

OAuth 2.0 Simplified

A guide to building OAuth 2.0 servers

Aaron Parecki

OAuth 2.0 Simplified
by Aaron Parecki

Copyright © 2020 by Aaron Parecki

Illustrations Copyright © 2020 by Okta, Inc.

OAuth Logo by Chris Messina

Published by Okta, Inc. 100 1st St 6th Floor, San Francisco, CA, 94105

While every precaution has been taken in the preparation of this book, the publisher
and the author assume no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

ISBN: 978-1-387-75151-8

20039.1224

Third Edition

1.

2.

3.

4.

° ° ° ° °

Table of Contents

PrefacePreface .. ixix

AAcknowledgmentscknowledgments.. xx

BackBackgroundground .. xixi

Part I. OAuth 2.0 Clients

Getting ReadyGetting Ready..1717
Creating an Application ...17
Redirect URLs and State ...18

AAccessing Data in an Occessing Data in an OAAuth Serveruth Server ..1919
Create an Application...19
Setting Up the Environment ..22
Authorization Request ...24
Obtaining an Access Token ..25
Making API Requests..27

Signing In with GoogleSigning In with Google ..2929
Create an Application...30
Setting Up the Environment ..31
Authorization Request ...32
Getting an ID Token..34
Verifying the User Info ...36

Server-Side AppsServer-Side Apps ..4141
Authorization Code Flow ...42
Example Flow ...46

OAuth 2.0 Simplified v

5.

6.

7.

8.

9.

10.

11.

Possible Errors..48
User Experience and Security Considerations50

Single-Page AppsSingle-Page Apps..5151
Authorization..52
Example Flow ...55
Sample JavaScript Code..57
Implicit Flow...59
Security Considerations ...60

Mobile and Native AppsMobile and Native Apps ..6363
Authorization..63
Security Considerations ...68

Making AMaking Authenticated Requestsuthenticated Requests ..6969
Refresh Tokens ...71

Part II. Building an OAuth 2.0 Server

Client RegistrClient Registrationation ..7777
Registering a New Application...77
The Client ID and Secret...81
Deleting Applications and Revoking Secrets.............................85

AAuthorizationuthorization..8787
The Authorization Request ..87
Requiring User Login ...91
The Authorization Interface ..93
The Authorization Response..97
Security Considerations ...102

ScopeScope ..107107
Defining Scopes ..108
User Interface ...110
Checkboxes ...113

Redirect URLsRedirect URLs ..119119
Registration...119
Redirect URLs for Native Apps...121
Validation..123

vi OAuth 2.0 Simplified

12.

13.

14.

15.

16.

17.

18.

19.

AAccess Tccess Tokokensens ..125125
Authorization Code Request ..126
Password Grant ..128
Client Credentials ...130
Access Token Response ..131
Self-Encoded Access Tokens...135
Access Token Lifetime ..140
Refreshing Access Tokens ..143

Listing AListing Authorizationsuthorizations..147147
Revoking Access ...151

The Resource ServerThe Resource Server..153153

OOAAuth for Native Appsuth for Native Apps ..157157
Use a System Browser ..158
Redirect URLs ...159
PKCE Extension...162
Server Support Checklist..162

OOAAuth for Browserless and Input-Construth for Browserless and Input-Constrained Devicesained Devices163163
User Flow ..163
Authorization Request ...166
Token Request ..167
Authorization Server Requirements169
Security Considerations ...171

Protecting Mobile Apps with PKProtecting Mobile Apps with PKCECE..173173
Authorization Request ...173
Authorization Code Exchange ...176

TTokoken Introspection Endpointen Introspection Endpoint ..177177
Security Considerations ...180

Creating DocumentationCreating Documentation ..183183
Client Registration ..183
Endpoints..184
Client Authentication ...185
Sizes of Strings..185
Response Types...186
Redirect URL Restrictions ..186

OAuth 2.0 Simplified vii

20.

21.

22.

23.

24.

25.

Default Scopes ..186
Access Token Response ..187
Refresh Tokens ...187
Extension Grants ..188

Part III. Reference

TTerminology Referenceerminology Reference ..191191

Differences Between ODifferences Between OAAuth 1 and 2uth 1 and 2 ..195195
Authentication and Signatures ..196
User Experience and Alternative Token Issuance Options197
Performance at Scale..199
Bearer Tokens...199
Short-Lived Tokens with Long-Lived Authorizations.............200
Separation of Roles...201

OpenID ConnectOpenID Connect..203203
Authorization vs Authentication ...203
Building an Authentication Framework204
ID Tokens ..205
Summary ..206

IndieAIndieAuthuth ..207207
Discovery ..208
Sign-In Workflow..209
Authorization Workflow ..211

Map of OMap of OAAuth 2.0 Specsuth 2.0 Specs..215215
Core Specs ...216
Tokens ...218
Mobile and Other Devices ..219
Authentication and Identification ...221
Interop ..222
Experimental Specs ..223
Enterprise ...225

TTools and Librools and Librariesaries..227227

Appendix:Appendix: ReferencesReferences ..231231

viii OAuth 2.0 Simplified

° ° ° ° °

Preface

I first got involved with OAuth in 2010 when I was building an API,
and knew that I wanted third-party developers to be able to build
apps on top of it. At the time, OAuth seemed incredibly intimidating.
There were only a few implementations of OAuth 1 in existence,
and OAuth 2.0 was still a rough draft. One night I decided to sit
down with a craft beer and a paper copy of the latest draft and read
it from start to finish until I understood it.

After wading through the forty-four-page spec, I learned a couple
things: reading specs is not the best way to learn how OAuth works,
and OAuth 2.0 wasn't nearly as complicated as I originally had
thought. I began writing a simplified overview of the spec that I
wished had existed when I was first learning this. I published it on
my website as a blog post called "OAuth 2.0 Simplified"
(https://aaronparecki.com/oauth-2-simplified/). This post is now
viewed hundreds of thousands of times each year. It is clear that
people know OAuth 2.0 is the right choice for securing their APIs,
and are looking for resources to help understand it.

I had been wanting to expand this blog post into a more
comprehensive guide to OAuth servers, and in 2016, I was put in
touch with Okta, and we published the first version of this new
guide to OAuth on oauth.com. In 2017, we collaborated on
publishing the print edition of the book, and have published revised
editions in 2018 and 2020.

My hope is that this book makes OAuth 2.0 more approachable, and
gives you a solid foundation of knowledge that you'll need as you
continue to work with technologies on the Web.

ix

https://aaronparecki.com/oauth-2-simplified/
https://www.oauth.com/

° ° ° ° °

Acknowledgments

I would especially like to thank Lindsay Brunner for her work
coordinating the first two editions of this project. I would like to
thank Ryan Carlson, Jamie Lee Rice, and Joël Franusic at Okta for
their support. I would also like to thank the team at Okta for their
work on designing the oauth.com website as well as the illustrations
in this book. I would especially like to thank Karl McGuinness and
Micah Silverman for their review and feedback on this content.

I also would like to thank Eran Hammer, the former editor of the
OAuth 2.0 spec, William Denniss for his excellent work on the specs
for native apps and browserless devices, as well as everyone else in
the OAuth Working Group who has contributed to the many OAuth
specs over the years.

x

° ° ° ° °

Background

Before OAuth, a common pattern for granting access to your
account to a third-party application was to simply give it your
password and allow it to act as you. We commonly saw this with
Twitter apps which would ask for your Twitter password in order to
give you some stats on your account, or would ask to be able to
tweet something from your account in exchange for something of
value.

This pattern of applications obtaining user passwords obviously has
a number of problems. Since the application would need to log in to
the service as the user, these applications would often store users'
passwords in plain text, making them a target for harvesting
passwords. Once the application has the user's password, it has
complete access to the user's account, including having access to
capabilities such as changing the user's password! Another problem
was that after giving an app your password, the only way you'd be
able to revoke that access was by changing your password,
something that users are typically reluctant to do.

Naturally, many services quickly realized the problems and
limitations of this model, and sought to solve this quickly. Many
services implemented things similar to OAuth 1.0. Flickr's API used
what was called "FlickrAuth" which used "frobs" and "tokens".
Google created "AuthSub". Facebook opted to issue each application
a secret, and require the application sign each request with an md5
hash with that secret. Yahoo created "BBAuth" (Browser-Based
Auth). The result was a wide variety of solutions to the problem,

xi

completely incompatible with each other, and often failing to
address certain security considerations.

Around November 2006, Blaine Cook, chief architect at Twitter, was
looking for a better authentication method for the Twitter API,
something that didn't require users giving out their Twitter
passwords to third-party apps.

In 2007, a group of people working on the development of OpenID
got together and created a mailing list to produce a proposal for a
standard for API access control that could be used by any system,
regardless of whether it used OpenID. This original group included
Blaine Cook, Kellen Elliott-McCrea, Larry Halff, Tara Hunt, Ian
McKeller, Chris Messina, and a few others.

In the following months, several people from Google and AOL got
involved, wanting to support the effort as well. By August 2007, the
first draft of the OAuth 1 spec was published, along with several
implementations of API clients working against Twitter's privately-
launched prototype of their OAuth API. Eran Hammer joined the
project, eventually taking over as community chair and editor of the
spec. By the end of the year, the community published 7 updated
drafts and the OAuth Core 1.0 spec was declared final at the Internet
Identity Workshop.

Over the next couple years, work on the OAuth spec moved to an
IETF working group, where an effort to publish OAuth 1.1 was
started. In November 2009, the editor proposed to drop work on the
1.1 revision and instead focus on a more significantly different 2.0
version.

We want something like Flickr Auth / Google
AuthSub / Yahoo! BBAuth, but published as an
open standard, with common server and client
libraries.

— Blaine Cook, April 5, 2007

“

xii

The OAuth 2.0 spec started out as an effort to simplify and clear up
many of the aspects of OAuth 1 that were difficult or confusing.

While several companies had implemented OAuth 1 APIs (namely
Twitter, and later Flickr), there are some use cases, such as mobile
applications, that cannot be safely implemented in OAuth 1. The
goal of OAuth 2.0 was to take the knowledge learned from the first
implementations of OAuth 1 and update it for the emerging mobile
application use case, as well as to simplify aspects that were
confusing to consumers of the APIs.

Work on the OAuth 2.0 spec began in the IETF working group, with
Eran Hammer and several others named as editors of the spec.
While the effort began on a strong note, it quickly became apparent
that people in the group had very different goals with the spec.

The source of the contentions around the development of the OAuth
2.0 framework stemmed from the unbridgeable conflicts between
the web and enterprise worlds. As work on the spec continued, most
of the contributors in the web community left to go implement their
products, leaving only the enterprise crowd to finish the spec.

In July 2010, the draft 10 was published, and no new drafts were
published until December that year. Draft 10 still had a few people
in the web community contributing, and so the spec was coming
along nicely. The result was that most of the services that decided to
implement an OAuth 2.0 API were reading draft 10. Most of the
implementations at the time (Facebook, Salesforce, Windows Live,
Google, Foursquare, etc) were all doing roughly the same thing.
After launching their APIs they rarely went back and updated to
newer drafts of OAuth 2.

Over the next 22 revisions of the standard, the web and enterprise
contributors continued to disagree on fundamental issues. The only
way to resolve the disagreements and continue making progress
was to pull out the conflicting issues and put them into their own
drafts, leaving holes in the spec that were called "extensible". By the
final draft, so much of the core was pulled into separate documents,
that the core document was renamed from being a "protocol" to
being a "framework," and a disclaimer was added that "this

xiii

specification is likely to produce a wide range of non-interoperable
implementations."

In 2012, Eran Hammer, the primary editor of the OAuth 2.0
standard, decided he could no longer contribute to the standard and
officially withdrew his name and left the working group.
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/
Naturally this stirred up a lot of attention in what was going on with
the standard, which he did a good job of addressing in blog posts
and at one final conference in Portland, Oregon. He ended his blog
post with "I'm hoping someone will take 2.0 and produce a 10 page
profile that's useful for the vast majority of web providers."

Today, if someone wants to implement OAuth 2.0 for their web
service, they need to synthesize information from a number of
different RFCs and drafts. The standard itself does not require a
token type, and does not require any specific grant types. This
means implementers must decide which they will be supporting.
The standard does not even give any guidance on token string size,
which ends up being one of the first questions every implementer
asks when they get started. Implementers must also read the
security guidance and cautions in the document and understand the
implications of the decisions they are forced to make.

Interestingly, most of the web services that do implement OAuth 2.0
for their APIs come to many of the same decisions, and so most of
the OAuth 2.0 APIs in existence look very similar. This book is a
guide to building OAuth 2.0 APIs, with concrete recommendations
based on the majority of the live implementations.

xiv

http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/

Part I

OAuth 2.0 Clients

Chapter 1

Getting Ready

In Part I of this book, we'll walk through the things you need to
know when you're building an app that talks to an existing OAuth
2.0 API. Whether you're building a web app or a mobile app, there
are a few things you'll need to keep in mind as we get started.

Every OAuth 2.0 service will require that you first register a new
application, which also typically requires that you first sign up as a
developer with the service.

Creating an Application
The registration process typically involves creating an account on
the service's website, then entering basic information about the
application such as the name, website, logo, etc. After registering
the application, you'll be given a client_id (and a client_secret in
some cases) that you'll use when your app interacts with the service.

One of the most important things when creating the application is to
register one or more redirect URLs the application will use. The
redirect URLs are where the OAuth 2.0 service will return the user
to after they have authorized the application. It is critical that these
are registered, otherwise it is easy to create malicious applications
that can steal user data. This is covered in more detail later in this
book.

Chapter 1: Getting Ready 17

Redirect URLs and State
OAuth 2.0 APIs will only redirect users to a registered URL, in order
to prevent redirection attacks where an authorization code or
access token can be intercepted by an attacker. Some services may
allow you to register multiple redirect URLs, which can help when
using the same client ID for a web app and a mobile app, or when
using the same client ID for development and production services.

In order to be secure, the redirect URL must be an https endpoint to
prevent the code from being intercepted during the authorization
process. If your redirect URL is not https, then an attacker may be
able to intercept the authorization code and use it to hijack a
session.

Most services treat redirect URL validation as an exact match. This
means a redirect URL of https://example.com/auth would not
match https://example.com/auth?destination=account. It is best
practice to avoid using query string parameters in your redirect
URL, and have it include just a path.

Some applications may have multiple places they want to start the
OAuth process from, such as a login link on a home page as well as a
login link when viewing some public item. For these applications, it
may be tempting to try to register multiple redirect URLs, or you
may think you need to be able to vary the redirect URL per request.
Instead, OAuth 2.0 provides a mechanism for this, the "state"
parameter.

The "state" parameter can be used to encode application state, but it
must also include some amount of random data if you're not also
including PKCE on page 173 parameters in the request. The state
parameter is a string that is opaque to the OAuth 2.0 service, so
whatever state value you pass in during the initial authorization
request will be returned after the user authorizes the application.
You could for example encode a redirect URL in something like a
JWT, and parse this after the user is redirected back to your
application so you can take the user back to the appropriate location
after they sign in.

18 Chapter 1: Getting Ready

Chapter 2

Accessing Data in an OAuth
Server

In this chapter, we'll walk through how to access your data at an
existing OAuth 2.0 server. For this example, we'll use the GitHub
API, and build a simple application that will list all repositories the
logged-in user has created.

Create an Application
Before we can begin, we'll need to create an application on GitHub
in order to get a client ID and client secret.

On GitHub.com, from the "Settings" page, click on the "Developer
Settings" link in the sidebar. You will end up on
https://github.com/settings/developers. From there, click "New
OAuth App" and you will be presented with a short form, as shown
in Figure 2-1.

Fill out the required information, including the callback URL. If you
are developing an application locally, you'll have to use a local
address for the callback URL. Since GitHub allows only one
registered callback URL per application, it is useful to create two
applications, one for development, and a separate one for
production.

Chapter 2: Accessing Data in an OAuth Server 19

https://github.com/settings/developers

Figure 2-1:Figure 2-1: Register a new OAuth application on GitHub

After completing this form, you'll be taken to a page where you can
see the client ID and secret issued to your application, shown in
Figure 2-2.

The client ID is considered public information, and is used to build
authorization URLs, or can be included in the JavaScript source
code of a web page. The client secret mustmust be kept confidential.
Don't commit this to your git repository or include it in any
JavaScript files!

20 Chapter 2: Accessing Data in an OAuth Server

Figure 2-2:Figure 2-2: GitHub application has been created

Chapter 2: Accessing Data in an OAuth Server 21

Setting Up the Environment
This example code is written in PHP with no external packages
required and no framework needed. Hopefully this makes it easy to
translate to other languages if desired. To follow along with this
example code, you can place it all in a single PHP file.

Create a new folder and create an empty file in that folder called
index.php. From the command line, run php -S localhost:8000
from inside that folder, and you'll be able to visit
http://localhost:8000 in your browser to run your code. All the code
in the examples below should be added to this index.php file.

To make things easier for us, let's define a method, apiRequest()
which is a simple wrapper around cURL. This function will include
the Accept and User-Agent headers that GitHub's API requires, and
automatically decode the JSON response. If we have an access token
in the session, it will send the proper OAuth header with the access
token as well, in order to make authenticated requests.

function apiRequest($url, $post=FALSE, $headers=array()) {
$ch = curl_init($url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE);

if($post)
curl_setopt($ch, CURLOPT_POSTFIELDS, http_build_query($post));

$headers = [
'Accept: application/vnd.github.v3+json, application/json',
'User-Agent: https://example-app.com/'

];

if(isset($_SESSION['access_token']))
$headers[] = 'Authorization: Bearer '.$_SESSION['access_token'];

curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

$response = curl_exec($ch);
return json_decode($response, true);

}

Now let's set up a few variables we'll need for the OAuth process.

22 Chapter 2: Accessing Data in an OAuth Server

http://localhost:8000/

// Fill these out with the values from GitHub
$githubClientID = '';
$githubClientSecret = '';

// This is the URL we'll send the user to first
// to get their authorization
$authorizeURL = 'https://github.com/login/oauth/authorize';

// This is the endpoint we'll request an access token from
$tokenURL = 'https://github.com/login/oauth/access_token';

// This is the GitHub base URL for API requests
$apiURLBase = 'https://api.github.com/';

// The URL for this script, used as the redirect URL
$baseURL = 'https://' . $_SERVER['SERVER_NAME']

. $_SERVER['PHP_SELF'];

// Start a session so we have a place to
// store things between redirects
session_start();

First, let's set up the "logged-in" and "logged-out" views. This will
show a simple message indicating whether the user is logged in or
logged out.

// If there is an access token in the session
// the user is already logged in
if(!isset($_GET['action'])) {
if(!empty($_SESSION['access_token'])) {
echo '<h3>Logged In</h3>';
echo '<p>View Repos</p>';
echo '<p>Log Out</p>';

} else {
echo '<h3>Not logged in</h3>';
echo '<p>Log In</p>';

}
die();

}

The logged-out view contains a link to our login URL which starts
the OAuth process.

Chapter 2: Accessing Data in an OAuth Server 23

Authorization Request
Now that we have the necessary variables set up, let's start the
OAuth process.

The first thing we'll have people do is visit this page with
?action=login in the query string to kick off the process.

Note the scopes we are asking for in this request include user and
public_repo. This means the app will be able to read the user
profile information as well as have access to public repos.

// Start the login process by sending the user
// to GitHub's authorization page
if(isset($_GET['action']) && $_GET['action'] == 'login') {
unset($_SESSION['access_token']);

// Generate a random hash and store in the session
$_SESSION['state'] = bin2hex(random_bytes(16));

$params = array(
'response_type' => 'code',
'client_id' => $githubClientID,
'redirect_uri' => $baseURL,
'scope' => 'user public_repo',
'state' => $_SESSION['state']

);

// Redirect the user to GitHub's authorization page
header('Location: '.$authorizeURL.'?'.http_build_query($params));
die();

}

It's important to generate a "state" parameter to use to protect the
client. This is a random string that the client generates and stores in
the session. We use the state parameter as an extra security check so
that when GitHub sends the user back here with the state in the
query string, we can verify that we did actually initiate this request
and it's not an attacker making that request.

We build up the authorization URL and then send the user there.
The URL contains our public client ID, the redirect URL which we
previously registered with GitHub, the scope we're requesting, and
the "state" parameter.

24 Chapter 2: Accessing Data in an OAuth Server

Figure 2-3:Figure 2-3: GitHub's Authorization Request

At this point, the user will see GitHub's OAuth authorization prompt,
illustrated in Figure 2-3.

When the user approves the request, they will be redirected back to
our page with code and state parameters in the request. The next
step is to exchange the authorization code for an access token.

Obtaining an Access Token
When the user is redirected back to our app, there will be a code
and state parameter in the query string. The state parameter will
be the same as the one we set in the initial authorization request,

Chapter 2: Accessing Data in an OAuth Server 25

and is meant for our app to check that it matches before continuing.
This helps our app avoid being tricked into sending an attacker's
authorization code to GitHub, as well as prevents CSRF attacks.

// When GitHub redirects the user back here,
// there will be a "code" and "state" parameter in the query string
if(isset($_GET['code'])) {
// Verify the state matches our stored state
if(!isset($_GET['state'])
|| $_SESSION['state'] != $_GET['state']) {

header('Location: ' . $baseURL . '?error=invalid_state');
die();

}

// Exchange the auth code for an access token
$token = apiRequest($tokenURL, array(
'grant_type' => 'authorization_code',
'client_id' => $githubClientID,
'client_secret' => $githubClientSecret,
'redirect_uri' => $baseURL,
'code' => $_GET['code']

));
$_SESSION['access_token'] = $token['access_token'];

header('Location: ' . $baseURL);
die();

}

Here we are sending a request to GitHub's token endpoint to
exchange the authorization code for an access token. The request
contains our public client ID as well as the private client secret. We
also send the same redirect URL as before along with the
authorization code.

If everything checks out, GitHub generates an access token and
returns it in the response. We store the access token in the session
and redirect to the home page, and the user is logged in.

The response from GitHub will look like the below.

{
"access_token": "e2f8c8e136c73b1e909bb1021b3b4c29",
"token_type": "Bearer",
"scope": "public_repo,user"

}

26 Chapter 2: Accessing Data in an OAuth Server

Our code has extracted the access token and saved it in the session.
The next time you visit the page, it recognizes that there's already
an access token and shows the logged-in view we created earlier.

Note: We have not included any error handling code in this example
for simplicity's sake. In reality, you'd check for errors returned from
GitHub and display an appropriate message to the user.

Making API Requests
Now that our app has a GitHub access token for the user, we can use
it to make API requests. Let's add a new section to our application
that will run when the user clicks the "View Repos" link we created
earlier.

Remember the apiRequest function we set up earlier? That's where
the access token is included in the HTTP request. The request this
code will make will include the access token in the HTTP
Authorization header, as illustrated in the example below.

GET /user/repos?sort=created&direction=desc HTTP/1.1
Host: api.github.com
Accept: application/vnd.github.v3+json
User-Agent: https://example-app.com/
Authorization: Bearer e2f8c8e136c73b1e909bb1021b3b4c29

The code below will take the access token and use it in a request to
list the user's repositories. It will then output a list of repositories
and link to each one.

if(isset($_GET['action']) && $_GET['action'] == 'repos') {
// Find all repos created by the authenticated user
$repos = apiRequest($apiURLBase.'user/repos?'.http_build_query([
'sort' => 'created', 'direction' => 'desc'

]));

echo '';
foreach($repos as $repo)
echo ''

. $repo['name'] . '';
echo '';

}

Chapter 2: Accessing Data in an OAuth Server 27

That's it! You can now use the access token to make API requests to
any of the API endpoints on GitHub! You can see the full
documentation of GitHub's API at https://developer.github.com/v3/.

Download the Sample Code

You can download the complete sample code used in this example
from GitHub at https://github.com/aaronpk/sample-oauth2-client.

28 Chapter 2: Accessing Data in an OAuth Server

https://developer.github.com/v3/
https://github.com/aaronpk/sample-oauth2-client

Chapter 3

Signing In with Google

Despite OAuth being an authorization protocol rather than an
authentication protocol, it is often used as the basis for
authentication workflows anyway. A typical use of many common
OAuth APIs is just to identify the user at the computer when logging
in to a third-party app.

Authentication and authorization are often confused with each
other, but can be more easily understood if you think about them
from the perspective of an application. An app that is authenticating
users is just verifying who the user is. An app that is authorizing
users is trying to gain access or modify something that belongs to
the user.

OAuth was designed as an authorization protocol, so the end result
of every OAuth flow is the app obtains an access token in order to
be able to access or modify something about the user's account. The
access token itself says nothing about who the user is.

There are several ways different services provide a way for an app
to find out the identity of the user. A simple way is for the API to
provide a "user info" endpoint which will return the authenticated
user's name and other profile info when an API call is made with an
access token. While this is not something that is part of the OAuth
standard, it's a common approach many services have taken. A
more advanced and standardized approach is to use OpenID
Connect, an OAuth 2.0 extension. OpenID Connect is covered in
more detail in Chapter 22.

Chapter 3: Signing In with Google 29

This chapter will walk through using a simplified OpenID Connect
workflow with the Google API to identify the user who signed in to
your application.

Create an Application
Before we can begin, we'll need to create an application in the
Google API Console in order to get a client ID and client secret, and
register the redirect URL.

Visit https://console.developers.google.com/ and create a new
project. You'll also need to create OAuth 2.0 credentials for the
project since Google does not do that automatically. From the
sidebar, click the CredentialsCredentials tab, then click Create credentialsCreate credentials and
choose OOAAuth client IDuth client ID from the dropdown.

Figure 3-1:Figure 3-1: Create Credentials for your App on the Google API Console

The Google Console will prompt for some information about your
application such as the product name, a home page, and a logo. On

30 Chapter 3: Signing In with Google

https://console.developers.google.com/

the next page, select WWeb applicationeb application type, and enter the redirect
URL where the script we'll build next will live. You will then receive
a client ID and secret.

Setting Up the Environment
This example code is written in PHP with no external packages
required and no framework needed. Hopefully this makes it easy to
translate to other languages if desired. To follow along with this
example code, you can place it all in a single PHP file.

Create a new folder and create an empty file in that folder called
index.php. From the command line, run php -S localhost:8000
from inside that folder, and you'll be able to visit
http://localhost:8000 in your browser to run your code. All the code
in the examples below should be added to this index.php file.

Let's set up a few variables we'll need for the OAuth process, adding
the client ID and secret we got from Google when we created the
application.

// Fill these out with the values you got from Google
$googleClientID = '';
$googleClientSecret = '';

// This is the URL we'll send the user to first
// to get their authorization
$authorizeURL = 'https://accounts.google.com/o/oauth2/v2/auth';

// This is Google's OpenID Connect token endpoint
$tokenURL = 'https://www.googleapis.com/oauth2/v4/token';

// The URL for this script, used as the redirect URL
$baseURL = 'https://' . $_SERVER['SERVER_NAME']

. $_SERVER['PHP_SELF'];

// Start a session so we have a place
// to store things between redirects
session_start();

With those variables defined, and the session started, let's set up the
logged in and logged out pages. We'll show a super simple page that

Chapter 3: Signing In with Google 31

http://localhost:8000/

just indicates whether the user is logged in or not, and has a link to
log in or log out.

// If there is a user ID in the session
// the user is already logged in
if(!isset($_GET['action'])) {
if(!empty($_SESSION['user_id'])) {
echo '<h3>Logged In</h3>';
echo '<p>User ID: '.$_SESSION['user_id'].'</p>';
echo '<p>Email: '.$_SESSION['email'].'</p>';
echo '<p>Log Out</p>';

// Fetch user info from Google's userinfo endpoint
echo '<h3>User Info</h3>';
echo '<pre>';
$ch = curl_init('https://www.googleapis.com/oauth2/v3/userinfo');
curl_setopt($ch, CURLOPT_HTTPHEADER, [

'Authorization: Bearer '.$_SESSION['access_token']
]);
curl_exec($ch);
echo '</pre>';

} else {
echo '<h3>Not logged in</h3>';
echo '<p>Log In</p>';

}
die();

}

The logged-out view contains a link to our login URL which starts
the flow.

Authorization Request
Now that we have the necessary variables set up, let's start the
OAuth process.

The first thing we'll have people do is visit this page with
?action=login in the query string to kick off the process.

Note that scopes in this request are now OpenID Connect scopes,
"openid email", indicating that we are not requesting access to the
user's Google data, just wanting to know who they are.

32 Chapter 3: Signing In with Google

Also note that we are using the response_type=code parameter to
indicate that we want Google to return an authorization code that
we'll exchange for the id_token later.

// Start the login process by sending the user
// to Google's authorization page
if(isset($_GET['action']) && $_GET['action'] == 'login') {
unset($_SESSION['user_id']);

// Generate a random hash and store in the session
$_SESSION['state'] = bin2hex(random_bytes(16));

$params = array(
'response_type' => 'code',
'client_id' => $googleClientID,
'redirect_uri' => $baseURL,
'scope' => 'openid email',
'state' => $_SESSION['state']

);

// Redirect the user to Google's authorization page
header('Location: '.$authorizeURL.'?'.http_build_query($params));
die();

}

It's important to generate a "state" parameter to use to protect the
client. This is a random string that the client generates and stores in
the session. The app uses the state parameter to verify that it
initiated the request when Google sends the user back to the app.

We build up an authorization URL and then send the user there. The
URL contains our public client ID, the redirect URL which we
previously registered with Google, the scope we're requesting, and
the "state" parameter.

Chapter 3: Signing In with Google 33

Figure 3-2:Figure 3-2: Google's Authorization Request

If the user is already logged in to Google, they'll see an account
chooser screen as shown in Figure 3-2 asking them to choose an
existing account or use a different account. Notice that this screen
does not look like a typical OAuth screen, because the user isn't
granting any permissions to the application, it's just trying to
identify them.

When the user selects an account, they will be redirected back to
our page with code and state parameters in the request. The next
step is to exchange the authorization code for an access token at the
Google API.

Getting an ID Token
When the user is redirected back to our app, there will be a code
and state parameter in the query string. The state parameter will
be the same as the one we set in the initial authorization request,
and is meant for our app to check that it matches before continuing.
This helps our app avoid being tricked into sending an attacker's
authorization code to Google.

34 Chapter 3: Signing In with Google

// When Google redirects the user back here, there will
// be a "code" and "state" parameter in the query string
if(isset($_GET['code'])) {
// Verify the state matches our stored state
if(!isset($_GET['state']) || $_SESSION['state'] != $_GET['state']) {
header('Location: ' . $baseURL . '?error=invalid_state');
die();

}

// Exchange the authorization code for an access token
$ch = curl_init($tokenURL);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, http_build_query([
'grant_type' => 'authorization_code',
'client_id' => $googleClientID,
'client_secret' => $googleClientSecret,
'redirect_uri' => $baseURL,
'code' => $_GET['code']

]));
$response = json_decode(curl_exec($ch), true);

// ... fill in from the code in the next section
}

This code first checks that the "state" returned from Google matches
the state we stored in our session.

We build up a POST request to Google's token endpoint containing
our app's client ID and secret, as well as the authorization code that
Google sent back to us in the query string.

Google will verify our request, and then respond with both an
access token as well as an ID token. The response will look like the
below.

{
"access_token": "ya29.Glins-oLtuljNVfthQU2bpJVJPTu",
"token_type": "Bearer",
"expires_in": 3600,
"id_token": "eyJhbGciOiJSUzI1NiIsImtpZCI6ImFmZmM2MjkwN
2E0NDYxODJhZGMxZmE0ZTgxZmRiYTYzMTBkY2U2M2YifQ.eyJhenAi
OiIyNzIxOTYwNjkxNzMtZm81ZWI0MXQzbmR1cTZ1ZXRkc2pkdWdzZX
V0ZnBtc3QuYXBwcy5nb29nbGV1c2VyY29udGVudC5jb20iLCJhdWQi
OiIyNzIxOTYwNjkxNzMtZm81ZWI0MXQzbmR1cTZ1ZXRkc2pkdWdzZX
V0ZnBtc3QuYXBwcy5nb29nbGV1c2VyY29udGVudC5jb20iLCJzdWIi
OiIxMTc4NDc5MTI4NzU5MTM5MDU0OTMiLCJlbWFpbCI6ImFhcm9uLn
BhcmVja2lAZ21haWwuY29tIiwiZW1haWxfdmVyaWZpZWQiOnRydWUs

Chapter 3: Signing In with Google 35

ImF0X2hhc2giOiJpRVljNDBUR0luUkhoVEJidWRncEpRIiwiZXhwIj
oxNTI0NTk5MDU2LCJpc3MiOiJodHRwczovL2FjY291bnRzLmdvb2ds
ZS5jb20iLCJpYXQiOjE1MjQ1OTU0NTZ9.ho2czp_1JWsglJ9jN8gCg
WfxDi2gY4X5-QcT56RUGkgh5BJaaWdlrRhhN_eNuJyN3HRPhvVA_KJ
Vy1tMltTVd2OQ6VkxgBNfBsThG_zLPZriw7a1lANblarwxLZID4fXD
YG-O8U-gw4xb-NIsOzx6xsxRBdfKKniavuEg56Sd3eKYyqrMA0DWnI
agqLiKE6kpZkaGImIpLcIxJPF0-yeJTMt_p1NoJF7uguHHLYr6752h
qppnBpMjFL2YMDVeg3jl1y5DeSKNPh6cZ8H2p4Xb2UIrJguGbQHVIJ
vtm_AspRjrmaTUQKrzXDRCfDROSUU-h7XKIWRrEd2-W9UkV5oCg"

}

The access token should be treated as an opaque string. It has no
significant meaning to your app other than being able to use it to
make API requests.

The ID token has a specific structure that your app can parse to find
out the user data of who signed in. The ID token is a JWT, explained
in more detail in Chapter 22, OpenID Connect, (page 205). You can
paste the JWT from Google into a site like jwt.io to quickly show you
the contents, or you can base64 decode the middle part between the
two .'s to see the user data which we'll do next.

Verifying the User Info
Normally, it's critical that you validate an ID token before trusting
any of the information inside it. This is because in other OpenID
Connect flows your app will get an ID token over an untrusted
channel such as a browser redirect.

In this case, you got the ID token from an HTTPS connection to
Google using the client secret to authenticate the request, so you can
be confident that the ID token you obtained did in fact come from
the service and not an attacker. With this in mind, and I know it
seems like a stretch, it's okay to decode the ID token without
validating it. Even Google says so. https://developers.google.com/
identity/protocols/OpenIDConnect#obtainuserinfo.

Take a look at the JWT above. It's made up of three parts, each
separated by a period. We can split the string on the dots, and take
the middle piece. The middle piece is a base64-encoded JSON string

36 Chapter 3: Signing In with Google

https://jwt.io/
https://developers.google.com/identity/protocols/OpenIDConnect#obtainuserinfo
https://developers.google.com/identity/protocols/OpenIDConnect#obtainuserinfo

containing the data about the user. Below is an example of the data
in the JWT.

{
"azp": "272196069173.apps.googleusercontent.com",
"aud": "272196069173.apps.googleusercontent.com",
"sub": "110248495921238986420",
"hd": "okta.com",
"email": "aaron.parecki@okta.com",
"email_verified": true,
"at_hash": "0bzSP5g7IfV3HXoLwYS3Lg",
"exp": 1524601669,
"iss": "https://accounts.google.com",
"iat": 1524598069

}

All we really care about for this demo are the two properties sub
and email. The sub (subject) property contains the unique user
identifier of the user who signed in. We'll extract that and store it in
the session, which will indicate to our app that the user is signed in.

We'll also store the ID token and access token in the session so we
can use them later, to show an alternative way of getting the user
info.

// ... continuing from the previous code sample, insert this

// Split the JWT string into three parts
$jwt = explode('.', $data['id_token']);

// Extract the middle part, base64 decode, then json_decode it
$userinfo = json_decode(base64_decode($jwt[1]), true);

$_SESSION['user_id'] = $userinfo['sub'];
$_SESSION['email'] = $userinfo['email'];

// While we're at it, let's store the access token and id token
// so we can use them later
$_SESSION['access_token'] = $data['access_token'];
$_SESSION['id_token'] = $data['id_token'];

header('Location: ' . $baseURL);
die();

}

Chapter 3: Signing In with Google 37

Now you'll be redirected back to the app's home page, where we'll
show you the user ID and email using the code we created at the
beginning.

echo '<p>User ID: '.$_SESSION['user_id'].'</p>';
echo '<p>Email: '.$_SESSION['email'].'</p>';

Using the ID Token to Retrieve User Info
Google provides an additional API endpoint, called the tokeninfo
endpoint, which you can use to look up the ID token details instead
of parsing it yourself. This is not recommended for production
applications, as it requires an additional HTTP round trip, but can
be useful for testing and troubleshooting.

Google's tokeninfo endpoint is at https://www.googleapis.com/
oauth2/v3/tokeninfo, as found in their OpenID Connect discovery
document at https://accounts.google.com/.well-known/openid-
configuration. To look up the info for the ID token we received,
make a GET request to the tokeninfo endpoint with the ID token in
the query string.

https://www.googleapis.com/oauth2/v3/tokeninfo?id_token=eyJ...

The response will be a JSON object with a similar list of properties
that were included in the JWT itself.

{
"azp": "272196069173.apps.googleusercontent.com",
"aud": "272196069173.apps.googleusercontent.com",
"sub": "110248495921238986420",
"hd": "okta.com",
"email": "aaron.parecki@okta.com",
"email_verified": "true",
"at_hash": "NUuq_yggZYi_2-13hJSOXw",
"exp": "1524681857",
"iss": "https://accounts.google.com",
"iat": "1524678257",
"alg": "RS256",
"kid": "affc62907a446182adc1fa4e81fdba6310dce63f"

}

38 Chapter 3: Signing In with Google

Using the Access Token to Retrieve User Info
As mentioned before, many OAuth 2.0 services also provide an
endpoint to retrieve the user info of the user who logged in. This is
part of the OpenID Connect standard, and the endpoint will be part
of the service's OpenID Connect Discovery Document.

Google's userinfo endpoint is https://www.googleapis.com/oauth2/
v3/userinfo. In this case, you use the access token rather than the
ID token to look up the user info. Make a GET request to that
endpoint and pass the access token in the HTTP Authorization
header like you normally would when making an OAuth 2.0 API
request.

GET /oauth2/v3/userinfo
Host: www.googleapis.com
Authorization: Bearer ya29.Gl-oBRPLiI9IrSRA70...

The response will be a JSON object with several properties about the
user. The response will always include the sub key, which is the
unique identifier for the user. Google also returns the user's profile
information such as name (first and last), profile photo URL, gender,
locale, profile URL, and email. The server can also add its own
claims, such as Google's hd showing the "hosted domain" of the
account when using a G Suite account.

{
"sub": "110248495921238986420",
"name": "Aaron Parecki",
"given_name": "Aaron",
"family_name": "Parecki",
"picture": "https://lh4.googleusercontent.com/-kw-iMgD

_j34/AAAAAAAAAAI/AAAAAAAAAAc/P1YY91tzesU/photo.jpg",
"email": "aaron.parecki@okta.com",
"email_verified": true,
"locale": "en",
"hd": "okta.com"
}

Chapter 3: Signing In with Google 39

Download the Sample Code
You can download the complete sample code used in this example
from GitHub at https://github.com/aaronpk/sample-oauth2-client.

You've seen three different ways to get the user's profile info after
the user signs in. So which one should you use and when?

For performance-sensitive applications where you might be reading
ID tokens on every request or using them to maintain a session, you
should definitely validate the ID token locally rather than making a
network request. Google's API docs (https://developers.google.com/
identity/protocols/OpenIDConnect#validatinganidtoken) provide a
good guide on the details of validating ID tokens offline.

If all you're doing is trying to find the user's name and email after
they sign in, then extracting the data from the ID token and storing
it in your application session is the easiest and most straightforward
option.

40 Chapter 3: Signing In with Google

https://github.com/aaronpk/sample-oauth2-client
https://developers.google.com/identity/protocols/OpenIDConnect#validatinganidtoken
https://developers.google.com/identity/protocols/OpenIDConnect#validatinganidtoken

Chapter 4

Server-Side Apps

Server-side apps are the most common type of application
encountered when dealing with OAuth servers. These apps run on a
web server where the source code of the application is not available
to the public, so they can maintain the confidentiality of their client
secret.

Figure 4-1 illustrates a typical example where the user interacts
with their browser which is communicating with the client. The
client and the API server have a separate secure communications
channel between them. The user's browser never makes a request
directly to the API server, everything goes through the client first.

Figure 4-1:Figure 4-1: The app's server communicates with the API

Server-side apps use the authorization_code grant type. In this
flow, after the user authorizes the application, the application
receives an "authorization code" which it can then exchange for an
access token.

Chapter 4: Server-Side Apps 41

Authorization Code Flow
The authorization code is a temporary code that the client will
exchange for an access token. The code itself is obtained from the
authorization server where the user gets a chance to see what the
information the client is requesting, and approve or deny the
request.

The authorization code flow offers a few benefits over the other
grant types. When the user authorizes the application, they are
redirected back to the application with a temporary code in the
URL. The application exchanges that code for the access token.
When the application makes the request for the access token, that
request is authenticated with the client secret, which reduces the
risk of an attacker intercepting the authorization code and using it
themselves. This also means the access token is never visible to the
user, so it is the most secure way to pass the token back to the
application, reducing the risk of the token leaking to someone else.

The first step of the web flow is to request authorization from the
user. This is accomplished by creating an authorization request link
for the user to click on.

The authorization URL is usually in a format such as:

https://authorization-server.com/oauth/authorize
?client_id=a17c21ed
&response_type=code
&state=5ca75bd30
&redirect_uri=https%3A%2F%2Fexample-app.com%2Fauth
&scope=photos

The exact URL endpoint will be specified by the service to which
you are connecting, but the parameter names will always be the
same.

Note that you will most likely first need to register your redirect
URL at the service before it will be accepted. This also means you
can't change your redirect URL per request. Instead, you can use the
state parameter to customize the request. See below for more
information.

42 Chapter 4: Server-Side Apps

OAuth Security

Up until 2019, the OAuth 2.0
spec only recommended using
the PKCE extension for mobile
and JavaScript apps. The
latest OAuth Security BCP
now recommends using PKCE
also for server-side apps, as it
provides some additional
benefits there as well. It is
likely to take some time
before common OAuth
services adapt to this new
recommendation, but if
you're building a server from
scratch you should definitely
support PKCE for all types of
clients.

After the user visits the
authorization page, the service
shows the user an explanation of the
request, including application name,
scope, etc. (See "approves the
request" on page 47 for an example
screenshot.) If the user clicks
"approve", the server will redirect
back to the app, with a "code" and
the same "state" parameter you
provided in the query string
parameter. It is important to note
that this is not an access token. The
only thing you can do with the
authorization code is to make a
request to get an access token.

Authorization Request Parameters

The following parameters are used to make the authorization
request. You should build a query string with the below parameters,
appending that to the application's authorization endpoint obtained
from its documentation.

response_type=code

response_type is set to code indicating that you want an
authorization code as the response.

client_id

The client_id is the identifier for your app. You will have received
a client_id when first registering your app with the service.

redirect_uri (optional)

The redirect_uri may be optional depending on the API, but is
highly recommended. This is the URL to which you want the user to

Chapter 4: Server-Side Apps 43

be redirected after the authorization is complete. This must match
the redirect URL that you have previously registered with the
service.

scope (optional)

Include one or more scope values (space-separated) to request
additional levels of access. The values will depend on the particular
service.

state

The state parameter serves two functions. When the user is
redirected back to your app, whatever value you include as the state
will also be included in the redirect. This gives your app a chance to
persist data between the user being directed to the authorization
server and back again, such as using the state parameter as a
session key. This may be used to indicate what action in the app to
perform after authorization is complete, for example, indicating
which of your app's pages to redirect to after authorization.

The state parameter also serves as a CSRF protection mechanism if
it contains a random value per request. When the user is redirected
back to your app, double check that the state value matches what
you set it to originally.

PKCE

If the service supports PKCE for web server apps, include the PKCE
challenge and challenge method here as well. This is described in a
complete example in Single-Page Apps on page 51 and Mobile Apps
on page 63.

Combine all of these query string parameters into the authorization
URL, and direct the user's browser there. Typically apps will put
these parameters into a login button, or will send this URL as an
HTTP redirect from the app's own login URL.

44 Chapter 4: Server-Side Apps

The user approves the request

After the user is taken to the service and sees the request, they will
either allow or deny the request. If they allow the request, they will
be redirected back to the redirect URL specified along with an
authorization code in the query string. The app then needs to
exchange this authorization code for an access token.

Exchange the authorization code for an access token

To exchange the authorization code for an access token, the app
makes a POST request to the service's token endpoint. The request
will have the following parameters.

grant_type (required)

The grant_type parameter must be set to "authorization_code".

code (required)

This parameter is for the authorization code received from the
authorization server which will be in the query string parameter
"code" in this request.

redirect_uri (possibly required)

If the redirect URL was included in the initial authorization request,
it must be included in the token request as well, and must be
identical. Some services support registering multiple redirect URLs,
and some require the redirect URL to be specified on each request.
Check the service's documentation for the specifics.

Client Authentication (required)

The service will require the client authenticate itself when making
the request for an access token. Typically services support client
authentication via HTTP Basic Auth with the client's client_id and
client_secret. However, some services support authentication by
accepting the client_id and client_secret as POST body

Chapter 4: Server-Side Apps 45

parameters. Check the service's documentation to find out what the
service expects, since the OAuth 2.0 spec leaves this decision up to
the service.

PKCE Verifier

If the service supports PKCE for web server apps, then the client will
need to include the followup PKCE parameter when exchanging the
authorization code as well. Again, see Single-Page Apps on page 51
and Mobile Apps on page 63 for a complete example of using the
PKCE extension.

Example Flow
The following step-by-step example illustrates using the
authorization code grant type (without PKCE).

Step-by-step

The high level overview is this:

• Create a log-in link with the app's client ID, redirect URL,
and state parameters

• The user sees the authorization prompt and approves the
request

• The user is redirected back to the app's server with an auth
code

• The app exchanges the auth code for an access token

The app initiates the authorization request

The app initiates the flow by crafting a URL containing ID, scope,
and state. The app can put this into an tag.

<a href="https://authorization-server.com/oauth/authorize
?response_type=code&client_id=mRkZGFjM&state=5ca75bd30&
scope=photos">Connect Your Account

46 Chapter 4: Server-Side Apps

The user approves the request

Upon being directed to the authorization server, the user sees the
authorization request shown in Figure 4-2. If the user approves the
request, they will be redirected back to the app along with the auth
code and state parameters.

Figure 4-2:Figure 4-2: Example Authorization Request

The service redirects the user back to the app

The service sends a redirect header redirecting the user's browser
back to the app that made the request. The redirect will include a
"code" in the URL and the original "state".

https://example-app.com/cb?code=Yzk5ZDczMzR&state=5ca75bd30

The app exchanges the auth code for an access token

The app uses the authorization code to get an access token by
making a POST request to the authorization server.

Chapter 4: Server-Side Apps 47

POST /oauth/token HTTP/1.1
Host: authorization-server.com

grant_type=authorization_code
&code=Yzk5ZDczMzR
&redirect_uri=https://example-app.com/cb
&client_id=mRkZGFjM
&client_secret=ZGVmMjMz
&code_verifier=Th7UHJdLswIYQxwSg29DbK1a_d9o41uNMTRmuH0PM8zyoMAQ

The authorization server validates the request and responds with
an access token and optional refresh token if the access token will
expire.

Response:

{
"access_token": "AYjcyMzY3ZDhiNmJkNTY",
"refresh_token": "RjY2NjM5NzA2OWJjuE7c",
"token_type": "Bearer",
"expires_in": 3600

}

Possible Errors
There are several cases where you may get an error response
during authorization.

Errors are indicated by redirecting back to the provided redirect
URL with additional parameters in the query string. There will
always be an error parameter, and the redirect may also include
error_description and error_uri.

For example,

https://example-app.com/cb?error=invalid_scope

Despite the fact that servers return an error_description key, the
error description is not intended to be displayed to the user.
Instead, you should present the user with your own error message.
This allows you to tell the user an appropriate action to take to

48 Chapter 4: Server-Side Apps

correct the problem, and also gives you a chance to localize the
error messages if you're building a multi-language website.

Invalid redirect URL

If the redirect URL provided is invalid, the authorization server will
not redirect to it. Instead, it may display a message to the user
describing the problem instead.

Unrecognized client_id

If the client ID is not recognized, the authorization server will not
redirect the user. Instead, it may display a message describing the
problem.

The user denies the request

If the user denies the authorization request, the server will redirect
the user back to the redirect URL with error=access_denied in the
query string, and no code will be present. It is up to the app to
decide what to display to the user at this point.

Invalid parameters

If one or more parameters are invalid, such as a required value is
missing, or the response_type parameter is wrong, the server will
redirect to the redirect URL and include query string parameters
describing the problem. The other possible values for the error
parameter are:

invalid_request: The request is missing a required parameter,
includes an invalid parameter value, or is otherwise malformed.

unauthorized_client: The client is not authorized to request an
authorization code using this method.

unsupported_response_type: The authorization server does not
support obtaining an authorization code using this method.

Chapter 4: Server-Side Apps 49

invalid_scope: The requested scope is invalid, unknown, or
malformed.

server_error: The authorization server encountered an unexpected
condition which prevented it from fulfilling the request.

temporarily_unavailable: The authorization server is currently
unable to handle the request due to a temporary overloading or
maintenance of the server.

In addition, the server may include parameters error_description
and error_uri with additional information about the error.

User Experience and Security Considerations
In order for the authorization code grant to be secure, the
authorization page must appear in a web browser the user is
familiar with, and must not be embedded in an iframe popup or an
embedded browser in a mobile app. If it could be embedded in
another website, the user would have no way of verifying it is the
legitimate service and is not a phishing attempt.

If an app wants to use the authorization code grant but can't protect
its secret (i.e. native mobile apps or single-page JavaScript apps),
then the client secret is not required when making a request to
exchange the auth code for an access token, and PKCE must be used
instead. However, some services still do not support PKCE, so it may
not be possible to perform an authorization flow from the native
app itself, and the native app may need to have a companion server-
side component that performs the OAuth flow instead.

While the OAuth 2.0 spec does not specifically require that redirect
URLs use TLS encryption, it is highly recommended. The only
reason it is not required is because deploying an SSL website was
somewhat of a hurdle for many developers at the time the spec was
written. Some APIs do require HTTPS for their redirect endpoints
now that deploying HTTPS has become much easier.

50 Chapter 4: Server-Side Apps

Deprecation Notice

A common historical pattern
for single-page apps was to
use the Implicit flow to
receive an access token in the
redirect without the
intermediate authorization
code exchange step. This has
a number of security issues as
described on page 59 and
should no longer be used.
Please see https://oauth.net/2/
browser-based-apps/ for more
details.

Chapter 5

Single-Page Apps

Single-page apps (also known as browser-based apps) run entirely
in the browser after loading the JavaScript and HTML source code
from a web page. Since the entire source is available to the browser,
they cannot maintain the confidentiality of a client secret, so a
secret is not used for these apps. Because they can't use a client
secret, the best option is to use the PKCE extension to protect the
authorization code in the redirect. This is similar to the solution for
mobile apps which also can't use a client secret.
Figure 5-1 illustrates an example
where the user interacts with their
browser, which in turn makes API
requests directly to the service. After
first downloading the Javascript and
HTML source code from the client,
the browser then makes direct API
requests to the service. In this case,
the app's server never makes API
requests to the service, since
everything is handled directly in the
browser.

Chapter 5: Single-Page Apps 51

https://oauth.net/2/browser-based-apps/
https://oauth.net/2/browser-based-apps/
https://oauth.net/2/browser-based-apps/

Figure 5-1:Figure 5-1: The user's browser communicates directly with the API server

Authorization
The authorization code is a temporary code that the client will
exchange for an access token. The code itself is obtained from the
authorization server where the user gets a chance to see what the
information the client is requesting, and approve or deny the
request.

The first step of the flow is to request authorization from the user.
This is accomplished by creating an authorization request link for
the user to click on.

The client first creates what is known as a PKCE "code verifier". This
is a cryptographically random string using the characters A-Z, a-z,
0-9, and the punctuation characters -._~ (hyphen, period,
underscore, and tilde), between 43 and 128 characters long.

The code verifier needs to be stored somewhere local that the app
can look up again when the user is redirected back to the app. In the
case of single-page apps, this will typically be a storage API provided
by the browser such as LocalStorage.

Once the app has generated the code verifier, it uses that to create
the code challenge. For devices that can perform a SHA256 hash, the
code challenge is a Base64-URL-encoded string of the SHA256 hash

52 Chapter 5: Single-Page Apps

of the code verifier. Clients that do not have the ability to perform a
SHA256 hash are permitted to use the code verifier string itself as
the challenge (aka the plain hash method), although it is less
secure. This hashed value is sent in the authorization request, so
that the original random string is never exposed to anything outside
the app.

The authorization request parameters are used to create the
authorization URL, such as:

https://authorization-server.com/oauth/authorize
?client_id=a17c21ed
&response_type=code
&state=5ca75bd30
&redirect_uri=https%3A%2F%2Fexample-app.com%2Fauth
&scope=photos
&code_challenge=hKpKupTM391pE10xfQiorMxXarRKAHRhTfH_xkGf7U4
&code_challenge_method=S256

After the user visits the authorization page, the service shows the
user an explanation of the request, including application name,
scope, etc. If the user clicks "approve", the server will redirect back
to the website, with an authorization code and the state value in the
URL query string.

Authorization Request Parameters

The following parameters are used to make the authorization
request.

response_type=code

response_type is set to code indicating that you want an
authorization code as the response.

client_id

The client_id is the identifier for your app. You will have received
a client_id when first registering your app with the service.

Chapter 5: Single-Page Apps 53

redirect_uri

The redirect_uri is optional in the spec, but some services require
it. This is the URL to which you want the user to be redirected after
the authorization is complete. This must match the redirect URL
that you have previously registered with the service.

scope (optional)

Include one or more scope values to request additional levels of
access. The values will depend on the particular service.

state

The state parameter serves two functions. When the user is
redirected back to your app, whatever value you include as the state
will also be included in the redirect. This gives your app a chance to
persist data between the user being directed to the authorization
server and back again, such as using the state parameter as a
session key. This may be used to indicate what action in the app to
perform after authorization is complete, for example, indicating
which of your app's pages to redirect to after authorization. This
also serves as a CSRF protection mechanism.

code_challenge

The Base64-urlencoded hash of the randomly generated secret. See
Sample JavaScript Code on page 57 for an example of how to
generate this hashed value.

code_challenge_method

A code indicating which hashing method was used to create the
code challenge, typically "S256". If no hash was used, and the code
challenge is the same as the code verifier, then the value is "plain".
This is less secure, but was left in the spec to support devices that
are unable to compute a SHA256 hash.

54 Chapter 5: Single-Page Apps

Example Flow
The following step-by-step example illustrates using the
authorization code flow for single-page apps.

The app initiates the authorization request

The app initiates the flow by crafting a URL containing the
necessary parameters described above. The app can put this into an
 tag.

<a href="https://authorization-server.com/oauth/authorize
?response_type=code&client_id=mRkZGFjM&state=TY2OTZhZGFk
&scope=photos&code_challenge_method=S256
&code_challenge=hKpKupTM391pE10xfQiorMxXarRKAHRhTfH_xkGf7U4">
Connect Your Account

The user approves the request

Upon being directed to the authorization server, the user sees the
authorization request shown in Figure 5-2.

Figure 5-2:Figure 5-2: Example Authorization Request

After the user is taken to the service and sees the request, they will
either allow or deny the request. If they allow the request, they will
be redirected back to the redirect URL specified along with an

Chapter 5: Single-Page Apps 55

authorization code in the query string. The app then needs to
exchange this authorization code for an access token.

https://example-app.com/cb?code=Yzk5ZDczMzRlNDEwY
&state=TY2OTZhZGFk

If you include a "state" parameter in the initial authorization URL,
the service will return it to you after the user authorizes your app.
Your app should compare the state with the state it created in the
initial request. This helps ensure that you only exchange
authorization codes that you requested, preventing attackers from
redirecting to your callback URL with arbitrary or stolen
authorization codes.

Exchange the authorization code for an access token

To exchange the authorization code for an access token, the app
makes a POST request to the service's token endpoint. The request
will have the following parameters.

grant_type (required)

The grant_type parameter must be set to "authorization_code".

code (required)

This parameter is for the authorization code received from the
authorization server which will be in the query string parameter
"code" in this request.

redirect_uri (possibly required)

If the redirect URL was included in the initial authorization request,
it must be included in the token request as well, and must be
identical. Some services support registering multiple redirect URLs,
and some require the redirect URL to be specified on each request.
Check the service's documentation for the specifics.

56 Chapter 5: Single-Page Apps

code_verifier (required)

Since the client included a code_challenge parameter in the initial
request, it must now prove it has the secret used to generate the
hash by sending it in the POST request. This is the plaintext string
that was used to calculate the hash that was previously sent in the
code_challenge parameter.

Client Identification (required)

Despite the client secret not being used in this flow, the request
requires sending the client ID to identify the application making the
request. This means the client must include the client ID as a POST
body parameter rather than using HTTP Basic Authentication like it
can when including the client secret as well.

POST /oauth/token HTTP/1.1
Host: authorization-endpoint.com

grant_type=code
&code=Yzk5ZDczMzRlNDEwY
&redirect_uri=https://example-app.com/cb
&client_id=mRkZGFjM
&code_verifier=Th7UHJdLswIYQxwSg29DbK1a_d9o41uNMTRmuH0PM8zyoMAQ

Sample JavaScript Code
Before modern browser APIs, it used to be challenging to generate
secure random strings or perform hashing functions without
bringing in large libraries. Thankfully, browser APIs have improved
with the introduction of things like WebCrypto, and there are now
good ways to do the operations necessary for PKCE in plain
JavaScript.

Below are some helper functions you might find useful when
implementing PKCE in a JavaScript application from scratch.

Generate a Random String

// Generate a secure random string using the browser crypto functions

Chapter 5: Single-Page Apps 57

function generateRandomString() {
var array = new Uint32Array(28);
window.crypto.getRandomValues(array);
return Array.from(array, dec =>
('0' + dec.toString(16)).substr(-2)).join('');

}

Calculate a SHA256 Hash

// Calculate the SHA256 hash of the input text.
// Returns a promise that resolves to an ArrayBuffer
function sha256(plain) {
const encoder = new TextEncoder();
const data = encoder.encode(plain);
return window.crypto.subtle.digest('SHA-256', data);

}

Base64 URL Encoding

// Base64-URL-Encodes the input string
function base64urlencode(str) {
// Convert the ArrayBuffer to string using Uint8 array to
// convert to what btoa accepts. btoa accepts chars only
// within ascii 0-255 and base64 encodes them.
// Then convert the base64 encoded to base64url encoded
// (replace + with -, replace / with _, trim trailing =)
return btoa(String.fromCharCode.apply(null, new Uint8Array(str)))
.replace(/\+/g, '-').replace(/\//g, '_').replace(/=+$/, '');

}

Generate the PKCE Challenge

// Return the Base64-URL-Encoded SHA256 hash from the plaintext
async function pkceChallengeFromVerifier(v) {
hashed = await sha256(v);
return base64urlencode(hashed);

}

Hopefully this illustrates that it doesn't require a huge amount of
code to support PKCE in JavaScript applications.

58 Chapter 5: Single-Page Apps

Implicit Flow
Some services have historically used the alternative Implicit Flow
for single-page apps, rather than the current recommendation of
using the Authorization Code with PKCE.

The Implicit Flow bypasses the code exchange step, and instead the
access token is returned in the URL fragment to the client
immediately.

There are a number of concerns with this approach, enough that
many providers have opted to avoid implementing the Implicit flow
completely.

The Implicit flow in OAuth 2.0 was created over 10 years ago, when
browsers worked very differently than they do today. The primary
reason the Implicit flow was created was because of an old
limitation in browsers. It used to be the case that JavaScript could
only make requests to the same domain that the page was loaded
from. However, the standard OAuth Authorization Code flow
requires that a POST request is made to the OAuth server’s token
endpoint, which is often on a different domain than the app. That
meant there was previously no way to use this flow from JavaScript.
The Implicit flow worked around this limitation by avoiding that
POST request, and instead returning the access token immediately
in the redirect.

Today, Cross-Origin Resource Sharing (CORS) is universally adopted
by browsers, removing the need for this compromise. CORS
provides a way for JavaScript to make requests to servers on a
different domain as long as the destination allows it. This opens up
the possibility of using the Authorization Code flow in JavaScript.

It's worth noting that the Implicit flow has always been seen as a
compromise compared to the Authorization Code flow. For example,
the spec provides no mechanism to return a refresh token in the
Implicit flow, as it was seen as too insecure to allow that. The spec
also recommends short lifetimes and limited scope for access tokens
issued via the Implicit flow.

Chapter 5: Single-Page Apps 59

In any case, with both the Implicit Flow as well as the Authorization
Code Flow with PKCE, the server must require registration of the
redirect URL in order to maintain the security of the flow.

Security Considerations
With browser-based apps there is always a risk of things like Cross-
Site Scripting (XSS) attacks due to the increased attack surface and
number of moving parts in websites. Additionally, browsers
currently don't have a secure storage mechanism available to store
things like the access token or refresh token. As such, browsers are
always considered a higher risk in an OAuth deployment compared
to other platforms, and the authorization server will usually have
special policies around token lifetimes to mitigate that risk.

Refresh Tokens
Historically, with the Implicit flow, there was never any mechanism
for returning refresh tokens to JavaScript applications. This made
sense at the time, because it was well known that the Implicit flow
was less secure, and without a client secret, a refresh token can be
used to get new access tokens indefinitely, so this would be an even
greater risk than a leaked access token. There was also little need
for a refresh token since JavaScript apps would only be running
when the user was actively using the browser, so they could
redirect to the authorization server to get a new access token if
needed.

With the developments over the last few years of adopting PKCE for
JavaScript apps, there is now the potential for refresh tokens to be
issued to JavaScript apps as well. This ends up being a policy
decision of the authorization server as to whether refresh tokens
will be issued, depending on the level of risk the authorization
server is willing to tolerate.

Additionally, the additions of browser APIs such as ServiceWorkers
means that now browser-based apps have the potential to run code

60 Chapter 5: Single-Page Apps

when the user isn't actively using the browser, such as in response
to a Background Sync event. This means there is now more
potential use for refresh tokens in browser apps.

If the authorization server wishes to allow JavaScript apps to use
refresh tokens, then they must also follow the best practices
outlined in "OAuth 2.0 Security Best Current Practice
(https://tools.ietf.org/html/draft-ietf-https://tools.ietf.org/html/draft-
ietf-oauth-security-topics)" and "OAuth 2.0 for Browser-Based Apps
(https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps)",
two recent documents adopted by the OAuth Working Group.
Specifically, refresh tokens must be valid for only one use, and the
authorization server must issue a new refresh token each time a
new access token is issued in response to a refresh token grant. This
provides the authorization server a way to detect if a refresh token
has been copied and used by an attacker, since in normal operation
of an app a refresh token would be used only once.

Refresh tokens must also either have a set maximum lifetime, or
expire if they are not used within some amount of time. This is
again another way to help mitigate the risks of a stolen refresh
token.

Storing Tokens
The browser-based app will need to temporarily store some pieces
of information during the authorization flow, and then permanently
store the resulting access token and refresh token. This provides
some challenges in the browser environment since there are
currently no general-purpose secure storage mechanism in
browsers.

Generally, the browser's LocalStorage API is the best place to store
this data as it provides the easiest API to store and retrieve data and
is about as secure as you can get in a browser. The downside is that
any scripts on the page, even from different domains such as your
analytics or ad network, will be able to access the LocalStorage of
your application. This means anything you store in LocalStorage is
potentially visible to third-party scripts on your page.

Chapter 5: Single-Page Apps 61

https://tools.ietf.org/html/draft-ietf-https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-ietf-https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-ietf-https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps

Because of the risks of data leakage from third-party scripts, it is
extremely important to have a good Content-Security Policy
configured for your app so that you can be more confident that
arbitrary scripts aren't able to run in the application. A good
document on configuring a Content Security Policy is available from
OWASP at https://owasp.org/www-project-cheat-sheets/cheatsheets/
Content_Security_Policy_Cheat_Sheet.html

Choosing an Alternative Architecture
Due to the inherent risks of performing an OAuth flow in a pure
JavaScript environment, as well as the risks of storing tokens in a
JavaScript app, it is also advisable to consider an alternative
architecture where the OAuth flow is handled outside of the
JavaScript code by a dynamic backend component. This is a
relatively common architectural pattern where an application is
served from a dynamic backend such as a .NET or Java app, but it
uses a single-page app framework like React or Angular for its UI. If
your app falls under this architectural pattern, then the best option
is to move all of the OAuth flow to the server component, and keep
the access tokens and refresh tokens out of the browser entirely.
Note that in this case since your app has a dynamic backend, it is
also considered a confidential client and can use a client secret to
further protect the OAuth exchanges.

This pattern is described in more detail in "OAuth 2.0 for Browser-
Based Apps (https://tools.ietf.org/html/draft-ietf-oauth-browser-
based-apps)".

62 Chapter 5: Single-Page Apps

https://owasp.org/www-project-cheat-sheets/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://owasp.org/www-project-cheat-sheets/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps

Chapter 6

Mobile and Native Apps

Like single-page apps, mobile apps also cannot maintain the
confidentiality of a client secret. Because of this, mobile apps must
also use an OAuth flow that does not require a client secret. The
current best practice is to use the Authorization Flow with PKCE,
along with launching an external browser, in order to ensure the
native app cannot modify the browser window or inspect the
contents.

Many websites provide mobile SDKs which handle the
authorization process for you. For those services, you are probably
better off using their SDKs directly, since they may have augmented
their APIs with non-standard additions. Google provides an open
source library called AppAuth which handles the implementation
details of the flow described below. It is meant to be able to work
with any OAuth 2.0 server that implements the spec. In the case that
the service does not a provide their own abstraction, and you have
to use their OAuth 2.0 endpoints directly, this section describes how
to use the authorization code flow with PKCE to interface with an
API.

Authorization
Create a "Log in" button that will open a secure web browser within
the app (ASWebAuthenticationSession or SFSafariViewController
on iOS, and "Custom Tabs" on Android). You'll use the same
parameters for the authorization request as described in Server-
Side Apps on page 41 including the PKCE parameters.

Chapter 6: Mobile and Native Apps 63

The resulting redirect will include the temporary authorization code
which the app will exchange for an access token from its native
code.

Example
In this example we will walk through a simple iPhone application
that obtains authorization to access a fictional API.

Initiate the authorization request
To begin the authorization process, the app should have a "sign in"
button. The link should be constructed as a full URL to the service's
authorization endpoint.

The client first creates what is known as a PKCE "code verifier". This
is a cryptographically random string using the characters A-Z, a-z,
0-9, and the punctuation characters -._~ (hyphen, period,
underscore, and tilde), between 43 and 128 characters long.

Once the app has generated the code verifier, it uses that to create
the code challenge. The code challenge is a Base64-URL-encoded
string of the SHA256 hash of the code verifier. This hashed value is
sent in the authorization request, so that the original random string
is never exposed to anything outside the app.

The authorization request parameters are used to create the
authorization URL, such as:

https://authorization-server.com/authorize
?client_id=eKNjzFFjH9A1ysYd
&response_type=code
&redirect_uri=com.example.app://auth
&state=1234zyx
&scope=photos
&code_challenge=hKpKupTM381pE10yfQiorMxXarRKAHRhTfH_xkGf7U4
&code_challenge_method=S256

64 Chapter 6: Mobile and Native Apps

Note in this case the custom scheme of the redirect URL. Both iOS
and Android provide the ability for apps to register custom URL
schemes which can be used as the redirect URL. This is also
sometimes called "deep linking" in the platform's documentation.
Both platforms also allow the app to register itself to be launched
when a matching URL pattern is visited ("Universal Links" on iOS
and "App Links" on Android). Both methods provide approximately
the same experience when using an app, but the "Universal/App
Links" method provides better fallback behavior when the URL is
visited if the user doesn't have the app installed. The "Universal
Links" and "App Links" methods are generally considered more
modern and are probably what you should use going forward.

When the user taps the "Sign In" button, the app should open the
authorization URL in a secure in-app browser
(ASWebAuthenticationSession on iOS, or a "Custom Tab" on
Android). Using an embedded WebView window within the app is
considered extremely dangerous, as this provides the user no
guarantee they are looking at the service's own website and so is an
easy source of a phishing attack. The embedded web view also
provides a worse user experience since it does not share system
cookies and the user will always have to enter their credentials. By
using the platform's secure browser APIs which share cookies with
the system browser, you have the advantage of the user potentially
already being signed in to the service as well and not needing to
enter their credentials every time.

The user approves the request
Upon being directed to the authorization server, the user sees an
authorization request such as the one shown in Figure 6-1.

Chapter 6: Mobile and Native Apps 65

Figure 6-1:Figure 6-1: An embedded ASWebAuthenticationSession. The "Done" button
in the top right corner collapses the view and returns the user to the app.

The service redirects the user back to the app
When the user finishes signing in, the service will redirect back to
your app's redirect URL which will cause the secure browser API to
send the resulting URL to your app. The Location header from the
redirect will look something like the following, which will be passed
to your app.

com.example.app://auth?state=1234zyx
&code=lS0KgilpRsT07qT_iMOg9bBSaWqODC1g06gV2GYtyynB6A

Your app should then parse out the state value and authorization
code from the URL, verify the state matches the value it set, and
then exchange the authorization code for an access token.

66 Chapter 6: Mobile and Native Apps

Exchange the authorization code for an access token

To exchange the authorization code for an access token, the app
makes a POST request to the service's token endpoint. This happens
from the app's native code rather than from within the browser,
since that's where the PKCE code_verifier was stored. The request
will have the following parameters.

grant_type (required)

The grant_type parameter must be set to "authorization_code".

code (required)

This parameter is for the authorization code received from the
authorization server which will be in the query string parameter
"code" in this request.

redirect_uri (possibly required)

If the redirect URL was included in the initial authorization request,
it must be included in the token request as well, and must be
identical. Some services support registering multiple redirect URLs,
and some require the redirect URL to be specified on each request.
Check the service's documentation for the specifics.

code_verifier (required)

Since the client included a code_challenge parameter in the initial
request, it must now prove it has the secret used to generate the
hash by sending it in the POST request. This is the plaintext string
that was used to calculate the hash that was previously sent in the
code_challenge parameter.

Client Identification (required)

Despite the client secret not being used in this flow, the request
requires sending the client ID to identify the application making the
request. This means the client must include the client ID as a POST

Chapter 6: Mobile and Native Apps 67

body parameter rather than using HTTP Basic Authentication like it
can when including the client secret as well.

POST /oauth/token HTTP/1.1
Host: authorization-endpoint.com

grant_type=code
&code=Yzk5ZDczMzRlNDEwY
&redirect_uri=com.example.app://auth
&client_id=eKNjzFFjH9A1ysYd
&code_verifier=Th7UHJdLswIYQxwSg29DbK1a_d9o41uNMTRmuH0PM8zyoMAQ

Security Considerations

Always use the secure embedded browser APIs, or launch a
native browser
It is critical that the application use the appropriate browser APIs
on the platforms rather than use embedded web views. On iOS, this
is either ASWebAuthenticationSession or SFSafariViewController,
and on Android this is known as "Custom Tabs".

Using an embedded web view has many downsides, resulting in a
higher likelihood of the user falling for a phishing attack since it
provides no way for the user to verify the origin of the web page
they're looking at. It would be trivial for an attacker to create a web
page that looks just like the authorization web page and embed it in
their own malicious app, giving them the ability to steal usernames
and passwords.

On the user experience side, using an embedded web view also has
the downside of the web view not sharing system cookies so the
user will be forced to enter their credentials every time. Instead,
using the appropriate secure browser APIs will provide the
opportunity for the user to bypass entering their credentials in the
app if they're already logged in to the authorization server in their
browser.

68 Chapter 6: Mobile and Native Apps

Chapter 7

Making Authenticated
Requests

Regardless of which grant type you used or whether you used a
client secret, you now have an OAuth 2.0 Bearer Token you can use
with the API.

The access token is sent to the service in the HTTP Authorization
header prefixed by the text Bearer. Historically, some services
allowed the token to be sent in the post body parameter or even the
GET query string, but there are downsides to these approaches and
for the most part modern implementations will use only the HTTP
header method.

When passing in the access token in an HTTP header, you should
make a request like the following:

POST /resource/1/update HTTP/1.1
Authorization: Bearer RsT5OjbzRn430zqMLgV3Ia
Host: api.authorization-server.com

description=Hello+World

The access token is not intended to be parsed or understood by your
application. The only thing your application should do with it is use
it to make API requests. Some services will use structured tokens
like JWTs as their access tokens, described in Chapter 12, Self-
Encoded Access Tokens, but the client does not need to worry about
decoding the token in this case.

Chapter 7: Making Authenticated Requests 69

In fact, attempting to decode the access token is dangerous, as the
server makes no guarantees that access tokens will always continue
to be in the same format. It's entirely possible that the next time you
get an access token from the service, it will be in a different format.
The thing to keep in mind is that access tokens are opaque to the
client, and should only be used to make API requests and not
interpreted themselves.

If you are trying to find out whether your access token has expired,
you can either store the expiration lifetime that was returned when
you first got the access token, or just try to make the request
anyway, and get a new access token if the current one has expired.
In practice, there isn't much of a difference. While preemptively
refreshing the access token can save an HTTP request, you still need
to handle the case when an API call reports an expired token before
you were expecting it to expire, since access tokens can expire for
many reasons beyond just their expected lifetime.

See below for more details on getting new access tokens using
refresh tokens.

If you're trying to find out more information about the user who
signed in, you should read the API docs of the particular service to
find out their recommendation. For example, Google's API uses
OpenID Connect to provide a userinfo endpoint that can return info
about the user given an access token, or you can get the user's
information from an ID token instead. We walk through a complete
example of the userinfo endpoint workflow in Chapter 3, Signing in
with Google.

70 Chapter 7: Making Authenticated Requests

Refresh Tokens
When you initially received the access token, it may have included a
refresh token as well as an expiration time like in the example
below.

{
"access_token": "AYjcyMzY3ZDhiNmJkNTY",
"refresh_token": "RjY2NjM5NzA2OWJjuE7c",
"token_type": "Bearer",
"expires_in": 3600

}

The presence of the refresh token means that the access token will
expire and you'll be able to get a new one without the user's
interaction.

The "expires_in" value is the number of seconds that the access
token will be valid. It's up to the service you're using to decide how
long access tokens will be valid, and may depend on the application
or the organization's own policies. You could use this timestamp to
preemptively refresh your access tokens instead of waiting for a
request with an expired token to fail. Some people like to get a new
access token shortly before the current one will expire in order to
save an HTTP request of an API call failing. While that is a perfectly
fine optimization, it doesn't stop you from still needing to handle the
case where an API call fails if an access token expires before the
expected time. Access tokens can expire for many reasons, such as
the user revoking an app, or if the authorization server expires all
tokens when a user changes their password.

If you make an API request and the token has expired already, you'll
get back a response indicating as such. You can check for this
specific error code, and then refresh the token and try the request
again.

If you're using a JSON-based API, then it will likely return a JSON
error response with the invalid_token error. In any case, the WWW-
Authenticate header will also have the invalid_token error code.

Chapter 7: Making Authenticated Requests 71

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="invalid_token"

error_description="The access token expired"
Content-type: application/json

{
"error": "invalid_token",
"error_description": "The access token expired"

}

When your application recognizes this specific error, it can then
make a request to the token endpoint using the refresh token it
previously received, and will get back a new access token it can use
to retry the original request.

To use the refresh token, make a POST request to the service's token
endpoint with grant_type=refresh_token, and include the refresh
token as well as the client credentials if required.

POST /oauth/token HTTP/1.1
Host: authorization-server.com

grant_type=refresh_token
&refresh_token=xxxxxxxxxxx
&client_id=xxxxxxxxxx
&client_secret=xxxxxxxxxx

The response will be a new access token, and may contain a new
refresh token, just like you received when exchanging the
authorization code for an access token.

{
"access_token": "BWjcyMzY3ZDhiNmJkNTY",
"refresh_token": "Srq2NjM5NzA2OWJjuE7c",
"token_type": "Bearer",
"expires_in": 3600

}

If you do not get back a new refresh token, then it means your
existing refresh token will continue to work when the new access
token expires.

72 Chapter 7: Making Authenticated Requests

The most secure option is for the authorization server to issue a
new refresh token each time one is used. This is the
recommendation in the latest Security Best Current Practice
(https://tools.ietf.org/html/draft-ietf-oauth-security-topics) which
enables authorization servers to detect if a refresh token is stolen.
This is especially important for clients that don't have a client secret,
since the refresh token becomes the only thing needed to get new
access tokens.

When the refresh token changes after each use, if the authorization
server ever detects a refresh token was used twice, it means it has
likely been copied and is being used by an attacker, and the
authorization server can revoke all access tokens and refresh tokens
associated with it immediately.

Keep in mind that at any point the user can revoke an application
(page 151), so your application needs to be able to handle the case
when using the refresh token also fails. At that point, you will need
to prompt the user for authorization again, beginning a new OAuth
flow from scratch.

You might notice that the "expires_in" property refers to the access
token, not the refresh token. The expiration time of the refresh
token is intentionally never communicated to the client. This is
because the client has no actionable steps it can take even if it were
able to know when the refresh token would expire. There are also
many reasons refresh tokens may expire prior to any expected
lifetime of them as well.

If a refresh token expires for any reason, then the only action the
application can take is to ask the user to log in again, starting a new
OAuth flow from scratch, which will issue a new access token and
refresh token to the application. That's the reason it doesn't matter
whether the application knows the expected lifetime of the refresh
token, because regardless of the reason it expires the outcome is
always the same.

Chapter 7: Making Authenticated Requests 73

https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-ietf-oauth-security-topics

74 Chapter 7: Making Authenticated Requests

Part II

Building an OAuth 2.0 Server

Chapter 8

Client Registration

Registering a New Application
When a developer comes to your website, they will need a way to
create a new application and obtain credentials for it. Typically you
will have them create a developer account (or create an account on
behalf of their organization) before they can create an application.

While the OAuth 2.0 spec doesn't require you to collect any
particular application information before granting application
credentials, most services collect basic information about an app,
such as the app name and an icon, before issuing the client_id and
client_secret. It is, however, important that you require the
developer to register one or more redirect URLs for the application
for security purposes. This is explained in more detail in Chapter 11,
Redirect URLs.

Typically services collect information about an application such as:

• Application name
• An icon for the application
• URL to the application's home page
• A short description of the application
• A link to the application's privacy policy
• A list of redirect URLs

Chapter 8: Client Registration 77

Figure 8-1 shows GitHub's interface for registering an application.
In it, they collect the application name, home page URL, the callback
URL, and an optional description.

Figure 8-1:Figure 8-1: GitHub's application creation interface

It is a good idea to specify to your developers whether the
information you are collecting from them will be displayed to end
users, or whether it is for internal use only.

Foursquare's application registration page shown in Figure 8-2 asks
for similar information, but they additionally ask for a short tagline
and a privacy policy URL. These are displayed to the user in the
authorization prompt.

Due to the security considerations with using the legacy Implicit
grant type, some services (such as Instagram) disable this grant type
for new applications by default, and require that the developer
explicitly enables it in the application's settings, as shown in Figure
8-3.

78 Chapter 8: Client Registration

Figure 8-2:Figure 8-2: Foursquare's application registration interface

Instagram provides a note instructing developers to not name their
applications with words that might make the app appear to be from
Instagram. This is also a good place to include a link to the API
Terms of Use.

Chapter 8: Client Registration 79

Figure 8-3:Figure 8-3: Instagram's application registration interface

Your service can also make the developer choose the type of
application they are creating, (public or confidential), or choose a
description of the app platform which may be more relatable to the
developer (web app, mobile app, SPA, etc). Your service should only
issue a client secret to confidential applications, and disallow use of
the Implicit grant for those applications as well.

80 Chapter 8: Client Registration

Figure 8-4:Figure 8-4: Okta's application registration interface

As shown in Figure 8-4, Okta lets the developer choose which
platform the application is for (Native, Single-Page App, Web, or
Service) before collecting information about the app. Depending on
the value the developer chooses here, that will determine things like
which grant types are enabled for the app, and whether the app is
issued a client secret.

The Client ID and Secret
At this point, you've built the application registration screen, you're
ready to let the developer register the application. When the
developer registers the application, you'll need to generate a client
ID and optionally a secret. When generating these strings, there are
some important things to consider in terms of security and
aesthetics.

Client ID
The client_id is a public identifier for apps. Even though it's public,
it's best that it isn't guessable by third parties, so many

Chapter 8: Client Registration 81

implementations use something like a 32-character hex string. If the
client ID is guessable, it makes it slightly easier to craft phishing
attacks against arbitrary applications. It must also be unique across
all clients that the authorization server handles.

Here are some examples of client IDs from services that support
OAuth 2.0:

• Foursquare:
ZYDPLLBWSK3MVQJSIYHB1OR2JXCY0X2C5UJ2QAR2MAAIT5Q

• GitHub: 6779ef20e75817b79602
• Google: 292085223830.apps.googleusercontent.com
• Instagram: f2a1ed52710d4533bde25be6da03b6e3
• SoundCloud: 269d98e4922fb3895e9ae2108cbb5064
• Windows Live: 00000000400ECB04
• Okta: 0oa2hl2inow5Uqc6c357

If the developer is creating a "public" app (a mobile or single-page
app), then you should not issue a client_secret to the app at all.
This is the only way to ensure the developer won't accidentally
include it in their application. If it doesn't exist, it can't be leaked!

Because of this, it's usually a good idea to ask the developer what
type of application they are creating when they start. You can
present the following options to them, and only issue a secret for
"web server" or "service" apps.

• Web-server app
• Single-page app
• Mobile or native app
• Service app

Of course there's nothing stopping the developer from choosing the
wrong option, but by taking the initiative of asking the developer
what kind of app the credentials will be used by, you can help
reduce the likelihood of leaked secrets.

82 Chapter 8: Client Registration

Client Secret
The client_secret is a secret known only to the application and the
authorization server. It is essential the application's own password.
It must be sufficiently random to not be guessable, which means
you should avoid using common UUID libraries which often take
into account the timestamp or MAC address of the server generating
it. A great way to generate a secure secret is to use a
cryptographically-secure library to generate a 256-bit value and
then convert it to a hexadecimal representation.

In PHP, you can use the random_bytes function and convert to a hex
string:

bin2hex(random_bytes(32));

In Ruby, you can use the SecureRandom library to generate a hex
string:

require 'securerandom'
SecureRandom.hex(32)

It is critical that developers never include their client_secret in
public (mobile or browser-based) clients. To help developers avoid
accidentally doing this, it's best to make the client secret visually
different from the ID. This way when developers copy and paste the
ID and secret, it is easy to recognize which is which. Usually using a
longer string for the secret is a good way to indicate this, or
prefixing the secret with "secret" or "private".

Storing and Displaying the Client ID and Secret
For each registered application, you'll need to store the public
client_id and the private client_secret. Because these are
essentially equivalent to a username and password, you should not
store the secret in plain text, instead only store an encrypted or
hashed version, to help reduce the likelihood of the secret leaking.

Chapter 8: Client Registration 83

When you issue the client ID and secret, you will need to display
them to the developer. Most services provide a way for developers
to retrieve the secret of an existing application, although some will
only display the secret one time and require the developer store it
themselves immediately. If you display the secret only one time, you
can store a hashed version of it to avoid storing the plaintext secret
at all.

If you store the secret in a way that can be displayed later to
developers, you should take extra precautions when revealing the
secret. A common way to protect the secret is to insert a "re-
authorization" prompt before the developer can view the secret.

Figure 8-5:Figure 8-5: GitHub prompts for your password when making sensitive
changes or viewing the application's secret

The service asks the developer to confirm their password before it
will reveal the secret. This is commonly seen in Amazon or GitHub's
websites when you attempt to view or update sensitive information.

84 Chapter 8: Client Registration

Figure 8-6:Figure 8-6: Dropbox hides the secret until it is clicked

Additionally, obscuring the secret on the application detail page
until the developer clicks "show" is a good way to prevent accidental
leakage of the secret.

Deleting Applications and Revoking Secrets
Developers will need a way to delete (or at least deactivate) their
applications. It is also a good idea to provide a way for the
developer to revoke and generate a new client secret for their apps.

Deleting Applications
When the developer deletes an application, the service should
inform the developer about the consequences of deleting the
application. For example, GitHub tells the developer that all access
tokens will be revoked, and how many users will be affected.

Deleting an application should immediately revoke all access tokens
and other credentials that were issued to the application such as
pending authorization codes and refresh tokens.

Chapter 8: Client Registration 85

Figure 8-7:Figure 8-7: GitHub asks to confirm deleting an application

Revoking Secrets
The service should provide the developer with a way to reset the
client secret. In the case when the secret is accidentally exposed, the
developer needs a way to ensure the old secret can be revoked.
Revoking the secret should not necessarily invalidate users' access
tokens, since the developer could always delete the application if
they wanted to also invalidate all user tokens.

Figure 8-8:Figure 8-8: GitHub asks to confirm resetting an application's secret

Resetting the secret should keep all existing access tokens active.
However this does mean that any deployed applications using the
old secret will be unable to refresh the access token using the old
secret. The deployed applications will need to update their secrets
before they will be able to use a refresh token.

86 Chapter 8: Client Registration

Chapter 9

Authorization

The authorization interface is the screen users see when granting
applications access to their account. The following sections cover
how to build the authorization screen, what components to include
in the interface, and how best to present the interface to end users.

When implementing an OAuth server, you are enabling a developer
community to build applications that leverage your platform,
allowing applications to access and potentially modify private user
content, or act on behalf of users. Because of this, you need to
ensure you are empowering your users with as much information
as possible to protect their accounts and ensure they are informed
as to what applications are doing with their accounts.

The Authorization Request
Clients will direct a user's browser to the authorization server to
begin the OAuth process. Along with the type of grant specified by
the response_type parameter, the request will have a number of
other parameters to indicate the specifics of the request.

Chapter 4, Server-Side Apps, describes how clients will build the
authorization URL for your service. The first time the authorization
server sees the user will be this authorization request, the user will
be directed to the server with the query parameters the client has
set. At this point, the authorization server will need to validate the
request and present the authorization interface, allowing the user
to approve or deny the request.

Chapter 9: Authorization 87

Request Parameters
The following parameters are used to begin the authorization
request. For example, if the authorization server URL is
https://authorization-server.com/auth then the client will craft a
URL like the following and direct the user's browser to it:

https://authorization-server.com/auth?response_type=code
&client_id=29352735982374239857
&redirect_uri=https://example-app.com/callback
&scope=create+delete
&state=xcoivjuywkdkhvusuye3kch

response_type

response_type will be set to code, indicating that the application
expects to receive an authorization code if successful.

client_id

The client_id is the public identifier for the app.

redirect_uri (optional)

The redirect_uri is not required by the spec, but your service
should require it. This URL must match one of the URLs the
developer registered when creating the application, and the
authorization server should reject the request if it does not match.

scope (optional)

The request may have one or more scope values indicating
additional access requested by the application. The authorization
server will need to display the requested scopes in a way that is
meaningful to the end user.

88 Chapter 9: Authorization

state (recommended)

The state parameter is used by the application to store request-
specific data and/or prevent CSRF attacks. The authorization server
must return the unmodified state value back to the application.

PKCE

If the authorization server supports the PKCE extension (described
in Chapter 17, PKCE,) then the code_challenge and
code_challenge_method parameters will also be present. These must
be remembered by the authorization server between issuing the
authorization code and issuing the access token.

Verifying the Authorization Request
The authorization server must first verify that the client_id in the
request corresponds to a valid application.

If your server allows applications to register more than one redirect
URL, then there are two steps to validating the redirect URL. If the
request contains a redirect_uri parameter, the server must
confirm it is a valid redirect URL for this application. If there is no
redirect_uri parameter in the request, and only one URL was
registered, the server uses the redirect URL that was previously
registered. Otherwise, if no redirect URL is in the request, and no
redirect URL has been registered, this is an error.

If the client_id is invalid, the server should reject the request
immediately and display the error to the user rather than
redirecting the user back to the application.

Invalid Redirect URL
If the authorization server detects a problem with the redirect URL,
it needs to inform the user of the problem instead of redirecting the
user. The redirect URL could be invalid for a number of reasons,
including:

Chapter 9: Authorization 89

• the redirect URL parameter is missing
• the redirect URL parameter was invalid, such as if it was a

string that does not parse as a URL
• the redirect URL does not match one of the registered

redirect URLs for the application

In these cases, the authorization server should display an error to
the user informing them of the problem. The server must not
redirect the user back to the application. This avoids what is known
as an "open redirector" attack. (https://oauth.net/advisories/
2014-1-covert-redirect/) The server should only redirect the user to
the redirect URL if the redirect URL is an exact match of a registered
redirect URL.

Other Errors
All other errors should be handled by redirecting the user to the
redirect URL with an error code in the query string. See
Authorization Response on page 97 for details on how to respond
with an error.

If the request is missing the response_type parameter, or the value
of that parameter is anything besides code or token (or a response
type defined by an extension), the server can return an
invalid_request error.

Since the authorization server may require clients to specify if they
are public or confidential, it can reject authorization requests that
aren't allowed. For example, if the client specified they are a
confidential client, the server can reject a request that uses
response_type=token. When rejecting for this reason, use the error
code unauthorized_client.

The authorization server should reject the request if there are scope
values that it doesn't recognize. In this case, the server can redirect
to the callback URL with the invalid_scope error code.

The authorization server needs to store the "state" value (and PKCE
values) for this request in order to include it in the authorization

90 Chapter 9: Authorization

https://oauth.net/advisories/2014-1-covert-redirect/
https://oauth.net/advisories/2014-1-covert-redirect/

response. The server must not modify or make any assumptions
about what the state value contains, since it is purely for the benefit
of the client.

Requiring User Login
The first thing the user will see after clicking the application's "sign
in" or "connect" button is your authorization server UI. It's up to the
authorization server to decide whether to require the user log in
each time they visit the authorization screen, or keep the user
signed in for some period of time. If the authorization server
remembers the user in between requests, then it may still need to
ask the user's permission to authorize the application on future
visits.

Typically sites like Twitter or Facebook expect their users are signed
in most of the time, so they provide a way for their authorization
screens to give the user a streamlined experience by not requiring
them to log in each time. However, based on the security
requirements of your service as well as that of the third-party
applications, it may be desirable to require or give developers the
option to require the user to log in each time they visit the
authorization screen.

In Google's API, applications can add prompt=login to the
authorization request, which causes the authorization server to
force the user to sign in again before it will show the authorization
prompt.

In any case, if the user is signed out, or doesn't yet have an account
on your service, you'll need to provide a way for them to sign in or
create an account on this screen.

Authenticating the user can be done any way you wish, as this is not
specified in the OAuth 2.0 spec. Most services use a traditional
username/password login to authenticate their users, but this is by
no means the only way you can approach the problem. In
enterprise environments, a common technique is to use SAML to

Chapter 9: Authorization 91

leverage an existing authentication mechanism at the organization,
while avoiding creating another username/password database.

This is also the opportunity the authorization server has to require
multifactor authentication from the user. After authenticating with
the user's primary username and password, the authorization
server can require a second factor such as WebAuthn or a USB
security key. The benefit of this pattern is the applications do not
need to be aware of whether multifactor authentication is being
used or required, since that happens entirely between the user and
the authorization server without being visible to the application.

Once the user authenticates with the authorization server, it can
continue to process the authorization request and redirect the user
back to the application. Sometimes the server will consider a
successful login to also mean that the user authorized the
application. In this case, the authorization screen with the login
prompt would need to include text that describes the fact that by
signing in, the user is approving this authorization request. This
would result in the following user flow.

Figure 9-1:Figure 9-1: User flow for logged-in vs not-logged-in

If the authorization server needs to authenticate the user via SAML
or with some other internal system, the user flow would look like
the following

92 Chapter 9: Authorization

Figure 9-2:Figure 9-2: User flow for separate authentication server

In this flow, the user is directed back to the authorization server
after signing in, where they see the authorization request as they
would if they had already been signed in.

The Authorization Interface

Figure 9-3:Figure 9-3: Example OAuth Authorization Screen

The authorization interface is the screen users will see when they
are presented with an authorization request from a third-party app.
This is often also referred to as the "consent screen" or "permission
prompt". Since the user is being asked to grant some level of access

Chapter 9: Authorization 93

to a third-party app, you need to ensure the user has all the
information they need to make an informed decision about
authorizing the application.

This is typically only needed when the user is logging in to a third-
party application rather than a first-party application. For example,
when logging in to Gmail, you wouldn't expect Google to ask you
whether it's okay for Gmail to know your account info, since both
the application (Gmail) and the OAuth server are part of the same
company's product. However if you are logging in to a third-party
mailing list application that will send emails from your Gmail
account, it becomes critical that you as the user are informed about
what this third-party application will be granted access to and what
it will be able to do with your account.

An authorization interface typically has the following components:

Website name and logo
The service should be easily recognizable by the user, since they
need to know which service they are granting access to. However
you identify your website on your main pages should be consistent
with the authorization interface. Typically this is done by showing
the application name and logo in a consistent location of the screen,
and/or by using a consistent color scheme across the entire website.

User identification
If the user is already signed in, you should indicate this to the user.
This may be something like showing their name and photo in the
top corner of the screen, as you would in the rest of your website.

It is important that the user knows which account they are
currently signed in as, in case they manage multiple accounts, so
that they don't mistakenly authorize a different user account.

94 Chapter 9: Authorization

Application details
The authorization interface should clearly identify the application
that is making the request. In addition to the developer-provided
application name, it is usually a good idea to show the website and
application's logo as well. This is information you will have
collected when the developer registered the application. We
discussed this in detail in Chapter 8, Client Registration.

One way to indicate more information about the application is to
display the host name of the redirect URL. GitHub includes this in
their authorization interface, saying "You will be redirected to
example-app.com". This provides an additional hint to the user
about whether this is really the app they are intending to use.
Without this information, users are opened up to a sort of phishing
attack where a malicious application can pretend to be a legitimate
application by registering with the legit app's name and tricking
users into authorizing the malicious app instead.

The requested scope
The scope values provided in the authorization request should be
clearly displayed to the user. The scope values are typically short
strings representing certain access, so a more human-readable
version should be shown to the user.

For example, if a service defines a scope of "private" to mean read
access to private profile data, then the authorization server should
say something along the lines of "this application will be able to
view your private profile data." If the scope explicitly allows write
access, that should also be identified in the description, such as "this
application will be able to edit your profile data."

If no scope is present, but your service still grants some basic level
of access to a user's account, you should include a message
describing what the app will get access to. If omitting scope means
the only thing the app gets is user identification, you can include a
message to the effect of "this application would like you to sign in"

Chapter 9: Authorization 95

or "this application would like to know your basic profile
information."

See Chapter 10, Scope, for more information on how to effectively
use scope in your service.

The requested or effective lifetime
The authorization server has to make a decision about how long the
authorization will be valid, how long the access tokens will last and
how long refresh tokens will last.

Most services do not automatically expire authorizations, and
instead expect the user to periodically review and revoke access to
apps they no longer want to use. However some services provide
limited authorization lifetime by default, and either allow the
application to request a longer duration, or force users to re-
authorize the app after the authorization is expired.

Whatever your decision about the lifetime of the authorization, you
should make it clear to the user how long the app will be able to act
on the user's behalf. This can be something as simple as a sentence
that says "this application will be able to access your account until
you revoke access," or "this application will be able to access your
account for one week." See Access Token Lifetime on page 140 for
more information about token lifetimes.

Allow / Deny
Lastly, the authorization server should provide two buttons to the
user, to allow or deny the request.

If the user approves the request, the authorization server will create
a temporary authorization code and redirect the user back to the
application. If the user clicks "deny," the server will redirect back to
the application with an error code in the URL. The next section,
Authorization Response on page 97 goes into details of how this
response should be handled.

96 Chapter 9: Authorization

The Authorization Response
Once the user has finished logging in and approving the request, the
authorization server is ready to redirect the user back to the
application.

Authorization Code Response
If the request is valid and the user grants the authorization request,
the authorization server generates an authorization code and
redirects the user back to the application, adding the authorization
code and the application's "state" value to the redirect URL.

Generating the Authorization Code

The authorization code must expire shortly after it is issued. The
OAuth 2.0 spec recommends a maximum lifetime of 10 minutes, but
in practice, most services set the expiration much shorter, around
30-60 seconds. The authorization code itself can be of any length,
but the length of the codes should be documented.

Because authorization codes are meant to be short-lived and single-
use, you could implement them as self encoded tokens. With this
technique, you can avoid storing authorization codes in a database,
and instead, encode all of the necessary information into the
authorization code itself. You can use either a built-in encryption
library of your server-side environment, or a standard such as JSON
Web Signature (JWS). However, since this authorization code is only
meant to be used by the authorization server, it can often be
simpler to implement them as short strings stored in a server-side
cache that's accessible to the authorization endpoint and token
endpoint.

In any case, the information that will need to be associated with the
authorization code is the following.

• client_id - The client ID (or other client identifier) that
requested this code

• redirect_uri - The redirect URL that was used. This needs

Chapter 9: Authorization 97

to be stored since the access token request must contain the
same redirect URL for verification when issuing the access
token. See Redirect URL Validation on page 123 for more
information.

• User infoUser info - Some way to identify the user that this
authorization code is for, such as a user ID.

• ExpirExpiration Dateation Date - The code needs to include an expiration
date so that it only lasts a short time.

• Unique IDUnique ID - The code needs its own unique ID of some sort
in order to be able to check if the code has been used
before. A database ID or a random string is sufficient.

• PKPKCE:CE: code_challenge andand code_challenge_method - When
supporting PKCE, these two values provided by the
application need to be stored so that they can be verified
when issuing the access token later.

Once you've generated the authorization code, either by creating a
JWS-encoded string, or by generating a random string and storing
the associated information in a database, you'll need to redirect the
user to the application's redirect URL specified. The parameters to
be added to the query string of the redirect URL are as follows:

code

This parameter contains the authorization code which the client
will later exchange for an access token.

state

If the initial request contained a state parameter, the response must
also include the exact value from the request. The client will be
using this to associate this response with the initial request.

For example, the authorization server redirects the user by sending
the following HTTP response.

HTTP/1.1 302 Found
Location: https://example-app.com/redirect
?code=g0ZGZmNjVmOWI&state=dkZmYxMzE2

98 Chapter 9: Authorization

Implicit Grant Type Response
With the Implicit grant (response_type=token) the authorization
server generates an access token immediately and redirects to the
callback URL with the token and other access token attributes in the
fragment.

For example, the authorization server redirects the user by sending
the following HTTP response (extra line breaks for display
purposes).

HTTP/1.1 302 Found
Location: https://example-app.com/redirect

#access_token=MyMzFjNTk2NTk4ZTYyZGI3
&state=dkZmYxMzE2
&token_type=Bearer
&expires_in=86400

You can see that this is much more dangerous than issuing a
temporary one-time-use authorization code. Since there are many
more ways an attacker can steal data out of an HTTP redirect
compared to intercepting an HTTPS request, it's much riskier using
this option compared to the authorization code flow.

From the authorization server's point of view, at the point it creates
the access token and sends the HTTP redirect, it has no way of
knowing whether or not the redirect was successful and the correct
application has received the access token. It's kind of tossing the
access token up into the air and crossing its fingers that the app
catches it. This is in contrast to the authorization code method,
where even though the authorization server can't guarantee the
authorization code wasn't stolen, it can at least prevent a stolen
authorization code from being useful by requiring a client secret or
the PKCE code verifier. This provides a much greater level of
security since the authorization server can now be more confident
that it won't be giving access tokens away to attackers.

For these reasons as well as more documented in OAuth 2.0 for
Browser-Based Apps (https://tools.ietf.org/html/draft-ietf-oauth-
browser-based-apps), it is recommended that the Implicit flow no
longer be used.

Chapter 9: Authorization 99

https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps

Error Response
There are two different kinds of errors to handle. The first kind of
error is when the developer did something wrong when creating
the authorization request. The other kind of error is when the user
rejects the request (clicks the "Deny" button).

If there is something wrong with the syntax of the request, such as
the redirect_uri or client_id is invalid, then it's important notnot to
redirect the user and instead you should show the error message
directly. This is to avoid letting your authorization server be used as
an open redirector.

If the redirect_uri and client_id are both valid, but there is still
some other problem, it's okay to redirect the user back to the
redirect URI with the error in the query string.

When redirecting back to the application to indicate an error, the
server adds the following parameters to the redirect URL:

error

a single ASCII error code from the following list:

• invalid_request - the request is missing a parameter,
contains an invalid parameter, includes a parameter more
than once, or is otherwise invalid.

• access_denied - the user or authorization server denied the
request

• unauthorized_client - the client is not allowed to request
an authorization code using this method, for example if a
confidential client attempts to use the implicit grant type.

• unsupported_response_type - the server does not support
obtaining an authorization code using this method, for
example if the authorization server never implemented the
implicit grant type.

• invalid_scope - the requested scope is invalid or unknown.
• server_error - instead of displaying a 500 Internal Server

Error page to the user, the server can redirect with this
error code.

100 Chapter 9: Authorization

• temporarily_unavailable - if the server is undergoing
maintenance, or is otherwise unavailable, this error code
can be returned instead of responding with a 503 Service
Unavailable status code.

error_description

The authorization server can optionally include a human-readable
description of the error. This parameter is intended for the
developer to understand the error, and is not meant to be displayed
to the end user. The valid characters for this parameter are the
ASCII character set except for the double quote and backslash,
specifically, hex codes 20-21, 23-5B and 5D-7E.

error_uri

The server can also return a URL to a human-readable web page
with information about the error. This is intended for the developer
to get more information about the error, and is not meant to be
displayed to the end user.

state

If the request contained a state parameter, the error response must
also include the exact value from the request. The client may use
this to associate this response with the initial request.

Example

For example, if the user denied the authorization request, the server
would construct the following URL and send an HTTP redirect
response like the below (newlines in the URL are for illustration
purposes).

Chapter 9: Authorization 101

HTTP/1.1 302 Found
Location: https://example-app.com/redirect?error=access_denied
&error_description=The+user+denied+the+request
&error_uri=https%3A%2F%2Fauthorization-server.com
%2Ferror%2Faccess_denied
&state=wxyz1234

Security Considerations
Below are some known issues that should be taken into
consideration when building an authorization server.

In addition to the considerations listed here, there is more
information available in the OAuth 2.0 Thread Model and Security
Considerations (https://tools.ietf.org/html/rfc6819) RFC as well as
OAuth 2.0 Security Best Current Practice (https://tools.ietf.org/html/
draft-ietf-oauth-security-topics).

Phishing Attacks
One potential attack against OAuth servers is a phishing attack. This
is where an attacker makes a web page that looks identical to the
service's authorization page, which typically contain username and
password fields. Then, through various means, the attacker can
trick the user in to visiting the page. Unless the user can inspect the
address bar of the browser, the page may look otherwise identical to
the genuine authorization page, and the user may enter their
username and password.

One way attackers can attempt to trick the user into visiting the
counterfeit server is by embedding this phishing page in an
embedded web view in a native application. Since embedded web
views don't show the address bar, the user then has no way to
visually confirm they are on the legitimate site. This is
unfortunately common in mobile applications, and often justified
by the developer wanting to provide a better user experience by
keeping the user in the application through the entire login process.
Some OAuth providers encourage third party applications to either

102 Chapter 9: Authorization

https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/html/draft-ietf-oauth-security-topics

open a web browser or launch the provider's native application
instead of allowing them to embed an authorization page in a web
view.

Countermeasures

Ensure the authorization server is served via https to avoid DNS
spoofing.

The authorization server should educate developers of the risks of
phishing attacks, and can take steps to prevent the page from being
embedded in native applications or in iframes.

Users should be educated about the dangers of phishing attacks, and
should be taught best practices such as only accessing applications
that they trust, and periodically reviewing the list of applications
they've authorized to revoke access to apps they no longer use. See
Revoking Access on page 151 for more information.

The service may want to validate third-party applications prior to
allowing other users to use the application. Services such as
Instagram and Dropbox currently do this, where upon initial
creation of an application, the app is only usable by the developer
or other whitelisted user accounts. After the app is submitted for
approval and reviewed, then it can be used by the whole user base
of the service. This gives the service a chance to inspect how the
application interacts with the service.

Clickjacking
In a clickjacking attack, the attacker creates a malicious website in
which it loads the authorization server URL in a transparent iframe
above the attacker's web page. The attacker's web page is stacked
below the iframe, and has some innocuous-looking buttons or links,
placed very carefully to be directly under the authorization server's
confirmation button. When the user clicks the misleading visible
button, they are actually clicking the invisible button on the
authorization page, thereby granting access to the attacker's

Chapter 9: Authorization 103

application. This allows the attacker to trick the user into granting
access without their knowledge.

Countermeasures

This kind of attack can be prevented by ensuring the authorization
URL is always loaded directly in a native browser, and not
embedded in an iframe. Newer browsers have the ability for the
authorization server to set an HTTP header, X-Frame-Options, and
older browsers can use common JavaScript "frame-busting"
techniques.

Redirect URL Manipulation
An attacker can construct an authorization URL using a client ID
that belongs to a known good application, but set the redirect URL to
a URL under the control of the attacker. If the authorization server
does not validate redirect URLs, and the attacker uses the "token"
response type, the user will be returned to the attacker's application
with the access token in the URL. If the client is a public client, and
the attacker intercepts the authorization code, then the attacker can
also exchange the code for an access token.

Another similar attack is when the attacker can spoof the user's
DNS, and the registered redirect is not an https URL. This would
allow the attacker to pretend to be the valid redirect URL, and steal
the access token that way.

The "Open Redirect" attack is when the authorization server does
not require an exact match of the redirect URL, and instead allows
an attacker to construct a URL that will redirect to the attacker's
website. Whether or not this ends up being used to steal
authorization codes or access tokens, this is also a danger in that it
can be used to launch other unrelated attacks. More details about
the Open Redirect attack can be found at https://oauth.net/
advisories/2014-1-covert-redirect/.

104 Chapter 9: Authorization

https://oauth.net/advisories/2014-1-covert-redirect/
https://oauth.net/advisories/2014-1-covert-redirect/

Countermeasures

The authorization server must require that one or more redirect
URLs are registered by the application, and only redirect to an exact
match of a previously registered URL.

The authorization server should also require that all redirect URLs
are https. Since this can sometimes be a burden during
development, it is also acceptable to allow non-https redirect URLs
while the application is "in development" and can only be accessed
by the developer, and then require that the redirect URL is changed
to an https URL before the application is published and available to
other users.

Chapter 9: Authorization 105

106 Chapter 9: Authorization

Chapter 10

Scope

Scope is a way to limit an app's access to a user's data. Rather than
granting complete access to a user's account, it is often useful to give
apps a way to request a more limited scope of what they are
allowed to do on behalf of a user.

Some apps only use OAuth in order to identify the user, so they only
need access to a user ID and basic profile information. (See Chapter
22, OpenID Connect, for an example.) Other apps may need to know
more sensitive information such as the user's birthday, or they may
need the ability to post content on behalf of the user, or modify
profile data. Users will be more willing to authorize an application
if they know exactly what the application can and cannot do with
their account. Scope is a way to control access and help the user
identify the permissions they are granting to the application.

It's important to remember that scope is not the same as the
internal permissions system of an API. Scope is a way to limit what
an application can do within the context of what a user can do. For
example, if you have a user in the "customer" group, and the
application is requesting the "admin" scope, the OAuth server is not
going to create an access token with the "admin" scope, because that
user is not allowed to use that scope themselves.

Scope should be thought of as the application requesting permission
from the user who's using the app.

Chapter 10: Scope 107

Defining Scopes
Scope is a mechanism to let an application request limited access to
a user's data.

The challenge when defining scopes for your service is to not get
carried away with defining too many scopes. Users need to be able
to understand what level of access they are granting to the
application, and this will be presented to the user in some sort of
list. When presented to the user, they need to actually understand
what is going on and not get overwhelmed with information. If you
over-complicate it for users, they will just click "ok" until the app
works, and ignore any warnings.

Read vs. Write
Read vs write access is a good place to start when defining scopes
for a service. Typically read access to a user's private profile
information is treated with separate access control from apps
wanting to update the profile information.

Apps that need to be able to create content on behalf of a user (for
example, third-party Twitter apps that post tweets to a user's
timeline) need a different level of access from apps that only need to
read a user's public data.

Restricting Access to Sensitive Information
Often a service will have various aspects of a user account that have
different levels of security. For example, GitHub
(https://developer.github.com/v3/oauth/#scopes) has a separate
scope that allows applications to have access to private repos. By
default, applications don't have access to private repos unless they
ask for that scope, so users can feel comfortable knowing that only
apps they choose can access their private repos belonging to their
organization.

108 Chapter 10: Scope

https://developer.github.com/v3/oauth/#scopes
https://developer.github.com/v3/oauth/#scopes

GitHub provides a separate scope that allows applications to delete
repos, so users can rest assured that random applications can't go
around deleting their repos either.

Dropbox (https://www.dropbox.com/developers/reference/oauth-
guide) provides a way for applications to restrict themselves to only
be able to edit files in a single folder. This provides a way that users
can try out apps that use Dropbox as a storage or syncing
mechanism without worrying about the application potentially
having the ability to read all their files.

Selectively Enabling Access by Functionality
A great use of scope is to selectively enable access to a user's
account based on the functionality needed. For example, Google
offers a set of scopes for their various services such as Google Drive,
Gmail, YouTube, etc. This means applications that need to access the
YouTube API won't necessarily also be able to access the user's
Gmail account.

Google's API is a great example of effectively using scope. For a full
list of the scopes that the Google OAuth API supports, visit their
OAuth 2.0 Playground at https://developers.google.com/
oauthplayground/

Limiting Access to Billable Resources
If your service provides an API that may cause the user to incur
charges, scope is a great way to protect against applications abusing
this.

Let's use an example of a service that provides advanced
capabilities that use licensed content, in this case one that provides
an API that aggregates demographic data for a given area. The user
racks up charges as the service is used, and the cost is based on the
size of the area being queried. A user signing in to an app that uses
a completely different part of the API would want to ensure this app

Chapter 10: Scope 109

https://www.dropbox.com/developers/reference/oauth-guide
https://www.dropbox.com/developers/reference/oauth-guide
https://developers.google.com/oauthplayground/
https://developers.google.com/oauthplayground/

is not able to use the demographics API, since that would cause that
user to incur charges. The service should in this case define a
special scope, say, "demographics". The demographics API should
only respond to API requests from tokens that contain this scope.

In this example, the demographics API could use the token
introspection endpoint (described in Chapter 18, Token
Introspection Endpoint) to look up the list of scopes that are valid
for this token. If the response does not include "demographics" in
the list of scopes, the endpoint would reject the request with an
HTTP 403 response.

User Interface
The interface that the user sees when authorizing an app needs to
clearly display the list of scopes that are being requested by the
application. The user may not be aware of all of the possibilities of
scopes that the service provides, so it's best to make this text as clear
and straightforward as possible, avoiding jargon and abbreviations.

If the request grants the application full access to a user's account,
or access to a substantial part of their account such as being able to
do everything except change their password, the service should
make it abundantly clear.

Figure 10-1:Figure 10-1: Dropbox Authorization Interface

110 Chapter 10: Scope

For example, the first sentence on the Dropbox authorization UI
(Figure 10-1) is "Example OAuth App would like access to the files
and folders in your Dropbox" with a "Learn More" link that links to
a help page describing exactly what access the application will have.

The Flickr authorization interface (Figure 10-2) shows three things
the user is granting to the app when they sign in, and clearly shows
permission the app will not have. The benefit of showing this is the
user can be reassured the app they're authorizing won't be able to
do potentially destructive operations.

Figure 10-2:Figure 10-2: Flickr Authorization Interface

In Figure 10-3 we can see that GitHub has done a great job of
providing detailed information about the scopes a user is granting.
Each scope requested gets a section on the page with the name, an
icon, a short description highlighting whether this is read-only or
read-write, and a dropdown to see a more detailed explanation.

Chapter 10: Scope 111

Figure 10-3:Figure 10-3: GitHub Authorization Interface

Google has a single authorization endpoint for all of their services
including the Gmail API, Google Drive, Youtube, etc. Their
authorization interface (Figure 10-4) displays each scope in a list,
and includes an "information" icon you can click to get more
information about the particular scope.

Figure 10-4:Figure 10-4: Google Authorization Interface

112 Chapter 10: Scope

Clicking the information icon presents an overlay that describes in
detail what this scope allows, shown in Figure 10-5.

You can see there are a number of ways you can provide the user
with information about the scope of the OAuth grant, and various
services have taken quite different approaches. Be sure to consider
the privacy and security requirements of your application when
deciding what level of detail you will include about the scope.

Figure 10-5:Figure 10-5: More information about the Google authorization request

Checkboxes
While seemingly an underused feature, the OAuth 2.0 spec explicitly
allows the authorization server to grant an access token with less
scope than the application requests. This leaves room for some
interesting possibilities.

Chapter 10: Scope 113

Before the development of the OAuth 2.0 spec began, OAuth 1 was
deployed at Twitter, and the Twitter app ecosystem was growing
quickly. When creating a Twitter app, you would choose whether
your app needed read+write access or just read access to your users'
accounts. This was a mechanism that led to the development of
OAuth 2.0's concept of scope. However, this implementation was
rather limiting, since apps would either request write access or not,
and the user might simply reject the request if they did not want to
grant the app write access.

There quickly developed a common anti-pattern of Twitter apps
that only used the write access to post a tweet advertising the app.
One of the more infamous occurrences of this was in 2010, when the
app "Twifficiency," which claimed to "calculate your twitter
efficiency based upon your twitter activity" spiraled out of control.
You would sign in to the app with your Twitter account, and it
would crawl through your past tweets and analyze them. However,
it also automatically tweeted out "My Twifficiency score is __%.
What's yours?" with a link to the website. Many people were not
even aware the app was doing this, or that they had granted this
app permission to post to their account. This caused the app to go
viral, since the followers of anyone who used the app would see it in
their timeline.

Many people were upset about this, and complained loudly on
Twitter. Ben Ward, a developer at Yahoo at the time, went one step
further, and created a mockup of a potential user interface (Figure
10-6) that could solve this problem, and wrote a brief blog post
explaining it. https://benward.uk/blog/tumblr-968515729

In the post, Ward described a user interface that would allow the
application to request specific permissions, and the user could
choose to grant or not grant each one. This would allow users to
sign in to an application but not grant the ability for it to post to
their account at first. Later, if the user did want to allow the app to
post, the app could provide a mechanism to re-authorize the user on
Twitter. Ward was hired at Twitter a few months later.

114 Chapter 10: Scope

https://benward.uk/blog/tumblr-968515729

Figure 10-6:Figure 10-6: A a potential Twitter authorization interface that allows the
user to customize the scopes granted to the application, by Ben Ward

This post stirred up some discussion among several people involved
in the development of the OAuth specs, in a Google Buzz thread
which now only exists on archive.org. https://oauth.net/r/twitter-
oauth-buzz

To this day, Twitter still does not provide this kind of granular
authorization. However, other services have begun to implement
similar things, giving the user more control during the
authorization flow rather than making it look like a "click OK to
continue" dialog.

Facebook
Facebook supports a variation on this idea by providing a simple UI
for the initial screen, but allows users to click to edit the scopes the
application will be granted (Figure 10-7.)

Chapter 10: Scope 115

http://web.archive.org/web/20100823114908/http://www.google.com/buzz/tantek/5YHAAmztLcD/t-Look-BenWard-schools-Twitter-on-OAuth
http://web.archive.org/web/20100823114908/http://www.google.com/buzz/tantek/5YHAAmztLcD/t-Look-BenWard-schools-Twitter-on-OAuth

Figure 10-7:Figure 10-7: Facebook's initial authorization prompt

If you click "Edit the info you provide", you are taken to an interface
(Figure 10-8) that lists each scope the application requested, and you
can un-check them as desired. In the screenshot below, I've chosen
to not allow the application to see my list of friends.

Figure 10-8:Figure 10-8: Clicking "Edit" allows the user to customize the scopes granted

Only the scopes the application requested appear in this list. This
provides a better experience for users, since they are able to
maintain control and better understand how applications can use
their account.

116 Chapter 10: Scope

FitBit
FitBit tracks many aspects of a user's health, such as step count,
heart rate, food and drink consumed, sleep quality, weight, and
more. The FitBit API provides access to all this data to third party
applications. Because many third-party apps will be reading or
writing only certain kinds of data, such as a wifi scale that only
needs to write weight entries, FitBit provides granular scopes so
that a user can grant access to only certain parts of their profile.

FitBit's authorization screen, shown in Figure 10-9 allows the user to
selectively grant or deny access to each particular scope that the
application is requesting.

Figure 10-9:Figure 10-9: FitBit allows the user to un-check any scopes that they do not
want to grant to the application

Chapter 10: Scope 117

GitHub
GitHub has described in a blog post in 2013 that they have plans for
allowing users to edit the scopes, however as of 2019, there has been
no follow-up. https://developer.github.com/changes/
2013-10-04-oauth-changes-coming/

Giving your users the ability to choose which scopes are granted is a
great way to make people feel more comfortable with using third
party apps. A checkbox next to each scope is sufficient, or you can
move the controls to a separate screen like Facebook. You'll need to
ensure that when you send the access token response to the client, it
includes the list of scopes granted if it's different from what the
application requested. See Access Token Response on page 131 for
more details.

118 Chapter 10: Scope

https://developer.github.com/changes/2013-10-04-oauth-changes-coming/
https://developer.github.com/changes/2013-10-04-oauth-changes-coming/

Chapter 11

Redirect URLs

Redirect URLs are a critical part of the OAuth flow. After a user
successfully authorizes an application, the authorization server will
redirect the user back to the application. Because the redirect URL
will contain sensitive information, it is critical that the service
doesn't redirect the user to arbitrary locations.

The best way to ensure the user will only be redirected to
appropriate locations is to require the developer to register one or
more redirect URLs when they create the application. In these
sections we will cover how to handle redirect URLs for mobile
applications, how to validate redirect URLs, and how to handle
errors.

Registration
In order to avoid exposing users to open redirector attacks, you
must require developers register one or more redirect URLs for the
application. The authorization server must never redirect to any
other location. Registering a New Application on page 77 describes
creating a registration form to allow developers to register redirect
URLs for their applications.

If an attacker can manipulate the redirect URL before the user
reaches the authorization server, they could cause the server to
redirect the user to a malicious server which would send the
authorization code to the attacker. This is one way attackers can try
to intercept an OAuth exchange and steal access tokens. If the

Chapter 11: Redirect URLs 119

authorization endpoint does not limit the URLs that it will redirect
to, then it's considered an "open redirector", and can be used in
combination with other things to launch attacks that aren't even
related to OAuth necessarily.

Valid Redirect URLs
When you build the form to allow developers to register redirect
URLs, you should do some basic validation of the URL that they
enter.

Registered redirect URLs may contain query string parameters, but
must not contain anything in the fragment. The registration server
should reject the request if the developer tries to register a redirect
URL that contains a fragment.

Note that for native and mobile apps, the platform may allow a
developer to register a URL scheme such as myapp:// which can
then be used in the redirect URL. This means the authorization
server should allow arbitrary URL schemes to be registered in order
to support registering redirect URLs for native apps. See Chapter 15,
Mobile and Native Apps, for more information.

Per-Request Customization
Often times a developer will think that they need to be able to use a
different redirect URL on each authorization request, and will try to
change the query string parameters per request. This is not the
intended use of the redirect URL, and should not be allowed by the
authorization server. The server should reject any authorization
requests with redirect URLs that are not an exact match of a
registered URL. See Redirect URL Validation on page 123 for more
information.

If a client wishes to include request-specific data in the redirect
URL, it can instead use the "state" parameter to store data that will
be included after the user is redirected. It can either encode the

120 Chapter 11: Redirect URLs

data in the state parameter itself, or use the state parameter as a
session ID to store the state on the server.

Redirect URLs for Native Apps
Native applications are clients installed on a device, such as a
desktop application or mobile phone application. There are a few
things to keep in mind when supporting native apps related to
security and user experience.

The authorization endpoint normally redirects the user back to the
client's registered redirect URL. Depending on the platform, native
apps can either claim a URL pattern, or register a custom URL
scheme that will launch the application. For example, an iOS
application may register a custom protocol such as myapp:// and
then use a redirect_uri of myapp://callback.

App-Claimed https URL Redirection
Some platforms, (Android, and iOS as of iOS 9), allow the app to
override specific URL patterns to launch the native application
instead of a web browser. For example, an application could
register https://app.example.com/auth and whenever the web
browser attempts to redirect to that URL, the operating system
launches the native app instead.

If the operating system does support claiming URLs, this method
should be used. If the operating system does some level of
validation that the developer had control over this web URL, then
this allows the identity of the native application to be guaranteed by
the operating system. If the operating system does not support this,
then the app will have to use a custom URL scheme instead.

Chapter 11: Redirect URLs 121

Custom URL Scheme
Most mobile and desktop operating systems allow apps to register a
custom URL scheme that will launch the app when a URL with that
scheme is visited from the system browser.

Using this method, the native app starts the OAuth flow as normal,
by launching the system browser with the standard authorization
code parameters. The only difference is that the redirect URL will be
a URL with the app's custom scheme.

When the authorization server sends the Location header intending
to redirect the user to myapp://callback?code=...., the phone will
launch the application and the app will be able to resume the
authorization process, parsing the access token from the URL and
storing it internally.

Custom URL Scheme Namespaces
Since there is no centralized method of registering URL schemes,
apps have to do their best to choose URL schemes that won't conflict
with each other.

Your service can help by requiring the URL scheme to follow a
certain pattern, and only allow the developer to register a custom
scheme that matches that pattern.

For example, Facebook generates a URL scheme for every app based
on the app's client ID. For example, fb00000000:// where the
numbers correspond to the app's client ID. This provides a
reasonably sure method of generating globally unique URL
schemes, since other apps are unlikely to use a URL scheme with
this pattern.

Another option for apps is to use the reverse domain name pattern
with a domain that is under the control of the app's publisher,
resulting in a URL scheme of com.example.myapp for example. This
is also something that can be enforced by the service if you wish.

122 Chapter 11: Redirect URLs

Validation
There are three cases when you'll need to validate redirect URLs.

• When the developer registers the redirect URL as part of
creating an application

• In the authorization request
• When the application exchanges an authorization code for

an access token

Redirect URL Registration
As discussed in Creating an Application on page 77, the service
should allow developers to register one or more redirect URLs when
creating the application. The only restriction on the redirect URL is
that it cannot contain a fragment component. The service must
allow developers to register redirect URLs with custom URL
schemes in order to support native applications on some platforms.

Authorization Request
When the application starts the OAuth flow, it will direct the user to
your service's authorization endpoint. The request will have several
parameters in the URL, including a redirect URL.

At this point, the authorization server must validate the redirect
URL to ensure the URL in the request matches one of the registered
URLs for the application. The request will also have a client_id
parameter, so the service should look up the redirect URLs based on
that. It is entirely possible for an attacker to craft an authorization
request with one app's client ID and the attacker's redirect URL,
which is why registration is required.

The service should look for an exact match of the URL, and avoid
matching on only part of the specific URL. (The client can use the
state parameter if it needs to customize each request.) Simple string
matching is sufficient since the redirect URL can't be customized per
request. All the server needs to do is check that the redirect URL in

Chapter 11: Redirect URLs 123

the request matches one of the redirect URLs the developer entered
when registering their application.

If the redirect URL is not one of the registered redirect URLs, then
the server must immediately show an error indicating such, and not
redirect the user. This avoids having your authorization server be
used as an open redirector (https://oauth.net/advisories/
2014-1-covert-redirect/).

Granting Access Tokens
The token endpoint will get a request to exchange an authorization
code for an access token. This request will contain a redirect URL as
well as the authorization code. As an added measure of security, the
server should verify that the redirect URL in this request matches
exactly the redirect URL that was included in the initial
authorization request for this authorization code. If the redirect
URL does not match, the server rejects the request with an error.

124 Chapter 11: Redirect URLs

https://oauth.net/advisories/2014-1-covert-redirect/
https://oauth.net/advisories/2014-1-covert-redirect/

Chapter 12

Access Tokens

Access tokens are the thing that applications use to make API
requests on behalf of a user. The access token represents the
authorization of a specific application to access specific parts of a
user's data.

Access tokens do not have to be of any particular format, although
there are different considerations for different options which will
be discussed later in this chapter. As far as the client application is
concerned, the access token is an opaque string, and it will take
whatever the string is and use it in an HTTP request. The resource
server will need to understand what the access token means and
how to validate it, but applications will never be concerned with
understanding what an access token means.

Access tokens must be kept confidential in transit and in storage.
The only parties that should ever see the access token are the
application itself, the authorization server, and resource server. The
application should ensure the storage of the access token is not
accessible to other applications on the same device. The access
token can only be used over an HTTPS connection, since passing it
over a non-encrypted channel would make it trivial for third parties
to intercept.

The token endpoint is where apps make a request to get an access
token for a user. This section describes how to verify access token
requests and how to return the appropriate response and errors.

Chapter 12: Access Tokens 125

Authorization Code Request
The authorization code grant is used when an application
exchanges an authorization code for an access token. After the user
returns to the application via the redirect URL, the application will
get the authorization code from the URL and use it to request an
access token. This request will be made to the token endpoint.

Request Parameters
The access token request will contain the following parameters.

grant_type (required)

The grant_type parameter must be set to "authorization_code".

code (required)

This parameter is the authorization code that the client previously
received from the authorization server.

redirect_uri (possibly required)

If the redirect URL was included in the initial authorization request,
the service must require it in the token request as well. The redirect
URL in the token request must be an exact match of the redirect
URL that was used when generating the authorization code. The
service must reject the request otherwise.

client_id (required if no other client authentication is present)

If the client is authenticating via HTTP Basic Auth or some other
method, then this parameter is not required. Otherwise, this
parameter is required.

If the client was issued a client secret, then the server must
authenticate the client. One way to authenticate the client is to
accept another parameter in this request, client_secret.

126 Chapter 12: Access Tokens

Alternately the authorization server can use HTTP Basic Auth.
Technically the spec allows the authorization server to support any
form of client authentication, and even mentions public/private key
pair as an option. However in practice, most servers support the
simpler methods of authenticating clients using either or both of the
methods mentioned here.

Verifying the authorization code grant
After checking for all required parameters, and authenticating the
client if the client was issued a secret, the authorization server can
continue verifying the other parts of the request.

The server then checks if the authorization code is valid and has not
expired. The service must then verify that the authorization code
provided in the request was issued to the client identified. Lastly,
the service must ensure the redirect URL parameter present
matches the redirect URL that was used to request the authorization
code.

If everything checks out, the service can generate an access token
and respond.

Example
The following example shows an authorization grant request for a
confidential client.

POST /oauth/token HTTP/1.1
Host: authorization-server.com

grant_type=authorization_code
&code=xxxxxxxxxxx
&redirect_uri=https://example-app.com/redirect
&client_id=xxxxxxxxxx
&client_secret=xxxxxxxxxx

Chapter 12: Access Tokens 127

See Access Token Response on page 131 for details on the
parameters to return when generating an access token or
responding to errors.

Security Considerations

Preventing replay attacks

If an authorization code is used more than once, the authorization
server must deny the subsequent requests. This is easy to
accomplish if the authorization codes are stored in a database or
cached, since they can simply be marked as used or deleted.

If you are implementing self-encoded authorization codes, you'll
need to keep track of whether an authorization code has already
been used. One way to accomplish this by caching the authorization
code for the lifetime of the code. This way when verifying
authorization codes, we can first check if they have already been
used by checking the cache for the code. Once the code reaches its
expiration date, it will no longer be in the cache, but we can reject it
based on the expiration date anyway.

If an authorization code is used more than once, it should be treated
as an attack. If possible, the service should revoke the previous
access tokens that were issued from this authorization code.

Password Grant
The Password grant is used when the application exchanges the
user's username and password for an access token. This is exactly
the thing OAuth was created to prevent in the first place, so you
should never allow third-party apps to use this grant.

A common use for this grant type is to enable password logins for
your service's own apps. Users won't be surprised to log in to the
service's website or native application using their username and

128 Chapter 12: Access Tokens

password, but third-party apps should never be allowed to ask the
user for their password.

It's also worth noting that supporting the Password grant is very
limiting, as there is no way to add multifactor authorization to this
flow, and your options for detecting brute force attacks are more
limited. This flow should be used only as a last resort if you really
have a good reason to do so.

The latest OAuth 2.0 Security Best Current Practice
(https://oauth.net/2/oauth-best-practice/) spec actually recommends
against using the Password grant at all.

Request Parameters
The access token request will contain the following parameters.

• grant_type (required) - The grant_type parameter must be
set to "password".

• username (required) - The user's username.
• password (required) - The user's password.
• scope (optional) - The scope requested by the application.
• Client Authentication (required if the client was issued a

secret)

If the client was issued a secret, then the client must authenticate
this request. Typically the service will allow either additional
request parameters client_id and client_secret, or accept the
client ID and secret in the HTTP Basic Auth header.

Example
The following is an example password grant the service would
receive.

POST /oauth/token HTTP/1.1
Host: authorization-server.com

grant_type=password

Chapter 12: Access Tokens 129

https://oauth.net/2/oauth-best-practice/
https://oauth.net/2/oauth-best-practice/

&username=user@example.com
&password=1234luggage
&client_id=xxxxxxxxxx
&client_secret=xxxxxxxxxx

See Access Token Response on page 131 for details on the
parameters to return when generating an access token or
responding to errors.

Client Credentials
The Client Credentials grant is used when applications request an
access token to access their own resources, not on behalf of a user.

Request Parameters

grant_type (required)

The grant_type parameter must be set to client_credentials.

scope (optional)

Your service can support different scopes for the client credentials
grant. In practice, not many services actually support this.

Client Authentication (required)

The client needs to authenticate themselves for this request.
Typically the service will allow either additional request parameters
client_id and client_secret, or accept the client ID and secret in
the HTTP Basic auth header.

Example
The following is an example authorization code grant the service
would receive.

130 Chapter 12: Access Tokens

POST /oauth/token HTTP/1.1
Host: authorization-server.com

grant_type=client_credentials
&client_id=xxxxxxxxxx
&client_secret=xxxxxxxxxx

See Access Token Response on page 131 for details on the
parameters to return when generating an access token or
responding to errors.

Access Token Response

Successful Response
If the request for an access token is valid, the authorization server
needs to generate an access token (and optional refresh token) and
return these to the client, typically along with some additional
properties about the authorization.

The response with an access token should contain the following
properties:

• access_token (required) The access token string as issued
by the authorization server.

• token_type (required) The type of token this is, typically
just the string "Bearer".

• expires_in (recommended) If the access token expires, the
server should reply with the number of seconds the access
token is valid for.

• refresh_token (optional) If the access token will expire,
then it is useful to return a refresh token which
applications can use to obtain another access token.

• scope (optional) If the scope the user granted is identical to
the scope the app requested, this parameter is optional. If
the granted scope is different from the requested scope,
then this parameter is required.

Chapter 12: Access Tokens 131

When responding with an access token, the server must also include
the additional Cache-Control: no-store and Pragma: no-cache
HTTP headers to ensure clients do not cache this request.

For example, a successful token response may look like the
following:

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"access_token": "MTQ0NjJkZmQ5OTM2NDE1ZTZjNGZmZjI3",
"token_type": "Bearer",
"expires_in": 3600,
"refresh_token": "IwOGYzYTlmM2YxOTQ5MGE3YmNmMDFkNTVk",
"scope": "create"

}

Access Tokens

The format for OAuth 2.0 Bearer tokens is actually described in a
separate spec, RFC 6750 (https://tools.ietf.org/html/rfc6750). There is
no defined structure for the token required by the spec, so you can
generate a string and implement tokens however you want. The
valid characters in a bearer token are alphanumeric, and the
following punctuation characters:

-._~+/

A simple implementation of Bearer Tokens is to generate a random
string and store it in a database along with the associated user and
scope information, or more advanced systems may use self-encoded
tokens, described on page 135, where the token string itself contains
all the necessary info.

132 Chapter 12: Access Tokens

https://tools.ietf.org/html/rfc6750

Unsuccessful Response
If the access token request is invalid, such as the redirect URL didn't
match the one used during authorization, then the server needs to
return an error response.

Error responses are returned with an HTTP 400 status code (unless
specified otherwise), with error and error_description
parameters. The error parameter will always be one of the values
listed below.

• invalid_request - The request is missing a parameter so
the server can't proceed with the request. This may also be
returned if the request includes an unsupported parameter
or repeats a parameter.

• invalid_client - Client authentication failed, such as if the
request contains an invalid client ID or secret. Send an
HTTP 401 response in this case.

• invalid_grant - The authorization code (or user's password
for the password grant type) is invalid or expired. This is
also the error you would return if the redirect URL given in
the authorization grant does not match the URL provided in
this access token request.

• invalid_scope - For access token requests that include a
scope (password or client_credentials grants), this error
indicates an invalid scope value in the request.

• unauthorized_client - This client is not authorized to use
the requested grant type. For example, if you restrict which
applications can use the Implicit grant, you would return
this error for the other apps.

• unsupported_grant_type - If a grant type is requested that
the authorization server doesn't recognize, use this code.
Note that unknown grant types also use this specific error
code rather than using the invalid_request above.

There are two optional parameters when returning an error
response, error_description and error_uri. These are meant to
give developers more information about the error, not intended to
be shown to end users. However, keep in mind that many

Chapter 12: Access Tokens 133

developers will pass this error text straight on to end users no
matter how much you warn them, so it is a good idea to make sure
it is at least somewhat helpful to end users as well.

The error_description parameter can only include ASCII
characters, and should be a sentence or two at most describing the
circumstance of the error. The error_uri is a great place to link to
your API documentation for information about how to correct the
specific error that was encountered.

The entire error response is returned as a JSON string, similar to the
successful response. Below is an example of an error response.

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"error": "invalid_request",
"error_description": "Request was missing the

'redirect_uri' parameter.",
"error_uri": "See the full API docs at

http://authorization-server.com/docs/access_token"
}

134 Chapter 12: Access Tokens

Self-Encoded Access Tokens
Self-encoded tokens provide a way to avoid storing tokens in a
database by encoding all of the necessary information in the token
string itself. The main benefit of this is that API servers are able to
verify access tokens without doing a database lookup on every API
request, making the API much more easily scalable.

The benefit of OAuth 2.0 Bearer Tokens is that applications don't
need to be aware of how you've decided to implement access tokens
in your service. This means it's possible to change your
implementation later without affecting clients.

If you already have a distributed database system that is
horizontally scalable, then you may not gain any benefits by using
self-encoded tokens. In fact, using self-encoded tokens if you've
already solved the distributed database problem will only introduce
new issues, as invalidating self-encoded tokens becomes an
additional hurdle.

There are many ways to self-encode tokens. The actual method you
choose is only important to your implementation, since the token
information is not exposed to external developers.

The most common way to implement self-encoded tokens is to use
the JWS spec, creating a JSON-serialized representation of all the
data you want to include in the token, and signing the resulting
string with a private key known only to your authorization server.

The JSON Web Token (https://tools.ietf.org/html/rfc7519) (JWT)
specification defines some terms you can use in the JWS, as well as
defines some timestamp terms to determine whether a token is
valid. We'll use a JWT library in this example, since it provides built-
in handling of expiration.

There is a new spec coming out of the OAuth group which is
standardizing JWT access tokens, based on the real-world
deployment experience of a number of large OAuth providers. This
document is still a draft as of the date of publication, but has broad
support so will likely move forward and become an RFC. See

Chapter 12: Access Tokens 135

https://tools.ietf.org/html/rfc7519

https://oauth.net/2/jwt-access-tokens/ (https://oauth.net/2/jwt-access-
tokens/) for the latest updates.

JWT Access Token Encoding
The code below is written in PHP and uses the Firebase PHP-JWT
(https://github.com/firebase/php-jwt) library to encode and verify
tokens. You'll need to include that library in order to run the sample
code.

In practice, the authorization server will have a private key it uses
for signing tokens, and the resource server would fetch the public
key from the authorization server metadata to use to validate the
tokens. In this example we generate a new private key each time
and validate tokens in the same script. In reality you'd need to store
the private key somewhere to use the same key to sign tokens
consistently.

<?php
use \Firebase\JWT\JWT;

Generate a private key to sign the token.
This would be defined on the authorization server.
$private_key = openssl_pkey_new([
'digest_alg' => 'sha256',
'private_key_bits' => 1024,
'private_key_type' => OPENSSL_KEYTYPE_RSA

]);

Set the user ID of the user this token is for
$user_id = 1000;

Set the client ID of the app that is generating this token
$client_id = 'https://example-app.com';

Provide the list of scopes this token is valid for
$scope = 'read write';

$token_data = array(

Subject (The user ID)
'sub' => $user_id,

Issuer (the token endpoint)

136 Chapter 12: Access Tokens

https://oauth.net/2/jwt-access-tokens/
https://oauth.net/2/jwt-access-tokens/
https://github.com/firebase/php-jwt
https://github.com/firebase/php-jwt

'iss' => 'https://' . $_SERVER['PHP_SELF'],

Client ID (this is a non-standard claim)
'cid' => $client_id,

Issued At
'iat' => time(),

Expires At
'exp' => time()+7200, // Valid for 2 hours

The list of OAuth scopes this token includes
'scope' => $scope

);
$token_string = JWT::encode($token_data, $private_key, 'RS256');

This will result in a string such as:

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOjEwMDAsIm
lzcyI6Imh0dHBzOlwvXC9hdXRob3JpemF0aW9uLXNlcnZlci5jb20iL
CJhdWQiOiJodHRwczpcL1wvZXhhbXBsZS1hcHAuY29tIiwiaWF0Ijox
NTgwMzI3MDYyLCJleHAiOjE1ODAzMzQyNjIsInNjb3BlIjoicmVhZCB
3cml0ZSJ9.Vo8QcVNPNJkT7kjZJeSltZBgYwV8m81MgRTBWlsGCJYNi
204jqgPmTI5tOTrsPz6DPpAn2g0_G8tCqRncmLi9LjzJcSbnxEAa4H-
5gYMPcAaRgOBMRPq7IVNMEb7sY_XqzHSK3JeqtRK7HdyT_NNe_gKWfP
DaH7Bw3orfm00Rpc

This token is made up of three components, separated by periods.
The first part describes the signature method used. The second part
contains the token data. The third part is the signature.

For example, this token's first component is this JSON object:

{
"typ":"JWT",
"alg":"RS256”

}

The second component contains the actual data the API endpoint
needs in order to process the request, such as user identification
and scope access.

{
"sub": 1000,
"iss": "https://authorization-server.com",

Chapter 12: Access Tokens 137

"cid": "https://example-app.com",
"iat": 1580327062,
"exp": 1580334262,
"scope": "read write"

}

Base64-encoding the first two components results in these following
two strings:

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9

eyJzdWIiOjEwMDAsImlzcyI6Imh0dHBzOlwvXC9hdXRob3JpemF0aW9u
LXNlcnZlci5jb20iLCJhdWQiOiJodHRwczpcL1wvZXhhbXBsZS1hcHAu
Y29tIiwiaWF0IjoxNTgwMzI3MDYyLCJleHAiOjE1ODAzMzQyNjIsInNj
b3BlIjoicmVhZCB3cml0ZSJ9

We then calculate the RS256 signature of the two strings joined with
a "." for the last component:

Vo8QcVNPNJkT7kjZJeSltZBgYwV8m81MgRTBWlsGCJYNi204
jqgPmTI5tOTrsPz6DPpAn2g0_G8tCqRncmLi9LjzJcSbnxEAa4H
-5gYMPcAaRgOBMRPq7IVNMEb7sY_XqzHSK3JeqtRK7HdyT_NNe_
gKWfPDaH7Bw3orfm00Rpc

Finally, concatenate all three strings together separated by periods.

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOjEwMDAsIm
lzcyI6Imh0dHBzOlwvXC9hdXRob3JpemF0aW9uLXNlcnZlci5jb20iL
CJhdWQiOiJodHRwczpcL1wvZXhhbXBsZS1hcHAuY29tIiwiaWF0Ijox
NTgwMzI3MDYyLCJleHAiOjE1ODAzMzQyNjIsInNjb3BlIjoicmVhZCB
3cml0ZSJ9.Vo8QcVNPNJkT7kjZJeSltZBgYwV8m81MgRTBWlsGCJYNi
204jqgPmTI5tOTrsPz6DPpAn2g0_G8tCqRncmLi9LjzJcSbnxEAa4H-
5gYMPcAaRgOBMRPq7IVNMEb7sY_XqzHSK3JeqtRK7HdyT_NNe_gKWfP
DaH7Bw3orfm00Rpc

Decoding
Verifying the access token can be done by using the same JWT
library. The library will decode and verify the signature at the same
time, and throws an exception if the signature was invalid, or if the
expiration date of the token has already passed.

138 Chapter 12: Access Tokens

You'll need the public key corresponding to the private key that
signed the token. Typically you can fetch this from the authorization
server's metadata document, but in this example we will derive the
public key from the private key generated earlier.
Note: Anyone can read the token information by base64-decoding
the middle section of the token string. For this reason, it's important
that you do not store private information or information you do not
want a user or developer to see in the token. If you want to hide the
token information, you can use the JSON Web Encryption
(https://tools.ietf.org/html/rfc7516) spec to encrypt the data in the
token.

$public_key = openssl_pkey_get_details($private_key)['key'];

try {
Note: You must provide the list of supported algorithms
in order to prevent an attacker from bypassing the signature
verification
$token = JWT::decode($token_string, $public_key, ['RS256']);
$error = false;

} catch(\Firebase\JWT\ExpiredException $e) {
$token = false;
$error = 'expired';
$error_description = 'The token has expired';

} catch(\Firebase\JWT\SignatureInvalidException $e) {
$token = false;
$error = 'invalid';
$error_description = 'The token provided was malformed';

} catch(Exception $e) {
$token = false;
$error = 'unauthorized';
$error_description = $e->getMessage();

}

if($error) {
header('HTTP/1.1 401 Unauthorized');
echo json_encode(array(
'error'=>$error,
'error_description'=>$error_description

));
die();

} else {
// Now $token has all the data that we encoded in it originally
print_r($token);

}

Chapter 12: Access Tokens 139

https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7516

At this point, the API has all the information it needs such as the
user ID, scope, etc, available to it, and didn't have to do a database
lookup. Next it can verify the scope is sufficient to perform the
requested operation, and can then process the request.

Invalidating Access Tokens
Because the token can be verified without doing a database lookup,
there is no way to invalidate a token until it expires. You'll need to
take additional steps to invalidate tokens that are self-encoded, such
as temporarily storing a list of revoked tokens. See Refreshing
Access Tokens on page 143 for more information.

Access Token Lifetime
When your service issues access tokens, you'll need to make some
decisions as to how long you want the tokens to last. Unfortunately
there is no blanket solution for every service. There are various
tradeoffs that come with the different options, so you should choose
the option (or combination of options) that best suit your
application's need.

Short-lived access tokens and long-lived refresh tokens
A common method of granting tokens is to use a combination of
access tokens and refresh tokens for maximum security and
flexibility. The OAuth 2.0 spec recommends this option, and several
of the larger implementations have gone with this approach.

Typically services using this method will issue access tokens that
last anywhere from several hours to a couple weeks. When the
service issues the access token, it also generates a refresh token that
never expires and returns that in the response as well. (Note that
refresh tokens can't be issued using the Implicit grant.)

When the access token expires, the application can use the refresh
token to obtain a new access token (Refreshing Access Tokens). It

140 Chapter 12: Access Tokens

can do this behind the scenes, and without the user's involvement,
so that it's a seamless process to the user.

The main benefit of this approach is that the service can use self-
encoded access tokens which can be verified without a database
lookup. However, this means there is no way to expire those tokens
directly, so instead, the tokens are issued with a short expiration
time so that the application is forced to continually refresh them,
giving the service a chance to revoke an application's access if
needed.

From the third-party developer's perspective, it is often frustrating
to have to deal with refresh tokens. Developers strongly prefer
access tokens that don't expire, since it's much less code to deal
with. In order to help mitigate these concerns, services will often
build the token refreshing logic into their SDK, so that the process is
transparent to developers.

In summary, use short-lived access tokens and long-lived refresh
tokens when:

• you want to use self-encoded access tokens
• you want to limit the risk of leaked access tokens
• you will be providing SDKs that can handle the refresh logic

transparently to developers

Short-lived access tokens and no refresh tokens
If you want to ensure users are aware of applications that are
accessing their account, the service can issue relatively short-lived
access tokens without refresh tokens. The access tokens may last
anywhere from the current application session to a couple weeks.
When the access token expires, the application will be forced to
make the user sign in again, so that you as the service know the user
is continually involved in re-authorizing the application.

Typically this option is used by services where there is a high risk of
damage if a third-party application were to accidentally or
maliciously leak access tokens. By requiring that users are

Chapter 12: Access Tokens 141

constantly re-authorizing the application, the service can ensure
that potential damage is limited if an attacker were to steal access
tokens from the service.

By not issuing refresh tokens, this makes it impossible to
applications to use the access token on an ongoing basis without the
user in front of the screen. Applications that need access in order to
continually sync data will be unable to do so under this method.

From the user's perspective, this is the option most likely to
frustrate people, since it will look like the user has to continually re-
authorize the application.

In summary, use short-lived access tokens with no refresh tokens
when:

• you want to the most protection against the risk of leaked
access tokens

• you want to force users to be aware of third-party access
they are granting

• you don't want third-party apps to have offline access to
users' data

Non-expiring access tokens
Non-expiring access tokens are the easiest method for developers. If
you choose this option, it is important to consider the trade-offs you
are making.

It isn't practical to use self-encoded tokens if you want to be able to
revoke them arbitrarily. As such, you'll need to store these tokens in
some sort of database, so they can be deleted or marked as invalid
as needed.

Note that even if the service intends on issuing non-expiring access
tokens for normal use, you'll still need to provide a mechanism to
expire them under exceptional circumstances, such as if the user
explicitly wants to revoke an application's access, or if a user
account is deleted.

142 Chapter 12: Access Tokens

Non-expiring access tokens are much easier for developers testing
their own applications. You can even pre-generate one or more non-
expiring access tokens for developers and show it to them on the
application details screen. This way they can immediately start
making API requests with the token, and not worry about setting up
an OAuth flow in order to start testing your API.

In summary, use non-expiring access tokens when:

• you have a mechanism to revoke access tokens arbitrarily
• you don't have a huge risk if tokens are leaked
• you want to provide an easy authentication mechanism to

your developers
• you want third-party applications to have offline access to

users' data

Refreshing Access Tokens
This section describes how to allow your developers to use refresh
tokens to obtain new access tokens. If your service issues refresh
tokens along with the access token, then you'll need to implement
the Refresh grant type described here.

Request Parameters
The access token request will contain the following parameters.

grant_type (required)

The grant_type parameter must be set to "refresh_token".

refresh_token (required)

The refresh token previously issued to the client.

Chapter 12: Access Tokens 143

scope (optional)

The requested scope must not include additional scopes that were
not issued in the original access token. Typically this will not be
included in the request, and if omitted, the service should issue an
access token with the same scope as was previously issued.

Client Authentication (required if the client was issued a secret)

Typically, refresh tokens are only used with confidential clients.
However, since it is possible to use the authorization code flow
without a client secret, the refresh grant may also be used by clients
that don't have a secret. If the client was issued a secret, then the
client must authenticate this request. Typically the service will
allow either additional request parameters client_id and
client_secret, or accept the client ID and secret in the HTTP Basic
auth header. If the client does not have a secret, then no client
authentication will be present in this request.

Verifying the refresh token grant
After checking for all required parameters, and authenticating the
client if the client was issued a secret, the authorization server can
continue verifying the other parts of the request.

The server then checks whether the refresh token is valid, and has
not expired. If the refresh token was issued to a confidential client,
the service must ensure the refresh token in the request was issued
to the authenticated client.

If everything checks out, the service can generate an access token
and respond. The server may issue a new refresh token in the
response, but if the response does not include a new refresh token,
the client assumes the existing refresh token will still be valid.

144 Chapter 12: Access Tokens

Example
The following is an example refresh grant the service would
receive.

POST /oauth/token HTTP/1.1
Host: authorization-server.com

grant_type=refresh_token
&refresh_token=xxxxxxxxxxx
&client_id=xxxxxxxxxx
&client_secret=xxxxxxxxxx

Response
The response to the refresh token grant is the same as when issuing
an access token (page 131). You can optionally issue a new refresh
token in the response, or if you don't include a new refresh token,
the client assumes the current refresh token will continue to be
valid.

Chapter 12: Access Tokens 145

146 Chapter 12: Access Tokens

Chapter 13

Listing Authorizations

Once users have begun to authorize multiple applications giving
many apps various kinds of access to their account, it becomes
necessary to provide a way to allow the user to manage the apps
that have access. This is usually presented to the user in an account
settings page or an account privacy page.

There is nothing in the OAuth 2.0 spec that requires users be able to
revoke accesss or even suggests how to do this, so instead we'll look
at several major API providers for inspiration on how to accomplish
this.

Most providers have a page which lists all applications the user has
authorized to their account. Usually there is some information
displayed about the application, and information meant to give
context to the user about when and why this application has access.

Google
Google provides a list of applications you've authorized on your
account at https://myaccount.google.com/permissions, as shown in
Figure 13-1.

The list shows the application icon, name, and a summary of the
scope that the application is granted. Clicking on one of them
expands that section to show more details.

Chapter 13: Listing Authorizations 147

https://myaccount.google.com/permissions

Figure 13-1:Figure 13-1: A sample list of applications you've authorized to access your
Google account

Figure 13-2:Figure 13-2: Details of one application's access to your Google account

148 Chapter 13: Listing Authorizations

Figure 13-2 shows a more detailed list of scopes that have been
granted, as well as the date that you authorized the application.

Twitter
Twitter provides a list of applications you've authorized at
https://twitter.com/settings/applications.

Figure 13-3:Figure 13-3: A sample list of applications you've authorized to access your
Twitter account

Twitter shows the scope that was granted (read-only, read/write,
read/write/direct messasges), as well as whether the app can see
your email address. The list includes the date you authorized the
application. This makes it easy for users to revoke credentials from
apps they haven't used in a while.

Chapter 13: Listing Authorizations 149

https://twitter.com/settings/applications

GitHub
GitHub provides a list of applications you've authorized at
https://github.com/settings/applications.

Figure 13-4:Figure 13-4: A sample list of applications you've authorized to access your
GitHub account

The list that GitHub provides, shown in Figure 13-4, includes a
description of the last time the application was used, to give you an
idea of whether you can safely revoke an application's credentials if
it hasn't been used in a while.

Clicking on an application provides more details about that
application's access.

In Figure 13-5 you can see the permissions (scope) the application
has for your account.

You can find links to other services' authorization pages at
https://indieweb.org/appaccess.

All of these services provide a way for the user to revoke a
particular application's access to their account. The next section
covers revoking access in more detail.

150 Chapter 13: Listing Authorizations

https://github.com/settings/applications
https://indieweb.org/appaccess

Figure 13-5:Figure 13-5: Details of one application authorized to access your GitHub
account

Revoking Access
There are a few reasons you might need to revoke an application's
access to a user's account.

• The user explicitly wishes to revoke the application's access,
such as if they've found an application they no longer want
to use listed on their authorizations page

• The developer wants to revoke all user tokens for their
application

• The developer deleted their application (page 85)
• You as the service provider have determined an application

is compromised or malicious, and want to disable it

Depending on how you've implemented generating access tokens,
revoking them will work in different ways.

Chapter 13: Listing Authorizations 151

Token Database
If you store access tokens in a database, then it is relatively easy to
revoke all tokens that belong to a particular user. You can write a
query that finds and deletes tokens belonging to the user, such as
looking in the token table for their user_id. Assuming your resource
server validates access tokens by looking them up in the database,
then the next time the revoked client makes a request, their token
will fail to validate.

Self-Encoded Tokens
If the authorization server issues self-encoded tokens, then revoking
access to a particular application is a little harder.

If you have a truly stateless mechanism of verifying tokens, and
your resource server is validating tokens without sharing
information with another system, then the only option is to wait for
all outstanding tokens to expire, and prevent the application from
being able to generate new tokens for that user by blocking any
refresh token requests from that client ID. This is the primary
reason to use extremely short-lived tokens when you are using self-
encoded tokens.

Since there is no mechanism to invalidate individual access tokens,
instead you will need to invalidate the application's refresh tokens
for the particular user. This way the next time the application
attempts to refresh the access token, the request for a new access
token will be denied.

152 Chapter 13: Listing Authorizations

Chapter 14

The Resource Server

The resource server is the OAuth 2.0 term for your API server. The
resource server handles authenticated requests after the
application has obtained an access token.

Large scale deployments may have more than one resource server.
Google's services, for example, have dozens of resource servers,
such as the Google Cloud platform, Google Maps, Google Drive,
YouTube, Google+, and many others. Each of these resource servers
are distinctly separate, but they all share the same authorization
server.

Figure 14-1:Figure 14-1: Some of Google's APIs

Chapter 14: The Resource Server 153

Smaller deployments typically have only one resource server, and
it's often built as part of the same code base or same deployment as
the authorization server.

Verifying Access Tokens
The resource server will be getting requests from applications with
an HTTP Authorization header containing an access token. The
resource server needs to be able to verify the access token to
determine whether to process the request, and find the associated
user account, etc.

If you're using self-encoded access tokens (page 135), then verifying
the tokens can be done entirely in the resource server without
interacting with a database or external servers.

If your tokens are stored in a database, then verifying the token is
simply a database lookup on the token table.

Another option is to use the Token Introspection spec described on
page 177 to build an API to verify access tokens. This is a good way
to handle verifying access tokens across a large number of resource
servers, since it means you can encapsulate all of the logic of access
tokens in a single server, exposing the information via an API to
other parts of the system. The token introspection endpoint is
intended to be used only internally, so you will want to protect it
with some internal authorization, or only enable it on a server
within the firewall of the system.

Verifying Scope
The resource server needs to know the list of scopes that are
associated with the access token. The server is responsible for
denying the request if the scopes in the access token do not include
the required scope to perform the designated action.

154 Chapter 14: The Resource Server

The OAuth 2.0 spec does not define any scopes itself, nor is there a
central registry of scopes. The list of scopes is up to the service to
decide for itself. See Chapter 10, Scope, for more information.

Expired Tokens
If your service uses short-lived access tokens with long-lived refresh
tokens, then you'll need to make sure to return the proper error
response when an application makes a request with an expired
token.

Return an HTTP 401 response with a WWW-Authenticate header as
described below. If your API typically returns JSON responses, then
you can also return a JSON body with the same error information.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="invalid_token"

error_description="The access token expired"
Content-type: application/json

{
"error": "invalid_token",
"error_description": "The access token expired"

}

This will indicate to clients that their existing access token expired
and that they should try to get a new one using their refresh token.

Error Codes and Unauthorized Access
If the access token does not allow access to the requested resource,
or if there is no access token in the request, then the server must
reply with an HTTP 401 response and include a WWW-Authenticate
header in the response.

The minimum WWW-Authenticate header includes the string Bearer,
indicating that a bearer token is required. The header can also
indicate additional information such as a "realm" and "scope". The

Chapter 14: The Resource Server 155

"realm" value is used in the traditional HTTP Authentication sense
(https://tools.ietf.org/html/rfc7235). The "scope" value allows the
resource server to indicate the list of scopes required to access the
resource, so the application can request the appropriate scope from
the user when starting the authorization flow. The response should
also include an appropriate "error" value depending on the type of
error that occurred.

• invalid_request (HTTP 400) - The request is missing a
parameter, or is otherwise malformed.

• invalid_token (HTTP 401) - The access token is expired,
revoked, malformed, or invalid for other reasons. The client
can obtain a new access token and try again.

• insufficient_scope (HTTP 403) - The request requires
additional scope that this access token was not issued.

For example:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="example",

scope="delete",
error="insufficient_scope"

If the request does not have authentication, then no error code or
other error information is necessary.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="example"

156 Chapter 14: The Resource Server

https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7235

Chapter 15

OAuth for Native Apps

This chapter describes some special considerations to keep in mind
when supporting OAuth for native apps. Like browser-based apps,
native apps can't use a client secret, as that would require that the
developer ship the secret in their binary distribution of the
application. It has been proven to be relatively easy to decompile
and extract the secret. As such, native apps must use an OAuth flow
that does not require a preregistered client secret.

The current industry best practice is to use the Authorization Flow
along with the PKCE extension, omitting the client secret from the
request, and to use an external user agent to complete the flow. An
external user agent is typically the device's native browser, (with a
separate security domain from the native app,) so that the app
cannot access the cookie storage or inspect or modify the page
content inside the browser. Since the app can't reach inside the
browser being used in this case, this provides the opportunity for
the device to keep users signed in while authorizing different
applications, so that they don't have to enter their credentials each
time they authorize a new application.

In recent years, both iOS and Android have been working to further
improve the user experience of OAuth for native apps by providing
a native user agent that can be launched from within the
application, while still being isolated from the application launching
it. The result is that the user no longer needs to leave the application
in order to launch a native browser that shares the system cookies.
This was first added as SFSafariViewController in iOS 9, and later
evolved to SFAuthenticationSession in iOS 11.

Chapter 15: OAuth for Native Apps 157

These recommendations for native apps are published as an RFC
8252 (https://tools.ietf.org/html/rfc8252), where these concepts are
described in more explicit detail.

Use a System Browser
Up until recently as of the time of this writing, many native apps are
still embedding the OAuth interface in a web view inside the app.
This approach has multiple problems, including that the client app
can potentially eavesdrop on the user entering their credentials
when signing in, or even present a false authorization page. Mobile
operating system security is typically implemented in a way where
the embedded web view doesn't share cookies with the system's
native browser, so users have a worse experience because they
need to enter their credentials each time as well.

The more secure and trusted way to accomplish the authorization
flow is by launching a system browser. However, up until the last
few years, this had the drawback of the user being popped out of
the app and launching their browser, then redirecting back to the
app, which is also not an ideal user experience.

Thankfully, the mobile platforms have been addressing the issue.
Since iOS 9, developers could use the SFSafariViewController API
to launch a system browser that shares system cookies from within
the app. Since iOS 11, the SFAuthenticationSession API improves
upon the original and makes it easier for developers. This is
accomplished by the API not allowing the client app to peek inside
the browser, getting the security benefits of using an external
browser and the user experience benefits of staying within the
application the whole time.

Native app developers writing apps for iOS are highly encouraged to
use the SFAuthenticationSession API, and if that API is not
available, fall back to launching an external Safari window instead.

Authorization servers should enforce this behavior by attempting to
detect whether the authorization URL was launched inside an

158 Chapter 15: OAuth for Native Apps

https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc8252

embedded web view and reject the request if so. The particular
techniques for detecting whether the page is being visited in an
embedded web view vs the system browser will depend on the
platform, but usually involve inspecting the user agent header.

Redirect URLs
In order to support a wide range of types of native apps, your server
will need to support registering three types of redirect URLs, each to
support a slightly different use case.

Custom URL Scheme
Some platforms, such as iOS, allow apps to register a custom URL
scheme which will launch the app whenever a URL with that
scheme is opened in a browser or another app. Supporting redirect
URLs with a custom URL scheme allows clients to launch an
external browser to complete the authorization flow, and then be
redirected back to the application after the authorization is
complete.

App developers should choose a URL scheme that is globally unique,
and one which they can assert control over. Since operating systems
typically do not have a registry of whether a particular app has
claimed a URL scheme, it is theoretically possible for two apps to
independently choose the same scheme, such as myapp://. If you
want to help prevent collisions by app developers using custom
schemes, you should recommend (or even enforce) that they use a
scheme that is the reverse domain name pattern of a domain they
control. At the very least, you can require that the redirect URL
contains at least one . so as not to conflict with other system
schemes such as mailto or ftp.

For example, if an app has a corresponding website called
photoprintr.example.org, the reverse domain name that can be
used as their URL scheme would be org.example.photoprintr. The
redirect URL that the developer would register would then begin

Chapter 15: OAuth for Native Apps 159

with org.example.photoprintr://. By enforcing this, you can help
encourage developers to choose explicit URL schemes that won't
conflict with other installed applications.

Apps that use a custom URL scheme will start the authorization
request as normal, described in Authorization Request on page 87,
but will provide a redirect URL that has their custom URL scheme.
The authorization server should still verify that this URL was
previously registered as an allowed redirect URL, and can treat it
like any other redirect URL registered by web apps.

When the authorization server redirects the native app to the URL
with the custom scheme, the operating system will launch the app
and make the whole redirect URL accessible to the original app. The
app can extract the authorization code just like a regular OAuth 2.0
client would.

HTTPS URL Matching
Some platforms allow apps to register URL patterns that indicate the
app should be launched whenver a system browser visits a URL that
matches the registered pattern. This is commonly used by apps to
"deep link" into the native app, such as the Yelp app opening to the
restaurant's page when a Yelp URL is viewed in the browser.

This technique can also be used by apps to register URL a pattern
that will launch the app when an authorization server redirects
back to the app. If a platform provides this feature, this is the
recommended choice for native apps, as this provides the most
integrity that the app belongs to the URL it's matching. This also
provides a reasonable fallback in the case that the platform doesn't
support app-claimed URLs.

Loopback URLs
Another technique native applications may use for supporting
seamless redirects is opening a new HTTP server on a random port
of the loopback interface. This is typically only done on desktop

160 Chapter 15: OAuth for Native Apps

operating systems or for command line applications, as mobile
operating systems typically do not provide this functionality to app
developers.

This approach works well for command line apps as well as desktop
GUI apps. The app will start an HTTP server and then begin the
authorization request, setting the redirect URL to a loopback
address such as http://127.0.0.1:49152/redirect and launching a
browser. When the authorization server redirects the browser back
to the loopback address, the application can grab the authorization
code from the request.

In order to suppor this use case, the authorization server will have
to support registering redirect URLs beginning with
http://127.0.0.1:[port]/ and http://::1:[port]/, and
http://localhost:[port]/. The authorization server should allow
an arbitrary path component as well as arbitrary port numbers.
Note that in this case it is acceptable to use the HTTP scheme rather
than HTTPS, as the request never leaves the device.

Registration
As with server-side apps, native apps must also register their
redirect URL(s) with the authorization server. This means the
authorization server will need to allow registered redirect URLs that
match all the patterns described above, in addition to traditional
HTTPS URLs for server-side apps.

When the authorization request is initiated at the authorization
server, the server will validate all the request parameters, including
the redirect URL given. The authorization should reject
unrecognized URLs in the request, to help avoid an authorization
code interception attack.

Chapter 15: OAuth for Native Apps 161

PKCE Extension
Since redirect URLs on native platforms have limited ability to be
enforced, there is another technique for gaining additional security
called Proof Key for Code Exchange, or PKCE for short, pronounced
"pixie".

This technique involves the native app creating an initial random
secret, and using that secret again when exchanging the
authorization code for an access token. This way, if another app
intercepts the authorization code, it will be unusable without the
original secret.

See Chapter 17, Proof Key for Code Exchange, for details.

Server Support Checklist
To summarize this chapter, your authorization server should
support the following in order to fully support secure authorization
for native apps.

• Allow clients to register custom URL schemes for their
redirect URLs.

• Support loopback IP redirect URLs with arbitrary port
numbers in order to support desktop apps.

• Don't assume native apps can keep a secret. Require all
apps to declare whether they are public or confidential, and
only issue client secrets to confidential apps.

• Support the PKCE extension, and require that public clients
use it.

• Attempt to detect when the authorization interface is
embedded in a native app's web view, instead of launched
in a system browser, and reject those requests.

162 Chapter 15: OAuth for Native Apps

Chapter 16

OAuth for Browserless and
Input-Constrained Devices

The OAuth 2.0 "Device Flow" extension enables OAuth on devices
that have an Internet connection but don't have a browser or an
easy way to enter text. If you've ever signed in to your YouTube
account on a device such as an Apple TV, you've encountered this
workflow already. Google was involved in the development of this
extension, and has been an early implementer of it in production as
well.

This flow is also seen on devices such as smart TVs, media consoles,
picture frames, printers, or hardware video encoders. In this flow,
the device instructs the user to open a URL on a secondary device
such as a smartphone or computer in order to complete the
authorization. There is no communication channel required
between the user's two devices.

User Flow

Figure 16-1:Figure 16-1: The device making an API request to obtain a device code

Chapter 16: OAuth for Browserless and Input-Constrained Devices 163

When you begin signing in on the device, such as this hardware
video encoder, the device talks to the authorization server to get a
device code, shown in Figure 16-1.

In Figure 16-2, we see that the device then shows you the code,
along with a URL.

Figure 16-2:Figure 16-2: The device displays the device code and URL

Visiting that URL after you've signed in to your account shows an
interface (Figure 16-3) that prompts you to enter the code that's
displayed on the device.

Figure 16-3:Figure 16-3: Google prompts the user to enter the code

164 Chapter 16: OAuth for Browserless and Input-Constrained Devices

Once you enter the code and click "Next", you then see the standard
OAuth authorization prompt that describes what scopes the
application is requesting, as seen in Figure 16-4.

Figure 16-4:Figure 16-4: Google displays the scopes the application is requesting

Once you allow the request, the authorization server shows a
message that says to return to your device, shown in Figure 16-5.

A few seconds later, the device finishes up and you're signed in.

Figure 16-5:Figure 16-5: Google instructs the user to return to the device

Chapter 16: OAuth for Browserless and Input-Constrained Devices 165

Overall this is a pretty painless experience. Since you get to use
whatever device you want to open the URL, you can use your
primary computer or phone where you're likely already signed in to
the authorization server. This also works with no data entry
required on the device! No typing passwords or codes on what is
likely a cumbersome tiny keyboard at best.

Let's walk through what's required by the device to make this work.

Authorization Request
First, the device makes a request to the authorization server to
request the device code, identifying itself with its client ID, and
requesting one or more scopes if it needs to.

POST /token HTTP/1.1
Host: authorization-server.com
Content-type: application/x-www-form-urlencoded

client_id=a17c21ed&
scope=create

The authorization server responds with a JSON payload containing
the device code, the code the user will enter, the URL the user
should visit, and a polling interval.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
"device_code": "NGU5OWFiNjQ5YmQwNGY3YTdmZTEyNzQ3YzQ1YSA",
"user_code": "BDWD-HQPK",
"verification_uri": "https://authorization-server.com/device",
"interval": 5,
"expires_in": 1800

}

The device shows the verification_uri and user_code to the user
on its display, directing the user to enter the code at that URL.

166 Chapter 16: OAuth for Browserless and Input-Constrained Devices

Token Request
While the device is waiting for the user to complete the
authorization flow on their own computer or phone, the device
meanwhile begins polling the token endpoint to request an access
token.

The device makes a POST request with the device_code at the rate
specified by interval. The device should continue requesting an
access token until a response other than authorization_pending is
returned, either the user grants or denies the request or the device
code expires.

POST /token HTTP/1.1
Host: authorization-server.com
Content-type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:device_code&
client_id=a17c21ed&
device_code=NGU5OWFiNjQ5YmQwNGY3YTdmZTEyNzQ3YzQ1YSA

The authorization server will reply with either an error or an access
token. The Device Flow spec defines two additional error codes
beyond what is defined in OAuth 2.0 core, authorization_pending
and slow_down.

If the device is polling too frequently, the authorization server will
return the slow_down error.

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store

{
"error": "slow_down"

}

If the user has not either allowed or denied the request yet, the
authorization server will return the authorization_pending error.

HTTP/1.1 400 Bad Request
Content-Type: application/json

Chapter 16: OAuth for Browserless and Input-Constrained Devices 167

Cache-Control: no-store

{
"error": "authorization_pending"

}

If the user denies the request, the authorization server will return
the access_denied error.

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store

{
"error": "access_denied"

}

If the device code has expired, the authorization server will return
the expired_token error. The device can immediately make a
request for a new device code.

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store

{
"error": "expired_token"

}

Finally, if the user allows the request, then the authorization server
issues an access token like normal and returns the standard access
token response.

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
"access_token": "AYjcyMzY3ZDhiNmJkNTY",
"refresh_token": "RjY2NjM5NzA2OWJjuE7c",
"token_type": "Bearer",
"expires_in": 3600,
"scope": "create"

}

168 Chapter 16: OAuth for Browserless and Input-Constrained Devices

Authorization Server Requirements
Supporting the Device Flow is not a huge amount of additional work
for an authorization server. Here are a few things to keep in mind
as you're adding support for the Device Flow to an existing
authorization server.

Device Code Request
The device will make a request to the authorization server to obtain
the set of verification codes needed for the flow. The following
parameters are part of the request.

• client_id - Required, the client identifier as described in
Chapter 8, Client Registration.

• scope - Optional, the scope of the request as described in
Chapter 10, Scope.

After validating the client ID and scopes, the authorization server
returns the response with the verification URL, device code and
user code. There are a few optional parameters that the
authorization server can return in addition to the example given
above.

• device_code - Required, the verification code generated by
the authorization server.

• user_code - Required, the code the user will enter on the
device screen, should be relatively short. Typically 6-8
numbers and letters are used.

• verification_uri - Required, the URL on the authorization
server that the user should visit to begin authorization. The
user is expected to hand-enter this URL on their computer
or mobile phone, so this should be a relatively short URL
such as example.com/device.

• expires_in - Optional, the lifetime in seconds of the device
code and user code.

• interval - Optional, the minimum amount of time in
seconds that the client should wait between polling

Chapter 16: OAuth for Browserless and Input-Constrained Devices 169

requests to the token endpoint.

User Code
In many situations, the user's nearest device will be their mobile
phone. Typically these interfaces are more limited than a full
computer keyboard, like how the iPhone requires an additional tap
to change the key case or switch to numeric entry. To help reduce
data entry errors, and to speed up entry of the code, the character
set of the user code should take into account these limitations, such
as using only capital letters.

A reasonable character set to use for the device code is case
insensitive A-Z characters, without vowels so as to avoid
accidentally spelling words. This results in the base-20 character set
BCDFGHJKLMNPQRSTVWXZ. When comparing the entered code, it is best
to ignore any characters such as punctuation that are not in the
character set. An example code following this guideline with an
entropy of 20^8 is BDWD-HQPK. The authorization server should
compare the entered string case-insensitively ignoring punctuation,
so should allow the following as a match: bdwdhqpk.

Verification URL
The verification URL that the device will display should be as short
as possible, and easy to remember. It will be displayed on
potentially very small screens, and users will have to type it in
manually on their computer or phone.

Note that the server should return a full URL including the URL
scheme, although some devices may choose to trim that when
displaying the URL. As such, the server should be configured to
redirect http to https, and to serve on both the plain domain and
with a www prefix in case the user mis-enters or the device omits
that part of the URL.

Google's authorization server is a great example of a short URL that
is easy to enter. The response from the code request is

170 Chapter 16: OAuth for Browserless and Input-Constrained Devices

https://www.google.com/device but all the device needs to display
is google.com/device and Google will redirect appropriately.

Optimization for Non-Textual Interfaces
Clients without a display, or with a non-textual display, obviously
have no way to show a URL to the user. As such, there are some
additional methods that could be used to communicate the
verification URL and user code to the user.

The device may be able to broadcast the verification URL via NFC,
or Bluetooth, or by displaying a QR code. In these cases, the device
may include the user code as part of the verification URL using the
parameter user_code. For example:

https://authorization-server.com/device?user_code=BDWD-HQPK

This way, when the user launches the URL, the user code can be pre-
filled in the verification interface. It is recommended that the
authorization server still require the user confirm the code rather
than proceed automatically.

If the device has the ability to display the code, even if it cannot
display a URL, then additional security is gained by prompting the
user to confirm that the code on the verification interface matches
the code displayed on their device. If that is not an option, then the
authorization server can at least ask the user to confirm that they
just requested to authorize a device.

Security Considerations

User Code Brute Forcing
Since the user code is hand-entered by the user into an interface
that does not yet know about the device being authorized,
precautions should be taken to avoid the possibility of a brute force
attack against the user code.

Chapter 16: OAuth for Browserless and Input-Constrained Devices 171

Typically the user code will be a short code in order to be easily
entered by hand. Short strings are more easily brute-forceable than
long strings, so you should choose an appropriate rate limit based
on the entopy of your API's user codes.

For example, with 8 characters out of the 20-character set described
above, that provides approximately 34 bits of entropy. log2(208) =
34.57 You can use this formula to calculate the bits of entropy when
choosing an acceptable rate limit.

Remote Phishing
It is possible for the device flow to be initiated on a device in the
attacker's possession, in order to trick the user into authorizing the
attacker's device. For example, the attacker might send an SMS
instructing the user to visit a URL and enter the user code.

To mitigate this risk, it is recommended that the authorization
interface make it very clear to the user that they are authorizing a
physical device to access their account, in addition to the standard
information included in the authorization interface described in
User Interface on page 110.

172 Chapter 16: OAuth for Browserless and Input-Constrained Devices

Chapter 17

Protecting Mobile Apps with
PKCE

The Proof Key for Code Exchange extension (abbreviated PKCE,
pronounced pixie) describes a technique for public clients to
mitigate the risk of having the authorization code intercepted. The
technique involves the client first creating a secret on each
authorization request, and then using that secret again when
exchanging the authorization code for an access token. This way if
the code is intercepted, it will not be useful since the token request
relies on the initial secret.

The full spec is available as RFC 7636 (https://tools.ietf.org/html/
rfc7636). We'll cover a summary of the protocol below.

Authorization Request
When the application begins the authorization request, instead of
immediately launching a browser, the client first creates what is
known as a "code verifier". This is a cryptographically random
string using the characters A-Z, a-z, 0-9, and the punctuation
characters -._~ (hyphen, period, underscore, and tilde), between 43
and 128 characters long.

Once the app has generated the code verifier, it uses that to create
the code challenge. For devices that can perform a SHA256 hash, the
code challenge is a Base64-URL-encoded string of the SHA256 hash
of the code verifier. Clients that do not have the ability to perform a

Chapter 17: Protecting Mobile Apps with PKCE 173

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636

SHA256 hash are permitted to use the plain code verifier string as
the challenge, although that provides less security benefits so
should really only be used if absolutely necessary.

Base64-URL-encoding is a minor variation on the typical Base64
encoding method. It starts with the same Base64-encoding method
available in most languages, but uses URL-safe characters instead.
You can implement a Base64-URL-encoding method by taking a
Base64-encoded string and making the following modifications to
the string: Take the Base64-encoded string, and change + to -, and /
to _, then trim the trailing = from the end.

PHPPHP

function base64_urlencode($str) {
return rtrim(strtr(base64_encode($hash), '+/', '-_'), '=');

}

JavaScriptJavaScript

function base64_urlencode(str) {
return btoa(String.fromCharCode.apply(null,

new Uint8Array(str)))
.replace(/\+/g, '-')
.replace(/\//g, '_')
.replace(/=+$/, '');

}

Now that the client has a code challenge string, it includes that and
a parameter that indicates which method was used to generate the
challenge (plain or S256) along with the standard parameters of the
authorization request. This means a complete authorization request
will include the following parameters.

• response_type=coderesponse_type=code - indicates that your server expects to
receive an authorization code

• client_id=client_id= - The client ID you received when you first
created the application

• redirect_uri=redirect_uri= - Indicates the URL to return the user to after
authorization is complete, such as
org.example.app://redirect

174 Chapter 17: Protecting Mobile Apps with PKCE

• state=1234zyxstate=1234zyx - A random string generated by your
application, which you'll verify later

• code_challenge=XXXXXXXXXcode_challenge=XXXXXXXXX - The code challenge
generated as previously described

• code_challenge_method=S256code_challenge_method=S256 - either plain or S256,
depending on whether the challenge is the plain verifier
string or the SHA256 hash of the string. If this parameter is
omitted, the server will assume plain.

The authorization server should recognize the code_challenge
parameter in the request, and associate that with the authorization
code it generates. Either store this in the database along with the
authorization code, or if you're using self-encoded authorization
codes then it can be included in the code itself. (See The
Authorization Response on page 97 for details.) The server returns
the authorization code as normal, and does not include the
challenge in the data returned.

Error Response
The authorization server can require that public clients must use
the PKCE extension. This is really the only way to allow public
clients to have a secure authorization flow without using the client
secret, especially without the redirect URI security that's available
with web clients. Since the authorization server should know that a
specific client ID corresponds to a public client, it can deny
authorization requests for public clients that do not contain a code
challenge.

If the authorization server requires public clients to use PKCE, and
the authorization request is missing the code challenge, then the
server should return the error response with
error=invalid_request and the error_description or error_uri
should explain the nature of the error.

Chapter 17: Protecting Mobile Apps with PKCE 175

Authorization Code Exchange
The application will then exchange the authorization code for an
access token. In addition to the parameters defined in Authorization
Code Request (page 126), the client will also send the code_verifier
parameter. A complete access token request will include the
following parameters:

• grgrant_type=authorization_codeant_type=authorization_code - Indicates the grant type of
this token request

• codecode - The client will send the authorization code it
obtained in the redirect

• redirect_uriredirect_uri - The redirect URL that was used in the initial
authorization request

• client_idclient_id - The application's registered client ID
• code_verifiercode_verifier - The code verifier for the PKCE request which

the app originally generated before the authorization
request.

Since the code_challenge and code_challenge_method were
associated with the authorization code initially, the server should
already know which method to use to verify the code_verifier.

If the method is plain, then the authorization server needs only to
check that the provided code_verifier matches the expected
code_challenge string.

If the method is S256, then the authorization server should take the
provided code_verifier and transform it using the same hash
method, then comparing it to the stored code_challenge string.

If the verifier matches the expected value, then the server can
continue on as normal, issuing an access token and responding
appropriately. If there is a problem, then the server responds with
an invalid_grant error.

The PKCE extension does not add any new responses, so clients can
always use the PKCE extension even if an authorization server does
not support it.

176 Chapter 17: Protecting Mobile Apps with PKCE

Chapter 18

Token Introspection Endpoint

When an OAuth 2.0 client makes a request to the resource server,
the resource server needs some way to verify the access token. The
OAuth 2.0 core spec doesn't define a specific method of how the
resource server should verify access tokens, it just mentions that it
requires coordination between the resource and authorization
servers. In some cases, especially with small services, both
endpoints are part of the same system, and can share token
information internally such as in a database. In larger systems
where the two endpoints are on different servers, this has led to
proprietary and non-standard protocols for communicating
between the two servers.

The OAuth 2.0 Token Introspection extension (https://tools.ietf.org/
html/rfc7662) defines a protocol that returns information about an
access token, intended to be used by resource servers or other
internal servers.

Introspection Endpoint
The token introspection endpoint needs to be able to return
information about a token, so you will most likely build it in the
same place that the token endpoint lives. The two endpoints need to
either share a database, or if you have implemented self-encoded
tokens, they will need to share the secret.

Chapter 18: Token Introspection Endpoint 177

https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7662

Token Information Request
The request will be a POST request containing just a parameter
named "token". It is expected that this endpoint is not made publicly
available to developers. Applications should not be allowed to use
this endpoint since the response may contain privileged
information that developers should not have access to. One way to
protect the endpoint is to put it on an internal server that is not
accessible from the outside world, or it could be protected with
HTTP basic auth.

POST /token_info HTTP/1.1
Host: authorization-server.com
Authorization: Basic Y4NmE4MzFhZGFkNzU2YWRhN

token=c1MGYwNDJiYmYxNDFkZjVkOGI0MSAgLQ

Token Information Response
The Token Introspection Endpoint should respond with a JSON
object with the properties listed below. Only the "active" property is
required, the rest are optional. Some of the properties in the
Introspection spec are specifically for JWT tokens, so we will only
cover the basic ones here. You can also add additional properties in
the response if you have additional information about a token that
may be useful.

active

Required. This is a boolean value of whether or not the presented
token is currently active. The value should be "true" if the token has
been issued by this authorization server, has not been revoked by
the user, and has not expired.

scope

A JSON string containing a space-separated list of scopes associated
with this token.

178 Chapter 18: Token Introspection Endpoint

client_id

The client identifier for the OAuth 2.0 client that the token was
issued to.

username

A human-readable identifier for the user who authorized this token.

exp

The unix timestamp (integer timestamp, number of seconds since
January 1, 1970 UTC) indicating when this token will expire.

Example Response
Below is an example of the response that the introspection endpoint
would return.

HTTP/1.1 200 OK
Content-Type: application/json

{
"active": true,
"scope": "read write email",
"client_id": "J8NFmU4tJVgDxKaJFmXTWvaHO",
"username": "aaronpk",
"exp": 1437275311

}

Error Response
If the introspection endpoint is publicly accessible, the endpoint
must first validate the authentication. If the authentication is
invalid, the endpoint should respond with an HTTP 401 status code
and an invalid_client response.

Chapter 18: Token Introspection Endpoint 179

HTTP/1.1 401 Unauthorized
Content-Type: application/json

{
"error": "invalid_client",
"error_description": "Client authentication was invalid"

}

Any other error is considered an "inactive" token.

• The token requested does not exist or is invalid
• The token expired
• The token was issued to a different client than is making

this request

In any of these cases, it is not considered an error response, and the
endpoint returns simply an inactive flag with an HTTP 200 status.

HTTP/1.1 200 OK
Content-Type: application/json

{
"active": false

}

Security Considerations
Using a token introspection endpoint means that any resource
server will be relying on the endpoint to determine whether an
access token is currently active or not. This means the introspection
endpoint is solely responsible for deciding whether API requests
will succeed. As such, the endpoint must perform all applicable
checks against a token's state, such as checking whether the token
has expired, verifying signatures, etc.

Token Fishing
If the introspection endpoint is left open and un-throttled, it
presents a means for an attacker to poll the endpoint fishing for a

180 Chapter 18: Token Introspection Endpoint

valid token. To prevent this, the server must either require
authentication of the clients using the endpoint, or only make the
endpoint available to internal servers through other means such as
a firewall.

Note that the resources servers are also a potential target of a
fishing attack, and should take countermeasures such as rate
limiting to prevent this.

Caching
Consumers of the introspection endpoint may wish to cache the
response of the endpoint for performance reasons. As such, it is
important to consider the performance and security trade-offs
when deciding to cache the values. For example, shorter cache
expiration times will result in higher security since the resource
servers will have to query the introspection endpoint more
frequently, but will result in an increased load on the endpoint.
Longer expiration times leave a window open where a token may
actually be expired or revoked, but still be able to be used at a
resource server for the remaining duration of the cache time.

One way to mitigate this problem is for consumers to never cache
the value beyond the expiration time of the token, which would
have been returned in the "exp" parameter of the introspection
response.

Limiting Information
The introspection endpoint does not necessarily need to return the
same information for all queries of the same token. For example,
two different resource servers (if they authenticate themselves
when making the introspection request) may get different views of
the state of the token. This can be used to limit the information
about the token that is returned to a particular resource server. This
makes it possible to have tokens that can be used at multiple
resource servers without other servers ever knowing it is possible to
be used at any other server.

Chapter 18: Token Introspection Endpoint 181

182 Chapter 18: Token Introspection Endpoint

Chapter 19

Creating Documentation

As you may have noticed after reading through this far, there are
many places in the OAuth 2.0 spec where decisions are left up to the
implementation. Many of these things were left under-specified in
order to allow different implementations to make different
decisions based on their own security requirements. The end result
is that many OAuth 2.0 implementations are not actually
interoperable, although in practice, many of the implementations
have made the same decisions anyway, and are very similar.

Since there are many ways in which implementations can differ, as
well as some parts of the process such as registering applications
that have to happen manually, building good documentation for
your service is essential.

This section covers the things you will need to document in order
for a developer to be able to use your API. Some of these items can
be documented inline in the appropriate interface (such as the
interface developers use for client registration), and some are more
appropriate to document in an "overview" section of your API docs.

Client Registration
How do developers register a new client application to obtain a
client ID and optionally a secret?

• On a web page? Provide a link to the registration page.
• Programmatically? Your service may implement the

Chapter 19: Creating Documentation 183

Dynamic Client Registration (https://tools.ietf.org/html/
rfc7591) spec, or have a proprietary API for registering
applications

• Do you provide other mechanisms for developers to
register applications? You will need to describe other ways
to register apps if so.

Your service should at a minimum ask developers whether their
application is a confidential or public client, and provide a way to
register redirect URIs. Aside from those, you should document other
information you collect about an application, and indicate which
pieces of information are shown to the end-user during the
authorization request.

• Application name
• Web page about the application
• Description
• Logo or other images
• Web page about the application's terms of use
• Other information?

Endpoints
There are two primary endpoints developers will be using during
the OAuth process. Your authorization endpointauthorization endpoint (page 87) is where
the users will be directed to begin the authorization flow. After the
application obtains an authorization code, it will exchange that code
for an access token at the toktoken endpointen endpoint (page 126). The token
endpoint is also responsible for issuing access tokens for other grant
types.

You need to let developers know the URLs for these two endpoints
they will be using.

184 Chapter 19: Creating Documentation

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591

Client Authentication
When client authentication is required in a request, such as in the
Authorization Code grant (page 126), there are two ways your
service can accept the client ID and secret in the request. Your
service can accept the authentication in an HTTP Basic Auth header
using the client ID as the username and secret as the password, or
by accepting the strings in the post body as client_id and
client_secret. It is up to your service whether you want to accept
either or both of these methods, so you need to tell your developers
how you expect them to include this authentication in requests.

Additionally, your service may support other forms of client
authentication, such as a public/private key pair. This is relatively
uncommon in most consumer-grade OAuth 2.0 implementations,
but the spec leaves that open as a possibility.

There are no requirements on the maximum or minimum length of
client IDs and secrets issued to applications, so it's usually a good
idea to let your developers know how big to expect these strings to
be, so that they can store them appropriately.

Sizes of Strings
Since developers likely won't see an authorization code or access
token until they've started writing code, you should document the
maximum sizes of strings they will be encountering so they can
plan accordingly.

• Client ID
• Client Secret
• Authorization Code
• Access Token

Chapter 19: Creating Documentation 185

Response Types
Which response types does your service support? Typically services
will support just the "code" response type for web-based and native
apps, but you should make sure to point out whether your service
requires PKCE for public clients.

Redirect URL Restrictions
Your service may place restrictions on registered redirect URLs that
developers can use. For example, it is common that a service will
disallow developers to use non-TLS http endpoints, or restrict those
to be used by non-production applications. While supporting
custom schemes is important for supporting native apps, some
services disallow these as well. You should document any
requirements you place on registering redirect URLs.

Default Scopes
If the developer does not specify a scope during the authorization
request, the service may assume a default scope for that request. If
that is the case, you should document what the default scope is.

The authorization server may ignore the scope that the developer
requests, or add additional scopes beyond what is requested. The
server may also allow the user to change the scope from what is
requested. If any of these are possible, the service should clearly
point that out to developers so that they can account for the access
token possibly having different scopes than they had requested.

The service should also document the lifetime of the authorization
codes issued, so developers know approximately how long they can
expect the codes to last between being issued and being used. The
authorization server may also prevent a code from being used more
than once, and should document this if so.

186 Chapter 19: Creating Documentation

Access Token Response
When you issue an access token, the access token response lists a
number of parameters that are optional. You should document
which of these your service supports, so developers know what to
expect.

When does the response include an expires_in parameter? Your
service may always include it if the token expires, or your service
can document a default expiration developers should expect if this
value is not in the response.

Does the response always include the scope of the access token that
is granted? It's usually a good idea to return this in the response, but
many services leave it out if the granted scope matches the
requested scope. Either way, you should document the way your
server behaves for this parameter.

Refresh Tokens
One of the more confusing or frustrating aspects for developers of
OAuth 2.0 APIs is around refresh tokens. It's important to make it
very clear how your service deals with refresh tokens if at all.

If your access tokens expire, you likely want to support refresh
tokens so developers can build applications that continue to have
access to users' accounts without the user continually re-
authorizing the application.

You should clearly document which of the supported grant types
include a refresh token in the response, and under what
circumstances.

When your service issues a new access token in response to a
refresh token grant, it is possible for your service to issue a new
refresh token simultaneously, and expire the previous one. This
means refresh tokens rotate out frequently, which may be desirable
for your application. If this is the case, ensure developers know this

Chapter 19: Creating Documentation 187

will happen so they don't mistakenly assume the first refresh token
they obtain will continue to work indefinitely.

Extension Grants
In addition to the four basic grant types, Authorization Code,
Password, Client Credentials and Implicit, your service may support
additional grant types.

Some grant types are standardized as extensions to OAuth 2.0, such
as the Device Flow (page 163) and SAML (https://tools.ietf.org/html/
draft-campbell-oauth-saml). Some services also implement their
own custom grant types, such as when migrating a legacy API to
OAuth 2.0. It's important to document the additional grant types
your service supports, and provide documentation for how to use
them.

188 Chapter 19: Creating Documentation

https://tools.ietf.org/html/draft-campbell-oauth-saml
https://tools.ietf.org/html/draft-campbell-oauth-saml

Part III

Reference

Chapter 20

Terminology Reference

Roles
OAuth defines four roles:

• Resource owner (the user)
• Resource server (the API)
• Authorization server (issues access tokens and manages

user logins)
• Client (the third-party app)

The User
The OAuth 2.0 spec refers to the user as the "resource owner." The
resource owner is the person who is giving access to some portion
of their account. The resources in this case can be data (photos,
documents, contacts), services (posting a blog entry, transferring
funds), or any other resource requiring access restrictions. Any
system that wants to act on behalf of the user must first get
permission from them.

The API
The spec refers to what you typically think of as the main API as the
"resource server." The resource server is the server that contains

Chapter 20: Terminology Reference 191

the user's information that is being accessed by the third-party
application. The resource server must be able to accept and validate
access tokens and grant the request if the user has allowed it. The
resource server does not necessarily need to know about
applications.

The Authorization Server
The authorization server is what the user interacts with when an
application is requesting access to their account. This is the server
that displays the OAuth prompt, and where the user approves or
denies the application's request. The authorization server is also
responsible for granting access tokens after the user authorizes the
application.

The Client
The client is the app that is attempting to act on the user's behalf or
access the user's resources. Before the client can access the user's
account, it needs to obtain permission. The client will obtain
permission by either directing the user to the authorization server,
or by asserting permission directly with the authorization server
without interaction by the user.

Confidential Clients
Confidential clients are clients which have the ability to maintain
the confidentiality of the client_secret. Typically these clients are
only applications that run on a server under the control of the
developer, where the source code is not accessible to users. These
types of applications are commonly referred to as "web apps," since
they are most often accessed by a web browser.

192 Chapter 20: Terminology Reference

Public Clients
Public clients cannot maintain the confidentiality of a
client_secret, so the secret is not used for these apps. Both mobile
apps and JavaScript apps are considered public clients. Since
anyone running a JavaScript app can easily view the source code of
the application, a secret would be visible there trivially. With mobile
applications, the binary can be decompiled to extract strings. Any
time the application is running on a device under the user's control,
it should be considered a public client.

Access Token
An access token is the string used when making authenticated
requests to the API. The string itself has no meaning to the
application using it, but represents that the user has authorized a
third-party application to access their account. The token has a
corresponding duration of access, scope, and potentially other
information the server needs.

Refresh Token
A refresh token is a string that is used to get a new access token
when an access token expires. Not all APIs use refresh tokens.

Authorization Code
An authorization code is an intermediate token used in the
authorization code flow, described in more detail in Chapter 4,
Server-Side Apps. An authorization code is returned to the client
after the authorization step, and then the client exchanges it for an
access token.

Chapter 20: Terminology Reference 193

194 Chapter 20: Terminology Reference

Chapter 21

Differences Between OAuth 1
and 2

OAuth 2.0 is a complete rewrite of OAuth 1.0 from the ground up,
sharing only overall goals and general user experience. OAuth 2.0 is
not backwards compatible with OAuth 1.0 or 1.1, and should be
thought of as a completely new protocol.

OAuth 1 is considered deprecated, as it had many shortcomings
when it started being applied to the modern web and client-side and
native applications.

OAuth 1.0 was largely based on two existing proprietary APIs: Flickr
and Google. The work that became OAuth 1.0 was the best solution
based on actual implementation experience at the time. Over a few
years of many companies building OAuth 1 APIs, and many
developers writing code to consume the APIs, the community
learned where the protocol was proving challening. Several specific
areas were identified as needing improvement because they were
either limiting the abilities of the APIs, or were too challenging to
implement.

OAuth 2.0 represents years of discussions between a wide range of
companies and individuals including Yahoo!, Facebook, Salesforce,
Microsoft, Twitter, Deutsche Telekom, Intuit, Mozilla and Google.

This section covers the major differences between OAuth 1.0 and
2.0, and the motivations behind them. If you are familiar with
OAuth 1.0, this is a good starting point to quickly understand the
major changes in OAuth 2.0.

Chapter 21: Differences Between OAuth 1 and 2 195

Terminology and Roles
Where OAuth 2.0 defines four roles, (client, authorization server,
resource server, and resource owner,) OAuth 1 uses a different set
of terms for these roles. The OAuth 2.0 "client" is known as the
"consumer," the "resource owner" is known simply as the "user,"
and the "resource server" is known as the "service provider". OAuth
1 also does not explicitly separate the roles of resource server and
authorization server.

The terms "two-legged" and "three-legged" have been replaced by
the idea of grant types, such as the Client Credentials grant type
(page 130) and the Authorization Code grant type (page 126).

Authentication and Signatures
The majority of failed OAuth 1.0 implementation attempts were
unsuccessful due to the cryptographic requirements of the protocol.
The complexity of OAuth 1.0 signatures was a major pain point for
anyone coming from the simplicity of username/password
authentication.

Developers used to be able to quickly write Twitter scripts to do
useful things by using just their username and password. With the
move to OAuth 1.0, these developers were forced to find, install, and
configure libraries in order to make requests to the Twitter API
since it requires cryptographic signing of each request.

With the introduction of OAuth 2.0 Bearer tokens, it is again
possible to quickly make API calls from a cURL command. The
access token is used instead of a username and password.

For example, before OAuth, you may have seen examples in API
docs such as:

curl --user bob:pa55 https://api.example.com/profile

With OAuth 1 APIs, it become no longer possible to hard-code an
example like this, since the request must be signed with the

196 Chapter 21: Differences Between OAuth 1 and 2

application's secret. Some services such as Twitter started providing
"signature generator" tools in their developer websites so that you
could generate a curl command from the website without using a
library. For example, the tool on Twitter generates a curl command
such as:

curl --get 'https://api.twitter.com/1.1/statuses/show.json' \
--data 'id=210462857140252672' \
--header 'Authorization: OAuth oauth_consumer_key="xRhHSKcKLl9VF7",
oauth_nonce="33ec5af28add281c63db55d1839d90f1",
oauth_signature="oBO19fJO8imCAMvRxmQJsA6idXk%3D",
oauth_signature_method="HMAC-SHA1",
oauth_timestamp="1471026075",
oauth_token="12341234-ZgJYZOh5Z3ldYXH2sm5voEs0pPXOPv8vC0mFjMFtG",
oauth_version="1.0"'

With OAuth 2.0 Bearer Tokens, only the token itself is needed in the
request, so the examples again become very simple:

curl https://api.example.com/profile \
-H "Authorization: Bearer XXXXXXXXXXX"

This provides a good balance between ease of use of APIs and good
security practices.

User Experience and Alternative Token Issuance
Options
There are two main parts to OAuth 2.0: obtaining authorization by
the user (the end result being the application has an access token
for that user), and using the access token to make requests on behalf
of the user. The methods for obtaining an access token are called
flowsflows.

OAuth 1.0 started out with 3 flows, for web-based applications,
desktop clients, and mobile or "limited" devices. However, as the
specification evolved, the three flows were merged into one which,
in theory, enabled all three client types. In practice, the flow worked
fine for web-based applications but provided an inferior experience
elsewhere.

Chapter 21: Differences Between OAuth 1 and 2 197

As more sites started using OAuth, especially Twitter, developers
realized that the single flow offered by OAuth was very limited and
often produced poor user experiences. On the other hand, Facebook
Connect offered a richer set of flows suitable for web applications,
mobile devices, and game consoles.

OAuth 2.0 addresses this by defining multiple flows again, called
"grant types," with flexibility to support a wide range of application
types. There is also a mechanism to develop extensions to handle
use cases not previously thought of.

Server-side apps use the "Authorization Code" grant type with a
client secret, which prompts the user to authorize the application,
and generates an authorization code that is handed back to the app.
The app's server then exchanges the authorization code for an
access token. The security of this flow is obtained by the fact that
the server-side app uses its secret to exchange the authorization
code for an access token.

Single-page or mobile apps use the same grant type, but don't use
the client secret. Instead, the security is in verifying the redirect
URL as well as the optional PKCE extension.

OAuth 2.0 officially defines a "Password" grant type, allowing
applications to collect the user's username and password and
exchange them for an access token. While this is part of the spec, it
is intended to only be used by trusted clients, such as a service's
own first-party application. It should not be used by third-party
apps as that would allow the third-party app to have access to the
username and password of the user.

The "Client Credentials" grant is used when an application is access
its own resources. This grant type is simply exchanging the
client_id and client_secret for an access token.

OAuth 2.0 also supports extension grant types allowing
organizations to define their own custom grant types to support
additional client types or to provide a bridge between OAuth and
existing systems.

198 Chapter 21: Differences Between OAuth 1 and 2

One such extension is the Device Flow (page 163) for authorizing
apps on devices that don't have a web browser.

Performance at Scale
As larger providers started using OAuth 1.0, the community realized
that the protocol had several limitations that made it difficult to
scale to large systems. OAuth 1.0 requires state management across
different steps and often across different servers. It requires
generating temporary credentials which are often discarded
unused, and typically requires issuing long lasting credentials
which are less secure and harder to manage.

In addition, OAuth 1.0 requires that the protected resources
endpoints have access to the client credentials in order to validate
the request. This breaks the typical architecture of most large
providers in which a centralized authorization server is used for
issuing credentials, and a separate server is used for handling API
calls. Because OAuth 1.0 requires the use of the client credentials to
verify the signatures, it makes this separation very hard.

OAuth 2.0 addresses this by using the client credentials only when
the application obtains authorization from the user. After the
credentials are used in the authorization step, only the resulting
access token is used when making API calls. This means the API
servers do not need to know about the client credentials since they
can validate access tokens themselves.

Bearer Tokens
In OAuth 1, there are two components to the access token, a public
and private string. The private string is used when signing the
request, and never sent across the wire.

The most common way of accessing OAuth 2.0 APIs is using a
"Bearer Token". This is a single string which acts as the
authentication of the API request, sent in an HTTP "Authorization"

Chapter 21: Differences Between OAuth 1 and 2 199

header. The string is meaningless to clients using it, and may be of
varying lengths.

Bearer tokens are a much simpler way of making API requests,
since they don't require cryptographic signing of each request. The
tradeoff is that all API requests must be made over an HTTPS
connection, since the request contains a plaintext token that could
be used by anyone if it were intercepted. The advantage is that it
doesn't require complex libraries to make requests and is much
simpler for both clients and servers to implement.

The downside to Bearer tokens is that there is nothing preventing
other apps from using a Bearer token if it can get access to it. This is
a common criticism of OAuth 2.0, although most providers only use
Bearer tokens anyway. Under normal circumstances, when
applications properly protect the access tokens under their control,
this is not a problem, although technically it is less secure. If your
service requires a more secure approach, you can a different access
token type that may meet your security requirements.

Short-Lived Tokens with Long-Lived Authorizations
OAuth 1.0 APIs typically issued extremely long-lasting access tokens.
These tokens could last indefinitely, or on the order of a year. While
convenient for developers, this proved limiting to some service
providers in certain situations.

Responsible API providers should allow users to see which third-
party apps they have authorized to use their account, and should be
able to revoke apps if desired. If a user revokes an app, the API
should stop accepting the access tokens issued to that app as soon as
possible. Depending on how the API was implemented, this could be
challenging or require additional ties between internal parts of the
system.

With OAuth 2.0, the authorization server can issue a short-lived
access token and a long-lived refresh token. This allows apps to
obtain new access tokens without involving the user again, but also

200 Chapter 21: Differences Between OAuth 1 and 2

adds the ability for servers to revoke tokens easier. This feature was
adopted from Yahoo!'s BBAuth protocol and later its OAuth 1.0
Session Extension.

See Refreshing Access Tokens on page 143 for more information.

Separation of Roles
One of the design decisions that went into OAuth 2.0 was to
explicitly separate the roles of the authorization server from the API
server. This means you can build out the authorization server as a
standalone component which is only responsible for obtaining
authorization from users and issuing tokens to clients. The two roles
can be on physically separate servers, and even be on different
domain names, allowing each part of the system to be scaled
independently. Some providers have many resource servers and
each is on a different subdomain.

The authorization server needs to know about the app's client_id
and client_secret, but the API server will only ever need to accept
access tokens. By building the authorization server as a standalone
component, you can avoid sharing a database with the API servers,
making it easier to scale API servers independently of the
authorization server since they don't need to share a common data
store.

For example, Google's OAuth 2.0 implementation uses a server at
"accounts.google.com" for authorization requests, but uses
"www.gooogleapis.com" when making requests to the Google+ API.

The benefit to service providers is that the development of these
systems can happen completely independently, by different teams
and on different timelines. Since they are completely separate, they
can be scaled independently, or upgraded or replaced without
concerning the other parts of the systems.

Chapter 21: Differences Between OAuth 1 and 2 201

202 Chapter 21: Differences Between OAuth 1 and 2

Chapter 22

OpenID Connect

The OAuth 2.0 framework explicitly does not provide any
information about the user that has authorized an application.
OAuth 2.0 is a delegation framework, allowing third-party
applications to act on behalf of a user, without the application
needing to know the identity of the user.

OpenID Connect takes the OAuth 2.0 framework and adds an
identity layer on top. It provides information about the user, as well
as enables clients to establish login sessions. While this chapter is
not meant to be a complete guide to OpenID Connect, it is meant to
clarify how OAuth 2.0 and OpenID Connect relate to each other.

Authorization vs Authentication
OAuth 2.0 is called an authorization "framework" rather than a
"protocol" since the core spec actually leaves quite a lot of room for
various implementations to do things differently depending on their
use cases. Specifically, OAuth 2.0 does not provide a mechanism to
say who a user is or how they authenticated, it just says that a user
delegated an application to act on their behalf. The OAuth 2.0
framework provides this delegation in the form of an access token,
which the application can use to act on behalf of the user. The
access token is presented to the API (the "resource server"), which
knows how to validate whether the access token is active. From the
application's perspective, it is an opaque string.

Chapter 22: OpenID Connect 203

When you check in to a hotel, you get a key card which you can use
to enter your assigned room. You can think of the key card as an
access token. The key card says nothing about who you are, or how
you were authenticated at the front desk, but you can use the card
to access your hotel room for the duration of your stay. Similarly, an
OAuth 2.0 access token doesn't indicate who a user is, it just is the
thing you can use to access data, and it may expire at some point in
the future.

OAuth 2.0 was intentionally designed to provide authorization
without providing user identity and authentication, as those
problems have very different security considerations that don't
necessarily overlap with those of an authorization protocol.
Treating authentication and identity separately allows the OAuth 2.0
framework to be used as part of building an authentication
protocol.

Building an Authentication Framework
It is quite possible to use the OAuth 2.0 framework as the basis for
building an authentication and identity protocol.

To use OAuth 2.0 as the basis of an authentication protocol, you will
need to do at least a few things.

• Define an endpoint to return attributes about a user
• Define one or more scopes that the third-party applications

can use to request identity information from the user
• Define additional error codes and the necessary extension

parameters for the scenarios you'll encounter when dealing
with authentication and identity, such as when to re-
prompt for the user's credentials based on session timeouts,
or how to allow the user to select a new account when
signing in to an application

Typically when a single provider attempts to add things to OAuth
2.0 to create an authentication and identity protocol, this results in
another snowflake API with varying degrees of security. OpenID

204 Chapter 22: OpenID Connect

Connect takes the shared knowledge gained from many different
implementations and standardizes it into a protocol suitable for
enterprise grade implementations.

ID Tokens
The core of OpenID Connect is based on a concept called "ID
Tokens." This is a new token type that the authorization server will
return which encodes the user's authentication information. In
contrast to access tokens, which are only intended to be understood
by the resource server, ID tokens are intended to be understood by
the third-party application. When the client makes an OpenID
Connect request, it can request an ID token along with an access
token.

OpenID Connect's ID Tokens take the form of a JWT (JSON Web
Token), which is a JSON payload that is signed with the private key
of the issuer, and can be parsed and verified by the application.

Inside the JWT are a handful of defined property names that
provide information to the application. They are represented with
shorthand names to keep the overall size of the JWT small. This
includes a unique identifier for the user (sub, short for "subject"),
the identifier for the server that issued the token (iss), the identifier
for the client that requested this token (aud, short for "audience"),
along with a handful of properties such as the lifetime of the token,
and how long ago the user was presented with a primary
authentication prompt.

{
"iss": "https://server.example.com",
"sub": "24400320",
"aud": "s6BhdRkqt3",
"nonce": "n-0S6_WzA2Mj",
"exp": 1311281970,
"iat": 1311280970,
"auth_time": 1311280969,
"acr": "urn:mace:incommon:iap:silver"

}

Chapter 22: OpenID Connect 205

Standardizing the endpoints, names, and metadata helps reduce
implementation errors, and allows shared knowledge to be passed
around about the security considerations of each.

Summary
OpenID Connect provides user identity and authentication on top of
the OAuth 2.0 framework. You can use OpenID Connect to establish
a login session, and use OAuth to access protected resources.

You can request both an ID token and access token in the same flow
in order to both authenticate the user as well as obtain
authorization to access a protected resource.

OpenID Connect is maintained by the OpenID Foundation
(https://openid.net). The core OpenID Connect spec, as well as many
extensions, can be read in full on https://openid.net/connect/.

The OpenID Connect Debugger (https://oidcdebugger.com/) is a
fantastic resource to help you build OpenID Connect requests and
walk through the flows. Additionally, the OAuth 2.0 Playground
(https://www.oauth.com/playground/) provides a walkthrough of the
OpenID Connect flow against a live server.

In Chapter 3, Signing in with Google, we walk through building a
sample app using OpenID Connect.

206 Chapter 22: OpenID Connect

https://openid.net/
https://openid.net/
https://openid.net/connect/
https://oidcdebugger.com/
https://www.oauth.com/playground/
https://www.oauth.com/playground/

Chapter 23

IndieAuth

IndieAuth is a decentralized identity protocol built on OAuth 2.0,
which works using URLs to identify users and applications. It allows
people to use a website under their control as their identity while
signing in and authorizing applications using that identity. The spec
can be found at https://www.w3.org/TR/indieauth/.

All user IDs are URLs, and apps are also identified by their URLs
instead of by pre-registered client IDs. This makes it work great for
situations where you don't want to require that developers sign up
for an account at each authorization server, such as writing apps
that authenticate users at arbitrary WordPress installations.

IndieAuth can be used as an authentication mechanism when an
application just needs to identify users for login, or it can be used by
an application to obtain an access token to use against the user's
website.

For example, IndieAuth is used by Micropub clients
(https://www.w3.org/TR/micropub/) to obtain an access token that is
then used to create content on the user's website.

IndieAuth builds upon the OAuth 2.0 framework as follows:

Chapter 23: IndieAuth 207

https://www.w3.org/TR/indieauth/
https://www.w3.org/TR/micropub/
https://www.w3.org/TR/micropub/

• Specifies a mechanism and format for identifying users (a
resolvable URL)

• Specifies a method of discoverinig the authorization and
token endpoints given a profile URL

• Specifies a format for the Client ID (also as resolvable URL)
• All clients are public clients, as client secrets are not used
• Client registration is not necessary, since all clients must

use a resolvable URL as their Client ID
• Redirect URI registration is accomplished by either having a

matching hostname for the redirect URI and client ID, or
the application publicizing their valid redirect URLs on
their website

More information and the spec can be found at indieauth.net. A
brief overview of the two workflows follows.

Discovery
Before the app can redirect to the authorization server, the app
needs to know which authorization server to direct the user to! This
is because each user is identified by a URL, and the user's URL
indicates where its authorization server lives.

The app first needs to prompt the user to enter their URL, or obtain
their URL some other way. Typically apps will include a single URL
field for the user to enter their URL.

The app will make an HTTP GET request to the user's profile URL,
looking for either an HTTP Link header or an HTML <link> tag with
a rel value of authorization_endpoint. In the case that the client is
also trying to obtain an access token for the user, it will also look for
a rel value of token_endpoint.

For example, a GET request to https://aaronparecki.com/ may
return the following, shown as an abbreviated HTTP request.

208 Chapter 23: IndieAuth

https://indieauth.net/

HTTP/2 200
content-type: text/html; charset=UTF-8
link: <https://aaronparecki.com/auth>; rel="authorization_endpoint"
link: <https://aaronparecki.com/token>; rel="token_endpoint"
link: <https://aaronparecki.com/micropub>; rel="micropub"

<!doctype html>
<meta charset="utf-8">
<title>Aaron Parecki</title>
<link rel="authorization_endpoint" href="/auth">
<link rel="token_endpoint" href="/token">
<link rel="micropub" href="/micropub">
...

Note that the endpoint URLs may be relative or absolute URLs, and
may be on the same domain or on a different domain than the
user's endpoint. This allows the user to use hosted services for any
component.

More details on discovery can be found at
https://www.w3.org/TR/indieauth/#discovery-by-clients.

Sign-In Workflow
The basic flow for a user signing in to an application is as follows.

• The user enters their personal URL in the sign-in form of
the application.

• Discovery:Discovery: The application fetches the URL and finds the
user's authorization endpoint.

• AAuthorization Request:uthorization Request: The application directs the user's
browser to the authorization endpoint discovered, as a
standard OAuth 2.0 Authorization Grant along with the
user's URL entered in the first step.

• AAuthentication/Approval:uthentication/Approval: The user authenticates at their
authorization endpoint and approves the login request. The
authorization server generates an authorization code and
redirects back to the application's redirect URL.

• VVerification:erification: The application checks the code at the
authorization endpoint, similar to exchanging the code for

Chapter 23: IndieAuth 209

https://www.w3.org/TR/indieauth/#discovery-by-clients

an access token, except no access token is returned since
this is just a check for authentication. The authorization
endpoint responds with the full URL of the user who
authenticated.

Authentication Request
When the application builds the URL to authenticate the user, the
request looks very similar to the OAuth authorization request,
except no pre-registration of the client is necessary, and the request
will also include the user's profile URL. The URL will look like the
below.

https://user.example.net/auth?
me=https://user.example.net/
&redirect_uri=https://example-app.com/redirect
&client_id=https://example-app.com/
&state=1234567890

The authorization server will then ask the user to log in, as
normally happens with OAuth flows, and then ask the user if they
would like to continue signing into the app, as shown in Figure 23-1.

If the user approves, they will be redirected back to the application
with an authorization code (and the app's state value) in the query
string.

Figure 23-1:Figure 23-1: An IndieAuth login prompt

210 Chapter 23: IndieAuth

The app will then take the authorization code and verify it with the
authorization endpoint, in order to confirm the identity of the user
that signed in. The app makes a POST request to the authorization
endpoint with the code, client_id and redirect_uri, like a typical
authorization code exchange.

POST /auth
Host: user.example.net
Content-type: application/x-www-form-urlencoded

code=xxxxxxxx
&client_id=https://example-app.com/
&redirect_uri=https://example-app.com/redirect

The response will be a simple JSON object with the user's full profile
URL.

HTTP/1.1 200 OK
Content-Type: application/json

{
"me": "https://user.example.net/"

}

See https://www.w3.org/TR/indieauth/#authorization-code-
verification for more details about handling the request and
response.

Authorization Workflow
When an application is trying to obtain an access token for a user in
order to modify or access a user's data, the authorization workflow
is used instead. This is analogous to the OAuth 2.0 Authorization
Code flow described in Chapter 2, except without pre-registration of
clients since URLs are used instead.

The basic flow for a user authorizing an application follows:

• The user enters their personal URL in the sign-in form of
the application.

Chapter 23: IndieAuth 211

https://www.w3.org/TR/indieauth/#authorization-code-verification
https://www.w3.org/TR/indieauth/#authorization-code-verification

• Discovery:Discovery: The application fetches the URL and finds the
user's authorization and token endpoints.

• AAuthorization Request:uthorization Request: The application directs the user's
browser to the authorization endpoint discovered, as a
standard OAuth 2.0 Authorization Grant and requested
scopes, along with the user's URL entered in the first step.

• AAuthentication/Approval:uthentication/Approval: The user authenticates at their
authorization endpoint, sees the requested scopes, and
approves the request. The authorization server generates
an authorization code and redirects back to the
application's redirect URL.

• TTokoken Exchange:en Exchange: The application makes a request to the
token endpoint to exchange the authorization code for an
access token. The token endpoint responds with an access
token as well as the full URL of the user who authenticated.

Authorization Request
When the application builds the URL to authenticate the user, the
request looks very similar to the OAuth authorization request,
except no pre-registration of the client is necessary, and the request
will also include the user's profile URL. The URL will look like the
below.

https://user.example.net/auth?
me=https://user.example.net/
&response_type=code
&redirect_uri=https://example-app.com/redirect
&client_id=https://example-app.com/
&state=1234567890
&scope=create+update

Note that unlike in the authentication request above, this request
includes response_type=code and a list of requested scopes the app
is requesting.

The authorization server will ask the user to log in, then present
them with an authorization prompt.

212 Chapter 23: IndieAuth

Different IndieAuth servers may present this prompt differently, as
shown in the screenshots from my website's authorization server
Figure 23-2 and the WordPress IndieAuth plugin in Figure 23-3.

Figure 23-2:Figure 23-2: An IndieAuth authorization prompt on aaronparecki.com

When the user approves the request, the server redirects the user
back to the application with an authorization code in the query
string.

To obtain an access token, the application makes a POST request to
the user's token endpoint (the endpoint was discovered in the first
discovery step) with the authorization code and other required
data.

POST /token
Host: user.example.net
Content-type: application/x-www-form-urlencoded

Chapter 23: IndieAuth 213

grant_type=authorization_code
&code=xxxxxxxx
&client_id=https://example-app.com/
&redirect_uri=https://example-app.com/redirect
&me=https://user.example.net/

Figure 23-3:Figure 23-3: An authorization prompt from the WordPress IndieAuth Plugin

The token endpoint will generate an access token for the user, and
respond with a normal OAuth 2.0 token response with the addition
of the profile URL of the user who authorized the app.

HTTP/1.1 200 OK
Content-Type: application/json

{
"me": "https://user.example.net/",
"token_type": "Bearer",
"access_token": "XXXXXX",
"scope": "create update"

}

214 Chapter 23: IndieAuth

Chapter 24

Map of OAuth 2.0 Specs

The OAuth 2.0 Core Framework (RFC 6749) defines roles and a base
level of functionality, but leaves a lot of implementation details
unspecified. Since the publication of the RFC, the OAuth Working
Group has published many additional specs built on top of this
framework to fill in the missing pieces. Looking at the full list of
specs (https://tools.ietf.org/wg/oauth/) the group is working on can
be somewhat overwhelming. This chapter lays out how the various
specs relate to each other.

Chapter 24: Map of OAuth 2.0 Specs 215

https://tools.ietf.org/wg/oauth/
https://tools.ietf.org/wg/oauth/

Core Specs

OAuth 2.0 Core (RFC 6749)
https://tools.ietf.org/html/rfc6749

RFC 6749 is the core OAuth 2.0 framework. This describes the roles
(resource owner, client, authorization server, etc, described in more
detail in Chapter 20, Terminology Reference,), several authorization
flows, and several error definitions. It is important to remember
that this is a "framework," as there are many aspects left
unspecified that you'll need to fill out when building a complete
implementation. Much of these details have been documented as
extension specs.

Bearer Token Usage (RFC 6750)
https://tools.ietf.org/html/rfc6750

Access token usage is defined in RFC 6750, although the format of
access tokens isn't defined here. This spec defines "Bearer Tokens",
which just means that it's a type of token that can be used by
whoever has the token with no additional information. The
particular format access tokens take (random strings, JWTs, etc) is
not relevant to OAuth clients so isn't included in this spec. Only the
Authorization Server and Resource Server need to coordinate on
access token formats, so that is left up to the particular
implementation or a future spec.

216 Chapter 24: Map of OAuth 2.0 Specs

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750

Threat Model and Security Considerations (RFC 6819)
https://tools.ietf.org/html/rfc6819

The Threat Model and Security Considerations document was
written to provide additional guidance beyond what is described in
the core RFC. Much of this document was added after major
providers had real implementation experience. The document
describes many known attacks, either theoretical attacks or ones
that have been demonstrated in the wild. It describes
countermeasures for each.

Everyone implementing an OAuth 2.0 server should read this
document to avoid falling into traps that have already been
explored and solved.

OAuth 2.0 Security Best Current Practice (Security BCP)
https://tools.ietf.org/html/draft-ietf-oauth-security-topics

OAuth 2.0 Security Best Current Practice describes security
requirements and other recommendations for clients and servers
implementing OAuth 2.0. This is a new Best Current Practice around
OAuth security, intended to capture experience gained from live
deployments in the years since the first Security Considerations RFC
was published in 2013.

This spec is also still in draft form, so will likely go through a few
more changes before it is finalized as an RFC.

Some of the concrete recommendations in this draft are deprecating
the Implicit flow and Password grant, and recommending that a
new refresh token is issued every time one is used.

Chapter 24: Map of OAuth 2.0 Specs 217

https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics

Tokens

Token Revocation (RFC 7009)
https://tools.ietf.org/html/rfc7009

Token Revocation describes a new endpoint on the authorization
server that clients can use to notify the server that an access token
or refresh token is no longer needed. This is used to enable a "log
out" feature in clients, allowing the authorization server to clean up
any tokens or other data associated with that session.

Token Introspection (RFC 7662)
https://tools.ietf.org/html/rfc7662

The Token Introspection spec defines a mechanism for resource
servers to obtain information about access tokens. Without this
spec, resource servers have to have a bespoke way of checking
whether access tokens are valid, and finding out user data about
them, etc. This typically occurs by either a custom API endpoint, or
because the resource server and authorization server share a
database or some other common storage.

With this spec, resource servers can check the validity of access
tokens and find out other information with an HTTP API call,
leading to better separation of concerns between the authorization
server and any resource servers.

218 Chapter 24: Map of OAuth 2.0 Specs

https://tools.ietf.org/html/rfc7009
https://tools.ietf.org/html/rfc7662

Mobile and Other Devices
These specs are written to enable support of OAuth on a wider
variety of devices.

OAuth 2.0 for Native Apps
https://tools.ietf.org/html/draft-ietf-oauth-native-apps

The intended audience for this spec is implementers of mobile apps
or apps running on desktop devices, where interactions between the
app and the browser are not as straightforward as in a browser-
only environment.

In this document you'll find security recommendations unique to
the native application environment. It describes things like not
allowing the third-party application to open an embedded web view
which is more susceptible to phishing attacks, as well as platform-
specific recommendations on how to do so. It also recommends
using the PKCE extension, which is described below.

PKCE: Proof Key for Code Exchange (RFC 7636)
https://tools.ietf.org/html/rfc7636

PKCE is an extension to the Authorization Code flow that adds a
secure link between starting and completing the flow so that clients
can use it without a preconfigured secret.

PKCE works by the app first generating a new secret each time it
starts the Authorization Code flow, and it sends a hash of the secret
in the initial authorization request. The original secret is then
required in order to exchange the authorization code for an access
token, ensuring that even if an attacker can steal the authorization
code, they would be unable to use it.

At the time of publication, PKCE was recommended for mobile apps,
but it has proven to be useful even for JavaScript apps, and now the

Chapter 24: Map of OAuth 2.0 Specs 219

https://tools.ietf.org/html/draft-ietf-oauth-native-apps
https://tools.ietf.org/html/rfc7636

latest Security Best Current Practice recommends using it for all
types of apps, even apps with a client secret.

Browser-Based Apps
OAuth 2.0 for Browser-Based Apps describes security requirements
and other recommendations for JavaScript apps (commonly known
as Single-Page Apps) using OAuth.

As of this publication, this document is still in draft form and is not
yet an RFC. It is likely to go through some more changes before it is
finalized. It has been adopted by the working group, which means
people broadly recognize the need for this kind of guidance,
although the specific recommendations inside have not necessarily
yet been fully agreed upon yet.

This document is intended to complement the Native App Best
Current Practice, addressing the specifics of a browser-based
environment instead.

It recommends using the Authorization Code flow with PKCE
instead of using the Implicit flow, and disallowing the Password
grant by browser apps. It also provides a few different architectural
patterns available to these apps.

Device Flow
https://tools.ietf.org/html/draft-ietf-oauth-device-flow

The Device Flow is an extension that enables devices with no
browser or limited input capability to use OAuth. You'll typically see
this on devices like the Apple TV where there is no web browser, or
streaming video encoders where there is no keyboard.

The flow works by having users visit a URL on a secondary device
like a smartphone and entering a code that is shown on the device.

The Device Flow is described in more detail in Chapter 16, OAuth for
Browserless and Input-Constrained Devices.

220 Chapter 24: Map of OAuth 2.0 Specs

https://tools.ietf.org/html/draft-ietf-oauth-device-flow

Authentication and Identification
These specs are used to provide applications with a user's identity,
which is not provided by the core OAuth spec.

OpenID Connect
https://openid.net/connect/

Since the OAuth framework only describes an authorization method
and does not provide any details about the user, OpenID Connect
fills this gap by describing an authentication and session
management mechanism.

We cover a brief overview of how OpenID Connect relates to OAuth
2.0 in Chapter 22, OpenID Connect.

IndieAuth
https://www.w3.org/TR/indieauth/

IndieAuth is a decentralized identity protocol built on OAuth 2.0,
using URLs to identify users and applications. This avoids the need
for prior registration of clients, since all clients have a built-in client
ID: the application's URL.

We cover a brief overview of the authentication and authorization
workflows of IndieAuth in Chapter 23, IndieAuth.

Chapter 24: Map of OAuth 2.0 Specs 221

https://openid.net/connect/
https://www.w3.org/TR/indieauth/

Interop
In order to support creating completely generic clients that can
work with any OAuth 2.0 server, things such as discovery and client
registration need to be standardized, since they are out of scope of
the core spec.

Authorization Server Metadata (RFC 8414)
https://tools.ietf.org/html/rfc8414

The Authorization Server Metadata spec (also known as Discovery)
defines a format for clients to use to look up the information needed
to interact with a particular OAuth server. This includes things like
finding the authorization endpoint, and listing the supported
scopes.

Dynamic Client Registration (RFC 7591)
https://tools.ietf.org/html/rfc7591

Typically developers will manually register an application at a
service to obtain a Client ID and provide information about the
application that will be used on the authorization interface. This
spec provides a mechanism for dynamically or programmatically
registering clients. This spec was derived from the OpenID Connect
Dynamic Client Registration spec and is still compatible with
OpenID Connect servers.

Dynamic Client Management (RFC 7592)
https://tools.ietf.org/html/rfc7592

In the case that client information needs to be updated, this spec
provides a mechanism for doing so programmatically. This spec
extends the Dynamic Registration RFC 7591, but is considered
experimental still.

222 Chapter 24: Map of OAuth 2.0 Specs

https://tools.ietf.org/html/rfc8414
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7592

Experimental Specs
These are early drafts of some new specs that may end up becoming
part of OAuth 2.0. These specs enable additional use cases, or
provide better security. These are all still early drafts, so they may
change significantly by the time you're reading this, or may have
been dropped entirely. These are some things to keep an eye on if
you're interested in keeping up to date with the latest developments
in the space.

Pushed Authorization Requests
https://tools.ietf.org/html/draft-ietf-oauth-par

Pushed Authorization Requests is a significant change to the OAuth
flow to rely less on the front channel, by moving the start of the
authorization code flow to the back channel instead.

Rich Authorization Requests
https://tools.ietf.org/html/draft-ietf-oauth-rar

Rich Authorization Requests describes way for apps to request
permissions more fine-grained than the current OAuth "scope"
mechanism can provide. This could be used, for example, to
authorize a particular bank transfer.

JWT Authorization Request
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq

JWT Authorization Request describes a way to encode and sign the
authorization request parameters as a JWT instead of using plain
query string components. This lets the authorization server be sure
that a real OAuth application initiated a particular authorziation
request and the request has not been forged or tampered with.

Chapter 24: Map of OAuth 2.0 Specs 223

https://tools.ietf.org/html/draft-ietf-oauth-par
https://tools.ietf.org/html/draft-ietf-oauth-rar
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq

JWT Profile for OAuth Access Tokens
https://tools.ietf.org/html/draft-ietf-oauth-access-token-jwt

The JWT Profile defines a JWT-based format and vocabulary for
access tokens based on the collective experience learned from
several large deployments.

Mutual TLS
https://tools.ietf.org/html/draft-ietf-oauth-mtls

Mutual TLS describes a way to use TLS certificates for client
authentication as well as issuing certificate-bound access tokens.
This is one way implementers are improving upon the idea of
bearer tokens.

DPoP
https://tools.ietf.org/html/draft-fett-oauth-dpop

DPoP describes an alternative to Mutual TLS for issuing access
tokens that are bound to a particular client. This version
accomplishes that in the application layer rather than transport
layer.

224 Chapter 24: Map of OAuth 2.0 Specs

https://tools.ietf.org/html/draft-ietf-oauth-access-token-jwt
https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-fett-oauth-dpop

Enterprise
These specs support more advanced enterprise use cases.

Assertion Framework (RFC 7521)
https://tools.ietf.org/html/rfc7521

This spec provides a framework for using assertions with OAuth 2.0.
It defines a new client authentication mechanism and a new
authorization grant type. As this spec is also a framework, it is only
useful with one of the specific assertion types described below.

JWT Assertions (RFC 7523)
https://tools.ietf.org/html/rfc7523

This spec describes how a JWT can be used to request an access
token when there is an existing trust relationship with the client as
described by the contents of the JWT. It also describes how a JWT
can be used as client authentication for the core OAuth grants.

SAML Assertions (RFC 7522)
https://tools.ietf.org/html/rfc7522

This spec describes how a SAML Assertion can be used to request an
access token when there is an existing trust relationship with the
client. This can be used, for example, to integrate legacy SAML
workflows with new OAuth 2.0 systems.

Chapter 24: Map of OAuth 2.0 Specs 225

https://tools.ietf.org/html/rfc7521
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7522

226 Chapter 24: Map of OAuth 2.0 Specs

° ° ° ° °

Tools and Libraries

OAuth 2.0 Playground
https://www.oauth.com/playground/

Figure 24-1:Figure 24-1: oauth.com/playground

The OAuth 2.0 Playground walks you through the various OAuth
flows by interacting with a real OAuth 2.0 authorization server.

It has examples of the Authorization Code flow, PKCE, the Device
flow, as well as a simple example of OpenID Connect.

Chapter 24: Map of OAuth 2.0 Specs 227

https://www.oauth.com/playground/

Google OAuth 2.0 Playground
https://developers.google.com/oauthplayground/

Google's OAuth 2.0 Playground allows you to manually step through
thee authorization process accessing your own Google account from
this test application.

You can select from a list of available scopes, click "authorize" to be
taken to the standard Google authorization page, and the redirect
returns you to the OAuth 2.0 Playground. There, you can watch the
request to exchange the authorization code for an access token, and
then test out using the access token to make API requests.

The tool also allows you to authorize against other OAuth 2.0
servers by customizing the authorization and token endpoints as
well.

OpenID Connect Debugger
https://oidcdebugger.com

The OpenID Connect Debugger allows you to test OpenID Connect
requests and debug responses from the servers. You can configure
the tool to work with any OpenID server such as Google's.

Directory of Server and Client Libraries
https://oauth.net/code/

The oauth.net website contains a directory of servers, clients and
services that support OAuth 2.0. You can find anything from
complete OAuth 2.0 server implementations to libraries that
facilitate each step of the process, as well as client libraries and
proxy services.

If you have any libraries or services to contribute, you can add them
to the directory as well.

228 Chapter 24: Map of OAuth 2.0 Specs

https://developers.google.com/oauthplayground/
https://oidcdebugger.com/
https://oauth.net/code/

Videos about OAuth
https://oauth.net/videos/

There is a great collection of videos about various OAuth topics at
oauth.net/videos. Feel free to add yours as well by following the link
at the bottom of the website!

jwt.io
https://jwt.io/

Figure 24-2:Figure 24-2: jwt.io

JWT.io (Figure 24-2) is a tool for debugging JSON Web Tokens. It
allows you to paste a JWT and it will decode it and show the
individual components. It can also verify the signature if you
provide it with the secret that was used to sign the JWT.

Chapter 24: Map of OAuth 2.0 Specs 229

https://oauth.net/videos/
https://jwt.io/
https://jwt.io/

230 Chapter 24: Map of OAuth 2.0 Specs

° ° ° ° °

References

Specifications

• OAuth 2.0 (RFC 6749)
http://tools.ietf.org/html/rfc6749

• Bearer Token Usage (RFC 6750)
http://tools.ietf.org/html/rfc6750

• OAuth 2.0 Threat Model and Security Considerations
http://tools.ietf.org/html/rfc6819

• OAuth 2.0 Device Flow
https://tools.ietf.org/html/draft-ietf-oauth-device-flow

• OAuth 2.0 for Native Apps
https://tools.ietf.org/html/draft-ietf-oauth-native-apps

• Proof Key for Code Exchange (RFC 7636)
https://tools.ietf.org/html/rfc7636

• JSON Web Token (RFC 7519)
http://tools.ietf.org/html/rfc7519

• OpenID Connect
https://openid.net/connect/

• IndieAuth
https://www.w3.org/TR/indieauth/

• All OAuth Working Group Specs
https://tools.ietf.org/wg/oauth/

Appendix: References 231

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-device-flow
https://tools.ietf.org/html/draft-ietf-oauth-device-flow
https://tools.ietf.org/html/draft-ietf-oauth-native-apps
https://tools.ietf.org/html/draft-ietf-oauth-native-apps
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636
http://tools.ietf.org/html/rfc7519
http://tools.ietf.org/html/rfc7519
https://openid.net/connect/
https://openid.net/connect/
https://www.w3.org/TR/indieauth/
https://www.w3.org/TR/indieauth/
https://tools.ietf.org/wg/oauth/
https://tools.ietf.org/wg/oauth/

Vendor Documentation

• Google OAuth 2.0
https://developers.google.com/identity/protocols/OAuth2

• Facebook Developers
https://developers.facebook.com/

• GitHub Documentation
https://developer.github.com/apps/

• Foursquare Documentation
https://developer.foursquare.com/overview/auth

• FitBit Documentation
https://dev.fitbit.com/build/reference/web-api/oauth2/

Community Resources

• OAuth articles by Alex Bilbie
https://alexbilbie.com/tag/oauth/

• OAuth articles by Eran Hammer
https://hueniverse.com/tagged/oauth

• User Authentication with OAuth 2.0
https://oauth.net/articles/authentication/

• OAuth IETF Mailing List
https://www.ietf.org/mailman/listinfo/oauth

232 Appendix: References

https://developers.google.com/identity/protocols/OAuth2
https://developers.google.com/identity/protocols/OAuth2
https://developers.facebook.com/
https://developers.facebook.com/
https://developer.github.com/apps/
https://developer.github.com/apps/
https://developer.foursquare.com/overview/auth
https://developer.foursquare.com/overview/auth
https://dev.fitbit.com/build/reference/web-api/oauth2/
https://dev.fitbit.com/build/reference/web-api/oauth2/
https://alexbilbie.com/tag/oauth/
https://alexbilbie.com/tag/oauth/
https://hueniverse.com/tagged/oauth
https://hueniverse.com/tagged/oauth
https://oauth.net/articles/authentication/
https://oauth.net/articles/authentication/
https://www.ietf.org/mailman/listinfo/oauth
https://www.ietf.org/mailman/listinfo/oauth

° ° ° ° °

About the Author

Aaron PareckiAaron Parecki is a member of the OAuth Working Group at the IETF
and has contributed to a number of the OAuth specifications. His
books and trainings help developers architect and build secure
systems using the latest standards.

He is also the co-founder of IndieWebCamp, a yearly worldwide
conference on data ownership and online identity, and is the editor
of the W3C Webmention and Micropub specifications. He has
spoken at conferences around the world about OAuth, data
ownership, quantified self, and even explained why R is a vowel.

Aaron has tracked his location continuously since 2008, and was the
co-founder and CTO of Geoloqi, a location-based software company
acquired by Esri in 2012. His work has been featured in Wired, Fast
Company and more, and made Inc. Magazine’s 30 Under 30 for his
work on Geoloqi. Aaron holds a B.S. in Computer Science from
University of Oregon and lives in Portland, Oregon.

You can find Aaron at aaronpk.com and twitter.com/aaronpk.

Appendix: About the Author 233

https://aaronpk.com/
https://twitter.com/aaronpk

	OAuth 2.0 Simplified
	A guide to building OAuth 2.0 servers
	Aaron Parecki

	OAuth 2.0 Simplified

	Table of Contents
	Preface
	Acknowledgments
	Background
	OAuth 2.0 Clients
	Getting Ready
	Creating an Application
	Redirect URLs and State

	Accessing Data in an OAuth Server
	Create an Application
	Setting Up the Environment
	Authorization Request
	Obtaining an Access Token
	Making API Requests
	Download the Sample Code

	Signing In with Google
	Create an Application
	Setting Up the Environment
	Authorization Request
	Getting an ID Token
	Verifying the User Info
	Using the ID Token to Retrieve User Info
	Using the Access Token to Retrieve User Info
	Download the Sample Code

	Server-Side Apps
	Authorization Code Flow
	OAuth Security
	Authorization Request Parameters
	response_type=code
	client_id
	redirect_uri (optional)
	scope (optional)
	state
	PKCE

	The user approves the request
	Exchange the authorization code for an access token
	grant_type (required)
	code (required)
	redirect_uri (possibly required)
	Client Authentication (required)
	PKCE Verifier

	Example Flow
	Step-by-step
	The app initiates the authorization request
	The user approves the request
	The service redirects the user back to the app
	The app exchanges the auth code for an access token

	Possible Errors
	Invalid redirect URL
	Unrecognized client_id
	The user denies the request
	Invalid parameters

	User Experience and Security Considerations

	Single-Page Apps
	Deprecation Notice
	Authorization
	Authorization Request Parameters
	response_type=code
	client_id
	redirect_uri
	scope (optional)
	state
	code_challenge
	code_challenge_method

	Example Flow
	The app initiates the authorization request
	The user approves the request
	Exchange the authorization code for an access token
	grant_type (required)
	code (required)
	redirect_uri (possibly required)
	code_verifier (required)
	Client Identification (required)

	Sample JavaScript Code
	Generate a Random String
	Calculate a SHA256 Hash
	Base64 URL Encoding
	Generate the PKCE Challenge

	Implicit Flow
	Security Considerations
	Refresh Tokens
	Storing Tokens
	Choosing an Alternative Architecture

	Mobile and Native Apps
	Authorization
	Example
	Initiate the authorization request
	The user approves the request
	The service redirects the user back to the app
	Exchange the authorization code for an access token
	grant_type (required)
	code (required)
	redirect_uri (possibly required)
	code_verifier (required)
	Client Identification (required)

	Security Considerations
	Always use the secure embedded browser APIs, or launch a native browser

	Making Authenticated Requests
	Refresh Tokens

	Building an OAuth 2.0 Server
	Client Registration
	Registering a New Application
	The Client ID and Secret
	Client ID
	Client Secret
	Storing and Displaying the Client ID and Secret
	Deleting Applications and Revoking Secrets
	Deleting Applications
	Revoking Secrets

	Authorization
	The Authorization Request
	Request Parameters
	response_type
	client_id
	redirect_uri (optional)
	scope (optional)
	state (recommended)
	PKCE

	Verifying the Authorization Request
	Invalid Redirect URL
	Other Errors

	Requiring User Login
	The Authorization Interface
	Website name and logo
	User identification
	Application details
	The requested scope
	The requested or effective lifetime
	Allow / Deny

	The Authorization Response
	Authorization Code Response
	Generating the Authorization Code
	code
	state

	Implicit Grant Type Response
	Error Response
	error
	error_description
	error_uri
	state
	Example

	Security Considerations
	Phishing Attacks
	Countermeasures

	Clickjacking
	Countermeasures

	Redirect URL Manipulation
	Countermeasures

	Scope
	Defining Scopes
	Read vs. Write
	Restricting Access to Sensitive Information
	Selectively Enabling Access by Functionality
	Limiting Access to Billable Resources
	User Interface
	Checkboxes
	Facebook
	FitBit
	GitHub

	Redirect URLs
	Registration
	Valid Redirect URLs
	Per-Request Customization
	Redirect URLs for Native Apps
	App-Claimed https URL Redirection
	Custom URL Scheme
	Custom URL Scheme Namespaces

	Validation
	Redirect URL Registration
	Authorization Request
	Granting Access Tokens

	Access Tokens
	Authorization Code Request
	Request Parameters
	grant_type (required)
	code (required)
	redirect_uri (possibly required)
	client_id (required if no other client authentication is present)

	Verifying the authorization code grant
	Example
	Security Considerations
	Preventing replay attacks

	Password Grant
	Request Parameters
	Example

	Client Credentials
	Request Parameters
	grant_type (required)
	scope (optional)
	Client Authentication (required)

	Example

	Access Token Response
	Successful Response
	Access Tokens

	Unsuccessful Response

	Self-Encoded Access Tokens
	JWT Access Token Encoding
	Decoding
	Invalidating Access Tokens

	Access Token Lifetime
	Short-lived access tokens and long-lived refresh tokens
	Short-lived access tokens and no refresh tokens
	Non-expiring access tokens

	Refreshing Access Tokens
	Request Parameters
	grant_type (required)
	refresh_token (required)
	scope (optional)
	Client Authentication (required if the client was issued a secret)

	Verifying the refresh token grant
	Example
	Response

	Listing Authorizations
	Google
	Twitter
	GitHub
	Revoking Access
	Token Database
	Self-Encoded Tokens

	The Resource Server
	Verifying Access Tokens
	Verifying Scope
	Expired Tokens
	Error Codes and Unauthorized Access

	OAuth for Native Apps
	Use a System Browser
	Redirect URLs
	Custom URL Scheme
	HTTPS URL Matching
	Loopback URLs
	Registration

	PKCE Extension
	Server Support Checklist

	OAuth for Browserless and Input-Constrained Devices
	User Flow
	Authorization Request
	Token Request
	Authorization Server Requirements
	Device Code Request
	User Code
	Verification URL
	Optimization for Non-Textual Interfaces

	Security Considerations
	User Code Brute Forcing
	Remote Phishing

	Protecting Mobile Apps with PKCE
	Authorization Request
	Error Response

	Authorization Code Exchange

	Token Introspection Endpoint
	Introspection Endpoint
	Token Information Request
	Token Information Response
	active
	scope
	client_id
	username
	exp
	Example Response

	Error Response
	Security Considerations
	Token Fishing
	Caching
	Limiting Information

	Creating Documentation
	Client Registration
	Endpoints
	Client Authentication
	Sizes of Strings
	Response Types
	Redirect URL Restrictions
	Default Scopes
	Access Token Response
	Refresh Tokens
	Extension Grants

	Reference
	Terminology Reference
	Roles
	The User
	The API
	The Authorization Server
	The Client

	Confidential Clients
	Public Clients
	Access Token
	Refresh Token
	Authorization Code

	Differences Between OAuth 1 and 2
	Terminology and Roles
	Authentication and Signatures
	User Experience and Alternative Token Issuance Options
	Performance at Scale
	Bearer Tokens
	Short-Lived Tokens with Long-Lived Authorizations
	Separation of Roles

	OpenID Connect
	Authorization vs Authentication
	Building an Authentication Framework
	ID Tokens
	Summary

	IndieAuth
	Discovery
	Sign-In Workflow
	Authentication Request

	Authorization Workflow
	Authorization Request

	Map of OAuth 2.0 Specs
	Core Specs
	OAuth 2.0 Core (RFC 6749)
	Bearer Token Usage (RFC 6750)
	Threat Model and Security Considerations (RFC 6819)
	OAuth 2.0 Security Best Current Practice (Security BCP)

	Tokens
	Token Revocation (RFC 7009)
	Token Introspection (RFC 7662)

	Mobile and Other Devices
	OAuth 2.0 for Native Apps
	PKCE: Proof Key for Code Exchange (RFC 7636)
	Browser-Based Apps
	Device Flow

	Authentication and Identification
	OpenID Connect
	IndieAuth

	Interop
	Authorization Server Metadata (RFC 8414)
	Dynamic Client Registration (RFC 7591)
	Dynamic Client Management (RFC 7592)

	Experimental Specs
	Pushed Authorization Requests
	Rich Authorization Requests
	JWT Authorization Request
	JWT Profile for OAuth Access Tokens
	Mutual TLS
	DPoP

	Enterprise
	Assertion Framework (RFC 7521)
	JWT Assertions (RFC 7523)
	SAML Assertions (RFC 7522)

	Tools and Libraries
	OAuth 2.0 Playground
	Google OAuth 2.0 Playground
	OpenID Connect Debugger
	Directory of Server and Client Libraries
	Videos about OAuth
	jwt.io

	References
	Specifications
	Vendor Documentation
	Community Resources

	About the Author

