partial
 functions.)

Do you really need a switch statement?

Of course you don’t really need a switch statement if you have a
 data structure that maps month numbers to month names. In that case,
 just use a Map:
val monthNumberToName = Map(
 1 -> "January",
 2 -> "February",
 3 -> "March",
 4 -> "April",
 5 -> "May",
 6 -> "June",
 7 -> "July",
 8 -> "August",
 9 -> "September",
 10 -> "October",
 11 -> "November",
 12 -> "December"
)

val monthName = monthNumberToName(4)
println(monthName) // prints "April"

See Also

	The @switch annotation
 documentation.

	The Oracle document, Compiling Switches, discusses
 the tableswitch and lookupswitch.

	A tableswitch and lookupswitch differences
 discussion.

3.8. Matching Multiple Conditions with One Case Statement

Problem

You have a situation where several match conditions require that
 the same business logic be executed, and rather than repeating your
 business logic for each case, you’d like to use one copy of the business
 logic for the matching conditions.

Solution

Place the match conditions that invoke the same business logic on
 one line, separated by the | (pipe)
 character:
val i = 5
i match {
 case 1 | 3 | 5 | 7 | 9 => println("odd")
 case 2 | 4 | 6 | 8 | 10 => println("even")
}
This same syntax works with strings and other types. Here’s an
 example based on a String
 match:
val cmd = "stop"
cmd match {
 case "start" | "go" => println("starting")
 case "stop" | "quit" | "exit" => println("stopping")
 case _ => println("doing nothing")
}
This example shows how to match multiple case objects:
trait Command
case object Start extends Command
case object Go extends Command
case object Stop extends Command
case object Whoa extends Command

def executeCommand(cmd: Command) = cmd match {
 case Start | Go => start()
 case Stop | Whoa => stop()
}
As demonstrated, the ability to define multiple possible matches
 for each case statement can simplify your code.

See Also

	See Recipe 3.13, for a related approach.

3.9. Assigning the Result of a Match Expression to a Variable

Problem

You want to return a value from a match expression and assign it
 to a variable, or use a match expression as the body of a
 method.

Solution

To assign a variable to the result of a match expression, insert
 the variable assignment before the expression, as with the variable
 evenOrOdd in this example:
val evenOrOdd = someNumber match {
 case 1 | 3 | 5 | 7 | 9 => println("odd")
 case 2 | 4 | 6 | 8 | 10 => println("even")
}
This approach is commonly used to create short methods or
 functions. For example, the following method implements the Perl
 definitions of true and false:
def isTrue(a: Any) = a match {
 case 0 | "" => false
 case _ => true
}
You’ll hear that Scala is an “expression-oriented programming
 (EOP) language,” which Wikipedia defines as, “a programming language
 where every (or nearly every) construction is an expression and thus
 yields a value.” The ability to return values from if statements and match expressions helps
 Scala meet this definition.

See Also

	Recipe 20.3

	The Expression-Oriented Programming page on Wikipedia

3.10. Accessing the Value of the Default Case in a Match
 Expression

Problem

You want to access the value of the default, “catch all” case when
 using a match expression, but you can’t access the value when you match
 it with the _ wildcard
 syntax.

Solution

Instead of using the _ wildcard
 character, assign a variable name to the default case:
i match {
 case 0 => println("1")
 case 1 => println("2")
 case default => println("You gave me: " + default)
}
By giving the default match a variable name, you can access the
 variable on the right side of the statement.

Discussion

The key to this recipe is in using a variable name for the default
 match instead of the usual _ wildcard
 character.
The name you assign can be any legal variable name, so instead of
 naming it default, you can name it
 something else, such as whoa:
i match {
 case 0 => println("1")
 case 1 => println("2")
 case whoa => println("You gave me: " + whoa)
}
It’s important to provide a default match. Failure to do so can
 cause a MatchError:
scala> 3 match {
 | case 1 => println("one")
 | case 2 => println("two")
 | // no default match
 | }
scala.MatchError: 3 (of class java.lang.Integer)
many more lines of output ...

3.11. Using Pattern Matching in Match Expressions

Problem

You need to match one or more patterns in a match expression, and
 the pattern may be a constant pattern, variable pattern, constructor
 pattern, sequence pattern, tuple pattern, or type pattern.

Solution

Define a case statement for
 each pattern you want to match. The following method shows examples of
 many different types of patterns you can use in match
 expressions:
def echoWhatYouGaveMe(x: Any): String = x match {

 // constant patterns
 case 0 => "zero"
 case true => "true"
 case "hello" => "you said 'hello'"
 case Nil => "an empty List"

 // sequence patterns
 case List(0, _, _) => "a three-element list with 0 as the first element"
 case List(1, _*) => "a list beginning with 1, having any number of elements"
 case Vector(1, _*) => "a vector starting with 1, having any number of elements"

 // tuples
 case (a, b) => s"got $a and $b"
 case (a, b, c) => s"got $a, $b, and $c"

 // constructor patterns
 case Person(first, "Alexander") => s"found an Alexander, first name = $first"
 case Dog("Suka") => "found a dog named Suka"

 // typed patterns
 case s: String => s"you gave me this string: $s"
 case i: Int => s"thanks for the int: $i"
 case f: Float => s"thanks for the float: $f"
 case a: Array[Int] => s"an array of int: ${a.mkString(",")}"
 case as: Array[String] => s"an array of strings: ${as.mkString(",")}"
 case d: Dog => s"dog: ${d.name}"
 case list: List[_] => s"thanks for the List: $list"
 case m: Map[_, _] => m.toString

 // the default wildcard pattern
 case _ => "Unknown"
}
The large match expression in this method shows the different
 categories of patterns described in the book, Programming in
 Scala (Artima), by Odersky, et al, including constant
 patterns, sequence patterns, tuple patterns, constructor patterns, and
 typed patterns.
You can test this match expression in a variety of ways. For the
 purposes of this example, I created the following object to test the
 echoWhatYouGaveMe method:
object LargeMatchTest extends App {

 case class Person(firstName: String, lastName: String)
 case class Dog(name: String)

 // trigger the constant patterns
 println(echoWhatYouGaveMe(0))
 println(echoWhatYouGaveMe(true))
 println(echoWhatYouGaveMe("hello"))
 println(echoWhatYouGaveMe(Nil))

 // trigger the sequence patterns
 println(echoWhatYouGaveMe(List(0,1,2)))
 println(echoWhatYouGaveMe(List(1,2)))
 println(echoWhatYouGaveMe(List(1,2,3)))
 println(echoWhatYouGaveMe(Vector(1,2,3)))

 // trigger the tuple patterns
 println(echoWhatYouGaveMe((1,2))) // two element tuple
 println(echoWhatYouGaveMe((1,2,3))) // three element tuple

 // trigger the constructor patterns
 println(echoWhatYouGaveMe(Person("Melissa", "Alexander")))
 println(echoWhatYouGaveMe(Dog("Suka")))

 // trigger the typed patterns
 println(echoWhatYouGaveMe("Hello, world"))
 println(echoWhatYouGaveMe(42))
 println(echoWhatYouGaveMe(42F))
 println(echoWhatYouGaveMe(Array(1,2,3)))
 println(echoWhatYouGaveMe(Array("coffee", "apple pie")))
 println(echoWhatYouGaveMe(Dog("Fido")))
 println(echoWhatYouGaveMe(List("apple", "banana")))
 println(echoWhatYouGaveMe(Map(1->"Al", 2->"Alexander")))

 // trigger the wildcard pattern
 println(echoWhatYouGaveMe("33d"))

}
Running this object results in the following output:
zero
true
you said 'hello'
an empty List

a three-element list with 0 as the first element
a list beginning with 1 and having any number of elements
a list beginning with 1 and having any number of elements
a vector beginning with 1 and having any number of elements
a list beginning with 1 and having any number of elements

got 1 and 2
got 1, 2, and 3

found an Alexander, first name = Melissa
found a dog named Suka

you gave me this string: Hello, world
thanks for the int: 42
thanks for the float: 42.0
an array of int: 1,2,3
an array of strings: coffee,apple pie
dog: Fido
thanks for the List: List(apple, banana)
Map(1 -> Al, 2 -> Alexander)

you gave me this string: 33d
Note that in the match expression, the List and Map statements that were written like
 this:
case list: List[_] => s"thanks for the List: $list"
case m: Map[_, _] => m.toString
could have been written as this instead:
case m: Map[a, b] => m.toString
case list: List[x] => s"thanks for the List: $list"
I prefer the underscore syntax because it makes it clear that I’m
 not concerned about what’s stored in the List or Map. Actually, there are times that I might be
 interested in what’s stored in the List or Map, but because of type erasure in the JVM,
 that becomes a difficult problem.
Note
When I first wrote this example, I wrote the List expression as follows:
case l: List[Int] => "List"
If you’re familiar with type erasure on the
 Java platform, you may know that this won’t work. The Scala compiler
 kindly lets you know about this problem with this warning
 message:
Test1.scala:7: warning: non-variable type argument Int in type pattern
List[Int] is unchecked since it is eliminated by erasure
 case l: List[Int] => "List[Int]"
 ^
If you’re not familiar with type erasure, I’ve included a link
 in the See Also section of this recipe that describes how it works on
 the JVM.

Discussion

Typically when using this technique, your method will expect an
 instance that inherits from a base class or trait, and then your
 case statements will reference
 subtypes of that base type. This was inferred in the echoWhatYouGaveMe method, where every Scala
 type is a subtype of Any. The
 following code shows a more obvious example of this technique.
In my Blue
 Parrot application, which either plays a sound file or “speaks”
 the text it’s given at random intervals, I have a method that looks like
 this:
import java.io.File

sealed trait RandomThing

case class RandomFile(f: File) extends RandomThing
case class RandomString(s: String) extends RandomThing

class RandomNoiseMaker {

 def makeRandomNoise(t: RandomThing) = t match {
 case RandomFile(f) => playSoundFile(f)
 case RandomString(s) => speak(s)
 }

}
The makeRandomNoise method is declared to take
 a RandomThing type, and then the
 match expression handles its two subtypes, RandomFile and RandomString.
Patterns

The large match expression in the Solution shows a variety of
 patterns that are defined in the book Programming in
 Scala. These patterns are briefly described in the
 following paragraphs.
	Constant patterns
	A constant pattern can only match itself. Any literal may
 be used as a constant. If you specify a 0 as the literal, only an Int value of 0 will be matched. Examples:
case 0 => "zero"
case true => "true"

	Variable patterns
	This was not shown in the large match example in the
 Solution—it’s discussed in detail in Recipe 3.10—but a variable
 pattern matches any object just like the _ wildcard character. Scala binds the
 variable to whatever the object is, which lets you use the
 variable on the right side of the case statement. For example, at the
 end of a match expression you can use the _ wildcard character like this to
 catch “anything else”:
case _ => s"Hmm, you gave me something ..."
But with a variable pattern you can write this
 instead:
case foo => s"Hmm, you gave me a $foo"
See Recipe 3.10 for more
 information.

	Constructor patterns
	The constructor pattern lets you
 match a constructor in a case
 statement. As shown in the examples, you can specify constants
 or variable patterns as needed in the constructor
 pattern:
case Person(first, "Alexander") => s"found an Alexander, first name = $first"
case Dog("Suka") => "found a dog named Suka"

	Sequence patterns
	You can match against sequences like List, Array, Vector, etc. Use the _ character to stand for one element
 in the sequence, and use _*
 to stand for “zero or more elements,” as shown in the
 examples:
case List(0, _, _) => "a three-element list with 0 as the first element"
case List(1, _*) => "a list beginning with 1, having any number of elements"
case Vector(1, _*) => "a vector beginning with 1 and having any number …"

	Tuple patterns
	As shown in the examples, you can match tuple
 patterns and access the value of each element in the
 tuple. You can also use the _
 wildcard if you’re not interested in the value of an
 element:
case (a, b, c) => s"3-elem tuple, with values $a, $b, and $c"
case (a, b, c, _) => s"4-elem tuple: got $a, $b, and $c"

	Type patterns
	In the following example, str:
 String is a typed pattern, and
 str is a pattern
 variable:
case str: String => s"you gave me this string: $str"
As shown in the examples, you can access the pattern
 variable on the right side of the expression after declaring
 it.

Adding variables to patterns

At times you may want to add a variable to a pattern. You can do
 this with the following general syntax:
variableName @ pattern
As the book, Programming in Scala, states,
 “This gives you a variable-binding pattern. The meaning of such a
 pattern is to perform the pattern match as normal, and if the pattern
 succeeds, set the variable to the matched object just as with a simple
 variable pattern.”
The usefulness of this is best shown by demonstrating the
 problem it solves. Suppose you had the List pattern that was shown earlier:
case List(1, _*) => "a list beginning with 1, having any number of elements"
As demonstrated, this lets you match a List whose first element is 1, but so far, the List hasn’t been accessed on the right side
 of the expression. When accessing a List, you know that you can do this:
case list: List[_] => s"thanks for the List: $list"
so it seems like you should try this with a sequence
 pattern:
case list: List(1, _*) => s"thanks for the List: $list"
Unfortunately, this fails with the following compiler
 error:
Test2.scala:22: error: '=>' expected but '(' found.
 case list: List(1, _*) => s"thanks for the List: $list"
 ^
one error found
The solution to this problem is to add a variable-binding
 pattern to the sequence pattern:
case list @ List(1, _*) => s"$list"
This code compiles, and works as expected, giving you access to
 the List on the right side of the
 statement.
The following code demonstrates this example and the usefulness
 of this approach:
case class Person(firstName: String, lastName: String)

object Test2 extends App {

 def matchType(x: Any): String = x match {

 //case x: List(1, _*) => s"$x" // doesn't compile
 case x @ List(1, _*) => s"$x" // works; prints the list

 //case Some(_) => "got a Some" // works, but can't access the Some
 //case Some(x) => s"$x" // works, returns "foo"
 case x @ Some(_) => s"$x" // works, returns "Some(foo)"

 case p @ Person(first, "Doe") => s"$p" // works, returns "Person(John,Doe)"

 }

 println(matchType(List(1,2,3))) // prints "List(1, 2, 3)"
 println(matchType(Some("foo"))) // prints "Some(foo)"
 println(matchType(Person("John", "Doe"))) // prints "Person(John,Doe)"

}
In the two List examples
 inside the match expression, the commented-out line of code won’t
 compile, but the second example shows how to assign the variable
 x to the List object it matches. When this line of
 code is matched with the println(matchType(List(1,2,3))) call, it
 results in the output List(1, 2,
 3).
The first Some example shows
 that you can match a Some with the
 approach shown, but you can’t access its information on the righthand
 side of the expression. The second example shows how you can access
 the value inside the Some, and the
 third example takes this a step further, giving you access to the
 Some object itself. When it’s
 matched by the second println call,
 it prints Some(foo), demonstrating
 that you now have access to the Some object.
Finally, this approach is used to match a Person whose last name is Doe. This syntax lets you assign the result
 of the pattern match to the variable p, and then access that variable on the
 right side of the expression.

Using Some and None in match expressions

To round out these examples, you’ll often use Some and None with match expressions. For instance,
 assume you have a toInt method
 defined like this:
def toInt(s: String): Option[Int] = {
 try {
 Some(Integer.parseInt(s.trim))
 } catch {
 case e: Exception => None
 }
}
In some situations, you may want to use this method with a match
 expression, like this:
toInt("42") match {
 case Some(i) => println(i)
 case None => println("That wasn't an Int.")
}
Inside the match expression you just specify the Some and None cases as shown to handle the success
 and failure conditions. See Recipe 20.6 for more
 examples of using Option, Some, and None.

See Also

	A discussion of getting around type erasure when using match
 expressions on Stack
 Overflow

	My Blue
 Parrot application

	The “Type Erasure”
 documentation

3.12. Using Case Classes in Match Expressions

Problem

You want to match different case classes (or case objects) in a
 match expression, such as when receiving messages in an actor.

Solution

Use the different patterns shown in the previous recipe to match
 case classes and objects, depending on your needs.
The following example demonstrates how to use patterns to match
 case classes and case objects in different ways, depending primarily on
 what information you need on the right side of each case statement. In this example, the Dog and Cat
 case classes and the Woodpecker case
 object are different subtypes of the Animal trait:
trait Animal
case class Dog(name: String) extends Animal
case class Cat(name: String) extends Animal
case object Woodpecker extends Animal

object CaseClassTest extends App {

 def determineType(x: Animal): String = x match {
 case Dog(moniker) => "Got a Dog, name = " + moniker
 case _:Cat => "Got a Cat (ignoring the name)"
 case Woodpecker => "That was a Woodpecker"
 case _ => "That was something else"
 }

 println(determineType(new Dog("Rocky")))
 println(determineType(new Cat("Rusty the Cat")))
 println(determineType(Woodpecker))

}
When the code is compiled and run, the output is:
Got a Dog, name = Rocky
Got a Cat (ignoring the name)
That was a Woodpecker
In this example, if the Dog
 class is matched, its name is extracted and used in the print statement
 on the right side of the expression. To show that the variable name used
 when extracting the name can be any legal variable name, I use the name
 moniker.
When matching a Cat, I want to
 ignore the name, so I use the syntax shown to match any Cat instance. Because Woodpecker is defined as a case object and has
 no name, it is also matched as shown.

3.13. Adding if Expressions (Guards) to Case Statements

Problem

You want to add qualifying logic to a case statement in a match expression, such as
 allowing a range of numbers, or matching a pattern, but only if that
 pattern matches some additional criteria.

Solution

Add an if
 guard to your case statement. Use it to match a range of
 numbers:
i match {
 case a if 0 to 9 contains a => println("0-9 range: " + a)
 case b if 10 to 19 contains b => println("10-19 range: " + b)
 case c if 20 to 29 contains c => println("20-29 range: " + c)
 case _ => println("Hmmm...")
}
Use it to match different values of an object:
num match {
 case x if x == 1 => println("one, a lonely number")
 case x if (x == 2 || x == 3) => println(x)
 case _ => println("some other value")
}
You can reference class fields in your if guards. Imagine here that x is an instance of a Stock class that has symbol and price fields:
stock match {
 case x if (x.symbol == "XYZ" && x.price < 20) => buy(x)
 case x if (x.symbol == "XYZ" && x.price > 50) => sell(x)
 case _ => // do nothing
}
You can also extract fields from case classes and use those in
 your guards:
def speak(p: Person) = p match {
 case Person(name) if name == "Fred" => println("Yubba dubba doo")
 case Person(name) if name == "Bam Bam" => println("Bam bam!")
 case _ => println("Watch the Flintstones!")
}

Discussion

You can use this syntax whenever you want to add simple matches to
 your case statements on the left side of the
 expression.
Note that all of these examples could be written by putting the
 if tests on the right side of the
 expressions, like this:
case Person(name) =>
 if (name == "Fred") println("Yubba dubba doo")
 else if (name == "Bam Bam") println("Bam bam!")
However, for many situations, your code will be simpler and easier
 to read by joining the if guard
 directly with the case
 statement.

3.14. Using a Match Expression Instead of isInstanceOf

Problem

You want to write a block of code to match one type, or multiple
 different types.

Solution

You can use the isInstanceOf method to test the type of an
 object:
if (x.isInstanceOf[Foo]) { do something ...
However, some programmers discourage this approach, and in other
 cases, it may not be convenient. In these instances, you can handle the
 different expected types in a match expression.
For example, you may be given an object of unknown type, and want
 to determine if the object is an instance of a Person:
def isPerson(x: Any): Boolean = x match {
 case p: Person => true
 case _ => false
}
Or you may be given an object that extends a known supertype, and
 then want to take different actions based on the exact subtype. In the
 following example, the printInfo
 method is given a SentientBeing, and
 then handles the subtypes differently:
trait SentientBeing
trait Animal extends SentientBeing
case class Dog(name: String) extends Animal
case class Person(name: String, age: Int) extends SentientBeing

// later in the code ...
def printInfo(x: SentientBeing) = x match {
 case Person(name, age) => // handle the Person
 case Dog(name) => // handle the Dog
}

Discussion

As shown, a match expression lets you match multiple types, so
 using it to replace the isInstanceOf
 method is just a natural use of the case syntax and the general pattern-matching
 approach used in Scala applications.
In simple examples, the isInstanceOf method can be a simpler approach
 to determining whether an object matches a type:
if (o.isInstanceOf[Person]) { // handle this ...
However, with more complex needs, a match expression is more
 readable than an if/else
 statement.

3.15. Working with a List in a Match Expression

Problem

You know that a List data
 structure is a little different than other collection data structures.
 It’s built from cons cells and ends in a Nil element. You want to use this to your
 advantage when working with a match expression, such as when writing a
 recursive function.

Solution

You can create a List like
 this:
val x = List(1, 2, 3)
or like this, using cons cells and a Nil element:
val y = 1 :: 2 :: 3 :: Nil
When writing a recursive algorithm, you can take advantage of the
 fact that the last element in a List
 is a Nil object. For instance, in the
 following listToString method, if the
 current element is not Nil, the
 method is called recursively with the remainder of the List, but if the current element is Nil, the recursive calls are stopped and an
 empty String is returned, at which
 point the recursive calls unwind:
def listToString(list: List[String]): String = list match {
 case s :: rest => s + " " + listToString(rest)
 case Nil => ""
}
Running this example in the REPL yields the following
 result:
scala> val fruits = "Apples" :: "Bananas" :: "Oranges" :: Nil
fruits: List[java.lang.String] = List(Apples, Bananas, Oranges)

scala> listToString(fruits)
res0: String = "Apples Bananas Oranges "
The same approach of (a) handling the Nil condition and (b) handling the remainder
 of the List can be used when dealing with a List of other types:
def sum(list: List[Int]): Int = list match {
 case Nil => 1
 case n :: rest => n + sum(rest)
}

def multiply(list: List[Int]): Int = list match {
 case Nil => 1
 case n :: rest => n * multiply(rest)
}
These methods are demonstrated in the REPL:
scala> val nums = List(1,2,3,4,5)
nums: List[Int] = List(1, 2, 3, 4, 5)

scala> sum(nums)
res0: Int = 16

scala> multiply(nums)
res1: Int = 120

Discussion

When using this recipe, be sure to handle the Nil case, or you’ll get the following error in
 the REPL:
warning: match is not exhaustive!
In the real world (outside the REPL), you’ll get a MatchError:
Exception in thread "main" scala.MatchError: List()
(of class scala.collection.immutable.Nil$)

See Also

	Recipe 3.11, for more examples of using a match
 expression with multiple types

3.16. Matching One or More Exceptions with try/catch

Problem

You want to catch one or more exceptions in a
 try/catch block.

Solution

The Scala
 try/catch/finally
 syntax is similar to Java, but it uses the match expression approach in
 the catch block:
val s = "Foo"
try {
 val i = s.toInt
} catch {
 case e: Exception => e.printStackTrace
}
When you need to catch and handle multiple exceptions, just add
 the exception types as different case
 statements:
try {
 openAndReadAFile(filename)
} catch {
 case e: FileNotFoundException => println("Couldn't find that file.")
 case e: IOException => println("Had an IOException trying to read that file")
}

Discussion

As shown, the Scala match expression syntax is used to match
 different possible exceptions. If you’re not concerned about which
 specific exceptions might be thrown, and want to catch them all and do
 something with them (such as log them), use this syntax:
try {
 openAndReadAFile("foo")
} catch {
 case t: Throwable => t.printStackTrace()
}
You can also catch them all and ignore them like this:
try {
 val i = s.toInt
} catch {
 case _: Throwable => println("exception ignored")
}
As with Java, you can throw an exception from a catch clause, but because Scala doesn’t have
 checked exceptions, you don’t need to specify that a method throws the
 exception. This is demonstrated in the following example, where the
 method isn’t annotated in any way:
// nothing required here
def toInt(s: String): Option[Int] =
 try {
 Some(s.toInt)
 } catch {
 case e: Exception => throw e
 }
If you prefer to declare the exceptions that your method throws,
 or you need to interact with Java, add the @throws annotation to your method
 definition:
@throws(classOf[NumberFormatException])
def toInt(s: String): Option[Int] =
 try {
 Some(s.toInt)
 } catch {
 case e: NumberFormatException => throw e
 }

See Also

	Recipe 5.8 for more examples of declaring that a
 method can throw an exception

	Recipe 2.1 for more examples of a toInt method

3.17. Declaring a Variable Before Using It in a try/catch/finally
 Block

Problem

You want to use an object in a try block, and need to access it in the
 finally portion of the block, such as
 when you need to call a close method
 on an object.

Solution

In general, declare your field as an Option before the
 try/catch block, then create a
 Some inside the try clause. This is shown in the following
 example, where the fields in and
 out are declared before the
 try/catch block, and assigned
 inside the try clause:
import java.io._

object CopyBytes extends App {

 var in = None: Option[FileInputStream]
 var out = None: Option[FileOutputStream]

 try {
 in = Some(new FileInputStream("/tmp/Test.class"))
 out = Some(new FileOutputStream("/tmp/Test.class.copy"))
 var c = 0
 while ({c = in.get.read; c != −1}) {
 out.get.write(c)
 }
 } catch {
 case e: IOException => e.printStackTrace
 } finally {
 println("entered finally ...")
 if (in.isDefined) in.get.close
 if (out.isDefined) out.get.close
 }

}
In this code, in and out are assigned to None before the try clause, and then reassigned to Some values inside the try clause if everything succeeds. Therefore,
 it’s safe to call in.get and out.get in the while loop, because if an exception had
 occurred, flow control would have switched to the catch clause, and then the finally clause before leaving the
 method.
Normally I tell people that I wish the get and isDefined methods on Option would be deprecated, but this is one of
 the few times where I think their use is acceptable, and they lead to
 more readable code.
Another approach you can employ inside the try clause is to use the foreach approach with a Some:
try {
 in = Some(new FileInputStream("/tmp/Test.class"))
 out = Some(new FileOutputStream("/tmp/Test.class.copy"))
 in.foreach { inputStream =>
 out.foreach { outputStream =>
 var c = 0
 while ({c = inputStream.read; c != −1}) {
 outputStream.write(c)
 }
 }
 }
} // ...
This is still readable with two variables, and eliminates the
 get method calls, but wouldn’t be
 practical with more variables.

Discussion

One key to this recipe is knowing the syntax for declaring
 Option fields that aren’t initially
 populated:
var in = None: Option[FileInputStream]
var out = None: Option[FileOutputStream]
I had a hard time remembering this until I came up with a little
 mnemonic, “Var x has No Option yeT,” where I capitalize the “T” there to
 stand for “type.” In my brain it looks like this:
var x has No Option[yeT]
From there it’s a simple matter to get to this:
var x = None: Option[Type]
When I first started working with Scala, the only way I could
 think to write this code was using null values. The following code demonstrates
 the approach I used in an application that checks my email accounts. The
 store and inbox fields in this code are declared as
 null fields that have the Store and Folder types (from the javax.mail package):
// (1) declare the null variables
var store: Store = null
var inbox: Folder = null

try {
 // (2) use the variables/fields in the try block
 store = session.getStore("imaps")
 inbox = getFolder(store, "INBOX")
 // rest of the code here ...
 catch {
 case e: NoSuchProviderException => e.printStackTrace
 case me: MessagingException => me.printStackTrace
} finally {
 // (3) call close() on the objects in the finally clause
 if (inbox != null) inbox.close
 if (store != null) store.close
}
However, working in Scala gives you a chance to forget that
 null values even exist, so this is
 not a recommended approach. See Recipe 20.5, for examples of how to rid your code of
 null values.

See Also

	The code shown in this recipe is a Scala version of this Oracle “Byte Streams”
 example.

3.18. Creating Your Own Control Structures

Problem

You want to define your own control structures to improve the
 Scala language, simplify your own code, or create a DSL for others to
 use.

Solution

The creators of the Scala language made a conscious decision not
 to implement some keywords in Scala, and instead implemented
 functionality through Scala libraries. This was demonstrated in Recipe 3.5,
 which showed that although the Scala language doesn’t have break and continue keywords, you can achieve the same
 functionality through library methods.
As a simple example of creating what appears to be a control
 structure, imagine for a moment that for some reason you don’t like the
 while loop and want to create your
 own whilst loop, which you can use
 like this:
package foo

import com.alvinalexander.controls.Whilst._

object WhilstDemo extends App {

 var i = 0
 whilst (i < 5) {
 println(i)
 i += 1
 }

}
To create your own whilst
 control structure, define a function named whilst that takes two parameter lists. The
 first parameter list handles the test condition—in this case, i < 5—and the second
 parameter list is the block of code the user wants to run.
You could implement this as a method that’s just a wrapper around
 the while operator:
// 1st attempt
def whilst(testCondition: => Boolean)(codeBlock: => Unit) {
 while (testCondition) {
 codeBlock
 }
}
But a more interesting approach is to implement the whilst method without calling while. This is shown in a complete object
 here:
package com.alvinalexander.controls

import scala.annotation.tailrec

object Whilst {

 // 2nd attempt
 @tailrec
 def whilst(testCondition: => Boolean)(codeBlock: => Unit) {
 if (testCondition) {
 codeBlock
 whilst(testCondition)(codeBlock)
 }
 }

}
In this code, the testCondition
 is evaluated once, and if the condition is true, the codeBlock is executed, and then whilst is called recursively. This approach
 lets you keep checking the condition without needing a while or for loop.

Discussion

In the second whilst example, I
 used a recursive call to keep the loop running, but in a simpler
 example, you don’t need recursion. For example, assume you want a
 control structure that takes two test conditions, and if both evaluate
 to true, you’ll run a block of code that’s supplied. An expression using
 that control structure might look like this:
doubleif(age > 18)(numAccidents == 0) { println("Discount!") }
In this case, define a function that takes three parameter
 lists:
// two 'if' condition tests
def doubleif(test1: => Boolean)(test2: => Boolean)(codeBlock: => Unit) {
 if (test1 && test2) {
 codeBlock
 }
}
Because doubleif only needs to perform one test
 and doesn’t need to loop indefinitely, there’s no need for a recursive
 call in its method body. It simply checks the two test conditions, and
 if they evaluate to true, the codeBlock is executed.

See Also

	One of my favorite uses of this technique is shown in the
 book, Beginning Scala (Apress), by David
 Pollak. I describe how it works on my website.

	The Scala Breaks class is
 demonstrated in Recipe 3.5.
 Its source code is simple, and provides another example of how to
 implement a control structure.

Chapter 4. Classes and Properties

Introduction

Although Scala and Java share many similarities, the declaration of
 classes, class constructors, and the control of field visibility are some
 of the biggest differences between the two languages. Whereas Java tends
 to be more verbose (yet obvious), Scala is more concise, and the code you
 write ends up generating other code.
Recipes in this chapter will help you get through the initial
 learning curve related to Scala classes and fields by demonstrating how
 class constructors work, and the code the Scala compiler generates on your
 behalf when you declare constructor parameters and class fields using the
 val, var, and private keywords.
Because the Scala compiler generates accessors and mutators based on
 your field declarations, you may wonder how to override those methods, and
 this chapter provides recipes showing how to override that generated
 code.
Additionally, because Scala automatically sets the field type based
 on the value you assign, you may wonder, “What happens when a field has no
 initial value?” For instance, you may want to create an uninitialized
 field as an instance of an Address
 class. As you think about this you start typing the following code, and
 then wonder how to complete it:
var address = ? // how to create an uninitialized Address?
This chapter shows the solution to that problem, demonstrates how
 declaring a class as a case class results in more
 than 20 additional methods being generated, shows how to write equals methods that work with class inheritance,
 and much more.
Note
In Java, it seems correct to refer to
 accessor and mutator methods
 as “getter” and “setter” methods, primarily because of the JavaBeans
 standard. In this chapter, I use the terms interchangeably, but to be
 clear, Scala does not follow the JavaBeans naming convention for
 accessor and mutator methods.

4.1. Creating a Primary Constructor

Problem

You want to create a primary constructor for a class, and you
 quickly find that the approach is different than Java.

Solution

The primary constructor of a Scala class is a combination
 of:
	The constructor parameters

	Methods that are called in the body of the class

	Statements and expressions that are executed in the body of
 the class

Fields declared in the body of a Scala class are handled in a
 manner similar to Java; they are assigned when the class is first
 instantiated.
The following class demonstrates constructor parameters, class
 fields, and statements in the body of a class:
class Person(var firstName: String, var lastName: String) {

 println("the constructor begins")

 // some class fields
 private val HOME = System.getProperty("user.home")
 var age = 0

 // some methods
 override def toString = s"$firstName $lastName is $age years old"
 def printHome { println(s"HOME = $HOME") }
 def printFullName { println(this) } // uses toString

 printHome
 printFullName
 println("still in the constructor")

}
Because the methods in the body of the class are part of the
 constructor, when an instance of a Person class is created, you’ll see the output
 from the println statements at the
 beginning and end of the class declaration, along with the call to the
 printHome and printFullName methods near the bottom of the
 class:
scala> val p = new Person("Adam", "Meyer")
the constructor begins
HOME = /Users/Al
Adam Meyer is 0 years old
still in the constructor

Discussion

If you’re coming to Scala from Java, you’ll find that the process
 of declaring a primary constructor in Scala is quite different. In Java
 it’s fairly obvious when you’re in the main constructor and when you’re
 not, but Scala blurs this distinction. However, once you understand the
 approach, it also makes your class declarations more concise than Java
 class declarations.
In the example shown, the two constructor arguments firstName and lastName are defined as var fields, which means that they’re variable,
 or mutable; they can be changed after they’re initially set. Because the
 fields are mutable, Scala generates both accessor and mutator methods
 for them. As a result, given an instance p of type Person, you can change the values like
 this:
p.firstName = "Scott"
p.lastName = "Jones"
and you can access them like this:
println(p.firstName)
println(p.lastName)
Because the age field is
 declared as a var, it’s also visible,
 and can be mutated and accessed:
p.age = 30
println(p.age)
The field HOME is declared as a
 private val, which is like making it
 private and final in a Java class. As a result, it can’t
 be accessed directly by other objects, and its value can’t be
 changed.
When you call a method in the body of the class—such as the call
 near the bottom of the class to the printFullName method—that method call is also
 part of the constructor. You can verify this by compiling the code to a
 Person.class file with scalac, and then decompiling it back into Java
 source code with a tool like the JAD decompiler. After doing
 so, this is what the Person class constructor looks
 like:
public Person(String firstName, String lastName)
{
 super();
 this.firstName = firstName;
 this.lastName = lastName;
 Predef$.MODULE$.println("the constructor begins");
 age = 0;
 printHome();
 printFullName();
 Predef$.MODULE$.println("still in the constructor");
}
This clearly shows the printHome and
 printFullName methods call in the Person constructor, as well as the initial
 age being set.
When the code is decompiled, the constructor parameters and class
 fields appear like this:
private String firstName;
private String lastName;
private final String HOME = System.getProperty("user.home");
private int age;
Note
Anything defined within the body of the class other than method
 declarations is a part of the primary class constructor. Because
 auxiliary constructors must always call a previously defined
 constructor in the same class, auxiliary constructors will also
 execute the same code.

A comparison with Java

The following code shows the equivalent Java version of the
 Person class:
// java
public class Person {

 private String firstName;
 private String lastName;
 private final String HOME = System.getProperty("user.home");
 private int age;

 public Person(String firstName, String lastName) {
 super();
 this.firstName = firstName;
 this.lastName = lastName;
 System.out.println("the constructor begins");
 age = 0;
 printHome();
 printFullName();
 System.out.println("still in the constructor");
 }

 public String firstName() { return firstName; }
 public String lastName() { return lastName; }
 public int age() { return age; }

 public void firstName_$eq(String firstName) {
 this.firstName = firstName;
 }

 public void lastName_$eq(String lastName) {
 this.lastName = lastName;
 }

 public void age_$eq(int age) {
 this.age = age;
 }

 public String toString() {
 return firstName + " " + lastName + " is " + age + " years old";
 }

 public void printHome() {
 System.out.println(HOME);
 }

 public void printFullName() {
 System.out.println(this);
 }

}
As you can see, this is quite a bit lengthier than the
 equivalent Scala code. With constructors, I find that Java code is
 more verbose, but obvious; you don’t have to reason much about what
 the compiler is doing for you.

Those _$eq methods

The names of the mutator methods that are generated may look a
 little unusual:
public void firstName_$eq(String firstName) { ...
public void age_$eq(int age) { ...
These names are part of the Scala syntactic sugar for mutating
 var fields, and not anything you
 normally have to think about. For instance, the following Person class has a var field named name:
class Person {
 var name = ""
 override def toString = s"name = $name"
}
Because name is a var field, Scala generates accessor and
 mutator methods for it. What you don’t normally see is that when the
 code is compiled, the mutator method is named name_$eq. You don’t see that because with
 Scala’s syntactic sugar, you mutate the field like this:
p.name = "Ron Artest"
However, behind the scenes, Scala converts that line of code
 into this code:
p.name_$eq("Ron Artest")
To demonstrate this, you can run the following object that calls
 the mutator method in both ways (not something that’s normally
 done):
object Test extends App {

 val p = new Person

 // the 'normal' mutator approach
 p.name = "Ron Artest"
 println(p)

 // the 'hidden' mutator method
 p.name_$eq("Metta World Peace")
 println(p)

}
When this code is run, it prints this output:
name = Ron Artest
name = Metta World Peace
Again, there’s no reason to call the name_$eq method in the real world, but when
 you get into overriding mutator methods, it’s helpful to understand
 how this translation process works.

Summary

As shown with the equivalent Scala and Java classes, the Java
 code is verbose, but it’s also straightforward. The Scala code is more
 concise, but you have to look at the constructor parameters to
 understand whether getters and setters are being generated for you,
 and you have to know that any method that’s called in the body of the
 class is really being called from the primary constructor. This was a
 little confusing when I first started working with Scala, but it
 quickly became second nature.

4.2. Controlling the Visibility of Constructor Fields

Problem

You want to control the visibility of fields that are used as
 constructor parameters in a Scala class.

Solution

As shown in the following examples, the visibility of constructor
 fields in a Scala class is controlled by whether the fields are declared
 as val, var, without either val or var,
 and whether private is also added to
 the fields.
Here’s the short version of the solution:
	If a field is declared as a var, Scala generates both getter and
 setter methods for that field.

	If the field is a val,
 Scala generates only a getter method for it.

	If a field doesn’t have a var or val modifier, Scala gets conservative, and
 doesn’t generate a getter or setter method for the field.

	Additionally, var and
 val fields can be modified with
 the private keyword, which
 prevents getters and setters from being generated.

See the examples that follow for more details.
var fields

If a constructor parameter is declared as a var, the value of the field
 can be changed, so Scala generates both getter
 and setter methods for that field. In the following examples, the
 constructor parameter name is
 declared as a var, so the field can
 be accessed and mutated:
scala> class Person(var name: String)
defined class Person

scala> val p = new Person("Alvin Alexander")
p: Person = Person@369e58be

// getter
scala> p.name
res0: String = Alvin Alexander

// setter
scala> p.name = "Fred Flintstone"
p.name: String = Fred Flintstone

scala> p.name
res1: String = Fred Flintstone
As shown, Scala does not follow the JavaBean naming convention
 when generating accessor and mutator methods.

val fields

If a constructor field is defined as a val, the value of the field
 can’t be changed once it’s been set; it’s
 immutable (like final in Java).
 Therefore it makes sense that it should have an accessor method, and
 should not have a mutator method:
scala> class Person(val name: String)
defined class Person

scala> val p = new Person("Alvin Alexander")
p: Person = Person@3f9f332b

scala> p.name
res0: String = Alvin Alexander

scala> p.name = "Fred Flintstone"
<console>:11: error: reassignment to val
 p.name = "Fred Flintstone"
 ^
The last example fails because a mutator method is not generated
 for a val field.

Fields without val or var

When neither val nor var are specified on constructor parameters,
 the visibility of the field becomes very restricted, and Scala doesn’t
 generate accessor or mutator methods:
scala> class Person(name: String)
defined class Person

scala> val p = new Person("Alvin Alexander")
p: Person = Person@144b6a6c

scala> p.name
<console>:12: error: value name is not a member of Person
 p.name
 ^

Adding private to val or var

In addition to these three basic configurations, you can add the
 private keyword to a val or var field. This keyword prevents getter and
 setter methods from being generated, so the field can only be accessed
 from within members of the class:
scala> class Person(private var name: String) { def getName {println(name)} }
defined class Person

scala> val p = new Person("Alvin Alexander")
p: Person = Person@3cb7cee4

scala> p.name
<console>:10: error: variable name in class Person cannot be accessed in Person
 p.name
 ^

scala> p.getName
Alvin Alexander
Attempting to access p.name
 fails because a getter method is not generated for the name field, so callers can’t access it
 directly, but p.getName works
 because it can access the name
 field.

Discussion

If this is a little confusing, it helps to think about the choices
 the compiler has when generating code for you. When a field is defined
 as a val, by definition its value
 can’t be changed, so it makes sense to generate a getter, but no setter.
 By definition, the value of a var
 field can be changed, so generating both a getter
 and setter make sense for it.
The private setting on a
 constructor parameter gives you additional flexibility. When it’s added
 to a val or var field, the getter and setter methods are
 generated as before, but they’re marked private. (I rarely use this feature, but it’s
 there if you need it.)
The accessors and mutators that are generated for you based on
 these settings are summarized in Table 4-1.
Table 4-1. The effect of constructor parameter settings
	Visibility
	Accessor?
	Mutator?

	var
	Yes
	Yes

	val
	Yes
	No

	Default visibility (no
 var or val)
	No
	No

	Adding the private keyword to var or val
	No
	No

You can also manually add your own accessor and mutator methods.
 See Recipe 4.6, for more information.
Case classes

Parameters in the constructor of a case
 class differ from these rules in one way. Case class
 constructor parameters are val by
 default. So if you define a case class field without adding val or var, like this:
case class Person(name: String)
you can still access the field, just as if it were defined as a
 val:
scala> val p = Person("Dale Cooper")
p: Person = Person(Dale Cooper)

scala> p.name
res0: String = Dale Cooper
Although this is slightly different than a “regular” class, it’s
 a nice convenience and has to do with the way case classes are
 intended to be used in functional programming, i.e., as immutable
 records. See Recipe 4.14, for more information about how case
 classes work.

4.3. Defining Auxiliary Constructors

Problem

You want to define one or more auxiliary constructors for a class
 to give consumers of the class different ways to create object
 instances.

Solution

Define the auxiliary constructors as methods in the class with the
 name this. You can define multiple
 auxiliary constructors, but they must have different signatures
 (parameter lists). Also, each constructor must call one of the
 previously defined constructors.
The following example demonstrates a primary constructor and three
 auxiliary constructors:
// primary constructor
class Pizza (var crustSize: Int, var crustType: String) {

 // one-arg auxiliary constructor
 def this(crustSize: Int) {
 this(crustSize, Pizza.DEFAULT_CRUST_TYPE)
 }

 // one-arg auxiliary constructor
 def this(crustType: String) {
 this(Pizza.DEFAULT_CRUST_SIZE, crustType)
 }

 // zero-arg auxiliary constructor
 def this() {
 this(Pizza.DEFAULT_CRUST_SIZE, Pizza.DEFAULT_CRUST_TYPE)
 }

 override def toString = s"A $crustSize inch pizza with a $crustType crust"

}

object Pizza {
 val DEFAULT_CRUST_SIZE = 12
 val DEFAULT_CRUST_TYPE = "THIN"
}
Given these constructors, the same pizza can be created in the
 following ways:
val p1 = new Pizza(Pizza.DEFAULT_CRUST_SIZE, Pizza.DEFAULT_CRUST_TYPE)
val p2 = new Pizza(Pizza.DEFAULT_CRUST_SIZE)
val p3 = new Pizza(Pizza.DEFAULT_CRUST_TYPE)
val p4 = new Pizza

Discussion

There are several important points to this recipe:
	Auxiliary constructors are defined by creating methods named
 this.

	Each auxiliary constructor must begin with a call to a
 previously defined constructor.

	Each constructor must have a different signature.

	One constructor calls another constructor with the name
 this.

In the example shown, all of the auxiliary constructors call the
 primary constructor, but this isn’t necessary; an auxiliary constructor
 just needs to call one of the previously defined constructors. For
 instance, the auxiliary constructor that takes the crustType parameter could have been written
 like this:
def this(crustType: String) {
 this(Pizza.DEFAULT_CRUST_SIZE)
 this.crustType = Pizza.DEFAULT_CRUST_TYPE
}
Another important part of this example is that the crustSize and crustType parameters are declared in the
 primary constructor. This isn’t necessary, but doing this lets Scala
 generate the accessor and mutator methods for those parameters for you.
 You could start to write a similar class as follows, but this approach
 requires more code:
class Pizza () {

 var crustSize = 0
 var crustType = ""

 def this(crustSize: Int) {
 this()
 this.crustSize = crustSize
 }

 def this(crustType: String) {
 this()
 this.crustType = crustType
 }
 // more constructors here ...

 override def toString = s"A $crustSize inch pizza with a $crustType crust"

}
To summarize, if you want the accessors and mutators to be
 generated for you, put them in the primary constructor.
Note
Although the approach shown in the Solution is perfectly valid,
 before creating multiple class constructors like this, take a few
 moments to read Recipe 4.5. Using that recipe can often eliminate
 the need for multiple constructors.

Generating auxiliary constructors for case classes

A case class is a special type of class
 that generates a lot of boilerplate code for you.
 Because of the way they work, adding what appears to be an auxiliary
 constructor to a case class is different than adding an auxiliary
 constructor to a “regular” class. This is because they’re not really
 constructors: they’re apply methods
 in the companion object of the class.
To demonstrate this, assume that you start with this case class
 in a file named Person.scala:
// initial case class
case class Person (var name: String, var age: Int)
This lets you create a new Person instance without using the new keyword, like this:
val p = Person("John Smith", 30)
This appears to be a different form of a constructor, but in
 fact, it’s a little syntactic sugar—a factory method, to be precise.
 When you write this line of code:
val p = Person("John Smith", 30)
behind the scenes, the Scala compiler converts it into
 this:
val p = Person.apply("John Smith", 30)
This is a call to an apply
 method in the companion object of the Person class. You don’t see this, you just
 see the line that you wrote, but this is how the compiler translates
 your code. As a result, if you want to add new “constructors” to your
 case class, you write new apply
 methods. (To be clear, the word “constructor” is used loosely
 here.)
For instance, if you decide that you want to add auxiliary
 constructors to let you create new Person instances (a) without specifying any
 parameters, and (b) by only specifying their name, the solution is to add apply methods to the companion object of the
 Person case class in the Person.scala file:
// the case class
case class Person (var name: String, var age: Int)

// the companion object
object Person {

 def apply() = new Person("<no name>", 0)
 def apply(name: String) = new Person(name, 0)

}
The following test code demonstrates that this works as
 desired:
object CaseClassTest extends App {

 val a = Person() // corresponds to apply()
 val b = Person("Pam") // corresponds to apply(name: String)
 val c = Person("William Shatner", 82)

 println(a)
 println(b)
 println(c)

 // verify the setter methods work
 a.name = "Leonard Nimoy"
 a.age = 82
 println(a)
}
This code results in the following output:
Person(<no name>,0)
Person(Pam,0)
Person(William Shatner,82)
Person(Leonard Nimoy,82)

See Also

	Recipe 6.8, demonstrates how to implement the
 apply method in a companion
 object so you can create instances of a class without having to use
 the new keyword (or declare your
 class as a case class).

	Recipe 4.5, demonstrates an approach that can
 often eliminate the need for auxiliary constructors.

	Recipe 4.14, details the nuts and bolts of how case
 classes work.

4.4. Defining a Private Primary Constructor

Problem

You want to make the primary constructor of a class private, such
 as to enforce the Singleton pattern.

Solution

To make the primary constructor private, insert the private keyword in between the class name and
 any parameters the constructor accepts:
// a private no-args primary constructor
class Order private { ...

// a private one-arg primary constructor
class Person private (name: String) { ...
As shown in the REPL, this keeps you from being able to create an
 instance of the class:
scala> class Person private (name: String)
defined class Person

scala> val p = new Person("Mercedes")
<console>:9: error: constructor Person in class Person cannot be accessed
in object $iw
 val p = new Person("Mercedes")
 ^

Discussion

A simple way to enforce the Singleton pattern in Scala is to make
 the primary constructor private, then
 put a getInstance method in the
 companion object of the class:
class Brain private {
 override def toString = "This is the brain."
}

object Brain {
 val brain = new Brain
 def getInstance = brain
}

object SingletonTest extends App {

 // this won't compile
 // val brain = new Brain
 // this works
 val brain = Brain.getInstance
 println(brain)
}
You don’t have to name the accessor method getInstance; it’s only used here because of
 the Java convention.
Note
A companion object is simply an object that’s defined in the same file as a
 class, where the object and class
 have the same name. If you declare a class named Foo in a file named Foo.scala, and then declare an object named
 Foo in that same file, the Foo object is the companion object for the
 Foo class.
A companion object has several purposes, and one purpose is that
 any method declared in a companion object will appear to be a static
 method on the object. See Recipe 6.6 for more
 information on creating the equivalent of Java’s static methods, and
 Recipe 6.8 for
 examples of how (and why) to define apply methods in a companion object.

Utility classes

Depending on your needs, creating a private class constructor
 may not be necessary at all. For instance, in Java you’d create a file
 utilities class by defining static methods in a Java class, but in
 Scala you do the same thing by putting all the methods in a Scala
 object:
object FileUtils {

 def readFile(filename: String) = {
 // code here ...
 }

 def writeToFile(filename: String, contents: String) {
 // code here ...
 }
}
This lets consumers of your code call these methods like
 this:
val contents = FileUtils.readFile("input.txt")
FileUtils.writeToFile("output.txt", content)
Because only an object is defined, code like this won’t
 compile:
val utils = new FileUtils // won't compile
So in this case, there’s no need for a private class
 constructor; just don’t define a class.

4.5. Providing Default Values for Constructor Parameters

Problem

You want to provide a default value for a constructor parameter,
 which gives other classes the option of specifying that parameter when
 calling the constructor, or not.

Solution

Give the parameter a default value in the constructor declaration.
 Here’s a simple declaration of a Socket class with one constructor parameter
 named timeout that has a default
 value of 10000:
class Socket (val timeout: Int = 10000)
Because the parameter is defined with a default value, you can
 call the constructor without specifying a timeout value, in which case
 you get the default value:
scala> val s = new Socket
s: Socket = Socket@7862af46

scala> s.timeout
res0: Int = 10000
You can also specify the desired timeout value when creating a new
 Socket:
scala> val s = new Socket(5000)
s: Socket = Socket@6df5205c

scala> s.timeout
res1: Int = 5000
If you prefer the approach of using named parameters when calling
 a constructor (or method), you can also use this approach to construct a
 new Socket:
scala> val s = new Socket(timeout=5000)
s: Socket = Socket@52aaf3d2

scala> s.timeout
res0: Int = 5000

Discussion

This recipe demonstrates a powerful feature that can eliminate the
 need for auxiliary constructors. As shown in the Solution, the following
 single constructor is the equivalent of two constructors:
class Socket (val timeout: Int = 10000)
If this feature didn’t exist, two constructors would be required
 to get the same functionality; a primary one-arg constructor and an
 auxiliary zero-args constructor:
class Socket(val timeout: Int) {

 def this() = this(10000)
 override def toString = s"timeout: $timeout"

}
Multiple parameters

Taking this approach a step further, you can provide default
 values for multiple constructor parameters:
class Socket(val timeout: Int = 1000, val linger: Int = 2000) {
 override def toString = s"timeout: $timeout, linger: $linger"
}
Though you’ve defined only one constructor, your class now
 appears to have three constructors:
scala> println(new Socket)
timeout: 1000, linger: 2000

scala> println(new Socket(3000))
timeout: 3000, linger: 2000

scala> println(new Socket(3000, 4000))
timeout: 3000, linger: 4000

Using named parameters

As shown in the Solution, you can also provide the names of
 constructor parameters when creating objects, in a manner similar to
 Objective-C and other languages. This means you can also create new
 Socket instances like
 this:
println(new Socket(timeout=3000, linger=4000))
println(new Socket(linger=4000, timeout=3000))
println(new Socket(timeout=3000))
println(new Socket(linger=4000))
See Recipe 5.4, for more examples of how to use
 parameter names in method calls.

See Also

	Recipe 4.3, for more information on creating
 auxiliary class constructors

4.6. Overriding Default Accessors and Mutators

Problem

You want to override the getter or setter methods that Scala
 generates for you.

Solution

This is a bit of a trick problem, because you can’t override the
 getter and setter methods Scala generates for you, at least not if you
 want to stick with the Scala naming conventions. For instance, if you
 have a class named Person with a
 constructor parameter named name, and
 attempt to create getter and setter methods according to the Scala
 conventions, your code won’t compile:
// error: this won't work
class Person(private var name: String) {
 // this line essentially creates a circular reference
 def name = name
 def name_=(aName: String) { name = aName }
}
Attempting to compile this code generates three errors:
Person.scala:3: error: overloaded method name needs result type
 def name = name
 ^
Person.scala:4: error: ambiguous reference to overloaded definition,
both method name_= in class Person of type (aName: String)Unit
and method name_= in class Person of type (x$1: String)Unit
match argument types (String)
 def name_=(aName: String) { name = aName }
 ^
Person.scala:4: error: method name_= is defined twice
 def name_=(aName: String) { name = aName }
 ^
three errors found
I’ll examine these problems more in the Discussion, but the short
 answer is that both the constructor parameter and the getter method are
 named name, and Scala won’t allow
 that.
To solve this problem, change the name of the field you use in the
 class constructor so it won’t collide with the name of the getter method
 you want to use. A common approach is to add a leading underscore to the
 parameter name, so if you want to manually create a getter method called
 name, use the parameter name _name in the constructor, then declare your
 getter and setter methods according to the Scala conventions:
class Person(private var _name: String) {
 def name = _name // accessor
 def name_=(aName: String) { _name = aName } // mutator
}
Notice the constructor parameter is declared private and var. The private keyword keeps Scala from exposing that
 field to other classes, and the var
 lets the value of the field be changed.
Creating a getter method named name and a setter method named name_= conforms to the Scala convention and
 lets a consumer of your class write code like this:
val p = new Person("Jonathan")
p.name = "Jony" // setter
println(p.name) // getter
If you don’t want to follow this Scala naming convention for
 getters and setters, you can use any other approach you want. For
 instance, you can name your methods getName and setName, following the JavaBean style.
 (However, if JavaBeans are what you really want, you may be better off
 using the @BeanProperty annotation,
 as described in Recipe 17.6.)

Discussion

When you define a constructor parameter to be a var field, Scala makes the field private to
 the class and automatically generates getter and setter methods that
 other classes can use to access the field. For instance, given a simple
 class like this:
class Stock (var symbol: String)
after the class is compiled with scalac, you’ll see this signature when you
 disassemble it with javap:
$ javap Stock

public class Stock extends java.lang.Object{
 public java.lang.String symbol();
 public void symbol_$eq(java.lang.String);
 public Stock(java.lang.String);
}
You can see that the Scala compiler generated two methods: a
 getter named symbol and a setter
 named symbol_$eq. This second method
 is the same as a method you’d name symbol_=, but Scala needs to translate the
 = symbol to $eq to work with the JVM.
That second method name is a little unusual, but it follows a
 Scala convention, and when it’s mixed with some syntactic sugar, it lets
 you set the symbol field on a
 Stock instance like this:
stock.symbol = "GOOG"
The way this works is that behind the scenes, Scala converts that
 line of code into this line of code:
stock.symbol_$eq("GOOG")
You generally never have to think about this, unless you want to
 override the mutator method.
Summary

As shown in the Solution, the recipe for overriding default
 getter and setter methods is:
	Create a private var
 constructor parameter with a name you want to reference from
 within your class. In the example in the Solution, the field is
 named _name.

	Define getter and setter names that you want other classes
 to use. In the Solution the getter name is name, and the setter name is name_= (which, combined with Scala’s
 syntactic sugar, lets users write p.name
 = "Jony").

	Modify the body of the getter and setter methods as
 desired.

It’s important to remember the private setting on your field. If you forget
 to control the access with private
 (or private[this]), you’ll end up
 with getter/setter methods for the field you meant to hide. For
 example, in the following code, I intentionally left the private modifier off of the _symbol constructor parameter:
// intentionally left the 'private' modifier off _symbol
class Stock (var _symbol: String) {

 // getter
 def symbol = _symbol

 // setter
 def symbol_= (s: String) {
 this.symbol = s
 println(s"symbol was updated, new value is $symbol")
 }

}
Compiling and disassembling this code shows the following class
 signature, including two methods I “accidentally” made visible:
public class Stock extends java.lang.Object{
 public java.lang.String _symbol(); // error
 public void _symbol_$eq(java.lang.String); // error
 public java.lang.String symbol();
 public void symbol_$eq(java.lang.String);
 public Stock(java.lang.String);
}
Correctly adding private to
 the _symbol field results in the
 correct signature in the disassembled code:
public class Stock extends java.lang.Object{
 public java.lang.String symbol(); // println(stock.symbol)
 public void symbol_$eq(java.lang.String); // stock.symbol = "AAPL"
 public Stock(java.lang.String);
}
Note that while these examples used fields in a class
 constructor, the same principles hold true for fields defined inside a
 class.

4.7. Preventing Getter and Setter Methods from Being Generated

Problem

When you define a class field as a var, Scala automatically generates getter and
 setter methods for the field, and defining a field as a val automatically generates a getter method,
 but you don’t want either a getter or setter.

Solution

Define the field with the private or private[this] access modifiers, as shown with
 the currentPrice field in this
 example:
class Stock {

 // getter and setter methods are generated
 var delayedPrice: Double = _

 // keep this field hidden from other classes
 private var currentPrice: Double = _
}
When you compile this class with scalac, and then disassemble it with javap, you’ll see this interface:
// Compiled from "Stock.scala"
public class Stock extends java.lang.Object implements scala.ScalaObject{
 public double delayedPrice();
 public void delayedPrice_$eq(double);
 public Stock();
}
This shows that getter and setter methods are defined for the
 delayedPrice field, and there are no
 getter or setter methods for the currentPrice field, as desired.

Discussion

Defining a field as private
 limits the field so it’s only available to instances of the same class,
 in this case instances of the Stock
 class. To be clear, any instance of a Stock class can access a private field of any
 other Stock instance.
As an example, the following code yields true when the Driver object is run, because the isHigher method in the Stock class can access the price field both (a) in its object, and (b) in
 the other Stock object it’s being
 compared to:
class Stock {
 // a private field can be seen by any Stock instance
 private var price: Double = _
 def setPrice(p: Double) { price = p }
 def isHigher(that: Stock): Boolean = this.price > that.price
}

object Driver extends App {

 val s1 = new Stock
 s1.setPrice(20)

 val s2 = new Stock
 s2.setPrice(100)

 println(s2.isHigher(s1))

}
Object-private fields

Defining a field as private[this] takes this privacy a step
 further, and makes the field object-private,
 which means that it can only be accessed from the object that contains
 it. Unlike private, the field can’t
 also be accessed by other instances of the same type, making it more
 private than the plain private
 setting.
This is demonstrated in the following example, where changing
 private to private[this] in the Stock class no longer lets the isHigher method compile:
class Stock {
 // a private[this] var is object-private, and can only be seen
 // by the current instance
 private[this] var price: Double = _

 def setPrice(p: Double) { price = p }

 // error: this method won't compile because price is now object-private
 def isHigher(that: Stock): Boolean = this.price > that.price
}
Attempting to compile this class generates the following
 error:
Stock.scala:5: error: value price is not a member of Stock
 def isHigher(that: Stock): Boolean = this.price > that.price
 ^
one error found

4.8. Assigning a Field to a Block or Function

Problem

You want to initialize a field in a class using a block of code,
 or by calling a function.

Solution

Set the field equal to the desired block of code or function.
 Optionally, define the field as lazy
 if the algorithm requires a long time to run.
In the following example, the field text is set equal to a block of code, which
 either returns (a) the text contained in a file, or (b) an error
 message, depending on whether the file exists and can be read:
class Foo {

 // set 'text' equal to the result of the block of code
 val text = {
 var lines = ""
 try {
 lines = io.Source.fromFile("/etc/passwd").getLines.mkString
 } catch {
 case e: Exception => lines = "Error happened"
 }
 lines
 }

 println(text)
}

object Test extends App {
 val f = new Foo
}
Because the assignment of the code block to the text field and the println statement are both in the body of the
 Foo class, they are in the class’s
 constructor, and will be executed when a new instance of the class is
 created. Therefore, compiling and running this example will either print
 the contents of the file, or the “Error happened” message from the
 catch block.
In a similar way, you can assign a class field to the results of a
 method or function:
class Foo {
 import scala.xml.XML

 // assign the xml field to the result of the load method
 val xml = XML.load("http://example.com/foo.xml")

 // more code here ...
}

Discussion

When it makes sense, define a field like this to be lazy, meaning it won’t be evaluated until it
 is accessed. To demonstrate this, ignore the potential for errors and
 shorten the class to this:
class Foo {
 val text =
 io.Source.fromFile("/etc/passwd").getLines.foreach(println)
}

object Test extends App {
 val f = new Foo
}
When this code is compiled and run on a Unix system, the contents
 of the /etc/passwd file are
 printed. That’s interesting, but notice what happens when you change the
 block to define the text field as
 lazy:
class Foo {
 lazy val text =
 io.Source.fromFile("/etc/passwd").getLines.foreach(println)
}

object Test extends App {
 val f = new Foo
}
When this code is compiled and run, there is no output, because
 the text field isn’t initialized
 until it’s accessed. That’s how a lazy field works.
Defining a field as lazy is a
 useful approach when the field might not be accessed in the normal
 processing of your algorithms, or if running the algorithm will take a
 long time, and you want to defer that to a later time.

4.9. Setting Uninitialized var Field Types

Problem

You want to set the type for an uninitialized var field in a class, so you begin to write
 code like this:
var x =
and then wonder how to finish writing the expression.

Solution

In general, define the field as an Option. For certain types, such as String and numeric fields, you can specify
 default initial values.
For instance, imagine that you’re starting a social network, and
 to encourage people to sign up, you only ask for a username and password
 during the registration process. Therefore, you define username and password as fields in your class
 constructor:
case class Person(var username: String, var password: String) ...
However, later on, you’ll also want to get other information from
 users, including their age, first name, last name, and address.
 Declaring those first three var
 fields is simple:
var age = 0
var firstName = ""
var lastName = ""
But what do you do when you get to the address?
The solution is to define the address field as an Option, as shown here:
case class Person(var username: String, var password: String) {

 var age = 0
 var firstName = ""
 var lastName = ""
 var address = None: Option[Address]

}

case class Address(city: String, state: String, zip: String)
Later, when a user provides an address, you can assign it using a
 Some[Address], like this:
val p = Person("alvinalexander", "secret")
p.address = Some(Address("Talkeetna", "AK", "99676"))
When you need to access the address field,
 there are a variety of approaches you can use, and these are discussed
 in detail in Recipe 20.6. As one example,
 if you want to print the fields of an Address, calling foreach on the address field works well:
p.address.foreach { a =>
 println(a.city)
 println(a.state)
 println(a.zip)
}
If the field hasn’t been assigned, address is a None, and calling foreach on it does no harm, the loop is just
 skipped over. If the address field is
 assigned, it will be a Some[Address],
 so the foreach loop will be entered
 and the data printed.

Discussion

In a related situation, setting the type on numeric var fields can occasionally be interesting.
 For instance, it’s easy to create an Int or Double field:
var i = 0 // Int
var d = 0.0 // Double
In those cases, the compiler automatically defaults to the desired
 types, but what if you want a different numeric type? This approach lets
 you give each field the proper type, and a default value:
var b: Byte = 0
var c: Char = 0
var f: Float = 0
var l: Long = 0
var s: Short = 0

See Also

	The Option class

	Don’t set fields like this to null; Scala provides a terrific
 opportunity for you to get away from ever using null values again. See Recipe 20.5, for ways to eliminate common uses of
 null values.

	In many Scala frameworks, such as the Play Framework, fields
 like this are commonly declared as Option values. See Recipe 20.6, for a detailed discussion of this
 approach.

4.10. Handling Constructor Parameters When Extending a Class

Problem

You want to extend a base class, and need to work with the
 constructor parameters declared in the base class, as well as new
 parameters in the subclass.

Solution

Declare your base class as usual with val or var
 constructor parameters. When defining a subclass constructor, leave the
 val or var declaration off of the fields that are
 common to both classes. Then define new constructor parameters in the
 subclass as val or var fields, as usual.
For example, first define a Person base class:
class Person (var name: String, var address: Address) {
 override def toString = if (address == null) name else s"$name @ $address"
}
Next define Employee as a
 subclass of Person, so that it takes
 the constructor parameters name,
 address, and age. The name and address parameters are common to the parent
 Person class, so leave the var declaration off of those fields, but
 age is new, so declare it as a
 var:
class Employee (name: String, address: Address, var age: Int)
extends Person (name, address) {
 // rest of the class
}
With this Employee class and an
 Address case class:
case class Address (city: String, state: String)
you can create a new Employee
 as follows:
val teresa = new Employee("Teresa", Address("Louisville", "KY"), 25)
By placing all that code in the REPL, you can see that all of the
 fields work as expected:
scala> teresa.name
res0: String = Teresa

scala> teresa.address
res1: Address = Address(Louisville,KY)

scala> teresa.age
res2: Int = 25

Discussion

To understand how constructor parameters in a subclass work, it
 helps to understand how the Scala compiler translates your code. Because
 the following Person class defines
 its constructor parameters as var
 fields:
class Person (var name: String, var address: Address) {
 override def toString = if (address == null) name else s"$name @ $address"
}
the Scala compiler generates both accessor and mutator methods for
 the class. You can demonstrate this by compiling and then disassembling
 the Person class.
First, put this code in a file named Person.scala:
case class Address (city: String, state: String)

class Person (var name: String, var address: Address) {
 override def toString = if (address == null) name else s"$name @ $address"
}
Then compile the code with scalac, and disassemble the Person.class file with javap:
$ javap Person
Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject{
 public java.lang.String name();
 public void name_$eq(java.lang.String);
 public Address address();
 public void address_$eq(Address);
 public java.lang.String toString();
 public Person(java.lang.String, Address);
}
As shown, the Person class
 contains the name, name_$eq, address, and address_$eq methods, which are the accessor
 and mutator methods for the name and
 address fields. (See Recipe 6.8 for an explanation
 of how those mutator methods work.)
This raises the question, if you define an Employee class that extends Person, how should you handle the name and address fields in the Employee constructor? Assuming Employee adds no new parameters, there are at
 least two main choices:
// Option 1: define name and address as 'var'
class Employee (var name: String, var address: Address)
extends Person (name, address) { ... }

// Option 2: define name and address without var or val
class Employee (name: String, address: Address)
extends Person (name, address) { ... }
Because Scala has already generated the getter and setter methods
 for the name and address fields in the Person class, the solution is to declare the
 Employee constructor without var declarations:
// this is correct
class Employee (name: String, address: Address)
extends Person (name, address) { ... }
Because you don’t declare the parameters in Employee as var, Scala won’t attempt to generate methods
 for those fields. You can demonstrate this by adding the Employee class definition to the code in
 Person.scala:
case class Address (city: String, state: String)
class Person (var name: String, var address: Address) {
 override def toString = if (address == null) name else s"$name @ $address"
}
class Employee (name: String, address: Address)
extends Person (name, address) {
 // code here ...
}
Compiling the code with scalac
 and then disassembling the Employee.class file with javap, you see the following, expected
 result:
$ javap Employee
Compiled from "Person.scala"
public class Employee extends Person implements scala.ScalaObject{
 public Employee(java.lang.String, Address);
}
The Employee class extends
 Person, and Scala did not generate
 any methods for the name and address fields. Therefore, the Employee class inherits that behavior from
 Person.
While this example shows how Scala works with var fields, you can follow the same line of
 reasoning with val fields as
 well.

4.11. Calling a Superclass Constructor

Problem

You want to control the superclass constructor that’s called when
 you create constructors in a subclass.

Solution

This is a bit of a trick question, because you
 can control the superclass constructor that’s
 called by the primary constructor in a subclass, but you
 can’t control the superclass constructor that’s
 called by an auxiliary constructor in the subclass.
When you define a subclass in Scala, you control the superclass
 constructor that’s called by its primary constructor when you define the
 extends portion of the subclass
 declaration. For instance, in the following code, the Dog class is defined to call the primary
 constructor of the Animal class,
 which is a one-arg constructor that takes name as its parameter:
class Animal (var name: String) {
 // ...
}
class Dog (name: String) extends Animal (name) {
 // ...
}
However, if the Animal class
 has multiple constructors, the primary constructor of the Dog class can call any of those
 constructors.
For example, the primary constructor of the Dog class in the following code calls the
 one-arg auxiliary constructor of the Animal class by specifying that constructor in
 its extends clause:
// (1) primary constructor
class Animal (var name: String, var age: Int) {

 // (2) auxiliary constructor
 def this (name: String) {
 this(name, 0)
 }

 override def toString = s"$name is $age years old"
}

// calls the Animal one-arg constructor
class Dog (name: String) extends Animal (name) {
 println("Dog constructor called")
}
Alternatively, it could call the two-arg primary constructor of
 the Animal class:
// call the two-arg constructor
class Dog (name: String) extends Animal (name, 0) {
 println("Dog constructor called")
}
Auxiliary constructors

Regarding auxiliary constructors, because the first line of an
 auxiliary constructor must be a call to another constructor of the
 current class, there is no way for auxiliary constructors to call a
 superclass constructor.
As you can see in the following code, the primary constructor of
 the Employee class can call any
 constructor in the Person class,
 but the auxiliary constructors of the Employee class must call a
 previously defined constructor of its own class with the this method as its first line:
case class Address (city: String, state: String)
case class Role (role: String)

class Person (var name: String, var address: Address) {

 // no way for Employee auxiliary constructors to call this constructor
 def this (name: String) {
 this(name, null)
 address = null
 }

 override def toString = if (address == null) name else s"$name @ $address"

}

class Employee (name: String, role: Role, address: Address)
extends Person (name, address) {

 def this (name: String) {
 this(name, null, null)
 }

 def this (name: String, role: Role) {
 this(name, role, null)
 }

 def this (name: String, address: Address) {
 this(name, null, address)
 }

}
Therefore, there’s no direct way to control which superclass
 constructor is called from an auxiliary constructor in a subclass. In
 fact, because each auxiliary constructor must call a previously
 defined constructor in the same class, all auxiliary constructors will
 eventually call the same superclass constructor that’s called from the
 subclass’s primary constructor.

4.12. When to Use an Abstract Class

Problem

Scala has traits, and a trait is more flexible than an abstract
 class, so you wonder, “When should I use an abstract class?”

Solution

There are two main reasons to use an abstract class in
 Scala:
	You want to create a base class that requires constructor
 arguments.

	The code will be called from Java code.

Regarding the first reason, traits don’t allow constructor
 parameters:
// this won't compile
trait Animal(name: String)
So, use an abstract class whenever a base behavior must have
 constructor parameters:
abstract class Animal(name: String)
Regarding the second reason, if you’re writing code that needs to
 be accessed from Java, you’ll find that Scala traits with implemented
 methods can’t be called from Java code. If you run into this situation,
 see Recipe 17.7, for solutions to that problem.

Discussion

Use an abstract class instead of a trait when the base
 functionality must take constructor parameters. However, be aware that a
 class can extend only one abstract class.
Abstract classes work just like Java in that you can define some
 methods that have complete implementations, and other methods that have
 no implementation and are therefore abstract. To declare that a method
 is abstract, just leave the body of the method undefined:
def speak // no body makes the method abstract
There is no need for an abstract keyword; simply leaving the body of
 the method undefined makes it abstract. This is consistent with how
 abstract methods in traits are defined.
In the following example, the methods save, update, and delete are defined in the abstract class
 BaseController, but the connect, getStatus, and set-ServerName methods have no method body, and
 are therefore abstract:
abstract class BaseController(db: Database) {

 def save { db.save }
 def update { db.update }
 def delete { db.delete }

 // abstract
 def connect

 // an abstract method that returns a String
 def getStatus: String

 // an abstract method that takes a parameter
 def setServerName(serverName: String)
}
When a class extends the BaseController class, it must implement the
 connect, getStatus, and setServerName methods, or be declared
 abstract. Attempting to extend BaseController without implementing those
 methods yields a “class needs to be abstract” error, as shown in the
 REPL:
scala> class WidgetController(db: Database) extends BaseController(db)
<console>:9: error: class WidgetController needs to be abstract, since:
method setServerName in class BaseController of type (serverName: String)Unit
is not defined
method getStatus in class BaseController of type => String is not defined
method connect in class BaseController of type => Unit is not defined
 class WidgetController(db: Database) extends BaseController(db)
 ^
Because a class can extend only one abstract class, when you’re
 trying to decide whether to use a trait or abstract class, always use a
 trait, unless you have this specific need to have constructor arguments
 in your base implementation.

4.13. Defining Properties in an Abstract Base Class (or Trait)

Problem

You want to define abstract or concrete properties in an abstract
 base class (or trait) that can be referenced in all child
 classes.

Solution

You can declare both val and
 var fields in an abstract class (or
 trait), and those fields can be abstract or have concrete
 implementations. All of these variations are shown in this
 recipe.
Abstract val and var fields

The following example demonstrates an Animal trait with abstract val and var fields, along with a simple concrete
 method named sayHello, and an
 override of the toString
 method:
abstract class Pet (name: String) {
 val greeting: String
 var age: Int
 def sayHello { println(greeting) }
 override def toString = s"I say $greeting, and I'm $age"
}
The following Dog and
 Cat classes extend the Animal class and provide values for the
 greeting and age fields. Notice that the fields are again
 specified as val or var:
class Dog (name: String) extends Pet (name) {
 val greeting = "Woof"
 var age = 2
}

class Cat (name: String) extends Pet (name) {
 val greeting = "Meow"
 var age = 5
}
The functionality can be demonstrated with a simple driver
 object:
object AbstractFieldsDemo extends App {
 val dog = new Dog("Fido")
 val cat = new Cat("Morris")

 dog.sayHello
 cat.sayHello

 println(dog)
 println(cat)

 // verify that the age can be changed
 cat.age = 10
 println(cat)
}
The resulting output looks like this:
Woof
Meow
I say Woof, and I'm 2
I say Meow, and I'm 5
I say Meow, and I'm 10
Concrete field implementations are presented in the Discussion,
 because it helps to understand how the Scala compiler translates your
 code in the preceding examples.

Discussion

As shown, you can declare abstract fields in an abstract class as
 either val or var, depending on your needs. The way abstract
 fields work in abstract classes (or traits) is interesting:
	An abstract var field
 results in getter and setter methods being generated for the
 field.

	An abstract val field
 results in a getter method being generated for the field.

	When you define an abstract field in an abstract class or
 trait, the Scala compiler does not create a
 field in the resulting code; it only generates the methods that
 correspond to the val or var field.

In the example shown in the Solution, if you look at the code
 that’s created by scalac using the
 -Xprint:all option, or by decompiling
 the resulting Pet.class file, you
 won’t find greeting or age fields. For instance, if you decompile the
 class, the output shows only methods in the class, no fields:
import scala.*;
import scala.runtime.BoxesRunTime;

public abstract class Pet
{
 public abstract String greeting();
 public abstract int age();
 public abstract void age_$eq(int i);

 public void sayHello() {
 Predef$.MODULE$.println(greeting());
 }

 public String toString(){
 // code omitted
 }

 public Pet(String name){}
}
Because of this, when you provide concrete values for these fields
 in your concrete classes, you must again define your fields to be
 val or var. Because the fields don’t actually exist
 in the abstract base class (or trait), the override keyword is not necessary.
As another result of this, you may see developers define a
 def that takes no parameters in the
 abstract base class rather than defining a val. They can then define a val in the concrete class, if desired. This
 technique is demonstrated in the following code:
abstract class Pet (name: String) {
 def greeting: String
}

class Dog (name: String) extends Pet (name) {
 val greeting = "Woof"
}

object Test extends App {
 val dog = new Dog("Fido")
 println(dog.greeting)
}
Given this background, it’s time to examine the use of concrete
 val and var fields in abstract classes.
Concrete val fields in abstract classes

When defining a concrete val
 field in an abstract class, you can provide an initial value, and then
 override that value in concrete subclasses:
abstract class Animal {
 val greeting = "Hello" // provide an initial value
 def sayHello { println(greeting) }
 def run
}

class Dog extends Animal {
 override val greeting = "Woof" // override the value
 def run { println("Dog is running") }
}
In this example, the greeting
 variable is created in both classes. To demonstrate this, running the
 following code:
abstract class Animal {
 val greeting = { println("Animal"); "Hello" }
}

class Dog extends Animal {
 override val greeting = { println("Dog"); "Woof" }
}

object Test extends App {
 new Dog
}
results in this output, showing that both values are
 created:
Animal
Dog
To prove this, you can also decompile both the Animal and Dog classes, where you’ll find the greeting
 declared like this:
private final String greeting = "Hello";
To prevent a concrete val
 field in an abstract base class from being overridden in a subclass,
 declare the field as a final
 val:
abstract class Animal {
 final val greeting = "Hello" // made the field 'final'
}

class Dog extends Animal {
 val greeting = "Woof" // this line won't compile
}

Concrete var fields in abstract classes

You can also give var fields
 an initial value in your trait or abstract class, and then refer to
 them in your concrete subclasses, like this:
abstract class Animal {
 var greeting = "Hello"
 var age = 0
 override def toString = s"I say $greeting, and I'm $age years old."
}

class Dog extends Animal {
 greeting = "Woof"
 age = 2
}
In this case, these fields are declared and assigned in the
 abstract base class, as shown in the decompiled code for the Animal class:
private String greeting;
private int age;
public Animal(){
 greeting = "Hello";
 age = 0;
}

// more code ...
Because the fields are declared and initialized in the abstract
 Animal base class, there’s no need
 to redeclare the fields as val or
 var in the concrete Dog subclass.
You can verify this by looking at the code the Scala compiler
 generates for the Dog class. When
 you compile the code with scalac
 -Xprint:all, and look at the last lines of output, you’ll
 see how the compiler has converted the Dog class:
class Dog extends Animal {
 def <init>(): Dog = {
 Dog.super.<init>();
 Dog.this.greeting_=("Woof");
 Dog.this.age_=(2);
 ()
 }
}
Because the fields are concrete fields in the abstract base
 class, they just need to be reassigned in the concrete Dog class.

Don’t use null

As discussed in many recipes in this book, including Recipe 20.5, you shouldn’t use null values in these
 situations. If you’re tempted to use a null, instead initialize the fields using
 the
 Option/Some/None
 pattern. The following example demonstrates how to initialize val and var fields with this approach:
trait Animal {
 val greeting: Option[String]
 var age: Option[Int] = None
 override def toString = s"I say $greeting, and I'm $age years old."
}

class Dog extends Animal {
 val greeting = Some("Woof")
 age = Some(2)
}

object Test extends App {
 val d = new Dog
 println(d)
}
Running this Test object
 yields the following output:
I say Some(Woof), and I'm Some(2) years old.

See Also

	See Recipe 5.2, for more examples of how to call methods
 on superclasses.

4.14. Generating Boilerplate Code with Case Classes

Problem

You’re working with match expressions, actors, or other situations
 where you want to use the case class syntax to
 generate boilerplate code, including accessor and mutator methods, along
 with apply, unapply, toString, equals, and hashCode methods, and more.

Solution

Define your class as a case class, defining
 any parameters it needs in its constructor:
// name and relation are 'val' by default
case class Person(name: String, relation: String)
Defining a class as a case class results in a lot of boilerplate
 code being generated, with the following benefits:
	An apply method is
 generated, so you don’t need to use the new keyword to create a new instance of
 the class.

	Accessor methods are generated for the constructor parameters
 because case class constructor parameters are val by default. Mutator methods are also
 generated for parameters declared as var.

	A good, default toString
 method is generated.

	An unapply method is
 generated, making it easy to use case classes in match
 expressions.

	equals and hashCode methods are generated.

	A copy method is
 generated.

When you define a class as a case class, you don’t have to use the
 new keyword to create a new
 instance:
scala> case class Person(name: String, relation: String)
defined class Person

// "new" not needed before Person
scala> val emily = Person("Emily", "niece")
emily: Person = Person(Emily,niece)
Case class constructor parameters are val by default, so accessor methods are
 generated for the parameters, but mutator methods are not
 generated:
scala> emily.name
res0: String = Emily

scala> emily.name = "Fred"
<console>:10: error: reassignment to val
 emily.name = "Fred"
 ^
By defining a case class constructor parameter as a var, both accessor and mutator methods are
 generated:
scala> case class Company (var name: String)
defined class Company

scala> val c = Company("Mat-Su Valley Programming")
c: Company = Company(Mat-Su Valley Programming)

scala> c.name
res0: String = Mat-Su Valley Programming

scala> c.name = "Valley Programming"
c.name: String = Valley Programming
Case classes also have a good default toString method implementation:
scala> emily
res0: Person = Person(Emily,niece)
Because an unapply method is
 automatically created for a case class, it works well when you need to
 extract information in match expressions, as shown here:
scala> emily match { case Person(n, r) => println(n, r) }
(Emily,niece)
Case classes also have generated equals and hashCode methods, so instances can be
 compared:
scala> val hannah = Person("Hannah", "niece")
hannah: Person = Person(Hannah,niece)

scala> emily == hannah
res1: Boolean = false
A case class even creates a copy method that is helpful when you need to
 clone an object, and change some of the fields during the
 process:
scala> case class Employee(name: String, loc: String, role: String)
defined class Employee

scala> val fred = Employee("Fred", "Anchorage", "Salesman")
fred: Employee = Employee(Fred,Anchorage,Salesman)

scala> val joe = fred.copy(name="Joe", role="Mechanic")
joe: Employee = Employee(Joe,Anchorage,Mechanic)

Discussion

Case classes are primarily intended to create “immutable records”
 that you can easily use in pattern-matching expressions. Indeed, pure FP
 developers look at case classes as being similar to immutable records
 found in ML, Haskell, and other languages.
Perhaps as a result of this, case class constructor parameters are
 val by default. As a reviewer of this
 book with an FP background wrote, “Case classes allow var fields, but then you are subverting their
 very purpose.”
Generated code

As shown in the Solution, when you create a case class, Scala
 generates a wealth of code for your class. To see the code that’s
 generated for you, first compile a simple case class, then disassemble
 it with javap. For example, put
 this code in a file named Person.scala:
case class Person(var name: String, var age: Int)
Then compile the file:
$ scalac Person.scala
This creates two class files, Person.class and Person$.class. Disassemble Person.class with this command:
$ javap Person
This results in the following output, which is the public
 signature of the class:
Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject,scala.Product,scala.Serializable{
 public static final scala.Function1 tupled();
 public static final scala.Function1 curry();
 public static final scala.Function1 curried();
 public scala.collection.Iterator productIterator();
 public scala.collection.Iterator productElements();
 public java.lang.String name();
 public void name_$eq(java.lang.String);
 public int age();
 public void age_$eq(int);
 public Person copy(java.lang.String, int);
 public int copy$default$2();
 public java.lang.String copy$default$1();
 public int hashCode();
 public java.lang.String toString();
 public boolean equals(java.lang.Object);
 public java.lang.String productPrefix();
 public int productArity();
 public java.lang.Object productElement(int);
 public boolean canEqual(java.lang.Object);
 public Person(java.lang.String, int);
}
Then disassemble Person$.class:
$ javap Person$

Compiled from "Person.scala"
public final class Person$ extends scala.runtime.AbstractFunction2 implements scala.ScalaObject,scala.Serializable{
 public static final Person$ MODULE$;
 public static {};
 public final java.lang.String toString();
 public scala.Option unapply(Person);
 public Person apply(java.lang.String, int);
 public java.lang.Object readResolve();
 public java.lang.Object apply(java.lang.Object, java.lang.Object);
}
As you can see, Scala generates a lot of
 source code when you declare a class as a case class.
As a point of comparison, if you remove the keyword case from that code (making it a “regular”
 class), compile it, and then disassemble it, Scala only generates the
 following code:
public class Person extends java.lang.Object{
 public java.lang.String name();
 public void name_$eq(java.lang.String);
 public int age();
 public void age_$eq(int);
 public Person(java.lang.String, int);
}
That’s a big difference. The case class results in 22 more
 methods than the “regular” class. If you need the functionality, this
 is a good thing. However, if you don’t need all this additional
 functionality, consider using a “regular” class declaration instead. For instance, if
 you just want to be able to create new instances of a class without
 the new keyword, like this:
val p = Person("Alex")
create an apply method in the
 companion object of a “regular” class, as described in Recipe 6.8. Remember, there isn’t anything in a case
 class you can’t code for yourself.

See Also

	Recipe 4.3, shows how to write additional apply methods so a case class can appear
 to have multiple constructors.

	A discussion of extractors on the official Scala website.

4.15. Defining an equals Method (Object Equality)

Problem

You want to define an equals
 method for your class so you can compare object instances to each
 other.

Solution

Like Java, you define an equals
 method (and hashCode method) in your
 class to compare two instances, but unlike Java, you then use the
 == method to compare the equality of
 two instances.
There are many ways to write equals methods. The following example shows
 one possible way to define an equals
 method and its corresponding hashCode
 method:
class Person (name: String, age: Int) {

 def canEqual(a: Any) = a.isInstanceOf[Person]

 override def equals(that: Any): Boolean =
 that match {
 case that: Person => that.canEqual(this) && this.hashCode == that.hashCode
 case _ => false
 }

 override def hashCode:Int = {
 val prime = 31
 var result = 1
 result = prime * result + age;
 result = prime * result + (if (name == null) 0 else name.hashCode)
 return result
 }

}
This example shows a modified version of a hashCode method that Eclipse generated for a
 similar Java class. It also uses a canEqual method, which will be explained
 shortly.
With the equals method defined,
 you can compare instances of a Person
 with ==, as demonstrated in the
 following tests:
import org.scalatest.FunSuite

class PersonTests extends FunSuite {

 // these first two instances should be equal
 val nimoy = new Person("Leonard Nimoy", 82)
 val nimoy2 = new Person("Leonard Nimoy", 82)
 val shatner = new Person("William Shatner", 82)
 val ed = new Person("Ed Chigliak", 20)

 // all tests pass
 test("nimoy == nimoy") { assert(nimoy == nimoy) }
 test("nimoy == nimoy2") { assert(nimoy == nimoy2) }
 test("nimoy2 == nimoy") { assert(nimoy2 == nimoy) }
 test("nimoy != shatner") { assert(nimoy != shatner) }
 test("shatner != nimoy") { assert(shatner != nimoy) }
 test("nimoy != null") { assert(nimoy != null) }
 test("nimoy != String") { assert(nimoy != "Leonard Nimoy") }
 test("nimoy != ed") { assert(nimoy != ed) }

}
As noted in the code comments, all of these tests pass.
Note
These tests were created with the ScalaTest FunSuite, which is similar to writing unit
 tests with JUnit.

Discussion

The first thing to know about Scala and the equals method is that, unlike Java, you
 compare the equality of two objects with ==. In Java, the == operator compares “reference equality,” but
 in Scala, == is a method you use on
 each class to compare the equality of two instances, calling your
 equals method under the
 covers.
As mentioned, there are many ways to implement equals methods, and the code in the Solution
 shows just one possible approach. The book Programming in
 Scala contains one chapter of more than 25 pages on “object
 equality,” so this is a big topic.
An important benefit of the approach shown in the Solution is that
 you can continue to use it when you use inheritance in classes. For
 instance, in the following code, the Employee class extends the Person class that’s shown in the
 Solution:
class Employee(name: String, age: Int, var role: String)
extends Person(name, age)
{

 override def canEqual(a: Any) = a.isInstanceOf[Employee]

 override def equals(that: Any): Boolean =
 that match {
 case that: Employee =>
 that.canEqual(this) && this.hashCode == that.hashCode
 case _ => false
 }

 override def hashCode:Int = {
 val ourHash = if (role == null) 0 else role.hashCode
 super.hashCode + ourHash
 }

}
This code uses the same approach to the canEqual, equals, and hashCode methods, and I like that consistency.
 Just as important as the consistency is the accuracy of the approach,
 especially when you get into the business of comparing instances of a
 child class to instances of any of its parent classes. In the case of
 the Person and Employee code shown, these classes pass all of
 the following tests:
class EmployeeTests extends FunSuite with BeforeAndAfter {

 // these first two instance should be equal
 val eNimoy1 = new Employee("Leonard Nimoy", 82, "Actor")
 val eNimoy2 = new Employee("Leonard Nimoy", 82, "Actor")
 val pNimoy = new Person("Leonard Nimoy", 82)
 val eShatner = new Employee("William Shatner", 82, "Actor")

 test("eNimoy1 == eNimoy1") { assert(eNimoy1 == eNimoy1) }
 test("eNimoy1 == eNimoy2") { assert(eNimoy1 == eNimoy2) }
 test("eNimoy2 == eNimoy1") { assert(eNimoy2 == eNimoy1) }
 test("eNimoy != pNimoy") { assert(eNimoy1 != pNimoy) }
 test("pNimoy != eNimoy") { assert(pNimoy != eNimoy1) }

}
All the tests pass, including the comparison of the eNimoy and pNimoy objects, which are instances of the
 Employee and Person classes, respectively.
Theory

The Scaladoc for the equals
 method of the Any class states,
 “any implementation of this method should be an equivalence
 relation.” The documentation states that an equivalence
 relation should have these three properties:
	It is reflexive: for any instance
 x of type Any, x.equals(x) should return true.

	It is symmetric: for any instances
 x and y of type Any, x.equals(y) should return true if and
 only if y.equals(x) returns
 true.

	It is transitive: for any instances
 x, y, and z of type AnyRef, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.

Therefore, if you override the equals method, you should verify that your
 implementation remains an equivalence relation.

See Also

	The Artima website has an excellent related article titled
 How to Write an Equality Method
 in Java.

	Eric Torreborre shares an excellent canEqual example on GitHub.

	“Equivalence relation” defined on Wikipedia.

	The Scala Any class.

4.16. Creating Inner Classes

Problem

You want to create a class as an inner class to help keep the
 class out of your public API, or to otherwise encapsulate your
 code.

Solution

Declare one class inside another class. In the following example,
 a case class named Thing is declared
 inside of a class named PandorasBox:
class PandorasBox {

 case class Thing (name: String)

 var things = new collection.mutable.ArrayBuffer[Thing]()
 things += Thing("Evil Thing #1")
 things += Thing("Evil Thing #2")

 def addThing(name: String) { things += new Thing(name) }

}
This lets users of PandorasBox
 access the collection of things
 inside the box, while code outside of PandorasBox generally doesn’t have to worry
 about the concept of a Thing:
object ClassInAClassExample extends App {

 val p = new PandorasBox
 p.things.foreach(println)

}
As shown, you can access the things in PandorasBox with the things method. You can also add new things to
 PandorasBox by calling the addThing method:
p.addThing("Evil Thing #3")
p.addThing("Evil Thing #4")

Discussion

The concept of a “class within a class” is different in Scala than
 in Java. As described on
 the official Scala website, “Opposed to Java-like languages
 where such inner classes are members of the enclosing class, in Scala,
 such inner classes are bound to the outer object.” The following code
 demonstrates this:
object ClassInObject extends App {

 // inner classes are bound to the object
 val oc1 = new OuterClass
 val oc2 = new OuterClass
 val ic1 = new oc1.InnerClass
 val ic2 = new oc2.InnerClass
 ic1.x = 10
 ic2.x = 20
 println(s"ic1.x = ${ic1.x}")
 println(s"ic2.x = ${ic2.x}")
}

class OuterClass {
 class InnerClass {
 var x = 1
 }
}
Because inner classes are bound to their object instances, when
 that code is run, it prints the following output:
ic1.x = 10
ic2.x = 20
There are many other things you can do with inner classes, such as
 include a class inside an object or an object inside a class:
object InnerClassDemo2 extends App {

 // class inside object
 println(new OuterObject.InnerClass().x)

 // object inside class
 println(new OuterClass().InnerObject.y)

}

object OuterObject {
 class InnerClass {
 var x = 1
 }
}

class OuterClass {
 object InnerObject {
 val y = 2
 }
}

See Also

	The Scala website has a page on Inner Classes.

Chapter 5. Methods

Introduction

Conceptually, Scala methods are similar to Java methods in that they
 are behaviors you add to a class. However, they differ significantly in
 their implementation details. The following example shows some of the
 differences between Java and Scala when defining a simple method that
 takes an integer argument and returns a string:
// java
public String doSomething(int x) {
 // code here
}

// scala
def doSomething(x: Int): String = {
 // code here
}
This is just a start, though. Scala methods can be written even more
 concisely. This method takes an Int,
 adds 1 to it, and returns the resulting
 Int value:
def plusOne(i: Int) = i + 1
Notice that the return type didn’t have to be specified, and
 parentheses around the short method body aren’t required.
In addition to the differences shown in these simple examples, there
 are other differences between Java and Scala methods, including:
	Specifying method access control (visibility)

	The ability to set default values for method parameters

	The ability to specify the names of method parameters when
 calling a method

	How you declare the exceptions a method can throw

	Using varargs fields in methods

This chapter demonstrates all of these method-related
 features.

5.1. Controlling Method Scope

Problem

Scala methods are public by default, and you want to control their
 scope in ways similar to Java.

Solution

Scala lets you control method visibility in a more granular and
 powerful way than Java. In order from “most restrictive” to “most open,”
 Scala provides these scope options:
	Object-private scope

	Private

	Package

	Package-specific

	Public

These scopes are demonstrated in the examples that follow.
Object-private scope

The most restrictive access is to mark a method as
 object-private. When you do this, the method is
 available only to the current instance of the current object. Other
 instances of the same class cannot access the method.
You mark a method as object-private by placing the access
 modifier private[this] before the
 method declaration:
 private[this] def isFoo = true
In the following example, the method doFoo takes an instance of a Foo object, but because the isFoo method is declared as an
 object-private method, the code won’t compile:
class Foo {

 private[this] def isFoo = true

 def doFoo(other: Foo) {
 if (other.isFoo) { // this line won't compile
 // ...
 }
 }

}
The code won’t compile because the current Foo instance can’t access the isFoo method of the other instance, because isFoo is declared as private[this]. As you can see, the
 object-private scope is extremely restrictive.

Private scope

A slightly less restrictive access is to mark a method private, which makes the method available to
 (a) the current class and (b) other instances of the current class.
 This is the same as marking a method private in Java. By changing the access
 modifier from private[this] to
 private, the code will now
 compile:
class Foo {

 private def isFoo = true

 def doFoo(other: Foo) {
 if (other.isFoo) { // this now compiles
 // ...
 }

 }
}
By making a method private,
 it is not available to subclasses. The following code won’t compile
 because the heartBeat method is
 private to the Animal class:
class Animal {
 private def heartBeat {}
}

class Dog extends Animal {
 heartBeat // won't compile
}

Protected scope

Marking a method protected
 makes the method available to subclasses, so the following code will
 compile:
class Animal {
 protected def breathe {}
}

class Dog extends Animal {
 breathe
}
The meaning of protected is
 slightly different in Scala than in Java. In Java, protected methods can be accessed by other
 classes in the same package, but this isn’t true in Scala. The
 following code won’t compile because the Jungle class can’t access the breathe method of the Animal class, even though they’re in the
 same package:
package world {

 class Animal {
 protected def breathe {}
 }

 class Jungle {
 val a = new Animal
 a.breathe // error: this line won't compile
 }

}

Package scope

To make a method available to all members of the current
 package—what would be called “package scope” in Java—mark the method
 as being private to the current package with the private[packageName] syntax.
In the following example, the method doX can be accessed by other classes in the
 same package (the model package),
 but the method doY is available
 only to the Foo class:
package com.acme.coolapp.model {

 class Foo {
 private[model] def doX {}
 private def doY {}
 }

 class Bar {
 val f = new Foo
 f.doX // compiles
 f.doY // won't compile
 }

}

More package-level control

Beyond making a method available to classes in the current
 package, Scala gives you more control and lets you make a method
 available at different levels in a class hierarchy. The following
 example demonstrates how you can make the methods doX, doY,
 and doZ available to different
 package levels:
package com.acme.coolapp.model {
 class Foo {
 private[model] def doX {}
 private[coolapp] def doY {}
 private[acme] def doZ {}
 }
}

import com.acme.coolapp.model._

package com.acme.coolapp.view {
 class Bar {
 val f = new Foo
 f.doX // won't compile
 f.doY
 f.doZ
 }
}

package com.acme.common {
 class Bar {
 val f = new Foo
 f.doX // won't compile
 f.doY // won't compile
 f.doZ
 }
}
In this example, the methods can be seen as follows:
	The method doX can be
 seen by other classes in the model package (com.acme.coolapp.model).

	The method doY can be
 seen by all classes under the coolapp package level.

	The method doZ can be
 seen by all classes under the acme level.

As you can see, this approach allows a fine-grained level of
 access control.

Public scope

If no access modifier is added to the method declaration, the
 method is public. In the following example, any class in any package
 can access the doX
 method:
package com.acme.coolapp.model {
 class Foo {
 def doX {}
 }
}

package org.xyz.bar {
 class Bar {
 val f = new com.acme.coolapp.model.Foo
 f.doX
 }
}

Discussion

The Scala approach to access modifiers is different than Java.
 Though it offers more power than Java, it’s also a little more
 complicated.
Table 5-1
 describes the levels of access control that were demonstrated in the
 examples in the Solution.
Table 5-1. Descriptions of Scala’s access control modifiers
	Access
 modifier
	Description

	private[this]
	The method is available
 only to the current instance of the class it’s declared
 in.

	private
	The method is available
 to the current instance and other instances of the class it’s
 declared in.

	protected
	The method is available
 only to instances of the current class and subclasses of the
 current class.

	private[model]
	The method is available
 to all classes beneath the com.acme.coolapp.model
 package.

	private[coolapp]
	The method is available
 to all classes beneath the com.acme.coolapp
 package.

	private[acme]
	The method is available
 to all classes beneath the com.acme package.

	(no
 modifier)
	The method is
 public.

5.2. Calling a Method on a Superclass

Problem

To keep your code DRY (“Don’t Repeat Yourself”), you want to
 invoke a method that’s already defined in a parent class or
 trait.

Solution

In the basic use case, the syntax to invoke a method in an
 immediate parent class is the same as Java: Use super to refer to the parent class, and then
 provide the method name. The following Android method (written in Scala)
 demonstrates how to call a method named onCreate that’s defined in the Activity parent class:
class WelcomeActivity extends Activity {
 override def onCreate(bundle: Bundle) {
 super.onCreate(bundle)
 // more code here ...
 }
}
As with Java, you can call multiple superclass methods if
 necessary:
class FourLeggedAnimal {
 def walk { println("I'm walking") }
 def run { println("I'm running") }
}

class Dog extends FourLeggedAnimal {
 def walkThenRun {
 super.walk
 super.run
 }
}
Running this code in the Scala REPL yields:
scala> val suka = new Dog
suka: Dog = Dog@239bf795

scala> suka.walkThenRun
I'm walking
I'm running
Controlling which trait you call a method from

If your class inherits from multiple traits, and those traits
 implement the same method, you can select not only a method name, but
 also a trait name when invoking a method using super. For instance, given this class
 hierarchy:
trait Human {
 def hello = "the Human trait"
}

trait Mother extends Human {
 override def hello = "Mother"
}

trait Father extends Human {
 override def hello = "Father"
}
The following code shows different ways to invoke the hello method from the traits the Child class inherits from. This example
 shows that by mixing in the Human,
 Mother, and Father traits, you can call super.hello, or be more specific by calling
 super[Mother].hello, super[Father].hello, or super[Human].hello:
class Child extends Human with Mother with Father {
 def printSuper = super.hello
 def printMother = super[Mother].hello
 def printFather = super[Father].hello
 def printHuman = super[Human].hello
}
If you construct a test object to run this code:
object Test extends App {
 val c = new Child
 println(s"c.printSuper = ${c.printSuper}")
 println(s"c.printMother = ${c.printMother}") println(s"c.printFather = ${c.printFather}")
 println(s"c.printHuman = ${c.printHuman}")
}
you can see the output:
c.printSuper = Father
c.printMother = Mother
c.printFather = Father
c.printHuman = the Human trait
As shown, when a class inherits from multiple traits, and those
 traits have a common method name, you can choose which trait to run
 the method from with the super[traitName].methodName
 syntax.
Note that when using this technique, you can’t continue to reach
 up through the parent class hierarchy unless you directly extend the
 target class or trait using the extends or with keywords. For instance, the following
 code won’t compile because Dog
 doesn’t directly extend the Animal
 trait:
trait Animal {
 def walk { println("Animal is walking") }
}

class FourLeggedAnimal extends Animal {
 override def walk { println("I'm walking on all fours") }
}

class Dog extends FourLeggedAnimal {
 def walkThenRun {
 super.walk // works
 super[FourLeggedAnimal].walk // works
 super[Animal].walk // error: won't compile
 }
}
If you attempt to compile the code, you’ll get the error,
 “Animal does not name a parent class of class Dog.” You can get around
 that error by adding with Animal to
 your class declaration (but whether or not that’s really a good idea
 is another story):
class Dog extends FourLeggedAnimal with Animal {

5.3. Setting Default Values for Method Parameters

Problem

You want to set default values for method parameters so the method
 can optionally be called without those parameters having to be
 assigned.

Solution

Specify the default value for parameters in the method signature.
 In the following code, the timeout
 field is assigned a default value of 5000, and the protocol field is given a default value of
 "http":
class Connection {
 def makeConnection(timeout: Int = 5000, protocol: = "http") {
 println("timeout = %d, protocol = %s".format(timeout, protocol))
 // more code here
 }
}
This method can now be called in the following ways:
c.makeConnection()
c.makeConnection(2000)
c.makeConnection(3000, "https")
The results are demonstrated in the REPL:
scala> val c = new Connection
c: Connection = Connection@385db088

scala> c.makeConnection()
timeout = 5000, protocol = http

scala> c.makeConnection(2000)
timeout = 2000, protocol = http

scala> c.makeConnection(3000, "https")
timeout = 3000, protocol = https
Note that empty parentheses are used in the first example.
 Attempting to call this method without parentheses results in an
 error:
scala> c.makeConnection
<console>:10: error: missing arguments for method makeConnection in Connection;
follow this method with `_' to treat it as a partially applied function
 c.makeConnection
 ^
The reason for this error is discussed in Recipe 9.6.
If you like to call methods with the names of the method
 parameters, the method makeConnection
 can also be called in these ways:
c.makeConnection(timeout=10000)
c.makeConnection(protocol="https")
c.makeConnection(timeout=10000, protocol="https")

Discussion

Just as with constructor parameters, you can provide default
 values for method arguments. Because you have provided defaults, the
 consumer of your method can either supply an argument to override the
 default or skip the argument, letting it use its default value.
Arguments are assigned from left to right, so the following call
 assigns no arguments and uses the default values for both timeout and protocol:
c.makeConnection()
This call sets timeout to
 2000 and leaves protocol to its default:
c.makeConnection(2000)
This call sets both the timeout
 and protocol:
c.makeConnection(3000, "https")
Note that you can’t set the protocol only with
 this approach, but as shown in the Solution, you can use a named
 parameter:
c.makeConnection(protocol="https")
If your method provides a mix of some fields that offer default
 values and others that don’t, list the fields that have default values
 last. To demonstrate the problem, the following example assigns a
 default value to the first argument and does not assign a default to the
 second argument:
class Connection {
 // intentional error
 def makeConnection(timeout: Int = 5000, protocol: String) {
 println("timeout = %d, protocol = %s".format(timeout, protocol))
 // more code here
 }
}
This code compiles, but you won’t be able to take advantage of the
 default, as shown in the REPL errors:
scala> c.makeConnection(1000)
<console>:10: error: not enough arguments for method makeConnection:
(timeout: Int, protocol: String)Unit.
Unspecified value parameter protocol.
 c.makeConnection(1000)
 ^

scala> c.makeConnection("https")
<console>:10: error: not enough arguments for method makeConnection:
(timeout: Int, protocol: String)Unit.
Unspecified value parameter protocol.
 c.makeConnection("https")
 ^
By changing the method so the first field doesn’t have a default
 and the last field does, the default method call can now be used:
class Connection {
 // corrected implementation
 def makeConnection(timeout: Int, protocol: String = "http") {
 println("timeout = %d, protocol = %s".format(timeout, protocol))
 // more code here
 }
}

scala> c.makeConnection(1000)
timeout = 1000, protocol = http

scala> c.makeConnection(1000, "https")
timeout = 1000, protocol = https

5.4. Using Parameter Names When Calling a Method

Problem

You prefer a coding style where you specify the method parameter
 names when calling a method.

Solution

The general syntax for calling a method with named parameters is
 this:
methodName(param1=value1, param2=value2, ...)
This is demonstrated in the following example.
Given this definition of a Pizza class:
class Pizza {
 var crustSize = 12
 var crustType = "Thin"
 def update(crustSize: Int, crustType: String) {
 this.crustSize = crustSize
 this.crustType = crustType
 }
 override def toString = {
 "A %d inch %s crust pizza.".format(crustSize, crustType)
 }
}
you can create a Pizza:
val p = new Pizza
You can then update the Pizza,
 specifying the field names and corresponding values when you call the
 update method:
p.update(crustSize = 16, crustType = "Thick")
This approach has the added benefit that you can place the fields
 in any order:
p.update(crustType = "Pan", crustSize = 14)

Discussion

You can confirm that this example works by running it in the Scala
 REPL:
scala> val p = new Pizza
p: Pizza = A 12 inch Thin crust pizza.

scala> p.updatePizza(crustSize = 16, crustType = "Thick")

scala> println(p)
A 16 inch Thick crust pizza.

scala> p.updatePizza(crustType = "Pan", crustSize = 14)

scala> println(p)
A 14 inch Pan crust pizza.
The ability to use named parameters when calling a method is
 available in other languages, including Objective-C. Although this
 approach is more verbose, it can also be more readable.
This technique is especially useful when several parameters have
 the same type, such as having several Boolean or String parameters in a method. For instance,
 compare this method call:
engage(true, true, true, false)
to this one:
engage(speedIsSet = true,
 directionIsSet = true,
 picardSaidMakeItSo = true,
 turnedOffParkingBrake = false)
When a method specifies default values for its parameters, as
 demonstrated in Recipe 5.3, you can use this
 approach to specify only the parameters you want to override.
For instance, the scala.xml.Utility object has a method named
 serialize that takes seven
 parameters. However, default values are defined for each parameter in
 the method declaration, so if you need to change only one parameter,
 such as whether you want comments stripped from the output, you need to
 specify only that one parameter, in addition to your XML node:
Utility.serialize(myNode, stripComments = true)
The combination of these two recipes makes for a powerful
 approach.

5.5. Defining a Method That Returns Multiple Items (Tuples)

Problem

You want to return multiple values from a method, but don’t want
 to wrap those values in a makeshift class.

Solution

Although you can return objects from methods just as in other OOP
 languages, Scala also lets you return multiple values from a method
 using tuples. First, define a method that returns a
 tuple:
def getStockInfo = {
 // other code here ...
 ("NFLX", 100.00, 101.00) // this is a Tuple3
}
Then call that method, assigning variable names to the expected
 return values:
val (symbol, currentPrice, bidPrice) = getStockInfo
Running this example in the REPL demonstrates how this
 works:
scala> val (symbol, currentPrice, bidPrice) = getStockInfo
symbol: java.lang.String = NFLX
currentPrice: Double = 100.0
bidPrice: Double = 101.0

Discussion

In Java, when it would be convenient to be able to return multiple
 values from a method, the typical workaround is to return those values
 in a one-off “wrapper” class. For instance, you might create a temporary
 wrapper class like this:
// java
public class StockInfo {
 String symbol;
 double currentPrice;
 double bidPrice;

 public StockInfo(String symbol, double currentPrice, double bidPrice) {
 this.symbol = symbol;
 this.currentPrice = currentPrice;
 this.bidPrice = bidPrice;
 }
}
Then you could return an instance of this class from a method,
 like this:
return new StockInfo("NFLX", 100.00, 101.00);
In Scala you don’t need to create a wrapper like this; you can
 just return the data as a tuple.
Working with tuples

In the example shown in the Solution, the getStockInfo method returned a tuple with
 three elements, so it is a Tuple3.
 Tuples can contain up to 22 variables and are implemented as Tuple1 through Tuple22 classes. As a practical matter, you
 don’t have to think about those specific classes; just create a new
 tuple by enclosing elements inside parentheses, as shown.
To demonstrate a Tuple2, if
 you wanted to return only two elements from a method, just put two
 elements in the parentheses:
def getStockInfo = ("NFLX", 100.00)

val (symbol, currentPrice) = getStockInfo
If you don’t want to assign variable names when calling the
 method, you can set a variable equal to the tuple the method returns,
 and then access the tuple values using the following tuple underscore
 syntax:
scala> val result = getStockInfo
x: (java.lang.String, Double, Double) = (NFLX,100.0)

scala> result._1
res0: java.lang.String = NFLX

scala> result._2
res1: Double = 100.0
As shown, tuple values can be accessed by position as result._1, result._2, and so on. Though this approach
 can be useful in some situations, your code will generally be clearer
 if you assign variable names to the values:
val (symbol, currentPrice) = getStockInfo

See Also

	The Tuple3
 class

	Recipe 10.27 for more tuple examples

5.6. Forcing Callers to Leave Parentheses off Accessor Methods

Problem

You want to enforce a coding style where getter/accessor methods
 can’t have parentheses when they are invoked.

Solution

Define your getter/accessor method without parentheses after the
 method name:
class Pizza {
 // no parentheses after crustSize
 def crustSize = 12
}
This forces consumers of your class to call crustSize without parentheses:
scala> val p = new Pizza
p: Pizza = Pizza@3a3e8692

// this fails because of the parentheses
scala> p.crustSize()
<console>:10: error: Int does not take parameters
 p.crustSize()
 ^

// this works
scala> p.crustSize
res0: Int = 12
Note
Coming from a Java background, I originally named this method
 getCrustSize, but the Scala
 convention is to drop “get” from methods like this, hence the method
 name crustSize.

Discussion

The recommended strategy for calling getter methods that have no
 side effects is to leave the parentheses off when calling the method. As
 stated in the Scala Style
 Guide:
Methods which act as accessors of any sort ... should be
 declared without parentheses, except if they have
 side effects.

According to the style guide, because a simple accessor method
 like crustSize does not have side
 effects, it should not be called with parentheses, and this recipe
 demonstrates how to enforce this convention.
Although this recipe shows how to force callers to leave
 parentheses off methods when calling simple getters, there is no way to
 force them to use parentheses for side-effecting methods. This is only a
 convention, albeit a convention that I like and use these days. Although
 it’s usually obvious that a method named printStuff is probably going to print some
 output, a little warning light goes off in my head when I see it called
 as printStuff() instead.
Side Effects
It’s said that a purely functional program has no side effects.
 So what is a side effect?
According to Wikipedia, a function is said to have a side effect
 “if, in addition to returning a value, it also modifies some state or
 has an observable interaction with calling functions or the outside
 world.”
Side effects include things like:
	Writing or printing output.

	Reading input.

	Mutating the state of a variable that was given as input,
 changing data in a data structure, or modifying the value of a
 field in an object.

	Throwing an exception, or stopping the application when an
 error occurs.

	Calling other functions that have side effects.

In theory, pure functions are much easier to test. Imagine
 writing an addition function, such as +. Given the two numbers 1 and 2,
 the result will always be 3. A pure
 function like this is a simple matter of (a) immutable data coming in,
 and (b) a result coming out; nothing else happens. Because a function
 like this has no side effects, it’s simple to test.
See Recipe 20.1, for more details on writing pure
 functions. Also, see the Wikipedia discussion on side effects in
 functional programming (FP) applications for more details and examples.

See Also

	The Scala Style Guide on
 naming conventions and parentheses

5.7. Creating Methods That Take Variable-Argument Fields

Problem

To make a method more flexible, you want to define a method
 parameter that can take a variable number of arguments, i.e., a varargs
 field.

Solution

Define a varargs field in your method
 declaration by adding a * character
 after the field type:
def printAll(strings: String*) {
 strings.foreach(println)
}
Given that method declaration, the printAll method can be called with zero or
 more parameters:
// these all work
printAll()
printAll("foo")
printAll("foo", "bar")
printAll("foo", "bar", "baz")
Use _* to adapt a sequence

As shown in the following example, you can use Scala’s _* operator to adapt a sequence (Array, List, Seq, Vector, etc.) so it can be used as an
 argument for a varargs field:
// a sequence of strings
val fruits = List("apple", "banana", "cherry")

// pass the sequence to the varargs field
printAll(fruits: _*)
If you come from a Unix background, it may be helpful to think
 of _* as a “splat” operator. This
 operator tells the compiler to pass each element of the sequence to
 printAll as a separate argument,
 instead of passing fruits as a
 single argument.

Discussion

When declaring that a method has a field that can contain a
 variable number of arguments, the varargs field must be the last field
 in the method signature. Attempting to define a field in a method
 signature after a varargs field is an error:
scala> def printAll(strings: String*, i: Int) {
 | strings.foreach(println)
 | }
<console>:7: error: *-parameter must come last
 def printAll(strings: String*, i: Int) {
 ^
As an implication of that rule, a method can have only one varargs
 field.
As demonstrated in the Solution, if a field is a varargs field,
 you don’t have to supply any arguments for it. For instance, in a method
 that has only one varargs field, you can call it with no
 arguments:
scala> def printAll(numbers: Int*) {
 | numbers.foreach(println)
 | }
printAll: (numbers: Int*)Unit

scala> printAll()
This case reveals some of the inner workings of how Scala handles
 varargs fields. By defining a varargs method that can take multiple
 integers, and then calling that method (a) with arguments, and (b)
 without arguments, you can see how Scala handles the two
 situations:
def printAll(numbers: Int*) {
 println(numbers.getClass)
}

scala> printAll(1, 2, 3)
class scala.collection.mutable.WrappedArray$ofInt

scala> printAll()
class scala.collection.immutable.Nil$
While the first situation reveals how Scala handles the normal
 “one or more arguments” situation, treating the “no args” situation as a
 Nil$ in the second situation keeps
 your code from throwing a
 NullPointerException.
Although the resulting types are different, as a practical matter,
 this isn’t too important. You’ll typically use a loop inside a method to
 handle a varargs field, and either of the following examples work fine
 whether the method is called with zero or multiple parameters:
// version 1
def printAll(numbers: Int*) {
 numbers.foreach(println)
}

// version 2
def printAll(numbers: Int*) {
 for (i <- numbers) println
}

5.8. Declaring That a Method Can Throw an Exception

Problem

You want to declare that a method can throw an exception, either
 to alert callers to this fact or because your method will be called from
 Java code.

Solution

Use the @throws annotation to
 declare the exception(s) that can be thrown. To declare that one
 exception can be thrown, place the annotation just before the method
 signature:
@throws(classOf[Exception])
override def play {
 // exception throwing code here ...
}
To indicate that a method can throw multiple exceptions, list them
 all before the method signature:
@throws(classOf[IOException])
@throws(classOf[LineUnavailableException])
@throws(classOf[UnsupportedAudioFileException])
def playSoundFileWithJavaAudio {
 // exception throwing code here ...
}

Discussion

The two examples shown are from an open source project I created
 that lets developers play WAV, AIFF, MP3, and other types of sound
 files. I declared that these two methods can throw exceptions for two
 reasons. First, whether the consumers are using Scala or Java, if
 they’re writing robust code, they’ll want to know that something
 failed.
Second, if they’re using Java, the @throws annotation is the Scala way of
 providing the throws method signature
 to Java consumers. It’s equivalent to declaring that a method throws an
 exception with this Java syntax:
public void play() throws FooException {
 // code here ...
}
It’s important to note that Scala’s philosophy regarding checked
 exceptions is different than Java’s. Scala doesn’t require that methods
 declare that exceptions can be thrown, and it also doesn’t require
 calling methods to catch them. This is easily demonstrated in the
 REPL:
// 1) it's not necessary to state that a method throws an exception
scala> def boom {
 | throw new Exception
 | }
boom: Unit

// 2) it's not necessary to wrap 'boom' in a try/catch block, but ...
scala> boom
java.lang.Exception
 at .boom(<console>:8)
 // much more exception output here ...
Although Scala doesn’t require that exceptions are checked, if you
 fail to test for them, they’ll blow up your code just like they do in
 Java. In the following example, the second println statement is never reached because the
 boom method throws its
 exception:
object BoomTest extends App {

 def boom { throw new Exception }

 println("Before boom")

 boom

 // this line is never reached
 println("After boom")

}
Java Exception Types
As a quick review, Java has (a) checked exceptions, (b)
 descendants of Error, and (c) descendants of RuntimeException. Like checked exceptions,
 Error and RuntimeException have many subclasses, such
 as RuntimeException’s famous
 offspring, NullPointerException.
According to the Java documentation for the Exception
 class, “The class Exception
 and any subclasses that are not also subclasses of RuntimeException are checked exceptions.
 Checked exceptions need to be declared in a method or constructor’s
 throws clause if they can be thrown by the execution of the method or
 constructor and propagate outside the method or constructor
 boundary.”
The following links provide more information on Java exceptions
 and exception handling:
	The Three Kinds of (Java)
 Exceptions

	Unchecked Exceptions—The
 Controversy

	Wikipedia discussion of
 checked exceptions

	Java tutorial on
 exception handling

	Java
 Exception class

See Also

	Recipe 17.2, for other examples of adding exception
 annotations to methods

5.9. Supporting a Fluent Style of Programming

Problem

You want to create an API so developers can write code in a fluent programming style, also known
 as method chaining.

Solution

A fluent style of programming lets users of your API write code by
 chaining method calls together, as in this example:
person.setFirstName("Leonard")
 .setLastName("Nimoy")
 .setAge(82)
 .setCity("Los Angeles")
 .setState("California")
To support this style of programming:
	If your class can be extended, specify this.type as the return type of fluent
 style methods.

	If you’re sure that your class won’t be extended, you can
 optionally return this from your
 fluent style methods.

The following code demonstrates how to specify this.type as the return type of the set* methods:
class Person {

 protected var fname = ""
 protected var lname = ""

 def setFirstName(firstName: String): this.type = {
 fname = firstName
 this
 }

 def setLastName(lastName: String): this.type = {
 lname = lastName
 this
 }

}

class Employee extends Person {

 protected var role = ""

 def setRole(role: String): this.type = {
 this.role = role
 this
 }
 override def toString = {
 "%s, %s, %s".format(fname, lname, role)
 }

}
The following test object demonstrates how these methods can be
 chained together:
object Main extends App {

 val employee = new Employee

 // use the fluent methods
 employee.setFirstName("Al")
 .setLastName("Alexander")
 .setRole("Developer")
 println(employee)

}

Discussion

If you’re sure your class won’t be extended, specifying this.type as the return type of your set* methods isn’t necessary; you can just
 return the this reference at the end
 of each fluent style method. This is shown in the addTopping, setCrustSize, and setCrustType methods of the following Pizza class, which is declared to be final:
final class Pizza {

 import scala.collection.mutable.ArrayBuffer

 private val toppings = ArrayBuffer[String]()
 private var crustSize = 0
 private var crustType = ""

 def addTopping(topping: String) = {
 toppings += topping
 this
 }

 def setCrustSize(crustSize: Int) = {
 this.crustSize = crustSize
 this
 }

 def setCrustType(crustType: String) = {
 this.crustType = crustType
 this
 }

 def print() {
 println(s"crust size: $crustSize")
 println(s"crust type: $crustType")
 println(s"toppings: $toppings")
 }

}
This class is demonstrated with the following driver
 program:
object FluentPizzaTest extends App {

 val p = new Pizza
 p.setCrustSize(14)
 .setCrustType("thin")
 .addTopping("cheese")
 .addTopping("green olives")
 .print()

}
This results in the following output:
crust size: 14
crust type: thin
toppings: ArrayBuffer(cheese, green olives)
Returning this in your methods
 works fine if you’re sure your class won’t be extended, but if your
 class can be extended—as in the first example where the Employee class extended the Person class—explicitly setting this.type as the return type of your set* methods ensures that the fluent style
 will continue to work in your subclasses. In this example, this makes
 sure that methods like setFirstName
 on an Employee object return an
 Employee reference and not a Person reference.

See Also

	Definition of a fluent
 interface

	Method
 chaining

	Martin Fowler’s discussion of a fluent
 interface

Chapter 6. Objects

Introduction

The word “object” has a dual meaning in Scala. As with Java, you use
 it to refer to an instance of a class, but in Scala, object is also a keyword.
The first three recipes in this chapter look at an object as an
 instance of a class, show how to cast objects from one type to another,
 demonstrate the Scala equivalent of Java’s .class approach, and show how to determine the
 class of an object.
The remaining recipes demonstrate how the object keyword is used for other purposes.
 You’ll see how to use it to launch Scala applications and to create
 Singletons. There’s also a special type of object known as a
 package object. Using a package object is entirely
 optional, but it provides a nice little out-of-the-way place where you can
 put code that’s common to all classes and objects in a particular package
 level in your application. For instance, Scala’s root-level package object
 contains many lines of code like this:
type Throwable = java.lang.Throwable
type Exception = java.lang.Exception
type Error = java.lang.Error

type Seq[+A] = scala.collection.Seq[A]
val Seq = scala.collection.Seq
Declaring those type definitions in Scala’s root package object
 helps to make the rest of the code a little bit cleaner, and also keeps
 these definitions from cluttering up other files.
You’ll also see how to create a companion
 object to solve several problems. For instance, one use of a
 companion object is to create the equivalent of Java’s static members. You
 can also use a companion object so consumers of its corresponding class
 won’t need to use the new keyword to
 create an instance of the class. For example, notice how the new keyword isn’t required before each Person instance in this code:
val siblings = List(Person("Kim"), Person("Julia"), Person("Kenny"))
These solutions, and a few more, are presented in this
 chapter.

6.1. Object Casting

Problem

You need to cast an instance of a class from one type to another,
 such as when creating objects dynamically.

Solution

Use the asInstanceOf method to
 cast an instance to the desired type. In the following example, the
 object returned by the lookup method
 is cast to an instance of a class named Recognizer:
val recognizer = cm.lookup("recognizer").asInstanceOf[Recognizer]
This Scala code is equivalent to the following Java code:
Recognizer recognizer = (Recognizer)cm.lookup("recognizer");
The asInstanceOf method is
 defined in the Scala Any class and is
 therefore available on all objects.

Discussion

In dynamic programming, it’s often necessary to cast from one type
 to another. This approach is needed when using the Spring Framework and
 instantiating beans from an application context file:
// open/read the application context file
val ctx = new ClassPathXmlApplicationContext("applicationContext.xml")

// instantiate our dog and cat objects from the application context
val dog = ctx.getBean("dog").asInstanceOf[Animal]
val cat = ctx.getBean("cat").asInstanceOf[Animal]
It’s used when reading a YAML configuration file:
val yaml = new Yaml(new Constructor(classOf[EmailAccount]))
val emailAccount = yaml.load(text).asInstanceOf[EmailAccount]
The example shown in the Solution comes from code I wrote to work
 with an open source Java speech recognition library named Sphinx-4. With
 this library, many properties are defined in an XML file, and then you
 create recognizer and microphone objects dynamically. In a manner
 similar to Spring, this requires reading an XML configuration file, then
 casting instances to the specific types you want:
val cm = new ConfigurationManager("config.xml")

// instance of Recognizer
val recognizer = cm.lookup("recognizer").asInstanceOf[Recognizer]

// instance of Microphone
val microphone = cm.lookup("microphone").asInstanceOf[Microphone]
The asInstanceOf method isn’t
 limited to only these situations. You can use it to cast numeric
 types:
scala> val a = 10
a: Int = 10

scala> val b = a.asInstanceOf[Long]
b: Long = 10

scala> val c = a.asInstanceOf[Byte]
c: Byte = 10
It can be used in more complicated code, such as when you need to
 interact with Java and send it an array of Object instances:
val objects = Array("a", 1)
val arrayOfObject = objects.asInstanceOf[Array[Object]]
AJavaClass.sendObjects(arrayOfObject)
It’s demonstrated in Chapter 15 like
 this:
import java.net.{URL, HttpURLConnection}
val connection = (new URL(url)).openConnection.asInstanceOf[HttpURLConnection]
Be aware that as with Java, this type of coding can lead to a
 ClassCastException, as demonstrated
 in this REPL example:
scala> val i = 1
i: Int = 1

scala> i.asInstanceOf[String]
ClassCastException: java.lang.Integer cannot be cast to java.lang.String
As usual, use a try/catch
 expression to handle this situation.

See Also

	Recipe 2.2, for more numeric type casting
 recipes

	The Any class

	The Sphinx-4
 project

6.2. The Scala Equivalent of Java’s .class

Problem

When an API requires that you pass in a Class, you’d call .class on an object in Java, but that doesn’t
 work in Scala.

Solution

Use the Scala classOf method
 instead of Java’s .class. The
 following example shows how to pass a class of type TargetDataLine to a method named DataLine.Info:
val info = new DataLine.Info(classOf[TargetDataLine], null)
By contrast, the same method call would be made like this in
 Java:
// java
info = new DataLine.Info(TargetDataLine.class, null);
The classOf method is defined
 in the Scala Predef object and is
 therefore available in all classes without requiring an
 import.

Discussion

This approach also lets you begin with simple reflection
 techniques. The following REPL example demonstrates how to access the
 methods of the String
 class:
scala> val stringClass = classOf[String]
stringClass: Class[String] = class java.lang.String

scala> stringClass.getMethods
res0: Array[java.lang.reflect.Method] = Array(public boolean
java.lang.String.equals(java.lang.Object), public java.lang.String
(output goes on for a while ...)

See Also

	Oracle’s “Retrieving Class
 Objects” document

	The Scala Predef object

6.3. Determining the Class of an Object

Problem

Because you don’t have to explicitly declare types with Scala, you
 may occasionally want to print the class/type of an object to understand
 how Scala works, or to debug code.

Solution

When you want to learn about the types Scala is automatically
 assigning on your behalf, call the getClass method on the object.
For instance, when I was first trying to understand how varargs
 fields work, I called getClass on a
 method argument, and found that the class my method was receiving varied
 depending on the situation. Here’s the method declaration:
def printAll(numbers: Int*) {
 println("class: " + numbers.getClass)
}
Calling the printAll method
 with and without arguments demonstrates the two classes Scala assigns to
 the numbers field under the different conditions:
scala> printAll(1, 2, 3)
class scala.collection.mutable.WrappedArray$ofInt

scala> printAll()
class scala.collection.immutable.Nil$
This technique can be very useful when working with something like
 Scala’s XML library, so you can understand which classes you’re working
 with in different situations. For instance, the following example shows
 that the <p> tag contains one
 child element, which is of class scala.xml.Text:
scala> val hello = <p>Hello, world</p>
hello: scala.xml.Elem = <p>Hello, world</p>

scala> hello.child.foreach(e => println(e.getClass))
class scala.xml.Text
However, by adding a
 tag inside the <p> tags, there are now three child
 elements of two different types:
scala> val hello = <p>Hello,
world</p>
hello: scala.xml.Elem = <p>Hello,
world</p>

scala> hello.child.foreach(e => println(e.getClass))
class scala.xml.Text
class scala.xml.Elem
class scala.xml.Text
When you can’t see information like this in your IDE, using this
 getClass approach is very
 helpful.

Discussion

When I can’t see object types in an IDE, I write little tests like
 this in the REPL. The usual pattern is to call getClass on the object of interest, passing in
 different parameters to see how things work:
scala> def printClass(c: Any) { println(c.getClass) }
printClass: (c: Any)Unit

scala> printClass(1)
class java.lang.Integer

scala> printClass("yo")
class java.lang.String
In the first example shown in the Solution, the types Scala
 assigns to the number parameter don’t
 matter too much; it was more a matter of curiosity about how things
 work. The actual method looks like the following code, and for my
 purposes, the only important thing is that each class Scala uses
 supports a foreach method:
def printAll(numbers: Int*) {
 numbers.foreach(println)
}
As desired, this method can be called with and without
 parameters:
scala> printAll(1,2,3)
1
2
3

scala> printAll()
(no output)

6.4. Launching an Application with an Object

Problem

You want to start an application with a main method, or provide the entry point for a
 script.

Solution

There are two ways to create a launching point for your
 application: define an object that extends the App trait, or define an object with a properly
 defined main method.
For the first solution, define an object that
 extends the App trait. Using this
 approach, the following code creates a simple but complete Scala
 application:
object Hello extends App {
 println("Hello, world")
}
The code in the body of the object is
 automatically run, just as if it were inside a main method.
Just save that code to a file named Hello.scala, compile it with scalac, and then run it with scala, like this:
$ scalac Hello.scala

$ scala Hello
Hello, world
When using this approach, any command-line arguments to your
 application are implicitly available through an args object, which is inherited from the
 App trait. The args object is an instance of Array[String], just as if you had declared a
 main method yourself. The following
 code demonstrates how to use the args
 object:
object Hello extends App {
 if (args.length == 1)
 println(s"Hello, ${args(0)}")
 else
 println("I didn't get your name.")
}
After it’s been compiled, this program yields the following
 results:
$ scala Hello
I didn't get your name.

$ scala Hello Joe
Hello, Joe
The second approach to launching an application is to manually
 implement a main method with the
 correct signature in an object, in a
 manner similar to Java:
object Hello2 {
 def main(args: Array[String]) {
 println("Hello, world")
 }
}
This is also a simple but complete application.

Discussion

Note that in both cases, Scala applications are launched from an
 object, not a class.
I tend to use the App trait for
 both scripts and larger applications, but you can use either approach. I
 recommend reviewing the source code for the App trait to better understand what it
 performs. The source code is available from the URL in the See Also
 section.
The Scaladoc for the App trait
 currently includes two caveats:
	It should be noted that this trait is implemented using the
 DelayedInit functionality, which
 means that fields of the object will not have been initialized
 before the main method has been
 executed.

	It should also be noted that the main method will not normally need to be
 overridden: the purpose is to turn the whole class body into the
 “main method.” You should only choose to override it if you know
 what you are doing.

See the Scaladoc for the App
 and DelayedInit traits for more
 information.

See Also

	The App trait.

	The DelayedInit trait.

	The shell script examples in Chapter 14 demonstrate more examples of the
 App trait.

6.5. Creating Singletons with object

Problem

You want to create a Singleton object to ensure that only one
 instance of a class exists.

Solution

Create Singleton objects in Scala with the object keyword. For instance, you might create
 a Singleton object to represent something like a keyboard, mouse, or
 perhaps a cash register in a pizza restaurant:
object CashRegister {
 def open { println("opened") }
 def close { println("closed") }
}
With CashRegister defined as an
 object, there can be only one instance of it, and its methods are called
 just like static methods on a Java class:
object Main extends App {
 CashRegister.open
 CashRegister.close
}
This pattern is also common when creating utility methods, such as
 this DateUtils object:
import java.util.Calendar
import java.text.SimpleDateFormat

object DateUtils {

 // as "Thursday, November 29"
 def getCurrentDate: String = getCurrentDateTime("EEEE, MMMM d")

 // as "6:20 p.m."
 def getCurrentTime: String = getCurrentDateTime("K:m aa")

 // a common function used by other date/time functions
 private def getCurrentDateTime(dateTimeFormat: String): String = {
 val dateFormat = new SimpleDateFormat(dateTimeFormat)
 val cal = Calendar.getInstance()
 dateFormat.format(cal.getTime())
 }

}
Because these methods are defined in an object instead of a class,
 they can be called in the same way as a static method in Java:
scala> DateUtils.getCurrentTime
res0: String = 10:13 AM

scala> DateUtils.getCurrentDate
res1: String = Friday, July 6
Singleton objects also make great reusable messages when using
 actors. If you have a number of actors that can all receive start and
 stop messages, you can create Singletons like this:
case object StartMessage
case object StopMessage
You can then use those objects as messages that can be sent to
 actors:
inputValve ! StopMessage
outputValve ! StopMessage
See Chapter 13, Actors and Concurrency, for more examples of this
 approach.

Discussion

In addition to creating objects in this manner, you can give the
 appearance that a class has both static and nonstatic methods using an
 approach known as a “companion object.” See the following recipe for
 examples of that approach.

6.6. Creating Static Members with Companion Objects

Problem

You want to create a class that has instance methods and static
 methods, but unlike Java, Scala does not have a static keyword.

Solution

Define nonstatic (instance) members in your
 class, and define members that you want to appear
 as “static” members in an object that has the same
 name as the class, and is in the same file as the class. This object is
 known as a companion object.
Using this approach lets you create what appear to be static
 members on a class (both fields and methods), as shown in this
 example:
// Pizza class
class Pizza (var crustType: String) {
 override def toString = "Crust type is " + crustType
}

// companion object
object Pizza {
 val CRUST_TYPE_THIN = "thin"
 val CRUST_TYPE_THICK = "thick"
 def getFoo = "Foo"
}
With the Pizza class and
 Pizza object defined in the same file
 (presumably named Pizza.scala),
 members of the Pizza object can be
 accessed just as static members of a Java class:
println(Pizza.CRUST_TYPE_THIN)
println(Pizza.getFoo)
You can also create a new Pizza
 instance and use it as usual:
var p = new Pizza(Pizza.CRUST_TYPE_THICK)
println(p)
Note
If you’re coming to Scala from a language other than Java,
 “static” methods in Java are methods that can be called directly on a
 class, without requiring an instance of the class. For instance,
 here’s an example of a method named increment in a Scala object named StringUtils:
object StringUtils {
 def increment(s: String) = s.map(c => (c + 1).toChar)
}
Because it’s defined inside an object (not a class), the
 increment method can be called
 directly on the StringUtils object,
 without requiring an instance of StringUtils to be created:
scala> StringUtils.increment("HAL")
res0: String = IBM
In fact, when an object is defined like this without a
 corresponding class, you can’t create an instance
 of it. This line of code won’t compile:
val utils = new StringUtils

Discussion

Although this approach is different than Java, the recipe is
 straightforward:
	Define your class and object in the same file, giving them the
 same name.

	Define members that should appear to be “static” in the
 object.

	Define nonstatic (instance) members in the class.

Accessing private members

It’s also important to know that a class and its companion
 object can access each other’s private members. In the following code,
 the “static” method double in the
 object can access the private variable secret of the class Foo:
class Foo {
 private val secret = 2
}

object Foo {
 // access the private class field 'secret'
 def double(foo: Foo) = foo.secret * 2
}

object Driver extends App {
 val f = new Foo
 println(Foo.double(f)) // prints 4
}
Similarly, in the following code, the instance member printObj can access the private field
 obj of the object Foo:
class Foo {
 // access the private object field 'obj'
 def printObj { println(s"I can see ${Foo.obj}") }
}

object Foo {
 private val obj = "Foo's object"
}

object Driver extends App {
 val f = new Foo
 f.printObj
}

6.7. Putting Common Code in Package Objects

Problem

You want to make functions, fields, and other code available at a
 package level, without requiring a class or object.

Solution

Put the code you want to make available to all classes within a
 package in a package object.
By convention, put your code in a file named package.scala in the directory where you want
 your code to be available. For instance, if you want your code to be
 available to all classes in the com.alvinalexander.myapp.model package, create
 a file named package.scala in the
 com/alvinalexander/myapp/model
 directory of your project.
In the package.scala source
 code, remove the word model from the
 end of the package statement, and use that name to declare the name of
 the package object. Including a blank line, the first three lines of
 your file will look like this:
package com.alvinalexander.myapp

package object model {
Now write the rest of your code as you normally would. The
 following example shows how to create a field, method, enumeration, and
 type definition in your package object:
package com.alvinalexander.myapp

package object model {

 // field
 val MAGIC_NUM = 42

 // method
 def echo(a: Any) { println(a) }

 // enumeration
 object Margin extends Enumeration {
 type Margin = Value
 val TOP, BOTTOM, LEFT, RIGHT = Value
 }

 // type definition
 type MutableMap[K, V] = scala.collection.mutable.Map[K, V]
 val MutableMap = scala.collection.mutable.Map
}
You can now access this code directly from within other classes,
 traits, and objects in the package com.alvinalexander.myapp.model as shown
 here:
package com.alvinalexander.myapp.model

object MainDriver extends App {

 // access our method, constant, and enumeration
 echo("Hello, world")
 echo(MAGIC_NUM)
 echo(Margin.LEFT)

 // use our MutableMap type (scala.collection.mutable.Map)
 val mm = MutableMap("name" -> "Al")
 mm += ("password" -> "123")
 for ((k,v) <- mm) printf("key: %s, value: %s\n", k, v)
}

Discussion

The most confusing part about package objects is where to put
 them, along with what their package and object names should be.
Where to put them isn’t too hard; by convention, create a file
 named package.scala in the
 directory where you want your code to be available. In the example
 shown, I want the package code to be available in the com.alvinalexander.myapp.model package, so I
 put the file package.scala in the
 com/alvinalexander/myapp/model source code
 directory:
+-- com
 +-- alvinalexander
 +-- myapp
 +-- model
 +-- package.scala
In regards to the first few lines of the package.scala source code, simply start with
 the usual name of the package:
package com.alvinalexander.myapp.model
Then take the name of the last package level (model) off that statement, leaving you with
 this:
package com.alvinalexander.myapp
Then use that name (model) as
 the name of your package object:
package object model {
As shown earlier, the first several lines of your package.scala file will look like
 this:
package com.alvinalexander.myapp

package object model {
The Scala package object
 documentation states, “Any kind of definition that you can put
 inside a class, you can also put at the top level of a package.” In my
 experience, package objects are a great place to put methods and
 functions that are common to the package, as well as constants,
 enumerations, and implicit conversions.
As described in the second page
 of the Scala package object documentation, “The standard Scala
 package also has its package object. Because scala._ is automatically imported into every
 Scala file, the definitions of this object are available without
 prefix.” If you create something like a StringBuilder or Range, you’re using this code.

See Also

Scala’s root package object is full of type aliases, like
 these:
type Throwable = java.lang.Throwable
type Exception = java.lang.Exception
type Error = java.lang.Error

type RuntimeException = java.lang.RuntimeException
type NullPointerException = java.lang.NullPointerException
type ClassCastException = java.lang.ClassCastException
Like the Predef object, its
 source code is worth looking at if you want to know more about how Scala
 works. You can find its source by following the “source” link on its
 Scaladoc page.
	An introduction to package
 objects

	The Scala package
 object

6.8. Creating Object Instances Without Using the new Keyword

Problem

You’ve seen that Scala code looks cleaner when you don’t always
 have to use the new keyword to create
 a new instance of a class, like this:
val a = Array(Person("John"), Person("Paul"))
So you want to know how to write your code to make your classes
 work like this.

Solution

There are two ways to do this:
	Create a companion object for your class, and define an
 apply method in the companion
 object with the desired constructor signature.

	Define your class as a case class.

You’ll look at both approaches next.
Creating a companion object with an apply method

To demonstrate the first approach, define a Person class and Person object in the same file. Define an
 apply method in the object that
 takes the desired parameters. This method is essentially the
 constructor of your class:
class Person {
 var name: String = _
}

object Person {
 def apply(name: String): Person = {
 var p = new Person
 p.name = name
 p
 }
}
Given this definition, you can create new Person instances without using the new keyword, as shown in these
 examples:
val dawn = Person("Dawn")
val a = Array(Person("Dan"), Person("Elijah"))
The apply method in a
 companion object is treated specially by the Scala compiler and lets
 you create new instances of your class without requiring the new keyword. (More on this in the
 Discussion.)

Declare your class as a case class

The second solution to the problem is to declare your class as a
 case class, defining it with the desired
 constructor:
case class Person (var name: String)
This approach also lets you create new class instances without
 requiring the new keyword:
val p = Person("Fred Flinstone")
With case classes, this works because the case class generates
 an apply method in a companion
 object for you. However, it’s important to know that a case class
 creates much more code for you than just the
 apply method. This is discussed in
 depth in the Discussion.

Discussion

An apply method defined in the
 companion object of a class is treated specially by the Scala compiler.
 There is essentially a little syntactic sugar baked into Scala that
 converts this code:
val p = Person("Fred Flinstone")
into this code:
val p = Person.apply("Fred Flinstone")
The apply method is basically a
 factory method, and Scala’s little bit of syntactic sugar lets you use
 the syntax shown, creating new class instances without using the
 new keyword.
Providing multiple constructors with additional apply
 methods

To create multiple constructors when manually defining your own
 apply method, just define multiple
 apply methods in the companion
 object that provide the constructor signatures you want:
class Person {
 var name = ""
 var age = 0
}

object Person {

 // a one-arg constructor
 def apply(name: String): Person = {
 var p = new Person
 p.name = name
 p
 }

 // a two-arg constructor
 def apply(name: String, age: Int): Person = {
 var p = new Person
 p.name = name
 p.age = age
 p
 }
}
You can now create a new Person instance in these ways:
val fred = Person("Fred")
val john = Person("John", 42)
I’m using the term “constructor” loosely here, but each apply method does define a different way to
 construct an instance.

Providing multiple constructors for case classes

To provide multiple constructors for a case class, it’s
 important to know what the case
 class declaration actually does.
If you look at the code the Scala compiler generates for the
 case class example, you’ll see that see it creates two output files,
 Person$.class and Person.class. If you disassemble Person$.class with the javap command, you’ll see that it contains
 an apply method, along with many
 others:
$ javap Person$
Compiled from "Person.scala"
public final class Person$ extends scala.runtime.AbstractFunction1
implements scala.ScalaObject,scala.Serializable{
 public static final Person$ MODULE$;
 public static {};
 public final java.lang.String toString();
 public scala.Option unapply(Person);
 public Person apply(java.lang.String); // the apply method (returns a Person)
 public java.lang.Object readResolve();
 public java.lang.Object apply(java.lang.Object);
}
You can also disassemble Person.class to see what it contains. For a
 simple class like this, it contains an additional 20 methods; this
 hidden bloat is one reason some developers don’t like case
 classes.
Note
See Recipe 4.14, for a thorough discussion of what code
 is generated for case classes, and why.

Note that the apply method in
 the disassembled code accepts one String argument:
public Person apply(java.lang.String);
That String corresponds to
 the name field in your case class
 constructor:
case class Person (var name: String)
So, it’s important to know that when a case class is created, it
 writes the accessor and (optional) mutator methods
 only for the default constructor. As a result,
 (a) it’s best to define all class parameters in the default
 constructor, and (b) write apply
 methods for the auxiliary constructors you want.
This is demonstrated in the following code, which I place in a
 file named Person.scala:
// want accessor and mutator methods for the name and age fields
case class Person (var name: String, var age: Int)

// define two auxiliary constructors
object Person {

 def apply() = new Person("<no name>", 0)
 def apply(name: String) = new Person(name, 0)

}
Because name and age are declared as var fields, accessor and mutator methods
 will both be generated. Also, two apply methods are declared in the object: a
 no-args constructor, and a one-arg constructor.
As a result, you can create instances of your class in three
 different ways, as demonstrated in the following code:
object Test extends App {

 val a = Person()
 val b = Person("Al")
 val c = Person("William Shatner", 82)

 println(a)
 println(b)
 println(c)

 // test the mutator methods
 a.name = "Leonard Nimoy"
 a.age = 82
 println(a)
}
Running this test object results in the following output:
Person(<no name>,0)
Person(Al,0)
Person(William Shatner,82)
Person(Leonard Nimoy,82)
For more information on case classes, see Recipe 4.14.

6.9. Implement the Factory Method in Scala with apply

Problem

To let subclasses declare which type of object should be created,
 and to keep the object creation point in one location, you want to
 implement the factory method in Scala.

Solution

One approach to this problem is to take advantage of how a Scala
 companion object’s apply method
 works. Rather than creating a “get” method for your factory, you can
 place the factory’s decision-making algorithm in the apply method.
For instance, suppose you want to create an Animal factory that returns instances of
 Cat and Dog classes, based on what you ask for. By
 writing an apply method in the
 companion object of an Animal class,
 users of your factory can create new Cat and Dog
 instances like this:
val cat = Animal("cat") // creates a Cat
val dog = Animal("dog") // creates a Dog
To implement this behavior, create a parent Animal trait:
trait Animal {
 def speak
}
In the same file, create (a) a companion object, (b) the classes
 that extend the base trait, and (c) a suitable apply method:
object Animal {

 private class Dog extends Animal {
 override def speak { println("woof") }
 }

 private class Cat extends Animal {
 override def speak { println("meow") }
 }

 // the factory method
 def apply(s: String): Animal = {
 if (s == "dog") new Dog
 else new Cat
 }
}
This lets you run the desired code:
val cat = Animal("cat") // returns a Cat
val dog = Animal("dog") // returns a Dog
You can test this by pasting the Animal trait and object into the REPL, and
 then issuing these statements:
scala> val cat = Animal("cat")
cat: Animal = Animal$Cat@486f8860

scala> cat.speak
meow

scala> val dog = Animal("dog")
dog: Animal = Animal$Dog@412798c1

scala> dog.speak
woof
As you can see, this approach works as desired.

Discussion

You have a variety of ways to implement this solution, so
 experiment with different approaches, in particular how you want to make
 the Cat and Dog classes accessible. The idea of the
 factory method is to make sure that concrete instances can only be
 created through the factory; therefore, the class constructors should be
 hidden from all other classes. The code here shows one possible solution
 to this problem.
If you don’t like using the apply method as the factory interface, you can
 create the usual “get” method in the companion object, as shown in the
 getAnimal method here:
// an alternative factory method (use one or the other)
def getAnimal(s: String): Animal = {
 if (s == "dog") return new Dog
 else return new Cat
}
Using this method instead of the apply method, you now create new Animal instances like this:
val cat = Animal.getAnimal("cat") // returns a Cat
val dog = Animal.getAnimal("dog") // returns a Dog
Either approach is fine; consider this recipe as a springboard for
 your own solution.

See Also

	Recipe 6.8 for
 more examples of implementing the apply method

Chapter 7. Packaging and Imports

Introduction

Scala’s packaging approach is similar to Java, but it’s more
 flexible. In addition to using the package statement at the top of a class file,
 you can use a curly brace packaging style, similar to C++ and C#
 namespaces.
The Scala approach to importing members is also similar to Java, and
 more flexible. With Scala you can:
	Place import statements anywhere

	Import classes, packages, or objects

	Hide and rename members when you import them

All of these approaches are demonstrated in this chapter.
It’s helpful to know that in Scala, two packages are implicitly
 imported for you:
	java.lang._

	scala._

In Scala, the _ character is
 similar to the * character in Java, so
 these statements refer to every member in those packages.
In addition to those packages, all members from the scala.Predef object are imported into your
 applications implicitly.
A great suggestion from the book Beginning
 Scala by David Pollak (Apress), is to dig into the source code
 of the Predef
 object. The code isn’t too long, and it demonstrates many of the
 features of the Scala language. Many implicit conversions are brought into scope by the
 Predef object, as well as methods like
 println, readLine, assert, and require.

7.1. Packaging with the Curly Braces Style Notation

Problem

You want to use a nested style package notation, similar to the
 namespace notation in C++ and C#.

Solution

Wrap one or more classes in a set of curly braces with a package
 name, as shown in this example:
package com.acme.store {
 class Foo { override def toString = "I am com.acme.store.Foo" }
}
The canonical name of the class is com.acme.store.Foo. It’s just as though you
 declared the code like this:
package com.acme.store

class Foo { override def toString = "I am com.acme.store.Foo" }
With this approach, you can place multiple packages in one file.
 You can also nest packages using this “curly braces” style.
The following example creates three Foo classes, all of which are in different
 packages, to demonstrate how to include one package inside
 another:
// a package containing a class named Foo
package orderentry {
 class Foo { override def toString = "I am orderentry.Foo" }
}

// one package nested inside the other
package customers {
 class Foo { override def toString = "I am customers.Foo" }

 package database {
 // this Foo is different than customers.Foo or orderentry.Foo
 class Foo { override def toString = "I am customers.database.Foo" }
 }
}

// a simple object to test the packages and classes
object PackageTests extends App {
 println(new orderentry.Foo)
 println(new customers.Foo)
 println(new customers.database.Foo)
}
If you place this code in a file, and then compile and run it,
 you’ll get the following output:
I am orderentry.Foo
I am customers.Foo
I am customers.database.Foo
This demonstrates that each Foo
 class is indeed in a different package.
As shown in the first example, package names don’t have to be
 limited to just one level. You can define multiple levels of depth at
 one time:
package com.alvinalexander.foo {
 class Foo { override def toString = "I am com.alvinalexander.foo.Foo" }
}

Discussion

You can create Scala packages with the usual Java practice of
 declaring a package name at the top of the file:
package foo.bar.baz

class Foo {
 override def toString = "I'm foo.bar.baz.Foo"
}
In most cases, I use this packaging approach, but because Scala
 code can be much more concise than Java, the alternative curly brace
 packaging syntax can be very convenient when you want to declare
 multiple classes and packages in one file.

7.2. Importing One or More Members

Problem

You want to import one or more members into the scope of your
 current program.

Solution

This is the syntax for importing one class:
import java.io.File
You can import multiple classes the Java way:
import java.io.File
import java.io.IOException
import java.io.FileNotFoundException
Or you can import several classes the Scala way:
import java.io.{File, IOException, FileNotFoundException}
Use the following syntax to import everything from the java.io package:
import java.io._
The _ character in this example
 is similar to the * wildcard
 character in Java. If the _ character
 feels unusual, it helps to know that it’s used consistently throughout
 the Scala language as a wildcard character, and that consistency is very
 nice.

Discussion

The concept of importing code into the current scope is similar
 between Java and Scala, but Scala is more flexible. Scala lets
 you:
	Place import statements anywhere, including the top of a
 class, within a class or object, within a method, or within a block
 of code

	Import classes, packages, or objects

	Hide and rename members when you import them

Syntactically, the two big differences are the curly brace syntax,
 known as the import selector clause, and the use of
 the _ wildcard character instead of
 Java’s * wildcard. The advantages of
 the import selector clause are demonstrated further in Recipes 7.3
 and 7.4.
Placing import statements anywhere

In Scala you can place an import statement anywhere. For
 instance, because Scala makes it easy to include multiple classes in
 the same file, you may want to separate your import statements so the
 common imports are declared at the top of the file, and the imports
 specific to each class are within each class specification:
package foo

import java.io.File
import java.io.PrintWriter

class Foo {
 import javax.swing.JFrame // only visible in this class
 // ...
}

class Bar {
 import scala.util.Random // only visible in this class
 // ...
}
You can also place import statements inside methods, functions,
 or blocks:
class Bar {
 def doBar = {
 import scala.util.Random
 println("")
 }
}
See Recipe 7.6, for more examples and details about the
 use of import statements.

7.3. Renaming Members on Import

Problem

You want to rename members when you import them to help avoid
 namespace collisions or confusion.

Solution

Give the class you’re importing a new name when you import it with
 this syntax:
import java.util.{ArrayList => JavaList}
Then, within your code, refer to the class by the alias you’ve
 given it:
val list = new JavaList[String]
You can also rename multiple classes at one time during the import
 process:
import java.util.{Date => JDate, HashMap => JHashMap}
Because you’ve created these aliases during the import process,
 the original (real) name of the class can’t be used in your code. For
 instance, in the last example, the following code will fail because the
 compiler can’t find the java.util.HashMap class:
// error: this won't compile because HashMap was renamed
// during the import process
val map = new HashMap[String, String]

Discussion

As shown, you can create a new name for a class when you import
 it, and can then refer to it by the new name, or alias. The book
 Programming in Scala, by Odersky, et al (Artima).
 The book refers to this as a renaming
 clause.
This can be very helpful when trying to avoid namespace collisions
 and confusion. Class names like Listener, Message, Handler, Client, Server, and many more are all very common, and
 it can be helpful to give them an alias when you import them.
From a strategy perspective, you can either rename all classes
 that might be conflicting or confusing:
import java.util.{HashMap => JavaHashMap}
import scala.collection.mutable.{Map => ScalaMutableMap}
or you can just rename one class to clarify the situation:
import java.util.{HashMap => JavaHashMap}
import scala.collection.mutable.Map
As an interesting combination of several recipes, not only can you
 rename classes on import, but you can even rename class members. As an
 example of this, in shell scripts I tend to rename the println method to a shorter name, as shown
 here in the REPL:
scala> import System.out.{println => p}
import System.out.{println=>p}

scala> p("hello")
hello

7.4. Hiding a Class During the Import Process

Problem

You want to hide one or more classes while importing other members
 from the same package.

Solution

To hide a class during the import process, use the renaming syntax
 shown in Recipe 7.3, but point the class name to the _ wildcard character. The following example
 hides the Random class, while
 importing everything else from the java.util package:
import java.util.{Random => _, _}
This can be confirmed in the REPL:
scala> import java.util.{Random => _, _}
import java.util.{Random=>_, _}

// can't access Random
scala> val r = new Random
<console>:10: error: not found: type Random
 val r = new Random
 ^

// can access other members
scala> new ArrayList
res0: java.util.ArrayList[Nothing] = []
In that example, the following portion of the code is what “hides”
 the Random class:
import java.util.{Random => _}
The second _ character inside
 the curly braces is the same as stating that you want to import
 everything else in the package, like this:
import java.util._
Note that the _ import wildcard
 must be in the last position. It yields an error if you attempt to use
 it in other positions:
scala> import java.util.{_, Random => _}
<console>:1: error: Wildcard import must be in last position
 import java.util.{_, Random => _}
 ^
This is because you may want to hide multiple members during the
 import process, and to do, so you need to list them first.
To hide multiple members, list them before using the final
 wildcard import:
scala> import java.util.{List => _, Map => _, Set => _, _}
import java.util.{List=>_, Map=>_, Set=>_, _}

scala> new ArrayList
res0: java.util.ArrayList[Nothing] = []
This ability to hide members on import is useful when you need
 many members from one package, and therefore want to use the _ wildcard syntax, but you also want to hide
 one or more members during the import process, typically due to naming
 conflicts.

7.5. Using Static Imports

Problem

You want to import members in a way similar to the Java static
 import approach, so you can refer to the member names directly, without
 having to prefix them with their class name.

Solution

Use this syntax to import all members of the Java Math class:
import java.lang.Math._
You can now access these members without having to precede them
 with the class name:
scala> import java.lang.Math._
import java.lang.Math._

scala> val a = sin(0)
a: Double = 0.0

scala> val a = cos(PI)
a: Double = −1.0
The Java Color class also
 demonstrates the usefulness of this technique:
scala> import java.awt.Color._
import java.awt.Color._

scala> println(RED)
java.awt.Color[r=255,g=0,b=0]

scala> val currentColor = BLUE
currentColor: java.awt.Color = java.awt.Color[r=0,g=0,b=255]
Enumerations are another great candidate for this technique. Given
 a Java enum like this:
package com.alvinalexander.dates;

public enum Day {
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}
you can import and use this enumeration in a Scala program like
 this:
import com.alvinalexander.dates.Day._

// somewhere after the import statement
if (date == SUNDAY || date == SATURDAY) println("It's the weekend.")

Discussion

Although some developers don’t like static imports, I find that
 this approach makes enums more readable. Just specifying the name of a
 class or enum before the constant makes the code less readable:
if (date == Day.SUNDAY || date == Day.SATURDAY) {
 println("It's the weekend.")
}
With the static import approach there’s no need for the leading
 “Day.” in the code, and it’s easier
 to read.

7.6. Using Import Statements Anywhere

Problem

You want to use an import statement anywhere, generally to limit
 the scope of the import, to make the code more clear, or to organize
 your code.

Solution

You can place an import statement almost anywhere inside a
 program. As with Java, you can import members at the top of a class
 definition, and then use the imported resource later in your
 code:
package foo

import scala.util.Random

class ImportTests {
 def printRandom {
 val r = new Random
 }
}
You can import members inside a class:
package foo

class ImportTests {
 import scala.util.Random
 def printRandom {
 val r = new Random
 }
}
This limits the scope of the import to the code in the class that
 comes after the import statement.
You can limit the scope of an import to a method:
def getRandomWaitTimeInMinutes: Int = {
 import com.alvinalexander.pandorasbox._
 val p = new Pandora
 p.release
}
You can even place an import statement inside a block, limiting
 the scope of the import to only the code that follows the statement,
 inside that block. In the following example, the field r1 is declared correctly, because it’s within
 the block and after the import statement, but the declaration for field
 r2 won’t compile, because the
 Random class is not in scope at that
 point:
def printRandom {
 {
 import scala.util.Random
 val r1 = new Random // this is fine
 }
 val r2 = new Random // error: not found: type Random
}

Discussion

Import statements are read in the order of the file, so where you
 place them in a file also limits their scope. The following code won’t
 compile because I attempt to reference the Random class before the import statement is
 declared:
// this doesn't work because the import is after the attempted reference
class ImportTests {
 def printRandom {
 val r = new Random // fails
 }
}
import scala.util.Random
When you want to include multiple classes and packages in one
 file, you can combine import statements and the curly brace packaging
 approach to limit the scope of the import statements, as shown in these
 examples:
package orderentry {
 import foo._
 // more code here ...
}

package customers {
 import bar._
 // more code here ...

 package database {
 import baz._
 // more code here ...
 }
}
In this example, members can be accessed as follows:
	Code in the orderentry
 package can access members of foo, but can’t access members of bar or baz.

	Code in customers and
 customers.database can’t access
 members of foo.

	Code in customers can
 access members of bar.

	Code in customers.database
 can access members in bar and
 baz.

The same concept applies when defining multiple classes in one
 file:
package foo

// available to all classes defined below
import java.io.File
import java.io.PrintWriter

class Foo {
 // only available inside this class
 import javax.swing.JFrame
 // ...
}

class Bar {
 // only available inside this class
 import scala.util.Random
 // ...
}
Although placing import statements at the top of a file or just
 before they’re used can be a matter of style, I find this flexibility to
 be useful when placing multiple classes or packages in one file. In
 these cases, it’s nice to keep the imports in a small scope to limit
 namespace issues, and also to make the code easier to refactor as it
 grows.

Chapter 8. Traits

Introduction

In its most basic use, a Scala trait is just like a Java interface.
 When you’re faced with situations where you would have used an interface
 in Java, just think “trait” in Scala.
Just as Java classes can implement multiple interfaces, Scala
 classes can extend multiple traits. As you’ll see in the recipes in this
 chapter, this is done with the extends
 and with keywords, so when a class (or
 object) extends multiple traits, you’ll see code like this:
class Woodpecker extends Bird with TreeScaling with Pecking
However, using traits as interfaces only scratches the surface of
 what they can do. Traits have much more power than Java interfaces
 because, just like abstract methods in Java, they can also have
 implemented methods. However, unlike Java’s abstract classes, you can mix
 more than one trait into a class, and a trait can also control what
 classes it can be mixed into.
This chapter provides examples of the many uses of Scala
 traits.

8.1. Using a Trait as an Interface

Problem

You’re used to creating interfaces in other languages like Java
 and want to create something like that in Scala.

Solution

You can use a trait just like a Java interface. As with
 interfaces, just declare the methods in your trait that you want
 extending classes to implement:
trait BaseSoundPlayer {
 def play
 def close
 def pause
 def stop
 def resume
}
If the methods don’t take any argument, you only need to declare
 the names of the methods after the def keyword, as shown. If a method should
 require parameters, list them as usual:
trait Dog {
 def speak(whatToSay: String)
 def wagTail(enabled: Boolean)
}
When a class extends a trait, it uses the extends and with keywords. When extending one trait, use
 extends:
class Mp3SoundPlayer extends BaseSoundPlayer { ...
When extending a class and one or more traits, use extends for the class, and with for subsequent traits:
class Foo extends BaseClass with Trait1 with Trait2 { ...
When a class extends multiple traits, use extends for the first trait, and with for subsequent traits:
class Foo extends Trait1 with Trait2 with Trait3 with Trait4 { ...
Unless the class implementing a trait is abstract, it must
 implement all of the abstract trait methods:
class Mp3SoundPlayer extends BaseSoundPlayer {
 def play { // code here ... }
 def close { // code here ... }
 def pause { // code here ... }
 def stop { // code here ... }
 def resume { // code here ... }
}
If a class extends a trait but does not implement the abstract
 methods defined in that trait, it must be declared abstract:
// must be declared abstract because it does not implement
// all of the BaseSoundPlayer methods
abstract class SimpleSoundPlayer extends BaseSoundPlayer {
 def play { ... }
 def close { ... }
}
In other uses, one trait can extend another trait:
trait Mp3BaseSoundFilePlayer extends BaseSoundFilePlayer {
 def getBasicPlayer: BasicPlayer
 def getBasicController: BasicController
 def setGain(volume: Double)
}

Discussion

As demonstrated, at their most basic level, traits can be used
 just like Java interfaces. In your trait, just declare the methods that
 need to be implemented by classes that want to extend your trait.
Classes extend your trait using either the extends or with keywords, according to these simple
 rules:
	If a class extends one trait, use the extends keyword.

	If a class extends multiple traits, use extends for the first trait and with to extend (mix in) the other
 traits.

	If a class extends a class (or abstract class) and a trait,
 always use extends before the
 class name, and use with before
 the trait name(s).

You can also use fields in your traits. See the next recipe for
 examples.
As shown in the WaggingTail
 trait in the following example, not only can a trait be used like a Java
 interface, but it can also provide method implementations, like an
 abstract class in Java:
abstract class Animal {
 def speak
}

trait WaggingTail {
 def startTail { println("tail started") }
 def stopTail { println("tail stopped") }
}

trait FourLeggedAnimal {
 def walk
 def run
}

class Dog extends Animal with WaggingTail with FourLeggedAnimal {
 // implementation code here ...
 def speak { println("Dog says 'woof'") }
 def walk { println("Dog is walking") }
 def run { println("Dog is running") }
}
This ability is discussed in detail in Recipe 8.3.
When a class has multiple traits, such as the WaggingTail and FourLeggedAnimal traits in this example, those
 traits are said to be mixed in to the class. The
 term “mixed in” is also used when extending a single object instance
 with a trait, like this:
val f = new Foo with Trait1
This feature is discussed more in Recipe 8.8.

8.2. Using Abstract and Concrete Fields in Traits

Problem

You want to put abstract or concrete fields in your traits so they
 are declared in one place and available to all types that implement the
 trait.

Solution

Define a field with an initial value to make it
 concrete; otherwise, don’t assign it an initial
 value to make it abstract. This trait shows several
 examples of abstract and concrete fields with var and val
 types:
trait PizzaTrait {
 var numToppings: Int // abstract
 var size = 14 // concrete
 val maxNumToppings = 10 // concrete
}
In the class that extends the trait, you’ll need to define the
 values for the abstract fields, or make the class abstract. The
 following Pizza class demonstrates
 how to set the values for the numToppings and size fields in a concrete class:
class Pizza extends PizzaTrait {
 var numToppings = 0 // 'override' not needed
 size = 16 // 'var' and 'override' not needed
}

Discussion

As shown in the example, fields of a trait can be declared as
 either var or val. You don’t need to use the override keyword to override a var field in a subclass (or trait), but you do
 need to use it to override a val
 field:
trait PizzaTrait {
 val maxNumToppings: Int
}

class Pizza extends PizzaTrait {
 override val maxNumToppings = 10 // 'override' is required
}
Overriding var and val fields is discussed more in Recipe 4.13.

8.3. Using a Trait Like an Abstract Class

Problem

You want to use a trait as something like an abstract class in
 Java.

Solution

Define methods in your trait just like regular Scala methods. In
 the class that extends the trait, you can override those methods or use
 them as they are defined in the trait.
In the following example, an implementation is provided for the
 speak method in the Pet trait, so implementing classes don’t have
 to override it. The Dog class chooses
 not to override it, whereas the Cat
 class does:
trait Pet {
 def speak { println("Yo") } // concrete implementation
 def comeToMaster // abstract method
}

class Dog extends Pet {
 // don't need to implement 'speak' if you don't need to
 def comeToMaster { ("I'm coming!") }
}

class Cat extends Pet {
 // override the speak method
 override def speak { ("meow") }
 def comeToMaster { ("That's not gonna happen.") }
}
If a class extends a trait without implementing its abstract
 methods, it must be defined as abstract. Because FlyingPet does not implement comeToMaster, it must be declared as
 abstract:
abstract class FlyingPet extends Pet {
 def fly { ("I'm flying!") }
}

Discussion

Although Scala has abstract classes, it’s much more common to use
 traits than abstract classes to implement base behavior. A class can
 extend only one abstract class, but it can implement multiple traits, so
 using traits is more flexible.

See Also

	Like Java, you use super.foo to call a method named foo in an immediate superclass. When a
 class mixes in multiple traits—and those traits implement a method
 declared by a common ancestor—you can be more specific, and specify
 which trait you’d like to invoke a method on. See Recipe 5.2, for more information.

	See Recipe 4.12, for information on when to use an
 abstract class instead of a trait. (Spoiler: Use an abstract class
 (a) when you want to define a base behavior, and that behavior
 requires a constructor with parameters, and (b) in some situations
 when you need to interact with Java.)

8.4. Using Traits as Simple Mixins

Problem

You want to design a solution where multiple traits can be mixed
 into a class to provide a robust design.

Solution

To implement a simple mixin, define the
 methods you want in your trait, then add the trait to your class using
 extends or with. For instance, the following code defines
 a Tail trait:
trait Tail {
 def wagTail { println("tail is wagging") }
 def stopTail { println("tail is stopped") }
}
You can use this trait with an abstract Pet class to create a Dog:
abstract class Pet (var name: String) {
 def speak // abstract
 def ownerIsHome { println("excited") }
 def jumpForJoy { println("jumping for joy") }
}

class Dog (name: String) extends Pet (name) with Tail {
 def speak { println("woof") }
 override def ownerIsHome {
 wagTail
 speak
 }
}
The Dog class extends the
 abstract class Pet and mixes in the
 Tail trait, and can use the methods
 defined by both Pet and Tail:
object Test extends App {
 val zeus = new Dog("Zeus")
 zeus.ownerIsHome
 zeus.jumpForJoy
}
In summary, the Dog class gets
 behavior from both the abstract Pet
 class and the Tail trait; this is
 something you can’t do in Java.
Note
To see a great demonstration of the power of mixins, read
 Artima’s short “Stackable Trait
 Pattern” article. By defining traits and classes as
 base, core, and
 stackable components, they demonstrate how
 sixteen different classes can be derived from three traits by
 “stacking” the traits together.

See Also

When you develop traits, you may want to limit the classes they
 can be mixed into. The classes a trait can be mixed into can be limited
 using the following techniques:
	Recipe 8.5
 shows how to limit which classes can use a trait by declaring
 inheritance.

	Recipe 8.6
 shows how to mark traits so they can only be used by subclasses of a
 certain type.

	Recipe 8.7
 demonstrates the technique to use to make sure a trait can only be
 mixed into classes that have a specific method.

	Also, see Artima’s “Stackable Trait Pattern”
 article.

8.5. Limiting Which Classes Can Use a Trait by Inheritance

Problem

You want to limit a trait so it can only be added to classes that
 extend a superclass or another trait.

Solution

Use the following syntax to declare a trait named TraitName, where TraitName can only be mixed into classes that
 extend a type named SuperThing, where
 SuperThing may be a trait, class, or
 abstract class:
trait [TraitName] extends [SuperThing]
For instance, in the following example, Starship and StarfleetWarpCore both extend the common
 superclass StarfleetComponent, so the
 StarfleetWarpCore trait
 can be mixed into the Starship class:
class StarfleetComponent
trait StarfleetWarpCore extends StarfleetComponent
class Starship extends StarfleetComponent with StarfleetWarpCore
However, in the following example, the Warbird class can’t
 extend the StarfleetWarpCore trait,
 because Warbird and StarfleetWarpCore don’t share the same
 superclass:
class StarfleetComponent
trait StarfleetWarpCore extends StarfleetComponent
class RomulanStuff

// won't compile
class Warbird extends RomulanStuff with StarfleetWarpCore
Attempting to compile this second example yields this
 error:
error: illegal inheritance; superclass RomulanStuff
 is not a subclass of the superclass StarfleetComponent
 of the mixin trait StarfleetWarpCore
class Warbird extends RomulanStuff with StarfleetWarpCore
 ^

Discussion

A trait inheriting from a class is not a common occurrence, and in
 general, Recipes 8.6 and Recipe 8.7 are more commonly used to limit the
 classes a trait can be mixed into.
However, when this situation occurs, you can see how inheritance
 can be used. As long as a class and a trait share the same superclass
 (Starship and StarfleetWarpCore extend StarfleetComponent) the code will compile, but
 if the superclasses are different (Warbird and StarfleetWarpCore have different
 superclasses), the code will not compile.
As a second example, in modeling a large pizza store chain that
 has a corporate office and many small retail stores, the legal
 department creates a rule that people who deliver pizzas to customers
 must be a subclass of StoreEmployee
 and cannot be a subclass of CorporateEmployee. To enforce this, begin by
 defining your base classes:
abstract class Employee
class CorporateEmployee extends Employee
class StoreEmployee extends Employee
Someone who delivers food can only be a StoreEmployee, so you enforce this requirement
 in the DeliversFood trait using
 inheritance like this:
trait DeliversFood extends StoreEmployee
Now you can define a DeliveryPerson class like this:
// this is allowed
class DeliveryPerson extends StoreEmployee with DeliversFood
Because the DeliversFood trait
 can only be mixed into classes that extend StoreEmployee, the following line of code
 won’t compile:
// won't compile
class Receptionist extends CorporateEmployee with DeliversFood

Discussion

It seems rare that a trait and a class the trait will be mixed
 into should both have the same superclass, so I suspect the need for
 this recipe is also rare. When you want to limit the classes a trait can
 be mixed into, don’t create an artificial inheritance tree to use this
 recipe; use one of the following recipes instead.

See Also

	Recipe 8.6 to
 see how to mark traits so they can only be used by subclasses of a
 certain type

	Recipe 8.7 to
 make sure a trait can only be mixed into a class that has a specific
 method

8.6. Marking Traits So They Can Only Be Used by Subclasses of a Certain
 Type

Problem

You want to mark your trait so it can only be used by types that
 extend a given base type.

Solution

To make sure a trait named MyTrait can only be mixed into a class that is
 a subclass of a type named BaseType,
 begin your trait with a this: BaseType
 => declaration, as shown here:
trait MyTrait {
 this: BaseType =>
For instance, to make sure a StarfleetWarpCore can only be used in a
 Starship, mark the StarfleetWarpCore trait like this:
trait StarfleetWarpCore {
 this: Starship =>
 // more code here ...
}
Given that declaration, this code will work:
class Starship
class Enterprise extends Starship with StarfleetWarpCore
But other attempts like this will fail:
class RomulanShip
// this won't compile
class Warbird extends RomulanShip with StarfleetWarpCore
This second example fails with an error message similar to
 this:
error: illegal inheritance;
self-type Warbird does not conform to StarfleetWarpCore's selftype
StarfleetWarpCore with Starship
class Warbird extends RomulanShip with StarfleetWarpCore
 ^

Discussion

As shown in the error message, this approach is referred to as a
 self type. The Scala Glossary includes this
 statement as part of its description of a self type:
“Any concrete class that mixes in the trait must ensure that its
 type conforms to the trait’s self type.”

A trait can also require that any type that wishes to extend it
 must extend multiple other types. The following WarpCore definition requires that any type
 that wishes to mix it in must extend WarpCoreEjector and FireExtinguisher, in addition to extending
 Starship:
trait WarpCore {
 this: Starship with WarpCoreEjector with FireExtinguisher =>
}
Because the following Enterprise definition matches that signature,
 this code compiles:
class Starship
trait WarpCoreEjector
trait FireExtinguisher

// this works
class Enterprise extends Starship
 with WarpCore
 with WarpCoreEjector
 with FireExtinguisher
However, if the Enterprise
 doesn’t extend Starship, WarpCoreEjector, and FireExtinguisher, the code won’t compile. Once
 again, the compiler shows that the self-type signature is not
 correct:
// won't compile
class Enterprise extends Starship with WarpCore with WarpCoreEjector

error: illegal inheritance;
self-type Enterprise does not conform to WarpCore's selftype WarpCore
with Starship with WarpCoreEjector with FireExtinguisher

class Enterprise extends Starship with WarpCore with WarpCoreEjector
 ^

See Also

	Recipe 8.5
 shows how to limit which classes can use a trait by declaring
 inheritance

	Recipe 8.7
 demonstrates the technique to use to make sure a trait can only be
 mixed into classes that have a specific method

	The Scala
 Glossary

8.7. Ensuring a Trait Can Only Be Added to a Type That Has a Specific
 Method

Problem

You only want to allow a trait to be mixed into a type (class,
 abstract class, or trait) that has a method with a given
 signature.

Solution

Use a variation of the self-type syntax that lets you declare that
 any class that attempts to mix in the trait must implement the method
 you specify.
In the following example, the WarpCore trait requires that any classes that
 attempt to mix it in must have an ejectWarpCore method:
trait WarpCore {
 this: { def ejectWarpCore(password: String): Boolean } =>
}
It further states that the ejectWarpCore method must accept a String argument and return a Boolean value.
The following definition of the Enterprise class meets these requirements, and
 will therefore compile:
class Starship {
 // code here ...
}

class Enterprise extends Starship with WarpCore {
 def ejectWarpCore(password: String): Boolean = {
 if (password == "password") {
 println("ejecting core")
 true
 } else {
 false
 }
 }
}
A trait can also require that a class have multiple methods. To
 require more than one method, just add the additional method signatures
 inside the block:
trait WarpCore {
 this: {
 def ejectWarpCore(password: String): Boolean
 def startWarpCore: Unit
 } =>
}

class Starship

class Enterprise extends Starship with WarpCore {
 def ejectWarpCore(password: String): Boolean = {
 if (password == "password") { println("core ejected"); true } else false
 }
 def startWarpCore { println("core started") }
}

Discussion

This approach is known as a structural type,
 because you’re limiting what classes the trait can be mixed into by
 stating that the class must have a certain structure, i.e., the methods
 you’ve defined. In the examples shown, limits were placed on what
 classes the WarpCore trait can be
 mixed into.

See Also

	Recipe 8.5
 shows how to limit which classes can use a trait by declaring
 inheritance.

	Recipe 8.6
 shows how to mark traits so they can only be used by subclasses of a
 certain type.

8.8. Adding a Trait to an Object Instance

Problem

Rather than add a trait to an entire class, you just want to add a
 trait to an object instance when the object is created.

Solution

Add the trait to the object when you construct it. This is
 demonstrated in a simple example:
class DavidBanner

trait Angry {
 println("You won't like me ...")
}

object Test extends App {
 val hulk = new DavidBanner with Angry
}
When you compile and run this code, it will print, “You won’t like
 me ...”, because the hulk object is
 created when the DavidBanner class is
 instantiated with the Angry trait,
 which has the print statement shown in its constructor.

Discussion

As a more practical matter, you might mix in something like a
 debugger or logging trait when constructing an object to help debug that
 object:
trait Debugger {
 def log(message: String) {
 // do something with message
 }
}

// no debugger
val child = new Child

// debugger added as the object is created
val problemChild = new ProblemChild with Debugger
This makes the log method
 available to the problemChild
 instance.

8.9. Extending a Java Interface Like a Trait

Problem

You want to implement a Java interface in a Scala
 application.

Solution

In your Scala application, use the extends and with keywords to implement your Java
 interfaces, just as though they were Scala traits.
Given these three Java interfaces:
// java
public interface Animal {
 public void speak();
}

public interface Wagging {
 public void wag();
}

public interface Running {
 public void run();
}
you can create a Dog class in
 Scala with the usual extends and
 with keywords, just as though you
 were using traits:
// scala
class Dog extends Animal with Wagging with Running {
 def speak { println("Woof") }
 def wag { println("Tail is wagging!") }
 def run { println("I'm running!") }
}
The difference is that Java interfaces don’t implement behavior,
 so if you’re defining a class that extends a Java interface, you’ll need
 to implement the methods, or declare the class abstract.

Chapter 9. Functional Programming

Introduction

Scala is both an object-oriented programming (OOP) and a functional
 programming (FP) language. This chapter demonstrates functional
 programming techniques, including the ability to define functions and pass
 them around as instances. Just like you create a String instance in Java and pass it around, you
 can define a function as a variable and pass it around. I’ll demonstrate
 many examples and advantages of this capability in this chapter.
As a language that supports functional programming, Scala encourages
 an expression-oriented programming
 (EOP) model. Simply put, in EOP, every statement (expression)
 yields a value. This paradigm can be as obvious as an if/else
 statement returning a value:
val greater = if (a > b) a else b
It can also be as surprising as a try/catch
 statement returning a value:
val result = try {
 aString.toInt
} catch {
 case _ => 0
}
Although EOP is casually demonstrated in many examples in this book,
 it’s helpful to be consciously aware of this way of thinking in the
 recipes that follow.

9.1. Using Function Literals (Anonymous Functions)

Problem

You want to use an anonymous function—also known as a
 function literal—so you can pass it into a method
 that takes a function, or to assign it to a variable.

Solution

Given this List:
val x = List.range(1, 10)
you can pass an anonymous function to the List’s filter method to create a new List that contains only even
 numbers:
val evens = x.filter((i: Int) => i % 2 == 0)
The REPL demonstrates that this expression indeed yields a new
 List of even numbers:
scala> val evens = x.filter((i: Int) => i % 2 == 0)
evens: List[Int] = List(2, 4, 6, 8)
In this solution, the following code is a function literal (also
 known as an anonymous function):
(i: Int) => i % 2 == 0
Although that code works, it shows the most explicit form for
 defining a function literal. Thanks to several Scala shortcuts, the
 expression can be simplified to this:
val evens = x.filter(_ % 2 == 0)
In the REPL, you see that this returns the same result:
scala> val evens = x.filter(_ % 2 == 0)
evens: List[Int] = List(2, 4, 6, 8)

Discussion

In this example, the original function literal consists of the
 following code:
(i: Int) => i % 2 == 0
When examining this code, it helps to think of the => symbol as a
 transformer, because the expression transforms the
 parameter list on the left side of the symbol (an Int named i) into a new result using the algorithm on
 the right side of the symbol (in this case, an expression that results
 in a Boolean).
As mentioned, this example shows the long form for defining an
 anonymous function, which can be simplified in several different ways.
 The first example shows the most explicit form:
val evens = x.filter((i: Int) => i % 2 == 0)
Because the Scala compiler can infer from the expression that
 i is an Int, the Int declaration can be dropped off:
val evens = x.filter(i => i % 2 == 0)
Because Scala lets you use the _ wildcard instead of a variable name when the
 parameter appears only once in your function, this code can be
 simplified even more:
val evens = x.filter(_ % 2 == 0)
In other examples, you can simplify your anonymous functions
 further. For instance, beginning with the most explicit form, you can
 print each element in the list using this anonymous function with the
 foreach method:
x.foreach((i:Int) => println(i))
As before, the Int declaration
 isn’t required:
x.foreach((i) => println(i))
Because there is only one argument, the parentheses around the
 i parameter aren’t needed:
x.foreach(i => println(i))
Because i is used only once in
 the body of the function, the expression can be further simplified with
 the _ wildcard:
x.foreach(println(_))
Finally, if a function literal consists of one statement that
 takes a single argument, you need not explicitly name and specify the
 argument, so the statement can finally be reduced to this:
x.foreach(println)

9.2. Using Functions as Variables

Problem

You want to pass a function around like a variable, just like you
 pass String, Int, and other variables around in an
 object-oriented programming language.

Solution

Use the syntax shown in Recipe 9.1 to define a
 function literal, and then assign that literal to a variable.
The following code defines a function literal that takes an
 Int parameter and returns a value
 that is twice the amount of the Int
 that is passed in:
(i: Int) => { i * 2 }
As mentioned in Recipe 9.1, you can think of
 the => symbol as a
 transformer. In this case, the function transforms
 the Int value i to an Int
 value that is twice the value of i.
You can now assign that function literal to a variable:
val double = (i: Int) => { i * 2 }
The variable double is an
 instance, just like an instance of a String, Int, or other type, but in this case, it’s an
 instance of a function, known as a function value.
 You can now invoke double just like
 you’d call a method:
double(2) // 4
double(3) // 6
Beyond just invoking double
 like this, you can also pass it to any method (or function) that takes a
 function parameter with its signature. For instance, because the
 map method of a sequence is a generic
 method that takes an input parameter of type A and returns a type B, you can pass the double method into the map method of an Int sequence:
scala> val list = List.range(1, 5)
list: List[Int] = List(1, 2, 3, 4)

scala> list.map(double)
res0: List[Int] = List(2, 4, 6, 8)
Welcome to the world of functional programming.

Discussion

You can declare a function literal in at least two different ways.
 I generally prefer the following approach, which implicitly infers that
 the following function’s return type is Boolean:
val f = (i: Int) => { i % 2 == 0 }
In this case, the Scala compiler is smart enough to look at the
 body of the function and determine that it returns a Boolean value. As a human, it’s also easy to
 look at the code on the right side of the expression and see that it
 returns a Boolean, so I usually leave
 the explicit Boolean return type off
 the function declaration.
However, if you prefer to explicitly declare the return type of a
 function literal, or want to do so because your function is more
 complex, the following examples show different forms you can use to
 explicitly declare that your function returns a Boolean:
val f: (Int) => Boolean = i => { i % 2 == 0 }
val f: Int => Boolean = i => { i % 2 == 0 }
val f: Int => Boolean = i => i % 2 == 0
val f: Int => Boolean = _ % 2 == 0
A second example helps demonstrate the difference of these
 approaches. These functions all take two Int parameters and return a single Int value, which is the sum of the two input
 values:
// implicit approach
val add = (x: Int, y: Int) => { x + y }
val add = (x: Int, y: Int) => x + y

// explicit approach
val add: (Int, Int) => Int = (x,y) => { x + y }
val add: (Int, Int) => Int = (x,y) => x + y
As shown, the curly braces around the body of the function in
 these simple examples are optional, but they are required when the
 function body grows to more than one expression:
val addThenDouble: (Int, Int) => Int = (x,y) => {
 val a = x + y
 2 * a
}
Using a method like an anonymous function

Scala is very flexible, and just like you can define an
 anonymous function and assign it to a variable, you can also define a
 method and then pass it around like an instance variable. Again using
 a modulus example, you can define a method in any of these
 ways:
def modMethod(i: Int) = i % 2 == 0
def modMethod(i: Int) = { i % 2 == 0 }
def modMethod(i: Int): Boolean = i % 2 == 0
def modMethod(i: Int): Boolean = { i % 2 == 0 }
Any of these methods can be passed into collection methods that
 expect a function that has one Int
 parameter and returns a Boolean,
 such as the filter method of a
 List[Int]:
val list = List.range(1, 10)
list.filter(modMethod)
Here’s what that looks like in the REPL:
scala> def modMethod(i: Int) = i % 2 == 0
modMethod: (i: Int)Boolean

scala> val list = List.range(1, 10)
list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> list.filter(modMethod)
res0: List[Int] = List(2, 4, 6, 8)
As noted, this is similar to the process of defining a function
 literal and assigning it to a variable. The following function works
 just like the previous method:
val modFunction = (i: Int) => i % 2 == 0
list.filter(modFunction)
At a coding level, the obvious difference is that modMethod is a method
 defined in a class, whereas modFunction is a
 function that’s assigned to a variable. Under the
 covers, modFunction is an instance
 of the Function1 trait, which defines a function
 that takes one argument. (The scala
 package defines other similar traits, including Function0, Function2, and so on, up to Function22.)

Assigning an existing function/method to a function
 variable

Continuing our exploration, you can assign an existing method or
 function to a function variable. For instance, you can create a new
 function named c from the scala.math.cos method using either of these
 approaches:
scala> val c = scala.math.cos _
c: Double => Double = <function1>

scala> val c = scala.math.cos(_)
c: Double => Double = <function1>
This is called a partially applied
 function. It’s partially applied because the cos method requires one argument, which you
 have not yet supplied (more on this in Recipe 9.6).
Now that you have c, you can
 use it just like you would have used cos:
scala> c(0)
res0: Double = 1.0
If you’re not familiar with this syntax, this is a place where
 the REPL can be invaluable. If you attempt to assign the cos function/method to a variable, the REPL
 tells you what’s wrong:
scala> val c = scala.math.cos
<console>:11: error: missing arguments for method cos in class MathCommon;
follow this method with `_' to treat it as a partially applied function
 val c = scala.math.cos
 ^
The following example shows how to use this same technique on
 the scala.math.pow method, which
 takes two parameters:
scala> val p = scala.math.pow(_, _)
pow: (Double, Double) => Double = <function2>

scala> p(scala.math.E, 2)
res0: Double = 7.3890560989306495
If this seems like an interesting language feature, but you’re
 wondering where it would be useful, see Recipe 9.6, for more information.
Summary notes:
	Think of the => symbol
 as a transformer. It transforms the input data on its left side to
 some new output data, using the algorithm on its right
 side.

	Use def to define a
 method, val, to create a
 function.

	When assigning a function to a variable, a
 function literal is the code on the right
 side of the expression.

	A function value is an object, and
 extends the FunctionN traits in
 the main scala package, such as
 Function0 for a function that
 takes no parameters.

See Also

	The Function1 trait

9.3. Defining a Method That Accepts a Simple Function Parameter

Problem

You want to create a method that takes a simple function as a
 method parameter.

Solution

This solution follows a three-step process:
	Define your method, including the signature for the function
 you want to take as a method parameter.

	Define one or more functions that match this signature.

	Sometime later, pass the function(s) as a parameter to your
 method.

To demonstrate this, define a method named executeFunction, which takes a function as a
 parameter. The method will take one parameter named callback, which is a function. That function
 must have no input parameters and must return nothing:
def executeFunction(callback:() => Unit) {
 callback()
}
Two quick notes:
	The callback:() syntax
 defines a function that has no parameters. If the function had
 parameters, the types would be listed inside the parentheses.

	The => Unit portion of
 the code indicates that this method returns nothing.

I’ll discuss this syntax more shortly.
Next, define a function that matches this signature. The following
 function named sayHello takes no
 input parameters and returns nothing:
val sayHello = () => { println("Hello") }
In the last step of the recipe, pass the sayHello function to the executeFunction method:
executeFunction(sayHello)
The REPL demonstrates how this works:
scala> def executeFunction(callback:() => Unit) { callback() }
executeFunction: (callback: () => Unit)Unit

scala> val sayHello = () => { println("Hello") }
sayHello: () => Unit = <function0>

scala> executeFunction(sayHello)
Hello

Discussion

There isn’t anything special about the callback name used in this example. When I
 first learned how to pass functions to methods, I preferred the name
 callback because it made the meaning
 clear, but it’s just the name of a method parameter. These days, just as
 I often name an Int parameter
 i, I name a function parameter
 f:
def executeFunction(f:() => Unit) {
 f()
}
The part that is special is that the function that’s passed in
 must match the function signature you define. In this case, you’ve
 declared that the function that’s passed in must take no arguments and
 must return nothing:
f:() => Unit
The general syntax for defining a function as a method parameter
 is:
parameterName: (parameterType(s)) => returnType
In the example, the parameterName is f, the parameterType is empty because you don’t want
 the function to take any parameters, and the return type is Unit because you don’t want the function to
 return anything:
executeFunction(f:() => Unit)
To define a function that takes a String and returns an Int, use one of these two signatures:
executeFunction(f:String => Int)
executeFunction(f:(String) => Int)
See the next recipe for more function signature examples.
Scala’s Unit
The Scala Unit shown in these
 examples is similar to Java’s Void
 class. It’s used in situations like this to indicate that the function
 returns nothing ... or perhaps nothing of interest.
As a quick look into its effect, first define a method named
 plusOne, which does what its name
 implies:
scala> def plusOne(i: Int) = i + 1
plusOne: (i: Int)Int

scala> plusOne(1)
res0: Int = 2
When it’s called, plusOne
 adds 1 to its input parameter, and
 returns that result as an Int.
Now, modify plusOne to
 declare that it returns Unit:
scala> def plusOne(i: Int): Unit = i + 1
plusOne: (i: Int)Unit

scala> plusOne(1)
(returns nothing)
Because you explicitly stated that plusOne returns Unit, there’s no result in the REPL when
 plusOne(1) is called.
This isn’t a common use of Unit, but it helps to demonstrate its
 effect.

See Also

	Scala’s call-by-name functionality
 provides a very simple way to pass a block of code into a function or
 method. See Recipe 19.8, for several call-by-name
 examples.

9.4. More Complex Functions

Problem

You want to define a method that takes a function as a parameter,
 and that function may have one or more input parameters, and may also
 return a value.

Solution

Following the approach described in the previous recipe, define a
 method that takes a function as a parameter. Specify the function
 signature you expect to receive, and then execute that function inside
 the body of the method.
The following example defines a method named exec that takes a function as an input
 parameter. That function must take one Int as an input parameter and return
 nothing:
def exec(callback: Int => Unit) {
 // invoke the function we were given, giving it an Int parameter
 callback(1)
}
Next, define a function that matches the expected signature. The
 following plusOne function matches
 that signature, because it takes an Int argument and returns nothing:
val plusOne = (i: Int) => { println(i+1) }
Now you can pass plusOne into
 the exec function:
exec(plusOne)
Because the function is called inside the method, this prints the
 number 2.
Any function that matches this signature can be passed into the
 exec method. To demonstrate this,
 define a new function named plusTen
 that also takes an Int and returns
 nothing:
val plusTen = (i: Int) => { println(i+10) }
Now you can pass it into your exec function, and see that it also
 works:
exec(plusTen) // prints 11
Although these examples are simple, you can see the power of the
 technique: you can easily swap in interchangeable algorithms. As long as
 your function signature matches what your method expects, your
 algorithms can do anything you want. This is comparable to swapping out
 algorithms in the OOP Strategy design
 pattern.

Discussion

The general syntax for describing a function as a method parameter
 is this:
parameterName: (parameterType(s)) => returnType
Therefore, to define a function that takes a String and returns an Int, use one of these two signatures:
executeFunction(f:(String) => Int)

// parentheses are optional when the function has only one parameter
executeFunction(f:String => Int)
To define a function that takes two Ints and returns a Boolean, use this signature:
executeFunction(f:(Int, Int) => Boolean)
The following exec method
 expects a function that takes String,
 Int, and Double parameters and returns a Seq[String]:
exec(f:(String, Int, Double) => Seq[String])
As shown in the Solution, if a function doesn’t return anything,
 declare its return type as Unit:
exec(f:(Int) => Unit)
exec(f:Int => Unit)
Passing in a function with other parameters

A function parameter is just like any other method parameter, so
 a method can accept other parameters in addition to a function.
The following code demonstrates this in a simple example. First,
 define a simple function:
val sayHello = () => println("Hello")
Next, define a method that takes this function as a parameter
 and also takes a second Int
 parameter:
def executeXTimes(callback:() => Unit, numTimes: Int) {
 for (i <- 1 to numTimes) callback()
}
Next, pass the function value and an Int into the method:
scala> executeXTimes(sayHello, 3)
Hello
Hello
Hello
Though that was a simple example, this technique can be used to
 pass variables into the method that can then be used by the function,
 inside the method body. To see how this works, create a method named
 executeAndPrint that takes a
 function and two Int
 parameters:
def executeAndPrint(f:(Int, Int) => Int, x: Int, y: Int) {
 val result = f(x, y)
 println(result)
}
This method is more interesting than the previous method,
 because it takes the Int parameters
 it’s given and passes those parameters to the function it’s given in
 this line of code:
val result = f(x, y)
To show how this works, create two functions that match the
 signature of the function that executeAndPrint expects, a sum function and a multiply function:
val sum = (x: Int, y: Int) => x + y
val multiply = (x: Int, y: Int) => x * y
Now you can call executeAndPrint like this, passing in the
 different functions, along with two Int parameters:
executeAndPrint(sum, 2, 9) // prints 11
executeAndPrint(multiply, 3, 9) // prints 27
This is cool, because the executeAndPrint method doesn’t know what
 algorithm is actually run. All it knows is that it passes the
 parameters x and y to the function it is given and then
 prints the result from that function. This is similar to defining an
 interface in Java and then providing concrete implementations of the
 interface in multiple classes.
Here’s one more example of this three-step process:
// 1 - define the method
def exec(callback: (Any, Any) => Unit, x: Any, y: Any) {
 callback(x, y)
}

// 2 - define a function to pass in
val printTwoThings =(a: Any, b: Any) => {
 println(a)
 println(b)
}

// 3 - pass the function and some parameters to the method
case class Person(name: String)
exec(printTwoThings, "Hello", Person("Dave"))
Note that in all of the previous examples where you created
 functions with the val keyword, you
 could have created methods, and the examples would still work. For
 instance, you can define printTwoThings as a method, and exec still works:
// 2a - define a method to pass in
def printTwoThings (a: Any, b: Any) {
 println(a)
 println(b)
}

// 3a - pass the printTwoThings method to the exec method
case class Person(name: String)
exec(printTwoThings, "Hello", Person("Dave"))
Behind the scenes, there are differences between these two
 approaches—for instance, a function implements one of the Function0 to Function22 traits—but Scala is forgiving,
 and lets you pass in either a method or function, as long as the
 signature is correct.

9.5. Using Closures

Problem

You want to pass a function around like a variable, and while
 doing so, you want that function to be able to refer to one or more
 fields that were in the same scope as the function when it was
 declared.

Solution

To demonstrate a closure in Scala, use the following simple (but
 complete) example:
package otherscope {

 class Foo {
 // a method that takes a function and a string, and passes the string into
 // the function, and then executes the function
 def exec(f:(String) => Unit, name: String) {
 f(name)
 }
 }

}

object ClosureExample extends App {

 var hello = "Hello"
 def sayHello(name: String) { println(s"$hello, $name") }

 // execute sayHello from the exec method foo
 val foo = new otherscope.Foo
 foo.exec(sayHello, "Al")

 // change the local variable 'hello', then execute sayHello from
 // the exec method of foo, and see what happens
 hello = "Hola"
 foo.exec(sayHello, "Lorenzo")

}
To test this code, save it as a file named ClosureExample.scala, then compile and run
 it. When it’s run, the output will be:
Hello, Al
Hola, Lorenzo
If you’re coming to Scala from Java or another OOP language, you
 might be asking, “How could this possibly work?” Not only did the
 sayHello method reference the
 variable hello from within the
 exec method of the Foo class on the first run (where hello was no longer in scope), but on the
 second run, it also picked up the change to the hello variable (from Hello to Hola). The simple answer is that Scala
 supports closure functionality, and this is how closures work.
As Dean Wampler and Alex Payne describe in their book Programming
 Scala (O’Reilly), there are two free
 variables in the sayHello
 method: name and hello. The name variable is a formal parameter to the
 function; this is something you’re used to.
However, hello is not a formal
 parameter; it’s a reference to a variable in the enclosing scope
 (similar to the way a method in a Java class can refer to a field in the
 same class). Therefore, the Scala compiler creates a closure that
 encompasses (or “closes over”) hello.
Note
You could continue to pass the sayHello method around so it gets farther
 and farther away from the scope of the hello variable, but in an effort to keep
 this example simple, it’s only passed to one method in a class in a
 different package. You can verify that hello is not in scope in the Foo class by attempting to print its value
 in that class or in its exec
 method, such as with println(hello). You’ll find that the code
 won’t compile because hello is not
 in scope there.

Discussion

In my research, I’ve found many descriptions of closures, each
 with slightly different terminology. Wikipedia defines a closure like
 this:
“In computer science, a closure (also lexical closure or
 function closure) is a function together with a referencing
 environment for the non-local variables of that function. A closure
 allows a function to access variables outside its immediate lexical
 scope.”

In his excellent article, Closures in Ruby, Paul Cantrell
 states, “a closure is a block of code which meets three criteria.” He
 defines the criteria as follows:
	The block of code can be passed around as a value, and

	It can be executed on demand by anyone who has that value, at
 which time

	It can refer to variables from the context in which it was
 created (i.e., it is closed with respect to variable access, in the
 mathematical sense of the word “closed”).

Personally, I like to think of a closure as being like quantum
 entanglement, which Einstein referred to as “a spooky action at a
 distance.” Just as quantum entanglement begins with two elements that
 are together and then separated—but somehow remain aware of each other—a
 closure begins with a function and a variable defined in the same scope,
 which are then separated from each other. When the function is executed
 at some other point in space (scope) and time, it is magically still
 aware of the variable it referenced in their earlier time together, and
 even picks up any changes to that variable.
As shown in the Solution, to create a closure in Scala, just
 define a function that refers to a variable that’s in the same scope as
 its declaration. That function can be used later, even when the variable
 is no longer in the function’s current scope, such as when the function
 is passed to another class, method, or function.
Any time you run into a situation where you’re passing around a
 function, and wish that function could refer to a variable like this, a
 closure can be a solution. The variable can be a collection, an Int you use as a counter or limit, or anything
 else that helps to solve a problem. The value you refer to can be a
 val, or as shown in the example, a
 var.
A second example

If you’re new to closures, another example may help demonstrate
 them. First, start with a simple function named isOfVotingAge. This function tests to see if
 the age given to the function is
 greater than or equal to 18:
val isOfVotingAge = (age: Int) => age >= 18
isOfVotingAge(16) // false
isOfVotingAge(20) // true
Next, to make your function more flexible, instead of hardcoding
 the value 18 into the function, you
 can take advantage of this closure technique, and let the function
 refer to the variable votingAge
 that’s in scope when you define the function:
var votingAge = 18
val isOfVotingAge = (age: Int) => age >= votingAge
When called, isOfVotingAge
 works as before:
isOfVotingAge(16) // false
isOfVotingAge(20) // true
You can now pass isOfVotingAge around to other methods and
 functions:
def printResult(f: Int => Boolean, x: Int) {
 println(f(x))
}
printResult(isOfVotingAge, 20) // true
Because you defined votingAge
 as a var, you can reassign it. How
 does this affect printResult? Let’s
 see:
// change votingAge in one scope
votingAge = 21

// the change to votingAge affects the result
printResult(isOfVotingAge, 20) // now false
Cool. The field and function are still entangled.

Using closures with other data types

In the two examples shown so far, you’ve worked with simple
 String and Int fields, but closures can work with any
 data type, including collections. For instance, in the following
 example, the function named addToBasket is defined in the same scope as
 an ArrayBuffer named fruits:
import scala.collection.mutable.ArrayBuffer
val fruits = ArrayBuffer("apple")

// the function addToBasket has a reference to fruits
val addToBasket = (s: String) => {
 fruits += s
 println(fruits.mkString(", "))
}
As with the previous example, the addToBasket function can now be passed
 around as desired, and will always have a reference to the fruits field. To demonstrate this, define a
 method that accepts a function with addToBasket’s signature:
def buyStuff(f: String => Unit, s: String) {
 f(s)
}
Then pass addToBasket and a
 String parameter to the
 method:
scala> buyStuff(addToBasket, "cherries")
cherries

scala> buyStuff(addToBasket, "grapes")
cherries, grapes
As desired, the elements are added to your ArrayBuffer.
Note that the buyStuff method
 would typically be in another class, but this example demonstrates the
 basic idea.

A comparison to Java

If you’re coming to Scala from Java, or an OOP background in
 general, it may help to see a comparison between this closure
 technique and what you can currently do in Java. (In Java, there are
 some closure-like things you can do with inner classes, and closures
 are intended for addition to Java 8 in Project Lambda. But this example
 attempts to show a simple OOP example.)
The following example shows how a sayHello method and the helloPhrase string are encapsulated in the
 class Greeter. In the main method, the first two examples with
 Al and Lorenzo show how the sayHello method can be called
 directly.
At the end of the main
 method, the greeter instance is
 passed to an instance of the Bar
 class, and greeter’s sayHello method is executed from
 there:
public class SimulatedClosure {

 public static void main (String[] args) {
 Greeter greeter = new Greeter();
 greeter.setHelloPhrase("Hello");
 greeter.sayHello("Al"); // "Hello, Al"

 greeter.setHelloPhrase("Hola");
 greeter.sayHello("Lorenzo"); // "Hola, Lorenzo"

 greeter.setHelloPhrase("Yo");
 Bar bar = new Bar(greeter); // pass the greeter instance to a new Bar
 bar.sayHello("Adrian"); // invoke greeter.sayHello via Bar
 }

}

class Greeter {

 private String helloPhrase;

 public void setHelloPhrase(String helloPhrase) {
 this.helloPhrase = helloPhrase;
 }

 public void sayHello(String name) {
 System.out.println(helloPhrase + ", " + name);
 }

}

class Bar {

 private Greeter greeter;

 public Bar (Greeter greeter) {
 this.greeter = greeter;
 }

 public void sayHello(String name) {
 greeter.sayHello(name);
 }

}
Running this code prints the following output:
Hello, Al
Hola, Lorenzo
Yo, Adrian
The end result is similar to the Scala closure approach, but the
 big differences in this example are that you’re passing around a
 Greeter instance (instead of a
 function), and sayHello and the
 helloPhrase are encapsulated in the
 Greeter class. In the Scala closure
 solution, you passed around a function that was coupled with a field
 from another scope.

See Also

	The voting age example in this recipe was inspired by Mario
 Gleichmann’s example in Functional Scala:
 Closures.

	Paul Cantrell’s article, Closures in Ruby.

	Recipe 3.18, demonstrates the use of multiple
 parameter lists.

	Java 8’s Project
 Lambda.

9.6. Using Partially Applied Functions

Problem

You want to eliminate repetitively passing variables into a
 function by (a) passing common variables into the function to (b) create
 a new function that is preloaded with those values, and then (c) use the
 new function, passing it only the unique variables it needs.

Solution

The classic example of a partially applied function begins with a
 simple sum function:
val sum = (a: Int, b: Int, c: Int) => a + b + c
There’s nothing special about this sum function, it’s just a normal function. But
 things get interesting when you supply two of the parameters when
 calling the function, but don’t provide the third parameter:
val f = sum(1, 2, _: Int)
Because you haven’t provided a value for the third parameter, the
 resulting variable f is a
 partially applied function. You can see this in the
 REPL:
scala> val sum = (a: Int, b: Int, c: Int) => a + b + c
sum: (Int, Int, Int) => Int = <function3>

scala> val f = sum(1, 2, _: Int)
f: Int => Int = <function1>
The result in the REPL shows that f is a function that implements the function1 trait, meaning that it takes one
 argument. Looking at the rest of the signature, you see that it takes an
 Int argument, and returns an Int value.
When you give f an Int, such as the number 3, you magically get the sum of the three
 numbers that have been passed into the two functions:
scala> f(3)
res0: Int = 6
The first two numbers (1 and
 2) were passed into the original
 sum function; that process created
 the new function named f, which is a
 partially applied function; then, some time later in the code, the third
 number (3) was passed into f.

Discussion

In functional programming languages, when you call a function that
 has parameters, you are said to be applying the function to the
 parameters. When all the parameters are passed to the function—something
 you always do in Java—you have fully applied the function to all of the
 parameters. But when you give only a subset of the parameters to the
 function, the result of the expression is a partially applied
 function.
As demonstrated in the example, this partially applied function is
 a variable that you can pass around. This variable is called a
 function value, and when you later provide all the
 parameters needed to complete the function value, the original function
 is executed and a result is yielded.
This technique has many advantages, including the ability to make
 life easier for the consumers of a library you create. For instance,
 when working with HTML, you may want a function that adds a prefix and a
 suffix to an HTML snippet:
def wrap(prefix: String, html: String, suffix: String) = {
 prefix + html + suffix
}
If at a certain point in your code, you know that you always want
 to add the same prefix and suffix to different HTML strings, you can
 apply those two parameters to the function, without applying the
 html parameter:
val wrapWithDiv = wrap("<div>", _: String, "</div>")
Now you can call the new wrapWithDiv function, just passing it the HTML
 you want to wrap:
scala> wrapWithDiv("<p>Hello, world</p>")
res0: String = <div><p>Hello, world</p></div>

scala> wrapWithDiv("")
res1: String = <div></div>
The wrapWithDiv function is
 preloaded with the <div> tags
 you applied, so it can be called with just one argument: the HTML you
 want to wrap.
As a nice benefit, you can still call the original wrap function if you want:
wrap("<pre>", "val x = 1", "</pre>")
You can use partially applied functions to make programming easier
 by binding some arguments—typically some form of local arguments—and
 leaving the others to be filled in.

9.7. Creating a Function That Returns a Function

Problem

You want to return a function (algorithm) from a function or
 method.

Solution

Define a function that returns an algorithm (an anonymous
 function), assign that to a new function, and then call that new
 function.
The following code declares an anonymous function that takes a
 String argument and returns a
 String:
(s: String) => { prefix + " " + s }
You can return that anonymous function from the body of another
 function as follows:
def saySomething(prefix: String) = (s: String) => {
 prefix + " " + s
}
Because saySomething returns a
 function, you can assign that resulting function to a variable. The
 saySomething function requires a
 String argument, so give it one as
 you create the resulting function sayHello:
val sayHello = saySomething("Hello")
The sayHello function is now
 equivalent to your anonymous function, with the prefix set to hello. Looking back at the anonymous function,
 you see that it takes a String
 parameter and returns a String, so
 you pass it a String:
sayHello("Al")
Here’s what these steps look like in the REPL:
scala> def saySomething(prefix: String) = (s: String) => {
 | prefix + " " + s
 | }
saySomething: (prefix: String)String => java.lang.String

scala> val sayHello = saySomething("Hello")
sayHello: String => java.lang.String = <function1>

scala> sayHello("Al")
res0: java.lang.String = Hello Al

Discussion

If you’re new to functional programming, it can help to break this
 down a little. You can break the expression down into its two
 components. On the left side of the =
 symbol you have a normal method declaration:
def saySomething(prefix: String)
On the right side of the = is a
 function literal (also known as an anonymous function):
(s: String) => { prefix + " " + s }
Another example

As you can imagine, you can use this approach any time you want
 to encapsulate an algorithm inside a function. A bit like a Factory or
 Strategy pattern, the function your method returns can be based on the
 input parameter it receives. For example, create a greeting method that returns an appropriate
 greeting based on the language specified:
def greeting(language: String) = (name: String) => {
 language match {
 case "english" => "Hello, " + name
 case "spanish" => "Buenos dias, " + name
 }
}
If it’s not clear that greeting is returning a function, you can
 make the code a little more explicit:
def greeting(language: String) = (name: String) => {
 val english = () => "Hello, " + name
 val spanish = () => "Buenos dias, " + name
 language match {
 case "english" => println("returning 'english' function")
 english()
 case "spanish" => println("returning 'spanish' function")
 spanish()
 }
}
Here’s what this second method looks like when it’s invoked in
 the REPL:
scala> val hello = greeting("english")
hello: String => java.lang.String = <function1>

scala> val buenosDias = greeting("spanish")
buenosDias: String => java.lang.String = <function1>

scala> hello("Al")
returning 'english' function
res0: java.lang.String = Hello, Al

scala> buenosDias("Lorenzo")
returning 'spanish' function
res1: java.lang.String = Buenos dias, Lorenzo
You can use this recipe any time you want to encapsulate one or
 more functions behind a method, and is similar in that effect to the
 Factory and Strategy patterns.

See Also

	My Java Factory Pattern
 example

9.8. Creating Partial Functions

Problem

You want to define a function that will only work for a subset of
 possible input values, or you want to define a series of functions that
 only work for a subset of input values, and combine those functions to
 completely solve a problem.

Solution

A partial function is a function that does
 not provide an answer for every possible input value it can be given. It
 provides an answer only for a subset of possible data, and defines the
 data it can handle. In Scala, a partial function can also be queried to
 determine if it can handle a particular value.
As a simple example, imagine a normal function that divides one
 number by another:
val divide = (x: Int) => 42 / x
As defined, this function blows up when the input parameter is
 zero:
scala> divide(0)
java.lang.ArithmeticException: / by zero
Although you can handle this particular situation by catching and
 throwing an exception, Scala lets you define the divide function as a PartialFunction. When doing so, you also
 explicitly state that the function is defined when the input parameter
 is not zero:
val divide = new PartialFunction[Int, Int] {
 def apply(x: Int) = 42 / x
 def isDefinedAt(x: Int) = x != 0
}
With this approach, you can do several nice things. One thing you
 can do is test the function before you attempt to use it:
scala> divide.isDefinedAt(1)
res0: Boolean = true

scala> if (divide.isDefinedAt(1)) divide(1)
res1: AnyVal = 42

scala> divide.isDefinedAt(0)
res2: Boolean = false
This isn’t all you can do with partial functions. You’ll see
 shortly that other code can take advantage of partial functions to
 provide elegant and concise solutions.
Whereas that divide function is
 explicit about what data it handles, partial functions are often written
 using case statements:
val divide2: PartialFunction[Int, Int] = {
 case d: Int if d != 0 => 42 / d
}
Although this code doesn’t explicitly implement the isDefinedAt method, it works exactly the same
 as the previous divide function
 definition:
scala> divide2.isDefinedAt(0)
res0: Boolean = false

scala> divide2.isDefinedAt(1)
res1: Boolean = true
The PartialFunction explained

The PartialFunction Scaladoc
 describes a partial function in this way:
A partial function of type PartialFunction[A, B] is a unary
 function where the domain does not necessarily include all values of
 type A. The function isDefinedAt allows [you] to test dynamically if
 a value is in the domain of the function.

This helps to explain why the last example with the match
 expression (case statement) works: the isDefinedAt method dynamically tests to see
 if the given value is in the domain of the function (i.e., it is
 handled, or accounted for).
The signature of the PartialFunction trait looks like
 this:
trait PartialFunction[-A, +B] extends (A) => B
As discussed in other recipes, the => symbol can be thought of as a
 transformer, and in this case, the (A) =>
 B can be interpreted as a function that transforms a type
 A into a resulting type B.
The example method transformed an input Int into an output Int, but if it returned a String instead, it would be declared like
 this:
PartialFunction[Int, String]
For example, the following method uses this signature:
// converts 1 to "one", etc., up to 5
val convertLowNumToString = new PartialFunction[Int, String] {
 val nums = Array("one", "two", "three", "four", "five")
 def apply(i: Int) = nums(i-1)
 def isDefinedAt(i: Int) = i > 0 && i < 6
}

orElse and andThen

A terrific feature of partial functions is that you can chain
 them together. For instance, one method may only work with even
 numbers, and another method may only work with odd numbers. Together
 they can solve all integer problems.
In the following example, two functions are defined that can
 each handle a small number of Int
 inputs, and convert them to String
 results:
// converts 1 to "one", etc., up to 5
val convert1to5 = new PartialFunction[Int, String] {
 val nums = Array("one", "two", "three", "four", "five")
 def apply(i: Int) = nums(i-1)
 def isDefinedAt(i: Int) = i > 0 && i < 6
}

// converts 6 to "six", etc., up to 10
val convert6to10 = new PartialFunction[Int, String] {
 val nums = Array("six", "seven", "eight", "nine", "ten")
 def apply(i: Int) = nums(i-6)
 def isDefinedAt(i: Int) = i > 5 && i < 11
}
Taken separately, they can each handle only five numbers. But
 combined with orElse, they can
 handle ten:
scala> val handle1to10 = convert1to5 orElse convert6to10
handle1to10: PartialFunction[Int,String] = <function1>

scala> handle1to10(3)
res0: String = three

scala> handle1to10(8)
res1: String = eight
The orElse method comes from
 the Scala PartialFunction trait,
 which also includes the andThen
 method to further help chain partial functions together.

Discussion

It’s important to know about partial functions, not just to have
 another tool in your toolbox, but because they are used in the APIs of
 some libraries, including the Scala collections library.
One example of where you’ll run into partial functions is with the
 collect method on collections’
 classes. The collect method takes a
 partial function as input, and as its Scaladoc describes, collect “Builds a new collection by applying a
 partial function to all elements of this list on which the function is
 defined.”
For instance, the divide
 function shown earlier is a partial function that is not defined at the
 Int value zero. Here’s that function
 again:
val divide: PartialFunction[Int, Int] = {
 case d: Int if d != 0 => 42 / d
}
If you attempt to use this function with the map method, it will explode with a MatchError:
scala> List(0,1,2) map { divide }
scala.MatchError: 0 (of class java.lang.Integer)
stack trace continues ...
However, if you use the same function with the collect method, it works fine:
scala> List(0,1,2) collect { divide }
res0: List[Int] = List(42, 21)
This is because the collect
 method is written to test the isDefinedAt method for each element it’s
 given. As a result, it doesn’t run the divide algorithm when the input value is
 0 (but does run it for every other
 element).
You can see the collect method
 work in other situations, such as passing it a List that contains a mix of data types, with a
 function that works only with Int
 values:
scala> List(42, "cat") collect { case i: Int => i + 1 }
res0: List[Int] = List(43)
Because it checks the isDefinedAt method under the covers, collect can handle the fact that your
 anonymous function can’t work with a String as input.
The PartialFunction Scaladoc
 demonstrates this same technique in a slightly different way. In the
 first example, it shows how to create a list of even numbers by defining
 a PartialFunction named isEven, and using that function with the
 collect method:
scala> val sample = 1 to 5
sample: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3, 4, 5)

scala> val isEven: PartialFunction[Int, String] = {
 | case x if x % 2 == 0 => x + " is even"
 | }
isEven: PartialFunction[Int,String] = <function1>

scala> val evenNumbers = sample collect isEven
evenNumbers: scala.collection.immutable.IndexedSeq[String] =
 Vector(2 is even, 4 is even)
Similarly, an isOdd function
 can be defined, and the two functions can be joined by orElse to work with the map method:
scala> val isOdd: PartialFunction[Int, String] = {
 | case x if x % 2 == 1 => x + " is odd"
 | }
isOdd: PartialFunction[Int,String] = <function1>

scala> val numbers = sample map (isEven orElse isOdd)
numbers: scala.collection.immutable.IndexedSeq[String] =
 Vector(1 is odd, 2 is even, 3 is odd, 4 is even, 5 is odd)
Note
Portions of this recipe were inspired by Erik Bruchez’s blog
 post, titled, “Scala partial functions (without a PhD).”

See Also

	Erik Bruchez’s blog
 post

	PartialFunction trait

	Wikipedia definition of a
 partial function

9.9. A Real-World Example

Problem

Understanding functional programming concepts is one thing;
 putting them into practice in a real project is another. You’d like to
 see a real example of them in action.

Solution

To demonstrate some of the techniques introduced in this chapter,
 the following example shows one way to implement Newton’s Method, a
 mathematical method that can be used to solve the roots of
 equations.
As you can see from the code, the method named newtonsMethod takes functions as its first two
 parameters. It also takes two other Double parameters, and returns a Double. The two functions that are passed in
 should be the original equation (fx)
 and the derivative of that equation (fxPrime).
The method newtonsMethodHelper
 also takes two functions as parameters, so you can see how the functions
 are passed from newtonsMethod to
 newtonsMethodHelper.
Here is the complete source code for this example:
object NewtonsMethod {

 def main(args: Array[String]) {
 driver
 }

 /**
 * A "driver" function to test Newton's method.
 * Start with (a) the desired f(x) and f'(x) equations,
 * (b) an initial guess and (c) tolerance values.
 */
 def driver {
 // the f(x) and f'(x) functions
 val fx = (x: Double) => 3*x + math.sin(x) - math.pow(math.E, x)
 val fxPrime = (x: Double) => 3 + math.cos(x) - math.pow(Math.E, x)

 val initialGuess = 0.0
 val tolerance = 0.00005

 // pass f(x) and f'(x) to the Newton's Method function, along with
 // the initial guess and tolerance
 val answer = newtonsMethod(fx, fxPrime, initialGuess, tolerance)

 println(answer)
 }

 /**
 * Newton's Method for solving equations.
 * @todo check that |f(xNext)| is greater than a second tolerance value
 * @todo check that f'(x) != 0
 */
 def newtonsMethod(fx: Double => Double,
 fxPrime: Double => Double,
 x: Double,
 tolerance: Double): Double = {
 var x1 = x
 var xNext = newtonsMethodHelper(fx, fxPrime, x1)
 while (math.abs(xNext - x1) > tolerance) {
 x1 = xNext
 println(xNext) // debugging (intermediate values)
 xNext = newtonsMethodHelper(fx, fxPrime, x1)
 }

 xNext
 }

 /**
 * This is the "x2 = x1 - f(x1)/f'(x1)" calculation
 */
 def newtonsMethodHelper(fx: Double => Double,
 fxPrime: Double => Double,
 x: Double): Double = {
 x - fx(x) / fxPrime(x)
 }

}

Discussion

As you can see, a majority of this code involves defining
 functions, passing those functions to methods, and then invoking the
 functions from within a method.
The method name newtonsMethod
 will work for any two functions fx
 and fxPrime, where fxPrime is the derivative of fx (within the limits of the “to do” items
 that are not implemented).
To experiment with this example, try changing the functions
 fx and fxPrime, or implement the @todo items in newtonsMethod.
Note
The algorithm shown comes from an old textbook titled
 Applied Numerical
 Analysis, by Gerald and Wheatley, where the approach was
 demonstrated in pseudocode.

See Also

	More details on this
 example

	Newton’s Method

Chapter 10. Collections

Introduction

Scala’s collection classes are rich, deep, and differ significantly
 from the Java collections, all of which makes learning them a bit of a
 speed bump for developers coming to Scala from Java.
When a Java developer first comes to Scala, she might think, “Okay,
 I’ll use lists and arrays, right?” Well, not really. The Scala List class is very different from the Java
 List classes—including the part where
 it’s immutable—and although the Scala Array is an improvement on the Java array in
 most ways, it’s not even recommended as the “go to” sequential collection
 class.
Because there are many collections classes to choose from, and each
 of those classes offers many methods, a goal of this chapter (and the
 next) is to help guide you through this plethora of options to find the
 solutions you need. Recipes will help you decide which collections to use
 in different situations, and also choose a method to solve a problem. To
 help with this, the methods that are common to all collections are shown
 in this chapter, and methods specific to collections like List, Array,
 Map, and Set are shown in Chapter 11.
A Few Important Concepts

There are a few important concepts to know when working with the
 methods of the Scala collection classes:
	What a predicate is

	What an anonymous function is

	Implied loops

A predicate is simply a method, function, or
 anonymous function that takes one or more parameters and returns a
 Boolean value. For instance, the following method returns true or false, so it’s a predicate:
def isEven (i: Int) = if (i % 2 == 0) true else false
That’s a simple concept, but you’ll hear the term so often when
 working with collection methods that it’s important to mention
 it.
The concept of an anonymous function is also
 important. They’re described in depth in Recipe 9.1, but here’s an
 example of the long form for an anonymous function:
(i: Int) => i % 2 == 0
Here’s the short form of the same function:
_ % 2 == 0
That doesn’t look like much by itself, but when it’s combined with
 the filter method on a collection, it
 makes for a lot of power in just a little bit of code:
scala> val list = List.range(1, 10)
list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val events = list.filter(_ % 2 == 0)
events: List[Int] = List(2, 4, 6, 8)
This is a nice lead-in into the third topic: implied
 loops. As you can see from that example, the filter method contains a loop that applies
 your function to every element in the collection and returns a new
 collection. You could live without the filter method and write equivalent code like
 this:
for {
 e <- list
 if e % 2 == 0
} yield e
But I think you’ll agree that the filter approach is both more concise and
 easier to read.
Collection methods like filter,
 foreach, map, reduceLeft, and many more have loops built
 into their algorithms. As a result, you’ll write far fewer loops when
 writing Scala code than with another language like Java.

10.1. Understanding the Collections Hierarchy

Problem

The Scala collections hierarchy is very rich (deep and wide), and
 understanding how it’s organized can be helpful when choosing a
 collection to solve a problem.

Solution

Figure 10-1, which
 shows the traits from which the Vector class inherits, demonstrates some of
 the complexity of the Scala collections hierarchy.
[image: The traits inherited by the Vector class]

Figure 10-1. The traits inherited by the Vector class

Because Scala classes can inherit from traits, and well-designed
 traits are granular, a class hierarchy can look like this. However,
 don’t let Figure 10-1
 throw you for a loop: you don’t need to know all those traits to use a
 Vector. In fact, using a Vector is straightforward:
val v = Vector(1, 2, 3)
v.sum // 6
v.filter(_ > 1) // Vector(2, 3)
v.map(_ * 2) // Vector(2, 4, 6)
At a high level, Scala’s collection classes begin with the
 Traversable and Iterable traits, and extend into the three
 main categories of sequences (Seq),
 sets (Set), and maps (Map). Sequences further branch off into
 indexed and linear sequences,
 as shown in Figure 10-2.
[image: A high-level view of the Scala collections]

Figure 10-2. A high-level view of the Scala collections

The Traversable trait lets you
 traverse an entire collection, and its Scaladoc states that it
 “implements the behavior common to all collections in terms of a
 foreach method,” which lets you
 traverse the collection repeatedly.
The Iterable trait defines an
 iterator, which lets you loop through a
 collection’s elements one at a time, but when using an iterator, the
 collection can be traversed only once, because each element is consumed
 during the iteration process.
Sequences

Digging a little deeper into the sequence
 hierarchy, Scala contains a large number of sequences, many of which
 are shown in Figure 10-3.
[image: A portion of the Scala sequence hierarchy]

Figure 10-3. A portion of the Scala sequence hierarchy

These traits and classes are described in Tables 10-1 through 10-4.
As shown in Figure 10-3, sequences
 branch off into two main categories: indexed
 sequences and linear sequences (linked
 lists). An IndexedSeq indicates
 that random access of elements is efficient, such as accessing an
 Array element as arr(5000). By default, specifying that you
 want an IndexedSeq with Scala
 2.10.x creates a Vector:
scala> val x = IndexedSeq(1,2,3)
x: IndexedSeq[Int] = Vector(1, 2, 3)
A LinearSeq implies that the
 collection can be efficiently split into head and tail components, and
 it’s common to work with them using the head, tail, and isEmpty methods. Note that creating a
 LinearSeq creates a List, which is a singly linked
 list:
scala> val seq = scala.collection.immutable.LinearSeq(1,2,3)
seq: scala.collection.immutable.LinearSeq[Int] = List(1, 2, 3)

Maps

Like a Java Map, Ruby
 Hash, or Python dictionary, a Scala
 Map is a collection of key/value
 pairs, where all the keys must be unique. The most common map classes
 are shown in Figure 10-4.
[image: Common map classes]

Figure 10-4. Common map classes

Map traits and classes are discussed in Table 10-5. When you just
 need a simple, immutable map, you can create
 one without requiring an import:
scala> val m = Map(1 -> "a", 2 -> "b")
m: scala.collection.immutable.Map[Int,java.lang.String] = Map(1 -> a, 2 -> b)
The mutable map is not in scope by default,
 so you must import it (or specify its full path) to use it:
scala> val m = collection.mutable.Map(1 -> "a", 2 -> "b")
m: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a)

Sets

Like a Java Set, a Scala
 Set is a collection of unique
 elements. The common set classes are shown in Figure 10-5.
[image: Common set classes]

Figure 10-5. Common set classes

Set traits and classes are discussed in Table 10-6, but as a quick
 preview, if you just need an immutable set, you can create it like
 this, without needing an import statement:
scala> val set = Set(1, 2, 3)
set: scala.collection.immutable.Set[Int] = Set(1, 2, 3)
Just like a map, if you want to use a mutable set, you must
 import it, or specify its complete path:
scala> val s = collection.mutable.Set(1, 2, 3)
s: scala.collection.mutable.Set[Int] = Set(1, 2, 3)

More collection classes

There are many additional collection traits and classes,
 including Stream, Queue, Stack, and Range. You can also create
 views on collections (like a database view); use
 iterators; and work with the Option, Some, and None types as collections. All of these
 classes (and objects) are demonstrated in this and the next
 chapter.

Strict and lazy collections

Collections can also be thought of in terms of being
 strict or lazy. See the next
 recipe for a discussion of these terms.

10.2. Choosing a Collection Class

Problem

You want to choose a Scala collection class to solve a particular
 problem.

Solution

There are three main categories of collection classes to choose
 from:
	Sequence

	Map

	Set

A sequence is a linear collection of elements
 and may be indexed or linear (a linked list). A map
 contains a collection of key/value pairs, like a Java Map, Ruby Hash, or Python dictionary. A
 set is a collection that contains no duplicate
 elements.
In addition to these three main categories, there are other useful
 collection types, including Stack,
 Queue, and Range. There are a few other classes that act
 like collections, including tuples, enumerations, and the
 Option/Some/None
 and
 Try/Success/Failure
 classes.
Choosing a sequence

When choosing a sequence (a sequential
 collection of elements), you have two main decisions:
	Should the sequence be indexed (like an array), allowing
 rapid access to any elements, or should it be implemented as a
 linked list?

	Do you want a mutable or immutable collection?

As of Scala 2.10, the recommended, general-purpose, “go to”
 sequential collections for the combinations of mutable/immutable and
 indexed/linear are shown in Table 10-1.
Table 10-1. Scala’s general-purpose sequential collections
	 	Immutable
	Mutable

	Indexed
	Vector
	ArrayBuffer

	Linear (Linked
 lists)
	List
	ListBuffer

As an example of reading that table, if you want an immutable,
 indexed collection, in general you should use a Vector; if you want a mutable, indexed
 collection, use an ArrayBuffer (and
 so on).
While those are the general-purpose recommendations, there are
 many more sequence alternatives. The most common
 immutable sequence choices are shown in Table 10-2.
Table 10-2. Main immutable sequence choices
	 	IndexedSeq
	LinearSeq
	Description

	List
	 	✓
	A singly linked list.
 Suited for recursive algorithms that work by splitting the
 head from the remainder of the list.

	Queue
	 	✓
	A first-in, first-out
 data structure.

	Range
	✓
	 	A range of integer
 values.

	Stack
	 	✓
	A last-in, first-out
 data structure.

	Stream
	 	✓
	Similar to List, but it’s lazy and persistent.
 Good for a large or infinite sequence, similar to a Haskell
 List.

	String
	✓
	 	Can be treated as an
 immutable, indexed sequence of characters.

	Vector
	✓
	 	The “go to” immutable,
 indexed sequence. The Scaladoc describes it as, “Implemented
 as a set of nested arrays that’s efficient at splitting and
 joining.”

The most common mutable sequence choices
 are shown in Table 10-3.
 Queue and Stack are also in this table because there
 are mutable and immutable versions of these classes.
Table 10-3. Main mutable sequence choices
	 	IndexedSeq
	LinearSeq
	Description

	Array
	✓
	 	Backed by a Java array,
 its elements are mutable, but it can’t change in
 size.

	ArrayBuffer
	✓
	 	The “go to” class for a
 mutable, sequential collection. The amortized cost for
 appending elements is constant.

	ArrayStack
	✓
	 	A last-in, first-out
 data structure. Prefer over Stack when performance is
 important.

	DoubleLinkedList
	 	✓
	Like a singly linked
 list, but with a prev
 method as well. The
 documentation states, “The additional links make
 element removal very fast.”

	LinkedList
	 	✓
	A mutable, singly
 linked list.

	ListBuffer
	 	✓
	Like an ArrayBuffer, but backed by a list.
 The documentation
 states, “If you plan to convert the buffer to a list, use
 ListBuffer instead of
 ArrayBuffer.” Offers
 constant-time prepend and append; most other operations are
 linear.

	MutableList
	 	✓
	A mutable, singly
 linked list with constant-time append.

	Queue
	 	✓
	A first-in, first-out
 data structure.

	Stack
	 	✓
	A last-in, first-out
 data structure. (The documentation suggests that an ArrayStack is slightly more
 efficient.)

	StringBuilder
	✓
	 	Used to build strings,
 as in a loop. Like the Java StringBuilder.

In addition to the information shown in these tables,
 performance can be a consideration. See Recipe 10.4, if performance is important to your
 selection process.
When creating an API for a library, you may want to refer to
 your sequences in terms of their superclasses. Table 10-4 shows the traits
 that are often used when referring generically to a collection in an
 API.
Table 10-4. Traits commonly used in library APIs
	Trait
	Description

	IndexedSeq
	Implies that random
 access of elements is efficient.

	LinearSeq
	Implies that linear
 access to elements is efficient.

	Seq
	Used when it isn’t
 important to indicate that the sequence is indexed or linear
 in nature.

Of course if the collection you’re returning can be
 very generic, you can also refer to the
 collections as Iterable or Traversable. This is the rough equivalent of
 declaring that a Java method returns Collection.
You can also learn more about declaring the type a method
 returns by looking at the “code assist” tool in your IDE. For
 instance, when I create a new Vector in Eclipse and then look at the
 methods available on a Vector
 instance, I see that the methods return types such as GenSeqLike, IndexedSeqLike, IterableLike, TraversableLike, and TraversableOnce. You don’t have to be this
 specific with the types your methods return—certainly not initially—but it’s
 usually a good practice to identify the intent of
 what you’re really returning, so you can declare these more specific
 types once you get used to them.

Choosing a map

Choosing a map class is easier than choosing a sequence. There
 are the base mutable and immutable map classes, a SortedMap trait to keep elements in sorted
 order by key, a LinkedHashMap to
 store elements in insertion order, and a few other maps for special
 purposes. These options are shown in Table 10-5. (Quotes in the
 descriptions come from the Scaladoc for each class.)
Table 10-5. Common map choices, including whether immutable or mutable
 versions are available
	 	Immutable
	Mutable
	Description

	HashMap
	✓
	✓
	The immutable version
 “implements maps using a hash trie”; the mutable version
 “implements maps using a hashtable.”

	LinkedHashMap
	 	✓
	“Implements mutable
 maps using a hashtable.” Returns elements by the order in
 which they were inserted.

	ListMap
	✓
	✓
	A map implemented using
 a list data structure. Returns elements in the opposite order
 by which they were inserted, as though each element is
 inserted at the head of the map.

	Map
	✓
	✓
	The base map, with both
 mutable and immutable implementations.

	SortedMap
	✓
	 	A base trait that
 stores its keys in sorted order. (Creating a variable as a
 SortedMap currently returns
 a TreeMap.)

	TreeMap
	✓
	 	An immutable, sorted
 map, implemented as a red-black tree.

	WeakHashMap
	 	✓
	A hash map with weak
 references, it’s a wrapper around java.util.WeakHashMap.

You can also create a thread-safe mutable map by mixing the
 SynchronizedMap trait into the map
 implementation you want. See the map discussion in the Scala Collections
 Overview for more information.

Choosing a set

Choosing a set is similar to choosing a map. There are base
 mutable and immutable set classes, a SortedSet to return elements in sorted order
 by key, a LinkedHashSet to store
 elements in insertion order, and a few other sets for special
 purposes. The common classes are shown in Table 10-6. (Quotes in the
 descriptions come from the Scaladoc for each class.)
Table 10-6. Common set choices, including whether immutable or mutable
 versions are available
	 	Immutable
	Mutable
	
	BitSet
	✓
	✓
	A set of “non-negative
 integers represented as variable-size arrays of bits packed
 into 64-bit words.” Used to save memory when you have a set of
 integers.

	HashSet
	✓
	✓
	The immutable version
 “implements sets using a hash trie”; the mutable version
 “implements sets using a hashtable.”

	LinkedHashSet
	 	✓
	A mutable set
 implemented using a hashtable. Returns elements in the order
 in which they were inserted.

	ListSet
	✓
	 	A set implemented using
 a list structure.

	TreeSet
	✓
	✓
	The immutable version
 “implements immutable sets using a tree.” The mutable version
 is a mutable SortedSet with
 “an immutable AVL Tree as underlying data
 structure.”

	Set
	✓
	✓
	Generic base traits,
 with both mutable and immutable
 implementations.

	SortedSet
	✓
	✓
	A base trait. (Creating
 a variable as a SortedSet
 returns a TreeSet.)

You can also create a thread-safe mutable set by mixing the
 SynchronizedSet trait into the set
 implementation you want. See the Scala Collections Overview discussion of
 maps and sets for more information.

Types that act like collections

Scala offers many other collection types, and some types that
 act like collections. Table 10-7 provides
 descriptions of several types that act somewhat like collections, even
 though they aren’t.
Table 10-7. Other collections classes (and types that act like
 collections)
	 	Description

	Enumeration
	A finite collection of
 constant values (i.e., the days in a week or months in a
 year).

	Iterator
	An iterator isn’t a
 collection; instead, it gives you a way to access the elements
 in a collection. It does, however, define many of the methods
 you’ll see in a normal collection class, including foreach, map, flatMap, etc. You can also convert
 an iterator to a collection when needed.

	Option
	Acts as a collection
 that contains zero or one elements. The Some class and None object extend Option. Some is a container for one element,
 and None holds zero
 elements.

	Tuple
	Supports a
 heterogeneous collection of elements. There is no one “Tuple”
 class; tuples are implemented as case classes ranging from
 Tuple1 to Tuple22, which support 1 to 22
 elements.

Strict and lazy collections

To understand strict and lazy collections, it helps to first
 understand the concept of a transformer method. A
 transformer method is a method that constructs a
 new collection from an existing collection. This includes methods like
 map, filter, reverse, etc.—any method that transforms the
 input collection to a new output collection.
Given that definition, collections can also be thought of in
 terms of being strict or lazy. In a strict
 collection, memory for the elements is allocated immediately, and all
 of its elements are immediately evaluated when a transformer method is
 invoked. In a lazy collection, memory for the
 elements is not allocated immediately, and transformer methods do not
 construct new elements until they are demanded.
All of the collection classes except Stream are strict, but the other collection
 classes can be converted to a lazy collection by
 creating a view on the collection. See Recipe 10.24, for more information on this
 approach.

See Also

	In addition to my own experience using the collections, most
 of the information used to create these tables comes from the
 Scaladoc of each type, and the Scala Collections Overview
 documentation.

	Recipe 10.1.

	Recipe 10.4.

10.3. Choosing a Collection Method to Solve a Problem

Problem

There is a large number of methods available to Scala collections,
 and you need to choose a method to solve a problem.

Solution

The Scala collection classes provide a wealth of methods that can
 be used to manipulate data. Most methods take either a function or a
 predicate as an argument. (A predicate is just a
 function that returns a Boolean.)
The methods that are available are listed in two ways in this
 recipe. In the next few paragraphs, the methods are grouped into
 categories to help you easily find what you need. In the tables that
 follow, a brief description and method signature is provided.
Methods organized by category

	Filtering methods
	Methods that can be used to filter a collection include
 collect, diff, distinct, drop, dropWhile, filter, filterNot, find, foldLeft, foldRight, head, headOption, init, intersect, last, lastOption, reduceLeft, reduceRight, remove, slice, tail, take, takeWhile, and union.

	Transformer methods
	Transformer methods take at least one input collection to
 create a new output collection, typically using an algorithm you
 provide. They include +,
 ++, −, −−, diff, distinct, collect, flatMap, map, reverse, sortWith, takeWhile, zip, and zipWithIndex.

	Grouping methods
	These methods let you take an existing collection and
 create multiple groups from that one collection. These methods
 include groupBy, partition, sliding, span, splitAt, and unzip.

	Informational and mathematical methods
	These methods provide information about a collection, and
 include canEqual, contains, containsSlice, count, endsWith, exists, find, forAll, has-DefiniteSize, indexOf, indexOfSlice, indexWhere, isDefinedAt, isEmpty, lastIndexOf, lastIndexOfSlice, lastIndexWhere, max, min, nonEmpty, product, segmentLength, size, startsWith, sum. The methods foldLeft, foldRight, reduceLeft, and reduceRight can also be used with a
 function you supply to obtain information about a
 collection.

	Others
	A few other methods are hard to categorize, including
 par, view, flatten, foreach, and mkString. par creates a parallel collection from
 an existing collection; view
 creates a lazy view on a collection (see Recipe 10.24); flatten converts a list of lists down
 to one list; foreach is like
 a for loop, letting you
 iterate over the elements in a collection; mkString lets you build a String from a collection.

There are even more methods than those listed here. For
 instance, there’s a collection of to* methods that let you convert the current
 collection (a List, for example) to
 other collection types (Array,
 Buffer, Vector, etc.). Check the Scaladoc for your
 collection class to find more built-in methods.

Common collection methods

The following tables list the most common collection
 methods.
Table 10-8
 lists methods that are common to all collections via Traversable. The following symbols are used
 in the first column of the table:
	c refers to a
 collection

	f refers to a
 function

	p refers to a
 predicate

	n refers to a
 number

	op refers to a simple
 operation (usually a simple function)

Additional methods for mutable and immutable collections are
 listed in Tables 10-9 and 10-10, respectively.
Table 10-8. Common methods on Traversable collections
	Method
	Description

	c collect f
	Builds a new collection
 by applying a partial function to all elements of the
 collection on which the function is defined.

	c count p
	Counts the number of
 elements in the collection for which the predicate is
 satisfied.

	c1 diff c2
	Returns the difference
 of the elements in c1 and
 c2.

	c drop n
	Returns all elements in
 the collection except the first n elements.

	c dropWhile p
	Returns a collection
 that contains the “longest prefix of elements that satisfy the
 predicate.”

	c exists p
	Returns true if the predicate is true for
 any element in the collection.

	c filter p
	Returns all elements
 from the collection for which the predicate is true.

	c filterNot p
	Returns all elements
 from the collection for which the predicate is false.

	c find p
	Returns the first
 element that matches the predicate as Some[A]. Returns None if no match is
 found.

	c flatten
	Converts a collection
 of collections (such as a list of lists) to a single
 collection (single list).

	c flatMap f
	Returns a new
 collection by applying a function to all elements of the
 collection c (like map), and then flattening the
 elements of the resulting collections.

	c foldLeft(z)(op)
	Applies the operation
 to successive elements, going from left to right, starting at
 element z.

	c foldRight(z)(op)
	Applies the operation
 to successive elements, going from right to left, starting at
 element z.

	c forAll p
	Returns true if the predicate is true for
 all elements, false
 otherwise.

	c foreach f
	Applies the function
 f to all elements of the
 collection.

	c groupBy f
	Partitions the
 collection into a Map of
 collections according to the function.

	c hasDefiniteSize
	Tests whether the
 collection has a finite size. (Returns false for a Stream or Iterator, for
 example.)

	c head
	Returns the first
 element of the collection. Throws a NoSuchElementException if the
 collection is empty.

	c headOption
	Returns the first
 element of the collection as Some[A] if the element exists, or
 None if the collection is
 empty.

	c init
	Selects all elements
 from the collection except the last one. Throws an UnsupportedOperationException if the
 collection is empty.

	c1 intersect c2
	On collections that
 support it, it returns the intersection of the two collections
 (the elements common to both collections).

	c isEmpty
	Returns true if the collection is empty,
 false
 otherwise.

	c last
	Returns the last
 element from the collection. Throws a NoSuchElementException if the
 collection is empty.

	c lastOption
	Returns the last
 element of the collection as Some[A] if the element exists, or
 None if the collection is
 empty.

	c map f
	Creates a new
 collection by applying the function to all the elements of the
 collection.

	c max
	Returns the largest
 element from the collection.

	c min
	Returns the smallest
 element from the collection.

	c nonEmpty
	Returns true if the collection is not
 empty.

	c par
	Returns a parallel
 implementation of the collection, e.g., Array returns ParArray.

	c partition p
	Returns two collections
 according to the predicate algorithm.

	c product
	Returns the multiple of
 all elements in the collection.

	c reduceLeft op
	The same as foldLeft, but begins at the first
 element of the collection.

	c reduceRight op
	The same as foldRight, but begins at the last
 element of the collection.

	c reverse
	Returns a collection
 with the elements in reverse order. (Not available on Traversable, but common to most
 collections, from GenSeqLike.)

	c size
	Returns the size of the
 collection.

	c slice(from, to)
	Returns the interval of
 elements beginning at element from and ending at element to.

	c sortWith f
	Returns a version of
 the collection sorted by the comparison function f.

	c span p
	Returns a collection of
 two collections; the first created by c.takeWhile(p), and the second
 created by c.dropWhile(p).

	c splitAt n
	Returns a collection of
 two collections by splitting the collection c at element n.

	c sum
	Returns the sum of all
 elements in the collection.

	c tail
	Returns all elements
 from the collection except the first element.

	c take n
	Returns the first
 n elements of the
 collection.

	c takeWhile p
	Returns elements from
 the collection while the predicate is true. Stops when the predicate
 becomes false.

	c1 union c2
	Returns the union (all
 elements) of two collections.

	c unzip
	The opposite of
 zip, breaks a collection
 into two collections by dividing each element into two pieces,
 as in breaking up a collection of Tuple2 elements.

	c view
	Returns a nonstrict
 (lazy) view of the collection.

	c1 zip c2
	Creates a collection of
 pairs by matching the element 0 of c1 with element 0 of c2, element 1 of c1 with element 1 of c2, etc.

	c zipWithIndex
	Zips the collection
 with its indices.

Mutable collection methods

Table 10-9 shows
 the common methods for mutable collections. (Although these are all
 methods, they’re often referred to as operators, because that’s what
 they look like.)
Table 10-9. Common operators (methods) on mutable collections
	Operator
 (method)
	Description

	c += x
	Adds the element
 x to the collection
 c.

	c += (x,y,z)
	Adds the elements
 x, y, and z to the collection c.

	c1 ++= c2
	Adds the elements in
 the collection c2 to the
 collection c1.

	c −= x
	Removes the element
 x from the collection
 c.

	c −= (x,y,z)
	Removes the elements
 x , y, and z from the collection c.

	c1 −−= c2
	Removes the elements in
 the collection c2 from the
 collection c1.

	c(n) = x
	Assigns the value
 x to the element c(n).

	c clear
	Removes all elements
 from the collection.

	c remove n
 c.remove(n, len)
	Removes the element at
 position n, or the elements
 beginning at position n and
 continuing for length len.

There are additional methods, but these are the most common. See
 the Scaladoc for the mutable collection you’re working with for more
 methods.

Immutable collection operators

Table 10-10
 shows the common methods for working with immutable collections. Note
 that immutable collections can’t be modified, so the result of each
 expression in the first column must be assigned to a new variable.
 (Also, see Recipe 10.6
 for details on using a mutable variable with an immutable
 collection.)
Table 10-10. Common operators (methods) on immutable collections
	Operator
 (method)
	Description

	c1 ++ c2
	Creates a new
 collection by appending the elements in the collection
 c2 to the collection
 c1.

	c :+ e
	Returns a new
 collection with the element e appended to the collection
 c.

	e +: c
	Returns a new
 collection with the element e prepended to the collection
 c.

	e :: list
	Returns a List with the element e prepended to the List named list. (:: works only on List.)

	c drop n
 c dropWhile p
 c filter p
 c filterNot p
 c head
 c tail
 c take n
 c takeWhile p
	The two methods
 - and -- have been deprecated, so use the
 filtering methods listed in Table 10-8 to
 return a new collection with the desired elements removed.
 Examples of some of these filtering methods are shown
 here.

Again, this table lists only the most common methods available
 on immutable collections. There are other methods available, such as
 the -- method on a Set. See the Scaladoc for your current
 collection for even more methods.

Maps

Maps have additional methods, as shown in Table 10-11. In this table,
 the following symbols are used in the first column:
	m refers to a map

	mm refers to a mutable
 map

	k refers to a key

	p refers to a predicate
 (a function that returns true
 or false)

	v refers to a map
 value

	c refers to a
 collection

Table 10-11. Common methods for immutable and mutable maps
	Map
 method
	Description

	Methods for
 immutable maps

	m - k
	Returns a map with the
 key k (and its
 corresponding value) removed.

	m - (k1, k2, k3)
	Returns a map with the
 keys k1, k2, and k3 removed.

	m -- c

 m -- List(k1,
 k2)
	Returns a map with the
 keys in the collection removed. (Although List is shown, this can be any
 sequential collection.)

	Methods for mutable
 maps

	mm += (k -> v)

 mm += (k1 -> v1, k2 ->
 v2)
	Add the key/value
 pair(s) to the mutable map mm.

	mm ++=
 c
mm ++= List(3 ->
 "c")	Add the elements in the
 collection c to the mutable
 map mm.

	mm -= k
 mm -= (k1, k2, k3)
	Remove map entries from
 the mutable map mm based on
 the given key(s).

	mm --= c
	Remove the map entries
 from the mutable map mm
 based on the keys in the collection c.

	Methods for both
 mutable and immutable maps

	m(k)
	Returns the value
 associated with the key k.

	m contains k
	Returns true if the map m contains the key k.

	m filter p
	Returns a map whose
 keys and values match the condition of the predicate p.

	m filterKeys p
	Returns a map whose
 keys match the condition of the predicate p.

	m get k
	Returns the value for
 the key k as Some[A] if the key is found,
 None
 otherwise.

	m getOrElse(k, d)
	Returns the value for
 the key k if the key is
 found, otherwise returns the default value d.

	m isDefinedAt k
	Returns true if the map contains the key
 k.

	m keys
	Returns the keys from
 the map as an Iterable.

	m keyIterator
	Returns the keys from
 the map as an Iterator.

	m keySet
	Returns the keys from
 the map as a Set.

	m mapValues f
	Returns a new map by
 applying the function f to
 every value in the initial map.

	m values
	Returns the values from
 the map as an Iterable.

	m valuesIterator
	Returns the values from
 the map as an Iterator.

For additional methods, see the Scaladoc for the mutable and immutable map classes.

Discussion

As you can see, Scala collection classes contain a wealth of
 methods (and methods that appear to be operators). Understanding these
 methods will help you become more productive, because as you understand
 them, you’ll write less code and fewer loops, and instead write short
 functions and predicates to work with these methods.

10.4. Understanding the Performance of Collections

Problem

When choosing a collection for an application where performance is
 extremely important, you want to choose the right collection for the
 algorithm.

Solution

In many cases, you can reason about the performance of a
 collection by understanding its basic structure. For instance, a
 List is a singly linked list. It’s
 not indexed, so if you need to access the one-millionth element of a
 List as list(1000000), that will be slower than
 accessing the one-millionth element of an Array, because the Array is indexed, whereas accessing the
 element in the List requires
 traversing the length of the List.
In other cases, it may help to look at the tables. For instance,
 Table 10-13 shows that
 the append operation on a Vector is
 eC, “effectively constant time.” As a result, I know I can create a
 large Vector in the REPL very quickly
 like this:
var v = Vector[Int]()
for (i <- 1 to 50000) v = v :+ i
However, as the table shows, the append operation on a List requires linear time, so attempting to
 create a List of the same size takes
 a much (much!) longer time.
With permission from EFPL, the tables in this recipe have
 been reproduced from scala-lang.org.
Before looking at the performance tables, Table 10-12 shows the
 performance characteristic keys that are used in the other tables that
 follow.
Table 10-12. Performance characteristic keys for the subsequent
 tables
	Key
	Description

	C
	The operation takes
 (fast) constant time.

	eC
	The operation takes
 effectively constant time, but this might depend on some
 assumptions, such as maximum length of a vector, or distribution
 of hash keys.

	aC
	The operation takes
 amortized constant time. Some invocations of the operation might
 take longer, but if many operations are performed, on average
 only constant time per operation is taken.

	Log
	The operation takes time
 proportional to the logarithm of the collection
 size.

	L
	The operation is linear,
 so the time is proportional to the collection
 size.

	-
	The operation is not
 supported.

Table 10-13 shows
 the performance characteristics for operations on immutable and mutable
 sequential collections.
Table 10-13. Performance characteristics for sequential collections
	 	head
	tail
	apply
	update
	prepend
	append
	insert

	 	 	 	 	 	 	 	
	Immutable

	List
	C
	C
	L
	L
	C
	L
	-

	Stream
	C
	C
	L
	L
	C
	L
	-

	Vector
	eC
	eC
	eC
	eC
	eC
	eC
	-

	Stack
	C
	C
	L
	L
	C
	C
	L

	Queue
	aC
	aC
	L
	L
	L
	C
	-

	Range
	C
	C
	C
	-
	-
	-
	-

	String
	C
	L
	C
	L
	L
	L
	-

	 	 	 	 	 	 	 	
	Mutable

	ArrayBuffer
	C
	L
	C
	C
	L
	aC
	L

	ListBuffer
	C
	L
	L
	L
	C
	C
	L

	StringBuilder
	C
	L
	C
	C
	L
	aC
	L

	MutableList
	C
	L
	L
	L
	C
	C
	L

	Queue
	C
	L
	L
	L
	C
	C
	L

	ArraySeq
	C
	L
	C
	C
	-
	-
	-

	Stack
	C
	L
	L
	L
	C
	L
	L

	ArrayStack
	C
	L
	C
	C
	aC
	L
	L

	Array
	C
	L
	C
	C
	-
	-
	-

Table 10-14
 describes the column headings used in Table 10-13.
Table 10-14. Descriptions of the column headings for Table 10-13
	Operation
	Description

	head
	Selecting the first
 element of the sequence.

	tail
	Producing a new sequence
 that consists of all elements of the sequence except the first
 one.

	apply
	Indexing.

	update
	Functional update for
 immutable sequences, side-effecting update (with update) for
 mutable sequences.

	prepend
	Adding an element to the
 front of the sequence. For immutable sequences, this produces a
 new sequence. For mutable sequences, it modifies the existing
 sequence.

	append
	Adding an element at the
 end of the sequence. For immutable sequences, this produces a
 new sequence. For mutable sequences, it modifies the existing
 sequence.

	insert
	Inserting an element at
 an arbitrary position in the sequence. This is supported
 directly only for mutable sequences.

Map and set performance characteristics

Table 10-15
 shows the performance characteristics for maps and sets.
Table 10-15. The performance characteristics for maps and sets
	 	lookup
	add
	remove
	min

	Immutable

	HashSet/HashMap
	eC
	eC
	eC
	L

	TreeSet/TreeMap
	Log
	Log
	Log
	Log

	BitSet
	C
	L
	L
	eC

	ListMap
	L
	L
	L
	L

	 	 	 	 	
	Mutable

	HashSet/HashMap
	eC
	eC
	eC
	L

	WeakHashMap
	eC
	eC
	eC
	L

	BitSet
	C
	aC
	C
	eC

	TreeSet
	Log
	Log
	Log
	Log

Table 10-16
 provides descriptions for the column headings used in Table 10-15.
Table 10-16. Descriptions of the column headings used in Table 10-15
	Operation
	Description

	lookup
	Testing whether an
 element is contained in a set, or selecting a value associated
 with a map key.

	add
	Adding a new element to
 a set or key/value pair to a map.

	remove
	Removing an element
 from a set or a key from a map.

	min
	The smallest element of
 the set, or the smallest key of a map.

See Also

	The tables in this recipe have been reproduced from the
 following URL, with permission from the Programming Methods Laboratory of
 EFPL.

	The Programming Methods
 Laboratory of EFPL.

10.5. Declaring a Type When Creating a Collection

Problem

You want to create a collection of mixed types, and Scala isn’t
 automatically assigning the type you want.

Solution

In the following example, if you don’t specify a type, Scala
 automatically assigns a type of Double to the list:
scala> val x = List(1, 2.0, 33D, 400L)
x: List[Double] = List(1.0, 2.0, 33.0, 400.0)
If you’d rather have the collection be of type AnyVal or Number, specify the type in brackets before
 your collection declaration:
scala> val x = List[Number](1, 2.0, 33D, 400L)
x: List[java.lang.Number] = List(1, 2.0, 33.0, 400)

scala> val x = List[AnyVal](1, 2.0, 33D, 400L)
x: List[AnyVal] = List(1, 2.0, 33.0, 400)

Discussion

By manually specifying a type, in this case Number, you control the collection type. This
 is useful any time a list contains mixed types or multiple levels of
 inheritance. For instance, given this type hierarchy:
trait Animal
trait FurryAnimal extends Animal
case class Dog(name: String) extends Animal
case class Cat(name: String) extends Animal
create a sequence with a Dog
 and a Cat:
scala> val x = Array(Dog("Fido"), Cat("Felix"))
x: Array[Product with Serializable with Animal] = Array(Dog(Fido), Cat(Felix))
As shown, Scala assigns a type of Product
 with Serializable with Animal. If you just want an Array[Animal], manually specify the desired
 type:
scala> val x = Array[Animal](Dog("Fido"), Cat("Felix"))
x: Array[Animal] = Array(Dog(Fido), Cat(Felix))
This may not seem like a big deal, but imagine declaring a class
 with a method that returns this array:
class AnimalKingdom {
 def animals = Array(Dog("Fido"), Cat("Felix"))
}
When you generate the Scaladoc for this class, the animals method will show the “Product with
 Serializable” in its Scaladoc:
def animals: Array[Product with Serializable with Animal]
If you’d rather have it appear like this in your Scaladoc:
def animals: Array[Animal]
manually assign the type, as shown in the Solution:
def animals = Array[Animal](Dog("Fido"), Cat("Felix"))

10.6. Understanding Mutable Variables with Immutable Collections

Problem

You may have seen that mixing a mutable variable (var) with an immutable collection causes
 surprising behavior. For instance, when you create an immutable Vector as a var, it appears you can somehow add new
 elements to it:
scala> var sisters = Vector("Melinda")
sisters: collection.immutable.Vector[String] = Vector(Melinda)

scala> sisters = sisters :+ "Melissa"
sisters: collection.immutable.Vector[String] = Vector(Melinda, Melissa)

scala> sisters = sisters :+ "Marisa"
sisters: collection.immutable.Vector[String] = Vector(Melinda, Melissa, Marisa)

scala> sisters.foreach(println)
Melinda
Melissa
Marisa
How can this be?

Solution

Though it looks like you’re mutating an immutable collection,
 what’s really happening is that the sisters variable points to a new collection
 each time you use the :+ method. The
 sisters variable is mutable—like a
 non-final field in Java—so it’s
 actually being reassigned to a new collection during each step. The end
 result is similar to these lines of code:
var sisters = Vector("Melinda")
sisters = Vector("Melinda", "Melissa")
sisters = Vector("Melinda", "Melissa", "Marisa")
In the second and third lines of code, the sisters reference has been changed to point to
 a new collection.
You can demonstrate that the vector itself is immutable.
 Attempting to mutate one of its elements—which doesn’t involve
 reassigning the variable—results in an error:
scala> sisters(0) = "Molly"
<console>:12: error: value update is not a member of
scala.collection.immutable.Vector[String]
 sisters(0) = "Molly"
 ^
Summary

When you first start working with Scala, the behavior of a
 mutable variable with an immutable collection can be surprising. To be
 clear about variables:
	A mutable variable (var)
 can be reassigned to point at new data.

	An immutable variable (val) is like a final variable in Java; it can never be
 reassigned.

To be clear about collections:
	The elements in a mutable collection (like ArrayBuffer) can be changed.

	The elements in an immutable collection (like Vector) cannot be changed.

See Also

	Recipe 20.2, discusses the use of mutable variables
 with immutable collections, and its opposite, using immutable
 variables with mutable collections as a “best practice.”

10.7. Make Vector Your “Go To” Immutable Sequence

Problem

You want a fast, general-purpose, immutable, sequential collection
 type for your Scala applications.

Solution

The Vector class was introduced
 in Scala 2.8 and is now considered to be the “go to,” general-purpose
 immutable data structure. (Vector is
 an indexed, immutable sequential collection. Use a List if you prefer working with a linear,
 immutable sequential collection. See Recipe 10.2, for
 more details.)
Create and use a Vector just
 like other immutable, indexed sequences. You can create them and access
 elements efficiently by index:
scala> val v = Vector("a", "b", "c")
v: scala.collection.immutable.Vector[java.lang.String] = Vector(a, b, c)

scala> v(0)
res0: java.lang.String = a
You can’t modify a vector, so you “add” elements to an existing
 vector as you assign the result to a new variable:
scala> val a = Vector(1, 2, 3)
a: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

scala> val b = a ++ Vector(4, 5)
b: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5)
Use the updated method to
 replace one element in a Vector while
 assigning the result to a new variable:
scala> val c = b.updated(0, "x")
c: scala.collection.immutable.Vector[java.lang.String] = Vector(x, b, c)
You can also use all the usual filtering methods to get just the
 elements you want out of a vector:
scala> val a = Vector(1, 2, 3, 4, 5)
a: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5)

scala> val b = a.take(2)
b: scala.collection.immutable.Vector[Int] = Vector(1, 2)

scala> val c = a.filter(_ > 2)
c: scala.collection.immutable.Vector[Int] = Vector(3, 4, 5)
In those examples, I created each variable as a val and assigned the output to a new variable
 just to be clear, but you can also declare your variable as a var and reassign the result back to the same
 variable:
scala> var a = Vector(1, 2, 3)
a: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

scala> a = a ++ Vector(4, 5)
a: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5)

Discussion

The “concrete, immutable
 collections classes” page from the scala-lang.org website states
 the following:
Vector is a collection type
 (introduced in Scala 2.8) that addresses the inefficiency for random
 access on lists. Vectors allow accessing any element of the list in
 ‘effectively’ constant time ... Because vectors strike a good balance
 between fast random selections and fast random functional updates,
 they are currently the default implementation of immutable indexed
 sequences...

In his book, Scala In Depth (Manning
 Publications), Joshua Suereth offers the rule, “When in Doubt, Use
 Vector.” He writes, “Vector is the most flexible, efficient collection
 in the Scala collections library.”
As noted in Recipe 10.1, if you create an
 instance of an IndexedSeq, Scala
 returns a Vector:
scala> val x = IndexedSeq(1,2,3)
x: IndexedSeq[Int] = Vector(1, 2, 3)
As a result, I’ve seen some developers create an IndexedSeq in their code, rather than a
 Vector, to be more generic and to
 allow for potential future changes.

See Also

	The Vector class

	The “concrete, immutable collections classes” discussion of
 the Vector class

10.8. Make ArrayBuffer Your “Go To” Mutable Sequence

Problem

You want to use a general-purpose, mutable sequence in your Scala
 applications.

Solution

Just as the Vector is the
 recommended “go to” class for immutable, sequential collections, the
 ArrayBuffer class is recommended as
 the general-purpose class for mutable sequential
 collections. (ArrayBuffer is an
 indexed sequential collection. Use ListBuffer if you prefer a linear sequential
 collection that is mutable. See Recipe 10.2, for
 more information.)
To use an ArrayBuffer, first
 import it:
import scala.collection.mutable.ArrayBuffer
You can then create an empty ArrayBuffer:
var fruits = ArrayBuffer[String]()
var ints = ArrayBuffer[Int]()
Or you can create an ArrayBuffer with initial elements:
var nums = ArrayBuffer(1, 2, 3)
Like other mutable collection classes, you add elements using the
 += and ++= methods:
scala> var nums = ArrayBuffer(1, 2, 3)
nums: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3)

// add one element
scala> nums += 4
res0: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4)

// add two or more elements (method has a varargs parameter)
scala> nums += (5, 6)
res1: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6)

// add elements from another collection
scala> nums ++= List(7, 8)
res2: scala.collection.mutable.ArrayBuffer[Int] =
 ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)
You remove elements with the -=
 and --= methods:
// remove one element
scala> nums -= 9
res3: scala.collection.mutable.ArrayBuffer[Int] =
 ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

// remove two or more elements
scala> nums -= (7, 8)
res4: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6)

// remove elements specified by another sequence
scala> nums --= Array(5, 6)
res5: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4)

Discussion

Those are the methods I generally use to add and remove elements
 from an ArrayBuffer. However, there
 are many more:
val a = ArrayBuffer(1, 2, 3) // ArrayBuffer(1, 2, 3)
a.append(4) // ArrayBuffer(1, 2, 3, 4)
a.append(5, 6) // ArrayBuffer(1, 2, 3, 4, 5, 6)
a.appendAll(Seq(7,8)) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)
a.clear // ArrayBuffer()

val a = ArrayBuffer(9, 10) // ArrayBuffer(9, 10)
a.insert(0, 8) // ArrayBuffer(8, 9, 10)
a.insert(0, 6, 7) // ArrayBuffer(6, 7, 8, 9, 10)
a.insertAll(0, Vector(4, 5)) // ArrayBuffer(4, 5, 6, 7, 8, 9, 10)
a.prepend(3) // ArrayBuffer(3, 4, 5, 6, 7, 8, 9, 10)
a.prepend(1, 2) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
a.prependAll(Array(0)) // ArrayBuffer(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)
a.remove(0) // ArrayBuffer(b, c, d, e, f, g)
a.remove(2, 3) // ArrayBuffer(b, c, g)

val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)
a.trimStart(2) // ArrayBuffer(c, d, e, f, g)
a.trimEnd(2) // ArrayBuffer(c, d, e)
See the Scaladoc for
 more methods that you can use to modify an ArrayBuffer.
The ArrayBuffer Scaladoc
 provides these details about ArrayBuffer performance: “Append, update, and
 random access take constant time (amortized time). Prepends and removes
 are linear in the buffer size.” The ArrayBuffer documentation also states, “array
 buffers are useful for efficiently building up a large collection
 whenever the new items are always added to the end.”
If you need a mutable sequential collection that works more like a
 List (i.e., a linear sequence rather
 than an indexed sequence), use ListBuffer instead of ArrayBuffer. The Scala documentation on the
 ListBuffer states, “A ListBuffer is like an array buffer except that
 it uses a linked list internally instead of an array. If you plan to
 convert the buffer to a list once it is built up, use a list buffer
 instead of an array buffer.”

See Also

	ArrayBuffer discussion

	ArrayBuffer Scaladoc

	ListBuffer discussion

10.9. Looping over a Collection with foreach

Problem

You want to iterate over the elements in a collection with the
 foreach method.

Solution

The foreach method takes a
 function as an argument. The function you define should take an element
 as an input parameter, and should not return anything. The input
 parameter type should match the type stored in the collection. As
 foreach executes, it passes one
 element at a time from the collection to your function until it reaches
 the last element in the collection.
The foreach method applies your
 function to each element of the collection, but it doesn’t return a
 value. Because it doesn’t return anything, it’s said that it’s used for
 its “side effect.”
As an example, a common use of foreach is to output information:
scala> val x = Vector(1, 2, 3)
x: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

scala> x.foreach((i: Int) => println(i))
1
2
3
That’s the longhand way of writing that code. For most
 expressions, Scala can infer the type, so specifying i: Int isn’t necessary:
args.foreach(i => println(i))
You can further shorten this expression by using the ubiquitous
 underscore wildcard character instead of using a temporary
 variable:
args.foreach(println(_))
In a situation like this, where a function literal consists of one
 statement that takes a single argument, it can be condensed to this
 form:
args.foreach(println)
For a simple case like this, the syntax in the last example is
 typically used.

Discussion

As long as your function (or method) takes one parameter of the
 same type as the elements in the collection and returns nothing
 (Unit), it can be called from a
 foreach method. In the following
 example, the printIt method takes a
 Char, does something with it, and
 returns nothing:
def printIt(c: Char) { println(c) }
Because a String is a sequence
 of type Char, printIt can be called in a foreach method on a String as follows:
"HAL".foreach(c => printIt(c))
"HAL".foreach(printIt)
If your algorithm is used only once, you don’t have to declare it
 as a method or function; just pass it to foreach as a function literal:
"HAL".foreach((c: Char) => println(c))
To declare a multiline function, use this format:
val longWords = new StringBuilder

"Hello world it's Al".split(" ").foreach{ e =>
 if (e.length > 4) longWords.append(s" $e")
 else println("Not added: " + e)
}
To understand this example, it may be helpful to know the split method used in that function creates an
 Array[String], as shown here:
scala> "Hello world it's Al".split(" ")
res0: Array[java.lang.String] = Array(Hello, world, it's, Al)
In addition to using the foreach method on sequential collections, it’s
 also available on the Map class. The
 Map implementation of foreach passes two parameters to your
 function. You can handle those parameters as a tuple:
val m = Map("fname" -> "Tyler", "lname" -> "LeDude")
m foreach (x => println(s"${x._1} -> ${x._2}"))
However, I generally prefer the following approach:
movieRatings.foreach {
 case(movie, rating) => println(s"key: $movie, value: $rating")
}
See Recipe 11.17,
 for other ways to iterate over a map.
Scala’s for loop provides
 another powerful way to iterate over the elements in a collection. See Recipe 10.10, for more information.

10.10. Looping over a Collection with a for Loop

Problem

You want to loop over the elements in a collection using a
 for loop, possibly creating a new
 collection from the existing collection using the
 for/yield combination.

Solution

You can loop over any Traversable type (basically any sequence)
 using a for loop:
scala> val fruits = Traversable("apple", "banana", "orange")
fruits: Traversable[String] = List(apple, banana, orange)

scala> for (f <- fruits) println(f)
apple
banana
orange

scala> for (f <- fruits) println(f.toUpperCase)
APPLE
BANANA
ORANGE
If your algorithm is long, perform the work in a block following a
 for loop:
scala> val fruits = Array("apple", "banana", "orange")
fruits: Array[String] = Array(apple, banana, orange)

scala> for (f <- fruits) {
 | // imagine this required multiple lines
 | val s = f.toUpperCase
 | println(s)
 | }
APPLE
BANANA
ORANGE
This example shows one approach to using a counter inside a
 for loop:
scala> for (i <- 0 until fruits.size) println(s"element $i is ${fruits(i)}")
element 0 is apple
element 1 is banana
element 2 is orange
You can also use the zipWithIndex method when you need a loop
 counter:
scala> for ((elem, count) <- fruits.zipWithIndex) {
 | println(s"element $count is $elem")
 | }
element 0 is apple
element 1 is banana
element 2 is orange
Note
When using zipWithIndex,
 consider calling view before
 zipWithIndex:
// added a call to 'view'
for ((elem, count) <- fruits.view.zipWithIndex) {
 println(s"element $count is $elem")
}
See the next recipe for details.

Using zip with a Stream is another way to generate a
 counter:
scala> for ((elem,count) <- fruits.zip(Stream from 1)) {
 | println(s"element $count is $elem")
 | }
element 1 is apple
element 2 is banana
element 3 is orange
See the next recipe for details on using zipWithIndex and zip to create loop counters.
If you just need to do something N times, using a Range works well:
scala> for (i <- 1 to 3) println(i)
1
2
3
In that example, the expression 1 to
 3 creates a Range, which
 you can demonstrate in the REPL:
scala> 1 to 3
res0: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3)
Again you can use a block inside curly braces when your algorithm
 gets long:
scala> for (i <- 1 to 3) {
 | // do whatever you want in this block
 | println(i)
 | }
1
2
3
The for/yield construct

The previous examples show how to operate on each element in a
 sequence, but they don’t return a value. As with the foreach examples in the previous recipe,
 they’re used for their side effect.
To build a new collection from an input collection, use the
 for/yield construct. The
 following example shows how to build a new array of uppercase strings
 from an input array of lowercase strings:
scala> val fruits = Array("apple", "banana", "orange")
fruits: Array[java.lang.String] = Array(apple, banana, orange)

scala> val newArray = for (e <- fruits) yield e.toUpperCase
newArray: Array[java.lang.String] = Array(APPLE, BANANA, ORANGE)
The for/yield construct
 returns (yields) a new collection from the input collection by
 applying your algorithm to the elements of the input collection, so
 the array newArray contains
 uppercase versions of the three strings in the initial array. Using
 for/yield like this is known as
 a for comprehension.
If your for/yield processing requires multiple lines of code,
 perform the work in a block after the yield keyword:
scala> val newArray = for (fruit <- fruits) yield {
 | // imagine this required multiple lines
 | val upper = fruit.toUpperCase
 | upper
 | }
newArray: Array[java.lang.String] = Array(APPLE, BANANA, ORANGE)
If your algorithm is long, or you want to reuse it, first define
 it in a method (or function):
def upperReverse(s: String) = {
 // imagine this is a long algorithm
 s.toUpperCase.reverse
}
then use the method with the
 for/yield loop:
scala> val newArray = for (fruit <- fruits) yield upperReverse(fruit)
newArray: Array[String] = Array(ELPPA, ANANAB, EGNARO)

Maps

You can also iterate over a Map nicely using a for loop:
scala> val names = Map("fname" -> "Ed", "lname" -> "Chigliak")
names: scala.collection.immutable.Map[String,String] =
 Map(fname -> Ed, lname -> Chigliak)

scala> for ((k,v) <- names) println(s"key: $k, value: $v")
key: fname, value: Ed
key: lname, value: Chigliak
See Recipe 11.17, for more examples of iterating over a
 map.

Discussion

When using a for loop, the
 <- symbol can be read as “in,” so
 the following statement can be read as “for i in 1 to
 3, do ...”:
for (i <- 1 to 3) { // more code here ...
As demonstrated in Recipe 3.3, you can also combine a for loop with if statements, which are known as
 guards:
for {
 file <- files
 if file.isFile
 if file.getName.endsWith(".txt")
} doSomething(file)
See that recipe for more examples of using guards with for loops.

See Also

	Recipe 3.3

	Recipe 10.9

	Recipe 10.13

10.11. Using zipWithIndex or zip to Create Loop Counters

Problem

You want to loop over a sequential collection, and you’d like to
 have access to a counter in the loop, without having to manually create
 a counter.

Solution

Use the zipWithIndex or
 zip methods to create a counter
 automatically. Assuming you have a sequential collection of days:
val days = Array("Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday")
you can print the elements in the collection with a counter using
 the zipWithIndex and foreach methods:
days.zipWithIndex.foreach {
 case(day, count) => println(s"$count is $day")
}
As you’ll see in the Discussion, this works because zipWithIndex returns a series of Tuple2 elements in an Array, like this:
Array((Sunday,0), (Monday,1), ...
and the case statement in the
 foreach loop matches a
 Tuple2.
You can also use zipWithIndex
 with a for loop:
for ((day, count) <- days.zipWithIndex) {
 println(s"$count is $day")
}
Both loops result in the following output:
0 is Sunday
1 is Monday
2 is Tuesday
3 is Wednesday
4 is Thursday
5 is Friday
6 is Saturday
When using zipWithIndex, the
 counter always starts at 0. You can
 also use the zip method with a
 Stream to create a counter. This
 gives you a way to control the starting value:
scala> for ((day,count) <- days.zip(Stream from 1)) {
 | println(s"day $count is $day")
 | }

Discussion

When zipWithIndex is used on a
 sequence, it returns a sequence of Tuple2 elements, as shown in this
 example:
scala> val list = List("a", "b", "c")
list: List[String] = List(a, b, c)

scala> val zwi = list.zipWithIndex
zwi: List[(String, Int)] = List((a,0), (b,1), (c,2))
Because zipWithIndex creates a
 new sequence from the existing sequence, you may want to call view before invoking zipWithIndex, like this:
scala> val zwi2 = list.view.zipWithIndex
zwi2: scala.collection.SeqView[(String, Int),Seq[_]] = SeqViewZ(...)
As shown, this creates a lazy view on the original list, so the
 tuple elements won’t be created until they’re needed. Because of this
 behavior, calling view before calling
 zipWithIndex is recommended at the
 first two links in the See Also section. However, my own experience
 concurs with the performance shown in the third link in the See Also
 section, where not using a view performs better. If
 performance is a concern, try your loop both ways, and also try manually
 incrementing a counter.
As mentioned, the zip and
 zipWithIndex methods both return a
 sequence of Tuple2 elements.
 Therefore, your foreach method can
 also look like this:
days.zipWithIndex.foreach { d =>
 println(s"${d._2} is ${d._1}")
}
However, I think the approaches shown in the Solution are more
 readable.
As shown in the previous recipe, you can also use a range with a
 for loop to create a counter:
val fruits = Array("apple", "banana", "orange")
for (i <- 0 until fruits.size) println(s"element $i is ${fruits(i)}")
See Recipe 10.24, for more information on using
 views.

See Also

	A blog post on using zipWithIndex in several use cases

	A discussion of using zipWithIndex in a for
 loop

	A discussion of performance related to using a view with
 zipWithIndex

	SeqView trait

10.12. Using Iterators

Problem

You want (or need) to work with an iterator in a Scala
 application.

Solution

Although using an iterator with hasNext() and next() is a common way to loop over a
 collection in Java, they aren’t commonly used in Scala, because Scala
 collections have methods like map and
 foreach that let you implement
 algorithms more concisely. To be clear, in Scala, I’ve never directly
 written code like this:
// don't do this
val it = collection.iterator
while (it.hasNext) ...
That being said, sometimes you’ll run into an iterator, with one
 of the best examples being the io.Source.fromFile method. This method returns
 an iterator, which makes sense, because when you’re working with very
 large files, it’s not practical to read the entire file into
 memory.
An important part of using an iterator is knowing that it’s
 exhausted after you use it. As you access each element, you mutate the
 iterator, and the previous element is discarded. For instance, if you
 use foreach to iterate over an
 iterator’s elements, the call works the first time:
scala> val it = Iterator(1,2,3)
it: Iterator[Int] = non-empty iterator

scala> it.foreach(println)
1
2
3
But when you attempt the same call a second time, you won’t get
 any output, because the iterator has been exhausted:
scala> it.foreach(println)
(no output here)
An iterator isn’t a collection; instead, it gives you a way to
 access the elements in a collection, one by one. But an iterator does
 define many of the methods you’ll see in a normal collection class,
 including foreach, map, flatMap, collect, etc. You can also convert an iterator
 to a collection when needed:
val it = Iterator(1,2,3)
it.toArray
The REPL output shows the collections you can create from an
 iterator:
scala> it.to[Tab]
toArray toBuffer toIndexedSeq toIterable toIterator
toList toMap toSeq toSet toStream
toString toTraversable

See Also

	An introduction to Scala
 iterators

	The Iterator trait

10.13. Transforming One Collection to Another with for/yield

Problem

You want to create a new collection from an existing collection by
 transforming the elements with an algorithm.

Solution

Use the for/yield construct
 and your algorithm to create the new collection. For instance, starting
 with a basic collection:
scala> val a = Array(1, 2, 3, 4, 5)
a: Array[Int] = Array(1, 2, 3, 4, 5)
You can create a copy of that collection by just “yielding” each
 element (with no algorithm):
scala> for (e <- a) yield e
res0: Array[Int] = Array(1, 2, 3, 4, 5)
You can create a new collection where each element is twice the
 value of the original:
scala> for (e <- a) yield e * 2
res1: Array[Int] = Array(2, 4, 6, 8, 10)
You can determine the modulus of each element:
scala> for (e <- a) yield e % 2
res2: Array[Int] = Array(1, 0, 1, 0, 1)
This example converts a list of strings to uppercase:
scala> val fruits = Vector("apple", "banana", "lime", "orange")
fruits: Vector[String] = Vector(apple, banana, lime, orange)

scala> val ucFruits = for (e <- fruits) yield e.toUpperCase
ucFruits: Vector[String] = Vector(APPLE, BANANA, LIME, ORANGE)
Your algorithm can return whatever collection is needed. This
 approach converts the original collection into a sequence of Tuple2 elements:
scala> for (i <- 0 until fruits.length) yield (i, fruits(i))
res0: scala.collection.immutable.IndexedSeq[(Int, String)] =
 Vector((0,apple), (1,banana), (2,lime), (3,orange))
This algorithm yields a sequence of Tuple2 elements that contains each original
 string along with its length:
scala> for (f <- fruits) yield (f, f.length)
res1: Vector[(String, Int)] = Vector((apple,5), (banana,6), (lime,4), (orange,6))
If your algorithm takes multiple lines, include it in a block
 after the yield:
scala> val x = for (e <- fruits) yield {
 | // imagine this required multiple lines
 | val s = e.toUpperCase
 | s
 | }
x: Vector[String] = List(APPLE, BANANA, LIME, ORANGE)
Given a Person class and a list
 of friend’s names like this:
case class Person (name: String)
val friends = Vector("Mark", "Regina", "Matt")
a for/yield loop can yield a
 collection of Person
 instances:
scala> for (f <- friends) yield Person(f)
res0: Vector[Person] = Vector(Person(Mark), Person(Regina), Person(Matt))
You can include if statements
 (guards) in a for comprehension to filter elements:
scala> val x = for (e <- fruits if e.length < 6) yield e.toUpperCase
x: List[java.lang.String] = List(APPLE, LIME)

Discussion

This combination of a for loop
 and yield statement is known as a
 for comprehension or sequence
 comprehension. It yields a new collection from an existing
 collection.
If you’re new to using the
 for/yield construct, it can help
 to think that is has a bucket or temporary holding area on the side. As
 each element from the original collection is operated on with yield and your algorithm, it’s added to that
 bucket. Then, when the for loop is
 finished iterating over the entire collection, all of the elements in
 the bucket are returned (yielded) by the expression.
In general, the collection type that’s returned by a for
 comprehension will be the same type that you begin with. If you begin
 with an ArrayBuffer, you’ll end up
 with an ArrayBuffer:
scala> val fruits = scala.collection.mutable.ArrayBuffer("apple", "banana")
fruits: scala.collection.mutable.ArrayBuffer[java.lang.String] =
 ArrayBuffer(apple, banana)

scala> val x = for (e <- fruits) yield e.toUpperCase
x: scala.collection.mutable.ArrayBuffer[java.lang.String] =
 ArrayBuffer(APPLE, BANANA)
A List returns a List:
scala> val fruits = "apple" :: "banana" :: "orange" :: Nil
fruits: List[java.lang.String] = List(apple, banana, orange)

scala> val x = for (e <- fruits) yield e.toUpperCase
x: List[java.lang.String] = List(APPLE, BANANA, ORANGE)
However, as shown in the Solution, this isn’t always the
 case.
Using guards

When you add guards to a for comprehension and want to write it
 as a multiline expression, the recommended coding style is to use
 curly braces rather than parentheses:
for {
 file <- files
 if hasSoundFileExtension(file)
 if !soundFileIsLong(file)
} yield file
This makes the code more readable, especially when the list of
 guards becomes long. See Recipe 3.3, more information on using guards.
When using guards, the resulting collection can end up being a
 different size than the input collection:
scala> val cars = Vector("Mercedes", "Porsche", "Tesla")
cars: Vector[String] = Vector(Mercedes, Porsche, Tesla)

scala> for {
 | c <- cars
 | if c.startsWith("M")
 | } yield c
res0: Vector[String] = Vector(Mercedes)
In fact, if none of the car names had matched the startsWith test, that code would return an
 empty Vector.
When I first started working with Scala I always used a
 for/yield expression to do this
 kind of work, but one day I realized that I could achieve the same
 result more concisely using the map
 method. The next recipe demonstrates how to use map to create a new collection from an
 existing collection.

See Also

	Recipe 3.1, provides detailed examples of how
 for loops are translated by the Scala compiler
 into foreach and map method calls.

	Recipe 3.3, provides more examples of using
 guards.

10.14. Transforming One Collection to Another with map

Problem

Like the previous recipe, you want to transform one collection
 into another by applying an algorithm to every element in the original
 collection.

Solution

Rather than using the
 for/yield combination shown in the
 previous recipe, call the map method
 on your collection, passing it a function, an anonymous function, or
 method to transform each element. This is shown in the following
 examples, where each String in a
 List is converted to begin with a
 capital letter:
scala> val helpers = Vector("adam", "kim", "melissa")
helpers: scala.collection.immutable.Vector[java.lang.String] =
 Vector(adam, kim, melissa)

// the long form
scala> val caps = helpers.map(e => e.capitalize)
caps: scala.collection.immutable.Vector[String] = Vector(Adam, Kim, Melissa)

// the short form
scala> val caps = helpers.map(_.capitalize)
caps: scala.collection.immutable.Vector[String] = Vector(Adam, Kim, Melissa)
The next example shows that an array of String can be converted to an array of
 Int:
scala> val names = Array("Fred", "Joe", "Jonathan")
names: Array[java.lang.String] = Array(Fred, Joe, Jonathan)

scala> val lengths = names.map(_.length)
lengths: Array[Int] = Array(4, 3, 8)
The map method comes in handy
 if you want to convert a collection to a list of XML elements:
scala> val nieces = List("Aleka", "Christina", "Molly")
nieces: List[String] = List(Aleka, Christina, Molly)

scala> val elems = nieces.map(niece => {niece})
elems: List[scala.xml.Elem] =
 List(Aleka, Christina, Molly)
Using a similar technique, you can convert the collection directly
 to an XML literal:
scala> val ul = {nieces.map(i => {i})}
ul: scala.xml.Elem = AlekaChristinaMolly
A function that’s passed into map can be as complicated as necessary. An
 example in the Discussion shows how to use a multiline anonymous
 function with map. When your
 algorithm gets longer, rather than using an anonymous function, define
 the function (or method) first, and then pass it into map:
// imagine this is a long method
scala> def plusOne(c: Char): Char = (c.toByte+1).toChar
plusOne: (c: Char)Char

scala> "HAL".map(plusOne)
res0: String = IBM
When writing a method to work with map, define the method to take a single
 parameter that’s the same type as the collection. In this case, plusOne is defined to take a char, because a String is a collection of Char elements. The return type of the method
 can be whatever you need for your
 algorithm. For instance, the previous names.map(_.length) example showed that a
 function applied to a String can
 return an Int.
Unlike the for/yield
 approach shown in the previous recipe, the map method also works well when writing a
 chain of method calls. For instance, you can split a String into an array of strings, then trim the
 blank spaces from those strings:
scala> val s = " eggs, milk, butter, Coco Puffs "
s: String = " eggs, milk, butter, Coco Puffs "

scala> val items = s.split(",").map(_.trim)
items: Array[String] = Array(eggs, milk, butter, Coco Puffs)
This works because split
 creates an Array[String], and
 map applies the trim method to each element in that array
 before returning the final array.

Discussion

For simple cases, using map is
 the same as using a basic
 for/yield loop:
scala> val people = List("adam", "kim", "melissa")
people: List[java.lang.String] = List(adam, kim, melissa)

// map
scala> val caps1 = people.map(_.capitalize)
caps1: List[String] = List(Adam, Kim, Melissa)

// for/yield
scala> val caps2 = for (f <- people) yield f.capitalize
caps2: List[String] = List(Adam, Kim, Melissa)
But once you add a guard, a
 for/yield loop is no longer
 directly equivalent to just a map
 method call. If you attempt to use an if statement in the algorithm you pass to a
 map method, you’ll get a very
 different result:
scala> val fruits = List("apple", "banana", "lime", "orange", "raspberry")
fruits: List[java.lang.String] = List(apple, banana, lime, orange, raspberry)

scala> val newFruits = fruits.map(f =>
 | if (f.length < 6) f.toUpperCase
 |)
newFruits: List[Any] = List(APPLE, (), LIME, (), ())
You could filter the result
 after calling map to clean up the result:
scala> newFruits.filter(_ != ())
res0: List[Any] = List(APPLE, LIME)
But in this situation, it helps to think of an if statement as being a filter, so the correct
 solution is to first filter the collection, and then call map:
scala> val fruits = List("apple", "banana", "lime", "orange", "raspberry")
fruits: List[String] = List(apple, banana, lime, orange, raspberry)

scala> fruits.filter(_.length < 6).map(_.toUpperCase)
res1: List[String] = List(APPLE, LIME)

See Also

	Recipe 3.1, provides detailed examples of how
 for loops are translated by the Scala compiler into
 foreach and map method calls.

10.15. Flattening a List of Lists with flatten

Problem

You have a list of lists (a sequence of sequences) and want to
 create one list (sequence) from them.

Solution

Use the flatten method to
 convert a list of lists into a single list. To demonstrate this, first
 create a list of lists:
scala> val lol = List(List(1,2), List(3,4))
lol: List[List[Int]] = List(List(1, 2), List(3, 4))
Calling the flatten method on
 this list of lists creates one new list:
scala> val result = lol.flatten
result: List[Int] = List(1, 2, 3, 4)
As shown, flatten does what its
 name implies, flattening the lists held inside the outer list into one
 resulting list.
Though I use the term “list” here, the flatten method isn’t limited to a List; it works with other sequences (Array, ArrayBuffer, Vector, etc.) as well:
scala> val a = Array(Array(1,2), Array(3,4))
a: Array[Array[Int]] = Array(Array(1, 2), Array(3, 4))

scala> a.flatten
res0: Array[Int] = Array(1, 2, 3, 4)
In the real world, you might use flatten to convert a list of couples attending
 a wedding into a single list of all people attending the wedding.
 Calling flatten on a List[List[String]] does the job:
scala> val couples = List(List("kim", "al"), List("julia", "terry"))
couples: List[List[String]] = List(List(kim, al), List(julia, terry))

scala> val people = couples.flatten
people: List[String] = List(kim, al, julia, terry)
If you really want to have fun, capitalize each element in the
 resulting list and then sort the list:
scala> val people = couples.flatten.map(_.capitalize).sorted
people: List[String] = List(Al, Julia, Kim, Terry)
This helps to demonstrate the power of the Scala collections
 methods. (Imagine trying to write that code with only a for loop.)
In a social-networking application, you might do the same thing
 with a list of friends, and their friends:
val myFriends = List("Adam", "David", "Frank")
val adamsFriends = List("Nick K", "Bill M")
val davidsFriends = List("Becca G", "Kenny D", "Bill M")
val friendsOfFriends = List(adamsFriends, davidsFriends)
Because friendsOfFriends is a
 list of lists, you can use flatten to
 accomplish many tasks with it, such as creating a unique list of the
 friends of your friends:
scala> val uniqueFriendsOfFriends = friendsOfFriends.flatten.distinct
uniqueFriendsOfFriends: List[String] = List(Nick K, Bill M, Becca G, Kenny D)
The flatten method is useful in
 at least two other situations. First, because a String is a sequence of Char, you can flatten a list of strings into a
 list of characters:
scala> val list = List("Hello", "world")
list: List[java.lang.String] = List(Hello, world)

scala> list.flatten
res0: List[Char] = List(H, e, l, l, o, w, o, r, l, d)
Second, because an Option can
 be thought of as a container that holds zero or one elements, flatten has a very useful effect on a sequence
 of Some and None elements. It pulls the values out of the
 Some elements to create the new list,
 and drops the None
 elements:
scala> val x = Vector(Some(1), None, Some(3), None)
x: Vector[Option[Int]] = Vector(Some(1), None, Some(3), None)

scala> x.flatten
res1: Vector[Int] = Vector(1, 3)

10.16. Combining map and flatten with flatMap

Problem

When you first come to Scala, the flatMap method can seem very foreign, so you’d
 like to understand how to use it and see where it can be
 applied.

Solution

Use flatMap in situations where
 you run map followed by flatten. The specific situation is
 this:
	You’re using map (or a
 for/yield expression) to
 create a new collection from an existing collection.

	The resulting collection is a list of lists.

	You call flatten
 immediately after map (or a
 for/yield expression).

When you’re in this situation, you can use flatMap instead.
The next example shows how to use flatMap with
 an Option. In this example, you’re told that you
 should calculate the sum of the numbers in a list, with one catch: the
 numbers are all strings, and some of them won’t convert properly to
 integers. Here’s the list:
val bag = List("1", "2", "three", "4", "one hundred seventy five")
To solve the problem, you begin by creating a “string to integer”
 conversion method that returns either Some[Int] or None, based on the String it’s given:
def toInt(in: String): Option[Int] = {
 try {
 Some(Integer.parseInt(in.trim))
 } catch {
 case e: Exception => None
 }
}
With this method in hand, the resulting solution is surprisingly
 simple:
scala> bag.flatMap(toInt).sum
res0: Int = 7

Discussion

To see how this works, break the problem down into smaller steps.
 First, here’s what happens when you use map on the initial collection of
 strings:
scala> bag.map(toInt)
res0: List[Option[Int]] = List(Some(1), Some(2), None, Some(4), None)
The map method applies the
 toInt function to each element in the
 collection, and returns a list of Some[Int] and None values. But the sum method needs a List[Int]; how do you get there from
 here?
As shown in the previous recipe, flatten works very well with a list of
 Some and None elements. It extracts the values from the
 Some elements while discarding the
 None elements:
scala> bag.map(toInt).flatten
res1: List[Int] = List(1, 2, 4)
This makes finding the sum easy:
scala> bag.map(toInt).flatten.sum
res2: Int = 7
Now, whenever I see map
 followed by flatten, I think “flat
 map,” so I get back to the earlier solution:
scala> bag.flatMap(toInt).sum
res3: Int = 7
(Actually, I think, “map flat,” but the method is named flatMap.)
As you can imagine, once you get the original list down to a
 List[Int], you can call any of the
 powerful collections methods to get what you want:
scala> bag.flatMap(toInt).filter(_ > 1)
res4: List[Int] = List(2, 4)

scala> bag.flatMap(toInt).takeWhile(_ < 4)
res5: List[Int] = List(1, 2)

scala> bag.flatMap(toInt).partition(_ > 3)
res6: (List[Int], List[Int]) = (List(4),List(1, 2))
As a second example of using flatMap, imagine you have a method that finds
 all the subwords from a word you give it. Skipping the implementation
 for a moment, if you call the method with the string then, it should work as follows:
scala> subWords("then")
res0: List[String] = List(then, hen, the)
(subWords should also return
 the string he, but it’s in
 beta.)
With that method (mostly) working, it can be called on a list of
 words with map:
scala> val words = List("band", "start", "then")
words: List[java.lang.String] = List(band, start, then)

scala> words.map(subWords)
res0: List[List[String]] =
 List(List(band, and, ban), List(start, tart, star), List(then, hen, the))
Very cool, you have a list of subwords for all the given words.
 One problem, though: map gave you a
 list of lists. What to do? Call flatten:
scala> words.map(subWords).flatten
res1: List[String] = List(band, and, ban, start, tart, star, then, hen, the)
Success! You have a list of all the subwords from the original
 list of words. But notice what you did: You called map, then flatten. Enter “map flat,” er, flatMap:
scala> words.flatMap(subWords)
res2: List[String] = List(band, and, ban, start, tart, star, then, hen, the)
General rule: Whenever you think map followed by flatten, use flatMap. Eventually your brain will skip over
 the intermediate steps.
As for the implementation of subWords ... well, it’s a work in
 progress:
def subWords(word: String) = List(word, word.tail, word.take(word.length-1))

See Also

	Recipe 20.6, shows another flatMap
 example.

10.17. Using filter to Filter a Collection

Problem

You want to filter the items in a collection to create a new
 collection that contains only the elements that match your filtering
 criteria.

Solution

As listed in Recipe 10.3, a variety of methods can be used to filter
 the elements of an input collection to produce a new output collection.
 This recipe demonstrates the filter
 method.
To use filter on your
 collection, give it a predicate to filter the collection elements as
 desired. Your predicate should accept a parameter of the same type that
 the collection holds, evaluate that element, and return true to keep the element in the new
 collection, or false to filter it
 out. Remember to assign the results of the filtering operation to a new
 variable.
For instance, the following example shows how to create a list of
 even numbers from an input list using a modulus algorithm:
scala> val x = List.range(1, 10)
x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

// create a list of all the even numbers in the list
scala> val evens = x.filter(_ % 2 == 0)
evens: List[Int] = List(2, 4, 6, 8)
As shown, filter returns all
 elements from a sequence that return true when your function/predicate is called.
 There’s also a filterNot method that
 returns all elements from a list for which your function returns
 false.

Discussion

The main methods you can use to filter a collection are listed in
 Recipe 10.3, and are
 repeated here for your convenience: collect, diff, distinct, drop, dropWhile, filter, filterNot, find, foldLeft, foldRight, head, headOption, init, intersect, last, lastOption, reduceLeft, reduceRight, remove, slice, tail, take,
 takeWhile, and union.
Unique characteristics of filter compared to these other methods
 include:
	filter walks through all of
 the elements in the collection; some of the other methods stop
 before reaching the end of the collection.

	filter lets you supply a
 predicate (a function that returns true or false) to filter the elements.

How you filter the elements in your collection is entirely up to
 your algorithm. The following examples show a few ways to filter a list
 of strings:
scala> val fruits = Set("orange", "peach", "apple", "banana")
fruits: scala.collection.immutable.Set[java.lang.String] =
 Set(orange, peach, apple, banana)

scala> val x = fruits.filter(_.startsWith("a"))
x: scala.collection.immutable.Set[String] = Set(apple)

scala> val y = fruits.filter(_.length > 5)
y: scala.collection.immutable.Set[String] = Set(orange, banana)
Your filtering function can be as complicated as needed. When your
 algorithm gets long, you can pass a multiline block of code into
 filter:
scala> val list = "apple" :: "banana" :: 1 :: 2 :: Nil
list: List[Any] = List(apple, banana, 1, 2)

scala> val strings = list.filter {
 | case s: String => true
 | case _ => false
 | }
strings: List[Any] = List(apple, banana)
You can also put your algorithm in a separate method (or function)
 and then pass it into filter:
def onlyStrings(a: Any) = a match {
 case s: String => true
 case _ => false
}

val strings = list.filter(onlyStrings)
The following example demonstrates that you can filter a list as
 many times as needed:
def getFileContentsWithoutBlanksComments(canonicalFilename: String):
List[String] = {
 io.Source.fromFile(canonicalFilename)
 .getLines
 .toList
 .filter(_.trim != "")
 .filter(_.charAt(0) != '#')
}
The two keys to using filter
 are:
	Your algorithm should return true for the elements you want to keep and
 false for the other
 elements

	Remember to assign the results of the filter method to a new variable;
 filter doesn’t modify the collection it’s invoked
 on

See Also

	The collect method can also
 be used as a filtering method. Because it uses partial functions, it’s
 described in detail in Recipe 9.8.

10.18. Extracting a Sequence of Elements from a Collection

Problem

You want to extract a sequence of contiguous elements from a
 collection, either by specifying a starting position and length, or a
 function.

Solution

There are quite a few collection methods you can use to extract a
 contiguous list of elements from a sequence, including drop, dropWhile, head, headOption, init, last,
 lastOption, slice, tail, take,
 takeWhile.
Given the following Array:
scala> val x = (1 to 10).toArray
x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
The drop method drops the
 number of elements you specify from the beginning of the
 sequence:
scala> val y = x.drop(3)
y: Array[Int] = Array(4, 5, 6, 7, 8, 9, 10)
The dropWhile method drops
 elements as long as the predicate you supply returns true:
scala> val y = x.dropWhile(_ < 6)
y: List[Int] = List(6, 7, 8, 9, 10)
The dropRight method works like
 drop, but starts at the end of the
 collection and works forward, dropping elements from the end of the
 sequence:
scala> val y = x.dropRight(4)
y: Array[Int] = Array(1, 2, 3, 4, 5, 6)
take extracts the first N
 elements from the sequence:
scala> val y = x.take(3)
y: Array[Int] = Array(1, 2, 3)
takeWhile returns elements as
 long as the predicate you supply returns true:
scala> val y = x.takeWhile(_ < 5)
y: Array[Int] = Array(1, 2, 3, 4)
takeRight works the same way
 take works, but starts at the end of
 the sequence and moves forward, taking the specified number of elements
 from the end of the sequence:
scala> val y = x.takeRight(3)
y: Array[Int] = Array(8, 9, 10)
slice(from, until) returns a
 sequence beginning at the index from
 until the index until, not including
 until, and assuming a zero-based
 index:
scala> val peeps = List("John", "Mary", "Jane", "Fred")
peeps: List[String] = List(John, Mary, Jane, Fred)

scala> peeps.slice(1,3)
res0: List[String] = List(Mary, Jane)
All of these methods provide another way of filtering a
 collection, with their distinguishing feature being that they return a
 contiguous sequence of elements.
Even more methods

There are even more methods you can use. Given this list:
scala> val nums = (1 to 5).toArray
nums: Array[Int] = Array(1, 2, 3, 4, 5)
the comments after the following expressions show the values
 that are returned by each expression:
nums.head // 1
nums.headOption // Some(1)
nums.init // Array(1, 2, 3, 4)
nums.last // 5
nums.lastOption // Some(5)
nums.tail // Array(2, 3, 4, 5)
Hopefully the use of most of those methods is obvious. Two that
 might need a little explanation are init and tail. The init method returns all elements from the
 sequence except for the last element. The tail method returns all of the elements
 except the first one.
See the Scaladoc for any sequence (List, Array, etc.) for more methods.

10.19. Splitting Sequences into Subsets (groupBy, partition, etc.)

Problem

You want to partition a sequence into two or more different
 sequences (subsets) based on an algorithm or location you
 define.

Solution

Use the groupBy, partition, span, or splitAt methods to partition a sequence into
 subsequences. The sliding and
 unzip methods can also be used to
 split sequences into subsequences, though sliding can generate many subsequences, and
 unzip primarily works on a sequence
 of Tuple2 elements.
The groupBy, partition, and span methods let you split a sequence into
 subsets according to a function, whereas splitAt lets you split a collection into two
 sequences by providing an index number, as shown in these
 examples:
scala> val x = List(15, 10, 5, 8, 20, 12)
x: List[Int] = List(15, 10, 5, 8, 20, 12)

scala> val y = x.groupBy(_ > 10)
y: Map[Boolean,List[Int]] =
 Map(false -> List(10, 5, 8), true -> List(15, 20, 12))

scala> val y = x.partition(_ > 10)
y: (List[Int], List[Int]) = (List(15, 20, 12), List(10, 5, 8))

scala> val y = x.span(_ < 20)
y: (List[Int], List[Int]) = (List(15, 10, 5, 8), List(20, 12))

scala> val y = x.splitAt(2)
y: (List[Int], List[Int]) = (List(15, 10), List(5, 8, 20, 12))
The groupBy method partitions
 the collection into a Map of
 subcollections based on your function. The true map contains the elements for which your
 predicate returned true, and the
 false map contains the elements that
 returned false.
The partition, span, and splitAt methods create a Tuple2 of sequences that are of the same type
 as the original collection. The partition method creates two lists, one
 containing values for which your predicate returned true, and the other containing the elements
 that returned false. The span method returns a Tuple2 based on your predicate p, consisting of “the longest prefix of this
 list whose elements all satisfy p, and the rest of this list.” The
 splitAt method splits the original
 list according to the element index value you supplied.
When a Tuple2 of sequences is
 returned, its two sequences can be accessed like this:
scala> val (a,b) = x.partition(_ > 10)
a: List[Int] = List(15, 20, 12)
b: List[Int] = List(10, 5, 8)
The sequences in the Map that
 groupBy creates can be accessed like
 this:
scala> val groups = x.groupBy(_ > 10)
groups: scala.collection.immutable.Map[Boolean,List[Int]] =
 Map(false -> List(10, 5, 8), true -> List(15, 20, 12))

scala> val trues = groups(true)
trues: List[Int] = List(15, 20, 12)

scala> val falses = groups(false)
falses: List[Int] = List(10, 5, 8)
The sliding(size, step) method
 is an interesting creature that can be used to break a sequence into
 many groups. It can be called with just a size, or both a size and step:
scala> val nums = (1 to 5).toArray
nums: Array[Int] = Array(1, 2, 3, 4, 5)

// size = 2
scala> nums.sliding(2).toList
res0: List[Array[Int]] = List(Array(1, 2), Array(2, 3), Array(3, 4), Array(4, 5))

// size = 2, step = 2
scala> nums.sliding(2,2).toList
res1: List[Array[Int]] = List(Array(1, 2), Array(3, 4), Array(5))

// size = 2, step = 3
scala> nums.sliding(2,3).toList
res2: List[Array[Int]] = List(Array(1, 2), Array(4, 5))
As shown, sliding works by
 passing a “sliding window” over the original sequence, returning
 sequences of a length given by size.
 The step parameter lets you skip over
 elements, as shown in the last two examples. In my experience, the first
 two examples are the most useful, first with a default step size of
 1, and then when step matches size.
The unzip method is also
 interesting. It can be used to take a sequence of Tuple2 values and create two resulting lists:
 one that contains the first element of each tuple, and another that
 contains the second element from each tuple:
scala> val listOfTuple2s = List((1,2), ('a', 'b'))
listOfTuple2s: List[(AnyVal, AnyVal)] = List((1,2), (a,b))

scala> val x = listOfTuple2s.unzip
x: (List[AnyVal], List[AnyVal]) = (List(1, a),List(2, b))
For instance, given a list of couples, you can unzip the list to create a list of women and a
 list of men:
scala> val couples = List(("Kim", "Al"), ("Julia", "Terry"))
couples: List[(String, String)] = List((Kim,Al), (Julia,Terry))

scala> val (women, men) = couples.unzip
women: List[String] = List(Kim, Julia)
men: List[String] = List(Al, Terry)
As you might guess from its name, the unzip method is the opposite of zip:
scala> val women = List("Kim", "Julia")
women: List[String] = List(Kim, Julia)

scala> val men = List("Al", "Terry")
men: List[String] = List(Al, Terry)

scala> val couples = women zip men
couples: List[(String, String)] = List((Kim,Al), (Julia,Terry))
See the Scaladoc for any sequence (List, Array, etc.) for more methods.

10.20. Walking Through a Collection with the reduce and fold
 Methods

Problem

You want to walk through all of the elements in a sequence,
 comparing two neighboring elements as you walk through the
 collection.

Solution

Use the reduceLeft, foldLeft, reduceRight, and foldRight methods to walk through the elements
 in a sequence, applying your function to neighboring elements to yield a
 new result, which is then compared to the next element in the sequence
 to yield a new result. (Related methods, such as scanLeft and scanRight, are also shown in the Discussion.)
For example, use reduceLeft to
 walk through a sequence from left to right (from the first element to the last). reduceLeft starts by comparing the first two
 elements in the collection with your algorithm, and returns a result.
 That result is compared with the third element, and that comparison
 yields a new result. That result is compared to the fourth element to
 yield a new result, and so on.
If you’ve never used these methods before, you’ll see that they
 give you a surprising amount of power. The best way to show this is with
 some examples. First, create a sample collection to experiment
 with:
scala> val a = Array(12, 6, 15, 2, 20, 9)
a: Array[Int] = Array(12, 6, 15, 2, 20, 9)
Given that sequence, use reduceLeft to determine different properties
 about the collection. The following example shows how to get the sum of
 all the elements in the sequence:
scala> a.reduceLeft(_ + _)
res0: Int = 64
Don’t let the underscores throw you for a loop; they just stand
 for the two parameters that are passed into your function. You can write
 that code like this, if you prefer:
a.reduceLeft((x,y) => x + y)
The following examples show how to use reduceLeft to get the product of all elements
 in the sequence, the smallest value in the sequence, and the largest
 value:
scala> a.reduceLeft(_ * _)
res1: Int = 388800

scala> a.reduceLeft(_ min _)
res2: Int = 2

scala> a.reduceLeft(_ max _)
res3: Int = 20
Show each step in the process

You can demonstrate how reduceLeft works by creating a larger
 function. The following function does a “max” comparison like the last
 example, but has some extra debugging code so you can see how reduceLeft works as it marches through the
 sequence. Here’s the function:
// returns the max of the two elements
val findMax = (x: Int, y: Int) => {
 val winner = x max y
 println(s"compared $x to $y, $winner was larger")
 winner
}
Now call reduceLeft again on
 the array, this time giving it the findMax function:
scala> a.reduceLeft(findMax)
compared 12 to 6, 12 was larger
compared 12 to 15, 15 was larger
compared 15 to 2, 15 was larger
compared 15 to 20, 20 was larger
compared 20 to 9, 20 was larger
res0: Int = 20
The output shows how reduceLeft marches through the elements in
 the sequence, and how it called the function at each step. Here’s how
 the process works:
	reduceLeft starts by
 calling findMax to test the
 first two elements in the array, 12 and 6. findMax returned 12, because 12 is larger than 6.

	reduceLeft takes that
 result (12), and calls findMax(12, 15). 12 is the result of the first
 comparison, and 15 is the next
 element in the collection. 15
 is larger, so it becomes the new result.

	reduceLeft keeps taking
 the result from the function and comparing it to the next element
 in the collection, until it marches through all the elements in
 the collection, ending up with the result, 20.

The code that reduceLeft uses
 under the hood looks like this:
// you provide the sequence 'seq' and the function 'f'
var result = seq(0)
for (i <- 1 until seq.length) {
 val next = seq(i)
 result = f(result, next)
}
Feeding different algorithms into this loop lets you extract
 different types of information from your sequence. Wrapping the
 algorithm in a method also makes for very concise code.
One subtle but important note about reduceLeft: the function (or method) you
 supply must return the same data type that’s stored in the collection.
 This is necessary so reduceLeft can compare the result
 of your function to the next element in the collection.

Working with other sequences and types

As you can imagine, the type contained in the sequence can be
 anything you need. For instance, determining the longest or shortest
 string in a sequence of strings is a matter of walking through the
 elements in the sequence with a function to compare the lengths of two
 strings:
scala> val peeps = Vector("al", "hannah", "emily", "christina", "aleka")
peeps: scala.collection.immutable.Vector[java.lang.String] =
 Vector(al, hannah, emily, christina, aleka)

// longest
scala> peeps.reduceLeft((x,y) => if (x.length > y.length) x else y)
res0: String = christina

// shortest
scala> peeps.reduceLeft((x,y) => if (x.length < y.length) x else y)
res1: String = al
If this had been a collection of Person instances, you could run a similar
 algorithm on each person’s name to get the longest and shortest
 names.

foldLeft, reduceRight, and foldRight

The foldLeft method works
 just like reduceLeft, but it lets
 you set a seed value to be used for the first element. The following
 examples demonstrate a “sum” algorithm, first with reduceLeft and then with foldLeft, to demonstrate the
 difference:
scala> val a = Array(1, 2, 3)
a: Array[Int] = Array(1, 2, 3)

scala> a.reduceLeft(_ + _)
res0: Int = 6

scala> a.foldLeft(20)(_ + _)
res1: Int = 26

scala> a.foldLeft(100)(_ + _)
res2: Int = 106
In the last two examples, foldLeft uses 20 and then 100 for its first element, which affects the
 resulting sum as shown.
If you haven’t seen syntax like that before, foldLeft takes two parameter lists. The
 first parameter list takes one field, the seed value. The second
 parameter list is the block of code you want to run (your algorithm).
 Recipe 3.18, demonstrates the use of multiple
 parameter lists.
The reduceRight and foldRight methods work the same as reduceLeft and foldLeft, respectively, but they begin at
 the end of the collection and work from right to left, i.e., from the
 end of the collection back to the beginning.

The difference between reduceLeft and reduceRight

In many algorithms, it may not matter if you call reduceLeft or reduceRight. In that case, you can call
 reduce instead. The reduce Scaladoc
 states, “The order in which operations are performed on elements is
 unspecified and may be nondeterministic.”
But some algorithms will yield a big difference. For example,
 given this divide function:
val divide = (x: Double, y: Double) => {
 val result = x / y
 println(s"divided $x by $y to yield $result")
 result
}
and this array:
val a = Array(1.0, 2.0, 3.0)
reduceLeft and reduceRight yield a significantly different
 result:
scala> a.reduceLeft(divide)
divided 1.0 by 2.0 to yield 0.5
divided 0.5 by 3.0 to yield 0.16666666666666666
res0: Double = 0.16666666666666666

scala> a.reduceRight(divide)
divided 2.0 by 3.0 to yield 0.6666666666666666
divided 1.0 by 0.6666666666666666 to yield 1.5
res1: Double = 1.5

scanLeft and scanRight

Two methods named scanLeft
 and scanRight walk through a
 sequence in a manner similar to reduceLeft and reduceRight, but they return a sequence
 instead of a single value.
For instance, scanLeft
 “Produces a collection containing cumulative results of applying the
 operator going left to right.” To understand how it works, create
 another function with a little debug code in it:
val product = (x: Int, y: Int) => {
 val result = x * y
 println(s"multiplied $x by $y to yield $result")
 result
}
Here’s what scanLeft looks
 like when it’s used with that function and a seed value:
scala> val a = Array(1, 2, 3)
a: Array[Int] = Array(1, 2, 3)

scala> a.scanLeft(10)(product)
multiplied 10 by 1 to yield 10
multiplied 10 by 2 to yield 20
multiplied 20 by 3 to yield 60
res0: Array[Int] = Array(10, 10, 20, 60)
As you can see, scanLeft
 returns a new sequence, rather than a single value. The scanRight method works the same way, but
 marches through the collection from right to left.
There are a few more related methods, including reduce (which was mentioned earlier),
 reduceLeftOption, and reduceRightOption.
If you’re curious about the statement in the reduce method Scaladoc that, “The order in
 which operations are performed on elements is unspecified and may be
 nondeterministic,” run this code in the REPL:
val findMax = (x: Int, y: Int) => {
 Thread.sleep(10)
 val winner = x max y
 println(s"compared $x to $y, $winner was larger")
 winner
}

val a = Array.range(0,50)
a.par.reduce(findMax)
You’ll see that the elements in the sequence are indeed compared
 in a nondeterministic order.

10.21. Extracting Unique Elements from a Sequence

Problem

You have a collection that contains duplicate elements, and you
 want to remove the duplicates.

Solution

Call the distinct method on the
 collection:
scala> val x = Vector(1, 1, 2, 3, 3, 4)
x: scala.collection.immutable.Vector[Int] = Vector(1, 1, 2, 3, 3, 4)

scala> val y = x.distinct
y: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4)
The distinct method returns a
 new collection with the duplicate values removed. Remember to assign the
 result to a new variable. This is required for both immutable and
 mutable collections.
If you happen to need a Set,
 converting the collection to a Set is
 another way to remove the duplicate elements:
scala> val s = x.toSet
s: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)
By definition a Set can only
 contain unique elements, so converting an Array, List, Vector, or other sequence to a Set removes the duplicates. In fact, this is
 how distinct works. The source code
 for the distinct method in GenSeqLike shows that it uses an instance of
 mutable.HashSet.
Using distinct with your own classes

To use distinct with your own
 class, you’ll need to implement the equals and hashCode methods. For example, the following
 class will work with distinct because it implements those
 methods:
class Person(firstName: String, lastName: String) {

 override def toString = s"$firstName $lastName"

 def canEqual(a: Any) = a.isInstanceOf[Person]

 override def equals(that: Any): Boolean =
 that match {
 case that: Person => that.canEqual(this) && this.hashCode == that.hashCode
 case _ => false
 }

 override def hashCode: Int = {
 val prime = 31
 var result = 1
 result = prime * result + lastName.hashCode;
 result = prime * result + (if (firstName == null) 0 else firstName.hashCode)
 return result
 }

}

object Person {
 def apply(firstName: String, lastName: String) =
 new Person(firstName, lastName)
}
You can demonstrate that this class works with distinct by placing the following code in
 the REPL:
val dale1 = new Person("Dale", "Cooper")
val dale2 = new Person("Dale", "Cooper")
val ed = new Person("Ed", "Hurley")
val list = List(dale1, dale2, ed)
val uniques = list.distinct
The last two lines look like this in the REPL:
scala> val list = List(dale1, dale2, ed)
list: List[Person] = List(Dale Cooper, Dale Cooper, Ed Hurley)

scala> val uniquePeople = list.distinct
uniquePeople: List[Person] = List(Dale Cooper, Ed Hurley)
If you remove either the equals method or hashCode method, you’ll see that distinct won’t work as desired.

See Also

	You can find the source code for the SeqLike trait (and its distinct method) by following the
 Source link on its Scaladoc page.

10.22. Merging Sequential Collections

Problem

You want to join two sequences into one sequence, either keeping
 all of the original elements, finding the elements that are common to
 both collections, or finding the difference between the two
 sequences.

Solution

There are a variety of solutions to this problem, depending on
 your needs:
	Use the ++= method to merge
 a sequence into a mutable sequence.

	Use the ++ method to merge
 two mutable or immutable sequences.

	Use collection methods like union, diff, and intersect.

Use the ++= method to merge a
 sequence (any TraversableOnce) into a
 mutable collection like an ArrayBuffer:
scala> val a = collection.mutable.ArrayBuffer(1,2,3)
a: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3)

scala> a ++= Seq(4,5,6)
res0: a.type = ArrayBuffer(1, 2, 3, 4, 5, 6)
Use the ++ method to merge two
 mutable or immutable collections while assigning the result to a new
 variable:
scala> val a = Array(1,2,3)
a: Array[Int] = Array(1, 2, 3)

scala> val b = Array(4,5,6)
b: Array[Int] = Array(4, 5, 6)

scala> val c = a ++ b
c: Array[Int] = Array(1, 2, 3, 4, 5, 6)
You can also use methods like union and intersect to combine sequences to create a
 resulting sequence:
scala> val a = Array(1,2,3,4,5)
a: Array[Int] = Array(1, 2, 3, 4, 5)

scala> val b = Array(4,5,6,7,8)
b: Array[Int] = Array(4, 5, 6, 7, 8)

// elements that are in both collections
scala> val c = a.intersect(b)
c: Array[Int] = Array(4, 5)

// all elements from both collections
scala> val c = a.union(b)
c: Array[Int] = Array(1, 2, 3, 4, 5, 4, 5, 6, 7, 8)

// distinct elements from both collections
scala> val c = a.union(b).distinct
c: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8)
The diff method results depend
 on which sequence it’s called on:
scala> val c = a diff b
c: Array[Int] = Array(1, 2, 3)

scala> val c = b diff a
c: Array[Int] = Array(6, 7, 8)
The Scaladoc for the diff
 method states that it returns, “a new list which contains all elements
 of this list except some of
 occurrences of elements that also appear in that. If an element value x appears n times in
 that, then the first n occurrences of
 x will not form part of the result, but any following occurrences
 will.”
The objects that correspond to most collections also have a
 concat method:
scala> Array.concat(a, b)
res0: Array[Int] = Array(1, 2, 3, 4, 4, 5, 6, 7)
If you happen to be working with a List, the ::: method prepends the elements of one list
 to another list:
scala> val a = List(1,2,3,4)
a: List[Int] = List(1, 2, 3, 4)

scala> val b = List(4,5,6,7)
b: List[Int] = List(4, 5, 6, 7)

scala> val c = a ::: b
c: List[Int] = List(1, 2, 3, 4, 4, 5, 6, 7)

Discussion

You can also use the diff
 method to get the relative complement of two
 sets.
Note
The relative complement of a set A with respect to a set B is
 the set of elements in B that are not in A.

On a recent project, I needed to find the elements in one list
 that weren’t in another list. I did this by converting the lists to
 sets, and then using the diff method
 to compare the two sets. For instance, given these two arrays:
val a = Array(1,2,3,11,4,12,4,5)
val b = Array(6,7,4,5)
you can find the relative complement of each array by first
 converting them to sets, and then comparing them with the diff method:
// the elements in a that are not in b
scala> val c = a.toSet diff b.toSet
c: scala.collection.immutable.Set[Int] = Set(1, 2, 12, 3, 11)

// the elements in b that are not in a
scala> val d = b.toSet diff a.toSet
d: scala.collection.immutable.Set[Int] = Set(6, 7)
If desired, you can then sum those results to get the list of
 elements that are either in the first set or the second set, but not
 both sets:
scala> val complement = c ++ d
complement: scala.collection.immutable.Set[Int] = Set(1, 6, 2, 12, 7, 3, 11)
This works because diff returns
 a set that contains the elements in the current set (this) that are not in the other set (that).
You can also use the -- method
 to get the same result:
scala> val c = a.toSet -- b.toSet
c: scala.collection.immutable.Set[Int] = Set(1, 2, 12, 3, 11)

scala> val d = b.toSet -- a.toSet
d: scala.collection.immutable.Set[Int] = Set(6, 7)
Subtracting the intersection of the two sets also yields the same
 result:
scala> val i = a.intersect(b)
i: Array[Int] = Array(4, 5)

scala> val c = a.toSet -- i.toSet
c: scala.collection.immutable.Set[Int] = Set(1, 2, 12, 3, 11)

scala> val d = b.toSet -- i.toSet
d: scala.collection.immutable.Set[Int] = Set(6, 7)

10.23. Merging Two Sequential Collections into Pairs with zip

Problem

You want to merge data from two sequential collections into a
 collection of key/value pairs.

Solution

Use the zip method to join two
 sequences into one:
scala> val women = List("Wilma", "Betty")
women: List[String] = List(Wilma, Betty)

scala> val men = List("Fred", "Barney")
men: List[String] = List(Fred, Barney)

scala> val couples = women zip men
couples: List[(String, String)] = List((Wilma,Fred), (Betty,Barney))
This creates an Array of
 Tuple2 elements, which is a merger of
 the two original sequences.
This code shows one way to loop over the resulting
 collection:
scala> for ((wife, husband) <- couples) {
 | println(s"$wife is married to $husband")
 | }
Wilma is married to Fred
Betty is married to Barney
Once you have a sequence of tuples like couples, you can convert it to a Map, which may be more convenient:
scala> val couplesMap = couples.toMap
couplesMap: scala.collection.immutable.Map[String,String] =
 Map(Wilma -> Fred, Betty -> Barney)

Discussion

If one collection contains more items than the other collection,
 the items at the end of the longer collection will be dropped. In the
 previous example, if the prices
 collection contained only one element, the resulting collection will
 contain only one Tuple2:
// three elements
scala> val products = Array("breadsticks", "pizza", "soft drink")
products: Array[String] = Array(breadsticks, pizza, soft drink)

// one element
scala> val prices = Array(4)
prices: Array[Int] = Array(4)

// one resulting element
scala> val productsWithPrice = products.zip(prices)
productsWithPrice: Array[(String, Int)] = Array((breadsticks,4))
Note that the unzip method is
 the reverse of zip:
scala> val (a,b) = productsWithPrice.unzip

a: collection.mutable.IndexedSeq[String] =
 ArrayBuffer(breadsticks, pizza, soft drink)

b: collection.mutable.IndexedSeq[Double] =
 ArrayBuffer(4.0, 10.0, 1.5)

See Also

	Recipes 10.10, 10.11, and 10.19 demonstrate other uses of the
 zip method (and zipWithIndex).

10.24. Creating a Lazy View on a Collection

Problem

You’re working with a large collection and want to create a “lazy”
 version of it so it will only compute and return results as they are
 actually needed.

Solution

Except for the Stream class,
 whenever you create an instance of a Scala collection class, you’re
 creating a strict version of the collection. This
 means that if you create a collection that contains one million
 elements, memory is allocated for all of those elements immediately.
 This is the way things normally work in a language like Java.
In Scala you can optionally create a view on
 a collection. A view makes the result nonstrict, or
 lazy. This changes the resulting collection, so
 when it’s used with a transformer method, the elements will only be
 calculated as they are accessed, and not “eagerly,” as they normally
 would be. (A transformer method is a method that
 transforms an input collection into a new output collection, as
 described in the Discussion.)
You can see the effect of creating a view on a collection by
 creating one Range without a view,
 and a second one with a view:
scala> 1 to 100
res0: scala.collection.immutable.Range.Inclusive =
 Range(1, 2, 3, 4, ... 98, 99, 100)

scala> (1 to 100).view
res0: java.lang.Object with
 scala.collection.SeqView[Int,scala.collection.immutable.IndexedSeq[Int]] =
 SeqView(...)
Creating the Range without a
 view shows what you expect, a Range
 with 100 elements. However, the
 Range with the view shows different
 output in the REPL, showing something called a SeqView.
The signature of the SeqView
 shows:
	Int is the type of the
 view’s elements.

	The scala.collection.immutable.IndexedSeq[Int]
 portion of the output indicates the type you’ll get if you
 force the collection back to a “normal,” strict
 collection.

You can see this when you force
 the view back to a normal collection:
scala> val view = (1 to 100).view
view: java.lang.Object with
 scala.collection.SeqView[Int,scala.collection.immutable.IndexedSeq[Int]] =
 SeqView(...)

scala> val x = view.force
x: scala.collection.immutable.IndexedSeq[Int] =
 Vector(1, 2, 3, ... 98, 99, 100)
There are several ways to see the effect of adding a view to a
 collection. First, you’ll see that using a method like foreach doesn’t seem to change when using a
 view:
(1 to 100).foreach(println)
(1 to 100).view.foreach(println)
Both of those expressions will print 100 elements to the console.
 Because foreach isn’t a transformer
 method, the result is unaffected.
However, calling a map method
 with and without a view has dramatically different results:
scala> (1 to 100).map { _ * 2 }
res1: scala.collection.immutable.IndexedSeq[Int] =
 Vector(2, 4, 6, ... 196, 198, 200)

scala> (1 to 100).view.map { _ * 2 }
res0: scala.collection.SeqView[Int,Seq[_]] = SeqViewM(...)
These results are different because map is a transformer method. A fun way to
 further demonstrate this difference is with the following code:
val x = (1 to 1000).view.map { e =>
 Thread.sleep(10)
 e * 2
}
If you run that code as shown, it will return immediately,
 returning a SeqView as before. But if
 you remove the view method call, the
 code block will take about 10 seconds to run.

Discussion

The Scala documentation states that a view “constructs only a
 proxy for the result collection, and its elements get constructed only
 as one demands them ... A view is a special kind of collection that
 represents some base collection, but implements all transformers
 lazily.”
A transformer is a method that constructs a
 new collection from an existing collection. This includes methods like
 map, filter, reverse, and many more. When you use these
 methods, you’re transforming the input collection to a new output
 collection.
This helps to explain why the foreach method prints the same result for a
 strict collection and its view: it’s not a transformer method. But the
 map method, and other transformer
 methods like reverse, treat the view
 in a lazy manner:
scala> l.reverse
res0: List[Int] = List(3, 2, 1)

scala> l.view.reverse
res1: scala.collection.SeqView[Int,List[Int]] = SeqViewR(...)
At the end of the Solution you saw this block of code:
val x = (1 to 1000).view.map { e =>
 Thread.sleep(10)
 e * 2
}
As mentioned, that code returns a SeqView immediately. But when you go to print
 the elements in x, like this:
x.foreach(print)
there will be a 10 ms pause before each element is printed. The
 elements are being “demanded” in this line of code, so the penalty of
 the Thread.sleep method call is paid
 as each element is yielded.
Use cases

There are two primary use cases for using a view:
	Performance

	To treat a collection like a database view

Regarding performance, assume that you get into a situation
 where you may (or may not) have to operate on a collection of a
 billion elements. You certainly want to avoid running an algorithm on
 a billion elements if you don’t have to, so using a view makes sense
 here.
The second use case lets you use a Scala view on a collection
 just like a database view. The following examples show how a
 collection view works like a database view:
// create a normal array
scala> val arr = (1 to 10).toArray
arr: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

// create a view on the array
scala> val view = arr.view.slice(2, 5)
view: scala.collection.mutable.IndexedSeqView[Int,Array[Int]] = SeqViewS(...)

// modify the array
scala> arr(2) = 42

// the view is affected:
scala> view.foreach(println)
42
4
5

// change the elements in the view
scala> view(0) = 10
scala> view(1) = 20
scala> view(2) = 30

// the array is affected:
scala> arr
res0: Array[Int] = Array(1, 2, 10, 20, 30, 6, 7, 8, 9, 10)
Changing the elements in the array updates the view, and
 changing the elements referenced by the view changes the elements in
 the array. When you need to modify a subset of elements in a
 collection, creating a view on the original collection and modifying
 the elements in the view can be a powerful way to achieve this
 goal.
As a final note, don’t confuse using a view with saving memory
 when creating a collection. Both of the following approaches will
 generate a “java.lang.OutOfMemoryError: Java heap space” error in the
 REPL:
val a = Array.range(0,123456789)
val a = Array.range(0,123456789).view
The benefit of using a view in regards to performance comes with
 how the view works with transformer methods.

See Also

	An introduction to Scala
 views

10.25. Populating a Collection with a Range

Problem

You want to populate a List,
 Array, Vector, or other sequence with a Range.

Solution

Call the range method on
 sequences that support it, or create a Range and convert it to the desired
 sequence.
In the first approach, the range method is available on the companion
 object of supported types like Array,
 List, Vector, ArrayBuffer, and others:
scala> Array.range(1, 5)
res0: Array[Int] = Array(1, 2, 3, 4)

scala> List.range(0, 10)
res1: List[Int] = List(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> Vector.range(0, 10, 2)
res2: collection.immutable.Vector[Int] = Vector(0, 2, 4, 6, 8)
For some of the collections, such as List and Array, you can also create a Range and convert it to the desired
 sequence:
scala> val a = (0 until 10).toArray
a: Array[Int] = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val list = 1 to 10 by 2 toList
list: List[Int] = List(1, 3, 5, 7, 9)

scala> val list = (1 to 10).by(2).toList
list: List[Int] = List(1, 3, 5, 7, 9)
The REPL shows the collections that can be created directly from a
 Range:
toArray toBuffer toIndexedSeq toIterable toIterator
toList toMap toSeq toSet toStream
toString toTraversable
Using this approach is useful for some collections, like Set, which don’t offer a range method:
// intentional error
scala> val set = Set.range(0, 5)
<console>:7: error: value range is not a member of object
scala.collection.immutable.Set
 val set = Set.range(0,5)
 ^

scala> val set = (0 until 10 by 2).toSet
set: scala.collection.immutable.Set[Int] = Set(0, 6, 2, 8, 4)
You can also use a Range to
 create a sequence of characters:
scala> val letters = ('a' to 'f').toList
letters: List[Char] = List(a, b, c, d, e, f)

scala> val letters = ('a' to 'f').by(2).toList
letters: List[Char] = List(a, c, e)
As shown in many recipes, ranges are also very useful in for loops:
scala> for (i <- 1 until 10 by 2) println(i)
1
3
5
7
9

Discussion

By using the map method with a
 Range, you can create a sequence with
 elements other than type Int or
 Char:
scala> val map = (1 to 5).map(_ * 2.0)
map: collection.immutable.IndexedSeq[Double] = Vector(2.0, 4.0, 6.0, 8.0, 10.0)
Using a similar approach, you can also return a sequence of
 Tuple2 elements:
scala> val map = (1 to 5).map(e => (e,e))
map: scala.collection.immutable.IndexedSeq[(Int, Int)] =
 Vector((1,1), (2,2), (3,3), (4,4), (5,5))
That sequence easily converts to a Map:
scala> val map = (1 to 5).map(e => (e,e)).toMap
map: scala.collection.immutable.Map[Int,Int] =
 Map(5 -> 5, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)

10.26. Creating and Using Enumerations

Problem

You want to use an enumeration (a set of named values that act as
 constants) in your application.

Solution

Extend the scala.Enumeration
 class to create your enumeration:
package com.acme.app {
 object Margin extends Enumeration {
 type Margin = Value
 val TOP, BOTTOM, LEFT, RIGHT = Value
 }
}
Then import the enumeration to use it in your application:
object Main extends App {

 import com.acme.app.Margin._

 // use an enumeration value in a test
 var currentMargin = TOP

 // later in the code ...
 if (currentMargin == TOP) println("working on Top")

 // print all the enumeration values
 import com.acme.app.Margin
 Margin.values foreach println

}
Enumerations are useful tool for creating groups of constants,
 such as days of the week, weeks of the year, and many other situations
 where you have a group of related, constant values.
You can also use the following approach, but it generates about
 four times as much code as an Enumeration, most of which you won’t need if
 your sole purpose is to use it like an enumeration:
// a much "heavier" approach
package com.acme.app {
 trait Margin
 case object TOP extends Margin
 case object RIGHT extends Margin
 case object BOTTOM extends Margin
 case object LEFT extends Margin
}

See Also

	Scala Enumeration class

10.27. Tuples, for When You Just Need a Bag of Things

Problem

You want to create a small collection of heterogeneous
 elements.

Solution

A tuple gives you a way to store a group of heterogeneous items in
 a container, which is useful in many situations.
Create a tuple by enclosing the desired elements between
 parentheses. This is a two-element tuple:
scala> val d = ("Debi", 95)
d: (String, Int) = (Debi,95)
Notice that it contains two different types. The following example
 shows a three-element tuple:
scala> case class Person(name: String)
defined class Person

scala> val t = (3, "Three", new Person("Al"))
t: (Int, java.lang.String, Person) = (3,Three,Person(Al))
You can access tuple elements using an underscore
 construct:
scala> t._1
res1: Int = 3

scala> t._2
res2: java.lang.String = Three

scala> t._3
res3: Person = Person(Al)
I usually prefer to assign them to variables using pattern
 matching:
scala> val(x, y, z) = (3, "Three", new Person("Al"))
x: Int = 3
y: String = Three
z: Person = Person(Al)
A nice feature of this approach is that if you don’t want all of
 the elements from the tuple, just use the _ wildcard character in place of the elements
 you don’t want:
scala> val (x, y, _) = t
x: Int = 3
y: java.lang.String = Three

scala> val (x, _, _) = t
x: Int = 3

scala> val (x, _, z) = t
x: Int = 3
z: Person = Person(Al)
A two-element tuple is an instance of the Tuple2 class, and a tuple with three elements
 is an instance of the Tuple3 class.
 (More on this in the Discussion.) As shown earlier, you can create a
 Tuple2 like this:
scala> val a = ("AL", "Alabama")
a: (java.lang.String, java.lang.String) = (AL,Alabama)
You can also create it using these approaches:
scala> val b = "AL" -> "Alabama"
b: (java.lang.String, java.lang.String) = (AL,Alabama)

scala> val c = ("AL" -> "Alabama")
c: (java.lang.String, java.lang.String) = (AL,Alabama)
When you check the class created by these examples, you’ll find
 they’re all of type Tuple2:
scala> c.getClass
res0: java.lang.Class[_ <: (java.lang.String, java.lang.String)] =
 class scala.Tuple2
This syntax is very convenient for other uses, including the
 creation of maps:
val map = Map("AL" -> "Alabama")

Discussion

The tuple is an interesting construct. There is no single “Tuple”
 class; instead, the API defines tuple case classes from Tuple2 through Tuple22, meaning that you can have from 2 to
 22 elements in a tuple.
A common use case for a tuple is returning multiple items from a
 method. See Recipe 5.5, for an example of this.
Though a tuple isn’t a collection, you can treat a tuple as a
 collection when needed by creating an iterator:
scala> val x = ("AL" -> "Alabama")
x: (java.lang.String, java.lang.String) = (AL,Alabama)

scala> val it = x.productIterator
it: Iterator[Any] = non-empty iterator

scala> for (e <- it) println(e)
AL
Alabama
Be aware that like any other iterator, after it’s used once, it
 will be exhausted. Attempting to print the elements a second time yields
 no output:
scala> for (e <- it) println(e)
// no output here
Create a new iterator if you need to loop over the elements a
 second time.
You can also convert a tuple to a collection:
scala> val t = ("AL", "Alabama")
t: (String, String) = (AL,Alabama)

scala> t.productIterator.toArray
res0: Array[Any] = Array(AL, Alabama)

See Also

	The Tuple2 class

	Recipe 5.5

10.28. Sorting a Collection

Problem

You want to sort a sequential collection. Or, you want to
 implement the Ordered trait in a
 custom class so you can use the sorted method, or operators like <, <=, >, and >= to compare instances of your
 class.

Solution

See Recipe 11.10,
 for information on how to sort an Array. Otherwise, use the sorted or sortWith methods to sort a
 collection.
The sorted method can sort
 collections with type Double,
 Float, Int, and any other type that has an implicit
 scala.math.Ordering:
scala> val a = List(10, 5, 8, 1, 7).sorted
a: List[Int] = List(1, 5, 7, 8, 10)

scala> val b = List("banana", "pear", "apple", "orange").sorted
b: List[String] = List(apple, banana, orange, pear)
The “rich” versions of the numeric classes (like RichInt) and the StringOps class all extend the Ordered trait, so they can be used with the
 sorted method. (More on the Ordered trait in the Discussion.)
The sortWith method lets you
 provide your own sorting function. The following examples demonstrate
 how to sort a collection of Int or
 String in both directions:
scala> List(10, 5, 8, 1, 7).sortWith(_ < _)
res1: List[Int] = List(1, 5, 7, 8, 10)

scala> List(10, 5, 8, 1, 7).sortWith(_ > _)
res2: List[Int] = List(10, 8, 7, 5, 1)

scala> List("banana", "pear", "apple", "orange").sortWith(_ < _)
res3: List[java.lang.String] = List(apple, banana, orange, pear)

scala> List("banana", "pear", "apple", "orange").sortWith(_ > _)
res4: List[java.lang.String] = List(pear, orange, banana, apple)
Your sorting function can be as complicated as it needs to be. For
 example, you can access methods on the elements during the sort, such as
 the following example, which sorts a list of strings by the string
 length:
scala> List("banana", "pear", "apple", "orange").sortWith(_.length < _.length)
res5: List[java.lang.String] = List(pear, apple, banana, orange)

scala> List("banana", "pear", "apple", "orange").sortWith(_.length > _.length)
res6: List[java.lang.String] = List(banana, orange, apple, pear)
In the same way the length
 method is called on a String, you can
 call a method on any class you want to sort. If your sorting method gets
 longer, first declare it as a method:
def sortByLength(s1: String, s2: String) = {
 println("comparing %s and %s".format(s1, s2))
 s1.length > s2.length
}
Then use it by passing it into the sortWith method:
scala> List("banana", "pear", "apple").sortWith(sortByLength)
comparing banana and pear
comparing pear and apple
comparing apple and pear
comparing banana and apple
res0: List[String] = List(banana, apple, pear)

Discussion

If the type a sequence is holding doesn’t have an implicit
 Ordering, you won’t be able to sort
 it with sorted. For instance, given
 this basic class:
class Person (var name: String) {
 override def toString = name
}
create a List[Person]:
val ty = new Person("Tyler")
val al = new Person("Al")
val paul = new Person("Paul")
val dudes = List(ty, al, paul)
If you try to sort this list in the REPL, you’ll see an error
 stating that the Person class doesn’t
 have an implicit Ordering:
scala> dudes.sorted
<console>:13: error: No implicit Ordering defined for Person.
 dudes.sorted
 ^
You can’t use sorted with the
 Person class as it’s written, but you
 can write a simple anonymous function to sort the Person elements by the name field using sortWith:
scala> val sortedDudes = dudes.sortWith(_.name < _.name)
sortedDudes: Array[Person] = Array(Al, Paul, Tyler)

scala> val sortedDudes = dudes.sortWith(_.name > _.name)
sortedDudes: Array[Person] = Array(Tyler, Paul, Al)
Mix in the Ordered trait

If you’d rather use the Person class with the sorted method, just mix the Ordered trait into the Person class, and implement a compare method. This technique is shown in
 the following code:
class Person (var name: String) extends Ordered [Person]
{
 override def toString = name

 // return 0 if the same, negative if this < that, positive if this > that
 def compare (that: Person) = {
 if (this.name == that.name)
 0
 else if (this.name > that.name)
 1
 else
 −1
 }

}
This new Person class can be
 used with sorted.
The compare method is what
 provides the sorting capability. As shown in the comment, compare should work like this:
	Return 0 if the two
 objects are the same (equal, typically using the equals method of your class)

	Return a negative value if this is less than that

	Return a positive value if this is greater than that

How you determine whether one instance is greater than another
 instance is entirely up to your compare algorithm.
Note that because this compare algorithm only compares two String values, it could have been written
 like this:
def compare (that: Person) = this.name.compare(that.name)
However, I wrote it as shown in the first example to be clear
 about the approach.
An added benefit of mixing the Ordered trait into your class is that it
 also lets you compare object instances directly in your code:
if (al > ty) println("Al") else println("Tyler")
This works because the Ordered trait implements the <=, <, >, and >= methods, and calls your compare method to make those
 comparisons.

See Also

For more information, the Ordered and Ordering Scaladoc is excellent, with good
 examples of this approach, and other approaches.
	The Ordering trait

	The Ordered trait

10.29. Converting a Collection to a String with mkString

Problem

You want to convert elements of a collection to a String, possibly adding a field separator,
 prefix, and suffix.

Solution

Use the mkString method to
 print a collection as a String. Given
 a simple collection:
val a = Array("apple", "banana", "cherry")
you can print the collection elements using mkString:
scala> a.mkString
res1: String = applebananacherry
That doesn’t look too good, so add a separator:
scala> a.mkString(" ")
res2: String = apple banana cherry
That’s better. Use a comma and a space to create a CSV
 string:
scala> a.mkString(", ")
res3: String = apple, banana, cherry
The mkString method is
 overloaded, so you can also add a prefix and suffix:
scala> a.mkString("[", ", ", "]")
res4: String = [apple, banana, cherry]
If you happen to have a list of lists that you want to convert to
 a String, such as the following array
 of arrays, first flatten the
 collection, and then call mkString:
scala> val a = Array(Array("a", "b"), Array("c", "d"))
a: Array[Array[java.lang.String]] = Array(Array(a, b), Array(c, d))

scala> a.flatten.mkString(", ")
res5: String = a, b, c, d

Discussion

You can also use the toString
 method on a collection, but it returns the name of the collection with
 the elements in the collection listed inside parentheses:
scala> val v = Vector("apple", "banana", "cherry")
v: scala.collection.immutable.Vector[String] = Vector(apple, banana, cherry)

scala> v.toString
res0: String = Vector(apple, banana, cherry)

Chapter 11. List, Array, Map, Set (and More)

Introduction

Whereas Chapter 10 covers collections in
 general, this chapter provides recipes that are specific to the following
 collection types:
	List

	Array (and ArrayBuffer)

	Map

	Set

It also provides a few recipes for special-purpose collections like
 Queue, Stack, Range,
 and Stream. The following paragraphs
 provide a brief introduction to the List, Array,
 Map, and Set classes.
List

If you’re coming to Scala from Java, you’ll quickly see that
 despite their names, the Scala List
 class is nothing like the Java List
 classes, such as the popular Java ArrayList. The Scala List class is immutable, so its size as well
 as the elements it refers to can’t change. It’s implemented as a linked
 list, and is generally thought of in terms of its head, tail,
 and isEmpty methods. Therefore, most
 operations on a List involve
 recursive algorithms, where the algorithm splits the list into its head
 and tail components.

Array (and ArrayBuffer)

A Scala Array is an interesting
 collection type. The Scaladoc for the Array class states, “Arrays are mutable,
 indexed collections of values.” The class is mutable in that its
 elements can be changed, but once the size of an Array is set, it can never grow or
 shrink.
Although the Array is often
 demonstrated in Scala examples, and often shows up in the Scala API and
 third-party APIs, the recommendation with Scala 2.10.x is to use the
 Vector class as your “go to”
 immutable, indexed sequence class, and ArrayBuffer as your
 mutable, indexed sequence of choice. In keeping
 with this suggestion, in my real-world code, I use Vector and ArrayBuffer for those use cases, and then
 convert them to an Array when
 needed.

Maps

A Scala Map is a collection of
 key/value pairs, like a Java Map,
 Ruby Hash, or Python dictionary. One
 big difference between a Scala Map
 and the Java map classes is that the default Map in Scala is immutable, so if you’re not
 used to working with immutable collections, this can be a big surprise
 when you attempt to add, delete, or change elements in the map. The
 techniques of using both immutable and mutable map traits are
 demonstrated in this chapter.

Sets

A Scala Set is also like a Java
 Set. It’s a collection that contains
 only unique elements, where “uniqueness” is determined by the == method of the type the set contains. If you
 attempt to add duplicate elements to a set, the set silently ignores the
 request. Scala has both mutable and immutable versions of its base
 Set implementation and offers
 additional set classes for other needs, such as having a sorted
 set.

11.1. Different Ways to Create and Populate a List

Problem

You want to create and populate a List.

Solution

There are many ways to create and initially populate a List:
// 1
scala> val list = 1 :: 2 :: 3 :: Nil
list: List[Int] = List(1, 2, 3)

// 2
scala> val list = List(1, 2, 3)
x: List[Int] = List(1, 2, 3)

// 3a
scala> val x = List(1, 2.0, 33D, 4000L)
x: List[Double] = List(1.0, 2.0, 33.0, 4000.0)

// 3b
scala> val x = List[Number](1, 2.0, 33D, 4000L)
x: List[java.lang.Number] = List(1, 2.0, 33.0, 4000)

// 4
scala> val x = List.range(1, 10)
x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = List.range(0, 10, 2)
x: List[Int] = List(0, 2, 4, 6, 8)

// 5
scala> val x = List.fill(3)("foo")
x: List[String] = List(foo, foo, foo)

// 6
scala> val x = List.tabulate(5)(n => n * n)
x: List[Int] = List(0, 1, 4, 9, 16)

// 7
scala> val x = collection.mutable.ListBuffer(1, 2, 3).toList
x: List[Int] = List(1, 2, 3)

// 8
scala> "foo".toList
res0: List[Char] = List(f, o, o)
The first two approaches shown are the most common and
 straightforward ways to create a List. Examples 3a and 3b show how you can
 manually control the List type when
 your collection has mixed types. When the type isn’t manually set in
 Example 3a, it ends up as a List[Double], and in 3b it’s manually set to
 be a List[Number].
Examples 4 through 6 show different ways to create and populate a
 List with data. Examples 7 and 8 show
 that many collection types also have a toList method that converts their data to a
 List.
Going back to the first example, it shows the :: method for creating a List, which will be new to Java developers. As
 shown, the :: method (called
 cons) takes two arguments: a
 head element, which is a single element, and a
 tail, which is another List. When a List is constructed like this, it must end
 with a Nil element.
It’s important to know that the Scala List class is not like Java List classes, such as the Java ArrayList. For example, Recipe 17.1 shows that a java.util.List converts to a Scala Buffer or Seq, not a Scala List.
The following quote from the Scala List Scaladoc discusses the important
 properties of the List class:
This class is optimal for last-in-first-out (LIFO), stack-like
 access patterns. If you need another access pattern, for example,
 random access or FIFO, consider using a collection more suited to this
 than List. List has O(1) prepend and head/tail access. Most
 other operations are O(n) on the
 number of elements in the list.

See Recipe 10.4 for more information on the List performance characteristics.

See Also

	The List class.

	Recipe 3.15, shows how to handle a List in a match expression, especially the
 Nil element.

	Recipe 10.4, discusses List class performance.

	Recipe 17.1, demonstrates how to convert back and
 forth between Scala and Java collections.

11.2. Creating a Mutable List

Problem

You want to use a mutable list (a LinearSeq, as opposed to an IndexedSeq), but a List isn’t mutable.

Solution

Use a ListBuffer, and convert
 the ListBuffer to a List when needed.
The following examples demonstrate how to create a ListBuffer, and then add and remove elements,
 and then convert it to a List when
 finished:
import scala.collection.mutable.ListBuffer

var fruits = new ListBuffer[String]()

// add one element at a time to the ListBuffer
fruits += "Apple"
fruits += "Banana"
fruits += "Orange"
// add multiple elements
fruits += ("Strawberry", "Kiwi", "Pineapple")

// remove one element
fruits -= "Apple"

// remove multiple elements
fruits -= ("Banana", "Orange")

// remove multiple elements specified by another sequence
fruits --= Seq("Kiwi", "Pineapple")

// convert the ListBuffer to a List when you need to
val fruitsList = fruits.toList

Discussion

Because a List is immutable, if
 you need to create a list that is constantly changing, the preferred
 approach is to use a ListBuffer while
 the list is being modified, then convert it to a List when a List is needed.
The ListBuffer Scaladoc states
 that a ListBuffer is “a Buffer implementation backed by a list. It
 provides constant time prepend and append. Most other operations are
 linear.” So, don’t use ListBuffer if
 you want to access elements arbitrarily, such as accessing items by
 index (like list(10000)); use
 ArrayBuffer instead. See Recipe 10.4 for more information.
Although you can’t modify the elements in a List, you can create a new List from an existing one, typically
 prepending items to the original list with the :: method:
scala> val x = List(2)
x: List[Int] = List(2)

scala> val y = 1 :: x
y: List[Int] = List(1, 2)

scala> val z = 0 :: y
z: List[Int] = List(0, 1, 2)
This is discussed more in Recipe 11.3.

11.3. Adding Elements to a List

Problem

You want to add elements to a List that you’re working with.

Solution

“How do I add elements to a List?” is a bit of a trick question, because a
 List is immutable, so you can’t
 actually add elements to it. If you want a List that is constantly changing, use a
 ListBuffer (as described in Recipe 11.2), and then convert it to a List when necessary.
To work with a List, the
 general approach is to prepend items to the list with the :: method while assigning the results to a new
 List:
scala> val x = List(2)
x: List[Int] = List(2)

scala> val y = 1 :: x
y: List[Int] = List(1, 2)

scala> val z = 0 :: y
z: List[Int] = List(0, 1, 2)
Rather than continually reassigning the result of this operation
 to a new variable, you can declare your variable as a var, and reassign the result to it:
scala> var x = List(2)
x: List[Int] = List(2)

scala> x = 1 :: x
x: List[Int] = List(1, 2)

scala> x = 0 :: x
x: List[Int] = List(0, 1, 2)
As these examples illustrate, the :: method is right-associative; lists are
 constructed from right to left, which you can see in this
 example:
scala> val list1 = 3 :: Nil
list1: List[Int] = List(3)

scala> val list2 = 2 :: list1
list2: List[Int] = List(2, 3)

scala> val list3 = 1 :: list2
list3: List[Int] = List(1, 2, 3)
Note
Any Scala method that ends with a : character is evaluated from right to left.
 This means that the method is invoked on the right operand. You can
 see how this works by analyzing the following code, where both methods
 print the number 42:
object RightAssociativeExample extends App {
 val f1 = new Printer
 f1 >> 42
 42 >>: f1
}

class Printer {
 def >>(i: Int) { println(s"$i") }
 def >>:(i: Int) { println(s"$i") }
}
The two methods can also be invoked like this:
f1.>>(42)
f1.>>:(42)
but by defining the second method to end in a colon, it can be
 used as a right-associative operator.

Though using :: is very common,
 there are additional methods that let you prepend or append single
 elements to a List:
scala> val x = List(1)
x: List[Int] = List(1)

scala> val y = 0 +: x
y: List[Int] = List(0, 1)

scala> val y = x :+ 2
y: List[Int] = List(1, 2)
You can also merge lists to create a new list. See Recipe 11.5 for examples.

Discussion

If you’re not comfortable using a List, but want to use a mutable, linear list,
 see Recipe 11.2
 for examples of how to use the ListBuffer class. The ListBuffer is a mutable,
 linear sequence (as opposed to an
 indexed sequence, like an Array or ArrayBuffer), and is similar to working with a
 StringBuffer or StringBuilder in Java. Just as you’d convert
 those classes to a String when
 needed, you convert a ListBuffer to a
 List when needed. Programmers from
 other backgrounds may be more comfortable with the :: approach. A nice benefit of Scala is that
 it offers both options.

See Also

	Recipe 11.2

	Recipe 10.4

11.4. Deleting Elements from a List (or ListBuffer)

Problem

You want to delete elements from a List or ListBuffer.

Solution

A List is immutable, so you
 can’t delete elements from it, but you can filter out the elements you
 don’t want while you assign the result to a new variable:
scala> val originalList = List(5, 1, 4, 3, 2)
originalList: List[Int] = List(5, 1, 4, 3, 2)

scala> val newList = originalList.filter(_ > 2)
newList: List[Int] = List(5, 4, 3)
Rather than continually assigning the result of operations like
 this to a new variable, you can declare your variable as a var and reassign the result of the operation
 back to itself:
scala> var x = List(5, 1, 4, 3, 2)
x: List[Int] = List(5, 1, 4, 3, 2)

scala> x = x.filter(_ > 2)
x: List[Int] = List(5, 4, 3)
See Chapter 10 for other ways to get subsets
 of a collection using methods like filter, partition, splitAt, take, and more.
ListBuffer

If you’re going to be modifying a list frequently, it may be
 better to use a ListBuffer instead
 of a List. A ListBuffer is mutable, so you can remove
 items from it using all the methods for mutable sequences shown in
 Chapter 10. For example, assuming you’ve created a
 ListBuffer like this:
import scala.collection.mutable.ListBuffer
val x = ListBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9)
You can delete one element at a time, by value:
scala> x -= 5
res0: x.type = ListBuffer(1, 2, 3, 4, 6, 7, 8, 9)
You can delete two or more elements at once:
scala> x -= (2, 3)
res1: x.type = ListBuffer(1, 4, 6, 7, 8, 9)
(That method looks like it takes a tuple, but it’s actually
 defined to take two parameters and a third varargs field.)
You can delete elements by position:
scala> x.remove(0)
res2: Int = 1

scala> x
res3: scala.collection.mutable.ListBuffer[Int] = ListBuffer(4, 6, 7, 8, 9)
You can use remove to delete
 from a given starting position and provide the number of elements to
 delete:
scala> x.remove(1, 3)

scala> x
res4: scala.collection.mutable.ListBuffer[Int] = ListBuffer(4, 9)
You can also use --= to
 delete multiple elements that are specified in another
 collection:
scala> val x = ListBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9)
x: scala.collection.mutable.ListBuffer[Int] = ListBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> x --= Seq(1,2,3)
res0: x.type = ListBuffer(4, 5, 6, 7, 8, 9)

Discussion

When you first start using Scala, the wealth of methods whose
 names are only symbols (+:, /:, :::,
 etc.) can seem daunting, but the -=
 and --= methods are used consistently
 across mutable collections, so it quickly becomes second nature to use
 them.

See Also

	Recipes 10.17 through 10.19 show many ways to filter
 collections (filtering is a way of deleting).

	Recipe 10.3.

11.5. Merging (Concatenating) Lists

Problem

You want to merge/concatenate the contents of two lists.

Solution

Merge two lists using the ++,
 concat, or ::: methods. Given these two lists:
scala> val a = List(1,2,3)
a: List[Int] = List(1, 2, 3)

scala> val b = List(4,5,6)
b: List[Int] = List(4, 5, 6)
you can use the ++ method as
 shown in the following example. It’s used consistently across immutable
 collections, so it’s easy to remember:
scala> val c = a ++ b
c: List[Int] = List(1, 2, 3, 4, 5, 6)
If you work with the List class
 frequently, you may prefer using :::
 as a way to create a new list from two existing lists:
scala> val c = a ::: b
c: List[Int] = List(1, 2, 3, 4, 5, 6)
The concat method on the
 List object also works:
scala> val c = List.concat(a, b)
c: List[Int] = List(1, 2, 3, 4, 5, 6)

Discussion

Perhaps because I come from a Java background, I don’t work with
 the List class too often, so I can’t
 remember some of its custom methods without looking at its Scaladoc. As
 a result, I prefer the ++ method,
 because it’s consistently used across immutable collections.
However, keep in mind what the List class is good at. As its Scaladoc states,
 “This class is optimal for last-in-first-out (LIFO), stack-like access
 patterns. If you need another access pattern, for example, random access
 or FIFO, consider using a collection more suited to this than
 List.” See Recipe 10.4 for a discussion of List class performance.

See Also

	The List class

11.6. Using Stream, a Lazy Version of a List

Problem

You want to use a collection that works like a List but invokes its transformer methods
 (map, filter, etc.) lazily.

Solution

A Stream is like a List, except that its elements are computed
 lazily, in a manner similar to how a view creates a
 lazy version of a collection. Because Stream elements are computed lazily, a
 Stream can be long ... infinitely
 long. Like a view, only the elements that are accessed are computed.
 Other than this behavior, a Stream
 behaves similar to a List.
Just like a List can be
 constructed with ::, a Stream can be constructed with the #:: method, using Stream.empty at the end of the expression
 instead of Nil:
scala> val stream = 1 #:: 2 #:: 3 #:: Stream.empty
stream: scala.collection.immutable.Stream[Int] = Stream(1, ?)
The REPL output shows that the stream begins with the number
 1 but uses a ? to denote the end of the stream. This is
 because the end of the stream hasn’t been evaluated yet.
For example, given a Stream:
scala> val stream = (1 to 100000000).toStream
stream: scala.collection.immutable.Stream[Int] = Stream(1, ?)
you can attempt to access the head and tail of the stream. The
 head is returned immediately:
scala> stream.head
res0: Int = 1
but the tail isn’t evaluated yet:
scala> stream.tail
res1: scala.collection.immutable.Stream[Int] = Stream(2, ?)
The ? symbol is the way a lazy
 collection shows that the end of the collection hasn’t been evaluated
 yet.
As discussed in Recipe 10.24, transformer methods
 are computed lazily, so when transformers are called, you see the
 familiar ? character that indicates
 the end of the stream hasn’t been evaluated yet:
scala> stream.take(3)
res0: scala.collection.immutable.Stream[Int] = Stream(1, ?)

scala> stream.filter(_ < 200)
res1: scala.collection.immutable.Stream[Int] = Stream(1, ?)

scala> stream.filter(_ > 200)
res2: scala.collection.immutable.Stream[Int] = Stream(201, ?)

scala> stream.map { _ * 2 }
res3: scala.collection.immutable.Stream[Int] = Stream(2, ?)
However, be careful with methods that aren’t transformers. Calls
 to the following strict methods are evaluated
 immediately and can easily cause java.lang.OutOfMemoryError errors:
stream.max
stream.size
stream.sum
Note
Transformer methods are collection methods
 that convert a given input collection to a new output collection,
 based on an algorithm you provide to transform the data. This includes
 methods like map, filter, and reverse. When using these methods, you’re
 transforming the input collection to a new output collection. Methods
 like max, size, and sum don’t fit that definition, so they
 attempt to operate on the Stream,
 and if the Stream requires more
 memory than you can allocate, you’ll get the java.lang.OutOfMemoryError.

As a point of comparison, if I had attempted to use a List in these examples, I would have
 encountered a java.lang.OutOfMemory
 error as soon as I attempted to create the List:
val list = (1 to 100000000).toStream
Using a Stream gives you a
 chance to specify a huge list, and begin working with its
 elements:
stream(0) // returns 1
stream(1) // returns 2
// ...
stream(10) // returns 11

See Also

	A discussion of Scala’s
 concrete, immutable collections classes, including Stream

	Recipe 10.24

11.7. Different Ways to Create and Update an Array

Problem

You want to create and optionally populate an Array.

Solution

There are many different ways to define and populate an Array. You can create an array with initial
 values, in which case Scala can determine the array type
 implicitly:
scala> val a = Array(1,2,3)
a: Array[Int] = Array(1, 2, 3)

scala> val fruits = Array("Apple", "Banana", "Orange")
fruits: Array[String] = Array(Apple, Banana, Orange)
If you don’t like the type Scala determines, you can assign it
 manually:
// scala makes this Array[Double]
scala> val x = Array(1, 2.0, 33D, 400L)
x: Array[Double] = Array(1.0, 2.0, 33.0, 400.0)

// manually override the type
scala> val x = Array[Number](1, 2.0, 33D, 400L)
x: Array[java.lang.Number] = Array(1, 2.0, 33.0, 400)
You can define an array with an initial size and type, and then
 populate it later:
// create an array with an initial size
val fruits = new Array[String](3)

// somewhere later in the code ...
fruits(0) = "Apple"
fruits(1) = "Banana"
fruits(2) = "Orange"
You can create a var reference
 to an array in a class, and then assign it later:
// this uses a null. don't do this in the real world
var fruits: Array[String] = _

// later ...
fruits = Array("apple", "banana")
The following examples show a handful of other ways to create and
 populate an Array:
scala> val x = Array.range(1, 10)
x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = Array.range(0, 10, 2)
x: Array[Int] = Array(0, 2, 4, 6, 8)

scala> val x = Array.fill(3)("foo")
x: Array[String] = Array(foo, foo, foo)

scala> val x = Array.tabulate(5)(n => n * n)
x: Array[Int] = Array(0, 1, 4, 9, 16)

scala> val x = List(1, 2, 3).toArray
x: Array[Int] = Array(1, 2, 3)

scala> "Hello".toArray
res0: Array[Char] = Array(H, e, l, l, o)

Discussion

The Array is an interesting
 creature: It’s mutable in that its elements can be
 changed, but it’s immutable in that its size cannot
 be changed. The first link in the See Also section provides this
 information about the Array:
Scala arrays correspond one-to-one to Java arrays. That is, a
 Scala array Array[Int] is represented as a Java
 int[], an Array[Double] is
 represented as a Java double[] and a
 Array[String] is represented as a Java
 String[].

The Array is an
 indexed sequential collection, so accessing and
 changing values by their index position is straightforward and fast.
 Once you’ve created an Array, access
 its elements by enclosing the desired element number in
 parentheses:
scala> val a = Array(1, 2, 3)
a: Array[Int] = Array(1, 2, 3)

scala> a(0)
res0: Int = 1
Just as you access an array element by index, you update elements
 in a similar way:
scala> a(0) = 10

scala> a(1) = 20

scala> a(2) = 30

scala> a
res1: Array[Int] = Array(10, 20, 30)

See Also

	A thorough discussion of
 Array, including background on
 its implementation.

	Recipe 10.4 discusses Array class performance.

11.8. Creating an Array Whose Size Can Change (ArrayBuffer)

Problem

You want to create an array whose size can change, i.e., a
 completely mutable array.

Solution

An Array is mutable in that its
 elements can change, but its size can’t change. To create a mutable,
 indexed sequence whose size can change, use the ArrayBuffer class.
To use an ArrayBuffer, import
 it into scope and then create an instance. You can declare an ArrayBuffer without initial elements, and then
 add them later:
import scala.collection.mutable.ArrayBuffer
var characters = ArrayBuffer[String]()
characters += "Ben"
characters += "Jerry"
characters += "Dale"
You can add elements when you create the ArrayBuffer, and continue to add elements
 later:
// initialize with elements
val characters = collection.mutable.ArrayBuffer("Ben", "Jerry")

// add one element
characters += "Dale"

// add two or more elements (method has a varargs parameter)
characters += ("Gordon", "Harry")

// add multiple elements with any TraversableOnce type
characters ++= Seq("Andy", "Big Ed")

// append one or more elements (uses a varargs parameter)
characters.append("Laura", "Lucy")
Those are the most common ways to add elements to an ArrayBuffer (and other mutable sequences). The
 next recipe demonstrates methods to delete ArrayBuffer elements.

11.9. Deleting Array and ArrayBuffer Elements

Problem

You want to delete elements from an Array or ArrayBuffer.

Solution

An ArrayBuffer is a mutable
 sequence, so you can delete elements with the usual -=, --=,
 remove, and clear methods.
You can remove one or more elements with -=:
import scala.collection.mutable.ArrayBuffer
val x = ArrayBuffer('a', 'b', 'c', 'd', 'e')

// remove one element
x -= 'a'

// remove multiple elements (methods defines a varargs param)
x -= ('b', 'c')
Use --= to remove multiple
 elements that are declared in another collection (any collection that
 extends TraversableOnce):
val x = ArrayBuffer('a', 'b', 'c', 'd', 'e')
x --= Seq('a', 'b')
x --= Array('c')
x --= Set('d')
Use the remove method to delete
 one element by its position in the ArrayBuffer, or a series of elements beginning
 at a starting position:
scala> val x = ArrayBuffer('a', 'b', 'c', 'd', 'e', 'f')
x: scala.collection.mutable.ArrayBuffer[Char] = ArrayBuffer(a, b, c, d, e, f)

scala> x.remove(0)
res0: Char = a

scala> x
res1: scala.collection.mutable.ArrayBuffer[Char] = ArrayBuffer(b, c, d, e, f)

scala> x.remove(1, 3)

scala> x
res2: scala.collection.mutable.ArrayBuffer[Char] = ArrayBuffer(b, f)
In these examples, the collection that contains the elements to be
 removed can be any collection that extends TraversableOnce, so removeThese can be a Seq, Array,
 Vector, and many other types that
 extend TraversableOnce.
The clear method removes all
 the elements from an ArrayBuffer:
scala> var a = ArrayBuffer(1,2,3,4,5)
a: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5)

scala> a.clear

scala> a
res0: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer()
You can also use the usual Scala filtering methods (drop, filter, take, etc.) to filter elements out of a
 collection; just remember to assign the result to a new
 variable.
Array

The size of an Array can’t be
 changed, so you can’t directly delete elements. You can reassign the
 elements in an Array, which has the
 effect of replacing them:
scala> val a = Array("apple", "banana", "cherry")
a: Array[String] = Array(apple, banana, cherry)

scala> a(0) = ""

scala> a(1) = null

scala> a
res0: Array[String] = Array("", null, cherry)
You can also filter elements out of one array while you assign
 the result to a new array:
scala> val a = Array("apple", "banana", "cherry")
a: Array[String] = Array(apple, banana, cherry)

scala> val b = a.filter(! _.contains("apple"))
b: Array[String] = Array(banana, cherry)
Use other filtering methods (drop, slice, take, etc.) in the same way.
If you define the array variable as a var, you can assign the result back to
 itself, which gives the appearance of deleting elements using
 filtering:
scala> var a = Array("apple", "banana", "cherry")
a: Array[String] = Array(apple, banana, cherry)

scala> a = a.take(2)
a: Array[String] = [LString;@e41a882

scala> a
res0: Array[String] = Array(apple, banana)

11.10. Sorting Arrays

Problem

You want to sort the elements in an Array (or ArrayBuffer).

Solution

If you’re working with an Array
 that holds elements that have an implicit Ordering, you can sort the Array in place using the scala.util.Sorting.quickSort method. For
 example, because the String class has
 an implicit Ordering, it can be used
 with quickSort:
scala> val fruits = Array("cherry", "apple", "banana")
fruits: Array[String] = Array(cherry, apple, banana)

scala> scala.util.Sorting.quickSort(fruits)

scala> fruits
res0: Array[String] = Array(apple, banana, cherry)
Notice that quickSort sorts the
 Array in place; there’s no need to
 assign the result to a new variable.
This example works because the String class (via StringOps) has an implicit Ordering. Sorting.quickSort can also sort arrays with
 the base numeric types like Double,
 Float, and Int, because they also have an implicit
 Ordering.
Other solutions

If the type an Array is
 holding doesn’t have an implicit Ordering, you can either modify it to mix in
 the Ordered trait (which gives it
 an implicit Ordering), or sort it
 using the sorted, sortWith, or sortBy methods. These approaches are shown
 in Recipe 10.29.
Also, there are no unique sorting approaches for an ArrayBuffer, so see Recipe 10.29 for an example
 of how to sort it as well.

See Also

The Scaladoc for the Ordered
 and Ordering traits is very good. The
 header information in both documents shows good examples of the
 approaches shown in this recipe and Recipe 10.29.
	The Sorting object

	The Ordering trait

	The Ordered trait

11.11. Creating Multidimensional Arrays

Problem

You need to create a multidimensional array, i.e., an array with
 two or more dimensions.

Solution

There are two main solutions:
	Use Array.ofDim to create a
 multidimensional array. You can use this approach to create arrays
 of up to five dimensions. With this approach you need to know the
 number of rows and columns at creation time.

	Create arrays of arrays as needed.

Both approaches are shown in this solution.
Using Array.ofDim

Use the Array.ofDim method to
 create the array you need:
scala> val rows = 2
rows: Int = 2

scala> val cols = 3
cols: Int = 3

scala> val a = Array.ofDim[String](rows, cols)
a: Array[Array[String]] = Array(Array(null, null, null), Array(null, null, null))
After declaring the array, add elements to it:
a(0)(0) = "a"
a(0)(1) = "b"
a(0)(2) = "c"
a(1)(0) = "d"
a(1)(1) = "e"
a(1)(2) = "f"
Access the elements using parentheses, similar to a
 one-dimensional array:
scala> val x = a(0)(0)
x: String = a
Iterate over the array with a for loop:
scala> for {
 | i <- 0 until rows
 | j <- 0 until cols
 | } println(s"($i)($j) = ${a(i)(j)}")
(0)(0) = a
(0)(1) = b
(0)(2) = c
(1)(0) = d
(1)(1) = e
(1)(2) = f
To create an array with more dimensions, just follow that same
 pattern. Here’s the code for a three-dimensional array:
val x, y, z = 10
val a = Array.ofDim[Int](x,y,z)
for {
 i <- 0 until x
 j <- 0 until y
 k <- 0 until z
} println(s"($i)($j)($k) = ${a(i)(j)(k)}")

Using an array of arrays

Another approach is to create an array whose elements are
 arrays:
scala> val a = Array(Array("a", "b", "c"), Array("d", "e", "f"))
a: Array[Array[String]] = Array(Array(a, b, c), Array(d, e, f))

scala> a(0)
res0: Array[String] = Array(a, b, c)

scala> a(0)(0)
res1: String = a
This gives you more control of the process, and lets you create
 “ragged” arrays (where each contained array may be a different
 size):
scala> val a = Array(Array("a", "b", "c"), Array("d", "e"))
a: Array[Array[String]] = Array(Array(a, b, c), Array(d, e))
You can declare your variable as a var and create the same array in multiple
 steps:
scala> var arr = Array(Array("a", "b", "c"))
arr: Array[Array[String]] = Array(Array(a, b, c))

scala> arr ++= Array(Array("d", "e"))

scala> arr
res0: Array[Array[String]] = Array(Array(a, b, c), Array(d, e))
Note in this example that the variable arr was created as a var, which lets you assign the output from
 the ++= operator back to it. This
 gives the illusion that you’ve modified the
 contents of arr, but in reality, you’ve modified
 arr’s
 reference so it points at a new collection. (See
 Recipe 10.6 for more information.)

Discussion

Decompiling the Array.ofDim
 solution helps to understand how this works behind the scenes. Create
 the following Scala class in a file named Test.scala:
class Test {
 val arr = Array.ofDim[String](2, 3)
}
If you compile that class with scalac, and then decompile it with a tool like
 JAD, you can see the Java code that’s created:
private final String arr[][];
Similarly, creating a Scala three-dimensional Array like this:
val arr = Array.ofDim[String](2, 2, 2)
results in a Java array like this:
private final String arr[][][];
As you might expect, the code generated by using the “array of
 arrays” approach is more complicated. This is a case where using a
 decompiler can help you understand how Scala works, i.e., what code it
 generates for you.
Finally, the Array.ofDim
 approach is unique to the Array
 class; there is no ofDim method on a
 List, Vector, ArrayBuffer, etc. But the “array of arrays”
 solution is not unique to the Array
 class. You can have a “list of lists,” “vector of vectors,” and so
 on.

11.12. Creating Maps

Problem

You want to use a mutable or immutable Map in a Scala application.

Solution

To use an immutable map, you don’t need an import statement, just
 create a Map:
scala> val states = Map("AL" -> "Alabama", "AK" -> "Alaska")
states: scala.collection.immutable.Map[String,String] =
 Map(AL -> Alabama, AK -> Alaska)
This expression creates an immutable Map with type [String, String]. For the first element, the
 string AL is the key, and Alabama is the value.
As noted, you don’t need an import statement to use a basic,
 immutable Map. The Scala Predef object brings the immutable Map trait into scope by defining a type
 alias:
type Map[A, +B] = immutable.Map[A, B]
val Map = immutable.Map
To create a mutable map, either use an import
 statement to bring it into scope, or specify the full path to the
 scala.collection.mutable.Map class
 when you create an instance. You can define a mutable Map that has initial elements:
scala> var states = collection.mutable.Map("AL" -> "Alabama")
states: scala.collection.mutable.Map[String,String] = Map(AL -> Alabama)
You can also create an empty, mutable Map initially, and add elements to it
 later:
scala> var states = collection.mutable.Map[String, String]()
states: scala.collection.mutable.Map[String,String] = Map()

scala> states += ("AL" -> "Alabama")
res0: scala.collection.mutable.Map[String,String] = Map(AL -> Alabama)

Discussion

Like maps in other programming languages, maps in Scala are a
 collection of key/value pairs. If you’ve used maps in Java, dictionaries
 in Python, or a hash in Ruby, Scala maps are straightforward. You only
 need to know a couple of new things, including the methods available on
 map classes, and the specialty maps that can be useful in certain
 situations, such as having a sorted map.
Note that the syntax that’s used inside parentheses in a map
 creates a Tuple2:
"AL" -> "Alabama"
Because you can also declare a Tuple2 as ("AL",
 "Alabama"), you may also see maps created like this:
scala> val states = Map(("AL", "Alabama"), ("AK", "Alaska"))
states: scala.collection.immutable.Map[String,String] =
 Map(AL -> Alabama, AK -> Alaska)
Use whichever style you prefer.
When I want to be clear that I’m using a mutable map, I normally
 specify the full path to the mutable Map class when I create the instance, as shown
 in the Solution. Another technique you can use it to give the mutable
 Map an alias when you import it, and
 then refer to it using that alias, as shown here:
import scala.collection.mutable.{Map => MMap}

object Test extends App {

 // MMap is really scala.collection.mutable.Map
 val m = MMap(1 -> 'a')
 for((k,v) <- m) println(s"$k, $v")

}
This technique is described more in Recipe 7.3.

See Also

	The Map trait

	The Predef object

11.13. Choosing a Map Implementation

Problem

You need to choose a map class for a particular problem.

Solution

Scala has a wealth of map types to choose from, and you can even
 use Java map classes.
If you’re looking for a basic map class, where sorting or
 insertion order doesn’t matter, you can either choose the default,
 immutable Map, or import the mutable
 Map, as shown in the previous
 recipe.
If you want a map that returns its elements in sorted order by
 keys, use a SortedMap:
scala> import scala.collection.SortedMap
import scala.collection.SortedMap

scala> val grades = SortedMap("Kim" -> 90,
 | "Al" -> 85,
 | "Melissa" -> 95,
 | "Emily" -> 91,
 | "Hannah" -> 92
 |)
grades: scala.collection.SortedMap[String,Int] =
 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)
If you want a map that remembers the insertion order of its
 elements, use a LinkedHashMap or
 ListMap. Scala only has a
 mutable LinkedHashMap, and it returns its elements in
 the order you inserted them:
scala> import scala.collection.mutable.LinkedHashMap
import scala.collection.mutable.LinkedHashMap

scala> var states = LinkedHashMap("IL" -> "Illinois")
states: scala.collection.mutable.LinkedHashMap[String,String] =
 Map(IL -> Illinois)

scala> states += ("KY" -> "Kentucky")
res0: scala.collection.mutable.LinkedHashMap[String,String] =
 Map(IL -> Illinois, KY -> Kentucky)

scala> states += ("TX" -> "Texas")
res1: scala.collection.mutable.LinkedHashMap[String,String] =
 Map(IL -> Illinois, KY -> Kentucky, TX -> Texas)
Scala has both mutable and immutable ListMap classes. They return elements in the
 opposite order in which you inserted them, as though each insert was at
 the head of the map (like a List):
scala> import scala.collection.mutable.ListMap
import scala.collection.mutable.ListMap

scala> var states = ListMap("IL" -> "Illinois")
states: scala.collection.mutable.ListMap[String,String] =
 Map(IL -> Illinois)

scala> states += ("KY" -> "Kentucky")
res0: scala.collection.mutable.ListMap[String,String] =
 Map(KY -> Kentucky, IL -> Illinois)

scala> states += ("TX" -> "Texas")
res1: scala.collection.mutable.ListMap[String,String] =
 Map(TX -> Texas, KY -> Kentucky, IL -> Illinois)
The LinkedHashMap implements a
 mutable map using a hashtable, whereas a ListMap is backed by a list-based data
 structure. (Personally, I don’t use the List class very often, so I prefer the
 LinkedHashMap.)

Discussion

Table 11-1 shows a summary of
 the basic Scala map classes and traits, and provides a brief description
 of each.
Table 11-1. Basic map classes and traits
	Class or
 trait
	Description

	collection.immutable.Map
	This is the default,
 general-purpose immutable map you get if you don’t import
 anything.

	collection.mutable.Map
	A mutable version of the
 basic map.

	collection.mutable.LinkedHashMap
	All methods that traverse
 the elements will visit the elements in their insertion
 order.

	collection.immutable.ListMap

 collection.mutable.ListMap
	Per the Scaladoc, “implements
 immutable maps using a list-based data structure.” As shown in
 the examples, elements that are added are prepended to the head
 of the list.

	collection.SortedMap
	Keys of the map are
 returned in sorted order. Therefore, all traversal methods (such
 as foreach) return keys in
 that order.

Although those are the most commonly used maps, Scala offers even
 more map types. They are summarized in Table 11-2.
Table 11-2. More map classes and traits
	Class or
 trait
	Description

	collection.immutable.HashMap
	From the Scaladoc,
 “implements immutable maps using a hash trie.”

	collection.mutable.ObservableMap
	From the Scaladoc: “This
 class is typically used as a mixin. It adds a subscription
 mechanism to the Map class into which this
 abstract class is mixed in.”

	collection.mutable.MultiMap
	From the Scaladoc: “A trait
 for mutable maps with multiple values assigned to a
 key.”

	collection.mutable.SynchronizedMap
	From the Scaladoc: This
 trait “should be used as a mixin. It synchronizes the map
 functions of the class into which it is mixed
 in.”

	collection.immutable.TreeMap
	From the Scaladoc:
 “implements immutable maps using a tree.”

	collection.mutable.WeakHashMap
	A wrapper around java.util.WeakHashMap, “a map entry is
 removed if the key is no longer strongly
 referenced.”

But wait, there’s still more. Beyond these types, Scala also
 offers several more map types that have parallel/concurrent
 implementations built into them:
	collection.parallel.immutable.ParHashMap

	collection.parallel.mutable.ParHashMap

	collection.concurrent.TrieMap

See Also

	Map methods

	When map performance is important, see Recipe 10.4

	Scala’s parallel
 collections

11.14. Adding, Updating, and Removing Elements with a Mutable Map

Problem

You want to add, remove, or update elements in a
 mutable map.

Solution

Add elements to a mutable map by simply assigning them, or with
 the += method. Remove elements with
 -= or --=. Update elements by reassigning
 them.
Given a new, mutable Map:
scala> var states = scala.collection.mutable.Map[String, String]()
states: scala.collection.mutable.Map[String,String] = Map()
You can add an element to a map by assigning a key to a
 value:
scala> states("AK") = "Alaska"
You can also add elements with the += method:
scala> states += ("AL" -> "Alabama")
res0: scala.collection.mutable.Map[String,String] =
 Map(AL -> Alabama, AK -> Alaska)
Add multiple elements at one time with +=:
scala> states += ("AR" -> "Arkansas", "AZ" -> "Arizona")
res1: scala.collection.mutable.Map[String,String] =
 Map(AL -> Alabama, AR -> Arkansas, AK -> Alaska, AZ -> Arizona)
Add multiple elements from another collection using ++=:
scala> states ++= List("CA" -> "California", "CO" -> "Colorado")
res2: scala.collection.mutable.Map[String,String] = Map(CO -> Colorado,
 AZ -> Arizona, AL -> Alabama, CA -> California, AR -> Arkansas,
 AK -> Alaska)
Remove a single element from a map by specifying its key with the
 -= method:
scala> states -= "AR"
res3: scala.collection.mutable.Map[String,String] =
 Map(AL -> Alabama, AK -> Alaska, AZ -> Arizona)
Remove multiple elements by key with the -= or --=
 methods:
scala> states -= ("AL", "AZ")
res4: scala.collection.mutable.Map[String,String] = Map(AK -> Alaska)

// remove multiple with a List of keys
scala> states --= List("AL", "AZ")
res5: scala.collection.mutable.Map[String,String] = Map(AK -> Alaska)
Update elements by reassigning their key to a new value:
scala> states("AK") = "Alaska, A Really Big State"

scala> states
res6: scala.collection.mutable.Map[String,String] =
 Map(AK -> Alaska, A Really Big State)
There are other ways to add elements to maps, but these examples
 show the most common uses.

Discussion

The methods shown in the Solution demonstrate the most common
 approaches. You can also use put to
 add an element (or replace an existing element); retain to keep only the elements in the map
 that match the predicate you supply; remove to remove an element by its key value;
 and clear to delete all elements in
 the map. These methods are shown in the following examples:
scala> val states = collection.mutable.Map(
 | "AK" -> "Alaska",
 | "IL" -> "Illinois",
 | "KY" -> "Kentucky"
 |)
states: collection.mutable.Map[String,String] =
 Map(KY -> Kentucky, IL -> Illinois, AK -> Alaska)

scala> states.put("CO", "Colorado")
res0: Option[String] = None

scala> states.retain((k,v) => k == "AK")
res1: states.type = Map(AK -> Alaska)

scala> states.remove("AK")
res2: Option[String] = Some(Alaska)

scala> states
res3: scala.collection.mutable.Map[String,String] = Map()

scala> states.clear

scala> states
res4: scala.collection.mutable.Map[String,String] = Map()
As shown, the remove method
 returns an Option that contains the
 value that was removed. It’s not shown in the example, but if the
 element put into the collection by put replaced another element, that value would
 be returned. Because this example didn’t replace anything, it returned
 None.

See Also

	The Scala mutable Map trait

11.15. Adding, Updating, and Removing Elements with Immutable Maps

Problem

You want to add, update, or delete elements when working with an
 immutable map.

Solution

Use the correct operator for each purpose, remembering to assign
 the results to a new map.
To be clear about the approach, the following examples use an
 immutable map with a series of val
 variables. First, create an immutable map as a val:
scala> val a = Map("AL" -> "Alabama")
a: scala.collection.immutable.Map[String,String] =
 Map(AL -> Alabama)
Add one or more elements with the + method, assigning the result to a new
 Map variable during the
 process:
// add one element
scala> val b = a + ("AK" -> "Alaska")
b: scala.collection.immutable.Map[String,String] =
 Map(AL -> Alabama, AK -> Alaska)

// add multiple elements
scala> val c = b + ("AR" -> "Arkansas", "AZ" -> "Arizona")
c: scala.collection.immutable.Map[String,String] =
 Map(AL -> Alabama, AK -> Alaska, AR -> Arkansas, AZ -> Arizona)
To update a key/value pair with an immutable map, reassign the key
 and value while using the + method,
 and the new values replace the old:
scala> val d = c + ("AR" -> "banana")
d: scala.collection.immutable.Map[String,String] =
 Map(AL -> Alabama, AK -> Alaska, AR -> banana, AZ -> Arizona)
To remove one element, use the - method:
scala> val e = d - "AR"
e: scala.collection.immutable.Map[String,String] =
 Map(AL -> Alabama, AK -> Alaska, AZ -> Arizona)
To remove multiple elements, use the - or --
 methods:
scala> val f = e - "AZ" - "AL"
f: scala.collection.immutable.Map[String,String] =
 Map(AK -> Alaska)

Discussion

You can also declare an immutable map as a var. Doing so has a dramatic difference on how
 you can treat the map:
scala> var x = Map("AL" -> "Alabama")
x: scala.collection.mutable.Map[String,String] = Map(AL -> Alabama)

// add one element
scala> x += ("AK" -> "Alaska"); println(x)
Map(AL -> Alabama, AK -> Alaska)

// add multiple elements
scala> x += ("AR" -> "Arkansas", "AZ" -> "Arizona"); println(x)
Map(AZ -> Arizona, AL -> Alabama, AR -> Arkansas, AK -> Alaska)

// add a tuple to a map (replacing the previous "AR" key)
scala> x += ("AR" -> "banana"); println(x)
Map(AZ -> Arizona, AL -> Alabama, AR -> banana, AK -> Alaska)

// remove an element
scala> x -= "AR"; println(x)
Map(AZ -> Arizona, AL -> Alabama, AK -> Alaska)

// remove multiple elements (uses varargs method)
scala> x -= ("AL", "AZ"); println(x)
Map(AK -> Alaska)

// reassign the map that 'x' points to
scala> x = Map("CO" -> "Colorado")
x: scala.collection.mutable.Map[String,String] = Map(CO -> Colorado)
It’s important to understand that when you create an immutable map
 as a var, you still have an immutable
 map. For instance, you can’t reassign an element in the map:
scala> x("AL") = "foo"
<console>:9: error: value update is not a member of scala.collection.immutable.Map[String,String]
 x("AL") = "foo"
 ^
What’s really happening in the previous examples is that because
 x was defined as a var, it’s being reassigned during each step in
 the process. This is a subtle but important distinction to understand.
 See Recipe 10.6 for more information.

See Also

	The immutable Map class

11.16. Accessing Map Values

Problem

You want to access individual values stored in a map. You may have
 tried this and run into an exception when a key didn’t exist, and want
 to see how to avoid that exception.

Solution

Given a sample map:
scala> val states = Map("AL" -> "Alabama", "AK" -> "Alaska", "AZ" -> "Arizona")
states: scala.collection.immutable.Map[String,String] =
 Map(AL -> Alabama, AK -> Alaska, AZ -> Arizona)
Access the value associated with a key in the same way you access
 an element in an array:
scala> val az = states("AZ")
az: String = Arizona
However, be careful, because if the map doesn’t contain the
 requested key, a java.util.NoSuchElementException exception is
 thrown:
scala> val s = states("FOO")
java.util.NoSuchElementException: key not found: FOO
One way to avoid this problem is to create the map with the
 withDefaultValue method. As the name
 implies, this creates a default value that will be returned by the map
 whenever a key isn’t found:
scala> val states = Map("AL" -> "Alabama").withDefaultValue("Not found")
states: scala.collection.immutable.Map[String,String] =
 Map(AL -> Alabama)

scala> states("foo")
res0: String = Not found
Another approach is to use the getOrElse method when attempting to find a
 value. It returns the default value you specify if the key isn’t
 found:
scala> val s = states.getOrElse("FOO", "No such state")
s: String = No such state
You can also use the get
 method, which returns an Option:
scala> val az = states.get("AZ")
az: Option[String] = Some(Arizona)

scala> val az = states.get("FOO")
az: Option[String] = None
To loop over the values in a map, see the next recipe.

See Also

	Recipe 11.20.

	Recipe 20.6, shows how to work with Option, Some, and None values.

11.17. Traversing a Map

Problem

You want to iterate over the elements in a map.

Solution

There are several different ways to iterate over the elements in a
 map. Given a sample map:
val ratings = Map("Lady in the Water"-> 3.0,
 "Snakes on a Plane"-> 4.0,
 "You, Me and Dupree"-> 3.5)
my preferred way to loop over all of the map elements is with this
 for loop syntax:
for ((k,v) <- ratings) println(s"key: $k, value: $v")
Using a match expression with the foreach method is also very
 readable:
ratings.foreach {
 case(movie, rating) => println(s"key: $movie, value: $rating")
}
The following approach shows how to use the Tuple syntax to access the key and value
 fields:
ratings.foreach(x => println(s"key: ${x._1}, value: ${x._2}"))
If you just want to use the keys in the map, the keys method returns an Iterable you can use:
ratings.keys.foreach((movie) => println(movie))
For simple examples like this, that expression can be reduced as
 follows:
ratings.keys.foreach(println)
In the same way, use the values
 method to iterate over the values in the map:
ratings.values.foreach((rating) => println(rating))
Note: Those are not my movie ratings. They are taken from the
 book, Programming
 Collective Intelligence (O’Reilly), by Toby
 Segaran.
Operating on map values

If you want to traverse the map to perform an operation on its
 values, the mapValues method may be
 a better solution. It lets you perform a function on each map value,
 and returns the modified map:
scala> var x = collection.mutable.Map(1 -> "a", 2 -> "b")
x: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a)

scala> val y = x.mapValues(_.toUpperCase)
y: scala.collection.Map[Int,String] = Map(2 -> B, 1 -> A)
The transform method gives
 you another way to create a new map from an existing map. Unlike
 mapValues, it lets you use both the
 key and value to write a transformation method:
scala> val map = Map(1 -> 10, 2 -> 20, 3 -> 30)
map: scala.collection.mutable.Map[Int,Int] = Map(2 -> 20, 1 -> 10, 3 -> 30)

scala> val newMap = map.transform((k,v) => k + v)
newMap: map.type = Map(2 -> 22, 1 -> 11, 3 -> 33)

11.18. Getting the Keys or Values from a Map

Problem

You want to get all of the keys or values from a map.

Solution

To get the keys, use keySet to
 get the keys as a Set, keys to get an Iterable, or keysIterator to get the keys as an
 iterator:
scala> val states = Map("AK" -> "Alaska", "AL" -> "Alabama", "AR" -> "Arkansas")
states: scala.collection.immutable.Map[String,String] =
 Map(AK -> Alaska, AL -> Alabama, AR -> Arkansas)

scala> states.keySet
res0: scala.collection.immutable.Set[String] = Set(AK, AL, AR)

scala> states.keys
res1: Iterable[String] = Set(AK, AL, AR)

scala> states.keysIterator
res2: Iterator[String] = non-empty iterator
To get the values from a map, use the values method to get the values as an Iterable, or valuesIterator to get them as an Iterator:
scala> states.values
res0: Iterable[String] = MapLike(Alaska, Alabama, Arkansas)

scala> states.valuesIterator
res1: Iterator[String] = non-empty iterator
As shown in these examples, keysIterator and valuesIterator return an iterator from the map
 data. I tend to prefer these methods because they don’t create a new
 collection; they just provide an iterator to walk over the existing
 elements.

11.19. Reversing Keys and Values

Problem

You want to reverse the contents of a map, so the values become
 the keys, and the keys become the values.

Solution

You can reverse the keys and values of a map with a for
 comprehension, being sure to assign the result to a new
 variable:
val reverseMap = for ((k,v) <- map) yield (v, k)
But be aware that values don’t have to be unique and keys must be,
 so you might lose some content. As an example of this, reversing the
 following map—where two values are $5—results in one of the items being dropped
 when the keys and values are reversed:
scala> val products = Map(
 | "Breadsticks" -> "$5",
 | "Pizza" -> "$10",
 | "Wings" -> "$5"
 |)
products: scala.collection.mutable.Map[String,String] =
 Map(Wings -> $5, Pizza -> $10, Breadsticks -> $5)

scala> val reverseMap = for ((k,v) <- products) yield (v, k)
reverseMap: scala.collection.mutable.Map[String,String] =
 Map($5 -> Breadsticks, $10 -> Pizza)
As shown, the $5 wings were
 lost when the values became the keys, because both the breadsticks and
 the wings had the String value
 $5.

See Also

	Recipe 3.4

	Recipe 10.13

11.20. Testing for the Existence of a Key or Value in a Map

Problem

You want to test whether a map contains a given key or
 value.

Solution

To test for the existence of a key in a map, use the contains method:
scala> val states = Map(
 | "AK" -> "Alaska",
 | "IL" -> "Illinois",
 | "KY" -> "Kentucky"
 |)
states: scala.collection.immutable.Map[String,String] =
 Map(AK -> Alaska, IL -> Illinois, KY -> Kentucky)

scala> if (states.contains("FOO")) println("Found foo") else println("No foo")
No foo
To test whether a value exists in a map, use the valuesIterator method to search for the value
 using exists and contains:
scala> states.valuesIterator.exists(_.contains("ucky"))
res0: Boolean = true

scala> states.valuesIterator.exists(_.contains("yucky"))
res1: Boolean = false
This works because the valuesIterator method returns an Iterator:
scala> states.valuesIterator
res2: Iterator[String] = MapLike(Alaska, Illinois, Kentucky)
and exists returns true if the function you define returns
 true for at least one element in the
 collection. In the first example, because at least one element in the
 collection contains the String
 literal ucky, the exists call returns true.

Discussion

When chaining methods like this together, be careful about
 intermediate results. In this example, I originally used the values methods to get the values from the map,
 but this produces a new collection, whereas the valuesIterator method returns a lightweight
 iterator.

See Also

	Recipe 11.16, shows how to avoid an exception while
 accessing a map key.

	Recipe 11.18, demonstrates the values and valuesIterator methods.

11.21. Filtering a Map

Problem

You want to filter the elements contained in a map, either by
 directly modifying a mutable map, or by applying a filtering algorithm
 on an immutable map to create a new map.

Solution

Use the retain method to define
 the elements to retain when using a mutable map, and use filterKeys or filter to filter the elements in a mutable or
 immutable map, remembering to assign the result to a new
 variable.
Mutable maps

You can filter the elements in a mutable
 map using the retain method to
 specify which elements should be retained:
scala> var x = collection.mutable.Map(1 -> "a", 2 -> "b", 3 -> "c")
x: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a, 3 -> c)

scala> x.retain((k,v) => k > 1)
res0: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 3 -> c)

scala> x
res1: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 3 -> c)
As shown, retain modifies a
 mutable map in place. As implied by the anonymous function signature
 used in that example:
(k,v) => ...
your algorithm can test both the key and value of each element
 to decide which elements to retain in the map.
In a related note, the transform method doesn’t filter a map, but
 it lets you transform the elements in a mutable map:
scala> x.transform((k,v) => v.toUpperCase)
res0: scala.collection.mutable.Map[Int,String] = Map(2 -> B, 3 -> C)

scala> x
res1: scala.collection.mutable.Map[Int,String] = Map(2 -> B, 3 -> C)
Depending on your definition of “filter,” you can also remove
 elements from a map using methods like remove and clear, which are shown in Recipe 11.15.

Mutable and immutable maps

When working with a mutable or immutable map, you can use a
 predicate with the filterKeys
 methods to define which map elements to retain. When using this
 method, remember to assign the filtered result to a new
 variable:
scala> val x = Map(1 -> "a", 2 -> "b", 3 -> "c")
x: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a, 3 -> c)

scala> val y = x.filterKeys(_ > 2)
y: scala.collection.Map[Int,String] = Map(3 -> c)
The predicate you supply should return true for the elements you want to keep in
 the new collection and false for
 the elements you don’t want.
If your algorithm is longer, you can define a function (or
 method), and then use it in the filterKeys call, rather than using an
 anonymous function. First define your method, such as this method,
 which returns true when the value
 the method is given is 1:
scala> def only1(i: Int) = if (i == 1) true else false
only1: (i: Int)Boolean
Then pass the method to the filterKeys method:
scala> val x = Map(1 -> "a", 2 -> "b", 3 -> "c")
x: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a, 3 -> c)

scala> val y = x.filterKeys(only1)
y: scala.collection.Map[Int,String] = Map(1 -> a)
In an interesting use, you can also use a Set with filterKeys to define the elements to
 retain:
scala> var m = Map(1 -> "a", 2 -> "b", 3 -> "c")
m: scala.collection.immutable.Map[Int,String] = Map(1 -> a, 2 -> b, 3 -> c)

scala> val newMap = m.filterKeys(Set(2,3))
newMap: scala.collection.immutable.Map[Int,String] = Map(2 -> b, 3 -> c)
You can also use all of the filtering methods that are shown in
 Chapter 10. For instance, the map version of the
 filter method lets you filter the
 map elements by either key, value, or both. The filter method provides your predicate a
 Tuple2, so you can access the key
 and value as shown in these examples:
scala> var m = Map(1 -> "a", 2 -> "b", 3 -> "c")
m: scala.collection.immutable.Map[Int,String] = Map(1 -> a, 2 -> b, 3 -> c)

// access the key
scala> m.filter((t) => t._1 > 1)
res0: scala.collection.immutable.Map[Int,String] = Map(2 -> b, 3 -> c)

// access the value
scala> m.filter((t) => t._2 == "c")
res1: scala.collection.immutable.Map[Int,String] = Map(3 -> c)
The take method lets you
 “take” (keep) the first N elements from the map:
scala> m.take(2)
res2: scala.collection.immutable.Map[Int,String] = Map(1 -> a, 2 -> b)
See the filtering recipes in Chapter 10 for
 examples of other methods that you can use, including takeWhile, drop, slice, and more.

11.22. Sorting an Existing Map by Key or Value

Problem

You have an unsorted map and want to sort the elements in the map
 by the key or value.

Solution

Given a basic, immutable Map:
scala> val grades = Map("Kim" -> 90,
 | "Al" -> 85,
 | "Melissa" -> 95,
 | "Emily" -> 91,
 | "Hannah" -> 92
 |)
grades: scala.collection.immutable.Map[String,Int] =
 Map(Hannah -> 92, Melissa -> 95, Kim -> 90, Emily -> 91, Al -> 85)
You can sort the map by key, from low to
 high, using sortBy:
scala> import scala.collection.immutable.ListMap
import scala.collection.immutable.ListMap

scala> ListMap(grades.toSeq.sortBy(_._1):_*)
res0: scala.collection.immutable.ListMap[String,Int] =
 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)
You can also sort the keys in ascending or descending order using
 sortWith:
// low to high
scala> ListMap(grades.toSeq.sortWith(_._1 < _._1):_*)
res0: scala.collection.immutable.ListMap[String,Int] =
 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)

// high to low
scala> ListMap(grades.toSeq.sortWith(_._1 > _._1):_*)
res1: scala.collection.immutable.ListMap[String,Int] =
 Map(Melissa -> 95, Kim -> 90, Hannah -> 92, Emily -> 91, Al -> 85)
You can sort the map by value using sortBy:
scala> ListMap(grades.toSeq.sortBy(_._2):_*)
res0: scala.collection.immutable.ListMap[String,Int] =
 Map(Al -> 85, Kim -> 90, Emily -> 91, Hannah -> 92, Melissa -> 95)
You can also sort by value in ascending or descending order using
 sortWith:
// low to high
scala> ListMap(grades.toSeq.sortWith(_._2 < _._2):_*)
res0: scala.collection.immutable.ListMap[String,Int] =
 Map(Al -> 85, Kim -> 90, Emily -> 91, Hannah -> 92, Melissa -> 95)

// high to low
scala> ListMap(grades.toSeq.sortWith(_._2 > _._2):_*)
res1: scala.collection.immutable.ListMap[String,Int] =
 Map(Melissa -> 95, Hannah -> 92, Emily -> 91, Kim -> 90, Al -> 85)
In all of these examples, you’re not sorting the existing map; the
 sort methods result in a new sorted map, so the output of the result
 needs to be assigned to a new variable. Also, you can use either a
 ListMap or a LinkedHashMap in these recipes. This example
 shows how to use a LinkedHashMap and
 assign the result to a new variable:
scala> val x = collection.mutable.LinkedHashMap(grades.toSeq.sortBy(_._1):_*)
x: scala.collection.mutable.LinkedHashMap[String,Int] =
 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)

scala> x.foreach(println)
(Al,85)
(Emily,91)
(Hannah,92)
(Kim,90)
(Melissa,95)

Discussion

To understand these solutions, it’s helpful to break them down
 into smaller pieces. First, start with the basic immutable Map:
scala> val grades = Map("Kim" -> 90,
 | "Al" -> 85,
 | "Melissa" -> 95,
 | "Emily" -> 91,
 | "Hannah" -> 92
 |)
grades: scala.collection.immutable.Map[String,Int] =
 Map(Hannah -> 92, Melissa -> 95, Kim -> 90, Emily -> 91, Al -> 85)
Next, this is what grades.toSeq
 looks like:
scala> grades.toSeq
res0: Seq[(String, Int)] =
 ArrayBuffer((Hannah,92), (Melissa,95), (Kim,90), (Emily,91), (Al,85))
You make the conversion to a Seq because it has sorting methods you can
 use:
scala> grades.toSeq.sortBy(_._1)
res0: Seq[(String, Int)] =
 ArrayBuffer((Al,85), (Emily,91), (Hannah,92), (Kim,90), (Melissa,95))

scala> grades.toSeq.sortWith(_._1 < _._1)
res1: Seq[(String, Int)] =
 ArrayBuffer((Al,85), (Emily,91), (Hannah,92), (Kim,90), (Melissa,95))
Once you have the map data sorted as desired, store it in a
 ListMap to retain the sort
 order:
scala> ListMap(grades.toSeq.sortBy(_._1):_*)
res0: scala.collection.immutable.ListMap[String,Int] =
 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)
The LinkedHashMap also retains
 the sort order of its elements, so it can be used in all of the examples
 as well:
scala> import scala.collection.mutable.LinkedHashMap
import scala.collection.mutable.LinkedHashMap

scala> LinkedHashMap(grades.toSeq.sortBy(_._1):_*)
res0: scala.collection.mutable.LinkedHashMap[String,Int] =
 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)
There are both mutable and immutable versions of a ListMap, but LinkedHashMap is only available as a mutable
 class. Use whichever is best for your situation.
About that _*

The _* portion of the code
 takes a little getting used to. It’s used to convert the data so it
 will be passed as multiple parameters to the ListMap or LinkedHashMap. You can see this a little
 more easily by again breaking down the code into separate lines. The
 sortBy method returns a Seq[(String, Int)], i.e., a sequence of
 tuples:
scala> val x = grades.toSeq.sortBy(_._1)
x: Seq[(String, Int)] =
 ArrayBuffer((Al,85), (Emily,91), (Hannah,92), (Kim,90), (Melissa,95))
You can’t directly construct a ListMap with a sequence of tuples, but
 because the apply method in the
 ListMap companion object accepts a
 Tuple2 varargs parameter, you can
 adapt x to work with it, i.e.,
 giving it what it wants:
scala> ListMap(x: _*)
res0: scala.collection.immutable.ListMap[String,Int] =
 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)
Attempting to create the ListMap without using this approach results
 in an error:
scala> ListMap(x)
<console>:16: error: type mismatch;
 found : Seq[(String, Int)]
 required: (?, ?)
 ListMap(x)
 ^
Another way to see how _*
 works is to define your own method that takes a varargs parameter. The
 following printAll method takes one
 parameter, a varargs field of type String:
def printAll(strings: String*) {
 strings.foreach(println)
}
If you then create a List
 like this:
// a sequence of strings
val fruits = List("apple", "banana", "cherry")
you won’t be able to pass that List into printAll; it will fail like the previous
 example:
scala> printAll(fruits)
<console>:20: error: type mismatch;
 found : List[String]
 required: String
 printAll(fruits)
 ^
But you can use _* to adapt
 the List to work with printAll, like this:
// this works
printAll(fruits: _*)
If you come from a Unix background, it may be helpful to think
 of _* as a “splat” operator. This
 operator tells the compiler to pass each element of the sequence to
 printAll as a separate argument,
 instead of passing fruits as a
 single List argument.

See Also

	The immutable ListMap class

	The immutable ListMap companion object

	The mutable ListMap class

	The mutable LinkedHashMap class

11.23. Finding the Largest Key or Value in a Map

Problem

You want to find the largest value of a key or value in a
 map.

Solution

Use the max method on the map,
 or use the map’s keysIterator or
 valuesIterator with other approaches,
 depending on your needs.
For example, given this map:
val grades = Map("Al" -> 80, "Kim" -> 95, "Teri" -> 85, "Julia" -> 90)
the key is type String, so
 which key is “largest” depends on your definition. You can find the
 “largest” key using the natural String sort order by calling the max method on the map:
scala> grades.max
res0: (String, Int) = (Teri,85)
Because the “T” in “Teri” is farthest down the alphabet in the
 names, it is returned.
You can also call keysIterator
 to get an iterator over the map keys, and call its max method:
scala> grades.keysIterator.max
res1: String = Teri
You can find the same maximum by getting the keysIterator and using reduceLeft:
scala> grades.keysIterator.reduceLeft((x,y) => if (x > y) x else y)
res2: String = Teri
This approach is flexible, because if your definition of “largest”
 is the longest string, you can compare string lengths instead:
scala> grades.keysIterator.reduceLeft((x,y) => if (x.length > y.length) x else y)
res3: String = Julia
Because the values in the map are of type Int in this example, you can use this simple
 approach to get the largest value:
scala> grades.valuesIterator.max
res4: Int = 95
You can also use the reduceLeft
 approach, if you prefer:
scala> grades.valuesIterator.reduceLeft(_ max _)
res5: Int = 95
You can also compare the numbers yourself, which is representative
 of what you may need to do with more complex types:
scala> grades.valuesIterator.reduceLeft((x,y) => if (x > y) x else y)
res6: Int = 95
To find minimum keys and values, just reverse the algorithms in
 these examples.

See Also

	Recipe 11.18

11.24. Adding Elements to a Set

Problem

You want to add elements to a mutable set, or create a new set by
 adding elements to an immutable set.

Solution

Mutable and immutable sets are handled differently, as
 demonstrated in the following examples.
Mutable set

Add elements to a mutable Set with the +=, ++=,
 and add methods:
// use var with mutable
scala> var set = scala.collection.mutable.Set[Int]()
set: scala.collection.mutable.Set[Int] = Set()

// add one element
scala> set += 1
res0: scala.collection.mutable.Set[Int] = Set(1)

// add multiple elements
scala> set += (2, 3)
res1: scala.collection.mutable.Set[Int] = Set(2, 1, 3)

// notice that there is no error when you add a duplicate element
scala> set += 2
res2: scala.collection.mutable.Set[Int] = Set(2, 6, 1, 4, 3, 5)

// add elements from any sequence (any TraversableOnce)
scala> set ++= Vector(4, 5)
res3: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.add(6)
res4: Boolean = true

scala> set.add(5)
res5: Boolean = false
The last two examples demonstrate a unique characteristic of the
 add method on a set: It returns
 true or false depending on whether or not the
 element was added. The other methods silently fail if you attempt to
 add an element that’s already in the set.
You can test to see whether a set contains an element before
 adding it:
set.contains(5)
But as a practical matter, I use += and ++=, and ignore whether the element was
 already in the set.
Whereas the first example demonstrated how to create an empty
 set, you can also add elements to a mutable set when you declare it,
 just like other collections:
scala> var set = scala.collection.mutable.Set(1, 2, 3)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 3)

Immutable set

The following examples show how to create a new immutable set by
 adding elements to an existing immutable set.
First, create an immutable set:
scala> val s1 = Set(1, 2)
s1: scala.collection.immutable.Set[Int] = Set(1, 2)
Create a new set by adding elements to a previous set with the
 + and ++ methods:
// add one element
scala> val s2 = s1 + 3
s2: scala.collection.immutable.Set[Int] = Set(1, 2, 3)

// add multiple elements (+ method has a varargs field)
scala> val s3 = s2 + (4, 5)
s3: scala.collection.immutable.Set[Int] = Set(5, 1, 2, 3, 4)

// add elements from another sequence
scala> val s4 = s3 ++ List(6, 7)
s4: scala.collection.immutable.Set[Int] = Set(5, 1, 6, 2, 7, 3, 4)
I showed these examples with immutable variables just to be
 clear about how the approach works. You can also declare your variable
 as a var, and reassign the
 resulting set back to the same variable:
scala> var set = Set(1, 2, 3)
set: scala.collection.immutable.Set[Int] = Set(1, 2, 3)

scala> set += 4

scala> set
res0: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)
See Recipe 10.6 for more information on the difference
 between mutable/immutable variables and
 mutable/immutable collections.

11.25. Deleting Elements from Sets

Problem

You want to remove elements from a mutable or immutable
 set.

Solution

Mutable and immutable sets are handled differently, as
 demonstrated in the following examples.
Mutable set

When working with a mutable Set, remove elements from the set using the
 -= and --= methods, as shown in the following
 examples:
scala> var set = scala.collection.mutable.Set(1, 2, 3, 4, 5)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

// one element
scala> set -= 1
res0: scala.collection.mutable.Set[Int] = Set(2, 4, 3, 5)

// two or more elements (-= has a varags field)
scala> set -= (2, 3)
res1: scala.collection.mutable.Set[Int] = Set(4, 5)

// multiple elements defined in another sequence
scala> set --= Array(4,5)
res2: scala.collection.mutable.Set[Int] = Set()
You can also use other methods like retain, clear, and remove, depending on your needs:
// retain
scala> var set = scala.collection.mutable.Set(1, 2, 3, 4, 5)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.retain(_ > 2)

scala> set
res0: scala.collection.mutable.Set[Int] = Set(4, 3, 5)

// clear
scala> var set = scala.collection.mutable.Set(1, 2, 3, 4, 5)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.clear

scala> set
res1: scala.collection.mutable.Set[Int] = Set()

// remove
scala> var set = scala.collection.mutable.Set(1, 2, 3, 4, 5)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.remove(2)
res2: Boolean = true

scala> set
res3: scala.collection.mutable.Set[Int] = Set(1, 4, 3, 5)

scala> set.remove(40)
res4: Boolean = false
As shown, the remove method
 provides feedback as to whether or not any elements were
 removed.

Immutable set

By definition, when using an immutable
 Set you can’t remove elements from
 it, but you can use the - and
 -- operators to remove elements
 while assigning the result to a new variable:
scala> val s1 = Set(1, 2, 3, 4, 5, 6)
s1: scala.collection.immutable.Set[Int] = Set(5, 1, 6, 2, 3, 4)

// one element
scala> val s2 = s1 - 1
s2: scala.collection.immutable.Set[Int] = Set(5, 6, 2, 3, 4)

// multiple elements
scala> val s3 = s2 - (2, 3)
s3: scala.collection.immutable.Set[Int] = Set(5, 6, 4)

// multiple elements defined in another sequence
scala> val s4 = s3 -- Array(4, 5)
s4: scala.collection.immutable.Set[Int] = Set(6)
You can also use all of the filtering methods shown in Chapter 10. For instance, you can use the filter or take methods:
scala> val s1 = Set(1, 2, 3, 4, 5, 6)
s1: scala.collection.immutable.Set[Int] = Set(5, 1, 6, 2, 3, 4)

scala> val s2 = s1.filter(_ > 3)
s2: scala.collection.immutable.Set[Int] = Set(5, 6, 4)

scala> val firstTwo = s1.take(2)
firstTwo: scala.collection.immutable.Set[Int] = Set(5, 1)

11.26. Using Sortable Sets

Problem

You want to be able to store and retrieve items from a set in a
 sorted order.

Solution

To retrieve values from a set in sorted order, use a SortedSet. To retrieve elements from a set in
 the order in which elements were inserted, use a LinkedHashSet.
A SortedSet returns elements in
 a sorted order:
scala> val s = scala.collection.SortedSet(10, 4, 8, 2)
s: scala.collection.SortedSet[Int] = TreeSet(2, 4, 8, 10)

scala> val s = scala.collection.SortedSet("cherry", "kiwi", "apple")
s: scala.collection.SortedSet[String] = TreeSet(apple, cherry, kiwi)
A LinkedHashSet saves elements
 in the order in which they were inserted:
scala> var s = scala.collection.mutable.LinkedHashSet(10, 4, 8, 2)
s: scala.collection.mutable.LinkedHashSet[Int] = Set(10, 4, 8, 2)

Discussion

The SortedSet is available only
 in an immutable version. If you need a mutable version, use the java.util.TreeSet. The LinkedHashSet is available only as a mutable
 collection.
The examples shown in the Solution work because the types used in
 the sets have an implicit Ordering.
 Custom types won’t work unless you also provide an implicit Ordering. For example, the following code
 won’t work because the Person class
 is just a basic class:
class Person (var name: String)

import scala.collection.SortedSet
val aleka = new Person("Aleka")
val christina = new Person("Christina")
val molly = new Person("Molly")
val tyler = new Person("Tyler")

// this won't work
val s = SortedSet(molly, tyler, christina, aleka)
In the REPL, the last line of code fails with this error:
scala> val s = SortedSet(molly, tyler, christina, aleka)
<console>:17: error: No implicit Ordering defined for Person.
 val s = SortedSet(molly, tyler, christina, aleka)
 ^
To solve this problem, modify the Person class to extend the Ordered trait, and implement a compare method:
class Person (var name: String) extends Ordered [Person]
{
 override def toString = name

 // return 0 if the same, negative if this < that, positive if this > that
 def compare (that: Person) = {
 if (this.name == that.name)
 0
 else if (this.name > that.name)
 1
 else
 −1
 }

}
With this new Person class
 definition, sorting works as desired:
scala> val s = SortedSet(molly, tyler, christina, aleka)
s: scala.collection.SortedSet[Person] = TreeSet(Aleka, Christina, Molly, Tyler)
For more information about the Ordered and Ordering traits, see Recipe 10.28 and the
 links in the See Also section.

See Also

	The SortedSet trait

	The LinkedHashSet class

	The Ordering trait

	The Ordered trait

11.27. Using a Queue

Problem

You want to use a queue data structure in a Scala
 application.

Solution

A queue is a first-in, first-out (FIFO) data structure. Scala
 offers both an immutable queue and mutable queue. This recipe
 demonstrates the mutable queue.
You can create an empty, mutable queue of any data type:
import scala.collection.mutable.Queue
var ints = Queue[Int]()
var fruits = Queue[String]()
var q = Queue[Person]()
You can also create a queue with initial elements:
scala> val q = Queue(1, 2, 3)
q: scala.collection.mutable.Queue[Int] = Queue(1, 2, 3)
Once you have a mutable queue, add elements to it using +=, ++=,
 and enqueue, as shown in the
 following examples:
scala> import scala.collection.mutable.Queue
import scala.collection.mutable.Queue

// create an empty queue
scala> var q = new Queue[String]
q: scala.collection.mutable.Queue[String] = Queue()

// add elements to the queue in the usual ways
scala> var q = new Queue[String]
q: scala.collection.mutable.Queue[String] = Queue()

scala> q += "apple"
res0: scala.collection.mutable.Queue[String] = Queue(apple)

scala> q += ("kiwi", "banana")
res1: scala.collection.mutable.Queue[String] = Queue(apple, kiwi, banana)

scala> q ++= List("cherry", "coconut")
res2: scala.collection.mutable.Queue[String] =
 Queue(apple, kiwi, banana, cherry, coconut)

// can also use enqueue
scala> q.enqueue("pineapple")

scala> q
res3: scala.collection.mutable.Queue[String] =
 Queue(apple, kiwi, banana, cherry, coconut, pineapple)
Because a queue is a FIFO, you typically remove elements from the
 head of the queue, one element at a time, using dequeue:
// take an element from the head of the queue
scala> val next = q.dequeue
next: String = apple

// 'apple' is removed from the queue
scala> q
res0: scala.collection.mutable.Queue[String] = Queue(kiwi, banana, cherry, coconut, pineapple)

// take the next element
scala> val next = q.dequeue
next: String = kiwi

// 'kiwi' is removed from the queue
scala> q
res1: scala.collection.mutable.Queue[String] = Queue(banana, cherry, coconut, pineapple)
You can also use the dequeueFirst and dequeueAll methods to remove elements from the
 queue by specifying a predicate:
scala> q.dequeueFirst(_.startsWith("b"))
res2: Option[String] = Some(banana)

scala> q
res3: scala.collection.mutable.Queue[String] = Queue(cherry, coconut, pineapple)

scala> q.dequeueAll(_.length > 6)
res4: scala.collection.mutable.Seq[String] = ArrayBuffer(coconut, pineapple)

scala> q
res5: scala.collection.mutable.Queue[String] = Queue(cherry)
A Queue is a collection class
 that extends from Iterable and
 Traversable, so it has all the usual
 collection methods, including foreach, map, etc. See the Queue Scaladoc for more information.

See Also

	The mutable Queue class

	The immutable Queue class

11.28. Using a Stack

Problem

You want to use a stack data structure in a Scala
 application.

Solution

A stack is a last-in, first-out (LIFO) data structure. In most
 programming languages you add elements to a stack using a push method, and take elements off the stack
 with pop, and Scala is no
 different.
Scala has both immutable and mutable versions of a stack, as well
 as an ArrayStack (discussed shortly).
 The following examples demonstrate how to use the
 mutable Stack
 class.
Create an empty, mutable stack of any data type:
import scala.collection.mutable.Stack
var ints = Stack[Int]()
var fruits = Stack[String]()

case class Person(var name: String)
var people = Stack[Person]()
You can also populate a stack with initial elements when you
 create it:
val ints = Stack(1, 2, 3)
Once you have a mutable stack, push elements onto the stack with
 push:
// create a stack
scala> var fruits = Stack[String]()
fruits: scala.collection.mutable.Stack[String] = Stack()

// add one element at a time
scala> fruits.push("apple")
res0: scala.collection.mutable.Stack[String] = Stack(apple)

scala> fruits.push("banana")
res1: scala.collection.mutable.Stack[String] = Stack(banana, apple)

// add multiple elements
scala> fruits.push("coconut", "orange", "pineapple")
res2: scala.collection.mutable.Stack[String] =
 Stack(pineapple, orange, coconut, banana, apple)
To take elements off the stack, pop them off the top of the stack:
scala> val next = fruits.pop
next: String = pineapple

scala> fruits
res3: scala.collection.mutable.Stack[String] =
 Stack(orange, coconut, banana, apple)
You can peek at the next element on the stack without removing it,
 using top:
scala> fruits.top
res4: String = orange

// 'orange' is still on the top
scala> fruits
res5: scala.collection.mutable.Stack[String] =
 Stack(orange, coconut, banana, apple)
Stack extends from Seq, so you
 can inspect it with the usual methods:
scala> fruits.size
res6: Int = 4

scala> fruits.isEmpty
res7: Boolean = false
You can empty a mutable stack with clear:
scala> fruits.clear

scala> fruits
res8: scala.collection.mutable.Stack[String] = Stack()

Discussion

There’s also an ArrayStack
 class, and according to the Scala documentation, “It provides fast
 indexing and is generally slightly more efficient for most operations
 than a normal mutable stack.”
Although I haven’t used an immutable Stack, I’ve seen several people recommend
 using a List instead of an immutable
 Stack for this use case. A List has at least one less layer of code, and
 you can push elements onto the List
 with :: and access the first element
 with the head method.

See Also

	The mutable Stack class

	The immutable Stack class

	The ArrayStack class

11.29. Using a Range

Problem

You want to use a Range in a
 Scala application.

Solution

Ranges are often used to populate data structures, and to iterate
 over for loops. Ranges provide a lot
 of power with just a few methods, as shown in these examples:
scala> 1 to 10
res0: scala.collection.immutable.Range.Inclusive =
 Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> 1 until 10
res1: scala.collection.immutable.Range = Range(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> 1 to 10 by 2
res2: scala.collection.immutable.Range = Range(1, 3, 5, 7, 9)

scala> 'a' to 'c'
res3: collection.immutable.NumericRange.Inclusive[Char] = NumericRange(a, b, c)
You can use ranges to create and populate sequences:
scala> val x = (1 to 10).toList
x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val x = (1 to 10).toArray
x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val x = (1 to 10).toSet
x: scala.collection.immutable.Set[Int] = Set(5, 10, 1, 6, 9, 2, 7, 3, 8, 4)
Some sequences have a range
 method in their objects to perform the same function:
scala> val x = Array.range(1, 10)
x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = Vector.range(1, 10)
x: collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = List.range(1, 10)
x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = List.range(0, 10, 2)
x: List[Int] = List(0, 2, 4, 6, 8)

scala> val x = collection.mutable.ArrayBuffer.range('a', 'd')
x: scala.collection.mutable.ArrayBuffer[Char] = ArrayBuffer(a, b, c)
Ranges are also commonly used in for loops:
scala> for (i <- 1 to 3) println(i)
1
2
3

Discussion

In addition to the approaches shown, a Range can be combined with the map method to populate a collection:
scala> val x = (1 to 5).map { e => (e + 1.1) * 2 }
x: scala.collection.immutable.IndexedSeq[Double] =
 Vector(4.2, 6.2, 8.2, 10.2, 12.2)
While discussing ways to populate collections, the tabulate method is another nice
 approach:
scala> val x = List.tabulate(5)(_ + 1)
x: List[Int] = List(1, 2, 3, 4, 5)

scala> val x = List.tabulate(5)(_ + 2)
x: List[Int] = List(2, 3, 4, 5, 6)

scala> val x = Vector.tabulate(5)(_ * 2)
x: scala.collection.immutable.Vector[Int] = Vector(0, 2, 4, 6, 8)

See Also

	The immutable Range class

Chapter 12. Files and Processes

12.0. Introduction

When it comes to working with files, the scala.io.Source class and its companion object
 offer some nice simplifications compared to Java. Not only does Source make it easy to open and read text files,
 but it also makes it easy to accomplish other tasks, such as downloading
 content from URLs, or substituting a String for a File, which is useful for testing. The Scala
 Console class also simplifies console
 interaction, letting you print to the console (command line) and read from
 it very easily. In other cases, such as when reading a YAML file or
 working with directories, you simply fall back to use existing Java
 libraries.
Scala also makes it much easier to execute
 system commands. When it comes to interacting with system processes, the
 Scala API designers created a clean and familiar API to let you run
 external commands. This is useful for applications, and it’s terrific for
 scripts.

12.1. How to Open and Read a Text File

Problem

You want to open a plain-text file in Scala and process the lines
 in that file.

Solution

There are two primary ways to open and read a text file:
	Use a concise, one-line syntax. This has the side effect of
 leaving the file open, but can be useful in short-lived programs,
 like shell scripts.

	Use a slightly longer approach that properly closes the
 file.

This solution shows both approaches.
Using the concise syntax

In Scala shell scripts, where the JVM is started and stopped in
 a relatively short period of
 time, it may not matter that the file is closed, so you can
 use the Scala scala.io.Source.fromFile method as shown in
 the following examples.
To handle each line in the file as it’s read, use this
 approach:
import scala.io.Source

val filename = "fileopen.scala"
for (line <- Source.fromFile(filename).getLines) {
 println(line)
}
As a variation of this, use the following approach to get all of
 the lines from the file as a List
 or Array:
val lines = Source.fromFile("/Users/Al/.bash_profile").getLines.toList
val lines = Source.fromFile("/Users/Al/.bash_profile").getLines.toArray
The fromFile method returns a
 BufferedSource, and its getLines method treats “any of \r\n, \r,
 or \n as a line separator (longest
 match),” so each element in the sequence is a line from the
 file.
Use this approach to get all of the lines from the file as one
 String:
val fileContents = Source.fromFile(filename).getLines.mkString
This approach has the side effect of leaving the file open as
 long as the JVM is running, but for short-lived shell scripts, this
 shouldn’t be an issue; the file is closed when the JVM shuts
 down.

Properly closing the file

To properly close the file, get a reference to the BufferedSource when opening the file, and
 manually close it when you’re finished with the file:
val bufferedSource = Source.fromFile("example.txt")
for (line <- bufferedSource.getLines) {
 println(line.toUpperCase)
}
bufferedSource.close
For automated methods of closing the file, see the “Loan
 Pattern” examples in the Discussion.

Discussion

The getLines method of the
 Source class returns a scala.collection.Iterator. The iterator
 returns each line without any newline characters. An iterator has many
 methods for working with a collection, and for the purposes of working
 with a file, it works well with the for loop, as shown.
Leaving files open

As mentioned, the first solution leaves the file open as long as
 the JVM is running:
// leaves the file open
for (line <- io.Source.fromFile("/etc/passwd").getLines) {
 println(line)
}

// also leaves the file open
val contents = io.Source.fromFile("/etc/passwd").mkString
On Unix systems, you can show whether a file is left open by
 executing one of these fromFile
 statements in the REPL with a real file (like /etc/passwd), and then running an lsof (“list open files”) command like this
 at the Unix command line:
$ sudo lsof -u Al | grep '/etc/passwd'
That command lists all the open files for the user named
 Al, and then searches the output
 for the /etc/passwd file. If this
 filename is in the output, it means that it’s open. On my Mac OS X
 system I see a line of output like this when the file is left
 open:
java 17148 Al 40r REG 14,2 1475 174214161 /etc/passwd
When I shut down the REPL—thereby stopping the JVM process—the
 file no longer appears in the lsof
 output. So while this approach has this flaw, it can be used in
 short-lived JVM processes, such as a shell script. (You can
 demonstrate the same result using a Scala shell script. Just add a
 Thread.sleep call after the
 for loop so you can keep the script
 running long enough to check the lsof command.)

Automatically closing the resource

When working with files and other resources that need to be
 properly closed, it’s best to use the Loan Pattern. According to this
 website, the pattern “ensures that a resource is deterministically
 disposed of once it goes out of scope.”
In Scala, this can be ensured with a
 try/finally clause, which the
 Loan Pattern website shows like this:
def using[A](r : Resource)(f : Resource => A) : A =
 try {
 f(r)
 } finally {
 r.dispose()
 }
One way to implement the Loan Pattern when working with files is
 to use Joshua Suereth’s ARM library. To
 demonstrate this library, create an SBT project, and then add the
 following line to its build.sbt
 file to pull in the required dependencies:
libraryDependencies += "com.jsuereth" %% "scala-arm" % "1.3"
Next, create a file named TestARM.scala in the root directory of your
 SBT project with these contents:
import resource._

object TestARM extends App {

 for (source <- managed(scala.io.Source.fromFile("example.txt"))) {
 for (line <- source.getLines) {
 println(line)
 }
 }

}
This code prints all of the lines from the file named example.txt. The managed method from the ARM library makes
 sure that the resource is closed automatically when the resource goes
 out of scope. The ARM website shows several other ways the library can
 be used.
A second way to demonstrate the Loan Pattern is with the
 using method described on the Loan
 Pattern website. The best implementation I’ve seen of a using method is in the book
 Beginning Scala (Apress), by David Pollak. The
 following code is a slight modification of his code:
object Control {

 def using[A <: { def close(): Unit }, B](resource: A)(f: A => B): B =
 try {
 f(resource)
 } finally {
 resource.close()
 }

}
This using method takes two
 parameters:
	An object that has a close() method

	A block of code to be executed, which transforms the input
 type A to the output type
 B

The body of this using method
 does exactly what’s shown on the Loan Pattern web page, wrapping the
 block of code it’s given in a
 try/finally block.
The following code demonstrates how to use this method when
 reading from a file:
import Control._

object TestUsing extends App {

 using(io.Source.fromFile("example.txt")) { source => {
 for (line <- source.getLines) {
 println(line)
 }
 }
 }

}
Both the ARM library and the using method end up with the same result,
 implementing the Loan Pattern to make sure your resource is closed
 automatically.

Handling exceptions

You can generate exceptions any time you try to open a file, and
 if you want to handle your exceptions, use Scala’s
 try/catch syntax:
import scala.io.Source
import java.io.{FileNotFoundException, IOException}

val filename = "no-such-file.scala"
try {
 for (line <- Source.fromFile(filename).getLines) {
 println(line)
 }
} catch {
 case e: FileNotFoundException => println("Couldn't find that file.")
 case e: IOException => println("Got an IOException!")
}
The following code demonstrates how the fromFile method can be used with using to create a method that returns the
 entire contents of a file as a List[String], wrapped in an Option:
import Control._

def readTextFile(filename: String): Option[List[String]] = {
 try {
 val lines = using(io.Source.fromFile(filename)) { source =>
 (for (line <- source.getLines) yield line).toList
 }
 Some(lines)
 } catch {
 case e: Exception => None
 }
}
This method returns a Some(List[String]) on success, and None if something goes wrong, such as a
 FileNotFoundException. It can be
 used in the following ways:
val filename = "/etc/passwd"

println("--- FOREACH ---")
val result = readTextFile(filename)
result foreach { strings =>
 strings.foreach(println)
}

println("\n--- MATCH ---")
readTextFile(filename) match {
 case Some(lines) => lines.foreach(println)
 case None => println("couldn't read file")
}
If the process of opening and reading a file fails, you may
 prefer to return a Try or an empty
 List[String]. See Recipes 20.5 and 20.6 for examples of those
 approaches.

Multiple fromFile methods

In Scala 2.10, there are eight variations of the fromFile method that let you specify a
 character encoding, buffer size, codec, and URI. For instance, you can
 specify an expected character encoding for a file like this:
// specify the encoding
Source.fromFile("example.txt", "UTF-8")
See the Scaladoc for the scala.io.Source object (not the Source class, which is an abstract class)
 for more information.
Note
Because Scala works so well with Java, you can use the Java
 FileReader and BufferedReader classes, as well as other
 Java libraries, like the Apache Commons FileUtils library.

See Also

	The Source object.

	The
 Loan Pattern.

	Joshua
 Suereth’s ARM library.

	David Pollak’s book, Beginning
 Scala.

	A detailed discussion of
 David Pollak’s using
 method.

	The Apache Commons FileUtils project has many methods for reading and
 writing files that can be used with Scala.

12.2. Writing Text Files

Problem

You want to write plain text to a file, such as a simple
 configuration file, text data file, or other plain-text
 document.

Solution

Scala doesn’t offer any special file writing capability, so fall
 back and use the Java PrintWriter or
 FileWriter approaches:
// PrintWriter
import java.io._
val pw = new PrintWriter(new File("hello.txt"))
pw.write("Hello, world")
pw.close

// FileWriter
val file = new File(canonicalFilename)
val bw = new BufferedWriter(new FileWriter(file))
bw.write(text)
bw.close()

Discussion

Although I normally use a FileWriter to write plain text to a file, a
 good post at coderanch.com describes
 some of the differences between PrintWriter and FileWriter. For instance, while both classes
 extend from Writer, and both
 can be used for writing plain text to files, FileWriter throws IOExceptions, whereas PrintWriter does not throw exceptions, and
 instead sets Boolean flags that can be checked. There are a few other differences between
 the classes; check their Javadoc for more information.

See Also

	My Java file
 utilities and my Scala file
 utilities

	The Java FileWriter class

	The Java PrintWriter class

	The coderanch.com
 PrintWriter versus FileWriter page

12.3. Reading and Writing Binary Files

Problem

You want to read data from a binary file or write data to a binary
 file.

Solution

Scala doesn’t offer any special conveniences for reading or
 writing binary files, so use the Java FileInputStream and FileOutputStream classes.
To demonstrate this, the following code is a close Scala
 translation of the CopyBytes class on
 the Oracle Byte Streams
 tutorial:
import java.io._

object CopyBytes extends App {

 var in = None: Option[FileInputStream]
 var out = None: Option[FileOutputStream]

 try {
 in = Some(new FileInputStream("/tmp/Test.class"))
 out = Some(new FileOutputStream("/tmp/Test.class.copy"))
 var c = 0
 while ({c = in.get.read; c != −1}) {
 out.get.write(c)
 }
 } catch {
 case e: IOException => e.printStackTrace
 } finally {
 println("entered finally ...")
 if (in.isDefined) in.get.close
 if (out.isDefined) out.get.close
 }

}
In this code, in and out are populated in the try clause. It’s safe to call in.get and out.get in the while loop, because if an exception had
 occurred, flow control would have switched to the catch clause, and then the finally clause before leaving the method.
Normally I tell people that I think the get and isDefined methods on Option would be deprecated, but this is one of
 the few times where I think their use is acceptable and they lead to
 more readable code.
Another difference between this code and Oracle’s example is the
 while loop, which is slightly
 different in Scala. This change is required because a Java statement
 like c = in.read has a type of
 Unit in Scala, and will therefore
 never be equal to −1 (or any other
 value). There are several other ways to work around this difference, but
 this example shows a fairly direct
 translation.

See Also

	The Oracle Byte Streams
 tutorial

	The Apache Commons
 FileUtils project has many methods for reading and writing
 files that can be used with Scala

12.4. How to Process Every Character in a Text File

Problem

You want to open a text file and process every character in the
 file.

Solution

If performance isn’t a concern, write your code in a
 straightforward, obvious way:
val source = io.Source.fromFile("/Users/Al/.bash_profile")
for (char <- source) {
 println(char.toUpper)
}
source.close
However, be aware that this code may be slow on large files. For
 instance, the following method that counts the number of lines in a file
 takes 100 seconds to run on an Apache access logfile that is ten million
 lines long:
// run time: took 100 secs
def countLines1(source: io.Source): Long = {
 val NEWLINE = 10
 var newlineCount = 0L
 for {
 char <- source
 if char.toByte == NEWLINE
 } newlineCount += 1
 newlineCount
}
The time can be significantly reduced by using the getLines method to retrieve one line at a
 time, and then working through the characters in each line. The
 following line-counting algorithm counts the same ten million lines in
 just 23 seconds:
// run time: 23 seconds
// use getLines, then count the newline characters
// (redundant for this purpose, i know)
def countLines2(source: io.Source): Long = {
 val NEWLINE = 10
 var newlineCount = 0L
 for {
 line <- source.getLines
 c <- line
 if c.toByte == NEWLINE
 } newlineCount += 1
 newlineCount
}
Both algorithms work through each byte in the file, but by using
 getLines in the second algorithm, the
 run time is reduced dramatically.
Note
Notice that there’s the equivalent of two for loops in the second example. If you
 haven’t seen this approach before, here’s what the code looks like
 with two explicit for loops:
for (line <- source.getLines) {
 for {
 c <- line
 if c.toByte == NEWLINE
 } newlineCount += 1
}
The two approaches are equivalent, but the first is more
 concise.

12.5. How to Process a CSV File

Problem

You want to process the lines in a CSV file, either handling one
 line at a time or storing them in a two-dimensional array.

Solution

Combine Recipe 12.1 with Recipe 1.3. Given a simple CSV file like this named
 finance.csv:
January, 10000.00, 9000.00, 1000.00
February, 11000.00, 9500.00, 1500.00
March, 12000.00, 10000.00, 2000.00
you can process the lines in the file with the following
 code:
object CSVDemo extends App {

 println("Month, Income, Expenses, Profit")
 val bufferedSource = io.Source.fromFile("/tmp/finance.csv")
 for (line <- bufferedSource.getLines) {
 val cols = line.split(",").map(_.trim)
 // do whatever you want with the columns here
 println(s"${cols(0)}|${cols(1)}|${cols(2)}|${cols(3)}")
 }
 bufferedSource.close

}
The magic in that code is this line:
val cols = line.split(",").map(_.trim)
It splits each line using the comma as a field separator
 character, and then uses the map
 method to trim each field to remove leading and trailing blank spaces.
 The resulting output looks like this:
January|10000.00|9000.00|1000.00
February|11000.00|9500.00|1500.00
March|12000.00|10000.00|2000.00
If you prefer named variables instead of accessing array elements,
 you can change the for loop to look
 like this:
for (line <- bufferedSource.getLines) {
 val Array(month, revenue, expenses, profit) = line.split(",").map(_.trim)
 println(s"$month $revenue $expenses $profit")
}
If the first line of the file is a header line and you want to
 skip it, just add drop(1) after
 getLines:
for (line <- bufferedSource.getLines.drop(1)) { // ...
If you prefer, you can also write the loop as a foreach loop:
bufferedSource.getLines.foreach { line =>
 rows(count) = line.split(",").map(_.trim)
 count += 1
}
If you’d like to assign the results to a two-dimensional array,
 there are a variety of ways to do this. One approach is to create a 2D
 array, and then use a counter while assigning each line to a row. To do
 this, you need to know the number of rows in the file before creating
 the array:
object CSVDemo2 extends App {

 val nrows = 3
 val ncols = 4
 val rows = Array.ofDim[String](nrows, ncols)

 val bufferedSource = io.Source.fromFile("/tmp/finance.csv")
 var count = 0
 for (line <- bufferedSource.getLines) {
 rows(count) = line.split(",").map(_.trim)
 count += 1
 }
 bufferedSource.close

 // print the rows
 for (i <- 0 until nrows) {
 println(s"${rows(i)(0)} ${rows(i)(1)} ${rows(i)(2)} ${rows(i)(3)}")
 }

}
Rather than use a counter, you can do the same thing with the
 zipWithIndex method. This changes the
 loop to:
val bufferedSource = io.Source.fromFile("/tmp/finance.csv")
for ((line, count) <- bufferedSource.getLines.zipWithIndex) {
 rows(count) = line.split(",").map(_.trim)
}
bufferedSource.close
If you don’t know the number of rows ahead of time, read each row
 as an Array[String], adding each row
 to an ArrayBuffer as the file is
 read. That approach is shown in this example, which uses the using method introduced in the
 Solution:
import scala.collection.mutable.ArrayBuffer

object CSVDemo3 extends App {

 // each row is an array of strings (the columns in the csv file)
 val rows = ArrayBuffer[Array[String]]()

 // (1) read the csv data
 using(io.Source.fromFile("/tmp/finance.csv")) { source =>
 for (line <- source.getLines) {
 rows += line.split(",").map(_.trim)
 }
 }

 // (2) print the results
 for (row <- rows) {
 println(s"${row(0)}|${row(1)}|${row(2)}|${row(3)}")
 }

 def using[A <: { def close(): Unit }, B](resource: A)(f: A => B): B =
 try {
 f(resource)
 } finally {
 resource.close()
 }
}
An Array[String] is used for
 each row because that’s what the split method returns. You can convert this to
 a different collection type, if desired.

Discussion

As you can see, there are a number of ways to tackle this problem.
 Of all the examples shown, the zipWithIndex method probably requires some
 explanation. The Iterator Scaladoc
 denotes that it creates an iterator that pairs each element produced by
 this iterator with its index, counting from 0.
So the first time through the loop, line is assigned the first line from the file,
 and count is 0. The next time through the loop, the second
 line of the file is assigned to line,
 and count is 1, and so on. The zipWithIndex method offers a nice solution for
 when you need a line counter.
In addition to these approaches, a quick search for “scala csv
 parser” will turn up a number of competing open source projects that you
 can use.

See Also

	Recipe 12.1, shows both manual and automated ways
 of closing file resources.

	Recipe 10.11, provides more examples of the zipWithIndex method.

	The Iterator trait.

12.6. Pretending that a String Is a File

Problem

Typically for the purposes of testing, you want to pretend that a
 String is a file.

Solution

Because Scala.fromFile and
 Scala.fromString both extend scala.io.Source, they are easily
 interchangeable. As long as your method takes a Source reference, you can pass it the BufferedSource you get from calling Source.fromFile, or the Source you get from calling Source.fromString.
For example, the following method takes a Source object and prints the lines it
 contains:
import io.Source

def printLines(source: Source) {
 for (line <- source.getLines) {
 println(line)
 }
}
It can be called when the source is constructed from a String:
val s = Source.fromString("foo\nbar\n")
printLines(s)
It can also be called when the source is a file:
val f = Source.fromFile("/Users/Al/.bash_profile")
printLines(f)

Discussion

When writing unit tests, you might have a method like this that
 you’d like to test:
package foo

object FileUtils {

 def getLinesUppercased(source: io.Source): List[String] = {
 (for (line <- source.getLines) yield line.toUpperCase).toList
 }

}
As shown in the following ScalaTest tests, you can test the
 getLinesUppercased method by passing
 it either a Source from a file or a
 String:
package foo

import org.scalatest.{FunSuite, BeforeAndAfter}
import scala.io.Source

class FileUtilTests extends FunSuite with BeforeAndAfter {

 var source: Source = _
 after { source.close }

 // assumes the file has the string "foo" as its first line
 test("1 - foo file") {
 source = Source.fromFile("/Users/Al/tmp/foo")
 val lines = FileUtils.getLinesUppercased(source)
 assert(lines(0) == "FOO")
 }

 test("2 - foo string") {
 source = Source.fromString("foo\n")
 val lines = FileUtils.getLinesUppercased(source)
 assert(lines(0) == "FOO")
 }
}
If you’re interested in making your method easily testable with a
 String instead of a file, define your
 method to take a Source
 instance.

See Also

	The Source class

	The Source object

	The BufferedSource class

12.7. Using Serialization

Problem

You want to serialize a Scala class and save it as a file, or send
 it across a network.

Solution

The general approach is the same as Java, but the syntax to make a
 class serializable is different.
To make a Scala class serializable, extend the Serializable trait and add the @SerialVersionUID annotation to the
 class:
@SerialVersionUID(100L)
class Stock(var symbol: String, var price: BigDecimal)
extends Serializable {
 // code here ...
}
Because Serializable is a
 trait, you can mix it into a class, even if your class already extends
 another class:
@SerialVersionUID(114L)
class Employee extends Person with Serializable ...
After marking the class serializable, use the same techniques to
 write and read the objects as you did in Java, including the Java “deep copy” technique that uses
 serialization.

Discussion

The following code demonstrates the proper approach. The comments
 in the code explain the process:
import java.io._

// create a serializable Stock class
@SerialVersionUID(123L)
class Stock(var symbol: String, var price: BigDecimal)
extends Serializable {
 override def toString = f"$symbol%s is ${price.toDouble}%.2f"
}

object SerializationDemo extends App {

 // (1) create a Stock instance
 val nflx = new Stock("NFLX", BigDecimal(85.00))

 // (2) write the instance out to a file
 val oos = new ObjectOutputStream(new FileOutputStream("/tmp/nflx"))
 oos.writeObject(nflx)
 oos.close

 // (3) read the object back in
 val ois = new ObjectInputStream(new FileInputStream("/tmp/nflx"))
 val stock = ois.readObject.asInstanceOf[Stock]
 ois.close

 // (4) print the object that was read back in
 println(stock)

}
This code prints the following output when run:
NFLX is 85.00

See Also

	The Serializable trait

	Recipe 17.3

	My Java “Deep Copy/Clone”
 example

12.8. Listing Files in a Directory

Problem

You want to get a list of files that are in a directory,
 potentially limiting the list of files with a filtering
 algorithm.

Solution

Scala doesn’t offer any different methods for working with
 directories, so use the listFiles
 method of the Java File class. For
 instance, this method creates a list of all files in a
 directory:
def getListOfFiles(dir: String):List[File] = {
 val d = new File(dir)
 if (d.exists && d.isDirectory) {
 d.listFiles.filter(_.isFile).toList
 } else {
 List[File]()
 }
}
The REPL demonstrates how you can use this method:
scala> import java.io.File
import java.io.File

scala> val files = getListOfFiles("/tmp")
files: List[java.io.File] = List(/tmp/foo.log, /tmp/Files.scala.swp)
Note that if you’re sure that the file you’re given is a directory
 and it exists, you can shorten this method to just the following
 code:
def getListOfFiles(dir: File):List[File] =
 dir.listFiles.filter(_.isFile).toList

Discussion

If you want to limit the list of files that are returned based on
 their filename extension, in Java, you’d implement a FileFilter with an accept method to filter the filenames that are
 returned. In Scala, you can write the equivalent code without requiring
 a FileFilter. Assuming that the
 File you’re given represents a
 directory that is known to exist, the following method shows how to
 filter a set of files based on the filename extensions that should be
 returned:
import java.io.File

def getListOfFiles(dir: File, extensions: List[String]): List[File] =
{
 dir.listFiles.filter(_.isFile).toList.filter { file =>
 extensions.exists(file.getName.endsWith(_))
 }
}
You can call this method as follows to list all WAV and MP3 files
 in a given directory:
val okFileExtensions = List("wav", "mp3")
val files = getListOfFiles(new File("/tmp"), okFileExtensions)
As long as this method is given a directory that exists, this
 method will return an empty List if
 no matching files are found:
scala> val files = getListOfFiles(new File("/Users/Al"), okFileExtensions)
files: List[java.io.File] = List()
This is nice, because you can use the result normally, without
 having to worry about a null
 value:
scala> files.foreach(println)

(no output or errors, because an empty List was returned)

See Also

	The Java File class

12.9. Listing Subdirectories Beneath a Directory

Problem

You want to generate a list of subdirectories in a given
 directory.

Solution

Use a combination of the Java File class and Scala collection
 methods:
// assumes that dir is a directory known to exist
def getListOfSubDirectories(dir: File): List[String] =
 dir.listFiles
 .filter(_.isDirectory)
 .map(_.getName)
 .toList
This algorithm does the following:
	Uses the listFiles method
 of the File class to list all the
 files in the given directory as an Array[File].

	The filter method trims
 that list to contain only directories.

	map calls getName on each file to return an array of
 directory names (instead of File
 instances).

	toList converts that to a
 List[String].

Calling toList isn’t necessary,
 but if it isn’t used, the method should be declared to return Array[String].
This method can be used like this:
getListOfSubDirectories(new File("/Users/Al")).foreach(println)
As mentioned, this method returns a List[String]. If you’d rather return a
 List[File], write the method as
 follows, dropping the map method
 call:
dir.listFiles.filter(_.isDirectory).toList

Discussion

This problem provides a good way to demonstrate the differences
 between writing code in a functional style versus writing code in an
 imperative style.
When a developer first comes to Scala from Java, she might write a
 more Java-like (imperative) version of that method as follows:
def getListOfSubDirectories1(dir: File): List[String] = {
 val files = dir.listFiles
 val dirNames = collection.mutable.ArrayBuffer[String]()
 for (file <- files) {
 if (file.isDirectory) {
 dirNames += file.getName
 }
 }
 dirNames.toList
}
After getting more comfortable with Scala, she’d realize the code
 can be shortened. One simplification is that she can eliminate the need
 for the ArrayBuffer by using a
 for loop with a yield expression. Because the method should
 return a List[String], the for loop is made to yield file.getName, and the for loop result is assigned to the variable
 dirs. Finally, dirs is converted to a List in the last line of the method, and it’s
 returned from there:
def getListOfSubDirectories2(dir: File): List[String] = {
 val files = dir.listFiles
 val dirs = for {
 file <- files
 if file.isDirectory
 } yield file.getName
 dirs.toList
}
Although there’s nothing wrong with this code—indeed, some
 programmers prefer writing for
 comprehensions to using map—at some
 point, as the developer gets more comfortable with the Scala collections
 and FP style, she’ll realize the intention of the
 code is to create a filtered list of files, and using the filter method on the collection to return only
 directories will come to mind. Also, when she sees a for/yield
 combination, she should think, “map method,” and in short order, she’ll
 be at the original solution.

12.10. Executing External Commands

Problem

You want to execute an external (system) command from within a
 Scala application. You’re not concerned about the output from the
 command, but you are interested in its exit code.

Solution

To execute external commands, use the methods of the scala.sys.process package. There are three
 primary ways to execute external commands:
	Use the ! method to execute
 the command and get its exit status.

	Use the !! method to
 execute the command and get its output.

	Use the lines method to
 execute the command in the background and get its result as a
 Stream.

This recipe demonstrates the !
 method, and the next recipe demonstrates the !! method. The lines method is shown in the Discussion of
 this recipe.
To execute a command and get its exit status, import the necessary
 members and run the desired command with the ! method:
scala> import sys.process._
import sys.process._

scala> "ls -al".!
total 64
drwxr-xr-x 10 Al staff 340 May 18 18:00 .
drwxr-xr-x 3 Al staff 102 Apr 4 17:58 ..
-rw-r--r-- 1 Al staff 118 May 17 08:34 Foo.sh
-rw-r--r-- 1 Al staff 2727 May 17 08:34 Foo.sh.jar
res0: Int = 0
When using the ! method, you
 can get the exit code of the command that was run:
scala> val exitCode = "ls -al".!
total 64
drwxr-xr-x 10 Al staff 340 May 18 18:00 .
drwxr-xr-x 3 Al staff 102 Apr 4 17:58 ..
-rw-r--r-- 1 Al staff 118 May 17 08:34 Foo.sh
-rw-r--r-- 1 Al staff 2727 May 17 08:34 Foo.sh.jar
result: Int = 0

scala> println(exitCode)
0
Both of those examples work because of an implicit conversion that
 adds the ! method to a String when you add the import statement
 shown.

Discussion

I use this technique to execute the afplay system command on Mac OS X systems to
 play sound files in one of my Scala applications, as shown in this
 method:
def playSoundFile(filename: String): Int = {
 val cmd = "afplay " + filename
 val exitCode = cmd.!
 exitCode
}
That method attempts to play the given filename as a sound file
 with the afplay command, and returns
 the exitCode from the command. This
 method can be shortened to just one line, but I prefer the approach
 shown because it’s easy to read, especially if you don’t execute system
 processes very often.
To execute system commands I generally just use ! after a String, but the Seq approach is also useful. The first element
 in the Seq should be the name of the
 command you want to run, and subsequent elements are considered to be
 arguments to it, as shown in these examples:
val exitCode = Seq("ls", "-al").!
val exitCode = Seq("ls", "-a", "-l").!
val exitCode = Seq("ls", "-a", "-l", "/tmp").!
I’ve omitted the output from each of those examples, but each
 command provides the same directory listing you’d get at the Unix
 command line.
You can also create a Process
 object to execute an external command, if you prefer:
val exitCode = Process("ls").!
When running these commands, be aware of whitespace around your
 command and arguments. All of the following examples fail because of
 extra whitespace:
// beware leading whitespace
scala> " ls".!
java.io.IOException: Cannot run program "": error=2,
 No such file or directory
 at java.lang.ProcessBuilder.start(ProcessBuilder.java:460)

scala> val exitCode = Seq(" ls ", "-al").!
java.io.IOException: Cannot run program " ls ": error=2,
 No such file or directory

// beware trailing whitespace
scala> val exitCode = Seq("ls", " -al ").!
ls: -al : No such file or directory
exitCode: Int = 1
If you enter the strings yourself, leave the whitespace out, and
 if you get the strings from user input, be sure to trim them.
Using the lines method

The lines method is an
 interesting alternative to the !
 and !! commands. With lines, you can immediately execute a command
 in the background. For instance, the following command will run for a
 long time on a Unix system and result in a large amount of
 output:
val process = Process("find / -print").lines
The variable process in this
 example is a Stream[String]. With
 lines running the process in the
 background, you can either work with the result immediately or at some
 later point. For instance, you can read from the stream like
 this:
process.foreach(println)
The lines method throws an
 exception if the exit status of the command is nonzero. You can catch
 that with a try/catch
 expression, but if this is a problem, or if you also want to retrieve
 the standard error from the command, use the lines_! method instead of lines. The lines_! method is demonstrated in Recipe 12.11 and discussed in
 Table 12-1 in Recipe 12.19.

External commands versus built-in commands

As a final note, you can run any external command from Scala
 that you can run from the Unix command line. However, there’s a big
 difference between an external command and a
 shell built-in command. The ls command is an external command that’s
 available on all Unix systems, and can be found as a file in the
 /bin directory:
$ which ls
/bin/ls
Some other commands that can be used at a Unix command line,
 such as the cd or for commands in the Bash shell, are actually
 built into the shell; you won’t find them as files on the filesystem.
 Therefore, these commands can’t be executed unless they’re executed
 from within a shell. See Recipe 12.13
 for an example of how to execute a shell built-in command.

12.11. Executing External Commands and Using STDOUT

Problem

You want to run an external command and then use the standard
 output (STDOUT) from that process in
 your Scala program.

Solution

Use the !! method to execute
 the command and get the standard output from the resulting process as a
 String.
Just like the ! command in the
 previous recipe, you can use !! after
 a String to execute a command, but
 !! returns the STDOUT from the command rather than the exit
 code of the command. This returns a multiline string, which you can
 process in your application:
scala> import sys.process._
import sys.process._

scala> val result = "ls -al" !!
result: String =
"total 64
drwxr-xr-x 10 Al staff 340 May 18 18:00 .
drwxr-xr-x 3 Al staff 102 Apr 4 17:58 ..
-rw-r--r-- 1 Al staff 118 May 17 08:34 Foo.sh
-rw-r--r-- 1 Al staff 2727 May 17 08:34 Foo.sh.jar
"

scala> println(result)
total 64
drwxr-xr-x 10 Al staff 340 May 18 18:00 .
drwxr-xr-x 3 Al staff 102 Apr 4 17:58 ..
-rw-r--r-- 1 Al staff 118 May 17 08:34 Foo.sh
-rw-r--r-- 1 Al staff 2727 May 17 08:34 Foo.sh.jar
If you prefer, you can do the same thing with a Process or Seq instead of a String:
val result = Process("ls -al").!!
val result = Seq("ls -al").!!
As shown in the previous recipe, using a Seq is a good way to execute a system command
 that requires arguments:
val output = Seq("ls", "-al").!!
val output = Seq("ls", "-a", "-l").!!
val output = Seq("ls", "-a", "-l", "/tmp").!!
The first element in the Seq is
 the name of the command to be run, and subsequent elements are arguments
 to the command. The following code segment shows how to run a complex
 Unix find command:
val dir = "/Users/Al/tmp"
val searchTerm = "dawn"

val results = Seq("find", dir, "-type", "f", "-exec", "grep", "-il",
 searchTerm, "{}", ";").!!
println(results)
This code is the equivalent of running the following find command at the Unix prompt:
find /Users/Al/tmp -type f -exec grep -il dawn {} \;
If you’re not familiar with Unix commands, this command can be
 read as, “Search all files under the /Users/Al/tmp directory for the string
 dawn, ignoring case, and print the
 names of all files where a match is found.”

Discussion

Use the ! method to get the
 exit code from a process, or !! to
 get the standard output from a process.
Be aware that attempting to get the standard output from a command
 exposes you to exceptions that can occur. As a simple example, if you
 write the following statement to get the exit code of a command using
 the ! operator, even though a little
 extra STDERR information is printed
 in the REPL, out is just assigned a
 nonzero exit code:
scala> val out = "ls -l fred" !
ls: fred: No such file or directory
out: Int = 1
But if you attempt to get the standard output from the same
 command using the !! method, an
 exception is thrown, and out is not
 assigned:
scala> val out = "ls -l fred" !!
ls: fred: No such file or directory
java.lang.RuntimeException: Nonzero exit value: 1
 many more lines of output ...
Unexpected newline characters

When running an external command, you may expect a one-line
 string to be returned, but you can get a newline character as
 well:
scala> val dir = "pwd" !!
dir: String =
"/Users/Al/Temp
"
When this happens, just trim the result:
scala> val dir = "pwd".!!.trim
dir: java.lang.String = /Users/Al/Temp

Using the lines_! method

You may want to check to see whether an executable program is
 available on your system. For instance, suppose you wanted to know
 whether the hadoop2 executable is
 available on a Unix-based system. A simple way to handle this
 situation is to use the Unix which
 command with the ! method, where a
 nonzero exit code indicates that the command isn’t
 available:
scala> val executable = "which hadoop2".!
executable: Int = 1
If the value is nonzero, you know that the executable is not
 available on the current system. More accurately, it may be on the
 system, but it’s not on the PATH
 (or much less likely, the which
 command is not available).
Another way to handle this situation is to use the lines_! method. This can be used to return a
 Some or None, depending on whether or not the
 hadoop command is found by which. The syntax for the lines_! method is shown in this
 example:
val executable = "which hadoop2".lines_!.headOption
In the Scala REPL, you can see that if the executable isn’t
 available on the current system, this expression returns None:
scala> val executable = "which hadoop2".lines_!.headOption
executable: Option[String] = None
Conversely, if the command is found, the expression returns a
 Some:
scala> val executable = "which ls".lines_!.headOption
executable: Option[String] = Some(/bin/ls)
Note the call to the headOption method at the end of this
 pipeline. You call this method because the lines_! method returns a Stream, but you want the Option immediately.
See Recipe 12.19
 for a description of the lines_!
 method.

12.12. Handling STDOUT and STDERR for External Commands

Problem

You want to run an external command and get access to both its
 STDOUT and STDERR.

Solution

The simplest way to do this is to run your commands as shown in
 previous recipes, and then capture the output with a ProcessLogger. This Scala shell script
 demonstrates the approach:
#!/bin/sh
exec scala "$0" "$@"
!#

import sys.process._

val stdout = new StringBuilder
val stderr = new StringBuilder

val status = "ls -al FRED" ! ProcessLogger(stdout append _, stderr append _)
println(status)
println("stdout: " + stdout)
println("stderr: " + stderr)
When this script is run, the status variable contains the exit status of
 the command. The stdout variable
 contains the STDOUT if the command is
 successful (such as with ls -al), and
 stderr contains the STDERR from the command if there are problems.
 If the command you’re running writes to both STDOUT and STDERR, both stdout and stderr will contain data.
For instance, assuming you don’t run the following command as
 root, changing the status expression
 in the script to the following code should generate output to both
 STDOUT and STDERR on a Unix system:
val status = Seq("find", "/usr", "-name", "make") ! ProcessLogger(stdout append _, stderr append _)
Running the script with this command on a Mac OS X (Unix) system,
 I correctly get the following exit status, STDOUT, and STDERR output:
scala> val status = Seq("find", "/usr", "-name", "make") ! ProcessLogger(stdout append _, stderr append _)
status: Int = 1

scala> println(stdout)
/usr/bin/make

scala> println(stderr)
find: /usr/local/mysql-5.0.67-osx10.5-x86/data: Permission denied
Depending on your needs, this can get much more complicated very
 quickly. The Scaladoc states, “If one desires full control over input
 and output, then a ProcessIO can be
 used with run.” See the scala.sys.process API documentation for the
 ProcessLogger and ProcessIO classes for more examples.

See Also

	The process package object documentation
 includes many details and examples.

12.13. Building a Pipeline of Commands

Problem

You want to execute a series of external commands, redirecting the
 output from one command to the input of another command, i.e., you want
 to pipe the commands together.

Solution

Use the #| method to pipe the
 output from one command into the input stream of another command. When
 doing this, use ! at the end of the
 pipeline if you want the exit code of the pipeline, or !! if you want the output from the
 pipeline.
The !! approach is shown in the
 following example where the output from the ps command is piped as the input to the
 wc command:
import sys.process._
val numProcs = ("ps auxw" #| "wc -l").!!.trim
println(s"#procs = $numProcs")
Because the output from the ps
 command is piped into a line count command (wc
 -l), that code prints the number of processes running on a
 Unix system. The following command creates a list of all Java processes
 running on the current system:
val javaProcs = ("ps auxw" #| "grep java").!!.trim
There are other ways to write these commands, but because I
 usually end up trimming the result I get back from commands, I find this
 syntax to be the most readable approach.

Discussion

If you come from a Unix background, the #| command is easy to remember because it’s
 just like the Unix pipe symbol, but preceded by a # character (#|). In fact, with the exception of the
 ### operator (which is used instead
 of the Unix ; symbol), the entire
 library is consistent with the equivalent Unix commands.
Note that attempting to pipe commands together inside a String and then execute them with ! won’t work:
// won't work
val result = ("ls -al | grep Foo").!!
This doesn’t work because the piping capability comes from a shell
 (Bourne shell, Bash, etc.), and when you run a command like this, you
 don’t have a shell.
To execute a series of commands in a shell, such as the Bourne
 shell, use a Seq with multiple
 parameters, like this:
val r = Seq("/bin/sh", "-c", "ls | grep .scala").!!
This approach runs the ls | grep
 .scala command inside a Bourne shell instance. A quick run in
 the REPL demonstrates this:
scala> val r = Seq("/bin/sh", "-c", "ls | grep .scala").!!
r: String =
"Bar.scala
Baz.scala
Foo.scala
"
However, note that when using !!, you’ll get the following exception if
 there are no .scala files in the
 directory:
java.lang.RuntimeException: Nonzero exit value: 1
I’ve found it best to wrap commands executed with !! in a
 try/catch expression.

See Also

	My tutorial, “How to
 Execute a System Command Pipeline in Java,” discusses the need
 for a shell when piping commands.

12.14. Redirecting the STDOUT and STDIN of External Commands

Problem

You want to redirect the standard output (STDOUT) and standard input (STDIN) when running external commands. For
 instance, you may want to redirect STDOUT to log the output of an external
 command to a file.

Solution

Use #> to redirect STDOUT, and #< to redirect STDIN.
When using #>, place it
 after your command and before the filename you want to write to, just
 like using > in Unix:
import sys.process._
import java.io.File

("ls -al" #> new File("files.txt")).!
("ps aux" #> new File("processes.txt")).!
You can also pipe commands together and then write the resulting
 output to a file:
("ps aux" #| "grep http" #> new File("http-processes.out")).!
Get the exit status from a command like this:
val status = ("cat /etc/passwd" #> new File("passwd.copy")).!
println(status)
You can also download a URL and write its contents to a
 file:
import sys.process._
import scala.language.postfixOps
import java.net.URL
import java.io.File

new URL("http://www.google.com") #> new File("Output.html") !
I don’t redirect STDIN too
 often, but this example shows one possible way to read the contents of
 the /etc/passwd file into a
 variable using #< and the Unix
 cat command:
import scala.sys.process._
import java.io.File

val contents = ("cat" #< new File("/etc/passwd")).!!
println(contents)

Discussion

The #> and #< operators generally work like their
 equivalent > and < Unix commands, though you can also use
 them for other purposes, such as using #> to write from one ProcessBuilder to another, like a
 pipeline:
val numLines = ("cat /etc/passwd" #> "wc -l").!!.trim
println(numLines)
The ProcessBuilder Scaladoc
 states that #> and #< “may take as input either another ProcessBuilder, or something else
 such as a java.io.File or a java.lang.InputStream.”
As mentioned, the Scala process commands are consistent with the
 standard Unix redirection symbols, so you can also append to a file with
 the #>> method:
// append to a file
("ps aux" #>> new File("ps.out")).!
Regarding the use of the URL
 and File classes, the Scaladoc states
 that instances of java.io.File and
 java.net.URL can be used as input to
 other processes, and a File instance
 can also be used as output. This was demonstrated in the Solution with
 the ability to download the contents from a URL and write it to a file
 with the #> operator.

See Also

	The process package object

	The Scala ProcessBuilder trait

	The Scala Process trait

12.15. Using AND (&&) and OR (||) with Processes

Problem

You want to use the equivalent of the Unix && and || commands to perform an
 if/then/else
 operation when executing external commands.

Solution

Use the Scala operators #&& and #||, which mirror the Unix && and || operators:
val result = ("ls temp" #&& "rm temp" #|| "echo 'temp' not found").!!.trim
This command can be read as, “Run the ls command on the file temp, and if it’s found, remove it,
 otherwise, print the ‘not found’ message.”
In practice, this can be a little more difficult than shown,
 because these commands usually involve the use of a wildcard operator.
 For instance, even if there are .scala files in the current directory, the
 following attempt to compile them using #&& and #|| will fail because of the lack of wildcard
 support:
scala> ("ls *.scala" #&& "scalac *.scala" #|| "echo no files to compile").!
ls: *.scala: No such file or directory
no files to compile
res0: Int = 0
To get around this problem, use the formula shared in Recipe 12.16 running each command in a shell (and also
 separating each command to make the #&& and #|| command readable):
#!/bin/sh
exec scala "$0" "$@"
!#

import scala.sys.process._

val filesExist = Seq("/bin/sh", "-c", "ls *.scala")
val compileFiles = Seq("/bin/sh", "-c", "scalac *.scala")
(filesExist #&& compileFiles #|| "echo no files to compile").!!
That script compiles all .scala files in the current directory.

12.16. Handling Wildcard Characters in External Commands

Problem

You want to use a Unix shell wildcard character, such as *, in an external command.

Solution

In general, the best thing you can do when using a wildcard
 character like * is to run your
 command while invoking a Unix shell. For instance, if you have .scala files in the current directory and try
 to list them with the following command, the command will
 fail:
scala> import scala.sys.process._
import scala.sys.process._

scala> "ls *.scala".!
ls: *.scala: No such file or directory
res0: Int = 1
But by running the same command inside a Bourne shell, the command
 now correctly shows the .scala
 files (and returns the exit status of the command):
scala> val status = Seq("/bin/sh", "-c", "ls *.scala").!
AndOrTest.scala
Console.scala
status: Int = 0

Discussion

Putting a shell wildcard character like * into a command doesn’t work because the
 * needs to be interpreted and
 expanded by a shell, like the Bourne or Bash shells. In this example,
 even though there are files in the current directory named AndOrTest.scala and Console.scala, the first attempt doesn’t
 work. These other attempts will also fail as a result of the same
 problem:
scala> "echo *".!
*
res0: Int = 0

scala> Seq("grep", "-i", "foo", "*.scala").!
grep: *.scala: No such file or directory
res1: Int = 2

scala> Seq("ls", "*.scala").!
ls: *.scala: No such file or directory
res2: Int = 1
In each example, you can make these commands work by invoking a
 shell in the first two parameters to a Seq:
val status = Seq("/bin/sh", "-c", "echo *").!
val status = Seq("/bin/sh", "-c", "ls *.scala").!
val status = Seq("/bin/sh", "-c", "grep -i foo *.scala").!
An important part of this recipe is using the -c argument of the /bin/sh command. The sh manpage describes this parameter as
 follows:
-c string

If the -c option is present, then commands are read from string.
If there are arguments after the string, they are assigned to the
positional parameters, starting with $0.
As an exception to this general rule, the -name option of the find command may work because it treats the
 * character as a wildcard character
 itself. As a result, the following find command finds the two files in the
 current directory without having to be run in a shell:
scala> val status = Seq("find", ".", "-name", "*.scala", "-type", "f").!
./AndOrTest.scala
./Console.scala
status: Int = 0
However, as shown, other commands generally require that the
 * wildcard character be interpreted
 and expanded by a shell.

See Also

	“How to Execute a Command
 Pipeline in Java”

	“Execute System Processes
 with Java Process and ProcessBuilder”

12.17. How to Run a Process in a Different Directory

Problem

You want to use another directory as the base directory when
 running an external command.

Solution

Use one of the Process factory
 methods, setting your command and the desired directory, then running
 the process with the usual ! or
 !! commands. The following example
 runs the ls command with the -al arguments in the /var/tmp directory:
import sys.process._
import java.io.File

object Test extends App {

 val output = Process("ls -al", new File("/tmp")).!!
 println(output)

}
To run that same command in the current directory, just remove the
 second parameter when creating the Process:
val p = Process("ls -al")
You can use another Process
 factory method to set system environment variables, i.e., those that can
 be seen at the shell command line with set or env.
 See the next recipe for examples of that method.

12.18. Setting Environment Variables When Running Commands

Problem

You need to set one or more environment variables when running an
 external command.

Solution

Specify the environment variables when calling a Process factory method (an apply method in the Process object).
The following example shows how to
 run a shell script in a directory named /home/al/bin while also setting the PATH environment variable:
val p = Process("runFoo.sh",
 new File("/Users/Al/bin"),
 "PATH" -> ".:/usr/bin:/opt/scala/bin")

val output = p.!!
To set multiple environment variables at one time, keep adding
 them at the end of the Process
 constructor:
val output = Process("env",
 None,
 "VAR1" -> "foo",
 "VAR2" -> "bar")
These examples work because of the overloaded apply methods in the Process object. For instance, one method takes
 a File for the directory parameter,
 and another method takes an Option[File] for that parameter. This second
 approach lets you use None to
 indicate the current directory.
The ability to specify multiple environment variables when calling
 a Process factory method works
 because the apply methods accept a
 varargs argument of the type (String,
 String)* for their last argument. This means “a variable
 number of tuple arguments.”

See Also

	The Process
 object

12.19. An Index of Methods to Execute External Commands

The following tables list the methods of the scala.sys.process package that you can use when
 running external (system) commands.
Table 12-1 lists the
 methods that you can use to execute system commands.
Table 12-1. Methods to execute system commands
	Method
	Description

	!
	Runs the command and
 returns its exit code. Blocks until all external commands exit. If
 used in a chain, returns the exit code of the last command in the
 chain.

	!!
	Runs the command (or
 command pipe/chain), and returns the output from the command as a
 String. Blocks until all
 external commands exit. Warning: throws exceptions when the
 command’s exit status is nonzero.

	run
	Returns a Process object immediately while running
 the process in the background. The Process can’t currently be polled to see
 if it has completed.

	lines
	Returns immediately, while
 running the process in the background. The output that’s generated
 is provided through a Stream[String]. Getting the next element
 of the Stream may block until
 it becomes available. Throws an exception if the return code is
 not zero; if this isn’t desired, use the lines_! method.

 Example:
 scala> val x = Process("ls").lines
x: Stream[String] = Stream(Bar.scala, ?)

	lines_!
	Like the lines method, but STDERR output is sent to the ProcessLogger you provide. Per the
 Scaladoc, “If the process exits with a nonzero value, the Stream will provide all lines up to
 termination but will not throw an exception.” Demonstrated in
 Recipe 12.11.

Table 12-2 lists the
 methods that you can use to redirect STDIN and STDOUT when external commands are
 executed.
Table 12-2. Methods to redirect STDIN and STDOUT
	Methods
	Description

	#<
	Read from STDIN

	#>
	Write to STDOUT

	#>>
	Append to STDOUT

Table 12-3 lists the
 methods that you can use to combine (pipe) external commands.
Table 12-3. Methods to combine external commands
	Methods	Description

	cmd1 #| cmd2
	The output of the first
 command is used as input to the second command, like a Unix shell
 pipe.

	cmd1 ### cmd2
	cmd1 and cmd2 will be executed in sequence, one
 after the other. This is like the Unix ; operator, but ; is a reserved keyword in
 Scala.

	cmd1 #> cmd2
	Normally used to write to
 STDOUT but can be used like
 #| to chain commands together.
 Example:
 scala> ("ps aux" #> "grep java" #> "wc -l").!!.trim
res0: String = 2

	cmd1 #&& cmd2
	Run cmd2 if cmd1 runs successfully (i.e., it has an
 exit status of 0).

	cmd1 #|| cmd2
	Run cmd2 if cmd1 has an unsuccessful (nonzero) exit
 status.

	cmd1 #&& cmd2 #||
 cmd3
	Run cmd2 is cmd1 has a successful exit status,
 otherwise, run cmd3.

The primary online documentation for the Scala process API is at
 these URLs:
	The scala.sys.process package
 object

	The ProcessBuilder trait

Chapter 13. Actors and Concurrency

Introduction

In Scala you can still use Java threads, but the Actor model is the
 preferred approach for concurrency. The Actor model is at a much higher
 level of abstraction than threads, and once you understand the model, it
 lets you focus on solving the problem at hand, rather than worrying about
 the low-level problems of threads, locks, and shared data.
Although earlier versions of Scala included its original Actors
 library, Scala 2.10.0 began the official transition to the Akka actor library from Typesafe, which is
 more robust than the original library. Scala 2.10.1 then deprecated the
 original scala.actors
 library.
In general, actors give you the benefit of offering a high level of
 abstraction for achieving concurrency and parallelism. Beyond that, the
 Akka actor library adds these additional benefits:
	Lightweight, event-driven processes. The documentation states
 that there can be approximately 2.7 million actors per gigabyte of
 RAM.

	Fault tolerance. Akka actors can be used to create “self-healing
 systems.” (The Akka “team blog” is located at http://letitcrash.com/.)

	Location transparency. Akka actors can span multiple JVMs and
 servers; they’re designed to work in a distributed environment using
 pure message passing.

A “high level of abstraction” can also be read as “ease of use.” It
 doesn’t take very long to understand the Actor model, and once you do,
 you’ll be able to write complex, concurrent applications much more easily
 than you can with the basic Java libraries. I wrote a speech interaction
 application (speech recognition input, text-to-speech output) named SARAH that makes extensive
 use of Akka actors, with agents constantly working on tasks in the
 background. Writing this code with actors was much
 easier than the equivalent threading approach.
I like to think of an actor as being like a web service on someone
 else’s servers that I can’t control. I can send messages to that web
 service to ask it to do something, or I can query it for information, but
 I can’t reach into the web service to directly modify its state or access
 its resources; I can only work through its API, which is just like sending
 immutable messages. In one way, this is a little limiting, but in terms of
 safely writing parallel algorithms, this is very beneficial.
The Actor Model

Before digging into the recipes in this chapter, it can help to
 understand the Actor model.
The first thing to understand about the Actor model is the concept
 of an actor:
	An actor is the smallest unit when building an actor-based
 system, like an object in an OOP system.

	Like an object, an actor encapsulates state and
 behavior.

	You can’t peek inside an actor to get its state. You can send
 an actor a message requesting state information (like asking a
 person how they’re feeling), but you can’t reach in and execute one
 of its methods, or access its fields.

	An actor has a mailbox (an inbox), and its purpose in life is
 to process the messages in its mailbox.

	You communicate with an actor by sending it an immutable
 message. These messages go into the actor’s mailbox.

	When an actor receives a message, it’s like taking a letter
 out of its mailbox. It opens the letter, processes the message using
 one of its algorithms, then moves on to the next letter in the
 mailbox. If there are no more messages, the actor waits until it
 receives one.

In an application, actors form hierarchies, like a family, or a
 business organization:
	The Typesafe team recommends thinking of an actor as being
 like a person, such as a person in a business organization.

	An actor has one parent (supervisor): the actor that created
 it.

	An actor may have children. Thinking of this as a business, a
 president may have a number of vice presidents. Those VPs will have
 many subordinates, and so on.

	An actor may have siblings. For instance, there may be 10 VPs
 in an organization.

	A best practice of developing actor systems is to “delegate,
 delegate, delegate,” especially if behavior will block. In a
 business, the president may want something done, so he delegates
 that work to a VP. That VP delegates work to a manager, and so on,
 until the work is eventually performed by one or more
 subordinates.

	Delegation is important. Imagine that the work takes several
 man-years. If the president had to handle that work himself, he
 couldn’t respond to other needs (while the VPs and other employees
 would all be idle).

A final piece of the Actor model is handling failure. When
 performing work, something may go wrong, and an exception may be thrown.
 When this happens, an actor suspends itself and all of its children, and
 sends a message to its supervisor, signaling that a failure has
 occurred. (A bit like Scotty calling Captain Kirk with a
 problem.)
Depending on the nature of the work and the nature of the failure,
 the supervising actor has a choice of four options at this time:
	Resume the subordinate, keeping its internal state

	Restart the subordinate, giving it a clean state

	Terminate the subordinate

	Escalate the failure

In addition to those general statements about actors, there are a
 few important things to know about Akka’s implementation of the Actor
 model:
	You can’t reach into an actor to get information about its
 state. When you instantiate an Actor in your code, Akka gives you an
 ActorRef, which is essentially a
 façade between you and the actor.

	Behind the scenes, Akka runs actors on real threads; many
 actors may share one thread.

	There are different mailbox implementations to choose from,
 including variations of unbounded, bounded, and priority mailboxes.
 You can also create your own mailbox type.

	Akka does not let actors scan their mailbox for specific
 messages.

	When an actor terminates (intentionally or unintentionally),
 messages in its mailbox go into the system’s “dead letter
 mailbox.”

Hopefully these notes about the general Actor model, and the Akka
 implementation specifically, will be helpful in understanding the
 recipes in this chapter.

Other Features

Scala offers other conveniences for writing code that performs
 operations in parallel. A future can be used for
 simple, “one off” tasks that require concurrency. The Scala collections library also includes special
 parallel collections, which can be used to improve
 the performance of large collections and certain algorithms.
Note
There are interesting debates about what the terms
 concurrency and parallelism
 mean. I tend to use them interchangeably, but for one interesting
 discussion of their differences—such as concurrency being one vending
 machine with two lines, and parallelism being two vending machines and
 two lines—see this blog
 post.

13.1. Getting Started with a Simple Actor

Problem

You want to begin using actors to build concurrency into your
 applications.

Solution

Create an actor by extending the akka.actor.Actor class and writing a receive method in your class. The receive method should be implemented with a
 case statement that allows the actor
 to respond to the different messages it receives.
To demonstrate this, create an SBT project directory named
 HelloAkka, move into that
 directory, and then add the necessary Akka resolver and dependency
 information to your build.sbt
 file:
name := "Hello Test #1"

version := "1.0"

scalaVersion := "2.10.0"

resolvers += "Typesafe Repository" at "http://repo.typesafe.com/typesafe/releases/"

libraryDependencies += "com.typesafe.akka" %% "akka-actor" % "2.1.2"
Note
At the time of this writing, the Akka actor library is being
 migrated into the Scala distribution, but it’s still necessary to
 include the library as a dependency in your SBT build.sbt file (or download the necessary
 JAR files manually). This may change in the future, in which case the
 dependencies shown in this chapter may not be necessary.

Next, define an actor that responds when it receives the String literal hello as a message. To do this, save the
 following source code to a file named Hello.scala in the root directory of your SBT
 project. Notice how the literal hello
 is used in the first case statement
 in the receive method of the HelloActor class:
import akka.actor.Actor
import akka.actor.ActorSystem
import akka.actor.Props

class HelloActor extends Actor {
 def receive = {
 case "hello" => println("hello back at you")
 case _ => println("huh?")
 }
}

object Main extends App {

 // an actor needs an ActorSystem
 val system = ActorSystem("HelloSystem")

 // create and start the actor
 val helloActor = system.actorOf(Props[HelloActor], name = "helloactor")

 // send the actor two messages
 helloActor ! "hello"
 helloActor ! "buenos dias"

 // shut down the system
 system.shutdown

}
Then run the application like this:
$ sbt run
After SBT downloads the Akka JAR files and their dependencies, you
 should see the following output from the println statements in the HelloActor class:
[info] Running Main
hello back at you
huh?

Discussion

Here’s a step-by-step description of the code:
	The import statements
 import the members that are needed.

	An Actor named HelloActor is defined.

	HelloActor’s behavior is
 implemented by defining a receive
 method, which is implemented using a match expression.

	When HelloActor receives
 the String literal hello as a message, it prints the first
 reply, and when it receives any other type of message, it prints the
 second reply.

	The Main object is created
 to test the actor.

	In Main, an ActorSystem is needed to get things
 started, so one is created. The ActorSystem takes a name as an argument, so give the system a
 meaningful name. The name must consist of only the [a-zA-Z0-9] characters, and zero or more
 hyphens, and a hyphen can’t be used in the leading space.

	Actors can be created at the ActorSystem level, or inside other actors.
 At the ActorSystem level, actor
 instances are created with the system.actorOf method. The helloActor line shows the syntax to create
 an Actor with a constructor that
 takes no arguments.

	Actors are automatically started (asynchronously) when they
 are created, so there’s no need to call any sort of “start” or “run”
 method.

	Messages are sent to actors with the ! method, and Main sends two messages to the actor with
 the ! method: hello and buenos
 dias.

	helloActor responds to the
 messages by executing its println
 statements.

	The ActorSystem is shut
 down.

That’s all you need to create and use your first Akka Actor.
Details

When implementing the behavior of an Akka actor, you should
 define a receive method using a
 match expression, as shown in the example. Your method should handle
 all potential messages that can be sent to the actor; otherwise, an
 UnhandledMessage will be published
 to the ActorSystem’s EventStream. As a practical matter, this
 means having the catch-all case _
 line in your match expression.
In this example, messages were sent to the HelloActor class as String literals, but other recipes will show
 how to send messages to actors using other types. Messages should be
 immutable, so for simple examples, a String works well.

ActorSystem

The API documentation describes an ActorSystem like this:
“An actor system is a hierarchical group of actors which share
 common configuration, e.g. dispatchers, deployments, remote
 capabilities and addresses. It is also the entry point for creating
 or looking up actors.”

An ActorSystem is the
 structure that allocates one or more threads for your application, so
 you typically create one ActorSystem per (logical)
 application.
As an example, I wrote a “speech interaction” application named
 SARAH that lets me interact with a Mac OS X computer using only voice
 commands. Besides allowing interactive commands, SARAH also runs
 background tasks to check my email, notify me of Facebook and Twitter
 events, stock prices, etc.
SARAH uses a plug-in architecture, so there are plug-ins for
 each major area of functionality (such as an email plug-in, Facebook
 plug-in, Twitter plug-in, etc.). A plug-in typically has one parent
 actor that delegates work to child actors as necessary. All of these
 plug-ins run under one ActorSystem.
 When SARAH starts, it starts the ActorSystem using the same method shown in
 the Solution. Once started, it creates three main actors named
 brain, ears, and mouth, and then starts its plug-ins.
As an interesting experiment with the ActorSystem, remove the system.shutdown line at the end of the
 Main object. You’ll see that the
 application doesn’t terminate, because the actors and system are still
 running. (Press Control-C to terminate the application.)

ActorRef

When you call the actorOf
 method on an ActorSystem, it starts
 the actor asynchronously and returns an instance of an ActorRef. This reference is a “handle” to
 the actor, which you can think of as being a façade or broker between
 you and the actual actor. This façade keeps you from doing things that
 would break the Actor model, such as reaching into the Actor instance and attempting to directly
 mutate variables. Tasks like this should only be done by passing
 messages to the actor, and the hands-off approach of an ActorRef helps reinforce proper programming
 practices.
(Again, think of an actor as a person you can only communicate
 with by placing messages in his mailbox.)
The Akka documentation states that an ActorRef has these qualities:
	It is immutable.

	It has a one-to-one relationship with the Actor it represents.

	It is serializable and network-aware. This lets you pass the
 ActorRef around the
 network.

See Also

	The introductory Akka actor
 documentation

	The ActorSystem class

	The ActorRef class

13.2. Creating an Actor Whose Class Constructor Requires
 Arguments

Problem

You want to create an Akka actor, and you want your actor’s
 constructor to have one or more arguments.

Solution

Create the actor using the syntax shown here, where HelloActor takes one constructor
 parameter:
val helloActor = system.actorOf(Props(new HelloActor("Fred")), name = "helloactor")

Discussion

When creating an actor whose constructor takes one or more
 arguments, you still use the Props
 class to create the actor, but with a different syntax than when
 creating an actor whose constructor takes no arguments.
The following code demonstrates the difference between creating an
 actor with a no-args constructor and an actor that takes at least one
 constructor parameter:
// an actor with a no-args constructor
val helloActor = system.actorOf(Props[HelloActor], name = "helloactor")

// an actor whose constructor takes one argument
val helloActor = system.actorOf(Props(new HelloActor("Fred")), name = "helloactor")
To demonstrate these differences, the following source code is a
 modified version of the example in Recipe 13.1. Comments are included
 in the code to highlight the changes:
import akka.actor._

// (1) constructor changed to take a parameter
class HelloActor(myName: String) extends Actor {
 def receive = {
 // (2) println statements changed to show the name
 case "hello" => println(s"hello from $myName")
 case _ => println(s"'huh?', said $myName")
 }
}

object Main extends App {
 val system = ActorSystem("HelloSystem")
 // (3) use a different version of the Props constructor
 val helloActor = system.actorOf(
 Props(new HelloActor("Fred")), name = "helloactor")
 helloActor ! "hello"
 helloActor ! "buenos dias"
 system.shutdown
}
As shown in this example, if your actor takes more than one
 argument, include those arguments in the constructor call. If the
 HelloActor constructor required both
 a first and last name, you’d specify them like this:
Props(new HelloActor("John", "Doe")), name = "helloactor")
Remember that an actor instance is instantiated and started when
 the actorOf method is called, so the
 only ways to set a property in an actor instance are:
	By sending the actor a message

	In the actor’s constructor

	In its preStart
 method

You’ve already seen how to send a message to an actor and use its
 constructor. The preStart method is
 demonstrated in Recipe 13.4.

See Also

	The Props class

13.3. How to Communicate Between Actors

Problem

You’re building an actor-based application and want to send
 messages between actors.

Solution

Actors should be sent immutable messages with the ! method.
When an actor receives a message from another actor, it also
 receives an implicit reference named sender, and it can use that reference to send
 a message back to the originating actor.
The general syntax to send a message to an actor is:
actorInstance ! message
For example, if you have an actor instance named car, you can send it a start message like this:
car ! "start"
In this case, the message is the String literal start. The car actor should receive this message in a
 match expression in its receive
 method, and from there it can send a message back to whoever sent the
 start message. A simplified version
 of a receive method for car might look like this:
def receive = {
 case "start" =>
 val result = tryToStart()
 sender ! result
 case _ => // do nothing

}
As mentioned, the sender
 instance is implicitly made available to your actor. If you just want to
 send a message back to the code that sent you a message, that’s all you
 have to do.

Discussion

To demonstrate a more complicated example of actors communicating,
 the following code shows how to send messages back and forth between
 Akka actors. It was inspired by the “Ping Pong” threading example in the
 book by James Gosling et al., The Java Programming
 Language (Addison-Wesley Professional):
import akka.actor._

case object PingMessage
case object PongMessage
case object StartMessage
case object StopMessage

class Ping(pong: ActorRef) extends Actor {
 var count = 0
 def incrementAndPrint { count += 1; println("ping") }
 def receive = {
 case StartMessage =>
 incrementAndPrint
 pong ! PingMessage
 case PongMessage =>
 incrementAndPrint
 if (count > 99) {
 sender ! StopMessage
 println("ping stopped")
 context.stop(self)
 } else {
 sender ! PingMessage
 }
 case _ => println("Ping got something unexpected.")
 }
}

class Pong extends Actor {
 def receive = {
 case PingMessage =>
 println(" pong")
 sender ! PongMessage
 case StopMessage =>
 println("pong stopped")
 context.stop(self)
 case _ => println("Pong got something unexpected.")
 }
}

object PingPongTest extends App {
 val system = ActorSystem("PingPongSystem")
 val pong = system.actorOf(Props[Pong], name = "pong")
 val ping = system.actorOf(Props(new Ping(pong)), name = "ping")
 // start the action
 ping ! StartMessage

 // commented-out so you can see all the output
 //system.shutdown
}
Actors should communicate by sending immutable messages between
 each other. In this case there are four messages, and they’re defined
 using case objects: PingMessage,
 PongMessage, StartMessage, and StopMessage.
The PingPongTest object
 performs the following work:
	Creates an ActorSystem.

	Creates pong, an instance
 of the Pong actor. (The pong object is actually an instance of
 ActorRef, though I loosely refer
 to it as an actor, or actor instance.) The Pong actor constructor does not require
 any arguments, so the noargs Props syntax is used.

	Creates ping, an instance
 of the Ping actor. The Ping actor constructor takes one argument,
 an ActorRef, so a slightly
 different version of the Props
 syntax is used.

	Starts the ping/pong action by sending a StartMessage to the ping actor.

Once ping receives the StartMessage, the actors send messages back
 and forth between each other as fast as they can until the counter limit
 in ping is reached. Messages are sent
 using the usual ! method.
To get things started, the Ping
 class needs an initial reference to the Pong actor, but once the action starts, the
 two actors just send a PingMessage
 and PongMessage to each other using
 the sender references they implicitly
 receive, until the Ping actor count
 limit is reached. At that time, it sends a StopMessage to the Pong actor, and then both actors call their
 context.stop methods. The context object is implicitly available to all
 actors, and can be used to stop actors, among other uses.
In addition to demonstrating how to communicate between actors
 using immutable messages, this example provides several examples of an
 ActorRef. The ping and pong instances are ActorRef instances, as is the sender variable.
A great thing about an ActorRef
 is that it hides the actor instance from you. For instance, the Pong actor can’t directly execute ping.incrementAndPrint; the two actors can
 only send messages between each other. Although this seems limiting at
 first, once you understand the model, you’ll see that it’s a terrific
 way to safely implement concurrency in your
 applications.
Note
Messages can also be sent between actors using the ? or ask
 methods, but those should be used only rarely. See Recipe 13.10 for examples of those methods.

13.4. Understanding the Methods in the Akka Actor Lifecycle

Problem

You’re creating more complicated actors, and need to understand
 when the methods on an Actor are
 called.

Solution

In addition to its constructor, an Actor has the following lifecycle
 methods:
	receive

	preStart

	postStop

	preRestart

	postRestart

To demonstrate when these methods are called, basic
 implementations of these methods have been created in the Kenny actor of the following example:
import akka.actor._

class Kenny extends Actor {
 println("entered the Kenny constructor")
 override def preStart { println("kenny: preStart") }
 override def postStop { println("kenny: postStop") }
 override def preRestart(reason: Throwable, message: Option[Any]) {
 println("kenny: preRestart")
 println(s" MESSAGE: ${message.getOrElse("")}")
 println(s" REASON: ${reason.getMessage}")
 super.preRestart(reason, message)
 }
 override def postRestart(reason: Throwable) {
 println("kenny: postRestart")
 println(s" REASON: ${reason.getMessage}")
 super.postRestart(reason)
 }
 def receive = {
 case ForceRestart => throw new Exception("Boom!")
 case _ => println("Kenny received a message")
 }
}

case object ForceRestart

object LifecycleDemo extends App {
 val system = ActorSystem("LifecycleDemo")
 val kenny = system.actorOf(Props[Kenny], name = "Kenny")

 println("sending kenny a simple String message")
 kenny ! "hello"
 Thread.sleep(1000)

 println("make kenny restart")
 kenny ! ForceRestart
 Thread.sleep(1000)

 println("stopping kenny")
 system.stop(kenny)

 println("shutting down system")
 system.shutdown
}
The output from this program shows when the lifecycle methods are
 invoked:
[info] Running LifecycleDemo
sending kenny a simple String message
entered the Kenny constructor
kenny: preStart
Kenny received a message
make kenny restart
[ERROR] [05/14/2013 10:21:54.953] [LifecycleDemo-akka.actor.default-dispatcher-4]
[akka://LifecycleDemo/user/Kenny] Boom!
java.lang.Exception: Boom!
 at Kenny$$anonfun$receive$1.applyOrElse(Test.scala:19)
 (many more lines of exception output ...)

kenny: preRestart
 MESSAGE: ForceRestart
 REASON: Boom!
kenny: postStop
entered the Kenny constructor
kenny: postRestart
 REASON: Boom!
kenny: preStart
stopping kenny
shutting down system
kenny: postStop
[success]

Discussion

As shown in the println
 statement at the beginning of the Kenny actor, the body of an Akka Actor is a part of the constructor, just like
 any regular Scala class. Along with an actor’s constructor, the pre* and post* methods can be used to initialize and
 close resources that your actor requires.
Notice that preRestart and
 postRestart call the super versions of their methods. This is
 because the default implementation of postRestart calls preRestart, and I want that default behavior
 in this application.
Table 13-1 provides a
 description of each lifecycle method, including an actor’s constructor.
Table 13-1. Akka actor lifecycle methods
	Method
	Description

	The actor’s
 constructor
	An actor’s constructor is
 called just like any other Scala class constructor, when an
 instance of the class is first created.

	preStart
	Called right after the
 actor is started. During restarts it’s called by the default
 implementation of postRestart.

	postStop
	Called after an actor is
 stopped, it can be used to perform any needed cleanup work.
 According to the Akka documentation, this hook “is guaranteed to
 run after message queuing has been disabled for this
 actor.”

	preRestart
	According to the Akka
 documentation, when an actor is restarted, the old actor is
 informed of the process when preRestart is called with the
 exception that caused the restart, and the message that
 triggered the exception. The message may be None if the restart was not caused by
 processing a message.

	postRestart
	The postRestart method of the new actor is
 invoked with the exception that caused the restart. In the
 default implementation, the preStart method is
 called.

See Also

	The Akka actors
 documentation

13.5. Starting an Actor

Problem

You want to start an Akka actor, or attempt to control the start
 of an actor.

Solution

This is a bit of a tricky problem, because Akka actors are started
 asynchronously when they’re passed into the actorOf method using a Props. At the ActorSystem level of your application, you
 create actors by calling the system.actorOf method. Within an actor, you
 create a child actor by calling the context.actorOf method.
As demonstrated in Recipe 13.1, you can create an
 actor at the ActorSystem level by
 passing your actor class name (such as HelloActor) to the system.actorOf method, using the Props case class:
val system = ActorSystem("HelloSystem")

// the actor is created and started here
val helloActor = system.actorOf(Props[HelloActor], name = "helloactor")

helloActor ! "hello"
The process of creating a child actor from within another actor is
 almost identical. The only difference is that you call the actorOf method on the context object instead of on an ActorSystem instance. The context object is implicitly available to your
 actor instance:
class Parent extends Actor {
 val child = context.actorOf(Props[Child], name = "Child")
 // more code here ...
}

Discussion

The following complete example demonstrates how to create actors
 both at the system level and from within another actor:
package actortests.parentchild

import akka.actor._

case class CreateChild (name: String)
case class Name (name: String)

class Child extends Actor {
 var name = "No name"
 override def postStop {
 println(s"D'oh! They killed me ($name): ${self.path}")
 }
 def receive = {
 case Name(name) => this.name = name
 case _ => println(s"Child $name got message")
 }
}

class Parent extends Actor {
 def receive = {
 case CreateChild(name) =>
 // Parent creates a new Child here
 println(s"Parent about to create Child ($name) ...")
 val child = context.actorOf(Props[Child], name = s"$name")
 child ! Name(name)
 case _ => println(s"Parent got some other message.")
 }
}

object ParentChildDemo extends App {

 val actorSystem = ActorSystem("ParentChildTest")
 val parent = actorSystem.actorOf(Props[Parent], name = "Parent")

 // send messages to Parent to create to child actors
 parent ! CreateChild("Jonathan")
 parent ! CreateChild("Jordan")
 Thread.sleep(500)

 // lookup Jonathan, then kill it
 println("Sending Jonathan a PoisonPill ...")
 val jonathan = actorSystem.actorSelection("/user/Parent/Jonathan")
 jonathan ! PoisonPill
 println("jonathan was killed")

 Thread.sleep(5000)
 actorSystem.shutdown
}
Here’s a brief description of that code:
	At the beginning of the code, the CreateChild and Name case classes are created. They’ll be
 used to send messages to the actors.

	The Child actor has a
 receive method that can handle a
 Name message. It uses that
 message to set its name
 field.

	The receive method of the
 Parent actor can handle a
 CreateChild message. When it
 receives that message, it creates a new Child actor with the given name. Notice
 that it calls context.actorOf to
 do this.

	The ParentChildDemo object
 creates a new ActorSystem, and
 then creates the Parent actor
 using the ActorSystem reference.
 It then sends two CreateChild
 messages to the parent actor
 reference. After a brief pause, it looks up the Child actor named Jonathan, and then sends it a PoisonPill message. After another pause,
 it shuts down the system using the ActorSystem reference.

Although it isn’t required, in this case, the child actor instance is created in the
 constructor of the Parent actor. The
 Child actor could have been created
 when the Parent actor received a
 message, so in a sense, that gives you a way to control when an actor
 instance is created.

13.6. Stopping Actors

Problem

You want to stop one or more running Akka actors.

Solution

There are several ways to stop Akka actors. The most common ways
 are to call system.stop(actorRef) at
 the ActorSystem level or context.stop(actorRef) from inside an
 actor.
There are other ways to stop an actor:
	Send the actor a PoisonPill
 message.

	Program a gracefulStop.

To demonstrate these alternatives, at the ActorSystem level you can stop an actor by
 using the ActorSystem
 instance:
actorSystem.stop(anActor)
Within an actor, you can stop a child actor by using the context reference:
context.stop(childActor)
An actor can also stop itself:
context.stop(self)
You can stop an actor by sending it a PoisonPill message:
actor ! PoisonPill
The gracefulStop is a little
 more complicated and involves the use of a future. See the Discussion
 for a complete example.

Discussion

Table 13-2 provides a summary of the
 methods that you can use to stop an actor.
Table 13-2. Ways to stop actors
	Message
	Description

	stop method
	The actor will continue
 to process its current message (if any), but no additional
 messages will be processed. See additional notes in the
 paragraphs that follow.

	PoisonPill
 message
	A PoisonPill message will stop an actor
 when the message is processed. A PoisonPill message is queued just like
 an ordinary message and will be handled after other messages
 queued ahead of it in its mailbox.

	gracefulStop
 method
	Lets you attempt to
 terminate actors gracefully, waiting for them to timeout. The
 documentation states that this is a good way to terminate actors
 in a specific order.

As noted in Table 13-2, a major
 difference between calling the stop
 method on an actor and sending it a PoisonPill message is in how the actor is
 stopped. The stop method lets the
 actor finish processing the current message in its
 mailbox (if any), and then stops it. The PoisonPill message lets the actors process
 all messages that are in the mailbox ahead of it
 before stopping it.
Calling actorSystem.stop(actor)
 and context.stop(actor) are the most
 common ways to stop an actor. The following notes on this process are
 from the official Akka actor
 documentation:
	Termination of an actor is performed asynchronously; the
 stop method may return before the
 actor is actually stopped.

	The actor will continue to process its current message, but no
 additional messages will be processed.

	An actor terminates in two steps. First, it suspends its
 mailbox and sends a stop message
 to all of its children. Then it processes termination messages from
 its children until they’re all gone, at which point it terminates
 itself. If one of the actors doesn’t respond (because it’s blocking,
 for instance), the process has to wait for that actor and may get
 stuck.

	When additional messages aren’t processed, they’re sent to the
 deadLetters actor of the ActorSystem (though this can vary
 depending on the mailbox implementation). You can access these with
 the deadLetters method on an
 ActorSystem.

	As shown in the following examples, the postStop lifecycle method is invoked when
 an actor is fully stopped, which lets you clean up resources, as
 needed.

The following subsections demonstrate examples of each of these
 approaches.
system.stop and context.stop

This is a complete example that shows how to stop an actor by
 using the stop method of an
 ActorSystem:
package actortests

import akka.actor._

class TestActor extends Actor {
 def receive = {
 case _ => println("a message was received")
 }
}

object SystemStopExample extends App {
 val actorSystem = ActorSystem("SystemStopExample")
 val actor = actorSystem.actorOf(Props[TestActor], name = "test")
 actor ! "hello"

 // stop our actor
 actorSystem.stop(actor)
 actorSystem.shutdown
}
As mentioned, using context.stop(actorRef) is similar to using
 actor-System.stop(actorRef); just use context.stop(actorRef) from within an actor.
 The context variable is implicitly
 available inside an Actor. This is
 demonstrated in Recipe 13.5.

PoisonPill message

You can also stop an actor by sending it a PoisonPill message. This message will stop
 the actor when the message is processed. The message is queued in the
 mailbox like an ordinary message.
Here is a PoisonPill
 example:
package actortests

import akka.actor._

class TestActor extends Actor {
 def receive = {
 case s:String => println("Message Received: " + s)
 case _ => println("TestActor got an unknown message")
 }
 override def postStop { println("TestActor::postStop called") }
}

object PoisonPillTest extends App {
 val system = ActorSystem("PoisonPillTest")
 val actor = system.actorOf(Props[TestActor], name = "test")

 // a simple message
 actor ! "before PoisonPill"

 // the PoisonPill
 actor ! PoisonPill

 // these messages will not be processed
 actor ! "after PoisonPill"
 actor ! "hello?!"

 system.shutdown
}
As shown in the comments, the second String message sent to the actor won’t be
 received or processed by the actor because it will be in the mailbox
 after the PoisonPill. The only
 output from running this program will be:
Message Received: before PoisonPill
TestActor::postStop called

gracefulStop

As its name implies, you can use the gracefulStop approach if you want to wait
 for a period of time for the termination process to complete
 gracefully. The following code shows a complete example of the
 gracefulStop approach:
package actortests.gracefulstop

import akka.actor._
import akka.pattern.gracefulStop
import scala.concurrent.{Await, ExecutionContext, Future}
import scala.concurrent.duration._
import scala.language.postfixOps

class TestActor extends Actor {
 def receive = {
 case _ => println("TestActor got message")
 }
 override def postStop { println("TestActor: postStop") }
}

object GracefulStopTest extends App {
 val system = ActorSystem("GracefulStopTest")
 val testActor = system.actorOf(Props[TestActor], name = "TestActor")

 // try to stop the actor gracefully
 try {
 val stopped: Future[Boolean] = gracefulStop(testActor, 2 seconds)(system)
 Await.result(stopped, 3 seconds)
 println("testActor was stopped")
 } catch {
 case e:Exception => e.printStackTrace
 } finally {
 system.shutdown
 }

}
Per the Scaladoc, gracefulStop(actorRef, timeout) “Returns a
 Future that will be completed with success when existing messages of
 the target actor has [sic] been processed and the actor has been
 terminated.” If the actor isn’t terminated within the timeout, the
 Future results in an ActorTimeoutException. To keep this example
 simple, I use Await.result, so the
 time period it waits for should be just slightly longer than the
 timeout value given to gracefulStop.
If the order in which actors are terminated is important, using
 gracefulStop can be a good way to
 attempt to terminate them in a desired order. The “Akka 2 Terminator” example
 referenced in the See Also section demonstrates a nice technique for
 killing child actors in a specific order using gracefulStop and flatMap.

“Killing” an actor

As you dig deeper into Akka actors, you’ll get into a concept
 called “supervisor strategies.” When you implement a supervisor
 strategy, you can send an actor a Kill message, which can actually be used to
 restart the actor. The Akka documentation states that sending a
 Kill message to an actor, “will
 restart the actor through regular supervisor semantics.”
With the default supervisory strategy, the Kill message does what its name states,
 terminating the target actor. The following example shows the
 semantics for sending a Kill
 message to an actor:
package actortests

import akka.actor._

class Number5 extends Actor {
 def receive = {
 case _ => println("Number5 got a message")
 }
 override def preStart { println("Number5 is alive") }
 override def postStop { println("Number5::postStop called") }
 override def preRestart(reason: Throwable, message: Option[Any]) {
 println("Number5::preRestart called")
 }
 override def postRestart(reason: Throwable) {
 println("Number5::postRestart called")
 }
}

object KillTest extends App {
 val system = ActorSystem("KillTestSystem")
 val number5 = system.actorOf(Props[Number5], name = "Number5")
 number5 ! "hello"
 // send the Kill message
 number5 ! Kill
 system.shutdown
}
Running this code results in the following output:
Number5 is alive
Number5 got a message
[ERROR] [16:57:02.220] [KillTestSystem-akka.actor.default-dispatcher-2]
[akka://KillTestSystem/user/Number5] Kill (akka.actor.ActorKilledException)
Number5::postStop called
This code demonstrates the Kill message so you can see an example of
 it. In general, this approach is used to kill an actor to allow its
 supervisor to restart it. If you want to stop an actor, use one of the
 other approaches described in this recipe.

See Also

	The “Akka 2 Terminator”
 example.

	This Google Groups
 thread discusses how a Kill message is turned into an exception
 that is handled in the default supervision strategy so it doesn’t
 restart the actor.

	The Akka actors
 documentation provides more examples of these
 approaches.

	The gracefulStop method is
 described on this Scaladoc
 page.

13.7. Shutting Down the Akka Actor System

Problem

You want to shut down the Akka actor system, typically because
 your application is finished, and you want to shut it down
 gracefully.

Solution

Call the shutdown method on
 your ActorSystem instance:
object Main extends App {
 // create the ActorSystem
 val system = ActorSystem("HelloSystem")

 // put your actors to work here ...

 // shut down the ActorSystem when the work is finished
 system.shutdown
}

Discussion

When you’re finished using actors in your application, you should
 call the shutdown method on your
 ActorSystem instance. As shown in the
 examples in this chapter, if you comment out the system.shutdown call, your application will
 continue to run indefinitely.
In my SARAH
 application, which is a Swing application, I call actorSystem.shutdown when the user shuts down
 the GUI.
If you want to stop your actors before shutting down the actor
 system, such as to let them complete their current work, see the
 examples in Recipe 13.6.

13.8. Monitoring the Death of an Actor with watch

Problem

You want an actor to be notified when another actor
 dies.

Solution

Use the watch method of an
 actor’s context object to declare
 that the actor should be notified when an actor it’s monitoring is
 stopped.
In the following code snippet, the Parent actor creates an actor instance named
 kenny, and then declares that it
 wants to “watch” kenny:
class Parent extends Actor {
 val kenny = context.actorOf(Props[Kenny], name = "Kenny")
 context.watch(kenny)
 // more code here ...
(Technically, kenny is an
 ActorRef instance, but it’s simpler
 to say “actor.”)
If kenny is killed or stopped,
 the Parent actor is sent a Terminated(kenny) message. This complete
 example demonstrates the approach:
package actortests.deathwatch

import akka.actor._

class Kenny extends Actor {
 def receive = {
 case _ => println("Kenny received a message")
 }
}

class Parent extends Actor {
 // start Kenny as a child, then keep an eye on it
 val kenny = context.actorOf(Props[Kenny], name = "Kenny")
 context.watch(kenny)

 def receive = {
 case Terminated(kenny) => println("OMG, they killed Kenny")
 case _ => println("Parent received a message")
 }
}

object DeathWatchTest extends App {

 // create the ActorSystem instance
 val system = ActorSystem("DeathWatchTest")

 // create the Parent that will create Kenny
 val parent = system.actorOf(Props[Parent], name = "Parent")

 // lookup kenny, then kill it
 val kenny = system.actorSelection("/user/Parent/Kenny")
 kenny ! PoisonPill

 Thread.sleep(5000)
 println("calling system.shutdown")
 system.shutdown
}
When this code is run, the following output is printed:
OMG, they killed Kenny
calling system.shutdown

Discussion

Using the watch method lets an
 actor be notified when another actor is stopped (such as with the
 PoisonPill message), or if it’s
 killed with a Kill message or
 gracefulStop. This can let the
 watching actor handle the situation, as desired.
An important thing to understand is that if the Kenny actor throws an exception, this doesn’t
 kill it. Instead it will be restarted. You can confirm this by changing
 the Kenny actor code to
 this:
case object Explode

class Kenny extends Actor {
 def receive = {
 case Explode => throw new Exception("Boom!")
 case _ => println("Kenny received a message")
 }
 override def preStart { println("kenny: preStart") }
 override def postStop { println("kenny: postStop") }
 override def preRestart(reason: Throwable, message: Option[Any]) {
 println("kenny: preRestart")
 super.preRestart(reason, message)
 }
 override def postRestart(reason: Throwable) {
 println("kenny: postRestart")
 super.postRestart(reason)
 }
}
Also, change this line of code in the DeathWatchTest object:
kenny ! PoisonPill
to this:
kenny ! Explode
When you run this code, in addition to the error messages that are
 printed because of the exception, you’ll also see this output:
kenny: preRestart
kenny: postStop
kenny: postRestart
kenny: preStart
calling system.shutdown
kenny: postStop
What you won’t see is the “OMG, they killed Kenny” message from
 the Parent actor, because the
 exception didn’t kill kenny, it just
 forced kenny to be automatically
 restarted. You can verify that kenny
 is restarted after it receives the explode message by sending it another
 message:
kenny ! "Hello?"
It will respond by printing the “Kenny received a message” string
 in the default _ case of its receive method.
Looking up actors

This example also showed one way to look up an actor:
val kenny = system.actorSelection("/user/Parent/Kenny")
As shown, you look up actors with the actorSelection method, and can specify a
 full path to the actor in the manner shown. The actorSelection method is available on an
 ActorSystem instance and on the
 context object in an Actor instance.
You can also look up actors using a relative path. If kenny had a sibling actor, it could have
 looked up kenny using its own
 context, like this:
// in a sibling actor
val kenny = context.actorSelection("../Kenny")
You can also use various implementations of the actorFor method to look up actors. The
 kenny instance could be looked up
 from the DeathWatchTest object in
 these ways:
val kenny = system.actorFor("akka://DeathWatchTest/user/Parent/Kenny")
val kenny = system.actorFor(Seq("user", "Parent", "Kenny"))
It could also be looked up from a sibling like this:
val kenny = system.actorFor(Seq("..", "Kenny"))

13.9. Simple Concurrency with Futures

Problem

You want a simple way to run one or more tasks concurrently,
 including a way to handle their results when the tasks finish. For
 instance, you may want to make several web service calls in parallel,
 and then work with their results after they all return.

Solution

A future gives you a simple way to run an
 algorithm concurrently. A future starts running concurrently when you
 create it and returns a result at some point, well, in the future. In
 Scala,it’s said that a future returns
 eventually.
The following examples show a variety of ways to create futures
 and work with their eventual results.
Run one task, but block

This first example shows how to create a future and then block
 to wait for its result. Blocking is not a good thing—you should block
 only if you really have to—but this is useful as a first example, in
 part, because it’s a little easier to reason about, and it also gets
 the bad stuff out of the way early.
The following code performs the calculation 1 + 1 at some time in the future. When it’s
 finished with the calculation, it returns its result:
package actors

// 1 - the imports
import scala.concurrent.{Await, Future}
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global

object Futures1 extends App {

 // used by 'time' method
 implicit val baseTime = System.currentTimeMillis

 // 2 - create a Future
 val f = Future {
 sleep(500)
 1 + 1
 }

 // 3 - this is blocking (blocking is bad)
 val result = Await.result(f, 1 second)
 println(result)

 sleep(1000)
}
Here’s how this code works:
	The import statements bring the code into scope that’s
 needed.

	The ExecutionContext.Implicits.global import
 statement imports the “default global execution context.” You can
 think of an execution context as being a
 thread pool, and this is a simple way to get access to a thread
 pool.

	A Future is created after
 the second comment. Creating a future is simple; you just pass it
 a block of code you want to run. This is the code that will be
 executed at some point in the future.

	The Await.result method
 call declares that it will wait for up to one second for the
 Future to return. If the
 Future doesn’t return within
 that time, it throws a java.util.concurrent.TimeoutException.

	The sleep statement at
 the end of the code is used so the program will keep running while
 the Future is off being
 calculated. You won’t need this in real-world programs, but in
 small example programs like this, you have to keep the JVM
 running.

I created the sleep method in
 my package object while creating my future and concurrency examples,
 and it just calls Thread.sleep,
 like this:
def sleep(time: Long) { Thread.sleep(time) }
As mentioned, blocking is bad; you shouldn’t write code like
 this unless you have to. The following examples show better
 approaches.
The code also shows a time duration of 1 second. This is made available by the
 scala.concurrent.duration._
 import. With this library, you can state time durations in several
 convenient ways, such as 100 nanos,
 500 millis, 5 seconds, 1
 minute, 1 hour, and
 3 days. You can also create a
 duration as Duration(100,
 MILLISECONDS), Duration(200,
 "millis").

Run one thing, but don’t block—use callback

A better approach to working with a future is to use its
 callback methods. There are three callback methods: onComplete, onSuccess, and onFailure. The following example
 demonstrates onComplete:
import scala.concurrent.{Future}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success}
import scala.util.Random

object Example1 extends App {

 println("starting calculation ...")
 val f = Future {
 sleep(Random.nextInt(500))
 42
 }

 println("before onComplete")
 f.onComplete {
 case Success(value) => println(s"Got the callback, meaning = $value")
 case Failure(e) => e.printStackTrace
 }

 // do the rest of your work
 println("A ..."); sleep(100)
 println("B ..."); sleep(100)
 println("C ..."); sleep(100)
 println("D ..."); sleep(100)
 println("E ..."); sleep(100)
 println("F ..."); sleep(100)

 sleep(2000)

}
This example is similar to the previous example, though it just
 returns the number 42 after a
 random delay. The important part of this example is the f.onComplete method call and the code that
 follows it. Here’s how that code works:
	The f.onComplete method
 call sets up the callback. Whenever the Future completes, it makes a callback to
 onComplete, at which time that
 code will be executed.

	The Future will either
 return the desired result (42),
 or an exception.

	The println statements
 with the slight delays represent other work your code can do while
 the Future is off and
 running.

Because the Future is off
 running concurrently somewhere, and you don’t know exactly when the
 result will be computed, the output from this code is
 nondeterministic, but it can look like this:
starting calculation ...
before onComplete
A ...
B ...
C ...
D ...
E ...
Got the callback, meaning = 42
F ...
Because the Future returns
 eventually, at some nondeterministic time, the “Got the callback”
 message may appear anywhere in that output.

The onSuccess and onFailure callback methods

There may be times when you don’t want to use onComplete, and in those situations, you can
 use the onSuccess and onFailure callback methods, as shown in this
 example:
import scala.concurrent.{Future}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success}
import scala.util.Random

object OnSuccessAndFailure extends App {

 val f = Future {
 sleep(Random.nextInt(500))
 if (Random.nextInt(500) > 250) throw new Exception("Yikes!") else 42
 }

 f onSuccess {
 case result => println(s"Success: $result")
 }

 f onFailure {
 case t => println(s"Exception: ${t.getMessage}")
 }

 // do the rest of your work
 println("A ..."); sleep(100)
 println("B ..."); sleep(100)
 println("C ..."); sleep(100)
 println("D ..."); sleep(100)
 println("E ..."); sleep(100)
 println("F ..."); sleep(100)

 sleep(2000)

}
This code is similar to the previous example, but this Future is wired to throw an exception about
 half the time, and the onSuccess
 and onFailure blocks are defined as
 partial functions; they only need to handle their expected
 conditions.

Creating a method to return a Future[T]

In the real world, you may have methods that return futures. The
 following example defines a method named longRunningComputation that returns a
 Future[Int]. Declaring it is new,
 but the rest of this code is similar to the previous onComplete example:
import scala.concurrent.{Await, Future, future}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success}

object Futures2 extends App {

 implicit val baseTime = System.currentTimeMillis

 def longRunningComputation(i: Int): Future[Int] = future {
 sleep(100)
 i + 1
 }

 // this does not block
 longRunningComputation(11).onComplete {
 case Success(result) => println(s"result = $result")
 case Failure(e) => e.printStackTrace
 }

 // keep the jvm from shutting down
 sleep(1000)
}
The future method shown in
 this example is another way to create a future. It starts the
 computation asynchronously and returns a Future[T] that will hold the result of the
 computation. This is a common way to define methods that return a
 future.

Run multiple things; something depends on them; join them
 together

The examples so far have shown how to run one computation in
 parallel, to keep things simple. You may occasionally do something
 like this, such as writing data to a database without blocking the web
 server, but many times you’ll want to run several operations
 concurrently, wait for them all to complete, and then do something
 with their combined results.
For example, in a stock market application I wrote, I run all of
 my web service queries in parallel, wait for their results, and then
 display a web page. This is faster than running them
 sequentially.
The following example is a little simpler than that, but it
 shows how to call an algorithm that may be running in the cloud. It
 makes three calls to Cloud.runAlgorithm, which is defined
 elsewhere to return a Future[Int].
 For the moment, this algorithm isn’t important, other than to know
 that it prints its result right before returning it.
The code starts those three futures running, then joins them
 back together in the for comprehension:
import scala.concurrent.{Future, future}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success}
import scala.util.Random

object RunningMultipleCalcs extends App {

 println("starting futures")
 val result1 = Cloud.runAlgorithm(10)
 val result2 = Cloud.runAlgorithm(20)
 val result3 = Cloud.runAlgorithm(30)

 println("before for-comprehension")
 val result = for {
 r1 <- result1
 r2 <- result2
 r3 <- result3
 } yield (r1 + r2 + r3)

 println("before onSuccess")
 result onSuccess {
 case result => println(s"total = $result")
 }

 println("before sleep at the end")
 sleep(2000) // keep the jvm alive

}
Here’s a brief description of how this code works:
	The three calls to Cloud.runAlgorithm create the result1, result2, and result3 variables, which are of type
 Future[Int].

	When those lines are executed, those futures begin running,
 just like the web service calls in my stock market
 application.

	The for comprehension is used as a way to join the results
 back together. When all three futures return, their Int values are assigned to the variables
 r1, r2, and r3, and the sum of those three values is
 returned from the yield expression, and assigned to the result
 variable.

	Notice that result can’t
 just be printed after the for comprehension. That’s because the
 for comprehension returns a new future, so result has the type Future[Int]. (This makes sense in more
 complicated examples.) Therefore, the correct way to print the
 example is with the onSuccess
 method call, as shown.

When this code is run, the output is nondeterministic, but looks
 something like this:
starting futures
before for-comprehension
before onSuccess
before sleep at end
returning result from cloud: 30
returning result from cloud: 20
returning result from cloud: 40
total = 90
Notice how all of the println
 statements in the code print before the total is printed. That’s because they’re
 running in sequential fashion, while the future is off and running in
 parallel, and returns at some indeterminate time
 (“eventually”).
I mentioned earlier that the Cloud.runAlgorithm code wasn’t important—it
 was just something running “in the cloud,”—but for the sake of
 completeness, here’s that code:
object Cloud {

 def runAlgorithm(i: Int): Future[Int] = future {
 sleep(Random.nextInt(500))
 val result = i + 10
 println(s"returning result from cloud: $result")
 result
 }

}
In my real-world code, I use a future in a similar way to get
 information from web services. For example, in a Twitter client, I
 make multiple calls to the Twitter web service API using
 futures:
// get the desired info from twitter
val dailyTrendsFuture = Future { getDailyTrends(twitter) }
val usFuture = Future { getLocationTrends(twitter, woeidUnitedStates) }
val worldFuture = Future { getLocationTrends(twitter, woeidWorld) }
I then join them in a for comprehension, as shown in this
 example. This is a nice, simple way to turn single-threaded web
 service calls into multiple threads.

Discussion

Although using a future is straightforward, there are also many
 concepts behind it. The following sections summarize the most important
 concepts.
A future and ExecutionContext

The following statements describe the basic concepts of a
 future, as well as the ExecutionContext that a future relies
 on.
	A Future[T] is a
 container that runs a computation concurrently, and at some future
 time may return either (a) a result of type T or (b) an exception.

	Computation of your algorithm starts at some
 nondeterministic time after the future is created, running on a
 thread assigned to it by the execution context.

	The result of the computation becomes available once the
 future completes.

	When it returns a result, a future is said to be
 completed. It may either be
 successfully completed, or
 failed.

	As shown in the examples, a future provides an interface for
 reading the value that has been computed. This includes callback
 methods and other approaches, such as a for comprehension,
 map, flatMap, etc.

	An ExecutionContext
 executes a task it’s given. You can think of it as being like a
 thread pool.

	The ExecutionContext.Implicits.global import
 statement shown in the examples imports the default global
 execution context.

Callback methods

The following statements describe the use of the callback
 methods that can be used with futures.
	Callback methods are called asynchronously when a future
 completes.

	The callback methods onComplete, onSuccess, onFailure, are demonstrated in the
 Solution.

	A callback method is executed by some thread, some time
 after the future is completed. From the Scala Futures documentation, “There
 is no guarantee that it will be called by the thread that
 completed the future or the thread that created the
 callback.”

	The order in which callbacks are executed is not
 guaranteed.

	onComplete takes a
 callback function of type Try[T] =>
 U.

	onSuccess and onFailure take partial functions. You
 only need to handle the desired case. (See Recipe 9.8
 for more information on partial functions.)

	onComplete, onSuccess, and onFailure have the result type Unit, so they can’t be chained. This
 design was intentional, to avoid any suggestion that callbacks may
 be executed in a particular order.

For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen)

As shown in the Solution, callback methods are good for some
 purposes. But when you need to run multiple computations in parallel,
 and join their results together when they’re finished running, using
 combinators like map, foreach, and other approaches, like a for
 comprehension, provides more concise and readable code. The for
 comprehension was shown in the Solution.
The recover, recoverWith, and fallbackTo combinators provide ways of
 handling failure with futures. If the future they’re applied to
 returns successfully, you get that (desired) result, but if it fails,
 these methods do what their names suggest, giving you a way to recover
 from the failure.
As a short example, you can use the fallbackTo method like this:
val meaning = calculateMeaningOfLife() fallbackTo 42
The andThen combinator gives
 you a nice syntax for running whatever code you want to run when a
 future returns, like this:
var meaning = 0
future {
 meaning = calculateMeaningOfLife()
} andThen {
 println(s"meaning of life is $meaning")
}
See the Scala Futures
 documentation for more information on their use.

See Also

	The Scala Futures
 documentation

	These examples (and more) are available at my GitHub
 repository.

	As shown in these examples, you can read a result from a
 future, and a promise is a way for some part of
 your software to put that result in there. I’ve linked to the best article I can find.

13.10. Sending a Message to an Actor and Waiting for a Reply

Problem

You have one actor that needs to ask another actor for some
 information, and needs an immediate reply. (The first actor can’t
 continue without the information from the second actor.)

Solution

Use the ? or ask methods to send a message to an Akka actor
 and wait for a reply, as demonstrated in the following
 example:
import akka.actor._
import akka.pattern.ask
import akka.util.Timeout
import scala.concurrent.{Await, ExecutionContext, Future}
import scala.concurrent.duration._
import scala.language.postfixOps

case object AskNameMessage

class TestActor extends Actor {
 def receive = {
 case AskNameMessage => // respond to the 'ask' request
 sender ! "Fred"
 case _ => println("that was unexpected")
 }
}

object AskTest extends App {

 // create the system and actor
 val system = ActorSystem("AskTestSystem")
 val myActor = system.actorOf(Props[TestActor], name = "myActor")

 // (1) this is one way to "ask" another actor for information
 implicit val timeout = Timeout(5 seconds)
 val future = myActor ? AskNameMessage
 val result = Await.result(future, timeout.duration).asInstanceOf[String]
 println(result)
 // (2) a slightly different way to ask another actor for information
 val future2: Future[String] = ask(myActor, AskNameMessage).mapTo[String]
 val result2 = Await.result(future2, 1 second)
 println(result2)

 system.shutdown

}

Discussion

Both the ? or ask methods use the Future and Await.result approach demonstrated in Recipe 13.9.
 The recipe is:
	Send a message to an actor using either ? or ask instead of the usual ! method.

	The ? and ask methods create a Future, so you use Await.result to wait for the response from
 the other actor.

	The actor that’s called should send a reply back using the
 ! method, as shown in the
 example, where the TestActor
 receives the AskNameMessage and
 returns an answer using sender !
 "Fred".

To keep the previous example simple, only one actor is shown, but
 the same approach is used by two actors. Just use the ? or ask
 method in your actor, like this:
class FooActor extends Actor {
 def receive = {
 case GetName =>
 val future: Future[String] = ask(otherActor, AskNameMessage).mapTo[String]
 val result = Await.result(future, 1 second)
 case _ => // handle other messages
 }
}
Be careful when writing code that waits for immediate responses
 like this. This causes your actor to block, which means that it can’t
 respond to anything else while it’s in this state. When you need to
 perform work like this, the mantra is, “Delegate, delegate,
 delegate.”

13.11. Switching Between Different States with become

Problem

You want a simple mechanism to allow an actor to switch between
 the different states it can be in at different times.

Solution

Use the Akka “become” approach. To do this, first define the
 different possible states the actor can be in. Then, in the actor’s
 receive method, switch between the
 different states based on the messages it receives.
The following example shows how the actor named DavidBanner might switch between its normalState and its angryState (when he becomes The Hulk):
package actortests.becometest

import akka.actor._

case object ActNormalMessage
case object TryToFindSolution
case object BadGuysMakeMeAngry

class DavidBanner extends Actor {
 import context._

 def angryState: Receive = {
 case ActNormalMessage =>
 println("Phew, I'm back to being David.")
 become(normalState)
 }

 def normalState: Receive = {
 case TryToFindSolution =>
 println("Looking for solution to my problem ...")
 case BadGuysMakeMeAngry =>
 println("I'm getting angry...")
 become(angryState)
 }

 def receive = {
 case BadGuysMakeMeAngry => become(angryState)
 case ActNormalMessage => become(normalState)
 }
}

object BecomeHulkExample extends App {
 val system = ActorSystem("BecomeHulkExample")
 val davidBanner = system.actorOf(Props[DavidBanner], name = "DavidBanner")
 davidBanner ! ActNormalMessage // init to normalState
 davidBanner ! TryToFindSolution
 davidBanner ! BadGuysMakeMeAngry
 Thread.sleep(1000)
 davidBanner ! ActNormalMessage
 system.shutdown
}
Here’s a description of the code:
	The davidBanner actor
 instance is created, as shown in previous recipes.

	The davidBanner instance is
 sent the ActNormalMessage to set
 an initial state.

	After sending davidBanner a
 TryToFindSolution message, it
 sends a BadGuysMakeMeAngry
 message.

	When davidBanner receives
 the BadGuysMakeMeAngry message,
 it uses become to switch to the
 angryState.

	In the angryState the only
 message davidBanner can process
 is the ActNormalMessage. (In the
 real world, er, entertainment world, it should be programmed to
 receive other messages, like SmashThings.)

	When davidBanner receives
 the final ActNormalMessage, it
 switches back to the normalState,
 again using the become
 method.

Discussion

As shown, the general recipe for using the
 become approach to switch between different possible
 states is:
	Define the different possible states, such as the normalState and angryState.

	Define the receive method
 in the actor to switch to the different states based on the messages
 it can receive. As shown in the example, this is handled with a
 match expression.

It’s important to note that the different states can only receive
 the messages they’re programmed for, and those messages can be different
 in the different states. For instance, the normalState responds to the messages TryToFindSolution and BadGuys-MakeMeAngry, but the angryState can only respond to the ActNormal-Message.

See Also

	The Akka actors
 documentation shows a become
 example.

13.12. Using Parallel Collections

Problem

You want to improve the performance of algorithms by using
 parallel collections.

Solution

When creating a collection, use one of the Scala’s parallel
 collection classes, or convert an existing collection to a parallel
 collection. In either case, test your algorithm to make sure you see the
 benefit you’re expecting.
You can convert an existing collection to a parallel collection.
 To demonstrate this, first create a sequential collection, such as a
 Vector:
scala> val v = Vector.range(0, 10)
v: scala.collection.immutable.Vector[Int] = Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
Next, print the sequence, and you’ll see that it prints as
 usual:
scala> v.foreach(print)
0123456789
As expected, that example prints the string 0123456789. No matter how many times you print
 it, you’ll always see that same result; that’s the linear world you’re
 used to.
Next, call the par method on
 your collection to turn it into a parallel collection, and repeat the
 experiment:
scala> v.par.foreach(print)
5678901234

scala> v.par.foreach(print)
0123456789

scala> v.par.foreach{ e => print(e); Thread.sleep(50) }
0516273894
Whoa. Sometimes the collection prints in order, other times it
 prints in a seemingly random order. That’s because it’s now using an
 algorithm that runs concurrently. Welcome to the brave, new, parallel
 world.
That example showed how to convert a “normal” collection to a
 parallel collection. You can also create a parallel collection
 directly:
scala> import scala.collection.parallel.immutable.ParVector
import scala.collection.parallel.immutable._

scala> val v = ParVector.range(0, 10)
v: scala.collection.parallel.immutable.ParVector[Int] =
 ParVector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> v.foreach{ e => Thread.sleep(100); print(e) }
0516273849

Discussion

As shown, you can create parallel collections in two ways:
	Convert a “normal” collection to its parallel
 counterpart

	Instantiate them directly, just like their nonparallel
 counterparts

You can create a new instance of a parallel collection directly.
 As with the “normal” collection classes that are discussed in Chapter 10 and Chapter 11, there are both
 immutable and mutable parallel collections. Here’s a list of some of the
 immutable parallel collection classes:
ParHashMap ParHashSet ParIterable ParMap
ParRange ParSeq ParSet ParVector
In addition to these, the mutable collection has other classes and
 traits, including ParArray.
Note
For a full list of Scala’s parallel collections, see the Scala website.

Where are parallel collections useful?

To understand where a parallel collection can be useful, it
 helps to think about how they work. Conceptually, you can imagine a
 collection being split into different chunks; your algorithm is then
 applied to the chunks, and at the end of the operation, the different
 chunks are recombined.
For instance, in the Solution, a ParVector was created like this:
scala> val v = ParVector.range(0, 10)
v: scala.collection.parallel.immutable.ParVector[Int] =
 ParVector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
The elements in the ParVector
 were then printed like this:
scala> v.foreach{ e => Thread.sleep(100); print(e) }
0516273849
This makes sense if you imagine that the original ParVector is split into two sequences before
 the printing operation begins:
(0,1,2,3,4)
(5,6,7,8,9)
In this case you can imagine the foreach method taking (or receiving) the
 0 from the first sequence, printing
 it; getting the 5 from the second
 sequence, printing it; then getting the 1 from the first sequence, etc.
To summarize the basic concept:
	Collection elements are split into different groups.

	The operation is performed.

	The elements are recombined.

The impact of this approach is that it must be okay that your
 algorithm receives elements in an arbitrary order. This means that
 algorithms like sum, max,
 min, mean, and
 filter will all work fine.
Conversely, any algorithm that depends on the collection
 elements being received in a predictable order should not be used with
 a parallel collection. A simple demonstration of this is the foreach examples that have been shown: if
 it’s important that the collection elements are printed in a
 particular order, such as the order in which they were placed in the
 collection, using a parallel collection isn’t appropriate.
The official Scala documentation refers to this as
 “side-effecting operations.” The Parallel Collections Overview URL
 in the See Also section discusses this in detail.

Performance

Using parallel collections won’t always make your code faster.
 It’s important to test your algorithm with and without a parallel
 collection to make sure your algorithm is faster with a parallel
 collection. The “Measuring
 Performance” URL in the See Also section has a terrific
 discussion about how to properly benchmark JVM performance.
For a parallel algorithm to provide a benefit, a collection
 usually needs to be fairly large. The documentation states:
“As a general heuristic, speed-ups tend to be noticeable when
 the size of the collection is large, typically several thousand
 elements.”

Finally, if using a parallel collection won’t solve your
 problem, using Akka actors and futures can give you complete control
 over your algorithms.

See Also

	Immutable parallel
 collections

	Mutable parallel
 collections

	Parallel collections
 overview

	Measuring the performance
 of parallel collections

Chapter 14. Command-Line Tasks

14.0. Introduction

Scala offers a number of tools to let you work at the command line,
 including the Read-Eval-Print-Loop, or REPL. As shown
 in Figure 14-1, the REPL
 lets you execute Scala expressions in an interactive
 environment.
[image: The REPL lets you execute Scala expressions in an interactive environment]

Figure 14-1. The REPL lets you execute Scala expressions in an interactive
 environment

If you’ve used an interactive interpreter before (such as Ruby’s
 irb tool), the Scala REPL will seem very
 familiar.
When it comes to building your projects, you’ll be well served to
 use the Simple Build Tool (SBT), so that’s covered in Chapter 18. But there are still
 times when you’ll want to use scalac,
 fsc, scaladoc, and other command-line tools, and this
 chapter demonstrates all of those tools.
The name “Scala” comes from the word “scalable,” and Scala does
 indeed scale from small shell scripts to the largest, highest-performance
 applications in the world. On the low end of that scale, this chapter
 demonstrates how to create your own shell scripts, prompt for input from
 your scripts, and then make them run faster.

14.1. Getting Started with the Scala REPL

Problem

You want to get started using the Scala REPL, including
 understanding some of its basic features, such as tab completion,
 starting the REPL with different options, and dealing with
 errors.

Solution

To start the Scala REPL, type scala at your operating system command
 line:
$ scala
You’ll see a welcome message and Scala prompt:
Welcome to Scala version 2.10.0
Type in expressions to have them evaluated.
Type :help for more information.

scala> _
Welcome, you’re now using the Scala REPL.
Inside the REPL environment, you can try all sorts of different
 experiments and expressions:
scala> val x, y = 1
x: Int = 1
y: Int = 1

scala> x + y
res0: Int = 2

scala> val a = Array(1, 2, 3)
a: Array[Int] = Array(1, 2, 3)

scala> a.sum
res1: Int = 6
As shown in the second example, if you don’t assign the result of
 an expression to a variable, the REPL creates its own variable,
 beginning with res0, then res1, etc. You can use these variable names
 just as though you had created them yourself:
scala> res1.getClass
res2: Class[Int] = int
Writing tests like this in the REPL is a great way to run
 experiments outside of your IDE or editor.
There are a few simple tricks that can make using the REPL more
 effective. One trick is to use tab completion to
 see the methods that are available on an object. To see how tab
 completion works, create a String
 object, type a decimal, and then press the Tab key. With Scala 2.10, the
 REPL shows that more than 30 methods are available on a String instance:
scala> "foo".[Tab]
+ asInstanceOf charAt codePointAt
codePointBefore codePointCount compareTo

// a total of thirty methods listed here ...
If you press the Tab key again, the REPL expands the list to more
 than 50 methods:
scala> "foo".[Tab][Tab]
// 51 methods now listed ...
Similarly, the Int object
 expands from 25 to 34 methods when you press the Tab key twice.
When you press the Tab key the first time, the REPL filters out
 many common methods, but by pressing the Tab key the second time, it
 removes those filters and increases the verbosity of its output. You can
 find an explanation of how this works at the JLineCompletion class link in the See Also
 section of this recipe.
You can also limit the list of methods that are displayed by
 typing the first part of a method name and then pressing the Tab key.
 For instance, if you know that you’re interested in the to* methods on a Scala List, type a decimal and the characters
 to after a List instance, and then press Tab:
scala> List(1,2,3).to[Tab]
toByte toChar toDouble toFloat toInt toLong toShort toString
These are all the List methods
 that begin with the letters to.
Note
Although the REPL tab-completion feature is good, it currently
 doesn’t show methods that are available to an object that results from
 implicit conversions. For instance, when you invoke the tab-completion
 feature on a String instance, the
 REPL doesn’t show the methods that are available to the String that come from the implicit
 conversions defined in the StringOps class.
To see methods available from the StringOps class, you currently have to do
 something like this:
scala> val s = new collection.immutable.StringOps("")
s: scala.collection.immutable.StringOps = s

scala> s.[Tab]
After pressing the Tab key, you’ll see dozens of additional
 methods that are available to a String object, such as all the to* and collection methods.
The REPL also doesn’t show method signatures. Hopefully features
 like this will be added to future versions of the REPL. In the
 meantime, these are most easily seen in an IDE.

Discussion

I use the REPL to create many small experiments, and it also helps
 me understand some type conversions that Scala performs automatically.
 For instance, when I first started working with Scala and typed the
 following code into the REPL, I didn’t know what type the variable
 x was:
scala> val x = (3, "Three", 3.0)
x: (Int, java.lang.String, Double) = (3,Three,3.0)
With the REPL, it’s easy to run tests like this, and then call
 getClass on a variable to see its
 type:
scala> x.getClass
res0: java.lang.Class[_ <: (Int, java.lang.String, Double)] = class scala.Tuple3
Although some of that result line is hard to read when you first
 start working with Scala, the text on the right side of the = lets you know that the type is a Tuple3.
Though this is a simple example, when you’re working with more
 complicated code or a new library, you’ll find yourself running many
 small tests like this in the REPL.
Note
A Tuple3 is a specific
 instance of a tuple. A tuple is a container for
 heterogeneous objects. A Tuple3 is
 simply a tuple that contains three elements. Here’s a Tuple2 that holds a String and a Char:
scala> val y = ("Foo", 'a')
y: (java.lang.String, Char) = (Foo,a)

scala> y.getClass
res1: java.lang.Class[_ <: (java.lang.String, Char)]
 = class scala.Tuple2
See Recipe 10.27 for more information.

REPL command-line options

If you need to set Java properties when starting the Scala
 interpreter, you can do so like this on Unix systems:
$ env JAVA_OPTS="-Xmx512M -Xms64M" scala
That command sets the maximum and initial size of the Java
 memory allocation pool. You can confirm this by looking at the maximum
 available memory in the REPL:
scala> Runtime.getRuntime.maxMemory / 1024
res0: Long = 520064
When starting the Scala 2.10 REPL without any options, the same
 command yields a different result:
scala> Runtime.getRuntime.maxMemory / 1024
res0: Long = 258880
You can also use the -J
 command-line argument to set parameters. I ran into a java.lang.OutOfMemoryError in the REPL while
 processing a large XML dataset, and fixed the problem by starting the
 REPL with this command:
$ scala -J-Xms256m -J-Xmx512m
The scala command you’re
 running in these examples is actually a shell script, so if you need
 to modify these parameters permanently, just edit that script. (On
 Unix systems, you can also create a wrapper script or an
 alias.)

Deprecation and feature warnings

From time to time, you may see a message that suggests starting
 the REPL with the -deprecation or
 -feature option enabled. For instance, attempting
 to create an octal value by entering an integer value with a leading
 zero generates a deprecation warning:
scala> 012
warning: there were 1 deprecation warnings; re-run with -deprecation for details
res0: Int = 10
To see the error, you could restart the
 REPL with the -deprecation option,
 like this:
$ scala -deprecation
Fortunately, restarting the REPL isn’t usually necessary.
 Beginning with Scala 2.10, it’s usually easier to ask the REPL to show
 the message with the :warning
 command:
scala> 012
warning: there were 1 deprecation warnings; re-run with -deprecation for details
res0: Int = 10

scala> :warning
<console>:8: warning: Treating numbers with a leading zero as octal is deprecated.
 012
 ^
The REPL documentation states that the :warning command shows “the suppressed
 warnings from the most recent line.”
If you run into the similar feature warning
 message, you can also issue the :warning command to see the error. If
 necessary, you can also restart the REPL with the -feature option:
$ scala -feature

The Scala Worksheet

If you’re using Eclipse with the Scala IDE plug-in, you can also
 run a REPL session in a Scala Console panel. Another alternative is to
 use the Scala Worksheet.
 The Worksheet is a plug-in that’s available for Eclipse and IntelliJ
 IDEA. It works like the REPL, but runs inside the IDE. Figure 14-2 shows what the
 Worksheet looks like in Eclipse.
[image: The Scala Worksheet plug-in works like the REPL]

Figure 14-2. The Scala Worksheet plug-in works like the REPL

See Also

	Source code for the
 JLineCompletion
 class

	The Tuple3 class

14.2. Pasting and Loading Blocks of Code into the REPL

Problem

You want to experiment with some code in the Scala REPL, and
 typing it in or trying to paste it into the REPL won’t work.

Solution

The REPL is “greedy” and consumes the first full statement you
 type in, so attempting to paste blocks of code into it can fail. To
 solve the problem, either use the :paste command to paste blocks of code into
 the REPL, or use the :load command to
 load the code from a file into the REPL.
The :paste command

Attempting to paste the following
 if/else block into the REPL will
 cause an error:
if (true)
 print("that was true")
else
 print("that was false")
But by issuing the :paste
 command before pasting in the code, the code will be interpreted
 properly:
scala> :paste
// Entering paste mode (ctrl-D to finish)

if (true)
 print("that was true")
else
 print("false")

[Ctrl-D]

// Exiting paste mode, now interpreting.
that was true
As shown, follow these steps to paste your code into the
 REPL:
	Type the :paste command
 in the REPL.

	Paste in your block of code (Command-V on a Mac, Ctrl-V on
 Windows).

	Press Ctrl-D, and the REPL will evaluate what you pasted
 in.

The :load command

Similarly, if you have source code in a file that you want to
 read into the REPL environment, you can use the :load command. For example, assume you have
 the following source code in a file named Person.scala in the same directory where
 you started the REPL:
case class Person(name: String)
You can load that source code into the REPL environment like
 this:
scala> :load Person.scala
Loading /Users/Al/ScalaTests/Person.scala...
defined class Person
Once the code is loaded into the REPL, you can create a new
 Person instance:
scala> val al = Person("Alvin Alexander")
al: Person = Person(Alvin Alexander)
Note, however, that if your source code has a package
 declaration:
// Person.scala source code
package com.alvinalexander.foo
case class Person(name: String)
the :load command will
 fail:
scala> :load /Users/Al/ProjectX/Person.scala
Loading /Users/Al/ProjectX/Person.scala...
<console>:1: error: illegal start of definition
 package com.alvinalexander.foo
 ^
defined class Person
You can’t use packages in the REPL, so for situations like this,
 you’ll need to compile your file(s) and then include them on the
 classpath, as shown in Recipe 14.3.

Discussion

Although the REPL is incredibly helpful, its greedy nature can
 cause multiline statements to fail. Imagine that you want to type the
 following block of code into the REPL:
if (true)
 't'
else
 'f'
If you try typing this code in one line at a time, the REPL will
 cut you off as soon as it sees a complete statement:
scala> if (true)
 | 't'
res0: AnyVal = t
In this simple example, you can get around the problem by adding
 curly braces to the expression, in which case the REPL recognizes that
 the expression isn’t finished:
scala> if (true) {
 | 't'
 | } else {
 | 'f'
 | }
res0: Char = t
But you can’t always do this. In the cases where this fails, use
 one of the approaches shown in the Solution.
Scala’s -i option

Another approach you can use is to load your source code with
 the -i argument when starting the
 Scala REPL. See Recipe 14.4 for more information on that
 approach.

See Also

	Recipe 14.3

14.3. Adding JAR Files and Classes to the REPL Classpath

Problem

You want to add individual classes or one or more JAR files to the
 REPL classpath so you can use them in a REPL session.

Solution

If you know that you want to use code from a JAR file when you
 start the REPL session, add the -cp
 or -classpath argument to your
 scala command when you start the
 session. This example shows how to load and use my DateUtils.jar library:
$ scala -cp DateUtils.jar

scala> import com.alvinalexander.dateutils._
import com.alvinalexander.dateutils._

scala> DateUtils.getCurrentDate
res0: String = Saturday, March 16
If you realize you need a JAR file on your classpath
 after you’ve started a REPL session, you can add
 one dynamically with the :cp
 command:
scala> :cp DateUtils.jar
Added '/Users/Al/Projects/Scala/Tests/DateUtils.jar'.
Your new classpath is:
".:/Users/Al/Projects/Scala/Tests/DateUtils.jar"

scala> import com.alvinalexander.dateutils._
import com.alvinalexander.dateutils._

scala> DateUtils.getCurrentDate
res0: String = Saturday, March 16
Compiled class files in the current directory (*.class) are automatically loaded into the
 REPL environment, so if a simple Person.class file is in the current directory
 when you start the REPL, you can create a new Person instance without requiring a classpath
 command:
scala> val p = new Person("Bill")
p: Person = Person(Bill)
However, if your class files are in a subdirectory, you can add
 them to the environment when you start the session, just as with JAR
 files. If all the class files are located in a subdirectory named
 classes, you can include them by
 starting your REPL session like this:
$ scala -cp classes
If the class files you want to include are in several different
 directories, you can add them all to your classpath:
$ scala -cp "../Project1/bin:../Project2/classes"
(This command works on Unix systems, but it may be slightly
 different on Windows.)
These approaches let you add JAR files and other compiled classes
 to your REPL environment, either at startup or as the REPL is
 running.

14.4. Running a Shell Command from the REPL

Problem

You want to be able to run a shell command from within the Scala
 REPL, such as listing the files in the current directory.

Solution

Run the command using the :sh
 REPL command, then print the output. The following example shows how to
 run the Unix ls -al command from
 within the REPL, and then show the results of the command:
scala> :sh ls -al
res0: scala.tools.nsc.interpreter.ProcessResult = `ls -al` (6 lines, exit 0)

scala> res0.show
total 24
drwxr-xr-x 5 Al staff 170 Jul 14 17:14 .
drwxr-xr-x 29 Al staff 986 Jul 14 15:27 ..
-rw-r--r-- 1 Al staff 108 Jul 14 15:34 finance.csv
-rw-r--r-- 1 Al staff 469 Jul 14 15:38 process.scala
-rw-r--r-- 1 Al staff 412 Jul 14 16:24 process2.scala
Alternatively you can import the scala.sys.process package, and then use the
 normal Process and ProcessBuilder commands described in Recipe 12.10:
scala> import sys.process._
import sys.process._

scala> "ls -al" !
total 24
drwxr-xr-x 5 Al staff 170 Jul 14 17:14 .
drwxr-xr-x 29 Al staff 986 Jul 14 15:27 ..
-rw-r--r-- 1 Al staff 108 Jul 14 15:34 finance.csv
-rw-r--r-- 1 Al staff 469 Jul 14 15:38 process.scala
-rw-r--r-- 1 Al staff 412 Jul 14 16:24 process2.scala
res0: Int = 0
Scala’s -i option

Although those examples show the correct approach, you can
 improve the situation by loading your own custom code when you start
 the Scala interpreter. For instance, I always start the REPL in my
 /Users/Al/tmp directory, and I
 have a file in that directory named repl-commands with these
 contents:
import sys.process._

def clear = "clear".!
def cmd(cmd: String) = cmd.!!
def ls(dir: String) { println(cmd(s"ls -al $dir")) }
def help {
 println("\n=== MY CONFIG ===")
 "cat /Users/Al/tmp/repl-commands".!
}

case class Person(name: String)
val nums = List(1, 2, 3)
val strings = List("sundance", "rocky", "indigo")

// lets me easily see the methods from StringOps
// with tab completion
val so = new collection.immutable.StringOps("")
With this setup, I start the Scala interpreter with the -i argument, telling it to load this file
 when it starts:
$ scala -i repl-commands
This makes those pieces of code available to me inside the REPL.
 For instance, I can clear my terminal window by invoking the clear method:
scala> clear
My ls method provides a
 directory listing:
scala> ls("/tmp")
With my cmd method I can run
 other external commands:
scala> cmd("cat /etc/passwd")
The help method uses the
 system cat command to display this
 file, which is helpful if I haven’t used it in a while. The nums and strings variables and Person class also make it easy to run quick
 experiments.
This approach is similar to using a startup file to initialize a
 Unix login session, like a .bash_profile file for Bash users, and I
 highly recommend it. As you use the REPL more and more, use this
 technique to customize its behavior.
To make this even easier, I created the following Unix alias and
 put it in my .bash_profile
 file:
alias repl="scala -i /Users/Al/tmp/repl-commands"
I now use this alias to start a REPL session, rather than
 starting it by typing scala:
$ repl

See Also

	The “Executing external commands” recipes in Chapter 12 for more examples of executing
 external commands from Scala code

14.5. Compiling with scalac and Running with scala

Problem

Though you normally use the Simple Build Tool (SBT) to build Scala
 applications, you may want to use more basic tools to compile and run
 small test programs, in the same way you might use javac and java with small Java applications.

Solution

Compile programs with scalac,
 and run them with scala. For example,
 given a Scala source code file named Hello.scala:
object Hello extends App {
 println("Hello, world")
}
Compile it from the command line with scalac:
$ scalac Hello.scala
Then run it with scala:
$ scala Hello
Hello, world

Discussion

Compiling and executing classes is basically the same as Java,
 including concepts like the classpath. For instance, if you have a class
 named Pizza in a file named Pizza.scala, it may depend on a Topping class:
class Pizza (var toppings: Topping*) {
 override def toString = toppings.toString
}
Assuming that the Topping class
 is compiled to a file named Topping.class in a subdirectory named
 classes, compile Pizza.scala like this:
$ scalac -classpath classes Pizza.scala
In a more complicated example, you may have your source code in
 subdirectories under a src folder,
 one or more JAR files in a lib
 directory, and you want to compile your output class files to a
 classes folder. In this case, your
 files and directories will look like this:
./classes
./lib/DateUtils.jar
./src/com/alvinalexander/pizza/Main.scala
./src/com/alvinalexander/pizza/Pizza.scala
./src/com/alvinalexander/pizza/Topping.scala
The Main.scala, Pizza.scala, and Topping.scala files will also have package
 declarations corresponding to the directories they are located in,
 i.e.:
package com.alvinalexander.pizza
Given this configuration, to compile your source code files to the
 classes directory, use the
 following command:
$ scalac -classpath lib/DateUtils.jar -d classes src/com/alvinalexander/pizza/*
Assuming Main.scala is an
 object that extends App, Pizza.scala is a regular class file, and
 Topping.scala is a case class, your
 classes directory will contain
 these files after your scalac
 command:
./classes/com/alvinalexander/pizza/Main$.class
./classes/com/alvinalexander/pizza/Main$delayedInit$body.class
./classes/com/alvinalexander/pizza/Main.class
./classes/com/alvinalexander/pizza/Pizza.class
./classes/com/alvinalexander/pizza/Topping$.class
./classes/com/alvinalexander/pizza/Topping.class
Once the files have been compiled in this manner, you can run the
 application like this:
$ scala -classpath classes:lib/DateUtils.jar com.alvinalexander.pizza.Main
As you can imagine, this process gets more and more difficult as
 you add new classes and libraries, and it’s strongly recommended that
 you use a tool like SBT, Maven, or Ant to manage your application’s
 build process. The examples shown in this recipe are shown for the “one
 off” cases where you might want to compile and run a small application
 or test code.
For other useful command-line options, see the manpages for the
 scalac and scala commands.

14.6. Disassembling and Decompiling Scala Code

Problem

In the process of learning Scala, or trying to understand a
 particular problem, you want to examine the bytecode the Scala compiler
 generates from your source code.

Solution

You can use several different approaches to see how your Scala
 source code is translated:
	Use the javap command to
 disassemble a .class file to
 look at its signature.

	Use scalac options to see
 how the compiler converts your Scala source code to Java
 code.

	Use a decompiler to convert your class files back to Java
 source code.

All three solutions are shown here.
Using javap

Because your Scala source code files are compiled into regular
 Java class files, you can use the javap command to disassemble them. For
 example, assume that you’ve created a file named Person.scala that contains the following
 source code:
class Person (var name: String, var age: Int)
If you compile that file with scalac, you can disassemble the resulting
 class file into its signature using javap, like this:
$ javap Person
Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject{
 public java.lang.String name();
 public void name_$eq(java.lang.String);
 public int age();
 public void age_$eq(int);
 public Person(java.lang.String, int);
}
This shows the signature of the Person class, which is basically its public
 API, or interface. Even in a simple example like this you can see the
 Scala compiler doing its work for you, creating methods like name(), name_$eq, age(), and age_$eq.

Using scalac print options

Depending on your needs, another approach is to use the “print”
 options available with the scalac
 command. These are demonstrated in detail in Recipe 3.1.
As that recipe shows, you begin with a file named Main.scala that has these contents:
class Main {
 for (i <- 1 to 10) println(i)
}
Next, compile this code with the scalac
 -Xprint:parse command:
$ scalac -Xprint:parse Main.scala

[[syntax trees at end of parser]] // Main.scala
package <empty> {
 class Main extends scala.AnyRef {
 def <init>() = {
 super.<init>();
 ()
 };
 1.to(10).foreach(((i) => println(i)))
 }
}
Recipe 3.1 demonstrates
 that the initial Scala for loop is
 translated into a foreach method
 call, as shown by this line in the compiler output:
1.to(10).foreach(((i) => println(i)))
If you want to see more details, use the -Xprint:all option instead of -Xprint:parse. For this simple class, this
 command yields more than 200 lines of output. A portion of the code at
 the end of the output looks like this:
class Main extends Object {
 def <init>(): Main = {
 Main.super.<init>();
 RichInt.this.to$extension0(scala.this.Predef.intWrapper(1),
 10).foreachmVcsp({
 (new anonymous class anonfun$1(Main.this): Function1)
 });
 ()
 }
};
As you can see, your beautiful Scala code gets translated into
 something quite different, and this is only part of the output.
Whereas scalac -Xprint:all
 prints a lot of output, the basic scalac -print command only prints the output
 shown at the very end of the -Xprint:all output. The scalac manpage states that this print
 option, “Prints program with all Scala-specific features removed.”
 View the manpage for the scalac
 command to see other -Xprint
 options that are available.

Use a decompiler

Depending on class versions and legal restrictions, you may be
 able to take this approach a step further and decompile a class file
 back to its Java source code representation using a Java decompiler
 tool, such as JAD. Continuing from the previous
 example, you can decompile the Main.class file like this:
$ jad Main

Parsing Main...Parsing inner class Main$$anonfun$1.class...
Generating Main.jad
The Main.jad file that
 results from this process contains the following Java source
 code:
import scala.*;
import scala.collection.immutable.Range;
import scala.runtime.*;

public class Main
{

 public Main()
 {
 RichInt$.MODULE$.to$extension0(Predef$.MODULE$.intWrapper(1),
 10).foreachmVcsp(new Serializable() {

 public final void apply(int i)
 {
 apply$mcVI$sp(i);
 }

 public void apply$mcVI$sp(int v1)
 {
 Predef$.MODULE$.println(BoxesRunTime.boxToInteger(v1));
 }

 public final volatile Object apply(Object v1)
 {
 apply(BoxesRunTime.unboxToInt(v1));
 return BoxedUnit.UNIT;
 }

 public static final long serialVersionUID = 0L;

 });
 }
}
Though you may have to be careful with legal issues when using a
 decompiler, when you’re first learning Scala, a tool like JAD or the Java Decompiler Project
 can really help to see how your Scala source code is converted into
 Java source code. Additionally, both Eclipse and IntelliJ offer
 decompiler plug-ins that are based on JAD or the Java Decompiler
 Project.

Discussion

Disassembling class files with javap can be a helpful way to understand how
 Scala works. As you saw in the first example with the Person class, defining the constructor
 parameters name and age as var
 fields generates quite a few methods for you.
As a second example, take the var attribute off both of those fields, so you
 have this class definition:
class Person (name: String, age: Int)
Compile this class with scalac,
 and then run javap on the resulting
 class file. You’ll see that this results in a much shorter class
 signature:
$ javap Person
Compiled from "Person.scala"public class Person extends java.lang.Objectimplements scala.ScalaObject{
 public Person(java.lang.String, int);
}
Conversely, leaving var on both
 fields and turning the class into a case class significantly expands the
 amount of code Scala generates on your behalf. To see this, change the
 code in Person.scala so you have
 this case class:
case class Person (var name: String, var age: Int)
When you compile this code, it creates two output files, Person.class and Person$.class. Disassemble these two files
 using javap:
$ javap Person
Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject,scala.Product,scala.Serializable{
 public static final scala.Function1 tupled();
 public static final scala.Function1 curry();
 public static final scala.Function1 curried();
 public scala.collection.Iterator productIterator();
 public scala.collection.Iterator productElements();
 public java.lang.String name();
 public void name_$eq(java.lang.String);
 public int age();
 public void age_$eq(int);
 public Person copy(java.lang.String, int);
 public int copy$default$2();
 public java.lang.String copy$default$1();
 public int hashCode();
 public java.lang.String toString();
 public boolean equals(java.lang.Object);
 public java.lang.String productPrefix();
 public int productArity();
 public java.lang.Object productElement(int);
 public boolean canEqual(java.lang.Object);
 public Person(java.lang.String, int);
}

$ javap Person$
Compiled from "Person.scala"
public final class Person$ extends scala.runtime.AbstractFunction2 implements scala.ScalaObject,scala.Serializable{
 public static final Person$ MODULE$;
 public static {};
 public final java.lang.String toString();
 public scala.Option unapply(Person);
 public Person apply(java.lang.String, int);
 public java.lang.Object readResolve();
 public java.lang.Object apply(java.lang.Object, java.lang.Object);
}
As shown, when you define a class as a case
 class, Scala generates a lot of code for
 you. This output shows the signature for that code. See Recipe 4.14 for a detailed discussion of this
 code.

See Also

	Information on the JAD
 decompiler

	The Java
 Decompiler project

14.7. Finding Scala Libraries

Problem

Ruby has the RubyGems package manager, which lets developers
 easily distribute and manage the installation of Ruby libraries; does
 Scala have anything like this?

Solution

Prior to Scala 2.9.2, a tool named sbaz shipped
 with Scala, but it wasn’t very popular. Instead, most tools are
 “discovered” by paying attention to the mailing lists, using a search
 engine, and being aware of a few key websites.
As discussed in Chapter 18, once you’ve found a
 tool you want to use, you usually add it as a dependency to your project
 with SBT. For instance, to include libraries into your project, such as
 ScalaTest and Mockito, just add lines like this to your SBT build.sbt file:
resolvers += "Typesafe Repository" at "http://repo.typesafe.com/typesafe/releases/"

libraryDependencies ++= Seq(
 "org.scalatest" %% "scalatest" % "1.8" % "test",
 "org.mockito" % "mockito-core" % "1.9.0" % "test"
)
SBT has become the de facto tool for building Scala applications
 and managing dependencies. Possibly because of this success, a system
 like RubyGems hasn’t evolved, or been necessary.
Some of the top ways of finding Scala libraries are:
	Searching for libraries using a search engine, or ls.implicit.ly.

	Asking questions and searching the
 scala-tools@googlegroups.com and
 scala-language@googlegroups.com mailing lists.

	New software is also announced at the “scala-announce” mailing
 list; you can find a list of Scala mailing lists online.

	Viewing tools listed at the Scala wiki.

	Scala project updates are often noted at http://notes.implicit.ly/, the archive is at http://notes.implicit.ly/archive, and you can search
 for tools at http://ls.implicit.ly/.

	Asking questions on StackOverflow.com.

The search engine at ls.implicit.ly is interesting. The
 owners advertise the site as “A card catalog for Scala libraries.” As
 they state on their website, they make two assumptions regarding their
 search process:
	The library you’re looking for is an open source library
 that’s hosted at GitHub.

	You build your projects with SBT.

For instance, if you search for “logging,” the website currently
 shows tools like the “Grizzled-SLF4J” library.

14.8. Generating Documentation with scaladoc

Problem

You’ve annotated your Scala code with Scaladoc, and you want to
 generate developer documentation for your API.

Solution

To generate Scaladoc API documentation, document your code using
 Scaladoc tags, and then create the documentation using an SBT task or
 the scaladoc command.
You can mark up your source code using Scaladoc tags as well as a wiki-like syntax. The following
 code shows many of the Scaladoc tags and a few of the wiki-style markup
 tags:
package com.acme.foo

/**
 * A class to represent a ''human being''.
 *
 * Specify the `name`, `age`, and `weight` when creating a new `Person`,
 * then access the fields like this:
 * {{{
 * val p = Person("Al", 42, 200.0)
 * p.name
 * p.age
 * p.weight
 * }}}
 *
 * Did you know: The [[com.acme.foo.Employee]] extends this class.
 *
 * @constructor Create a new person with a `name`, `age`, and `weight`.
 * @param name The person's name.
 * @param age The person's age.
 * @param weight The person's weight.
 * @author Alvin Alexander
 * @version 1.0
 * @todo Add more functionality.
 * @see See [[http://alvinalexander.com alvinalexander.com]] for more
 * information.
 */
@deprecated("The `weight` field is going away", "1.0")
class Person (var name: String, var age: Int, var weight: Double) {

 /**
 * @constructor This is an auxiliary constructor. Just need a `name` here.
 */
 def this(name: String) {
 this(name, 0, 0.0)
 }

 /**
 * @return Returns a greeting based on the `name` field.
 */
 def greet = s"Hello, my name is $name"

}

/**
 * @constructor Create a new `Employee` by specifying their `name`, `age`,
 * and `role`.
 * @param name The employee's name.
 * @param age The employee's age.
 * @param role The employee's role in the organization.
 * @example val e = Employee("Al", 42, "Developer")
 */
class Employee(name: String, age: Int, role: String) extends Person(name, age, 0)
{

 /**
 * @throws boom Throws an Exception 100% of the time, be careful.
 */
 @throws(classOf[Exception])
 def boom { throw new Exception("boom") }

 /**
 * @return Returns a greeting based on the `other` and `name` fields.
 * @param other The name of the person we're greeting.
 */
 override def greet(other: String) = s"Hello $other, my name is $name"

}
With this code saved to a file named Person.scala, generate the Scaladoc
 documentation with the scaladoc
 command:
$ scaladoc Person.scala
This generates a root index.html file and other related files for
 your API documentation.
Similarly, if you’re using SBT, generate Scaladoc API
 documentation by running the sbt doc
 command in the root directory of your project:
$ sbt doc
This generates the same API documentation, and places it under the
 target directory of your SBT
 project. With Scala 2.10 and SBT 0.12.3, the root file is located at
 target/scala-2.10/api/index.html.
Figure 14-3 shows the
 resulting Scaladoc for the Person
 class, and Figure 14-4 shows
 the Scaladoc for the Employee class.
 Notice how the Scaladoc and wiki tags affect the
 documentation.
[image: The Scaladoc for the Person class]

Figure 14-3. The Scaladoc for the Person class

[image: The Scaladoc for the Employee class]

Figure 14-4. The Scaladoc for the Employee class

Discussion

Most Scaladoc tags are similar to Javadoc tags. Common Scaladoc
 tags are shown in Table 14-1.
Table 14-1. Common Scaladoc tags
	Tag
	Description
	Number
 allowed

	@author
	The author of the
 class.
	Multiple tags are
 allowed

	@constructor
	Documentation you want to
 provide for the constructor.
	One (does not currently
 work on auxiliary constructors)

	@example
	Provide an example of how
 to use a method or constructor.
	Multiple

	@note
	Document pre- and
 post-conditions, and other requirements.
	Multiple

	@param
	Document a method or
 constructor parameter.
	One per
 parameter

	@return
	Document the return value
 of a method.
	One

	@see
	Describe other sources of
 related information.
	Multiple

	@since
	Used to indicate that a
 member has been available since a certain version
 release.
	One

	@todo
	Document “to do” items
 for a method or class.
	Multiple

	@throws
	Document an exception
 type that can be thrown by a method or
 constructor.
	Multiple

	@version
	The version of a
 class.
	One

These are just some of the common tags. Other tags include
 @define, @migration, @tparam, and @usecase. Other Scala annotation tags like
 @deprecated and @throws also result in output to your
 documentation.
As shown in the source code, you can format your documentation
 using wiki-like tags. Table 14-2 shows the most
 common wiki character formatting tags, and Table 14-3 shows the most
 common wiki paragraph formatting tags.
Table 14-2. Scaladoc wiki character formatting tags
	Format
	Tag
 example

	Bold
	'''foo'''

	Italic
	''foo''

	Monospace
 (fixed-width)
	`foo`

	Subscript
	,,foo,,

	Superscript
	^foo^

	Underline
	__foo__

Table 14-3. Scaladoc wiki paragraph formatting tags
	Format
	Tag
 example

	Headings
	=heading1=
 ==heading2==
 ===heading3===

	New
 paragraph
	A blank line starts a new
 paragraph

	Source code
 block
	// all on one line
{{{ if (foo) bar else baz }}}

// multiple lines
{{{
val p = Person("Al", 42)
p.name
p.age
}}}

Table 14-4 shows how to create
 hyperlinks in Scaladoc.
Table 14-4. Scaladoc hyperlink tags
	Link
 type
	Tag
 example

	Link to a Scala
 type
	[[scala.collection.immutable.List]]

	Link to an external web
 page
	[[http://alvinalexander.com My website]]

The Scaladoc tags and annotations are described in more detail in
 the Scala wiki, as well as
 the Wiki markup tags.
Generating Scaladoc documentation with SBT

SBT has several commands that can be used to generate project
 documentation. See Recipe 18.8 for a tabular listing of those
 commands.

See Also

	Recipe 5.8 and Recipe 17.2 for demonstrations of the @throws annotation

	Scaladoc wiki-like
 syntax

	Scaladoc tags

	The Scaladoc page in the Scala Style
 Guide

	Recipe 18.8 for details on generating Scaladoc
 documentation with SBT

14.9. Faster Command-Line Compiling with fsc

Problem

You’re making changes to a project and recompiling it with
 scalac, and you’d like to reduce the
 compile time.

Solution

Use the fsc command instead of
 scalac to compile your
 code:
$ fsc *.scala
The fsc command works by
 starting a compilation daemon and also maintains a cache, so compilation
 attempts after the first attempt run much faster than scalac.

Discussion

Although the primary advantage is that compile times are
 significantly improved when recompiling the same code, it’s important to
 be aware of a few caveats, per the fsc manpage:
	“The tool is especially effective when repeatedly compiling
 with the same class paths, because the compilation daemon can reuse
 a compiler instance.”

	“The compilation daemon is smart enough to flush its cached
 compiler when the class path changes. However, if the contents of
 the class path change, for example due to upgrading a library, then
 the daemon should be explicitly shut down with
 -shutdown.”

As an example of the second caveat, if the JAR files on the
 classpath have changed, you should shut down the daemon, and then
 reissue your fsc command:
$ fsc -shutdown
[Compile server exited]

$ fsc *.scala
On Unix systems, running fsc
 creates a background process with the name CompileServer. You can see information about
 this process with the following ps
 command:
$ ps auxw | grep CompileServer
See the fsc manpage for more
 information.

See Also

	The fsc manpage (type
 man fsc at the command
 line).

	When using SBT, you can achieve similar performance
 improvements by working in the SBT shell instead of your operating
 system’s command line. See Recipe 18.2 for more information.

14.10. Using Scala as a Scripting Language

Problem

You want to use Scala as a scripting language on Unix systems,
 replacing other scripts you’ve written in a Unix shell (Bourne Shell,
 Bash), Perl, PHP, Ruby, etc.

Solution

Save your Scala code to a text file, making sure the first three
 lines of the script contain the lines shown, which will execute the
 script using the scala
 interpreter:
#!/bin/sh
exec scala "$0" "$@"
!#

println("Hello, world")
To test this, save the code to a file named hello.sh, make it executable, and then run
 it:
$ chmod +x hello.sh

$./hello.sh
Hello, world
As detailed in the next recipe, command-line parameters to the
 script can be accessed via an args
 array, which is implicitly made available to you:
#!/bin/sh
exec scala "$0" "$@"
!#

args.foreach(println)

Discussion

Regarding the first three lines of a shell script:
	The #! in the first line is
 the usual way to start a Unix shell script. It invokes a Unix Bourne
 shell.

	The exec command is a shell
 built-in. $0 expands to the name
 of the shell script, and $@
 expands to the positional parameters.

	The !# characters as the
 third line of the script is how the header section is closed.

A great thing about using Scala in your scripts is that you can
 use all of its advanced features, such as the ability to create and use
 classes in your scripts:
#!/bin/sh
exec scala "$0" "$@"
!#

class Person(var firstName: String, var lastName: String) {
 override def toString = firstName + " " + lastName
}

println(new Person("Nacho", "Libre"))
Using the App trait or main method

To use an App trait in a
 Scala script, start the script with the usual first three header
 lines, and then create an object that extends the App trait:
#!/bin/sh
exec scala "$0" "$@"
!#

object Hello extends App {
 println("Hello, world")
 // if you want to access the command line args:
 //args.foreach(println)
}

Hello.main(args)
The last line in that example shows how to pass the script’s
 command-line arguments to the implicit main method in the Hello object. As usual in an App trait object, the arguments are
 available via a variable named args.
You can also define an object with a main method to kick off your shell script
 action:
#!/bin/sh
exec scala "$0" "$@"
!#

object Hello {
 def main(args: Array[String]) {
 println("Hello, world")
 // if you want to access the command line args:
 //args.foreach(println)
 }
}

Hello.main(args)

Building the classpath

If your shell script needs to rely on external dependencies
 (such as JAR files), add them to your script’s classpath using this
 syntax:
#!/bin/sh
exec scala -classpath "lib/htmlcleaner-2.2.jar:lib/scalaemail_2.10.0-1.0.jar:lib/stockutils_2.10.0-1.0.jar" "$0" "$@"
!#
You can then import these classes into your code as usual. The
 following code shows a complete script I wrote that retrieves stock
 quotes and mails them to me:
#!/bin/sh
exec scala -classpath "lib/htmlcleaner-2.2.jar:lib/scalaemail_2.10.0-1.0.jar:lib/stockutils_2.10.0-1.0.jar" "$0" "$@"
!#

import java.io._
import scala.io.Source
import com.devdaily.stocks.StockUtils
import scala.collection.mutable.ArrayBuffer

object GetStocks {

 case class Stock(symbol: String, name: String, price: BigDecimal)

 val DIR = System.getProperty("user.dir")
 val SLASH = System.getProperty("file.separator")
 val CANON_STOCKS_FILE = DIR + SLASH + "stocks.dat"
 val CANON_OUTPUT_FILE = DIR + SLASH + "quotes.out"

 def main(args: Array[String]) {

 // read the stocks file into a list of strings ("AAPL|Apple")
 val lines = Source.fromFile(CANON_STOCKS_FILE).getLines.toList

 // create a list of Stock from the symbol, name, and by
 // retrieving the price
 var stocks = new ArrayBuffer[Stock]()
 lines.foreach{ line =>
 val fields = line.split("\\|")
 val symbol = fields(0)
 val html = StockUtils.getHtmlFromUrl(symbol)
 val price = StockUtils.extractPriceFromHtml(html, symbol)
 val stock = Stock(symbol, fields(1), BigDecimal(price))
 stocks += stock
 }

 // build a string to output
 var sb = new StringBuilder
 stocks.foreach { stock =>
 sb.append("%s is %s\n".format(stock.name, stock.price))
 }
 val output = sb.toString

 // write the string to the file
 val pw = new PrintWriter(new File(CANON_OUTPUT_FILE))
 pw.write(output)
 pw.close

 }
}

GetStocks.main(args)
I run this script twice a day through a crontab entry on a Linux
 server. The stocks.dat file it
 reads has entries like this:
AAPL|Apple
KKD|Krispy Kreme
NFLX|Netflix

See Also

	More about the first three lines of these shell script
 examples at my
 site

	Recipe 14.13 for a way to make your scripts run
 faster

14.11. Accessing Command-Line Arguments from a Script

Problem

You want to access the command-line arguments from your Scala
 shell script.

Solution

Use the same script syntax as shown in Recipe 14.8, and then access the command-line arguments
 using args, which is a List[String] that is implicitly made
 available:
#!/bin/sh
exec scala "$0" "$@"
!#

args.foreach(println)
Save this code to a file named args.sh, make the file executable, and run it
 like this:
$./args.sh a b c
a
b
c

Discussion

Because the implicit field args
 is a List[String], you can perform
 all the usual operations on it, including getting its size, and
 accessing elements with the usual syntax.
In a more “real-world” example, you’ll check for the number of
 command-line arguments, and then assign those arguments to values. This
 is demonstrated in the following script:
#!/bin/sh
exec scala "$0" "$@"
!#

if (args.length != 2) {
 Console.err.println("Usage: replacer <search> <replace>")
 System.exit(1)
}

val searchPattern = args(0)
val replacePattern = args(1)

println(s"Replacing $searchPattern with $replacePattern ...")

// more code here ...
When this script is run from the command line without arguments,
 the result looks like this:
$./args.sh
Usage: replacer <search> <replace>
When it’s run with the correct number of arguments, the result
 looks like this:
$./args.sh foo bar
Replacing foo with bar ...
If you decide to use the App
 trait in your script, make sure you pass the command-line arguments to
 your App object, as shown in the
 Hello.main(args) line in this
 example:
#!/bin/sh
exec scala "$0" "$@"
!#

object Hello extends App {
 println("Hello, world")
 // if you want to access the command line args:
 //args.foreach(println)
}

Hello.main(args)
Use the same syntax if you use a main method instead of an App object.

14.12. Prompting for Input from a Scala Shell Script

Problem

You want to prompt a user for input from a Scala shell script and
 read her responses.

Solution

Use the readLine, print, printf, and Console.read* methods to read user input, as
 demonstrated in the following script. Comments in the script describe
 each method:
#!/bin/sh
exec scala "$0" "$@"
!#

// write some text out to the user with Console.println
Console.println("Hello")

// Console is imported by default, so it's not really needed, just use println
println("World")

// readLine lets you prompt the user and read their input as a String
val name = readLine("What's your name? ")

// readInt lets you read an Int, but you have to prompt the user manually
print("How old are you? ")
val age = readInt()

// you can also print output with printf
println(s"Your name is $name and you are $age years old.")

Discussion

The readLine method lets you
 prompt a user for input, but the other read* methods don’t, so you need to prompt the
 user manually with print, println, or printf.
You can list the Console.read*
 methods in the Scala REPL:
scala> Console.read
readBoolean readByte readChar readDouble readFloat
readInt readLine readLong readShort readf
readf1 readf2 readf3
Be careful with the methods that read numeric values; as you might
 expect, they can all throw a NumberFormatException.
Although these methods are thorough, if you prefer, you can also
 fall back and read input with the Java Scanner class:
// you can also use the Java Scanner class, if desired
val scanner = new java.util.Scanner(System.in)
print("Where do you live? ")
val input = scanner.nextLine()
print(s"I see that you live in $input")
Reading multiple values from one line

If you want to read multiple values from one line of user input
 (such as a person’s name, age, and weight), there are several
 approaches to the problem.
To my surprise, I prefer to use the Java Scanner class. The following code
 demonstrates the Scanner
 approach:
import java.util.Scanner

// simulated input
val input = "Joe 33 200.0"

val line = new Scanner(input)
val name = line.next
val age = line.nextInt
val weight = line.nextDouble
To use this approach in a shell script, replace the input line with a readLine() call, like this:
val input = readLine()
Of course if the input doesn’t match what you expect, an error
 should be thrown. The Scanner next*
 methods throw a java.util.InputMismatchException when the
 data doesn’t match what you expect, so you’ll want to wrap this code
 in a try/catch block.
I initially assumed that one of the readf methods on the Console object would be the best solution to
 this problem, but unfortunately they return their types as Any, and then you have to cast them to the
 desired type. For instance, suppose you want to read the same name,
 age, and weight information as the previous example. After prompting
 the user, you read three values with the readf3 method like this:
val(a,b,c) = readf3("{0} {1,number} {2,number}")
If the user enters a string followed by two numbers, a result is
 returned, but if he enters an
 improperly formatted string, such as 1 a b, the expression fails with a ParseException:
java.text.ParseException: MessageFormat parse error!
 at java.text.MessageFormat.parse(MessageFormat.java:1010)
 at scala.Console$.readf(Console.scala:413)
 at scala.Console$.readf3(Console.scala:445)
Unfortunately, even if the user enters the text as desired, you
 still need to cast the values to the correct type, because the
 variables a, b, and c
 are of type Any. You can try to
 cast them with this approach:
val name = a
val age = b.asInstanceOf[Long]
val weight = c.asInstanceOf[Double]
Or convert them like this:
val name = a.toString
val age = b.toString.toInt
val weight = c.toString.toDouble
But for me, the Scanner is
 cleaner and easier.
A third approach is to read the values in as a String, and then split them into tokens.
 Here’s what this looks like in the REPL:
scala> val input = "Michael 54 250.0"
input: String = Michael 54 250.0

scala> val tokens = input.split(" ")
tokens: Array[String] = Array(Michael, 54, 250.0)
The split method creates an
 Array[String], so access the array
 elements and cast them to the desired types to create your
 variables:
val name = tokens(0)
val age = tokens(1).toInt
val weight = tokens(2).toDouble
Note that the age and
 weight fields in this example can
 throw a NumberFormatException.
A fourth way to read the user’s input is by specifying a regular
 expression to match the input you expect to receive. Using this
 technique, you again receive each variable as a String, and then cast it to the desired
 type. The process looks like this in the REPL:
scala> val ExpectedPattern = "(.*) (\\d+) (\\d*\\.?\\d*)".r
ExpectedPattern: scala.util.matching.Regex = (.*) (\d+) (\d*\.?\d*)

// you would use readLine() here
scala> val input = "Paul 36 180.0"
input: String = Paul 36 180.0

scala> val ExpectedPattern(a, b, c) = input
a: String = Paul
b: String = 36
c: String = 180.0
Now that you have the variables as strings, cast them to the
 desired types, as before:
val name = a
val age = b.toInt
val weight = c.toDouble
The ExpectedPattern line in
 this example will fail with a scala.MatchError if the input doesn’t match
 what’s expected.
Hopefully with all of these examples you’ll find your own
 preferred way to read in multiple values at one time.

Fun with output

Use print, printf, or println to write output. As shown in the
 Solution, the readLine method also
 lets you prompt a user for input.
The Console object contains a
 number of fields that you can use with the print methods to control
 the display. For instance, if you want your entire line of output to
 be underlined, change the last lines of the script to look like
 this:
val qty = 2
val pizzaType = "Cheese"
val total = 20.10

print(Console.UNDERLINED)
println(f"$qty%d $pizzaType pizzas coming up, $$$total%.2f.")
print(Console.RESET)
This prints the following string, underlined:
2 Cheese pizzas coming up, $20.10.
Other displayable attributes include colors and attributes such
 as BLINK, BOLD, INVISIBLE, RESET, REVERSED, and UNDERLINED. See the Console object Scaladoc page for more
 options.

See Also

	Recipe 1.8 for more examples of the
 pattern-matching technique shown in this recipe.

	The Java Scanner class

	The Java Pattern class

	The Scala Console object provides the
 read* methods

14.13. Make Your Scala Scripts Run Faster

Problem

You love using Scala as a scripting language, but you’d like to
 eliminate the lag time in starting up a script.

Solution

Use the -savecompiled argument
 of the Scala interpreter to save a compiled version of your
 script.
A basic Scala script like this:
#!/bin/sh
exec scala "$0" "$@"
!#

println("Hello, world!")
args foreach println
consistently runs with times like this on one of my
 computers:
real 0m1.573s
user 0m0.574s
sys 0m0.089s
To improve this, add the -savecompiled argument to the Scala
 interpreter line:
#!/bin/sh
exec scala -savecompiled "$0" "$@"
!#

println("Hello, world!")
args foreach println
Then run the script once. This generates a compiled version of the
 script. After that, the script runs with a consistently lower real time
 (wall clock) on all subsequent runs:
real 0m0.458s
user 0m0.487s
sys 0m0.075s
Precompiling your script shaves a nice chunk of time off the
 runtime of your script, even for a simple example like this.

Discussion

When you run your script the first time, Scala generates a JAR
 file that matches the name of your script. For instance, I named my
 script test1.sh, and then ran it
 like this:
$./test1.sh
After running the script, I looked at the directory contents and
 saw that Scala created a file named test1.sh.jar. Scala creates this new file and
 also leaves your original script in place.
On subsequent runs, Scala sees that there’s a JAR file associated
 with the script, and if the script hasn’t been modified since the JAR
 file was created, it runs the precompiled code from the JAR file instead
 of the source code in the script. This results in a faster runtime
 because the source code doesn’t need to be compiled.
You can look at the contents of the JAR file using the jar command:
$ jar tvf test1.sh.jar
 43 Wed Jul 25 15:44:26 MDT 2012 META-INF/MANIFEST.MF
965 Wed Jul 25 15:44:26 MDT 2012 Main$$anon$1$$anonfun$1.class
725 Wed Jul 25 15:44:26 MDT 2012 Main$$anon$1.class
557 Wed Jul 25 15:44:26 MDT 2012 Main$.class
646 Wed Jul 25 15:44:26 MDT 2012 Main.class
In this example, I didn’t include a main method in an object or use the App trait with an object, so Scala assumed the
 name Main for the main/primary object
 that it created to run my script.

Chapter 15. Web Services

Introduction

Between the Java web services libraries and the newer Scala
 libraries and frameworks that are available, Scala easily handles web
 service tasks. You can rapidly create web service clients to send and
 receive data using these general libraries, or solve problems with more
 specific libraries, such as creating a Twitter client with the Twitter4J
 library. There are also several good JSON libraries available, so you can
 easily convert between data JSON strings and Scala objects.
When it comes to creating your own RESTful web services, you can use
 lightweight frameworks like Scalatra or Unfiltered
 and have web services up and running in a matter of minutes. But you have
 many choices, so you can also use the Play Framework (Play), Lift Framework, or other Scala libraries
 to create web services, as well as all of the previously available Java
 web service libraries.
As demonstrated in Chapter 16,
 Scala has nice support for the MongoDB database, and this chapter
 demonstrates how to provide a complete web services solution using
 Scalatra and MongoDB. This chapter shares a few recipes that are specific
 to using Play to create web services.
Finally, although the Scala libraries offer some nice convenience
 classes and methods for connecting to web services, the trusty old Java
 Apache HttpClient
 library is still very useful, and it’s also demonstrated in
 several recipes.

15.1. Creating a JSON String from a Scala Object

Problem

You’re working outside of a specific framework, and want to create
 a JSON string from a Scala object.

Solution

If you’re using the Play Framework, you can use its library to
 work with JSON, as shown in Recipes 15.13 and 15.14, but if you’re using JSON outside of
 Play, you can use the best libraries that are available for Scala and
 Java:
	Lift-JSON

	The Google
 Gson library (Java)

	Json4s

	spray-json

This recipe demonstrates the Lift-JSON and Gson libraries. (Json4s
 is a port of Lift-JSON, so it shares the same API.)
Lift-JSON solution

To demonstrate the Lift-JSON library, create an empty SBT test
 project. With Scala 2.10 and SBT 0.12.x, configure your build.sbt file as follows:
name := "Basic Lift-JSON Demo"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies += "net.liftweb" %% "lift-json" % "2.5+"
Next, in the root directory of your project, create a file named
 LiftJsonTest.scala:
import scala.collection.mutable._
import net.liftweb.json._
import net.liftweb.json.Serialization.write

case class Person(name: String, address: Address)
case class Address(city: String, state: String)

object LiftJsonTest extends App {

 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))

 // create a JSON string from the Person, then print it
 implicit val formats = DefaultFormats
 val jsonString = write(p)
 println(jsonString)

}
This code creates a JSON string from the Person instance, and prints it. When you run
 the project with the sbt run
 command, you’ll see the following JSON output:
{"name":"Alvin Alexander","address":{"city":"Talkeetna","state":"AK"}}

Gson solution

To demonstrate the Gson library, follow similar steps. Create an
 empty SBT test project, then download the Gson JAR file from the
 Gson
 website, and place it in your project’s lib directory.
In the root directory of the project, create a file named
 GsonTest.scala with these contents:
import com.google.gson.Gson

case class Person(name: String, address: Address)
case class Address(city: String, state: String)

object GsonTest extends App {
 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))

 // create a JSON string from the Person, then print it
 val gson = new Gson
 val jsonString = gson.toJson(p)
 println(jsonString)
}
In a manner similar to the first example, this code converts a
 Person instance to a JSON string
 and prints the string. When you run the project with sbt run, you’ll see the same output as
 before:
{"name":"Alvin Alexander","address":{"city":"Talkeetna","state":"AK"}}

Discussion

The Lift-JSON project is a subproject of the Lift Framework, which is a complete
 Scala web framework. Fortunately the library has been created as a
 separate module you can download and use on its own.
In addition to working with simple classes, it works well with
 Scala collections. The following example shows how to generate JSON
 strings from a simple Scala Map:
import net.liftweb.json.JsonAST
import net.liftweb.json.JsonDSL._
import net.liftweb.json.Printer.{compact,pretty}

object LiftJsonWithCollections extends App {

 val json = List(1, 2, 3)
 println(compact(JsonAST.render(json)))

 val map = Map("fname" -> "Alvin", "lname" -> "Alexander")
 println(compact(JsonAST.render(map)))

}
That program prints the following output:
 [1,2,3]
{"fname":"Alvin","lname":"Alexander"}
When communicating with other computer systems you’ll want to use
 the compact method as shown, but when
 a human needs to look at your JSON strings, use the pretty method instead:
println(pretty(JsonAST.render(map)))
This changes the map output to
 look like this:
{
 "fname":"Alvin",
 "lname":"Alexander"
}
The Lift-JSON examples in this recipe work well for either objects
 or collections, but when you have an object that
 contains collections, such as a Person class that has a list of friends
 defined as List[Person], it’s best to
 use the Lift-JSON DSL. This is demonstrated in Recipe 15.2.
Gson is
 a Java library that you can use to convert back and forth between Scala
 objects and their JSON representation. From the Gson
 documentation:
There are a few open-source projects that can convert Java
 objects to JSON. However, most of them require that you place Java
 annotations in your classes; something that you can not do if you do
 not have access to the source-code. Most also do not fully support the
 use of Java Generics. Gson considers both of these as very important
 design goals.

I used Gson to generate JSON for a while, but because it’s written
 in Java, it has a few issues when trying to work with Scala collections.
 One such problem is demonstrated in Recipe 15.2.

See Also

	The Lift-JSON
 library

	The Gson
 library

	A project named Json4s
 aims to provide a unified interface for all Scala JSON projects. The
 current package is a port of Lift-JSON, with support for using the
 Java Jackson library as a backend as well.

	spray-json is
 another popular Scala JSON library.

15.2. Creating a JSON String from Classes That Have Collections

Problem

You want to generate a JSON representation of a Scala object that
 contains one or more collections, such as a Person class that has a list of friends or
 addresses.

Solution

Once classes start containing collections, converting them to JSON
 becomes more difficult. In this situation, I prefer to use the Lift-JSON
 domain-specific library (DSL) to generate the JSON.
Lift-JSON version 1

The Lift-JSON library uses its own DSL for generating JSON
 output from Scala objects. As shown in the previous recipe, this isn’t
 necessary for simple objects, but it is necessary once objects become
 more complex, specifically once they contain collections. The benefit
 of this approach is that you have complete control over the JSON that
 is generated.
The following example shows how to generate a JSON string for a
 Person class that has a friends field defined as List[Person]:
import net.liftweb.json._
import net.liftweb.json.JsonDSL._

case class Person(name: String, address: Address) {
 var friends = List[Person]()
}

case class Address(city: String, state: String)

object LiftJsonListsVersion1 extends App {

 //import net.liftweb.json.JsonParser._
 implicit val formats = DefaultFormats

 val merc = Person("Mercedes", Address("Somewhere", "KY"))
 val mel = Person("Mel", Address("Lake Zurich", "IL"))
 val friends = List(merc, mel)
 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))
 p.friends = friends

 // define the json output
 val json =
 ("person" ->
 ("name" -> p.name) ~
 ("address" ->
 ("city" -> p.address.city) ~
 ("state" -> p.address.state)) ~
 ("friends" ->
 friends.map { f =>
 ("name" -> f.name) ~
 ("address" ->
 ("city" -> f.address.city) ~
 ("state" -> f.address.state))
 })
)

 println(pretty(render(json)))

}
The JSON output from this code looks like this:
{
 "person":{
 "name":"Alvin Alexander",
 "address":{
 "city":"Talkeetna",
 "state":"AK"
 },
 "friends":[{
 "name":"Mercedes",
 "address":{
 "city":"Somewhere",
 "state":"KY"
 }
 },{
 "name":"Mel",
 "address":{
 "city":"Lake Zurich",
 "state":"IL"
 }
 }]
 }
}
The JSON-generating code is shown after the “define the json
 output” comment, and is repeated here:
val json =
 ("person" ->
 ("name" -> p.name) ~
 ("address" ->
 ("city" -> p.address.city) ~
 ("state" -> p.address.state)) ~
 ("friends" ->
 friends.map { f =>
 ("name" -> f.name) ~
 ("address" ->
 ("city" -> f.address.city) ~
 ("state" -> f.address.state))
 })
)
As you can see, Lift uses a custom DSL to let you generate the
 JSON, and also have control over how the JSON is generated (as opposed
 to using reflection to generate the JSON). Although you’ll want to
 read the details of the DSL to take on more difficult tasks, the
 basics are straightforward.
The first thing to know is that any Tuple2 generates a JSON field, so a code
 snippet like ("name" -> p.name)
 produces this output:
"name":"Alvin Alexander"
The other important thing to know is that the ~ operator lets you join fields. You can see
 from the example code and output how it works.
You can also refer to objects and methods when generating the
 JSON. You can see this in sections of the code like p.address.city and friends.map { f =>. Writing
 JSON-generating code like this feels just like writing other Scala
 code.

Lift-JSON Version 2

As your classes grow, creating a larger JSON generator in one
 variable becomes hard to read and maintain. Fortunately, with the
 Lift-JSON DSL you can break your JSON-generating code down into small
 chunks to keep the code maintainable. The following code achieves the
 same result as the previous example, but I’ve broken the
 JSON-generating code down into small methods that are easier to
 maintain and reuse:
import net.liftweb.json._
import net.liftweb.json.JsonDSL._

object LiftJsonListsVersion2 extends App {

 val merc = Person("Mercedes", Address("Somewhere", "KY"))
 val mel = Person("Mel", Address("Lake Zurich", "IL"))
 val friends = List(merc, mel)
 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))
 p.friends = friends

 val json =
 ("person" ->
 ("name" -> p.name) ~
 getAddress(p.address) ~
 getFriends(p)
)

 println(pretty(render(json)))

 def getFriends(p: Person) = {
 ("friends" ->
 p.friends.map { f =>
 ("name" -> f.name) ~
 getAddress(f.address)
 })
 }

 def getAddress(a: Address) = {
 ("address" ->
 ("city" -> a.city) ~
 ("state" -> a.state))
 }

}

case class Person(name: String, address: Address) {
 var friends = List[Person]()
}

case class Address(city: String, state: String)
As shown, this approach lets you create methods that can be
 reused. The getAddress method, for
 instance, is called several times in the code.

Discussion

As shown in Recipe 15.1, Gson works via
 reflection, and it works well for simple classes. However, I’ve found it
 to be harder to use when your classes have certain collections. For
 instance, the following code works fine when the list of friends is
 defined as an Array[Person]:
import com.google.gson.Gson
import com.google.gson.GsonBuilder

case class Person(name: String, address: Address) {
 var friends: Array[Person] = _
}

case class Address(city: String, state: String)

/**
 * This approach works with Array.
 */
object GsonWithArray extends App {

 val merc = Person("Mercedes", Address("Somewhere", "KY"))
 val mel = Person("Mel", Address("Lake Zurich", "IL"))
 val friends = Array(merc, mel)
 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))
 p.friends = friends
 val gson = (new GsonBuilder()).setPrettyPrinting.create
 println(gson.toJson(p))

}
Because a Scala Array is backed
 by a Java array, that code works well, generating JSON output that is
 similar to Lift-JSON. However, if you change the Array[Person] to List[Person], Gson removes the list of friends
 from the output:
{
 "name": "Alvin Alexander",
 "address": {
 "city": "Talkeetna",
 "state": "AK"
 },
 "friends": {}
}
Changing the Array to an
 ArrayBuffer also causes problems and
 exposes the internal implementation of an ArrayBuffer:
{
 "name": "Alvin Alexander",
 "address": {
 "city": "Talkeetna",
 "state": "AK"
 },
 "friends": {
 "initialSize": 16,
 "array": [
 {
 "name": "Mercedes",
 "address": {
 "city": "Somewhere",
 "state": "KY"
 }
 },
 {
 "name": "Mel",
 "address": {
 "city": "Lake Zurich",
 "state": "IL"
 }
 },
 null, // this line is repeated 13 more times
 ...
 ...
 null
],
 "size0": 2
 }
}
An ArrayBuffer begins with 16
 elements, and when Gson generates the JSON for the list of friends, it
 correctly includes the two friends, but then outputs the word null 14 times, along with including the other
 output shown.
If you like the idea of generating JSON from your code using
 reflection, see the Gson User Guide link in the See Also section for
 information on how to try to resolve these issues by writing custom
 serializers (creating a JSON string from an object) and deserializers
 (creating an object from a JSON string).

See Also

	The Lift-JSON
 library.

	The Gson User
 Guide shows how to write serializers and
 deserializers.

15.3. Creating a Simple Scala Object from a JSON String

Problem

You need to convert a JSON string into a simple Scala object, such
 as a Scala case class that has no collections.

Solution

Use the Lift-JSON library to convert a JSON string to an instance
 of a case class. This is referred to as
 deserializing the string into an object.
The following code shows a complete example of how to use
 Lift-JSON to convert a JSON string into a case class named MailServer. As its name implies, MailServer represents the information an email
 client needs to connect to a server:
import net.liftweb.json._

// a case class to represent a mail server
case class MailServer(url: String, username: String, password: String)

object JsonParsingExample extends App {

 implicit val formats = DefaultFormats

 // simulate a json string
 val jsonString = """
 {
 "url": "imap.yahoo.com",
 "username": "myusername",
 "password": "mypassword"
 }
 """

 // convert a String to a JValue object
 val jValue = parse(jsonString)

 // create a MailServer object from the string
 val mailServer = jValue.extract[MailServer]
 println(mailServer.url)
 println(mailServer.username)
 println(mailServer.password)

}
In this example, the jsonString
 contains the text you’d expect to receive if you called a web service
 asking for a MailServer instance.
 That string is converted into a Lift-JSON JValue object with the parse function:
val jValue = parse(jsonString)
Once you have a JValue object,
 use its extract method to create a
 MailServer object:
val mailServer = jValue.extract[MailServer]
The JValue class is the root
 class in the Lift-JSON abstract syntax tree (AST), and its extract method builds a case class instance
 from a JSON string.
Working with objects that have collections is a little more
 difficult, and that process is covered in the next recipe.

See Also

	The Lift-JSON
 library

	Lift-JSON
 documentation

15.4. Parsing JSON Data into an Array of Objects

Problem

You have a JSON string that represents an array of objects, and
 you need to deserialize it into objects you can use in your Scala
 application.

Solution

Use a combination of methods from the Lift-JSON library. The
 following example demonstrates how to deserialize the string jsonString into a series of EmailAccount objects, printing each object as
 it is deserialized:
import net.liftweb.json.DefaultFormats
import net.liftweb.json._

// a case class to match the JSON data
case class EmailAccount(
 accountName: String,
 url: String,
 username: String,
 password: String,
 minutesBetweenChecks: Int,
 usersOfInterest: List[String]
)

object ParseJsonArray extends App {

 implicit val formats = DefaultFormats

 // a JSON string that represents a list of EmailAccount instances
 val jsonString ="""
{
 "accounts": [
 { "emailAccount": {
 "accountName": "YMail",
 "username": "USERNAME",
 "password": "PASSWORD",
 "url": "imap.yahoo.com",
 "minutesBetweenChecks": 1,
 "usersOfInterest": ["barney", "betty", "wilma"]
 }},
 { "emailAccount": {
 "accountName": "Gmail",
 "username": "USER",
 "password": "PASS",
 "url": "imap.gmail.com",
 "minutesBetweenChecks": 1,
 "usersOfInterest": ["pebbles", "bam-bam"]
 }}
]
}
"""

 // json is a JValue instance
 val json = parse(jsonString)

 val elements = (json \\ "emailAccount").children
 for (acct <- elements) {
 val m = acct.extract[EmailAccount]
 println(s"Account: ${m.url}, ${m.username}, ${m.password}")
 println(" Users: " + m.usersOfInterest.mkString(","))
 }

}
Running this program results in the following output:
Account: imap.yahoo.com, USERNAME, PASSWORD
 Users: barney,betty,wilma
Account: imap.gmail.com, USER, PASS
 Users: pebbles,bam-bam

Discussion

I use code like this in my SARAH application to
 notify me when I receive an email message from people in the usersOfInterest list. SARAH scans my email
 inbox periodically, and when it sees an email message from people in
 this list, it speaks, “You have new email from Barney and Betty.”
This example begins with some sample JSON stored in a string named
 jsonString. This string is turned
 into a JValue object named json with the parse function. The json object is then searched for all elements
 named emailAccount using the \\ method. This syntax is nice, because it’s
 consistent with the XPath-like methods used in Scala’s XML
 library.
The for loop iterates over the
 elements that are found, and each element is extracted as an EmailAccount object, and the data in that
 object is then printed.
Notice that the EmailAccount
 class has the usersOfInterest field,
 which is defined as List[String]. The
 Lift-JSON library converts this sequence easily, with no additional
 coding required.

See Also

	The Lift-JSON library is well-documented on GitHub
 and Assembla.

	SARAH is
 a voice-interaction application written in Scala.

15.5. Creating Web Services with Scalatra

Problem

You want to be able to build new web services with Scalatra, a lightweight Scala web
 framework similar to the Ruby Sinatra library.

Solution

The recommended approach to create a new Scalatra project is to
 use Giter8, a great
 tool for building SBT directories for new projects.
Assuming you have Giter8 installed, use the g8 command to create a new project with a
 Scalatra template:
$ g8 scalatra/scalatra-sbt
organization [com.example]: com.alvinalexander
package [com.example.app]: com.alvinalexander.app
name [My Scalatra Web App]:
scalatra_version [2.2.0]:
servlet_name [MyScalatraServlet]:
scala_version [2.10.0]:
version [0.1.0-SNAPSHOT]:

Template applied in ./my-scalatra-web-app
When Giter8 finishes, move into the new directory it
 created:
$ cd my-scalatra-web-app
Start SBT in that directory, and then issue the container:start command to start the Jetty
 server:
$ sbt

> container:start
// a lot of output here ...
[info] Started SelectChannelConnector@0.0.0.0:8080
[success] Total time: 11 s, completed May 13, 2013 4:32:08 PM
Then use the following command to enable continuous
 compilation:
> ~ ;copy-resources;aux-compile
1. Waiting for source changes... (press enter to interrupt)
That command is nice; it automatically recompiles your source code
 when it changes.
The Jetty server starts on port 8080 by default. If you switch to a browser
 and go to the URL http://localhost:8080/, you
 should see some default “Hello, world” output, indicating that Scalatra
 is running.
The content displayed at this URL comes from a class named
 MyScalatraServlet, located in the
 project’s src/main/scala/com/alvinalexander/app
 directory:
package com.alvinalexander.app

import org.scalatra._
import scalate.ScalateSupport

class MyScalatraServlet extends MyScalatraWebAppStack {

 get("/") {
 <html>
 <body>
 <h1>Hello, world!</h1>
 Say hello to Scalate.
 </body>
 </html>
 }

}
That’s the entire servlet. If you’re used to building web services
 with “heavier” tools, this can be quite a shock.
The get method shown declares
 that it’s listening to GET requests
 at the / URI. If you try accessing
 another URL like http://localhost:8080/foo in your
 browser, you’ll see output like this in the browser:
Requesting "GET /foo" on servlet "" but only have:
GET /
This is because MyScalatraServlet only has one method, and
 it’s programmed to listen for a GET
 request at the / URI.
Add a new service

To demonstrate how the process of adding a new web service
 works, add a new method that listens to GET requests at the
 /hello URI. To do this, just add the following
 method to the servlet:
get("/hello") {
 <p>Hello, world!</p>
}
A few moments after saving this change to MyScalatraServlet, you should see some
 output in your SBT console. An abridged version of the output looks
 like this:
[info] Compiling 1 Scala source to target/scala-2.10/classes...
[success] Total time: 8 s
[info] Generating target/scala-2.10/resource_managed/main/rebel.xml.
[info] Compiling Templates in Template Directory:
 src/main/webapp/WEB-INF/templates
[success] Total time: 1 s, completed May 28, 2013 1:56:36 PM
2. Waiting for source changes... (press enter to interrupt)
As a result of the ~
 aux-compile command, SBT automatically recompiles your
 source code. Once the code is recompiled, you can go to the
 http://localhost:8080/hello URL in your browser,
 where you’ll see the new output.
Congratulations. By following the steps in this recipe, you
 should have a web service up and running in a matter of
 minutes.

Discussion

Giter8 is a tool for creating SBT project directory structures
 based on templates. The template used in this example is just one of
 many Giter8
 templates. Giter8 requires SBT and another tool named
 Conscript.
 Despite these requirements, the overall installation process is simple,
 and is described in Recipe 18.1.
In addition to the MyScalatraServlet class, this list shows some
 of the most important files in your project:
project/build.scala
project/plugins.sbt
src/main/resources/logback.xml
src/main/scala/com/alvinalexander/app/MyScalatraServlet.scala
src/main/scala/com/alvinalexander/app/MyScalatraWebAppStack.scala
src/main/scala/ScalatraBootstrap.scala
src/main/webapp/WEB-INF/web.xml
src/main/webapp/WEB-INF/templates/layouts/default.jade
src/main/webapp/WEB-INF/templates/views/hello-scalate.jade
src/test/scala/com/alvinalexander/app/MyScalatraServletSpec.scala
Notice that this includes a WEB-INF/web.xml file. If you’re used to the
 Java web programming world, you’ll find that this is a normal web.xml file, albeit a very small one.
 Excluding the boilerplate XML, it has only this entry:
<listener>
 <listener-class>org.scalatra.servlet.ScalatraListener</listener-class>
</listener>
You’ll rarely need to edit this file. Recipe 15.6 shows one instance where you’ll need to
 make a small change to it, but that’s it.
As shown in the list of files, an interesting thing about the
 current Giter8 template for Scalatra is that it uses a project/build.scala file rather than a
 build.sbt file. You can find all of
 Scalatra’s dependencies in that file, including the use of tools such as
 the Scalate template
 engine, specs2, Logback, and Jetty.

See Also

	The Scalatra
 website

	The Giter8
 website

	Recipe 18.1 for how to install Giter8, and use it
 in other scenarios

15.6. Replacing XML Servlet Mappings with Scalatra Mounts

Problem

You want to add new servlets to your Scalatra application, and
 need to know how to add them, including defining their URI
 namespace.

Solution

Scalatra provides a nice way of getting you out of the business of
 declaring your servlets and servlet mappings in the web.xml file. Simply create a boilerplate
 web.xml file like this in the
 src/main/webapp/WEB-INF
 directory:
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <listener>
 <listener-class>org.scalatra.servlet.ScalatraListener</listener-class>
 </listener>

 <servlet-mapping>
 <servlet-name>default</servlet-name>
 <url-pattern>/img/*</url-pattern>
 <url-pattern>/css/*</url-pattern>
 <url-pattern>/js/*</url-pattern>
 <url-pattern>/assets/*</url-pattern>
 </servlet-mapping>
</web-app>
Next, assuming that you’re working with the application created in
 Recipe 15.5, edit the
 src/main/scala/ScalatraBootstrap.scala file
 so that it has these contents:
import org.scalatra._
import javax.servlet.ServletContext
import com.alvinalexander.app._

class ScalatraBootstrap extends LifeCycle {
 override def init(context: ServletContext) {

 // created by default
 context.mount(new MyScalatraServlet, "/*")

 // new
 context.mount(new StockServlet, "/stocks/*")
 context.mount(new BondServlet, "/bonds/*")
 }
}
The two new context.mount lines
 shown tell Scalatra that a class named StockServlet should handle all URI requests
 that begin with /stocks/, and another class named
 BondServlet should handle all URI
 requests that begin with /bonds/.
Next, create a file named src/main/scala/com/alvinalexander/app/OtherServlets.scala
 to define the StockServlet and
 BondServlet classes:
package com.alvinalexander.app

import org.scalatra._
import scalate.ScalateSupport

class StockServlet extends MyScalatraWebAppStack {
 get("/") {
 <p>Hello from StockServlet</p>
 }
}

class BondServlet extends MyScalatraWebAppStack {
 get("/") {
 <p>Hello from BondServlet</p>
 }
}
Assuming your project is still configured to recompile
 automatically, when you access the
 http://localhost:8080/stocks/ and
 http://localhost:8080/bonds/ URLs, you should see
 the content from your new servlets.

Discussion

Scalatra refers to this configuration process as “mounting” the
 servlets, and if you’ve used a filesystem technology like NFS, it does
 indeed feel similar to the process of mounting a remote
 filesystem.
As a result of the configuration, new methods in the StockServlet and BondServlet will be available under the
 /stocks/ and /bonds/ URIs. For
 example, if you define a new method like this in the StockServlet:
get("/foo") {
 <p>Foo!</p>
}
you’ll be able to access this method at the
 /stocks/foo URI, e.g., the
 http://localhost:8080/stocks/foo URL, if you’re
 running on port 8080 on your local
 computer.
In the end, this approach provides the same functionality as
 servlet mappings, but it’s more concise, with the added benefit that
 you’re working in Scala code instead of XML, and you can generally
 forget about the web.xml file after the initial
 configuration.

See Also

	Scalatra
 configuration and deployment guide

15.7. Accessing Scalatra Web Service GET Parameters

Problem

When creating a Scalatra web service, you want to be able to
 handle parameters that are passed into a method using a GET request.

Solution

If you want to let parameters be passed into your Scalatra servlet
 with a URI that uses traditional ?
 and & characters to separate data
 elements, like this:
http://localhost:8080/saveName?fname=Alvin&lname=Alexander
you can access them through the implicit params variable in a get method:
/**
 * The URL
 * http://localhost:8080/saveName?fname=Alvin&lname=Alexander
 * prints: Some(Alvin), Some(Alexander)
 */
get("/saveName") {
 val firstName = params.get("fname")
 val lastName = params.get("lname")
 <p>{firstName}, {lastName}</p>
}
However, Scalatra also lets you use a “named parameters” approach,
 which can be more convenient, and also documents the parameters your
 method expects to receive. Using this approach, callers can access a URL
 like this:
http://localhost:8080/hello/Alvin/Alexander
You can handle these parameters in a get method like this:
get("/hello/:fname/:lname") {
 <p>Hello, {params("fname")}, {params("lname")}</p>
}
As mentioned, a benefit of this approach is that the method
 signature documents the expected parameters.
With this approach, you can use wildcard characters for other
 needs, such as when a client needs to pass in a filename path, where you
 won’t know the depth of the path beforehand:
get("/getFilename/*.*") {
 val data = multiParams("splat")
 <p>{data.mkString("[", ", ", "]")}</p>
}
You can understand this method by looking at a specific example.
 Imagine a GET request to the
 http://localhost:8080/getFilename/Users/Al/tmp/file.txt
 URL. The comments in the following code show how this URL is
 handled:
/**
 * (1) GET http://localhost:8080/getFilename/Users/Al/tmp/file.txt
 */
get("/getFilename/*.*") {

 // (2) creates a Vector(Users/Al/tmp/file, txt)
 val data = multiParams("splat")

 // (3) prints: [Users/Al/tmp/file, txt]
 <pre>{data.mkString("[", ", ", "]")}</pre>

}
This code works because the multiParams method with the splat argument creates a Vector that contains two elements: the strings
 Users/Al/tmp/file and txt. Next, the information is printed back to
 the browser with the data.mkString
 line. In a real-world program, you can put the filename back together by
 merging data(0) and data(1), and then using the filename as
 needed.
There are more methods for parsing GET request parameters with Scalatra,
 including additional uses of wildcard characters, and Rails-like pattern
 matching. See the latest Scalatra documentation for
 more information.

15.8. Accessing POST Request Data with Scalatra

Problem

You want to write a Scalatra web service method to handle POST data, such as handling JSON data sent as
 a POST request.

Solution

To handle a POST request, write
 a post method in your Scalatra
 servlet, specifying the URI the method should listen at:
post("/saveJsonStock") {
 val jsonString = request.body
 // deserialize the JSON ...
}
As shown, access the data that’s passed to the POST request by calling the request.body method.
The Discussion shows an example of how to process JSON data
 received in a post method, and two
 clients you can use to test a post
 method: a Scala client, and a command-line client that uses the Unix
 curl command.

Discussion

Recipe 15.3 shows
 how to convert a JSON string into a Scala object using the Lift-JSON
 library, in a process known as deserialization. In a Scalatra post method, you access a JSON string that has
 been POSTed to your method by calling
 request.body. Once you have that
 string, deserialize it using the approach shown in Recipe 15.3.
For instance, the post method
 in the following StockServlet shows
 how to convert the JSON string it receives as a POST request and deserialize it into a
 Stock object. The comments in the
 code explain each step:
package com.alvinalexander.app

import org.scalatra._
import scalate.ScalateSupport
import net.liftweb.json._

class StockServlet extends MyScalatraWebAppStack {

 /**
 * Expects an incoming JSON string like this:
 * {"symbol":"GOOG","price":"600.00"}
 */
 post("/saveJsonStock") {

 // get the POST request data
 val jsonString = request.body

 // needed for Lift-JSON
 implicit val formats = DefaultFormats

 // convert the JSON string to a JValue object
 val jValue = parse(jsonString)

 // deserialize the string into a Stock object
 val stock = jValue.extract[Stock]

 // for debugging
 println(stock)

 // you can send information back to the client
 // in the response header
 response.addHeader("ACK", "GOT IT")

 }

}

// a simple Stock class
class Stock (var symbol: String, var price: Double) {
 override def toString = symbol + ", " + price
}
The last step to get this working is to add the Lift-JSON
 dependency to your project. Assuming that you created your project as an
 SBT project as shown in Recipe 15.1, add this
 dependency to the libraryDependencies
 declared in the project/build.scala
 file in your project:
"net.liftweb" %% "lift-json" % "2.5+"
Test the POST method with Scala code

As shown in the code comments, the post method expects a JSON string with this
 form:
{"symbol":"GOOG","price":600.00}
You can test your post method
 in a variety of ways, including (a) a Scala POST client or (b) a simple shell script.
 The following PostTester object
 shows how to test the post method
 with a Scala client:
import net.liftweb.json._
import net.liftweb.json.Serialization.write
import org.apache.http.client.methods.HttpPost
import org.apache.http.entity.StringEntity
import org.apache.http.impl.client.DefaultHttpClient

object PostTester extends App {

 // create a Stock and convert it to a JSON string
 val stock = new Stock("AAPL", 500.00)
 implicit val formats = DefaultFormats
 val stockAsJsonString = write(stock)

 // add the JSON string as a StringEntity to a POST request
 val post = new HttpPost("http://localhost:8080/stocks/saveJsonStock")
 post.setHeader("Content-type", "application/json")
 post.setEntity(new StringEntity(stockAsJsonString))

 // send the POST request
 val response = (new DefaultHttpClient).execute(post)

 // print the response
 println("--- HEADERS ---")
 response.getAllHeaders.foreach(arg => println(arg))

}

class Stock (var symbol: String, var price: Double)
The code starts by creating a Stock object and converting the object to a
 JSON string using Lift-JSON. It then uses the methods of the Apache
 HttpClient library to send the JSON string as a POST request: it creates an HttpPost object, sets the header content
 type, then wraps the JSON string as a StringEntity object before sending the
 POST request and waiting for the
 response.
When this test object is run against the Scalatra saveJsonStock method, it results in the
 following output:
--- HEADERS ---
ACK: GOT IT
Content-Type: text/html;charset=UTF-8
Content-Length: 0
Server: Jetty(8.1.8.v20121106)
Note that it receives the ACK
 message that was returned by the Scalatra post method. This isn’t required, but it
 gives the client a way to confirm that the data was properly received
 and processed by the server method (or that it failed).

Test the POST method with a curl command

Another way to test the post
 method is with a Unix shell script. The following curl command sets the Content-type header, and sends a sample JSON
 string to the Scalatra StockServlet
 post method as a POST
 request:
curl \
 --header "Content-type: application/json" \
 --request POST \
 --data '{"symbol":"GOOG", "price":600.00}' \
 http://localhost:8080/stocks/saveJsonStock
On Unix systems, save this command to a file named postJson.sh, and then make it
 executable:
$ chmod +x postJson.sh
Then run it to test your Scalatra web service:
$./postJson.sh
You won’t see any output from this command, but you should see
 the correct debugging output printed by the StockServlet in its output window. Assuming
 that you’re running your Scalatra web service using SBT, the debug
 output will appear there.

Notes

Recent versions of Scalatra use the Json4s library to
 deserialize JSON. This library is currently based on Lift-JSON, so the
 deserialization code will be similar, if not exactly the same. Either
 library will have to be added as a dependency.
The other important parts about this recipe are:
	Knowing to use the post
 method to handle a POST
 request

	Using request.body to get
 the POST data

	Using response.addHeader("ACK",
 "GOT IT") to return a success or failure message to the
 client (though this is optional)

	Having POST request
 client programs you can use

15.9. Creating a Simple GET Request Client

Problem

You want an HTTP client you can use to make GET request calls.

Solution

There are many potential solutions to this problem. This recipe
 demonstrates three approaches:
	A simple use of the scala.io.Source.fromURL method

	Adding a timeout wrapper around scala.io.Source.fromURL to make it more
 robust

	Using the Apache HttpClient library

These solutions are demonstrated in the following sections.
A simple use of scala.io.Source.fromURL

If it doesn’t matter that your web service client won’t time out
 in a controlled manner, you can use this simple method to download the
 contents from a URL:
/**
 * Returns the text (content) from a URL as a String.
 * Warning: This method does not time out when the service is non-responsive.
 */
def get(url: String) = scala.io.Source.fromURL(url).mkString
This GET request method lets
 you call the given RESTful URL to retrieve its content. You can use it
 to download web pages, RSS feeds, or any other content using an HTTP
 GET request.
Under the covers, the Source.fromURL method uses classes like
 java.net.URL and java.io.InputStream, so this method can
 throw exceptions that extend from java.io.IOException. As a result, you may
 want to annotate your method to indicate that:
@throws(classOf[java.io.IOException])
def get(url: String) = io.Source.fromURL(url).mkString

Setting the timeout while using scala.io.Source.fromURL

As mentioned, that simple solution suffers from a significant
 problem: it doesn’t time out if the URL you’re calling is
 unresponsive. If the web service you’re calling isn’t responding, your
 code will become unresponsive at this point as well.
Therefore, a better approach is to write a similar method that
 allows the setting of a timeout value. By using a combination of
 java.net classes and the method
 io.Source.fromInputStream, you can
 create a more robust method that lets you control both the
 connection and read timeout
 values:
/**
 * Returns the text (content) from a REST URL as a String.
 * Inspired by http://matthewkwong.blogspot.com/2009/09/scala-scalaiosource-fromurl-blockshangs.html
 * and http://alvinalexander.com/blog/post/java/how-open-url-read-contents-httpurl-connection-java
 *
 * The `connectTimeout` and `readTimeout` comes from the Java URLConnection
 * class Javadoc.
 * @param url The full URL to connect to.
 * @param connectTimeout Sets a specified timeout value, in milliseconds,
 * to be used when opening a communications link to the resource referenced
 * by this URLConnection. If the timeout expires before the connection can
 * be established, a java.net.SocketTimeoutException
 * is raised. A timeout of zero is interpreted as an infinite timeout.
 * Defaults to 5000 ms.
 * @param readTimeout If the timeout expires before there is data available
 * for read, a java.net.SocketTimeoutException is raised. A timeout of zero
 * is interpreted as an infinite timeout. Defaults to 5000 ms.
 * @param requestMethod Defaults to "GET". (Other methods have not been tested.)
 *
 * @example get("http://www.example.com/getInfo")
 * @example get("http://www.example.com/getInfo", 5000)
 * @example get("http://www.example.com/getInfo", 5000, 5000)
 */
@throws(classOf[java.io.IOException])
@throws(classOf[java.net.SocketTimeoutException])
def get(url: String,
 connectTimeout:Int =5000,
 readTimeout:Int =5000,
 requestMethod: String = "GET") = {
 import java.net.{URL, HttpURLConnection}
 val connection = (new URL(url)).openConnection.asInstanceOf[HttpURLConnection]
 connection.setConnectTimeout(connectTimeout)
 connection.setReadTimeout(readTimeout)
 connection.setRequestMethod(requestMethod)
 val inputStream = connection.getInputStream
 val content = io.Source.fromInputStream(inputStream).mkString
 if (inputStream != null) inputStream.close
 content
}
As the Scaladoc shows, this method can be called in a variety of
 ways, including this:
try {
 val content = get("http://localhost:8080/waitForever")
 println(content)
} catch {
 case ioe: java.io.IOException => // handle this
 case ste: java.net.SocketTimeoutException => // handle this
}
I haven’t tested this method with other request types, such as
 PUT or DELETE, but I have allowed for this
 possibility by making the requestMethod an optional parameter.

Using the Apache HttpClient

Another approach you can take is to use the Apache HttpClient
 library. Before I learned about the previous approaches, I wrote a
 getRestContent method using this
 library like this:
import java.io._
import org.apache.http.{HttpEntity, HttpResponse}
import org.apache.http.client._
import org.apache.http.client.methods.HttpGet
import org.apache.http.impl.client.DefaultHttpClient
import scala.collection.mutable.StringBuilder
import scala.xml.XML
import org.apache.http.params.HttpConnectionParams
import org.apache.http.params.HttpParams

/**
 * Returns the text (content) from a REST URL as a String.
 * Returns a blank String if there was a problem.
 * This function will also throw exceptions if there are problems trying
 * to connect to the url.
 *
 * @param url A complete URL, such as "http://foo.com/bar"
 * @param connectionTimeout The connection timeout, in ms.
 * @param socketTimeout The socket timeout, in ms.
 */
def getRestContent(url: String,
 connectionTimeout: Int,
 socketTimeout: Int): String = {
 val httpClient = buildHttpClient(connectionTimeout, socketTimeout)
 val httpResponse = httpClient.execute(new HttpGet(url))
 val entity = httpResponse.getEntity
 var content = ""
 if (entity != null) {
 val inputStream = entity.getContent
 content = io.Source.fromInputStream(inputStream).getLines.mkString
 inputStream.close
 }
 httpClient.getConnectionManager.shutdown
 content
}

private def buildHttpClient(connectionTimeout: Int, socketTimeout: Int):
DefaultHttpClient = {
 val httpClient = new DefaultHttpClient
 val httpParams = httpClient.getParams
 HttpConnectionParams.setConnectionTimeout(httpParams, connectionTimeout)
 HttpConnectionParams.setSoTimeout(httpParams, socketTimeout)
 httpClient.setParams(httpParams)
 httpClient
}
This requires significantly more code than the Source.fromURL approaches, as well as the
 HttpClient library. If you’re already using the Apache HttpClient
 library for other purposes, this is a viable alternative. As shown in
 Recipes 15.11 and 15.12, the HttpClient library definitely
 has advantages in situations such as working with request
 headers.

Discussion

There are several other approaches you can take to handle this
 timeout problem. One is to use the Akka Futures as a wrapper around the
 Source.fromURL method call. See Recipe 13.9
 for an example of how to use that approach.
Also, new libraries are always being
 released. A library named Newman was released by
 StackMob as this book was in the production process, and looks
 promising. The Newman DSL was inspired by the Dispatch library, but uses
 method names instead of symbols, and appears to be easier to use as a
 result. It also provides separate methods for the GET, POST,
 PUT, DELETE, and HEAD request methods.

See Also

	Matthew Kwong’s Source.fromURL timeout approach.

	If you prefer asynchronous programming, you can mix this
 recipe with Scala Futures, which are demonstrated in Chapter 13. Another option is the Dispatch
 library. As its documentation
 states, “Dispatch is a library for asynchronous HTTP interaction. It
 provides a Scala vocabulary for Java’s async-http-client.”

	Newman, from
 StackMob.

15.10. Sending JSON Data to a POST URL

Problem

You want to send JSON data (or other data) to a POST URL, either from a standalone client, or
 when using a framework that doesn’t provide this type of
 service.

Solution

Create a JSON string using your favorite JSON library, and then
 send the data to the POST URL using
 the Apache HttpClient library. In the following example, the Gson
 library is used to construct a JSON string, which is then sent to a
 server using the methods of the HttpClient library:
import java.io._
import org.apache.commons._
import org.apache.http._
import org.apache.http.client._
import org.apache.http.client.methods.HttpPost
import org.apache.http.impl.client.DefaultHttpClient
import java.util.ArrayList
import org.apache.http.message.BasicNameValuePair
import org.apache.http.client.entity.UrlEncodedFormEntity
import com.google.gson.Gson

case class Person(firstName: String, lastName: String, age: Int)

object HttpJsonPostTest extends App {

 // create our object as a json string
 val spock = new Person("Leonard", "Nimoy", 82)
 val spockAsJson = new Gson().toJson(spock)

 // add name value pairs to a post object
 val post = new HttpPost("http://localhost:8080/posttest")
 val nameValuePairs = new ArrayList[NameValuePair]()
 nameValuePairs.add(new BasicNameValuePair("JSON", spockAsJson))
 post.setEntity(new UrlEncodedFormEntity(nameValuePairs))

 // send the post request
 val client = new DefaultHttpClient
 val response = client.execute(post)
 println("--- HEADERS ---")
 response.getAllHeaders.foreach(arg => println(arg))

}

Discussion

The Gson library is used to construct a JSON string in this code
 because this is a simple example. For more complex cases, you’ll
 probably want to use the Lift-JSON library, as discussed in the first
 several recipes of this chapter.
In this example, once you’ve constructed a JSON string from a
 Scala object, the Apache HttpClient NameValuePair, BasicNameValuePair, and UrlEncodedFormEntity classes are used to set
 an Entity on an HttpPost object. In the last lines of the
 code, the POST request is sent using
 the client.execute call, the response
 is received, and the response headers are printed (though this isn’t
 necessary).

See Also

	Recipe 15.1 and Recipe 15.2.

	The Lift-JSON
 library.

	The Google
 Gson library.

	Dispatch
 is a “library for asynchronous HTTP interaction.”

15.11. Getting URL Headers

Problem

You need to access the HTTP response headers after making an HTTP
 request.

Solution

Use the Apache HttpClient library, and get the headers from the
 HttpResponse object after making a
 request:
import org.apache.http.client.methods.HttpGet
import org.apache.http.impl.client.DefaultHttpClient

object FetchUrlHeaders extends App {

 val get = new HttpGet("http://alvinalexander.com/")
 val client = new DefaultHttpClient
 val response = client.execute(get)
 response.getAllHeaders.foreach(header => println(header))

}
Running that program prints the following header output:
Server: nginx/1.0.10
Date: Sun, 15 Jul 2012 19:10:19 GMT
Content-Type: text/html; charset=utf-8
Connection: keep-alive
Keep-Alive: timeout=20
Content-Length: 28862
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Vary: Accept-Encoding

Discussion

When I worked with a Single Sign-On (SSO) system named OpenSSO
 from Sun (now known as OpenAM), much of the
 work in the sign-on process involved setting and reading header
 information. The HttpClient library greatly simplifies this
 process.

See Also

	Apache
 HttpClient library.

	You may also be able to use the Dispatch
 library for this purpose.

15.12. Setting URL Headers When Sending a Request

Problem

You need to set URL headers when making an HTTP request.

Solution

Use the Apache HttpClient library to set the headers before making
 the request, as shown in this example:
import org.apache.http.client.methods.HttpGet
import org.apache.http.impl.client.DefaultHttpClient

object SetUrlHeaders extends App {

 val url = "http://localhost:9001/baz"
 val httpGet = new HttpGet(url)

 // set the desired header values
 httpGet.setHeader("KEY1", "VALUE1")
 httpGet.setHeader("KEY2", "VALUE2")

 // execute the request
 val client = new DefaultHttpClient
 client.execute(httpGet)

 client.getConnectionManager.shutdown

}

Discussion

If you don’t have a web server to test against, you can use a tool
 like HttpTea to see
 the results of running this program. HttpTea helps to simulate a server
 in a test environment.
Start HttpTea at the command line to listen on port 9001 like this:
$ java -jar HttpTea.jar -l 9001
Now when you run your client program—such as the program shown in
 the Solution—you should see the
 following output from HttpTea, including the headers that were
 set:
Client>>>
GET /baz HTTP/1.1
KEY1: VALUE1
KEY2: VALUE2
Host: localhost:9001
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.1.3 (java 1.5)

See Also

	HttpTea.

	Apache HttpClient
 library.

	You may also be able to use the Dispatch
 library for this purpose.

15.13. Creating a GET Request Web Service with the Play Framework

Problem

You want to create a GET
 request web service using the Play Framework, such as returning a JSON
 string when the web service URI is accessed.

Solution

When working with RESTful web services, you’ll typically be
 converting between one or more model objects and their JSON
 representation.
To demonstrate how a GET
 request might be used to return the JSON representation of an object,
 create a new Play project with the play
 new command:
$ play new WebServiceDemo
Respond to the prompts to create a new Scala application, and then
 move into the WebServiceDemo
 directory that’s created.
Next, assume that you want to create a web service to return an
 instance of a Stock when a client
 makes a GET request at the
 /getStock URI. To do this, first add this line to
 your conf/routes file:
GET /getStock controllers.Application.getStock
Next, create a method named getStock in the default Application controller (apps/controllers/Application.scala), and have
 it return a JSON representation of a Stock object:
package controllers

import play.api._
import play.api.mvc._
import play.api.libs.json._
import models.Stock

object Application extends Controller {

 def index = Action {
 Ok(views.html.index("Your new application is ready."))
 }

 def getStock = Action {
 val stock = Stock("GOOG", 650.0)
 Ok(Json.toJson(stock))
 }

}
That code uses the Play Json.toJson method. Although the code looks
 like you can create Stock as a simple
 case class, attempting to use only a case class will result in this
 error when you access the /getStock URI:
No Json deserializer found for type
 models.Stock. Try to implement an implicit Writes
 or Format for this type.

To get this controller code to work, you need to create an
 instance of a Format object to
 convert between the Stock model
 object and its JSON representation. To do this, create a model file
 named Stock.scala in the app/models directory of your project. (Create
 the directory if it doesn’t exist.)
In that file, define the Stock
 case class, and then implement a play.api.libs.json.Format object. In that
 object, define a reads method to
 convert from a JSON string to a Stock
 object and a writes method to convert
 from a Stock object to a JSON
 string:
package models

case class Stock(symbol: String, price: Double)

object Stock {

 import play.api.libs.json._

 implicit object StockFormat extends Format[Stock] {

 // convert from JSON string to a Stock object (de-serializing from JSON)
 def reads(json: JsValue): JsResult[Stock] = {
 val symbol = (json \ "symbol").as[String]
 val price = (json \ "price").as[Double]
 JsSuccess(Stock(symbol, price))
 }

 // convert from Stock object to JSON (serializing to JSON)
 def writes(s: Stock): JsValue = {
 // JsObject requires Seq[(String, play.api.libs.json.JsValue)]
 val stockAsList = Seq("symbol" -> JsString(s.symbol),
 "price" -> JsNumber(s.price))
 JsObject(stockAsList)
 }

 }

}
The comments in that code help to explain how the reads and writes methods work.
With this code in place, you can now access the getStock web service. If you haven’t already
 done so, start the Play console from within the root directory of your
 project, then issue the run
 command:
$ play

[WebServiceDemo] $ run 8080
Play runs on port 9000 by
 default, but this collides with other services on my system, so I run it
 on port 8080, as shown. Assuming that
 you’re running on port 8080, access
 the http://localhost:8080/getStock URL from a web
 browser. You should see this result in the browser:
{"symbol":"GOOG","price":650.0}

Discussion

When converting from a Stock
 object to its JSON representation, the writes method of your Format object is implicitly used in this line
 of code:
Json.toJson(stock)
Although there are other approaches to converting between objects
 and their JSON representation, implementing the reads and writes methods of a Format object provides a straightforward means
 for this serialization and deserialization process.

See Also

	The Play json package object

15.14. POSTing JSON Data to a Play Framework Web Service

Problem

You want to create a web service using the Play Framework that
 lets users send JSON data to the service using the POST request method.

Solution

Follow the steps from the previous recipe to create a new Play
 project, controller, and model.
Whereas the previous recipe used the writes method of the Format object in the model, this recipe uses
 the reads method. When JSON data is
 received in a POST request, the
 reads method is used to convert from
 the JSON string that’s received to a Stock object. Here’s the code for the reads method:
def reads(json: JsValue): JsResult[Stock] = {
 val symbol = (json \ "symbol").as[String]
 val price = (json \ "price").as[Double]
 JsSuccess(Stock(symbol, price))
}
This method creates a Stock
 object from the JSON value it’s given. (The complete code for the model
 object is shown in the previous recipe.)
With this method added to the model, create a saveStock method in the Application controller:
import play.api._
import play.api.mvc._

object Application extends Controller {

 import play.api.libs.json.Json

 def saveStock = Action { request =>
 val json = request.body.asJson.get
 val stock = json.as[Stock]
 println(stock)
 Ok
 }

}
The saveStock method gets the
 JSON data sent to it from the request
 object, and then converts it with the json.as method. The println statement in the method is used for
 debugging purposes, and prints to the Play command line (the Play
 console).
Finally, add a route that binds a POST request to the desired URI and the
 saveStock method in the Application controller by adding this line to
 the conf/routes file:
POST /saveStock controllers.Application.saveStock
If you haven’t already done so, start the Play console from within
 the root directory of your project, and issue the run command:
$ play

[WebServicesDemo] $ run 8080
With the Play server running, use the following Unix curl command to POST a sample JSON string to your saveStock web service:
curl \
 --header "Content-type: application/json" \
 --request POST \
 --data '{"symbol":"GOOG", "price":900.00}' \
 http://localhost:8080/saveStock
If everything works properly, you should see this output in your
 Play console window:
STOCK: Stock(GOOG,900.0)

Discussion

A few notes about the code:
	The request object is a
 play.api.mvc.AnyContent
 object.

	The request.body is also a
 play.api.mvc.AnyContent
 object.

	The request.body.asJson
 returns an instance of the following: Option[play.api.libs.json.JsValue].

	request.body.asJson.get
 returns a JsValue.

In a real-world web service, once you’ve converted the JSON string
 to an object, you can do anything else you need to do with it, such as
 saving it to a database.

See Also

	The Play json package object

	The Play Request
 trait

Chapter 16. Databases and Persistence

Introduction

With Scala, you can interact with traditional relational databases
 using their JDBC drivers, just like you do in Java. As an example of this,
 the first recipe in this chapter demonstrates how to connect to a MySQL
 database using the “plain old JDBC” approach.
In the real world, once applications grow in size, few people use
 plain old JDBC to work with databases. Typically on those projects you use
 a library, such as the Spring
 Framework, to make development easier and handle issues like
 connection pooling. Therefore, this chapter also demonstrates the few
 changes you’ll need to make to use the Spring JDBC library with Scala. As
 an added benefit, by showing the changes needed to instantiate a bean from
 a Spring application context file, this recipe will help you use other
 Spring libraries with Scala as well. You can use other technologies with
 Scala, such as the Java Persistence API (JPA) and Hibernate, with just a
 few changes.
The Scala community is also developing new approaches to database
 development. The Squeryl and
 Slick libraries both take
 “type-safe” approaches to writing database code. The Squeryl documentation
 states that it’s a “Scala ORM and DSL.” In a manner similar to Hibernate,
 Squeryl lets you write database code like this:
// insert
val bill = people.insert(new Person("Bill"))
val candy = people.insert(new Person("Candy"))

// update
stock.price = 500.00
stocks.update(stock)
With Squeryl’s DSL, you can also write statements like this:
update(stocks)(s =>
 where(s.symbol === "AAPL")
 set(s.price := 500.00)
)
Slick isn’t an object-relational mapping (ORM) tool, but with its
 type-safe approach, it lets you write database access code almost like
 you’re working with a collection. This approach is demonstrated in the
 last recipe in this chapter.
When you get to “big data” projects, it’s nice to know that Scala
 works there as well. There are several Scala drivers available for the
 MongoDB database, including
 Casbah and ReactiveMongo. The recipes in this
 chapter demonstrate how to use the Casbah driver to insert, update, read,
 and delete objects in a MongoDB collection with Scala.
If you want to use Scala to work with Hadoop, Twitter has created a
 project named Scalding that “makes it
 easy to specify Hadoop MapReduce jobs.” Scalding is analogous to the
 Apache Pig project, but is
 tightly integrated with Scala. Scalding and Hadoop are not covered in this
 chapter, but the Scalding
 source code tutorials can help you quickly get up and running with
 Scalding.

16.1. Connecting to MySQL with JDBC

Problem

You want to connect to a MySQL database (or any other database
 with a JDBC driver) from a Scala application using “plain old
 JDBC.”

Solution

Use JDBC just like you would in a Java application. Download the
 MySQL JDBC driver, and then access your database with code like
 this:
package tests

import java.sql.{Connection,DriverManager}

object ScalaJdbcConnectSelect extends App {

 // connect to the database named "mysql" on port 8889 of localhost
 val url = "jdbc:mysql://localhost:8889/mysql"
 val driver = "com.mysql.jdbc.Driver"
 val username = "root"
 val password = "root"
 var connection:Connection = _
 try {
 Class.forName(driver)
 connection = DriverManager.getConnection(url, username, password)
 val statement = connection.createStatement
 val rs = statement.executeQuery("SELECT host, user FROM user")
 while (rs.next) {
 val host = rs.getString("host")
 val user = rs.getString("user")
 println("host = %s, user = %s".format(host,user))
 }
 } catch {
 case e: Exception => e.printStackTrace
 }
 connection.close

}
That code shows how to query a database table named user in a database named mysql. That database name and table name are
 standard in any MySQL installation.
As shown in the example, the format of the MySQL JDBC URL string
 is:
jdbc:mysql://HOST:PORT/DATABASE
In this code I have MySQL running on port 8889 on my computer because it’s the default
 port when using MAMP, a tool that makes
 it easy to run MySQL, Apache, and PHP on Mac OS X systems. If you have
 MySQL running on its standard port (3306), just drop the port off the URL
 string.

Discussion

The easiest way to run this example is to use the Simple Build Tool
 (SBT). To do this, create an SBT directory structure as described in
 Recipe 18.1, then add the MySQL JDBC dependency to the
 build.sbt file:
libraryDependencies += "mysql" % "mysql-connector-java" % "5.1.24"
Copy and paste the code shown in this recipe into a file named
 Test1.scala in the root directory
 of your project, and then run the program:
$ sbt run
You should see some output like this:
host = localhost, user =
host = localhost, user = fred
That output will vary depending on the users actually defined in
 your MySQL database.
This recipe works well for small applications where you want one
 connection to a database, and you don’t mind running simple JDBC SQL
 queries using the Statement, PreparedStatement, and ResultSet classes. For larger applications,
 you’ll want to use a tool that gives you connection pooling
 capabilities, and possibly DSL or ORM capabilities to simplify your SQL
 queries.
If you’re using a different relational database, the approach is
 the same as long as the database provides a JDBC driver. For instance,
 to use PostgreSQL, just
 use the PostgreSQL JDBC
 driver and this information to create a connection:
Class.forName("org.postgresql.Driver")
val url = "jdbc:postgresql://HOST/DATABASE"
val conn = DriverManager.getConnection(url,"username", "password")
Of course your database tables will be different, but the process
 of connecting to the database is the same.

See Also

	The MySQL JDBC
 driver.

	MAMP.

	The Simple Build Tool
 (SBT).

	Recipe 18.1 shows how to create an SBT directory
 structure.

	If you’re new to MySQL and JDBC, I wrote a series of MySQL JDBC
 tutorials that can help you get started.

16.2. Connecting to a Database with the Spring Framework

Problem

You want to connect to a database using the Spring Framework. This gives
 you a nice way to add connection pooling and other capabilities to your
 SQL code.

Solution

Use the same Spring Framework configuration you’ve used in Java
 applications, but convert your Java source code to Scala. The biggest
 changes involve the differences in class casting between Java and Scala,
 and conversions between Java and Scala collections.

Discussion

To demonstrate this, create a basic Spring JDBC example. Start by
 creating a simple SBT project directory structure as demonstrated in
 Recipe 18.1.
Once the SBT directory structure is created, place this Spring
 applicationContext.xml file in the
 src/main/resources
 directory:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="testDao" class="springtests.TestDao">
 <property name="dataSource" ref="basicDataSource"/>
 </bean>

 <bean id="basicDataSource" class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="com.mysql.jdbc.Driver" />
 <property name="url" value="jdbc:mysql://localhost/mysql" />
 <property name="username" value="root" />
 <property name="password" value="root" />
 <property name="initialSize" value="1" />
 <property name="maxActive" value="5" />
 </bean>

</beans>
This file declares that you’ll have a class named TestDao in a package named springtests. This bean declaration will be
 used in the Main object, which you’ll
 create shortly.
This file also lets you connect to a MySQL database named mysql, on the default port (3306) of the localhost server, with the username and
 password both set to root. The
 initialSize and maxActive settings let you control the
 database connection pool settings. Change those properties as needed for
 your system.
You’ll need to add a number of dependencies to your build.sbt file to get Spring to work:
name := "MySQLTest1"

version := "1.0"

scalaVersion := "2.10.1"

libraryDependencies ++= Seq(
 "mysql" % "mysql-connector-java" % "5.1.+",
 "commons-dbcp" % "commons-dbcp" % "1.4",
 "org.springframework" % "spring-core" % "3.1+",
 "org.springframework" % "spring-beans" % "3.1+",
 "org.springframework" % "spring-jdbc" % "3.1+",
 "org.springframework" % "spring-tx" % "3.1+"
)
Alternatively, you can manually download the JAR files that are
 needed and put them in your lib
 directory.
Next, create a file named Main.scala in your root SBT directory with
 the following contents:
package springtests

import org.springframework.context.support.ClassPathXmlApplicationContext

object Main extends App {

 // read the application context file
 val ctx = new ClassPathXmlApplicationContext("applicationContext.xml")

 // get a testDao instance
 val testDao = ctx.getBean("testDao").asInstanceOf[TestDao]
 val numUsers = testDao.getNumUsers
 println("You have this many users: " + numUsers)

}
Note how an instance of the TestDao is instantiated in this object. This
 code is similar to Java, except for the way class casting is handled. As
 shown, Scala uses the asInstanceOf
 method to declare that the testDao
 bean is of the type TestDao.
Next, create another file in the root directory of the project
 named TestDao.scala with these
 contents:
package springtests

import org.springframework.jdbc.core.simple._

class TestDao
extends SimpleJdbcDaoSupport {

 def getNumUsers: Int = {
 val query = "select count(1) from user"
 return getJdbcTemplate.queryForInt(query)
 }

}
Now run the project with the sbt
 run command. You should see some simple output, including the
 number of records in your MySQL user
 database table.
Although this example was created to demonstrate how to use the
 Spring JDBC support with Scala, you can use the steps in this recipe to
 use other Spring libraries in your Scala applications.

See Also

	The Spring
 Framework.

	MAMP.

	Recipe 18.1.

	A project named “Spring Scala” is being created to make it
 easier to use Spring
 in Scala applications.

16.3. Connecting to MongoDB and Inserting Data

Problem

You want to use the MongoDB database with a Scala application, and
 want to learn how to connect to it, and insert and retrieve
 data.

Solution

If you don’t already have a MongoDB installation, download and
 install the MongoDB software per the instructions on its website. (It’s
 simple to install.) Once it’s running, use the Casbah driver with your
 Scala application to interact with MongoDB.
In development, I start my test instance of MongoDB from its
 installation directory with this command:
$ bin/mongod -vvvv --dbpath /Users/Al/data/mongodatabases
This starts the MongoDB server in a verbose mode, using the
 directory shown for its databases. After a lot of output, the last few
 lines from the mongod command look
 like this:
Sun Sep 16 14:27:34 [websvr] admin web console waiting for connections
 on port 28017
Sun Sep 16 14:27:34 [initandlisten] waiting for connections on port 27017
To demonstrate Casbah, build a small application. First, create a
 simple SBT project directory structure, as demonstrated in Recipe 18.1.”
Note
You can follow along by cloning my GitHub
 project.

Second, create your build.sbt
 file, specifically including the Casbah driver dependency:
name := "MongoDBDemo1"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies ++= Seq(
 "org.mongodb" %% "casbah" % "2.6.0",
 "org.slf4j" % "slf4j-simple" % "1.6.4"
)

scalacOptions += "-deprecation"
The SLF4J library shown isn’t necessary for a simple example, but
 including it gets rid of a few warning messages.
Next, put the following code in a file named MongoFactory.scala in the root directory of
 your SBT project:
import com.mongodb.casbah.MongoCollection
import com.mongodb.casbah.MongoConnection

object MongoFactory {

 private val SERVER = "localhost"
 private val PORT = 27017
 private val DATABASE = "portfolio"
 private val COLLECTION = "stocks"

 val connection = MongoConnection(SERVER)
 val collection = connection(DATABASE)(COLLECTION)

}
This object helps to simplify the interactions with a MongoDB
 database. You won’t need all of its functionality for this recipe, but
 it will be used completely in other recipes. If your MongoDB instance is
 running on the default port on localhost, those settings will work fine. If
 you already have a database named portfolio, be sure to use a different
 name.
Next, put the following code in a file named Common.scala, also in the root directory of
 your SBT project:
import com.mongodb.casbah.Imports._

case class Stock (symbol: String, price: Double)

object Common {

 /**
 * Convert a Stock object into a BSON format that MongoDb can store.
 */
 def buildMongoDbObject(stock: Stock): MongoDBObject = {
 val builder = MongoDBObject.newBuilder
 builder += "symbol" -> stock.symbol
 builder += "price" -> stock.price
 builder.result
 }

}
That code includes a simple case class to represent a Stock, and the buildMongoDbObject method in the Common object does the work of converting a
 Stock into a MongoDBObject that can be stored in a MongoDB
 database. The method converts the fields in the Stock object into key/value pairs that
 correspond to the MongoDB “document” paradigm. The MongoDBObject from the Casbah driver
 simplifies the conversion process.
With this code in place, it’s time to create a simple test program
 to insert several Stock instances
 into the database. Put the following code into a file named Insert.scala in the root directory of your
 SBT project:
import com.mongodb.casbah.Imports._
import Common._

object Insert extends App {

 // create some Stock instances
 val apple = Stock("AAPL", 600)
 val google = Stock("GOOG", 650)
 val netflix = Stock("NFLX", 60)

 // save them to the mongodb database
 saveStock(apple)
 saveStock(google)
 saveStock(netflix)

 // our 'save' method
 def saveStock(stock: Stock) {
 val mongoObj = buildMongoDbObject(stock)
 MongoFactory.collection.save(mongoObj)
 }

}
The interesting part of this code is the saveStock method. It does the following
 work:
	It takes a Stock object as
 an input parameter.

	It converts the Stock
 object to a MongoDBObject with
 the buildMongoDbObject
 method.

	It saves the mongoObj
 object to the database collection with the save method of the collection instance. The collection is an instance of MongoCollection, which is obtained from
 the MongoFactory.

With everything in place, run this object with sbt run, and it will quietly insert the data
 into the collection.

Discussion

In Recipe 16.5, you’ll see how to search a MongoDB
 collection using Scala and Casbah, but for the time being, if you open
 up the MongoDB command-line client and switch to the portfolio database, you can see the new
 documents in the stocks
 collection.
To do this, move to your MongoDB installation bin directory, start the mongo command-line client, move to the
 portfolio database, and list all the
 documents in the stocks collection,
 using these commands:
$ mongo

> use portfolio

> db.stocks.find()
{"_id" : ObjectId("5023fad43004f32afda0b550"), "symbol" : "AAPL", "price" : 600 }
{"_id" : ObjectId("5023fad43004f32afda0b551"), "symbol" : "GOOG", "price" : 650 }
{"_id" : ObjectId("5023fad43004f32afda0b552"), "symbol" : "NFLX", "price" : 60 }
This shows the three objects the Insert application inserted. You can remove
 those objects with the following command if you’d like to modify and run
 the program again:
> db.stocks.remove()
To help you work with MongoDB, I’ve created a Scala + MongoDB +
 Casbah example project on GitHub that
 includes the source code shown in this recipe, as well as additional
 code from the Find, Update, and Delete recipes in this chapter.

See Also

	MongoDB

	Casbah

	The MongoCollection API

16.4. Inserting Documents into MongoDB with insert, save, or +=

Problem

You want to save documents to a MongoDB collection from a Scala
 application.

Solution

Use the insert, save, or +=
 methods of the Casbah MongoCollection
 class.
In order to save a document to your MongoDB collection, you can
 use the MongoCollection insert
 method:
collection.insert(buildMongoDbObject(apple))
collection.insert(buildMongoDbObject(google))
collection.insert(buildMongoDbObject(netflix))
You can also use the save
 method:
collection.save(buildMongoDbObject(apple))
collection.save(buildMongoDbObject(google))
collection.save(buildMongoDbObject(netflix))
And you can also use the +=
 method:
collection += buildMongoDbObject(apple)
collection += buildMongoDbObject(google)
collection += buildMongoDbObject(netflix)
collection += buildMongoDbObject(amazon)
The intention of the insert and
 save methods is obvious; you’re
 inserting/saving data to your MongoDB collection. The third approach is
 a little different; it looks like what you’re doing is adding an object
 to a collection. In fact, you’re saving your object to the database
 collection with each += call.
Here’s what the += approach
 looks like in a complete program:
import com.mongodb.casbah.Imports._
import Common._

object Insert2 extends App {

 val collection = MongoFactory.collection

 // create some Stock instances
 val apple = Stock("AAPL", 600)
 val google = Stock("GOOG", 650)
 val netflix = Stock("NFLX", 60)
 val amazon = Stock("AMZN", 220)

 // add them to the collection (+= does the save)
 collection += buildMongoDbObject(apple)
 collection += buildMongoDbObject(google)
 collection += buildMongoDbObject(netflix)
 collection += buildMongoDbObject(amazon)

}
To use the insert or save methods, simply replace the += lines with their equivalent lines.

Discussion

If you’d like to experiment with this code, just add it to the SBT
 project that you started in Recipe 16.3. The buildMongoDbObject method in the Common class of that recipe converts a Scala
 object to a MongoDBObject that can be
 saved to the database using save,
 insert, or +=.
When choosing between save,
 insert, or +=, there’s obviously a big difference in
 style between += and the other
 methods. The save and insert methods accept a variety of different
 parameters and both return a WriteResult, so you have a number of options
 to choose from.
You’ll encounter the WriteResult and WriteConcern classes while working with the
 Casbah driver. These classes come from the MongoDB Java driver, which
 Casbah wraps. WriteResult lets you
 access the results of the previous write, and has methods like getField, getError, and getLastError.
WriteConcern provides options
 to let you control the write behavior, including behavior about network
 errors, slaves, timeouts, and forcing fsync to disk.

See Also

	The WriteResult Javadoc

	The WriteConcern Javadoc

16.5. Searching a MongoDB Collection

Problem

You want to find objects in your MongoDB collection using Scala
 and the Casbah driver.

Solution

Use the find* methods of the
 MongoCollection class to get the
 elements you want, specifically the find and findOne methods.
Assuming that you have everything set up as shown in Recipe 16.3, the following
 code demonstrates these techniques:
	How to find all the documents in a collection

	How to find one document that matches your search
 criteria

	How to find all documents that match your search
 criteria

	How to limit the number of results returned by a find query

Here’s the code:
import com.mongodb.casbah.Imports._

object Find extends App {

 val collection = MongoFactory.collection

 // (1) find all stocks with find()
 // -------------------------------
 println("\n___ all stocks ___")
 var stocks = collection.find
 stocks.foreach(println)

 // (2) search for an individual stock
 // ----------------------------------
 println("\n___ .findOne(query) ___")
 val query = MongoDBObject("symbol" -> "GOOG")
 val result = collection.findOne(query) // Some
 val stock = convertDbObjectToStock(result.get) // convert it to a Stock
 println(stock)

 // (3) find all stocks that meet a search criteria
 // ---
 println("\n___ price $gt 500 ___")
 stocks = collection.find("price" $gt 500)
 stocks.foreach(println)

 // (4) find all stocks that match a search pattern
 // ---
 println("\n___ stocks that begin with 'A' ___")
 stocks = collection.find(MongoDBObject("symbol" -> "A.*".r))
 stocks.foreach(println)

 // (5) find.limit(2)
 // -------------------------------
 println("\n___ find.limit(2) ___")
 stocks = collection.find.limit(2)
 stocks.foreach(println)

 // warning: don't use the 'get' method in real-world code
 def convertDbObjectToStock(obj: MongoDBObject): Stock = {
 val symbol = obj.getAs[String]("symbol").get
 val price = obj.getAs[Double]("price").get
 Stock(symbol, price)
 }

}
Save that code to a file named Find.scala in the root directory of your SBT
 project, and then run the object with SBT:
$ sbt run
If you’ve been working through the MongoDB recipes in this
 chapter, or you cloned my Scala + Casbah +
 MongoDB project from GitHub, you may have multiple main methods in your project. If so, SBT
 detects those main methods and asks
 which one you want to run. To run the Find object, select it from the list SBT
 displays:
Multiple main classes detected, select one to run:

 [1] Find
 [2] Insert
 [3] Insert2

Enter number: 1
Running the Find object after
 populating the database in the earlier recipes results in the following
 output:
___ all stocks ___
{ "_id" : { "$oid" : "502683283004b3802ec47df2"} , "symbol" : "AAPL" ,
 "price" : 600.0}
{ "_id" : { "$oid" : "502683283004b3802ec47df3"} , "symbol" : "GOOG" ,
 "price" : 650.0}
{ "_id" : { "$oid" : "502683283004b3802ec47df4"} , "symbol" : "NFLX" ,
 "price" : 60.0}
{ "_id" : { "$oid" : "502683283004b3802ec47df5"} , "symbol" : "AMZN" ,
 "price" : 220.0}

___ .findOne(query) ___
Stock(GOOG,650.0)

___ price $gt 500 ___
{ "_id" : { "$oid" : "502683283004b3802ec47df2"} , "symbol" : "AAPL" ,
 "price" : 600.0}
{ "_id" : { "$oid" : "502683283004b3802ec47df3"} , "symbol" : "GOOG" ,
 "price" : 650.0}

___ stocks that begin with 'A' ___
{ "_id" : { "$oid" : "502683283004b3802ec47df2"} , "symbol" : "AAPL" ,
 "price" : 600.0}
{ "_id" : { "$oid" : "502683283004b3802ec47df5"} , "symbol" : "AMZN" ,
 "price" : 220.0}

___ find.limit(2) ___
{ "_id" : { "$oid" : "502683283004b3802ec47df2"} , "symbol" : "AAPL" ,
 "price" : 600.0}
{ "_id" : { "$oid" : "502683283004b3802ec47df3"} , "symbol" : "GOOG" ,
 "price" : 650.0}

Discussion

In the first query, the find
 method returns all documents from the specified collection. This method
 returns a MongoCursor, and the code
 iterates over the results using that cursor.
In the second query, the findOne method is used to find one stock that
 matches the search query. The query is built by creating a MongoDBObject with the desired attributes. In
 this example, that’s a stock whose symbol is GOOG. The findOne method is called to get the result,
 and it returns an instance of Some[MongoDBObject].
In this example, result.get is
 called on the next line, but in the real world, it’s a better practice
 to use a for loop or a match
 expression:
collection.findOne(query) match {
 case Some(Stock) =>
 // convert it to a Stock
 println(convertDbObjectToStock(result.get))
 case None =>
 println("Got something else")
}
Of course, how you implement that will vary depending on your
 needs.
The convertDbObjectToStock
 method does the reverse of the buildMongoDbObject method shown in the earlier
 recipes, and converts a MongoDBObject
 to a Stock instance.
The third query shows how to search for all stocks whose price is greater than 500:
stocks = collection.find("price" $gt 500)
This again returns a MongoCursor, and all matches are
 printed.
Casbah includes other methods besides $gt, such as $gte, $lt,
 and $lte. You can use multiple
 operators against one field like this:
"price" $gt 50 $lte 100
You can also query against multiple fields by joining
 tuples:
val query: DBObject = ("price" $gt 50 $lte 100) ++ ("priceToBook" $gt 1)
See the Casbah
 documentation for more examples of creating Casbah-style
 queries.
In the fourth query, a simple regular expression pattern is used
 to search for all stocks whose symbol begins with the letter A:
stocks = collection.find(MongoDBObject("symbol" -> "A.*".r))
Notice that the r method is
 called on a String to create the
 query. This converts the String to a
 Regex, as demonstrated in the
 REPL:
scala> "A.*".r
res0: scala.util.matching.Regex = A.*
The fifth query demonstrates how to use the limit method to limit the number of results
 that are returned:
stocks = collection.find.limit(2)
Because MongoDB is typically used to store a
 lot of data, you’ll want to use limit to control the amount of data you get
 back from a query.
The MongoCollection class also
 has a findByID method that you can
 use when you know the ID of your object. Additionally, there are
 findAndModify and findAndRemove methods, which are discussed in
 other recipes in this chapter.

See Also

	Casbah
 documentation

	The MongoCollection class

	The MongoDB
 tutorial

16.6. Updating Documents in a MongoDB Collection

Problem

You want to update one or more documents in a MongoDB
 collection.

Solution

Use either the findAndModify or
 update methods from the Casbah
 MongoCollection class, as shown in
 this example:
import com.mongodb.casbah.Imports._
import Common._

object Update extends App {

 val collection = MongoFactory.collection

 // findAndModify
 // -------------

 // create a new Stock object
 val google = Stock("GOOG", 500)
 // search for an existing document with this symbol
 var query = MongoDBObject("symbol" -> "GOOG")
 // replace the old document with one based on the 'google' object
 val res1 = collection.findAndModify(query, buildMongoDbObject(google))
 println("findAndModify: " + res1)

 // update
 // ------

 // create a new Stock
 var apple = Stock("AAPL", 1000)
 // search for a document with this symbol
 query = MongoDBObject("symbol" -> "AAPL")
 // replace the old document with the 'apple' instance
 val res2 = collection.update(query, buildMongoDbObject(apple))
 println("update: " + res2)

}
In both cases, you build a document object to replace the existing
 document in the database, and then create a query object, which lets you
 find what you want to replace. Then you call either findAndModify or update to perform the update.
For instance, in the findAndModify example, a new Stock instance named google is created, and it’s used to replace
 the old document in the database whose symbol is GOOG. The buildMongoDbObject method is used to convert
 the google instance into a MongoDB
 document before the update method is
 called.
The difference between the two methods can be seen in the
 output:
findAndModify: Some({ "_id" : { "$oid" : "502683283004b3802ec47df3"} ,
 "symbol" : "GOOG" , "price" : 500.0})
update: N/A
Whereas the findAndModify
 method returns the old document (the document that was replaced), the
 update method returns a WriteResult instance.
If you’ve been following along with the MongoDB recipes in this
 chapter, save that file as Update.scala in the root directory of your
 project, and run it with sbt
 run.

16.7. Accessing the MongoDB Document ID Field

Problem

You want to get the ID field for a document you’ve inserted into a
 MongoDB collection.

Solution

Perform a query to get the document you want, and then call
 get("_ID") on the resulting MongoDBObject, like this:
basicDbObject.get("_id")
The following example shows how to get the ID field from a
 DBObject after inserting the object
 into the database. I first create a Stock as usual, convert the Stock to a MongoDBObject, perform the insert, and then
 get the ID value, which is added to the MongoDBObject after the insert operation is
 performed:
import com.mongodb.casbah.Imports._
import Common._

object InsertAndGetId extends App {

 val coll = MongoFactory.collection

 // get the _id field after an insert
 val amazon = Stock("AMZN", 220)
 val amazonMongoObject = buildMongoDbObject(amazon)
 coll.insert(amazonMongoObject)
 println("ID: " + amazonMongoObject.get("_id"))

}
If you just need to get the ID field from a MongoDBObject after performing a query, the
 following complete example shows how to do that with a match
 expression:
import com.mongodb.casbah.Imports._

object GetId extends App {

 val collection = MongoFactory.collection

 val query = MongoDBObject("symbol" -> "GOOG")
 collection.findOne(query) match {
 case Some(result) => println("ID: " + result.get("_id"))
 case None => println("Stock not found")
 }

}
A match expression is used in this example because the findOne(query) will return None if no matching documents are found in the
 collection. You can also use the usual getOrElse and foreach techniques to work with an Option.
If you’ve been following along with the MongoDB recipes in this
 chapter, save those files with the names InsertAndGetId.scala and GetId.scala in the root directory of your
 project, and run them with sbt
 run.

See Also

	Recipe 20.6 for many examples of working with methods
 that return an Option

16.8. Deleting Documents in a MongoDB Collection

Problem

You want to delete one or more documents in a MongoDB
 collection.

Solution

Use the findAndRemove method of
 the Casbah MongoCollection class to
 delete one document at a time, or use the remove method to delete one or more documents
 at a time.
The following code uses findAndRemove to delete the document whose
 symbol field is AAPL:
val query = MongoDBObject("symbol" -> "AAPL")
val result = collection.findAndRemove(query)
println("result: " + result)
When a document is deleted, the findAndRemove method returns the document that
 was deleted, wrapped in a Some:
result: Some({ "_id" : { "$oid" : "50255d1d03644925d83b3d07"} ,
 "symbol" : "AAPL" , "price" : 600.0})
If nothing is deleted, such as when you try to delete a document
 that doesn’t exist, the result is None:
result: None
Therefore, you’ll probably want to handle this using a match
 expression, as shown in the previous recipe.
To delete multiple documents from the collection, specify your
 search criteria when using the remove
 method, such as deleting all documents whose price field is greater than 500:
collection.remove("price" $gt 500)
The following method is dangerous: it shows how to delete all
 documents in the current collection:
// removes all documents
def deleteAllObjectsFromCollection(coll: MongoCollection) {
 coll.remove(MongoDBObject.newBuilder.result)
}
(Be careful with that one.)

Discussion

If you’ve been following along with the MongoDB recipes in this
 chapter, you can experiment with these approaches by saving the
 following code to a file named DeleteApple.scala in the root directory of
 your SBT project:
import com.mongodb.casbah.Imports._

object DeleteApple extends App {

 var collection = MongoFactory.collection

 // delete AAPL
 val query = MongoDBObject("symbol" -> "AAPL")
 val result = collection.findAndRemove(query)
 println("result: " + result)

}
Note
You can also clone my complete Scala + Casbah + MongoDB project
 from GitHub.

If your database has a document whose symbol field is AAPL, when you run this object with sbt run, the result will show the document
 that was deleted:
result: Some({ "_id" : { "$oid" : "5026b22c300478e85a145d43"} ,
 "symbol" : "AAPL" , "price" : 600.0})
The following complete code shows how to delete multiple
 documents:
import com.mongodb.casbah.Imports._

object DeleteMultiple extends App {

 var collection = MongoFactory.collection

 // delete all documents with price > 200
 collection.remove("price" $gt 200)

}
In this case, the remove method
 doesn’t return anything interesting, so I don’t assign it to a
 result.

See Also

	My Scala + Casbah +
 MongoDB sample project

16.9. A Quick Look at Slick

When it comes to working with relational databases, you can use the
 wealth of Java solutions that are available, but other tools are emerging
 to provide a “Scala way” of working with databases. One of these solutions
 is a library named Slick,
 from Typesafe, a company that
 was founded by the creators of the Scala language. According to their
 documentation, Slick provides a “modern database query and access
 library.”
This recipe doesn’t cover Slick in depth because it’s well
 documented on the Typesafe website, but instead offers a quick look at
 what Slick offers.
In short, Slick lets you define database table objects in your code
 like this:
object Authors extends Table[(Int, String, String)]("AUTHORS") {
 def id = column[Int]("ID", O.PrimaryKey)
 def firstName = column[String]("FIRST_NAME")
 def lastName = column[String]("LAST_NAME")
 def * = id ~ firstName ~ lastName
}

object Books extends Table[(Int, String)]("BOOKS") {
 def id = column[Int]("ID", O.PrimaryKey)
 def title = column[String]("TITLE")
 def * = id ~ title
}

object BookAuthors extends Table[(Int, Int, Int)]("BOOK_AUTHORS") {
 def id = column[Int]("ID", O.PrimaryKey)
 def bookId = column[Int]("BOOK_ID")
 def authorId = column[Int]("AUTHOR_ID")
 def bookFk = foreignKey("BOOK_FK", bookId, Books)(_.id)
 def authorFk = foreignKey("AUTHOR_FK", authorId, Authors)(_.id)
 def * = id ~ bookId ~ authorId
}
Having defined your tables in Scala code, you can refer to the
 fields in the tables in a type-safe manner. You can create your database
 tables using Scala code, like this:
(Books.ddl ++ Authors.ddl ++ BookAuthors.ddl).create
A simple query to retrieve all records from the resulting books database table looks like this:
val q = Query(Books)
q.list.foreach(println)
You can filter queries using a filter method:
val q = Query(Books).filter(_.title.startsWith("Zen"))
q.list.foreach(println)
You can write a join like this:
val q = for {
 b <- Books
 a <- Authors
 ba <- BookAuthors if b.id === ba.bookId && a.id === ba.authorId
} yield (b.title, a.lastName)
q.foreach(println)
Insert, update, and delete expressions follow the same pattern.
 Because you declared the database design in Scala code, Slick makes
 working with a database feel like working with collections.
Though I appreciate a good DSL, one thing I always look for in a
 database library is a way to break out of the library to let me write my
 own SQL queries, and Slick allows this as well.
As mentioned, the Slick
 documentation is thorough, so it’s not covered in this chapter.
 See the Slick website for
 more information.

Chapter 17. Interacting with Java

Introduction

In general, the ability to easily mix Scala and Java code is pretty
 seamless and amazing. In most cases, you can create an SBT project, put
 your Scala code in src/main/scala,
 put your Java code in src/main/java,
 and it “just works.” For instance, the recipes on web services in Chapter 15 provide many examples of calling existing Java
 libraries from Scala code.
In my Scala/Java interactions, the biggest issues I’ve run into deal
 with the differences between their collections libraries. However, I’ve
 always been able to work through those problems with Scala’s JavaConversions object.
If you’re going to be accessing Scala code from Java, the other
 problem you can run into is that there are things you can do in Scala that
 don’t map well to Java. If you’re going to use Scala features like
 implicit conversions and parameters, currying, traits that have
 implemented methods, and other advanced features, you’ll want to keep that
 Scala code away from your public API.
Finally, for some cases such as serialization, methods with varargs
 parameters, and creating JavaBean-like classes in Scala, it’s important to
 know the annotations that are available to you.

17.1. Going to and from Java Collections

Problem

You’re using Java classes in a Scala application, and those
 classes either return Java collections, or require Java collections in
 their method calls.

Solution

Use the methods of Scala’s JavaConversions object to make the conversions
 work.
For instance, the java.util.ArrayList class is commonly used in
 Java applications, and you can simulate receiving an ArrayList from a method in the REPL, like
 this:
scala> def nums = {
 | var list = new java.util.ArrayList[Int]()
 | list.add(1)
 | list.add(2)
 | list
 | }
nums: java.util.ArrayList[Int]
Even though this method is written in Scala, when it’s called, it
 acts just as though it was returning an ArrayList from a Java method:
scala> val list = nums
list: java.util.ArrayList[Int] = [1, 2]
However, because it’s a Java collection, I can’t call the foreach method on it that I’ve come to know
 and love in Scala, because it isn’t there:
scala> list.foreach(println)
<console>:10: error:
value foreach is not a member of java.util.ArrayList[Int]
 list.foreach(println)
 ^
But by importing the methods from the JavaConversions object, the ArrayList magically acquires a foreach method:
scala> import scala.collection.JavaConversions._
import scala.collection.JavaConversions._

scala> list.foreach(println)
1
2
This “magic” comes from the power of Scala’s implicit conversions,
 which are demonstrated in Recipe 1.10.

Discussion

When you get a reference to a Java collections object, you can
 either use that object as a Java collection (such as using its Iterator), or you can convert that collection
 to a Scala collection. Once you become comfortable with Scala collection
 methods like foreach, map, etc., you’ll definitely want to treat it
 as a Scala collection, and the way to do that is to use the methods of
 the JavaConversions object.
As a more thorough example of how the JavaConversions methods work, assume you have
 a Java class named JavaExamples with
 the following getNumbers
 method:
// java
public static List<Integer> getNumbers() {
 List<Integer> numbers = new ArrayList<Integer>();
 numbers.add(1);
 numbers.add(2);
 numbers.add(3);
 return numbers;
}
You can attempt to call that method from Scala code, as shown in
 this example:
val numbers = JavaExamples.getNumbers()
numbers.foreach(println) // this won't work
But this code will fail with the following compiler error:
value 'foreach' is not a member of java.util.List[Integer]
To solve this problem, you need to import the JavaConversions.asScalaBuffer method. When you
 do this, you can either explicitly call the asScalaBuffer method, or let it be used
 implicitly. The explicit call looks like
 this:
import scala.collection.JavaConversions.asScalaBuffer

val numbers = asScalaBuffer(JavaExamples.getNumbers)
numbers.foreach(println)

// prints 'scala.collection.convert.Wrappers$JListWrapper'
println(numbers.getClass)
The implicit use looks like this:
import scala.collection.JavaConversions.asScalaBuffer

val numbers = JavaExamples.getNumbers
numbers.foreach(println)

// prints 'java.util.ArrayList'
println(numbers.getClass)
The println(numbers.getClass)
 calls show that there’s a slight difference in the result between the
 explicit and implicit uses. Using the explicit asScalaBuffer method call makes the numbers object an instance of collection.convert.Wrap-pers$JListWrapper, whereas the implicit use
 shows that numbers is an ArrayList. As a practical matter, you can use
 either approach, depending on your preferences about working with
 implicit conversions; they both let you call foreach, map, and other Scala sequence methods.
You can repeat the same example using a Java Map and HashMap. First, create this method in a
 JavaExamples class:
// java
public static Map<String, String> getPeeps() {
 Map<String, String> peeps = new HashMap<String, String>();
 peeps.put("captain", "Kirk");
 peeps.put("doctor", "McCoy");
 return peeps;
}
Then, before calling this method from your Scala code, import the
 appropriate JavaConversions
 method:
import scala.collection.JavaConversions.mapAsScalaMap
You can then call the mapAsScalaMap method explicitly, or allow it
 to be called implicitly:
// explicit call
val peeps1 = mapAsScalaMap(JavaExamples.getPeeps)

// implicit conversion
val peeps2 = JavaExamples.getPeeps
Again there is a difference between the types of the map objects.
 In this case, peeps1, which used the
 explicit method call, has a type of collection.con-vert.Wrappers$JMapWrapper, whereas peeps2 has a type of java.util.HashMap.
Note that the JavaConversions
 class has been through a number of changes, and although you’ll see a
 large number of conversion methods in your IDE, many of them are
 deprecated. See the latest Scaladoc for the JavaConversions object for up-to-date
 information.
Conversion tables

One interesting thing that happens during the process of
 converting Java collections is that you learn more about the Scala
 collections. For instance, given their names, you might expect a Scala
 List and a Java List to convert back and forth between each
 other, but that isn’t the case. A Java List is much more like a Scala Seq or a mutable Buffer.
This is shown in Table 17-1, which shows the
 two-way conversions that the JavaConversions object allows between Java
 and Scala collections. This table is adapted from the JavaConversions
 documentation.
Table 17-1. The two-way conversions provided by the JavaConversions
 object
	Scala
 collection
	Java
 collection

	collection.Iterable
	java.lang.Iterable

	collection.Iterable
	java.util.Collection

	collection.Iterator
	java.util.{Iterator,
 Enumeration}

	collection.mutable.Buffer
	java.util.List

	collection.mutable.Set
	java.util.Set

	collection.mutable.Map
	java.util.{Map,
 Dictionary}

	collection.mutable.ConcurrentMap
	java.util.concurrent.ConcurrentMap

As an example of the two-way conversions shown in Table 17-1, the JavaConversions object provides methods that
 convert between a Java List and a
 Scala Buffer. The asScalaBuffer method converts a Java
 List to a Scala Buffer, and bufferAsJavaList converts in the opposite
 direction, from a Buffer to a
 List.

Going from Scala collections to Java collections

So far you’ve looked primarily at converting Java collections to
 Scala collections. You may also need to go in the other direction,
 from a Scala collection to a Java collection.
If you’re converting a Scala collection to a Java collection, in
 addition to the two-way conversions shown in Table 17-1, the one-way
 conversions shown in Table 17-2 are available.
 Again, these have been adapted from the JavaConversions Scaladoc.
Table 17-2. The Scala to Java one-way conversions provided by the
 JavaConversions class
	Scala
 collection
	Java
 collection

	collection.Seq
	java.util.List

	collection.mutable.Seq
	java.util.List

	collection.Set
	java.util.Set

	collection.Map
	java.util.Map

	collection.mutable.Map[String,String]
	java.util.Properties

For example, assume you want to call the following sum method declared in a Java class named
 ConversionExamples, which expects a
 java.util.List<Integer>:
// java
public static int sum(List<Integer> list) {
 int sum = 0;
 for (int i: list) { sum = sum + i; }
 return sum;
}
Putting the conversion tables to work, the following examples
 show how to pass a Seq, ArrayBuffer, and ListBuffer to the sum method:
import scala.collection.JavaConversions._
import scala.collection.mutable._

val sum1 = ConversionExamples.sum(seqAsJavaList(Seq(1, 2, 3)))
val sum2 = ConversionExamples.sum(bufferAsJavaList(ArrayBuffer(1,2,3)))
val sum3 = ConversionExamples.sum(bufferAsJavaList(ListBuffer(1,2,3)))
There are many other collection conversion possibilities, and
 hopefully these examples will get you started on the right
 path.

The JavaConverters object

The Scala
 JavaConverters object lets you perform
 conversions in a manner similar to the examples shown, though they
 don’t offer implicit conversions. Instead they require you to
 explicitly call asJava or asScala methods to perform the conversions.
 Be careful, because the object also contains many deprecated
 methods.

See Also

	The JavaConversions object

	The JavaConverters object

17.2. Add Exception Annotations to Scala Methods to Work with
 Java

Problem

You want to let Java users know that a method can throw one or
 more exceptions so they can handle those exceptions with
 try/catch blocks.

Solution

Add the @throws annotation to
 your Scala methods so Java consumers will know which methods can throw
 exceptions and what exceptions they throw.
For example, the following Scala code shows how to add an @throws annotation to let callers know that
 the exceptionThrower method can throw
 an Exception:
// scala
class Thrower {

 @throws(classOf[Exception])
 def exceptionThrower {
 throw new Exception("Exception!")
 }

}
With your Scala method annotated like that, it will work just like
 a Java method that throws an exception. If you attempt to call exceptionThrower from a Java class without
 wrapping it in a try/catch block,
 or declaring that your Java method throws an exception, the compiler (or
 your IDE) will give you the following error:
unreported exception java.lang.Exception; must be caught or declared to be thrown
In your Java code, you’ll write a
 try/catch block as usual to handle
 the exception:
// java
Thrower t = new Thrower();
try {
 t.exceptionThrower();
} catch (Exception e) {
 System.err.println("Caught the exception.");
 e.printStackTrace();
}
If you want to declare that your Scala method throws multiple
 exceptions, add an annotation for each exception:
@throws(classOf[IOException])
@throws(classOf[LineUnavailableException])
@throws(classOf[UnsupportedAudioFileException])
def playSoundFileWithJavaAudio {
 // exception throwing code here ...
}

Discussion

If you don’t mark the Scala exceptionThrower method with the @throws annotation, a Java developer
 can call it without using a
 try/catch block in her method, or
 declaring that her method throws an exception. For example, you can
 define the Scala method as follows, without declaring that it throws an
 exception:
//scala
def exceptionThrower {
 throw new Exception("Exception!")
}
This method can then be called from Java:
// java
public static void main(String[] args) {
 Thrower t = new Thrower();
 t.exceptionThrower();
}
However, when the Java developer calls exceptionThrower, the uncaught exception will
 cause the Java method to fail:
[error] (run-main) java.lang.Exception: Exception!
java.lang.Exception: Exception!
 at Thrower.exceptionThrower(Thrower.scala:6)
 at Main.main(Main.java:9)
As shown, if a Java consumer doesn’t know an exception can be
 thrown, it can wreak havoc on her application.

17.3. Using @SerialVersionUID and Other Annotations

Problem

You want to specify that a class is serializable, and set the
 serialVersionUID. More generally, you
 want to know the syntax for using annotations in your Scala code, and
 know which annotations are available.

Solution

Use the Scala @SerialVersionUID
 annotation while also having your class extend the Serializable trait:
@SerialVersionUID(1000L)
class Foo extends Serializable {
 // class code here
}
Note that Scala has a serializable annotation, but it has been
 deprecated since version 2.9.0. The serializable annotation Scaladoc
 includes the following note:
instead of @serializable class C, use class C extends Serializable

Discussion

In addition to the @SerialVersionUID annotation and the Serializable trait, Scala has other
 annotations that should be used for various purposes, including the
 cloneable, remote, transient, and volatile annotations. Based primarily on the
 “A Tour of Scala Annotations” web
 page, Table 17-3 shows a mapping of
 Scala annotations to their Java equivalents.
Table 17-3. Scala annotations and their Java equivalents
	Scala
	Java

	scala.beans.BeanProperty
	No equivalent. When added
 to a class field, it results in getter and setter methods being
 generated that match the JavaBean specification.

	scala.cloneable
	java.lang.Cloneable

	scala.deprecated
	java.lang.Deprecated

	scala.inline
	Per the Scaladoc,
 @inline “requests that the
 compiler should try especially hard to inline the annotated
 method.”

	scala.native
	The Java native keyword.

	scala.remote
	java.rmi.Remote

	scala.serializable
	java.io.Serializable

	scala.SerialVersionUID
	serialVersionUID field.

	scala.throws
	throws keyword.

	scala.transient
	transient keyword.

	scala.unchecked
	No equivalent. According
 to its Scaladoc, it designates that “the annotated entity should
 not be considered for additional compiler
 checks.”

	scala.annotation.varargs
	Used on a field in a
 method, it instructs the compiler to generate a Java
 varargs-style parameter.

	scala.volatile
	volatile keyword.

As one example of these annotations, the current nightly version
 of the Scala Remote Scaladoc
 states that the following Scala code and Java code are
 equivalent:
// scala
@remote trait Hello {
 def sayHello(): String
}

// java
public interface Hello extends java.rmi.Remote {
 String sayHello() throws java.rmi.RemoteException;
}
Recipe 17.6 provides examples of the BeanProperty annotation.

See Also

	The Serializable trait is
 deprecated

	“A Tour of
 Scala Annotations”

	Recipe 17.5 discusses the
 @varargs annotation, and Recipe 17.6 discusses
 JavaBeans

17.4. Using the Spring Framework

Problem

You want to use the Java Spring Framework library in your Scala
 application.

Solution

In my experience, the only real changes in using the Spring
 Framework in Scala applications involve how you cast the objects you
 instantiate from your Spring application context file, and that’s only
 because the casting processes in Scala and Java are different.
To demonstrate this, create an empty SBT project. (See Recipe 18.1, if necessary.)
 Within that project, create a Spring applicationContext.xml file in the src/main/resources directory with the
 following contents:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="dog" class="scalaspring.Dog">
 <constructor-arg value="Fido" />
 </bean>

 <bean id="cat" class="scalaspring.Cat">
 <constructor-arg value="Felix" />
 </bean>

</beans>
This file declares that there are two classes, one named Dog and the other named Cat, in a package named scalaspring. You can’t tell it from looking at
 this file, but as you’ll see shortly, both the Dog and Cat
 classes extend a base Animal
 class.
Next, create a simple Scala object in a file named SpringExample.scala in the root directory of
 your project with a main method to
 read the applicationContext.xml
 file and create instances of the Dog
 and Cat classes:
package scalaspring

import org.springframework.context.support.ClassPathXmlApplicationContext

object ScalaSpringExample extends App {

 // open & read the application context file
 val ctx = new ClassPathXmlApplicationContext("applicationContext.xml")

 // instantiate the dog and cat objects from the application context
 val dog = ctx.getBean("dog").asInstanceOf[Animal]
 val cat = ctx.getBean("cat").asInstanceOf[Animal]

 // let them speak
 dog.speak
 cat.speak

}
In this code, the applicationContext.xml file is loaded, the
 dog and cat instances are created from their bean
 definitions in the application context, and their speak methods are executed.
Next, define the Dog and
 Cat classes in a file named Animals.scala, along with their abstract
 parent class Animal. You can also
 save this file in the root directory of your SBT project:
package scalaspring

abstract class Animal(name: String) {
 def speak: Unit // asbtract
}

class Dog(name: String) extends Animal(name) {
 override def speak {
 println(name + " says Woof")
 }
}

class Cat(name: String) extends Animal(name) {
 override def speak {
 println(name + " says Meow")
 }
}
The base Animal class requires
 that the concrete classes have a speak method, and the Dog and Cat
 classes define their speak methods in
 different ways. The Dog and Cat classes are defined using a one-argument
 constructor, and if you look back at the application context file,
 you’ll see that the names Fido and
 Felix are used in their Spring bean
 definitions.
Next, add Spring as a dependency to your build.sbt file. A basic file looks like
 this:
name := "Scala Spring Example"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies += "org.springframework" % "spring" % "2.5.6"
As mentioned, you should place the applicationContext.xml file in your project’s
 src/main/resources folder. This
 listing shows all the files in my project:
./Animals.scala
./build.sbt
./SpringExample.scala
./src/main/resources/applicationContext.xml
With everything in place, run the project with the usual sbt run command. You’ll see a lot of output,
 including these lines, showing that the program ran successfully:
$ sbt run

Fido says Woof
Felix says Meow
Note
You can put the two Scala source files under the src/main/scala directory if you prefer, but
 for simple examples like this, I put them in the root directory of my
 SBT project.

Discussion

Although there was a bit of boilerplate work in this example, the
 only major differences between using Scala and Java are these two lines
 of code in the ScalaSpringExample
 object:
val dog = ctx.getBean("dog").asInstanceOf[Animal]
val cat = ctx.getBean("cat").asInstanceOf[Animal]
That’s because this is how you cast classes in Scala. In Java,
 these same lines of code would look like this:
Animal dog = (Animal)ctx.getBean("dog");
Animal cat = (Animal)ctx.getBean("cat");

See Also

	Recipe 6.1 provides other examples of
 casting in Scala

	Recipe 16.2 shows another Scala Spring
 example

	The “Spring Scala” project aims to make it easier to use the
 Spring
 Framework in Scala

17.5. Annotating varargs Methods

Problem

You’ve created a Scala method with a varargs field, and would like
 to be able to call that method from Java code.

Solution

When a Scala method has a field that takes a variable number of
 arguments, mark it with the @varargs
 annotation.
For example, the printAll
 method in the following Scala class is marked with @varargs so it can be called as desired from
 Java:
package varargs

import scala.annotation.varargs

class Printer {

 @varargs def printAll(args: String*) {
 args.foreach(print)
 println
 }

}
The printAll method can now be
 called from a Java program with a variable number of parameters, as
 shown in this example:
package varargs;

public class Main {

 public static void main(String[] args) {
 Printer p = new Printer();
 p.printAll("Hello");
 p.printAll("Hello, ", "world");
 }

}
When this code is run, it results in the following output:
Hello
Hello, world

Discussion

If the @varargs annotation
 isn’t used on the printAll method,
 the Java code shown won’t even compile, failing with the following
 compiler errors:
Main.java:7: printAll(scala.collection.Seq<java.lang.String>) in
varargs.Printer cannot be applied to (java.lang.String)
[error] p.printAll("Hello");
[error] ^

Main.java:8: printAll(scala.collection.Seq<java.lang.String>) in
varargs.Printer cannot be applied to (java.lang.String,java.lang.String)
[error] p.printAll("Hello, ", "world");
[error] ^
Without the @varargs
 annotation, from a Java perspective, the printAll method appears to take a scala.collection.Seq<java.lang.String>
 as its argument.

17.6. When Java Code Requires JavaBeans

Problem

You need to interact with a Java class or library that accepts
 only classes that conform to the JavaBean specification.

Solution

Use the @BeanProperty
 annotation on your fields, also making sure you declare each field as a
 var.
The @BeanProperty annotation
 can be used on fields in a Scala class constructor:
import scala.reflect.BeanProperty

class Person(@BeanProperty var firstName: String,
 @BeanProperty var lastName: String) {
 override def toString = s"Person: $firstName $lastName"
}
It can also be used on the fields in a Scala class:
import scala.reflect.BeanProperty

class EmailAccount {
 @BeanProperty var username: String = ""
 @BeanProperty var password: String = ""
 override def toString = s"Email Account: ($username, $password)"
}
To demonstrate this, create an SBT project, then save the
 following code to a file named Test.scala in the root directory of the
 project:
package foo

import scala.reflect.BeanProperty

class Person(@BeanProperty var firstName: String,
 @BeanProperty var lastName: String) {
}

class EmailAccount {
 @BeanProperty var username: String = ""
 @BeanProperty var password: String = ""
}
This code shows how to use the @BeanProperty annotation on class constructor
 parameters, as well as the fields in a class.
Next, create a directory named src/main/java/foo, and save the following
 Java code in a file named Main.java
 in that directory:
package foo;

public class Main {

 public static void main(String[] args) {

 // create instances
 Person p = new Person("Regina", "Goode");
 EmailAccount acct = new EmailAccount();

 // demonstrate 'setter' methods
 acct.setUsername("regina");
 acct.setPassword("secret");

 // demonstrate 'getter' methods
 System.out.println(p.getFirstName());
 System.out.println(p.getLastName());
 System.out.println(acct.getUsername());
 System.out.println(acct.getPassword());

 }

}
This Java code demonstrates how to create instances of the Scala
 Person and EmailAccount classes, and access the JavaBean
 methods of those classes. When the code is run with sbt run, you’ll see the following output,
 showing that all the getter and setter methods work:
$ sbt run
[info] Running foo.Main
Regina
Goode
regina
secret

Discussion

You can see how the @BeanProperty annotation works by compiling a
 simple class and then disassembling it. First, save these contents to a
 file named Person.scala:
import scala.reflect.BeanProperty

class Person(@BeanProperty var name: String,
 @BeanProperty var age: Int) {
}
Then compile the class:
$ scalac Person.scala
After it’s compiled, disassemble it with the javap command:
$ javap Person

Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject{
 public java.lang.String name();
 public void name_$eq(java.lang.String);
 public void setName(java.lang.String);
 public int age();
 public void age_$eq(int);
 public void setAge(int);
 public int getAge();
 public java.lang.String getName();
 public Person(java.lang.String, int);
}
As you can see from the disassembled code, the methods getName, setName, getAge, and setAge have all been generated because of the
 @BeanProperty annotation.
Note that if you declare your fields as type val, the “setter” methods (setName, setAge) won’t be generated:
Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject{
 public java.lang.String name();
 public int age();
 public int getAge();
 public java.lang.String getName();
 public Person(java.lang.String, int);
}
Without these methods, your class will not follow the JavaBean
 specification.
As a final example, if the @BeanProperty annotation is removed from all
 fields, you’re left with this code:
class Person(var firstName: String, var lastName: String)
When you compile this code with scalac and then disassemble it with javap, you’ll see that no getter or setter
 methods are generated (except for those that follow the Scala
 convention):
Compiled from "Person.scala"
public class Person extends java.lang.Object{
 public java.lang.String firstName();
 public void firstName_$eq(java.lang.String);
 public java.lang.String lastName();
 public void lastName_$eq(java.lang.String);
 public Person(java.lang.String, java.lang.String);
}

See Also

	My tutorial about using the
 Java SnakeYaml library in Scala shows more examples of the
 @BeanProperty annotation.

17.7. Wrapping Traits with Implementations

Problem

You’ve written a Scala trait with implemented methods and need to
 be able to use those methods from a Java application.

Solution

You can’t use the implemented methods of a Scala trait from Java,
 so wrap the trait in a class.
Assuming you have a Scala trait named MathTrait with a method named sum that you want to access from Java code,
 create a Scala class named MathTraitWrapper that wraps MathTrait:
// scala
package foo

// the original trait
trait MathTrait {
 def sum(x: Int, y: Int) = x + y
}

// the wrapper class
class MathTraitWrapper extends MathTrait
In your Java code, extend the MathTraitWrapper class, and access the
 sum method:
// java
package foo;

public class JavaMath extends MathTraitWrapper {

 public static void main(String[] args) {
 new JavaMath();
 }

 public JavaMath() {
 System.out.println(sum(2,2));
 }

}
This code works as expected, printing the number 4 when it is run.

Discussion

A Java class can’t extend a Scala trait that has implemented
 methods. To demonstrate the problem, first create a trait with a simple
 implemented method named sum:
package foo

trait MathTrait {
 def sum(x: Int, y: Int) = x + y
}
Next, to attempt to use this trait from Java, you have a choice of
 trying to extend it or implement it. Let’s first try to
 extend it:
package foo;

public class JavaMath extends MathTrait {}
By the time you finish typing that code, you see the following
 compiler error message:
The type MathTrait cannot be the superclass of JavaMath;
a superclass must be a class
Next, you can attempt to implement the trait,
 but intuitively you know that won’t work, because in Java you implement
 interfaces, and this trait has implemented
 behavior, so it’s not a regular Java interface:
package foo;

public class JavaMath implements MathTrait {}
This code leads to the following compiler error:
The type JavaMath must implement the inherited abstract method
MathTrait.sum(int, int)
You could implement a sum method in your JavaMath class, but that defeats the purpose
 of trying to use the sum method
 that’s already written in the Scala MathTrait.
Other attempts

You can try other things, such as attempting to create an
 instance of the MathTrait and
 trying to use the sum method, but
 this won’t work either:
// java
package foo;

public static void main(String[] args) {
 MathTrait trait = new MathTrait(); // error, won't compile
 int sum = trait.sum(1,2);
 System.out.println("SUM = " + sum);
}
Trying to instantiate a MathTrait instance results in this compiler
 error:
foo.MathTrait is abstract; cannot be instantiated
[error] MathTrait trait = new MathTrait();
[error] ^
You may already know what the problem is, but to be clear, let’s
 see what class files are generated on the Scala side. In an SBT
 project, the class files are located in the following
 directory:
$PROJECT/target/scala-2.10.0/classes/foo
If you move into that directory and list the files, you’ll see
 that two files related to the Scala MathTrait trait have been created:
MathTrait.class
MathTrait$class.class
You can see the problem by disassembling these files with
 javap. First, the MathTrait.class file:
$ javap MathTrait
Compiled from "MathTrait.scala"
public interface foo.MathTrait{
 public abstract int sum(int, int);
}
Next, the MathTrait$class.class file:
$ javap MathTrait\$class
Compiled from "MathTrait.scala"
public abstract class foo.MathTrait$class extends java.lang.Object{
 public static int sum(foo.MathTrait, int, int);
 public static void $init$(foo.MathTrait);
}
The problem with trying to work with the Scala MathTrait from a Java perspective is that
 MathTrait looks like an interface,
 and MathTrait$class looks like an
 abstract class. Neither one will let you use the logic in the sum method.
Because MathTrait looks like
 just an interface, you realize you might be able to create a Java
 class that implements that interface, and then override the sum method:
// java
package foo;

public class JavaMath implements MathTrait {

 public int sum(int x, int y) {
 return x + y;
 }
 public static void main(String[] args) {
 JavaMath math = new JavaMath();
 System.out.println(math.sum(1,1));
 }

}
This does indeed work, but for the purposes of this recipe, it
 doesn’t really matter. The purpose of trying to use the trait was to
 use the behavior of the trait’s sum
 method, and there’s no way to do this from Java without creating a
 Scala wrapper class.
In a last desperate attempt, you might try to call super.sum(x,y) from your Java method, like
 this:
// java
public int sum(int x, int y) {
 return super.sum(x, y);
}
But that won’t work either, failing with the following error
 message:
cannot find symbol
[error] symbol : method sum(int,int)
[error] location: class java.lang.Object
[error] return super.sum(x,y);
[error] ^
The only way to solve the problem is to wrap the trait with a
 class on the Scala side, which was demonstrated in the
 Solution.
To summarize: If you’re writing a Scala API that will be used by
 Java clients, don’t expose traits that have implemented behavior in
 your public API. If you have traits like that, wrap them in a class
 for your Java consumers.

Chapter 18. The Simple Build Tool (SBT)

Introduction

Although you can use Ant and Maven to build your Scala projects,
 SBT, or the Simple Build
 Tool, is the de facto build tool for Scala applications. SBT makes
 the basic build and dependency management tasks simple, and lets you use
 the Scala language itself to conquer more difficult tasks.
SBT uses the same directory structure as Maven, and like Maven, it
 uses a “convention over configuration” approach that makes the build
 process incredibly easy for basic projects. Because it provides a
 well-known, standard build process, if you work on one Scala project
 that’s built with SBT, it’s easy to move to another project that also uses
 SBT. The project’s directory structure will be the same, and you’ll know
 that you should look at the build.sbt
 file and the optional project/*.scala
 files to see how the build process is configured.
Like Maven, under the covers, SBT’s dependency management system is
 handled by Apache Ivy.
 This means that all those Java projects that have been created and
 packaged for use with Maven over the years can easily be used by SBT.
 Additionally, other JAR files not in an Ivy/Maven repository can simply be
 placed in your project’s lib folder,
 and SBT will automatically find them.
As a result of all these features, with very little effort on your
 part, SBT lets you build projects that contain both Scala and Java code,
 unit tests, and both managed and unmanaged dependencies.
Note
All examples in this chapter were tested with SBT version
 0.12.3.

18.1. Creating a Project Directory Structure for SBT

Problem

SBT doesn’t include a command to create a new project, and you’d
 like to quickly and easily create the directory structure for a new
 project.

Solution

Use either a shell script or a tool like Giter8 to create your
 project’s directory structure. Both approaches are shown here.
Use a shell script

SBT uses the same directory structure as Maven, and for simple
 needs, you can generate a compatible structure using a shell script.
 For example, the following Unix shell script creates the initial set
 of files and directories you’ll want for most projects:
#!/bin/sh
mkdir -p src/{main,test}/{java,resources,scala}
mkdir lib project target

create an initial build.sbt file
echo 'name := "MyProject"

version := "1.0"

scalaVersion := "2.10.0"' > build.sbt
Just save that code as a shell script on Unix systems (or Cygwin
 on Windows), make it executable, and run it inside a new project
 directory to create all the subdirectories SBT needs, as well as an
 initial build.sbt file.
Assuming this script is named mkdirs4sbt, and it’s on your path, the
 process looks like this:
/Users/Al/Projects> mkdir MyNewProject

/Users/Al/Projects> cd MyNewProject

/Users/Al/Projects/MyNewProject> mkdirs4sbt
If you have the tree command
 on your system and run it from the current directory, you’ll see that
 the basic directory structure looks like this:
.
|-- build.sbt
|-- lib
|-- project
|-- src
| |-- main
| | |-- java
| | |-- resources
| | |-- scala
| |-- test
| |-- java
| |-- resources
| |-- scala
|-- target
This is just a simple starter script, but it helps to show how
 easy it is to create a basic SBT directory structure.
Note
The build.sbt file is
 SBT’s basic configuration file. You define most settings that SBT
 needs in this file, including specifying library dependencies,
 repositories, and any other basic settings your project requires.
 I’ll demonstrate many examples of it in the recipes in this
 chapter.

Use Giter8

Although that script shows how simple building a basic directory
 structure is, Giter8 is an excellent
 tool for creating SBT directory structures with specific project
 needs. It’s based on a template system, and the templates usually
 contain everything you need to create a skeleton SBT project that’s
 preconfigured to use one or more Scala tools, such as ScalaTest,
 Scalatra, and many others.
The Giter8 templates that you can use are listed on GitHub.
 As a demonstration of how this works, the following example shows how
 to use the scalatra/scalatra-sbt
 template.
To create a project named “NewApp,” Giter8 prompts you with a
 series of questions, and then creates a newapp folder for your project. To
 demonstrate this, move to a directory where you normally create your
 projects, then start Giter8 with the g8 command, giving it the name of the
 template you want to use:
/Users/Al/Projects> g8 scalatra/scalatra-sbt

organization [com.example]: com.alvinalexander
package [com.example.app]: com.alvinalexander.newapp
name [My Scalatra Web App]: NewApp
scalatra_version [2.2.0]:
servlet_name [MyScalatraServlet]: NewAppServlet
scala_version [2.10.0]:
version [0.1.0-SNAPSHOT]:

Template applied in ./newapp
Because I answered the name
 prompt with NewApp, Giter8 creates
 a subdirectory under the current directory named newapp. It contains the following files and
 directories:
newapp/.gitignore
newapp/project/build.properties
newapp/project/build.scala
newapp/project/plugins.sbt
newapp/README.md
newapp/sbt
newapp/src/main/resources/logback.xml
newapp/src/main/scala/com/alvinalexander/newapp/NewAppServlet.scala
newapp/src/main/scala/com/alvinalexander/newapp/NewappStack.scala
newapp/src/main/scala/ScalatraBootstrap.scala
newapp/src/main/webapp/WEB-INF/templates/layouts/default.jade
newapp/src/main/webapp/WEB-INF/templates/views/hello-scalate.jade
newapp/src/main/webapp/WEB-INF/web.xml
newapp/src/test/scala/com/alvinalexander/newapp/NewAppServletSpec.scala
In this example, Giter8 creates all the configuration files and
 Scalatra stub files you need to have a skeleton Scalatra project up
 and running in just a minute or two.

Giter8 notes

At the time of this writing, I had a problem with the current
 Scalatra template, and had to add this line to the build.sbt file in my root project directory
 to get the template to work:
scalaVersion := "2.10.0"
To run a Scalatra project, enter the SBT shell from your
 operating system command line, and then run the container:start command:
/Users/Al/Projects/newapp> sbt

> container:start
This command starts the Jetty server running on port 8080 on your computer, so you can easily
 test your installation by accessing the
 http://localhost:8080/ URL from a browser.
In the case of using a new template like this, SBT may have a
 lot of files to download. Fear not—once they’re
 downloaded, your new Scalatra project should be up and running, and
 all of these downloads are required only during the first sbt run.

Discussion

As shown in the Solution, because the SBT directory structure is
 standard and based on the Maven directory structure, you can create your
 own tool, or use other tools that are built for this purpose.
For simple SBT projects, I’ve created an improved version of the
 shell script shown in the Solution. I named it sbtmkdirs, and you can download it from the
 URL shown in the See Also section. Like Giter8, this script prompts you
 with several questions, and optionally creates .gitignore and README.md files, along with a full build.sbt file. I use this script whenever I
 want to create a Scala project where I don’t need a template.
As demonstrated, Giter8 works by downloading project templates
 from GitHub. Giter8 requires SBT and another tool named Conscript, so to
 install and use Giter8, you’ll need to follow these steps:
	Install SBT.

	Install Conscript.

	Install Giter8.

Fortunately those projects are well documented, and it takes just
 a few minutes to install all three tools.
There have been a couple of times when I’ve used Giter8 and it
 failed to download a project template. I don’t remember the exact error
 messages, but this was the most recent one:
$ g8 scalatra/scalatra-sbt

Unable to find github repository: scalatra/scalatra-sbt.g8 (master)
Each time this has happened, I’ve upgraded Conscript and Giter8 to
 their latest versions, and the problem has gone away.
Note
Conscript is an interesting tool that works with GitHub projects
 for the purpose of “installing and updating Scala programs.” Its
 purpose and installation process are well documented at its
 website.
Giter8 currently uses a Java installer. Installing it on a Mac
 OS X system failed when I double-clicked the JAR file, but when I ran
 it from the command line (using the java
 -jar approach), it installed successfully.

See Also

	The SBT
 website

	Information about installing SBT

	My sbtmkdirs script

	The Giter8
 website

	There are currently over thirty
 Giter8 templates

	The Conscript
 website

18.2. Compiling, Running, and Packaging a Scala Project with SBT

Problem

You want to use SBT to compile and run a Scala project, and
 package the project as a JAR file.

Solution

Create a directory layout to match what SBT expects, then run
 sbt compile to compile your project,
 sbt run to run your project, and
 sbt package to package your project
 as a JAR file.
To demonstrate this, create a new SBT project directory structure
 as shown in Recipe 18.1,
 and then create a file named Hello.scala in the src/main/scala directory with these
 contents:
package foo.bar.baz

object Main extends App {
 println("Hello, world")
}
Unlike Java, in Scala, the file’s package name doesn’t have to
 match the directory name. In fact, for simple tests like this, you can
 place this file in the root directory of your SBT project, if you
 prefer.
From the root directory of the project, you can compile the
 project:
$ sbt compile
Run the project:
$ sbt run
Package the project:
$ sbt package

Discussion

The first time you run SBT, it may take a while to download all
 the dependencies it needs, but after that first run, it will download
 new dependencies only as needed. The commands executed in the Solution,
 along with their output, are shown here:
$ sbt compile

[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Set current project to Basic (in build file:/Users/Al/SbtTests/)
[success] Total time: 0 s

$ sbt run

[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Set current project to Basic (in build file:/Users/Al/SbtTests/)
[info] Running foo.bar.baz.Main
Hello, world
[success] Total time: 1 s

$ sbt package

[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Set current project to Basic (in build file:/Users/Al/SbtTests/)
[info] Packaging /Users/Al/SbtTests/target/scala-2.10/basic_2.10-1.0.jar ...
[info] Done packaging.
[success] Total time: 0 s
Because compile is a dependency
 of run, you don’t have to run
 compile before each run; just type sbt
 run.
The JAR file created with sbt
 package is a normal Java JAR file. You can list its contents
 with the usual jar tvf
 command:
$ jar tvf target/scala-2.10/basic_2.10-1.0.jar
 261 Sat Apr 13 13:58:44 MDT 2013 META-INF/MANIFEST.MF
 0 Sat Apr 13 13:58:44 MDT 2013 foo/
 0 Sat Apr 13 13:58:44 MDT 2013 foo/bar/
 0 Sat Apr 13 13:58:44 MDT 2013 foo/bar/baz/
 2146 Sat Apr 13 13:57:52 MDT 2013 foo/bar/baz/Main$.class
 1003 Sat Apr 13 13:57:52 MDT 2013 foo/bar/baz/Main.class
 759 Sat Apr 13 13:57:52 MDT 2013 foo/bar/baz/Main$delayedInit$body.class
You can also execute the main method in the JAR file with the
 Scala interpreter:
$ scala target/scala-2.10/basic_2.10-1.0.jar
Hello, world
SBT commands

As with any Java-based command, there can be a little startup
 lag time involved with running SBT commands, so when you’re using SBT
 quite a bit, it’s common to run these commands in interactive mode
 from the SBT shell prompt to improve the speed of the process:
$ sbt

> compile
> run
> package
You can run multiple commands at one time, such as running
 clean before compile:
> clean compile
At the time of this writing, there are 247 SBT commands
 available (which I just found out by hitting the Tab key at the SBT
 shell prompt, which triggered SBT’s tab completion). Table 18-1 shows a list of
 the most common commands.
Table 18-1. Descriptions of the most common SBT commands
	Command
	Description

	clean
	Removes all generated
 files from the target
 directory.

	compile
	Compiles source code
 files that are in src/main/scala, src/main/java, and the root
 directory of the project.

	~ compile
	Automatically
 recompiles source code files while you’re running SBT in
 interactive mode (i.e., while you’re at the SBT command
 prompt).

	console
	Compiles the source
 code files in the project, puts them on the classpath, and
 starts the Scala interpreter (REPL).

	doc
	Generates API
 documentation from your Scala source code using scaladoc.

	help <command>
	Issued by itself, the
 help command lists the
 common commands that are currently available. When given a
 command, help provides a
 description of that command.

	inspect
 <setting>
	Displays information
 about <setting>. For
 instance, inspect
 library-dependencies displays information about the
 libraryDependencies
 setting. (Variables in build.sbt are written in camelCase,
 but at the SBT prompt, you type them using this hyphen format
 instead of camelCase.)

	package
	Creates a JAR file (or
 WAR file for web projects) containing the files in src/main/scala, src/main/java, and resources in
 src/main/resources.

	package-doc
	Creates a JAR file
 containing API documentation generated from your Scala source
 code.

	publish
	Publishes your project
 to a remote repository. See Recipe 18.15.

	publish-local
	Publishes your project
 to a local Ivy repository. See Recipe 18.15.

	reload
	Reloads the build
 definition files (build.sbt, project/*.scala, and project/*.sbt), which is necessary
 if you change them while you’re in an interactive SBT
 session.

	run
	Compiles your code, and
 runs the main class from
 your project, in the same JVM as SBT. If your project has
 multiple main methods (or
 objects that extend App),
 you’ll be prompted to select one to run.

	test
	Compiles and runs all
 tests.

	update
	Updates external
 dependencies.

There are many other SBT commands available, and when you use
 plug-ins, they can also make their own commands available. For
 instance, Recipe 18.7 shows that the sbteclipse plug-in adds an
 eclipse command. See the
 SBT documentation for more information.

Continuous compiling

As mentioned, you can eliminate the SBT startup lag time by
 starting the SBT interpreter in “interactive mode.” To do this, type
 sbt at your operating system
 command line:
$ sbt

>
When you issue your commands from the SBT shell, they’ll run
 noticeably faster.
As shown in the Solution, you can issue the compile command from within the SBT shell,
 but you can also take this a step further and continuously compile
 your source code by using the ~
 compile command instead. When you issue this command, SBT
 watches your source code files, and automatically recompiles them
 whenever it sees the code change.
To demonstrate this, start the SBT shell from the root directory
 of your project:
$ sbt
Then issue the ~ compile
 command:
> ~ compile
[info] Compiling 1 Scala source to /Users/Al/SbtTests/target/scala-2.10/classes
[success] Total time: 4 s, completed Apr 13, 2013 2:34:23 PM
1. Waiting for source changes... (press enter to interrupt)
Now, any time you change and save a source code file, SBT
 automatically recompiles it. You’ll see these new lines of output when
 SBT recompiles the code:
[info] Compiling 1 Scala source to /Users/Al/SbtTests/target/scala-2.10/classes
[success] Total time: 2 s, completed Apr 13, 2013 2:34:32 PM
2. Waiting for source changes... (press enter to interrupt)

Use last to get more information on the last command

From time to time when working in the SBT shell you may have a
 problem, such as with incremental compiling. When issues like this
 come up, you may be able to use the shell’s last command to see what happened.
For instance, you may issue a compile command, and then see something
 wrong in the output:
> compile
[info] Updating ...
[info] Resolving com.typesafe#config;1.0.0 ...
[info] Compiling 1 Scala source to
YIKES!
I made up the YIKES! part,
 but you get the idea; something goes wrong. To see what happened,
 issue the last compile
 command:
> last compile
[debug]
[debug] Initial source changes:
[debug] removed:Set()
[debug] added: Set(/Users/Al/Projects/Scala/Foo/Test.scala)
[debug] modified: Set()
[debug] Removed products: Set()
[debug] Modified external sources: Set()

many more lines of debug output here ...
The last command prints
 logging information for the last command that was executed. This can
 help you understand what’s happening, including understanding why
 something is being recompiled over and over when using incremental
 compilation.
Typing help last in the SBT
 interpreter shows a few additional details, including a note about the
 last-grep command, which can be
 useful when you need to filter a large amount of output.

See Also

	The SBT command-line
 reference.

	Information on publishing
 an SBT project.

	Incremental compiling can often be much (much!) faster than
 compiling an entire project. See the Scala website for more
 details on how it works in SBT.

	Typesafe has made SBT’s incremental compiler available as a
 standalone tool named Zinc, which can be used with
 other tools, like Maven.

18.3. Running Tests with SBT and ScalaTest

Problem

You want to set up an SBT project with ScalaTest, and run the
 tests with SBT.

Solution

Create a new SBT project directory structure as shown in Recipe 18.1, and then add the
 ScalaTest library dependency to your build.sbt file, as shown here:
name := "BasicProjectWithScalaTest"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies += "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"
Add your Scala source code under the src/main/scala folder, add your tests under
 the src/test/scala folder, and then
 run the tests with the SBT test
 command:
$ sbt test

Discussion

The libraryDependencies tag in
 the build.sbt file shows the
 standard way of adding new dependencies to an SBT project:
libraryDependencies += "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"
You can write that line as shown, or this way:
libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.1" % "test"
In the second example, I used the %% method to automatically append the
 project’s Scala version (2.10) to the end of the artifact name (scalatest). These two options are explained
 more in Recipe 18.4, but hopefully the way they work is clear
 from those examples.
To demonstrate how ScalaTest integrates seamlessly with SBT,
 create a source file named Hello.scala with the following contents in
 the src/main/scala directory of
 your project:
package com.alvinalexander.testproject

object Hello extends App {
 val p = Person("Alvin Alexander")
 println("Hello from " + p.name)
}

case class Person(var name: String)
Then create a test file named HelloTests.scala in the src/test/scala directory of your project with
 these contents:
package com.alvinalexander.testproject

import org.scalatest.FunSuite

class HelloTests extends FunSuite {

 test("the name is set correctly in constructor") {
 val p = Person("Barney Rubble")
 assert(p.name == "Barney Rubble")
 }

 test("a Person's name can be changed") {
 val p = Person("Chad Johnson")
 p.name = "Ochocinco"
 assert(p.name == "Ochocinco")
 }
}
Next, run your tests from your project’s root directory with
 SBT:
$ sbt test

[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Set current project to BasicProjectWithScalaTest (in build
 file:/Users/Al/Projects/BasicProjectWithScalaTest/)
[info] HelloTests:
[info] - the name is set correctly in constructor
[info] - a Person's name can be changed
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0
[success] Total time: 0 s
This output shows that the two tests in the HelloTests test class were run.
As shown in these examples, there’s nothing special you have to do
 to make ScalaTest work with SBT, other than adding it as a dependency in
 the build.sbt file; it just
 works.
Note
If you reused an existing SBT project folder to test this
 recipe, you may need to issue the SBT reload command. As described in Table 18-1, this command
 tells SBT to reload the project definition files, including the
 build.sbt file.

See Also

	The ScalaTest “quick start”
 page.

	If you’d like a simple way to test this, you can download the
 code for this recipe from GitHub.

	specs2 is
 another popular Scala testing framework that integrates easily with
 SBT. It compares well to ScalaTest, and is also the default testing
 library for the Play Framework.

	The SBT Quick Configuration
 documentation shows dozens of build.sbt examples.

18.4. Managing Dependencies with SBT

Problem

You want to use one or more external libraries in your Scala/SBT
 projects.

Solution

You can use both managed and unmanaged dependencies in your SBT
 projects.
If you have JAR files (unmanaged
 dependencies) that you want to use in your project, simply copy them to
 the lib folder in the root
 directory of your SBT project, and SBT will find them automatically. If
 those JARs depend on other JAR files, you’ll have to download those
 other JAR files and copy them to the lib directory as well.
If you have a single managed dependency, such
 as wanting to use the Java HtmlCleaner library in
 your project, add a libraryDependencies line like this to your
 build.sbt file:
libraryDependencies += "net.sourceforge.htmlcleaner" % "htmlcleaner" % "2.4"
Because configuration lines in build.sbt must be separated by blank lines, a
 simple but complete file with one dependency looks like this:
name := "BasicProjectWithScalaTest"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.1" % "test"
To add multiple managed dependencies to your project, define them
 as a Seq in your build.sbt file:
libraryDependencies ++= Seq(
 "net.sourceforge.htmlcleaner" % "htmlcleaner" % "2.4",
 "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test",
 "org.foobar" %% "foobar" % "1.8"
)
Or, if you prefer, you can add them one line at a time to the
 file, separating each line by a blank line:
libraryDependencies += "net.sourceforge.htmlcleaner" % "htmlcleaner" % "2.4"

libraryDependencies += "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"

libraryDependencies += "org.foobar" %% "foobar" % "1.6"
As you might infer from these examples, entries in build.sbt are simple key/value pairs. SBT
 works by creating a large map of key/value pairs that describe the
 build, and when it parses this file, it adds the pairs you define to its
 map. The fields in this file named version, name, scalaVersion, and libraryDependencies are all SBT keys (and in
 fact are probably the most common keys).

Discussion

A managed dependency is a dependency that’s
 managed by your build tool, in this case, SBT. In this situation, if
 library a.jar depends on b.jar, and that library depends on c.jar, and those JAR files are kept in an
 Ivy/Maven repository along with this relationship information, then all
 you have to do is add a line to your build.sbt file stating that you want to use
 a.jar. The other JAR files will be
 downloaded and included into your project automatically.
When using a library as an unmanaged
 dependency, you have to manage this situation yourself. Given
 the same situation as the previous paragraph, if you want to use the
 library a.jar in your project, you
 must manually download a.jar, and
 then know about the dependency on b.jar, and the transitive dependency on
 c.jar, then download all those
 files yourself, and place them in your project’s lib directory.
I’ve found that manually managing JAR files in the lib directory works fine for small projects,
 but as shown in Recipe 16.2, a few lines of managed dependency
 declarations can quickly explode into a large number of JAR files you’ll
 need to manually track down and add to your lib folder.
Under the covers, SBT uses Apache Ivy as its dependency manager.
 Ivy is also used by Ant and Maven, and as a result, you can easily use
 the wealth of Java libraries that have been created over the years in
 your Scala projects.
There are two general forms for adding a managed dependency to a
 build.sbt file. In the first form,
 you specify the groupID, artifactID, and revision:
libraryDependencies += groupID % artifactID % revision
In the second form, you add an optional configuration
 parameter:
libraryDependencies += groupID % artifactID % revision % configuration
The groupID, artifactID, revision, and configuration strings correspond to what Ivy
 requires to retrieve the module you want. Typically, the module
 developer will give you the information you need. For instance, the
 specs2 website provides this string:
libraryDependencies += "org.specs2" %% "specs2" % "1.14" % "test"
It also provides this information, which shows how to use the same
 library with Maven:
<dependency>
 <groupId>org.specs2</groupId>
 <artifactId>specs2_2.10</artifactId>
 <version>1.14</version>
 <scope>test</scope>
</dependency>
The symbols +=, %, and %%
 used in build.sbt are part of the
 DSL defined by SBT. They’re described in Table 18-2.
Table 18-2. Common methods used in a build.sbt file
	Method
	Description

	+=
	Appends to the key’s
 value. The build.sbt file
 works with settings defined as key/value pairs. In the examples
 shown, libraryDependencies is
 a key, and it’s shown with several different
 values.

	%
	A method used to
 construct an Ivy Module ID from the strings you
 supply.

	%%
	When used after the
 groupID, it automatically
 adds your project’s Scala version (such as _2.10) to the end of the artifact
 name.

As shown in the examples, you can use % or %%
 after the groupID. This example shows
 the % method:
libraryDependencies += "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"
This example shows the %%
 method:
libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.1" % "test"
When using Scala 2.10, these two lines are equivalent. The
 %% method adds your project’s Scala
 version to the end of the artifact name. The practice of adding the
 Scala version (in the format _2.10.0)
 to the artifactID is used because
 modules may be compiled for different Scala versions.
Note that in some of the examples, the string test is added after the revision:
"org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"
This demonstrates the use of the “configuration” form for adding a
 dependency that was shown earlier:
libraryDependencies += groupID % artifactID % revision % configuration
As the SBT documentation states, this means that the dependency
 you’re defining “will be added to the classpath only for the Test
 configuration, and won’t be added in the Compile configuration.” This is
 useful for adding dependencies like ScalaTest, specs2, Mockito, etc.,
 that will be used when you want to test your application, but not when
 you want to compile and run the application.
If you’re not familiar with Apache Ivy, it can be helpful to know
 that managed dependencies are downloaded beneath a .ivy2 directory in your home directory
 (~/.ivy2/) on your filesystem. See
 the Ivy documentation
 for more information.
Repositories

SBT uses the standard Maven2 repository by default, so it can
 locate most libraries when you add a libraryDependencies line to a build.sbt file. In these cases, there’s no
 need for you to tell SBT where to look for the file. However, when a
 library is not in a standard repository, you can tell SBT where to
 look for it. This process is referred to as adding a resolver, and
 it’s covered in Recipe 18.11.

See Also

	Apache
 Ivy.

	The SBT Quick Configuration
 documentation shows dozens of build.sbt examples.

	Recipe 18.11.

18.5. Controlling Which Version of a Managed Dependency Is Used

Problem

You want to make sure you always have the desired version of a
 managed dependency, including the latest integration release, milestone
 release, or other versions.

Solution

The revision field in the
 libraryDependencies setting isn’t
 limited to specifying a single, fixed version. According to the Apache
 Ivy documentation, you can specify terms such as latest.integration, latest.milestone, and other terms.
As one example of this flexibility, rather than specifying version
 1.8 of a foobar module, as shown here:
libraryDependencies += "org.foobar" %% "foobar" % "1.8"
you can request the latest.integration version like this:
libraryDependencies += "org.foobar" %% "foobar" % "latest.integration"
The module developer will often tell you what versions are
 available or should be used, and Ivy lets you specify tags to control
 which version of the module will be downloaded and used. The Ivy
 “dependency” documentation states that the following tags can be
 used:
	latest.integration

	latest.[any status], such
 as latest.milestone

	You can end the revision with a + character. This selects the latest
 subrevision of the dependency module. For instance, if the
 dependency module exists in revisions 1.0.3, 1.0.7, and 1.1.2, specifying 1.0.+ as your dependency will result in
 1.0.7 being selected.

	You can use “version ranges,” as shown in the following
 examples:
[1.0,2.0] matches all versions greater or equal to 1.0 and lower or equal to
 2.0
[1.0,2.0[matches all versions greater or equal to 1.0 and lower than 2.0
]1.0,2.0] matches all versions greater than 1.0 and lower or equal to 2.0
]1.0,2.0[matches all versions greater than 1.0 and lower than 2.0
[1.0,) matches all versions greater or equal to 1.0
]1.0,) matches all versions greater than 1.0
(,2.0] matches all versions lower or equal to 2.0
(,2.0[matches all versions lower than 2.0

(These configuration examples are courtesy of the Apache Ivy
 documentation. See the link in the See Also section for more
 information.)
To demonstrate a few of these tags, this example shows the
 latest.milestone tag:
libraryDependencies += "org.scalatest" %% "scalatest" % "latest.milestone" % "test"
At the time of this writing, it retrieves this file:
scalatest_2.10-2.0.M6-SNAP13.jar
This specification demonstrates the + tag:
libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.+" % "test"
It currently retrieves this file:
scalatest_2.10-1.9.2-SNAP1.jar

See Also

	Apache Ivy revision
 documentation

18.6. Creating a Project with Subprojects

Problem

You want to configure SBT to work with a main project that depends
 on other subprojects you’re developing.

Solution

Create your subproject as a regular SBT project, but without a
 project subdirectory. Then, in your
 main project, define a project/Build.scala file that defines the
 dependencies between the main project and subprojects.
This is demonstrated in the following example, which I created
 based on the
 SBT Multi-Project documentation:
import sbt._
import Keys._

/**
 * based on http://www.scala-sbt.org/release/docs/Getting-Started/Multi-Project
 */
object HelloBuild extends Build {

 // aggregate: running a task on the aggregate project will also run it
 // on the aggregated projects.
 // dependsOn: a project depends on code in another project.
 // without dependsOn, you'll get a compiler error: "object bar is not a
 // member of package com.alvinalexander".
 lazy val root = Project(id = "hello",
 base = file(".")) aggregate(foo, bar) dependsOn(foo, bar)

 // sub-project in the Foo subdirectory
 lazy val foo = Project(id = "hello-foo",
 base = file("Foo"))

 // sub-project in the Bar subdirectory
 lazy val bar = Project(id = "hello-bar",
 base = file("Bar"))
}
To create your own example, you can either follow the instructions
 in the SBT
 Multi-Project documentation to create a main project with
 subprojects, or clone my SBT Subproject
 Example on GitHub, which I created to help you get started
 quickly.

Discussion

Creating a main project with subprojects is well documented on the
 SBT website, and the primary glue that defines the relationships between
 projects is the project/Build.scala
 file you create in your main project.
In the example shown, my main project depends on two subprojects,
 which are in directories named Foo
 and Bar beneath my project’s main
 directory. I reference these projects in the following code in my main
 project, so it’s necessary to tell SBT about the relationship between
 the projects:
package com.alvinalexander.subprojecttests

import com.alvinalexander.bar._
import com.alvinalexander.foo._

object Hello extends App {
 println(Bar("I'm a Bar"))
 println(Bar("I'm a Foo"))
}
The following output from the Unix tree command shows what the directory
 structure for my project looks like, including the files and directories
 for the main project, and the two subprojects:
|-- Bar
| |-- build.sbt
| +-- src
| |-- main
| | |-- java
| | |-- resources
| | +-- scala
| | +-- Bar.scala
| +-- test
| |-- java
| +-- resources
|-- Foo
| |-- build.sbt
| +-- src
| |-- main
| | |-- java
| | |-- resources
| | +-- scala
| | +-- Foo.scala
| +-- test
| |-- java
| +-- resources
|-- build.sbt
|-- project
| |-- Build.scala
|
+-- src
 |-- main
 | |-- java
 | |-- resources
 | +-- scala
 | +-- Hello.scala
 +-- test
 |-- java
 |-- resources
 +-- scala
 +-- HelloTest.scala
To experiment with this yourself, I encourage you to clone my GitHub project.

See Also

	SBT Multi-Project
 documentation

	My example “SBT Subprojects” code at GitHub

18.7. Using SBT with Eclipse

Problem

You want to use Eclipse with a project you’re managing with
 SBT.

Solution

Use the Scala IDE for Eclipse
 project so you can work on Scala projects in Eclipse, and use
 the sbteclipse
 plug-in to enable SBT to generate files for Eclipse.
The Scala IDE for Eclipse project lets you edit Scala code in
 Eclipse. With syntax highlighting, code completion, debugging, and many
 other features, it makes Scala development in Eclipse a pleasure.
To use the sbteclipse plug-in, download it per the instructions on
 the website. Once installed, when you’re in the root directory of an SBT
 project, type sbt eclipse to generate
 the files Eclipse needs. You may see a lot of output the first time you
 run the command as SBT checks everything it needs, but at the end of the
 output you should see a “success” message, like this:
$ sbt eclipse

[info] Successfully created Eclipse project files for project(s):
[info] YourProjectNameHere
The plug-in generates the two files Eclipse needs, the .classpath and .project files.
Once these files are generated, go to Eclipse and follow the usual
 steps to import a project into the Eclipse workspace: File → Import →
 Existing Projects into Workspace. Your project will then appear in the
 Eclipse Navigator, Project Explorer, Package Explorer, and other
 views.

Discussion

The .classpath file is an XML
 file that contains a number of <classpathentry> tags, like
 this:
<classpath>
 <classpathentry output="target/scala-2.10/classes"
 path="src/main/scala" kind="src"></classpathentry>
 <classpathentry output="target/scala-2.10/classes"
 path="src/main/java" kind="src"></classpathentry>
 <classpathentry output="target/scala-2.10/test-classes"
 path="src/test/scala" kind="src"></classpathentry>
 <classpathentry output="target/scala-2.10/test-classes"
 path="src/test/java" kind="src"></classpathentry>
 <classpathentry kind="con"
 path="org.scala-ide.sdt.launching.SCALA_CONTAINER"></classpathentry>
 <classpathentry
 path="/Users/Al/.ivy2/cache/com.typesafe/config/bundles/config-1.0.0.jar"
 kind="lib"></classpathentry>
 <classpathentry path="org.eclipse.jdt.launching.JRE_CONTAINER"
 kind="con"></classpathentry>
 <classpathentry path="bin" kind="output"></classpathentry>
</classpath>
The .project file is an XML
 file that describes your project and looks like this:
<projectDescription>
 <name>YourProjectName</name>
 <buildSpec>
 <buildCommand>
 <name>org.scala-ide.sdt.core.scalabuilder</name>
 </buildCommand>
 </buildSpec>
 <natures>
 <nature>org.scala-ide.sdt.core.scalanature</nature>
 <nature>org.eclipse.jdt.core.javanature</nature>
 </natures>
</projectDescription>
Any time you update your SBT build definition files (build.sbt, project/*.scala, project/*.sbt) you should rerun the sbt eclipse command to update the .classpath and .project files. Eclipse will also need to
 know that these files were regenerated, so this is really a two-step
 process:
	Run sbt eclipse from the
 command line.

	In Eclipse, select your project and then refresh it (using the
 F5 function key, or refreshing it with the menu commands).

See Also

	The Scala IDE for
 Eclipse

	The sbteclipse
 plug-in

	JetBrains
 also has plug-ins for IntelliJ IDEA

18.8. Generating Project API Documentation

Problem

You’ve marked up your source code with Scaladoc comments, and want
 to generate the API documentation for your project.

Solution

Use any of the commands listed in Table 18-3, depending on your
 needs.
Table 18-3. Descriptions of SBT commands that generate project
 documentation
	SBT
 command
	Description

	doc
	Creates Scaladoc API
 documentation from the Scala source code files located in
 src/main/scala.

	test:doc
	Creates Scaladoc API
 documentation from the Scala source code files located in
 src/test/scala.

	package-doc
	Creates a JAR file
 containing the API documentation created from the Scala source
 code in src/main/scala.

	test:package-doc
	Creates a JAR file
 containing the API documentation created from the Scala source
 code in src/test/scala.

	publish
	Publishes artifacts to
 the repository defined by the publish-to setting. See Recipe 18.15.

	publish-local
	Publishes artifacts to
 the local Ivy repository as described. See Recipe 18.15.

For example, to generate API documentation, use the doc command:
$ sbt doc
At the time of this writing, SBT doesn’t show where the output
 from this command is written to, but with Scala 2.10.0, SBT 0.12.3
 places the root index.html Scaladoc
 file at target/scala-2.10/api/index.html under the
 root directory of your project. Other commands, including package-doc and publish, do indicate where their output is
 located.
The following example shows that publish-local generates its output for a
 project named “Hello” to the .ivy2
 directory under your $HOME
 directory:
> sbt publish-local
[info] Loading global plugins from /Users/Al/.sbt/plugins
$HOME/.ivy2/local/hello/hello_2.10/1.0/poms/hello_2.10.pom
$HOME/.ivy2/local/hello/hello_2.10/1.0/jars/hello_2.10.jar
$HOME/.ivy2/local/hello/hello_2.10/1.0/srcs/hello_2.10-sources.jar
$HOME/.ivy2/local/hello/hello_2.10/1.0/docs/hello_2.10-javadoc.jar
$HOME/.ivy2/local/hello/hello_2.10/1.0/ivys/ivy.xml
See Recipe 18.15 for examples of how to use publish and publish-local.
For a detailed example of how to use Scaladoc, see Recipe 14.8.

See Also

	The SBT command-line
 reference has more information on these commands

	When writing Scaladoc, you can use a Wiki-like
 syntax

	The Scaladoc tags (@see,
 @param, etc.) are listed in the
 Scala
 wiki

	Recipe 14.8 provides more examples of the
 documentation publishing commands

	See Recipe 18.15 for examples of using publish and publish-local

18.9. Specifying a Main Class to Run

Problem

You have multiple main methods
 in objects in your project, and you want to specify which main method should be run when you type
 sbt run, or specify the main method that should be invoked when your
 project is packaged as a JAR file.

Solution

If you have multiple main
 methods in your project and want to specify which main method to run when typing sbt run, add a line like this to your
 build.sbt file:
// set the main class for 'sbt run'
mainClass in (Compile, run) := Some("com.alvinalexander.Foo")
This class can either contain a main method, or extend the App trait.
To specify the class that will be added to the manifest when your
 application is packaged as a JAR file, add this line to your build.sbt file:
// set the main class for packaging the main jar
mainClass in (Compile, packageBin) := Some("com.alvinalexander.Foo")
That setting tells SBT to add the following line to the META-INF/MANIFEST.MF file in your JAR when
 you run sbt package:
Main-Class: com.alvinalexander.Foo
Using run-main

When running your application with SBT, you can also use SBT’s
 run-main command to specify the
 class to run. Invoke it like this from your operating system command
 line:
$ sbt "run-main com.alvinalexander.Foo"
[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Running com.alvinalexander.Foo
hello
[success] Total time: 1 s
Invoke it like this from inside the SBT shell:
$ sbt

> run-main com.alvinalexander.Foo
[info] Running com.alvinalexander.Foo
hello
[success] Total time: 1 s

Discussion

If you have only one main
 method in an object in your project (or one object that extends the
 App trait), SBT can automatically
 determine the location of that main
 method. In that case, these configuration lines aren’t necessary.
If you have multiple main
 methods in your project and don’t use any of the approaches shown in the
 Solution, SBT will prompt you with a list of objects it finds that have
 a main method or extend the App trait when you execute sbt run:
Multiple main classes detected, select one to run:

 [1] com.alvinalexander.testproject.Foo
 [2] com.alvinalexander.testproject.Bar
The following code shows what a build.sbt file with both of the mainClass settings looks like:
name := "Simple Test Project"

version := "1.0"

scalaVersion := "2.10.0"

// set the main class for packaging the main jar
mainClass in (Compile, packageBin) := Some("com.alvinalexander.testproject.Foo")

// set the main class for the main 'sbt run' task
mainClass in (Compile, run) := Some("com.alvinalexander.testproject.Foo")

See Also

	The SBT Quick Configuration
 documentation shows dozens of build.sbt examples.

18.10. Using GitHub Projects as Project Dependencies

Problem

You want to use a Scala library project on GitHub as an SBT
 project dependency.

Solution

Reference the GitHub project you want to include in your project/Build.scala file as a RootProject.
For example, assuming you want to use the Scala project at https://github.com/alvinj/SoundFilePlayer as a
 dependency, put the following contents in a file named project/Build.scala in your SBT
 project:
import sbt._

object MyBuild extends Build {

 lazy val root = Project("root", file(".")) dependsOn(soundPlayerProject)
 lazy val soundPlayerProject =
 RootProject(uri("git://github.com/alvinj/SoundFilePlayer.git"))

}
You can now use that library in your code, as shown in this little
 test program:
package githubtest

import com.alvinalexander.sound._
import javazoom.jlgui.basicplayer._
import scala.collection.JavaConversions._
import java.util.Map

object TestJavaSound extends App {

 val testClip = "/Users/al/Sarah/Sounds/HAL-mission-too-important.wav"
 val player = SoundFilePlayer.getSoundFilePlayer(testClip)
 player.play

}
With this configuration and a basic build.sbt file, you can run this code as
 usual with the sbt run
 command.
Including this GitHub project is interesting, because it has a
 number of JAR files in its own lib folder, and
 compiling and running this example works fine.
Note that although this works well for compiling and running your
 project, you can’t package all of this code into a JAR file by just
 using the sbt package command.
 Unfortunately, SBT doesn’t include the code from the GitHub project for
 you. However, a plug-in named sbt-assembly does let
 you package all of this code together as a single JAR file. See Recipe 18.14 for information on how to configure and use
 sbt-assembly.

Discussion

Whereas the build.sbt file is
 used to define simple settings for your SBT project, the project/Build.scala file is used for
 “everything else.” In this file you write Scala code using the SBT API
 to accomplish any other task you want to achieve, such as including
 GitHub projects like this.
To use multiple GitHub projects as dependencies, add additional
 RootProject instances to your
 project/Build.scala file:
import sbt._

object MyBuild extends Build {

 lazy val root = Project("root", file("."))
 .dependsOn(soundPlayerProject)
 .dependsOn(appleScriptUtils)

 lazy val soundPlayerProject =
 RootProject(uri("git://github.com/alvinj/SoundFilePlayer.git"))

 lazy val appleScriptUtils =
 RootProject(uri("git://github.com/alvinj/AppleScriptUtils.git"))

}

See Also

	Recipe 18.6, and Recipe 18.16, show other examples of the project/Build.scala file.

18.11. Telling SBT How to Find a Repository (Working with
 Resolvers)

Problem

You want to add a managed dependency to your project from an Ivy
 repository that SBT doesn’t know about by default.

Solution

Use the resolvers key in the
 build.sbt file to add any unknown
 Ivy repositories. Use this syntax to add one resolver:
resolvers += "Java.net Maven2 Repository" at "http://download.java.net/maven/2/"
You can use a Seq to add
 multiple resolvers:
resolvers ++= Seq(
 "Typesafe" at "http://repo.typesafe.com/typesafe/releases/",
 "Java.net Maven2 Repository" at "http://download.java.net/maven/2/"
)
Or, if you prefer, you can also add them one line at a time,
 making sure to separate them by a blank line:
resolvers += "Typesafe" at "http://repo.typesafe.com/typesafe/releases/"

resolvers += "Java.net Maven2 Repository" at "http://download.java.net/maven/2/"

Discussion

If the module you’re requesting is in the default Maven2 repository SBT knows
 about, adding a managed dependency “just works.” But if the
 module isn’t there, the library’s author will need to provide you with
 the repository information.
You define a new repository in the build.sbt file with this general
 format:
resolvers += "repository name" at "location"
As shown in the Solution, you can enter one resolver at a time
 with the += method, and you can add
 multiple resolvers with ++= and a
 Seq.
In addition to the default Maven2 repository, SBT is configured to
 know about the JavaNet1Repository. To
 use this repository in your SBT project, add this line to your build.sbt file:
resolvers += JavaNet1Repository

18.12. Resolving Problems by Getting an SBT Stack Trace

Problem

You’re trying to use SBT to compile, run, or package a project,
 and it’s failing, and you need to be able to see the stack trace to
 understand why it’s failing.

Solution

When an SBT command silently fails (typically with a “Nonzero exit
 code” message), but you can’t tell why, run your command from within the
 SBT shell, then use the last run
 command after the command that failed.
This pattern typically looks like this:
$ sbt run // something fails here, but you can't tell what

$ sbt
> run // failure happens again
> last run // this shows the full stack trace
I’ve run into this on several projects where I was using JAR files
 and managing their dependencies myself, and in one specific case, I
 didn’t know I needed to include the Apache Commons Logging JAR file.
 This was causing the “Nonzero exit code” error message, but I couldn’t
 tell that until I issued the last run
 command from within the SBT shell. Once I ran that command, the problem
 was obvious from the stack trace.
Depending on the problem, another approach that can be helpful is
 to set the SBT logging level. See Recipe 18.13 for
 more information.

18.13. Setting the SBT Log Level

Problem

You’re having a problem compiling, running, or packaging your
 project with SBT and need to adjust the SBT logging level to debug the
 problem. (Or, you’re interested in learning about how SBT
 works.)

Solution

Set the SBT logging level in your build.sbt file with this setting:
logLevel := Level.Debug
Or, if you’re working interactively from the SBT command line and
 don’t want to add this to your build.sbt file, use this syntax:
> set logLevel := Level.Debug
Changing the logging levels significantly changes the output SBT
 produces, which can help you debug problems. If you’re just starting out
 with SBT, the output can also help you learn how SBT works.
Other logging levels are:
	Level.Info

	Level.Warning

	Level.Error

See Also

	The SBT
 FAQ shows the logging levels.

18.14. Deploying a Single, Executable JAR File

Problem

You’re building a Scala application, such as a Swing application,
 and want to deploy a single, executable JAR file to your
 users.

Solution

The sbt package command creates
 a JAR file that includes the class files it compiles from your source
 code, along with the resources in your project (from src/main/resources), but there are two things
 it doesn’t include in the JAR file:
	Your project dependencies (JAR files in your project’s
 lib folder, or managed
 dependencies declared in build.sbt).

	Libraries from the Scala distribution that are needed to
 execute the JAR file with the java command.

This makes it difficult to distribute a single, executable JAR
 file for your application. There are three things you can do to solve
 this problem:
	Distribute all the JAR files necessary with a script that
 builds the classpath and executes the JAR file with the scala command. This requires that Scala be
 installed on client systems.

	Distribute all the JAR files necessary (including Scala
 libraries) with a script that builds the classpath and executes the
 JAR file with the java command.
 This requires that Java is installed on client systems.

	Use an SBT plug-in such as sbt-assembly to
 build a single, complete JAR file that can be executed with a simple
 java command. This requires that
 Java is installed on client systems.

This solution focuses on the third approach. The first two
 approaches are examined in the Discussion.
Using sbt-assembly

The installation instructions for sbt-assembly may change, but
 at the time of this writing, just add these two lines of code to a
 plugins.sbt file in the project directory of your SBT
 project:
resolvers += Resolver.url("artifactory",
url("http://scalasbt.artifactoryonline.com/scalasbt/sbt-plugin-releases"))(Resolver.ivyStylePatterns)

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.8.4")
You’ll need to create that file if it doesn’t already
 exist.
Then add these two lines to the top of your build.sbt file:
import AssemblyKeys._

// sbt-assembly
assemblySettings
That’s the only setup work that’s required. Now run sbt assembly to create your single,
 executable JAR file:
$ sbt assembly
When the assembly task
 finishes running it will tell you where the executable JAR file is
 located. For instance, when packaging my Blue Parrot
 application, SBT prints the following lines of output that
 show the dependencies sbt-assembly is including, and the location of
 the final JAR file:
[info] Including akka-actor-2.0.1.jar
[info] Including scala-library.jar
[info] Including applescriptutils_2.9.1-1.0.jar
[info] Including forms-1.0.7.jar
[info] Including sounds_2.9.1-1.0.jar
[info] Packaging target/BlueParrot-assembly-1.0.jar ...
[info] Done packaging.
The sbt-assembly plug-in works by copying the class files from
 your source code, the class files from your dependencies, and the
 class files from the Scala library into one single JAR file that can
 be executed with the java
 interpreter. This can be important if there are license restrictions
 on a JAR file, for instance.
As noted, there are other plug-ins to help solve this problem,
 including One-JAR, but sbt-assembly worked best with several
 applications I’ve deployed as single, executable JAR files.

Discussion

A JAR file created by SBT can be run by the Scala interpreter, but
 not the Java interpreter. This is because class files in the JAR file
 created by sbt package have
 dependencies on Scala class files (Scala libraries), which aren’t
 included in the JAR file SBT generates. This is easily
 demonstrated.
First, create an empty SBT project directory. (See Recipe 18.1 for easy ways to do
 this.)
Then place the following code in a file named Main.scala in the root directory of the
 project:
package foo.bar.baz

object Main extends App {
 println("Hello, world")
}
Next, run sbt package to create
 the JAR file:
$ sbt package
[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Done updating.
[info] Compiling 1 Scala source to target/scala-2.10/classes...
[info] Packaging target/scala-2.10/basic_2.10-1.0.jar ...
[info] Done packaging.
[success] Total time: 6 s
Now attempt to run the JAR file with the java -jar command. This will fail:
$ java -jar target/scala-2.10/basic_2.10-1.0.jar
Exception in thread "main" java.lang.NoClassDefFoundError: scala/App
 at java.lang.ClassLoader.defineClass1(Native Method)
 ... 32 more
This fails because the Java interpreter doesn’t know where the
 scala/App trait is.
Next, demonstrate that you can run the same JAR file with the
 Scala interpreter:
$ scala target/scala-2.10/basic_2.10-1.0.jar
Hello, world
This works fine.
For the Java interpreter to run your JAR file, it needs the
 scala-library.jar file from your
 Scala installation to be on its classpath. You can get this example to
 work with Java by including that JAR file on its classpath with this
 command:
$ java -cp "${CLASSPATH}:${SCALA_HOME}/lib/scala-library.jar:target/scala-2.10/basic_2.10-1.0.jar" foo.bar.baz.Main
Hello, world
As shown, adding the scala-library.jar file lets the Java
 interpreter find the scala/App trait
 (which is a normal .class file), which lets it run
 the application successfully for you.
This is part of the work that sbt-assembly performs for you. It
 repackages the class files from ${SCALA_HOME}/lib/scala-library.jar into your
 single, executable JAR file, and does the same thing with your other
 project dependencies. Note that if your application is more complicated,
 it may need additional JAR files from the ${SCALA_HOME}/lib directory.

See Also

	The sbt-assembly
 project.

	My Blue
 Parrot application is written in Scala, and packaged with
 SBT and sbt-assembly.

	The One-JAR
 project.

18.15. Publishing Your Library

Problem

You’ve created a Scala project or library with SBT that you want
 to share with other users, creating all the files you need for an Ivy
 repository.

Solution

Define your repository information, then publish your project with
 sbt publish or sbt publish-local.
For my SoundFilePlayer library, I added this setting to my
 build.sbt file to define the
 location of my local repository:
publishTo := Some(Resolver.file("file", new File("/Users/al/tmp")))
I then ran sbt publish, and SBT
 generated the following files:
$ sbt publish

[info] Wrote
/Users/al/SoundFilePlayer/target/scala-2.10.0/sounds_2.10.0-1.0.pom
[info] :: delivering :: default#sounds_2.10.0;1.0 :: 1.0 :: release ::
[info] delivering ivy file to
/Users/al/SoundFilePlayer/target/scala-2.10.0/ivy-1.0.xml
[info] published sounds_2.10.0 to
/Users/al/tmp/default/sounds_2.10.0/1.0/sounds_2.10.0-1.0.pom
[info] published sounds_2.10.0 to
/Users/al/tmp/default/sounds_2.10.0/1.0/sounds_2.10.0-1.0.jar
[info] published sounds_2.10.0 to
/Users/al/tmp/default/sounds_2.10.0/1.0/sounds_2.10.0-1.0-sources.jar
[info] published sounds_2.10.0 to
/Users/al/tmp/default/sounds_2.10.0/1.0/sounds_2.10.0-1.0-javadoc.jar
[success] Total time: 1s
Without doing anything to define a “local Ivy repository,” I get
 the following results when running the publish-local task:
$ sbt publish-local

[info] Wrote /Users/al/SoundFilePlayer/target/scala-2.10.0/sounds_2.10.0-1.0.pom
[info] :: delivering :: default#sounds_2.10.0;1.0 :: 1.0 :: release ::
[info] delivering ivy file to
/Users/al/SoundFilePlayer/target/scala-2.10.0/ivy-1.0.xml
[info] published sounds_2.10.0 to
/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/poms/sounds_2.10.0.pom
[info] published sounds_2.10.0 to
/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/jars/sounds_2.10.0.jar
[info] published sounds_2.10.0 to
/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/srcs/sounds_2.10.0-sources.jar
[info] published sounds_2.10.0 to
/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/docs/sounds_2.10.0-javadoc.jar
[info] published ivy to
/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/ivys/ivy.xml
[success] Total time: 1 s,
The “SBT Publishing” documentation provides these descriptions of
 the publish and publish-local tasks:
	The publish action is used
 to publish your project to a remote repository. To use publishing,
 you need to specify the repository to publish to and the credentials
 to use. Once these are set up, you can run publish.

	The publish-local action is used to publish
 your project to a local Ivy repository. You can then use this
 project from other projects on the same machine.

For more information on publishing to remote servers,
 repositories, and artifacts, see the SBT
 Publishing documentation.

18.16. Using Build.scala Instead of build.sbt

Problem

You want to use the project/Build.scala file instead of build.sbt to define your Scala project, or
 you need some examples of how to use Build.scala to solve build problems that
 can’t be handled in build.sbt.

Solution

The recommended approach when using SBT is to define all your
 simple settings (key/value pairs) in the build.sbt file, and handle all other work,
 such as build logic, in the project/Build.scala file. However, it can be
 useful to use only the project/Build.scala file to learn more about
 how it works.
To demonstrate this, don’t create a build.sbt file in your project, and then do
 create a Build.scala file in the
 project subdirectory by extending
 the SBT Build object:
import sbt._
import Keys._

object ExampleBuild extends Build {

 val dependencies = Seq(
 "org.scalatest" %% "scalatest" % "1.9.1" % "test"
)

 lazy val exampleProject = Project("SbtExample", file(".")) settings(
 version := "0.2",
 scalaVersion := "2.10.0",
 scalacOptions := Seq("-deprecation"),
 libraryDependencies ++= dependencies
)

}
With just this Build.scala
 file, you can now run all the usual SBT commands in your project,
 including compile, run, package, and so on.

Discussion

The Build.scala file shown in
 the Solution is equivalent to the following build.sbt file:
name := "SbtExample"

version := "0.2"

scalaVersion := "2.10.0"

scalacOptions += "-deprecation"

libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.1" % "test"
As mentioned, the recommended approach when working with SBT is to
 define your basic settings in the build.sbt file, and perform all other work in
 a Build.scala file, so creating a
 Build.scala file with only settings
 in it is not a best practice. However, when you first start working with
 a Build.scala file, it’s helpful to
 see a “getting started” example like this.
Also, although the convention is to name this file Build.scala, this is only a convention, which
 I use here for simplicity. You can give your build file any legal Scala
 filename, as long as you place the file in the project directory with a .scala suffix. Another convention is to name
 this file after the name of your project, so the Scalaz project uses the name
 ScalazBuild.scala.
The Full Configuration Example in the SBT documentation

The Full
 Configuration Example in the SBT documentation and the
 ScalazBuild.scala build file both
 show many more examples of what can be put in a
 Build.scala file. For instance,
 the Full Configuration Example shows how to add a series of resolvers
 to a project:
// build 'oracleResolvers'
object Resolvers {
 val sunrepo = "Sun Maven2 Repo" at "http://download.java.net/maven/2"
 val sunrepoGF = "Sun GF Maven2 Repo" at
 "http://download.java.net/maven/glassfish"
 val oraclerepo = "Oracle Maven2 Repo" at "http://download.oracle.com/maven"
 val oracleResolvers = Seq (sunrepo, sunrepoGF, oraclerepo)
}

object CDAP2Build extends Build {
 import Resolvers._
 // more code here ...

 // use 'oracleResolvers' here
 lazy val server = Project (
 "server",
 file ("cdap2-server"),
 settings = buildSettings ++ Seq (resolvers := oracleResolvers,
 libraryDependencies ++= serverDeps)
) dependsOn (common)
This code is similar to the example shown in Recipe 18.11, where the following configuration line
 is added to a build.sbt
 file:
resolvers += "Java.net Maven2 Repository" at "http://download.java.net/maven/2/"
The ScalazBuild.scala file
 also shows many examples of using TaskKey and SettingKey, which are different types of
 keys that can be used in SBT project definition files.

See Also

	The Full Configuration
 Example in the SBT documentation.

	The ScalazBuild.scala file.

	For more examples of using Build.scala files, see Recipe 18.6; Recipe 18.10; and Recipe 18.11.

18.17. Using a Maven Repository Library with SBT

Problem

You want to use a Java library that’s in a Maven repository, but
 the library doesn’t include information about how to use it with Scala
 and SBT.

Solution

Translate the Maven groupId,
 artifactId, and version fields into an SBT libraryDependencies string.
For example, I wanted to use the Java HTMLCleaner project in a
 Scala/SBT project. The
 HTMLCleaner website provided the following Maven information,
 but no SBT information:
<dependency>
 <groupId>net.sourceforge.htmlcleaner</groupId>
 <artifactId>htmlcleaner</artifactId>
 <version>2.2</version>
</dependency>
Fortunately this translates into the following SBT libraryDependencies string:
libraryDependencies += "net.sourceforge.htmlcleaner" % "htmlcleaner" % "2.2"
After adding this line to my build.sbt file, I ran sbt compile, and watched as it downloaded the
 HTMLCleaner JAR file and dependencies:
[info] downloading http://repo1.maven.org/maven2/net/sourceforge/htmlcleaner/
 htmlcleaner/2.2/htmlcleaner-2.2.jar ...
[info] [SUCCESSFUL] net.sourceforge.htmlcleaner#htmlcleaner;2.2!htmlcleaner.jar
 (864ms)
[info] downloading http://repo1.maven.org/maven2/org/jdom/jdom/1.1/jdom-1.1.jar ...
[info] [SUCCESSFUL] org.jdom#jdom;1.1!jdom.jar (514ms)
[info] downloading
 http://repo1.maven.org/maven2/org/apache/ant/ant/1.7.0/ant-1.7.0.jar ...
[info] [SUCCESSFUL] org.apache.ant#ant;1.7.0!ant.jar (1997ms)
[info] downloading http://repo1.maven.org/maven2/org/apache/ant/ant-launcher/
 1.7.0/ant-launcher-1.7.0.jar ...
[info] [SUCCESSFUL] org.apache.ant#ant-launcher;1.7.0!ant-launcher.jar (152ms)
[info] Done updating.
[info] Compiling 1 Scala source to target/scala-2.10.0/classes...
[success] Total time: 13 s, completed Aug 10, 2012 9:22:38 PM
As mentioned in other recipes, because SBT and Maven both use
 Apache Ivy under the covers, and SBT also uses the standard Maven2
 repository as a default resolver, SBT users can easily use Java
 libraries that are packaged for Maven.
As shown inRecipe 18.4, there are two formats for adding a
 libraryDependencies line to a
 build.sbt file. The first form was
 used in the Solution, and its general format looks like this:
libraryDependencies += groupID % artifactID % revision
As shown with the HTMLCleaner example, the groupID, artifactID, and revision fields correspond directly to the
 information you’ll find in the documentation for a Maven library.
The second libraryDependencies
 form lets you add an optional configuration parameter:
libraryDependencies += groupID % artifactID % revision % configuration
Maven doesn’t use the term configuration, instead using a <scope> tag for the same information.
 This field is optional, and is typically used for testing libraries such
 as ScalaTest and specs2, so when it’s needed, the value is usually just
 test.

See Also

	The Java
 HTMLCleaner website

18.18. Building a Scala Project with Ant

Problem

You want to use Ant to build your Scala project.

Solution

Assuming you have a Maven- and SBT-like project directory
 structure as described in Recipe 18.1, create the
 following Ant build.xml file in the
 root directory of your project:
<project name="AntCompileTest" default="compile" basedir=".">

 <!-- mostly from: http://www.scala-lang.org/node/98 -->

 <property name="sources.dir" value="src" />
 <property name="scala-source.dir" value="main/scala" />
 <property name="scala-test.dir" value="main/test" />
 <property name="build.dir" value="classes" />

 <!-- set scala.home -->
 <property environment="env" />
 <property name="scala.home" value="${env.SCALA_HOME}" />

 <target name="init">
 <property name="scala-library.jar"
 value="${scala.home}/lib/scala-library.jar" />
 <property name="scala-compiler.jar"
 value="${scala.home}/lib/scala-compiler.jar" />
 <property name="scala.reflect"
 value="${scala.home}/lib/scala-reflect.jar"/>
 <path id="build.classpath">
 <pathelement location="${scala-library.jar}" />
 <pathelement location="${build.dir}" />
 </path>
 <taskdef resource="scala/tools/ant/antlib.xml">
 <classpath>
 <pathelement location="${scala-compiler.jar}" />
 <pathelement location="${scala-library.jar}" />
 <pathelement location="${scala.reflect}"/>
 </classpath>
 </taskdef>
 </target>

 <target name="compile" depends="init">
 <mkdir dir="${build.dir}" />
 <scalac srcdir="${sources.dir}"
 destdir="${build.dir}"
 classpathref="build.classpath"
 deprecation="on">
 <include name="${scala-source.dir}/**/*.scala" />
 <exclude name="${scala-test.dir}/**/*.scala" />
 </scalac>
 </target>

</project>
You can then run the usual ant
 command, which by default will compile your files to a new classes folder under the root directory of
 your project. Running ant on a small
 project produces output like this:
$ ant
Buildfile: /Users/Al/Projects/AntExample/build.xml

init:

compile:
 [scalac] Compiling 1 source file to /Users/Al/Projects/AntExample/classes

BUILD SUCCESSFUL
Total time: 5 seconds

Discussion

In general, when learning a new technology, it’s best to learn the
 tools of that technology, and in this case, the preferred build tool for
 Scala projects is SBT. (As a friend once said, when we went from C to
 Java, we didn’t attempt to bring make
 along with us.) Once you grasp the SBT concepts, you’ll find that it’s
 both a simple and powerful tool, and you can find a lot of support in
 the Scala community.
That being said, you’re also hit with a lot of changes when first
 learning a new technology, and at the beginning, it can be helpful to
 use the tools you’re already comfortable with, so this recipe
 demonstrates how to use Ant to compile a Scala project to help you get
 into Scala in a comfortable way.
Note
Recommendation: If someone brought me into their organization to
 help them adopt Scala, SBT is one of the first things I’d teach. In
 this case, I think you’re better off just diving into the water, so to
 speak. It doesn’t take that long to grasp the SBT basics.

The build.xml code

The secret sauce to this recipe is the init target, whose source code can be found
 on the official Scala
 website. This target does the work necessary to make the
 scalac Ant task available to
 you.
As you can see from the code, the build target depends on the init target, and uses scalac to compile all the files in the
 source directory, while skipping the files in the test directory. Of
 course that approach is completely optional, and you can adjust it to
 meet your needs.
The antlib.xml file
 referred to in the taskdef tag is
 shipped with the Scala distribution. You can demonstrate this on a
 Unix system with the following command:
$ jar tvf ${SCALA_HOME}/lib/scala-compiler.jar | grep -i antlib
The build.xml file shown
 here is slightly different than the file shown on the Scala website.
 Specifically, I found that the scala.home property needed to be set
 manually, and with Scala 2.10, it’s also necessary to add the scala.reflect lines to the build file. The
 compilation process worked fine with Ant 1.8.4 once I made those
 changes.
In addition to this scalac
 Ant task, there are fsc and
 scaladoc tasks. See the Scala Ant Tasks
 page on the official Scala website for more
 information.

Creating a JAR file with Ant

Once you’ve compiled your Scala classes, you can treat them as
 normal Java class files. For instance, you can create a JAR file from
 them using the following simplified Ant task. This task shows how to
 create a JAR file named hello.jar
 from the compiled classes in the classes directory, and a simple manifest in
 a Manifest.txt file. Here’s the
 create-jar task, which you can add
 to the earlier build.xml
 file:
<target name="create-jar" depends="compile">
 <jar basedir="classes"
 jarfile="hello.jar"
 manifest="Manifest.txt"/>
</target>
Assuming the Hello class in
 the hello package has the main method for your application (or extends
 the App trait), place this line in
 the Manifest.txt file:
Main-Class: hello.Hello
After adding this task to your build.xml file, you can run it as follows
 from the root directory of your project:
$ ant create-jar
That command creates a JAR file named hello.jar in the root directory. You can
 then run the JAR file with this Scala command:
$ scala hello.jar
This is similar to running java
 -jar on a JAR file created by a Java application, but
 because a Scala application has dependencies on its own JAR files,
 such as $SCALA_HOME/lib/scala-library.jar, you need
 to run the JAR file with the scala
 interpreter, as shown. You can run the JAR file with the Java
 interpreter, but this takes a bit more work. See Recipe 18.14 for details on that process.

See Also

	The Scala Ant Tasks
 documentation

Chapter 19. Types

Introduction

As you can tell from one look at the Scaladoc for the collections
 classes, Scala has a powerful type system. However, unless you’re the
 creator of a library, you can go a long way in Scala without having to go
 too far down into the depths of Scala types. But once you start creating
 collections-style APIs for other users, you will need to learn
 them.
This chapter provides recipes for the most common problems you’ll
 encounter, but when you need to go deeper, I highly recommend the book,
 Programming in Scala, by Odersky, Spoon, and Venners.
 (Martin Odersky is the creator of the Scala programming language, and I
 think of that book as “the reference” for Scala.)
Scala’s type system uses a collection of symbols to express
 different generic type concepts, including variance, bounds, and
 constraints. The most common of these symbols are summarized in the next
 sections.
Variance

Type variance is a generic type concept, and
 defines the rules by which parameterized types can be passed into
 methods. The type variance symbols are briefly summarized in Table 19-1.
Table 19-1. Descriptions of type variance symbols
	Symbols
	Name
	Description

	Array[T]
	Invariant
	Used when elements in the
 container are mutable.
 Example: Can
 only pass Array[String] to a method expecting
 Array[String].

	Seq[+A]
	Covariant
	Used when elements in the
 container are immutable. This makes the container more
 flexible.
 Example: Can pass a Seq[String] to a method expected
 Seq[Any].

	Foo[-A]
 Function1[-A,
 +B]
	Contravariant
	Contravariance is
 essentially the opposite of covariance, and is rarely used. See
 Scala’s Function1
 trait for an example of how it is used.

The following examples, showing what code will and won’t compile
 with the Grandparent, Parent, and Child classes, can also be a helpful reference
 to understanding variance:
class Grandparent
class Parent extends Grandparent
class Child extends Parent

class InvariantClass[A]
class CovariantClass[+A]
class ContravariantClass[-A]

class VarianceExamples {

 def invarMethod(x: InvariantClass[Parent]) {}
 def covarMethod(x: CovariantClass[Parent]) {}
 def contraMethod(x: ContravariantClass[Parent]) {}

 invarMethod(new InvariantClass[Child]) // ERROR - won't compile
 invarMethod(new InvariantClass[Parent]) // success
 invarMethod(new InvariantClass[Grandparent]) // ERROR - won't compile

 covarMethod(new CovariantClass[Child]) // success
 covarMethod(new CovariantClass[Parent]) // success
 covarMethod(new CovariantClass[Grandparent]) // ERROR - won't compile

 contraMethod(new ContravariantClass[Child]) // ERROR - won't compile
 contraMethod(new ContravariantClass[Parent]) // success
 contraMethod(new ContravariantClass[Grandparent]) // success

}

Bounds

Bounds let you place restrictions on type parameters. Table 19-2 shows the common
 bounds symbols.
Table 19-2. Descriptions of Scala’s bounds symbols
	 	Name
	Description

	A <: B
	Upper
 bound
	A must be a subtype of B. See Recipe 19.6.

	A >: B
	Lower
 bound
	A must be a supertype of B. Not commonly used. See Recipe 19.8.

	A <: Upper >:
 Lower
	Lower and upper bounds
 used together
	The type A has both an upper and lower
 bound.

Programming Scala
 (O’Reilly) had a nice tip that helps me remember these symbols. The
 authors state that in UML diagrams, subtypes are shown below supertypes,
 so when I see A <: B, I think,
 “A is less than B ... A is
 under B ... A is a subtype of B.”
Lower bounds are demonstrated in several methods of the
 collections classes. To find some lower bound examples, search the
 Scaladoc of classes like List
 for the >: symbol.
There are several additional symbols for bounds. For instance, a
 view bound is written as A
 <% B, and a context bound is written
 as T : M. These symbols are not
 covered in this book; see Programming in Scala for
 details and examples of their use.

Type Constraints

Scala lets you specify additional type constraints. These are
 written with these symbols:
A =:= B // A must be equal to B
A <:< B // A must be a subtype of B
A <%< B // A must be viewable as B
These symbols are not covered in this book. See
 Programming in Scala for details and examples.
 Twitter’s Scala School Advanced Types
 page also shows brief examples of their use, where they are
 referred to as “type relation operators.”

Type Examples in Other Chapters

Because types are naturally used in many solutions, you can find
 some recipes related to types in other chapters:
	Recipe 2.2 and Recipe 2.3 demonstrate ways to convert between
 types.

	Recipe 5.9 demonstrates how to return this.type from a method.

	Implicit conversions let you add new behavior to closed types
 like String, which is declared
 final in Java. They are
 demonstrated in Recipe 1.10 and Recipe 2.1.

	Recipe 6.1
 demonstrates how to cast objects from one type to another.

Finally, Recipe 19.8 combines several of the concepts described
 in this chapter, and also helps to demonstrate Scala’s
 call-by-name feature.

19.1. Creating Classes That Use Generic Types

Problem

You want to create a class (and associated methods) that uses a
 generic type.

Solution

As a library writer, creating a class (and methods) that takes a
 generic type is similar to Java. For instance, if Scala didn’t have a
 linked list class and you wanted to write your own, you could write the
 basic functionality like this:
class LinkedList[A] {

 private class Node[A] (elem: A) {
 var next: Node[A] = _
 override def toString = elem.toString
 }

 private var head: Node[A] = _

 def add(elem: A) {
 val n = new Node(elem)
 n.next = head
 head = n
 }

 private def printNodes(n: Node[A]) {
 if (n != null) {
 println(n)
 printNodes(n.next)
 }
 }

 def printAll() { printNodes(head) }

}
Notice how the generic type A
 is sprinkled throughout the class definition. This is similar to Java,
 but Scala uses [A] everywhere,
 instead of <T> as Java does.
 (More on the characters A versus
 T shortly.)
To create a list of integers with this class, first create an
 instance of it, declaring its type as Int:
val ints = new LinkedList[Int]()
Then populate it with Int
 values:
ints.add(1)
ints.add(2)
Because the class uses a generic type, you can also create a
 LinkedList of String:
val strings = new LinkedList[String]()
strings.add("Nacho")
strings.add("Libre")
strings.printAll()
Or any other type you want to use:
val doubles = new LinkedList[Double]()
val frogs = new LinkedList[Frog]()
At this basic level, creating a generic class in Scala is just
 like creating a generic class in Java, with the exception of the
 brackets.

Discussion

When using generics like this, the container can take subtypes of
 the base type you specify in your code. For instance, given this class
 hierarchy:
trait Animal
class Dog extends Animal { override def toString = "Dog" }
class SuperDog extends Dog { override def toString = "SuperDog" }
class FunnyDog extends Dog { override def toString = "FunnyDog" }
you can define a LinkedList
 that holds Dog instances:
val dogs = new LinkedList[Dog]
You can then add Dog subtypes
 to the list:
val fido = new Dog
val wonderDog = new SuperDog
val scooby = new FunnyDog

dogs.add(fido)
dogs.add(wonderDog)
dogs.add(scooby)
So far, so good: you can add Dog subtypes to a LinkedList[Dog]. Where you might run into a
 problem is when you define a method like this:
def printDogTypes(dogs: LinkedList[Dog]) {
 dogs.printAll()
}
You can pass your current dogs
 instance into this method, but you won’t be able to pass the following
 superDogs collection into makeDogsSpeak:
val superDogs = new LinkedList[SuperDog]
superDogs.add(wonderDog)

// error: this line won't compile
printDogTypes(superDogs)
The last line won’t compile because (a) makeDogsSpeak wants a LinkedList[Dog], (b) LinkedList elements are mutable, and
 (c) superDogs is a LinkedList[SuperDog]. This creates a conflict
 the compiler can’t resolve. This situation is discussed in detail in
 Recipe 19.5.
In Scala 2.10, the compiler is even nice enough to tell you what’s
 wrong in this situation, and points you toward a solution:
[error] Note: SuperDog <: Dog, but class LinkedList is invariant in type A.
[error] You may wish to define A as +A instead. (SLS 4.5)
Type parameter symbols

If a class requires more than one type parameter, use the
 symbols shown in Table 19-3. For instance,
 in the official Java Generics
 documentation, Oracle shows an interface named Pair, which takes two types:
// from http://docs.oracle.com/javase/tutorial/java/generics/types.html
public interface Pair<K, V> {
 public K getKey();
 public V getValue();
}
You can port that interface to a Scala trait, as follows:
trait Pair[A, B] {
 def getKey: A
 def getValue: B
}
If you were to take this further and implement the body of a
 Pair class (or trait), the type
 parameters A and B would be spread throughout your class,
 just as the symbol A was used in
 the LinkedList example.
The same Oracle document lists the Java type parameter naming
 conventions. These are mostly the same in Scala, except that Java
 starts naming simple type parameters with the letter T, and then uses the characters U and V
 for subsequent types. The Scala standard is that simple types should
 be declared as A, the next with
 B, and so on. This is shown in
 Table 19-3.
Table 19-3. Standard symbols for generic type parameters
	Symbol
	Description

	A
	Refers to a simple
 type, such as List[A].

	B, C, D
	Used for the
 2nd,
 3rd, 4th
 types, etc.
 // from the Scala Styleguide
class List[A] {
 def map[B](f: A => B): List[B] = ...
}

	K
	Typically refers to a
 key in a Java map. Scala collections use A in this situation.

	N
	Refers to a numeric
 value.

	V
	Typically refers to a
 value in a Java map. Scala collections use B in this situation.

See Also

	Oracle’s Java “Generic Types” documentation.

	Recipe 19.4.

	Recipe 19.5.

	You can find a little more information on Scala’s generic type
 naming conventions at the Scala Style Guide’s Naming
 Conventions page.

19.2. Creating a Method That Takes a Simple Generic Type

Problem

You’re not concerned about type variance, and want to create a
 method (or function) that takes a generic type, such as a method that
 accepts a Seq[A] parameter.

Solution

As with Scala classes, specify the generic type parameters in
 brackets, like [A].
For example, when creating a lottery-style application to draw a
 random name from a list of names, you might follow the “Do the simplest
 thing that could possibly work” credo, and initially create a method
 without using generics:
def randomName(names: Seq[String]): String = {
 val randomNum = util.Random.nextInt(names.length)
 names(randomNum)
}
As written, this works with a sequence of String values:
val names = Seq("Aleka", "Christina", "Tyler", "Molly")
val winner = randomName(names)
Then, at some point in the future you realize that you could
 really use a general-purpose method that returns a random element from a
 sequence of any type. So, you modify the method to use a generic type
 parameter, like this:
def randomElement[A](seq: Seq[A]): A = {
 val randomNum = util.Random.nextInt(seq.length)
 seq(randomNum)
}
With this change, the method can now be called on a variety of
 types:
randomElement(Seq("Aleka", "Christina", "Tyler", "Molly"))
randomElement(List(1,2,3))
randomElement(List(1.0,2.0,3.0))
randomElement(Vector.range('a', 'z'))
Note that specifying the method’s return type isn’t necessary, so
 you can simplify the signature slightly, if desired:
// change the return type from ':A =' to just '='
def randomElement[A](seq: Seq[A]) = { ...

Discussion

This is a simple example that shows how to pass a generic
 collection to a method that doesn’t attempt to mutate the collection.
 See Recipes 19.4 and 19.5 for more complicated situations you
 can run into.

19.3. Using Duck Typing (Structural Types)

Problem

You’re used to “Duck Typing” (structural types) from another
 language like Python or Ruby, and want to use this feature in your Scala
 code.

Solution

Scala’s version of “Duck Typing” is known as using a
 structural type. As an example of this approach,
 the following code shows how a callSpeak method can require that its obj type parameter have a speak() method:
def callSpeak[A <: { def speak(): Unit }](obj: A) {
 // code here ...
 obj.speak()
}
Given that definition, an instance of any class that has a
 speak() method that takes no
 parameters and returns nothing can be passed as a parameter to callSpeak. For example, the following code
 demonstrates how to invoke callSpeak
 on both a Dog and a Klingon:
class Dog { def speak() { println("woof") } }
class Klingon { def speak() { println("Qapla!") } }

object DuckTyping extends App {

 def callSpeak[A <: { def speak(): Unit }](obj: A) {
 obj.speak()
 }

 callSpeak(new Dog)
 callSpeak(new Klingon)

}
Running this code prints the following output:
woof
Qapla!
The class of the instance that’s passed in doesn’t matter at all.
 The only requirement for the parameter obj is that it’s an instance of a class that
 has a speak() method.

Discussion

The structural type syntax is necessary in this example because
 the callSpeak method invokes a
 speak method on the object that’s
 passed in. In a statically typed language, there must be some guarantee
 that the object that’s passed in will have this method, and this recipe
 shows the syntax for that situation.
Had the method been written as follows, it wouldn’t compile,
 because the compiler can’t guarantee that the type A has a speak method:
// won't compile
def callSpeak[A](obj: A) {
 obj.speak()
}
This is one of the great benefits of type safety in Scala.
It may help to break down the structural type syntax. First,
 here’s the entire method:
def callSpeak[A <: { def speak(): Unit }](obj: A) {
 obj.speak()
}
The type parameter A is defined
 as a structural type like this:
[A <: { def speak(): Unit }]
The <: symbol in the code is
 used to define something called an upper bound.
 This is described in detail in Recipe 19.5. As shown in that recipe, an upper bound is
 usually defined like this:
class Stack[A <: Animal] (val elem: A)
This states that the type parameter A must be a subtype of Animal.
However, in this recipe, a variation of that syntax is used to
 state that A must be a subtype of a
 type that has a speak method.
 Specifically, this code can be read as, “A must be a subtype of a type that has a
 speak method. The speak method (or function) can’t take any
 parameters and must not return anything.”
To demonstrate another example of the structural type signature,
 if you wanted to state that the speak
 method must take a String parameter
 and return a Boolean, the structural
 type signature would look like this:
[A <: { def speak(s: String): Boolean }]
As a word of warning, this technique uses reflection, so you may
 not want to use it when performance is a concern.

19.4. Make Mutable Collections Invariant

Problem

You want to create a collection whose elements can be mutated, and
 want to know how to specify the generic type parameter for its
 elements.

Solution

When creating a collection of elements that can be changed
 (mutated), its generic type parameter should be declared as [A], making it
 invariant.
For instance, elements in a Scala Array or ArrayBuffer can be mutated, and their
 signatures are declared like this:
class Array[A] ...
class ArrayBuffer[A] ...
Declaring a type as invariant has several effects. First, the
 container can hold both the specified types as well as its subtypes. For
 example, the following class hierarchy states that the Dog and SuperDog classes both extend the Animal trait:
trait Animal {
 def speak
}

class Dog(var name: String) extends Animal {
 def speak { println("woof") }
 override def toString = name
}

class SuperDog(name: String) extends Dog(name) {
 def useSuperPower { println("Using my superpower!") }
}
With these classes, you can create a Dog and a SuperDog:
val fido = new Dog("Fido")
val wonderDog = new SuperDog("Wonder Dog")
val shaggy = new SuperDog("Shaggy")
When you later declare an ArrayBuffer[Dog], you can add both Dog and SuperDog instances to it:
val dogs = ArrayBuffer[Dog]()
dogs += fido
dogs += wonderDog
So a collection with an invariant type parameter can contain
 elements of the base type, and subtypes of the base type.
The second effect of declaring an invariant type is the primary
 purpose of this recipe. Given the same code, you can define a method as
 follows to accept an ArrayBuffer[Dog], and then have each Dog speak:
import collection.mutable.ArrayBuffer
def makeDogsSpeak(dogs: ArrayBuffer[Dog]) {
 dogs.foreach(_.speak)
}
Because of its definition, this works fine when you pass it an
 ArrayBuffer[Dog]:
val dogs = ArrayBuffer[Dog]()
dogs += fido
makeDogsSpeak(dogs)
However, the makeDogsSpeak call
 won’t compile if you attempt to pass it an ArrayBuffer[SuperDog]:
val superDogs = ArrayBuffer[SuperDog]()
superDogs += shaggy
superDogs += wonderDog
makeDogsSpeak(superDogs) // ERROR: won't compile
This code won’t compile because of the conflict built up in this
 situation:
	Elements in an ArrayBuffer
 can be mutated.

	makeDogsSpeak is defined to
 accept a parameter of type ArrayBuffer[Dog].

	You’re attempting to pass in superDogs, whose type is ArrayBuffer[SuperDog].

	If the compiler allowed this, makeDogsSpeak could replace SuperDog elements in superDogs with plain old Dog elements. This can’t be
 allowed.

One of the reasons this problem occurs is that ArrayBuffer elements can be mutated. If you
 want to write a method to make all Dog types and subtypes
 speak, define it to accept a collection of immutable elements, such as a
 List, Seq, or Vector.

Discussion

The elements of the Array,
 ArrayBuffer, and ListBuffer classes can be mutated, and they’re
 all defined with invariant type parameters:
class Array[T]
class ArrayBuffer[A]
class ListBuffer[A]
Conversely, collections classes that are immutable identify their
 generic type parameters differently, with the + symbol, as shown here:
class List[+T]
class Vector[+A]
trait Seq[+A]
The + symbol used on the type
 parameters of the immutable collections defines their parameters to be
 covariant. Because their elements can’t be mutated,
 adding this symbol makes them more flexible, as discussed in the next
 recipe.

See Also

You can find the source code for Scala classes by following the
 “Source code” links in their Scaladoc. The source code for the ArrayBuffer class isn’t too long, and it shows
 how the type parameter A ends up
 sprinkled throughout the class:
	ArrayBuffer class Scaladoc

19.5. Make Immutable Collections Covariant

Problem

You want to create a collection whose elements can’t be changed
 (they’re immutable), and want to understand how to specify it.

Solution

You can define a collection of immutable
 elements as invariant, but your collection will be much more flexible if
 you declare that your type parameter is covariant.
 To make a type parameter covariant, declare it with the + symbol, like [+A].
Covariant type parameters are shown in the Scaladoc for immutable
 collection classes like List,
 Vector, and Seq:
class List[+T]
class Vector[+A]
trait Seq[+A]
By defining the type parameter to be covariant, you create a
 situation where the collection can be used in a more flexible
 manner.
To demonstrate this, modify the example from the previous recipe
 slightly. First, define the class hierarchy:
trait Animal {
 def speak
}

class Dog(var name: String) extends Animal {
 def speak { println("Dog says woof") }
}

class SuperDog(name: String) extends Dog(name) {
 override def speak { println("I'm a SuperDog") }
}
Next, define a makeDogsSpeak
 method, but instead of accepting a mutable ArrayBuffer[Dog] as in the previous recipe,
 accept an immutable Seq[Dog]:
def makeDogsSpeak(dogs: Seq[Dog]) {
 dogs.foreach(_.speak)
}
As with the ArrayBuffer in the
 previous recipe, you can pass a sequence of type [Dog] into makeDogsSpeak without a problem:
// this works
val dogs = Seq(new Dog("Fido"), new Dog("Tanner"))
makeDogsSpeak(dogs)
However, in this case, you can also pass a Seq[SuperDog] into the makeDogsSpeak method successfully:
// this works too
val superDogs = Seq(new SuperDog("Wonder Dog"), new SuperDog("Scooby"))
makeDogsSpeak(superDogs)
Because Seq is immutable and
 defined with a covariant parameter type, makeDogsSpeak can now accept collections of
 both Dog and SuperDog.

Discussion

You can demonstrate this by creating a collection class with a
 covariant type parameter. To do this, create a collection class that can
 hold one element. Because you don’t want the collection element to be
 mutated, define the element as a val,
 and make the type parameter covariant with +A:
class Container[+A] (val elem: A)
Using the same type hierarchy as shown in the Solution, modify the
 makeDogsSpeak method to accept a
 Container[Dog]:
def makeDogsSpeak(dogHouse: Container[Dog]) {
 dogHouse.elem.speak()
}
With this setup, you can pass a Container[Dog] into makeDogsSpeak:
val dogHouse = new Container(new Dog("Tanner"))
makeDogsSpeak(dogHouse)
Finally, to demonstrate the point of adding the + symbol to the parameter, you can also pass a
 Container[SuperDog] into makeDogsSpeak:
val superDogHouse = new Container(new SuperDog("Wonder Dog"))
makeDogsSpeak(superDogHouse)
Because the Container element
 is immutable and its mutable type parameter is marked as covariant, all
 of this code works successfully. Note that if you change the Container’s type parameter from +A to A,
 the last line of code won’t compile.
As demonstrated in these examples, defining an immutable
 collection to take a covariant generic type parameter makes the
 collection more flexible and useful throughout your code.

19.6. Create a Collection Whose Elements Are All of Some Base
 Type

Problem

You want to specify that a class or method takes a type parameter,
 and that parameter is limited so it can only be a base type, or a
 subtype of that base type.

Solution

Define the class or method by specifying the type parameter with
 an upper bound.
To demonstrate this, create a simple type hierarchy:
trait CrewMember
class Officer extends CrewMember
class RedShirt extends CrewMember
trait Captain
trait FirstOfficer
trait ShipsDoctor
trait StarfleetTrained
Then create a few instances:
val kirk = new Officer with Captain
val spock = new Officer with FirstOfficer
val bones = new Officer with ShipsDoctor
Given this setup, imagine that you want to create a collection of
 officers on a ship, like this:
val officers = new Crew[Officer]()
officers += kirk
officers += spock
officers += bones
The first line lets you create officers as a collection that can only contain
 types that are an Officer, or subtype
 of an Officer.
In this example, those who are of type RedShirt won’t be allowed in the collection,
 because they don’t extend Officer:
val redShirt = new RedShirt
officers += redShirt // ERROR: this won't compile
To enable this functionality and let Crew control which types are added to it,
 define it with an upper bound while extending
 ArrayBuffer:
class Crew[A <: CrewMember] extends ArrayBuffer[A]
This states that any instance of Crew can only ever have elements that are of
 type CrewMember. In this example,
 this lets you define officers as a
 collection of Officer, like
 this:
val officers = new Crew[Officer]()
It also prevents you from writing code like this, because String does not extend CrewMember:
// error: won't compile
val officers = new Crew[String]()
In addition to creating a collection of officers, you can create a
 collection of RedShirts, if
 desired:
val redshirts = new Crew[RedShirt]()
(I don’t know the names of any redshirts, otherwise I’d add a few
 to this collection.)
Typically you’ll define a class like Crew so you can create specific instances as
 shown. You’ll also typically add methods to a class like Crew that are specific to the type (CrewMember, in this case). By controlling what
 types are added to Crew, you can be
 assured that your methods will work as desired. For instance, Crew could have methods like beamUp, beamDown, goWhereNoOneElseHasGone, etc.—any method that
 makes sense for a CrewMember.

Discussion

This type is referred to as a bound, specifically an
 upper bound.
(If you’re working with an implicit conversion, you’ll want to use
 a view bound instead of an upper bound. To do this,
 use the <% symbol instead of the
 <: symbol.)
You can use the same technique when you need to limit your class
 to take a type that extends multiple traits. For example, to create a
 Crew that only allows types that
 extend CrewMember and StarfleetTrained, declare the Crew like this:
class Crew[A <: CrewMember with StarfleetTrained] extends ArrayBuffer[A]
If you adapt the officers to work with this new trait:
val kirk = new Officer with Captain with StarfleetTrained
val spock = new Officer with FirstOfficer with StarfleetTrained
val bones = new Officer with ShipsDoctor with StarfleetTrained
you can still construct a list of officers, with a slight change
 to the Crew definition:
val officers = new Crew[Officer with StarfleetTrained]()
officers += kirk
officers += spock
officers += bones
This approach works as long as the instances have those types
 somewhere in their lineage (class hierarchy). For instance, you can
 define a new StarfleetOfficer like
 this:
class StarfleetOfficer extends Officer with StarfleetTrained
You could then define the kirk
 instance like this:
val kirk = new StarfleetOfficer with Captain
With this definition, kirk can
 still be added to the officers
 collection; the instance still extends Officer and StarfleetTrained.
Methods

Methods can also take advantage of this syntax. For instance,
 you can add a little behavior to CrewMember and RedShirt:
trait CrewMember {
 def beamDown { println("beaming down") }
}
class RedShirt extends CrewMember {
 def putOnRedShirt { println("putting on my red shirt") }
}
With this behavior, you can write methods to work specifically
 on their types. This method works for any CrewMember:
def beamDown[A <: CrewMember](crewMember: Crew[A]) {
 crewMember.foreach(_.beamDown)
}
But this method will only work for RedShirt types:
def getReadyForDay[A <: RedShirt](redShirt: Crew[A]) {
 redShirt.foreach(_.putOnRedShirt)
}
In both cases, you control which type can be passed into the
 method using an appropriate upper bound definition on the method’s
 type parameter.

See Also

	Recipe 19.3.

	Scala also includes a lower type bound,
 though it is used less frequently. A lower bound is briefly
 demonstrated in Recipe 19.8. The page titled “A Tour of Scala: Lower
 Type Bounds” also describes a situation where a lower type
 bound might be used.

19.7. Selectively Adding New Behavior to a Closed Model

Problem

You have a closed model, and want to add new behavior to certain
 types within that model, while potentially excluding that behavior from
 being added to other types.

Solution

Implement your solution as a type
 class.
To demonstrate the problem and solution, when I first came to
 Scala, I thought it would be easy to write a single add method that would add any two numeric
 parameters, regardless of whether they were an Int, Double, Float, or other numeric value. Unfortunately I
 couldn’t get this to work—until I learned about type classes.
Because a Numeric type class
 already exists in the Scala library, it turns out that you can create an
 add method that accepts different
 numeric types like this:
def add[A](x: A, y: A)(implicit numeric: Numeric[A]): A = numeric.plus(x, y)
Once defined, this method can be used with different numeric types
 like this:
println(add(1, 1))
println(add(1.0, 1.5))
println(add(1, 1.5F))
The add method works because of
 some magic in the scala.math.Numeric
 trait. To see how this magic works, create your own type
 class.
Creating a type class

The process of creating a type class is a little complicated,
 but there is a formula:
	Usually you start with a need, such as having a closed model
 to which you want to add new behavior.

	To add the new behavior, you define a type class. The
 typical approach is to create a base trait, and then write
 specific implementations of that trait using implicit
 objects.

	Back in your main application, create a method that uses the
 type class to apply the behavior to the closed model, such as
 writing the add method in the
 previous example.

To demonstrate this, assume that you have a closed model that
 contains Dog and Cat types, and you want to make a Dog more human-like by giving it the
 capability to speak. However, while doing this, you don’t want to make
 a Cat more human-like. (Everyone
 knows that dogs are human-like and can speak; see YouTube for
 examples.)
The closed model is defined in a class named Animals.scala, and looks like this:
package typeclassdemo

// an existing, closed model
trait Animal
final case class Dog(name: String) extends Animal
final case class Cat(name: String) extends Animal
To begin making a new speak
 behavior available to a Dog, create
 a type class that implements the speak behavior for a Dog, but not a Cat:
package typeclassdemo

object Humanish {

 // the type class.
 // defines an abstract method named 'speak'.
 trait HumanLike[A] {
 def speak(speaker: A): Unit
 }

 // companion object
 object HumanLike {
 // implement the behavior for each desired type. in this case,
 // only for a Dog.
 implicit object DogIsHumanLike extends HumanLike[Dog] {
 def speak(dog: Dog) { println(s"I'm a Dog, my name is ${dog.name}") }
 }
 }

}
With this behavior defined, use the new functionality back in
 your main application:
package typeclassdemo

object TypeClassDemo extends App {

 import Humanish.HumanLike

 // create a method to make an animal speak
 def makeHumanLikeThingSpeak[A](animal: A)(implicit humanLike: HumanLike[A]) {
 humanLike.speak(animal)
 }

 // because HumanLike implemented this for a Dog, it will work
 makeHumanLikeThingSpeak(Dog("Rover"))

 // however, the method won't compile for a Cat (as desired)
 //makeHumanLikeThingSpeak(Cat("Morris"))

}
The comments in the code explain why this approach works for a
 Dog, but not a Cat.
There are a few other things to notice from this code:
	The makeHumanLikeThingSpeak is similar to
 the add method in the first
 example.

	In the first example, the Numeric type class already existed, so
 you could just use it to create the add method. But when you’re starting
 from scratch, you need to create your own type class (the code in
 the HumanLike trait).

	Because a speak method is
 defined in the DogIsHumanLike
 implicit object, which extends HumanLike[Dog], a Dog can be passed into the makeHumanLikeThingSpeak method. But
 because a similar implicit object has not been written for the
 Cat class, it can’t be
 used.

Discussion

Despite the name “class,” a type class doesn’t come from the OOP
 world; it comes from the FP world, specifically Haskell. As shown in the
 examples, one benefit of a type class is that you can add behavior to a
 closed model.
Another benefit is that it lets you define methods that take
 generic types, and provide control over what those types are. For
 instance, in the first example, the add method takes Numeric types:
def add[A](x: A, y: A)(implicit numeric: Numeric[A]): A = numeric.plus(x, y)
Because the numeric.plus method
 is implemented for all the different numeric types, you can create an
 add method that works for Int, Double, Float, and other types:
println(add(1, 1))
println(add(1.0, 1.5))
println(add(1, 1.5F))
This is great; it works for all numeric types, as desired. As an
 additional benefit, the add method is
 type safe. If you attempted to pass a String into it, it won’t compile:
// won't compile
add("1", 2.0)
In the second example, the makeHumanLikeThingSpeak method is similar to
 the add method. However, in this
 case, it lets a Dog type speak, but
 because the HumanLike trait didn’t
 define a similar behavior for a Cat,
 a Cat instance can’t currently be
 used by the method. You can resolve this by adding a speak method for a Cat type as another implicit object, or keep
 the code as it’s currently written to prevent a Cat from speaking.

See Also

	If you dig into the source code for Scala’s Numeric trait, you’ll find that it’s
 implemented in a manner similar to what’s shown here. You can find
 the source code for Scala’s Numeric trait by following the “Source
 code” link on its Scaladoc
 page.

	Recipe 1.10 demonstrates how to add new
 functionality to closed classes using implicit conversions.

19.8. Building Functionality with Types

To put what you’ve learned in this chapter to use, let’s create two
 examples. First, you’ll create a “timer” that looks like a control
 structure and works like the Unix time command. Second, you’ll create
 another control structure that works like the Scala 2.10 Try/Success/Failure classes.
Example 1: Creating a Timer

On Unix systems you can run a time command (timex on some systems) to see how long
 commands take to execute:
$ time find . -name "*.scala"
That command returns the results of the find command it was given, along with the time
 it took to run. This can be a helpful way to troubleshoot performance
 problems.
You can create a similar timer method in Scala
 to let you run code like this:
val (result, time) = timer(someLongRunningAlgorithm)
println(s"result: $result, time: $time")
In this example, the timer runs
 a method named longRunningAlgorithm,
 and then returns the result from the algorithm, along with the
 algorithm’s execution time. You can see how this works by running a
 simple example in the REPL:
scala> val (result, time) = timer{ Thread.sleep(500); 1 }
result: Int = 1
time: Double = 500.32
As expected, the code block returns the value 1, with an execution time of about 500 ms.
The timer code is surprisingly
 simple, and involves the use of a generic type parameter:
def timer[A](blockOfCode: => A) = {
 val startTime = System.nanoTime
 val result = blockOfCode
 val stopTime = System.nanoTime
 val delta = stopTime - startTime
 (result, delta/1000000d)
}
The timer method uses Scala’s
 call-by-name syntax to accept a block of code as a
 parameter. Rather than declare a specific return type from the method
 (such as Int), you declare the return
 type to be a generic type parameter. This lets you pass all sorts of
 algorithms into timer, including
 those that return nothing:
scala> val (result, time) = timer{ println("Hello") }
Hello
result: Unit = ()
time: Double = 0.544
Or an algorithm that reads a file and returns an iterator:
scala> def readFile(filename: String) = io.Source.fromFile(filename).getLines
readFile: (filename: String)Iterator[String]

scala> val (result, time) = timer{ readFile("/etc/passwd") }
result: Iterator[String] = non-empty iterator
time: Double = 32.119
This is a simple use of specifying a generic type in a
 noncollection class, and helps you get ready for the next
 example.

Example 2: Writing Your Own “Try” Classes

Imagine the days back before Scala 2.10 when there was no such
 thing as the Try, Success, and Failure classes in scala.util. (They were available from
 Twitter, but just ignore that for now.) In those days, you might have
 come up with your own solution that you called Attempt, Succeeded, and Failed that would let you write code like
 this:
val x = Attempt("10".toInt) // Succeeded(10)
val y = Attempt("10A".toInt) // Failed(Exception)
To enable this basic API, you realize you’ll need a class named
 Attempt, and because you know you
 don’t want to use the new keyword to create a new instance, you know
 that you need a companion object with an apply method. You further realize that you
 need to define Succeeded and Failed, and they should extend Attempt. Therefore, you begin with this code,
 placed in a file named Attempt.scala:
// version 1
sealed class Attempt[A]

object Attempt {

 def apply[A](f: => A): Attempt[A] =
 try {
 val result = f
 return Succeeded(result)
 } catch {
 case e: Exception => Failed(e)
 }

}

final case class Failed[A](val exception: Throwable) extends Attempt[A]
final case class Succeeded[A](value: A) extends Attempt[A]
In a manner similar to the previous timer code, the apply method takes a call-by-name parameter,
 and the return type is specified as a generic type parameter. In this
 case, the type parameter ends up sprinkled around in other areas.
 Because apply returns a type of
 Attempt, it’s necessary there;
 because Failed and Succeeded extend Attempt, it’s propagated there as well.
This first version of the code lets you write the basic x and y
 examples. However, to be really useful, your API needs a new method
 named getOrElse that lets you get the
 information from the result, whether that result happens to be a type of
 Succeeded or Failed.
The getOrElse method will be
 called like this:
val x = Attempt(1/0)
val result = x.getOrElse(0)
Or this:
val y = Attempt("foo".toInt).getOrElse(0)
To enable a getOrElse method,
 make the following changes to the code:
// version 2
sealed abstract class Attempt[A] {
 def getOrElse[B >: A](default: => B): B = if (isSuccess) get else default
 var isSuccess = false
 def get: A
}

object Attempt {
 def apply[A](f: => A): Attempt[A] =
 try {
 val result = f
 Succeeded(result)
 } catch {
 case e: Exception => Failed(e)
 }
}

final case class Failed[A](val exception: Throwable) extends Attempt[A] {
 isSuccess = false
 def get: A = throw exception
}

final case class Succeeded[A](result: A) extends Attempt[A] {
 isSuccess = true
 def get = result
}
The variable isSuccess is added
 to Attempt so it can be set in
 Succeeded or Failed. An abstract method named get is also declared in Attempt so it can be implemented in the two
 subclasses. These changes let the getOrElse method in Attempt work.
The getOrElse method signature
 is the most interesting thing about this new code:
def getOrElse[B >: A](default: => B): B = if (isSuccess) get else default
Because of the way getOrElse
 works, it can either return the type A, which is the result of the expression, or
 type B, which the user supplies, and
 is presumably a substitute for A. The
 expression B >: A is a
 lower bound. Though it isn’t commonly used, a lower
 bound declares that a type is a supertype of another type. In this code,
 the term B >: A expresses that the
 type parameter B is a supertype of
 A.
The Scala 2.10 Try classes

You could keep developing your own classes, but the Try, Success, and Failure classes in the scala.util package were introduced in Scala
 2.10, so this is a good place to stop.
However, it’s worth noting that these classes can be a great way
 to learn about Scala types. For instance, the getOrElse method in the Attempt code is the same as the getOrElse method declared in Try:
def getOrElse[U >: T](default: => U): U = if (isSuccess) get else default
The map method declared in
 Success shows how to define a
 call-by-name parameter that transforms a type T to a type U:
def map[U](f: T => U): Try[U] = Try[U](f(value))
Its flatten method uses the
 <:< symbol that wasn’t
 covered in this chapter. When used as A
 <:< B, it declares that “A must be a subtype of B.” Here’s how it’s used in the Success class:
def flatten[U](implicit ev: T <:< Try[U]): Try[U] = value
When it comes to learning about generic parameter types, these
 classes are very interesting to study. They’re self-contained and
 surprisingly short. The Scala collections classes also demonstrate
 many more uses of generics.

Chapter 20. Idioms

Introduction

When I first came to Scala from Java, I was happy with the small
 things, including eliminating a lot of ;, (), and
 {} characters, and writing more
 concise, Ruby-like code. These were nice little wins that made for “a
 better Java.”
Over time, I wanted to add more to my repertoire and use Scala the
 way it’s intended to be used. As Ward Cunningham said in the book,
 Clean Code (Prentice Hall), I wanted to write code
 that “makes it look like the language was made for the problem.”
That’s what this chapter is about—trying to share some of the best
 practices of Scala programming so you can write code in “the Scala
 way.”
Before digging into the recipes in this chapter, here’s a short
 summary of Scala’s best practices.
At the application level:
	At the big-picture, application-design level, follow the 80/20
 rule, and try to write 80% of your application as pure functions, with
 a thin layer of other code on top of those functions for things like
 I/O.

	Learn “Expression-Oriented Programming” (Recipe 20.3).

	Use the Actor classes to implement concurrency (Chapter 13).

	Move behavior from classes into more granular traits. This is
 best described in the Scala
 Stackable Trait pattern.

At the coding level:
	Learn how to write pure functions. At the very least, they
 simplify testing.

	Learn how to pass functions around as variables (Recipes 9.2 to 9.4).

	Learn how to use the Scala collections API. Know the most common
 classes and methods (10 and 11).

	Prefer immutable code. Use vals and immutable collections first (Recipe 20.2).

	Drop the null keyword from
 your vocabulary. Use the Option/Some/None
 and Try/Success/Failure classes instead (Recipe 20.6).

	Use TDD and/or BDD testing tools like ScalaTest and
 specs2.

Outside the code:
	Learn how to use SBT. It’s the de-facto Scala build tool (Chapter 18).

	Keep a REPL session open while you’re coding (or use the Scala Worksheet), and
 constantly try small experiments (Recipes 14.1 to 14.4, and many examples throughout the
 book).

Other Resources

In addition to the practices shared in this chapter, I highly
 recommend reading Twitter’s Effective Scala
 document. The Twitter team has been a big user and proponent of
 Scala, and this document summarizes their experiences.
The Scala Style
 Guide is a good resource that shares examples of how to write
 code in the Scala “style.”

20.1. Create Methods with No Side Effects (Pure Functions)

Problem

In keeping with the best practices of Functional Programming (FP),
 you want to write “pure functions.”

Solution

In general, when writing a function (or method), your goal should
 be to write it as a pure function. This raises the question, “What is a
 pure function?” Before we tackle that question we need to look at
 another term, referential transparency, because
 it’s part of the description of a pure function.
Referential transparency

If you like algebra, you’ll like referential transparency. An
 expression is referentially transparent (RT) if it can be replaced by
 its resulting value without changing the behavior of the program. This
 must be true regardless of where the expression is used in the
 program.
For instance, assume that x
 and y are immutable variables
 within some scope of an application, and within that scope they’re
 used to form this expression:
x + y
You can assign this expression to a third variable, like
 this:
val z = x + y
Now, throughout the given scope of your program, anywhere the
 expression x + y is used, it can be
 replaced by z without affecting the
 result of the program.
Note that although I stated that x and y
 are immutable variables, they can also be the result of RT functions.
 For instance, "hello".length +
 "world".length will always be 10. This result could be assigned to
 z, and then z could be used everywhere instead of this
 expression.
Although this is a simple example, this is referential
 transparency in a nutshell.

Pure functions

Wikipedia defines a pure function as follows:
	The function always evaluates to the same result value given
 the same argument value(s). It cannot depend on any hidden state
 or value, and it cannot depend on any I/O.

	Evaluation of the result does not cause any semantically
 observable side effect or output, such as mutation of mutable
 objects or output to I/O devices.

The book Functional Programming in Scala by
 Chiusano and Bjarnason (Manning Publications), states this a little
 more precisely:
“A function f is
 pure if the expression f(x) is referentially transparent for all
 referentially transparent values x.”

To summarize, a pure function is referentially transparent and
 has no side effects.
Regarding side effects, the authors of the book,
 Programming in Scala, make a great
 observation:
“A telltale sign of a function with side effects is that its
 result type is Unit.”

From these definitions, we can make these statements about pure
 functions:
	A pure function is given one or more input
 parameters.

	Its result is based solely off of those parameters and its
 algorithm. The algorithm will not be based on any hidden state in
 the class or object it’s contained in.

	It won’t mutate the parameters it’s given.

	It won’t mutate the state of its class or object.

	It doesn’t perform any I/O operations, such as reading from
 disk, writing to disk, prompting for input, or reading
 input.

These are some examples of pure functions:
	Mathematical functions, such as addition, subtraction,
 multiplication.

	Methods like split and
 length on the String class.

	The to* methods on the
 String class (toInt, toDouble, etc.)

	Methods on immutable collections, including map, drop, take, filter, etc.

	The functions that extract values from an HTML string in
 Recipe 20.3.

The following functions are not pure functions:
	Methods like getDayOfWeek, getHour, or getMinute. They return a different value
 depending on when they are called.

	A getRandomNumber
 function.

	A function that reads user input or prints output.

	A function that writes to an external data store, or reads
 from a data store.

If you’re coming to Scala from a pure OOP background, it can be
 difficult to write pure functions. Speaking for myself, historically
 my code has followed the OOP paradigm of encapsulating data and
 behavior in classes, and as a result, my methods often mutated the
 internal state of objects.
Note
At this point you may be wondering how you can get anything
 done in a program consisting only of pure functions. If you can’t
 read input from a user or database, and can’t write output, how will
 your application ever work?
The best advice I can share about FP is to follow the 80/20
 rule: write 80% of your program using pure functions (the “cake”),
 then create a 20% layer of other code on top of the functional base
 (the “icing”) to handle the user interface, printing, database
 interactions, and other methods that have “side effects”.
Obviously any interesting application will have I/O, and this
 balanced approach lets you have the best of both worlds.

The Java approach

To look at how to write pure functions, you’ll convert the
 methods in an OOP class into pure functions. The following code shows
 how you might create a Stock class
 that follows the Java/OOP paradigm. The following class intentionally
 has a few flaws. It not only has the ability to store information
 about a Stock, but it can also
 access the Internet to get the current stock price, and further
 maintains a list of historical prices for the stock:
// a poorly written class

class Stock (var symbol: String, var company: String,
 var price: BigDecimal, var volume: Long) {

 var html: String = _
 def buildUrl(stockSymbol: String): String = { ... }
 def getUrlContent(url: String):String = { ... }

 def setPriceFromHtml(html: String) { this.price = ... }
 def setVolumeFromHtml(html: String) { this.volume = ... }
 def setHighFromHtml(html: String) { this.high = ... }
 def setLowFromHtml(html: String) { this.low = ... }

 // some dao-like functionality
 private val _history: ArrayBuffer[Stock] = { ... }
 val getHistory = _history

}
Beyond attempting to do too many things, from an FP perspective,
 it has these other problems:
	All of its fields are mutable.

	All of the set methods
 mutate the class fields.

	The getHistory method
 returns a mutable data structure.

The getHistory method is
 easily fixed by only sharing an immutable data structure, but this
 class has deeper problems. Let’s fix them.

Fixing the problems

The first fix is to separate two concepts that are buried in the
 class. First, there should be a concept of a Stock, where a Stock consists only of a symbol and company name. You can make this a case
 class:
case class Stock(symbol: String, company: String)
Examples of this are Stock("AAPL",
 "Apple") and Stock("GOOG",
 "Google").
Second, at any moment in time there is information related to a
 stock’s performance on the stock market. You can call this data
 structure a StockInstance, and also
 define it as a case class:
case class StockInstance(symbol: String,
 datetime: String,
 price: BigDecimal,
 volume: Long)
A StockInstance example looks
 like this:
StockInstance("AAPL", "Nov. 2, 2012 5:00pm", 576.80, 20431707)
Going back to the original class, the getUrlContent method isn’t specific to a
 stock, and should be moved to a different object, such as a
 general-purpose NetworkUtils
 object:
object NetworkUtils {
 def getUrlContent(url: String): String = { ... }
}
This method takes a URL as a parameter and returns the HTML
 content from that URL.
Similarly, the ability to build a URL from a stock symbol should
 be moved to an object. Because this behavior is specific to a stock,
 you’ll put it in an object named StockUtils:
object StockUtils {
 def buildUrl(stockSymbol: String): String = { ... }
}
The ability to extract the stock price from the HTML can also be
 written as a pure function and should be moved into the same
 object:
object StockUtils {
 def buildUrl(stockSymbol: String): String = { ... }
 def getPrice(html: String): String = { ... }
}
In fact, all of the methods named set* in the previous class should be
 get* methods in StockUtils:
object StockUtils {
 def buildUrl(stockSymbol: String): String = { ... }
 def getPrice(symbol: String, html: String): String = { ... }
 def getVolume(symbol: String, html: String): String = { ... }
 def getHigh(symbol: String, html: String): String = { ... }
 def getLow(symbol: String, html: String): String = { ... }
}
The methods getPrice,
 getVolume, getHigh, and getLow are all pure functions: given the
 same HTML string and stock symbol, they will always return the same
 values, and they don’t have side effects.
Following this thought process, the date and time are moved to a DateUtils object:
object DateUtils {
 def currentDate: String = { ... }
 def currentTime: String = { ... }
}
With this new design, you create an instance of a Stock for the current date and time as a
 simple series of expressions. First, retrieve the HTML that describes
 the stock from a web page:
val stock = new Stock("AAPL", "Apple")
val url = StockUtils.buildUrl(stock.symbol)
val html = NetUtils.getUrlContent(url)
Once you have the HTML, extract the desired stock information,
 get the date, and create the Stock
 instance:
val price = StockUtils.getPrice(html)
val volume = StockUtils.getVolume(html)
val high = StockUtils.getHigh(html)
val low = StockUtils.getLow(html)
val date = DateUtils.currentDate
val stockInstance = StockInstance(symbol, date, price, volume, high, low)
Notice that all of the variables are immutable, and each line is
 an expression.
The code is simple, so you can eliminate all the intermediate
 variables, if desired:
val html = NetUtils.getUrlContent(url)
val stockInstance = StockInstance(
 symbol,
 DateUtils.currentDate,
 StockUtils.getPrice(html),
 StockUtils.getVolume(html),
 StockUtils.getHigh(html),
 StockUtils.getLow(html))
As mentioned earlier, the methods getPrice, getVolume, getHigh, and getLow are all pure functions. But what
 about methods like getDate? It’s
 not a pure function, but the fact is, you need the date and time to
 solve the problem. This is part of what’s meant by having a healthy,
 balanced attitude about pure functions.
As a final note about this example, there’s no need for the
 Stock class to maintain a mutable
 list of stock instances. Assuming that the stock information is stored
 in a database, you can create a StockDao to retrieve the data:
object StockDao {
 def getStockInstances(symbol: String): Vector[StockInstance] = { ... }
 // other code ...
}
Though getStockInstances
 isn’t a pure function, the Vector
 class is immutable, so you can feel free to share it without worrying
 that it might be modified somewhere else in your application.
Note
Although I use the prefix get in many of those method names, it’s
 not at all necessary to follow a JavaBeans-like naming convention.
 In fact, in part because you write “setter” methods in Scala without
 beginning their names with set,
 and also to follow the Uniform
 Access Principle, many Scala APIs don’t use get or set at all.
For example, think of case classes. The accessors and mutators
 they generate don’t use get or
 set:
case class Person(name: String)
val p = Person("Mark")
p.name // accessor
p.name = "Bubba" // mutator
That being said, although it’s best to follow the Scala
 standards, use whatever method names best fit your API.

Discussion

A benefit of this coding style is that pure functions are easier
 to test. For instance, attempting to test the set* methods in the original code is harder
 than it needs to be. For each field (price, volume, high, and low), you have to follow these steps:
	Set the html field in the
 object.

	Call the current set
 method, such as setPriceFromHtml.

	Internally, this method reads the private html class field.

	When the method runs, it mutates a field in the class
 (price).

	You have to “get” that field to verify that it was
 changed.

	In more complicated classes, it’s possible that the html and price fields may be mutated by other
 methods in the class.

The test code for the original class looks like this:
val stock = new Stock("AAPL", "Apple", 0, 0)
stock.buildUrl
val html = stock.getUrlContent
stock.getPriceFromHtml(html)
assert(stock.getPrice == 500.0)
This is a simple example of testing one method that has side
 effects, but of course this can get much more complicated in a large
 application.
By contrast, testing a pure function is easier:
	Call the function, passing in a known value.

	Get a result back from the function.

	Verify that the result is what you expected.

The functional approach results in test code like this:
val url = NetUtils.buildUrl("AAPL")
val html = NetUtils.getUrlContent(url)
val price = StockUtils.getPrice(html)
assert(price == 500.0)
Although the code shown isn’t much shorter, it is much
 simpler.
StockUtils or Stock object?

The methods that were moved to the StockUtils class in the previous examples
 could be placed in the companion object of the Stock class. That is, you could have placed
 the Stock class and object in a
 file named Stock.scala:
case class Stock(symbol: String, company: String)

object Stock {
 def buildUrl(stockSymbol: String): String = { ... }
 def getPrice(symbol: String, html: String): String = { ... }
 def getVolume(symbol: String, html: String): String = { ... }
 def getHigh(symbol: String, html: String): String = { ... }
 def getLow(symbol: String, html: String): String = { ... }
}
For the purposes of this example, I put these methods in a
 StockUtils class to be clear about
 separating the concerns of the Stock class and
 object. In your own practice, use whichever
 approach you prefer.

See Also

	Pure
 Functions

	Referential
 Transparency

	The Uniform
 Access Principle

20.2. Prefer Immutable Objects

Problem

You want to reduce the use of mutable objects and data structures
 in your code.

Solution

Begin with this simple philosophy, stated in the book,
 Programming in Scala:
“Prefer vals, immutable
 objects, and methods without side effects. Reach for them
 first.”

Then use other approaches with justification.
There are two components to “prefer immutability”:
	Prefer immutable collections. For instance, use immutable
 sequences like List and Vector before reaching for the mutable
 ArrayBuffer.

	Prefer immutable variables. That is, prefer val to var.

In Java, mutability is the default, and it can lead to
 unnecessarily dangerous code and hidden bugs. In the following example,
 even though the List parameter taken
 by the trustMeMuHaHa method is marked
 as final, the method can still mutate
 the collection:
// java

class EvilMutator {

 // trust me ... mu ha ha (evil laughter)
 public static void trustMeMuHaHa(final List<Person> people) {
 people.clear();
 }

}
Although Scala treats method arguments as vals, you leave yourself open to the exact
 same problem by passing around a mutable collection, like an ArrayBuffer:
def evilMutator(people: ArrayBuffer[Person]) {
 people.clear()
}
Just as with the Java code, the evilMutator method can call clear because the contents of an ArrayBuffer are mutable.
Though nobody would write malicious code like this intentionally,
 accidents do happen. To make your code safe from this problem, if
 there’s no reason for a collection to be changed, don’t use a mutable
 collection class. By changing the collection to a Vector, you eliminate the possibility of this
 problem, and the following code won’t even compile:
def evilMutator(people: Vector[Person]) {
 // ERROR - won't compile
 people.clear()
}
Because Vector is immutable,
 any attempt to add or remove elements will fail.

Discussion

There are at least two major benefits to using immutable variables
 (val) and immutable
 collections:
	They represent a form of defensive coding, keeping your data
 from being changed accidentally.

	They’re easier to reason about.

The examples shown in the Solution demonstrate the first benefit:
 if there’s no need for other code to mutate your reference or
 collection, don’t let them do it. Scala makes this easy.
The second benefit can be thought of in many ways, but I like to
 think about it when using actors and concurrency. If I’m using immutable
 collections, I can pass them around freely. There’s no concern that
 another thread will modify the collection.
Using val + mutable, and var + immutable

As mentioned several times in this chapter, it’s important to
 have a balanced attitude. I generally use that expression in regards
 to pure functions, but it also has meaning when discussing “prefer
 immutability.”
For instance, some developers like to use these
 combinations:
	A mutable collection field declared as a val.

	An immutable collection field declared as a var.

These approaches generally seem to be used as follows:
	A mutable collection field declared as a val is typically made private to its
 class (or method).

	An immutable collection field declared as a var in a class is more often made
 publicly visible, that is, it’s made available to other
 classes.

As an example of the first approach, the current Akka FSM class (scala.akka.actor.FSM) defines several
 mutable collection fields as private vals, like this:
private val timers = mutable.Map[String, Timer]()

// some time later ...
timers -= name
timers.clear()
This is safe to do, because the timers field is private to the class, so its
 mutable collection isn’t shared with others.
An approach I used on a recent project is a variation of this
 theme:
class Pizza {

 private val _toppings = new collection.mutable.ArrayBuffer[Topping]()

 def toppings = _toppings.toList
 def addTopping(t: Topping) { _toppings += t }
 def removeTopping(t: Topping) { _toppings -= t }

}
This code defines _toppings
 as a mutable ArrayBuffer, but makes
 it a val that’s private to the
 Pizza class. Here’s my rationale
 for this approach:
	I made _toppings an
 ArrayBuffer because I knew that
 elements (toppings) would often be added and removed.

	I made _toppings a
 val because there was no need
 for it to ever be reassigned.

	I made it private so its
 accessor wouldn’t be visible outside of my class.

	I created the methods toppings, addTopping, and removeTopping to let other code
 manipulate the collection.

	When other code calls the toppings method, I can give them an
 immutable copy of the toppings.

I intentionally didn’t use the “val + mutable collection”
 approach, which would have looked like this:
// did not do this
val toppings = new collection.mutable.ArrayBuffer[Topping]()
I didn’t use this approach because I didn’t want to expose
 toppings as an immutable collection
 outside of my Pizza class, which
 would have happened here, because the val would have generated an accessor method.
 In using an OOP design, you think, “Who should be responsible for
 managing the toppings on the pizza?” and Pizza clearly has the responsibility of
 maintaining its toppings.
I also didn’t choose this “var + immutable collection”
 design:
var toppings = Vector[Topping]()
The benefits of this approach are (a) it automatically shares
 toppings as an immutable
 collection, and (b) it lets me add toppings like this:
def addTopping(t: Topping) = toppings :+ t
But the approach suffers, because it’s a little cumbersome to
 remove an element from a Vector
 (you have to filter the undesired toppings out of the originating
 Vector while assigning the result
 to a new Vector), and it lets
 toppings be reassigned outside of
 the Pizza class, which I don’t
 want:
// bad: other code can mutate 'toppings'
pizza.toppings = Vector(Cheese)
You can remove elements with this approach
 by using the filter method and then
 reassigning the result back to toppings, like this:
toppings = toppings.filter(_ != Pepperoni)
But if you create a “double pepperoni” pizza by having two
 instances of Pepperoni in toppings, and then want to change it to a
 regular pepperoni pizza, the earlier ArrayBuffer approach is simpler.

Summary

In summary, always begin with the “prefer immutability”
 approach, and relax that philosophy when it makes sense for the
 current situation, that is, when you can properly rationalize your
 decision.

See Also

	Recipe 10.6

20.3. Think “Expression-Oriented Programming”

Problem

You’re used to writing statements in another
 programming language, and want to learn how to write
 expressions in Scala, and the benefits of the
 expression-oriented programming (EOP) philosophy.

Solution

To understand EOP, you have to understand the difference between a
 statement and an expression.
 Wikipedia provides a concise distinction between the two:
“Statements do not return results and are executed solely for
 their side effects, while expressions always return a result and often
 do not have side effects at all.”

So statements are like this:
order.calculateTaxes()
order.updatePrices()
Expressions are like this:
val tax = calculateTax(order)
val price = calculatePrice(order)
On Wikipedia’s EOP page, it also states:
“An expression-oriented programming language is a programming
 language where every (or nearly every) construction is an expression,
 and thus yields a value.”

As you might expect, it further states that all pure FP languages
 are expression-oriented.
The following example helps to demonstrate EOP. This recipe is
 similar to Recipe 20.1,
 so it reuses the class from that recipe to show a poor initial
 design:
// an intentionally bad example

class Stock (var symbol: String,
 var company: String,
 var price: String,
 var volume: String,
 var high: String,
 var low: String) {

 var html: String = _
 def buildUrl(stockSymbol: String): String = { ... }
 def getUrlContent(url: String):String = { ... }
 def setPriceUsingHtml() { this.price = ... }
 def setVolumeUsingHtml() { this.volume = ... }
 def setHighUsingHtml() { this.high = ... }
 def setLowUsingHtml() { this.low = ... }

}
Although I didn’t show it in that recipe, using this class would
 result in code like this:
val stock = new Stock("GOOG", "Google", "", "", "", "")
val url = buildUrl(stock.symbol)
stock.html = stock.getUrlContent(url)

// a series of calls on an object ('statements')
stock.setPriceUsingHtml
stock.setVolumeUsingHtml
stock.setHighUsingHtml
stock.setLowUsingHtml
Although the implementation code isn’t shown, all of these “set”
 methods extract data from the HTML that was downloaded from a Yahoo Finance page for a given
 stock, and then update the fields in the current object.
After the first two lines, this code is not expression-oriented at
 all; it’s a series of calls on an object to populate (mutate) the class
 fields, based on other internal data. These are statements, not
 expressions; they don’t yield values.
Recipe 20.1 showed
 that by refactoring this class into several different components, you
 would end up with the following code:
// a series of expressions
val url = StockUtils.buildUrl(symbol)
val html = NetUtils.getUrlContent(url)
val price = StockUtils.getPrice(html)
val volume = StockUtils.getVolume(html)
val high = StockUtils.getHigh(html)
val low = StockUtils.getLow(html)
val date = DateUtils.getDate
val stockInstance = StockInstance(symbol, date, price, volume, high, low)
This code is expression-oriented. It consists of a series of
 simple expressions that pass values into pure functions (except for
 getDate), and each function returns a
 value that’s assigned to a variable. The functions don’t mutate the data
 they’re given, and they don’t have side effects, so they’re easy to
 read, easy to reason about, and easy to test.

Discussion

In Scala, most expressions are obvious. For instance, the
 following two expressions both return results, which you expect:
scala> 2 + 2
res0: Int = 4

scala> List(1,2,3,4,5).filter(_ > 2)
res1: List[Int] = List(3, 4, 5)
However, it can be more of a surprise that an if/else
 expression returns a value:
val greater = if (a > b) a else b
Match expressions also return a result:
val evenOrOdd = i match {
 case 1 | 3 | 5 | 7 | 9 => println("odd")
 case 2 | 4 | 6 | 8 | 10 => println("even")
}
Even a try/catch block
 returns a value:
val result = try {
 "1".toInt
} catch {
 case _ => 0
}
Writing expressions like this is a feature of functional
 programming languages, and Scala makes using them feel natural and
 intuitive, and also results in concise, expressive code.
Benefits

Because expressions always return a result, and generally don’t
 have side effects, there are several benefits to EOP:
	The code is easier to reason about. Inputs go in, a result
 is returned, and there are no side effects.

	The code is easier to test.

	Combined with Scala’s syntax, EOP also results in concise,
 expressive code.

	Although it has only been hinted at in these examples,
 expressions can often be executed in any order. This subtle
 feature lets you execute expressions in parallel, which can be a
 big help when you’re trying to take advantage of modern multicore
 CPUs.

See Also

	The Wikipedia definition of
 a statement, and the difference between a statement and an
 expression

	Expression-Oriented
 Programming (EOP)

20.4. Use Match Expressions and Pattern Matching

Problem

Match expressions (and pattern matching) are a major feature of
 the Scala programming language, and you want to see examples of the many
 ways to use them.

Solution

Match expressions (match/case statements) and pattern matching are
 a major feature of the Scala language. If you’re coming to Scala from
 Java, the most obvious uses are:
	As a replacement for the Java switch statement

	To replace unwieldy
 if/then statements

However, pattern matching is so common, you’ll find that match
 expressions are used in many more situations:
	In try/catch
 expressions

	As the body of a function or method

	With the
 Option/Some/None
 coding pattern

	In the receive method of
 actors

The following examples demonstrate these techniques.
Replacement for the Java switch statement and unwieldy if/then
 statements

Recipe 3.8
 showed that a match expression can be used like a Java switch statement:
val month = i match {
 case 1 => "January"
 case 2 => "February"

 // more months here ...

 case 11 => "November"
 case 12 => "December"
 case _ => "Invalid month" // the default, catch-all
}
It can be used in the same way to replace unwieldy
 if/then/else
 statements:
i match {
 case 1 | 3 | 5 | 7 | 9 => println("odd")
 case 2 | 4 | 6 | 8 | 10 => println("even")
}
These are simple uses of match expressions, but they’re a good
 start.

In try/catch expressions

It helps to become comfortable with match expressions, because
 you’ll use them with Scala’s
 try/catch syntax. The following
 example shows how to write a
 try/catch expression that
 returns an Option when lines are
 successfully read from a file, and None if an exception is thrown during the
 file-reading process:
def readTextFile(filename: String): Option[List[String]] = {
 try {
 Some(Source.fromFile(filename).getLines.toList)
 } catch {
 case e: Exception => None
 }
}
To catch multiple exceptions in a
 try/catch expression, list the
 exception types in the catch
 clause, just like a match expression:
def readTextFile(filename: String): Option[List[String]] = {
 try {
 Some(Source.fromFile(filename).getLines.toList)
 } catch {
 case ioe: IOException =>
 logger.error(ioe)
 None
 case fnf: FileNotFoundException =>
 logger.error(fnf)
 None
 }
}
Note that if the specific error is important in a situation like
 this, use the
 Try/Success/Failure
 approach to return the error information to the caller, instead of
 Option/Some/None.
 See Recipe 20.6 for
 both Option and Try examples.

As the body of a function or method

As you get comfortable with match expressions, you’ll use them
 as the body of your methods, such as this method that determines
 whether the value it’s given is true, using the Perl definition of
 “true”:
def isTrue(a: Any) = a match {
 case 0 | "" => false
 case _ => true
}
In general, a match expression used as the body of a function
 will accept a parameter as input, match against that parameter, and
 then return a value:
def getClassAsString(x: Any):String = x match {
 case s: String => "String"
 case i: Int => "Int"
 case l: List[_] => "List"
 case p: Person => "Person"
 case Dog() => "That was a Dog"
 case Parrot(name) => s"That was a Parrot, name = $name"
 case _ => "Unknown"
}
As shown in Recipe 9.8, a
 match expression can also be used to create a partial function (i.e.,
 working only for a subset of possible inputs):
val divide: PartialFunction[Int, Int] = {
 case d: Int if d != 0 => 42 / d
}
See that recipe for more details on this approach.

Use with Option/Some/None

Match expressions work well with the Scala
 Option/Some/None
 types. For instance, given a method that returns an Option:
def toInt(s: String): Option[Int] = {
 try {
 Some(s.toInt)
 } catch {
 case e: Exception => None
 }
}
You can handle the result from toInt with a match expression:
toInt(aString) match {
 case Some(i) => println(i)
 case None => println("Error: Could not convert String to Int.")
}
In a similar way, match expressions are a popular way of
 handling form verifications with the Play Framework:
verifying("If age is given, it must be greater than zero",
 model =>
 model.age match {
 case Some(age) => age < 0
 case None => true
 }
)

In actors

Match expressions are baked into actors as the
 way to handle incoming messages:
class SarahsBrain extends Actor {
 def receive = {
 case StartMessage => handleStartMessage
 case StopMessage => handleStopMessage
 case SetMaxWaitTime(time) => helper ! SetMaxWaitTime(time)
 case SetPhrasesToSpeak(phrases) => helper ! SetPhrasesToSpeak(phrases)
 case _ => log.info("Got something unexpected.")
 }

 // other code here ...
}

Summary

Match expressions are an integral part of the Scala language,
 and as shown, they can be used in many ways. The more you use them,
 the more uses you’ll find for them.

See Also

	Match expressions are demonstrated in many examples in Chapter 3.

	Chapter 13 demonstrates the use
 of match expressions when writing actors.

20.5. Eliminate null Values from Your Code

Problem

Tony Hoare, inventor of the null reference way back in 1965, refers to the
 creation of the null value as his
 “billion dollar
 mistake.” In keeping with modern best practices, you want to
 eliminate null values from your
 code.

Solution

David Pollak, author of the book Beginning
 Scala, offers a wonderfully simple rule about null values:
“Ban null from any of your
 code. Period.”

Although I’ve used null values
 in this book to make some examples easier, in my own practice, I no
 longer use them. I just imagine that there is no such thing as a
 null, and write my code in other
 ways.
There are several common situations where you may be tempted to
 use null values, so this recipe demonstrates how
 not to use null values in those
 situations:
	When a var field in a class
 or method doesn’t have an initial default value, initialize it with
 Option instead of null.

	When a method doesn’t produce the intended result, you may be
 tempted to return null. Use an
 Option or Try instead.

	If you’re working with a Java library that returns null, convert it to an Option, or something else.

Let’s look at each of these techniques.
Initialize var fields with Option, not null

Possibly the most tempting time to use a
 null value is when a field in a class or method
 won’t be initialized immediately. For instance, imagine that you’re
 writing code for the next great social network app. To encourage
 people to sign up, during the registration process, the only
 information you ask for is an email address and a password. Because
 everything else is initially optional, you might write some code like
 this:
case class Address (city: String, state: String, zip: String)

class User(email: String, password: String) {
 var firstName: String = _
 var lastName: String = _
 var address: Address = _
}
This is bad news, because firstName, lastName, and address are all declared to be null, and can cause problems in your
 application if they’re not assigned before they’re accessed.
A better approach is to define each field as an Option:
case class Address (city: String, state: String, zip: String)

class User(email: String, password: String) {
 var firstName = None: Option[String]
 var lastName = None: Option[String]
 var address = None: Option[Address]
}
Now you can create a User
 like this:
val u = new User("al@example.com", "secret")
At some point later you can assign the other values like
 this:
u.firstName = Some("Al")
u.lastName = Some("Alexander")
u.address = Some(Address("Talkeetna", "AK", "99676"))
Later in your code, you can access the fields like this:
println(firstName.getOrElse("<not assigned>"))
Or this:
u.address.foreach { a =>
 println(a.city)
 println(a.state)
 println(a.zip)
}
In both cases, if the values are assigned, they’ll be printed.
 With the example of printing the firstName field, if the value isn’t
 assigned, the string <not
 assigned> is printed.
In the case of the address,
 if it’s not assigned, the foreach
 loop won’t be executed, so the print statements are never reached.
 This is because an Option can be
 thought of as a collection with zero or one elements. If the value is
 None, it has zero elements, and if
 it is a Some, it has one
 element—the value it contains.
On a related note, you should also use an Option in a constructor when a field is
 optional:
case class Stock (id: Long,
 var symbol: String,
 var company: Option[String])

Don’t return null from methods

Because you should never use null in your code, the rule for returning
 null values from methods is easy:
 don’t do it.
If you can’t return null,
 what can you do? Return an Option.
 Or, if you need to know about an error that may have occurred in the
 method, use Try instead of Option.
With an Option, your method
 signatures should look like this:
def doSomething: Option[String] = { ... }
def toInt(s: String): Option[Int] = { ... }
def lookupPerson(name: String): Option[Person] = { ... }
For instance, when reading a file, a method could return
 null if the process fails, but this
 code shows how to read a file and return an Option instead:
def readTextFile(filename: String): Option[List[String]] = {
 try {
 Some(io.Source.fromFile(filename).getLines.toList)
 } catch {
 case e: Exception => None
 }
}
This method returns a List[String] wrapped in a Some if the file can be found and read, or
 None if an exception occurs.
As mentioned, if you want the error information instead of a
 Some or None, use the
 Try/Success/Failure
 approach instead:
import scala.util.{Try, Success, Failure}

object Test extends App {

 def readTextFile(filename: String): Try[List[String]] = {
 Try(io.Source.fromFile(filename).getLines.toList)
 }

 val filename = "/etc/passwd"
 readTextFile(filename) match {
 case Success(lines) => lines.foreach(println)
 case Failure(f) => println(f)
 }

}
This code prints the lines from the /etc/passwd file if the code succeeds, or
 prints an error message like this if the code fails:
java.io.FileNotFoundException: Foo.bar (No such file or directory)
As a word of caution (and balance), the Twitter
 Effective Scala page recommends not overusing
 Option, and using the Null Object
 Pattern where it makes sense. As usual, use your own judgment,
 but try to eliminate all null values using one of
 these approaches.
Note
A Null Object is an object that extends a
 base type with a “null” or neutral behavior. Here’s a Scala
 implementation of Wikipedia’s Java example of a Null Object:
trait Animal {
 def makeSound()
}

class Dog extends Animal {
 def makeSound() { println("woof") }
}

class NullAnimal extends Animal {
 def makeSound() {}
}
The makeSound method in the
 NullAnimal class has a neutral,
 “do nothing” behavior. Using this approach, a method defined to
 return an Animal can return
 NullAnimal rather than null.
This is arguably similar to returning None from a method declared to return an
 Option, especially when the
 result is used in a foreach
 loop.

Converting a null into an Option, or something else

The third major place you’ll run into null values is in working with legacy Java
 code. There is no magic formula here, other than to capture the
 null value and return something
 else from your code. That may be an Option, a Null Object, an empty list, or
 whatever else is appropriate for the problem at hand.
For instance, the following getName method converts a result from a Java
 method that may be null and returns
 an Option[String] instead:
def getName: Option[String] = {
 var name = javaPerson.getName
 if (name == null) None else Some(name)
}

Benefits

Following these guidelines leads to these benefits:
	You’ll eliminate
 NullPointerExceptions.

	Your code will be safer.

	You won’t have to write if statements to check for null values.

	Adding an Option[T]
 return type declaration to a method is a terrific way to indicate
 that something is happening in the method such that the caller may
 receive a None instead of a
 Some[T]. This is a much better
 approach than returning null
 from a method that is expected to return an object.

	You’ll become more comfortable using Option, and as a result, you’ll be able
 to take advantage of how it’s used in the collection libraries and
 other frameworks.

See Also

	Tony
 Hoare’s Billion Dollar Mistake

	The “Null Object
 Pattern”

20.6. Using the Option/Some/None Pattern

Problem

For a variety of reasons, including removing
 null values from your code, you want to use what I
 call the
 Option/Some/None
 pattern. Or, if you’re interested in a problem (exception) that occurred
 while processing code, you may want to return
 Try/Success/Failure
 from a method instead of
 Option/Some/None.

Solution

There is some overlap between this recipe and the previous recipe,
 “Eliminate null Values from Your Code”. That recipe shows how to use
 Option instead of null in the following situations:
	Using Option in method and
 constructor parameters

	Using Option to initialize
 class fields (instead of using null)

	Converting null results
 from other code (such as Java code) into an Option

See that recipe for examples of how to use an Option in those situations.
This recipe adds these additional solutions:
	Returning an Option from a
 method

	Getting the value from an Option

	Using Option with
 collections

	Using Option with
 frameworks

	Using Try/Success/Failure when you need the error message
 (Scala 2.10 and newer)

	Using Either/Left/Right when you need the error message
 (pre-Scala 2.10)

Returning an Option from a method

The toInt method used in this
 book shows how to return an Option
 from a method. It takes a String as
 input and returns a Some[Int] if
 the String is successfully
 converted to an Int, otherwise it
 returns a None:
def toInt(s: String): Option[Int] = {
 try {
 Some(Integer.parseInt(s.trim))
 } catch {
 case e: Exception => None
 }
}
Although this is a simple method, it shows the common pattern,
 as well as the syntax. For a more complicated example, see the
 readTextFile example in Recipe 20.5.
This is what toInt looks like
 in the REPL when it succeeds and returns a Some:
scala> val x = toInt("1")
x: Option[Int] = Some(1)
This is what it looks like when it fails and returns a None:
scala> val x = toInt("foo")
x: Option[Int] = None

Getting the value from an Option

The toInt example shows how
 to declare a method that returns an Option. As a consumer of a method that
 returns an Option, there are
 several good ways to call it and access its result:
	Use getOrElse

	Use foreach

	Use a match expression

To get the actual value if the method succeeds, or use a default
 value if the method fails, use getOrElse:
scala> val x = toInt("1").getOrElse(0)
x: Int = 1
Because an Option is a
 collection with zero or one elements, the foreach method can be used in many
 situations:
toInt("1").foreach{ i =>
 println(s"Got an int: $i")
}
That example prints the value if toInt returns a Some, but bypasses the println statement if toInt returns a None.
Another good way to access the toInt result is with a match
 expression:
toInt("1") match {
 case Some(i) => println(i)
 case None => println("That didn't work.")
}

Using Option with Scala collections

Another great feature of Option is that it plays well with Scala
 collections. For instance, starting with a list of strings like
 this:
val bag = List("1", "2", "foo", "3", "bar")
imagine you want a list of all the integers that can be
 converted from that list of strings. By passing the toInt method into the map method, you can convert every element in
 the collection into a Some or
 None value:
scala> bag.map(toInt)
res0: List[Option[Int]] = List(Some(1), Some(2), None, Some(3), None)
This is a good start. Because an Option is a collection of zero or one
 elements, you can convert this list of Int values by adding flatten to map:
scala> bag.map(toInt).flatten
res1: List[Int] = List(1, 2, 3)
As shown in Recipe 10.16, this is the same as calling flatMap:
scala> bag.flatMap(toInt)
res2: List[Int] = List(1, 2, 3)
The collect method provides
 another way to achieve the same result:
scala> bag.map(toInt).collect{case Some(i) => i}
res3: List[Int] = List(1, 2, 3)
That example works because the collect method takes a partial function, and
 the anonymous function that’s passed in is only defined for Some values; it ignores the None values.
These examples work for several reasons:
	toInt is defined to
 return Option[Int].

	Methods like flatten,
 flatMap, and others are built
 to work well with Option
 values.

	You can pass anonymous functions into the collection
 methods.

Using Option with other frameworks

Once you begin working with third-party Scala libraries, you’ll
 see that Option is used to handle
 situations where a variable may not have a value. For instance,
 they’re baked into the Play Framework’s Anorm database library, where
 you use
 Option/Some/None
 for database table fields that can be null. In the following example, the third
 field may be null in the database,
 so it’s handled using Some and
 None, as shown:
def getAll() : List[Stock] = {
 DB.withConnection { implicit connection =>
 sqlQuery().collect {
 // the 'company' field has a value
 case Row(id: Int, symbol: String, Some(company: String)) =>
 Stock(id, symbol, Some(company))
 // the 'company' field does not have a value
 case Row(id: Int, symbol: String, None) =>
 Stock(id, symbol, None)
 }.toList
 }
}
The Option approach is also
 used extensively in Play validation methods:
verifying("If age is given, it must be greater than zero",
 model =>
 model.age match {
 case Some(age) => age < 0
 case None => true
 }
)
Note
The scala.util.control.Exception object gives
 you another way to use an Option,
 depending on your preferences and needs. For instance, the
 try/catch block was removed
 from the following method and replaced with an allCatch method:
import scala.util.control.Exception._

def readTextFile(f: String): Option[List[String]] =
 allCatch.opt(Source.fromFile(f).getLines.toList)
allCatch is described as a
 Catch object “that catches
 everything.” The opt method
 returns None if an exception is
 caught (such as a FileNotFoundException), and a Some if the block of code succeeds.
Other allCatch methods
 support the Try and Either approaches. See the Exception object Scaladoc for
 more information.

If you like the
 Option/Some/None
 approach, but want to write a method that returns error information in
 the failure case (instead of None,
 which doesn’t return any error information), there are two similar
 approaches:
	Try, Success, and Failure (introduced in Scala
 2.10)

	Either, Left, and Right

I prefer the new
 Try/Success/Failure
 approach, so let’s look at it next.

Using Try, Success, and Failure

Scala 2.10 introduced scala.util.Try as an approach that’s similar
 to Option, but returns failure
 information rather than a None.
The result of a computation wrapped in a Try will be one of its subclasses: Success or Failure. If the computation succeeds, a
 Success instance is returned; if an
 exception was thrown, a Failure
 will be returned, and the Failure
 will hold information about what failed.
To demonstrate this, first import the new classes:
import scala.util.{Try,Success,Failure}
Then create a simple method:
def divideXByY(x: Int, y: Int): Try[Int] = {
 Try(x / y)
}
This method returns a successful result as long as y is not zero. When y is zero, an ArithmeticException happens. However, the
 exception isn’t thrown out of the method; it’s caught by the Try, and a Failure object is returned from the
 method.
The method looks like this in the REPL:
scala> divideXByY(1,1)
res0: scala.util.Try[Int] = Success(1)

scala> divideXByY(1,0)
res1: scala.util.Try[Int] = Failure(java.lang.ArithmeticException: / by zero)
As with an Option, you can
 access the Try result using
 getOrElse, a foreach method, or a match expression. If
 you don’t care about the error message and just want a result, use
 getOrElse:
// Success
scala> val x = divideXByY(1, 1).getOrElse(0)
x: Int = 1

// Failure
scala> val y = divideXByY(1, 0).getOrElse(0)
y: Int = 0
Using a foreach method also
 works well in many situations:
scala> divideXByY(1, 1).foreach(println)
1

scala> divideXByY(1, 0).foreach(println)
(no output printed)
If you’re interested in the Failure message, one way to get it is with a
 match expression:
divideXByY(1, 1) match {
 case Success(i) => println(s"Success, value is: $i")
 case Failure(s) => println(s"Failed, message is: $s")
}
Another approach is to see if a Failure was returned, and then call its
 toString method (although this
 doesn’t really follow the “Scala way”):
scala> if (x.isFailure) x.toString
res0: Any = Failure(java.lang.ArithmeticException: / by zero)
The Try class has the added
 benefit that you can chain operations together, catching exceptions as
 you go. For example, the following code won’t throw an exception,
 regardless of what the values of x
 and y are:
val z = for {
 a <- Try(x.toInt)
 b <- Try(y.toInt)
} yield a * b

val answer = z.getOrElse(0) * 2
If x and y are String values like "1" and "2", this code works as expected, with
 answer resulting in an Int value. If x or y is
 a String that can’t be converted to
 an Int, z will have this value:
z: scala.util.Try[Int] =
 Failure(java.lang.NumberFormatException: For input string: "one")
If x or y is null, z
 will have this value:
z: scala.util.Try[Int] = Failure(java.lang.NumberFormatException: null)
In either Failure case, the
 getOrElse method protects us,
 returning the default value of 0.
The readTextFile method in
 Recipe 20.5 shows another
 Try example. The method from that
 example is repeated here:
def readTextFile(filename: String): Try[List[String]] = {
 Try(Source.fromFile(filename).getLines.toList)
}
If the readTextFile method
 runs successfully, the lines from the /etc/passwd file are printed, but if an
 exception happens while trying to open and read the file, the Failure line in the match expression prints
 the error, like this:
java.io.FileNotFoundException: Foo.bar (No such file or directory)
The Try class includes a nice
 collection of methods that let you handle situations in many ways,
 including:
	Collection-like implementations of filter, flatMap, flatten, foreach, and map

	get, getOrElse, and orElse

	toOption, which lets you
 treat the result as an Option

	recover, recoverWith, and transform, which let you gracefully
 handle Success and Failure results

As you can see, Try is a
 powerful alternative to using
 Option/Some/None.

Using Either, Left, and Right

Prior to Scala 2.10, an approach similar to Try was available with the Either, Left, and Right classes. With these classes, Either is analogous to Try, Right is similar to Success, and Left is similar to Failure.
The following method demonstrates how to implement the Either approach:
def divideXByY(x: Int, y: Int): Either[String, Int] = {
 if (y == 0) Left("Dude, can't divide by 0")
 else Right(x / y)
}
As shown, your method should be declared to return an Either, and the method body should return a
 Right on success and a Left on failure. The Right type is the type your method returns
 when it runs successfully (an Int
 in this case), and the Left type is
 typically a String, because that’s
 how the error message is returned.
As with Option and Try, a method returning an Either can be called in a variety of ways,
 including getOrElse or a match
 expression:
val x = divideXByY(1, 1).right.getOrElse(0) // returns 1
val x = divideXByY(1, 0).right.getOrElse(0) // returns 0

// prints "Answer: Dude, can't divide by 0"
divideXByY(1, 0) match {
 case Left(s) => println("Answer: " + s)
 case Right(i) => println("Answer: " + i)
}
You can also access the error message by testing the result with
 isLeft, and then accessing the
 left value, but this isn’t really
 the Scala way:
scala> val x = divideXByY(1, 0)
x: Either[String,Int] = Left(Dude, can't divide by 0)

scala> x.isLeft
res0: Boolean = true

scala> x.left
res1: scala.util.Either.LeftProjection[String,Int] =
 LeftProjection(Left(Dude, can't divide by 0))
Although the Either classes
 offered a potential solution prior to Scala 2.10, I now use the
 Try classes in all of my code
 instead of Either.

Discussion

As shown in the Solution, if there’s a weakness of using Option, it’s that it doesn’t tell you
 why something failed; you just get a None instead of a Some. If you need to know why something
 failed, use Try instead of Option.
Don’t use the get method with Option

When you first come to Scala from Java, you may be tempted to
 use the get method to access the
 result:
scala> val x = toInt("5").get
x: Int = 5
However, this isn’t any better than a NullPointerException:
scala> val x = toInt("foo").get
java.util.NoSuchElementException: None.get
// long stack trace omitted ...
Your next thought might be to test the value before trying to
 access it:
// don't do this
scala> val x = if (toInt("foo").isDefined) toInt("foo") else 0
x: Any = 0
As the comment says, don’t do this. In short, it’s a best
 practice to never call get on an
 Option. The preferred approaches
 are to use getOrElse, a match
 expression, or foreach. (As with
 null values, I just imagine that get doesn’t exist.)

See Also

	The Option class

	The Try class

	The Either class

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 Symbols
	! method, Solution, Discussion, Discussion
		executing command and getting exit code, Solution, Discussion
	sending messages to actors, Discussion

	!! method, executing command and getting
 output, Solution, Solution, Discussion, Solution
	" (quotation marks, double), “"” surrounding multiline
 strings, Solution
	#&& (AND) operator, Solution
	#:: method, constructing a Stream, Solution
	#< operator, redirecting STDIN, Solution
	#> operator, redirecting STDOUT, Solution
	#>> method, appending to a file, Discussion
	#| method, pipelining commands, Solution
	#|| (OR) operator, Solution
	$ (dollar sign), Solution
		preceding variable names, Solution

	$ { }, including expressions inside a string, Using expressions in string literals
	% method, in build.sbt file, Discussion
	%% method, in build.sbt file, Discussion
	() (parentheses), forcing callers to leave off accessor
 methods, Problem
	*= method, Solution
	+ method, Solution, Immutable set
		adding elements to immutable Map, Solution
	adding elements to immutable Set, Immutable set

	++ method, Solution, Discussion, Solution, Immutable set
		adding elements to immutable Set, Immutable set
	merging two lists, Solution

	++= method, Solution, Solution, Solution, Mutable set, Solution
		adding elements to ArrayBuffer, Solution
	adding elements to mutable Queue, Solution
	adding elements to mutable Set, Mutable set
	adding multiple elements to mutable maps, Solution

	+= method, Solution, Solution, Solution, Mutable set, Solution, Solution, Discussion
		adding elements to ArrayBuffer, Solution
	adding elements to mutable maps, Solution
	adding elements to mutable Queue, Solution
	adding elements to mutable Set, Mutable set
	inserting documents into MongoDB, Solution
	on Int and other numeric types, Solution
	use in build.sbt file, Discussion

	, (comma), adding to numbers, Solution
	- method, Solution, Immutable set
		removing elements from immutable Map, Solution
	removing elements from immutable Set, Immutable set

	-- method, Discussion, Solution, Immutable set
		removing elements from immutable Map, Solution
	removing elements from immutable Set, Immutable set

	--= method, ListBuffer, Solution, Solution, Mutable set
		deleting elements from mutable Set, Mutable set
	deleting multiple elements from a
 ListBuffer, ListBuffer
	removing elements from collections extending
 TraversableOnce, Solution
	removing elements from mutable maps, Solution

	-= method, Solution, ListBuffer, Solution, Solution, Mutable set
		deleting elements from ListBuffer, ListBuffer
	deleting elements from mutable Set, Mutable set
	on Int and other numeric types, Solution
	removing ArrayBuffer elements, Solution
	removing elements from mutable maps, Solution

	/= method, Solution
	/bin/sh command,
 -c argument, Discussion
	: (colon), Scala methods ending with, evaluation
 of, Solution
	:+ method, Problem
	:: (cons) method, Solution, Discussion, Solution
		creating a List, Solution, Discussion
	prepending elements to a list, Solution

	::: method, merging or concatenating lists, Solution, Solution
	<- symbol in for loops, Discussion, Discussion
		ranges created with, Discussion

	<=, <, >, and >= methods, implemented by Ordered
 trait, Mix in the Ordered trait
	= (equals sign), Solution, Discussion, Solution
		== (equality) operator, Solution, Discussion
		testing object equality in Scala, Discussion
	testing string equality, Solution

	== method, comparing object instances with, Solution

	=> symbol as transformer, Discussion, Solution
	? (question mark), Solution, Solution
		? method, used with Actors, Solution
	in lazy collections, Solution

	? : (ternary operator in Java), Discussion
	@BeanProperty annotation, Solution, Solution–Problem
	@SerialVersionUID annotation, Solution, Solution
	@switch annotation, The @switch annotation
	@tailrec annotation, Discussion
	@throws annotation, Discussion, Discussion, Solution, Solution
	@varargs annotation, Solution
	\ and \\ methods, Discussion
	_ (underscore), Solutions, Solution, Handling the default case, Problem, Patterns, Patterns, Introduction, Solution, Solution, Solution, Solution
		accessing tuple elements, Solution
	standing for an element in a sequence, Patterns
	using to shorten code, Solution
	wildcard character in Scala, Solutions, Handling the default case, Problem, Patterns, Introduction, Solution, Solution, Solution
		catching default in match expression, Handling the default case
	in imports, Solution
	shortening expressions with, Solution
	using variable name for default match, Problem

	_$eq methods, Those _$eq methods
	_* operator, Use _* to adapt a sequence, About that _*
		adapting a sequence to be used as argument for varargs
 field, Use _* to adapt a sequence
	converting data to pass as multiple parameters to
 ListMap or LinkedHashMap, About that _*

	{ } (curly braces), Using expressions in string literals, Using expressions in string literals, Discussion, Problem, Discussion, Discussion
		around function body, Discussion
	in nested style package notation, Problem, Discussion
		combining with import statements, Discussion

	using to include expressions in strings, Using expressions in string literals
	using to print object fields, Using expressions in string literals
	using to write longer for loops, Discussion

	| (pipe symbol), Discussion, Solution
		separating match conditions for case
 statements, Solution
	using to create multiline strings, Discussion

	~ operator, Lift-JSON version 1
		joining fields with, Lift-JSON version 1

 A
	abstract classes, Problem, Solution, Problem
		extending traits, Solution
	using traits as, Problem
	when to use, Problem

	abstract fields, using in traits, Problem
	abstract methods, Solution, Solution
		(see also abstract classes)
	implementation by classes implementing traits, Solution

	access modifiers, Problem, Discussion
		(see also methods, controlling scope)
	descriptions of Scala modifiers, Discussion

	accessor and mutator methods, Introduction, Those _$eq methods, var fields, val fields, Discussion, Discussion, Problem–Summary, Problem, Solution, Problem, Providing multiple constructors for case classes
		accessor method for constructor val field, val fields
	automatic generation of, in primary
 constructor, Discussion
	case class constructor parameters, Solution
	effect of constructor parameter settings, Discussion
	for case classes, Providing multiple constructors for case classes
	for constructor var fields, var fields
	forcing callers to leave parentheses off
 accessors, Problem
	mutator method names for var fields, Those _$eq methods
	overriding default, Problem–Summary
	preventing generation of, Problem

	Actor model, The Actor Model, The Actor Model
		Akka’s implementation of, The Actor Model

	actorFor method, looking up actors, Looking up actors
	actorOf method, Discussion, ActorRef, Solution
		calling on ActorSystem, ActorRef, Solution

	ActorRef, The Actor Model, ActorRef, Discussion, Solution
	actors, Solution, Introduction–Problem, Introduction, The Actor Model, Problem, Problem, Problem–Problem, Problem–Problem, Problem, Problem–Problem, system.stop and context.stop, PoisonPill message, gracefulStop, “Killing” an actor, Problem, Problem–Problem, Problem, Problem, In actors
		benefits of, Introduction
	communication between, Problem–Problem
	creating Actor with class constructor requiring
 arguments, Problem
	defined, The Actor Model
	getting started with, Problem
	match expressions in, In actors
	methods in Akka actor lifecycle, Problem–Problem
	monitoring actor’s death with watch, Problem–Problem
	sending message to actor and waiting for
 reply, Problem
	shutting down Akka actor system, Problem
	Singleton objects as messages for, Solution
	starting, Problem
	stopping, Problem–Problem, system.stop and context.stop, PoisonPill message, gracefulStop, “Killing” an actor
		using gracefulStop method, gracefulStop
	using Kill message, “Killing” an actor
	using PoisonPill message, PoisonPill message
	using stop method, system.stop and context.stop

	switching between different states with
 become, Problem

	actorSelection method, Looking up actors
	ActorSystem, Discussion, ActorSystem, Solution, Solution, Looking up actors
		actorSelection method, Looking up actors
	defined, ActorSystem
	shutdown method, Solution
	stop method, Solution

	ActorSystem class, creating actors, Solution
	ActorTimeoutException, gracefulStop
	add method, using with mutable Set, Mutable set
	afplay system command on Mac OS X, Discussion
	Akka actor library, Introduction
	andThen method, orElse and andThen, For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen)
		PartialFunction trait, orElse and andThen

	annotations, Annotate your method return type, Solution, Problem, Problem, Discussion
		adding exception annotations to Scala methods to work
 with Java, Problem
	annotating variables with a type, Solution
	for return type of implicit methods, Annotate your method return type
	Scala annotations and Java equivalents, Discussion
	using @SerialVersionUID and other annotations, Problem

	anonymous functions, Problem, Solution, Using a method like an anonymous function, Solution, A Few Important Concepts, Solution
		defining, Solution
	passed into map method, Solution
	returning from body of another function, Solution
	using methods like, Using a method like an anonymous function

	Anorm, using Option, Using Option with other frameworks
	Ant, Discussion, Problem–Creating a JAR file with Ant
		building a Scala project with, Problem–Creating a JAR file with Ant

	Any class, asInstanceOf method, Solution
	AnyRef class, == method, Discussion
	AnyVal type, specifying for collections, Solution
	Apache Commons FileUtils library, Multiple fromFile methods
	Apache HttpClient library, Introduction, Test the POST method with Scala code, Solution, Using the Apache HttpClient, Solution, Solution, Solution
		getting URL headers from HttpResponse object, Solution
	sending JSON data to POST URL, Solution
	setting URL headers before making HTTP
 request, Solution

	Apache Ivy, Introduction, Discussion
	APIs for libraries, traits commonly used in, Choosing a sequence
	App trait, Solution, Discussion, Using the App trait or main method, Discussion
		caveats, Discussion
	using in Scala shell scripts, Using the App trait or main method, Discussion
		basic use and header lines, Using the App trait or main method
	passing command-line arguments to, Discussion

	apply method, Generating auxiliary constructors for case classes, Solution, Generated code, Creating a companion object with an apply method, Discussion, Providing multiple constructors with additional apply
 methods, Problem–See Also
		case classes, Solution
	creating in companion object of regular
 class, Generated code
	defining in companion objects, Generating auxiliary constructors for case classes, Creating a companion object with an apply method
	implementing factory method with, Problem–See Also
	providing multiple case class constructors with
 multiple apply methods, Providing multiple constructors with additional apply
 methods
	treatment by Scala compiler, Discussion

	args object, Solution
	ARM library, Automatically closing the resource
	array notation, using to access a character in a
 String, Solution
	Array.ofDim method, Using Array.ofDim, Discussion, Solution
		decompiling, Discussion

	ArrayBuffer class, Problem, Discussion, Array (and ArrayBuffer), Solution, Solution, Solution, Discussion
		deleting elements, Solution
	Gson library working with, Discussion
	making your go to mutable sequence, Problem
	methods to add or remove elements, Discussion
	reading CSV file rows to, Solution
	using to create array whose size can change, Solution

	ArrayList class (Java), Solution
	arrays, Solutions, Solution, Discussion, Solution, Solution, Discussion, Solution, Array (and ArrayBuffer), Problem, Discussion, Problem, Array, Problem, Problem, Using an array of arrays, Solution, Problem
		accessing and changing values by index
 position, Discussion
	Array and ArrayBuffer classes, Array (and ArrayBuffer)
	assigning CSV file processing results to 2D
 array, Solution
	converting findAllIn method results to Array, Solution
	converting Range object to Array, Discussion
	creating array whose size can change
 (ArrayBuffer), Problem
	creating multidimensional arrays, Problem, Using an array of arrays
		using array of arrays, Using an array of arrays

	deleting elements from an Array, Array
	different ways to define and populate an
 Array, Problem
	extracting sequence of elements from, Solution
	iterating over, using for loop, Solution
	looping over elements, Solutions
	manually specifying the type, Discussion
	of objects, parsing JSON data into, Problem
	performance of an Array, Solution
	sorting, Problem

	ArrayStack class, Discussion
	asInstanceOf method, Solution, Discussion
		casting numeric types, Discussion
	object casting with, Solution

	ask method (of Akka actors), Solution
	assignment, adding elements to mutable maps, Solution
	auxiliary constructors, Problem–See Also, Discussion, Auxiliary constructors
		defining, Problem–See Also
	eliminating need for, Discussion
	subclass, inability to call superclass
 constructor, Auxiliary constructors

	Await.result method, gracefulStop, Run one task, but block, Discussion

 B
	base and radix, handling in conversions of strings to
 integers, Handling a base and radix
	@BeanProperty annotation, Solution, Solution–Problem
	“become” approach for actors to switch
 states, Problem
	best practices in Scala, Introduction–Don’t use the get method with Option, Problem–Problem, Problem–Problem, Problem–Problem, Problem–Problem, Problem–Problem, Problem–Don’t use the get method with Option
		creating methods with no side effects (pure
 functions), Problem–Problem
	eliminating null values from code, Problem–Problem
	expression-oriented programming (EOP), Problem–Problem
	prefer immutable objects, Problem–Problem
	using match expressions (and pattern
 matching), Problem–Problem
	using Option/Some/None pattern, Problem–Don’t use the get method with Option

	BigDecimal, Solution, Solution, Solution
		conversions to other numeric types, Solution
	creating directly from strings, Solution

	BigDecimal class (Java), Discussion, Discussion
		currency formatting with, Discussion

	BigInt, Solution, Solution, Solution
		conversions to other numeric types, Solution
	creating directly from strings, Solution

	BigInteger class (Java), Discussion
	binary files, reading and writing, Problem
	Boolean test to break out of loops, Discussion
	bounds, Bounds, Solution, Discussion, Discussion
		upper bound, Solution, Discussion
	view bound, Discussion

	Bourne shell, Discussion
	break and continue, implementing in Scala, Problem–Problem, The break example, The continue example, General syntax, About that continue example..., Nested loops and labeled breaks, Discussion
		break example, The break example
	continue example, The continue example, About that continue example...
		better way to solve problem, About that continue example...

	general syntax, General syntax
	nested loops and labeled breaks, Nested loops and labeled breaks
	ways to avoid using break and continue, Discussion

	break method, The break example
	breakable method, The break example
	BreakControl exception, The break example
	BufferedSource class, Using the concise syntax, Properly closing the file
		close method, Properly closing the file

	build tools, Discussion
	build.sbt file, Solution, Solution, Solution, Solution, Discussion, Solution, Discussion, Solution, Solution, Using sbt-assembly, Problem–See Also
		adding multiple dependencies, Solution
	common methods used in, Discussion
	entries as key/value pairs, Solution
	entry for sbt-assembly plug-in, Using sbt-assembly
	example file with one dependency, Solution
	logLevel setting, Solution
	mainClass settings, Discussion
	resolvers key, Solution
	specifying man method to run, Solution
	using Build.scala file instead of, Problem–See Also

	Build.scala file, Problem (see project/Build.scala file)
	build.xml file (Ant), Solution, The build.xml code
		init target, The build.xml code

	by method, setting step in ranges, Solution
	Byte type, Introduction

 C
	callback methods, futures, The onSuccess and onFailure callback methods, Callback methods
		onSuccess and onFailure, The onSuccess and onFailure callback methods

	canEqual method, Discussion
	Casbah driver, Solution, Discussion
		creating Casbah-style queries, Discussion

	case classes, Adding variables to patterns, Problem–Solution, Solution, Introduction, Case classes, Generating auxiliary constructors for case classes, Problem, Problem–Problem, Solution, Problem–Theory, Solution, Declare your class as a case class, Providing multiple constructors for case classes–Providing multiple constructors for case classes, Lift-JSON solution, Solution, Fixing the problems, Solution
		adding uninitialized var field to, Problem
	as inner class, Solution
	constructor parameters, val by default, Case classes
	creating new class instances without new
 keyword, Declare your class as a case class
	extracting case class fields in match
 expressions, Solution
	final, Solution
	generating auxiliary constructors for, Generating auxiliary constructors for case classes
	generating boilerplate code with, Problem–Problem
	in match expressions, Adding variables to patterns, Problem–Solution
		with variable-binding pattern, Adding variables to patterns

	MailServer, generating from JSON string, Solution
	methods generated by, Problem–Theory
	providing multiple constructors for, Providing multiple constructors for case classes–Providing multiple constructors for case classes
	toString implementation, Solution
	used to match JSON data with Lift-JSON, Lift-JSON solution

	case statements, Problem, Solution, Problem
		adding if expressions (guards) to, Problem
	matching multiple conditions with single
 statement, Problem
	pattern matching examples, Solution

	case-insensitive string comparisons, Solution
	casting, Discussion, Problem
		from one numeric type to another, Discussion
	object, Problem

	catch clause, Discussion, Discussion
		(see also try/catch/finally)
	throwing exception from, Discussion

	chaining methods, Add Methods to Closed Classes
	Char type, Introduction
	charAt method, Solution
	checked exceptions, Discussion, Discussion
		in Java, Discussion

	Child actor, Discussion
	class members, Discussion, Problem
		renaming on import, Discussion
	static imports of, Problem

	ClassCastException, Discussion
	classes, Introduction, Problem–Summary, Problem–Case classes, Problem–See Also, Problem, Problem, Problem–Summary, Problem, Problem, Problem, Problem–Discussion, Problem, Problem, Problem, Problem–Problem, Problem–Problem, Problem, Problem, Solution, Solution, Problem, Discussion, Introduction, Problem, See Also, Problem, Discussion, Problem, Solution, Solution, Problem–Problem
		adding to REPL classpath, Solution
	assigning field to a block or function, Problem
	calling superclass constructor, Problem
	controlling visibility of constructor fields, Problem–Case classes
	creating inner classes, Problem
	creating primary constructor for, Problem–Summary
	default values for constructor parameters, Problem
	defining auxiliary constructors, Problem–See Also
	defining equals method to compare object
 instances, Problem–Problem
	defining properties in abstract base class, Problem
	determining class of an object, Problem
	extending traits, Introduction
	generating boilerplate code with case classes, Problem–Problem
	handling constructor parameters when
 extending, Problem–Discussion
	hiding during import process, Problem
	importing into current program scope, Solution
	making serializable, Problem
	mixing traits in, Problem
	multiple, in a single file, Discussion
	overriding default accessors and mutators, Problem–Summary
	preventing accessor and mutator methods from being
 generated, Problem
	providing private primary constructor, Problem
	renaming on import, Solution
	setting uninitialized var field types, Problem
	traits can be mixed into, limiting, See Also
	traits inheriting from, Discussion
	use of @BeanProperty annotation on fields, Solution
	using a trait by inheritance, limiting, Problem
	using generic types, Problem–Problem
	when to use abstract class, Problem

	classOf function, Solution
	classpath, Problem, Building the classpath
		building for Scala shell script, Building the classpath
	REPL, adding JAR files and classes to, Problem

	clear method, Solution, Discussion, Mutable set, Solution
		deleting all elements in a map, Discussion
	emptying mutable Stack with, Solution
	removing all elements from ArrayBuffer, Solution
	using with mutable Set, Mutable set

	closing files, Properly closing the file, Automatically closing the resource
		automatically, Automatically closing the resource
	manually closing BufferedSource, Properly closing the file

	closures, Problem–Problem, Discussion, Using closures with other data types, A comparison to Java
		comparison to techniques in Java, A comparison to Java
	defined, Discussion
	using with other data types, Using closures with other data types

	code blocks, Solution, Solution, The for/yield construct, Solution–Problem
		assigning class field to, Solution
	for/yield processing after yield keyword, The for/yield construct
	import statements in, Solution
	pasting and loading into REPL, Solution–Problem

	code examples, using, Using Code Examples
	code listings in this book, How the Code Listings Work
	collect method, taking partial function as input, Discussion
	collections, Solutions, Add Methods to Closed Classes, Solution, Discussion, Solution, Returning values from a for loop, Discussion, Discussion, Introduction–Discussion, A Few Important Concepts, Problem, Solution, Sequences, Maps, Sets, More collection classes, Strict and lazy collections, Problem, Solution, Choosing a sequence, Choosing a map, Choosing a set, Types that act like collections, Strict and lazy collections, Problem, Solution, Common collection methods, Mutable collection methods, Immutable collection operators, Maps, Problem–Problem, Solution, Solution, Map and set performance characteristics, Problem, Problem, Summary, Problem, Problem, Problem, Problem–Problem, Problem–Problem, Problem, Solution, Problem–See Also, Problem–See Also, Problem, Problem–See Also, Problem, Problem–Even more methods, Problem, Problem–scanLeft and scanRight, Problem, Problem, Problem, Problem–Use cases, Problem, Problem, Problem–See Also, Problem–Problem, Problem, Discussion, Discussion, Problem, Discussion, Problem–Problem, Problem–Problem, Problem, Problem, Problem–Problem, Conversion tables, Going from Scala collections to Java collections, Problem, Problem, Problem–Problem, Using Option with Scala collections
		building new collection from input collection, using
 for/yield, Returning values from a for loop
	choosing a collection class, Problem, Solution, Choosing a sequence, Choosing a map, Choosing a set, Types that act like collections, Strict and lazy collections
		main categories of classes, Solution
	maps, Choosing a map
	sequences, Choosing a sequence
	sets, Choosing a set
	strict and lazy collections, Strict and lazy collections
	types acting like collections, Types that act like collections

	choosing a collection method to solve a
 problem, Problem, Solution, Common collection methods, Mutable collection methods, Immutable collection operators, Maps
		common collection methods, Common collection methods
	common methods for maps, Maps
	immutable collection operators, Immutable collection operators
	methods organized by category, Solution
	mutable collection methods, Mutable collection methods

	classes containing, generating JSON string
 from, Problem–Problem
	collection features in String, Add Methods to Closed Classes
	combining map and flatten with flatMap method, Problem–See Also
	converting iterators to, Solution
	converting to string with mkString, Problem
	creating and using enumerations, Problem
	creating lazy view on, Problem–Use cases
	creating whose elements are all of some base
 type, Problem–Problem
	declaring type when creating, Problem
	deleting documents from MongoDB collection, Problem
	extracting sequence of elements from, Problem–Even more methods
	extracting unique elements from a sequence, Problem
	filtering with filter method, Problem
	flattening list of lists with flatten, Problem
	important concepts when working with methods of
 classes, A Few Important Concepts
	iterating over, using collection methods, Discussion
	iterating over, using for and for/yield loops, Discussion
	Java, going to and from, Problem–Problem, Conversion tables, Going from Scala collections to Java collections
		conversion tables, Conversion tables
	going from Scala collections to Java
 collections, Going from Scala collections to Java collections

	looping over, Solution
	looping over with for loop, Problem–Problem
	looping over with foreach, Problem
	making ArrayBuffer your go to mutable
 sequence, Problem
	making immutable collections covariant, Problem
	making mutable collections invariant, Problem
	making Vector your go to immutable sequence, Problem
	merging sequential collections, Problem
	merging two sequential collections into pairs with
 zip, Problem
	mutable and immutable, Summary
	mutable variables with immutable collections, Problem
	performance of, Problem–Problem, Solution, Solution, Map and set performance characteristics
		maps and sets, Map and set performance characteristics
	performance characteristic keys, Solution
	sequential collections, Solution

	populating, Problem, Discussion, Discussion
		using Range with map method, Discussion
	using tabulate method, Discussion
	with a Range, Problem

	random-length collection of printable
 characters, Discussion
	Scala collections hierarchy, Problem, Solution, Sequences, Maps, Sets, More collection classes, Strict and lazy collections
		high-level view of collections, Solution
	maps, Maps
	more collection classes, More collection classes
	sequences, Sequences
	sets, Sets
	strict and lazy collections, Strict and lazy collections

	searching MongoDB collection, Problem–Problem
	sorting, Problem–Problem
	splitting sequences into subsets, Problem
	transforming one to another with for/yield, Problem–See Also
	transforming one to another with map method, Problem–See Also
	tuples, Problem–See Also
	updating documents in MongoDB collection, Problem
	using collection methods on strings, Solution
	using iterators, Problem
	using Option with, Using Option with Scala collections
	using parallel collections, Problem
	using zipWithIndex or zip to creating loop
 counters, Problem–Problem
	walking through with reduce and fold methods, Problem–scanLeft and scanRight
	working with, using Lift-JSON library, Discussion

	combinators, For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen)
	command-line tasks, Introduction, Introduction–Discussion, Problem, Problem–Problem, Problem, Problem–See Also, Problem, Problem–Problem, Problem, Problem–Problem, Problem, Problem, Problem–Problem, Problem
		accessing command-line arguments from Scala shell
 script, Problem
	adding JAR files and classes to REPL
 classpath, Problem
	compiling with scalac and running with scala, Problem
	disassembling and decompiling Scala code, Problem–Problem
	faster compiling with fsc, Problem
	finding Scala libraries, Problem
	generating documentation with Scaladoc, Problem–Problem
	getting started with REPL, Problem
	making Scala scripts run faster, Problem
	pasting and loading blocks of code into REPL, Problem–Problem
	prompting for input from Scala shell script, Problem–Problem
	REPL (Read-Eval-Print-Loop) tool, Introduction
	running shell command from REPL, Problem–See Also

	commas (,), adding to numbers, Solution
	companion objects, Generating auxiliary constructors for case classes, Discussion, Discussion, Problem–Problem, Creating a companion object with an apply method, Creating a companion object with an apply method, Providing multiple constructors with additional apply
 methods, Solution–See Also
		apply method, Solution–See Also
	apply methods, Generating auxiliary constructors for case classes, Creating a companion object with an apply method, Providing multiple constructors with additional apply
 methods
		defining, Creating a companion object with an apply method
	providing multiple constructors with, Providing multiple constructors with additional apply
 methods

	creating, Creating a companion object with an apply method
	creating static members with, Problem–Problem
	defined, Discussion
	getInstance method in, Discussion

	compare method, Mix in the Ordered trait
	compiling, Problem, Problem, Solution, Continuous compiling
		faster command-line compiling with fsc, Problem
	Scala projects in SBT, Solution, Continuous compiling
		continuous compiling, Continuous compiling

	using scalac, Problem

	complex numbers, working with, Complex Numbers and Dates
	concat method, Solution, Solution
		List class, Solution

	concrete fields, using in traits, Problem
	concurrency, Problem–Problem, Problem
		simple concurrency with futures, Problem–Problem
	using parallel collections, Problem

	conditional operator in Java (? :), Discussion
	cons method (::) for creating a List, Solution
	Conscript, Discussion, Discussion
	Console, Introduction, Solution, Discussion, Reading multiple values from one line, Fun with output
		fields to use with print methods to control
 display, Fun with output
	read* methods, Solution, Discussion
		listing in Scala REPL, Discussion

	readf methods, Reading multiple values from one line

	constant patterns, Patterns
	constraints, type constraints, Type Constraints
	constructor patterns, Patterns
	constructors, Problem–Summary, A comparison with Java, Those _$eq methods, Problem–Case classes, Problem–See Also, Problem, Problem, Problem–Discussion, Problem, Providing multiple constructors for case classes–Providing multiple constructors for case classes, Problem, Discussion, Solution
		actor’s constructor, Problem, Discussion
		taking arguments, Problem

	calling superclass constructor, Problem
	controlling visibility of constructor fields, Problem–Case classes
	creating primary constructor, Problem–Summary, A comparison with Java, Those _$eq methods
		comparison with Java, A comparison with Java
	mutator methods for var fields, Those _$eq methods

	defining auxiliary constructors, Problem–See Also
	handling parameters when extending a class, Problem–Discussion
	private primary constructor, Problem
	providing default values for parameters, Problem
	providing multiple constructors for case
 classes, Providing multiple constructors for case classes–Providing multiple constructors for case classes
	Scala class, use of @BeanProperty annotation, Solution

	container:start command (SBT), Giter8 notes
	contains method, Solution, Solution, Mutable set
		testing for existence of a key in a map, Solution
	testing if set contains an element, Mutable set
	using with valuesIterator on a map, Solution

	context object, Solution, Solution, Solution, Problem, Discussion, Looking up actors
		actorOf method, Solution
	actorSelection method, Looking up actors
	stop method, Solution
	watch method, Problem, Discussion

	continue, implementing in Scala, Problem, The continue example, General syntax, About that continue example...
		continue example, better ways to solve
 problem, About that continue example...
	example code, The continue example
	general syntax for, General syntax

	control structures, Introduction–See Also, Problem–How for loops are translated, Problem–See Also, Problem–Problem, Problem, Problem–Problem, Problem, Problem, Problem, Problem–Problem, Problem, Problem, Problem, Problem, Problem, Problem–Problem, Problem
		accessing value of default case in match
 expression, Problem
	adding if expressions (guards) to case
 statements, Problem
	assigning match expression result to variable, Problem
	creating your own, Problem
	declaring variable before using in try/catch/finally
 block, Problem–Problem
	for and foreach, looping with, Problem–How for loops are translated
	for comprehension, Problem–See Also
	implementing break and continue, Problem–Problem
	matching multiple conditions with one case
 statement, Problem
	matching one or more exceptions with
 try/catch, Problem
	using case classes in match expressions, Problem
	using if expression like ternary operator, Problem
	using match expression instead of
 isInstanceOf, Problem
	using match expression like switch statement, Problem–Problem
	using pattern matching in match expressions, Problem–Problem
	working with a List in a match expression, Problem

	copy method, case classes, Solution
	CopyBytes class, Solution
	count method, using with anonymous function instead of
 continue construct, About that continue example...
	counters, for loop counters, Problem–See Also, Solution, Problem
		in for loops, for loop counters, Problem–See Also, Solution
		multiple counters, Problem–See Also

	using zipWithIndex or zip to create loop counters for
 sequential collections, Problem

	covariant immutable collections, Solution
	:cp command (REPL), Solution
	CreateChild case class, Discussion
	CSV files, processing, Problem
	CSV strings, Solution
	curl command, Test the POST method with a curl command, Solution
	currency, formatting, Solution, Solution
		commas, Solution
	decimals, Solution

 D
	data types, Problem (see types)
	database views, Use cases
	databases, Introduction–A Quick Look at Slick, Problem, Problem, Problem–Problem, Problem, Problem–Problem, Problem, Problem, Problem, A Quick Look at Slick
		accessing MongoDB document ID field, Problem
	connecting to database with Spring Framework, Problem
	connecting to MongoDB and inserting data, Problem–Problem
	connecting to MySQL with JDBC, Problem
	deleting documents from MongoDB collection, Problem
	inserting documents into MongoDB with insert, save, or
 +=, Problem
	searching a MongoDB collection, Problem–Problem
	Slick library, A Quick Look at Slick
	updating documents in MongoDB collection, Problem

	dates, processing, Complex Numbers and Dates
	decimals, in numbers or currency, Solution
	decompiling code, using decompiler, Use a decompiler
	default global execution context, Run one task, but block
	DelayedInit trait, Discussion
	dependencies, Discussion, Problem–Problem, Problem, Problem
		adding to SBT project, Discussion
	controlling version of managed dependency to
 use, Problem
	managing with SBT, Problem–Problem
	using Scala project on GitHub as SBT project
 dependency, Problem

	deprecation warnings, Deprecation and feature warnings
	dequeue method, Solution
	dequeueAll method, Solution
	dequeueFirst method, Solution
	deserializing JSON string into an object, Solution
	diff method, Solution, Discussion
		using to get relative complement of two sets, Discussion

	directories, Problem, Problem, Problem, Problem–Problem
		creating project directory structure for SBT, Problem–Problem
	listing files in, Problem
	listing subdirectories of, Problem
	running a process in a different directory, Problem

	disassembling Scala code, Solution, Discussion
	distinct method, Solution, Using distinct with your own classes
		calling on collections, Solution
	using with your own classes, Using distinct with your own classes

	documentation, Problem–Problem, Problem
		generating project API documentation with SBT, Problem
	generating with Scaladoc, Problem–Problem

	domain-specific library (DSL), Solution (see Lift-JSON DSL)
	Double type, Introduction
	drop method, Solution
	dropRight method, Solution
	dropWhile method, Solution
	DSL (domain-specific library), Solution (see Lift-JSON DSL)
	Duck Typing (structural types), Problem
	durations, Run one task, but block

 E
	Eclipse, Problem, Discussion, Discussion
		using SBT with, Problem, Discussion, Discussion
		.classpath file, Discussion
	.project file, Discussion

	Either, Left, and Right classes, Using Either, Left, and Right
	enqueue method, Solution
	Enumeration class, Solution
	enumerations, Solution, Problem
		creating and using, Problem
	static imports of, Solution

	environment variables, setting when running external
 commands, Problem
	EOP (expression-oriented programming), Solution, Introduction, Problem–Problem, Solution
		expressions versus statements, Solution
	languages, Solution
	model, Introduction

	equality, Problem, Problem
		(see also == operator, under Symbols)
	testing for String instances, Problem

	equals method, Solution, Problem–Problem, Using distinct with your own classes
		case classes, Solution
	defining for a class, Problem–Problem
	using with distinct, Using distinct with your own classes

	equalsIgnoreCase method, String class, Solution
	equivalence relation, Theory
	Exception object, Using Option with other frameworks
	exceptions, Discussion, Alternatives to Option, Problem, Problem, Discussion, Handling exceptions, Problem
		access to information, other possibilities
 for, Alternatives to Option
	adding exception annotations to Scala methods, Problem
	declaring that a method can throw, Problem
	in Java, Discussion
	matching one or more with try/catch, Problem
	opening and reading files, Handling exceptions
	Scala methods throwing, Discussion

	execution context, Run one task, but block
	ExecutionContext, futures and, A future and ExecutionContext
	ExecutionContext.Implicits.global, Run one task, but block
	exists method, using with valuesIterator on map, Solution
	expression-oriented programming (EOP), Solution, Introduction, Problem–Problem, Solution
		expressions versus statements, Solution
	languages, Solution
	model, Introduction

	extends keyword, Discussion, Discussion, Solution, Introduction, Solution
		specifying superclass constructor to call, Solution
	using to implement Java interfaces, Introduction

	extends with keywords, Introduction, Solution, Solution
		using to implement Java interfaces, Solution

	external commands, Problem, External commands versus built-in commands, Problem–Using the lines_! method, Problem, Problem, Problem, Problem, Problem, An Index of Methods to Execute External Commands
		building a pipeline of commands, Problem
	executing and using STDOUT, Problem–Using the lines_! method
	executing from Scala application, Problem
	handling STDOUT and STDERR for, Problem
	handling wildcard characters in, Problem
	methods to execute, An Index of Methods to Execute External Commands
	redirecting STDOUT and STDIN of, Problem
	setting environment variables when running, Problem
	versus shell built-in commands, External commands versus built-in commands

 F
	f string interpolator, The f string interpolator (printf style formatting), Solution
		formatting numbers, Solution

	factorial function, recursive, Discussion
	factory method, Generating auxiliary constructors for case classes, Problem–See Also
		implementing in Scala with apply, Problem–See Also

	Failure class, The Scala 2.10 Try classes, Using Try, Success, and Failure
	failure, handling by actors, The Actor Model
	fallbackTo combinator method, For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen)
	feature warnings, Deprecation and feature warnings
	fields, Problem, var fields, val fields, Fields without val or var, Adding private to val or var, Discussion, Case classes, Solution, Object-private fields, Problem, Problem, Abstract val and var fields, Discussion, Solution, Problem
		abstract, in abstract base class or trait, Abstract val and var fields, Discussion
	constructor, Problem, var fields, val fields, Fields without val or var, Adding private to val or var, Discussion, Case classes
		adding private to val or var, Adding private to val or var
	case classes, Case classes
	effect of settings, Discussion
	val fields, val fields
	var fields, var fields
	without val or var designation, Fields without val or var

	defining with private or private[this] access
 modifiers, Solution
	initializing class field using block of code or calling
 function, Problem
	object-private, Object-private fields
	setting uninitialized var field types in a
 class, Problem
	static, creating on a class, Solution
	using abstract and concrete fields in traits, Problem

	File class (Java), Solution, Discussion
		listFiles method, Solution

	FileFilter object (Java), accept method, Discussion
	FileInputStream class, Solution
	FileOutputStream class, Solution
	files, Introduction–Discussion, Problem–Problem, Problem, Problem, Problem, Problem, Problem, Problem
		listing in a directory, Problem
	logging external command output to, Problem
	opening and reading text file, Problem–Problem
	pretending that a String is a File, Problem
	processing CSV files, Problem
	processing every character in a text file, Problem
	writing text files, Problem

	FileWriter class, Solution
	filter expressions, Solution
		(see also guards)

	filter method, Solutions, Introduction, Solution, A Few Important Concepts, Problem, Discussion, Discussion, Solution, Mutable and immutable maps, Immutable set, Solution, A Quick Look at Slick
		calling on String to create new String, Solution
	comparison to other collection filtering
 methods, Discussion
	filtering a collection, Problem
	filtering queries in Slick, A Quick Look at Slick
	keys to using, Discussion
	on collections, combined with anonymous
 function, A Few Important Concepts
	trimming list to contain only directories, Solution
	using on immutable Set, Immutable set
	using on strings, Introduction
	using with maps, Solution, Mutable and immutable maps

	filtering collections, Methods organized by category, Discussion, Problem, Solution, Array, Problem–Mutable and immutable maps, Mutable maps, Mutable and immutable maps, Immutable set
		main methods for, Discussion
	maps, Problem–Mutable and immutable maps, Mutable maps, Mutable and immutable maps
		mutable and immutable maps, Mutable and immutable maps
	mutable maps, Mutable maps

	methods for, Methods organized by category
	methods returning contiguous sequence of
 elements, Problem
	using filter methods on immutable Set, Immutable set
	using filter methods to remove elements from
 collections, Solution
	using filter methods with Array, Array

	filtering files, Discussion
	filterKeys method, Solution, Mutable and immutable maps
		using a predicate, Mutable and immutable maps

	filters, Solution
		(see also guards)

	find command (Unix), Solution
	findAllIn method, Solution
	findFirstIn method, Solution, Handling the Option returned by findFirstIn
		handling Option returned by, Handling the Option returned by findFirstIn

	flatMap method, Problem–See Also
	flatten method, Methods organized by category, Problem, Solution, Solution, Solution, Problem–See Also, Solution
		combining with map in flatMap, Problem–See Also
	flattening list of lists, Problem
	flattening list of strings into list of
 characters, Solution
	using on sequence of Some and None elements, Solution
	using with mkString, Solution
	using with other sequences, Solution

	Float type, Introduction
	floating-point numbers, comparing, Problem–Problem
	fluent programming style, Add Methods to Closed Classes, Problem–See Also
	foldLeft method, Solution, foldLeft, reduceRight, and foldRight
	foldRight method, Solution, foldLeft, reduceRight, and foldRight
	for comprehension, Introduction, Discussion, Problem–See Also, The for/yield construct, Discussion
		(see also for/yield loops)
	creating, Problem–See Also

	for loops, Introduction, Introduction, Solution, Solution, Introduction, Solution–How for loops are translated, Returning values from a for loop, for loop counters, Generators and guards, Looping over a Map, How for loops are translated–How for loops are translated, How for loops are translated, How for loops are translated, Problem–See Also, Problem, Solution, Discussion, Discussion, Problem–Maps, The for/yield construct, Maps, Discussion, Discussion, Solution, Solution
		<- symbol in, Discussion
	alternatives to break and continue, Discussion
	Boolean test to break out of, Discussion
	counters in, for loop counters
	generators and guards, Generators and guards
	iterating over keys and values in a Map, Looping over a Map
	looping over collections, Problem–Maps, The for/yield construct, Maps
		for/yield construct, The for/yield construct
	Maps, Maps

	ranges in, Solution, Solution
	returning values from, Returning values from a for loop
	Scala versus Java versions, Introduction
	translation by compiler, How for loops are translated–How for loops are translated, How for loops are translated, How for loops are translated
		for yield/construct, How for loops are translated
	with guard condition, How for loops are translated

	treating String as sequence of bytes, Introduction
	treating String as sequence of characters, Introduction
	using with multiple counters, Problem–See Also
	using with strings, Solution
	using zipWithIndex as loop counter, Solution
	with embedded if statements (guards), Problem, Discussion
	yield statement with, Solution
		(see also for comprehension; for/yield loops)

	for/yield loops, Solution, Discussion, Returning values from a for loop, The for/yield construct, Problem–See Also, Using guards, Solution, Discussion, Run multiple things; something depends on them; join them
 together
		building new collection from input
 collection, The for/yield construct, Problem–See Also, Using guards
		using guards, Using guards

	getting list of directory names, Discussion
	joining three futures together, Run multiple things; something depends on them; join them
 together
	returning values, Returning values from a for loop
	reversing keys and values of a map, Solution
	using to modify random-length range of
 numbers, Discussion

	foreach method, Solution, A complete example, Handling the Option returned by findFirstIn, Discussion, How for loops are translated, How for loops are translated, Solution, Discussion, Solution, Methods organized by category, Problem, Discussion, Solution, Discussion, Solution, Solution, Solution
		adding after getBytes called on String, A complete example
	collections, Methods organized by category
	for loops’ translation by compiler, How for loops are translated, How for loops are translated
	iterating over collections, Discussion, Problem, Discussion
		functions or methods called from foreach, Discussion

	JavaConversions object, Solution
	operating on each element without returning
 result, Solution
	printing fields of an Address, Solution
	Traversable trait, Solution
	using match expression with to iterate over map
 elements, Solution
	using Option in, Handling the Option returned by findFirstIn
	using to iterate over iterator’s elements, Solution
	using with zipWithIndex, Solution, Discussion

	format method, Discussion, Solution
		calling on strings, Discussion
	formatting numbers, Solution

	Format object (Play Framework), Solution, Solution
		reads method, Solution

	forms, verification in Play Framework, using match
 expressions, Use with Option/Some/None
	free variables, Solution
	fromURL method, Source object, Solution
	fsc command, Solution
	function literals, Problem–Problem, Discussion
		declaring, Discussion

	function value, Discussion
	functional programming (FP), Discussion, Case classes, Discussion, Introduction–See Also, Problem, Problem–Assigning an existing function/method to a function
 variable, Problem–See Also, Problem–Passing in a function with other parameters, Problem–Problem, Problem, Problem–Another example, Problem, Problem–See Also, Discussion, Problem–Problem
		case classes, Case classes
	creating a function that returns a function, Problem–Another example
	creating partial functions, Problem
	defining method that accepts more complex function as
 parameter, Problem–Passing in a function with other parameters
	defining method that accepts simple function as
 parameter, Problem–See Also
	functional versus imperative style, Discussion
	having no side effects, Discussion
	real-world example of use, Problem–See Also
	using closures, Problem–Problem
	using function literals (anonymous functions), Problem
	using functions as variables, Problem–Assigning an existing function/method to a function
 variable
	using partially applied functions, Problem
	using recursive algorithms, Discussion
	writing pure functions, Problem–Problem

	FunctionN traits, Using a method like an anonymous function
	functions, Understanding how map works, Solution, Problem–Assigning an existing function/method to a function
 variable, Assigning an existing function/method to a function
 variable, Assigning an existing function/method to a function
 variable, Problem–See Also, Discussion, Problem–Passing in a function with other parameters, Problem, Problem–Another example, Problem, As the body of a function or method
		assigning class field to results of, Solution
	assigning existing function or method to a function
 variable, Assigning an existing function/method to a function
 variable
	defining as method parameter, Problem–See Also, Discussion, Problem–Passing in a function with other parameters
		general syntax, Discussion
	more complex functions, Problem–Passing in a function with other parameters

	match expressions as body of, As the body of a function or method
	methods versus, Understanding how map works
	partially applied, Assigning an existing function/method to a function
 variable, Problem
	returning a function, Problem–Another example
	using as variables, Problem–Assigning an existing function/method to a function
 variable
	without side effects, Problem (see pure functions)

	future method, Creating a method to return a Future[T]
	futures, Solution–Problem, Run one task, but block, Run one task, but block, Run one thing, but don’t block—use callback, The onSuccess and onFailure callback methods, Creating a method to return a Future[T], A future and ExecutionContext, Callback methods, For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen), Discussion
		and ExecutionContext, A future and ExecutionContext
	callback methods, Run one thing, but don’t block—use callback, The onSuccess and onFailure callback methods, Callback methods
		onSuccess and onFailure, The onSuccess and onFailure callback methods

	creating a method to return a Future[T], Creating a method to return a Future[T]
	creating and blocking to wait for its
 result, Run one task, but block
	creation of Future object, Run one task, but block
	joining together with for comprehensions or
 combinators, For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen)
	using as wrapper around Source.fromURL method
 call, Discussion

 G
	generators, Generators and guards, Discussion
		writing for loops with, Discussion

	generic types, Problem–Problem, Type parameter symbols, Problem
		creating classes that use, Problem–Problem, Type parameter symbols
		generic type parameter symbols, Type parameter symbols

	creating method that takes, Problem

	GenSeqLike, distinct method, Solution
	get method, Solution, Don’t use the get method with Option
		finding map values, Solution
	not using with Option, Don’t use the get method with Option

	GET requests, Problem, Problem, Problem–Problem
		accessing Scalatra web service GET parameters, Problem
	creating GET request web service with Play
 Framework, Problem–Problem
	creating simple client for, Problem

	getBytes method, calling on String and passing block of
 code to foreach method, A complete example
	getClass method, Solution
	getCurrencyInstance method, NumberFormat, Solution
	getInstance method, Discussion
	getIntegerInstance method, NumberFormat, Solution
	getLinesUppercased method, Discussion
	getOrElse method, Handling the Option returned by findFirstIn, Solution
		calling on Option value, Handling the Option returned by findFirstIn
	using to find map value, Solution

	getter and setter methods, Introduction
	Giter8, Solution, Discussion, Use Giter8, Giter8 notes, Discussion
		requirements for, Discussion
	using to create SBT project directory
 structure, Use Giter8, Giter8 notes
		notes, Giter8 notes

	GitHub, Use Giter8, Problem
		Giter8 templates, Use Giter8
	Scala project on, using as SBT project
 dependency, Problem

	Google, Gson library, Solution
	gracefulStop method, Discussion, gracefulStop
		stopping an actor with (example), gracefulStop

	groupBy method, Solution
	grouping methods, Methods organized by category
	Gson library, Solution, Gson solution, Discussion, Discussion, Solution
		constructing JSON string, Solution
	creating JSON string from Scala object, Gson solution
	generating JSON strings from classes containing
 collections, Discussion

	guards, Generators and guards, How for loops are translated, Problem, Problem, Discussion, Solution, Using guards, Discussion
		adding to case statements, Problem
	attempting to use with map method, Discussion
	for loop with, translation by compiler, How for loops are translated
	in for/yield loops, Solution, Using guards
	using for loop with, Problem, Discussion

 H
	hashCode method, Solution, Solution, Solution, Using distinct with your own classes
		case classes, Solution
	defining, Solution
	if expression in, Solution
	using with distinct, Using distinct with your own classes

	hex values, storing as Int or Long, Solution
	HTMLCleaner library, Solution, Solution
		adding library dependency to SBT build.sbt
 file, Solution
	using Maven repository with SBT, Solution

	HTTP requests, setting URL headers for, Problem
	HTTP response headers, accessing after making a
 request, Problem
	HttpClient library, Using the Apache HttpClient (see Apache HttpClient library)
	HttpPost object, Test the POST method with Scala code
	HttpTea, Discussion
	hyperlinks, Scaladoc hyperlink tags, Discussion

 I
	-i argument, using to load code into
 Scala REPL, Scala’s -i option
	if expressions, Generators and guards, Problem, Problem, Problem, Discussion, Solution, Using guards, Discussion
		adding to case statements, Problem
	attempting to use as guard with map method, Discussion
	guards in for loops, Problem, Discussion
	guards in for/yield loops, Solution, Using guards
	using in for loops, Generators and guards
	using like ternary operator, Problem

	if/then/else statements, match expressions as replacement
 for, Replacement for the Java switch statement and unwieldy if/then
 statements
	immutable collections, Immutable collection operators, Maps, Problem, Problem
		common operators (methods) on, Immutable collection operators
	maps, Maps
		common methods for, Maps

	mutable variables with, Problem
	Vector class, go to immutable sequence, Problem

	immutable objects, Discussion, Problem–Problem, Using val + mutable, and var + immutable
		case classes as immutable records, Discussion
	preferring, Problem–Problem, Using val + mutable, and var + immutable
		using val + mutable and var + immutable, Using val + mutable, and var + immutable

	imperative programming, Discussion, Discussion
	implicit classes, Solution, Put the implicit class in an object, Put the implicit class in a package object, Discussion, Annotate your method return type, Returning other types
		defining, Solution
	defining methods on, Discussion, Annotate your method return type, Returning other types
		annotating method return type, Annotate your method return type
	returning other types, Returning other types

	putting in package objects, Put the implicit class in a package object
	putting into objects, Put the implicit class in an object

	implicit conversions, Introduction, Add Methods to Closed Classes, Problem–Returning other types
		using to add methods to closed String class, Add Methods to Closed Classes
	using to add methods to String class, Problem–Returning other types

	implied loops, A Few Important Concepts
	import statements, using anywhere in Scala, Placing import statements anywhere, Problem
	imports, Problem, Problem, Problem, Problem
		hiding a class during import process, Problem
	one or more members into current program
 scope, Problem
	renaming members on import, Problem
	static, Problem

	incrementing and decrementing numbers, Problem–Problem
		replacements for ++ and --, Problem–Problem

	indexed sequences, Solution, Discussion
		ArrayBuffer class, Solution

	IndexedSeq, Sequences, Choosing a sequence, Discussion
		creating instance of, returning a Vector, Discussion

	infix notation, Discussion
	informational methods (collections), Methods organized by category
	inheritance, Problem
		classes using a trait by inheritance,
 limiting, Problem

	init method, Even more methods
	inner classes, creating, Problem
	Inner.breakable, Nested loops and labeled breaks
	input, prompting users for, from Scala shell
 script, Problem–Problem
	InputStream class (Java), A simple use of scala.io.Source.fromURL
	insert method, Casbah MongoCollection class, Solution
	Insert object, Solution
	Int type, Introduction
	Integer class (Java), parseInt method, Handling a base and radix
	interfaces, Introduction, Problem, Problem
		extending Java interface like a trait, Problem
	traits versus, Introduction
	using traits as, Problem

	interpreter, Scala’s -i option, Solution
		-savecompiled argument for Scala interpreter, Solution
	starting Scala interpreter in REPL, Scala’s -i option

	intersect method, Solution
	intersection of two sets, subtracting, Discussion
	invariant, declaring a type as, Solution
	IOException (Java), A simple use of scala.io.Source.fromURL
	isDefinedAt method, Discussion
	isInstanceOf method, using match expression instead
 of, Problem
	isValid methods, Discussion
	Iterable trait, Solution
	iterators, Problem, Solution, Discussion, Solution, Discussion
		converting to collections, Solution
	creating for tuples, Discussion
	keysIterator and valuesIterator methods on
 maps, Solution
	using in Scala application, Problem
	working with text files, Discussion

 J
	JAD (decompiler), Use a decompiler
	JAR files, Problem, Discussion, Problem, Problem–Problem, Creating a JAR file with Ant
		adding to REPL classpath, Problem
	creating with Ant, Creating a JAR file with Ant
	deploying single, executable file from SBT, Problem–Problem
	generated for Scala scripts, Discussion
	SBT projects packaged as, specifying main method to
 run, Problem

	Java, Complex Numbers and Dates, Discussion, Discussion, Introduction, Introduction, Discussion, Introduction, A comparison with Java, Solution, Discussion, Introduction, Discussion, Discussion, Problem, Solution, Discussion, Introduction, Problem, A comparison to Java, Solution, List, Solution, Discussion, Multiple fromFile methods, Solution, Solution, Solution, Solution, Introduction–Other attempts, Problem, Problem, Problem–Problem, Problem, Problem–Problem, Problem–Other attempts, Solution, Solution, The Java approach, Replacement for the Java switch statement and unwieldy if/then
 statements
		arrays, Discussion
	BigInteger and BigDecimal classes, Discussion
	checked exceptions, Discussion
	.class, Problem
	class declaration, comparison with Scala, A comparison with Java
	closure-like techniques, A comparison to Java
	conditional (or ternary) operator (? :), Discussion
	control structures, Introduction
	converting numeric types using casting, Discussion
	declaration of classes, class constructors, and field
 visibility control, Introduction
	deep copy technique using serialization, Solution
	FileInputStream and FileOutputStream classes, Solution
	files, opening and reading, Multiple fromFile methods
	files, writing with PrintWriter or FileWriter, Solution
	HTMLCleaner library, Solution, Solution
	importing code into current scope, Discussion
	inner classes, Discussion
	interacting with, Introduction–Other attempts, Problem, Problem, Problem–Problem, Problem, Problem–Problem, Problem–Other attempts
		adding exception annotations to Scala methods, Problem
	annotating varargs methods, Problem
	Java code requiring JavaBeans, Problem–Problem
	using @SerilVersionUID and other annotations, Problem
	using Spring Framework in Scala application, Problem–Problem
	wrapping traits with implementations, Problem–Other attempts

	interfaces, Introduction, Problem
		extending like a trait, Problem

	iterators, Solution
	Joda Time project, Complex Numbers and Dates
	List classes, List, Solution
	method returning multiple values, Discussion
	methods, Introduction
	OOP approach to writing classes and methods, The Java approach
	processes running on system, listing, Solution
	static methods, Solution
	switch statement, Introduction, Replacement for the Java switch statement and unwieldy if/then
 statements
		match expressions versus, Introduction

	traits with implemented methods, inability to
 call, Solution

	Java Decompiler Project, Use a decompiler
	Java interpreter, running JAR file created by SBT, Discussion
	java.lang.OutOfMemoryError errors, Solution
	java.text.NumberFormat class, Solution
	java.util.ArrayList class, Solution
	java.util.NoSuchElementException, Solution
	java.util.TreeSet, Discussion
	JavaBeans, Solution, Problem–Problem
		getters and setters, Solution
	Java code requiring, interacting with, Problem–Problem

	JavaConversions object, Solution–Going from Scala collections to Java collections, Discussion, Discussion, Conversion tables, Going from Scala collections to Java collections
		asScalaBuffer method, Discussion
	mapAsScalaMap method, Discussion
	Scala to Java one-way conversions, Going from Scala collections to Java collections
	two-way conversions provided by, Conversion tables

	JavaConverters object, The JavaConverters object
	JavaNet1Repository, Discussion
	javap command, The @switch annotation, Discussion, Solution, Discussion, Discussion, Providing multiple constructors for case classes, Using javap, Discussion, Discussion, Discussion, Other attempts
		disassembling case class files, Discussion, Discussion, Providing multiple constructors for case classes, Discussion
	disassembling class files, The @switch annotation, Discussion, Solution, Using javap, Discussion, Discussion, Other attempts

	JDBC, Introduction, Problem
		connecting to MySQL with, Problem

	JLineCompletion class, Solution
	Joda Time project, Complex Numbers and Dates
	js.implicit.ly, Solution
	JSON, Introduction, Problem, Lift-JSON solution, Gson solution, Problem–Problem, Problem, Problem, Problem–Notes, Problem, Solution, Solution, Problem
		conversions of JSON strings to and from
 objects, Solution
	creating JSON string from classes having
 collections, Problem–Problem
	creating JSON string from Scala object, Problem, Lift-JSON solution, Gson solution
		Gson library solution, Gson solution
	Lift-JSON library solution, Lift-JSON solution

	creating simple Scala object from JSON string, Problem
	data sent as POST request, handling in Scalatra web
 service, Problem–Notes
	parsing JSON data into array of objects, Problem
	POSTing JSON data to Play Framework web
 service, Problem
	representations of model objects, Solution
	sending JSON data to POST URL, Problem

	Json.toJson method, Solution
	Json4s library, Notes
	JValue object, Solution
	JVM, The @switch annotation, Solution
		switches, information on, The @switch annotation
	type erasure in, Solution

 K
	key/value pairs, merging two sequential collections into,
 using zip, Problem
	keys method, Solution, Solution
	keySet method, Solution
	keysIterator method, Solution, Solution, Solution
		using with max method, Solution
	using with reduceLeft method, Solution

	Kill message, sending to an actor, “Killing” an actor

 L
	labeled breaks, Nested loops and labeled breaks
	lazy collections, Strict and lazy collections, Strict and lazy collections
	lazy fields, Discussion
	libraries, Problem, Solution, Problem
		finding Scala libraries, Problem
	JSON, Solution
	publishing your Scala library with SBT, Problem

	library APIs, sequence traits commonly used in, Choosing a sequence
	libraryDependencies setting in SBT, Discussion, Solution, Solution, Discussion, Solution, Solution
		adding dependencies singly or in multiples, Solution
	adding Java HTMLCleaner library, Solution
	managed dependencies, forms of, Discussion
	Maven repository library used with SBT, Solution
	specifying version of managed dependency, Solution

	Lift Framework, Introduction, Discussion
	Lift-JSON DSL, Discussion, Solution–Lift-JSON Version 2
	Lift-JSON library, Solution, Discussion, Solution, Discussion
		adding dependency to SBT project, Discussion
	converting JSON string into Scala object, Solution
	generating JSON strings from Scala Map, Discussion

	limit method, using to limit query results
 returned, Discussion
	line separators, Using the concise syntax
	linear sequences, Solution, Discussion
		ListBuffer class, Solution

	LinearSeq, Sequences, Choosing a sequence
	lines method, Using the lines method
	lines_! method, Using the lines method, Using the lines_! method
	LinkedHashMap class, Solution, Solution, Discussion
		sorting, Solution
	storing sorted map data in, Discussion

	LinkedHashSet class, Solution
	ListBuffer class, Solution, Discussion, Solution, Discussion, Discussion, ListBuffer
		creating and converting to a List, Solution
	deleting elements from, ListBuffer
	Scaladoc description of, Discussion

	listFiles method, File class (Java), Solution, Solution
	ListMap class, Solution, Solution, Discussion
		sorting by key or value, Solution
	storing sorted map data in, Discussion

	lists, Discussion, How for loops are translated, Problem, Solution, Sequences, Solution, Solution, Problem, Solution, List, Problem, Solution, Problem, Problem, Problem, Problem, Discussion, Problem, Solution, Conversion tables
		adding elements to existing List, Problem
	converting Range object to List, Discussion
	creating a mutable list, Problem
	creating and populating a List, Problem
	deleting elements from a List or ListBuffer, Problem
	differences between Scala List and Java
 List, Conversion tables
	exploring to* methods of List in REPL, Solution
	flattening list of lists with flatten method, Problem
	for loops iterating over, translation by
 compiler, How for loops are translated
	LinearSeq and, Sequences
	merging or concatenating, Problem
	passing anonymous function to List’s filter method to
 create new List, Solution
	performance of a List, Solution, Solution
	prepending elements of one list to another, Solution
	Scala List class, List, Solution
	Scaladoc description of List class, Discussion
	Stream class, similarity to List, Problem
	working with a List in a match expression, Problem

	:load command (REPL), The :load command
	Loan Pattern, Automatically closing the resource
	locale, setting with getIntegerInstance method, Solution
	logging, Problem
		setting SBT log level, Problem

	Long type, Introduction
	looking up actors, Looking up actors
	lookupswitch, compiling match expression to, The @switch annotation, The @switch annotation
	loops, Introduction, Discussion, A Few Important Concepts
		(see also for loops; for/yield loops; foreach method)
	implied, A Few Important Concepts
	using in methods to handle varargs fields, Discussion

 M
	main method, Solution, Solution, Discussion, Using the App trait or main method, Problem
		manually implementing in an object, Solution
	overriding, Discussion
	specifying which to run in SBT, Problem
	using in a Scala script, Using the App trait or main method

	mainClass settings, build.sbt file, Discussion
	MAMP, Solution
	managed dependencies, Discussion
	Map class, Maps, Discussion
		foreach method, Discussion

	map method, Solutions, Solutions, Discussion, Solution, Solution, Understanding how map works, How for loops are translated, How for loops are translated, Discussion, Problem–See Also, Problem–See Also, Discussion, Discussion, Discussion, Solution, For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen)
		calling getName on files, Solution
	combinator, For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen)
	combining map and flatten with flatMap, Problem–See Also
	creating uppercase string from input string, Solution
	for loops and, How for loops are translated
	for/yield construct (for comprehension) and, Discussion
	for/yield constructs translated to, How for loops are translated
	transforming one collection to another with, Problem–See Also
	understanding how map works, Understanding how map works
	using to call trim method on strings, Discussion
	using with a Range, Discussion, Discussion
	views on collections and, Discussion
	writing for loop to work like, Solution

	maps, Looping over a Map, Maps, Solution, Choosing a map, Maps, Map and set performance characteristics, Maps, Maps, Problem, Solution, Solution, Problem, Discussion, Problem, Problem, Problem, Problem, Problem, Problem, Problem, Problem–Mutable and immutable maps, Problem–Problem, About that _*, Problem, Discussion
		accessing values, Problem
	adding, updating, and removing elements in immutable
 map, Problem
	adding, updating, or removing elements in mutable
 map, Problem
	choosing a map class, Problem, Discussion
		map classes and traits, Discussion

	common map choices, mutable and immutable, Choosing a map
	common map classes, Maps
	common methods for, Maps
	creating, Problem, Solution, Solution
		immutable map, Solution
	mutable map, Solution

	defined, Solution
	filtering, Problem–Mutable and immutable maps
	finding largest key or value in, Problem
	generating JSON string from Scala Map, Discussion
	getting keys and values from, Problem
	iterating over elements, Problem
	iterating over with for loop, Maps
	looping over a Map using for loop, Looping over a Map
	performance characteristics, Map and set performance characteristics
	reversing keys and values, Problem
	sorting existing map by key or value, Problem–Problem, About that _*
		_* operator, About that _*

	testing for existence of a key or value in, Problem

	mapValues method, Operating on map values
	match expressions, Handling the Option returned by findFirstIn, Introduction, Problem–Problem, The @switch annotation, Handling the default case, Problem, Problem, Problem–Problem, Solution–Patterns, Solution–Patterns, Solution–Patterns, Solution–Patterns, Adding variables to patterns–Adding variables to patterns, Using Some and None in match expressions, Problem, Problem, Problem, Solution, Solution, Discussion, Problem–Problem, Replacement for the Java switch statement and unwieldy if/then
 statements, In try/catch expressions, As the body of a function or method, Use with Option/Some/None, In actors
		accessing value of default case in, Problem
	assigning result to a variable, Problem
	in actors, In actors
	replacement for Java switch statements and if/then
 statements, Replacement for the Java switch statement and unwieldy if/then
 statements
	resemblance to Java switch statement, Introduction
	use in catch block of try/catch, Solution
	using as body of function or method, As the body of a function or method
	using case classes in, Problem
	using in try/catch expressions, In try/catch expressions
	using instead of isInstanceOf, Problem
	using like switch statement, Problem–Problem, The @switch annotation, Handling the default case
		@switch annotation, The @switch annotation
	handling default match, Handling the default case

	using Option in, Handling the Option returned by findFirstIn
	using pattern matching, Problem–Problem, Solution–Patterns, Solution–Patterns, Solution–Patterns, Solution–Patterns, Adding variables to patterns–Adding variables to patterns, Using Some and None in match expressions
		adding variables to patterns, Adding variables to patterns–Adding variables to patterns
	constant patterns, Solution–Patterns
	constructor patterns, Solution–Patterns
	sequence patterns, Solution–Patterns
	Some and None, Using Some and None in match expressions
	typed patterns, Solution–Patterns

	using when searching MongoDB database, Discussion
	using with foreach method to loop over map
 elements, Solution
	using with Option/Some/None pattern, Use with Option/Some/None
	working with a List, Problem

	MatchError, Discussion
	math, more powerful math classes, Complex Numbers and Dates
	mathematical methods (collections), Methods organized by category
	Maven, Discussion, Introduction, Discussion, Problem
		Maven2 repository, Discussion
	using repository library with SBT, Problem

	max method, using on map, Solution
	MaxValue, checking for numeric types, Discussion
	memory allocation, views and, Use cases
	messages (sent between actors), Problem–Problem
	method chaining, Problem–See Also
	methods, Add Methods to Closed Classes, Understanding how map works, Discussion, Solution, Solution, Discussion, Introduction, Introduction–See Also, Problem–Problem, Object-private scope, Private scope, Protected scope, Package scope, More package-level control, Public scope, Problem–Problem, Controlling which trait you call a method from, Problem–Problem, Problem, Problem–Problem, Problem, Problem–Problem, Problem, Solution, Solution, Solution, Solution, Discussion, Solution, Using a method like an anonymous function, Assigning an existing function/method to a function
 variable, Problem–See Also, Problem–Passing in a function with other parameters, Problem, Problem, Problem, Solution, Problem, Methods, Problem, As the body of a function or method, Don’t return null from methods, Returning an Option from a method
		abstract, defining, Discussion
	adding exception annotations to work with
 Java, Problem
	assigning class field to results of, Solution
	assigning existing method to a function
 variable, Assigning an existing function/method to a function
 variable
	avoiding returning nulll from, Don’t return null from methods
	calling on a superclass or trait, Problem–Problem, Controlling which trait you call a method from
		selecting the trait, Controlling which trait you call a method from

	chaining, Add Methods to Closed Classes
	collection, Problem (see collections)
	controlling scope, Problem–Problem, Object-private scope, Private scope, Protected scope, Package scope, More package-level control, Public scope
		object-private scope, Object-private scope
	package scope, Package scope
	package-level control, additional, More package-level control
	private scope, Private scope
	protected scope, Protected scope
	public scope, Public scope

	declaring can throw exceptions, Problem
	declaring in traits, Solution
	defined in object, not a class, Solution
	defining method that takes function as
 parameter, Problem–See Also, Problem–Passing in a function with other parameters
		more complex functions, Problem–Passing in a function with other parameters

	differences between Java and Scala, Introduction
	forcing callers to leave parentheses off accessor
 methods, Problem
	functions versus, Understanding how map works
	implemented methods of Scala traits, Java and, Solution
	match expressions as body of, As the body of a function or method
	passing a class to, Solution
	requiring implementation by class attempting to mix in a
 trait, Solution
	returning multiple items (tuples), Problem–Problem
	returning Option from, Returning an Option from a method
	setting default values for parameters, Problem–Problem
	static, creating on a class, Solution
	symbols implemented as, in Scala, Solution
	taking simple generic type, Problem
	taking variable-argument fields, Problem–Problem
	throwing exceptions in Scala, Discussion
	traits providing method implementations, Discussion
	upper bound definition on type parameter, Methods
	using like anonymous functions, Using a method like an anonymous function
	using parameter names when calling, Problem
	vararg, annotating, Problem
	without side effects, Problem (see pure functions)

	mixins, using traits as, Problem
	mkString method, Methods organized by category, Problem
		converting collection to a String, Problem

	mongo command-line client, Discussion
	MongoCollection class, Solution, Solution, Solution, Discussion, Solution, Solution
		find and findOne methods, Solution
	find* methods, Discussion
	findAndModify or update methods, Solution
	findAndRemove method, Solution

	MongoCursor, Discussion
	MongoDB, Introduction, Problem–Problem, Problem, Problem–Problem, Problem, Problem, Problem
		accessing document ID field, Problem
	connecting to and inserting data, Problem–Problem
	deleting documents from collection, Problem
	inserting documents with insert, save, or +=, Problem
	searching a collection, Problem–Problem
	updating documents in a collection, Problem

	MongoDBObject, Solution, Solution
		getting document ID from, Solution

	mounting servlets, Discussion
	multidimensional arrays, creating, Problem
	multiline strings, creating, Problem
	mutable collections, Mutable collection methods, Maps, Problem
		common methods on, Mutable collection methods
	maps, common methods for, Maps
	sequences, making ArrayBuffer go to sequence, Problem

	MySQL, connecting to, using JDBC, Problem

 N
	named parameters, Solution, Using named parameters, Discussion, Problem
		using for constructors, Using named parameters
	using when calling methods, Discussion, Problem

	namespace collisions or confusion, avoiding, Problem
	NegativeInfinity, Discussion
	nested break statements, Nested loops and labeled breaks
	new keyword, Generating auxiliary constructors for case classes, Problem–Providing multiple constructors for case classes
		creating object instances without using, Generating auxiliary constructors for case classes, Problem–Providing multiple constructors for case classes

	newline characters, Discussion, Using the concise syntax, Unexpected newline characters
		replacing with blank spaces in multiline string
 creation, Discussion
	unexpected, in external command output, Unexpected newline characters

	Newman DSL, Discussion
	Newton’s Method, implementation of, Solution–See Also
	Nil element, Solution, Solution
		ending a list, Solution
	last element in List, Solution

	Nil$, Discussion
	None and Some, using with match expressions, Using Some and None in match expressions
	NoSuchElementException, Solution
	nscala-time project, Complex Numbers and Dates
	Null Object Pattern, Don’t return null from methods
	null values, Discussion, Don’t use null, Problem–Problem, Solution, Don’t return null from methods, Converting a null into an Option, or something else
		eliminating from your code, Problem–Problem, Solution, Don’t return null from methods, Converting a null into an Option, or something else
		converting null to Option or something else, Converting a null into an Option, or something else
	initializing var fields with Option, not null, Solution
	not returning null from methods, Don’t return null from methods

	initializing fields with Option/Some/None pattern
 instead of, Don’t use null
	string comparisons and, Discussion

	NullPointerException (string equality
 comparisons), Solution
	Number type, specifying for collections, Solution
	NumberFormat class (Java), Solution, Solution, Solution
		getCurrencyInstance method, Solution
	getInstance method, Solution
	getIntegerInstance method, Solution

	NumberFormatException, Solution
	numbers, Introduction, Complex Numbers and Dates, Problem–Problem, Problem–Problem, Problem–Problem, Problem–Problem, Problem–Problem, Problem, Problem, Discussion
		caution with methods reading numeric values, Discussion
	comparing floating-point numbers, Problem–Problem
	complex numbers and dates, Complex Numbers and Dates
	converting Strings to Scala numeric types, Problem–Problem
	creating range, list, or array of, Problem
	formatting numbers or currency, Problem
	generating random numbers, Problem–Problem
	handling very large numbers, Problem–Problem
	incrementing and decrementing, replacements for ++ and
 --, Problem–Problem
	Scala’s built-in numeric types, Introduction

	Numeric trait, Solution
	numeric types, Introduction, Introduction, Problem–Problem, Problem–Problem, Discussion
		casting with asInstanceOf method, Discussion
	converting between, Problem–Problem
	data ranges of Scala’s built-in types, Introduction
	overriding default type, Problem–Problem

	numeric var fields, setting type on, Discussion

 O
	object instances, Discussion, Problem–Problem
		comparing equality of, Problem–Problem
	creating, Discussion

	object keyword, Introduction, Problem
		creating Singletons with, Problem

	object-private fields, Object-private fields
	object-private scope, Object-private scope
	object-relational mapping (ORM) tools, Introduction
	objects, Discussion, Using named parameters, Introduction–See Also, Problem, Problem, Problem, Problem–Problem, Problem–Problem, Problem–Providing multiple constructors for case classes, Problem, Problem, Problem–Problem, Problem, Problem
		adding traits to object instance, Problem
	array of, parsing JSON data into, Problem
	casting, Problem
	companion object, Discussion
	creating JSON string from Scala object, Problem
	creating object instances without using new
 keyword, Problem–Providing multiple constructors for case classes
	creating Scala object from JSON string, Problem
	creating static members with companion
 objects, Problem–Problem
	determining class of, Problem
	generating JSON string from Scala classes containing
 collections, Problem–Problem
	launching an application with, Problem
	providing named constructor parameters for, Using named parameters
	putting common code in package objects, Problem–Problem

	onComplete method, futures, Run one thing, but don’t block—use callback, Callback methods
	onFailure method, futures, The onSuccess and onFailure callback methods, Callback methods
	onSuccess method, futures, The onSuccess and onFailure callback methods, Callback methods
	open files, Leaving files open
	operators, methods versus, in Scala, Solution
	Option, Handling the Option returned by findFirstIn, Solution, Discussion, Solution, Solution, Solution, Converting a null into an Option, or something else
		converting a null into, Converting a null into an Option, or something else
	declaring fields not initially populated, Discussion
	declaring object as before using in try/catch/finally
 block, Solution
	defining uninitialized var fields as, Solution
	get and isDefined methods, Solution
	initializing var fields with, not null, Solution
	returned by findFirstIn method, handling, Handling the Option returned by findFirstIn

	Option/Some/None pattern, Discussion, Discussion, Don’t use null, Handling exceptions, Use with Option/Some/None, Problem–Don’t use the get method with Option, Returning an Option from a method, Getting the value from an Option, Using Option with Scala collections, Using Option with other frameworks, Don’t use the get method with Option
		eliminating null values from code, Discussion
	getting value from an Option, Getting the value from an Option
	not using get methods with Option, Don’t use the get method with Option
	returning file contents with fromFile and using
 methods, Handling exceptions
	returning Option from a method, Returning an Option from a method
	throwing exceptions in string conversion to
 integer, Discussion
	using match expressions with, Use with Option/Some/None
	using Option with other frameworks, Using Option with other frameworks
	using Option with Scala collections, Using Option with Scala collections
	using to initialize val and var fields, Don’t use null

	Oracle Byte Streams tutorial, Solution
	Ordered trait, Solution, Mix in the Ordered trait, Other solutions
		mixing in with type to be sorted, Mix in the Ordered trait
	mixing with Array, Other solutions

	Ordering trait, Solution, Discussion, Solution
		Array holding elements with implicit Ordering,
 sorting, Solution
	sorted method and, Discussion

	orElse method, PartialFunction trait, orElse and andThen
	ORM (object-relational mapping) tools, Introduction
	Outer.breakable, Nested loops and labeled breaks
	OutOfMemoryError errors (Java), Solution
	output, console, writing, Fun with output
	overriding var and val fields, Discussion

 P
	package objects, Put the implicit class in a package object, Problem–Problem, See Also, See Also
		process package object, See Also
	putting common code in, Problem–Problem
	putting implicit class in, Put the implicit class in a package object
	root package object, See Also

	package scope, Package scope
	package-level control for methods, More package-level control
	package.scala file, Solution
	packages, Discussion, Solution, Discussion, The :load command
		creating, Discussion
	import statements, Discussion
	importing everything from a package, Solution
	unable to use in REPL, The :load command

	packaging, Introduction–Discussion, Solution
		Scala project, using SBT, Solution

	par method, Methods organized by category, Solution
	parallel collections, Problem, Solution, Discussion, Where are parallel collections useful?, Performance
		converting regular collections to, Solution
	parallel collection classes, Discussion
	performance, Performance
	situations for use, Where are parallel collections useful?

	ParseException, Reading multiple values from one line
	parseInt method, Integer class, Handling a base and radix
	partial functions, Problem, The PartialFunction explained, orElse and andThen, Discussion
		chaining, orElse and andThen
	example of use with collections, Discussion
	PartialFunction trait, explained, The PartialFunction explained

	partially applied functions, Assigning an existing function/method to a function
 variable, Problem
		using, Problem

	partition method, Solution
	ParVector class, Solution
	:paste command (REPL), The :paste command
	PATH environment variable, Solution
	pattern matching, Problem–Problem, Solution
		(see also match expressions)
	using in match expressions, Problem–Problem

	patterns, Patterns, Adding variables to patterns–Adding variables to patterns, Solution
		adding variables to, Adding variables to patterns–Adding variables to patterns
	using to match case classes and objects, Solution

	performance, Choosing a sequence, Problem–Problem, Solution, Solution, Map and set performance characteristics, Discussion, Use cases, Performance
		collections, Choosing a sequence, Problem–Problem, Solution, Solution, Map and set performance characteristics, Discussion
		ArrayBuffer methods, Discussion
	maps and sets, Map and set performance characteristics
	performance characteristic keys, Solution
	sequential collections, Solution

	parallel collections, Performance
	views on collections and, Use cases

	piping commands together, Problem, Solution, An Index of Methods to Execute External Commands
		and writing output to a file, Solution
	methods for external commands, An Index of Methods to Execute External Commands

	Play Framework, Introduction, Problem–Problem, Problem, Using Option with other frameworks
		Anorm database library, using Option, Using Option with other frameworks
	creating GET request web service, Problem–Problem
	web service, POSTing JSON data to, Problem

	play.api.libs.json.Format object, Solution
	PoisonPill message, Discussion, Solution, PoisonPill message
		sending, Solution
	stopping an actor by sending (example), PoisonPill message

	pop method (Stack), Solution
	PositiveInfinity, Discussion
	POST requests, Problem–Notes, Problem, Problem
		accessing request data with Scalatra, Problem–Notes
	Play Framework web service allowing users to send JSON
 data, Problem
	sending JSON data to POST URL, Problem

	PostgreSQL, connecting to with JDBC, Discussion
	postRestart method, Actor object, Solution, Discussion, Discussion
	postStop method, Actor object, Solution, Discussion
	precision, floating-point number comparisons, Solution
	Predef object, Solution, Introduction, Solution
		classOf method, Solution
	immutable Maps, Solution

	predicate, defined, A Few Important Concepts
	preRestart method, Actor object, Solution, Discussion
	preStart method, Actor object, Discussion, Solution, Discussion
	print method, Solution
	print options, scalac, Using scalac print options
	printAll method, annotated with @varargs, Solution
	printf method, Solution
	printf style format specifiers, The f string interpolator (printf style formatting), Discussion
		common, Discussion
	using inside strings, The f string interpolator (printf style formatting)

	println method, if expression embedded in, Solution
	PrintWriter class, Solution
	private access modifier, Discussion, Adding private to val or var, Solution, Solution, Solution, Object-private fields, Object-private scope, Private scope, Accessing private members
		accessing private members, class and companion
 object, Accessing private members
	adding to val or var field, Adding private to val or var
	defining object-private fields, Object-private fields
	making primary constructor private, Solution
	object-private scope, Object-private scope
	preventing generation of getter and setter
 methods, Solution
	private scope, Private scope
	private var constructor parameter, Solution

	Process object, Discussion, Solution, Solution
		executing external commands, Solution
	setting environment variables when calling apply
 method, Solution

	process package, Problem
	ProcessBuilder trait, Discussion
	processed string literals, Solution
	processes, Problem, Problem–Using the lines_! method, Problem, Problem, Problem, Problem, Problem, Problem, An Index of Methods to Execute External Commands, Solution
		building pipeline of external commands, Problem
	executing external commands, Problem
	executing external commands and using STDOUT, Problem–Using the lines_! method
	handling STDOUT and STDERR for external
 commands, Problem
	handling wildcard characters in external
 commands, Problem
	methods to execute external commands, An Index of Methods to Execute External Commands
	redirecting STDIN and STDOUT of external
 commands, Problem
	running in a different directory, Problem
	using AND (&&) and OR (||) commands
 with, Problem
	using Process and ProcessBuilder commands in
 REPL, Solution

	ProcessIO class, Solution
	ProcessLogger class, Solution
	project directory structure, creating for SBT, Problem–Problem
	Project Lambda (Java 8), A comparison to Java
	project/Build.scala
 file, Solution, Solution, Problem–See Also
		RootProject, Solution
	using instead of build.sbt, Problem–See Also

	Props class, Discussion, Solution
	protected scope, Protected scope
	public scope, Public scope
	pure functions, Discussion, Problem–Problem, Referential transparency, Pure functions, Pure functions, Pure functions, The Java approach, Fixing the problems, Solution
		and side effects, Discussion
	defined, Pure functions
	examples of, Pure functions
	Java approach, problems with, The Java approach, Fixing the problems
		fixing the problems, Fixing the problems

	methods with no side effects, Solution
	referential transparency, Referential transparency
	write 80% of your application as pure functions
 advice, Pure functions

	push method (Stack), Solution
	put method, adding or replacing element on mutable
 Map, Discussion

 Q
	queues, Problem, Solution, Solution, Solution
		adding elements to mutable Queue, Solution
	creating a mutable Queue, Solution
	removing elements from, Solution

	quickSort method, sorting an Array, Solution

 R
	r method, converting String to a Regex, Solution, Discussion
	Random class, Solution
	random numbers, generating, Problem–Problem
	random-length ranges, Discussion
	range method, Solution, Solution
	ranges, Discussion, Solution, Discussion, Discussion, Generators and guards, Discussion, Solution, Solution, Problem, Solution, Solution, Problem–Discussion, Solution, Solution, Discussion
		as generators in for loops, Discussion
	combining with map method, Discussion
	converting Range to Array or List, Discussion
	creating and populating sequences, Solution
	creating range of numbers, Solution, Discussion
		random-length ranges, Discussion

	creating Range with and without a view, Solution
	populating a collection with a Range, Problem, Solution, Solution
		collections created directly from Range, Solution
	using range method, Solution

	random-length, Discussion
	using as for loop generator, Generators and guards, Solution
	using in for loops, Solution

	raw interpolator, The raw interpolator
	read* methods (Console.read*), Discussion
	Read-Eval-Print-Loop, How the Code Listings Work (see REPL)
	readLine method, Solution, Fun with output
	receive method, Actor object, Solution, Details, Solution
	recover combinator method, For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen)
	recoverWith combinator method, For comprehensions (combinators: map, flatMap, filter, foreach,
 recoverWith, fallbackTo, andThen)
	recursive algorithms, Discussion
	reduce method, The difference between reduceLeft and reduceRight, scanLeft and scanRight
	reduceLeft method, Solution, Show each step in the process, The difference between reduceLeft and reduceRight, Solution, Solution
		reduceRight versus, The difference between reduceLeft and reduceRight
	showing each step in process, Show each step in the process
	using with keysIterator on maps, Solution
	using with valuesIterator, Solution

	reduceLeftOption method, scanLeft and scanRight
	reduceRight method, Solution, The difference between reduceLeft and reduceRight
		reduceLeft versus, The difference between reduceLeft and reduceRight

	reduceRightOption method, scanLeft and scanRight
	referential transparency, Solution
	reflection, Discussion, Discussion
		accessing methods of String class, Discussion
	Gson library working via, Discussion

	Regex object, Solution, Discussion, Discussion
		converting String to, Discussion
	creating, Discussion
	creating by invoking .r method on a String, Solution

	regular expressions, Discussion, Problem, Problem, Problem, Problem–Problem, Reading multiple values from one line
		extracting parts of String that match
 patterns, Problem
	finding patterns in strings, Problem
	replacing patterns in strings, Problem
	using pattern matching in match expressions, Problem–Problem
	using with split method, String objects, Discussion
	writing to match expected user input, Reading multiple values from one line

	relative complement of two sets, Discussion
	remove method, ListBuffer, Solution, Mutable set, Solution
		deleting elements from ArrayBuffer, Solution
	deleting elements from ListBuffer, ListBuffer
	removing items from MongoDB collection, Solution
	using with mutable Set, Mutable set

	renaming clause, importing members, Discussion
	REPL (Read-Eval-Print-Loop), How the Code Listings Work, Introduction, Introduction, Problem, Solution, REPL command-line options, Deprecation and feature warnings, Problem–Problem, The :paste command, The :load command, Discussion, Problem, Problem–See Also, Scala’s -i option, Discussion
		adding JAR files and classes to classpath, Problem
	command-line options, REPL command-line options
	Console.read* methods, Discussion
	customizing with startup file, Scala’s -i option
	deprecation and feature warnings, Deprecation and feature warnings
	getting started with, Problem
	pasting and loading blocks of code into, Problem–Problem, The :paste command, The :load command, Discussion
		:load command, The :load command
	:paste command, The :paste command
	greedy nature of REPL, Discussion

	running shell command from, Problem–See Also
	tab completion, Solution

	replaceAll method, String, Discussion
	replaceAllIn method, String, Solution
	replaceFirst method, String, Solution
	replaceFirstIn method, using with a Regex, Solution
	repositories, Repositories, Problem, Solution, Problem
		telling SBT how to find, Problem, Solution
	using Maven repository library with SBT, Problem

	request.body method, Scalatra, Solution
	resolvers key in build.sbt file, Solution, Solution
	response.addHeader method, Scalatra, Discussion
	RESTful URL, A simple use of scala.io.Source.fromURL
	RESTful web services, Solution
	retain method, Discussion, Mutable maps, Mutable set
		filtering elements in mutable maps, Mutable maps
	using with mutable Map, Discussion
	using with mutable Set, Mutable set

	return type, Annotate your method return type, Discussion
		annotating for implicit methods, Annotate your method return type
	declaring for function literals, Discussion

	rich versions of numeric classes, extending Ordered
 trait, Solution
	RichDouble class, Discussion
	RichInt class, to and until methods, Discussion
	root package object, See Also
	running Scala project in SBT, Solution

 S
	s string interpolator, Solution, s is a method
	save method, Solution
		Casbah MongoCollection class, Solution

	SBT (Simple Build Tool), Introduction, Solution, Solution, Generating Scaladoc documentation with SBT, Solution, Discussion, Discussion, Introduction–See Also, Problem–Problem, Use a shell script, Use Giter8, Problem–Problem, SBT commands, Continuous compiling, Use last to get more information on the last command, Problem–Problem, Problem–Problem, Problem, Problem–Problem, Problem, Discussion, Discussion, Discussion, Problem, Problem, Problem, Problem, Problem, Problem, Problem–Problem, Problem, Problem–See Also, Problem
		compiling, running, and packaging a Scala
 project, Problem–Problem, SBT commands, Continuous compiling, Use last to get more information on the last command
		common SBT commands, SBT commands
	continuous compiling, Continuous compiling
	using last to get info on last command, Use last to get more information on the last command

	connecting to database with Spring Framework
 project, Discussion
	connecting to MySQL with JDBC, Discussion
	controlling version of managed dependency to
 use, Problem
	creating project directory structure, Problem–Problem, Use a shell script, Use Giter8
		using Giter8, Use Giter8
	using shell script, Use a shell script

	creating project with subprojects, Problem–Problem
	deploying single, executable JAR file, Problem–Problem
	generating project API documentation, Problem
	generating Scaladoc documentation with, Generating Scaladoc documentation with SBT
	generating Scaladoc documentation with sbt doc
 command, Solution
	including libraries into a project, Solution
	managing dependencies with, Problem–Problem
	publishing your library, Problem
	resolving problems by getting stack trace, Problem
	running tests with ScalaTest, Problem–Problem
	setting log level, Problem
	specifying main class to run, Problem
	telling SBT how to find repository, Problem
	using Build.scala file instead of build.sbt, Problem–See Also
	using GitHub projects as project dependencies, Problem
	using Maven repository library with, Problem
	using with Eclipse, Problem, Discussion, Discussion, Discussion
		.classpath file, Discussion
	.project file, Discussion
	updates to SBT build definition files, Discussion

	using with Giter8 to create Scalatra project, Solution

	sbt-assembly plug-in, Solution, Using sbt-assembly
		creating single, executable JAR file, Using sbt-assembly

	sbteclipse plug-in, Solution
	Scala, Installing the Software, Using versions of Scala prior to version 2.10, Problem–Problem
		installing, Installing the Software
	using as scripting language, Problem–Problem
	versions prior to 2.10, Using versions of Scala prior to version 2.10
		defining implicit classes, Using versions of Scala prior to version 2.10

	Scala Ant Tasks page, The build.xml code
	scala command, REPL command-line options, Solution, Scala’s -i option, Solution
		-cp or -classpath argument, Solution
	-i option, Scala’s -i option
	running programs with, Solution

	Scala Glossary, Discussion
	Scala IDE for Eclipse project, Solution
	Scala language, The Scala Language, The Scala Language
		characteristics of, The Scala Language

	Scala Language Specification, How for loops are translated, How for loops are translated
		for loop translation by compiler, How for loops are translated, How for loops are translated

	Scala package object, See Also
	Scala Style Guide, See Also, Discussion, Other Resources
		accessor methods, Discussion
	formatting control structures, See Also

	Scala Worksheet, The Scala Worksheet, Introduction
	scala.concurrent.duration._ import, Run one task, but block
	scala.io.Source, Introduction, Multiple fromFile methods, Solution, Solution, Solution, A simple use of scala.io.Source.fromURL, Setting the timeout while using scala.io.Source.fromURL
		(see also Source object)
	fromFile, Solution
	fromString, Solution
	fromURL, Solution, A simple use of scala.io.Source.fromURL, Setting the timeout while using scala.io.Source.fromURL
		setting timeout while using, Setting the timeout while using scala.io.Source.fromURL
	simple use of, A simple use of scala.io.Source.fromURL

	scala.math.Ordering, Solution
	scala.sys.process package, Problem, An Index of Methods to Execute External Commands, Solution
		methods for executing external commands, An Index of Methods to Execute External Commands

	scala.util.control.Breaks, Solution
	scalac, Problem, Using scalac print options, Using scalac print options
		-print command, Using scalac print options
	compiling with, Problem
	print options, using, Using scalac print options

	Scaladoc, Problem–Problem, Solution, Solution, Solution, Discussion, Discussion, Discussion, Generating Scaladoc documentation with SBT
		generating documentation with, Problem–Problem, Solution, Solution, Solution, Discussion, Discussion, Discussion, Generating Scaladoc documentation with SBT
		example documentation, Solution
	hyperlink tags, Discussion
	scaladoc command, Solution
	Scaladoc tags, Solution, Discussion
	using SBT, Generating Scaladoc documentation with SBT
	wiki-like tags, Discussion

	scaladoc command, Solution, Solution
	ScalaLab, Complex Numbers and Dates
	ScalaTest, running tests with SBT, Problem–Problem
	Scalatra framework, Introduction, Problem–Problem, Problem, Problem, Problem–Notes, Use Giter8
		accessing POST request data, Problem–Notes
	accessing web service GET parameters, Problem
	creating web services with, Problem–Problem
	replacing XML servlet mappings with Scalatra
 mounts, Problem
	SBT project preconfigured to use, creating with
 Giter8, Use Giter8

	ScalazBuild.scala file, The Full Configuration Example in the SBT documentation
	scanLeft and scanRight methods, scanLeft and scanRight
	Scanner class (Java), Reading multiple values from one line
	scripting language, using Scala as, Problem–Problem
	self type, Discussion
	Seq trait, Choosing a sequence, Discussion, Solution, Discussion
		executing external commands, Solution
	executing series of commands in a shell, Discussion
	executing system commands, Discussion

	sequence comprehension, Discussion
		(see also for/yield loops)

	sequence patterns, Patterns
	sequences, Use _* to adapt a sequence, Solution, Sequences, Sequences, Solution, Choosing a sequence–Choosing a sequence, Choosing a sequence, Choosing a sequence, Choosing a sequence, Solution, Problem, Problem, Discussion, Problem, Problem–scanLeft and scanRight, Problem, Problem, Problem, Problem, Problem, Solution, Solution
		adapting to use as argument for varargs
 field, Use _* to adapt a sequence
	adding elements to mutable sequences, Solution
	choosing, Choosing a sequence–Choosing a sequence, Choosing a sequence, Choosing a sequence, Choosing a sequence
		main immutable sequence choices, Choosing a sequence
	main mutable sequence choices, Choosing a sequence
	Scala’s general-purpose sequential
 collections, Choosing a sequence

	defined, Solution
	extracting unique elements from, Problem
	foreach method called on, Discussion
	hierarchy in Scala, Sequences
	indexed and linear, Sequences
	making ArrayBuffer your go to mutable
 sequence, Problem
	merging sequential collections, Problem
	merging two sequential collections into pairs with
 zip, Problem
	performance characteristics for sequential
 collections, Solution
	populating with a Range, Problem
	sorting a sequential collection, Problem
	splitting into subsets, Problem
	using ranges to create and populate, Solution
	Vector class, making your go to immutable
 sequence, Problem
	walking through elements in, Problem–scanLeft and scanRight

	SeqView, Solution
	Serializable trait, Solution, Solution
	serialization, Problem
	@SerialVersionUID
 annotation, Solution, Solution
	servlet mappings (XML), replacing with Scalatra
 mounts, Problem
	sets, Sets, Solution, Choosing a set, Map and set performance characteristics, Solution, Discussion, Solution, Sets, Problem, Mutable set, Immutable set, Problem, Solution, Immutable set, Problem
		adding elements to, Problem, Mutable set, Immutable set
		immutable Set, Immutable set
	mutable Set, Mutable set

	common set choices, mutable and immutable, Choosing a set
	converting sequential collections to in order to
 eliminate duplicates, Solution
	creating a Set from a Range, Solution
	defined, Solution
	deleting elements, Problem, Solution, Immutable set
		immutable Set, Immutable set
	mutable Set, Solution

	performance characteristics, Map and set performance characteristics
	relative complement of, getting with diff, Discussion
	using sortable sets, Problem

	:sh command (REPL), Solution
	shell built-in commands versus external
 commands, External commands versus built-in commands
	shell scripts, Solution–Problem, Discussion, Problem, Problem–Problem, Problem, Use a shell script
		accessing command-line arguments from, Problem
	first lines of, Discussion
	making Scala scripts run faster, Problem
	prompting for input from Scala shell script, Problem–Problem
	using to create SBT project directory
 structure, Use a shell script

	shells, Discussion, Solution, Problem–See Also
		handling wildcard characters in external
 commands, Solution
	piping capability and, Discussion
	running shell command from REPL, Problem–See Also

	Short type, Introduction
	shutdown method, ActorSystem object, Solution
	side effects, Discussion, Problem–Problem, Solution
		statements and expressions, Solution
	writing functions or methods without (pure
 functions), Problem–Problem

	side-effecting operations, Where are parallel collections useful?
	Simple Build Tool, Introduction (see SBT)
	Singleton object, creating with object keyword, Problem
	Singleton pattern, enforcing in Scala, Discussion
	slice method, Solution
	Slick library, Introduction, A Quick Look at Slick, A Quick Look at Slick
		documentation, A Quick Look at Slick

	sliding method, Solution
	Some and None, Using Some and None in match expressions, Solution
		using flatten method on sequence of, Solution
	using with match expressions, Using Some and None in match expressions

	sortBy method, Other solutions, Solution, Solution
		sorting immutable map by key, Solution
	sorting immutable map by value, Solution
	using with Array, Other solutions

	sorted method, Solution, Discussion, Mix in the Ordered trait, Other solutions
		inability to use on sequence type without implicit
 Ordering, Discussion
	sorting a collection, Solution
	using on Person class after mixing in Ordered
 trait, Mix in the Ordered trait
	using with Array, Other solutions

	SortedMap class, Solution
	SortedSet class, Solution
	Sorting.quickSort method, Solution
	sortWith method, Solution, Solution, Discussion, Other solutions, Solution, Solution
		passing your sorting function into, Solution
	sorting immutable map by value, Solution
	sorting keys of immutable map, Solution
	using anonymous function to sort Person
 elements, Discussion
	using with Array, Other solutions

	Source object, Introduction, Using the concise syntax, Using the concise syntax, Handling exceptions, Multiple fromFile methods, Multiple fromFile methods, Solution, Solution, Solution, Solution, Solution, A simple use of scala.io.Source.fromURL, Setting the timeout while using scala.io.Source.fromURL, Setting the timeout while using scala.io.Source.fromURL
		fromFile method, Using the concise syntax, Handling exceptions, Multiple fromFile methods, Solution, Solution
		using with using method, Handling exceptions
	variations of, Multiple fromFile methods

	fromInputStream method, Setting the timeout while using scala.io.Source.fromURL
	fromString method, Solution
	fromURL method, Solution, A simple use of scala.io.Source.fromURL, Setting the timeout while using scala.io.Source.fromURL
		setting timeout while using, Setting the timeout while using scala.io.Source.fromURL
	simple use of, A simple use of scala.io.Source.fromURL

	getLines method, Using the concise syntax, Solution

	span method, Solution
	Sphinx-4 project, Discussion
	Spire project, Complex Numbers and Dates
	split method, Solution, About that split method...
		from Java String class and StringLike class, About that split method...
	String objects, Solution

	splitAt method, Solution
	Spring Framework, Introduction, Problem, Problem–Problem
		connecting to database with, Problem
	using in Scala application, Problem–Problem

	Squeryl library, Introduction
	Stack Overflow, Discussion, Solution
		finding Scala libraries through, Solution
	Rahul Phulore’s post on infix notation, Discussion

	stack trace, getting for SBT, Problem
	“Stackable Trait Pattern”
 article, Solution
	stacks, Problem, Solution, Solution, Solution, Solution, Solution, Solution, Discussion
		creating a mutable Stack, Solution
	emptying mutable Stack with clear, Solution
	immutable Stack, Discussion
	inspecting, Solution
	peeking at next element of mutable Stack with
 top, Solution
	pushing elements onto mutable Stack with push, Solution
	taking elements off mutable Stack with pop, Solution

	statements versus expressions, Solution
	static imports, Problem
	static members, creating with companion objects, Problem–Problem
	STDERR, Problem
	STDIN, Problem, An Index of Methods to Execute External Commands
		methods for redirecting, An Index of Methods to Execute External Commands
	redirecting for external commands, Problem

	STDOUT, Problem–Using the lines_! method, Problem, Problem, An Index of Methods to Execute External Commands
		handling for external commands, Problem
	methods for redirecting, An Index of Methods to Execute External Commands
	redirecting for external commands, Problem
	using in Scala program, Problem–Using the lines_! method

	stop method, actors, Solution, system.stop and context.stop
		stopping actor using ActorSystem stop
 method, system.stop and context.stop

	Stream class, Strict and lazy collections, Solution, Problem, Solution, Solution
		caution with calls to non-transformer methods, Solution
	lazy collection, Strict and lazy collections
	transformer methods called on, Solution
	zip method, Solution

	strict and lazy collections, Strict and lazy collections, Strict and lazy collections, Solution
	String class, Introduction, Solution, About that split method...
		java.lang.String, Solution, About that split method...
		equalsIgnoreCase method, Solution
	split method, About that split method...

	java.lang.String and Scala String, Introduction

	string interpolation, Solution, s is a method, The f string interpolator (printf style formatting), The raw interpolator, Create your own interpolator
		creating your own interpolator, Create your own interpolator
	f string interpolator, The f string interpolator (printf style formatting)
	functions for, s is a method
	raw interpolator, The raw interpolator

	string literals, using expressions in, Using expressions in string literals
	StringEntity object, Test the POST method with Scala code
	StringLike class, Introduction, About that split method...
		split method, About that split method...

	StringOps class, Introduction, Introduction, Add Methods to Closed Classes, Solution
		capitalize method, Add Methods to Closed Classes
	supertype and type hierarchy information for, Introduction
	viewing methods available from, in REPL, Solution

	strings, Introduction, Introduction–Returning other types, Introduction, Introduction, Introduction, Introduction, Add Methods to Closed Classes, Problem, Problem, Problem, Problem, Problem, Discussion, Problem, Handling the Option returned by findFirstIn, Problem, Problem, Problem, Problem–Returning other types, Problem–Problem, Handling a base and radix, Handling a base and radix, Solution, Methods organized by category, Discussion, Solution, Solution, Problem, Solution, Problem
		accessing a character in, Problem
	adding methods to closed String class, Add Methods to Closed Classes
	adding your own methods to String class, Problem–Returning other types
	building from collections with
 mkString, Methods organized by category
	case statement matching, Solution
	converting a String to Scala numeric type, Problem–Problem, Handling a base and radix
		handling base and radix, Handling a base and radix

	converting collection to a String with
 mkString, Problem
	extracting parts that match regular expression
 patterns, Problem
	finding regular expression patterns in, Problem, Handling the Option returned by findFirstIn
		complete example, Handling the Option returned by findFirstIn

	flattening list of strings into list of
 characters, Solution
	foreach method called on, Introduction, Discussion
	implicit conversions, Introduction, Handling a base and radix
	iterating over characters, Scala versus Java
 approach, Discussion
	Java String as Scala String, Introduction
	multiline, creating, Problem
	operations on, Introduction
	pretending that a String is a File, Problem
	processing one character at a time, Problem
	replacing regular expression patterns in, Problem
	sorting list of strings by string length, Solution
	splitting, Problem, Solution
	substituting variables into, Problem
	testing equality, Problem
	using methods available on sequential
 collections, Introduction

	stripMargin method, Discussion
	structural types, Discussion, Problem
	subclasses, constructor parameters in, Discussion
	subprojects in SBT, Problem–Problem
	Success class, The Scala 2.10 Try classes, Using Try, Success, and Failure
	Suereth, Joshua, Automatically closing the resource
	sumToMax function, Discussion
	superclasses, Problem–Problem, See Also
		calling methods in, Problem–Problem, See Also

	super[traitName].methodName syntax, Controlling which trait you call a method from
	@switch annotation, The @switch annotation
	switch statements (Java), Introduction, Problem–Problem, Replacement for the Java switch statement and unwieldy if/then
 statements
		match expressions as replacement for, Replacement for the Java switch statement and unwieldy if/then
 statements
	using match expressions like, Problem–Problem

	SynchronizedMap trait, Choosing a map
	SynchronizedSet trait, Choosing a set

 T
	tab completion (REPL), Solution
	tableswitch, compiling match expression to, The @switch annotation, The @switch annotation
	tabulate method, Discussion
	tail method, Even more methods
	tail recursion, Discussion
	@tailrec annotation, Discussion
	take method, Solution, Mutable and immutable maps, Immutable set
		using on immutable Set, Immutable set
	using with maps, Mutable and immutable maps

	takeRight method, Solution
	takeWhile method, Solution
	ternary operator, using if construct as, Problem
	testing and debugging, Problem–Problem
		running tests with SBT and ScalaTest, Problem–Problem

	text files, Problem–Problem, Problem, Problem
		opening and reading, Problem–Problem
	processing every character in, Problem
	writing, Problem

	this method, as constructor method call, Solution
	this reference, returning from fluent style
 methods, Discussion
	this.type as return type of fluent style
 methods, Solution
	thread pools, Run one task, but block
	Thread.sleep method, Leaving files open, Run one task, but block
	threads, Introduction
	@throws annotation, Discussion, Discussion, Solution, Solution
	timer, creating, Example 1: Creating a Timer
	to method, Solution, Discussion
		Int class, Solution
	RichInt class, Discussion

	to* methods on numeric types, converting between numeric
 types, Solution
	toArray method, using with findAllIn method call, Solution
	toList method, Solution, Solution
		collection types converting their data to a
 List, Solution
	converting array of directory names, Solution

	top method, Solution
	toString method, Solution, Discussion
		case class implementation of, Solution
	using on a collection, Discussion

	traits, Problem, Problem, Problem–Problem, Controlling which trait you call a method from, Introduction–Solution, Problem, Solution, Problem, Problem, Problem, Problem, Problem, Problem, Problem, Using a method like an anonymous function, Solution, Choosing a sequence, Problem–Other attempts
		abstract classes versus, Problem
	adding to object instance, Problem
	calling a method on, Problem–Problem, Controlling which trait you call a method from
		selecting the trait, Controlling which trait you call a method from

	defining properties in, Problem
	ensuring trait can only be added to type with method of
 given signature, Problem
	extending another trait, Solution
	FunctionN, Using a method like an anonymous function
	inherited by Vector class, Solution
	limiting classes using a trait by inheritance, Problem
	marking for use only by subclasses of certain
 type, Problem
	sequence, commonly used in library APIs, Choosing a sequence
	using abstract and concrete fields in, Problem
	using as interface, Problem
	using as simple mixins, Problem
	using like abstract class, Problem
	wrapping with implementations to use from
 Java, Problem–Other attempts

	transform method, Map, Operating on map values, Mutable maps
		creating new map from existing map, Operating on map values
	using with mutable map, Mutable maps

	transformer methods, Strict and lazy collections, Methods organized by category, Solution, Discussion, Solution
		calling on Stream, Solution
	used with lazy collections, Solution
	views on collections and, Discussion

	transformer, => symbol, Discussion, Solution
	Traversable trait, Solution, Common collection methods, Solution
		looping over Traversable types with for loop, Solution
	methods common to all collections via, Common collection methods

	TraversableOnce trait, Solution
	tree command, Use a shell script, Discussion
	TreeSet class (Java), Discussion
	trimming strings, Discussion
	Try, Success, and Failure classes, Example 2: Writing Your Own “Try” Classes, The Scala 2.10 Try classes, Using Try, Success, and Failure
		Scala 2.10 Try classes, The Scala 2.10 Try classes
	writing your own, Example 2: Writing Your Own “Try” Classes

	try/catch/finally, Problem, Problem–Problem, Automatically closing the resource, Handling exceptions, Solution, In try/catch expressions
		closing files and resources with
 try/finally, Automatically closing the resource
	declaring a variable before using in, Problem–Problem
	handling exceptions when opening files, Handling exceptions
	matching one or more exceptions with
 try/catch, Problem
	reading and writing binary files, Solution
	using match expressions in try/catch, In try/catch expressions

	tuple patterns, in match expressions, Solution, Patterns
	Tuple2 class, Solution
	Tuple3 class, Discussion
	tuples, Problem, Working with tuples, Types that act like collections, Discussion, Discussion, Problem–See Also, Discussion, Discussion, Solution, Discussion
		converting to collections, Discussion
	returned by zipWithIndex and zip when used on
 sequences, Discussion
	returning multiple objects from a method, Problem
	returning sequence of Tuple2 elements using map method
 with a Range, Discussion
	treating as collection by creating iterator, Discussion
	using Tuple syntax to access key and values fields in
 maps, Solution
	working with, Working with tuples

	Twitter, Effective Scala document, Other Resources
	type ascription, Solution
	type class, Solution–Building Functionality with Types
	type erasure, Solution
	type patterns, Patterns
	types, Problem, Solution, Solution, Introduction–The Scala 2.10 Try classes, Variance, Bounds, Type Constraints, Type Constraints, Problem–Problem, Type parameter symbols, Problem, Problem, Problem–Problem, Problem–Building Functionality with Types, Building Functionality with Types–The Scala 2.10 Try classes, Example 1: Creating a Timer, Example 2: Writing Your Own “Try” Classes–The Scala 2.10 Try classes
		assigning manually to an Array, Solution
	bounds, Bounds
	building functionality with, Building Functionality with Types–The Scala 2.10 Try classes, Example 1: Creating a Timer, Example 2: Writing Your Own “Try” Classes–The Scala 2.10 Try classes
		creating a timer, Example 1: Creating a Timer
	writing your own Try classes, Example 2: Writing Your Own “Try” Classes–The Scala 2.10 Try classes

	creating a collection whose elements are all of some base
 type, Problem–Problem
	creating a method that takes generic type, Problem
	creating classes that use generic types, Problem–Problem, Type parameter symbols
		type parameter symbols, Type parameter symbols

	declaring a type when creating collections, Problem
	inferred by Scala for most expressions, Solution
	making immutable collections covariant, Problem
	selectively adding new behavior to closed
 model, Problem–Building Functionality with Types
	type constraints, Type Constraints
	type examples in other chapters, Type Constraints
	type variance, Variance

	Typesafe, Introduction, The Actor Model, Solution, Solution, Introduction, A Quick Look at Slick, A Quick Look at Slick, SBT commands, Use last to get more information on the last command, See Also
		Akka actor library, Introduction
	recommendation to think of actors as people, The Actor Model
	sbteclipse plugin, SBT commands
	Slick library, Introduction, A Quick Look at Slick, A Quick Look at Slick
	Typesafe repository in build.sbt file, Solution, Solution, Use last to get more information on the last command
	Zinc, incremental compiler based on SBT, See Also

	typing, Problem, Problem
		making mutable collections invariant, Problem
	using Duck Typing (structural types), Problem

 U
	unapply method, case classes, Solution
	Unfiltered, Introduction
	UnhandledMessage, Details, Details
	Uniform Access Principle, Fixing the problems
	Unit, Solution, Discussion, Discussion, Discussion
		functions or methods returning, calling from foreach
 method, Discussion
	return type for function returning nothing, Discussion

	Unix command line, External commands versus built-in commands
	Unix commands, equivalency of Scala commands to, Discussion
	Unix systems, REPL command-line options, Problem–Problem
		setting Java properties when starting Scala
 interpreter, REPL command-line options
	using Scala as scripting language, Problem–Problem

	unmanaged dependencies, Discussion
	until method, Solution, Discussion
		RichInt class, Discussion
	using in creating ranges, Solution

	unzip method, Solution, Discussion
	updating elements, mutable maps, Solution
	upper bound, Solution, Discussion
	URL class (Java), Discussion, A simple use of scala.io.Source.fromURL
	URLs, Problem, Problem, Solution
		getting URL headers, Problem
	MySQL JDBC, Solution
	sending JSON data to POST URL, Problem

	using method, Automatically closing the resource, Handling exceptions
		using with Source.fromFile and returning file contents
 as List, Handling exceptions

	utility classes, Utility classes

 V
	val + mutable and var + immutable, Using val + mutable, and var + immutable
	val fields, val fields, Adding private to val or var, Case classes, Abstract val and var fields, Discussion, Concrete val fields in abstract classes, Solution, Discussion
		abstract, in abstract classes (or traits), Abstract val and var fields, Discussion
		how they work, Discussion

	adding private keyword to, Adding private to val or var
	case class constructor parameters, Case classes, Solution
	concrete, in abstract classes, Concrete val fields in abstract classes
	constructor fields defined as, val fields
	using in traits, Discussion

	values method, Map, Solution, Solution
		getting values from map as an Iterable, Solution
	iterating over values in maps, Solution

	valuesIterator method, Map, Solution, Solution, Solution, Solution
		using with max method, Solution
	using with reduceLeft method, Solution

	var fields, var fields, Adding private to val or var, Discussion, Problem, Discussion, Abstract val and var fields, Discussion, Concrete val fields in abstract classes, Concrete var fields in abstract classes, Solution, Solution, Solution
		abstract, in abstract classes (or traits), Abstract val and var fields, Discussion
		how they work, Discussion

	adding private keyword to, Adding private to val or var
	case class constructor parameters, Solution
	concrete, in abstract classes, Concrete val fields in abstract classes, Concrete var fields in abstract classes
	constructor parameters, var fields
	declaring subclass constructor without var
 declarations, Discussion
	initializing with Option, not null, Solution
	private var constructor parameter, Discussion
	setting uninitialized var field types in a
 class, Problem
	using in traits, Solution

	@varargs annotation, Solution
	varargs fields, Problem–Problem, Solution, Use _* to adapt a sequence, Discussion, Problem
		adapting a sequence to use as argument with _*
 operator, Use _* to adapt a sequence
	annotating varargs methods, Problem
	defining in method declaration, Solution
	with or without arguments supplied, Discussion

	variable patterns, in match expressions, Patterns
	variable substitution into strings, Problem
	variable-binding patterns, Adding variables to patterns–Adding variables to patterns
	variables, Solution, Problem, Problem–Problem, Problem–Assigning an existing function/method to a function
 variable, Assigning an existing function/method to a function
 variable, Discussion, Problem, Summary, Using an array of arrays, Discussion, Solution, Discussion
		assigning to result of match expression, Problem
	assigning type to, Solution
	declaring before using in try/catch/finally
 block, Problem–Problem
	declaring immutable map as a var, Discussion
	function value, Discussion
	function variable, assigning existing function or
 method to, Assigning an existing function/method to a function
 variable
	mutable and immutable, Summary
	mutable, with immutable collections, Problem, Using an array of arrays
	preferring immutable variables, Solution, Discussion
		benefits to using immutable variables, Discussion

	using functions as, Problem–Assigning an existing function/method to a function
 variable

	Vector class, Solution, Problem, Solution
		creating a Vector and converting to parallel
 collection, Solution
	making your go to immutable sequence, Problem
	traits inherited by, Solution

	view bound, Discussion
	view method, Methods organized by category, Solution, Discussion
		calling before zipWithIndex, Solution, Discussion

	views, Problem–Use cases, Use cases
		creating lazy view on a collection, Problem–Use cases, Use cases
		use cases for views, Use cases

 W
	:warning command
 (REPL), Deprecation and feature warnings
	watch method, context object, Problem, Discussion
	web services, Introduction–See Also, Problem–Problem, Problem, Problem–Notes, Problem, Problem–Problem, Problem
		accessing POST request data with Scalatra, Problem–Notes
	creating GET request web service with Play
 Framework, Problem–Problem
	creating simple GET request client, Problem
	creating with Scalatra, Problem–Problem
	Play Framework, POSTing JSON data to, Problem
	Scalatra, accessing GET parameters, Problem

	web.xml file, Discussion, Solution
		replacing XML servlet mappings with Scalatra
 mounts, Solution

	while loops, Solution
	whitespace around commands and arguments, Discussion
	wiki-style markup tags, Solution, Discussion
	wildcard characters in external commands, Solution, Problem
		handling, Problem

	withDefaultValue method, creating map with, Solution
	withFilter method, How for loops are translated, How for loops are translated
		for loop with guard, translation by
 compiler, How for loops are translated
	for loop with yield expression and
 guard, How for loops are translated

	WriteResult and WriteConcern classes, MongoDB, Discussion

 X
	XML, Solution, Discussion, Discussion, Solution
		getting classes for objects, Solution
	searching with \ and \\ methods, Discussion
	web.xml file, Discussion, Solution
		replacing servlet mappings with Scalatra mounts, Solution

	-Xprint:all compiler option,
 scalac, How for loops are translated, How for loops are translated, Using scalac print options
	-Xprint:parse compiler option,
 scalac, How for loops are translated, How for loops are translated, Using scalac print options

 Y
	yield statement, using with for loop, Solution, The for/yield construct
		(see also for comprehension; for/yield loops)
	processing requiring multiple lines of code, The for/yield construct

 Z
	zip method, Solution, Solution, Problem
		merging two sequential collections into pairs
 with, Problem
	using with a Stream, Solution, Solution
		creating a loop counter, Solution

	zipWithIndex method, for loop counters, Solution, Problem, Solution
		using to create loop counter, for loop counters, Solution, Problem, Solution

 About the Author
Alvin took the circuitous route to software development. He managed to get a degree in Aerospace Engineering from Texas A&M University, while all he was really trying to do was play baseball. Once he became a practicing engineer, he realized he liked software and programming more than engineering. So in approximate order he taught himself Fortran, C, Unix and network administration, sed, awk, Perl, Java, Python, Ruby, JRuby, Groovy, PHP, and Scala. During this process he started a software consulting firm, grew it to fifteen people, sold it, and moved to Alaska for a few years. After returning to the “Lower 48,” he self-published two books (“How I Sold My Business: A Personal Diary”, and “Zen and the Art of Consulting”). He also created devdaily.com, which receives millions of page views every year, and started a new software consulting business, Valley Programming.

Colophon
The animal on the cover of Scala Cookbook is a
 long-beaked echidna (Zaglossus bruijnii, Z. bartoni,
 and Z. attenboroughi), a genus of three mammal species
 found only on the island of New Guinea. Weighing up to 35 pounds,
 long-beaked echidnas are nocturnal insectivores that prefer to live in
 forests at higher altitudes.
The first specimen was found in 1961 on New Guinea’s Cyclops
 Mountains, and the entire species was thought to be extinct in that area
 until evidence of their activity was found in 2007. According to data
 collected in 1982, only 1.6 echidnas existed per square kilometer of
 suitable habitat across New Guinea, adding up to a total of 300,000
 individuals. Since then, that number has dropped significantly due to
 habitat loss as large areas are exploited for farming, logging, and mining.
 Hunting also remains a large problem since the long-beaked echidna is
 considered a delicacy to locals in Papua New Guinea. The low population
 numbers and rapid destruction of habitat make the long-beaked echidna an
 endangered species, while the short-beaked variety fares slightly better in
 both New Guinea and Australia.
The echidna is classified as a “monotreme,” or a mammal that lays
 eggs. The mother holds one egg at a time in her body, providing it with
 nutrients and a place to live after it hatches. The only surviving
 monotremes are the four species of echidna and the platypus. All of these
 mammals are native to Australia and New Guinea, although there is evidence
 that they were once more widespread. With origins in the Jurassic era some
 60 million years ago, monotremes offer evidence of mammal evolution away
 from reptilian forms of reproduction.
Instead of having teeth, echidnas’ tongues are
 covered in spikes that help draw earthworms and ants into the mouth. The
 entire body is also covered in fur and spikes that are used for protection;
 much like a hedgehog, echidnas can curl up into a spiny ball when
 threatened. Although very little echidna behavior has been observed in the
 wild, they are believed to be solitary creatures; the short-beaked echidna
 displays little evidence of grooming, aggression, courting, or maternal
 behavior. In captivity, these creatures can live up to 30 years.
The cover image is from Cassell’s Natural
 History. The cover font is Adobe ITC Garamond. The text font is
 Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code
 font is Dalton Maag’s Ubuntu Mono.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Scala Cookbook

Alvin Alexander

Editor
Courtney Nash

	Revision History
	2013-07-30	First release

Copyright © 2013 Alvin Alexander

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Scala
 Cookbook, the image of a long-beaked echidna, and related trade
 dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2014-02-14T11:49:23-08:00

OEBPS/httpatomoreillycomsourceoreillyimages1758579.png
BitSet HashSet ListSet SortedSet

TreeSet

OEBPS/oreilly_large.png.jpg
OREILLY®

OEBPS/httpatomoreillycomsourceoreillyimages1758576.png

OEBPS/httpatomoreillycomsourceoreillyimages1758583.png.jpg
class Employee extends Person

Example;

val e = Employee("Rocky", 33, "Developer”)
v Linear Supertypes

Person, AnyRef, Any

(@)
Ordering " Alphabetic ' By inheritance

Inherited (Employee ' (Person AnyRef Any

Hide All (Showall) Leam more about member selection

Visibility Public | Al

Instance Constructors

v new Employee(name: String, age: Int, role: String)

Create a new Employee by specifying their name, age, and role.

name ‘The employee's name.
age The employee's age.
role ‘The employee's role in the organization.

Value Members

v def boom: Unit

Annotations @throws(classOf[Exception])
Exceptions thrown boom
Throws an Exception 100% of the time, be careful.

v def greet(other: String): String

other ‘The name of the person we're greeting.

retuns Retums a greeting based on the other and nae fields
v def greet: String

retuns Retums a greeting based on the name field.

Definition Classes Person

v var weight: Double

Definition Classes Person

OEBPS/httpatomoreillycomsourceoreillyimages1758573.png.jpg
$ scala

Welcome to Scala version 2.10.0

Type in expressions to have them evaluated.
Type :help for more information.

scala> val s = "Hello, world"
s: String = Hello, world

scala> s.length
reso: Int = 12

scala> "hello”.foreach(println)
h

orro

scatos |

OEBPS/httpatomoreillycomsourceoreillyimages1758581.png.jpg
2

1 package worksheet

3 object WorksheetDemo {

e

5
6
7
8
9

10
1}

println("Welcone to the Scala worksheet")
"Hello, world".length
"scala”. foreach(println)|

Welcome to the Scala worksheet
resd: Int = 12
s

c
a
1
a

OEBPS/httpatomoreillycomsourceoreillyimages1758574.png.jpg
Source StiingOps scala
since 28

v Linear Supertypes

StiingLike[String], math. Ordered[Sting], Comparable{String], IndexedSeqOptimized[Char, String], IndexedSeaLike[Char, Stina], SeqLike[Char, String], GenSeaLike[Char,
Stringl, IterableLike{Char, String], GenlterableL ike[Char, String], TraversableLike{Char, String, GenTraversableLike[Char, String, Parallelizable{Char, ParSea[Charl],
TraversableOnce{Char], GenTraversableOnce[Char), FilterMonadic[Char, String], HasNewBuilder(Char, String], Equals, AnyVal, NotNull, Any

v Type Hierarchy Leam more about scaladoc diagrams

C) Anyval (€) StringLikefSting]
O mplictly Q@ sting @ TraversableOps(Char] @ MonadOps{Char]

OEBPS/httpatomoreillycomsourceoreillyimages1758577.png
ol Bl Rl |

v
i
ArrayBuffer

OEBPS/httpatomoreillycomsourceoreillyimages1758575.png.jpg
Inherited

Hide Al (Showall
Vector) (‘CustomParalielizable | (‘Serializable) (Serializable (VectorPointer) (IndexedSeq (IndexedSeq
IndexedSeqlLike | (Seq’ (Seq (‘Seqlike’ (GenSeq ‘GenSeqLike ' (PartialFunction (Functioni (’iterable
lterable " (lterableLike ' (Equals Genlterable = GenlterableLike = Traversable Immutable = Traversable
GenTraversable | (GenericTraversableTemplate) (TraversableLike | (GenTraversableLike | (Parallelizable
TraversableOnce) (‘GenTraversableOnce " (FilterMonadic | (HasNewBuilder) AnyRef Any

OEBPS/orm_front_cover.jpg
B
Recipes for Object-Oriented and Functional Programming

Scala
Cookbook

O’REILLY*® Alvin Alexander

OEBPS/httpatomoreillycomsourceoreillyimages1758580.png.jpg
inalexander.com

$ scala
Welcome to Scala version 2.10.0 (Java HotSpot(T) 64-Bit Server WM, Java 1.6.0.37).
Type in expressions to have them evaluated.

Type :help for more information.

scala> val s = "Hello, comnand line"
s: String = Hello, comand line

scala> s.length
resd: Int = 19

scala> "scala". foreach(println)
B

o N

scala>

OEBPS/httpatomoreillycomsourceoreillyimages1758582.png.jpg
class Ressem extends AnyRef

Aclass to represent a human being.

Specily the name, age, and weight when creating a new Person, then access the fields like this:

val p = Person("Al", 42, 200.0)

Did you know: The com.acme.foo. Employee extends this class.

Annotations @deprecated

Deprocated (Since version 1.0) The weight field is going away
Version 10

Todo ‘Add more functionalty.

See also See alvinalexander.com for more information.

» Linear Supertypes

» Known Subclasses

(@ ()
Ordering Alphabetic’ By inheritance

Inherited (Person’ AmyRef Any
Hide All (Showall) Lear more about momber seeci
Visibility (il Al

Instance Constructors

new Person(name: String)

v new Person(name: String, age: Int, weight: Double)
Create a new person with a name, age, and weight.

name ‘The person's name.
age ‘The person's age.
weight The person's weight.

Value Members

var age: Int
The person's age.

v def greet: String

returns Retums a greeting based on the name field.

var name: String

The person's name.

var weight: Double

The person's weight.

OEBPS/httpatomoreillycomsourceoreillyimages1758578.png
- WeakHashMap SortedMap M LinkedHashMap LlstMap

