
	

 [image: Cover Page]

		

 Amazon
Web Services for
Mobile Developers

Building Apps with AWS®

[image: Wiley Logo]

 Abhishek Mishra

 [image: Wiley Logo]

Senior Acquisitions Editor: Kenyon Brown

Development Editor: Tom Dinse

Technical Editors: Chaim Krause and John Mueller

Production Editor: Christine O’Connor

Copy Editor: Karen Davis

Editorial Manager: Mary Beth Wakefield

Production Manager: Kathleen Wisor

Associate Publisher: Jim Minatel

Book Designers: Judy Fung and Bill Gibson

Proofreader: Nancy Carrasco

Indexer: Ted Laux

Project Coordinator, Cover: Brent Savage

Cover Designer: Wiley

Cover Image: Jeremy Woodhouse / Getty Images

Copyright © 2018 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-37785-6

ISBN: 978-1-119-37784-9 (ebk.)

ISBN: 978-1-119-37786-3 (ebk.)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017956046

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Amazon Web Services and AWS are trademarks or registered trademarks of Amazon Technologies, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

To my wife, Sonam, for her love and support through all the years we’ve been together.

To my daughter, Elana, for bringing joy and happiness into our lives.

Acknowledgments

This book would not have been possible without the support of the team at Wiley, including Jim Minatel, Kenyon Brown, Tom Dinse, and Karen Davis.

I would also like to thank Chaim Krause for taking the time to read the entire manuscript and for his keen eye for detail.

It has been my privilege to work with you. Thank you.

About the Authors

Abhishek Mishra has been active in the IT industry for more than 19 years. He has extensive experience with a wide range of programming languages, enterprise systems, and platforms.

He holds a master’s degree in computer science from the University of London and currently provides consultancy services to Barclays Bank PLC in London as a solutions architect.

Abhishek is the author of iOS Code Testing, iPhone and iPad App: 24-Hour Trainer, and Swift iOS: 24-Hour Trainer. He is the technical reviewer of Professional iOS Programming.

About the Technical Editor

Chaim Krause is a simulation specialist for the U.S. Army in Leavenworth, Kansas. Although he holds a bachelor’s in political science from the University of Chicago, Chaim is an autodidact when it comes to computers, programming, and electronics. He wrote his first computer game in BASIC on a Tandy Model I Level I and stored the program on a cassette tape. Amateur radio introduced him to electronics, while the Arduino and the Raspberry Pi provided a medium to combine computing, programming, and electronics into one hobby.

In his spare time, Chaim likes to play PC games and occasionally develops his own. He has recently taken up the sport of golf to spend more time with his significant other, Ivana.

Contents

	Acknowledgments

	About the Authors

	About the Technical Editor

	Introduction

	Who This Book Is For

	What This Book Covers

	How This Book Is Structured

	What You Need to Use This Book

	Conventions

	Source Code

	PART I Introduction to Amazon Web Services

	Chapter 1 Introduction to Cloud Computing and Amazon Web Services

	What Is Cloud Computing?

	Cloud Service Models

	Cloud Deployment Models

	The AWS Ecosystem

	Sign Up for an AWS Free Tier Account

	Summary

	Chapter 2 Regions, Availability Zones, and Edge Locations

	Regions and Availability Zones

	Edge Locations

	Accessing AWS

	Summary

	Chapter 3 AWS Identity and Access Management

	Key Concepts

	Common Tasks

	Summary

	Chapter 4 Amazon EC2

	Key Concepts

	Common Tasks

	Accessing Amazon EC2 Instances Using the AWS CLI

	Summary

	Chapter 5 Amazon S3

	Key Concepts

	Common Tasks

	Summary

	Chapter 6 Amazon DynamoDB

	Key Concepts

	Common Tasks

	Summary

	Chapter 7 AWS Lambda

	Common Use Cases for AWS Lambda

	Key Concepts

	Common Tasks

	Summary

	PART II AWS for iOS Developers

	Chapter 8 Integrating the AWS SDK for iOS

	Integrating the AWS SDK for iOS Using CocoaPods

	Integrating the AWS SDK for iOS Using Carthage

	Integrating the AWS SDK for iOS Using Dynamic Frameworks

	Summary

	Chapter 9 Implementing User Signup and Login Using Amazon Cognito User Pools

	Introducing Amazon Cognito User Pools

	Examining the AWSChat Xcode Project

	Creating an Amazon Cognito User Pool

	Retrieving the App Client Secret

	Updating the AWS Chat Application

	Summary

	Chapter 10 Implementing Login Using Facebook

	Creating an App on Facebook

	Adding the Facebook SDK to the Xcode Project

	Creating an Amazon Cognito Identity Pool

	Updating the Application User Interface

	Summary

	Chapter 11 Implementing Login Using Google

	Adding the Google SDK to the Xcode Project

	Updating the Identity Pool

	Updating the AWSChat Application

	Summary

	Chapter 12 Accessing Amazon DynamoDB

	Creating Amazon DynamoDB Tables

	Populating the User Table with an AWS Lambda Function

	Testing the AWS Lambda Function

	Updating the AWSChat App

	Summary

	Chapter 13 Adding AWSChat Support with Amazon DynamoDB and Amazon S3

	Updating the DynamoDBController Class

	Configuring Amazon S3

	Creating the S3Controller Class

	Updating the ChatManager Class

	Updating the User Interface of the App

	Summary

	Chapter 14 Using AWS Lambda to Generate Thumbnails

	Creating a Node.JS Lambda Function Deployment Package

	Creating an AWS Lambda Function Using the AWS Management Console

	Testing the AWS Lambda Function

	Updating the S3Controller Class

	Updating the ChatManager Class

	Updating the User Interface of the App

	Summary

	PART III AWS for Android Developers

	Chapter 15 Integrating the AWS SDK for Android with Android Studio

	Integrating the AWS SDK for Android Using Gradle

	Integrating the AWS SDK for Android by Importing JAR Files

	Summary

	Chapter 16 Implementing User Signup and Login Using Amazon Cognito User Pools

	Introducing Amazon Cognito User Pools

	Examining the AWSChat Android Studio Project

	Creating an Amazon Cognito User Pool

	Retrieving the App Client Secret

	Updating the AWS Chat Application

	Summary

	Chapter 17 Implementing Login Using Facebook

	Creating an App on Facebook

	Adding the Facebook SDK to the Android Studio Project

	Creating an Amazon Cognito Identity Pool

	Updating the Application User Interface

	Summary

	Chapter 18 Implementing Login Using Google

	Installing the Google Play Services SDK

	Creating an App on the Google Developer Console

	Updating the Android Studio Project

	Updating the Identity Pool

	Updating the Identity Pool Controller Class

	Updating the Application User Interface

	Summary

	Chapter 19 Accessing Amazon DynamoDB

	Creating Amazon DynamoDB Tables

	Populating the User Table with an AWS Lambda Function

	Testing the AWS Lambda Function

	The User Class

	The Friend Class

	The Chat Class

	The ChatManager Class

	The DynamoDBController Class

	Linking the User Pool to the Identity Pool

	The Updated Home Activity

	The AddFriendActivity Class

	Summary

	Chapter 20 Adding AWSChat Support with Amazon DynamoDB and Amazon S3

	Updating Project Settings

	Updating the DynamoDBManager Class

	Configuring Amazon S3

	Creating the S3Controller Class

	Updating the ChatManager Class

	Updating the User Interface of the App

	Summary

	Chapter 21 Using AWS Lambda to Generate Thumbnails

	Creating a Node.js Lambda Function Deployment Package

	Creating an AWS Lambda Function Using the AWS Management Console

	Testing the AWS Lambda Function

	Updating the S3Controller Class

	Updating the ChatManager Class

	Updating the User Interface of the App

	Summary

	EULA

List of Tables

	Chapter 2

	TABLE 2.1

	Chapter 4

	TABLE 4.1

	TABLE 4.2

	TABLE 4.3

	TABLE 4.4

	Chapter 5

	TABLE 5.1

	Chapter 7

	TABLE 7.1

	TABLE 7.2

	Chapter 15

	TABLE 15.1

List of Illustrations

	Chapter 1

	FIGURE 1.1 Common cloud service models

	FIGURE 1.2 Brief timeline of AWS services

	FIGURE 1.3 Amazon Web Services home page

	FIGURE 1.4 AWS sign-in screen

	FIGURE 1.5 Creating login credentials

	FIGURE 1.6 Contact Information screen

	FIGURE 1.7 Payment Information screen

	FIGURE 1.8 Identity Verification screen

	FIGURE 1.9 Identity Verification PIN number

	FIGURE 1.10 Completing the Identity Verification process

	FIGURE 1.11 Support Plan selection

	FIGURE 1.12 Completing the signup process

	Chapter 2

	FIGURE 2.1 Multiple Availability Zones in a single region

	FIGURE 2.2 Geographically distant users accessing a video file from Tokyo

	FIGURE 2.3 Edge locations can be used to cache frequently used content.

	FIGURE 2.4 AWS home page

	FIGURE 2.5 AWS Management Console home page

	FIGURE 2.6 AWS Management Console menu bar

	FIGURE 2.7 Services Menu

	FIGURE 2.8 Resource Groups menu

	FIGURE 2.9 Adding name tags to resources

	FIGURE 2.10 Tagged resources are visible in the Resource Groups menu.

	FIGURE 2.11 Resources in the Marketing Servers resource group

	FIGURE 2.12 Account menu

	FIGURE 2.13 AWS regions menu

	Chapter 3

	FIGURE 3.1 IAM users exist under the root AWS account.

	FIGURE 3.2 Obtaining temporary credentials

	FIGURE 3.3 IAM groups contain users and permissions.

	FIGURE 3.4 Root account login screen

	FIGURE 3.5 IAM user-specific login screen

	FIGURE 3.6 AWS Management Console region selector

	FIGURE 3.7 Accessing the IAM Management Console

	FIGURE 3.8 User-specific IAM sign-in link

	FIGURE 3.9 IAM resource dashboard

	FIGURE 3.10 Location of the Add user button

	FIGURE 3.11 User details screen

	FIGURE 3.12 Configuring user permissions

	FIGURE 3.13 Attaching the AdmnistratorAccess policy

	FIGURE 3.14 Policy Details screen

	FIGURE 3.15 Review user settings screen

	FIGURE 3.16 Add user confirmation screen

	FIGURE 3.17 IAM user list

	FIGURE 3.18 IAM user permissions summary

	FIGURE 3.19 Accessing the Create New Group button

	FIGURE 3.20 Set Group Name screen

	FIGURE 3.21 Attach Policy screen

	FIGURE 3.22 Review group screen

	FIGURE 3.23 Add Users to Group menu item

	FIGURE 3.24 Selecting users to add to a group

	FIGURE 3.25 Accessing the Create New Role button

	FIGURE 3.26 Set Role Name screen

	FIGURE 3.27 Select Role Type screen

	FIGURE 3.28 Attaching a policy to a role

	FIGURE 3.29 Review new role screen

	FIGURE 3.30 Accessing MFA settings

	FIGURE 3.31 Choosing the MFA device type

	FIGURE 3.32 Manage MFA Device dialog box

	FIGURE 3.33 Enter the authentication codes generated by the MFA device.

	FIGURE 3.34 Second step of the login process for an account that has MFA enabled

	FIGURE 3.35 IAM Password Policy settings

	FIGURE 3.36 IAM dashboard after security settings have been configured

	Chapter 4

	FIGURE 4.1 Multiple EC2 instances from a single AMI

	FIGURE 4.2 EC2 instance life cycle

	FIGURE 4.3 Accessing the EC2 Management Console

	FIGURE 4.4 AWS region selector drop-down and the Launch Instance button

	FIGURE 4.5 List of Amazon machine images

	FIGURE 4.6 AMI description

	FIGURE 4.7 Select an EC2 instance type

	FIGURE 4.8 EC2 instance configuration options

	FIGURE 4.9 EC2 storage configuration options

	FIGURE 4.10 The Delete on Termination option is available for EBS-backed instances.

	FIGURE 4.11 Adding additional storage volumes to an EC2 instance

	FIGURE 4.12 EC2 instance tags

	FIGURE 4.13 EC2 instance security group configuration

	FIGURE 4.14 Adding a custom traffic rule to a security group

	FIGURE 4.15 EC2 instance settings review screen

	FIGURE 4.16 EC2 instance public and private key configuration

	FIGURE 4.17 Public and private key options

	FIGURE 4.18 Creating a new key pair

	FIGURE 4.19 Launch Status screen

	FIGURE 4.20 Viewing a list of existing EC2 instances

	FIGURE 4.21 Details of the selected EC2 instance

	FIGURE 4.22 Changing EC2 instance state

	FIGURE 4.23 Accessing EC2 instance tags

	FIGURE 4.24 Updating EC2 instance tags

	FIGURE 4.25 Determining the public IP of an EC2 instance

	FIGURE 4.26 Determining the security group of an EC2 instance

	FIGURE 4.27 Security group configuration

	FIGURE 4.28 Changing the security group of an EC2 instance

	FIGURE 4.29 Attaching multiple security groups to an EC2 instance

	FIGURE 4.30 Accessing the Change Instance Type menu item

	FIGURE 4.31 Modifying the instance type

	FIGURE 4.32 AWS CLI commands

	FIGURE 4.33 AWS CLI tool configuration

	FIGURE 4.34 Creating an access key for an IAM user

	FIGURE 4.35 AWS CLI tools installer

	FIGURE 4.36 AWS CLI commands

	FIGURE 4.37 AWS CLI tool configuration

	FIGURE 4.38 Creating an access key for an IAM user

	FIGURE 4.39 Downloading the PuTTY binaries

	FIGURE 4.40 Loading a private key file

	FIGURE 4.41 Exporting the private key in a different format

	FIGURE 4.42 Creating a new PuTTY session

	FIGURE 4.43 Specifying the location of the private key file in PuTTY

	FIGURE 4.44 Creating a connection bookmark

	FIGURE 4.45 Connecting to an EC2 instance using PuTTY

	Chapter 5

	FIGURE 5.1 Accessing the S3 Management Console

	FIGURE 5.2 S3 Management Console welcome page

	FIGURE 5.3 Specifying the bucket name and region

	FIGURE 5.4 Configuring versioning, logging, and cost allocation tags

	FIGURE 5.5 Configuring bucket permissions

	FIGURE 5.6 S3 bucket summary

	FIGURE 5.7 Properties, permissions, and management settings

	FIGURE 5.8 Bucket contents screen

	FIGURE 5.9 Selecting files in the file upload dialog box

	FIGURE 5.10 Configuring file permissions

	FIGURE 5.11 Configuring file storage class and encryption

	FIGURE 5.12 File summary page

	FIGURE 5.13 S3 bucket showing a file

	FIGURE 5.14 Downloading a file from a bucket

	FIGURE 5.15 Locating the file URL

	FIGURE 5.16 Non-public buckets and files are not accessible using a URL

	FIGURE 5.17 Accessing the Make public option

	FIGURE 5.18 Making a file publicly accessible

	FIGURE 5.19 Publicly accessible file in an S3 bucket

	FIGURE 5.20 Storage class options

	FIGURE 5.21 Delete object menu item

	FIGURE 5.22 Enabling bucket versioning

	FIGURE 5.23 Ensuring a document is publically accessible

	FIGURE 5.24 Accessing document versions

	FIGURE 5.25 Deleting a document version

	FIGURE 5.26 Content selector switch

	FIGURE 5.27 Restoring a deleted object

	Chapter 6

	FIGURE 6.1 Accessing the DynamoDB Management Console

	FIGURE 6.2 DynamoDB splash screen

	FIGURE 6.3 DynamoDB dashboard

	FIGURE 6.4 Specifying a table name

	FIGURE 6.5 Specifying a composite key for a table

	FIGURE 6.6 Changing the provisioned IO capacity

	FIGURE 6.7 DynamoDB table overview

	FIGURE 6.8 Creating a new item in a table

	FIGURE 6.9 Item attributes dialog showing default primary key attribute

	FIGURE 6.10 Adding item attributes

	FIGURE 6.11 Specifying multiple attributes

	FIGURE 6.12 Viewing item attributes as JSON

	FIGURE 6.13 DynamoDB table with one item

	FIGURE 6.14 Each item in a DynamoDB table can have different attributes.

	FIGURE 6.15 Creating an index

	FIGURE 6.16 Index properties dialog

	FIGURE 6.17 DynamoDB table index list

	FIGURE 6.18 Manadatory fields for new items

	FIGURE 6.19 Multiple items in a DynamoDB table

	FIGURE 6.20 List of items returned as a result of a scan operation

	FIGURE 6.21 Adding a filter expression to a scan

	FIGURE 6.22 Indexes can be used while performing a scan.

	FIGURE 6.23 Switching from scan mode to query mode

	FIGURE 6.24 Querying a DynamoDB table based on the partition key

	Chapter 7

	FIGURE 7.1 Accessing the AWS Lambda management console

	FIGURE 7.2 AWS Lambda splash screen

	FIGURE 7.3 AWS Lambda dashboard

	FIGURE 7.4 List of existing Lambda functions

	FIGURE 7.5 List of function blueprints

	FIGURE 7.6 Selecting the Node.js 4.3 Blank Function blueprint

	FIGURE 7.7 The Blank Function blueprint does not have preconfigured triggers.

	FIGURE 7.8 Lambda function name, description, and runtime environment

	FIGURE 7.9 Editing node.js Lambda function code inline

	FIGURE 7.10 Configuring an execution role for the Lambda function

	FIGURE 7.11 Lambda function review screen

	FIGURE 7.12 List of Lambda functions

	FIGURE 7.13 Accessing the code and settings for an existing Lambda function

	FIGURE 7.14 Configuring a test event

	FIGURE 7.15 Lambda function execution results

	FIGURE 7.16 Configuring a different test event

	FIGURE 7.17 Accessing the Delete function menu item

	FIGURE 7.18 Accessing the CloudWatch dashboard

	FIGURE 7.19 List of CloudWatch log groups

	FIGURE 7.20 Accessing the Delete log group menu item.

	Chapter 8

	FIGURE 8.1 Installing CocoaPods

	FIGURE 8.2 Testing your CocoaPods installation

	FIGURE 8.3 Xcode project options dialog

	FIGURE 8.4 CocoaPods creates a workspace file in the original project folder.

	FIGURE 8.5 Carthage web page

	FIGURE 8.6 Carthage installer screen

	FIGURE 8.7 Xcode project options dialog box

	FIGURE 8.8 A Finder window showing the Carthage subfolder in the original project folder

	FIGURE 8.9 Adding embedded binaries to the Xcode project

	FIGURE 8.10 Adding a Run Script phase to the Xcode project

	FIGURE 8.11 Final Run Script phase setup

	FIGURE 8.12 Xcode project options dialog box

	FIGURE 8.13 Adding embedded binaries to the Xcode project

	FIGURE 8.14 Adding a Run Script phase to the Xcode project

	FIGURE 8.15 Final Run Script Phase Setup

	Chapter 9

	FIGURE 9.1 Contents of the Main.storyboard file

	FIGURE 9.2 Contents of the ChatJourney.storyboard file

	FIGURE 9.3 Accessing the Amazon Cognito service home page

	FIGURE 9.4 Amazon Cognito splash screen

	FIGURE 9.5 Creating a new user pool

	FIGURE 9.6 Specifying the name of the new user pool

	FIGURE 9.7 User pool attributes

	FIGURE 9.8 Setting up password security requirements for the Amazon Cognito user pool

	FIGURE 9.9 Multi-factor authentication settings for the user pool

	FIGURE 9.10 Customizing e-mail and SMS verification messages

	FIGURE 9.11 Cost allocation tag setup screen

	FIGURE 9.12 You can set up a user pool to remember devices.

	FIGURE 9.13 Configuring applications that will have access to unauthenticated APIs

	FIGURE 9.14 Create application screen

	FIGURE 9.15 User pool review screen

	FIGURE 9.16 Selecting the AWSChatUserPool to access its contents and settings

	FIGURE 9.17 Click the Show Details button to reveal the App client id and the App client secret.

	FIGURE 9.18 The App client id and the App client secret are needed to access unauthenticated user pool APIs.

	FIGURE 9.19 Users need to provide the 6-digit confirmation code that was sent by e-mail.

	FIGURE 9.20 List of users in the user pool

	Chapter 10

	FIGURE 10.1 Location of the Add a New App button in the Facebook developer portal

	FIGURE 10.2 Create a new application identifier

	FIGURE 10.3 Location of the Add Platform button

	FIGURE 10.4 Select iOS from the list of available platforms

	FIGURE 10.5 Location of the Xcode Bundle Identifier

	FIGURE 10.6 iOS platform settings in the Facebook developer page

	FIGURE 10.7 Location of the Facebook App ID

	FIGURE 10.8 Facebook SDK for iOS download page

	FIGURE 10.9 Placing the downloaded Facebook SDK files with the AWSChat project files in Finder

	FIGURE 10.10 Xcode copy files dialog box

	FIGURE 10.11 Adding the path to the Facebook SDK to the project Build Settings

	FIGURE 10.12 Viewing the Info.plist file as source code

	FIGURE 10.13 Xcode Project Navigator context menu

	FIGURE 10.14 Xcode file template dialog box

	FIGURE 10.15 Objective-C Bridging Header setup

	FIGURE 10.16 Accessing the Amazon Cognito service home page

	FIGURE 10.17 Amazon Cognito splash screen

	FIGURE 10.18 Creating a new identity pool

	FIGURE 10.19 Specifying the Facebook App ID in an identity pool

	FIGURE 10.20 By default, Amazon Cognito creates new roles for authenticated and unauthenticated identities.

	FIGURE 10.21 Setting up constraints for the new View object

	FIGURE 10.22 Changing the custom class of the View object

	FIGURE 10.23 List of available identity pools

	FIGURE 10.24 Location of the Edit identity pool button

	FIGURE 10.25 Location of the identity pool ID

	FIGURE 10.26 The Facebook Login button is visible on the login screen of the app.

	FIGURE 10.27 The Facebook SDK presents the user interface to allow users to provide their Facebook credentials.

	FIGURE 10.28 Users are asked for permission to allow the AWSChat app access to elements of their public Facebook profile.

	FIGURE 10.29 Successful Facebook sign-in

	FIGURE 10.30 Identity browser

	FIGURE 10.31 Amazon Cognito sync datasets under the Identity object

	FIGURE 10.32 Contents of the facebookUserData dataset

	Chapter 11

	FIGURE 11.1 Google SDK download page

	FIGURE 11.2 Xcode file import dialog box

	FIGURE 11.3 Additional libraries to add to the project

	FIGURE 11.4 Xcode build settings

	FIGURE 11.5 Click the Get a Configuration File button.

	FIGURE 11.6 Specifying the app name and bundle identifier

	FIGURE 11.7 Expand the Google Sign-In option to reveal the Enable Google Sign-In button.

	FIGURE 11.8 Google Sign-In has been enabled for your app.

	FIGURE 11.9 Download GoogleService-Info.plist button.

	FIGURE 11.10 Add the GoogleService-Info.plist file under the AWSChat folder group in Xcode.

	FIGURE 11.11 Accessing the Amazon Cognito service home page

	FIGURE 11.12 Amazon Cognito splash screen

	FIGURE 11.13 List of identity pools

	FIGURE 11.14 Editing the identity pool

	FIGURE 11.15 Locating the Google Client ID field

	FIGURE 11.16 Specifying the Google Client ID

	FIGURE 11.17 Adding a new view to the login scene

	FIGURE 11.18 Changing the custom class associated with the view

	FIGURE 11.19 Expanding the URL Types section

	FIGURE 11.20 Specifying a URL type

	FIGURE 11.21 Application login screen with the Google Sign in button

	FIGURE 11.22 The Google SDK presents the user interface to allow users to provide their Google credentials.

	FIGURE 11.23 Google Sign-In result

	FIGURE 11.24 List of Identity objects in the identity pool

	FIGURE 11.25 Accessing the Amazon Cognito sync datasets under the Identity object

	FIGURE 11.26 Contents of the googleUserData dataset

	Chapter 12

	FIGURE 12.1 Amazon DynamoDB table structure

	FIGURE 12.2 Accessing the Amazon DynamoDB service home page

	FIGURE 12.3 Amazon DynamoDB splash screen

	FIGURE 12.4 Amazon DynamoDB dashboard

	FIGURE 12.5 Creating the User table

	FIGURE 12.6 Changing the provisioned IO capacity for the User table

	FIGURE 12.7 Overview of the User table

	FIGURE 12.8 Amazon DynamoDB dashboard showing all four tables

	FIGURE 12.9 Click the role that you want to edit.

	FIGURE 12.10 Location of the Create Role Policy button

	FIGURE 12.11 Using the Policy Generator to Create Role Permissions

	FIGURE 12.12 Click on the Add Statement button to add a permission to the role policy.

	FIGURE 12.13 Four permissions have been added to the role policy.

	FIGURE 12.14 Rename the policy before clicking the Apply Policy button.

	FIGURE 12.15 A new policy has been added to the IAM role.

	FIGURE 12.16 Creating an IAM role

	FIGURE 12.17 Selecting the AWS Lambda Service Role

	FIGURE 12.18 Select the AmazonDynamoDBFullAccess Policy.

	FIGURE 12.19 Provide a name for the new role.

	FIGURE 12.20 The new IAM role is listed along with other existing IAM roles.

	FIGURE 12.21 Accessing the AWS Lambda service home page

	FIGURE 12.22 AWS Lambda splash screen

	FIGURE 12.23 AWS Lambda dashboard

	FIGURE 12.24 Selecting the cognito-sync-trigger blueprint

	FIGURE 12.25 Selecting the source for the Amazon Cognito sync trigger

	FIGURE 12.26 Setting up the AWS Lambda function

	FIGURE 12.27 Specifying the AWS Lambda function execution role

	FIGURE 12.28 Specifying the execution timeout

	FIGURE 12.29 AWS Lambda Function review screen

	FIGURE 12.30 Setting up the AWS Lambda function

	FIGURE 12.31 AWS Lambda Function dashboard

	FIGURE 12.32 Configuring a test event

	FIGURE 12.33 AWS Lambda Function test results

	FIGURE 12.34 Amazon Cognito splash screen

	FIGURE 12.35 List of Amazon Cognito identity pools

	FIGURE 12.36 Amazon Cognito identity pool authentication providers

	FIGURE 12.37 Xcode attributes inspector

	FIGURE 12.38 Table view cell layout

	FIGURE 12.39 Chat journey storyboard file

	FIGURE 12.40 Contents of the User table

	FIGURE 12.41 The Add friend view controller

	FIGURE 12.42 Contents of the Friend table

	FIGURE 12.43 Home view controller

	Chapter 13

	FIGURE 13.1 Accessing the Amazon S3 service home page

	FIGURE 13.2 Amazon S3 landing page

	FIGURE 13.3 List of existing Amazon S3 buckets in your AWS account

	FIGURE 13.4 Specify a bucket name and region.

	FIGURE 13.5 Configuring bucket properties

	FIGURE 13.6 Configuring bucket permissions

	FIGURE 13.7 Reviewing Amazon S3 bucket settings

	FIGURE 13.8 The Amazon S3 Management Console after both buckets have been created

	FIGURE 13.9 Click a role to edit the role.

	FIGURE 13.10 Click the Create Role Policy button.

	FIGURE 13.11 Use the Policy Generator to create a policy.

	FIGURE 13.12 Permitting access to an Amazon S3 bucket

	FIGURE 13.13 IAM policy generator with permissions that allow access to Amazon S3 buckets

	FIGURE 13.14 Specifying a name for the new policy

	FIGURE 13.15 IAM role with a list of attached policies

	FIGURE 13.16 Updated chat journey storyboard

	FIGURE 13.17 Chat view and upload image view

	FIGURE 13.18 Uploaded images are visible in the Amazon S3 bucket.

	FIGURE 13.19 Messages are visible in the Message table.

	Chapter 14

	FIGURE 14.1 Download the installer for the latest version of Node.JS on your computer.

	FIGURE 14.2 Node.JS installer

	FIGURE 14.3 Contents of the ThumbnailGenerator folder in Finder

	FIGURE 14.4 List of IAM roles in your AWS account

	FIGURE 14.5 Adding a policy to the IAM role

	FIGURE 14.6 Select the AmazonS3FullAccess policy.

	FIGURE 14.7 The AmazonS3FullAccess policy is present in the list of policies attached to the role.

	FIGURE 14.8 Accessing the AWS Lambda Management Console

	FIGURE 14.9 Creating an AWS Lambda function

	FIGURE 14.10 Select the Blank Function blueprint.

	FIGURE 14.11 Select S3 as the event source.

	FIGURE 14.12 Configuring the Amazon S3 trigger

	FIGURE 14.13 Provide a name and description for the AWS Lambda function.

	FIGURE 14.14 Specifying the execution role

	FIGURE 14.15 Change the AWS Lambda function timeout to 4 minutes.

	FIGURE 14.16 Click on the Create Function button to finish creating the AWS Lambda function.

	FIGURE 14.17 Contents of the image bucket

	FIGURE 14.18 List of AWS Lambda functions in your AWS account

	FIGURE 14.19 Testing an AWS Lambda function

	FIGURE 14.20 Configuring a Test event

	FIGURE 14.21 Results of testing the AWS Lambda function

	FIGURE 14.22 A thumbnail has been generated by the AWS Lambda function.

	Chapter 15

	FIGURE 15.1 Selecting a view mode in the Android Studio project window

	FIGURE 15.2 Accessing the app-level build.gradle file

	Chapter 16

	FIGURE 16.1 User interface of the Login and Signup activities

	FIGURE 16.2 Accessing the Amazon Cognito service home page

	FIGURE 16.3 Amazon Cognito splash screen

	FIGURE 16.4 Creating a new user pool

	FIGURE 16.5 Specifying the name of the new user pool

	FIGURE 16.6 User pool attributes

	FIGURE 16.7 Setting up password security requirements for the Amazon Cognito user pool

	FIGURE 16.8 Multi-Factor Authentication settings for the user pool

	FIGURE 16.9 Customizing e-mail and SMS verification messages

	FIGURE 16.10 Cost allocation tag setup screen

	FIGURE 16.11 You can set up a user pool to remember devices.

	FIGURE 16.12 Configuring applications that will have access to unauthenticated APIs

	FIGURE 16.13 Create application screen

	FIGURE 16.14 User pool review screen

	FIGURE 16.15 Selecting the AWSChatUserPool to access its contents and settings

	FIGURE 16.16 Click the Show Details button to reveal the app client ID and the app client secret.

	FIGURE 16.17 The app client ID and the app client secret are needed to access unauthenticated user pool APIs.

	FIGURE 16.18 AndroidManifest.xml file

	FIGURE 16.19 Android Studio project window

	FIGURE 16.20 Custom dialog box presented to allow the user to enter a confirmation code

	FIGURE 16.21 List of users in the user pool

	Chapter 17

	FIGURE 17.1 Location of the Add a New App button in the Facebook developer portal

	FIGURE 17.2 Create a new application identifier.

	FIGURE 17.3 Location of the Add Platform button

	FIGURE 17.4 Select Android from the list of available platforms.

	FIGURE 17.5 Configuring an Android application on the Facebook developer portal

	FIGURE 17.6 Package name warning dialog box

	FIGURE 17.7 Accessing the Facebook application identifier

	FIGURE 17.8 Accessing the application build.gradle file

	FIGURE 17.9 Accessing the Amazon Cognito service home page

	FIGURE 17.10 Amazon Cognito splash screen

	FIGURE 17.11 Creating a new identity pool

	FIGURE 17.12 Specifying the Facebook app ID in an identity pool

	FIGURE 17.13 Amazon Cognito by default, creates new roles for authenticated and unauthenticated Identities.

	FIGURE 17.14 List of identity pools in your AWS account

	FIGURE 17.15 Location of the Edit identity pool button

	FIGURE 17.16 Accessing the identity pool ID

	FIGURE 17.17 The Facebook login button widget in the activity layout file

	FIGURE 17.18 Login activity with the Facebook login widget

	FIGURE 17.19 The Facebook SDK provides the user interface to allow a user to provide their Facebook credentials.

	FIGURE 17.20 List of federated identities in the identity pool

	FIGURE 17.21 Accessing the facebookUserData data set

	FIGURE 17.22 The Facebook-provided name and e-mail address is visible in the data set.

	Chapter 18

	FIGURE 18.1 Verify that the Google Repository entry is selected.

	FIGURE 18.2 Location of the GET A CONFIGURATION FILE button

	FIGURE 18.3 Creating an entry for the AWSChat app on the Google Developer console

	FIGURE 18.4 Google Sign-In configuration

	FIGURE 18.5 Click the ENABLE GOOGLE SIGN-IN button after providing the SHA-1 hash of your Android debug certificate.

	FIGURE 18.6 Confirmation that Google Sign-In has been enabled for the app

	FIGURE 18.7 Download the google-services.json file.

	FIGURE 18.8 Adding the google-services.json file to the AWSChat Android Studio project

	FIGURE 18.9 Accessing the Amazon Cognito service home page

	FIGURE 18.10 Amazon Cognito splash screen

	FIGURE 18.11 List of identity pools

	FIGURE 18.12 Editing the identity pool

	FIGURE 18.13 Locating the Google Client ID field

	FIGURE 18.14 Specifying the Google Client ID

	FIGURE 18.15 AWS Identity and Access Management dashboard

	FIGURE 18.16 Creating a new identity provider

	FIGURE 18.17 Configuring an identity provider

	FIGURE 18.18 Amazon Cognito asks you to verify the thumbprint of the SSL certificate obtained from Google’s server.

	FIGURE 18.19 The list of identity providers now contains an entry for accounts.google.com.

	FIGURE 18.20 Adding the Google Client ID of the AWSChat app to the OpenID Connect provider

	FIGURE 18.21 Enabling the accounts.google.com OpenID Connect provider

	FIGURE 18.22 Login Activity layout with the Google Sign-In widget

	FIGURE 18.23 Login Activity with the Google Sign-In button

	FIGURE 18.24 Google SDK provides a secure form where users can provide their Google credentials.

	FIGURE 18.25 List of identities in the identity pool

	FIGURE 18.26 Google federated identities have a dataset called googleUserData.

	FIGURE 18.27 Google-provided name and e-mail address of the user associated with the federated identity

	Chapter 19

	FIGURE 19.1 Amazon DynamoDB table structure

	FIGURE 19.2 Accessing the Amazon DynamoDB service home page

	FIGURE 19.3 Amazon DynamoDB splash screen

	FIGURE 19.4 Amazon DynamoDB dashboard

	FIGURE 19.5 Creating the User table

	FIGURE 19.6 Changing the provisioned IO capacity for the User table

	FIGURE 19.7 Overview of the User table

	FIGURE 19.8 Amazon DynamoDB dashboard showing all four tables

	FIGURE 19.9 Click the role that you want to edit.

	FIGURE 19.10 Location of the Create Role Policy button

	FIGURE 19.11 Using the Policy Generator to create role permissions

	FIGURE 19.12 Click the Add Statement Button to Add a Permission to the Role Policy.

	FIGURE 19.13 Four permissions have been added to the role policy.

	FIGURE 19.14 Rename the policy before clicking the Apply Policy button.

	FIGURE 19.15 A new policy has been added to the IAM role.

	FIGURE 19.16 Creating an IAM role

	FIGURE 19.17 Selecting the AWS Lambda service role

	FIGURE 19.18 Select the AmazonDynamoDBFullAccess policy.

	FIGURE 19.19 Provide a name for the new role.

	FIGURE 19.20 Review IAM role screen

	FIGURE 19.21 The new IAM role is listed along with other existing IAM roles.

	FIGURE 19.22 Accessing the AWS Lambda service home page

	FIGURE 19.23 AWS Lambda splash screen

	FIGURE 19.24 AWS Lambda dashboard

	FIGURE 19.25 Selecting the cognito-sync-trigger blueprint

	FIGURE 19.26 Selecting the source for the Amazon Cognito sync trigger

	FIGURE 19.27 Setting up the AWS Lambda function

	FIGURE 19.28 Specifying the AWS Lambda function execution role

	FIGURE 19.29 Specifying the execution timeout

	FIGURE 19.30 AWS Lambda function review screen

	FIGURE 19.31 List of AWS Lambda functions

	FIGURE 19.32 AWS Lambda function dashboard

	FIGURE 19.33 Configuring a test event

	FIGURE 19.34 AWS Lambda function test results

	FIGURE 19.35 Amazon Cognito splash screen

	FIGURE 19.36 List of identity pools

	FIGURE 19.37 The Authentication Providers section of the identity pool

	FIGURE 19.38 Home Activity showing a list of friends

	FIGURE 19.39 Contents of the User table

	FIGURE 19.40 You can add other users to your friend list.

	FIGURE 19.41 Contents of the Friend table

	Chapter 20

	FIGURE 20.1 Accessing the Amazon S3 service home page

	FIGURE 20.2 Amazon S3 landing page

	FIGURE 20.3 List of existing Amazon S3 buckets in your AWS account

	FIGURE 20.4 Specify a bucket name and region.

	FIGURE 20.5 Configuring bucket properties

	FIGURE 20.6 Configuring bucket permissions

	FIGURE 20.7 Reviewing Amazon S3 bucket settings

	FIGURE 20.8 The Amazon S3 Management Console after both buckets have been created

	FIGURE 20.9 Click a role to edit the role.

	FIGURE 20.10 Click the Create Role Policy button.

	FIGURE 20.11 Use the Policy Generator to create a policy.

	FIGURE 20.12 Permitting access to an Amazon S3 bucket

	FIGURE 20.13 IAM Policy Generator with permissions that allow access to Amazon S3 buckets

	FIGURE 20.14 Specifying a name for the new policy

	FIGURE 20.15 IAM role with a list of attached policies

	FIGURE 20.16 Chat view and upload image view

	FIGURE 20.17 Uploaded images are visible in the Amazon S3 bucket.

	FIGURE 20.18 Messages are visible in the message table.

	Chapter 21

	FIGURE 21.1 Download the installer for version 7.9.0 of Node.js on your computer.

	FIGURE 21.2 Node.js Installer

	FIGURE 21.3 Contents of the ThumbnailGenerator folder in Finder

	FIGURE 21.4 List of IAM roles in your AWS account

	FIGURE 21.5 Adding a policy to the IAM role

	FIGURE 21.6 Select the AmazonS3FullAccess policy.

	FIGURE 21.7 The AmazonS3FullAccess policy is present in the list of policies attached to the role.

	FIGURE 21.8 Accessing the AWS Lambda Management Console

	FIGURE 21.9 Creating an AWS Lambda function

	FIGURE 21.10 Select the Blank Function blueprint.

	FIGURE 21.11 Select S3 as the event source.

	FIGURE 21.12 Configuring the S3 trigger

	FIGURE 21.13 Provide a name and description for the AWS Lambda function.

	FIGURE 21.14 Specifying the execution role

	FIGURE 21.15 Change the AWS Lambda function timeout to 4 minutes.

	FIGURE 21.16 Click on the Create Function button to finish creating the AWS Lambda function.

	FIGURE 21.17 Contents of the image bucket

	FIGURE 21.18 The list of AWS Lambda functions in your AWS account

	FIGURE 21.19 Testing an AWS Lambda function

	FIGURE 21.20 Configuring a Test event

	FIGURE 21.21 Results of testing the AWS Lambda function

	FIGURE 21.22 A thumbnail has been generated by the AWS Lambda function.

	FIGURE 21.23 Chat window showing thumbnails

Guide

	Cover

	Table of Contents

	Introduction

Pages

	xix

	xx

	xxi

	xxii

	xxiii

	xxiv

	1

	3

	4

	5

	6

	7

	8

	9

	10

	11

	13

	15

	17

	18

	19

	20

	21

	22

	23

	25

	26

	28

	29

	30

	31

	33

	34

	35

	36

	37

	38

	39

	40

	41

	43

	44

	45

	47

	48

	49

	50

	51

	52

	53

	55

	56

	57

	58

	61

	62

	63

	66

	67

	68

	69

	71

	72

	73

	75

	76

	78

	79

	81

	82

	84

	85

	86

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	111

	113

	115

	117

	118

	119

	120

	121

	123

	124

	125

	126

	127

	128

	129

	130

	131

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	152

	153

	154

	155

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	183

	184

	185

	187

	188

	189

	190

	191

	193

	194

	195

	196

	197

	198

	199

	201

	202

	203

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	237

	238

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	266

	267

	269

	270

	271

	272

	273

	274

	275

	276

	278

	280

	281

	282

	283

	284

	285

	286

	287

	288

	289

	290

	291

	292

	292

	363

	364

	365

	366

	367

	368

	369

	370

	371

	373

	375

	376

	378

	379

	380

	382

	383

	384

	385

	386

	387

	388

	389

	390

	391

	392

	393

	394

	395

	396

	397

	398

	399

	400

	401

	402

	403

	405

	406

	407

	408

	409

	410

	411

	412

	413

	414

	415

	416

	418

	419

	421

	422

	423

	424

	426

	427

	428

	429

	430

	431

	432

	433

	434

	435

	437

	438

	439

	441

	443

	445

	446

	447

	448

	449

	450

	452

	453

	454

	455

	456

	457

	458

	459

	460

	461

	462

	463

	464

	465

	466

	467

	468

	469

	469

	470

	472

	473

	474

	475

	476

	477

	478

	479

	480

	481

	482

	483

	484

	485

	486

	487

	487

	488

	490

	491

	492

	493

	494

	495

	496

	497

	498

	499

	500

	501

	502

	503

	504

	505

	506

	507

	508

	509

	510

	511

	512

	513

	515

	516

	517

	518

	519

	520

	521

	522

	523

	524

	525

	526

	527

	528

	529

	530

	531

	532

	534

	535

	536

	537

	538

	539

	540

	541

	542

	543

	544

	545

	546

	547

	548

	549

	550

	551

	552

	553

	555

	556

	557

	558

	559

	560

	561

	562

	563

	564

	565

	566

	567

	568

	569

	570

	571

	572

	573

	574

	575

	577

	578

	579

	580

	581

	582

	583

	585

	586

	587

	588

	589

	590

	592

	593

	595

	597

	599

	600

	601

	602

	603

	604

	605

	606

	607

	608

	609

	610

	611

	612

	612

	613

	615

	616

	617

	618

	619

	620

	621

	622

	623

	624

	625

	626

	627

	628

	629

	630

	631

	632

	633

	634

	635

	636

	637

	638

	639

	640

	641

	642

	643

	644

	645

	646

	647

	648

	649

	650

	651

	652

	653

	654

	655

	656

	657

	658

	659

	660

	661

	662

	663

	664

	665

	666

	667

	668

	669

	670

	671

	672

	674

	675

	677

	678

	679

	680

	681

	682

	683

	684

	685

	686

	687

	688

	689

	690

	691

	692

	693

	694

	695

	696

	697

	698

	699

	700

	701

	702

	703

	704

	705

	706

	707

	708

	709

	710

	711

	712

	713

	714

	715

	716

	717

	718

	719

	720

	721

	722

	723

	725

	727

	728

	729

	730

	731

	733

	734

	736

	737

	738

	739

	740

	741

	742

	743

	744

	745

	746

Introduction

Amazon Web Services (AWS) is one of the leading cloud-computing platforms in the industry today. At the time this book was written, AWS offered 97 services, each of which resided in one of 18 different service categories. For someone who is new to cloud computing or to the AWS ecosystem, the sheer number of services on offer can be daunting. It can be difficult to know where to begin and what services to focus on.

Developers working in the mobile space are often ignorant of the power of the public cloud and AWS in particular. They end up spending months writing applications and server-side code for commonly used features such as user registration, user login, password recovery, server-side data storage—features that are already provided by AWS and can be integrated in a fraction of the time.

Architects who have primarily worked in on-premise (private cloud) environments often shy away from designing solutions that leverage public cloud capabilities.

This book is written to provide developers and architects working in the mobile space an introduction to some of the services offered by AWS along with step-by-step examples of how to leverage AWS cloud features to build an iOS- and Android-based chat application similar to WhatsApp.

This is one of the first few books that addresses both iOS and Android developers. AWS is vast and rapidly evolving, and I have had to make hard choices on what services to include and exclude in this book.

I have also made every attempt to keep the content up-to-date and relevant. Even though this makes the book susceptible to being outdated on a few rare instances, I am confident the content will remain useful and relevant through the next versions of the AWS services, Swift, Java, Xcode, and Android Studio.

The book at all times attempts to balance theory and practice, giving you enough visibility into the underlying concepts and providing you with the best practices and practical advice that you can apply at your workplace right away.

Who This Book Is For

This book is best suited for intermediate to advanced iOS and Android developers who want to learn to leverage aspects of the Amazon cloud from their apps. The book is also useful to system architects, application architects, and devops engineers who want to be introduced to some of the commonly used AWS services in the mobile space.

I advise that you read all chapters in Part I of the book from start to finish. If you are a developer, you may then want to proceed to Part II or III for step-by-step instructions on how to build a chat application using AWS cloud-based resources for iOS and Android.

What This Book Covers

This book covers aspects of Amazon IAM, Amazon Cognito, Amazon S3, Amazon DynamoDB, AWS Lambda, AWS Device Farm, Amazon SNS, and Amazon Mobile Analytics.

The iOS code in this book is written in Swift 3 and tested on Xcode 8.3.3. You may need to make minor modifications to the code if you are using a newer version of Xcode.

The Android code in this book is written in Java 6 and tested using Android Studio 2.3.1.

Services provided by Amazon, Apple, and Google are updated frequently. Therefore, sometimes you may encounter a newer version of a screen when you follow the instructions in a chapter.

How This Book Is Structured

This book consists of 29 chapters that are grouped into three sections. The first section, consisting of seven chapters, introduces the fundamentals of cloud computing and covers commonly used AWS products such as AWS IAM, Amazon Cognito, Amazon EC2, Amazon S3, Amazon DynamoDB, and AWS Lambda. The first section of the book also contains four additional bonus chapters that you can download from the book’s website.

Part II of the book is targeted at iOS developers and consists of seven chapters. Each chapter in this section progressively adds features to a chat application similar to WhatsApp. In addition to iOS code, several chapters in this section provide instructions to set up required resources in your AWS account to support the iOS code. You can download the source code that accompanies each chapter from this books’ web page on Sybex.com or using a GitHub link. You need to substitute AWS resources for things like Amazon S3 buckets, Amazon Cognito identity pools, and Amazon Cognito user pools. The text of each chapter in this part summarizes the AWS resources that you need to configure to follow along with the chapter. Part II of the book also contains two additional bonus chapters that you can download from the book’s website.

Part III of the book is targeted at Android developers and consists of seven chapters. Each chapter in this section progressively adds features to an Android version of a chat application similar to the one built in Part II. In addition to Android code, several chapters in this section provide instructions to set up required resources in your AWS account to support the Android code. If you have already followed the instructions in Part II of the book while developing the iOS version of the chat application, you can skip these instructions. Where applicable, chapters contain a note to indicate what sections can be skipped.

You can download the source code that accompanies each chapter from this book’s web page on Sybex.com or using a GitHub link. You need to substitute AWS resources for things like Amazon S3 buckets, Amazon Cognito identity pools, and Amazon Cognito user pools. The text of each chapter in this part provides a summary of the AWS resources that you need to configure to follow along with the chapter. Part III of the book also contains two additional bonus chapters that you can download from the book’s website.

If you are completely new to AWS, I recommend that you read every chapter in Part I sequentially and then proceed to either Part II or Part III depending on whether you are an iOS or an Android developer.

The chapters in Part I cover:

	Introduction to Cloud Computing and Amazon Web Services (Chapter 1)—A brief primer to cloud computing and Amazon Web Services. Covers commonly encountered service and deployment models.

	Regions, Availability Zones, and Edge Locations (Chapter 2)—This chapter introduces components of the AWS global infrastructure.

	AWS Identity and Access Management (Chapter 3)—This chapter introduces one of the key services provided by AWS to secure your resources in the Amazon cloud. It also provides instructions to sign up for an account under the AWS free tier.

	Amazon EC2 (Chapter 4)—This chapter introduces one of the core services provided by AWS: Amazon Elastic Compute Cloud (EC2).

	Amazon S3 (Chapter 5)—This chapter introduces one of the most commonly used storage services provided by AWS: Amazon Simple Storage Service (S3).

	Amazon DynamoDB (Chapter 6)—This chapter introduces Amazon’s managed NoSQL database service: DynamoDB.

	AWS Lambda (Chapter 7)—This chapter introduces AWS Lambda, a service designed to allow you to run code in the Amazon cloud without having to provision or manage an infrastructure.

	Amazon Simple Notification Service (Bonus Chapter 1)—This chapter introduces Amazon SNS, a service that allows you to send notifications through services such as APNS, GCM, SMS, and e-mail.

	Amazon Mobile Analytics (Bonus Chapter 2)—This chapter introduces Amazon Mobile Analytics, a service that allows you to capture application usage data and generate usage reports.

	AWS Device Farm (Bonus Chapter 3)—This chapter covers AWS Device Farm, a cloud-based app testing service.

	Installing WordPress on Amazon EC2 (Bonus Chapter 4)—This chapter provides step-by-step instructions to install WordPress onto an EC2 instance using the AWS CLI tools.

The chapters in Part II are for iOS developers and cover the following:

	Integrating the AWS SDK for iOS (Chapter 8)—This chapter contains instructions to integrate the AWS SDK for iOS in an Xcode project using CocoaPods, Carthage, and dynamic frameworks.

	Implementing User Signup and Login Using Amazon Cognito User Pools (Chapter 9)—This chapter contains instructions to create an Amazon Cognito user pool and use this user pool in a new Xcode project called AWSChat to allow new users to log in or sign up.

	Implementing Login Using Facebook (Chapter 10)—This chapter contains instructions to create an Amazon Cognito identity pool and use this identity pool in the iOS app along with the Facebook SDK to give users the option to log in to the AWSChat app using their Facebook credentials.

	Implementing Login Using Google (Chapter 11)—This chapter contains instructions to update the AWSChat app to allow users to log in using their Google credentials.

	Accessing Amazon DynamoDB (Chapter 12)—This chapter contains instructions to create a set of tables in Amazon DynamoDB and update the AWSChat app to allow users to add other users of the app as their friends.

	Adding AWSChat Support Using Amazon DynamoDB and Amazon S3 (Chapter 13)—This chapter contains instructions to create a set of Amazon S3 buckets and update the AWSChat app to allow users to send messages to their friends.

	Using AWS Lambda to Generate Thumbnails (Chapter 14)—This chapter contains instructions to create an AWS Lambda function to generate thumbnails out of images uploaded into an Amazon S3 bucket and to update the AWSChat app to allow users to send images to their friends.

	Adding Support for Apple Push Notifications (Bonus Chapter 5)—This chapter contains instructions to set up Amazon SNS resources and add support to the AWSChat app to receive push notifications.

	Integrating Amazon Mobile Analytics with the iOS App (Bonus Chapter 6)—This chapter contains instructions to set up Amazon Mobile Analytics resources and update the AWSChat app to send usage data to Mobile Analytics.

The chapters in Part III are for Android developers and cover the following:

	Integrating the AWS SDK for Android with Android Studio (Chapter 15)—This chapter contains instructions to integrate the AWS SDK for Android in an Android Studio project using Gradle and .jar files.

	Implementing User Signup and Login Using Amazon Cognito User Pools (Chapter 16)—This chapter contains instructions to create an Amazon Cognito user pool and use this user pool in a new Android Studio project called AWSChat to allow new users to log in or sign up.

	Implementing Login Using Facebook (Chapter 17)—This chapter contains instructions to create an Amazon Cognito identity pool and use this identity pool in the Android app along with the Facebook SDK to give users the option to log in to the AWSChat app using their Facebook credentials.

	Implementing Login Using Google (Chapter 18)—This chapter contains instructions to update the AWSChat app to allow users to log in using their Google credentials.

	Accessing Amazon DynamoDB (Chapter 19)—This chapter contains instructions to create a set of tables in Amazon DynamoDB and update the AWSChat app to allow users to add other users of the app as their friends.

	Adding AWSChat Support Using Amazon DynamoDB and Amazon S3 (Chapter 20)—This chapter contains instructions to create a set of Amazon S3 buckets and update the AWSChat app to allow users to send messages to their friends.

	Using AWS Lambda to Generate Thumbnails (Chapter 21)—This chapter contains instructions to create an AWS Lambda function to generate thumbnails out of images uploaded into an Amazon S3 bucket and update the AWSChat app to allow users to send images to their friends.

	Adding Support for GCM Notifications (Bonus Chapter 7)—This chapter contains instructions to set up Amazon SNS resources and add support to the AWSChat app to receive push notifications.

	Integrating Amazon Mobile Analytics with the Android App (Bonus Chapter 8)—This chapter contains instructions to set up Amazon Mobile Analytics resources and update the AWSChat app to send usage data to Mobile Analytics.

What You Need to Use This Book

If you are an iOS developer, you need the following:

	Xcode 8.3.3 (for iOS Developers)

	A suitable Mac for development

	An iOS Developer Account

	Reasonable proficiency in iOS development with Swift

	Knowledge of how to register application identifiers, create provisioning profiles, and build development certificates on the iOS developer portal

If you are an Android developer, you need the following:

	Android Studio 2.3.1

	A suitable Mac or Windows computer

	A Google developer account

	Reasonable proficiency in Android development with Java

Both iOS and Android developers need the following:

	An AWS account under which you can administer

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of conventions throughout the book.

[image: images] Notes, tips, hints, tricks, and asides to the current discussion look like this.

As for styles in the text:

	We italicize new terms and important words when we introduce them.

	We use bold for text you must type exactly as shown.

	We show keyboard strokes like this: Ctrl+A.

	We show filenames, URLs, and code within the text like so: persistence.properties.

	We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold type to emphasize code that is of particular importance in the present context.
We also use bold font to indicate code you must enter as shown.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually or to use the source code files that accompany the book. All the source code used in this book is available for download at http://www.sybex.com. Once at the site, simply locate the book’s title (either by using the Search box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain all the source code for the book.

[image: images] Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is 978-1-118-37785-6.

After you download the code, just decompress it with your favorite compression tool.

PART I
Introduction to Amazon Web Services

	CHAPTER 1: Introduction to Cloud Computing and Amazon Web Services

	CHAPTER 2: Regions, Availability Zones, and Edge Locations

	CHAPTER 3: AWS Identity and Access Management

	CHAPTER 4: Amazon EC2

	CHAPTER 5: Amazon S3

	CHAPTER 6: Amazon DynamoDB

	CHAPTER 7: AWS Lambda

Chapter 1
Introduction to Cloud Computing and Amazon Web Services

WHAT’S IN THIS CHAPTER

	[image: images] Introduction to the basics of cloud computing.

	[image: images]Introduction to the AWS Ecosystem and key services covered in this book.

	[image: images]Learn to sign up for an account under the AWS free tier.

[image:] Hello, and welcome to the exciting world of cloud computing with Amazon Web Services (AWS). In this chapter, you learn about what cloud computing is, read about common models of abstraction used when discussing cloud based services, and discover a high-level overview of Amazon’s offerings in the cloud computing space. The chapter wraps up by walking you through signing up for an AWS account.

Broadly speaking, the word cloud, when used in the context of cloud computing, implies some type of shared computing resource accessed over the Internet. Cloud computing as we know it today was born in 2006 when Amazon launched its Elastic Compute Cloud (EC2) service, which allowed users to create a virtual server in the cloud and deploy their software onto this server within minutes. Amazon EC2 is one of the core services offered by AWS today. Soon after in 2008, Microsoft launched its Azure service. This was followed by competing offers from other players, including Rackspace, Google, Oracle, and Apple.

If you have never heard of AWS, you may be surprised to learn that Amazon, a company that started out as an online book retailer, is the leading provider of cloud computing services.

Before diving in to the anatomy of AWS, the following sections introduce you more fully to cloud computing and its service and deployment models.

What Is Cloud Computing?

Cloud computing is defined by the U.S National Institute of Standards and Technology (NIST) as “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

[image:] Peter Mell and Timothy Grance, “The NIST Definition of Cloud Computing,” NIST Special Publication 800-145. September 2011. (http://nvlpubs.nist .gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf)

NIST defines five essential characteristics in this model. Each of these is briefly examined next:

	Broad network access: A consumer should be able to access services from anywhere.

	Resource pooling: A provider’s computing resources are pooled to support multiple customers.

	On-demand self-service: A consumer should be able to provision computing resources (such as virtual servers) as needed, with minimal human interaction.

	Measured service: A consumer should be able to use computing resources on a pay-as-you-use basis.

	Elasticity: A consumer should be able to provision additional resources automatically and on demand. To ensure this, the provider pools computing resources to provide horizontal scalability to the consumer.

Cloud-computing solutions provide two major advantages to businesses:

	Costs: The cloud-computing paradigm is based on sharing and optimal utilization of hardware resources. A business need only pay for the time during which it utilizes a resource. When a resource is not needed, the business can relinquish it and make it available for someone else to use. This reduces both the upfront hardware investment cost for a business and also ongoing maintenance costs. The cloud service provider, not the consumer, handles the maintenance of the underlying hardware.

	Availability: The time to provision a ready-to-use resource in the cloud is significantly lower than having to set up a similar resource in-house. For instance, a business could provision a virtual server with a cloud provider within seconds, whereas the actual process of procuring new server hardware and software usually takes a few months in most medium- to large-sized organizations.

Cloud Service Models

Cloud computing is built on virtualization technology. Fundamentally, there are two types of virtualization:

	Application virtualization: A single machine hosts one or more applications that are delivered to one or more users over the Internet.

	Hardware virtualization: Also known as server virtualization, in this model a single physical machine hosts multiple virtual machines. Each virtual machine can have its own operating system (different from the operating system of the underlying physical machine) and its own unique set of applications.

As an end user, you expect to consume one or more services from your cloud computing provider over the Internet. These services can range from bare-bones virtual machines with a basic operating system to entire suites of applications. The four common models for cloud services are shown in Figure 1.1. These can be conceptualized using a layered model, with higher layers building upon the services offered by lower layers.

[image: Image described by caption and surrounding text.]

FIGURE 1.1 Common cloud service models

	Infrastructure as a service (IaaS): You specify the nitty-gritty of the virtual server you require, including the number of CPUs, RAM, hard disk space, networking capabilities, and operating system. The cloud provider offers a virtual machine to match these requirements. A scenario in which you want to store files on a cloud-based virtual hard disk will come under the IaaS service model.

	Platform as a service (PaaS): You specify not only the infrastructure but also the precise version of all the software you require. The cloud provider offers a virtual machine with preinternal applications to match these requirements.

	Software as a service (SaaS): You specify the kind of software application you want to use, such as a word processor. The cloud provider provisions the required infrastructure, operating system, and applications to match your requirement. Most SaaS cloud providers include limited choice of the hardware characteristics that run the application.

	Business process as a service (BPaaS): You specify a business process that you want to outsource to a cloud provider. The cloud service provider provisions the hardware, operating system, support software, and web applications to provide the required service. A good example of BPaaS would be a cloud-based service to compute quarterly value-added tax (VAT) returns and submit these returns to the relevant tax authority on your behalf. Such a service could present you with a browser-based front end in which you upload your invoices and business bank statements. The service could then extract relevant information from the uploaded documents (using OCR perhaps), fill up the relevant tax authority’s forms, ask you to review the results, and submit the return on your behalf after you are happy with the numbers.

Cloud Deployment Models

A deployment model answers the following questions:

	Who can access a computing resource?

	How can a user access a computing resource?

	Where is the physical hardware?

Cloud-computing solutions have four distinct deployment models:

	Public cloud: A public cloud provides services over the Internet to a consumer located anywhere in the world. The physical resources utilized by the provider to supply these services can also be anywhere in the world. This type of service could represent potential challenges to organizations such as banks that are prevented by regulatory requirements from storing customer data in other countries.

	Private cloud: A private cloud offers services to a single organization. Services are provided over a secure internal network and are not accessible to the general public over the Internet. The organization owns the physical hardware that supplies underlying services. Because of the large infrastructure costs associated with this model, only larger corporations can afford to have their own private clouds.

	Community cloud: A community cloud provides services to a small group of entities (individuals or corporations) over a secure network. The underlying resources used to supply the services are owned by the entities that the community cloud serves. In essence, this type of cloud service can be thought of as something between a public cloud and a private cloud. The service is not publicly accessible to any user and does not put a significant drain on an entity’s finances. The entities involved usually share a common goal or provide services in a common industry sector.

	Hybrid cloud: A hybrid cloud is essentially a cloud service that is composed of other types of cloud services. For example, a hybrid cloud could consist of both public and private clouds. The public subcloud could provide services that are intended for consumption by any user over the Internet. A private cloud could offer services that are sensitive to the business.

The AWS Ecosystem

Amazon Web Services is the most rapidly evolving cloud-computing service in the market. The current AWS offering consists of several dozen services offered in locations around the world, with new services being added every year.

New additions to AWS are announced at AWS re:Invent, which is the official annual AWS conference. You can find more information on AWS re:Invent at https://reinvent.awsevents.com.

Figure 1.2 describes a brief timeline of AWS. AWS was borne in a paper presented by Chris Pinkham & Benjamin Black to Jeff Bezos in 2003.

[image: Diagram shows timeline of AWS services in years from 2003 to 2016 with markings for idea conceived by Chris Pinkham and Benjamin Black (2003), AWS launched as platform (2006), amazon.com moves over to AWS (2010), first AWS re:Invent conference (2012), et cetera.]

FIGURE 1.2 Brief timeline of AWS services

This paper suggested selling Amazon’s internal infrastructure as a service to the world. In 2006 AWS was officially launched as a platform with a few key services including EC2 and Amazon S3.

In November 2010, Amazon announced that all of amazon.com had migrated to AWS. The first AWS re:Invent conference took place from November 27 to November 29, 2012 at the Venetian Hotel in Las Vegas. In 2014, Amazon Aurora was announced. Aurora is a MySQL-compatible high-performance database.

At the time this book was written, AWS offered 97 services, each of which resided in one of 18 different service categories. The service categories are as follows:

	Compute

	Storage

	Database

	Migration

	Networking & Content Delivery

	Developer Tools

	Management Tools

	Security, Identity & Compliance

	Analytics

	Artificial Intelligence

	Mobile Services

	Application Services

	Messaging

	Business Productivity

	Desktop & App Streaming

	Internet of Things

	Contact Center

	Game Development

You can find details on all AWS services within these categories at https://aws.amazon .com/products/.

The services that are covered in this book are listed below:

	EC2: Amazon Elastic Compute Cloud (EC2) provides secure, scalable, on-demand hardware virtualization in the cloud. Using Amazon EC2 eliminates the need to invest in server hardware up front so that users can focus on, develop, and deploy applications faster. EC2 instances come in various hardware configurations and include an operating system. EC2 is covered in Chapter 4.

	Lambda: AWS Lambda lets users run snippets of code without provisioning an infrastructure. This service is billed on a pay-as-you-go model, with users only paying for the execution time of their lambda code. There is no charge when code is not running. Lambda code can be set up to automatically trigger from other AWS services or called directly from any web or mobile app. AWS Lambda is covered in Chapters 7, 14, 21.

	S3: Amazon Simple Storage Service is a secure, durable, and scalable cloud-based object store. Using this service, you can store your files in the cloud. Amazon S3 is covered in Chapters 5, 13, 20.

	DynamoDB: Amazon DynamoDB is a high-performance, scalable cloud-based NoSQL database service. Amazon DynamoDB is covered in Chapters 6, 12, 19.

	IAM: Amazon Identity and Access Management (IAM) lets you securely control who can access your AWS resources, what resources they can access, and what they can do with these resources. IAM is covered in Chapter 3.

	Amazon Cognito: Amazon Cognito allows you to create identity profiles for your app’s users and allows them to sign in to the app with their Amazon, Facebook, Twitter, or Google accounts. After users have authenticated from the app, the app is given a token that can be used to access AWS cloud resources securely. Amazon Cognito also offers a service that allows authenticated users to sync their app data on different devices. Amazon Cognito is covered in Chapters 9, 10, 11, 16, 17, 18.

	Device Farm: Amazon Device Farm is an app testing service that allows you to upload your app and run a set of automated tests and a set of real-time tests on physical devices hosted by Amazon. Both Android and iOS apps are supported. Amazon Device Farm is covered in Online Bonus Chapter 3.

	Mobile Analytics: Amazon Mobile Analytics allows you to collect and visualize app usage data. A set of reports is generated based on the collected data. You can export the analytics data to other AWS cloud services for further processing. Amazon Mobile Analytics is covered in Online Bonus Chapter 2.

	SNS: Amazon Simple Notification Service (SNS) enables you to send push messages. These messages can be pushed to mobile application, e-mail inboxes, web servers, and other AWS cloud services. SNS supports various protocols including SMS, e-mail, and HTTP/S. SNS is covered in Online Bonus Chapter 1.

Sign Up for an AWS Free Tier Account

To use AWS services you need to sign up for an AWS account. If you do not already have one, you can sign up for an account under the AWS free tier. An AWS account under the free tier is designed to enable you to try some of the AWS offerings free for 12 months, subject to certain usage limits. Go to https://aws.amazon.com/free/ to obtain information on what is included in an AWS free tier account.

To create an AWS account under the free tier, you need to go through a five-step process. Some of the steps have multiple substeps:

	Contact Information

	Payment Information

	Identity Verification

	Support Plan Selection

	Confirmation

Step 1: Contact Information

To start the signup process for an AWS account under the free tier, visit aws.amazon.com and click on the Create an AWS Account link on the top-right corner of the page (see Figure 1.3).

[image: Image described by caption and surrounding text.]

FIGURE 1.3 Amazon Web Services home page

Amazon frequently tries out new user experiences with its customers, so this page may look different from the screen shot. However, you should still be able to find the relevant option to create an AWS account on the page.

Type in a valid e-mail address on the Sign In or Create an AWS Account screen (see Figure 1.4), select I am a new user, and click on the Sign in using our secure server button.

[image: Image described by caption and surrounding text.]

FIGURE 1.4 AWS sign-in screen

You will be asked to provide your full name and a password on the Login Credentials screen (see Figure 1.5). Click on Create account to move on to the next screen in the account creation process.

[image: Image described by caption and surrounding text.]

FIGURE 1.5 Creating login credentials

You will be asked to provide contact information (including a phone number) on the Contact Information screen (see Figure 1.6). You must provide a phone number that you have immediate access to and can receive a call on. Scroll down to the bottom of the page if necessary, read and accept the terms and conditions of the AWS customer agreement, and click on Create Account and Continue to move to the next step.

[image: Image described by caption and surrounding text.]

FIGURE 1.6 Contact Information screen

Step 2: Payment Information

You need to provide credit/debit card details (see Figure 1.7). Although an account under the free tier provides access to some AWS services for free, not all services are included in the free tier. If you use services outside the free tier account, the card you provide is charged.

[image: Image described by caption and surrounding text.]

FIGURE 1.7 Payment Information screen

The precise services and options that are available under the free tier can change from time to time. Every effort will be made in this book to inform you whether an example utilizes AWS features outside those available in the free tier. To get up-to-date information on what is included in the free tier, visit https://aws.amazon.com/free/.

Type your credit/debit card details and click Continue to move on to the identity verification step.

Step 3: Identity Verification

The identity verification process involves receiving a call from an automated system on a number you provide and entering a four-digit pin number into your phone when prompted. Type a telephone number and click Call Me Now (see Figure 1.8).

[image: Image described by caption and surrounding text.]

FIGURE 1.8 Identity Verification screen

A four-digit pin number then appears on the web page (see Figure 1.9). You receive a call on the telephone number you have provided and are asked to enter the four-digit pin you see on the web page.

[image: Image described by caption and surrounding text.]

FIGURE 1.9 Identity Verification PIN number

The identity verification process completes after you key in the four-digit pin over the telephone call. The web page refreshes to reflect this (see Figure 1.10).

[image: Image described by caption and surrounding text.]

FIGURE 1.10 Completing the Identity Verification process

Click on Continue to select your Support Plan to move on to the next step of the account creation process.

Step 4: Support Plan Selection

Select a support plan from the list of options available (see Figure 1.11). The options available follow:

	Basic

	Developer

	Business

	Enterprise

[image: Image described by caption and surrounding text.]

FIGURE 1.11 Support Plan selection

The support plans are cumulative and differ in the level of support that you receive, with the more expensive options giving you access to an Amazon employee to answer your questions. The default, selected option is Basic, and it is free. For the purposes of this book, the Basic support plan suffices. Select the default Basic support plan and click on Continue.

Step 5: Confirmation

You receive confirmation that your AWS free tier account is now set up (see Figure 1.12).

[image: Image described by caption and surrounding text.]

FIGURE 1.12 Completing the signup process

You also receive a confirmation message by e-mail to the address you used during the signup process. In Chapters 2 and 3 you learn different ways you can access AWS and how to secure the account you have just created.

Summary

	Cloud computing is defined by the U.S National Institute of Standards and Technology (NIST) as “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

	EC2 was the first service launched by Amazon and is one of its core service offerings today.

	Cloud computing provides both cost and availability benefits to businesses.

	Common cloud computing service models include infrastructure as a service (IaaS), platform as a service (PaaS), software as a service (SaaS), and business process as a service (BPaaS).

	Cloud solutions are deployed using standard deployment models. A deployment model defines how a computing resource can be accessed, who can access the resource, and where the physical hardware is located.

	There are four distinct deployment models that are commonly used for cloud solutions. These are the private cloud, public cloud, community cloud, and hybrid cloud deployment models.

	AWS offers over 97 different cloud services, grouped into one of 18 different service categories. Amazon is continuously adding to the services that are available.

	An AWS account under the free tier is designed to allow you to try some of the AWS offerings free for 12 months, subject to certain usage limits.

Chapter 2
Regions, Availability Zones, and Edge Locations

WHAT’S IN THIS CHAPTER

	[image: images]Introduction to the AWS global infrastructure.

	[image: images]A tour of the AWS Management Console.

[image:] Chapter 1 gave you an overview of the services offered by Amazon under the AWS umbrella. In this chapter you will learn about regions, Availability Zones within these regions, content distribution edge locations, and some of the common ways to access AWS. Amazon uses a system of geographical regions to provide cloud-based services to end users. Not all AWS services are available in every region.

Regions and Availability Zones

An AWS region is a physical location in the world from which cloud-based services are offered. Amazon ensures that you get to choose the region in which your data is physically located, making it easy for you to meet regional regulatory requirements.

An AWS region is divided into multiple Availability Zones (AZ) (see Figure 2.1).

[image: Image described by caption and surrounding text.]

FIGURE 2.1 Multiple Availability Zones in a single region

An AZ consists of one or more data centers, housed in separate facilities, each with redundant power, networking, and connectivity. These AZs are connected to each other with private fiber-optic networking and enable you to build and operate scalable and fault-tolerant applications that are not possible from a single data center.

AZs let you architect applications that automatically fail over between the AZs in a region without interruption. As of this writing, fifteen regions are spread throughout the world. Additionally, Amazon has announced that it is planning five new regions: Hong Kong, Stockholm, Paris, Ningxia, and AWS GovCloud (US-East). A complete list of regions and Availability Zones can be found at https://aws.amazon.com/about-aws/global-infrastructure/.

Table 2.1 lists the current AWS regions and AZs within each region.

TABLE 2.1 AWS Regions and Availability Zones

	Region

	Availability Zones

	Comments

	U.S. West (Oregon)

	3

	Launched in 2011

	U.S. West (Northern California)

	3

	Launched in 2009

	U.S. East (Northern Virginia)

	5

	Launched in 2006

	U.S. East (Ohio)

	3

	Launched in 2016

	AWS GovCloud

	2

	Launched in 2011. Only accessible to U.S. government employees

	EU (Ireland)

	3

	Launched in 2007

	EU (Frankfurt)

	3

	Launched in 2014

	EU (London)

	2

	Launched in 2016

	Asia Pacific (Singapore)

	2

	Launched in 2010

	Asia Pacific (Tokyo)

	3

	Launched in 2011

	Asia Pacific (Sydney)

	3

	Launched in 2012

	Asia Pacific (Seoul)

	2

	Launched in 2016

	Asia Pacific (Mumbai)

	2

	Launched in 2016

	China (Beijing)

	2

	Launched in 2014 in partnership with Beijing Sinnet Technology Co., Ltd. (“Sinnet”), the service operator and provider for AWS China (Beijing) Region

	South America (São Paulo)

	3

	Launched in 2011

	Canada

	2

	Launched in 2016

[image:] Not all cloud-based services are available in every region. To get a comprehensive list of services available in each region, visit https://aws.amazon .com/about-aws/global-infrastructure/regional-product-services/.

When you start out using AWS, you will most likely base all your cloud-based applications in a single region. The default region applied to new AWS account signups from the UK and the United States is US-East (Northern Virginia).

At some point in the future, you may want to base some of your cloud services in different regions to serve customers there more quickly. Cross-region replication is not automatically applied and usually involves additional effort and costs.

Edge Locations

An edge location is a content-distribution endpoint for CloudFront. Amazon CloudFront is a secure content delivery service that integrates with Amazon’s S3 and allows caching of frequently used media files closer to the point of consumption. More than 50 edge locations are found around the world. You can get a complete list of edge locations at https://aws.amazon.com/about-aws/global-infrastructure/.

To understand how edge locations work, let us assume you have a video file in an S3 bucket in the Asia-Pacific (Tokyo) region that your users want to access. This video file has a URL that your users can employ to download the video.

Every time a user decides to download your video, no matter where he is, he needs to connect across the Internet to a data center in Tokyo. This can involve significant delays depending on how far your users are from the data center (see Figure 2.2).

[image: Diagram shows users who are geographically distant to be able to access video file from Tokyo.]

FIGURE 2.2 Geographically distant users accessing a video file from Tokyo

You can place copies of this video file in S3 buckets in additional AWS regions like Beijing and Singapore to mitigate the problem to an extent.

If you decided to use CloudFront to distribute this video file, give your users a new CloudFront URL for the video, not the original S3 URL. The first user who accesses your video still ends up connecting to a data center in Tokyo. When CloudFront receives the first request, it automatically caches this video at an edge location, closer to the user for subsequent access. If another user in the same geographical area as the first user were to request the same file, CloudFront uses the cached copy from the edge location, resulting in significantly lower latency for the second user (see Figure 2.3).

[image: Diagram shows edge locations can be used to cache content which is frequently used.]

FIGURE 2.3 Edge locations can be used to cache frequently used content.

Using CloudFront with S3 involves additional costs and setup, but if your application requires your user to download large files frequently, CloudFront can result in a significantly improved experience for your users.

Accessing AWS

In this section you learn about the different means in which you (or your application) can connect to AWS. An individual or application can connect to AWS in four ways:

	Using the AWS Management Console.

	Using the command line interface.

	Using platform-specific developer SDKs.

	Using RESTful web services.

Beneath its surface and true to its name, AWS is a collection of RESTful web services. You can access every service AWS offers via a RESTful web service. The Management Console, command line interface, and platform-specific SDKs build upon the underlying RESTful web service API. The manner in which you choose to access AWS depends on your job function.

If you are managing or administering services, you are likely to prefer the Management Console’s web-based user-friendly interface. If you are a DevOps person who frequently executes scripts, you are likely to prefer the command line interface. And if you are an app developer, you are likely to use an SDK specific to your platform if one is available.

As of this writing, developer SDKs are available for the following platforms:

	iOS

	Android

	Java

	PHP

	Go

	.NET

	Python

	C++

	Node.js

	Ruby.

You can get an up-to-date list of platform-specific developer SDKs at https://aws .amazon.com/tools/.

The remaining lessons in this part of the book primarily utilize the AWS Management Console. Parts 2 and 3 of this book are dedicated to using the iOS and Android developer SDKs, respectively. Accessing S3 buckets from the command line is covered in Chapter 5.

The AWS Management Console

The AWS Management Console is a web-based application that permits you to manage your AWS account and configure cloud-based services. Log in to the AWS Management Console at https://aws.amazon.com.

Click on the Sign In to the Console link located at the upper-right corner of the website (see Figure 2.4). You are asked to provide your AWS account username and password.

[image: Image described by caption and surrounding text.]

FIGURE 2.4 AWS home page

The landing page of the Management Console provides quick links to configuration pages for various AWS services, as well as links to training videos (see Figure 2.5). The look and feel of the landing page is constantly updated; therefore, the appearance of the landing page may differ from the screen shots.

[image: Image described by caption and surrounding text.]

FIGURE 2.5 AWS Management Console home page

The menu bar at the top of the Management Console offers several useful options (see Figure 2.6). This navigation menu does not change when you move to different pages within the Management Console.

[image: Image described by caption and surrounding text.]

FIGURE 2.6 AWS Management Console menu bar

Home Menu

The leftmost icon in the menu bar is the home icon. This menu item can be used to access the home screen of the Management Console from any page.

The Services menu (see Figure 2.7) contains links to all AWS services and can be used to quickly jump to the relevant subsection within the Management Console for any service.

[image: Image described by caption and surrounding text.]

FIGURE 2.7 Services Menu

Resource Groups Menu

The Resource Groups menu allows you to access a subset of your own AWS resources (such as Amazon EC2 instances, load balancers, and databases) that have been tagged. A new AWS account has no resource groups configured; in such a case, the Resource Groups menu resembles Figure 2.8.

[image: Image described by caption and surrounding text.]

FIGURE 2.8 Resource Groups menu

Assume that you have allocated a couple of EC2 servers and a load balancer to run a J2EE application for the marketing department, and you have tagged all these resources with meaningful names. You could then create a resource group called Marketing Servers that logically groups these resources based on the value assigned to the Name tags of the resources (see Figure 2.9).

[image: Image described by caption and surrounding text.]

FIGURE 2.9 Adding name tags to resources

The new resource group appears under the Resource Groups menu (see Figure 2.10).

[image: Image described by caption and surrounding text.]

FIGURE 2.10 Tagged resources are visible in the Resource Groups menu.

Clicking on the Marketing Servers resource groups takes you to a screen where you can see all AWS resources that are included in the group (see Figure 2.11).

[image: Image described by caption and surrounding text.]

FIGURE 2.11 Resources in the Marketing Servers resource group

Resource groups provide a convenient means to access resources quickly. Membership of a resource in a resource group is based on the value assigned to a few tags, the type of the resource, and the region it resides in.

Membership of a resource in a resource group does not mean individual resources automatically belong to a virtual network, have restricted IP addresses, or are assigned security permissions.

Account Menu

You can use the Account menu to configure account settings, access contact information and billing reports, and update security credentials. Unlike other menus discussed so far, the Account menu appears with the name used when creating the AWS account and not the word Account (see Figure 2.12).

[image: Image described by caption and surrounding text.]

FIGURE 2.12 Account menu

Regions Menu

With the Regions menu, you can select the AWS region to which the Management Console is attached. By default, the Management Console is set to use the U.S. East (Northern Virginia) region, and any resources you allocate will be built there. To change regions, simply click on the menu and select a different region (see Figure 2.13).

[image: Image described by caption and surrounding text.]

FIGURE 2.13 AWS regions menu

Support Menu

The Support menu is the rightmost option in the menu bar. You can use the options under this menu to contact AWS customer support and access documentation.

Summary

	Amazon uses a system of geographical regions to provide cloud-based services to end users. Not all AWS services are available in every region.

	An AWS region is a physical location in the world from which cloud-based services are offered.

	A region is divided into multiple Availability Zones. An Availability Zone consists of one or more data centers.

	An edge location is a content-distribution endpoint for CloudFront. Amazon CloudFront is a secure content delivery service that integrates with Amazon’s S3 and allows caching of frequently used media files closer to the point of consumption.

	You can access AWS services using the AWS Management Console, the command line interface, platform-specific developer SDKs, and through a set of RESTful web services.

Chapter 3
AWS Identity and Access Management

WHAT’S IN THIS CHAPTER

	[image: images]Introduction to the basic concepts of Identity and Access Management (IAM).

	[image: images]Creating Users, Groups, and Roles.

	[image: images]Securing the root account with multifactor authentication.

	[image: images]Setting up a password rotation policy.

[image:] Identity and Access Management (IAM) is a web service that allows you to securely manage users, configure security credentials, set up password rotation policies, configure multifactor authentication, and control which AWS resources users can access. Using IAM, you can control who can access your AWS resources, what resources they can access, and what they can do with those resources.

You can access IAM using the AWS Management Console, command line tools, platform-specific SDKs, and an HTTPS API. In this chapter, you learn how to use the Management Console to set up users, groups, roles, and policies and secure your root account.

Key Concepts

In this section, you learn some of the key concepts you will encounter when working with IAM.

Root Account

When you sign up to use AWS, you are asked to provide an e-mail address and a password as part of the sign-up process. The end of a successful sign-up journey creates a root identity using the e-mail address and password you provided. This root account has unrestricted access to all resources in your AWS account, including billing and the ability to change your password.

When you log in to the AWS Management Console using the e-mail address and password that were used during the sign-up process, you are, in effect, logging in as the root user.

Amazon recommends that you do not use your root account for everyday access and that you never share your root account credentials with anyone. For an additional layer of security, you should enable multifactor authentication (MFA) on the root account.

For everyday use, the recommended practice is to use IAM to create separate users and employ groups and policies to set up the appropriate levels of access for these users. You learn about configuring MFA in the “Securing the Root Account with MFA” section and creating users in the “Creating a User” section later in this chapter.

User

An IAM user corresponds to a user or application in your organization. Each IAM user has a dedicated sign-in link, password, and access keys. However, IAM users are not separate AWS accounts; they live within the root AWS account (see Figure 3.1).

[image: Table shows AWS root account with columns for IAM group: administrators (David, Sonam, Elana), IAM group: DevOps test infrastructure (Paul, Beren), and IAM group: DevOps prod infrastructure (Jeremy, Kate).]

FIGURE 3.1 IAM users exist under the root AWS account.

An IAM user can use the dedicated sign-in link and password to log in to the AWS Management Console and a set of access keys to programmatically access AWS services.

Because IAM users can have their own access keys, you can create IAM users for applications that need to access AWS programmatically. Therefore, an IAM user does not necessarily represent an actual individual.

Amazon recommends that you create an IAM user account with administrative privileges and utilize that user to create other IAM users for individuals/applications in your company.

Identity Federation

Identity federation allows individuals/applications who are authenticated through other means (such as Active Directory, Facebook) to receive a temporary IAM user account that can programmatically access AWS services. Identity federation requires the user to first sign in to the external identity provider, retrieve a token from the external identity provider, and finally present the token to IAM to receive a temporary set of credentials for AWS resources (see Figure 3.2).

[image: Diagram shows how to obtain temporary credentials with columns for yourorganization (user, active directory) and AWS (IAM, AWS resources) and markings for login (name, pwd), auth token, and temporary credentials.]

FIGURE 3.2 Obtaining temporary credentials

Identity federation can be helpful when your users have existing identities in a corporate directory or Internet identities. IAM supports two types of identity federation. The distinction is made on the basis of where the external identity is stored:

	Enterprise identity federation

	Web identity federation

Enterprise Identity Federation

In enterprise identity federation, the identity is stored outside AWS, in your own enterprise directory. Users who are already authenticated in your organization’s network do not need to sign in with a new set of credentials to access AWS.

Users with identities in Microsoft Active Directory (AD) can employ AWS Directory Service to establish trust between their AD accounts and your AWS account.

Users with identities in a SAML2.0 (Security Assertion Markup Language 2.0) compatible corporate directory can configure the directory to provide single-sign on (SSO) access to the AWS Management Console.

Web Identity Federation

In web identity federation, the identity is stored with a well-known third-party provider such as Facebook, Google, or Amazon. This is ideal if you are developing a web/mobile app that allows your users to log in using their existing Facebook, Amazon, or Google accounts. Using web identity federation in a web/mobile app does not require you to distribute long-term security credentials, create a custom sign-in, or an identity management code within the app.

If you are developing an iOS or Android mobile app, Amazon recommends that you use Amazon Cognito Identity to manage identity federation. Amazon Cognito is available in both the AWS Mobile SDK for iOS and AWS Mobile SDK for Android.

If you don’t utilize Amazon Cognito, you must write code that interacts with a web ID provider such as Facebook and then call the AssumeRoleWithWebIdentity AWS API to exchange the authentication token you received from the web ID provider for AWS temporary security credentials.

[image:] For more information on identity federation, visit http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_identity-management.html.

Group

A group is a logical entity that can organize IAM users. Groups can have attached policies that apply to all members of the group. Groups simplify permissions management instead of managing permissions for every user of your organization; you can attach sets of users to groups and administer permissions at the group level (see Figure 3.3).

[image: Table shows users and permissions in IAM groups with columns for IAM group: administrators (David, Sonam, Elana) and IAM group: Developers (Paul, Beren), and markings for administratoraccess, dynamoDBreadonly, amazons3fullaccess, et cetera.]

FIGURE 3.3 IAM groups contain users and permissions.

Policy

A policy is a JSON document that grants permissions to a user, group, or role. A policy document lists the actions a user can perform and the resources that can be affected. When utilizing groups for user management, both users and groups can have policies attached to them. In such a case, the net set of actions a user can perform is the result of the combination of the policies applied to the user and those inherited via group membership. Policies can be one of two types:

	User-based policy: A user-based policy is attached to a user. It describes the actions the user can perform and the resources the user can access.

	Resource-based policy: A resource-based policy is attached to a resource. It describes the users who can access the resource and the actions they can perform on the resource. Not all AWS services support resource-based policies. The main use of a resource-based policy is to allow cross-account access to your AWS resources. Cross-account access occurs when IAM users from another AWS account access resources from your AWS account.

Role

A role is an identity object similar to a user that can have policies attached to it. However, unlike a user, a role does not have credentials associated with it and is not uniquely associated with a single person. A role can be assumed by a person or a service.

Roles are primarily for providing an AWS service access to another AWS service in your account, such as to allow an Amazon EC2 instance access to an Amazon S3 bucket. Roles are also involved when IAM users created in another organization’s AWS account, or users authenticated with other identity providers, want to access your AWS services.

When a user assumes a role, the permissions associated with the role temporarily supersede his existing permissions. When the user stops using the role, the user’s original permissions are restored.

When a role is assumed by a service (such as EC2), the service is given a temporary set of access credentials for the role. Thus, if you wanted your EC2 instance to access objects from a Amazon DynamoDB database, you would not create a username/password for the EC2 instance. Instead, you would create a role with the correct permissions and assign the EC2 instance to the role.

A role has two separate policies associated with it:

	Trust policy: This policy specifies who is allowed to assume the role.

	Permissions policy: This policy specifies what actions and resources the person who assumes the role is allowed to use.

Common Tasks

In this section, you learn to manage users, groups, roles, and permissions using IAM and the AWS Management Console. The topics in this section require access to the AWS Management Console. If you have not created users under your root account, you need to log in to the AWS Management Console with your root account credentials (see Figure 3.4).

[image: Image described by caption and surrounding text.]

FIGURE 3.4 Root account login screen

If you have already created an IAM user account for day-to-day administrative tasks, you should use the dedicated sign-in link for the user account to access the AWS Management Console (see Figure 3.5).

[image: Image described by caption and surrounding text.]

FIGURE 3.5 IAM user-specific login screen

You cannot use your root account credentials to sign in through a dedicated sign-in link.

IAM accounts apply across all regions across the globe and are not restricted to the region that is currently set up in the Management Console (see Figure 3.6). While employing the Management Console to configure IAM, it is good practice to select a region that is physically closest to you. Doing so ensures you experience the least latency while using the Management Console.

[image: Image described by caption and surrounding text.]

FIGURE 3.6 AWS Management Console region selector

After you have logged in to the AWS Management Console, select the IAM link from the Services drop-down menu (see Figure 3.7).

[image: Image described by caption and surrounding text.]

FIGURE 3.7 Accessing the IAM Management Console

The IAM dashboard appears. At the top of the dashboard, you see the IAM users sign-in link. This is the dedicated sign-in link that you should give your users (see Figure 3.8).

[image: Image described by caption and surrounding text.]

FIGURE 3.8 User-specific IAM sign-in link

Below the IAM users sign-in link, you are presented with a summary of the number of IAM resources that have been created, and also a checklist of common tasks you need to perform to secure your IAM account (see Figure 3.9).

[image: Window shows dashboard of IAM resource with sections for IAM resources and security status, and options for users, groups, customer managed policies, roles, and identity providers, delete your root access keys, create individual IAM users, et cetera.]

FIGURE 3.9 IAM resource dashboard

Creating a User

Follow these steps to create a user.

	Click the Users link in the IAM dashboard to load the user management page. Click the Add user button to start the process of creating a user under your root account (see Figure 3.10).

[image: Window shows add user button location where table shows columns for user name, groups, password, last sign-in, access keys, and creation time, and buttons for add user and delete user.]

FIGURE 3.10 Location of the Add user button

	Specify a username and also the access type for the new user (see Figure 3.11).

[image: Image described by caption and surrounding text.]

FIGURE 3.11 User details screen

The access type has two options. A user can have either one or both access types enabled:

	Programmatic access: Checking this option generates a set of credentials (access key ID, secret access key) that can connect to AWS services from the command line tools, device-specific SDKs, or RESTful API.

	AWS Management Console access: Checking this option generates a password that enables you to log in to the AWS Management Console using the dedicated users sign-in link.

If you allow access to the AWS Management Console, you have the option to provide a custom password and also require the user to change her password on first login. Click Next to proceed to the next step.

	After you have specified a username and access type, you are asked to configure permissions for the user (see Figure 3.12).

[image: Image described by caption and surrounding text.]

FIGURE 3.12 Configuring user permissions

Permissions are represented by JSON documents called policies. You can assign permissions to a user in two ways:

	Adding the user to a group: You can add the user to a group and assign permissions to the group. Permissions set on a group apply to the users within the group.

	Directly attaching policies: You can attach one or more policies directly to a user.

Using groups to manage permission is the recommended approach; however, we will in this instance attach permissions directly because groups have not been covered in this lesson yet.

	Select the option labeled Attach existing policies directly. Type Administrator in the search field and select the policy called AdministratorAccess (see Figure 3.13).

[image: Window shows administratoraccess policy attaching where table shows columns for policy name, type, attachments, and description, and two buttons for create policy and refresh.]

FIGURE 3.13 Attaching the AdmnistratorAccess policy

	If you click the policy name, a JSON document that describes the policy is opened in a new browser tab (see Figure 3.14).

[image: Image described by caption and surrounding text.]

FIGURE 3.14 Policy Details screen

The JSON document for a policy is formatted according to the rules of the IAM Policy Language. You can learn more about the IAM Policy Language at http://docs.aws .amazon.com/IAM/latest/UserGuide/reference_policies.html.

The JSON document for the AdministratorAccess policy contains the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }
]
}

Each policy has a string key called "Version", which in this case is the date this AWS-provided policy was created.

A policy also always has an array called "Statement". Each element of this array is a dictionary that describes the ability (or inability) to perform an action on a resource. In the case of the AdministratorAccess policy, "Statement" has a single dictionary:

 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }

The overall effect of this dictionary is to allow all actions on all resources.

	Switch back to the browser tab that you came from and resume the process of creating a user by clicking on the Next button to display the screen shown in Figure 3.15, where you review the settings for the new user you are about create.

[image: Image described by caption and surrounding text.]

FIGURE 3.15 Review user settings screen

	Click the Create user button to finish creating the user.

You are presented with a confirmation screen like the one in Figure 3.16 that contains the name of the user just created and also her access credentials.

[image: Image described by caption and surrounding text.]

FIGURE 3.16 Add user confirmation screen

This is the only opportunity to record these access credentials somewhere safely and share them with the user for whom you have created the user account.

	Use the Download .csv button to download the full set of credentials for the user, and click the Close button to go back to the IAM home screen.

Assigning Permissions to an Existing User

To modify the permissions that apply to an existing user, follow the steps in this section:

	Click the Users link on the IAM home screen and click the name of the user from the list of existing users (see Figure 3.17).

[image: Window shows user list of IAM where table shows columns for user name, groups, password, last sign-in, access keys, and creation time.]

FIGURE 3.17 IAM user list

You are presented with a summary page that provides several options, including ones to modify the permissions that apply to the user (see Figure 3.18).

[image: Image described by caption and surrounding text.]

FIGURE 3.18 IAM user permissions summary

Creating a Group

To create a new group, follow these steps:

	Click the Groups link on the IAM home screen and click the Create New Group button (see Figure 3.19).

[image: Window shows accessing create new group button where table shows columns for group name, users, inline policy, and creation time.]

FIGURE 3.19 Accessing the Create New Group button

	Provide a name for the new group. Group names can be up to 128 characters in length. When you have finished typing the name of the group, click the Next Step button (see Figure 3.20).

[image: Image described by caption and surrounding text.]

FIGURE 3.20 Set Group Name screen

	Attach one or more policies to the group (see Figure 3.21). A group can have up to 10 policies attached to it.

[image: Image described by caption and surrounding text.]

FIGURE 3.21 Attach Policy screen

	After you have selected the policies that you want to attach to the new group, click the Next Step button.

	The next screen lets you review the settings for the new group you are about to create (see Figure 3.22). Click the Create Group button to finish creating the group.

[image: Image described by caption and surrounding text.]

FIGURE 3.22 Review group screen

Adding Users from a Group

To add users to a group, follow these steps:

	Click the Groups link on the IAM home screen and select the name of the group from the list of existing ones.

	Click the Group Actions button to present a context menu and choose the Add Users to Group menu item (see Figure 3.23).

[image: Image described by caption and surrounding text.]

FIGURE 3.23 Add Users to Group menu item

	You are presented with a list of existing users. Select the ones you want to add to the group and click the Add Users button (see Figure 3.24).

[image: Window shows selecting users to add to group where table shows columns for user name, groups, password, password last used, access keys, and creation time.]

FIGURE 3.24 Selecting users to add to a group

Amazon recommends that you use groups for permission management and not assign permissions directly to users. After having added users to groups, you can edit the user to remove any permission that has become redundant due to the user having joined a group.

Creating a Role

To create a new role, complete the steps in this section:

	Click the Roles link on the IAM home screen and click the Create New Role button (see Figure 3.25).

[image: Window shows accessing button of create new role where table shows columns for role name and creation time, and buttons for create new role and role actions.]

FIGURE 3.25 Accessing the Create New Role button

	Provide a name for the new role. Role names can be up to 64 characters in length and cannot be edited after the role is created. When you have finished typing the name of the role, click the Next Step button (see Figure 3.26).

[image: Image described by caption and surrounding text.]

FIGURE 3.26 Set Role Name screen

	Select a role type. A role type defines the trust policy associated with the role. Recall that a role has two policies attached to it: a trust policy and a permissions policy. A trust policy defines who can assume the role.

You see several role types, grouped under three categories:

	AWS Service Roles: The roles under this category can only be assumed by an AWS service (such as EC2).

	Cross-Account Access Roles: The roles under this category can only be assumed by IAM users who belong to a different AWS account.

	Identity Provider Access Roles: The roles under this category can only be assumed by a federated identity.

	Create a role that can be assumed by an EC2 instance and allows the EC2 instance full access to a DynamoDB database.

Select the Amazon EC2 role type and click the Next Step button (see Figure 3.27).

[image: Window shows selection of role type screen with sections for AWS service roles (Amazon EC2, AWS directory service, AWS lambda, Amazon redshift), role for cross-account access, and role for identity provider access, and buttons for select, previous, and next step.]

FIGURE 3.27 Select Role Type screen

	Configure the permissions policy of the role. The permissions policy defines what actions a user or service can perform after it has assumed this role. You can attach up to 10 permissions to a single role.

Type the word Dynamo in the search field, select the policy called AmazonDynamoDBFullAccess, and click the Next Step button (see Figure 3.28).

[image: Window shows policy attaching to role where table shows policy name, attached entities, creation time, and edited time, and buttons for previous and next step.]

FIGURE 3.28 Attaching a policy to a role

	The next screen allows you to review the settings for the new role you are about to create (see Figure 3.29). Click the Create Role button to finish creating the group.

[image: Image described by caption and surrounding text.]

FIGURE 3.29 Review new role screen

Securing the Root Account with MFA

In this section, you learn to secure your root AWS account using multifactor authentication (MFA). When enabled, MFA adds an additional security step when someone attempts to use root account credentials to log in to the AWS Management Console. In this additional step, the individual is asked to provide a temporary and unique six-digit numeric code that an authentication device generates.

	To configure MFA on your root account, log in to the AWS Management Console using your root account credentials and navigate to the IAM dashboard. Click on the chevron beside the Activate MFA row under the Security Status dashboard (Figure 3.30).

[image: Window shows accessing settings of MFA with sections for IAM resources and security status, and options for users, groups, customer managed policies, roles, and identity providers, delete your root access keys, create individual IAM users, et cetera.]

FIGURE 3.30 Accessing MFA settings

The Activate MFA row will expand to reveal the Manage MFA button. When you click on this button, a dialog box will appear asking you to choose the type of MFA device you want to activate. You can use one of two types of MFA devices:

	Hardware MFA Device: This is a physical authentication device you need to have purchased before activation. As of this writing, the device must be provided by Germalto—a third-party MFA device manufacturer whose devices are compatible with AWS MFA.

	Virtual MFA Device: A virtual MFA device is a software application like Google Authenticator that runs on smartphones. Google Authenticator is available for both iOS and Android devices.

[image:] Because Google Authenticator runs on a smartphone that you will probably carry around with you every day, there is always the possibility of the phone being stolen and the MFA authenticator being compromised. A hardware MFA device that is locked away is always more secure than a virtual MFA device on a smartphone that you carry with you.

To find out more about purchasing a hardware MFA device and other compatible virtual MFA apps, visit https://aws.amazon.com/iam/details/mfa/.

	In this example, we are going to use the Google Authenticator app. Select the Virtual MFA device option and click the Next Step button (see Figure 3.31).

[image: Image described by caption and surrounding text.]

FIGURE 3.31 Choosing the MFA device type

You are reminded to download a compatible virtual MFA app on your smartphone before proceeding. After you have installed Google Authenticator on your smartphone, click the Next Step button again (see Figure 3.32).

[image: Image described by caption and surrounding text.]

FIGURE 3.32 Manage MFA Device dialog box

	The next screen contains a QR code and two text fields. Launch the Google Authenticator app on your smartphone and scan the QR code. A six-digit code appears on the app. Type this code into the Authentication Code 1 field below the QR code.

Wait for a minute, and a new code appears in the app. Type the new code into the Authentication Code 2 field and click on the Activate Virtual MFA button to finish enabling MFA on the root account (see Figure 3.33).

[image: Image described by caption and surrounding text.]

FIGURE 3.33 Enter the authentication codes generated by the MFA device.

Multifactor authentication is not a feature that is exclusive to the root account. Any IAM user can choose to enable MFA on his own user accounts, and enabling MFA on the root account does not automatically enable MFA for IAM user accounts under the root account.

Now that you have enabled MFA on the root account, if you log out of the AWS Management Console and try to sign in again, you are asked to provide an authentication code after you have entered your root account credentials (see Figure 3.34).

[image: Image described by caption and surrounding text.]

FIGURE 3.34 Second step of the login process for an account that has MFA enabled

Launch Google Authenticator on your smartphone and type the six-digit authentication code from Google Authenticator into the text field on the web page.

Setting Up an IAM Password Rotation Policy

In the following steps, you configure a password rotation policy for your IAM users:

	Log in to the AWS Management Console using your root account credentials and navigate to the IAM dashboard. Expand the Apply an IAM password policy menu item and click the Manage Password Policy button.

	Select from the available options to create a suitable IAM password rotation policy and click the Apply password policy button (see Figure 3.35).

[image: Image described by caption and surrounding text.]

FIGURE 3.35 IAM Password Policy settings

If you have been following the sections in this chapter sequentially, then when you go back to the IAM dashboard, you should see a checkmark next to each item under Security Status (see Figure 3.36).

[image: Image described by caption and surrounding text.]

FIGURE 3.36 IAM dashboard after security settings have been configured

Summary

	Identity and Access Management (IAM) is a service that allows you to manage users and the resources they can access.

	The IAM service is typically accessed using the AWS Management Console.

	When you sign up to AWS you receive a root identity using the e-mail address and password you provided.

	Your root AWS account has unrestricted access to all resources in your account and must not be used for everyday use.

	For everyday use, you should set up IAM users, groups, and policies and set appropriate access levels for these users.

	An IAM user can represent an individual or application.

	Identity federation allows individuals/applications who are authenticated through other means (such as Active Directory, Facebook) to receive a temporary IAM user account that can be used to programmatically access AWS services.

	A group is a logical entity that can organize IAM users. Groups can have attached policies that apply to all members of the group.

	A policy is a JSON document that grants permissions to a user, group, or role.

	A role is an identity object similar to a user but does not have credentials associated with it. A role has a set of permissions associated with it.

	Roles are primarily for providing an AWS service access to another AWS service in your account.

Chapter 4
Amazon EC2

WHAT’S IN THIS CHAPTER

	[image: images]Introduction to the basic concepts of Amazon EC2.

	[image: images]Learn to create Amazon EC2 instances.

	[image: images]Learn to access Amazon EC2 instances over the command line.

	[image: images]Learn to access important instance properties such as the IP address and security group settings.

[image:] Elastic Compute Cloud (EC2) is a web service that allows you to securely provision virtual servers in the AWS cloud. You can adjust the capacity and number of virtual servers to suit your needs as they change.

With Amazon EC2, you can set up and deploy a virtual server in the cloud within minutes, with the software you require, and you only pay by the hour for the servers you have provisioned. When you don’t need the virtual server any longer, you can terminate it within minutes.

Key Concepts

In this section, you learn some of the key concepts you will encounter when working with EC2.

Instances and Instance Types

An instance is a virtual server with some preconfigured software loaded onto it. The instance type dictates the precise combination of CPU, RAM, storage, and networking options. The type of instance has a direct impact on how much it costs you, with more powerful configurations costing more per hour than lesser configurations.

You select the type of instance when you provision the instance, and you can change it later to suit your needs. Table 4.1 lists the instance types available.

TABLE 4.1 EC2 Instance Types

	Type Identifier

	Intended Use

	Available Sizes

	Comments

	T2

	General purpose

	nano micro small medium large xlarge 2xlarge

	T2 instances are powered by Intel Xeon processors and are a good choice for applications that normally do not utilize the full capacity of the CPU but every once in a while burst to a higher CPU capacity. Ideally suited to development environments, databases, and web servers.

	M4

	General purpose

	large xlarge 2xlarge 4xlarge 10xlarge 16xlarge

	M2 instances are powered by 2.3 GHz Intel Xeon E5-2686 v4 (Broadwell) processors or 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processors. M4 instances are not eligible for AWS Free Tier accounts.

	M3

	General purpose

	medium large xlarge 2xlarge

	M3 instances are powered by Intel Xeon E5-2670 v2 (Ivy Bridge) processors. They are all backed by SSD storage. Ideally suited for running backend servers for SAP, Microsoft SharePoint, and other enterprise applications. M3 instances are not eligible for AWS Free Tier accounts.

	C4

	Compute optimized

	large xlarge 2xlarge 4xlarge 8xlarge

	C4 instances are powered by Intel Xeon E5-2666 v3 (Haswell) processors. Ideally suited to high-performance science/engineering tasks, video encoding, and MMO gaming. C4 instances are not eligible for AWS Free Tier accounts.

	C3

	Compute optimized

	large xlarge 2xlarge 4xlarge 8xlarge

	C3 instances are powered by Intel E5-2680 v2 (Ivy Bridge) processors. Ideally suited to high-performance science/engineering tasks, video encoding, and MMO gaming. C4 instances are not eligible for AWS Free Tier accounts.

	X1

	Memory optimized

	16xlarge 32xlarge

	X1 instances are powered by Intel Xeon E7-8880 v3 (Haswell) processors. Ideally suited for running in-memory databases like SAP HANA and high-performance computing (HPC) applications. X1 instances are not eligible for AWS Free Tier accounts.

	R4

	Memory optimized

	large xlarge 2xlarge 4xlarge 8xlarge 16xlarge

	R4 instances are powered by Intel Xeon E5-2686 v4 (Broadwell) processors. Ideally suited for high-performance databases, data mining and analysis, Hadoop/Spark clusters, and other enterprise applications. R4 instances are not eligible for AWS Free Tier accounts.

	R3

	Memory optimized

	large xlarge 2xlarge 4xlarge 8xlarge

	R3 instances are powered by Intel Xeon E5-2670 v2 (Ivy Bridge) processors. Ideally suited for in-memory analytics and genomics applications. R3 instances are not eligible for AWS Free Tier accounts.

	P2

	Accelerated computing

	xlarge 8xlarge 16xlarge

	P2 instances are powered by Intel Xeon E5-2686 v4 (Broadwell) processors and NVIDIA K80 GPUs. Ideally suited for GPU-based applications. P2 instances are not eligible for AWS Free Tier accounts.

	G2

	Accelerated computing

	2xlarge 8xlarge

	G2 instances are powered by Intel Xeon E5-2670 (Sandy Bridge) processors and NVIDIA 4 GB CUDA-enabled GPUs. Ideally suited for server-side graphics workloads and 3D application streaming. G2 instances are not eligible for AWS Free Tier accounts.

	F1

	Accelerated computing

	2xlarge 16xlarge

	F1 instances offer customizable hardware acceleration with field programmable arrays (FPGAs) and are powered by Intel Xeon E5-2686 v4 (Broadwell) processors. Ideally suited for big data analysis and financial analysis applications. F1 instances are not eligible for AWS Free Tier accounts.

	I3

	Storage optimized

	large xlarge 2xlarge 4xlarge 8xlarge 16xlarge

	I3 instances that provide fast SSD-backed storage optimized for very high random I/O performance. I3 instances are powered by Intel Xeon E5-2686 v4 (Broadwell) processors. Ideally suited for NoSQL databases. I2 instances are not eligible for AWS Free Tier accounts.

	D2

	Storage optimized

	xlarge 2xlarge 4xlarge 8xlarge

	D2 instances are powered by Intel Xeon E5-2676v3 (Haswell) processors and offer up to 48 TB of local HDD-based storage. Ideally suited for data warehousing tasks. D2 instances are not eligible for AWS Free Tier accounts.

An instance type is identified using a combination of a two-letter instance code and the instance size identifier. For example, t2.micro is one of the most commonly used general-purpose instance types and is available to AWS Free Tier accounts.

Instance sizes range from nano to 32xlarge. Not all instance sizes are available for every instance type. In general, larger instance sizes have more virtual CPUs, GPUs, RAM, and storage. If you would like to know the precise hardware that you will get for a particular instance type, visit https://aws.amazon.com/ec2/instance-types/.

Once launched, an EC2 instance looks like a traditional server, and you can interact with it using a secure shell (SSH) connection. You have complete control of your instance, and you can use sudo to run commands that require root privileges.

Amazon Machine Images

An Amazon Machine Image (AMI) contains the information required to launch an EC2 instance. An AMI consists of the following:

	A template that defines the root volume of the instance. The template includes all the files that make up the operating system and also any web/application servers. When you launch an instance from an AMI, the contents of the template are copied to a volume and the volume is used to boot the instance.

	Launch permissions that control which AWS accounts can launch instances using the template.

	Block device mapping information that specifies the storage volumes (virtual disks) to attach to the instance once it is launched.

Using an AMI, you can create any number of instances, each of which is a copy of the AMI in the cloud (Figure 4.1). You can use the same AMI to create different types of instances.

[image: Flow diagram shows instances of multiple EC2 from single AMI where Amazon Linux AMI leads to instance 1 (t2.micro), instance 2 (m4.xlarge), and instance 3 (c3.large) in EC2 instances.]

FIGURE 4.1 Multiple EC2 instances from a single AMI

EC2 instances are scoped at the region level; however, you can use an AMI to create EC2 instances in different regions. When creating a new instance, you select from several free or paid AMIs.

Paid AMIs have an associated hourly cost in addition to the cost of running the EC2 instance. Amazon provides a Linux-based image called Amazon Linux AMI, which does not have additional hourly costs associated with it. You may still be billed for the EC2 instance usage, depending on the instance type.

[image:] The Amazon Linux AMI is used for any EC2 instances created in this book.

Security Groups

A security group is a firewall around an EC2 instance. A security group allows you to specify rules for both in-bound and out-bound traffic. You can configure the ports, protocols, and IP addresses that can reach your EC2 instance.

Security groups are not part of the AMI; instead, they are associated with an instance and are specified when you launch an instance from an AMI. A security group can be applied to multiple instances, and you can modify the rules associated with a security group at any time.

Following are some of the key characteristics of security groups:

	By default, they allow all outbound traffic.

	They are permissive by design; the rules you add to a security group permit (not deny) traffic.

	They are stateful. If a request is sent from your instance, the response for that request is allowed to flow in regardless of inbound security group rules.

	When multiple security groups are applied to an instance, the rules from each security group are aggregated together.

	If you do not specify a security group for a new instance, a security group called default is applied to the instance.

	You can modify the rules in the default security group, but you cannot delete the default security group.

Pricing Models

Amazon provides three different pricing models for EC2 instances:

	On-Demand: With on-demand pricing, you pay by the hour for the instances you use, with no up-front payments or long-term commitments. This pricing model is ideally suited for development and test servers and also for additional temporary servers that you need to allocate to support a particular event (such as Black Friday sales).

	Reserved: Reserved pricing involves a one-off, up-front payment for an instance to reserve it for a fixed term; then you pay a lower hourly rate for the instance over the reserved term. This pricing is well suited for your main servers provided you have the cash to pay the up-front costs. The more your up-front payment, and the longer your contract length, the cheaper the instances are.

	Spot: With spot pricing, you place your bid for the hourly price you are willing to pay for a particular instance. When the spot price is lower than or equal to your bid, you can create instances of that particular type; when the spot price is greater than your bid, Amazon terminates your EC2 instances. The spot price of an instance fluctuates based on supply and demand and is different for different regions. This pricing model is well suited to a distributed data processing application that can work with a variable number of computing processors.

Your AWS account has a limit on the number of EC2 instances that it can create. Your AWS account can run the following:

	A maximum of 20 on-demand instances per region

	A maximum of 20 reserved instances per region

	A variable number of spot instances per region, determined by the dynamic spot limit

The precise limits depend on the instance type and the pricing model. For more information on instance limits, visit https://aws.amazon.com/ec2/faqs/#How_many _instances_can_I_run_in_Amazon_EC2.

Data Storage

Two types of storage options are available for EC2 instances:

	Instance Storage: Data on an instance store volume only persists for the life of an instance. If the instance is stopped or terminated, all the data on this volume is lost.

	Elastic Block Storage: Amazon Elastic Block Storage (EBS) is a cloud-based block storage service that can be used to create persistent cloud-based volumes and mount these into EC2 instances. Data on an EBS volume persists after an instance is terminated. An EBS volume can be attached to any EC2 instance but can only be attached to one instance at a time.

An EC2 instance can use a combination of instance stores and EBS volumes. The type of storage used to back the root volume can be either an EBS volume or an instance store and depends on the type of AMI. In addition, an AMI can contain a number of block device mapping entries that can mount either instance store–backed volumes or EBS-backed volumes.

As mentioned in the “Amazon Machine Images” section earlier in this chapter, every AMI contains a root volume template, the contents of which describe a file system that is copied to the root volume when an instance is created from the AMI. Depending on whether the root volume will be backed by an instance store or an EBS volume, the AMI is categorized as being either backed by EBS or backed by an instance store.

An AMI that is backed by EBS has its root volume template stored as an EBS snapshot. An AMI that is backed by an instance store has its root volume template stored in Amazon S3.

When an instance is terminated, the root volume is deleted. This is also the case if the root volume is EBS based. However, when creating an EC2 instance from an AMI that is backed by EBS, you can choose to not delete the root volume on termination.

Instance Life Cycle

At any given point in time, an EC2 instance can be in one of several different states (Figure 4.2). An EC2 instance will either remain in that state until you take some action to move it to another state or move to another state automatically. An EC2 instance switches states automatically in the following scenarios:

[image: Flow diagram shows life cycle of EC2 instance where rebooting leads to running and vice versa, pending also leads to running, leads to shutting-down and stopping, and finally leads to stopped and terminated, respectively.]

FIGURE 4.2 EC2 instance life cycle

	The EC2 server has crashed.

	The state it is in currently is transient.

	AWS has terminated the instance due to the spot price rising above your bid price.

A brief description of the different states an instance can be in is provided in Table 4.2.

TABLE 4.2 EC2 Instance States

	State

	Comments

	Pending

	When you launch an instance from an AMI, it starts off in the Pending state.

	Running

	An instance in this state is ready to use.

	Shutting-Down

	An instance enters this state if you decide to terminate it. This is a transient state; after AWS has shut down the instance, it moves the instance to the Terminated state.

	Terminated

	An instance enters this state when it has successfully terminated. A terminated instance is visible in the list of instances for a short while, after which it is automatically removed.

	Rebooting

	If you choose to reboot a running instance, it enters into this transient state. After the instance is ready to use, it transitions back to the Running state.

	Stopping

	If you choose to stop a running instance, it enters this transient state. After the instance has been stopped, it transitions to the Stopped state. You can either restart a stopped instance or terminate it.

Common Tasks

In this section, you learn to use the AWS Management Console to manage instances and configure security groups. Ideally, you should use an IAM user with administrative privileges to carry out these tasks. If you have not yet created an IAM user under your root account, refer to the process described in Chapter 3.

Log in to the IAM console using your dedicated IAM user-specific sign-in link and navigate to the EC2 service home page (Figure 4.3).

[image: Window shows accessing management console of EC2 with sections for compute, storage, database, networking and content delivery, migration, developer tools, management tools, security, identity and compliance, analytics, artificial intelligence, game development, et cetera.]

FIGURE 4.3 Accessing the EC2 Management Console

Creating an Instance

To begin the process of creating a new instance, follow these steps.

	Make sure you are working in the region in which you intend to create your virtual server, and click the Launch Instance button (Figure 4.4).

[image: Window shows drop-down of AWS region selector with sections for resources, create instance, service health, schedules events, account attributes, additional information, and AWS marketplace, and button for launch instance.]

FIGURE 4.4 AWS region selector drop-down and the Launch Instance button

	Select an AMI to be used to create the EC2 instance (Figure 4.5).

[image: Image described by caption and surrounding text.]

FIGURE 4.5 List of Amazon machine images

AMIs are listed under the following categories:

	Quick Start: This is the default option and includes a selection of popular AMIs.

	My AMIs: Any AMIs that you have created are listed here. AMIs that other users have created and shared with you are also listed here.

	AWS Marketplace: This is a large selection of commercial AMIs that include popular operating systems with server configurations. The AMIs listed under this section are from third-party vendors.

	Community AMIs: This is a large section of AMIs provided by the AWS user community.

For each AMI, the description includes the software that is available on the root volume of the instance and also the type of storage to be used for the root volume (Figure 4.6).

[image: Window shows description of AMI with marking for Amazon Linux AMI 2016.09.1 (HVM), SSD volume type, button for select, and root device type: ebs is highlighted.]

FIGURE 4.6 AMI description

	Select the Amazon Linux AMI at the top of the Quick Start list. You are then presented with a screen that lets you select the instance type (Figure 4.7).

[image: Image described by caption and surrounding text.]

FIGURE 4.7 Select an EC2 instance type

The only instance type that is free for AWS Free Tier accounts is t2.micro, and it is selected by default. With a Free Tier account, you can select other instance types, but you are charged for using them.

	If you are happy to accept the default security group and do not want to mount additional EBS volumes while creating the instance, you can click the Review and Launch button. In this chapter, we go through the rest of the configuration screens. Click the Next: Configure Instance Details button.

	On the next screen, you are presented with a number of instance configuration options, including the ability to create multiple instances from the same AMI and configure an IAM role for the instance (Figure 4.8).

[image: Window shows configuration options of EC2 instance with tabs for choose AMI, choose instance type, configure instance (selected), add storage, et cetera, and options for number of instances, purchasing option, network, subnet, auto-assign public IP, IAM role, et cetera.]

FIGURE 4.8 EC2 instance configuration options

You can only configure an IAM role for a new instance; you can’t assign an IAM role to an existing instance. Leave the settings on this page to their default values and click Next:Add Storage.

	The next screen allows you to edit the settings of the root volume or attach additional EBS volumes to the instance (see Figure 4.9).

[image: Window shows configuration options of EC2 storage with tabs for choose AMI, choose instance type, configure instance, add storage (selected), et cetera, and table shows columns for volume type, device, snapshot, size (GiB), volume type, IOPS, encrypted, et cetera.]

FIGURE 4.9 EC2 storage configuration options

You can edit the size of the root volume and also the type of physical storage to be used for the volume. For EBS-backed root volumes, you have the option to delete the root volume when the instance is terminated. This is selected by default (Figure 4.10).

[image: Image described by caption and surrounding text.]

FIGURE 4.10 The Delete on Termination option is available for EBS-backed instances.

	Click the Add New Volume button to add additional EBS volumes. For additional volumes, you can specify a number of settings, including the volume name, size, encryption, and whether the volume should persist when the instance is terminated (Figure 4.11).

[image: Image described by caption and surrounding text.]

FIGURE 4.11 Adding additional storage volumes to an EC2 instance

For the purposes of this chapter, there is no need to add additional EBS volumes, and if you have tapped on the Add New Volume button, simply delete the additional EBS volume by clicking on the X button beside the volume. Click on the Next: Add Tags button to move on to the next step.

	The next screen allows you to add tags to the new instance. A tag is a key value pair; together with any other tags that you may specify, it forms a tag dictionary (Figure 4.12).

[image: Image described by caption and surrounding text.]

FIGURE 4.12 EC2 instance tags

One of the most important tags that you must set for an instance is the Name. Provide a value that helps you easily identify this instance among a list of instances. Click the Next: Configure Security Groups button to move onto the next screen.

	The next screen allows you to set up a security group for the new instance (Figure 4.13). You can choose to create a new security group for the instance or choose an existing security group.

[image: Window shows security group configuration of EC2 instance with tabs for choose AMI, choose instance type, configure security group (selected), et cetera, and table shows columns for type, protocol, port range, and source.]

FIGURE 4.13 EC2 instance security group configuration

By default, the option to create a new security group is selected, and a rule to allow all inbound SSH traffic from any IP address is added. You should allow SSH traffic into the instance only if you plan on using the command line to interact with the new instance. If you do not plan on using the command line with this instance, remove the rule.

If you were planning on running a web server on that instance and wanted to reach the web server at port 80, you would add a new rule to allow inbound HTTP traffic on port 80 (Figure 4.14).

[image: Image described by caption and surrounding text.]

FIGURE 4.14 Adding a custom traffic rule to a security group

The source column specifies the IP address, or range of IP addresses, that can connect to the EC2 instance. Three options are available:

	Custom: You specify a specific IP address or range of IP addresses.

	Anywhere: Traffic is allowed from any IP address.

	My IP: AWS fills in the IP address of the computer you are using. This may not be a good option if the computer you are using has a dynamically allocated IP address.

The default source setting is Custom with a CIDR range of 0.0.0.0/0, which is equivalent to Anywhere. If needed, you can change the rules in the security group after the instance has been launched. Where possible, try to restrict the IP addresses that can access the instance. For the purposes of this chapter, it is okay to use the default option that allows traffic from any IP address.

Click on the Review and Launch button to move to the next step.

	In this step, you can review the settings to create the instance (Figure 4.15).

[image: Window shows settings review screen of EC2 instance with tabs for choose AMI, choose instance type, review (selected), et cetera, where table show columns for instance type, ECUs, et cetera, and table shows columns for type, protocol, port range, and source.]

FIGURE 4.15 EC2 instance settings review screen

If you are happy with the settings, click on the Launch button. When you do so, you are asked to select a public and private key pair to associate with the new instance (Figure 4.16).

[image: Image described by caption and surrounding text.]

FIGURE 4.16 EC2 instance public and private key configuration

The public key portion of the pair is stored by AWS, and you are responsible for storing the private key portion securely. You need the private key when you want to connect to the running instance over SSH. A key pair can be reused for multiple instances. You have the option to select an existing key pair, create a new one, or proceed without a key pair (Figure 4.17).

[image: Image described by caption and surrounding text.]

FIGURE 4.17 Public and private key options

If you choose to proceed without associating a key pair with this instance, you cannot do so in the future. If you choose to create a new key pair, you are asked to provide a name for the new key pair and download the private key to your computer (Figure 4.18).

[image: Image described by caption and surrounding text.]

FIGURE 4.18 Creating a new key pair

Keep the private key safe. Amazon does not store your private key on its systems. If you lose the private key, your only option is to terminate the EC2 instance and start from scratch with a new one.

	After you have either created a new key pair or selected an existing key pair to use with the EC2 instance, click on the Launch Instances button. You are presented with a summary screen with links to FAQs (Figure 4.19).

[image: Image described by caption and surrounding text.]

FIGURE 4.19 Launch Status screen

	Click on the View Instances button to dismiss the summary screen and view the list of EC2 instances.

Managing Existing Instances

In this section, you learn to perform some of the common tasks associated with managing EC2 instances in your AWS account.

Viewing Instances

To get a list of EC2 instances, log in to the EC2 dashboard and click the Instances link in the menu bar on the left side of the page (Figure 4.20).

[image: Window shows existing list of EC2 instances where table shows columns for name, instance ID, instance type, et cetera, tabs for description (selected), tags, et cetera, and options for instance ID, instance state, private DNS, VPC ID, subnet ID, et cetera.]

FIGURE 4.20 Viewing a list of existing EC2 instances

Instances are listed in a table, with columns for the instance name, type, Availability Zone, and state. The Instance state column provides information on the current state of the instance. In Figure 4.20, the instance is in the stopped state. Detailed information on the selected instance is displayed below the instance list (Figure 4.21).

[image: Window shows details of EC2 instances selected where table shows columns for name, instance ID, instance type, et cetera, tabs for description (selected), tags, et cetera, and options for instance ID, instance state, private DNS, VPC ID, subnet ID, et cetera.]

FIGURE 4.21 Details of the selected EC2 instance

Changing Instance State

To change the state of an EC2 instance, follow these steps:

	Select the instance from the list of available instances and click the Actions button to reveal a list of options (Figure 4.22).

[image: Image described by caption and surrounding text.]

FIGURE 4.22 Changing EC2 instance state

	Navigate to the Instance State actions, and choose from Start, Stop, Reboot, and Terminate. Depending on the current state of the instance, some of the options under the Instance State menu may not be relevant; these options are disabled.

Changing Instance Tags

Complete these steps to modify the value of an existing instance tag or add a new tag:

	Select the instance from the list of available instances and switch to the Tags tab below the instance list (Figure 4.23).

[image: Window shows accessing tags of EC2 instance where table shows columns for name, instance ID, instance type, et cetera, tabs for description, tags (selected), et cetera, and table shows columns for key and value.]

FIGURE 4.23 Accessing EC2 instance tags

	Click the Add/Edit Tags button to access a dialog box that allows you to edit the value of existing tags or add new tags to the EC2 instance (Figure 4.24).

[image: Window shows updating tags of EC2 instance where table shows columns for key and value, and buttons for create tag and save.]

FIGURE 4.24 Updating EC2 instance tags

Obtaining the Public IP Address of an Instance

Each EC2 instance has a public and private IPv4 address and domain name associated with it. A private IP address is a dynamically allocated IP address that is not reachable over the Internet. Private IP addresses can be used for communication between EC2 instances in the same virtual network; however, because they are dynamically allocated, they are temporary and can change when the instance is restarted. It is better to use the private domain name associated with an instance for intra-instance communications because domain names automatically resolve to the current private IP address.

By default, all new AWS accounts are allocated a default VPC (virtual network) for their use. When you create a new EC2 instance, unless you specify a different VPC, the instance is created in your account’s default VPC.

A public IP address, on the other hand, is reachable from the Internet. When an EC2 instance is created, Amazon assigns it a public IP address from its global pool of IP addresses. The IP address assigned to an EC2 instance is released when the instance is stopped or terminated. When the instance is subsequently restarted, it receives a new public IP address.

It is possible to configure an instance to not receive a public IP address at all. This is beyond the scope of the book but is useful if you want the EC2 instance to be reachable only from another EC2 instance and not directly from the Internet.

To see the public IP address and public domain name associated with a running EC2 instance, select the instance from the list of instances and look at the values of the Public IP and Public DNS fields in the Description tab under the instance list (Figure 4.25).

[image: Image described by caption and surrounding text.]

FIGURE 4.25 Determining the public IP of an EC2 instance

If the instance is not running, you need to change the instance state before you can access the public IP address.

Changing the Security Group Settings

To see the security group associated with an EC2 instance, follow these steps:

	Select the instance from the list and look at the value of the Security Group field in the Description tab under the instance list (Figure 4.26).

[image: Window shows determining security group of EC2 instance where table shows columns for name, instance ID, instance type, et cetera, tabs for description (selected), tags, et cetera, and options for instance ID, instance state, private DNS, VPC ID, subnet ID, et cetera.]

FIGURE 4.26 Determining the security group of an EC2 instance

	Click the name of the security group (launch-wizard-1 in Figure 4.26) to switch to the security group configuration page (Figure 4.27). You can also access this page by clicking on Security Groups in the menu on the left side of the page.

[image: Image described by caption and surrounding text.]

FIGURE 4.27 Security group configuration

The security group configuration page presents you with a list of all security groups in your accounts and allows you to create new security groups and edit the rules for inbound and outbound traffic rules on existing security groups.

	If you would like to change the security groups associated with a running EC2 instance, select the EC2 instance from the list of EC2 instances and use the Actions ➢ Networking ➢ Change Security Groups menu item (Figure 4.28).

[image: Window shows changing security group of EC2 instance where drop-down menu shows options for connect, get windows password, launch more like this, instance state, instance settings, image, networking (change security groups, attach network interface), and CloudWatch monitoring.]

FIGURE 4.28 Changing the security group of an EC2 instance

	You are presented with a dialog box that allows you to select multiple security groups and attach the groups to the EC2 instance (Figure 4.29).

[image: Window shows attaching multiple security groups to EC2 instance where table shows columns for security group ID, security group name, and description, and button for assign security groups.]

FIGURE 4.29 Attaching multiple security groups to an EC2 instance

Upgrading the Instance Type

Follow these steps to change the type of the EC2 instance:

	First select the instance from the list of instances and ensure that it is not running. After you have verified that the instance is not running, use the Actions ➢ Instance Settings ➢ Change Instance Type menu item (Figure 4.30).

[image: Window shows accessing menu item of change instance where drop-down menu shows options for connect, get windows password, launch more like this, instance state, instance settings (add/edit tags, change instance type), image, networking, and CloudWatch monitoring.]

FIGURE 4.30 Accessing the Change Instance Type menu item

	You are presented with a dialog box showing a list of available instance types to choose from (Figure 4.31).

[image: Window shows instance type modifying with options for instance ID and instance type, checkbox for EBS-optimized, and button for apply.]

FIGURE 4.31 Modifying the instance type

	Select the instance type you want to switch to and click the Apply button. Keep in mind that the t2.micro is the only instance type that is eligible for AWS Free Tier accounts. You are billed for all other instance types.

Accessing Amazon EC2 Instances Using the AWS CLI

The AWS command line interface (CLI) is a tool that lets you manage your AWS services. In this section, you learn to download and install the appropriate version of AWS CLI on your computer and use the tool to access an EC2 instance over SSH.

Linux, Mac OSX, Unix Users

If you are a Linux, Mac OS X, or Unix user, you can use a bundled installer to install the AWS CLI on your computer. The bundled installer requires Python2 version 2.6.5+ or Python3 version 3.3+ to be preinstalled on the computer.

To check the Python version on a Mac OS X computer, open a Terminal window, type the following command, and press Enter.

python –version

If you do not have a suitable version of Python installed on your computer, follow the instructions available at http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-python to get or update Python on your computer.

Installing the AWS CLI

In this section, you install and test the AWS CLI.

	Type the following commands in a Mac OS Terminal window or at the equivalent shell prompt on your system:

$ curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o
 "awscli-bundle.zip"
$ unzip awscli-bundle.zip
$ sudo ./awscli-bundle/install -i /usr/local/aws -b /usr/local/bin/aws

If you do not have unzip installed or you do not have administrative privileges on your computer, you can use one of the techniques listed at http://docs.aws.amazon.com/cli/latest/userguide/installing.html to install the AWS CLI on your computer.

	After you have installed the AWS CLI on your computer, type the following line to test the installation:

$ aws --help

Your screen should display a list of aws commands along with a brief description of each (Figure 4.32).

[image: Window shows commands of AWS CLI with labels for name, description, synopsis, and options (–debug, turn on debug logging, –endpoint-url (string).]

FIGURE 4.32 AWS CLI commands

Typing the aws instruction takes you into the AWS CLI shell.

	To exit the AWS CLI shell and come back to your operating system’s default shell, press Q on your keyboard.

Configuring the AWS CLI

Before you can use the AWS CLI to open an SSH connection to an EC2 instance, you need to configure the CLI tool on your computer.

	Type the following command in a Terminal window on your Mac or appropriate shell prompt on your computer:

$ aws configure

	You are asked to provide the Access Key ID and Secret Access Key for an IAM user who has adequate permissions to access an EC2 instance. You are also asked to provide a default AWS region and output options (Figure 4.33).

[image: Image described by caption and surrounding text.]

FIGURE 4.33 AWS CLI tool configuration

The Access Key ID and Secret Access Key were created for you when you created the IAM user and you were prompted to record the information and save it in a safe place. If you do not remember your access Key ID/Secret Access Key, you can generate a new set by logging into the AWS Management Console, navigating to the IAM dashboard, selecting the IAM user for which you want to regenerate access keys from a list of users, and clicking the Create Access Key button (Figure 4.34).

[image: Window shows creating access key for IAM user with sections for sign-in credentials and access keys, options for user ARN, path, creation time, et cetera, and tabs for permissions, groups, security credentials (selected), and access advisor.]

FIGURE 4.34 Creating an access key for an IAM user

The region name is a string that identifies an AWS region. Table 4.3 lists the values that you can type and the corresponding regions they represent.

The output option can be either json (default) or text.

TABLE 4.3 AWS Region Names

	Region Name

	AWS CLI String

	US East (N. Virginia)

	us-east-1

	US East (Ohio)

	us-east-2

	US West (N. California)

	us-west-1

	US West (Oregon)

	us-west-2

	Canada (Central)

	ca-central-1

	Asia Pacific (Mumbai)

	ap-south-1

	Asia Pacific (Singapore)

	ap-southeast-1

	Asia Pacific (Sydney)

	ap-southeast-2

	Asia Pacific (Tokyo)

	ap-northeast-1

	EU (Frankfurt)

	eu-central-1

	EU (Ireland)

	eu-west-1

	EU (London)

	eu-west-2

	South America (São Paulo)

	sa-east-1

Connecting over SSH

After you have set up the AWS CLI tool with access credentials for a particular user account, you can use the SSH client installed on your system to connect to your EC2 instance. Ensure the EC2 instance is running, and note its public IP address before proceeding with the steps in this section.

	Launch Terminal on your Mac or the equivalent shell for your operating system. Navigate to the directory in which you have saved the private key (.pem file) that was part of the key pair associated with the EC2 instance before it was created.

	Type in the following commands (replacing the text in angular brackets with appropriate values) and press Enter:

$ chmod 400 <yourkeyfile.pem>
$ ssh -i <yourkeyfile.pem> ec2-user@<public-ip-address>

For example, if your private key is stored in a file called awsbook2017KeyPair.pem, and the server’s public IP address is 52.90.63.73, the command would look like this:

$ chmod 400 awsbook2017KeyPair.pem
$ ssh -i awsbook2017KeyPair.pem ec2-user@52.90.63.73

	After entering the command and pressing Enter on your keyboard, your console output resembles the following:

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2016.09-release-notes/
5 package(s) needed for security, out of 9 available
Run "sudo yum update" to apply all updates.

You have now successfully opened a secure shell connection into the EC2 instance and can run commands on the EC2 instance.

Windows Users

For Windows users, Amazon provides an installer package you can use to install the CLI on a computer running Windows XP or a newer operating system. The AWS CLI is not supported on computers running older versions of Windows.

Installing the AWS CLI

Utilize the following link to download a Windows installer for your computer. Both 32-bit and 64-bit installers are available.

http://docs.aws.amazon.com/cli/latest/userguide/ installing.html#install-msi-on-windows

	Launch the installer and follow the on-screen instructions to complete the installation (Figure 4.35).

[image: Image described by caption and surrounding text.]

FIGURE 4.35 AWS CLI tools installer

By default, the AWS CLI is installed at C:\Program Files\Amazon\AWSCLI (64-bit) or C:\Program Files (x86)\Amazon\AWSCLI (32-bit).

	To test the installation of the CLI, launch the command prompt and type the following command at the prompt (Figure 4.36).

[image: Image described by caption and surrounding text.]

FIGURE 4.36 AWS CLI commands

> aws help

	Press Q to go back to the command prompt.

Configuring the AWS CLI

Before you can use the AWS CLI, you need to configure the CLI tool on your computer with access keys for an IAM user account.

	Type the following command in the command prompt:

> aws configure

	You are asked to provide the Access Key ID and Secret Access Key for an IAM User with adequate permissions to access an EC2 instance. You are also asked to provide a default AWS region and output options (Figure 4.37).

[image: Image described by caption and surrounding text.]

FIGURE 4.37 AWS CLI tool configuration

The Access Key ID and Secret Access Key were created for you when you created the IAM user and you were prompted to record the information and save it in a safe place. If you do not remember your access Key ID/Secret Access Key, you can generate a new set by logging into the AWS Management Console, navigating to the IAM dashboard, selecting the IAM user for which you want to regenerate access keys from a list of users, and clicking on the Create Access Key button (Figure 4.38).

[image: Window shows creating access key for IAM user with sections for sign-in credentials and access keys, options for user ARN, path, creation time, et cetera, and tabs for permissions, groups, security credentials (selected), and access advisor.]

FIGURE 4.38 Creating an access key for an IAM user

The region name is a string that identifies an AWS region. Table 4.4 lists the values that you can type and the corresponding regions they represent.

The output option can be either json (default) or text.

TABLE 4.4 AWS Region Names

	Region Name

	AWS CLI String

	US East (N. Virginia)

	us-east-1

	US East (Ohio)

	us-east-2

	US West (N. California)

	us-west-1

	US West (Oregon)

	us-west-2

	Canada (Central)

	ca-central-1

	Asia Pacific (Mumbai)

	ap-south-1

	Asia Pacific (Singapore)

	ap-southeast-1

	Asia Pacific (Sydney)

	ap-southeast-2

	Asia Pacific (Tokyo)

	ap-northeast-1

	EU (Frankfurt)

	eu-central-1

	EU (Ireland)

	eu-west-1

	EU (London)

	eu-west-2

	South America (São Paulo)

	sa-east-1

Installing PuTTY

Windows computers do not have an SSH client installed by default. Instead, on Windows computers, you need to use the PuTTY terminal application that you can download from http://www.chiark.greenend.org.uk/~sgtatham/putty/.

	Download the latest binaries for both the PuTTY and PuTTYgen applications (Figure 4.39).

[image: Window shows downloading PuTTY binaries with tabs for home, license, FAQ,, docs, download (selected), keys, links, mirrors, updates, feedback, changes, wishlist, and team, and markings for legal warning and binaries.]

FIGURE 4.39 Downloading the PuTTY binaries

	The PuTTYgen application converts the .pem private key_ file you downloaded from AWS into a .ppk file that can be used with PuTTY. Launch the PuTTYgen.exe application and click on the Load button (Figure 4.40).

[image: Window shows private key file loading with tabs for file, key, conversions, and help, sections for key, actions, and parameters, and buttons for generate and load (highlighted).]

FIGURE 4.40 Loading a private key file

	Navigate to the folder on your hard disk where you stored the downloaded .pem file from AWS, select the .pem file, and click Open.

	Click the Save Private Key button to save the private key to a .ppk file that can be used with PuTTY (Figure 4.42).

[image: Window shows private key exporting in different format with tabs for file, key, conversions, and help, sections for key, actions, and parameters, and buttons for generate, load, save public key, and save private key (highlighted).]

FIGURE 4.41 Exporting the private key in a different format

[image: Window shows creating new session of PuTTy with sections for specify destination you want to connect to and load, save or delete stored session, and options for host name, port, connection type, saved sessions, and close window on exit.]

FIGURE 4.42 Creating a new PuTTY session

Connecting over SSH with PuTTY

After you have set up the AWS CLI tool with access credentials for a particular user account, you can use the PuTTY SSH client to connect to your EC2 instance. Ensure the EC2 instance is running, and note its public IP address before proceeding with the steps in this section.

	Launch PuTTY on your Windows computer, and type in ec2-user@<public-ip-address> (replacing the text in angular brackets with appropriate values) in the Host Name (or IP Address) field (Figure 4.42).

	Navigate to the SSL Authentication options in the menu on the left side and click the Browse button to load the .ppk file that you generate with PuTTYgen (Figure 4.43).

[image: Window shows specifying of private key file location in PuTTY with sections for authentication methods and authentication parameters, and checkboxes for bypass authentication entirely (SSH-2 only), attempt authentication using pageant, allow agent forwarding, et cetera.]

FIGURE 4.43 Specifying the location of the private key file in PuTTY

	If you would like to create a bookmark for this connection, navigate back to the Session in the menu on the left side, copy the value you typed in the Host Name field into the Saved Sessions field, and click the Add button (Figure 4.44).

[image: Window shows creating bookmark connection with sections for specify destination you want to connect to and load, save or delete stored session, and options for host name, port, connection type, saved sessions, and close window on exit.]

FIGURE 4.44 Creating a connection bookmark

	Click the Open button to launch PuTTY and connect to the EC2 instance via SSH. A new command prompt window opens, and you are now connected to the EC2 instance (Figure 4.45).

[image: Image described by caption and surrounding text.]

FIGURE 4.45 Connecting to an EC2 instance using PuTTY

Summary

	Elastic Compute Cloud (EC2) is a service that allows you to securely provision virtual servers in the AWS cloud.

	Virtual servers are also known as instances.

	Amazon provides multiple instance types for you to select from. The type of instance has a direct impact on how much it costs you, with more powerful configurations costing more per hour than lesser configurations.

	An Amazon Machine Image (AMI) contains the information required to launch an EC2 instance. An AMI consists of a file system template, launch permissions, and storage device mapping information.

	An AMI can be used to create several instances, each with different instance types.

	Amazon provides several free and paid AMI’s for you to choose from.

	A security group is a firewall around an EC2 instance.

	Amazon provides three different pricing models for EC2 instances: on demand, reserved, and spot.

	Amazon provides two different storage options for EC2 instances: Elastic Block Storage (EBS) and instance storage.

	At any time, an EC2 instance can be in one of several different states. An EC2 instance will remain in that state until you take some action to move it to another state.

	In certain situations EC2 instances may transition to another state automatically.

Chapter 5
Amazon S3

WHAT’S IN THIS CHAPTER

	[image: images]Introduction to the basic concepts of Amazon S3.

	[image: images]Learn to create S3 buckets.

	[image: images]Learn to upload objects into S3 buckets.

	[image: images]Learn to download objects from S3 buckets.

	[image: images]Learn to interact with S3 using the AWS CLI tools.

[image:] Simple Storage Service (S3) is a highly reliable web service that allows you to securely store and retrieve object data in the AWS cloud. After Amazon EC2, Amazon S3 is one of the most commonly used services. Data on S3 is spread across multiple devices and Availability Zones automatically.

S3 is an object-based storage service (not block-based). It is ideal to store files but cannot be used to install an operating system; thus, it cannot provide the storage for an EC2 instance.

Data within S3 is stored using a key-value system, with keys being globally unique. Amazon does not apply a limit to how much data can be stored on S3; however, the maximum size of a single file cannot exceed 5 TB.

Key Concepts

In this section you learn some of the key concepts to be encountered when working with S3.

Buckets

A bucket is a folder on S3 where you can store your files. Bucket names are globally unique; therefore, no two users can own a bucket with the same name.

S3 does not internally implement a hierarchical file system similar to what you encounter on your computer’s operating system. All files across all S3 buckets are stored within a flat file system. However, your bucket names can contain the forward path delimiter character (/). Therefore, you can name your buckets in such a way so as to create the appearance of a nested folder structure.

For each bucket you create, you can set up permissions that control who can access the bucket and what they can do with the bucket. Each object you store in an S3 bucket has an object key and metadata associated with it.

Object Key

When you add an object to a bucket, the object is assigned a unique key name that identifies the object. The key name is a sequence of UTF-8 characters and can be up to 1024 bytes long.

The key name is basically the name of the file you have uploaded to the bucket. S3 internally stores data alphabetically, which means files with similar names are stored next to each other on the same physical disks. This can be an important factor to consider if all the files you are planning on storing in S3 are going to be named similar to each other. If this is the case, you could encounter performance bottlenecks when reading the data out of S3; you may want to consider naming the files differently or adding a short random string to the start of the filename.

Object Value

The object value is the data that you are storing. It is a sequence of bytes and can be up to 5 TB in length.

Version ID

The version ID is a string value that identifies the version of the object. S3 assigns a version ID when you upload an object to a bucket. If object versioning is subsequently enabled, every update to the object creates a new version ID. Together the object key and the version ID uniquely identify an object.

Storage Class

Each object in S3 has a storage class associated with it. The storage class determines how S3 stores the data for the object and if you will be charged additional costs to read the data. Amazon S3 offers the following storage classes:

	Standard: This is the default storage class for objects when they are uploaded to S3. It is ideal if your use case requires high reliability, durability, and quick access times. This storage class has been designed for 99.99% availability, 99.999999999% durability. Data is stored redundantly across devices and facilities and can withstand the loss of two facilities simultaneously.

	Standard - IA: IA is an acronym for infrequently accessed. This storage class, is designed for long-lived objects that are accessed less frequently, costs less to use than the Standard storage class and is designed to provide the same availability and durability as the Standard storage class. You can access your objects in real time, but each retrieval has an additional charge associated with it.

	Reduced Redundancy Storage (RRS): This storage class is designed for noncritical objects that can easily be reproduced. The objects cost less to store than the Standard storage class but are stored at lower levels of redundancy. This storage class is designed for 99.99% availability and 99.99% durability.

	Amazon Glacier: Amazon Glacier is an independent, low-cost cloud-based archival solution. This storage class uses Amazon Glacier to store your objects and is suitable for data archiving tasks. Storage costs are extremely low, but it can take up to 3 to 5 hours to read the data.

Costs

Amazon charges you for the following aspects when you use S3, The specific costs differ between regions.

	Storage: You are charged for the objects you store in your S3 buckets.

	Requests: You are charged for the number of requests being made for objects in your S3 buckets.

	Storage Management Pricing: In November 2016, Amazon announced a new feature called S3 Object Tagging. S3 allows you to create object-based tags, and these tags can be created, updated, and deleted at any time during the life of the object. These tags can be used to get information on which objects are being accessed more than others. Amazon charges you a small fee per tag.

For more information on S3 Object Tagging, visit the following URL: https://aws.amazon.com/about-aws/whats-new/2016/11/revolutionizing-s3-storage-management-with-4-new-features/.

	Data Transfer Pricing: Additional costs are involved if you want to replicate your S3 buckets across different regions.

	Transfer Acceleration: S3 Transfer Acceleration is a feature that allows you to leverage Amazon CloudFront’s CDN endpoints to offer your users access to the content of your S3 buckets. For instance, if your bucket were located in Tokyo, without Transfer Acceleration your users from around the world would have to make requests to Tokyo. With Transfer Acceleration enabled, they would only have to make requests to the nearest CloudFront CDN endpoint, which in many cases would be located much closer to them than the S3 bucket. You can visit the following site to get an idea of the difference in access times with and without S3 Transfer Acceleration:

http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/ accelerate-speed-comparsion.html

To get an updated list of charges, visit https://aws.amazon.com/s3/pricing/.

Subresources

Every bucket and object in S3 has a set of subordinate objects associated with it. These subordinate objects are called subresources of the object. Subresources cannot exist on their own; they are always associated with a bucket or an object. When this chapter was written, two subresources were associated with Amazon S3 objects:

	acl: This is an Access Control List (ACL) that defines the list of people who have access to the resource and also what they can do with the resource.

	torrent: You can use this to retrieve a .torrent file associated with the specific resource.

Object Metadata

Two kinds of metadata are associated with each object in S3: system-defined and user-defined.

System-Defined Metadata

As the name suggests, system-defined metadata is automatically maintained by S3 and includes information such as object creation date, object size, and more. Users cannot edit all system-defined metadata fields. Table 5.1 lists the system-defined metadata fields associated with an object.

TABLE 5.1 S3 System-Defined Metadata

	Name

	Description

	User Editable

	Date

	Date when the object was created.

	No

	Content-Length

	Size of the object in bytes.

	No

	Last-Modified

	Date when the object was last modified (or created if the object has never been modified).

	No

	Content-MD5

	MD5 hash of the object.

	No

	x-amz-server-side-encryption

	Indicates whether server-side encryption is enabled for the object and which service is providing the encryption.

	No

	x-amz-version-id

	The version number of the object, only applicable to objects that have versioning enabled.

	No

	x-amz-delete-marker

	Only applicable to objects that have versioning enabled; for such objects this field indicates whether the object is a delete marker.

	No

	x-amz-storage-class

	Storage class used for storing the object.

	Yes

	x-amz-website-redirect-location

	If configured, allows you to redirect requests for the object to another object or external URL.

	Yes

	x-amz-server-side-encryption-aws-kms-key-id

	Applicable only if server-side encryption is enabled on the object. Contains the ID of the encryption key that encrypted the object.

	Yes

	x-amz-server-side-encryption-customer-algorithm

	Indicates if server side encryption is enabled on the object using customer-provided keys.

	Yes

User-Defined Metadata

User-defined metadata is any additional key-value metadata provided by the user when the object was created.

Common Tasks

In this section, you learn to use the AWS Management Console to create S3 buckets and manage the content in these buckets. Ideally, you should use an IAM user with administrative privileges to carry out these tasks. If you have not yet created an IAM user under your root account, refer to the process described in Chapter 3.

Log in to the IAM console using your dedicated IAM user-specific sign-in link and navigate to the S3 service home page (Figure 5.1).

[image: Window shows accessing management console of S3 with sections for compute, storage (highlighted), database, networking and content delivery, migration, developer tools, management tools, security, identity and compliance, analytics, artificial intelligence, et cetera.]

FIGURE 5.1 Accessing the S3 Management Console

Creating a Bucket

To create a new S3 bucket, follow these steps.

	Click the Create Bucket button (Figure 5.2). The S3 service is available in all regions, so you do not need to select a region in the Management Console.

[image: Image described by caption and surrounding text.]

FIGURE 5.2 S3 Management Console welcome page

	A bucket, on the other hand, is region-specific, and you are asked to provide a unique name for your bucket and also to select the region in which you want to create it (Figure 5.3), and click Next.

[image: Image described by caption and surrounding text.]

FIGURE 5.3 Specifying the bucket name and region

To ensure a unique bucket name, you can prefix your company’s reversed domain name to the bucket name. In Figure 5.3, the bucket is called com.asmtechnology.awsbook .testbucket1 and is located in the London region.

	You are presented with a screen that will let you configure bucket versioning, logging, and cost allocation tags (Figure 5.4). You do not need to set up these options at this stage, click Next.

[image: Image described by caption and surrounding text.]

FIGURE 5.4 Configuring versioning, logging, and cost allocation tags

	You are presented with a screen that will let you configure permissions for the new bucket (Figure 5.5). By default, a new bucket can only be accessed by the user who created it via the AWS CLI or the AWS Management Console. If you want the bucket to be accessible to users on the Internet via a URL, ensure you enable the Read public permission for the group called Everyone. After you have set up the permissions for the bucket, click Next.

[image: Image described by caption and surrounding text.]

FIGURE 5.5 Configuring bucket permissions

	You are presented with a screen that summarizes the options and settings for the bucket that will be created (Figure 5.6). Click on the Create Bucket button to create the bucket.

[image: Image described by caption and surrounding text.]

FIGURE 5.6 S3 bucket summary

	You are presented with a list of your S3 buckets. When you click on the icon beside the name of a bucket from the list, a pop-up window will appear with options that allow you to configure bucket-specific settings (Figure 5.7).

[image: Window shows properties, permissions, and management settings with sections for properties, permissions, and management, and options for events, versioning, logging, owner, bucket policy, access control list, lifecycle, analytics, inventory, metrics, et cetera.]

FIGURE 5.7 Properties, permissions, and management settings

If you have one or more buckets, this screen becomes the home screen presented to you whenever you visit the S3 console.

Uploading an Object

Complete these steps to upload an object to an existing bucket.

	Click the name of the bucket in the list of buckets to access its contents (Figure 5.8).

[image: Image described by caption and surrounding text.]

FIGURE 5.8 Bucket contents screen

	Click the Upload button to bring up the File Upload dialog box (Figure 5.9). Use the options in the File Upload dialog box to select one or more files from your computer; then click the Next button.

[image: Image described by caption and surrounding text.]

FIGURE 5.9 Selecting files in the file upload dialog box

	You are presented with a screen that will let you configure permissions for the new file (Figure 5.10). By default, a new file can only be accessed by the user who created it via the AWS CLI or the AWS Management Console. If you want the file to be accessible to users on the Internet via a URL, ensure you enable the Read public permission for the group called Everyone. After you have set up the permissions for the file, click Next.

[image: Image described by caption and surrounding text.]

FIGURE 5.10 Configuring file permissions

	You are presented with a screen that will let you select a storage class and encryption option for the new file (Figure 5.11). By default, a new file uses the Standard storage class and no encryption. Accept the default options and click Next.

[image: Image described by caption and surrounding text.]

FIGURE 5.11 Configuring file storage class and encryption

	You are presented with a screen that summarizes the options and settings for the file that will be uploaded (Figure 5.12). Click the Upload button to upload the file to the bucket.

[image: Image described by caption and surrounding text.]

FIGURE 5.12 File summary page

After the file has finished uploading, it appears in your bucket (Figure 5.13).

[image: Window shows file showing S3 bucket with tabs for objects (selected), properties, permissions, and management, and table shows columns for name, last modified, size, and storage class.]

FIGURE 5.13 S3 bucket showing a file

Accessing an Object

To download an object from your S3 bucket onto your computer, follow these steps.

	Navigate to the bucket using the S3 Management Console, select the object from the contents of the bucket, and click the Download button in the pop-up dialog that appears on the screen (Figure 5.14).

[image: Window shows file downloading from bucket with tabs for objects (selected), properties, permissions, and management, table shows columns for name and last modified, and buttons for download (highlighted) and copy path.]

FIGURE 5.14 Downloading a file from a bucket

If you do not want to use the Management Console, you can also access any object in S3 using a URL.

	To find the URL for an object in an S3 bucket, navigate to the bucket in the Management Console and select the object within the bucket. Copy the value of the Link field in the pop-up dialog (Figure 5.15).

[image: Window shows locating file URL with tabs for objects (selected), properties, permissions, and management, table shows columns for name and last modified, and buttons for download and copy path.]

FIGURE 5.15 Locating the file URL

The value within the Link field is a URL that follows the following naming convention:

https://s3.<region name>.amazonaws.com/<bucket name> /<file name>

For example, a file called sunset.jpg, in a bucket called com.asmtechnology.awsbook .testbucket1, in the eu-west-2 region can be accessed using the following URL:

https://s3.eu-west-2.amazonaws.com/com.asmtechnology.awsbook.testbucket1/sunset.jpg

If both the bucket and the file you are accessing are not publically accessible, you will receive an access denied error when you try the URL in a web browser (Figure 5.16).

[image: Image described by caption and surrounding text.]

FIGURE 5.16 Non-public buckets and files are not accessible using a URL

	To enable access to the object via a web browser, select the object in the S3 bucket and click the Make Public menu item under the Options drop down menu (Figure 5.17).

[image: Window shows accessing make public option with tabs for objects (selected), properties, permissions, and management, table shows columns for name and last modified, and drop-down menu shows options for get size, rename, copy, change storage class, make public (selected), et cetera.]

FIGURE 5.17 Accessing the Make public option

	Click the Make public button in the pop-up dialog that appears on the screen (Figure 5.18).

[image: Image described by caption and surrounding text.]

FIGURE 5.18 Making a file publicly accessible

If you retry the URL in a web browser, you see the sunset.jpg image displayed in your browser (Figure 5.19).

[image: Image described by caption and surrounding text.]

FIGURE 5.19 Publicly accessible file in an S3 bucket

You can either set permissions at an individual object level, or you can set up permissions for the entire bucket.

Changing the Storage Class of an Object

The default storage class of objects on S3 is Standard. To change the storage class of an object:

	Navigate to the bucket using the S3 Management Console and select the object from the contents of the bucket.

	Select the Change Storage Class menu item under the More drop-down menu (Figure 5.20).

[image: Window shows options of storage class with tabs for objects (selected), properties, permissions, and management, table, drop-down menu shows options for get size, rename, copy, change storage class (selected), et cetera, and markings for standard, standard - IA, and reduced redundancy.]

FIGURE 5.20 Storage class options

	Select an option for the storage class and click the Save button.

Deleting an Object

To delete an object from an S3 bucket:

	Navigate to the bucket using the S3 Management Console and select the object from the contents of the bucket.

	Select the Delete menu item under the More drop-down menu (Figure 5.21).

[image: Window shows delete object menu item with tabs for objects (selected), properties, permissions, and management, table shows columns for name and last modified, and drop-down menu shows options for get size, rename, copy, change storage class, make public (selected), et cetera.]

FIGURE 5.21 Delete object menu item

After you delete an object, it is permanently removed from S3. The only exception to this rule occurs when versioning has been enabled on a bucket, in which case an object that has been deleted from a bucket can be restored.

Amazon S3 Bucket Versioning

Versioning is a bucket-level concept that, when enabled, stores all versions of an object. You can download an older version of an object, and you can even recover an object after it has been deleted. Once versioning is enabled on a bucket, you cannot remove it. You can, however, temporarily suspend versioning.

To enable versioning on a bucket:

	Navigate to the bucket in the Management Console and click the Properties tab.

	Expand the Versioning section, select the Enable Versioning option and click on the Save button (Figure 5.22).

[image: Window shows bucket versioning enabling with tabs for objects, properties (selected), permissions, and management, and options for versioning, logging, static website hosting, tags, cross-region replication, and transfer acceleration.]

FIGURE 5.22 Enabling bucket versioning

To understand how versioning works:

	Create a new text document on your computer called welcome_letter.txt and in that document type the following line.

Welcome to the world of Amazon Web Services.

	Save the document on your computer and upload it to a bucket that has versioning enabled. Ensure the document is accessible to the public (Figure 5.23).

[image: Image described by caption and surrounding text.]

FIGURE 5.23 Ensuring a document is publically accessible

	Obtain the URL for the document and open the document in a web browser. Your web browser should render the contents of the text document.

	Open the welcome_letter.txt file that you had previously saved on your computer, and edit its contents to resemble the following:

Welcome to the world of Amazon Web Services.

S3 versioning allows you to access older versions of documents.

	Save the file and upload it again to the same bucket.

	After the document has finished uploading, click the row titled welcome_letter.txt to reveal a pop-up dialog with options. Expand the versions drop-down menu in the pop-up dialog to reveal links to the different versions of the document (Figure 5.24).

[image: Window shows accessing document versions with tabs for objects (selected), properties, permissions, and management, table shows columns for name and last modified, and buttons for download and copy path.]

FIGURE 5.24 Accessing document versions

The newest version of the document is always listed at the top. It is important to remember that you are charged for the combined space occupied by all versions of a document.

	If you want to delete a version of the document that you do not need, click the trash can icon beside a document version in the versions drop-down menu (Figure 5.25).

[image: Image described by caption and surrounding text.]

FIGURE 5.25 Deleting a document version

When you delete a version of a document (and not the entire document itself), the version you are deleting is permanently lost.

	If instead you want to delete the document, select the document, and use the Delete menu item under the More menu.

When versioning is enabled on a bucket, you will see an additional selector that allows you to view the current contents of the bucket and also deleted objects (Figure 5.26).

[image: Image described by caption and surrounding text.]

FIGURE 5.26 Content selector switch

When the selector switch is set up to show deleted objects, you can see the objects that have been deleted from the bucket. To restore a deleted object simply select the object from the list of deleted objects and select the Undo Delete menu item from the More drop-down menu (Figure 5.27).

[image: Window shows restoring deleted object with tabs for objects (selected), properties, permissions, and management, table shows columns for name, last modified, size, and storage class, and drop-down menu options for rename, undo delete (selected), initiate restore, et cetera.]

FIGURE 5.27 Restoring a deleted object

Accessing Amazon S3 Using the AWS CLI

You can use the AWS CLI to interact with S3 over the command line. Setup and configuration of the CLI client for Linux, Mac OS X, Unix, and Windows are covered in Chapter 4.

The general syntax of the aws command follows:

$ aws <service identifier> <service instructions>

service identifier is a string that identifies an AWS service you want to interact with. The service identifier for Amazon S3 is s3 (in lowercase). Each service supports a different list of instructions. For a complete list of s3 instructions that are available within the CLI, visit http://docs.aws.amazon.com/cli/latest/userguide/using-s3-commands.html.

As an example, the ls instruction retrieves a list of all buckets in the user account that have been configured into the CLI. If you type the following instruction at the command prompt:

$ aws s3 ls

you receive a list of buckets:

Abhisheks-MacBook:~ abhishekmishra$ aws s3 ls
2017-01-15 16:52:59 com.asmtechnology.awsbook.testbucket1
Abhisheks-MacBook:~ abhishekmishra$

In addition to the high-level operations that can be performed using the s3 service identifier, Amazon also provides access to lower level operations using the s3api service identifier. For more information on lower level operations that can be performed on Amazon S3 buckets using the s3api service identifier, visit http://docs.aws.amazon.com/cli/latest/userguide/using-s3api-commands.html.

Summary

	S3 is a key-value, object-based storage service.

	S3 organizes objects into buckets; bucket names must be globally unique.

	Objects can be uploaded to S3 buckets using the AWS Management Console or the AWS CLI.

	You can control access to both buckets and the objects in buckets.

	Each object in S3 has a storage class associated with it. The storage class determines how S3 stores the data for the object and if you will be charged additional costs to read the data.

	S3 versioning allows you to save multiple versions of an object. You are charged for the combined space occupied by all versions of a document.

Chapter 6
Amazon DynamoDB

WHAT’S IN THIS CHAPTER

	[image: images]Introduction to DynamoDB—Amazon’s NoSQL Database.

	[image: images]Creating a DynamoDB Table.

	[image: images]Adding Items to a DynamoDB Table.

	[image: images]Performing Scans and Queries on a DynamoDB Table.

[image:] Amazon DynamoDB is Amazon’s cloud-based, highly scalable, redundant NoSQL database service. Amazon removes the hassle involved in building and maintaining a redundant scalable database service by taking care of administrative tasks such as hardware procurement, setup, replication, and scaling for you.

Using DynamoDB, you can create database tables in the AWS cloud and read/write to these tables. DynamoDB stores your data on fast SSD storage and spreads the data in your tables across a number of servers to allow for fast and consistent access times. All the data in your tables is also automatically replicated across all the Availability Zones (AZs) in your chosen region.

DynamoDB is well suited for mobile apps because it is fast, scalable, and cheaper than other database options that provide the same level of redundancy and scalability.

In addition to a cloud-based DynamoDB service, Amazon provides a downloadable version of DynamoDB that you can run locally on your computer. For more information on the downloadable version of DynamoDB, visit http://docs.aws.amazon.com/ amazondynamodb/latest/developerguide/DynamoDBLocal.html.

Key Concepts

In this section, you learn about some of the key concepts to be encountered when working with DynamoDB.

Tables

DynamoDB stores your data in tables, which are just collections of data. The concept of a table is present in virtually every database management system.

Unlike traditional Relational Database Management Systems (RDBMS), DynamoDB does not require tables to have a predefined schema or any kind of predefined relationships between tables. Behind the scenes, data in a DynamoDB table is stored in JSON files.

Items

A DynamoDB table is a collection of items. Items can be thought of as rows within a table. The number of items that a table can contain is virtually limitless.

Attributes

An item is a collection of attributes, which can be thought of as columns in a row. An attribute is a fundamental unit of data and is not broken down further.

There is no restriction on the number of attributes that an item can contain. Items within the same table can contain different attributes. This is quite different from tables in relational databases where the schema for the table is predefined and each row within the table contains the same number of columns.

An attribute can be one of the following data types:

	Scalar Types: Number, String, Binary, Boolean

	Document Types: List (Array), Map (Dictionary)

	Set Types: String Set, Number Set, Binary Set

For more information on attribute data types, visit http://docs.aws.amazon.com/ amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html.

Primary Keys

Every table in DynamoDB has a primary key that identifies items within. The primary key is defined when the table is created and is an attribute available for every item in the table. No two items in the table can have the same value for the primary key attribute. There are two types of primary keys in a DynamoDB table:

	Partition Key: This is a simple primary key; it is a single attribute that must be unique across all items in the table. DynamoDB uses the value of this key to work out the partition (physical storage volume) on which to store the item.

	Partition key and sort key: This is a composite primary key composed of two parts. The first part of the composite key is a partition key used to determine the physical storage volume on which the item will be stored. The second part of the composite key is the sort key, which sorts values that are stored together on the same storage volume.

Items in the table can have the same partition key, which means they are stored together. However, the combination of partition key and sort key must be unique for each item in the table.

Secondary Indexes

When you create a table in DynamoDB, you are asked to provide a primary key (simple, or composite). DynamoDB allows you to read data from the table by providing the values of the primary key attributes.

If, however, you want to read the data using other nonkey attributes, you need to create a secondary index on the table. A secondary key can be thought of as an additional composite primary key. It also consists of two parts: the partition key and a sort key.

There are two types of secondary indexes:

	Global secondary index: The partition key and sort key portions of the index can be any two attributes in the table.

	Local secondary index: The partition key of the index is the same as the partition key of the table; the sort key portion of the index can be any other attribute in the table.

After you have created a secondary index on the table, you can use the index in queries and scans.

Queries

A query is an operation that searches for data in a DynamoDB table based on the value of the primary key attribute. You must provide the value of the partition key and the sort key (if using a composite primary key) and a comparison operator. The query returns a set with all the items in the table that match the query. By default, the query includes the value of all the attributes for each item in the set. You can provide an additional expression called a projection expression into a query to return fewer attributes for an item. The projection expression is applied to filter the results of the query before presenting the results to you.

Scans

A scan is an operation that returns all the items in the table. Unlike a query, a scan does not retrieve specific items based on the value of a key or index; it provides all the data in the table. You can provide an additional expression called a projection expression into a scan to return fewer attributes for an item. The projection expression is applied to filter the results of the scan before presenting the results to you.

Read Consistency

DynamoDB tables are scoped at the region level. It is possible to have two tables with the same name in different regions, and these tables will have no relationship with each other. When you create a table, it is created in the region you have selected in the Management Console.

Within a region, AWS stores redundant copies of the data in your DynamoDB tables across multiple AZs. When you write data to a DynamoDB table, AWS updates all copies of the data. However, it can take a small amount of time before all copies of our data have been updated.

When you read data from a DynamoDB table, you can choose from one of two different consistency models:

	Eventually Consistent Reads: The response may not reflect the results of the most recent write operation and may contain stale data. It takes about a second for AWS to update all copies of the table across multiple AZs. The possibility of receiving stale data is only an issue if you expect to read a table within one second of updating the table.

	Strongly Consistent Reads: The response contains the data from all prior writes that were successful. The response is likely to take more time because DynamoDB has to wait for all prior update operations to conclude.

The default read consistency model for DynamoDB is eventual consistency, which can be interpreted to mean, “read operations will eventually be consistent.” DynamoDB queries and scans have an additional optional parameter that allows you to specify the read consistency model that you want to use.

Provisioned Throughput

When you create a DynamoDB table, AWS requires you to reserve throughput capacity for reads and writes to the table. Throughput is specified in terms of capacity units:

	Read Capacity Unit: One read capacity unit represents one strongly consistent read per second, or two eventually consistent reads per second for items up to 4 KB in size. If the item being read is larger than 4 KB, additional read capacity units are required.

For example, if your application requires to read 100 items per second, with each item being 2 KB in size, and you want strongly consistent reads, you need to provision 100 read capacity units.

Even though each item is 2 KB in size, Amazon rounds up the item size to the nearest 4 KB boundary when calculating throughput capacity for reads. This means that if your items were 5 KB in size, you would need to provision twice the number of read capacity units (200 read capacity units).

	Write Capacity Unit: One write capacity unit represents one write per second for items up to 1 KB in size.

For example, if your application requires to write 100 items per second, with each item being 2 KB in size, you need to provision 200 write capacity units.

AWS uses the number of read and write capacity units you specify while creating a table to reserve the resources necessary to guarantee that capacity to you. If your application’s read or write requests exceed the provisioned capacity, AWS may fail the request with an HTTP 400 error code.

You are billed for the read and write capacity units that you have reserved, and also an additional flat fee for data storage costs. For more information on the costs involved with DynamoDB, visit https://aws.amazon.com/dynamodb/pricing/.

Common Tasks

In this section you learn to use the AWS Management Console to create DynamoDB tables and manage the data in these buckets. Ideally, you should use an IAM user with administrative privileges to carry out these tasks. If you have not yet created an IAM user under your root account, refer to the process described in Chapter 3.

Log in to the IAM console using your dedicated IAM user-specific sign-in link and navigate to the DynamoDB service home page (Figure 6.1).

[image: Window shows accessing management console of dynamoDB with sections for compute, storage, database, networking and content delivery, migration, developer tools, management tools, security, identity and compliance, analytics, artificial intelligence, et cetera.]

FIGURE 6.1 Accessing the DynamoDB Management Console

DynamoDB tables are scoped at the region level, so make sure you have set up the Management Console to use the appropriate region.

Creating a Table

If you have never used DynamoDB, you are presented with the splash screen (Figure 6.2).

[image: Image described by caption and surrounding text.]

FIGURE 6.2 DynamoDB splash screen

If you have used DynamoDB in the past, you arrive at the DynamoDB dashboard (Figure 6.3).

[image: Image described by caption and surrounding text.]

FIGURE 6.3 DynamoDB dashboard

	Regardless of which screen you arrive at, click the Create Table button to get started with creating a DynamoDB table.

	On the Create DynamoDB table screen (Figure 6.4), provide a table name between 3 and 255 characters in length. Unlike Amazon S3 buckets, DynamoDB table names are not globally unique; they only need to be unique for your account, within the selected region.

[image: Image described by caption and surrounding text.]

FIGURE 6.4 Specifying a table name

	If you would like to follow along with the exercises in this chapter, call the table customer. Specify the name of the primary key attribute to be customerID. By default, the Create table screen is configured to create a simple primary key. If you want to use a composite (partition + sort) key, check the Add sort key check box (Figure 6.5).

[image: Window shows specifying composite key for table with options for table name and primary key.]

FIGURE 6.5 Specifying a composite key for a table

The default create table screen is also configured to not create secondary indexes and to reserve a throughput capacity of 5 read units and 5 write units. Not having a secondary index at this point is not a problem because we don’t have data in the table. However, because you are billed for the provisioned throughput capacity you reserve, you should start with the smallest number of read and write units and increase these if needed in the future.

	Uncheck the Use Default Settings check box and scroll down to the bottom of the page to locate the Provisioned Capacity section. Change the number of read and write units to 1 each (Figure 6.6).

[image: Window shows changing provisioned capacity of IO with options for table name, primary key, and sections for table settings, secondary indexes, and provisioned capacity (highlighted).]

FIGURE 6.6 Changing the provisioned IO capacity

	Click the Create button to create the table. The table takes a few minutes to form. After it is created, your screen should resemble Figure 6.7.

[image: Image described by caption and surrounding text.]

FIGURE 6.7 DynamoDB table overview

Adding Items to a Table

This section assumes you have created the customer table as described in the previous section.

	In the DynamoDB dashboard, select the customer table, switch to the Items tab, and click the Create item button (Figure 6.8).

[image: Window shows creating new item in table with tabs for overview, items (selected), metrics, alarms, capacity, indexes, access control, and settings, and buttons for create table and create item.]

FIGURE 6.8 Creating a new item in a table

You are presented with a dialog box that lets you add attributes for the new item. The only attribute that is available by default is the primary key attribute of the table (Figure 6.9).

[image: Image described by caption and surrounding text.]

FIGURE 6.9 Item attributes dialog showing default primary key attribute

You can add attributes by clicking the Add (+) button beside an existing attribute and selecting Append or Insert from the context menu. Append adds a new attribute after the selected attribute, whereas Insert adds the new attribute before the selected attribute (Figure 6.10).

[image: Window shows addition of item attributes with options for append (string, binary, number, stringset, numberset, binaryset, map, list, Boolean, null), insert, and remove.]

FIGURE 6.10 Adding item attributes

	Set the value of customerID to 1, and use the Add(+) button to create the following string attributes with the specified values (Figure 6.11).

[image: Image described by caption and surrounding text.]

FIGURE 6.11 Specifying multiple attributes

	firstName: John

	lastName:Woods

	address: 17 Hollow Road, Bromley

	postcode: BR34 980

	country: United Kingdom

	If you prefer to work directly with the JSON representation of the new item, select the Text option in the view mode drop-down combo box (Figure 6.12).

[image: Image described by caption and surrounding text.]

FIGURE 6.12 Viewing item attributes as JSON

	Click the Save button to add the new item to the table. You should see the new item listed in the table (Figure 6.13).

[image: Image described by caption and surrounding text.]

FIGURE 6.13 DynamoDB table with one item

	Add another item to the table with the following attributes:

	customerID:2

	firstName: Sonam

	lastName: Mishra

	isHomeOwner: True

As you can see in Figure 6.14, items in a table can have different attributes. This is unlike a table in a traditional RDBMS system in which each row has to have the same columns.

[image: Window shows each item in table of dynamoDB which can have different attributes with tabs for overview, items (selected), metrics, et cetera, and table shows columns for customerID, address, country, firstname, lastname, postcode, and ishomeowner.]

FIGURE 6.14 Each item in a DynamoDB table can have different attributes.

Creating an Index

This section assumes you have created the customer table as described in the “Creating a Table” section.

	In the DynamoDB dashboard, select the customer table, switch to the Indexes tab, and click the Create Index button (Figure 6.15).

[image: Image described by caption and surrounding text.]

FIGURE 6.15 Creating an index

You are presented with a dialog box that lets you set up the properties of the new index (Figure 6.16).

[image: Image described by caption and surrounding text.]

FIGURE 6.16 Index properties dialog

	Use the following properties to create the index:

	Primary Key: firstName

	Sort Key: lastName

	Index Name: Use default settings

	Projected Attributes: All

	Read Capacity Units: 1

	Write Capacity Units: 1

	Click the Create Index button to finish creating the index. Your index may take a few minutes to create. After the index is created, you see it listed under the Indexes tab (Figure 6.17).

[image: Image described by caption and surrounding text.]

FIGURE 6.17 DynamoDB table index list

After you have created this index, every new item you add to the table has three mandatory fields: customerID, firstName, and lastName (Figure 6.18).

[image: Image described by caption and surrounding text.]

FIGURE 6.18 Manadatory fields for new items

Even though you have created an index on firstName and lastName, you can still create a new item with the same values as the firstName and lastName attributes of an existing item. However, the value of the customerID attribute must be unique because it is the primary key attribute.

	Add another item to the table with the following attributes:

	customerID:3

	firstName: Sonam

	lastName: Mishra

The list of items in your table should resemble Figure 6.19. You should see two items having the same values for the firstName and lastName attributes.

[image: Window shows multiple items in table of dynamoDB with tabs for overview, items (selected), metrics, et cetera, and table shows columns for customerID, address, country, firstname, lastname, postcode, and ishomeowner.]

FIGURE 6.19 Multiple items in a DynamoDB table

Performing a Scan

This section assumes you have created the customer table as described in the “Creating a Table” section.

	In the DynamoDB dashboard, select the customer table, and switch to the Items tab. The default view that you see with all the items in the table listed is the result of a scan on the primary key customerID. You can verify this by looking at the dark gray area on top of the first item of the table (Figure 6.20).

[image: Window shows items list returned as result of scan operation with tabs for overview, items (selected), metrics, et cetera, and table shows columns for customerID, address, country, firstname, lastname, postcode, and ishomeowner.]

FIGURE 6.20 List of items returned as a result of a scan operation

	You can use the Add Filter button to add a filter expression that trims the results in the set. Figure 6.21 shows the results of the scan after a filter expression has been applied on the firstName attribute.

[image: Window shows filter expression addition to scan with option for filter, and table shows columns for customerID, firstname, lastname, address, country, and postcode.]

FIGURE 6.21 Adding a filter expression to a scan

	If you have an index defined on the table, you can select it from the drop-down combo box (see Figure 6.22) and click the Start search button to perform a scan based on the index.

[image: Window shows usage of indexes while performing scan where table shows columns for customerID, firstname, lastname, address, country, and postcode.]

FIGURE 6.22 Indexes can be used while performing a scan.

The difference between a scan on an index and a scan on the primary key is that the latter returns every item in the table (because all items, by definition, have a value for the primary key attribute). An index, on the other hand, is defined on a selection of attributes, and a scan on an index only returns the items in the table that have values for the attributes defined in the index.

It is important to keep in mind that a scan returns all the elements in a table based on a primary key or index and then applies optional filter expressions to trim down the result set. On a large table, a single scan operation could easily consume all the provisioned read capacity, even though the filter expression may trim the result set to a single row.

Performing a Query

This section assumes you have created the customer table as described in the “Creating a Table” section.

In the DynamoDB dashboard, select the customer table and switch to the Items tab. Switch from Scan mode to Query mode using the drop-down combo box (Figure 6.23).

[image: Window shows switching from scan to query mode with drop-down menu options for scan and query (highlighted).]

FIGURE 6.23 Switching from scan mode to query mode

A query is similar to a scan in many respects, with one important difference: Unlike a scan, a query only returns those items that match the criteria specified by the query. Figure 6.24 depicts the results of a query that matches an item with customerId = 1.

[image: Window shows dynamoDB table querying based on partition key with tabs for overview, items (selected), metrics, et cetera, and table shows columns for customerID, address, country, firstname, lastname, and postcode.]

FIGURE 6.24 Querying a DynamoDB table based on the partition key

You can choose to perform a query on the primary key or an index defined on the table. You can use filter expressions to trim the result set returned by a query.

Summary

	DynamoDB is Amazon’s cloud-based, highly scalable, redundant NoSQL database service.

	DynamoDB stores your data on fast SSD storage and spreads the data in your tables across a number of servers to allow for fast and consistent access times.

	All the data in your tables is also automatically replicated across all the AZs in your chosen region.

	In addition to a cloud-based DynamoDB service, Amazon provides a downloadable version of DynamoDB that you can run locally on your computer.

	DynamoDB does not require tables to have a predefined schema or any kind of predefined relationships between tables.

	Behind the scenes, data in a DynamoDB table is stored in JSON files.

	A partition key is used to work out the partition (physical storage volume) on which to store the item.

	A composite primary key consists of both a partition key and also a sort key. The sort key is used to sort values that are stored on the same storage volume.

	A secondary key can be thought of as an additional composite primary key.

	A query is an operation that searches for data in a DynamoDB table based on the value of the primary key attribute.

	A scan is an operation that returns all the items in the table. Unlike a query, a scan does not retrieve specific items based on the value of a key or index; it provides all the data in the table.

Chapter 7
AWS Lambda

WHAT’S IN THIS CHAPTER

	[image: images]Introduction to AWS Lambda.

	[image: images]Creating a Node.js Lambda function.

	[image: images]Testing a Lambda function.

	[image: images]Viewing execution logs.

	[image: images]Deleting Lambda functions and CloudWatch log groups.

[image:] AWS Lambda is a service that lets you run code on the Amazon cloud without provisioning servers. Amazon manages the infrastructure needed to run your code, and you are billed for the time when your code is running.

Lambda code is triggered in response to events. AWS can trigger events for a variety of scenarios, such as a change in an Amazon S3 bucket, a change in a Amazon DynamoDB table, arrival of data on a Kinesis stream, and so on. With Lambda, you can provide some code that can be triggered when one of these events occurs with very low (millisecond) latency.

AWS Lambda is highly scalable and is capable of running millions of parallel instances of your code in response to concurrent events with AWS managing the provisioning of resources in the background. You can also use Amazon API Gateway to build RESTful APIs that run Lambda code in response to HTTP events. Entire application back-end systems can be built in this way, without provisioning a single server.

Common Use Cases for AWS Lambda

AWS Lambda is extremely powerful, but it only works for you if your code is in one of the supported languages and you do not need access to the underlying hardware that is executing the code. Some of the common use cases for AWS Lambda follow:

	Serverless back end: Using a combination of API Gateway and AWS Lambda, you can build a complete, highly scalable, RESTful API to support a web or mobile application without provisioning a single server.

	Triggers: You can use AWS Lambda to run code in response to changes in S3 buckets and DynamoDB tables. The code could perform essential data integrity checks and fire e-mails using Amazon SNS if checks fail.

	Maintenance: You can use AWS Lambda to run code in response to scheduled events. Such code could perform essential maintenance and cleanup of content in databases.

	Streams: You can configure AWS Lambda code to run in response to new data arriving on Kinesis streams. Amazon Kinesis Streams allow you to build applications that process streaming data from several sources such as social media streams, financial transactions, and IOT hardware.

Key Concepts

In this section, you learn about some of the key concepts to be encountered when working with AWS Lambda.

Supported Languages

AWS Lambda supports the following languages:

	Node.js

	Java

	C#

	Python

You can author your code using a variety of IDEs, such as Eclipse and Visual Studio. Amazon provides the AWS Lambda console, which supports Node.js and Python. For a complete list of IDEs and tools available to create your Lambda code, visit http://docs.aws.amazon.com/lambda/latest/dg/lambda-app.html.

The examples in this chapter are presented in Node.js. Visit http://docs.aws.amazon .com/lambda/latest/dg/lambda-introduction-function.html for information on the other supported languages:

AWS Lambda Functions

To create a Lambda function, you first create a deployment package that contains the code you want to execute along with any dependencies. You then upload this deployment package and configuration information to AWS Lambda to create the Lambda function.

The deployment package in most cases is a .zip file that is uploaded to AWS Lambda using either the command line tools or the AWS Lambda management console. For more information on creating a deployment package for one of the supported languages, visit http://docs.aws.amazon.com/lambda/latest/dg/deployment-package-v2.html.

The configuration information that accompanies the deployment package provides the following key information:

	Compute requirements: You specify the amount of memory you want to allocate to your Lambda function. AWS Lambda allocates CPU resources in proportion to the amount of memory you have requested. The ratio of the CPU to memory allocation is the same as that of an M3 EC2 instance. Amazon EC2 instance types were covered in Chapter 4. If you would like to know the precise hardware that you will get for a particular instance type, visit https://aws.amazon.com/ec2/instance-types/.

	Execution timeout: This is a number in seconds that determines the maximum amount of time the function is allowed to execute. Once this time limit is reached, the Lambda function is terminated.

	Execution role: This is an IAM role that AWS Lambda assumes when it executes your function.

	Handler name: This is the name of the method in your code where AWS Lambda begins execution.

Programming Model

Regardless of the language you choose to write your Lambda function in, a few core concepts are common to all Lambda functions:

	Handler: This is the entry point in your Lambda function. It is a method that AWS Lambda calls to start execution of your function. The handler method can subsequently invoke other methods in the code that make up the Lambda function.

When your handler method is invoked, AWS Lambda injects data about the event that triggered your Lambda function, and also a context object. You can access this event data through the first parameter of the handler method.

The name of the handler method is identified in the configuration information you supply when creating the Lambda function. The syntax of the handler method for a Lambda function written in Node.js is as follows:

Exports.handler = function(event, context) {
 ...
 // function code goes here.
}

	Event: This is the first parameter of the handler method. It is a standard JSON dictionary with the following general syntax.

{
 "key3": "value3",
 "key2": "value2",
 "key1": "value1"
}

Events are generated by event sources. An event source is an AWS service or custom application that publishes an event. Table 7.1 lists some of the commonly used event sources and the type of events they generate.

TABLE 7.1 Event Sources

	Service

	Events

	Description

	S3

	S3 Put, S3 Delete

	The S3 Put and S3 delete events are fired when a new object is created or deleted in an S3 bucket.

	DynamoDB

	DynamoDB Update

	The DynamoDB Event is fired when any kind of update is made to a DynamoDB table. To use Lambda with DynamoDB, you need to enable a DynamoDB stream for the table. DynamoDB writes an entry for each update to the stream. Lambda polls this stream and invokes your function for each entry in the stream.

You can find a complete list of AWS services that can act as event sources at http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html.

Although the body of each event is a JSON dictionary, the entries within the dictionary are specific to the event. For instance, the payload for an S3 PUT event is as follows:

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "s3": {
 "configurationId": "testConfigRule",
 "object": {
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901",
 "key": "HappyFace.jpg",
 "size": 1024
 },
 "bucket": {
 "arn": bucketarn,
 "name": "sourcebucket",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 }
 },
 "s3SchemaVersion": "1.0"
 },
 "responseElements": {
 "x-amz-id-2":
"EXAMPLE123/5678abcdefghijklambdaisawesome/mnopqrstuvwxyzABCDEFGH",
 "x-amz-request-id": "EXAMPLE123456789"
 },
 "awsRegion": "us-east-1",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "eventSource": "aws:s3"
 }
]
}

The payload of a DynamoDB update event is as follows:

{
 "Records": [
 {
 "eventID": "1",
 "eventVersion": "1.0",
 "dynamodb": {
 "Keys": {
 "Id": {
 "N": "101"
 }
 },
 "NewImage": {
 "Message": {
 "S": "New item!"
 },
 "Id": {
 "N": "101"
 }
 },
 "StreamViewType": "NEW_AND_OLD_IMAGES",
 "SequenceNumber": "111",
 "SizeBytes": 26
 },
 "awsRegion": "us-west-2",
 "eventName": "INSERT",
 "eventSourceARN": eventsourcearn,
 "eventSource": "aws:dynamodb"
 }
]
}

You can find sample event data for different types of AWS events at http://docs.aws .amazon.com/lambda/latest/dg/eventsources.html#eventsources-s3-put.

	Context: This is the second parameter of a handler method. Using this object, your code can interact with AWS Lambda to get useful information about the execution environment. Here is some of the information you can obtain from the context object:

	The number of seconds remaining before Lambda terminates the function

	The CloudWatch log group stream associated with the function

	The AWS request ID that was returned to the client when the function was invoked. This ID can be used for follow-up inquiries with AWS support.

	The name of the mobile app, and the device invoking the function, if the function is invoked using the AWS Mobile SDK

	Logging: Any logging statements in your Lambda function are written out to CloudWatch logs. The precise statements you use in your code to generate these logs depend on the programming language you are using. If you are creating your function using Node.js, you can use the following statements to create log entries:

console.log()
console.error()
console.warn()
console.info()

	Exceptions: Your function can create an exception to notify AWS Lambda that an error had occurred while executing the function code. The manner in which exceptions are created depends on the programming language you are using.

In the case of Lambda functions written in Node.js, the Lambda function can report execution status to AWS Lambda using a callback function. This callback function is the third, optional parameter of a Node.js handler method:

exports.handler = function(event, context, callback) {
 ...
 // you can use the callback() method to return information to AWS.
}

The syntax of the callback function is as follows:

callback(Error error, Object result);

The error parameter is optional and can indicate failure within the Lambda function. If the Lambda function succeeds, this parameter can be null.

The result parameter is also optional and can be used to provide the result of a successful Lambda function execution. The value of this parameter must be JSON.stringify compatible.

Table 7.2 lists a few examples of callbacks and how AWS Lambda interprets them.

TABLE 7.2 Node.JS Callbacks

	Sample Callback

	Description

	callback();

	The Lambda function executed successfully, but no information is returned to the caller.

	callback(null);

	The Lambda function executed successfully, but no information is returned to the caller.

	callback(null, "message");

	The Lambda function executed successfully, and a string is returned to the caller.

	callback(error);

	The Lambda function encountered an exception, and an error object is returned to the caller.

If you don’t use the callback method in your handler code, AWS Lambda calls it implicitly for you without parameters:

callback();

Execution Environment

When an AWS Lambda function is invoked in response to an event, AWS Lambda launches an execution environment (container) for the function based on the configuration settings provided when the function was created. The underlying operating system for a container is Amazon Linux. Each container comes preinstalled with a number of libraries and provides some disk space in the /tmp directory.

For more information on the standard libraries that come with a container, refer to http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html.

Lambda needs a little time to create a new container and bootstrap it before passing control to your handler method. To increase efficiency, Lambda keeps the container around for a short while after your function has finished executing. If another copy of your function is executed within this short time, Lambda reuses the container.

You cannot assume that a container will be reused. It is entirely up to AWS Lambda to make that decision. However, if an execution container is reused, it has the following implications for your code:

	Variable declarations in your Lambda function code, outside the handler method, remain initialized. This could be useful if your code was establishing a database connection and storing the connection in a variable. You could add logic in your code that checks whether the connection variable is already initialized and only create a new connection if it is not.

	The contents of the /tmp directory of the container are not deleted.

	Any background processes (or callbacks in case of Node.js) initiated by the previous instance of your function, that did not complete when the previous instance of your function ended, are resumed. You must ensure any such processes are complete before your Lambda function exits.

Common Tasks

In this section, you learn to create and test Node.js AWS Lambda functions using the AWS management console and the AWS CLI tools.

To create and configure AWS Lambda functions, you should use an IAM user with administrative privileges. If you have not yet created an IAM user under your root account, refer to the process described in Chapter 3.

However, you also need to create a role that AWS Lambda can assume while executing the Lambda function on your behalf.

Log in to the IAM console using your dedicated IAM user-specific sign-in link and navigate to the AWS Lambda service home page (Figure 7.1).

[image: Image described by caption and surrounding text.]

FIGURE 7.1 Accessing the AWS Lambda management console

Creating a Simple Node.js Lambda Function Using the AWS Management Console

If you are using Lambda for the first time, you are presented with the AWS Lambda splash screen (Figure 7.2).

[image: Image described by caption and surrounding text.]

FIGURE 7.2 AWS Lambda splash screen

	Click the Get Started button to begin creating a Lambda function.

If you have used Lambda in the past, you arrive at the AWS Lambda dashboard (Figure 7.3).

[image: Image described by caption and surrounding text.]

FIGURE 7.3 AWS Lambda dashboard

	You can click the Create Lambda function button to start the process of creating a new Lambda function.

	If you want to view a list of existing Lambda functions, click the Functions menu item in the menu on the left side of the page (Figure 7.4). You can also create a Lambda function on this page by clicking the Create Lambda function button.

[image: Image described by caption and surrounding text.]

FIGURE 7.4 List of existing Lambda functions

[image:] You can use the management console to create Lambda functions using Node.js or Python. For Java and C#, you need to use the AWS command line tools and dedicated IDE plug-ins to package the Lambda function.

	After clicking the Create Lambda function button, you are asked to select a blueprint for the function (Figure 7.5). A blueprint is a template for building a Lambda function. AWS Lambda offers several blueprints for Lambda functions written in Node.js and Python. Blueprints make it easy to configure event sources for your Lambda function code.

[image: Image described by caption and surrounding text.]

FIGURE 7.5 List of function blueprints

	Use the runtime drop-down to select the Node.js 4.3 runtime (Figure 7.6), and click the Blank Function blueprint.

[image: Image described by caption and surrounding text.]

FIGURE 7.6 Selecting the Node.js 4.3 Blank Function blueprint

The Blank Function blueprint does not have preconfigured triggers associated with it (Figure 7.7).

[image: Image described by caption and surrounding text.]

FIGURE 7.7 The Blank Function blueprint does not have preconfigured triggers.

In Chapters 13 and 20, you create a Lambda function that copies information on users from an Amazon Cognito identity pool to a DynamoDB table. In Chapters 15 and 22 you create a Lambda function that is triggered by a new item being uploaded to an S3 bucket.

The Lambda function being built in this section is not going to be associated with AWS event sources and therefore has no triggers. This function is tested by manually triggering it with a JSON document in place of an event.

	Click on the Next button to proceed to the next page.

The next page has several sections. Scroll to the top of the page until you see the Configure function section (Figure 7.8).

[image: Window shows lambda function name, description, and runtime environment with sections for configure function and lambda function code with options for name, description, runtime, and code entry type.]

FIGURE 7.8 Lambda function name, description, and runtime environment

	Provide a name and description for the Lambda function, and ensure the runtime combo box is set to Node.js 4.3.

	Scroll down to the Lambda function code section, ensure the value selected in the Code entry type drop-down is Edit code inline, and replace the existing sample Lambda function code with the following (Figure 7.9):

[image: Window shows editing node.js lambda function code inline with section for lambda function code, option for code entry type, and programming codes such as ‘use strict’;, console.log(‘lambda function loaded.’);, et cetera.]

FIGURE 7.9 Editing node.js Lambda function code inline

'use strict';

console.log('Lambda function loaded.');

exports.handler = (event, context, callback) => {
 console.log('Received event:', JSON.stringify(event, null, 2));
 console.log('accountName =', event.accountName);
 console.log('accountNumber =', event.accountNumber);
 console.log('sortCode =', event.sortCode);
 if (event.accountNumber == "1234" && event.sortCode == "5678") {
 callback(null, "This is the correct account.");
 } else {
 callback('Something went wrong. This is not the correct account.');
 }
};

	Scroll down to the Lambda function handler and role section of the page, and ensure the value selected in the Role combo box is Create new role from template(s). Provide a name for the new role, and leave the Policy templates drop-down blank (Figure 7.10).

[image: Window shows execution role configuring for lambda function with sections for lambda function handler and role, advanced settings, and options for enable encryption helpers, environment variables, handler, role, role name, policy templates, memory, and timeout.]

FIGURE 7.10 Configuring an execution role for the Lambda function

The new role created in your account will have, by default, the permission to write logs to CloudWatch. In addition to this, the new role will have any permission granted by the values selected in the Policy templates drop-down. The Policy templates drop-down had been left empty in this example because the Lambda function code does not require other permissions apart from writing log statements.

	Scroll down to the bottom of the page and click the Next button to move to the review screen (Figure 7.11).

[image: Image described by caption and surrounding text.]

FIGURE 7.11 Lambda function review screen

	Click the Create function button at the bottom of the review screen to create the Lambda function.

Testing an AWS Lambda Function Using the AWS Management Console

You can use the management console to test the Lambda function. In the previous section, you created a Node.js Lambda function. In this section, you test it using a dummy event.

	Click the Functions menu item in the Lambda dashboard to access a list of Lambda functions (Figure 7.12).

[image: Image described by caption and surrounding text.]

FIGURE 7.12 List of Lambda functions

	Click the function called testLambdaFunction to access the function’s code and settings (Figure 7.13).

[image: Image described by caption and surrounding text.]

FIGURE 7.13 Accessing the code and settings for an existing Lambda function

	Click the Test button. You are presented with a dialog box that lets you provide a test event in JSON format. Replace the default JSON content of the event with the following JSON code, and click the Save and Test button (Figure 7.14).

[image: Image described by caption and surrounding text.]

FIGURE 7.14 Configuring a test event

{
 "accountName": "Abhishek Mishra",
 "accountNumber": "1234",
 "sortCode": "5678"
}

AWS Lambda executes your function and presents the results to you (Figure 7.15).

[image: Image described by caption and surrounding text.]

FIGURE 7.15 Lambda function execution results

You should see that the function succeeded with the following output message:

This is the correct account.

You can also see the log console that shows the log statements generated while Lambda was executing the function. The console log resembles the following:

START RequestId: 6edd49d9-f220-11e6-9005-4ba096e18938 Version: $LATEST

2017-02-13T19:12:59.665Z 6edd49d9-f220-11e6-9005-4ba096e18938 Received event: {
 "accountName": "Abhishek Mishra",
 "accountNumber": "1234",
 "sortCode": "5678"
}

2017-02-13T19:12:59.665Z 6edd49d9-f220-11e6-9005-4ba096e18938 accountName
= Abhishek Mishra

2017-02-13T19:12:59.665Z 6edd49d9-f220-11e6-9005-4ba096e18938
accountNumber = 1234

2017-02-13T19:12:59.665Z 6edd49d9-f220-11e6-9005-4ba096e18938 sortCode = 5678

END RequestId: 6edd49d9-f220-11e6-9005-4ba096e18938
REPORT RequestId: 6edd49d9-f220-11e6-9005-4ba096e18938
Duration: 38.90 ms Billed Duration: 100 ms
Memory Size: 128 MB Max Memory Used: 16 MB

Clicking the Test button at the top of the page retests the function using the same event that you created earlier. If you would like to use a different event, click on the Actions ➢ Configure test event menu item (Figure 7.16).

[image: Window shows different test event configuring with tabs for code (selected) and configuring, drop-down menu options for configure test event (selected), publish new version, et cetera, and sections for summary and log output.]

FIGURE 7.16 Configuring a different test event

Deleting an AWS Lambda Function Using the AWS Management Console

You can use the AWS management console to delete a Lambda function. Deleting a Lambda function does not automatically delete the execution role or the CloudWatch log for the function.

	To delete a Lambda function, click the Functions menu item in the Lambda dashboard to access a list of Lambda functions. Select the function you want to delete, and select the Actions ➢ Delete function menu item (Figure 7.17).

[image: Window shows delete function menu items accessing where drop-down menu shows options for shows ARN, test function, and delete function, and table shows columns for function name, runtime, code size, and last modified.]

FIGURE 7.17 Accessing the Delete function menu item

You do not need to delete the execution role if you plan to use it for another function. You can delete the CloudWatch log for the function by accessing the CloudWatch service from the Services drop-down (Figure 7.18).

[image: Window shows accessing dashboard of CloudWatch with sections for compute, storage, database, networking and content delivery, migration, developer tools, management tools, security, identity and compliance, analytics, artificial intelligence, et cetera.]

FIGURE 7.18 Accessing the CloudWatch dashboard

	After you are in the CloudWatch dashboard, click the Logs menu item to access a list of logs (Figure 7.19).

[image: Window shows CloudWatch log groups list where table shows columns for log groups, expire events after, metric filters, and subscriptions.]

FIGURE 7.19 List of CloudWatch log groups

	Select the log corresponding to your Lambda function, and select the Actions ➢ Delete log group menu item (Figure 7.20).

[image: Window shows delete log group menu item accessing where table shows columns for log groups, metric filters, and subscriptions, and drop-down menu options for create log group, delete log group (selected), et cetera.]

FIGURE 7.20 Accessing the Delete log group menu item.

Summary

	AWS Lambda is a service that lets you run code on the Amazon cloud without provisioning servers.

	Lambda code is triggered in response to events.

	AWS Lambda is highly scalable and is capable of running millions of parallel instances of your code in response to concurrent events.

	You can also use Amazon API Gateway to build RESTful APIs that run Lambda code in response to HTTP events.

	You can use AWS Lambda to run code in response to changes in S3 buckets and DynamoDB tables.

	AWS Lambda supports Node.js, Java, C#, and Python.

	A deployment package is usually a .zip file that contains your function code along with any dependencies.

	A deployment package can be uploaded using either the command line tools or the AWS Lambda management console.

	You specify the amount of memory you want to allocate to your Lambda function. AWS Lambda allocates CPU resources in proportion to the amount of memory you have requested.

	The execution timeout is a number in seconds that determines the maximum amount of time the function is allowed to execute. After this time limit is reached, the Lambda function is terminated.

	You need to set up an IAM role that will be assumed by AWS Lambda when it executes your function.

PART II
AWS for iOS Developers

	CHAPTER 8: Integrating the AWS SDK for iOS

	CHAPTER 9: Implementing User Signup and Login Using Amazon Cognito User Pools

	CHAPTER 10: Implementing Login using Facebook

	CHAPTER 11: Implementing Login using Google

	CHAPTER 12: Accessing Amazon DynamoDB

	CHAPTER 13: Adding AWSChat Support with Amazon DynamoDB and Amazon S3

	CHAPTER 14: Using AWS Lambda to Generate Thumbnails

Chapter 8
Integrating the AWS SDK for iOS

WHAT’S IN THIS CHAPTER

	[image: images]Adding the AWS SDK for iOS into a project using CocoaPods.

	[image: images]Adding the AWS SDK for iOS into a project using Carthage.

	[image: images]Adding the AWS SDK for iOS into a project by including dynamic frameworks.

[image:] The AWS SDK for iOS is an open-source software development kit distributed under an Apache Open Source license. The SDK consists of a library, code samples, and documentation to help you build iOS applications that can connect to services in the Amazon cloud. To use the SDK in an iOS app, you must ensure that you are using Xcode version 7.0 or higher and that your app is targeting iOS version 8.0 or higher.

The AWS SDK for iOS is an open-source SDK, and if you want to access the source code for the SDK, you can do so by cloning the Git repository at https://github.com/aws/aws-sdk-ios.

In this chapter, you learn about the different ways in which you can integrate the AWS SDK for iOS with a new or existing Xcode project.

Integrating the AWS SDK for iOS Using CocoaPods

CocoaPods is a popular dependency management solution for Swift and Objective-C projects. It simplifies the task of adding and managing third-party frameworks in your project along with their dependencies.

	If you have never used CocoaPods on your Mac, you need to install it first by launching the Terminal app and typing the following at the shell prompt:

$ sudo gem install CocoaPods

You are asked to enter your password. The download process can take a few minutes, after which installation kicks off automatically. During the installation process, numerous status messages are displayed (Figure 8.1).

[image: Image described by caption and surrounding text.]

FIGURE 8.1 Installing CocoaPods

At the end of the installation process, you should see a line in your Terminal window that is similar to the following:

2 gems installed

	To test your CocoaPods installation, type the following command into the Terminal window. The output should resemble Figure 8.2.

[image: Image described by caption and surrounding text.]

FIGURE 8.2 Testing your CocoaPods installation

$ pod

	After verifying that CocoaPods is installed on your Mac, launch Xcode and create a new iOS project using the Single View Application template. Use the following options while creating the new project (Figure 8.3):

[image: Image described by caption and surrounding text.]

FIGURE 8.3 Xcode project options dialog

	Product Name: AWSSDKWithCocoaPods

	Team: None

	Organization Name: Provide a suitable name

	Organization Identifier: Provide a suitable identifier

	Language: Swift

	Devices: iPhone

	Use Core Data: Unchecked

	Include Unit Tests: Unchecked

	Include UI Tests: Unchecked

	After creating the project, quit Xcode and switch back to the Terminal window. Using Terminal, navigate to the directory on your hard disk where you have just created the Xcode project.

	To verify that you are in the correct directory, type the ls -a command in Terminal and press Enter. The output in Terminal should resemble this:

Abhisheks-MacBook:AWSSDKWithCocoaPods abhishekmishra$ ls -a
. AWSSDKWithCocoaPods
.. AWSSDKWithCocoaPods.xcodeproj
Abhisheks-MacBook:AWSSDKWithCocoaPods abhishekmishra$

	After you have verified that you are in the correct directory, create a new file called Podfile i (with no extension) using the following command:

$ touch Podfile

	Open the new file in TextEdit by typing the following command in the Terminal window and pressing Enter.

$ open –e Podfile

	Using TextEdit, add the following lines to the podfile, and save the file.

source 'https://github.com/CocoaPods/Specs.git'

platform :ios, '9.0'
use_frameworks!

target :'AWSSDKWithCocoaPods' do
 pod 'AWSAutoScaling'
 pod 'AWSCloudWatch'
 pod 'AWSCognito'
 pod 'AWSCognitoIdentityProvider'
 pod 'AWSDynamoDB'
 pod 'AWSEC2'
 pod 'AWSElasticLoadBalancing'
 pod 'AWSIoT'
 pod 'AWSKinesis'
 pod 'AWSLambda'
 pod 'AWSLex'
 pod 'AWSMachineLearning'
 pod 'AWSMobileAnalytics'
 pod 'AWSPinpoint'
 pod 'AWSPolly'
 pod 'AWSRekognition'
 pod 'AWSS3'
 pod 'AWSSES'
 pod 'AWSSimpleDB'
 pod 'AWSSNS'
 pod 'AWSSQS'
end

These lines add entries for 21 frameworks to the project. You can remove entries for frameworks you do not intend to use in the project. For instance, if your iOS app is not going to connect to AWS Kinesis, you can remove the pod 'AWSKinesis' line from the file. Remember to replace the iOS version and target name with values (highlighted in bold) that are appropriate for your project. If you have multiple targets in your Xcode project, you need to repeat the target : do – end block for each target.

	Close TextEdit when you are finished making the changes. Return to the Terminal window, type the following command, and press Enter:

$ pod install

After a few minutes, CocoaPods finishes installing the frameworks listed in the podfile, and the output in your Terminal window should resemble the following:

Abhisheks-MacBook:AWSSDKWithCocoaPods abhishekmishra$ pod install
Analyzing dependencies
Downloading dependencies
Installing AWSAutoScaling (2.4.16)
Installing AWSCloudWatch (2.4.16)
Installing AWSCognito (2.4.16)
Installing AWSCognitoIdentityProvider (2.4.16)
Installing AWSCore (2.4.16)
Installing AWSDynamoDB (2.4.16)
Installing AWSEC2 (2.4.16)
Installing AWSElasticLoadBalancing (2.4.16)
Installing AWSIoT (2.4.16)
Installing AWSKinesis (2.4.16)
Installing AWSLambda (2.4.16)
Installing AWSLex (2.4.16)
Installing AWSMachineLearning (2.4.16)
Installing AWSMobileAnalytics (2.4.16)
Installing AWSPinpoint (2.4.16)
Installing AWSPolly (2.4.16)
Installing AWSRekognition (2.4.16)
Installing AWSS3 (2.4.16)
Installing AWSSES (2.4.16)
Installing AWSSNS (2.4.16)
Installing AWSSQS (2.4.16)
Installing AWSSimpleDB (2.4.16)
Generating Pods project
Integrating client project

[!] Please close any current Xcode sessions and use
`AWSSDKWithCocoaPods.xcworkspace` for this project from now on.
Sending stats
Pod installation complete! There are 21 dependencies from the Podfile and 22
total pods installed.

Abhisheks-MacBook:AWSSDKWithCocoaPods abhishekmishra$

If you now look at the project folder, you can see that a new workspace file has been created by CocoaPods. From now on, you must use this workspace file and not the original .xcodeproj file (Figure 8.4).

[image: Window shows workspace file created by CocoaPods in original project folder where table shows columns for name, date modified, size, and kind.]

FIGURE 8.4 CocoaPods creates a workspace file in the original project folder.

When you open the new workspace file with Xcode, you notice two projects in the workspace:

	AWSSDKWithCocoaPods

	Pods

Do not make changes to any of the files in the Pods project. All the code that you write is in the AWSSDKWithCocoaPods project.

You have now successfully added the AWS SDK for iOS to your Xcode project using CocoaPods, and your project should be able to build and run on the iOS Simulator without issues.

Integrating the AWS SDK for iOS Using Carthage

Carthage is another dependency management tool that simplifies the process of adding third-party frameworks and their dependencies into an iOS project. One of the key differences between CocoaPods and Carthage is that Carthage downloads and builds frameworks for you, but you need to add the frameworks to your project manually.

If you do not have Carthage installed on your Mac, the easiest way to install it is by visiting https://github.com/Carthage/Carthage/releases and downloading the latest Carthage.pkg file (Figure 8.5).

[image: Window shows web page of Carthrage with sections for added, improved, fixed, and downloads under 0.20: unary, binary, ternary.]

FIGURE 8.5 Carthage web page

	After the file has downloaded, locate it in the Downloads folder of your hard drive and double-click it to launch the installer. Follow the on-screen instructions to install Carthage (Figure 8.6).

[image: Image described by caption and surrounding text.]

FIGURE 8.6 Carthage installer screen

	To test your Carthage installation, launch the Terminal app and type the following command into the Terminal window:

$ carthage

The output in your Terminal should resemble the following:

Abhisheks-MacBook:~ abhishekmishra$ carthage
Available commands:

 archive Archives built frameworks into a zip that Carthage can use
 bootstrap Check out and build the project's dependencies
 build Build the project's dependencies
 checkout Check out the project's dependencies
 copy-frameworks In a Run Script build phase, copies each framework
specified by a SCRIPT_INPUT_FILE environment variable into the built app bundle
 fetch Clones or fetches a Git repository ahead of time
 help Display general or command-specific help
 outdated Check for compatible updates to the project's dependencies
 update Update and rebuild the project's dependencies
 version Display the current version of Carthage
Abhisheks-MacBook:~ abhishekmishra$

	After verifying that Carthage is installed on your Mac, launch Xcode and create a new iOS project using the Singe View Application template. Use the following options while creating the new project (Figure 8.7):

[image: Image described by caption and surrounding text.]

FIGURE 8.7 Xcode project options dialog box

	Product Name: AWSSDKWithCarthage

	Team: None

	Organization Name: Provide a suitable name

	Organization Identifier: Provide a suitable identifier

	Language: Swift

	Devices: iPhone

	Use Core Data: Unchecked

	Include Unit Tests: Unchecked

	Include UI Tests: Unchecked

	After creating the project, quit Xcode and switch back to the Terminal window. Using Terminal, navigate to the directory on your hard disk where you have just created the Xcode project.

	To verify that you are in the correct directory, type the ls -a command in Terminal and press Enter. The output in Terminal should resemble this:

Abhisheks-MacBook:AWSSDKWithCarthage abhishekmishra$ ls -a
. AWSSDKWithCarthage
.. AWSSDKWithCarthage.xcodeproj
Abhisheks-MacBook:AWSSDKWithCarthage abhishekmishra$

	After you have verified that you are in the correct directory, create a new file called Cartfile in this directory (with no extension) using the following command:

$ touch Cartfile

	Open the new file in TextEdit by typing the following command in the Terminal window and pressing Enter.

$ open –e Cartfile

	Using TextEdit, add the following line to the file, and save the file. Close TextEdit when you are finished making the changes.

github "aws/aws-sdk-ios"

The content of a Cartfile is somewhat simpler than that of Podfile. Each line is just the name of the repository in which the framework resides and the path to the framework on that repository.

	Return to the Terminal window, type the following command, and press Enter:

$ carthage update ––platform iOS

After a few minutes, the output in your Terminal window resembles the following:

Abhisheks-MacBook:AWSSDKWithCarthage abhishekmishra$ carthage update
––platform iOS
*** Fetching aws-sdk-ios
*** Checking out aws-sdk-ios at "2.5.1"
*** xcodebuild output can be found in /var/folders/zz/
40885yyd4sj5y_1c4d4q8dn40000gn/T/carthage-xcodebuild.RBxhp1.log
*** Building scheme "AWSRekognition" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSAutoScaling" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSS3" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSEC2" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSCloudWatch" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSSNS" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSPolly" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSMachineLearning" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSSES" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSCore" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSMobileAnalytics" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSPinpoint" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSAPIGateway" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSCognito" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSSimpleDB" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSLambda" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSKinesis" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSElasticLoadBalancing" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSIoT" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSLex" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSCognitoIdentityProvider" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSDynamoDB" in AWSiOSSDKv2.xcodeproj
*** Building scheme "AWSSQS" in AWSiOSSDKv2.xcodeproj

This indicates that the source files for the AWS SDK for iOS have been downloaded and built into frameworks. When Carthage finishes, you find that a new folder called Carthage has been created alongside your project’s .xcproject file in Finder (Figure 8.8).

[image: Window shows windows of Finder which shows Carthrage subfolder in original project folder where table shows columns for name, date modified, size, and kind.]

FIGURE 8.8 A Finder window showing the Carthage subfolder in the original project folder

Inside the Carthage folder are two additional folders:

	Checkouts: This is where Carthage checks out the source code for each library that you added into the Cartfile.

	Build: This folder contains the frameworks built from the sources in the Checkouts folder.

Carthage does not modify the Xcode project; it downloads the source code for the SDK and builds the frameworks within the SDK on your computer. You need to add the frameworks into your project manually.

	Open the AWSSDKWithCarthage project that you created earlier. In Xcode, select your target and look for the Embedded Binaries section under the General tab. Click the + button (Figure 8.9).

[image: Window shows embedded binaries adding to Xcode project with tabs for general, capabilities, resource tags, info, build settings, et cetera, and sections for deployment info, app icons and launch images, embedded binaries, and linked frameworks and libraries.]

FIGURE 8.9 Adding embedded binaries to the Xcode project

	Navigate to the Build subfolder under the Carthage directory, and select the frameworks that you want to add. Do not check the Destination: Copy items if needed check box when prompted. If you are not sure which AWS SDK frameworks you need to include in the project, you can include these key frameworks to start with:

	AWSCore

	AWSCognito

	AWSCognitoIdentitiyProvider

Then select the frameworks for specific AWS technologies that you intend to use.

	Switch to the Build Phases tab in your target, click the + button on the top left, and then select New Run Script Phase from the drop-down menu (Figure 8.10).

[image: Window shows run script phase adding to Xcode project with tabs for general, capabilities, resource tags, info, build settings, build phases (selected), and build rules, and drop-down menu options for new copy files phase, new run script phase (selected), et cetera.]

FIGURE 8.10 Adding a Run Script phase to the Xcode project

	Ensure that the script execution tool is set to /bin/sh, and type the following script in the space provided:

bash "${BUILT_PRODUCTS_DIR}/${FRAMEWORKS_FOLDER_PATH}/AWSCore.framework/
strip-frameworks.sh"

	Ensure that the rest of the options for the script are set up as follows:

	Show environment variables in build log: Checked

	Run script only when installing: Not checked

	Input Files: Empty

	Output Files: Empty

The Run Script phase should now resemble Figure 8.11.

[image: Window shows setup of final run script with tabs for general, capabilities, resource tags, info, build settings, build phases (selected), and build rules, and sections for target dependencies, compile sources, link binary with libraries, run script, et cetera.]

FIGURE 8.11 Final Run Script phase setup

You have now successfully added the AWS SDK for iOS to your Xcode project using Carthage, and your project should be able to build and run on the iOS Simulator without issues.

Integrating the AWS SDK for iOS Using Dynamic Frameworks

Besides using dependency management tools like CocoaPods and Carthage, you can add the AWS SDK for iOS into your project by downloading the prebuilt frameworks and adding the .framework files to the project manually.

	Download the prebuilt frameworks as a .zip file using the following URL:

https://aws.amazon.com/mobile/sdk/

	In Finder, extract the contents of the .zip file to a suitable location on your hard disk. Launch Xcode and create a new iOS project using the Singe View Application template. Use the following options while creating the new project (Figure 8.12):

[image: Image described by caption and surrounding text.]

FIGURE 8.12 Xcode project options dialog box

	Product Name: AWSSDKWithDynamicFrameworks

	Team: None

	Organization Name: Provide a suitable name

	Organization Identifier: Provide a suitable identifier

	Language: Swift

	Devices: iPhone

	Use Core Data: Unchecked

	Include Unit Tests: Unchecked

	Include UI Tests: Unchecked

	In Xcode, select your target and look for the Embedded Binaries section under the General tab. Click the + button (Figure 8.13).

[image: Window shows embedded binaries adding to Xcode project with tabs for general (selected), capabilities, resource tags, info, build settings, build phases, and build rules, and sections for deployment info, app icons and launch images, embedded binaries, et cetera.]

FIGURE 8.13 Adding embedded binaries to the Xcode project

	Navigate to the Frameworks subfolder in the directory where you unzipped the contents of the .zip file, and select the frameworks that you want to add.

Ensure the Destination: Copy items if needed check box is checked when prompted. If you are not sure which AWS SDK frameworks you need to include in the project, you can include the key frameworks listed below to start with:

	AWSCore

	AWSCognito

	AWSCognitoIdentitiyProvider

Then select the frameworks for specific AWS technologies that you intend to use.

	Switch to the Build Phases tab in your Target, click the + button on the top left, and then select New Run Script Phase from the drop-down menu (Figure 8.14).

[image: Window shows run script phase adding to Xcode project with tabs for general, capabilities, resource tags, info, build settings, build phases (selected), and build rules, and section for embed frameworks.]

FIGURE 8.14 Adding a Run Script phase to the Xcode project

	Ensure the script execution tool is set to /bin/sh, and type the following script in the space provided:

bash "${BUILT_PRODUCTS_DIR}/${FRAMEWORKS_FOLDER_PATH}/AWSCore.framework/
strip-frameworks.sh"

	Ensure that the rest of the options for the script are set up as follows:

	Show environment variables in build log: Checked

	Run script only when installing: Not checked

	Input Files: Empty

	Output Files: Empty

The Run Script phase should now resemble Figure 8.15.

[image: Window shows setup of final run script phase with tabs for general, capabilities, resource tags, info, build settings, build phases (selected), and build rules, and sections for target dependencies, compile sources, link binary with libraries, run script, et cetera.]

FIGURE 8.15 Final Run Script Phase Setup

You have now successfully added the AWS SDK for iOS to your Xcode project, and your project should be able to build and run on the iOS Simulator without issues.

[image:] You can download the project files created in this chapter from this book’s website on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter8.AWSForMobileDevelopers.2017.git.

Summary

	The AWS SDK for iOS contains libraries to help you build iOS applications that can connect to services in the Amazon cloud.

	To use the SDK in an iOS app, you must ensure that you are using Xcode version 7.0 or higher and that your app is targeting iOS version 8.0 or higher.

	You can add the SDK to a project using CocoaPods, Carthage, or by including individual dynamic frameworks.

Part II AWS for iOS Developers Chapter 8:	Integrating the AWS SDK for iOS Chapter 9:	Implementing User Signup and Login Using Amazon Cognito User Pools Chapter 10:	Implementing Login using Facebook Chapter 11:	Implementing Login using Google Chapter 12:	Accessing Amazon DynamoDB Chapter 13:	Adding AWSChat Support with Amazon DynamoDB and Amazon S3 Chapter 14:	Using AWS Lambda to Generate Thumbnails Online Bonus Chapters: Bonus Chapter 5:	Adding Support for Apple Push Notifications Bonus Chapter 6:	Integrating Amazon Mobile Analytics with the iOS App

Chapter 9
Implementing User Signup and Login Using Amazon Cognito User Pools

WHAT’S IN THIS CHAPTER

	[image: images]Create an Amazon Cognito user pool using the AWS Management Console.

	[image: images]Use the Amazon Cognito user pool from an iOS app to allow new users to register.

	[image: images]Use the Amazon Cognito user pool from an iOS app to allow registered users to login to your app.

	[image: images]Examine the list of registered users in the user pool using the AWS Management Console.

[image:] In this chapter, you create a new iOS application called AWSChat and implement new user signup and login features in the app with Amazon Cognito user pools. Subsequent chapters in this part of the book add features to this application.

Introducing Amazon Cognito User Pools

Amazon Cognito is a service that lets you create a cloud-based database of users for use within your mobile applications. Amazon Cognito provides all the back-end features and infrastructure that are required to implement a full-fledged user signup and login system. This includes support for SMS/E-mail verification, password resets, and multi-factor authentication (MFA).

Amazon Cognito consists of three services:

	User Pools: A user pool is a database of users who use your app. Amazon Cognito user pools provide the necessary back-end support your app needs to implement full-fledged login and signup features. Users can be added to the user pool using a suitable screen in your app, or you can add them directly through the AWS Management Console.

	Federated Identities: An identity pool is a database of identities that can be used to obtain a set of temporary credentials to access other AWS services such as Amazon S3 and Amazon DynamoDB. AWS federated identities allow you to create unique identities in an identity pool and link these to users who have authenticated with Amazon Cognito user pools or third-party providers such as Facebook and Google.

	Amazon Cognito Sync: This service allows you to sync small amounts of data between copies of your app running on different devices, provided the same user has signed in to these apps. The data is stored locally on the device; Amazon Cognito Sync handles the complexities involved in maintaining consistency between copies of the data on different devices.

Examining the AWSChat Xcode Project

The chapters in this part of the book add features to an iOS chat application called AWSChat. To get started, download the starter project from this book’s website on Sybex.com or from GitHub using the following URL:

https://github.com/asmtechnology/Chapter9.AWSForMobileDevelopers.2017.git

The starter project contains three screens:

	Login screen: Managed by the LoginViewController class

	Sign up screen: Managed by the SignupViewController class

	Home screen: Managed by the HomeViewController class

The user interface for the Login and Sign up screens is specified in the Main.storyboard file (Figure 9.1).

[image: Image described by caption and surrounding text.]

FIGURE 9.1 Contents of the Main.storyboard file

The user interface for the home screen is specified in the ChatJourney.storyboard file (Figure 9.2).

[image: Image described by caption and surrounding text.]

FIGURE 9.2 Contents of the ChatJourney.storyboard file

When the app is launched, users are presented with the login screen and asked to provide a username and password. After they log in successfully, they are presented with the app’s home screen.

Content is added to the home screen in subsequent chapters. Users also have the option to create a new account if they have not signed up earlier.

Creating an Amazon Cognito User Pool

Before you can write code in the iOS app to log in or sign up users, you need to create an Amazon Cognito user pool to support your app’s users. To configure Amazon Cognito, you should use an IAM user with administrative privileges. If you have not yet created an IAM user under your root account, refer to the process described in Chapter 2.

	Log in to the IAM console using your dedicated IAM user-specific sign-in link and navigate to the Amazon Cognito service home page (Figure 9.3).

[image: Image described by caption and surrounding text.]

FIGURE 9.3 Accessing the Amazon Cognito service home page

	Click the Manage your User Pools button on the Amazon Cognito splash screen to access a list of existing user pools (Figure 9.4).

[image: Image described by caption and surrounding text.]

FIGURE 9.4 Amazon Cognito splash screen

	To add a new user pool, click the Create a User Pool button on the top-right corner of the screen (Figure 9.5). User pools are specific to AWS regions. Make sure you have set up the AWS Management Console to use the correct region before creating the user pool.

[image: Image described by caption and surrounding text.]

FIGURE 9.5 Creating a new user pool

Pool Name

Type a name for the new user pool, and click the Step through settings button (Figure 9.6). The user pool name must be between 1 and 128 characters long and cannot be changed after the user pool is created. Pool names can contain uppercase and lowercase letters (a–z, A–Z), numbers (0–9) and the following special characters: + = , . @ and -.

[image: Image described by caption and surrounding text.]

FIGURE 9.6 Specifying the name of the new user pool

User Attributes

Select the attributes that you require from users when they sign up for your app (Figure 9.7).

[image: Image described by caption and surrounding text.]

FIGURE 9.7 User pool attributes

Attributes can be thought of as fields in a table that contain information on registered users. Every user can have one or more of the following standard attributes:

	address

	birthdate

	email

	family_name

	gender

	given_name

	locale

	middle_name

	name

	nickname

	phone_number

	picture

	preferred_username

	profile

	timezone

	updated_at

	website

Most of these attributes are optional. Place checkmarks next to attributes that you want to make mandatory. Attributes cannot be switched between required and nonrequired after you create the user pool.

[image:] The meaning of the standard attribute names is described in the OpenID Connect specification available at http://openid.net/specs/ openid-connect-core-1_0.html#StandardClaims.

By default, users sign in with their username and password. The username is a fixed value that users cannot change. Certain attributes can be used in place of the username; these attributes need to be marked as aliases. The email, phone_number, and preferred_username attributes can be marked as aliases.

Phone numbers and e-mail addresses can only be used as aliases after they have been verified. The verification process usually involves the user being sent an e-mail or an SMS message with a code that must be entered into a text field in your app. Administrators have the ability to log in to the Amazon Cognito Management Console and mark e-mail addresses and phone numbers manually as having been verified.

Even though the username is not changeable, you can give your users the experience of changing their usernames by making the preferred username attribute both required and an alias.

If you need additional attributes to those available in the standard list, you can create custom attributes on the same screen. To follow along with the rest of the lesson, ensure that there are no custom attributes defined and that only the e-mail attribute is enabled.

Click the Next step button when you are ready to proceed.

Password Security Policy

The next screen allows you to set a password security policy.

Using the options on the screen, select the security requirements that you want passwords to adhere to (Figure 9.8).

[image: Image described by caption and surrounding text.]

FIGURE 9.8 Setting up password security requirements for the Amazon Cognito user pool

Ensure the Allow users to sign themselves up option is selected. If it is not, users cannot sign up using your app; you have to manually create accounts for them in the user pool using the Amazon Cognito Management Console.

You can also specify the number of days that must elapse before any unused user accounts that were created through the Amazon Cognito Management Console expire. The default value is 7 days.

Click the Next step button to proceed.

MFA and Account Verification

The next screen allows you to enable MFA and e-mail/phone number verification for user accounts (Figure 9.9).

[image: Image described by caption and surrounding text.]

FIGURE 9.9 Multi-factor authentication settings for the user pool

When enabled, MFA adds an additional security step when someone attempts to log in to your mobile app. In this additional step, the individual is asked to provide a temporary and unique six-digit numeric code that an authentication device generates.

You can also select whether users need to verify their e-mail address or phone number as part of the signup process. If you disable both e-mail address and phone number verification, users are unable to reset forgotten passwords.

If you decide to enable phone number verification, Amazon Cognito needs to use Amazon SNS to send SMS messages to a user’s devices. For Amazon Cognito to be able to access Amazon SNS, you are prompted to create a new IAM role that can be assumed by Amazon Cognito when communicating with Amazon SNS.

To follow along with this chapter, disable MFA, select the Email verification option, and click the Next step button.

Message Customization

The next screen allows you to customize the text of the e-mail and SMS verification message (Figure 9.10).

[image: Image described by caption and surrounding text.]

FIGURE 9.10 Customizing e-mail and SMS verification messages

You do not need to change these messages to follow along with the chapters in this book. However, if you do choose to do so, ensure that your messages contain the {####} placeholder string. Amazon Cognito replaces the placeholder string with a four-digit verification code that the user must enter into your app as part of the signup process.

Click the Next step button to proceed.

Cost Allocation Tags

The next screen allows you to add cost allocation tags that can be used to track your AWS costs (Figure 9.11).

[image: Image described by caption and surrounding text.]

FIGURE 9.11 Cost allocation tag setup screen

If you add cost allocation tags to an Amazon Cognito user pool, your AWS cost allocation report includes costs and usage aggregated using these tags. You do not need to provide cost allocation tags to follow along with the chapters in this book. If you would like to learn more about using cost allocation tags with your AWS resources, visit http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html.

Click the Next step button to proceed.

Devices

The next screen gives you options to decide if you would like Amazon Cognito to remember the devices used by your users to log in to your app (Figure 9.12).

[image: Image described by caption and surrounding text.]

FIGURE 9.12 You can set up a user pool to remember devices.

You can choose between three options:

	No: This is the default option. Devices are not remembered.

	Always: Every device used by users of your app is remembered.

	User Opt-in: Your users are given an option to remember the device that they using. You must create the user interface in your app to allow the user to opt in.

If you choose to have Amazon Cognito remember a user’s devices, a device identifier (key and secret) is assigned to each device the first time a user signs in with that device. This key is not used for anything other than identifying the device, but Amazon Cognito tracks it. You also have the option of suppressing MFA challenges for devices that Amazon Cognito tracks.

To follow along with this chapter, select No and click the Next step button.

Apps

The next screen allows you to configure the apps that have permission to call unauthenticated APIs in Amazon Cognito (Figure 9.13).

[image: Image described by caption and surrounding text.]

FIGURE 9.13 Configuring applications that will have access to unauthenticated APIs

An unauthenticated API is one that does not require an authenticated user. Examples of such APIs follow:

	An API to allow an unauthenticated user to log in

	An API to allow an unauthenticated user to retrieve a forgotten password

	An API to allow a new user to create an account

Even though these APIs are unauthenticated, they are not insecure. Only apps that you add to this screen have access to these APIs.

Each app that you add to this screen is given a client ID and an optional client secret. Together, the client ID and secret form a set of credentials your mobile app has to present to Amazon Cognito to access unauthenticated APIs. It is your responsibility to safely store these credentials within your mobile app.

Click the Add an app link on the page, and specify the following options for the app in the fields that appear on the screen (Figure 9.14):

[image: Image described by caption and surrounding text.]

FIGURE 9.14 Create application screen

	App name: AWSChat

	Refresh token expiration: 30

	Generate client secret: Enabled

Click the Create App button under the fields to finish creating the app. Your new app is listed, and you have the option to create additional apps within the user pool.

To follow along with the examples in this section of the book, you do not need to create multiple apps in the user pool. In Chapter 16 of this book, you add another entry for the Android version of the AWSChat app to the user pool so that both apps can share the same users.

Click the Save changes button to proceed to the next step.

Review and Create

The next screen allows you to review the options you have specified so far (Figure 9.15).

[image: Image described by caption and surrounding text.]

FIGURE 9.15 User pool review screen

If you have been following the steps in this chapter, you have noticed that Amazon Cognito skipped over the Triggers page and jumped straight to the Review and Create page.

The Triggers page allows you to configure AWS Lambda functions to be executed when certain events occur in the user pool. You can configure triggers after having created the user pool; however, user pool triggers are not needed for the AWSChat app that is being built in this book.

When you have finished reviewing the settings for the user pool, click the Create pool button to create the user pool.

Retrieving the App Client Secret

While configuring the list of apps that have access to unauthenticated APIs in the user pool, you have the option of generating a client ID and a client secret for each app. The client secret is only available after the user pool has been created. After you have finished creating the user pool, your new user pool is listed alongside any existing user pools in the Amazon Cognito user pool Management Console.

	Click the user pool name. If you are following along with the sample app being developed in this chapter, click the user pool called AWSChatUserPool (Figure 9.16).

[image: Window shows AWSChatUserPool selection to access its contents and settings with option for AWSChatUserPool under your user pools.]

FIGURE 9.16 Selecting the AWSChatUserPool to access its contents and settings

Amazon Cognito loads the settings page for the user pool.

	Click the Apps option in the menu on the left side of the page, and locate your app in the list of apps that appears.

	Click the Show details button for your app (Figure 9.17).

[image: Window shows show details button to reveal app client id and app with options for app name and app client id, and buttons for show details, cancel, and save changes.]

FIGURE 9.17 Click the Show Details button to reveal the App client id and the App client secret.

Make a note of both the client and the client secret (Figure 9.18).

[image: Window shows app client id and app client secret with options for app name, app client id, app client secret, and refresh token expiration (days), and button for save app changes.]

FIGURE 9.18 The App client id and the App client secret are needed to access unauthenticated user pool APIs.

Together, these two pieces of information form a set of credentials your mobile app has to present to Amazon Cognito to access unauthenticated APIs. It is your responsibility to safely store these credentials within your mobile app.

Updating the AWS Chat Application

Add the following AWS SDK frameworks for iOS to the project using one of the methods discussed in Chapter 8:

	AWSCore

	AWSCognito

	AWSCognitoIdentitiyProvider

Creating the User Pool Controller Class

Now create the user pool controller class.

	In the AWSChat application, create a new Swift class called CognitoUserPoolController. This class implements the singleton design pattern and contains all the logic that deals with the Amazon Cognito user pool for the app.

	Import the AWSCognitoIdentityProvider framework by adding the following statement to the top of the file, just before the class declaration:

import AWSCognitoIdentityProvider

	Add the following constant declarations to the class, substituting the relevant details for the user pool and application created within that user pool:

let userPoolRegion: AWSRegionType = .USEast1
let userPoolD = "your user pool id"
let appClientID = "your app client id"
let appClientSecret = "your app client secret"

These constants contain values that identify the user pool that the app uses, and also the credentials that the app can use to access unauthenticated APIs in the user pool. You need to replace the values of these constants with appropriate values for the user pool and app object within the user pool that you created earlier.

	Add the following variables to the class:

private var userPool:AWSCognitoIdentityUserPool?
var currentUser:AWSCognitoIdentityUser? {
 get {
 return userPool?.currentUser()
 }
}

The private variable called userPool is an instance of the AWSCognitoIdentityUserPool class that represents the user pool that this class manages. The read-only variable called currentUser is an instance of the AWSCognitoIdentityUser class; it represents an authenticated user.

	To ensure that the CognitoUserPoolController class is a singleton, add the following static variable declaration and private initializer method:

static let sharedInstance: CognitoUserPoolController =
 CognitoUserPoolController()
private init() {
 let serviceConfiguration =
 AWSServiceConfiguration(region: userPoolRegion,
 credentialsProvider: nil)
 let poolConfiguration =
 AWSCognitoIdentityUserPoolConfiguration(clientId: appClientID,

 clientSecret: appClientSecret,
 poolId: userPoolD)
 AWSCognitoIdentityUserPool.register(with: serviceConfiguration,
 userPoolConfiguration: poolConfiguration,
 forKey:"AWSChat")
 userPool = AWSCognitoIdentityUserPool(forKey: "AWSChat")

 AWSLogger.default().logLevel = .verbose
}

The initializer method contains the necessary code to create an instance of the AWSCognitoIdentityUserPool class and stores a reference to the instance in the userPool private variable.

	Creating an AWSCognitoIdentityUserPool instance requires that you first create an AWSServiceConfiguration instance and a AWSCognitoIdentityUserPoolConfiguration object. These are achieved using the following statements:

let serviceConfiguration =
 AWSServiceConfiguration(region: userPoolRegion,
 credentialsProvider: nil)
let poolConfiguration =
 AWSCognitoIdentityUserPoolConfiguration(clientId: appClientID,
 clientSecret: appClientSecret,
 poolId: userPoolD)

	You then need to register the service configuration and user pool configuration objects with the AWSCognitoIdentityUserPool class using the static method called register.

	The registration process also requires you to provide a unique string key to reference the combination of service configuration and user pool configuration objects. This is done using the following statement:

AWSCognitoIdentityUserPool.register(with: serviceConfiguration,
 userPoolConfiguration: poolConfiguration,
 forKey:"AWSChat")

In theory, you can register multiple user pools with unique string keys and allow your app to employ multiple user pools. However, in most cases your app employs a single pool.

	After you have registered one or more service configuration and user pool configuration objects, you can retrieve a reference to a specific user pool using the following statement:

userPool = AWSCognitoIdentityUserPool(forKey: "AWSChat")

There is one additional statement at the end of the init() method. It controls the level of logging the AWS SDK produces.

AWSLogger.default().logLevel = .verbose

Changing log levels during development may make debugging easier. The following options are available:

	None

	Error

	Warn

	Info

	Debug (the default)

	Verbose

Allowing Existing Users to Log In

There are two ways in which a user can log in with Amazon Cognito:

	Explicit mechanism: Your application displays a login screen and calls methods on the AWS SDK when the user has provided a valid username and password. The AWS SDK then attempts to log in the user with the Amazon Cognito service.

	Delegate callback mechanism: You set up an existing class in your app to act as the delegate object for the user pool. When your app is launched, it proceeds as if the user is already signed in, and at some point it tries to access attributes of the user object. At this point if the AWS SDK determines that the user must authenticate, it calls a method on your delegate object.

Your delegate object is responsible for presenting a user interface that can enter user credentials and call relevant methods of the AWS SDK to complete the login.

In this book, the explicit mechanism logs in users. If you want to know more about using the delegate callback mechanism, refer to http://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-ios-sdk.html.

Add the following method to the CognitoUserPoolController class to allow existing users to log in to the app:

func login(username: String,
 password:String,
 completion:@escaping (Error?)->Void) {
 let user = self.userPool?.getUser(username)
 let task = user?.getSession(username,
 password: password,
 validationData:nil)
 task?.continueWith(block: { (task) -> Any? in
 if let error = task.error {
 completion(error)
 return nil
 }
 completion(nil)
 return nil
 })
}

The login method takes three parameters as input. The first two are string parameters that represent the username and password. The third parameter is a completion block that is called with the results of the login process. The completion block has the following signature:

(Error?) -> Void

If an error has occurred during the login process, the completion block is called with a non-nil error.

The login method retrieves a user from the user pool with the following statement:

let user = self.userPool?.getUser(username)

It then calls the getSession(username, password, validationData) method on the user object to authenticate the credentials with Amazon Cognito.

let task = user?.getSession(username,
 password: password,
 validationData:nil)

The result of the getSession method is an AWSTask instance. Most methods in the AWS SDK are asynchronous. When you call an asynchronous method, control returns immediately to the caller, and the method is called asynchronously in the background at a later point in time.

When control is returned to the caller, the caller is given a reference to an AWSTask instance as the return value of the asynchronous method. Using this return value, you can write code that is executed after the asynchronous method call has finished.

The most common way to write code that is guaranteed to execute when the asynchronous method has finished executing is to call the continueWith(block) method on the AWSTask instance, as shown in the following snippet:

task?.continueWith(block: { (task) -> Any? in
 if let error = task.error {
 // handle the error here.
 }
 // the task has executed without errors.
})

If you want more information on AWSTask, visit http://docs.aws.amazon.com/mobile/sdkforios/developerguide/awstask.html.

Allowing New Users to Sign Up

Add the following method to CognitoUserPoolController to allow existing new users to sign up:

func signup(username: String,
 password:String,
 emailAddress:String,
 completion:@escaping (Error?, AWSCognitoIdentityUser?)->Void) {
 var attributes = [AWSCognitoIdentityUserAttributeType]()

 let emailAttribute = AWSCognitoIdentityUserAttributeType(name: "email",
 value: emailAddress)
 attributes.append(emailAttribute)
 let task = self.userPool?.signUp(username,
 password: password,
 userAttributes: attributes,
 validationData: nil)
 task?.continueWith(block: {(task) -> Any? in
 if let error = task.error {
 completion(error, nil)
 return nil
 }
 guard let result = task.result else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 100,
 userInfo: ["__type":"Unknown Error",
 "message":"Cognito user pool error."])
 completion(error, nil)
 return nil
 }
 completion(nil, result.user)
 return nil
 }) }

The signup methods take four parameters as input. The first three are string parameters that represent the username, password, and e-mail address. The fourth parameter is a completion block that is called with the results of the signup process. The completion block has the following signature:

(Error?, AWSCognitoIdentityUser?) -> Void

If an error has occurred during the signup process, the completion block is called with a non-nil error object in the first parameter, and nil for the second parameter.

If the signup process has been successful, the first parameter of the completion block is set to nil, and the second contains a reference to an object that represents the authenticated user.

During the signup process, users need to provide a username, password, and values for any additional user attributes that have been set up as “required” while creating the pool.

Amazon Cognito requires that you send the username and password values as strings and send all other optional user pool attributes as an array of name-value pairs, with each pair being represented by an instance of the AWSCognitoIdentityUserAttributeType class.

The following code snippet converts the e-mail address typed by the user into a new AWSCognitoIdentityUserAttributeType instance and then adds it to an array:

 var attributes = [AWSCognitoIdentityUserAttributeType]()
 let emailAttribute = AWSCognitoIdentityUserAttributeType(name: "email",
 value: emailAddress)
 attributes.append(emailAttribute)

The value of the name parameter can be one of the following:

	address

	birthdate

	email

	family_name

	gender

	given_name

	locale

	middle_name

	name

	nickname

	phone_number

	picture

	preferred_username

	profile

	timezone

	updated_at

	website

During the signup process, Amazon Cognito sends a 6-digit confirmation code to the e-mail address the user provides. The signup view controller class displays the required user interface that allows the user to enter this confirmation code. After the user has entered the confirmation code, the code must be sent to Amazon Cognito to complete the signup process.

Add the following method to the CognitoUserPoolController class to handle the task of sending the confirmation code that has been entered by the user to the Amazon Cognito service.

func confirmSignup(user: AWSCognitoIdentityUser,
 confirmationCode:String,
 completion:@escaping (Error?)->Void) {
 let task = user.confirmSignUp(confirmationCode)
 task.continueWith { (task) -> Any? in
 if let error = task.error {
 completion(error)
 return nil
 }
 completion(nil)
 return nil
 }

}

The confirmSignup method takes two parameters as input. The first is a reference to a user object, and the second is a completion block that informs the caller of any errors that may have occurred in the confirmation process. The completion block has the following signature:

(Error?) -> Void

If an error has occurred during the signup process, the completion block is called with a non-nil error object.

Add the following method to the CognitoUserPoolController class to allow the user to resend the confirmation code to the e-mail address used during signup.

func resendConfirmationCode(user: AWSCognitoIdentityUser,
 completion:@escaping (Error?)->Void) {
 let task = user.resendConfirmationCode()
 task.continueWith { (task) -> Any? in
 if let error = task.error {
 completion(error)
 return nil
 }
 completion(nil)
 return nil
 }
}

The resendConfirmationCode method takes two parameters as input. The first is a reference to a user object, and the second is a completion block that informs the caller of any errors that may have occurred when the Amazon Cognito service tries to resend the confirmation code. The completion block has the following signature:

(Error?) -> Void

If an error has occurred during the signup process, the completion block is called with a non-nil error object.

Finally, add the following method to the CognitoUserPoolController class to allow the home view controller to log some information on the authenticated user to the Xcode console:

func getUserDetails(user: AWSCognitoIdentityUser,
 completion:@escaping (Error?,
 AWSCognitoIdentityUserGetDetailsResponse?)->Void) {
 let task = user.getDetails()
 task.continueWith(block: { (task) -> Any? in
 if let error = task.error {
 completion(error, nil)
 return nil
 }
 guard let result = task.result else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 100,
 userInfo: ["__type":"Unknown Error",
 "message":"Cognito user pool error."])
 completion(error, nil)
 return nil
 }
 completion(nil, result)
 return nil
 })
}

Listing 9.1 contains the complete contents of the CognitoUserPoolController.swift class.

Listing 9.1: CognitoUserPoolController.swift

import Foundation
import AWSCognitoIdentityProvider

class CognitoUserPoolController {
 let userPoolRegion: AWSRegionType = .USEast1
 let userPoolD = "your user pool id"
 let appClientID = "your app client id"
 let appClientSecret = "your app client secret"
 private var userPool:AWSCognitoIdentityUserPool?
 var currentUser:AWSCognitoIdentityUser? {
 get {
 return userPool?.currentUser()
 }
 }
 static let sharedInstance: CognitoUserPoolController =
 CognitoUserPoolController()
 private init() {
 let serviceConfiguration = AWSServiceConfiguration(region:
 userPoolRegion, credentialsProvider: nil)
 let poolConfiguration =
 AWSCognitoIdentityUserPoolConfiguration(clientId: appClientID,
 clientSecret: appClientSecret,
 poolId: userPoolD)
 AWSCognitoIdentityUserPool.register(with: serviceConfiguration,
 userPoolConfiguration: poolConfiguration,
 forKey:"AWSChat")
 userPool = AWSCognitoIdentityUserPool(forKey: "AWSChat")
 AWSLogger.default().logLevel = .verbose
 }
 func login(username: String,
 password:String,
 completion:@escaping (Error?)->Void) {
 let user = self.userPool?.getUser(username)
 let task = user?.getSession(username,
 password: password,
 validationData:nil)
 task?.continueWith(block: { (task) -> Any? in
 if let error = task.error {
 completion(error)
 return nil
 }
 completion(nil)
 return nil
 })
 }
 func signup(username: String,
 password:String,
 emailAddress:String,
 completion:@escaping (Error?, AWSCognitoIdentityUser?)->Void) {
 var attributes = [AWSCognitoIdentityUserAttributeType]()
 let emailAttribute =
 AWSCognitoIdentityUserAttributeType(name: "email",
 value: emailAddress)
 attributes.append(emailAttribute)
 let task = self.userPool?.signUp(username,
 password: password,
 userAttributes: attributes,
 validationData: nil)
 task?.continueWith(block: {(task) -> Any? in
 if let error = task.error {
 completion(error, nil)
 return nil
 }
 guard let result = task.result else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 100,
 userInfo: ["__type":"Unknown Error",
 "message":"Cognito user pool error."])
 completion(error, nil)
 return nil
 }
 completion(nil, result.user)
 return nil
 })
 }
 func confirmSignup(user: AWSCognitoIdentityUser,
 confirmationCode:String,
 completion:@escaping (Error?)->Void) {
 let task = user.confirmSignUp(confirmationCode)
 task.continueWith { (task) -> Any? in
 if let error = task.error {
 completion(error)
 return nil
 }
 completion(nil)
 return nil
 }

 }
 func resendConfirmationCode(user: AWSCognitoIdentityUser,
 completion:@escaping (Error?)->Void) {
 let task = user.resendConfirmationCode()

 task.continueWith { (task)-> Any? in
 if let error = task.error {
 completion(error)
 return nil
 }
 completion(nil)
 return nil
 }
 }
 func getUserDetails(user: AWSCognitoIdentityUser,
 completion:@escaping (Error?,
 AWSCognitoIdentityUserGetDetailsResponse?)->Void) {
 let task = user.getDetails()

 task.continueWith(block: { (task) -> Any? in
 if let error = task.error {
 completion(error, nil)
 return nil
 }
 guard let result = task.result else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 100,
 userInfo: ["__type":"Unknown Error",
 "message":"Cognito user pool error."])
 completion(error, nil)
 return nil
 }
 completion(nil, result)
 return nil
 })
 }
}

Updating the Login View Controller

The CognitoUserPoolController class handles the bulk of the work involved in interacting with Amazon Cognito. The login view controller needs to only call the login(username, password, completion) method of the CognitoUserPoolController class with the username and password the user provides. Listing 9.2 contains the code for the modified LoginViewController class.

Listing 9.2: LoginViewController.swift

import UIKit

class LoginViewController: UIViewController {

 @IBOutlet weak var usernameField: UITextField!
 @IBOutlet weak var passwordField: UITextField!
 @IBOutlet weak var loginButton: UIButton!
 @IBOutlet weak var signupButton: UIButton!
 override func viewDidLoad() {
 super.viewDidLoad()
 self.loginButton.isEnabled = false
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
 @IBAction func onLogin(_ sender: Any) {
 guard let username = self.usernameField.text,
 let password = self.passwordField.text else {
 return
 }
 let userpoolController = CognitoUserPoolController.sharedInstance
 userpoolController.login(username: username,
 password: password) { (error) in
 if let error = error {
 self.displayLoginError(error: error as NSError)
 return
 }
 self.displaySuccessMessage()
 }
 }
 @IBAction func usernameDidEndOnExit(_ sender: Any) {
 dismissKeyboard()
 }
 @IBAction func passwordDidEndOnExit(_ sender: Any) {
 dismissKeyboard()
 }
}

extension LoginViewController : UITextFieldDelegate {
 func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {
 if let username = self.usernameField.text,
 let password = self.passwordField.text {
 if ((username.characters.count > 0) &&
 (password.characters.count > 0)) {
 self.loginButton.isEnabled = true
 }
 }
 return true
 }

}

extension LoginViewController {
 fileprivate func dismissKeyboard() {
 usernameField.resignFirstResponder()
 passwordField.resignFirstResponder()
 }
 fileprivate func displayLoginError(error:NSError) {
 let alertController =
 UIAlertController(title: error.userInfo["__type"] as? String,
 message: error.userInfo["message"] as? String,
 preferredStyle: .alert)
 let okAction = UIAlertAction(title: "Ok",
 style: .default,
 handler: nil)
 alertController.addAction(okAction)
 DispatchQueue.main.async {
 self.present(alertController, animated: true, completion: nil)
 }
 }
 fileprivate func displaySuccessMessage() {

 let alertController = UIAlertController(title: "Success.",
 message: "Login succesful!",
 preferredStyle: .alert)
 let action = UIAlertAction(title: "Ok",
 style:.default,
 handler: { action in
 let storyboard = UIStoryboard(name: "ChatJourney", bundle: nil)
 let viewController = storyboard.instantiateInitialViewController()
 self.present(viewController!, animated: true, completion: nil)
 })
 alertController.addAction(action)
 DispatchQueue.main.async {
 self.present(alertController, animated: true, completion: nil)
 }
 }

}

Some of the key aspects of the code presented in Listing 9.2 are discussed next.

When the view is loaded, both the username and the password fields are empty; therefore, the viewDidLoad() method disables the login button using the following statement:

self.loginButton.isEnabled = false

The login button is enabled in the textField(_, shouldChangeCharactersIn, replacementString) method if both the username and the password text fields contain valid text:

func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {
 if let username = self.usernameField.text,
 let password = self.passwordField.text {
 if ((username.characters.count > 0) &&
 (password.characters.count > 0)) {
 self.loginButton.isEnabled = true
 }
 }
 return true
}

In a production app, you may want to add additional verification criteria into this method.

When the login button is tapped, the view controller calls the login(username, password, completion) method of the CognitoUserPoolController class:

@IBAction func onLogin(_ sender: Any) {
 guard let username = self.usernameField.text,
 let password = self.passwordField.text else {
 return
 }
 let userpoolController = CognitoUserPoolController.sharedInstance
 userpoolController.login(username: username,
 password: password) { (error) in
 if let error = error {
 self.displayLoginError(error: error as NSError)
 return
 }
 self.displaySuccessMessage()
 }
 }

If an error occurs, the error is displayed to the user using the displayLoginError() method. If no errors have occurred, the user is taken to the HomeViewController, which is part of a different storyboard and represents the part of the app that should only be accessible to authenticated users.

Updating the Signup View Controller

The signup view controller is slightly more complex than the login view controller. The signup screen requires the user to provide a username, password, and e-mail address. After these values have been provided, the controller calls the signup(username, password, emailAddress, completion) method of the CognitoUserPoolController class. Listing 9.3 contains the code for the modified SignupViewController class.

Listing 9.3: SignupViewController.swift

import UIKit
import AWSCognitoIdentityProvider

class SignupViewController: UIViewController {

 @IBOutlet weak var usernameField: UITextField!
 @IBOutlet weak var passwordField: UITextField!
 @IBOutlet weak var emailField: UITextField!
 @IBOutlet weak var createAccountButton: UIButton!
 override func viewDidLoad() {
 super.viewDidLoad()
 self.createAccountButton.isEnabled = false
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
 @IBAction func onCreateAccount(_ sender: Any) {
 guard let username = self.usernameField.text,
 let password = self.passwordField.text,
 let emailAddress = self.emailField.text else {
 return
 }
 let userpoolController = CognitoUserPoolController.sharedInstance
 userpoolController.signup(username: username,
 password: password,
 emailAddress: emailAddress) {
 (error: Error?, user: AWSCognitoIdentityUser?) in
 if let error = error {
 self.displaySignupError(error: error as NSError,
 completion:nil)
 return
 }
 guard let user = user else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 1021,
 userInfo: ["__type":"Unknown Error",
 "message":"Missing User object"])
 self.displaySignupError(error: error, completion:nil)
 return
 }

 if user.confirmedStatus != AWSCognitoIdentityUserStatus.confirmed {
 self.requestConfirmationCode(user)
 } else {
 self.displaySuccessMessage()
 }
 }
 }

 @IBAction func usernameDidEndOnExit(_ sender: Any) {
 dismissKeyboard()
 }
 @IBAction func passwordDidEndOnExit(_ sender: Any) {
 dismissKeyboard()
 }
 @IBAction func emailDidEndOnExit(_ sender: Any) {
 dismissKeyboard()
 }
}

extension SignupViewController : UITextFieldDelegate {
 func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {
 if let username = self.usernameField.text,
 let password = self.passwordField.text,
 let emailAddress = self.emailField.text {
 if ((username.characters.count > 0) &&
 (password.characters.count > 0) &&
 (emailAddress.characters.count > 0)) {
 self.createAccountButton.isEnabled = true
 }
 }
 return true
 }
}

extension SignupViewController {
 fileprivate func dismissKeyboard() {
 usernameField.resignFirstResponder()
 passwordField.resignFirstResponder()
 emailField.resignFirstResponder()
 }
 fileprivate func displaySignupError(error:NSError,
 completion:(() -> Void)?) {
 let alertController =
 UIAlertController(title: error.userInfo["__type"] as? String,
 message: error.userInfo["message"] as? String,
 preferredStyle: .alert)
 let okAction = UIAlertAction(title: "Ok",
 style: .default) {
 (action) in
 if let completion = completion {
 completion()
 }
 }

 alertController.addAction(okAction)
 DispatchQueue.main.async {
 self.present(alertController, animated: true, completion: nil)
 }
 }
 fileprivate func requestConfirmationCode(_ user:AWSCognitoIdentityUser) {
 let alertController =
 UIAlertController(title: "Confirmation.",
 message: "Please type the 6-digit confirmation
 code that has been sent to your email address.",
 preferredStyle: .alert)
 alertController.addTextField { (textField) in
 textField.placeholder = "######"
 }
 let okAction = UIAlertAction(title: "Ok",
 style:.default,
 handler: { action in

 if let firstTextField = alertController.textFields?.first,
 let confirmationCode = firstTextField.text {
 let userpoolController =
 CognitoUserPoolController.sharedInstance
 userpoolController.confirmSignup(user: user,
 confirmationCode: confirmationCode) {
 (error: Error?) in
 if let error = error {
 self.displaySignupError(error: error as NSError,
 completion: {() in
 self.requestConfirmationCode(user)
 })
 return
 }

 self.displaySuccessMessage()
 }
 }
 })
 let resendAction = UIAlertAction(title: "Resend code",
 style:.default,
 handler: { action in
 let userpoolController =
 CognitoUserPoolController.sharedInstance

 userpoolController.resendConfirmationCode(user: user) {
 (error: Error?) in
 if let error = error {
 self.displaySignupError(error: error as NSError,
 completion: { (Void) in
 self.requestConfirmationCode(user)
 })
 return
 }
 self.displayCodeResentMessage(user)
 }

 })
 alertController.addAction(okAction)
 alertController.addAction(resendAction)
 DispatchQueue.main.async {
 self.present(alertController, animated: true, completion: nil)
 }
 }
 fileprivate func displaySuccessMessage() {
 let alertController =
 UIAlertController(title: "Success.",
 message: "Your account has been created!.",
 preferredStyle: .alert)
 let action = UIAlertAction(title: "Ok",
 style:.default,
 handler: { action in
 let storyboard = UIStoryboard(name: "ChatJourney", bundle: nil)
 let viewController = storyboard.instantiateInitialViewController()
 self.present(viewController!, animated: true, completion: nil)
 })
 alertController.addAction(action)
 DispatchQueue.main.async {
 self.present(alertController, animated: true, completion: nil)
 }
 }
 fileprivate func displayCodeResentMessage(_ user:AWSCognitoIdentityUser) {
 let alertController =
 UIAlertController(title: "Code Resent.",
 message: "A 6-digit confirmation code has been
 sent to your email address.",
 preferredStyle: .alert)

 let okAction = UIAlertAction(title: "Ok",
 style:.default,
 handler: { action in
 self.requestConfirmationCode(user)
 })
 alertController.addAction(okAction)
 DispatchQueue.main.async {
 self.present(alertController, animated: true, completion: nil)
 }
 }
}

Some of the key aspects of the code presented in Listing 9.3 are discussed next.

When the view is loaded, the username, password, and e-mail address fields are empty; therefore, the viewDidLoad() method disables the create account button using the following statement:

self.createAccountButton.isEnabled = false

The create account button is enabled in the textField(_, shouldChangeCharactersIn, replacementString) method if all three text fields on the view contain valid text.

func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {
 if let username = self.usernameField.text,
 let password = self.passwordField.text,
 let emailAddress = self.emailField.text {
 if ((username.characters.count > 0) &&
 (password.characters.count > 0) &&
 (emailAddress.characters.count > 0)) {
 self.createAccountButton.isEnabled = true
 }
 }
 return true
}

In a production app, you may want to add additional client-side verification criteria into this method.

When the create account button is tapped, the view controller calls the signup(username, password, emailAddress, completion) method of the CognitoUserPoolController class:

@IBAction func onCreateAccount(_ sender: Any) {
 guard let username = self.usernameField.text,
 let password = self.passwordField.text,
 let emailAddress = self.emailField.text else {
 return
 }
 let userpoolController = CognitoUserPoolController.sharedInstance
 userpoolController.signup(username: username,
 password: password,
 emailAddress: emailAddress) {
 (error: Error?, user: AWSCognitoIdentityUser?) in
 if let error = error {
 self.displaySignupError(error: error as NSError, completion:nil)
 return
 }
 guard let user = user else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 1021,
 userInfo: ["__type":"Unknown Error",
 "message":"Missing User object"])
 self.displaySignupError(error: error, completion:nil)
 return
 }

 if user.confirmedStatus != AWSCognitoIdentityUserStatus.confirmed {
 self.requestConfirmationCode(user)
 } else {
 self.displaySuccessMessage()
 }
 }
}

If an error occurs, it is displayed to the user using the displaySignupError(error, completion) method. Amazon Cognito returns an error during the signup process if any of the following is true:

	The username is already in use.

	The format of the password does not satisfy the minimal security requirements that have been set up on the user pool.

	The format of the e-mail address is invalid.

It is important to note that these validations performed by Amazon Cognito are server-side validations. Server-side validations involve a round trip from your app to the Amazon Cognito service and back and are less efficient that any equivalent validation that you could have performed in your app before calling Amazon Cognito.

If there were no errors, the signup(username, password, emailAddress, completion) method of the CognitoUserPoolController instance calls the completion block that was provided as the fourth parameter with a nil error and an AWSCognitoIdentityUser object that represents the new user.

The user object is important for a variety of reasons, but in this particular journey it contains a member variable called confirmedStatus that indicates whether the user has to confirm her e-mail address.

if user.confirmedStatus != AWSCognitoIdentityUserStatus.confirmed {
 self.requestConfirmationCode(user)
} else {
 self.displaySuccessMessage()
}

The signup view controller class doesn’t save an explicit reference to the user object. This is because the user object can also be accessed using the read-only variable called currentUser of the CognitoUserPoolController instance.

The user pool for this application is set up to verify e-mail addresses. Therefore, the signup process involves an additional step in which the user must enter a 6-digit code sent to the e-mail address provided during signup. The Signup view controller class is responsible for presenting the user interface to allow the user to enter the code (Figure 9.19).

[image: Image described by caption and surrounding text.]

FIGURE 9.19 Users need to provide the 6-digit confirmation code that was sent by e-mail.

The requestConfirmationCode(user) method of the signup view controller class handles the task of presenting an alert view where the user can type in the 6-digit verification code:

fileprivate func requestConfirmationCode(_ user:AWSCognitoIdentityUser) {
 let alertController =
 UIAlertController(title: "Confirmation.",
 message: "Please type the 6-digit confirmation
 code that has been sent to your email address.",
 preferredStyle: .alert)
 alertController.addTextField { (textField) in
 textField.placeholder = "######"
 }
 let okAction = UIAlertAction(title: "Ok",
 style:.default,
 handler: { action in

 if let firstTextField = alertController.textFields?.first,
 let confirmationCode = firstTextField.text {

 let userpoolController = CognitoUserPoolController.sharedInstance
 userpoolController.confirmSignup(user: user,
 confirmationCode: confirmationCode) {
 (error: Error?) in
 if let error = error {
 self.displaySignupError(error: error as NSError,
 completion: {() in
 self.requestConfirmationCode(user)
 })
 return
 }

 self.displaySuccessMessage()
 }
 }
 })
 let resendAction = UIAlertAction(title: "Resend code",
 style:.default,
 handler: { action in
 let userpoolController = CognitoUserPoolController.sharedInstance
 userpoolController.resendConfirmationCode(user: user) {
 (error: Error?) in
 if let error = error {
 self.displaySignupError(error: error as NSError,
 completion: { (Void) in
 self.requestConfirmationCode(user)
 })
 return
 }
 self.displayCodeResentMessage(user)
 }
 })
 alertController.addAction(okAction)
 alertController.addAction(resendAction)
 DispatchQueue.main.async {
 self.present(alertController, animated: true, completion: nil)
 }
}

The code for the handler attached to the Ok action calls the confirmSignup(user, confirmationCode) method of the CognitoUserPoolController instance and handles any errors. If the confirmation code was entered incorrectly, the user is asked to re-enter the confirmation code. If the confirmation code was entered correctly, the user is taken to the Home view controller, which represents the part of the app that only authenticated users should access.

let userpoolController = CognitoUserPoolController.sharedInstance
userpoolController.confirmSignup(user: user,
 confirmationCode: confirmationCode) {
 (error: Error?) in
 if let error = error {
 self.displaySignupError(error: error as NSError,
 completion: {() in
 self.requestConfirmationCode(user)
 })
 return
 }

 self.displaySuccessMessage()
}

The alert view that allows the user to enter the 6-digit confirmation code also has a Resend code action that employs the resendConfirmationCode(user) method of the CognitoUserPoolController instance to resend the confirmation code to the e-mail address the user utilized while signing up.

let userpoolController = CognitoUserPoolController.sharedInstance

userpoolController.resendConfirmationCode(user: user) {
 (error: Error?) in
 if let error = error {
 self.displaySignupError(error: error as NSError, completion: {
 (Void) in
 self.requestConfirmationCode(user)
 })
 return
 }
 self.displayCodeResentMessage(user)
}

Updating the Home View Controller

After the user has authenticated using either the login or the signup journey, the home view controller is displayed. The home view controller is currently empty, but to prove that the authentication process has worked, update the viewDidLoad() method of the HomeViewController class to match the following snippet:

override func viewDidLoad() {
 super.viewDidLoad()

 // write user's e-mail address to console log
 let userpoolController = CognitoUserPoolController.sharedInstance

 userpoolController.getUserDetails(user: userpoolController.currentUser!) {
 (error: Error?,
 details:AWSCognitoIdentityUserGetDetailsResponse?) in
 if let userAttributes = details?.userAttributes {
 for attribute in userAttributes {
 if attribute.name?.compare("email") == .orderedSame {
 print ("Email address of logged-in user is
 \(attribute.value!)")
 }
 }
 }}
}

This snippet calls the getUserDetails(user, completion) method of the CognitoUserPoolController instance. It then extracts the e-mail address for the authenticated user and prints the e-mail address to the console.

Managing Users

You can use the Amazon Cognito console to perform common housekeeping tasks on users, such as adding users manually, confirming e-mail addresses and phone numbers manually, and deleting users.

To perform these tasks, log in to the Amazon Cognito user pool Management Console. Click the user pool name and then select the Users and groups menu item (Figure 9.20).

[image: Image described by caption and surrounding text.]

FIGURE 9.20 List of users in the user pool

[image:] You can download the project files created in this chapter from this book’s website on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter9.AWSForMobileDevelopers.2017.git.

Summary

	Amazon Cognito is a service that lets you create a cloud-based database of users for use within your mobile applications.

	Amazon Cognito provides all the back-end features and infrastructure that are required to implement a full-fledged user signup and login system.

	Amazon Cognito consists of three key services: user pools, federated identities, and Amazon Cognito sync.

	Some of the APIs exposed by Amazon Cognito do not require an authenticated user, these APIs are typically used to allow users to log in, sign up, or retrieve a forgotten password.

	Unauthenticated Amazon Cognito APIs can only be called by applications that have been pre-registered with Amazon Cognito using the AWS Management Console.

Chapter 10
Implementing Login Using Facebook

WHAT’S IN THIS CHAPTER

	[image: images]Configure an application on the Facebook developer portal.

	[image: images]Add the Facebook SDK to the AWSChat project.

	[image: images]Create an Amazon Cognito identity pool and configure the identity pool to federate Facebook identities.

	[image: images]Update the AWSChat project to allow users to log in using their Facebook credentials.

	[image: images]Examine the list of identities in the identity pool using the AWS Management Console.

[image:] In this chapter, you build on the AWSChat application to allow users to log in using their Facebook account credentials. After users have successfully logged in with their Facebook credentials, you employ an Amazon Cognito identity pool to exchange these credentials for a temporary set of credentials for the purpose of accessing AWS cloud resources.

[image:] To follow along with this lesson, download the starter project from this book’s webpage at Sybex.com or GitHub at https://github.com/ asmtechnology/Chapter10.AWSForMobileDevelopers.2017.git.

You will need to ensure that the following options have been set up correctly in the starter project:

	Lines 14 – 16 of the CognitoUserPoolController.swift file contain the user pool region and ID of your Coginto user pool.

	Lines 18 – 21 of the CognitoUserPoolController.swift file contain the app client ID and app client secret to allow your app access to unauthenticated APIs of the user pool.

Creating an App on Facebook

To allow developers to log in to your app using their Facebook credentials, you need to create an entry for the AWSChat application on Facebook under your own Facebook developer account.

	To start, log in to the Facebook developer portal at https://developers.facebook .com/apps and click the Add a New App button (Figure 10.1).

[image: Window shows add new app button location in Facebook developer portal with options for Alien Fire, DIY Office Lunch, RuntimeCrash.com, SuperGolf 3D, and Tring, and button for add new app.]

FIGURE 10.1 Location of the Add a New App button in the Facebook developer portal

	You are presented with a pop-up dialog box where you need to provide a name for the app, include your e-mail address, and select an app category. Supply the following values and click the Create App ID button (Figure 10.2).

	Display Name: AWSChat

	Contact E-mail: Type your e-mail address here.

	Category: Business
You arrive at the dashboard page for the app.

[image: Image described by caption and surrounding text.]

FIGURE 10.2 Create a new application identifier

	Click on the Settings menu item on the left side of the page, and then click the Add Platform button (Figure 10.3).

[image: Window shows add platform button location with options for app ID, app secret, display name, namespace, app domains, contact email, privacy policy URL, terms of service URL, app icon, and category, and button for add platform.]

FIGURE 10.3 Location of the Add Platform button

	Select iOS from the list of platform options that appears when you click the Add Platform button (Figure 10.4).

[image: Window shows list of available platforms to select iOS with options for Facebook web games, website, iOS, android, windows app, page tab, Xbox, and PlayStation.]

FIGURE 10.4 Select iOS from the list of available platforms

	Open your Xcode project and select the root node of the Project Navigator. Switch to the General tab. Change the bundle identifier of the project to something suitable for your organization and copy the value of the bundle identifier field to the clipboard (Figure 10.5).

[image: Window shows Xcode bundle identifier location with tabs for general (selected), capabilities, resource tags, info, build settings, build phases, and build rules, and sections for identity, signing, deployment info, and app icons and launch images.]

FIGURE 10.5 Location of the Xcode Bundle Identifier

[image:] The default value of the Xcode bundle identifier property is com.asmtechnology.awschat. You will need to replace it with an identifier that you have registered with your iOS developer account.

	Switch back to your web browser, paste the bundle identifier in the Bundle ID field, and enable Single Sign On. Click on the Save Changes button to finish creating an entry for the AWSChat application on the Facebook developer portal (Figure 10.6).

[image: Window shows platform settings of iOS in Facebook developer page with options for privacy policy URL, terms of service URL, app icon, category, bundle ID, iPhone store ID, URL scheme suffix, iPad store ID, et cetera.]

FIGURE 10.6 iOS platform settings in the Facebook developer page

	Select the Dashboard menu item on the menu on the left side of the page and note the value of the App ID field; you need it in the next section of this chapter (Figure 10.7).

[image: Window shows Facebook app ID location with sections for dashboard and Facebook login (active login users), and options for API version, app ID, and app secret.]

FIGURE 10.7 Location of the Facebook App ID

Adding the Facebook SDK to the Xcode Project

Before you can add the Facebook SDK to your Xcode project, you need to download it. Visit the following URL in your browser and click the Download iOS SDK link (Figure 10.8).

[image: Image described by caption and surrounding text.]

FIGURE 10.8 Facebook SDK for iOS download page

https://developers.facebook.com/docs/ios/getting-started

	Clicking the link downloads the Facebook SDK for iOS as a .zip file into your Mac’s downloads folder. Extract the contents of the .zip file in a suitable location on your computer.

All the contents of the .zip file are extracted to a folder whose name is similar to FacebookSDKs-iOS-4.20.2.

	Using Finder, copy the FacebookSDKs-iOS-4.20.2 folder into your Xcode project directory, placing it next to the AWSChat.xcodeproj file (Figure 10.9).

[image: Image described by caption and surrounding text.]

FIGURE 10.9 Placing the downloaded Facebook SDK files with the AWSChat project files in Finder

	Open the AWSChat project in Xcode, and use the Project Navigator to add the following frameworks from the Facebook SDK to your project:

	Bolts.framework

	FBSDKCoreKit.framework

	FBSDKLoginKit.framework
When adding these files to the project, ensure that you have selected Create Groups and that the Copy Items If Needed option is not selected in the Add Files dialog box (Figure 10.10).

[image: Image described by caption and surrounding text.]

FIGURE 10.10 Xcode copy files dialog box

	Select the root node in the Project Navigator, and switch to the Build Settings tab on the right side of the screen. Locate the Framework Search Paths setting, and add the path to the FacebookSDKs-iOS-4.20.2 folder into the list of paths (Figure 10.11).

[image: Image described by caption and surrounding text.]

FIGURE 10.11 Adding the path to the Facebook SDK to the project Build Settings

	Ctrl+click the Info.plist file in the Project Navigator and select the Open As ➢ Source Code menu item from the context menu (Figure 10.12).

[image: Image described by caption and surrounding text.]

FIGURE 10.12 Viewing the Info.plist file as source code

	Add the following XML snippet to the file, just before the last </dict> tag:

<key>CFBundleURLTypes</key>
<array>
<dict>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>fb{your-app-id}</string>
 </array>
</dict>
</array>
<key>FacebookAppID</key>
<string>{your-app-id}</string>
<key>FacebookDisplayName</key>
<string>{your-app-name}</string>
<key>LSApplicationQueriesSchemes</key>
<array>
 <string>fbapi</string>
 <string>fb-messenger-api</string>
 <string>fbauth2</string>
 <string>fbshareextension</string>
</array>

	Replace the {your-app-id} placeholder string with the App ID for the application you created in the Facebook developer portal.

	Replace the {your-app-name} placeholder string with the name of the application you created in the Facebook developer portal.

The modified XML file should resemble the contents of Listing 10.1. The modifications are highlighted in boldface.

Listing 10.1: Info.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>en</string>
 <key>CFBundleExecutable</key>
 <string>$(EXECUTABLE_NAME)</string>
 <key>CFBundleIdentifier</key>
 <string>$(PRODUCT_BUNDLE_IDENTIFIER)</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleName</key>
 <string>$(PRODUCT_NAME)</string>
 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleShortVersionString</key>
 <string>1.0</string>
 <key>CFBundleVersion</key>
 <string>1</string>
 <key>LSRequiresIPhoneOS</key>
 <true/>
 <key>UILaunchStoryboardName</key>
 <string>LaunchScreen</string>
 <key>UIMainStoryboardFile</key>
 <string>Main</string>
 <key>UIRequiredDeviceCapabilities</key>
 <array>
 <string>armv7</string>
 </array>
 <key>UISupportedInterfaceOrientations</key>
 <array>
 <string>UIInterfaceOrientationPortrait</string>
 <string>UIInterfaceOrientationLandscapeLeft</string>
 <string>UIInterfaceOrientationLandscapeRight</string>
 </array>
 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>fb1080694568742908</string>
 </array>
 </dict>
 </array>
 <key>FacebookAppID</key>
 <string>your Facebook App ID</string>
 <key>FacebookDisplayName</key>
 <string>AWSChat</string>
 <key>LSApplicationQueriesSchemes</key>
 <array>
 <string>fbapi</string>
 <string>fb-messenger-api</string>
 <string>fbauth2</string>
 <string>fbshareextension</string>
 </array>
</dict>
</plist>

	Ctrl+click the AWSChat folder group in the Project Navigator and select the New File… menu item from the context menu (Figure 10.13).

[image: Image described by caption and surrounding text.]

FIGURE 10.13 Xcode Project Navigator context menu

	Choose the iOS Header File template from the options dialog box that appears (Figure 10.14).

[image: Image described by caption and surrounding text.]

FIGURE 10.14 Xcode file template dialog box

	Name the new file ObjCBridging-Header.h and save the file to the default location suggested by Xcode. Add the following #import statements to the new file, just before the #endif line:

#import <FBSDKCoreKit/FBSDKCoreKit.h>
#import <FBSDKLoginKit/FBSDKLoginKit.h>

	Select the root node in the Project Navigator, and switch to the Build Settings tab on the right top of the screen. Locate the Swift Compiler – General setting. Ensure that the value of the Install Objective-C Compatibility Header setting is Yes, and the value of the Objective-C Bridging Header setting is $(SRCROOT)/AWSChat/ ObjCBridging-Header.h (Figure 10.15).

[image: Window shows setup of objective-C bridging header with tabs for general, capabilities, resource tags, info, build settings (selected), build phases, and build rules, and sections for interface builder storyboard compiler - options, swift compiler - custom flags, et cetera.]

FIGURE 10.15 Objective-C Bridging Header setup

	Select the AppDelegate.swift file in the Project Navigator and modify the application(_ , didFinishLaunchingWithOptions) method to resemble the following:
func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // Override point for customization after application launch.
 FBSDKApplicationDelegate.sharedInstance().application(application,
 didFinishLaunchingWithOptions: launchOptions)
 return true
}

	Add a new method called application(_, open, sourceApplication, annotation) to the AppDelegate.swift file:

func application(_ application: UIApplication,
 open url: URL,
 sourceApplication: String?,
 annotation: Any) -> Bool {
 return FBSDKApplicationDelegate.sharedInstance().application(
 application,
 open: url as URL!,
 sourceApplication: sourceApplication,
 annotation: annotation)
}

This concludes the changes you need to make to the application delegate class. Next, you switch over to Amazon Cognito and create an identity pool.

Creating an Amazon Cognito Identity Pool

An identity pool is a database of federated (linked) identities that can be used to obtain a set of temporary credentials to access other AWS services such as Amazon S3 and Amazon DynamoDB. These federated identities are unique within an identity pool and are linked to identities from third-party providers such as Facebook Google, and Amazon.

[image:] In Chapter 9 you created an Amazon Cognito user pool and used it to let users register and authenticate (log in) with your app.

You may be confused about the difference between a user pool and an identity pool. A user pool is a database of users that can be used to sign up and authenticate users of your app. However, users in a user pool do not have identity objects associated with them. Identity objects live in identity pools (and not user pools). In order to access AWS services such as Amazon S3 and Amazon DynamoDB from your app, you need to obtain an identity object from an identity pool.

If you are authenticating users using an Amazon Cognito user pool, you need to link the user pool with an identity pool so that you can obtain an identity object after a user has authenticated with the user pool.

Linking user pools to identity pools is covered in Chapter 12. In this chapter you create an identity pool and set up the identity pool to provide identity objects after a user has authenticated using Facebook.

	Log in to the IAM console using your dedicated IAM user-specific sign-in link and navigate to the Amazon Cognito service home page (Figure 10.16).

[image: Window shows Amazon Cognito service home page accessing with sections for compute, storage (highlighted), database, networking and content delivery, migration, developer tools, management tools, security, identity and compliance, analytics, artificial intelligence, et cetera.]

FIGURE 10.16 Accessing the Amazon Cognito service home page

	Click on the Manage Federated Identities button on the Amazon Cognito splash screen to access a list of existing identity pools (Figure 10.17).

[image: Image described by caption and surrounding text.]

FIGURE 10.17 Amazon Cognito splash screen

	To add a new identity pool, click on the Create new identity pool button in the top-left corner of the screen (Figure 10.18). Identity pools are specific to AWS regions. Make sure you have set up the AWS Management Console to use the correct region before creating the identity pool.

[image: Image described by caption and surrounding text.]

FIGURE 10.18 Creating a new identity pool

	Specify a name for your identity pool. The code developed in this book uses an identity pool called AWSChatIdentityPool. Ensure that the Enable access to unauthenticated identities check box is disabled.

	Expand the Authentication providers section of the page, and enter your Facebook application ID in the Facebook tab (Figure 10.19). Click on the Create Pool button at the bottom of the page to proceed.

[image: Image described by caption and surrounding text.]

FIGURE 10.19 Specifying the Facebook App ID in an identity pool

	The next screen lets you create new roles for authenticated and unauthenticated identities (Figure 10.20). You also have the option to select an existing role.

[image: Image described by caption and surrounding text.]

FIGURE 10.20 By default, Amazon Cognito creates new roles for authenticated and unauthenticated identities.

The authenticated role determines what AWS services from your account are accessible to users who have successfully authenticated with a federated identity. Technically speaking, users will use your app to authenticate with Facebook, and your app will then call an Amazon Cognito service to exchange the Facebook identity for a temporary federated identity from the identity pool. The authenticated role controls what AWS services are available to your app.

The default policy attached to an authenticated role is limiting; it only allows your app to send analytics events to the AWS MobileAnalytics service:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "mobileanalytics:PutEvents",
 "cognito-sync:*",
 "cognito-identity:*"
],
 "Resource": [
 "*"
]
 }
]
}

For the purposes of this chapter, this is not an issue. In subsequent chapters we update this policy to allow your app access to Amazon S3 and Amazon DynamoDB.

Our app doesn’t use the unauthenticated role because we have disabled the Enable access to unauthenticated identities check box on the previous screen.

	Click the Allow button at the bottom of the screen to finish creating the new identity pool.

Updating the Application User Interface

Follow the steps in this section to update the application’s UI.

	Switch back to the AWSChat Xcode project and click the Main.storyboard file in the Project Navigator to open the storyboard. Navigate to the Login scene in the storyboard and drag a View object from the Object Library onto the Login scene.

	Using the Attributes Inspector, change the background color of the view to a shade of gray to make it easily visible on the storyboard scene. Position the view as shown in Figure 10.21 and set up appropriate constraints.

[image: Image described by caption and surrounding text.]

FIGURE 10.21 Setting up constraints for the new View object

	Using the Identity Inspector, change the custom class associated with the view to FBSDKLoginButton (Figure 10.22).

[image: Image described by caption and surrounding text.]

FIGURE 10.22 Changing the custom class of the View object

	Right-click the Facebook login button and set the login view controller as the delegate for the Facebook login button. Create a new outlet in the LoginViewController class called facebookButton, and connect it to the Facebook login button of the scene.

	Select the LoginViewController.swift file in the Project Navigator, and add the following lines to the end of the viewDidLoad() method:
// log out the user if previously logged in.
let facebookLoginManager = FBSDKLoginManager()
facebookLoginManager.logOut()
// set up the information you want to read from the user's Facebook account.
facebookButton.readPermissions = ["public_profile", "email"];

These lines log out the user if he is still signed into Facebook from an earlier session with the AWSChat application, and they set up the items that the AWSChat app would like to request from Facebook when the user logs in with Facebook credentials.

When the user taps the Facebook login button in the app, the Facebook SDK presents the relevant user interface components required to collect the user’s Facebook credentials and connects with the Facebook service. The AWSChat is notified about the result of the Facebook login process via a delegate callback.

	Implement the FBSDKLoginButtonDelegate protocol in a separate class extension in the same file:

extension LoginViewController : FBSDKLoginButtonDelegate {
 func loginButton(_ loginButton: FBSDKLoginButton!,
 didCompleteWith result: FBSDKLoginManagerLoginResult!,
 error: Error!) {
 if error != nil {
 displayLoginError(error: error as NSError)
 return
 }
 if result.isCancelled {
 return
 }
 guard let idToken = FBSDKAccessToken.current() else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 100,
 userInfo: ["__type":"Unknown Error", "message":
 "Facebook JWT token error."])
 self.displayLoginError(error: error)
 return
 }

 let graphRequest : FBSDKGraphRequest = FBSDKGraphRequest(graphPath: "me",
 parameters:
 ["fields":"email,name"])
 graphRequest.start(completionHandler: { (connection, result, error) ->
 Void in
 if let error = error {
 self.displayLoginError(error: error as NSError)
 return
 }
 if let result = result as? [String : AnyObject],
 let name = result["name"] as? String {
 let email = result["email"] as? String
 let indentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 indentityPoolController.getFederatedIdentityForFacebook(idToken:
 idToken.tokenString,
 username: name, emailAddress: email,
 completion: { (error: Error?) in
 if let error = error {
 self.displayLoginError(error:error as NSError)
 return
 }
 self.displaySuccessMessage()
 return
 })
 }
 })
 }
 func loginButtonDidLogOut(_ loginButton: FBSDKLoginButton!) {
 // do nothing.
 }
}

The loginButton(_ , didCompleteWith, error) delegate method is called, starting the login process.

	This method first checks to see if there was an error logging in. If there was, you display the error message in an alert dialog box and exit the method:

if error != nil {
 displayLoginError(error: error as NSError)
 return
}

	Next, you handle the case in which the user may have pressed the Cancel button on the user interface provided by the Facebook SDK. In this example, no specific action is required:

if result.isCancelled {
 return
}

	If the login is successful, the Facebook SDK receives an access token from the Facebook service. Before you can proceed, you need to ensure that the SDK has received this token. This is checked next:

guard let idToken = FBSDKAccessToken.current() else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 100,
 userInfo: ["__type":"Unknown Error",
 "message":"Facebook JWT token error."])
 self.displayLoginError(error: error)
 return
}

	After you have checked that the Facebook SDK has received a token from the Facebook service, you can use the Facebook SDK to request the user’s name and e-mail address:
let graphRequest = FBSDKGraphRequest(graphPath: "me",
 parameters: ["fields":"email,name"])
graphRequest.start(completionHandler: {
 (connection, result, error) -> Void in

 if let error = error {
 self.displayLoginError(error: error as NSError)
 return
 }
 if let result = result as? [String : AnyObject],
 let name = result["name"] as? String {

 let email = result["email"] as? String

 // do something with the name, e-mail, and idToken
 }

})

The graphRequest.start() method takes a completion block as its sole argument. This completion block is called with the response from the Facebook service. The previous snippet checks for errors, and if there are no errors it extracts the name and e-mail address from the data received from Facebook.

Now that you have the Facebook ID token, username, and e-mail address, it is time to use Amazon Cognito to exchange the Facebook ID token for a temporary federated identity from the Amazon Cognito identity pool. Save the user’s name and e-mail address as attributes of the Amazon Cognito identity.

These tasks are encapsulated within a method called getFederatedIdentityForFacebook(idToken, username, emailAddress, completion) of a new class called CognitoIdenitiyPoolController, which is called within the completion block of the graphRequest.start() method:

let indentityPoolController =
 CognitoIdentityPoolController.sharedInstance

 indentityPoolController.getFederatedIdentityForFacebook(
 idToken: idToken.tokenString,
 username: name, emailAddress: email,
 completion: { (error: Error?) in

if let error = error {
 self.displayLoginError(error:error as NSError)
 return
 }
 self.displaySuccessMessage()
 return
})

	Create a new Swift file called CognitoIdenitiyPoolController.swift and update its contents to match Listing 10.2.

Listing 10.2: CognitoIdenitiyPoolController.swift

import Foundation
import AWSCognito
import AWSCognitoIdentityProvider

class CognitoIdentityPoolController {
 let identityPoolRegion: AWSRegionType = .USEast1
 let identityPoolD = "insert your identity pool id"
 private var credentialsProvider: AWSCognitoCredentialsProvider?
 private var configuration: AWSServiceConfiguration?
 static let sharedInstance: CognitoIdentityPoolController =
 CognitoIdentityPoolController()
 private init() {
 let identityProviderManager = SocialIdentityManager.sharedInstance
 credentialsProvider = AWSCognitoCredentialsProvider(
 regionType: identityPoolRegion,
 identityPoolId: identityPoolD,
 identityProviderManager: identityProviderManager)
 configuration = AWSServiceConfiguration(region: identityPoolRegion,
 credentialsProvider:credentialsProvider)
 AWSServiceManager.default().defaultServiceConfiguration = configuration
 }
 func getFederatedIdentityForFacebook(idToken:String,
 username:String,
 emailAddress:String?,
 completion:@escaping (Error?)->Void) {
 let identityProviderManager = SocialIdentityManager.sharedInstance
 identityProviderManager.registerFacebookToken(idToken)
 let task = self.credentialsProvider!.getIdentityId()
 task.continueWith { (task: AWSTask<NSString>) -> Any? in
 if task.error != nil {
 completion(task.error)
 return nil
 }
 let syncClient = AWSCognito.default()
 let dataSet = syncClient.openOrCreateDataset("facebookUserData")
 dataSet.setString(username, forKey: "name")
 if let emailAddress = emailAddress {
 dataSet.setString(emailAddress, forKey: "email")
 }
 dataSet.synchronize().continueWith(block: {
 (task: AWSTask<AnyObject>) -> Any? in
 if task.error != nil {
 completion(task.error)
 return nil
 }
 completion(nil)
 return nil
 })
 return nil
 }
 }
}

The CognitoIdentityPoolController class declares a couple of constants that represent the AWS Region and the identity pool ID. You will need to provide appropriate values for your identity pool.

let identityPoolRegion: AWSRegionType = .USEast1
let identityPoolD = "insert your identity pool id"

	To obtain the identity pool ID, log in to the Amazon Cognito dashboard using your browser, and click on the Manage Federated Identities button to view a list of identity pools in your account (Figure 10.23).

[image: Image described by caption and surrounding text.]

FIGURE 10.23 List of available identity pools

	Click on the name of the identity pool from the list, and then click on the Edit identity pool button located at the top-right corner of the page (Figure 10.24).

[image: Image described by caption and surrounding text.]

FIGURE 10.24 Location of the Edit identity pool button

The identity pool ID is listed on the new page that loads in your browser (Figure 10.25).

[image: Image described by caption and surrounding text.]

FIGURE 10.25 Location of the identity pool ID

The CognitoIdentityPoolController class implements the singleton pattern, similar to the CognitoUserPoolController class developed in Chapter 9. The init() method of the CognitoIdentityPoolController class is private and starts off by creating an AWScognitoCredentialsProvider instance:

let identityProviderManager = SocialIdentityManager.sharedInstance

credentialsProvider = AWSCognitoCredentialsProvider(
 regionType: identityPoolRegion,
 identityPoolId: identityPoolD,
 identityProviderManager: identityProviderManager)

The AWSCognitoCredentialsProvider initializer requires three parameters:

	regionType: Identifies the AWS region in which the identity pool was created

	identityPoolId: Contains the ID for the identity pool

	identityProviderManager: Implements the AWSIndentityProviderManager protocol and can provide the login token received from Facebook

The init() method then creates an AWSServiceConfiguration instance and assigns it to the defaultServiceConfiguration variable of the AWSServiceManager singleton:

configuration = AWSServiceConfiguration(region: identityPoolRegion,
 credentialsProvider:credentialsProvider)

AWSServiceManager.default().defaultServiceConfiguration = configuration

The getFederatedIdentityForFacebook(idToken, username, emailAddress, completion) method is responsible for using the AWS SDK to exchange the Facebook login token for a federated identity from Amazon Cognito and is examined next:

func getFederatedIdentityForFacebook(idToken:String,
 username:String,
 emailAddress:String?,
 completion:@escaping (Error?)->Void) {

 let identityProviderManager = SocialIdentityManager.sharedInstance
 identityProviderManager.registerFacebookToken(idToken)

 let task = self.credentialsProvider!.getIdentityId()

 task.continueWith { (task) -> Any? in

 if task.error != nil {
 completion(task.error)
 return nil
 }

 let syncClient = AWSCognito.default()
 let dataSet = syncClient.openOrCreateDataset("facebookUserData")

 dataSet.setString(username, forKey: "name")

 if let emailAddress = emailAddress {
 dataSet.setString(emailAddress, forKey: "email")
 }

 dataSet.synchronize().continueWith(block: { (task)-> Any? in

 if task.error != nil {
 completion(task.error)
 return nil
 }

 completion(nil)
 return nil
 })

 return nil
 }
}

This method is called from the login view controller after the Facebook SDK has provided a login token, name, and e-mail address for the user. This method takes four input parameters:

	idToken: The login token received from the Facebook SDK

	username: The name of the user who has logged in to Facebook

	emailAddress: The e-mail address of the user who has logged into Facebook

	completion: A completion block that is called by this method with the results of the identity federation process

A brief analysis of the code in the getFederatedIdentityForFacebook(idToken, username, emailAddress, completion) method is presented next.

First, the login token received from Facebook is given to a SocialIdentityManager instance. This instance is responsible for storing login tokens and providing them to the AWS SDK when required.

let identityProviderManager = SocialIdentityManager.sharedInstance
identityProviderManager.registerFacebookToken(idToken)

The actual process of obtaining a federated identity is kicked off by making a call to the getIdentityId() method of the Amazon Cognito credentials provider object:

let task = self.credentialsProvider!.getIdentityId()

Like most methods in the AWS SDK, getIdentityId() is an asynchronous method. The results of the operation can be examined by using the continueWith(block) method on the AWSTask object returned by getIdentityId().

task.continueWith { (task: AWSTask<NSString>) -> Any? in

 if task.error != nil {
 completion(task.error)
 return nil
 }

 let syncClient = AWSCognito.default()
 let dataSet = syncClient.openOrCreateDataset("facebookUserData")

 dataSet.setString(username, forKey: "name")

 if let emailAddress = emailAddress {
 dataSet.setString(emailAddress, forKey: "email")
 }

 dataSet.synchronize().continueWith(block: { (task) -> Any? in

 if task.error != nil {
 completion(task.error)
 return nil
 }

 completion(nil)
 return nil
 })
 return nil
}

If there are no errors, the code in the completion block saves the name and e-mail address provided by Facebook into the Amazon Cognito identity pool.

The only thing missing from the project now is the SocialIdentityManager class that stores the Facebook ID token and presents it to the AWS SDK when requested.

	Create a new swift file called SocialIdentityManager.swift and update its contents to match Listing 10.3.

Listing 10.3: SocialIdentityManager.swift

import Foundation
import AWSCognitoIdentityProvider

class SocialIdentityManager : NSObject {

 fileprivate var loginDictionary:[String : String]

 static let sharedInstance: SocialIdentityManager = SocialIdentityManager()

 private override init() {
 loginDictionary = [String : String]()
 super.init()
 }

 func registerFacebookToken(_ token:String) {
 self.loginDictionary[AWSIdentityProviderFacebook] = token
 }

}

extension SocialIdentityManager : AWSIdentityProviderManager {

 func logins() -> AWSTask<NSDictionary> {
 return AWSTask(result: loginDictionary as NSDictionary)
 }

}

	Save the project and run it in the iOS simulator. Click the Continue with Facebook button on the login screen of the app (Figure 10.26).

[image: Image described by caption and surrounding text.]

FIGURE 10.26 The Facebook Login button is visible on the login screen of the app.

The Facebook SDK opens Safari in the iOS Simulator and presents a secure user interface where users need to provide their Facebook username and password (Figure 10.27).

[image: Image described by caption and surrounding text.]

FIGURE 10.27 The Facebook SDK presents the user interface to allow users to provide their Facebook credentials.

	After a user has provided their Facebook credentials, they will need to click on the Log In button. Facebook will ask the user to allow the AWSChat app access to elements of their public Facebook profile (Figure 10.28).

[image: Image described by caption and surrounding text.]

FIGURE 10.28 Users are asked for permission to allow the AWSChat app access to elements of their public Facebook profile.

After the user allows access, they will be taken back to the AWSChat app and informed that the login process is complete (Figure 10.29).

[image: Image described by caption and surrounding text.]

FIGURE 10.29 Successful Facebook sign-in

	To see if the Facebook-provided name and e-mail address for the user are visible in Amazon Cognito, open Safari and access the identity pool from the Amazon Cognito dashboard. Click the Identity browser menu item from the left-side menu to see a list of federated identities in the pool (Figure 10.30).

[image: Image described by caption and surrounding text.]

FIGURE 10.30 Identity browser

	Click an identity to view more details. In the Identity details page, look for the Datasets section and click on the dataset called facebookUserData (Figure 10.31).

[image: Image described by caption and surrounding text.]

FIGURE 10.31 Amazon Cognito sync datasets under the Identity object

You see the Facebook-provided name and e-mail address of the user in the dataset (Figure 10.32).

[image: Image described by caption and surrounding text.]

FIGURE 10.32 Contents of the facebookUserData dataset

[image:] You can download the project files created in this chapter from this book’s webpage on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter10.AWSForMobileDevelopers.2017.git.

Summary

	To allow users to log in with their Facebook credentials, you need to create an App on Facebook and add the Facebook SDK to your iOS project.

	An identity pool is a database of identities that can access AWS resources in your account.

	A user pool is a database of users that can be used to sign up and authenticate users of your app. However, users in a user pool do not have Identity objects associated with them.

	When creating an identity pool, you specify a set of IAM roles to be used for authenticated and unauthenticated identities.

	You must configure the identity pool to generate federated identities for Facebook identities.

	Amazon Cognito provides all the back-end features and infrastructure that are required to implement a full-fledged user signup and login system.

	Amazon Cognito consists of three key services: user pools, federated identities, and Amazon Cognito sync.

	Some of the APIs exposed by Amazon Cognito do not require an authenticated user, these APIs are typically used to allow users to log in, sign up, or retrieve a forgotten password.

	Unauthenticated Amazon Cognito APIs can only be called by applications that have been pre-registered with Amazon Cognito using the AWS Management Console.

Chapter 11
Implementing Login Using Google

WHAT’S IN THIS CHAPTER

	[image: images]Configure an application in the Google developer portal.

	[image: images]Add the Google SDK to the AWSChat project.

	[image: images]Configure an Amazon Cognito identity pool to federate Google identities.

	[image: images]Update the AWSChat project to allow users to login using their Google credentials.

	[image: images]Using the Amazon Cognito Identity browser.

[image:] In this chapter, you build on the AWSChat application to allow users to log in using their Google account credentials. After users have successfully logged in with their Google credentials, you can use an Amazon Cognito identity pool to exchange these credentials for a temporary set of credentials that access AWS cloud resources.

[image:] To follow along with this lesson, download the starter project from either this book’s web page at Sybex.com or GitHub at https://github.com/asmtechnology/Chapter11.AWSForMobileDevelopers.2017.git.

You also need to ensure that the following options have been set up correctly in the starter project:

	Lines 14 – 16 of the CognitoUserPoolController.swift file contain the user pool region and id of your Amazon Coginto user pool.

	Lines 18 – 21 of the CognitoUserPoolController.swift file contain the app client id and app client secret to allow your app access to unauthenticated APIs of the user pool.

	Lines 16 – 17 of the CognitoIdentityPoolController.swift file contain the region and id of your Amazon Cognito identity pool.

If you intend to use Facebook login, then in addition to the preceding items, you need to ensure that:

	The FacebookAppID property in the Info.plist file is set up correctly.

	You update the URL scheme with the Facebook application id.

Adding the Google SDK to the Xcode Project

You can add the Google Software Development Kit (SDK) to your iOS application by either using CocoaPods or directly adding prebuilit .framework files to the project. In this lesson, you use the latter option.

	Start by downloading the latest version of the Google SDK for iOS from https://developers.google.com/identity/sign-in/ios/sdk/ (Figure 11.1).

[image: Window shows google sign-in for iOS having options like start integrating, integrating without cocoapods, add sign-in, et cetera, on left-side panel and google sign-in SDK along with older version details on right-side panel.]

FIGURE 11.1 Google SDK download page

The latest version of the Google SDK as of when this book was written was 4.0.1. If you want to use CocoaPods to add the Google SDK for iOS to your project, follow the instructions listed at https://developers.google.com/identity/sign-in/ios/start-integrating.

	Locate the downloaded SDK file in the Downloads folder on your Mac, and copy the following files from the SDK into your Xcode project folder:

	GoogleSignIn.bundle

	GoogleSignIn.framework

	GoogleAppUtilities.framework

	GoogleSignInDependencies.framework

	GoogleSymbolUtilities.framework

	Open your iOS project in Xcode, and create a new folder group in the Project Navigator called GoogleSDK.

	Ctrl+click the GoogleSDK folder group in the Project Navigator and select the Add Files to AWSChat ... menu item from the context menu.

	Select the files that you have copied from the Google SDK into your project’s folder, ensure the Copy items if needed option is not selected, and click the Add button (Figure 11.2).

[image: Image described by caption and surrounding text.]

FIGURE 11.2 Xcode file import dialog box

	Select the root node of the Project Navigator and switch to the Build Phases tab. Expand the Link Binary with Libraries section, and add the following libraries to the list (Figure 11.3):

	SafariServices.framework

	SystemConfiguration.framework

[image: Window shows AWSchat for iPhone SE with options like apputilities, signin bundle, FacebookSDK, viewcontrollers along with link binary with libraries like system configuration.framework, safariservices.framework, et cetera.]

FIGURE 11.3 Additional libraries to add to the project

	Switch to the Build Settings tab, and locate the Other Linker Flags setting. Add the –ObjC linker flag (Figure 11.4).

[image: Window shows AWSchat having options for targets like bundle loader, current library version, display mangled names, dead code stripping, dynamic library install name, exported symbols file, initialization routine, et cetera.]

FIGURE 11.4 Xcode build settings

	Switch back to Safari, and scroll down the page until you see a button called Get a configuration file. Click the button to begin the process of defining an entry for the AWSChat application on Google (Figure 11.5).

[image: Image described by caption and surrounding text.]

FIGURE 11.5 Click the Get a Configuration File button.

	Type AWSChat in the App name field, and provide the iOS app’s bundle ID in the iOS Bundle ID field. Select your country from the list of available options, and click the Choose and configure services button (Figure 11.6).

[image: Window shows google developers with option for creating or choosing app for filebase (powerful new tools from Google for multiple developers) and right-side panel displays terms and conditions.]

FIGURE 11.6 Specifying the app name and bundle identifier

	On the service configuration page (Figure 11.7), ensure Google Sign-In is selected, and click the Enable Google Sign-In button.

[image: Image described by caption and surrounding text.]

FIGURE 11.7 Expand the Google Sign-In option to reveal the Enable Google Sign-In button.

	A few seconds after clicking on the Enable Google Sign-In button, you should see a message on the web page that confirms Google Sign-In has been enabled (Figure 11.8). Click the Generate configuration files button to proceed.

[image: Image described by caption and surrounding text.]

FIGURE 11.8 Google Sign-In has been enabled for your app.

	Click the Download GoogleService-Info.plist button on the page that appears (Figure 11.9).

[image: Image described by caption and surrounding text.]

FIGURE 11.9 Download GoogleService-Info.plist button.

	Switch to Finder and locate the GoogleService-Info.plist file in the Downloads folder of your Mac. Copy the file to the AWSChat project directory.

	Switch back to Xcode and ensure the AWSChat project is open. Add the GoogleService-Info.plist file into the project, placing it under the AWSChat folder group (Figure 11.10).

[image: Image described by caption and surrounding text.]

FIGURE 11.10 Add the GoogleService-Info.plist file under the AWSChat folder group in Xcode.

	Open the GoogleService-Info.plist file, and copy the value of the CLIENT_ID property to the clipboard. You need this value when you update the Amazon Cognito identity pool in the next section.

Updating the Identity Pool

In this section, you update the AWSChatIdentityPool object created in Chapter 10 to handle Google-provided authentication tokens and allow the app to exchange these tokens for temporary federated identity objects that can be used to access AWS services.

	Log in to the IAM console using your dedicated IAM user-specific sign-in link, and navigate to the Amazon Cognito service home page (Figure 11.11).

[image: Window shows Amazon Cognito service home page having history, console home, Cognito, device farm, billing, mobile analytics, and IAM whereas right-side panel displays compute, migration, security, identity, mobile services, analytics, developer tools, storage, et cetera.]

FIGURE 11.11 Accessing the Amazon Cognito service home page

	Click the Manage Federated Identities button on the Amazon Cognito splash screen to access a list of existing identity pools (Figure 11.12).

[image: Image described by caption and surrounding text.]

FIGURE 11.12 Amazon Cognito splash screen

	Locate the AWSChatIdentityPool object in the list of identity pools, and click it to access the identity pool’s dashboard (Figure 11.13).

[image: Window shows list of identity tools having option for creating new identity pool with AwsChatidentityPool leading to mobile analytics shared pool do not modify having identities 1 with change 0.0%.]

FIGURE 11.13 List of identity pools

	Locate the Edit identity pool button toward the top-right corner of the dashboard page and click it (Figure 11.14).

[image: Window shows options for editing identity tools like dashboard, sample code, and identity browser with identities this month 1, total identities 1, syncs this month 4, total syncs 4, current storage 0.1KB, et cetera.]

FIGURE 11.14 Editing the identity pool

	Locate the Authentication providers section in the Edit Identity Pool page, and expand it to reveal a list of authentication providers. Switch to the Google+ tab and click the Unlock button next to the Google Client ID field (Figure 11.15).

[image: Window shows locating Google client ID field having identity pool, unauthenticated role, authenticated role, authentication providers, unauthenticated identities, role selection for Cognito, Amazon, Facebook, Google+, Twitter/Digits, OpenID, SAML, and custom.]

FIGURE 11.15 Locating the Google Client ID field

	Paste the value of the CLIENT_ID property that you copied to the clipboard at the end of the previous section into the Google Client ID field. Scroll down to the bottom of the page and click the Save Changes button (Figure 11.16).

[image: Image described by caption and surrounding text.]

FIGURE 11.16 Specifying the Google Client ID

This concludes the changes that you need to make to the Amazon Cognito identity pool to allow Google identity federation.

Updating the AWSChat Application

	Switch back to the AWSChat Xcode project and click the Main.storyboard file in the Project Navigator to open the storyboard. Navigate to the Login scene in the storyboard and drag a View object from the Object Library onto the Login scene.

	Using the Attributes Inspector, change the background color of the view to a shade of gray to make it easily visible on the storyboard scene. Position the view as shown in Figure 11.17 and set up appropriate constraints.

[image: Image described by caption and surrounding text.]

FIGURE 11.17 Adding a new view to the login scene

	Using the Identity Inspector, change the custom class associated with the view to GIDSignInButton (Figure 11.18).

[image: Image described by caption and surrounding text.]

FIGURE 11.18 Changing the custom class associated with the view

	Open the GoogleService-Info.plist file and copy the value of the REVERSED_CLIENT_ID property to the clipboard. Click the root AWSChat node in the Project Explorer. Select the AWSChat build target and switch to the Info tab. Scroll down to the URL Types section and expand it (Figure 11.19).

[image: Window shows URL types section expansion having Google SDK on left-side panel which opens AWSchat leading to info which displays URL types with untitled identifier and icon along with its role.]

FIGURE 11.19 Expanding the URL Types section

	Click the + button to add a new URL type entry. Paste the REVERSED_CLIENT_ID value that you copied earlier into the URL Schemes field. Type your project’s bundle identifier into the Identifier field (Figure 11.20).

[image: Image described by caption and surrounding text.]

FIGURE 11.20 Specifying a URL type

	Open the AppDelegate.swift file in the Project Navigator and click it once to open it in the source code editor. Add the following import statement to the file to import the GoogleSignIn framework:

import GoogleSignIn

	Add the following statement to the application(_, didFinishLaunchingwithOptions) method:

GIDSignIn.sharedInstance().clientID = "insert your Google client id"

Replace the clientID value in this statement with the value of the CLIENT_ID property from the GoogleService-Info.plist file. The code in the application(_, didFinishLaunchingwithOptions) method should resemble the following:

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // Override point for customization after application launch.
 FBSDKApplicationDelegate.sharedInstance().application(application,
 didFinishLaunchingWithOptions: launchOptions)
 GIDSignIn.sharedInstance().clientID = "insert your Google client id"
 return true
}

	Open the LoginViewController.swift file in the Project Navigator and click it once to open it in the source code editor. Add the following import statement to the top of the file after the import UIKit statement:

import GoogleSignIn

	Add the following lines to the end of the viewDidLoad() method to set up the LoginViewController class to act as the delegate and uiDelegate object for the GIDSignIn singleton instance:

// Google sign-in setup
GIDSignIn.sharedInstance().delegate = self
GIDSignIn.sharedInstance().uiDelegate = self

	The delegate object must implement the GIDSignInDelegate protocol. The uiDelegate object must be a view controller and must implement the GIDSignInUIDelegate protocol. Add the following line to the end of the viewDidLoad() method, after the line you just added:

GIDSignIn.sharedInstance().shouldFetchBasicProfile = true

This line ensures that the Google SDK fetches basic user information from Google’s servers when a user has signed in successfully.

	Add the following line to the end of the viewDidLoad() method, after the line you just added:

GIDSignIn.sharedInstance().signOut()

This line ensures the user is signed out of Google before presenting the login view controller. The viewDidLoad() method of the login view controller should resemble the following:

override func viewDidLoad() {
 super.viewDidLoad()
 self.loginButton.isEnabled = false
 // log out the user if previously logged in.
 let facebookLoginManager = FBSDKLoginManager()
 facebookLoginManager.logOut()
 // set up the information you want to read from the user's Facebook
 // account.
 facebookButton.readPermissions = ["public_profile", "email"];
 // Google sign-in setup.
 GIDSignIn.sharedInstance().delegate = self
 GIDSignIn.sharedInstance().uiDelegate = self
 GIDSignIn.sharedInstance().shouldFetchBasicProfile = true
 GIDSignIn.sharedInstance().signOut()
}

	Modify the implementation of the application(_ , open, sourceApplication, annotation) method to match the following:

func application(_ application: UIApplication,
 open url: URL,
 sourceApplication: String?,
 annotation: Any) -> Bool {

 if url.scheme?.compare("insert facebook url scheme") == .orderedSame {
 return FBSDKApplicationDelegate.sharedInstance().application(
 application,
 open: url as URL!,
 sourceApplication: sourceApplication,
 annotation: annotation)

 } else {
 return GIDSignIn.sharedInstance().handle(url,
 sourceApplication: sourceApplication,
 annotation: annotation)
 }

}

This code is called when the AWSChat app is launched from Safari. The code checks the URL scheme and calls an appropriate method on the Facebook SDK or the Google SDK.

To differentiate between calls from the Facebook and Google SDKs, you need to provide the value of your Facebook URL scheme in the if-else conditional statement.

The Facebook URL scheme can be generated by prefixing the characters “fb” to the Facebook application id.

	Implement the GIDSignInDelegate and GIDSignInUIDelegate protocols in a class extension on the login view controller by adding the following code to the end of the LoginViewController.swift file:

extension LoginViewController : GIDSignInDelegate, GIDSignInUIDelegate {
 func sign(_ signIn: GIDSignIn!,
 didSignInFor user: GIDGoogleUser!,
 withError error: Error?) {

 if let error = error {
 displayLoginError(error: error as NSError)
 return
 }

 let idToken = user.authentication.idToken
 let name = user.profile.name
 let email = user.profile.email

 let indentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 indentityPoolController.getFederatedIdentityForGoogle(
 idToken: idToken!,
 username: name!,
 emailAddress: email,
 completion: { (error: Error?) in
 if let error = error {
 self.displayLoginError(error:error as NSError)
 return
 }

 self.displaySuccessMessage()
 return
 })

 }

}

The GIDSignInUIDelegate protocol defines a number of methods, all of which are optional and will not be implemented. The GIDSignInDelegate protocol defines the signIn(_ , didSignInFor, withError) delegate method.

	This method is called by the Google SDK after the user has provided Google credentials in user interface elements provided by Google. The implementation of the signIn(_ , didSignInFor, withError) delegate method first checks whether an error occurred during the sign-in process. If an error has occurred, an error message is displayed to the user:

if let error = error {
 displayLoginError(error: error as NSError)
 return
}

If Google was able to successfully sign in the user with the credentials provided, your app can obtain an authentication token and the user’s name and e-mail address from the user object that is the second parameter of the delegate method:

let idToken = user.authentication.idToken
let name = user.profile.name
let email = user.profile.email

Now that you have the Google ID token, username, and e-mail address, it is time to use Amazon Cognito to exchange the Google ID token for a temporary federated identity from the Amazon Cognito identity pool. Save the user’s name and e-mail address as attributes of the Amazon Cognito identity.

These tasks are encapsulated within a method called getFederatedIdentityForGoogle(idToken, username, emailAddress, completion) of the CognitoIdentityPoolController class.

Add the following implementation of the getFederatedIdentityForGoogle(idToken, username, emailAddress, completion) method to the CognitoIdentityPoolController.swift class:

func getFederatedIdentityForGoogle(idToken:String,
 username:String,
 emailAddress:String?,
 completion:@escaping (Error?)->Void) {

 let identityProviderManager = SocialIdentityManager.sharedInstance
 identityProviderManager.registerGoogleToken(idToken)

 let task = self.credentialsProvider!.getIdentityId()

 task.continueWith { (task) -> Any? in

 if task.error != nil {
 completion(task.error)
 return nil
 }

 let syncClient = AWSCognito.default()
 let dataSet = syncClient.openOrCreateDataset("googleUserData")

 dataSet.setString(username, forKey: "name")

 if let emailAddress = emailAddress {
 dataSet.setString(emailAddress, forKey: "email")
 }

 dataSet.synchronize().continueWith(block: { (task) -> Any? in

 if task.error != nil {
 completion(task.error)
 return nil
 }

 completion(nil)
 return nil
 })

 return nil
 }

 }

This method takes four input parameters:

	idToken: The login token received from the Google SDK

	username: The name of the user who has logged in to Facebook

	emailAddress: The e-mail address of the user who has logged into Facebook

	completion: A completion block that is called by this method with the results of the identity federation process

A brief analysis of the code in the getFederatedIdentityForGoogle(idToken, username, emailAddress, completion) method is presented next.

First, the login token received from Google is given to a SocialIdentityManager instance. This instance is responsible for storing login tokens and providing them to the AWS SDK when required.

let identityProviderManager = SocialIdentityManager.sharedInstance
identityProviderManager.registerGoogleToken(idToken)

The actual process of obtaining a federated identity is kicked off by making a call to the getIdentityId() method of the Amazon Cognito credentials provider object:

let task = self.credentialsProvider!.getIdentityId()

Like most methods in the AWS SDK, getIdentityId() is an asynchronous method, and the results of the operation can be examined by using the continueWith(block) method on the AWSTask object returned by getIdentityId().

task.continueWith { (task: AWSTask<NSString>) -> Any? in
 if task.error != nil {
 completion(task.error)
 return nil
 }
 let syncClient = AWSCognito.default()
 let dataSet = syncClient.openOrCreateDataset("googleUserData")
 dataSet.setString(username, forKey: "name")
 if let emailAddress = emailAddress {
 dataSet.setString(emailAddress, forKey: "email")
 }
 dataSet.synchronize().continueWith(block: { (task) -> Any? in
 if task.error != nil {
 completion(task.error)
 return nil
 }
 completion(nil)
 return nil
 })
 return nil
}

If there are no errors, the code in the completion block saves the name and e-mail address provided by Google into the Amazon Cognito identity pool.

The only thing missing from the project now is the registergoogleToken() method in the SocialIdentityManager class. Add the following method implementation to the SocialIdentityManager.swift file:

func registerGoogleToken(_ token:String) {
 self.loginDictionary[AWSIdentityProviderGoogle] = token
}

This concludes the changes you need to make to the AWSChat project. Perform the following steps to try out the Google Sign-In functionality on the iOS Simulator.

	Save the project and run it in the iOS Simulator. Click the Google Sign in button on the login screen of the app (Figure 11.21).

[image: Image described by caption and surrounding text.]

FIGURE 11.21 Application login screen with the Google Sign in button

	The Google SDK opens Safari in the iOS Simulator and presents a secure user interface where your users need to provide their Google username and password (Figure 11.22).

[image: Image described by caption and surrounding text.]

FIGURE 11.22 The Google SDK presents the user interface to allow users to provide their Google credentials.

	After a user has provided their Google credentials and clicked on the Login button, they will be taken back to the AWSChat app and informed that the login process is complete (Figure 11.23).

[image: Image described by caption and surrounding text.]

FIGURE 11.23 Google Sign-In result

	To see if the Google-provided name and e-mail address for the user is visible in Amazon Cognito, open Safari and access the identity pool from the Amazon Cognito dashboard. Click the Identity browser menu item from the left menu to see a list of federated identities in the pool (Figure 11.24).

[image: Window shows list of identity objects in identity pool having identity browser with search by identity ID with search option along with identity ID, date created (UTC), and linked logins.]

FIGURE 11.24 List of Identity objects in the identity pool

	Click the first identity in the list to view more details. In the Identity details page, look for the Datasets section and click the dataset called googleUserData (Figure 11.25).

[image: Window shows identity browser details like delete identity option, date created (UTC), linked logins, data sets with name, date created, last modified, storage, and records.]

FIGURE 11.25 Accessing the Amazon Cognito sync datasets under the Identity object

You see the Google-provided name and e-mail address of the user in the dataset (Figure 11.26).

[image: Image described by caption and surrounding text.]

FIGURE 11.26 Contents of the googleUserData dataset

[image:] You can download the project files created in this chapter from this book’s web page on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter11.AWSForMobileDevelopers.2017.git.

Summary

	To allow users to login with their Google credentials, you will need to create an App on Google and add the Google SDK to your iOS project.

	You must configure the identity pool to generate federated identities for Google identities.

	At the start of the Google sign-in process, the Google SDK will launch Safari and present a user interface that can be used by users to provide their Google credentials.

	You will need to define a custom URL scheme in your Xcode project to allow your app to be launched by iOS at the end of the Google sign-in process.

Chapter 12
Accessing Amazon DynamoDB

WHAT’S IN THIS CHAPTER

	[image: images]Create tables in Amazon DynamoDB.

	[image: images]Create a Node.js Lambda function to copy user data from an identity pool to an Amazon DynamoDB table.

	[image: images]Test an AWS Lambda function using a test event.

	[image: images]Link a user pool to an identity pool.

	[image: images]Update the AWSChat app to add other users as friends.

	[image: images]Display a list of friends in the AWSChat app.

[image:] In this chapter you build on the AWSChat application to allow logged-in users to create a friends list that contains other users of the app. This functionality is built using Amazon DynamoDB tables and AWS Lambda functions.

[image:] To follow along with this lesson, download the starter project either from this book’s website at Sybex.com or from GitHub at https://github.com/asmtechnology/Chapter12.AWSForMobileDevelopers.2017.git.

You will also need to ensure that the following options have been set up correctly in the starter project:

	Lines 14 – 16 of the CognitoUserPoolController.swift file contain the user pool region and id of your Amazon Coginto user pool.

	Lines 18 – 21 of the CognitoUserPoolController.swift file contain the app client id and app client secret to allow your app access to unauthenticated APIs of the user pool.

	Lines 16 – 17 of the CognitoIdentityPoolController.swift file contain the region and id of your Amazon Cognito identity pool.

If you intend to use Google sign-in, then in addition to the preceding items, you need to ensure that:

	You have set up an application on the Google developer console.

	You have included the GoogleService-Info.plist file in your Xcode project.

	Line 24 of AppDelegate.swift contains the Google client id.

If you intend to use Facebook login, then in addition to the preceding items, you need to ensure that:

	The FacebookAppID property in the Info.plist file is set up correctly.

	You update the URL scheme with the Facebook application id.

	Line 39 of AppDelegate.swift references the correct URL scheme.

Creating Amazon DynamoDB Tables

In this section, you use the AWS Management Console to create four Amazon DynamoDB tables:

	User

	Friend

	Chat

	Message

Figure 12.1 depicts the data to be stored in these tables and the relationships between them.

[image: Diagram shows dynamoDB table structure of Amazon having friend (id, user id, friend id), user (id, username, email), chat (id, from user id, to user id), and message (chat id, message id, message text, image, image preview, sender id, date sent).]

FIGURE 12.1 Amazon DynamoDB table structure

Ideally, you should use an AWS Identity and Access Management (IAM) user with administrative privileges to carry out these tasks. If you have not yet created an IAM user under your root account, refer to the process described in Chapter 3.

Log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the Amazon DynamoDB service home page (Figure 12.2).

[image: Window shows accessing Amazon dynamo service home page having history of compute, developer tool, analytics, application services, messaging, artificial intelligence, management tools, storage, database, security, app streaming, et cetera.]

FIGURE 12.2 Accessing the Amazon DynamoDB service home page

Amazon DynamoDB tables are scoped at the region level. Make sure you have set up the Aws Management Console to use the same region as the one in which you created your Amazon Cognito user pool and identity pool.

Creating the User Table

The User table contains a list of users. Each user has the following fields:

	id

	username

	email_address

The username and e-mail address of registered users are copied from Amazon Cognito into an Amazon DynamoDB table to facilitate development of chat-specific features. For instance, each user in the User table has a unique ID that you can use to retrieve a list of friends from the Friend table. You can use the combination of the logged-in user’s ID and his friend’s ID to retrieve a conversation from the Chat table, and so on.

Although Amazon Cognito contains the usernames and e-mail addresses of registered users, it does not provide a way by which you can mark users as friends or store conversations between friends. For these features, you need to use a database system. Amazon Cognito acts as the access control mechanism to your AWS resources; you are responsible for building a solution using AWS resources that can serve the needs of your business.

If you have never used Amazon DynamoDB, you are presented with the Amazon DynamoDB splash screen (Figure 12.3).

[image: Image described by caption and surrounding text.]

FIGURE 12.3 Amazon DynamoDB splash screen

If you have used Amazon DynamoDB in the past, you arrive at the Amazon DynamoDB dashboard (Figure 12.4).

[image: Image described by caption and surrounding text.]

FIGURE 12.4 Amazon DynamoDB dashboard

	Regardless of which screen you arrive at, click the Create table button to get started with creating an Amazon DynamoDB table. On the Create Amazon DynamoDB table screen (Figure 12.5), provide the following information:

[image: Image described by caption and surrounding text.]

FIGURE 12.5 Creating the User table

	Table name: User

	Primary key: id

	The default create table screen is configured not to create secondary indexes and to reserve a throughput capacity of 5 read units and 5 write units. Not having a secondary index at this point is not a problem because we don’t have data in the table. However, because you are billed for provisioned throughput capacity you reserve, you should start with the smallest number of read and write units and increase these if needed in the future.

	Uncheck the Use default settings check box, and scroll down to the bottom of the page to locate the Provisioned capacity section. Change the number of read and write units to 1 each (Figure 12.6).

[image: Window shows changing provisioned IO capacity for user table with table settings having default settings and secondary indexes like name, type, partition key, sort key, and projected attributes, et cetera.]

FIGURE 12.6 Changing the provisioned IO capacity for the User table

	Click the Create button to create the table. The table takes a few minutes to create. After it is created, your screen should resemble Figure 12.7. Make a note of the value of the Amazon Resource Name (ARN) field. You need this value later in this chapter when you are updating an IAM Policy to allow your app access to this Amazon DynamoDB table.

[image: Image described by caption and surrounding text.]

FIGURE 12.7 Overview of the User table

Schemaless Tables

You may be wondering why there is only one field called id in the User table and no option to define the user_name and email_address fields while creating the table.

Amazon DynamoDB tables are schemaless, so a row can have any number of fields, and the fields can vary from row to row. Fields are created on an ad-hoc basis as new rows are added to the table.

The AWSChat app, while inserting a new row, ensures that each row has a field called user_name and email_address and that these fields have meaningful values. Amazon DynamoDB does not place implicit restrictions on the structure of tables except that each row has a primary key field.

Creating the Friend Table

The Friend table is used to obtain a list of friends for a given user. Each row of the Friend table represents a single user-friend mapping and contains the following fields:

	id

	user_id

	friend_id

	Click the Create table button on the Amazon DynamoDB dashboard and provide the following information:

	Table name: Friend

	Primary key: id

	Use default settings: Unchecked

	Provisioned write capacity units: 1

	Provisioned read capacity units: 1

	Click the Create button to create the table. The table takes a few minutes to create. Note the ARN of the table after it has been created. You need this value later in this chapter when you are updating an IAM Policy to allow your app access to this Amazon DynamoDB table.

Creating the Chat Table

Each row in the Chat table represents a conversation between two users. Each row in the table has the following fields:

	id

	from_user_id

	to_user_id

In a production scenario, this table can be used to contain information to customize the appearance of specific conversations, such as a custom background image for each conversation.

	Click the Create Table button on the Amazon DynamoDB dashboard and provide the following information:

	Table name: Chat

	Primary key: id

	Use default settings: Unchecked

	Provisioned write capacity units: 1

	Provisioned read capacity units: 1

	Click the Create button to create the table. The table takes a few minutes to create. Note the ARN of the table after it has been created. You need this value later when you are updating an IAM Policy to allow your app access to this Amazon DynamoDB table.

Creating the Message Table

Each row in the Message table represents a message in a conversation between two users. Each row in the table has the following fields:

	chat_id

	message_id

	message_text

	message_image

	message_image_preview

	sender_id

	date_sent

A message can contain either text or an image, but not both. If a message contains text, then the content of the message is available in the message_text field. If a message contains an image, then the message_image and message_image_preview fields contain the URL of an image file and a thumbnail file.

The image and thumbnail files are stored in an Amazon S3 bucket that will be created and configured in Chapter 13.

	Click the Create table button on the Amazon DynamoDB dashboard and provide the following information:

	Table name: Message

	Primary partition key: chat_id

	Primary partition key data type: String

	Sort key: date_sent

	Sort key data type: Number

	Use default settings: Unchecked

	Provisioned write capacity units: 1

	Provisioned read capacity units: 1

This table is slightly different from the others; it has both a partition key and also a sort key. Recall from Chapter 6 that the partition key (also known as the hash key) indicates the physical volume on which the item will be stored. The sort key (also known as the range key) can uniquely retrieve an item (or a range of items) stored on a physical volume. When a sort key is present, multiple items in the table can have the same value for the partition key; however, the combination of partition key and sort key for each item must be unique.

The sort key is called date_sent, and its data type is Number. In Chapter 13, when you build the functionality to send messages to users, you write a numeric representation of the date in this field. This is so that you can use a query to retrieve all messages in a particular chat within an interval of time.

	Click the Create button to create the table. The table takes a few minutes to create. Note the ARN of the table after it has been created. You need this value later in this chapter when you are updating an IAM Policy to allow your app access to this Amazon DynamoDB table.

	After all tables have been created, click the Tables links in the Amazon DynamoDB dashboard, and you should see all four tables listed there (Figure 12.8).

[image: Window shows four tables of amazon dynamoDB with overview options like recent alerts, stream details (stream enabled, view type, latest stream ARN and manage stream option), and table details (table name, primary partition key, primary sort key, time to live attribute, et cetera.)]

FIGURE 12.8 Amazon DynamoDB dashboard showing all four tables

Updating the IAM Policy Used by the Identity Pool

In this section, you modify the IAM policy used by authenticated identities in the AWSChatIdentityPool and update this policy to allow full access to the Amazon DynamoDB tables you just created. By doing this, you are ensuring that your application code can access your Amazon DynamoDB tables.

	To get started, log in to the IAM Management Console and click the Roles link to view a list of roles in your account. Click on the Amazon Cognito_AWSChatIdentityPoolAuth_Role from the list of available IAM roles. (Figure 12.9).

[image: Window shows services and resource groups with option for create new role and role actions along with properties like role name, description and its creation time.]

FIGURE 12.9 Click the role that you want to edit.

	You are taken to a screen where you can edit the role. Click the Create Role Policy button under the Permissions tab button (Figure 12.10).

[image: Image described by caption and surrounding text.]

FIGURE 12.10 Location of the Create Role Policy button

	You are taken to the Manage Role Permissions screen. Select the Policy Generator option to create a policy (Figure 12.11).

[image: Image described by caption and surrounding text.]

FIGURE 12.11 Using the Policy Generator to Create Role Permissions

You are taken to a screen where you can allow or deny access to various AWS services in the new policy. You can use a single policy to allow access to all four Amazon DynamoDB tables that you have created in the previous section.

	To add an entry to the policy to allow access to the User table, ensure the following options are set up on the screen and click the Add Statement button (Figure 12.12).

	Effect: Allow

	AWS Service: Amazon DynamoDB

	Actions: All Actions

	Amazon Resource Name (ARN): <ARN for the User table>

[image: Window shows edit permissions along with description and options like effect, AWS service, actions, amazon resource name, and add statement option.]

FIGURE 12.12 Click on the Add Statement button to add a permission to the role policy.

	Repeat the process for the other three tables, substituting the ARN for each table when needed. At the end of the process, your new policy should contain four permissions that allow access to your Amazon DynamoDB tables.

	Click the Next Step button (Figure 12.13).

[image: Window shows edit permissions where four permissions have been added like effect as allow, action as dynamodb, and resource names along with options for removing.]

FIGURE 12.13 Four permissions have been added to the role policy.

	You are presented with a summary screen that lets you review the contents of the new policy. Change the name of the new policy to AWSChatIdentityPool_DynamoDBAccess and click the Apply Policy button (Figure 12.14).

[image: Window shows resource groups with review policy having policy name, policy document with computer coding having validate policy and apply policy buttons at bottom.]

FIGURE 12.14 Rename the policy before clicking the Apply Policy button.

You are taken back to the Edit Role screen, and you see your new policy listed under the Inline Policies section of the Permissions tab (Figure 12.15).

[image: Window shows IAM role added with new policy under roles section having permissions, trust relationships, access advisor, and revoke sessions having managed policies, attach policy, create role policy, et cetera.]

FIGURE 12.15 A new policy has been added to the IAM role.

Creating an IAM Service Role

In this section, you create an IAM service role to be assumed by an AWS Lambda function to write data into Amazon DynamoDB. After you have created this role, you proceed to create the actual Lambda function.

	If you have left the IAM console or closed your web browser, log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the IAM service home page.

	Click the Roles link to access a list of existing roles in your account, and click the Create New Role button at the top of the list (Figure 12.16).

[image: Window shows options for creating IAM role under roles section where create new role option is seen which has role name and creation time for roles added.]

FIGURE 12.16 Creating an IAM role

	You are asked to select a role type. You are creating a role to be assumed by a service (AWS Lambda). Select the AWS Lambda item under AWS Service Roles (Figure 12.17).

[image: Window shows AWS Lambda service role having 5 steps like set role name, select role type, establish trust, attach policy, and review having role types like amazon EC2, AWS directory service, AWS Lambda, amazon redshift, and amazon API gateway.]

FIGURE 12.17 Selecting the AWS Lambda Service Role

	You are asked to attach one or more policy documents to the new role. The policies attached to a role determine what AWS services can be accessed by an entity that assumes the role, and also what actions can be performed by the entity on these services. Because you want AWS Lambda to read from and write to Amazon DynamoDB, select the AmazonDynamoDBFullAccess policy and click the Next Step button (Figure 12.18).

[image: Window shows attach policy having policy name, attached entitles, creation time, and edited time along with policy type text box where list of policies is displayed.]

FIGURE 12.18 Select the AmazonDynamoDBFullAccess Policy.

	You are asked to provide a name for the new role. Type AWSChatLambdaExecutionRole in the Role Name field and click the Create role button (Figure 12.19).

[image: Image described by caption and surrounding text.]

FIGURE 12.19 Provide a name for the new role.

	Your new role is listed along with any other roles you may have in your account (Figure 12.20).

[image: Window shows addition of IAM role with existing IAM roles with create new role having options for role name, description, and creation time.]

FIGURE 12.20 The new IAM role is listed along with other existing IAM roles.

Populating the User Table with an AWS Lambda Function

In this section, you create an AWS Lambda function written in Node.JS that is executed every time a new user is created in an Amazon Cognito user or identity pool. This function adds a new row to the User table and copies the username and e-mail address from Amazon Cognito.

	Navigate to the AWS Lambda service home page (Figure 12.21). Ensure that the AWS Lambda Management Console is set to the same region in which you have created your Amazon Cognito and Amazon DynamoDB resources.

[image: Window shows accessing AWS Lambda service home page having Lambda under compute section with other sections like developer tools, analytics, applications services, messaging, artificial intelligence, storage, management tools, internet of things, et cetera.]

FIGURE 12.21 Accessing the AWS Lambda service home page

	If you are using AWS Lambda for the first time, you are presented with the AWS Lambda splash screen (Figure 12.22). Click the Get Started Now button to begin creating a Lambda function.

[image: Image described by caption and surrounding text.]

FIGURE 12.22 AWS Lambda splash screen

	If you have used AWS Lambda in the past, you arrive at the AWS Lambda dashboard (Figure 12.23). You can click the Create a Lambda function button to start the process of creating a new Lambda function.

[image: Image described by caption and surrounding text.]

FIGURE 12.23 AWS Lambda dashboard

	After clicking on the Create an AWS Lambda function button, you are asked to select a blueprint for the function. Use the runtime drop-down to select the Node.js 4.3 runtime (Figure 12.24), and click the cognito-sync trigger function blueprint.

[image: Window shows selecting Cognito-sync-trigger blueprint having node.js 4.3 version with cognito along with blank function and cognito-sync-trigger, et cetera.]

FIGURE 12.24 Selecting the cognito-sync-trigger blueprint

	A sync trigger is an event generated by Cognito every time one or more values in a user dataset have been added, removed, or changed but before the change has been committed.

	In Chapters 10 and 11, you added code to the AWSChat app that creates datasets called facebookDataSet and googleDataSet for users who sign up using their Facebook or Google credentials. These datasets capture the name and e-mail address of the user. Datasets store information as key-value pairs.

	The payload of a sync trigger event generated when a user signs up using Google credentials is a JSON document that resembles the following:

{
 "version": 2,
 "eventType": "SyncTrigger",
 "region": "us-east-1",
 "identityPoolId": "identityPoolId",
 "identityId": "identityId",
 "datasetName": "facebookDataSet",
 "datasetRecords": {
 "SampleKey1": {
 "oldValue": "oldValue1",
 "newValue": "newValue1",
 "op": "replace"
 },
 "SampleKey2": {
 "oldValue": "oldValue2",
 "newValue": "newValue2",
 "op": "replace"
 },..
 }
}

	The dataSetRecords dictionary in the event payload contains one object for each key that has changed in the dataset. The object contains information on the change made to the key, and its JSON representation is presented here:

 "SampleKey1": {
 "oldValue": "oldValue1",
 "newValue": "newValue1",
 "op": "replace"
 },

	The object contains three pieces of information about the key:

	oldValue: The previous value of the key

	newValue: The new value of the key

	op: A string that describes the change itself. Allowed values are replace and remove.

	An AWS Lambda function based on the cognito-sync-trigger blueprint is executed every time Amazon Cognito generates a sync trigger event. The Lambda function can edit anything in the dataSetRecords dictionary. However, in our case we want the Lambda function to read values from the dataSetRecords dictionary and update an Amazon DynamoDB table.

	After selecting the blueprint, you are asked to customize the AWS Lambda function. The first thing you are asked to set up is the name of the identity pool whose sync trigger events you are interested in. Select AWSChatIdentityPool from the list of available identity pools, ensure the Enable trigger check box is selected, and click Next (Figure 12.25).

[image: Image described by caption and surrounding text.]

FIGURE 12.25 Selecting the source for the Amazon Cognito sync trigger

What About Amazon Cognito User Pools?

Astute readers may have noticed that the cognito-sync-trigger blueprint only allows you to execute your AWS Lambda function code in response to users being added to an identity pool. There is no option to trigger a Lambda function when a user is added to a user pool.

The reason for this is that users in a user pool exist in an isolated space and cannot access AWS resources in your account. To be able to access resources from your AWS account, a user in a user pool needs a set of credentials. Credentials are encapsulated by identity objects, and identity objects exist in identity pools, not user pools.

What this means is that, at this moment, only users who have signed up with their Facebook or Google credentials can access your AWS resources. This is because we have written code in the AWSChat app that exchanges Facebook and Google authentication tokens for federated identity objects within Amazon Cognito.

To allow users who have signed up using the Amazon Cognito user pool access to our AWS resources, we need to request an identity object from Amazon Cognito. We do this later in this chapter.

	On the next screen you are asked to provide some additional information on the new AWS Lambda function including a name, short description, and the source code of the function (Figure 12.26). Provide the following values on this screen:

	Name: AddCognitoUserToDynamoDB

	Description: Copy Amazon Cognito user details to Amazon DynamoDB table

	Runtime: Node.js 4.3

	Code entry type: Edit code inline

[image: Image described by caption and surrounding text.]

FIGURE 12.26 Setting up the AWS Lambda function

	Delete the existing sample Node.js code included in the blueprint and replace it with the contents of Listing 12.1.

Listing 12.1: AddCognitoUserToDynamoDB Function

var doc = require('dynamodb-doc');
 exports.handler = function(event, context, callback) {

 if (event.eventType !== 'SyncTrigger') {
 callback(JSON.stringify(event));
 }

 if (!(('name' in event.datasetRecords) &&
 ('email' in event.datasetRecords))) {
 callback(JSON.stringify(event));
 }

 var name = event.datasetRecords.name.newValue;
 var email = event.datasetRecords.email.newValue;
 var shouldDeleteRecord =
 (event.datasetRecords.name.op === 'remove') ||
 (event.datasetRecords.email.op === 'remove');

 if (shouldDeleteRecord === true) {
 // do not delete from dynamo DB
 callback(null, event);
 }

 var db = new doc.DynamoDB();

 var params = {'TableName' : 'User',
 'Item' : {'id' : event.identityId,
 'username' : name,
 'email_address' : email }};

 db.putItem(params, function(err, data) {

 if (err) {
 console.log('User insert failure', err);
 callback(err);
 } else {
 console.log('User insert success', data);
 callback(null, event);
 }
 });

};

A Brief Analysis of the AWS Lambda Function Code

If you are not a Node.js developer and are wondering what the code in the AWS Lambda function does, read on.

The AWS Lambda function starts by importing the Amazon DynamoDB Document client module, which is needed to write to Amazon DynamoDB. Every Node.js Lambda function has a handler method defined as follows:

exports.handler = function(event, context, callback) {
/// function code goes here.
}

When an Amazon Cognito sync-trigger event occurs, this handler function is executed by the AWS Lambda runtime and receives three values:

	event: The event that triggered the AWS Lambda function

	context: An object that provides information on the AWS Lambda runtime

	callback: A function that can be used by the AWS Lambda function to indicate success or failure

In the handler method, you first check the eventType field of the event object to discard any events that you are not expecting to process:

if (event.eventType !== 'SyncTrigger') {
callback(JSON.stringify(event));
}

If the eventType field does not match the string SyncTrigger, you use the callback function to indicate an error and exit.

Next, the code in the handler method checks to ensure that the event data contains the name and e-mail key of the dataset that triggered the event:

if (!(('name' in event.datasetRecords) && ('email' in event.datasetRecords))) {
callback(JSON.stringify(event));
}

The handler method then extracts the new values of the name and e-mail keys of the dataset:

var name = event.datasetRecords.name.newValue;
var email = event.datasetRecords.email.newValue;

The current implementation of the AWS Lambda function does not delete users from the Amazon DynamoDB database. If the sync-trigger event was generated because a dataset was deleted, the Lambda function exits without reporting an error:

var shouldDeleteRecord = (event.datasetRecords.name.op === 'remove') ||
 (event.datasetRecords.email.op === 'remove');
if (shouldDeleteRecord == true) {
 // do not delete from dynamo DB
 callback(null, event);
}

Finally, the putItem method of the Amazon DynamoDB document object is used to insert (or append) a row in the User table:

var db = new doc.DynamoDB();
var params = {'TableName' : 'User',
 'Item' : {'id' : event.identityId,
 'username' : name,
 'email_address' : email }};
db.putItem(params, function(err, data) {
 if (err) {
 console.log('User insert failure', err);
 callback(err);
 } else {
 console.log('User insert success', data);
 callback(null, event);
 }
});

	Scroll down to the AWS Lambda function handler and role section of the page and select Choose an existing role in the Role combo box. Select the AWSChatLambdaExecutionRole from the list of roles in the Existing role combo box (Figure 12.27).

[image: Image described by caption and surrounding text.]

FIGURE 12.27 Specifying the AWS Lambda function execution role

	Expand the Advanced settings options on the page, and increase the AWS Lambda function Timeout value to 10 seconds (Figure 12.28).

[image: Window shows specifying execution timeout with Lambda function handler and role with options for handler, role, existing role, advanced settings, memory, and timeout.]

FIGURE 12.28 Specifying the execution timeout

	Scroll down to the bottom of the AWS Lambda function configuration page and click the Next button to move to the review screen.

	The review screen contains a summary of the AWS Lambda function that you are about to create (Figure 12.29). Scroll down to the bottom of the page and click on the Create function button.

[image: Image described by caption and surrounding text.]

FIGURE 12.29 AWS Lambda Function review screen

Testing the AWS Lambda Function

Now that you have given permission to the AWS Lambda function to write to Amazon DynamoDB, it is time to test the Lambda function using the AWS Lambda Management Console.

	Navigate to the AWS Lambda service home page and ensure that the AWS Lambda Management Console is set to the same region in which you have created your Lambda function. Click the AddCognitoUserToDynamoDB function from the list of available functions (Figure 12.30).

[image: Image described by caption and surrounding text.]

FIGURE 12.30 Setting up the AWS Lambda function

	This takes you to the AWS Lambda function dashboard where you can test (and edit) the Lambda function. Click the Test button (Figure 12.31).

[image: Image described by caption and surrounding text.]

FIGURE 12.31 AWS Lambda Function dashboard

A dialog box appears in the web browser, asking you to configure a test event (Figure 12.32).

[image: Image described by caption and surrounding text.]

FIGURE 12.32 Configuring a test event

	Replace the sample event data prepopulated in the dialog box with the following event:

{
 "datasetName": "googleUserData",
 "eventType": "SyncTrigger",
 "region": "us-east-1",
 "identityId": "us-east-1:1a8870db-2510-4c42-a1d5-6e895bb52040",
 "datasetRecords": {
 "name": {
 "newValue": "amishra2",
 "oldValue": "amishra",
 "op": "replace"
 },
 "email": {
 "newValue": "amishra2@asmtechnology.com",
 "oldValue": "amishra@asmtechnology.com",
 "op": "replace"
 }
 },
 "identityPoolId": "us-east-1:3a7a90d7-b0e7-4730-b0aa-866c9a16ec85",
 "version": 2
}

	Click the Save and Test button in the dialog box. AWS Lambda executes your Lambda function with the test event you have configured and presents the results on your screen (Figure 12.33).

[image: Image described by caption and surrounding text.]

FIGURE 12.33 AWS Lambda Function test results

Your screen contains a message indicating that the test has passed. You also have access to the console log generated by the AWS Lambda function.

Updating the AWSChat App

In this section you update the AWSChat app to allow users to view a list of friends and add other users of the app to their list of friends.

	Add the AWSDynamoDB.framework file to the AWSChat Xcode project using one of the techniques described in Chapter 8.

	Locate the Info.plist file in the Project Navigator. Ctrl+click the file in the project navigator and select the Open as ➢ Source code menu item from the context menu. Paste the following XML snippet at the end of the file, just before the last </dict> XML tag:

<key>NSAppTransportSecurity</key>
 <dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 <key>NSExceptionDomains</key>
 <dict>
 <key>amazonaws.com</key>
 <dict>
 <key>NSThirdPartyExceptionMinimumTLSVersion</key>
 <string>TLSv1.0</string>
 test
 <false/>
 <key>NSIncludesSubdomains</key>
 <true/>
 </dict>
 </dict>
</dict>

Creating Model Classes

To access Amazon DynamoDB tables in your Xcode project, you need to create a set of model classes that map to the items you intend to store in Amazon DynamoDB tables.

Create a new folder group in the Project Navigator called Model. Under this group, create a new Swift file called User.swift. Update the contents of this file to match Listing 12.2.

Listing 12.2: User.swift

import Foundation
import AWSDynamoDB

class User : AWSDynamoDBObjectModel, AWSDynamoDBModeling {

 var id: String?
 var username: String?
 var email_address: String?

 override init() {
 super.init()
 }

 override init(dictionary dictionaryValue: [AnyHashable : Any]!,
 error: ()) throws {
 super.init()
 id = dictionaryValue["id"] as? String
 username = dictionaryValue["username"] as? String
 email_address = dictionaryValue["email_address"] as? String
 }

 required init!(coder: NSCoder!) {
 fatalError("init(coder:) has not been implemented")
 }

 class func dynamoDBTableName() -> String {
 return "User"
 }

 class func hashKeyAttribute() -> String {
 return "id"
 }
}

For a model class to be used with Amazon DynamoDB, it must inherit from AWSDynamoDBObjectModel and implement the AWSDynamoDBModelling protocol.

The model class must implement a set of initializers, including one that accepts a dictionary of key-value pairs and an error object. This initializer, shown in the following code, is used by Amazon DynamoDB to create instances of model objects that represent rows in a table.

override init(dictionary dictionaryValue: [AnyHashable : Any]!,
 error: ()) throws {
 super.init()
 id = dictionaryValue["id"] as? String
 username = dictionaryValue["username"] as? String
 email_address = dictionaryValue["email_address"] as? String
}

Another aspect worth mentioning is that the User class contains three values: id, username, and email_address. These values are case sensitive and must match attribute names in the corresponding Amazon DynamoDB table.

The AWSDynamoDBModelling protocol requires a conforming class to implement two methods: dynamoDBTableName() and hashKeyAttribute(). As shown in the following code, the User class returns the name of the Amazon DynamoDB table and the name of the primary key attribute.

class func dynamoDBTableName() -> String {
 return "User"
}

class func hashKeyAttribute() -> String {
 return "id"
}

We will now create three additional model classes to represent items in the three remaining Amazon DynamoDB tables.

	Create a new class called Friend.swift under the Model folder group, and update the contents of the new class to match Listing 12.3.

Listing 12.3: Friend.swift

import Foundation
import AWSDynamoDB

class Friend : AWSDynamoDBObjectModel, AWSDynamoDBModeling {

 var id: String?
 var user_id: String?
 var friend_id: String?

 override init() {
 super.init()
 }

 override init(dictionary dictionaryValue: [AnyHashable : Any]!,
 error: ()) throws {
 super.init()
 id = dictionaryValue["id"] as? String
 user_id = dictionaryValue["user_id"] as? String
 friend_id = dictionaryValue["friend_id"] as? String
 }

 required init!(coder: NSCoder!) {
 fatalError("init(coder:) has not been implemented")
 }

 class func dynamoDBTableName() -> String {
 return "Friend"
 }

 class func hashKeyAttribute() -> String {
 return "id"
 }
}

	Create a new class called Chat.swift under the Model folder group and update the contents of the new class to match Listing 12.4.

Listing 12.4: Chat.swift

import Foundation
import AWSDynamoDB

class Chat : AWSDynamoDBObjectModel, AWSDynamoDBModeling {

 var id: String?
 var from_user_id: String?
 var to_user_id: String?

 override init() {
 super.init()
 }

 override init(dictionary dictionaryValue: [AnyHashable : Any]!,
 error: ()) throws {
 super.init()
 id = dictionaryValue["id"] as? String
 from_user_id = dictionaryValue["from_user_id"] as? String
 to_user_id = dictionaryValue["to_user_id"] as? String
 }

 required init!(coder: NSCoder!) {
 fatalError("init(coder:) has not been implemented")
 }

 class func dynamoDBTableName() -> String {
 return "Chat"
 }

 class func hashKeyAttribute() -> String {
 return "id"
 }

}

	Create a new class called Message.swift under the Model folder group and update the contents of the new class to match Listing 12.5.

Listing 12.5: Message.swift

import Foundation
import AWSDynamoDB

class Message : AWSDynamoDBObjectModel, AWSDynamoDBModeling {

 var message_id: String?
 var chat_id:String?
 var message_text:String?
 var message_image:String?
 var mesage_image_preview:String?
 var sender_id:String?
 var date_sent:NSNumber?

 override init() {
 super.init()
 }

 override init(dictionary dictionaryValue: [AnyHashable : Any]!,
 error: ()) throws {
 super.init()
 message_id = dictionaryValue["message_id"] as? String
 chat_id = dictionaryValue["chat_id"] as? String
 message_text = dictionaryValue["message_text"] as? String
 message_image = dictionaryValue["message_image"] as? String
 mesage_image_preview = dictionaryValue["mesage_image_preview"] as? String
 sender_id = dictionaryValue["sender_id"] as? String
 date_sent = dictionaryValue["date_sent"] as? NSNumber
 }

 required init!(coder: NSCoder!) {
 fatalError("init(coder:) has not been implemented")
 }

 class func dynamoDBTableName() -> String {
 return "Message"
 }

 class func hashKeyAttribute() -> String {
 return "chat_id"
 }

 class func rangeKeyAttribute() -> String {
 return "date_sent"
 }
}

Creating the ChatManager Class

The AWSChat app delegates all chat management responsibilities to a class called the ChatManager. Create a new class called ChatManager.swift under the Controller folder group and update the contents of the new class to match Listing 12.6.

Listing 12.6: ChatManager.swift

import Foundation

class ChatManager {

 var friendList:[User]?
 var potentialFriendList:[User]?

 static let sharedInstance: ChatManager = ChatManager()

 private init() {
 friendList = [User]()
 potentialFriendList = [User]()
 }

 func clearFriendList() {
 friendList?.removeAll()
 }

 func addFriend(user:User) {
 friendList?.append(user)
 }

 func clearPotentialFriendList() {
 potentialFriendList?.removeAll()
 }

 func addPotentialFriend(user:User) {
 potentialFriendList?.append(user)
 }

 }

The ChatManager class implements the singleton design pattern and contains two arrays of User objects. The first one is called friendList and contains a list of users who are friends with the person who is using the app. The second one is called potentialFriendList and contains a list of users who could be friends with the person who is using the app.

Creating the DynamoDBController Class

The DynamoDBController class is responsible for interacting with Amazon DynamoDB services. Create a new class called DynamoDBController.swift under the Controller folder group and update the contents of the new class to match Listing 12.7.

Listing 12.7: DymanoDBController.swift

import Foundation
import AWSDynamoDB

class DynamoDBController {

 static let sharedInstance: DynamoDBController = DynamoDBController()

 private init() { }

 func refreshFriendList(userId: String,
 completion:@escaping (Error?)->Void) {

 retrieveFriendIds(userId: userId) {
 (error:Error?, friendUserIDArray:[String]?) in

 if let error = error as? NSError {
 completion(error)
 return
 }

 // clear friend list in ChatManager
 let chatManager = ChatManager.sharedInstance
 chatManager.clearFriendList()

 if friendUserIDArray == nil {
 // user has no friends
 completion(nil)
 return
 }

 // get all entries in the User table
 let scanExpression = AWSDynamoDBScanExpression()

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.scan(User.self,
 expression: scanExpression)

 task.continueWith { (task) -> Any? in

 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 guard let paginatedOutput = task.result else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 200,
 userInfo: ["__type":"Unknown Error",
 "message":"DynamoDB error."])
 completion(error)
 return nil
 }

 if paginatedOutput.items.count == 0 {
 // user has no friends
 completion(nil)
 return nil
 }

 for index in 0...(paginatedOutput.items.count - 1) {

 guard let user = paginatedOutput.items[index] as? User,
 let userId = user.id else {
 continue
 }

 if friendUserIDArray!.contains(userId) {
 chatManager.addFriend(user: user)
 }
 }

 completion(nil)
 return nil
 }

 }

 }

 private func retrieveFriendIds(userId: String,
 completion:@escaping (Error?, [String]?)->Void) {

 let scanExpression = AWSDynamoDBScanExpression()
 scanExpression.filterExpression = "user_id = :val"
 scanExpression.expressionAttributeValues = [":val":userId]

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.scan(Friend.self,
 expression: scanExpression)

 var friendUserIDArray = [String]()

 task.continueWith { (task) -> Any? in

 if let error = task.error as? NSError {
 completion(error, nil)
 return nil
 }

 guard let paginatedOutput = task.result else {
 // user has no friends
 completion(nil, nil)
 return nil
 }

 if paginatedOutput.items.count == 0 {
 // user has no friends
 completion(nil, nil)
 return nil
 }

 for index in 0...(paginatedOutput.items.count - 1) {

 guard let friend = paginatedOutput.items[index] as? Friend,
 let friend_user_id = friend.friend_id else {
 continue
 }

 friendUserIDArray.append(friend_user_id)
 }

 completion(nil, friendUserIDArray)
 return nil
 }

 }

 func retrieveUser(userId: String,
 completion:@escaping (Error?, User?)->Void) {

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()

 let task = dynamoDBObjectMapper.load(User.self,
 hashKey: userId, rangeKey:nil)

 task.continueWith { (task) -> Any? in
 if let error = task.error as? NSError {
 completion(error, nil)
 return nil
 }

 if let result = task.result as? User {
 completion(nil, result)
 } else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 200,
 userInfo: ["__type":"Unknown Error",
 "message":"DynamoDB error."])
 completion(error, nil)
 }

 return nil
 }

 }

 func refreshPotentialFriendList(currentUserId: String,
 completion:@escaping (Error?)->Void) {

 retrieveFriendIds(userId: currentUserId) { (error:Error?,
 friendUserIDArray:[String]?) in

 if let error = error as? NSError {
 completion(error)
 return
 }

 // get all entries in the User table
 let scanExpression = AWSDynamoDBScanExpression()

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.scan(User.self,
 expression: scanExpression)

 task.continueWith { (task:AWSTask<AWSDynamoDBPaginatedOutput>)
 -> Any? in

 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 guard let paginatedOutput = task.result else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 200,
 userInfo: ["__type":"Unknown Error",
 "message":"DynamoDB error."])
 completion(error)
 return nil
 }

 // clear potential friend list in ChatManager
 let chatManager = ChatManager.sharedInstance
 chatManager.clearPotentialFriendList()

 if paginatedOutput.items.count == 0 {
 completion(nil)
 return nil
 }

 for index in 0...(paginatedOutput.items.count - 1) {

 guard let user = paginatedOutput.items[index] as? User,
 let userId = user.id else {
 continue
 }

 if (friendUserIDArray != nil &&
 friendUserIDArray!.contains(userId)) {
 continue
 }

 if (currentUserId.compare(userId) == .orderedSame) {
 continue
 }

 chatManager.addPotentialFriend(user: user)
 }

 completion(nil)
 return nil
 }

 }
 }
 func addFriend(currentUserId: String,
 friendUserId:String,
 completion:@escaping (Error?)->Void) {

 let friendRelationship = Friend()
 friendRelationship.id = NSUUID().uuidString
 friendRelationship.user_id = currentUserId
 friendRelationship.friend_id = friendUserId

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.save(friendRelationship)

 task.continueWith { (task:AWSTask<AnyObject>) -> Any? in
 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 completion(nil)
 return nil
 }

 }

}

The DynamoDBController class implements the singleton design pattern. The class defines a private initializer. Other parts of the app can access the single instance using the following sharedInstance static variable.

 static let sharedInstance: DynamoDBController = DynamoDBController()

 private init() { }

Examining the refreshFriendList Method

The refreshFriendList(userId, completion) method is used by the home view controller to retrieve a list of friends for the currently authenticated user from Amazon DynamoDB. The method takes two parameters. The first is the ID of an authenticated user, and the second is a completion block to be called when the operation completes.

The value that must be specified in the userId must match the ID of the federated Amazon Cognito identity object assigned to the user when she exchanged her Facebook/Google authentication token for an Amazon Cognito identity.

If the list of friends was successfully retrieved from Amazon DynamoDB, the refreshFriendList(userId, completion) method updates the friendList array in the ChatManager object, and the completion block injected into the second parameter of refreshFriendList(userId, completion) is called with a nil value for the error.

If an error occurs while retrieving the list of friends, the completion block injected into refreshFriendList(userId, completion) is called with a non-nil value for the error.

The refreshFriendList(userId, completion) method first calls a private method called retrieveFriendIds(userId, completion) to obtain a list of user IDs of the user’s friends:

retrieveFriendIds(userId: userId) { (error:Error?,
 friendUserIDArray:[String]?) in

// do something here

}

The user IDs of friends returned by this method are the values of the ID attributes of the friends’ corresponding federated Amazon Cognito identities.

If there were no errors while retrieving the list of friends’ user IDs, the results are available in the friendUserIDArray parameter.

The refreshFriendList(userId, completion)method clears the existing list of friends from the ChatManager class:

 // clear friend list in ChatManager
let chatManager = ChatManager.sharedInstance
chatManager.clearFriendList()

The friendUserIDArray array contains strings. Each value within the array is an ID of a user who is friends with the person using the app.

From a presentation perspective, presenting a list of cryptic user ID strings is not very nice. We would ideally like to present the list of friends using their names instead of IDs.

To do this we need to retrieve a User object from the User table corresponding to each friend ID. This also ties in nicely with the fact that the friendList array in ChatManager.swift is an array of User objects, not strings.

To translate IDs into User objects, the refreshFriendList(userId, completion) method shown in the following snippet performs a single scan on the User table to retrieve information on all rows within the table. Recall from an earlier section in this chapter that the User table contains three pieces of information for any user:

	id

	username

	email_address

// get all entries in the User table
let scanExpression = AWSDynamoDBScanExpression()

let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
let task = dynamoDBObjectMapper.scan(User.self, expression: scanExpression)

A scan is performed by calling the scan() method on an AWSDynamoDBObjectMapper instance. An object mapper maps a model object in your Xcode project to an Amazon DynamoDB table on the AWS cloud. The scan() method requires two parameters. The first is the model class from your project, and the second is a scan expression that filter the results of the scan.

A scan expression is an instance of AWSDyamoDBScanExpression. In this case, we want information on all the rows in the User table because we intend to iterate through these results to extract User instances for each of the user’s friends.

Like most methods in the AWS SDK, the scan() method returns an AWSTask instance, and we use the continueWith(block) method on the AWSTask instance to execute some code after the task has finished.

task.continueWith { (task) -> Any? in

 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 guard let paginatedOutput = task.result else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 200,
 userInfo: ["__type":"Unknown Error",
 "message":"DynamoDB error."])

 completion(error)
 return nil
 }

 if paginatedOutput.items.count == 0 {
 completion(nil)
 return nil
 }

 for index in 0...(paginatedOutput.items.count - 1) {

 guard let user = paginatedOutput.items[index] as? User,
 let userId = user.id else {
 continue
 }

 if friendUserIDArray!.contains(userId) {
 chatManager.addFriend(user: user)
 }
 }

 completion(nil)
 return nil
}

Examining the retrieveFriendIds Method

The retrieveFriendIds(userId, completion)method is examined next:

private func retrieveFriendIds(userId: String,
 completion:@escaping (Error?, [String]?)->Void) {

 let scanExpression = AWSDynamoDBScanExpression()
 scanExpression.filterExpression = "user_id = :val"
 scanExpression.expressionAttributeValues = [":val":userId]

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.scan(Friend.self,
 expression: scanExpression)

 var friendUserIDArray = [String]()

 task.continueWith { (task) -> Any? in

 if let error = task.error as? NSError {
 completion(error, nil)
 return nil
 }

 guard let paginatedOutput = task.result else {
 // user has no friends
 completion(nil, nil)
 return nil
 }

 if paginatedOutput.items.count == 0 {
 // user has no friends
 completion(nil, nil)
 return nil
 }

 for index in 0...(paginatedOutput.items.count - 1) {

 guard let friend = paginatedOutput.items[index] as? Friend,
 let friend_user_id = friend.friend_id else {
 continue
 }

 friendUserIDArray.append(friend_user_id)
 }

 completion(nil, friendUserIDArray)
 return nil
 }

}

This method performs a scan on the Friend table; however, it uses the following filter expression to reduce the result set to contain only information on friends of the authenticated user.

let scanExpression = AWSDynamoDBScanExpression()
scanExpression.filterExpression = "user_id = :val"
scanExpression.expressionAttributeValues = [":val":userId]

let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
let task = dynamoDBObjectMapper.scan(Friend.self,
 expression: scanExpression)

The result of the scan is an array of Friend instances, or nil if the authenticated user has no friends in the Friend table. If the results of the scan contain one or more objects, the user IDs of the friends are copied into an array, and the array is returned.

Recall from an earlier section in this chapter that each row of the Friend table contains three attributes:

	id

	user_id

	friend_id

Unlike the User table, the id attribute in the Friend table is an auto-generated value that merely serves as the primary key for a user-to-friend relationship. The values of the user_id and friend_id attributes, on the other hand, are both IDs of Amazon Cognito federated identity objects.

To retrieve the list of all friend relationships for a given Amazon Cognito identity ID, you need to retrieve all rows that have a specific value for the user_id attribute. This is achieved by adding the following filter expression to the scan expression.

let scanExpression = AWSDynamoDBScanExpression()
scanExpression.filterExpression = "user_id = :val"
scanExpression.expressionAttributeValues = [":val":userId]

Examining the retrieveUser Method

One of the drawbacks of a scan is that it returns all the rows in a table. Not only can a scan take longer to complete, it can exhaust your table’s read capacity allocation quickly. Even if you provide a filter expression to limit the number of results returned to your Swift code, Amazon DynamoDB performs the filtering as a post-processing step, after completing the scan.

If you want to retrieve a single object from an Amazon DynamoDB table and you know the value of its primary key attribute, you can use the load() method on an object mapper. The DynamoDBController contains a method called retrieveUser(userId, completion). This method is not used in this chapter; it is only provided to show you how you can use an object mapper to retrieve a single object:

func retrieveUser(userId: String,
 completion:@escaping (Error?, User?)->Void) {

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()

 let task = dynamoDBObjectMapper.load(User.self,
 hashKey: userId, rangeKey:nil)

 task.continueWith { (task) -> Any? in
 if let error = task.error as? NSError {
 completion(error, nil)
 return nil
 }

 if let result = task.result as? User {
 completion(nil, result)
 } else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 200,
 userInfo: ["__type":"Unknown Error",
 "message":"DynamoDB error."])
 completion(error, nil)
 }

 return nil
 }

}

A query is performed by calling the load() method of an object mapper instance. The load method requires a model class, and also the value of the primary key attribute. It returns a single item from a table or an error if the item was not found.

Examining the refreshPotentialFriendList Method

The next method we examine is called refreshPotentialFriendList(userId, completion). The add friend view controller uses this method to retrieve a list of users who could be friends with the currently authenticated user. The method’s implementation is similar to the refreshFriendList(userId, completion) method discussed earlier. The key difference between the two methods is that the refreshPotentialFriendList(userId, completion) method only returns information on users who are not friends with the current user. It assumes the refreshFriendList(userId, completion) method has been called earlier and that a list of friends is available from the friendList array of the ChatManager class.

for index in 0...(paginatedOutput.items.count - 1) {

 guard let user = paginatedOutput.items[index] as? User,
 let userId = user.id else {
 continue
 }

 if (friendUserIDArray != nil &&
 friendUserIDArray!.contains(userId)) {
 continue
 }

 if (currentUserId.compare(userId) == .orderedSame) {
 continue
 }

 chatManager.addPotentialFriend(user: user)
}

The list of potential friends is written to the potentialFriendList array of the ChatManager class.

Examining the addFriend Method

The final method in the DynamoDBController class is called addFriend(currentUserId, friendUserId, completion). It allows a user to add a friend.

 func addFriend(currentUserId: String,
 friendUserId:String,
 completion:@escaping (Error?)->Void) {

 let friendRelationship = Friend()
 friendRelationship.id = NSUUID().uuidString
 friendRelationship.user_id = currentUserId
 friendRelationship.friend_id = friendUserId

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.save(friendRelationship)

 task.continueWith { (task:AWSTask<AnyObject>) -> Any? in
 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 completion(nil)
 return nil
 }

 }

This is a simple method. It starts by creating a new Friend instance and then uses the save method on an AWSDynamoDBObjectMapper instance to write data to Amazon DynamoDB in the Amazon cloud.

Updating the CognitoIdentityPoolController Class and the Amazon Cognito Identity Pool

In this section, you make a few changes to the CognitoIdentityPoolController class and also the AWSChatIdentityPool identity pool.

Retrieving the Federated Identity Identifier

The first change builds a mechanism into the CognitoIdentityPoolController class that allows other parts of your app to access the ID of the federated identity for the current authenticated user.

	Add the following instance variable to the CognitoIdentityPoolController.swift file:

var currentIdentityID:String?

	Add the following line to the getFederatedIdentityForFacebook(idToken, username, emailAddress, completion) method:

self.currentIdentityID = task.result as? String

just before the following lines:

let syncClient = AWSCognito.default()
let dataSet = syncClient.openOrCreateDataset("facebookUserData")

	Add the following line to the getFederatedIdentityForGoogle (idToken, username, emailAddress, completion) method:

self.currentIdentityID = task.result as? String

just before the following lines:

let syncClient = AWSCognito.default()
let dataSet = syncClient.openOrCreateDataset("googleUserData")

Linking the User Pool to the Identity Pool

The second change you need to make allows users who have created accounts in the Amazon Cognito user pool to obtain federated identity objects from the identity pool so that the AWSChat app can access AWS resources on behalf of these users.

The sign up view controller of the AWSChat application allows users to sign up for a new account. These new users are created in an Amazon Cognito user pool, which is a database of users.

However, for these new users to be able to access AWS cloud services from your account, they need to be able to assume an IAM role that governs what services they can access and what they can do with these services.

IAM roles are associated with IAM identities, and Amazon Cognito identity pools provide the mechanism to obtain an identity object. Therefore, when a new user creates an account in the AWSChatUserPool user pool, we need to link the new account to an identity object in the AWSChatIdentityPool identity pool.

You might be tempted to question why we need a user pool at all. Why not just create a new account in the identity pool? The simple answer is that you can’t create new identities in an identity pool in the same way as you can add users to a user pool. Identities in an identity pool are federated (linked) with a token provider by an external authentication system.

	To get started, log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the Amazon Cognito service home page (Figure 12.34).

[image: Image described by caption and surrounding text.]

FIGURE 12.34 Amazon Cognito splash screen

User pools and identity pools are scoped at the region level, so make sure you have set up the AWS Management Console to use the same region as the one in which you created your Amazon Cognito user pool and identity pool.

	Click the Manage Federated Identities button, and then select the AWSChatIdentityPool from the list of identity pools (Figure 12.35).

[image: Image described by caption and surrounding text.]

FIGURE 12.35 List of Amazon Cognito identity pools

	Click the Edit Identity Pool button on the identity pool dashboard and expand the Authentication providers section (Figure 12.36).

[image: Image described by caption and surrounding text.]

FIGURE 12.36 Amazon Cognito identity pool authentication providers

	Type the user pool ID and the app client ID for the AWSChatUserPool in the Amazon Cognito tab and click the Save changes button. You can retrieve the user pool ID and the app client ID from the user pool itself or from lines 14 - 20 of the CognitoUserPoolController class in your Xcode project.

	Switch to Xcode and add the following variable declaration to the top of the CognitoUserPoolController class:

let userPoolRegionString = "us-east-1"

Replace us-east-1 with the value that corresponds to the region in which you have created your user pool.

	Add the following method to the SocialIdentityManager class:

func registerCognitoToken(key:String, token:String) {
 self.loginDictionary[key] = token
}

	Add the following method to the CognitoIdentityPoolController class:

func getFederatedIdentityForAmazon(idToken:String,
 username:String,
 emailAddress:String?,
 userPoolRegion:String,
 userPoolID:String,
 completion:@escaping (Error?)->Void) {

 let identityProviderManager = SocialIdentityManager.sharedInstance
 let key = "cognito-idp.\(userPoolRegion).amazonaws.com/\(userPoolID)"
 identityProviderManager.registerCognitoToken(key: key, token: idToken)

 let task = self.credentialsProvider!.getIdentityId()

 task.continueWith { (task: AWSTask<NSString>) -> Any? in

 if task.error != nil {
 completion(task.error)
 return nil
 }

 self.currentIdentityID = task.result as? String

 let syncClient = AWSCognito.default()
 let dataSet = syncClient.openOrCreateDataset("amazonUserData")

 dataSet.setString(username, forKey: "name")

 if let emailAddress = emailAddress {
 dataSet.setString(emailAddress, forKey: "email")
 }

 dataSet.synchronize().continueWith(block: {
 (task: AWSTask<AnyObject>) -> Any? in

 if task.error != nil {
 completion(task.error)
 return nil
 }

 completion(nil)
 return nil
 })

 return nil
 }

}

	
Open the SignupViewController.swift file and change line 59 and 150 from

self.displaySuccessMessage()

to

self.getFederatedIdentity(user)

	Add the following implementation of the getFederatedIdentity(user) method to the SignupViewController class:

fileprivate func getFederatedIdentity(_ user:AWSCognitoIdentityUser) {

 let name = usernameField.text!
 let emailAddress = emailField.text!
 let password = passwordField.text!

 let task = user.getSession(name, password: password, validationData:nil)

 task.continueWith(block: { (task) -> Any? in

 if let error = task.error {
 self.displaySignupError(error: error as NSError,
 completion: nil)
 return nil
 }

 let userSession = task.result!
 let idToken = userSession.idToken!

 let userpoolController = CognitoUserPoolController.sharedInstance
 let indentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 indentityPoolController.getFederatedIdentityForAmazon(
 idToken: idToken.tokenString,
 username: name,
 emailAddress: emailAddress,
 userPoolRegion: userpoolController.userPoolRegionString,
 userPoolID: userpoolController.userPoolD,
 completion: { (error: Error?) in

 if let error = error {
 self.displaySignupError(error: error as NSError,
 completion: nil)
 return
 }

 self.displaySuccessMessage()
 return
 })

 return nil

 })

}

	Open the LoginViewController.swift file and add the following import statement to the top of the file:

import AWSCognitoIdentityProvider

	Change line 60 from

self.displaySuccessMessage()

to

self.getFederatedIdentity(userpoolController.currentUser!)

	Add the following implementation of the getFederatedIdentity(user) method to the LoginViewController class:

fileprivate func getFederatedIdentity(_ user:AWSCognitoIdentityUser) {

 let userpoolController = CognitoUserPoolController.sharedInstance
 userpoolController.getUserDetails(user: userpoolController.currentUser!) {
 (error: Error?, details:AWSCognitoIdentityUserGetDetailsResponse?) in

 if let error = error {
 self.displayLoginError(error: error as NSError)
 return
 }

 var email:String? = nil
 if let userAttributes = details?.userAttributes {
 for attribute in userAttributes {
 if attribute.name?.compare("email") == .orderedSame {
 email = attribute.value
 }
 }
 }

 guard let emailAddress = email else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 100,
 userInfo: ["__type":"Cognito error",
 "message":"Missing email address."])
 self.displayLoginError(error: error)
 return
 }

 let name = self.usernameField.text!
 let password = self.passwordField.text!

 let task = user.getSession(name,
 password: password, validationData:nil)

 task.continueWith(block: { (task) -> Any? in

 if let error = task.error {
 self.displayLoginError(error: error as NSError)
 return nil
 }

 let userSession = task.result!
 let idToken = userSession.idToken!

 let userpoolController =
 CognitoUserPoolController.sharedInstance
 let indentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 indentityPoolController.getFederatedIdentityForAmazon(
 idToken: idToken.tokenString,
 username: name,
 emailAddress: emailAddress,
 userPoolRegion: userpoolController.userPoolRegionString,
 userPoolID: userpoolController.userPoolD,
 completion: { (error: Error?) in

 if let error = error {
 self.displayLoginError(error: error as NSError)
 return
 }

 self.displaySuccessMessage()
 return
 })

 return nil

 })

 }

 }

With these changes, users who create new accounts in your application’s user pool are given federated identity objects that can be used to access resources such as Amazon DynamoDB from your AWS account.

Updating the Home View Controller

In this section you update the home view controller to display a list of friends.

	Click the ChatJourney.storyboard file in the Project Navigator to open the file in the storyboard editor.

	Drag and drop a Table View object from the object library onto the HomeViewController scene.

	Set up constraints to ensure the table view covers the entire client area of the storyboard scene.

	Set up the HomeViewController class to act as the dataSource and delegate object for the table view.

	With the table view selected, use the attributes inspector to set the content type to Dynamic prototypes and the number of Prototype cells to 1 (Figure 12.37).

[image: Image described by caption and surrounding text.]

FIGURE 12.37 Xcode attributes inspector

	Select the table view cell from the document outline and change the custom class associated with the table view cell to FriendTableViewCell.

	Update the value of the cell identifier attribute to FriendTableViewCellIdentifier.

	Drag and drop two labels from the Object library onto the table view cell and position them as shown in Figure 12.38. Set up appropriate constraints for the labels.

[image: Image described by caption and surrounding text.]

FIGURE 12.38 Table view cell layout

	Create a new Swift file under the ViewControllers folder group in the Xcode Project Navigator called FriendTableViewCell.swift. Replace its contents to match Listing 12.8.
Listing 12.8: FriendTableViewCell.swift

import UIKit

class FriendTableViewCell: UITableViewCell {

 @IBOutlet weak var nameLabel: UILabel!
 @IBOutlet weak var emailAddressLabel: UILabel!

 override func awakeFromNib() {
 super.awakeFromNib()
 // Initialization code
 }

 override func setSelected(_ selected: Bool, animated: Bool) {
 super.setSelected(selected, animated: animated)

 // Configure the view for the selected state
 }

}

	Connect the nameLabel and emailAddressLabel outlets to the name and e-mail address labels in the prototype cell of the home view controller storyboard scene.

	Update the implementation of the viewDidLoad() method of the HomeViewController .swift file to match the following snippet:

override func viewDidLoad() {

 super.viewDidLoad()

 self.title = "Friend List"

 // add refresh control
 let refreshControl = UIRefreshControl()
 refreshControl.addTarget(self, action: #selector(refresh(_:)),
 for: .valueChanged)
 tableView.refreshControl = refreshControl

 // get list of friends from DynamoDB, and populate table view
 let cognitoIdentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 guard let curentIdentityID =
 cognitoIdentityPoolController.currentIdentityID else {
 return
 }

 let dynamoDBController = DynamoDBController.sharedInstance
 dynamoDBController.refreshFriendList(userId: curentIdentityID) {
 (error) in

 if let error = error {
 self.displayError(error: error as NSError)
 return
 }

 DispatchQueue.main.async {
 self.tableView.reloadData()
 }
 }
}

The viewDidLoad() method attaches a UIRefreshControl to the table view. This control calls the refresh() method when the user performs a pull-to-refresh gesture on the table view.

	Add the following implementation of the refresh() method:

func refresh(_ refreshControl: UIRefreshControl) {

 // get list of friends from DynamoDB, and populate table view
 let cognitoIdentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 guard let curentIdentityID =
 cognitoIdentityPoolController.currentIdentityID else {
 return
 }

 let dynamoDBController = DynamoDBController.sharedInstance
 dynamoDBController.refreshFriendList(userId: curentIdentityID) {
 (error) in

 if let error = error {
 DispatchQueue.main.async {
 refreshControl.endRefreshing()
 self.displayError(error: error as NSError)
 }
 return
 }

 DispatchQueue.main.async {
 refreshControl.endRefreshing()
 self.tableView.reloadData()
 }
 }

}

	Add the following implementation of the displayError() method:

func displayError(error:NSError) {

 let alertController = UIAlertController(
 title: error.userInfo["__type"] as? String,
 message: error.userInfo["message"] as? String,
 preferredStyle: .alert)

 let okAction = UIAlertAction(title: "Ok",
 style: .default,
 handler: nil)
 alertController.addAction(okAction)

 DispatchQueue.main.async {
 self.present(alertController, animated: true, completion: nil)
 }
}

	Implement the UITableViewDelegate and UITableViewDataSource protocols in a class extension on HomeViewController as follows:

extension HomeViewController : UITableViewDelegate, UITableViewDataSource {

 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 let chatManager = ChatManager.sharedInstance

 if let friendList = chatManager.friendList {
 return friendList.count
 }

 return 0
 }

 func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "FriendTableViewCell",
 for: indexPath) as? FriendTableViewCell

 let chatManager = ChatManager.sharedInstance

 if let cell = cell,
 let friendList = chatManager.friendList {
 let user = friendList[indexPath.row]
 cell.nameLabel.text = user.username
 cell.emailAddressLabel.text = user.email_address
 }

 return cell!
 }

 func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 }
}

If you run the app in the iOS Simulator and authenticate using one of the mechanisms you built in a previous chapter, you see that the HomeViewController screen is still empty. This is because the user has no friends at the moment. In the next section, you modify the AWSChat app to allow an authenticated user to add friends.

Adding Friends

In this section you add a new view controller to the project to allow users to add other users to their friend list.

	Create a new swift file under the ViewControllers group in the Xcode Project Navigator called AddFriendViewController.swift.

	Modify the contents of the new file to match Listing 12.9.
Listing 12.9: AddFriendViewController.swift

import UIKit

class AddFriendViewController: UIViewController {

 @IBOutlet weak var tableView: UITableView!

 override func viewDidLoad() {
 super.viewDidLoad()

 self.title = "Add friend"

 // get list of available users who are not friends of this user
 let cognitoIdentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 guard let curentIdentityID =
 cognitoIdentityPoolController.currentIdentityID else {
 print("Cognito Identity is missing.")
 return
 }

 let dynamoDBController = DynamoDBController.sharedInstance
 dynamoDBController.refreshPotentialFriendList(
 currentUserId: curentIdentityID) { (error) in

 if let error = error {
 self.displayError(error: error as NSError)
 return
 }

 DispatchQueue.main.async {
 self.tableView.reloadData()
 }
 }

 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // dispose of any resources that can be re-created
 }

 func displayError(error:NSError) {

 let alertController = UIAlertController(
 title: error.userInfo["__type"] as? String,
 message: error.userInfo["message"] as? String,
 preferredStyle: .alert)

 let okAction = UIAlertAction(title: "Ok",
 style: .default, handler: nil)
 alertController.addAction(okAction)

 DispatchQueue.main.async {
 self.present(alertController, animated: true, completion: nil)
 }
 }

}

extension AddFriendViewController : UITableViewDelegate, UITableViewDataSource {

 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 let chatManager = ChatManager.sharedInstance

 if let potentialFriendList = chatManager.potentialFriendList {
 return potentialFriendList.count
 }

 return 0
 }

 func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "FriendTableViewCell", for: indexPath) as?
 FriendTableViewCell

 let chatManager = ChatManager.sharedInstance

 if let cell = cell,
 let potentialFriendList = chatManager.potentialFriendList {
 let user = potentialFriendList[indexPath.row]
 cell.nameLabel.text = user.username
 cell.emailAddressLabel.text = user.email_address
 }

 return cell!
 }

 func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 let chatManager = ChatManager.sharedInstance

 guard let potentialFriendList = chatManager.potentialFriendList else {
 return
 }

 let cognitoIdentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 guard let curentIdentityID =
 cognitoIdentityPoolController.currentIdentityID else {
 print("Cognito Identity is missing.")
 return
 }

 let potentialFriend = potentialFriendList[indexPath.row]

 let dynamoDBController = DynamoDBController.sharedInstance
 dynamoDBController.addFriend(currentUserId: curentIdentityID,
 friendUserId:potentialFriend.id!) { (error) in

 if let error = error {
 self.displayError(error: error as NSError)
 return
 }

 DispatchQueue.main.async {
 self.navigationController?.popViewController(animated: true)
 }
 }

 }

}

	Open the ChatJourney.storyboard file and add a new view controller scene to the storyboard.

	Change the class associated with the new view controller scene to AddFriendViewController.

	Drag and drop a Table View object from the object library onto the AddFriendViewController scene.

	Set up constraints to ensure the table view covers the entire client area of the storyboard scene.

	Set up the AddFriendViewController class to act as the dataSource and delegate object for the table view.

	With the table view selected, use the attributes inspector to set the content type to Dynamic prototypes and the number of Prototype cells to 1.

	Select the table view cell from the document outline and change the custom class associated with the table view cell to FriendTableViewCell.

	Drag and drop two labels from the Object library onto the table view cell and position them similar to the prototype cell in the HomeViewController scene.

	Set up appropriate constraints for the labels.

	Connect the nameLabel and emailAddressLabel outlets to the name and e-mail address labels in the prototype cell of the AddFriendViewController storyboard scene.

	Add a Bar Button Item from the Object Library to the top-right corner of the home view controller scene.

	Select the bar button item and use the Attributes Inspector to change the value of the System Item attribute to Add.

	Create a push segue from the bar button item to the AddFriendViewController storyboard scene. Your storyboard should resemble Figure 12.39.

[image: Image described by caption and surrounding text.]

FIGURE 12.39 Chat journey storyboard file

	Save the project and run it in the Simulator. To test it, you need to have at least two e-mail addresses. Sign up for new accounts using these e-mail addresses. You can use a free service like http://ww8.tenminutemail.com/ to create a temporary e-mail address.
You can verify that the AWS Lambda script is populating the User table in Amazon DynamoDB by looking at the records in the User table. You should find entries for the accounts that you have created (Figure 12.40).

[image: Image described by caption and surrounding text.]

FIGURE 12.40 Contents of the User table

	Log in to the AWSChat app using one of these accounts; your friend list is initially empty. Click the + button on the home view controller to add friends. You should see a new screen appear with a list of users that you can connect with (Figure 12.41).

[image: Image described by caption and surrounding text.]

FIGURE 12.41 The Add friend view controller

	Click an item in the list to add that user as a friend.
To check that an entry has been added to the Friend table in Amazon DynamoDB, examine the contents of the Friend table using the Amazon DynamoDB Management Console (Figure 12.42).

[image: Image described by caption and surrounding text.]

FIGURE 12.42 Contents of the Friend table

	Switch back to the AWSChat app and use the pull-to-refresh gesture on the home view controller to refresh the list of friends. You should see your new friend listed there (Figure 12.43).

[image: Image described by caption and surrounding text.]

FIGURE 12.43 Home view controller

[image:] You can download the project files created in this chapter from this book’s website on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter12.AWSForMobileDevelopers.2017.git.

Summary

	Amazon DynamoDB tables are schemaless, so a row can have any number of fields, and the fields can vary from row to row. Fields are created on an ad-hoc basis as new rows are added to the table.

	An AWS Lambda function built using the cognito-sync-trigger blueprint is triggered when there is a change to the identities in an identity pool.

	While creating an AWS Lambda function you need to provide a service role that will be assumed by AWS while executing the function.

	An AWS Lambda function can be used to insert rows into Amazon DynamoDB tables.

Chapter 13
Adding AWSChat Support with Amazon DynamoDB and Amazon S3

WHAT’S IN THIS CHAPTER

	[image: images]Create Amazon S3 buckets for images and thumbnails.

	[image: images]Update the IAM Role assumed by authenticated Amazon Cognito identities to allow access to the Amazon S3 buckets.

	[image: images]Update the AWSChat app to allow friends to send short text messages to each other.

	[image: images]Update the AWSChat app to allow users to upload images to Amazon S3 and share the images with their friends.

[image:] In Chapter 12 you modified the AWSChat application to allow logged-in users to create a list of friends. In this lesson you modify the AWSChat app to allow friends to exchange messages with each other. These messages can consist of short strings of text or images. This functionality is built using Amazon DynamoDB tables and Amazon S3.

[image:] To follow along with this lesson, download the starter project from this book’s website at Wiley.com or GitHub at https://github.com/asmtechnology/Chapter13.AWSForMobileDevelopers.2017.git.

You need to ensure that you have followed the instructions presented in Chapter 12 to create relevant Amazon DynamoDB tables and AWS Lambda functions in your AWS account.

You also need to ensure that the following options have been set up correctly in the starter project:

	Lines 15 – 17 of the CognitoUserPoolController.swift file contain the user pool region and id of your Amazon Coginto user pool.

	Lines 21 – 22 of the CognitoUserPoolController.swift file contain the app client id and app client secret to allow your app access to unauthenticated APIs of the user pool.

	Lines 16 – 17 of the CognitoIdentityPoolController.swift file contain the region and id of your Amazon Cognito identity pool.

If you intend to use Google sign-in, then in addition to the preceding items, you need to ensure that:

	You have set up an application on the Google developer console.

	You have included the GoogleService-Info.plist file in your Xcode project.

	Line 24 of AppDelegate.swift contains the Google client id.

If you intend to use Facebook login, then in addition to the preceding items, you need to ensure that:

	The FacebookAppID property in the Info.plist file is set up correctly.

	You update the Url scheme with the Facebook application id.

	Line 39 of AppDelegate.swift references the correct url scheme.

Updating the DynamoDBController Class

In this section you update the DynamoDBController class created in Chapter 12 to provide methods that can be used by the UI layer of the application to exchange messages between friends.

You created two Amazon DynamoDB tables in Chapter 12 to support chat functionality:

	Chat: A row in this table represents a thread of conversation between two users.

	Message: A row in this table represents a message exchanged over a chat. The message can contain some text or an image. A Message object contains a chat_id attribute that identifies the parent Chat object.

	Launch Xcode and click the DynamoDBController.swift file in the Project Navigator. Add a new method called retrieveChat(fromUserId, toUserId, completion) using the following implementation:

func retrieveChat(fromUserId:String, toUserId:String,
 completion:@escaping (Error?)->Void) {

 let chatID = "\(fromUserId)\(toUserId)"
 let alternateChatID = "\(toUserId)\(fromUserId)"

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.load(Chat.self,
 hashKey: chatID, rangeKey:nil)

 task.continueWith { (task: AWSTask<AnyObject>) -> Any? in
 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 if let result = task.result as? Chat {
 // chat has been found
 let chatManager = ChatManager.sharedInstance
 chatManager.addChat(chat:result)

 completion(nil)
 } else {
 // chat was not found; try alternateChatID
 let task2 = dynamoDBObjectMapper.load(Chat.self,
 hashKey: alternateChatID, rangeKey:nil)

 task2.continueWith { (task: AWSTask<AnyObject>) -> Any? in
 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 if let result = task.result as? Chat {
 // chat has been found
 let chatManager = ChatManager.sharedInstance
 chatManager.addChat(chat:result)

 completion(nil)
 } else {

 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 210,
 userInfo: nil)
 completion(error)
 }

 return nil
 }

 }

 return nil
 }
}

This method is called from the HomeViewController when a user taps on the name of a friend to begin a chat session. If a chat session already exists in the Amazon DynamoDB database on the AWS cloud, relevant data is retrieved from Amazon DynamoDB, and a Chat object is added to the conversations dictionary in the ChatManger object. This dictionary doesn’t exist yet and will be created in a later section; however, its declaration will resemble the following:

var conversations:[Chat:[Message]?]?

If a Chat object could not be found in Amazon DynamoDB in the cloud, the retrieveChat(fromUserId, toUserId, completion) method calls the completion handler injected as the third parameter with an error object. The caller can examine the error object and call a different method to create a new Chat instance.

	Create a new Chat object in Amazon DynamoDB by calling a new method in the DynamoDBController class called createChat(fromUserId, toUserId, completion). Implement this method as follows:

func createChat(fromUserId:String,
 toUserId:String,
 completion:@escaping (Error?)->Void) {

 let chat = Chat()
 chat.id = "\(fromUserId)\(toUserId)"
 chat.from_user_id = fromUserId
 chat.to_user_id = toUserId

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.save(chat)

 task.continueWith { (task:AWSTask<AnyObject>) -> Any? in
 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 let chatManager = ChatManager.sharedInstance
 chatManager.addChat(chat:chat)

 completion(nil)
 return nil
 }
}

This method creates a new Chat object and calls the save() method on an AWSDynamoDBObjectMapper instance to write the object to Amazon DynamoDB on the AWS cloud. If the write operation succeeds, the createChat(fromUserId, toUserId, completion) method adds the Chat object to the conversations dictionary of the ChatManager object.

	Add the following method to the DynamoDBController class to send a text message to another user of the app.

func sendTextMessage(fromUserId:String, chatId:String,
 messageText:String,
 completion:@escaping (Error?)->Void) {

 let message = Message()
 message.chat_id = chatId
 message.date_sent = Date().timeIntervalSince1970 as NSNumber
 message.message_id = NSUUID().uuidString
 message.message_text = messageText
 message.message_image = "NA"
 message.mesage_image_preview = "NA"
 message.sender_id = fromUserId

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.save(message)

 task.continueWith { (task:AWSTask<AnyObject>) -> Any? in
 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 let chatManager = ChatManager.sharedInstance
 chatManager.addMessage(chatId:chatId, message:message)

 completion(nil)
 return nil
 }
}

This method creates a new Message object and calls the save() method on an AWSDynamoDBObjectMapper instance to write the object to Amazon DynamoDB on the AWS cloud. If the write operation succeeds, the sendTextMessage(fromUserId, chatId, messageText, completion) method adds the Message object to the conversations dictionary of the ChatManager object.

	Add the following method to the DynamoDBController class to send an image to another user of the app. The caller of this method must ensure that the image has been uploaded to an Amazon S3 bucket before calling this method.

func sendImage(fromUserId:String, chatId:String,
 imageFile:String, previewFile:String,
 completion:@escaping (Error?)->Void) {

 let message = Message()
 message.chat_id = chatId
 message.date_sent = Date().timeIntervalSince1970 as NSNumber
 message.message_id = NSUUID().uuidString
 message.message_text = "NA"
 message.message_image = imageFile
 message.mesage_image_preview = previewFile
 message.sender_id = fromUserId

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.save(message)

 task.continueWith { (task:AWSTask<AnyObject>) -> Any? in
 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 let chatManager = ChatManager.sharedInstance
 chatManager.addMessage(chatId:chatId, message:message)

 completion(nil)
 return nil
 }
}

	Finally, add the following method to retrieve a list of messages for a specific chat from Amazon DynamoDB:

func retrieveAllMessages(chatId:String, fromDate:Date,
 completion:@escaping (Error?)->Void) {

 let fromDateAsNumber = fromDate.timeIntervalSince1970

 let queryExpression = AWSDynamoDBQueryExpression()
 queryExpression.keyConditionExpression =
 "chat_id = :chatidentitier AND date_sent > :earliestDate";
 queryExpression.expressionAttributeValues =
 [":chatidentitier": chatId, ":earliestDate": fromDateAsNumber];

 let dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()
 let task = dynamoDBObjectMapper.query(Message.self,
 expression: queryExpression)
 task.continueWith(block: { (task:AWSTask<AWSDynamoDBPaginatedOutput>)
 -> Any? in

 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 guard let paginatedOutput = task.result else {
 // user has no messages
 completion(nil)
 return nil
 }

 if paginatedOutput.items.count == 0 {
 // user has no messages
 completion(nil)
 return nil
 }

 for index in 0...(paginatedOutput.items.count - 1) {

 if let message = paginatedOutput.items[index] as? Message {
 let chatManager = ChatManager.sharedInstance
 chatManager.addMessage(chatId:chatId, message:message)
 }

 }

 completion(nil)
 return nil
 })

}

The retrieveAllMessages(chatId, fromDate, completion) method retrieves all messages for a specific chat that were sent after a specific point in time. Instead of performing a scan on the Message table, which would return every item across every chat, the retrieveAllMessages(chatId, fromDate, completion) method executes a query on the Message table. The query extracts all items that have a specific partition key value (chatId) and have sort keys that satisfy the range expression date_sent > earliestDate, where earliestDate is a numeric representation of the fromDate parameter.

Configuring Amazon S3

In this section, you create two Amazon S3 buckets. The first of these stores images uploaded by users, and the second bucket contains thumbnails. In Chapter 14 you create an AWS Lambda function to create thumbnails whenever an image is uploaded into the first bucket. You also update the permissions attached to the IAM role for authenticated Amazon Cognito identities to allow access to S3.

Creating Buckets

Ideally, you should use an IAM user with administrative privileges to carry out these tasks. If you have not yet created an IAM user under your root account, refer to the process described in Chapter 3.

	Log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the Amazon S3 service home page (Figure 13.1).

[image: Window shows accessing amazon S3 service home page having storage, compute, developer tools, analytics, application services, artificial intelligence, business productivity, desktop & app streaming, database, networking & content delivery, et cetera.]

FIGURE 13.1 Accessing the Amazon S3 service home page

If you have never created an Amazon S3 bucket in your AWS account, you are presented with the S3 Landing page (Figure 13.2). Click the Create bucket button.

[image: Window shows amazon S3 landing page having options for create bucket like create new bucket, upload your data, set up your permissions along with get started button.]

FIGURE 13.2 Amazon S3 landing page

If you have created one or more buckets in the past, the landing page looks slightly different (see Figure 13.3). Locate the Create bucket button on the page and click it.

[image: Image described by caption and surrounding text.]

FIGURE 13.3 List of existing Amazon S3 buckets in your AWS account

	A pop-up window appears on your screen (Figure 13.4). Provide a unique name for the bucket and select the region in which you would like to create it. Bucket names must be globally unique, and you should select the same region in which you have created your Amazon Cognito and Amazon DynamoDB resources in previous chapters.

[image: Image described by caption and surrounding text.]

FIGURE 13.4 Specify a bucket name and region.

The AWSChat app being developed in this book uses buckets in the US-East (N.Virginia) region.

	Click the Next button to proceed.

	A new set of options appears in the pop-up dialog box (Figure 13.5). These options allow you to configure bucket versioning, logging, and cost allocation tags.

[image: Image described by caption and surrounding text.]

FIGURE 13.5 Configuring bucket properties

By default, these options are disabled. You do not need any of these options for the application that is being built in this book, so leave the settings at their default values and click the Next button.

	The next set of options that appear in the dialog box allow you to configure permissions for your bucket (Figure 13.6).

[image: Image described by caption and surrounding text.]

FIGURE 13.6 Configuring bucket permissions

The default settings allow you full read and write access to the bucket’s contents and its permissions but do not allow access to other users. Leave the settings at their default values and click the Next button.

	The last step before you can create the bucket involves reviewing all the settings for the bucket. If you are happy with the settings, click the Create bucket button (Figure 13.7).

[image: Image described by caption and surrounding text.]

FIGURE 13.7 Reviewing Amazon S3 bucket settings

Repeat these steps to create a new bucket that contains thumbnails for the images uploaded into the first bucket. The two buckets created for the application created in this book are called:

	com.asmtechnology.awschat.images

	com.asmtechnology.awschat.thumbnails

You cannot use the same names for your buckets because bucket names must be globally unique. When you have finished creating both buckets, your Amazon S3 Management Console should resemble Figure 13.8.

[image: Image described by caption and surrounding text.]

FIGURE 13.8 The Amazon S3 Management Console after both buckets have been created

Updating the Authenticated Identity Role

Now that you have created the Amazon S3 buckets, you need to update the IAM role that is assumed by authenticated users to allow access to these buckets.

	Use the Services drop-down menu located at the top-left corner of the page to switch to the IAM Management Console.

	Click on the Roles link to view a list of roles in your account and then click the Cognito_AWSChatIdentityPoolAuth_Role (Figure 13.9).

[image: Image described by caption and surrounding text.]

FIGURE 13.9 Click a role to edit the role.

	You are taken to a screen where you can edit the role. Click the Create Role Policy button under the Permissions tab button (Figure 13.10).

[image: Image described by caption and surrounding text.]

FIGURE 13.10 Click the Create Role Policy button.

	You are taken to the Manage Role Permissions screen. Select the Policy Generator option to create a policy (Figure 13.11).

[image: Image described by caption and surrounding text.]

FIGURE 13.11 Use the Policy Generator to create a policy.

You are taken to a screen where you can allow or deny access to various AWS services in the new policy. You can use a single policy to allow access to both Amazon S3 buckets that you have created earlier in this section.

	To add an entry to the policy to allow access to the bucket for image files, ensure the following options are set up on the screen and click the Add Statement button (Figure 13.12).

[image: Image described by caption and surrounding text.]

FIGURE 13.12 Permitting access to an Amazon S3 bucket

	Effect: Allow

	AWS Service: Amazon S3

	Actions: All Actions Selected

	Amazon Resource Name (ARN): <ARN for the bucket>/*

ARN for Amazon S3 Buckets

The Amazon Resource Name (ARN) for most Amazon S3 buckets can be worked out by replacing <yourbucketname> in the following expression with the actual bucket name:

arn:aws:s3:::<yourbucketname>

For instance, if the bucket name is:

com.asmtechnology.awschat.images

then its corresponding ARN is:

arn:aws:s3:::com.asmtechnology.awschat.images

The only exception to this is if your bucket is in the China (Beijing) region, in which case the ARN has a slightly different format:

arn:aws-cn:s3:::<yourbucketname>

Ensure that the ARN for the bucket is followed by the /* character sequence. Appending this sequence to the bucket ARN implies that the policy allows access to all items in the bucket.

	Repeat the process for the other bucket. At the end of the process, your new policy should contain two permissions that allow access to your Amazon S3 buckets. Click the Next Step button (Figure 13.13).

[image: Image described by caption and surrounding text.]

FIGURE 13.13 IAM policy generator with permissions that allow access to Amazon S3 buckets

	You are presented with a summary screen that lets you review the contents of the new policy. Change the name of the new policy to AWSChatIdentityPool_S3Access and click the Apply Policy button (Figure 13.14).

[image: Image described by caption and surrounding text.]

FIGURE 13.14 Specifying a name for the new policy

You are taken back to the Edit Role screen, and you see your new policy listed under the Inline Policies section of the Permissions tab (Figure 13.15).

[image: Image described by caption and surrounding text.]

FIGURE 13.15 IAM role with a list of attached policies

Creating the S3Controller Class

The S3Controller provides a set of functions to allow other parts of the application to upload and download images to Amazon S3 buckets. In this chapter you only create a method to upload files. You add a method to download files in Chapter 14.

To get started, create a new Swift file called S3Controller.swift under the Controller folder group of the project navigator. Update the contents of S3Controller.swift to match Listing 13.1.

Provide the names of the buckets you created for images and thumbnails as values for the imageBucketName and thumbnailsBucketName variables.

Listing 13.1: S3Controller.swift

import Foundation
import AWSS3

class S3Controller {

 private let imageBucketName = "insert image buket name here"
 private let thumbnailsBucketName = "insert thumbnail bucket here"
 static let sharedInstance: S3Controller = S3Controller()

 private init() { }

 func uploadImage(localFilePath:String, remoteFileName:String,
 completion:@escaping (Error?)->Void) {

 let expression = AWSS3TransferUtilityUploadExpression()
 expression.progressBlock = {(task: AWSS3TransferUtilityTask,
 progress: Progress) in
 print("Uploaded: \(progress.fractionCompleted)%")
 }

 let transferUtility = AWSS3TransferUtility.default()

 let task = transferUtility.uploadFile(URL(
 fileURLWithPath: localFilePath),
 bucket: imageBucketName,
 key: "\(remoteFileName).png",
 contentType: "image/png",
 expression: expression) { (task, error) in

 if error != nil {
 completion(error)
 } else {
 completion(nil)
 }
 }

 task.continueWith { (task) -> Any? in
 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 return nil
 }

 }
}

The S3Controller class implements the singleton pattern similar to the DynamoDBController class. The S3Controller class contains a single method called uploadImage(localFilePath, remoteFileName, completion). The parameters of this method are described next:

	localFilePath: Path to an existing .png file in the application’s documents directory

	remoteFileName: The name of the file, without path components or a file extension, that creates a new item in the Amazon S3 bucket

	completion: A completion block that is called to report the result of the upload process

The uploadImage(localFilePath, remoteFileName, completion) method uploads the image to the com.asmtechnology.awschat.images bucket that was created earlier in this chapter.

The task of uploading the image is performed by calling the uploadFile(fileURL, bucket, key, contentType, expression, completionHandler) method on an AWSS3TransferUtility instance.

AWSS3TransferUtility is part of the AWS SDK for iOS and provides a convenient interface to upload and download files from Amazon S3 buckets. The uploadFile method has the following parameters:

	fileURLWithPath: A URL to a file in the application’s documents or temp directories

	bucket: The name of the Amazon S3 bucket to which the file should be uploaded

	key: The name of the item in the Amazon S3 bucket after it has been uploaded

	contentType: An HTTP content-type string. For .png images, this string should be image/png.

	expression: An instance of the AWSS3TransferUtilityUploadExpression class that allows you to customize aspects of the upload behavior. For instance, you can use an expression to provide a block that is called by the Amazon S3 transfer utility with progress updates while the file is uploading.

	completionHandler: A block that is called when the upload process has completed.

As with most methods in the AWS SDK, the uploadFile method is asynchronous and returns an AWSTask instance that can be used to execute a completion block when the task has finished.

You have encountered several methods in the Amazon Cognito and Amazon DynamoDB controller classes that return AWSTask instances, and in each of these cases you have used the continueWith(block) method on the AWSTask instance to execute code after the task completes.

In all the situations in which you have used AWSTask so far, the task having completed implies results are available to examine in the completion block that was passed into the continueWith(block) method.

Although the AWSTask instance returned by uploadFile works in the same way, there is a subtle difference—the task being complete implies the AWS SDK has started uploading the file, and not that the file has finished uploading.

It is for this reason that the last parameter to uploadFile is a completion handler that is called when the file finishes uploading.

In Chapter 14 you add code to the S3Controller class to download files from Amazon S3 buckets.

Updating the ChatManager Class

In this section you update the ChatManager class created in the previous chapter to support sending text messages and images to friends.

	Open the ChatManager.swift file by clicking on it once in the Xcode Project Navigator.

	Add the following variable declaration to the top of the class:

var conversations:[Chat:[Message]?]?

The conversations variable is a dictionary. Each key in the dictionary represents a conversation between two friends. The value associated with the key is an array of messages exchanged between the users.

	Add the following line to the end of the init() method to initialize the conversations variable:

conversations = [Chat:[Message]?]()

	Add the following methods to the ChatManager class to clear all chats, add a chat, and add a message to a chat in the conversations dictionary:

func clearCurrentChatList() {
 conversations?.removeAll()
}

func addChat(chat:Chat) {

 if let _ = findChat(chatId: chat.id!) {
 return
 }

 conversations![chat] = [Message]()
}

func addMessage(chatId:String, message:Message) {

 guard let chat = findChat(chatId: chatId) else {
 return
 }

 for existingMessage in conversations![chat]!! {
 if (existingMessage.message_id!.compare(message.message_id!)
 == .orderedSame) {
 return
 }
 }

 conversations![chat]!!.append(message)

}

	Add the following private methods to help retrieve a chat from the conversations dictionary:

private func findChat(chatId:String) -> Chat? {

 for key in conversations!.keys {
 if key.id!.compare(chatId) == .orderedSame {
 return key
 }
 }

 return nil
}

private func findChat(fromUserId:String, toUserId:String) -> Chat? {

 // find a chat between two users
 for key in conversations!.keys {

 if ((key.from_user_id!.compare(fromUserId) == .orderedSame &&
 key.to_user_id!.compare(toUserId) == .orderedSame) ||
 (key.from_user_id!.compare(toUserId) == .orderedSame &&
 key.to_user_id!.compare(fromUserId) == .orderedSame)) {
 return key
 }

 }

 return nil
}

The first method you have just added retrieves a Chat object from the conversations dictionary given a chat ID value. The second method is an overloaded version of the first and finds a Chat object given the user IDs of two friends.

	Add the following method to the ChatManager class to encapsulate the tasks involved in creating a chat between two users.

func loadChat(fromUserId:String, toUserId:String, completion:@escaping (Error?,
 Chat?)->Void) {

 if let chat = findChat(fromUserId: fromUserId, toUserId: toUserId) {
 completion(nil, chat)
 return
 }

 let dynamoDBController = DynamoDBController.sharedInstance
 dynamoDBController.retrieveChat(fromUserId: fromUserId,
 toUserId: toUserId) { (error) in
 if let error = error as? NSError {
 if error.code != 210 {
 completion(error, nil)
 return
 }

 // no existing chat in dynamoDB; create one
 dynamoDBController.createChat(fromUserId: fromUserId,
 toUserId: toUserId, completion: { (error) in
 if let error = error {
 completion(error, nil)
 return
 }

 if let chat = self.findChat(fromUserId: fromUserId,
 toUserId: toUserId) {
 completion(nil, chat)
 return
 }

 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 400,
 userInfo: ["__type":"Unknown Error",
 "message":"DynamoDB error."])
 completion(error, nil)
 return

 })

 return
 }

 if let chat = self.findChat(fromUserId: fromUserId,
 toUserId: toUserId) {
 completion(nil, chat)
 return
 }

 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 400,
 userInfo: ["__type":"Unknown Error",
 "message":"DynamoDB error."])
 completion(error, nil)
 return
 }
}

This method takes three arguments. The first two are user IDs of friends involved in the chat, and the third is a completion block that is called with a Chat instance representing the conversation between the two users.

The loadChat(fromUserId, toUserId, completion) method first checks to see if a suitable Chat object already exists in the conversations dictionary. If a suitable object is found, the method returns the existing object.

If findChat(fromUserId, toUserId) does not return a Chat object, the loadChat(fromUserId, toUserId, completion) method tries to find a suitable row in the Amazon DynamoDB Chat table. If a row is found, a new Chat object is created in the application using a Amazon DynamoDB object mapper and added to the conversations array.

if let chat = findChat(fromUserId: fromUserId, toUserId: toUserId) {
 completion(nil, chat)
 return
}

	If a row could not be found in the Chat table, a new row is added to the Chat table, and a Chat instance representing the new row is added to the conversations array.

	Add the following method to the ChatManager class to refresh all messages in a chat:

func refreshAllMessages(chat:Chat, completion:@escaping (Error?)->Void) {

 let earliestDate = Date(timeIntervalSince1970: 0)

 let dynamoDBController = DynamoDBController.sharedInstance
 dynamoDBController.retrieveAllMessages(chatId: chat.id!,
 fromDate: earliestDate) { (error) in

 if let error = error {
 completion (error)
 } else {
 completion(nil)
 }

 }
}

The refreshAllMessages(chat, completion) method downloads all messages from the Message table in Amazon DynamoDB that have the same chat identifier as the Chat instance provided in the first parameter.

	Add the following method to the ChatManager class to send a text message to a friend:

func sendTextMessage(chat:Chat, messageText:String, completion:@escaping
 (Error?)->Void) {

 let timeSent = Date()

 let cognitoIdentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 guard let senderID =
 cognitoIdentityPoolController.currentIdentityID else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 402,
 userInfo: ["__type":"Unauthenticated",
 "message":"Sender is no longer authenticated."])
 completion(error)
 return
 }

 let dynamoDBController = DynamoDBController.sharedInstance
 dynamoDBController.sendTextMessage(fromUserId: senderID,
 chatId: chat.id!,
 messageText: messageText) { (error) in
 if let error = error {
 completion(error)
 return
 }

 dynamoDBController.retrieveAllMessages(chatId: chat.id!,
 fromDate: timeSent) { (error) in
 if let error = error {
 completion (error)
 } else {
 completion(nil)
 }

 }
 }

}

The sendTextMessage(chat, messageText, completion) method of the ChatManager class calls the sendTextMessage(fromUserId, chatId, messageText, completion) method of the DynamoDBController class, providing the user ID of the currently authenticated user in the fromUserId parameter.

	Finally, add the following method to the ChatManager class to send an image to another user:

func sendImage(chat:Chat, message:UIImage, completion:@escaping (Error?)->Void) {

 let timeSent = Date()

 let cognitoIdentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 guard let senderID =
 cognitoIdentityPoolController.currentIdentityID else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 402,
 userInfo: ["__type":"Unauthenticated",
 "message":"Sender is no longer authenticated."])
 completion(error)
 return
 }

 // save image to documents directory
 guard let imageData = UIImagePNGRepresentation(message) else {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 406,
 userInfo: ["__type":"Error",
 "message":"Could not save image to documets directory."])
 completion(error)
 return
 }

 let documentsDirectory =
 NSSearchPathForDirectoriesInDomains(.documentDirectory,
 .userDomainMask, true)[0]
 let fileName = NSUUID().uuidString
 let previewFileName = "NA"
 let localFilePath = documentsDirectory.appending("\(fileName).png")

 do {
 try imageData.write(to:URL(fileURLWithPath: localFilePath),
 options: .atomicWrite)
 } catch {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 406,
 userInfo: ["__type":"Error",
 "message":"Could not save image to documets directory."])
 completion(error)
 }

 let s3Controller = S3Controller.sharedInstance
 s3Controller.uploadImage(localFilePath: localFilePath,
 remoteFileName: fileName) { (error) in

 if let error = error {
 completion(error)
 return
 }

 let dynamoDBController = DynamoDBController.sharedInstance
 dynamoDBController.sendImage(fromUserId: senderID, chatId: chat.id!,
 imageFile: fileName,
 previewFile:previewFileName) { (error) in
 if let error = error {
 completion(error)
 return
 }

 dynamoDBController.
 retrieveAllMessages(chatId: chat.id!,
 fromDate: timeSent) {
 (error) in
 if let error = error {
 completion (error)
 } else {
 completion(nil)
 }

 }
 }

 }

}

The sendImage(chat, message, completion) method is similar to the sendTextMessage method you added to this class earlier in this chapter, with a few small differences. Startng with the sendImage(chat, message, completion) method saves the UIImage object provided in the second parameter to a file in the documents directory.

It then calls the uploadImage(localFilePath, remoteFileName) method of the S3Controller class to upload the image file from the documents directory to the images bucket in Amazon S3.

If the image has been uploaded to Amazon S3 successfully, the sendImage(chat, message, completion) method then calls the sendImage(fromUserId, chatId, imageFile, previewFile, completion) method of the DynamoDBController class.

Because you haven’t yet created the AWS Lambda function to generate previews for images uploaded to the images bucket in Amazon S3, the previewFile parameter of the sendImage(fromUserId, chatId, imageFile, previewFile, completion) method of the DynamoDBController class is set to a dummy value. You update this method in Chapter 14 to write the correct name of the preview file in the Amazon DynamoDB table.

Updating the User Interface of the App

You have now created all the supporting code and AWS resources to allow the app to send messages to a friend. All that remains is to update the user interface of the app and make calls to methods in the ChatManager, S3Controller, and DynamoDBController classes in the right places.

[image:] The finished project with the updated user interface can be downloaded from this book’s web page on Sybex.com or anonymously from GitHub at https://github.com/asmtechnology/Chapter13 .AWSForMobileDevelopers.2017.git

The storyboard of the finished application is presented in Figure 13.16.

[image: Image described by caption and surrounding text.]

FIGURE 13.16 Updated chat journey storyboard

Two new scenes have been added to the ChatJourney.storyboard file:

	ChatViewController: This view controller allows two users to send messages to each other. It uses a UITableView to display the messages as they are exchanged and provides a set of user interface controls to allow the user to type a new message and upload an image. Messages sent by the currently authenticated user are shown in green cells, and messages sent by the other user are shown in blue cells.

	UploadImageViewController: This view controller allows the user to select an image file from the iOS photo library and sends the image to the other user.

The complete source code for ChatViewController.swift is presented in Listing 13.2.

Listing 13.2: ChatViewController.swift

import UIKit

class ChatViewController: UIViewController {

 @IBOutlet weak var tableView: UITableView!
 @IBOutlet weak var messageTextField: UITextField!
 @IBOutlet weak var activityIndicator: UIActivityIndicatorView!
 @IBOutlet weak var uploadImageButton: UIButton!
 @IBOutlet weak var sendTextButton: UIButton!
 @IBOutlet weak var scrollView: UIScrollView!

 var from_userId:String?
 var to_userId:String?

 fileprivate var originalScrollViewYOffset: CGFloat = 0.0
 fileprivate var currentChat:Chat?

 override func viewDidLoad() {
 super.viewDidLoad()

 let refreshControl = UIRefreshControl()
 refreshControl.addTarget(self, action: #selector(refresh(_:)),
 for: .valueChanged)
 tableView.refreshControl = refreshControl

 self.activityIndicator.hidesWhenStopped = true
 self.activityIndicator.stopAnimating()
 }

 override func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 if (currentChat == nil) {
 prepareForChat(between: from_userId, and: to_userId)

 } else {

 disableUI()

 self.refreshMessages { () in
 self.messageTextField.isEnabled = true
 self.enableUI()
 }

 }

 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // dispose of any resources that can be re-created
 }

 @IBAction func uploadImage(_ sender: Any) {
 self.performSegue(withIdentifier: "uploadImage", sender: nil)
 }

 @IBAction func sendText(_ sender: Any) {
 self.messageTextField.resignFirstResponder()

 guard let textToSend = self.messageTextField.text,
 let chat = self.currentChat else {
 return
 }

 if textToSend.characters.count == 0 {
 return
 }

 disableUI()

 let chatManager = ChatManager.sharedInstance
 chatManager.sendTextMessage(chat: chat, messageText: textToSend) {
 (error) in

 self.enableUI()

 if let error = error {
 self.displayError(error: error as NSError)
 return
 }

 DispatchQueue.main.async {
 self.tableView.reloadData()
 }
 }
 }

 @IBAction func didEndOnExit(_ sender: Any) {
 self.messageTextField.resignFirstResponder()
 }

 func refresh(_ refreshControl: UIRefreshControl) {

 self.messageTextField.isEnabled = false
 self.uploadImageButton.isEnabled = false
 self.sendTextButton.isEnabled = false

 self.refreshMessages { () in
 self.messageTextField.isEnabled = true
 self.uploadImageButton.isEnabled = true
 self.sendTextButton.isEnabled = true
 refreshControl.endRefreshing()
 }

 }

 private func refreshMessages(postRefreshActions:@escaping (Void)->Void) {

 let chatManager = ChatManager.sharedInstance
 chatManager.refreshAllMessages(chat: self.currentChat!,
 completion: { (error) in

 DispatchQueue.main.async {
 postRefreshActions()
 }

 if let error = error {
 self.displayError(error: error as NSError)
 return
 }

 DispatchQueue.main.async {
 self.tableView.reloadData()
 }
 })
 }

 private func prepareForChat(between sourceUserId:String?,
 and destinationUserId:String?) {
 self.activityIndicator.startAnimating()
 self.messageTextField.isEnabled = false
 self.uploadImageButton.isEnabled = false
 self.sendTextButton.isEnabled = false

 guard let fromUserId = sourceUserId ,
 let toUserId = destinationUserId else {

 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 100,
 userInfo: ["__type":"Error",
 "message":"Could not load chat."])
 displayError(error: error)
 return
 }

 let chatManager = ChatManager.sharedInstance
 chatManager.loadChat(fromUserId: fromUserId, toUserId: toUserId) {
 (error, chat) in
 if let error = error {
 self.displayError(error: error as NSError)
 return
 }

 // save reference to chat object
 self.currentChat = chat

 // refresh message list
 chatManager.refreshAllMessages(chat: chat!, completion: { (error) in
 if let error = error {
 self.displayError(error: error as NSError)
 return
 }

 DispatchQueue.main.async {
 self.activityIndicator.stopAnimating()
 self.messageTextField.isEnabled = true
 self.uploadImageButton.isEnabled = true
 self.sendTextButton.isEnabled = true
 self.tableView.reloadData()
 }
 })
 }

 }

 private func displayError(error:NSError) {

 let alertController =
 UIAlertController(title: error.userInfo["__type"] as? String,
 message: error.userInfo["message"] as? String,
 preferredStyle: .alert)

 let okAction = UIAlertAction(title: "Ok", style: .default,
 handler: nil)
 alertController.addAction(okAction)

 DispatchQueue.main.async {
 self.activityIndicator.stopAnimating()
 self.present(alertController, animated: true, completion: nil)
 }
 }

 private func disableUI() {
 DispatchQueue.main.async {
 self.messageTextField.isEnabled = false
 self.uploadImageButton.isEnabled = false
 self.sendTextButton.isEnabled = false
 self.activityIndicator.startAnimating()
 UIApplication.shared.beginIgnoringInteractionEvents()
 }
 }

 private func enableUI() {
 DispatchQueue.main.async {
 self.uploadImageButton.isEnabled = true
 self.sendTextButton.isEnabled = true
 self.activityIndicator.stopAnimating()
 UIApplication.shared.endIgnoringInteractionEvents()
 }
 }

 // in a storyboard-based application, you will often want to
 // do a little preparation before navigation
 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier?.compare("uploadImage") != .orderedSame {
 return
 }

 if let destinationViewController =
 segue.destination as? UploadImageViewController {
 destinationViewController.currentChat = self.currentChat
 }
 }

}

extension ChatViewController : UITextFieldDelegate {

 public func textFieldDidBeginEditing(_ textField: UITextField) {
 self.originalScrollViewYOffset = scrollView.contentOffset.y
 scrollView.setContentOffset(CGPoint(x: 0, y: 190), animated: true)
 }

 public func textFieldDidEndEditing(_ textField: UITextField) {
 scrollView.setContentOffset(CGPoint(x: 0,
 y: self.originalScrollViewYOffset), animated: true)
 }
}

extension ChatViewController : UITableViewDataSource , UITableViewDelegate {

 func tableView(_ tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int {

 let chatManager = ChatManager.sharedInstance

 if let chat = self.currentChat,
 let messages = chatManager.conversations?[chat] {
 return messages!.count
 }

 return 0
 }

 func tableView(_ tableView: UITableView, cellForRowAt
 indexPath: IndexPath) -> UITableViewCell {

 let chatManager = ChatManager.sharedInstance
 guard let chat = self.currentChat,
 let messages = chatManager.conversations?[chat],
 let message = messages?[indexPath.row],
 let messageText = message.message_text,
 let messageImagePreview = message.mesage_image_preview,
 let senderId = message.sender_id else {
 return UITableViewCell()
 }

 let cognitoIdentityPoolController =
 CognitoIdentityPoolController.sharedInstance
 guard let currentUserID =
 cognitoIdentityPoolController.currentIdentityID else {
 return UITableViewCell()
 }

 if messageText.compare("NA") != .orderedSame {
 // text
 if senderId.compare(currentUserID) == .orderedSame {
 // sent by this user
 let cell = tableView.dequeueReusableCell(withIdentifier:
 "SentTextTableViewCell",
 for: indexPath) as? SentTextTableViewCell

 cell?.messageTextLabel.text = messageText
 return cell!
 } else {
 // sent by friend
 let cell = tableView.dequeueReusableCell(withIdentifier:
 "ReceivedTextTableViewCell",
 for: indexPath) as? ReceivedTextTableViewCell

 cell?.messageTextLabel.text = messageText
 return cell!
 }
 } else {
 // image
 if senderId.compare(currentUserID) == .orderedSame {
 // sent by this user
 let cell = tableView.dequeueReusableCell(withIdentifier:
 "SentImageTableViewCell",
 for: indexPath) as? SentImageTableViewCell

 // replace this with code to show preview image
 cell?.messageImageView.image = UIImage(named: "placeholder")
 return cell!

 } else {
 // sent by friend
 let cell = tableView.dequeueReusableCell(withIdentifier:
 "ReceivedImageTableViewCell",
 for: indexPath) as? ReceivedImageTableViewCell

 // replace this with code to show preview image
 cell?.messageImageView.image = UIImage(named: "placeholder")
 return cell!
 }
 }

 }

 func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {

 }

}

The complete source code of UploadImageViewController.swift is provided in Listing 13.3.

Listing 13.3: UploadImageViewController.swift

import UIKit

class UploadImageViewController: UIViewController {

 @IBOutlet weak var imageView: UIImageView!
 @IBOutlet weak var activityIndicator: UIActivityIndicatorView!

 var currentChat:Chat?
 fileprivate var selectedImage:UIImage?

 override func viewDidLoad() {
 super.viewDidLoad()

 // perform any additional setup after loading the view
 activityIndicator.hidesWhenStopped = true
 activityIndicator.stopAnimating()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // dispose of any resources that can be re-created
 }

 @IBAction func cancel(_ sender: Any) {
 self.dismiss(animated: true, completion: nil)
 }

 @IBAction func selectImage(_ sender: Any) {
 let imagePicker = UIImagePickerController()
 imagePicker.delegate = self
 imagePicker.sourceType = UIImagePickerControllerSourceType.photoLibrary
 imagePicker.allowsEditing = false

 self.present(imagePicker, animated: true, completion: nil)
 }

 @IBAction func sendImage(_ sender: Any) {

 guard let chat = currentChat,
 let image = self.selectedImage else {
 return
 }

 activityIndicator.startAnimating()
 UIApplication.shared.beginIgnoringInteractionEvents()

 let chatManager = ChatManager.sharedInstance
 chatManager.sendImage(chat: chat, message: image) { (error) in
 if let error = error {
 self.displayError(error: error as NSError)
 return
 }

 DispatchQueue.main.async {
 self.activityIndicator.stopAnimating()
 UIApplication.shared.endIgnoringInteractionEvents()
 self.dismiss(animated: true, completion: nil)
 }
 return
 }

 }

 private func displayError(error:NSError) {

 let alertController =
 UIAlertController(title: error.userInfo["__type"] as? String,
 message: error.userInfo["message"] as? String,
 preferredStyle: .alert)

 let okAction = UIAlertAction(title: "Ok", style: .default, handler: nil)
 alertController.addAction(okAction)

 DispatchQueue.main.async {
 self.activityIndicator.stopAnimating()
 UIApplication.shared.endIgnoringInteractionEvents()
 self.present(alertController, animated: true, completion: nil)
 }
 }

}

extension UploadImageViewController : UINavigationControllerDelegate,
 UIImagePickerControllerDelegate {

 public func imagePickerController(_ picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : Any]) {

 if let image = info[UIImagePickerControllerOriginalImage] as? UIImage {
 selectedImage = image
 self.imageView.image = selectedImage
 }

 self.dismiss(animated: true, completion: nil)
 }

 public func imagePickerControllerDidCancel(_ picker:
 UIImagePickerController) {
 self.dismiss(animated: true, completion: nil)
 }

}

Figure 13.17 depicts the chat view and the upload image views while a conversation between two users is underway.

[image: Image described by caption and surrounding text.]

FIGURE 13.17 Chat view and upload image view

Because we have not yet created the code to generate previews of images uploaded to the Amazon S3 image bucket, the chat view uses a placeholder graphic representing an image. This will be rectified in Chapter 14. You can, however, use the Amazon S3 Management Console to examine the S3 bucket and verify that content is being uploaded by the S3Controller class (Figure 13.18).

[image: Image described by caption and surrounding text.]

FIGURE 13.18 Uploaded images are visible in the Amazon S3 bucket.

You can also use the Amazon DynamoDB Management Console and examine the Message table to see what is being written to the table by the DynamoDBController class (Figure 13.19).

[image: Image described by caption and surrounding text.]

FIGURE 13.19 Messages are visible in the Message table.

[image:] You can download the project files created in this chapter from this book’s website on Sybex.com or from GitHub at https://github.com/asmtechnology/Chapter13.AWSForMobileDevelopers.2017.git.

Summary

	The DynamoDBController class has been updated with methods to allow friends to send messages to each other.

	Separate buckets have been created for images and thumbnails.

	The S3Controller class provides methods to upload images to Amazon S3 buckets.

	You need to update the IAM role assumed by authenticated Amazon Cognito identities to allow access to your Amazon S3 buckets.

Chapter 14
Using AWS Lambda to Generate Thumbnails

WHAT’S IN THIS CHAPTER

	[image: images]Create a Node.js function to generate thumbnails.

	[image: images]Package the function and dependencies into a deployment package.

	[image: images]Upload the deployment package to AWS Lambda.

	[image: images]Test the AWS Lambda function.

	[image: images]Update the AWSChat app to download and display thumbnails.

[image:] In Chapter 13 you set up buckets in Amazon S3 and modified the AWSChat application to allow logged-in users to send text messages and images to their friends. Images were uploaded to a designated S3 bucket.

In this chapter you set up a Node.js Lambda function to generate a thumbnail of an image when it is uploaded to Amazon S3 and save the thumbnail in a different bucket. You modify the AWSChat app to display thumbnails in the chat window.

[image:] To follow along with this lesson, download the starter project from this book’s website at Sybex.com or GitHub at https://github.com/ asmtechnology/Chapter14.AWSForMobileDevelopers.2017.git.

You need to ensure that you have followed the instructions presented in Chapters 12 and 13.

You also need to ensure that the following options have been set up correctly in the starter project:

	Lines 15 – 17 of the CognitoUserPoolController.swift file contain the user pool region and id of your Amazon Coginto user pool.

	Lines 21 – 22 of the CognitoUserPoolController.swift file contain the app client id and app client secret to allow your app access to unauthenticated APIs of the user pool.

	Lines 16 – 17 of the CognitoIdentityPoolController.swift file contain the region and id of your Amazon Cognito identity pool.

	Lines 15 – 16 of the S3Controller.swift file contain the names of the buckets you have created for images and thumbnails.

If you intend to use Google sign-in, then in addition to the preceding items, you need to ensure that:

	You have set up an application on the Google developer console.

	You have included the GoogleService-Info.plist file in your Xcode project.

	Line 24 of AppDelegate.swift contains the Google client id.

If you intend to use Facebook login, then in addition to the preceding items, you need to ensure that:

	The FacebookAppID property in the Info.plist file is set up correctly.

	You update the URL scheme with the Facebook application id.

	Line 39 of AppDelegate.swift references the correct URL scheme.

Creating a Node.JS Lambda Function Deployment Package

In Chapter 9 you created an AWS Lambda function that was used to copy records from Amazon Cognito Sync datasets to Amazon DynamoDB. In this section you create a Node.JS Lambda function that uses the Async and GraphicsMagick libraries to create thumbnails. Because these libraries are not available in the AWS Lambda execution environment, you must package your Node.JS function code and all dependencies into a zip file and upload the zip file to AWS Lambda

Before you can get started, you need to ensure you have installed Node.JS on your computer.

	Visit the Node.JS website at https://nodejs.org/ and download the installer for version 7.9.0 (Figure 14.1).

[image: Window shows home page of Node.JS installer’s latest version having options like download for macOS(x64) with two versions like v6.10.2 LTS and v7.9.0 current.]

FIGURE 14.1 Download the installer for the latest version of Node.JS on your computer.

	Click the download link to download an installer to your computer. Launch the installer and follow the onscreen instructions to install Node.JS on your computer (Figure 14.2).

[image: Image described by caption and surrounding text.]

FIGURE 14.2 Node.JS installer

	To check that you have installed Node.JS correctly on a Mac, launch the Terminal application, type the following command, and press Enter.

node --version

The output in the terminal window should contain the version number of the Node.JS runtime:

v7.9.0

	After you have verified that Node.JS has been installed correctly on your computer, create a folder on your hard disk called ThumbnailGenerator and navigate to the new folder in a Terminal window.

	Type the following command to download the Async library and press Enter:

npm install async

	Now type the following command to install the GraphicsMagick library and press Enter:

npm install gm

	Using your favorite text editor, create a plain text file called index.js in the ThumbnailGenerator folder and update the contents of the new file to match Listing 14.1.

Listing 14.1: index.js

// dependencies
var async = require('async');
var AWS = require('aws-sdk');
var gm = require('gm').subClass({ imageMagick: true });
var util = require('util');

// constants
var MAX_WIDTH = 400;
var MAX_HEIGHT = 400;

// get reference to S3 client
var s3 = new AWS.S3();

exports.handler = function(event, context, callback) {

 // read options from the event
 console.log("Reading options from event:\n",
 util.inspect(event, {depth: 5}));

 // source and destination buckets
 //
 // this code assumes that your source and destination buckets
 // differ only by the last word of the name.
 //
 // For example:
 //
 // source (image) bucket name =
 // com.asmtechnology.awschat.images
 //
 // destination (thumbnail) bucket name =
 // com.asmtechnology.awschat.thumbnails
 var srcBucket = event.Records[0].s3.bucket.name;

 var components = srcBucket.split('.');
 var dstBucket = "";
 for (i = 0; i < components.length - 1; i++) {
 dstBucket += components[i] + ".";
 }
 dstBucket += "thumbnails";

 console.log("Source bucket name:\n", srcBucket);
 console.log("Destination bucket name:\n", dstBucket);

 // object key may have spaces or unicode non-ASCII characters
 var srcKey = decodeURIComponent(event.Records[0].s3.object.key.
 replace(/\+/g, " "));
 var dstKey = "thumbnail-" + srcKey;

 console.log("Source file name:\n", srcKey);
 console.log("Destination file name:\n", dstKey);

 // source and destination buckets must not be the same
 if (srcBucket == dstBucket) {
 callback("source and destination buckets must not be the same");
 return;
 }

 var typeMatch = srcKey.match(/\.([^.]*)$/);
 if (!typeMatch) {
 callback("Unknown image type.");
 return;
 }

 var imageType = typeMatch[1];
 if (imageType != "png") {
 callback('Unsupported image type: ${imageType}');
 return;
 }

 // download the image from S3,
 // transform,
 // and upload to a different S3 bucket
 async.waterfall([

 function download(next) {
 // download the image from S3 into a buffer
 s3.getObject({
 Bucket: srcBucket,
 Key: srcKey},
 next);
 },

 function transform(response, next) {
 gm(response.Body).size(function(err, size) {

 // compute dimensions of scaled image
 var scalingFactor = Math.min(
 MAX_WIDTH / size.width,
 MAX_HEIGHT / size.height
);
 var width = scalingFactor * size.width;
 var height = scalingFactor * size.height;

 // scale the image
 this.resize(width, height)
 .toBuffer(imageType, function(err, buffer) {
 if (err) {
 next(err);
 } else {
 next(null,
 response.ContentType, buffer);
 }
 });
 });
 },

 function upload(contentType, data, next) {
 // save the scaled image
 s3.putObject({
 Bucket: dstBucket,
 Key: dstKey,
 Body: data,
 ContentType: contentType
 }, next);
 }],

 function (err) {
 if (err) {
 console.error('Error: ' + err);
 } else {
 console.log('Successfully created ' + dstKey);
 }
 callback(null, "function finished execution.");
 }
);
};

A Brief Analysis of the AWS Lambda Function Code

If you are not a Node.js developer and are wondering what the code in the AWS Lambda function does, read on.

The AWS Lambda function starts by importing a number of modules, including the async and gm (GraphicsMagick) modules. Every Node.js Lambda function has a handler method defined as follows.

exports.handler = function(event, context, callback) {
/// function code goes here
}

When a new file is uploaded to the image’s bucket, this handler function is executed by the AWS Lambda runtime and receives three values:

	event: The event that triggered the AWS Lambda function

	context: An object that provides information on the AWS Lambda runtime

	callback: A function that the AWS Lambda function can use to indicate success or failure

In the handler method, you first extract the name of the source bucket and compute the name of the destination bucket:

// source and destination buckets
var srcBucket = event.Records[0].s3.bucket.name;

var components = srcBucket.split('.');
var dstBucket = "";
for (i = 0; i < components.length - 1; i++) {
 dstBucket += components[i] + ".";
}
dstBucket += "thumbnails";

Recall that in Chapter 13, you created Amazon S3 buckets for images and thumbnails:

	com.asmtechnology.awschat.images

	com.asmtechnology.awschat.thumbnails

The function then computes the name of the destination file by prepending the string "thumbnail-" to the name of the source file:

var srcKey = decodeURIComponent(event.Records[0].s3.object.key.
replace(/\+/g, " "));
var dstKey = "thumbnail-" + srcKey;

The function then extracts the extension of the file and ensures that it is .png before proceeding:

var imageType = typeMatch[1];
if (imageType != "png") {
 callback('Unsupported image type: ${imageType}');
 return;
}

The function uses the async library to execute a list of asynchronous functions in a predefined sequence. The async library simplifies the task of executing a chain of asynchronous functions and having asynchronous functions wait for the results of the previous function in the chain.

The AWS Lambda function calls the async.waterfall function with an array of functions to be executed sequentially, along with a final callback function that will be called when all the functions in the array have finished executing. The functions that are executed in sequence perform the following tasks:

	Read the image that has been uploaded to the images bucket:

function download(next) {
 s3.getObject({
 Bucket: srcBucket,
 Key: srcKey
 },
 next);
}

	Scale the image using the GraphicsMagick library:

function transform(response, next) {

 gm(response.Body).size(function(err, size) {

 // compute dimensions of scaled image
 var scalingFactor = Math.min(
 MAX_WIDTH / size.width,
 MAX_HEIGHT / size.height
);
 var width = scalingFactor * size.width;
 var height = scalingFactor * size.height;

 // scale the image
 this.resize(width, height)
 .toBuffer(imageType, function(err, buffer) {
 if (err) {
 next(err);
 } else {
 next(null, response.ContentType, buffer);
 }
 });
 });
}

	Save the scaled image to the thumbnail bucket:

function upload(contentType, data, next) {
 // save the scaled image
 s3.putObject({
 Bucket: dstBucket,
 Key: dstKey,
 Body: data,
 ContentType: contentType
 }, next);
}

Save your changes to the index.js file. The contents of the ThumbnailGenerator folder should resemble Figure 14.3.

[image: Image described by caption and surrounding text.]

FIGURE 14.3 Contents of the ThumbnailGenerator folder in Finder

The actual content of the node_modules subfolder may differ slightly, but you should have directories called gm and async within the node_modules folder.

Now that you have created your AWS Lambda function, it is time to zip up the index.js file and the node_modules folder into a deployment package.

	Open a Terminal window and change your working directory to the ThumbnailGenerator folder.

	To verify that you are in the correct directory, run the following command to print the contents of the current working directory:

ls -a

The output in your Terminal window should resemble the following:

DS_Store index.js node_modules

	After you have verified that you are in the correct directory, run the following command to create a deployment package:

zip ThumbnailGenerator.zip * -r

A file called ThumbnailGenerator.zip is created in the same directory. Upload this zip file to AWS Lambda in the “Creating an AWS Lambda Function Using the AWS Management Console” section later in this chapter.

Updating the AWS Lambda Execution Service Role

In this section you update the AWSChatLambdaExecutionRole service role that you created in Chapter 12 with additional permissions to allow access to Amazon S3. This role is assumed by the AWS Lambda function that you create in the next section.

	Launch your web browser and log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the IAM service home page.

	Click on the Roles link to access a list of existing roles in your account, and click the role called AWSChatLambdaExecutionRole from the list (Figure 14.4).

[image: Window shows AWS account’s IAM roles list under roles section with its properties like role name, description, and creation time.]

FIGURE 14.4 List of IAM roles in your AWS account

	You are taken to a page where you can update the permissions attached to the role. Click the Attach Policy button under the Managed Policies section of the Permissions tab (Figure 14.5).

[image: Window shows addition of policy to IAM role list having permissions with managed policies with its description like attach policy along with name and actions.]

FIGURE 14.5 Adding a policy to the IAM role

	Select the AmazonS3FullAccess policy from the list of available policies and click the Attach Policy button at the bottom of the screen (Figure 14.6).

[image: Window shows AmazonS3FullAccess policy having attach policy with policy type, name, attached entities, creation time, edited time, et cetera.]

FIGURE 14.6 Select the AmazonS3FullAccess policy.

The new policy is added to the role, and you see the AmazonS3FullAccess policy among the list of policies applied to the role (Figure 14.7).

[image: Image described by caption and surrounding text.]

FIGURE 14.7 The AmazonS3FullAccess policy is present in the list of policies attached to the role.

Creating an AWS Lambda Function Using the AWS Management Console

Follow the steps in this section to create an AWS Lambda function with the AWS Management Console.

	Navigate to the AWS Lambda service home page (Figure 14.8). Ensure that the AWS Lambda Management Console is set to the same region in which you have created your Amazon Cognito, Amazon DynamoDB, and Amazon S3 resources.

[image: Window shows AWS Lambda management console having compute with Lambda, developer tools, application services, mobile services, networking & content delivery, migration, game development, et cetera.]

FIGURE 14.8 Accessing the AWS Lambda Management Console

	Click the Create an AWS Lambda function button to start the process of creating a new Lambda function (Figure 14.9).

[image: Image described by caption and surrounding text.]

FIGURE 14.9 Creating an AWS Lambda function

	You are asked to select a blueprint for the function. Use the runtime drop-down to select the Node.js 6.10 runtime (Figure 14.10), and click the Blank Function blueprint.

[image: Window shows blank function blue print having options like blank function, kinesis-firehose-syslog-to-json, inspector-scheduled-run, alexa-skill-kit-sdk-triviaskill, et cetera.]

FIGURE 14.10 Select the Blank Function blueprint.

	You are asked to specify an event that triggers the AWS Lambda function. Click the event source placeholder on the page to reveal a context menu that contains a list of standard event sources. Select S3 from the context menu (Figure 14.11).

[image: Window shows event source with configure triggers like cloudwatch events, cloudwatch logs, codecommit, cognito sync trigger, dynamodb, kinesis, S3, and SNS.]

FIGURE 14.11 Select S3 as the event source.

You are presented with options to customize the trigger (Figure 14.12).

[image: Image described by caption and surrounding text.]

FIGURE 14.12 Configuring the Amazon S3 trigger

	Ensure the following options are set up on the screen, and click Next. You need to provide the name of the Amazon S3 bucket that you created in Chapter 13 for images.

	Bucket: provide the name of your image bucket

	Event type: Object Created (All)

	Enable trigger: Checked

	On the next screen, you are asked to provide some additional information on the new AWS Lambda function including a name, a short description, and the source code of the function (Figure 14.13). Provide the following values on this screen:

[image: Image described by caption and surrounding text.]

FIGURE 14.13 Provide a name and description for the AWS Lambda function.

	Name: ThumbnailGenerator

	Description: Generate thumbnail from an Amazon S3 bucket

	Runtime: Node.js 6.10

	Code entry type: Upload a .ZIP file

	Click the Upload button and locate the ThumbnailGenerator.zip file that you created earlier. Scroll down to the AWS Lambda function handler and role section and ensure the following options are selected (Figure 14.14):

[image: Image described by caption and surrounding text.]

FIGURE 14.14 Specifying the execution role

	Handler: index.handler

	Role: Choose an existing role

	Existing role: AWSChatLambdaExecutionRole

	Expand the Advanced settings options on the page, and increase the AWS Lambda function timeout value to 4 minutes (Figure 14.15).

[image: Image described by caption and surrounding text.]

FIGURE 14.15 Change the AWS Lambda function timeout to 4 minutes.

	Scroll down to the bottom of the AWS Lambda function configuration page and click the Next button to move to the review screen.

The review screen contains a summary of the AWS Lambda function that you are about to create (Figure 14.16).

[image: Image described by caption and surrounding text.]

FIGURE 14.16 Click on the Create Function button to finish creating the AWS Lambda function.

	Scroll down to the bottom of the page and click the Create function button.

Testing the AWS Lambda Function

Now that you have created the AWS Lambda function to generate thumbnails, it is time to test the Lambda function using the AWS Lambda Management Console.

	To get started, navigate to the contents of the Amazon S3 bucket that contains the images (Figure 14.17), and copy the name of one of the files in the bucket to the clipboard.

[image: Image described by caption and surrounding text.]

FIGURE 14.17 Contents of the image bucket

	Navigate to the AWS Lambda Management Console and click the ThumbnailGenerator function from the list of available functions (Figure 14.18).

[image: Image described by caption and surrounding text.]

FIGURE 14.18 List of AWS Lambda functions in your AWS account

	This takes you to the AWS Lambda function dashboard where you can test (and edit) the Lambda function. Click the Test button (Figure 14.19).

[image: Image described by caption and surrounding text.]

FIGURE 14.19 Testing an AWS Lambda function

A dialog box appears in the web browser, asking you to configure a test event (Figure 14.20).

[image: Image described by caption and surrounding text.]

FIGURE 14.20 Configuring a Test event

	Replace the sample event data prepopulated in the dialog box with the following event:

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "s3": {
 "configurationId": "testConfigRule",
 "object": {
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901",
 "key": "*** specify file name ***",
 "size": 1024
 },
 "bucket": { "arn": "*** specify the ARN of the image bucket ***",
 "name": "*** specify the name of the image bucket ***",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 }
 },
 "s3SchemaVersion": "1.0"
 },
 "responseElements": {
 "x-amz-id-2":
 "EXAMPLE123/5678abcdefghijklambdaisawesome/mnopqrstuvwxyzABCDEFGH",
 "x-amz-request-id": "EXAMPLE123456789"
 },
 "awsRegion": "us-east-1",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "eventSource": "aws:s3"
 }
]
}

Paste the name of the image file you copied in step 1 of this section into the obkect.key attribute. Specify the ARN of your image bucket in the bucket.arn attribute. Specify the name of your image bucket in the bucket.image attribute.

	Click the Save and Test button in the dialog box. AWS Lambda executes your Lambda function with the test event you have configured and presents the results on your screen (Figure 14.21).

[image: Image described by caption and surrounding text.]

FIGURE 14.21 Results of testing the AWS Lambda function

Your screen contains a message indicating that the test has passed. You also have access to the console log generated by the AWS Lambda function.

If you switch over to the Amazon S3 Management Console and look at the contents of the bucket that you created for thumbnails, you find a new thumbnail file corresponding to the image file in the image bucket (Figure 14.22).

[image: Image described by caption and surrounding text.]

FIGURE 14.22 A thumbnail has been generated by the AWS Lambda function.

Updating the S3Controller Class

In Chapter 13 you created the S3Controller class and added a method to this class to upload files. In this section you add a method to download files.

To get started, open the AWSChat Xcode project and click the S3Controller.swift file in the Project Navigator. Add a method to this class called downloadThumbnail(localFilePath, remoteFileName, completion) and implement this method as follows:

func downloadThumbnail(localFilePath:String, remoteFileName:String,
 completion:@escaping (Error?)->Void) {

 let s3Key = "\(remoteFileName).png"
 let fileURL = URL(fileURLWithPath: localFilePath)

 let expression = AWSS3TransferUtilityDownloadExpression()
 expression.progressBlock = {(task, progress) in
 print("Downloaded: \(progress.fractionCompleted)%")
 }

 let transferUtility = AWSS3TransferUtility.default()
 let task = transferUtility.download(to: fileURL,
 bucket: thumbnailsBucketName,
 key: s3Key,
 expression: expression) {
 (task, url, data, error) in

 let fileManager = FileManager.default

 if error != nil {

 if fileManager.fileExists(atPath: localFilePath) == true {
 try? fileManager.removeItem(atPath: localFilePath)
 }

 completion(error)
 return
 }

 if fileManager.fileExists(atPath: localFilePath) == false {
 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 600,
 userInfo: nil)
 completion(error)
 return
 }

 let data = NSData(contentsOf: fileURL)
 if data?.length == 0 {

 try? fileManager.removeItem(atPath: localFilePath)

 let error = NSError(domain: "com.asmtechnology.awschat",
 code: 600,
 userInfo: nil)
 completion(error)
 return
 }

 completion(nil)
 }

 task.continueWith { (task) -> Any? in
 if let error = task.error as? NSError {
 completion(error)
 return nil
 }

 return nil
 }

 }
}

The parameters of this method follow:

	localFilePath: A path in the application’s documents directory where the downloaded file should be saved

	remoteFileName: A key in the thumbnail Amazon S3 bucket

	completion: A completion block that is called to report the result of the download process

The downloadThumbnail(localFilePath, remoteFileName, completion) method downloads a file from the com.asmtechnology.awschat.thumbnails bucket that was created in the previous chapter. The bucket is populated using the AWS Lambda function you created in this chapter.

You download the image by calling the downloadFile(to, bucket, key, expression, completionHandler) method on an AWSS3TransferUtility instance.

AWSS3TransferUtility is part of the AWS SDK for iOS and provides a convenient interface to upload and download files from Amazon S3 buckets. The downloadFile method has the following parameters:

	to: A path in the application’s documents or temp directories where the file will be saved

	bucket: The name of the Amazon S3 bucket from which the file should be downloaded

	key: The name of the item in the Amazon S3 bucket that you want to download

	expression: An instance of the AWSS3TransferUtilityDownloadExpression class that allows you to customize aspects of the download behavior. For instance, you can use an expression to provide a block that is called by the Amazon S3 transfer utility with progress updates while the file is downloading.

	completionHandler: A block that is called when the download process has completed

As with most methods in the AWS SDK, the downloadFile method is asynchronous and returns an AWSTask instance that can be used to execute a completion block when the task has finished.

You have encountered several methods in the Amazon Cognito and Amazon DynamoDB controller classes that return AWSTask instances, and in each of these cases you have used the continueWith(block) method on the AWSTask instance to execute code after the task completes.

In all the situations you have used AWSTask so far, the task having completed implies results are available to examine in the completion block that was passed into the continueWith(block) method.

Although the AWSTask instance returned by downloadFile works in the same way, there is a subtle difference—the task being complete implies the AWS SDK has started downloading the file, and not that the file has finished downloading.

It is for this reason that the last parameter to downloadFile() is a completion handler that is called when the file finishes uploading.

The downloadFile() method creates a zero-byte file and then begins to download data into the file in chunks. If the file does not exist in the Amazon S3 bucket, the downloadFile() method calls the completion handler with an error but does not delete the zero-byte file in the documents directory of the app. You need to delete this file manually in the completion handler:

let fileManager = FileManager.default

if error != nil {

 if fileManager.fileExists(atPath: localFilePath) == true {
 try? fileManager.removeItem(atPath: localFilePath)
 }

 completion(error)
 return
}

Updating the ChatManager Class

You need to make a small change to the sendImage(chat, message, completion) method of the ChatManager.swift file.

	Open the ChatManager.swift file by clicking it once in the Xcode Project Navigator.

	Update Line 197 of the file from this:

let previewFileName = "NA"

to

let previewFileName = "thumbnail-\(fileName)"

	Save the file when you have finished making the change.

Updating the User Interface of the App

To update the app’s user interface, follow these steps.

	Open the ChatViewController.swift file by clicking it once in the Xcode Project Navigator.

	Replace lines 295 and 296 in the file, which currently read as follows:

// replace this with code to show preview image
cell?.messageImageView.image = UIImage(named: "placeholder")

with this line:

cell?.loadImage(imageFile:messageImagePreview)

	Replace lines 303 and 304 in the file, which currently read as follows:

// replace this with code to show preview image
cell?.messageImageView.image = UIImage(named: "placeholder")

with this line:

cell?.loadImage(imageFile:messageImagePreview)

	Save the file when you have finished making the change. Open the SentImageTableViewCell.swift file and add the following method to the file:

func loadImage(imageFile:String) {

 // image exists locally; use local copy
 let documentsDirectory =
 NSSearchPathForDirectoriesInDomains(.documentDirectory,
 .userDomainMask, true)[0]
 let localFilePath = documentsDirectory.appending("/\(imageFile).png")

 let fileManager = FileManager.default
 if fileManager.fileExists(atPath: localFilePath) {
 self.messageImageView.image = UIImage(contentsOfFile: localFilePath)
 return
 }

 // image does not exist locally;
 // download from S3 and save to documents directory
 self.messageImageView.image = UIImage(named: "placeholder")

 let s3Controller = S3Controller.sharedInstance
 s3Controller.downloadThumbnail(localFilePath: localFilePath,
 remoteFileName: imageFile) { (error) in
 if error != nil {
 return
 }

 DispatchQueue.main.async {
 self.messageImageView.image = UIImage(contentsOfFile:
 localFilePath)
 self.setNeedsLayout()
 }
 }
}

	Open the ReceivedImageTableViewCell.swift file and add the following method to the file:

func loadImage(imageFile:String) {

 // image exists locally; use local copy
 let documentsDirectory =
 NSSearchPathForDirectoriesInDomains(.documentDirectory,
 .userDomainMask, true)[0]
 let localFilePath = documentsDirectory.appending("/\(imageFile).png")

 let fileManager = FileManager.default
 if fileManager.fileExists(atPath: localFilePath) {
 self.messageImageView.image = UIImage(contentsOfFile: localFilePath)
 return
 }

 // image does not exist locally;
 // download from S3 and save to documents directory
 self.messageImageView.image = UIImage(named: "placeholder")

 let s3Controller = S3Controller.sharedInstance
 s3Controller.downloadThumbnail(localFilePath: localFilePath,
 remoteFileName: imageFile) { (error) in
 if error != nil {
 return
 }

 DispatchQueue.main.async {
 self.messageImageView.image = UIImage(contentsOfFile:
 localFilePath)
 self.setNeedsLayout()
 }
 }
}

	Save both files and run the project in the iOS Simulator or an actual device. Open a chat with a friend and send them an image using the upload button. You will see a thumbnail of the image appear in the chat window.

[image:] You can download the project files created in this chapter from this book’s website on Sybex.com or on GitHub at https://github.com/asmtechnology/Chapter14.AWSForMobileDevelopers.2017.git.

Summary

	A deployment package consists of your AWS Lambda function code along with any dependencies.

	You can use the AWS Lambda Management Console to upload a deployment package and create a Lambda function.

	The S3Controller class has been updated with a new method to download thumbnails from an Amazon S3 bucket.

	You need to update the IAM role assumed by authenticated Amazon Cognito identities to allow access to your Amazon S3 image and thumbnail buckets.

PART III
AWS for Android Developers

	CHAPTER 15: Integrating the AWS SDK for Android with Android Studio

	CHAPTER 16: Implementing User Signup and Login Using Amazon Cognito User Pools

	CHAPTER 17: Implementing Login Using Facebook

	CHAPTER 18: Implementing Login Using Google

	CHAPTER 19: Accessing Amazon DynamoDB

	CHAPTER 20: Adding AWSChat Support with Amazon DynamoDB and Amazon S3

	CHAPTER 21: Using AWS Lambda to Generate Thumbnails

Chapter 15
Integrating the AWS SDK for Android with Android Studio

WHAT’S IN THIS CHAPTER

	[image: images]Integrating the AWS SDK into an Android Studio project using Gradle.

	[image: images]Integrating the AWS SDK into an Android Studio project by importing .jar files.

[image:] The AWS Software Development Kit (SDK) for Android is an open-source software development kit, distributed under an Apache Open Source license. The SDK consists of a library, code samples, and documentation to help you build Android applications that can connect to services in the Amazon cloud. To use the SDK in an Android app, you must ensure that you are using Android Studio and your app is built for Android 2.3.3 (API Level 10) or higher.

The AWS SDK for Android is an open-source SDK. If you would like to access the source code for the SDK, you can do so by cloning the Git repository at https://github .com/aws/aws-sdk-android.

In this chapter you learn about the different ways in which you can integrate the AWS SDK for Android with a new or existing Android Studio project.

Integrating the AWS SDK for Android Using Gradle

Gradle is a build system for Android projects that is integrated with Android Studio. If you intend to use Gradle for builds and want to use the AWS SDK for Android in your app, perform the following steps:

	Open your Android project in Android Studio.

	Ensure the project tool window is visible. If it is not, use the View ➢ Tool Windows ➢ Project menu item.

	Within the project tool window, switch to the Project view mode. You can switch view modes using the drop-down menu located at the top-left corner of the project tool window (Figure 15.1).

[image: Image described by caption and surrounding text.]

FIGURE 15.1 Selecting a view mode in the Android Studio project window

	Double-click the build.gradle file in the App folder within the project tool window (Figure 15.2).

[image: Image described by caption and surrounding text.]

FIGURE 15.2 Accessing the app-level build.gradle file

	Scroll down to the dependencies section of the file. Add the following rows to add the AWS Mobile SDK core and Amazon Cognito Identity Provider dependencies:

compile 'com.amazonaws:aws-android-sdk-core:2.2.+'
compile 'com.amazonaws:aws-android-sdk-cognitoidentityprovider:2.2.+'

The contents of the build.gradle file should resemble Listing 15.1.

Listing 15.1: build.gradle File

apply plugin: 'com.android.application'

android {
 compileSdkVersion 25
 buildToolsVersion "25.0.2"
 defaultConfig {
 applicationId "com.example.abhishekmishra.awssdkwithgradle"
 minSdkVersion 18
 targetSdkVersion 25
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner
 "android.support.test.runner.AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-annotations'
 })
 compile 'com.android.support:appcompat-v7:25.3.0'
 compile 'com.android.support.constraint:constraint-layout:1.0.2'
 testCompile 'junit:junit:4.12'
 compile 'com.amazonaws:aws-android-sdk-core:2.2.+'
 compile 'com.amazonaws:aws-android-sdk-cognitoidentityprovider:2.2.+'
}

	Add additional dependencies to the section for the individual AWS services that you intend to use in the project. Table 15.1 shows the complete list of available dependencies.

TABLE 15.1 Gradle Dependencies for the AWS SDK.

	Dependency

	build.gradle Value

	AWS Mobile SDK core

	com.amazonaws:aws-android-sdk-core:2.2.+

	Amazon API Gateway

	com.amazonaws:aws-android-sdk-apigateway-core:2.2.+

	Auto Scaling

	com.amazonaws:aws-android-sdk-autoscaling:2.2.+

	Amazon Cloud Watch

	com.amazonaws:aws-android-sdk-cloudwatch:2.2.+

	Amazon Cognito Sync

	com.amazonaws:aws-android-sdk-cognito:2.2.+

	Amazon Cognito Identity Provider

	com.amazonaws:aws-android-sdk- cognitoidentityprovider:2.2.+

	Amazon DynamoDB

	com.amazonaws:aws-android-sdk-ddb:2.2.+

	Amazon DynamoDB Object Mapper

	com.amazonaws:aws-android-sdk-ddb-mapper:2.2.+

	Amazon EC2

	com.amazonaws:aws-android-sdk-ec2:2.2.+

	Elastic Load Balancing

	com.amazonaws:aws-android-sdk-elb:2.2.+

	AWS IoT

	com.amazonaws:aws-android-sdk-iot:2.2.+

	Amazon Kinesis

	com.amazonaws:aws-android-sdk-kinesis:2.2.+

	AWS Key Management Service (KMS)

	com.amazonaws:aws-android-sdk-kms:2.2.+

	Amazon Lex

	com.amazonaws:aws-android-sdk-lex:2.3.4@aar

	AWS Lambda

	com.amazonaws:aws-android-sdk-lambda:2.2.+

	Amazon Machine Learning

	com.amazonaws:aws-android-sdk-machinelearning:2.2.+

	Amazon Mobile Analytics

	com.amazonaws:aws-android-sdk-mobileanalytics:2.2.+

	Amazon Pinpoint

	com.amazonaws:aws-android-sdk-pinpoint:2.3.5

	Amazon Polly

	com.amazonaws:aws-android-sdk-polly:2.3.4

	Amazon S3

	com.amazonaws:aws-android-sdk-s3:2.2.+

	Amazon Simple DB

	com.amazonaws:aws-android-sdk-sdb:2.2.+

	Amazon SES

	com.amazonaws:aws-android-sdk-ses:2.2.+

	Amazon SNS

	com.amazonaws:aws-android-sdk-sns:2.2.+

	Amazon SQS

	com.amazonaws:aws-android-sdk-sqs:2.2.+

You have now successfully added the AWS SDK for Android to your Android Studio project using Gradle, and your project should be able to build and run on an Android Emulator or device without issues.

Integrating the AWS SDK for Android by Importing JAR Files

You can also integrate the AWS SDK for Android in an Android Studio by importing the JAR files for the SDK into the project. To start with, download the AWS SDK for Android from https://aws.amazon.com/mobile/sdk/.

The SDK is downloaded as a .zip file, which you then need to extract to a suitable location on your computer. Individual .jar files for the components of the AWS SDK for Android are located within the lib subdirectory of the extracted zip file.

Copy the following core .jar files along with .jar files for any other AWS services that you need to your project’s app/libs/ directory:

	aws-android-sdk-core-2.40.jar

	aws-android-sdk-cognito-2.4.0.jar

	aws-android-sdk-cognitoidentityprovider-2.4.0.jar

Launch Android Studio and select the Tools ➢ Android ➢ Sync Project with Gradle Files menu item.

You have now successfully added the AWS SDK for Android to your Android Studio project by importing individual .jar files manually. Your project should be able to build and run on an Android Emulator or device without issues.

[image:] You can download the project files created in this chapter from this book’s website on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter15.AWSForMobileDevelopers.2017.git.

Summary

	You can include the AWS SDK for Android in an Android Studio project using Gradle.

	You can also include the AWS ASDK for Android in an Android Studio project by importing .jar files directly.

Chapter 16
Implementing User Signup and Login Using Amazon Cognito User Pools

WHAT’S IN THIS CHAPTER

	[image: images]Create an Amazon Cognito user pool using the AWS Management Console.

	[image: images]Use an Amazon Cognito user pool from an Android app to allow new users to register.

	[image: images]Use an Amazon Cognito user pool from an Android app to allow registered users to log in to your app.

	[image: images]Examine the list of registered users in the user pool using the AWS Management Console.

[image:] In this chapter you create a new Android application called AWSChat and implement new user signup and login features in the app with Amazon Cognito user pools. Subsequent chapters in this section of the book add features to this application.

This chapter has certain sections in common with Chapter 9, which discussed implementing similar signup and login features in an iOS application.

[image:] You can download the project files created in this chapter from this book’s web page on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter16.AWSForMobileDevelopers.2017.git.

The sample project that accompanies this chapter uses the asmtechnology.com.awschat namespace. If you would like to change the namespace under which the files are created, open the AndroidManifest.xml file and perform the following steps for each component of the namespace that you want to change.

	Locate the package="asmtechnology.com.awschat" attribute of the manifest tag.

	Select the component of the namespace that you want to rename.

	Right click the component to reveal a context menu and select the Refactor ➢ Rename menu item.

	Click the Rename Package button in the dialog box that appears and provide a new value for the component of the namespace you want to change.

	Click the Refactor button to finish changing the value of the component of the namespace.

Introducing Amazon Cognito User Pools

Amazon Cognito is a service that lets you create a cloud-based database of users for your mobile applications. Amazon Cognito provides all the back-end features and infrastructure that are required to implement a full-fledged user signup and login system. This includes support for Short Message Service (SMS)/e-mail verification, password resets, and multi-factor authentication (MFA).

Amazon Cognito consists of three services:

	User Pools: A user pool is a database of users who use your app. Amazon Cognito user pools offer the necessary back-end support your app needs to implement full-fledged login and signup features. Users can be added to the user pool using a suitable screen in your app or directly through the AWS Management Console.

	Federated Identities: An identity pool is a database of identities allowing you to obtain a set of temporary credentials to access other AWS services such as Amazon S3 and Amazon DynamoDB. AWS federated identities allow you to create unique identities in an identity pool and link these to users who have authenticated with Amazon Cognito user pools or third-party providers such as Facebook and Google.

	Amazon Cognito Sync: This service provides the ability to sync small amounts of data between copies of your app running on different devices, provided the same user has signed in to these apps. The data is stored locally on the device, and Amazon Cognito Sync handles the complexities involved in maintaining consistency between copies of the data on different devices.

Examining the AWSChat Android Studio Project

The chapters in this section of the book add features to an Android chat application called AWSChat. To get started, download the starter project from this book’s website at Sybex.com or GitHub at https://github.com/asmtechnology/Chapter16 .AWSForMobileDevelopers.2017.git.

The starter project contains three activities:

	Login activity: Managed by the LoginActivity class

	Signup activity: Managed by the SignupActivity class

	Home activity: Managed by the HomeActivity class

The user interface for the login and signup activities is presented in Figure 16.1. The home activity does not have user interface elements on it at the moment. You add features to the home activity in subsequent chapters of the book.

[image: Image described by caption and surrounding text.]

FIGURE 16.1 User interface of the Login and Signup activities

[image: Window shows accessing amazon cognito service with mobile services having mobile hub, cognito, device farm, mobile analytics, and pinpoint.]

FIGURE 16.2 Accessing the Amazon Cognito service home page

When the app is launched, users are presented with the login activity and asked to provide a username and password. After they log in successfully, they are taken to the home activity. Users also have the option to create a new account if they did not sign up earlier.

Creating an Amazon Cognito User Pool

Before you can write code in the Android app to log in/sign up users, you need to create an Amazon Cognito user pool to support your app’s users. To configure Amazon Cognito, you should use an IAM user with administrative privileges.

Sharing a User Pool Between the iOS and Android Apps

In Chapter 9, you created an Amazon Cognito user pool called AWSChatUserPool to support the iOS version of the AWSChat app. If you would like to allow signed-up users to use their accounts interchangeably between the iOS and Android versions of the AWSChat app or to send messages to other users of the app regardless of which platform they are using, you should use the same user pool for both the iOS and the Android versions of the app.

If you have not created a user pool called AWSChatUserPool in Chapter 9, follow all the steps in this section. If you have already created the user pool in Chapter 9 for the iOS app and would like to extend the user pool to support the Android app, skip ahead to the section titled “Retrieving the App Client Secret.”

If you have not yet created an IAM user under your root account, refer to the process described in Chapter 3.

	Log in to the IAM console using your dedicated IAM user-specific sign-in link and navigate to the Amazon Cognito service home page (Figure 16.3).

[image: Image described by caption and surrounding text.]

FIGURE 16.3 Amazon Cognito splash screen

	Click the Manage Your User Pools button on the Amazon Cognito splash screen to access a list of existing user pools (Figure 16.3).

	To add a new user pool, click on the Create a User Pool button on the top-right corner of the screen (Figure 16.4). User pools are specific to AWS Regions. Make sure you have set up the AWS Management Console to use the correct region before creating the user pool.

[image: Window shows creation of new user pool with options like your user pools which displays message like you have no user pools (click here to create user pool), and create user pool.]

FIGURE 16.4 Creating a new user pool

Pool Name

Type a name for the new user pool, and click the Step through settings button (Figure 16.5). The user pool name must be between 1 and 128 characters long and cannot be changed after the user pool is created. Pool names can contain uppercase and lowercase letters (a–z, A–Z), numbers (0–9), and the following special characters: + = , . @ and -. To follow along with this lesson, name the user pool AWSChatUserPool.

[image: Image described by caption and surrounding text.]

FIGURE 16.5 Specifying the name of the new user pool

User Attributes

Select the attributes that you require from users when they sign up for your app (Figure 16.6).

[image: Image described by caption and surrounding text.]

FIGURE 16.6 User pool attributes

Attributes can be thought of as fields in a table that contain information on registered users. Every user can have one or more of the following standard attributes:

	address

	birthdate

	email

	family_name

	gender

	given_name

	locale

	middle_name

	name

	nickname

	phone_number

	picture

	preferred_username

	profile

	timezone

	updated_at

	website

Most of these attributes are optional. Place checkmarks next to attributes that you want to make mandatory. Attributes cannot be switched between required and nonrequired after you create the user pool.

[image:] The meaning of the standard attribute names are described in the OpenID Connect specification available at http://openid.net/specs/ openid-connect-core-1_0.html#StandardClaims.

By default, users sign in with their username and password. The username is a fixed value that users cannot change. Certain attributes can be used in place of the username, but they need to be marked as aliases. The email, phone_number, and preferred_username attributes can be marked as aliases.

Phone numbers and e-mail addresses can only be used as aliases after they have been verified. The verification process usually involves the user being sent an e-mail or an SMS message with a code that he needs to enter in a text field in your app. Administrators have the ability to log in to the Amazon Cognito Management Console and mark e-mail addresses and phone numbers manually as having been verified.

Even though the username is not changeable, you can give your users the experience of having the ability to change their usernames by making the preferred_username attribute both required and an alias.

If you need additional attributes to those available in the standard list, you can create custom attributes on the same screen. To follow along with the rest of the lesson, ensure there are no custom attributes defined and that only the e-mail attribute is enabled. Click the Next step button when you are ready to proceed.

Password Security Policy

The next screen allows you to set a password security policy. Using the options on the screen, select the security requirements that you want passwords to adhere to (Figure 16.7).

[image: Image described by caption and surrounding text.]

FIGURE 16.7 Setting up password security requirements for the Amazon Cognito user pool

Ensure the Allow users to sign themselves up option is selected. If it is not, users cannot sign up using your app; you must manually create accounts for them in the user pool using the Amazon Cognito Management Console.

You can also specify the number of days that must elapse before any unused user accounts that were created through the AWS Management Console expire. The default value is 7 days. Click the Next step button to proceed.

MFA and Account Verification

The next screen allows you to enable MFA and e-mail/phone number verification for user accounts (Figure 16.8).

[image: Image described by caption and surrounding text.]

FIGURE 16.8 Multi-Factor Authentication settings for the user pool

When enabled, MFA adds an additional security step when someone attempts to log in to your mobile app. In this additional step, the individual is asked to provide a temporary and unique six-digit numeric code that is generated by an authentication device.

You can also select whether users need to verify their e-mail address or phone number as part of the signup process. If you disable both e-mail address and phone number verification, users cannot reset forgotten passwords.

If you decide to enable phone number verification, Amazon Cognito needs to use Amazon SNS to send SMS messages to users’ devices. For Amazon Cognito to be able to access Amazon SNS, you are prompted to create a new IAM role that can be assumed by Amazon Cognito when communicating with Amazon SNS.

To follow along with this chapter, disable MFA, select the Email verification option, and click the Next step button.

Message Customization

The next screen allows you to customize the text of the e-mail and SMS verification message (Figure 16.9).

[image: Image described by caption and surrounding text.]

FIGURE 16.9 Customizing e-mail and SMS verification messages

You do not need to change these messages to follow along with the chapters in this book. However, if you do choose to do so, ensure that your messages contain the {####} placeholder string. Amazon Cognito replaces the placeholder string with a four-digit verification code that the user must enter into your app as part of the signup process. Click the Next step button to proceed.

Cost Allocation Tags

The next screen allows you to add cost allocation tags that can track your AWS costs (Figure 16.10).

[image: Image described by caption and surrounding text.]

FIGURE 16.10 Cost allocation tag setup screen

If you add cost allocation tags to an Amazon Cognito user pool, your AWS cost allocation report includes costs and usage aggregated using these tags. You do not need to provide cost allocation tags to follow along with the chapters in this book. If you want to learn more about using cost allocation tags with your AWS resources, visit http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html.

Click the Next step button to proceed.

Devices

The next screen gives you options to decide if you would like Amazon Cognito to remember the devices your users are employing to log in to your app (Figure 16.11).

[image: Image described by caption and surrounding text.]

FIGURE 16.11 You can set up a user pool to remember devices.

You can choose between three options:

	No: This is the default option. Devices are not remembered.

	Always: Every device that users of your app are utilizing is remembered.

	User Opt-in: Your users are given an option to remember the device they are using. You need to create the user interface in your app to allow the user to opt in.

If you choose to have Amazon Cognito remember a user’s devices, a device identifier (key and secret) is assigned to each device the first time a user signs in with that device. This key is not used for anything other than identifying the device, but it tracks Amazon Cognito. You also have the option of suppressing MFA challenges for devices that Amazon Cognito tracks.

To follow along with this chapter, select No and click the Next step button.

Apps

The next screen allows you to configure the apps that have permission to call unauthenticated application programming interfaces (APIs) in Amazon Cognito (Figure 16.12).

[image: Image described by caption and surrounding text.]

FIGURE 16.12 Configuring applications that will have access to unauthenticated APIs

An unauthenticated API is one that does not require an authenticated user. Examples of such APIs follow:

	An API to allow an unauthenticated user to log in

	An API to allow an unauthenticated user to retrieve a forgotten password

	An API to allow a new user to create an account

Even though these APIs are unauthenticated, they are not insecure. Only apps that you add to this screen have access to these APIs.

Each app that you add to this screen is given a client ID and an optional client secret. Together, the client ID and secret form a set of credentials your mobile app has to present to Amazon Cognito to access unauthenticated APIs. It is your responsibility to safely store these credentials within your mobile app.

	Click the Add an app link on the page, and specify the following options for the app in the fields that appear on the screen (Figure 16.13):

[image: Image described by caption and surrounding text.]

FIGURE 16.13 Create application screen

	App name: AWSChat

	Refresh token expiration: 30

	Generate client secret: Enabled

	Click the Create app button under the fields to finish creating the app. Your new app is listed, and you have the option to create additional apps within the user pool.
Adding an app to a user pool essentially generates a new set of credentials to allow access to unauthenticated user pool APIs. You may want to add additional applications for one of two reasons:

	You have multiple app offerings and you don’t want users to create new user accounts for each app.

	You offer a single app across multiple operating systems, and for security reasons you want a different set of credentials for each operating-system specific version of your app.

For the purposes of the app being built in this book, you do not need an additional set of credentials even though we are building an iOS and Android version.

	Click the Save changes button to proceed to the next step.

Review and Create

The next screen allows you to review the options you have specified so far (Figure 16.14).

[image: Image described by caption and surrounding text.]

FIGURE 16.14 User pool review screen

If you have been following the steps in this chapter, you have noticed that Amazon Cognito skipped over the Triggers page and jumped straight to the Review and Create page.

The Triggers page allows you to configure AWS Lambda functions to be executed when certain events occur in the user pool. You can configure triggers after having created the user pool; however, user pool triggers are not needed for the AWSChat app that is being built in this book.

When you have finished reviewing the settings for the user pool, click the Create pool button to create the user pool.

Retrieving the App Client Secret

While configuring the list of apps that have access to unauthenticated APIs in the user pool, you have the option of generating a client ID and a client secret for each app. The client secret is only available after the user pool has been created. After you have finished creating the user pool, your new user pool is listed alongside any existing user pools in the Amazon Cognito user pool AWS Management Console.

	Click the user pool name. If you are following along with the sample app being developed in this chapter, click the user pool called AWSChatUserPool (Figure 16.15).

[image: Window shows AWSChatUserPool to access displaying user pools with federated identities like your user pools listing AWSChatUserPool along with create user pool option.]

FIGURE 16.15 Selecting the AWSChatUserPool to access its contents and settings

Amazon Cognito loads the settings page for the user pool.

	Click the Apps option in the menu on the left side of the page, and locate your app in the list of apps that appears. Click the Show Details button for your app (Figure 16.16).

[image: Window shows AWSChatUserPool with its apps listing out app name, app client id, with show details button and add another app with cancel and save changes buttons.]

FIGURE 16.16 Click the Show Details button to reveal the app client ID and the app client secret.

	Make a note of both the client and the client secret (Figure 16.17).

[image: Window shows apps having access to user pool with its name, client id, client secret, refresh token expiration, with set attribute permissions, et cetera.]

FIGURE 16.17 The app client ID and the app client secret are needed to access unauthenticated user pool APIs.

Together these two pieces of information form a set of credentials your mobile app has to present to Amazon Cognito to access unauthenticated APIs. It is your responsibility to safely store these credentials within your mobile app.

Updating the AWS Chat Application

Add the following dependencies from the AWS SDK for iOS to the project using one of the methods discussed in Chapter 15:

	AWS Mobile SDK core

	Amazon Cognito Identity Provider

Open the AndroidManifest.xml file in Android Studio and add the following entries to the file, just before the application element (Figure 16.18).

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

[image: Image described by caption and surrounding text.]

FIGURE 16.18 AndroidManifest.xml file

Creating the User Pool Controller Class

Now create the user pool controller class.

	In the AWSChat application, create a new Java class called CognitoUserPoolController.

This class implements the singleton design pattern and contains all the logic that deals with the Amazon Cognito user pool for the app.

[image:] The code in this book creates this class under the asmtechnology.com .awschat package. If you are using a different package name for your project, you should create it under the package name appropriate for your project.

	Add the following package import statements to the file:

import android.content.Context;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoDevice;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUser;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.
CognitoUserAttributes;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.
CognitoUserCodeDeliveryDetails;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserDetails;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserPool;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserSession;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.continuations.
AuthenticationContinuation;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.continuations.
AuthenticationDetails;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.continuations.
ChallengeContinuation;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.continuations.
MultiFactorAuthenticationContinuation;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
AuthenticationHandler;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
GenericHandler;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
GetDetailsHandler;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
SignUpHandler;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
VerificationHandler;

import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerGenericHandler;

import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerSignupHandler;

import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerUserDetailsHandler;

	Add the following constant declarations to the class, substituting the relevant details for the user pool and application created within that user pool.
private String userPoolID = "your user pool id";
private String appClientID = "your app client id";
private String appClientSecret = "your app client secret";

These constants contain values that identify the user pool that the app will use, and also the credentials that the app can use to access unauthenticated APIs in the user pool. You need to replace the values of these constants with appropriate values for the user pool and app object within the user pool you created earlier.

	Add the following variables to the class:

private CognitoUserPool userPool;
private Context mContext;

The private variable called userPool is an instance of the CognitoUserPool class representing the user pool that this class manages. The read-only variable called mContext is an instance of the android.content.Context class that represents an application context.

	To ensure that the CognitoUserPoolController class is a singleton, add the following code to the class:
private static CognitoUserPoolController instance = null;
private CognitoUserPoolController() {}

public static CognitoUserPoolController getInstance(Context context) {
 if(instance == null) {
 instance = new CognitoUserPoolController();
 }

 instance.setupUserPool(context);
 return instance;
}

The first time getInstance() is called, it uses a private constructor to create an instance of the CognitoUserPoolController class and saves a reference to this instance in a private static variable called instance. The next time getInstance() is called, it returns the previously created instance of the CognitoUserPoolController class.

Before returning the instance of the CognitoUserPoolController, getInstance() calls the setupUserPool() private method.

	Add the following code to the CognitoUserPoolController class to implement the setupUserPool() method:
private void setupUserPool(Context context) {
 if (userPool == null) {
 mContext = context;
 userPool = new CognitoUserPool(context, userPoolID,
 appClientID, appClientSecret);
 return;
 }

 if (mContext != context) {
 userPool = new CognitoUserPool(context, userPoolID,
 appClientID, appClientSecret);
 }
}

The setupUserPool() method creates a new CognitoUserPool instance if one does not exist or if the context parameter is different from what it was when the CognitoUserPool instance was previously created.

Allowing Existing Users to Log In

Add the following method to the CognitoUserPoolController class to allow existing users to log in to the app:

public void login(String username, final String password,
 final CognitoUserPoolControllerGenericHandler completion) {
 CognitoUser user = userPool.getUser(username);
 user.getSessionInBackground(new AuthenticationHandler() {

 @Override
 public void onSuccess(CognitoUserSession userSession,
CognitoDevice newDevice) {
 completion.didSucceed();
 }

 @Override
 public void getAuthenticationDetails(
 AuthenticationContinuation authenticationContinuation,
 String UserId) {

 // The API needs user sign-in credentials to continue
 AuthenticationDetails authenticationDetails = new
 AuthenticationDetails(UserId, password, null);

 authenticationContinuation.setAuthenticationDetails(
 authenticationDetails);
 authenticationContinuation.continueTask();
 }

 @Override
 public void getMFACode(MultiFactorAuthenticationContinuation
 continuation) {

 }

 @Override
 public void authenticationChallenge(ChallengeContinuation
 continuation) {
 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });

}

The preceding code snippet defines a method called login(). The login() method takes three parameters as input. The first two are string parameters that represent the username and password. The third parameter is an object that implements the CognitoUserPoolControllerGenericHandler interface.

You will build this interface shortly; for now you need to know that the interface contains two methods:

void didSucceed(); void didFail(Exception exception);

The login() method is called from the LoginActivity class when the user taps on a button in the user interface. While calling the login() method, the LoginActivity class provides the username and password entered by the user and also an instance of an anonymous inner class that implements the required interface for the third parameter.

The call to the login() method triggers an asynchronous multistep authentication process with Amazon Cognito, at the end of which one of the didSucceed() or didFail() callback methods of the anonymous inner class is called by the user pool controller.

Within the implementation of the login() method, the multistep authentication process with Amazon Cognito is kicked off by retrieving a user object from the user pool and calling the getSessionInBackground(AuthenticationHandler) method on the user object:

CognitoUser user = userPool.getUser(username);

user.getSessionInBackground(new AuthenticationHandler() {
 // AuthenticationHandler overrides are inserted here.
}

This method requires you to pass a single argument, which is an object that implements the AuthenticationHandler interface. The interface defines five methods:

void onSuccess(CognitoUserSession userSession, CognitoDevice newDevice void onFailure(Exception exception) void getAuthenticationDetails(AuthenticationContinuation
 authenticationContinuation, String UserId) void getMFACode(MultiFactorAuthenticationContinuation continuation) void authenticationChallenge(ChallengeContinuation continuation)

Amazon Cognito calls the onSuccess() callback method if the login attempt was successful, either using cached credentials or waiting for the completion of an authentication process.

Amazon Cognito calls the onFailure() callback method if there is an error in the login process. Details of the error are encapsulated in an exception object.

The getAuthenticationDetails() callback method is called when Amazon Cognito requires credentials for the user. Your implementation of this method must supply the password the user provides.

The getMFACode() callback method is called by Amazon Cognito if multifactor authentication has been enabled on the user pool. Your implementation of this method is responsible for presenting an appropriate user interface element and providing the MFA token the user enters into Amazon Cognito.

The authenticaionChallenge() callback method is called if the user pool requires the user to solve a custom challenge. This method is typically invoked when an administrator creates an account for a user and then invites the user to sign in.

In such a case, the administrator creates a temporary password for the user that the user provides in the getAuthenticationDetails() method. If the password is correct, Amazon Cognito calls the authenticationChallenge() method and the user must supply his new password along with values for any other required attributes that don’t have values.

Allowing New Users to Sign Up

Add the following method to the CognitoUserPoolController class to allow new users to sign up:

public void signup(String username,
 String password,
 String emailAddress,
 final CognitoUserPoolControllerSignupHandler completion) {

 CognitoUserAttributes userAttributes = new CognitoUserAttributes();
 userAttributes.addAttribute("email", emailAddress);

 userPool.signUpInBackground(username, password, userAttributes, null,
 new SignUpHandler() {
 @Override
 public void onSuccess(CognitoUser user,
 boolean signUpConfirmationState,
 CognitoUserCodeDeliveryDetails cognitoUserCodeDeliveryDetails) {
 completion.didSucceed(user, !signUpConfirmationState);
 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
}

The signup() method takes four parameters as input. The first two are string parameters that represent the username and password. The third parameter is a dictionary of additional attributes (such as e-mail address, phone number, and so on). The fourth parameter is an object that implements the CognitoUserPoolControllerSignupHandler interface.

You will build this interface shortly; for now you need to know that the interface contains two methods:

void didSucceed(CognitoUser user, boolean userMustConfirmEmailAddress); void didFail(Exception exception);

The signup() method is called from the SignupActivity class when the user taps on a button in the user interface. While calling the signup() method, the LoginActivity class provides the username, password, and e-mail address the user enters and also an instance of the anonymous inner class that implements the required interface for the fourth parameter.

The call to the signup() method triggers an asynchronous multistep authentication process with Amazon Cognito, at the end of which either the didSucceed() or the didFail() callback method of the anonymous inner class is called by the user pool controller.

During the signup process, users need to provide a username, password, and values for any additional user attributes that have been set up as “required” while creating the pool.

Amazon Cognito requires that you send the username and password values as strings and encapsulate all other optional user pool attributes into a CognitoUserAttributes object. A CognitoUserAttributes object is a collection of user attributes, with each attribute being represented as a name-value pair.

The following code snippet creates a CognitoUserAttributes object and inserts the e-mail address the user provides into this object.

CognitoUserAttributes userAttributes = new CognitoUserAttributes();
userAttributes.addAttribute("email", emailAddress);

The addAttribute() method takes two parameters, the first of which is a key, and the second of which is the value associated with that key. The key can contain one of the following values:

	address

	birthdate

	email

	family_name

	gender

	given_name

	locale

	middle_name

	name

	nickname

	phone_number

	picture

	preferred_username

	profile

	timezone

	updated_at

	website

During the signup process, Amazon Cognito sends a six-digit confirmation code to the e-mail address the user supplies. The signup activity displays the required user interface that allows the user to enter this confirmation code. After the user has entered the confirmation code, the code must be sent to Amazon Cognito to complete the signup process.

Add the following method to the CognitoUserPoolController class to handle the task of sending the confirmation code that the user has entered into the Amazon Cognito service.

public void confirmSignup(CognitoUser user, String confirmationCode, final CognitoUserPoolControllerGenericHandler completion) {

 user.confirmSignUpInBackground(confirmationCode, false, new GenericHandler() {
 @Override
 public void onSuccess() {
 completion.didSucceed();
 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
}

The confirmSignup() method takes three parameters as input. The first is a reference to a user object, the second is the confirmation code the user enters, and the third is an object that implements the CognitoUserPoolGenericHandler interface. This interface was described earlier when we were discussing the login() method.

Add the following method to the CognitoUserPoolController class to allow the user to resend the confirmation code to the e-mail address used during signup.

public void resendConfirmationCode(CognitoUser user, final CognitoUserPoolControllerGenericHandler completion) {
 user.resendConfirmationCodeInBackground(new VerificationHandler() {
 @Override
 public void onSuccess(CognitoUserCodeDeliveryDetails
 verificationCodeDeliveryMedium) {
 completion.didSucceed();
 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
}

The resendConfirmationCode() method takes two parameters as input. The first is a reference to a user object, and the second is an object that implements the CognitoUserPoolGenericHandler interface and is used to notify the caller of any errors that may have occurred.

Add the following method to the CognitoUserPoolController class to allow other parts of the application to retrieve an object that represents the current user from the user pool.

public CognitoUser getCurrentUser() {
 return userPool.getCurrentUser();
}

Finally, add the following method to the CognitoUserPoolController class to extract information (such as username, e-mail address, and phone number) of an authenticated user. This method is not used in this chapter but will be used in Chapter 19 when we start building the home activity.

public void getUserDetails(CognitoUser user, final CognitoUserPoolControllerUserDetailsHandler completion) {
 user.getDetailsInBackground(new GetDetailsHandler() {
 @Override
 public void onSuccess(CognitoUserDetails cognitoUserDetails) {
 completion.didSucceed(cognitoUserDetails);
 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
}

The getUserDetails() method takes two parameters as input. The first is a reference to a user object, and the second is an object that implements the CognitoUserPoolUserDetailsHandler interface.

You will build this interface shortly. For now you need to know that the interface contains two methods:

void didSucceed(CognitoUserDetails userDetails);
void didFail(Exception exception);

If Amazon Cognito can extract details on the specified user, the didSucceed() method is called, with the user details encapsulated within a CognitoUserDetails instance as a parameter.

Listing 16.1 contains the complete contents of the CognitoUserPoolController.java class.

Listing 16.1: CognitoUserPoolController.java

package asmtechnology.com.awschat;

import android.content.Context;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoDevice;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUser;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.
CognitoUserAttributes;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.
CognitoUserCodeDeliveryDetails;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserDetails;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserPool;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserSession;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.continuations.
AuthenticationContinuation;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.continuations.
AuthenticationDetails;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.continuations.
ChallengeContinuation;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.continuations.
MultiFactorAuthenticationContinuation;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
AuthenticationHandler;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
GenericHandler;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
GetDetailsHandler;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
SignUpHandler;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.handlers.
VerificationHandler;

import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerGenericHandler;
import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerSignupHandler;
import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerUserDetailsHandler;

public class CognitoUserPoolController {

 private String userPoolID = "your user pool id";
 private String appClientID = "your app client id";
 private String appClientSecret = "your app client secret";

 private CognitoUserPool userPool;
 private Context mContext;

 private static CognitoUserPoolController instance = null;
 private CognitoUserPoolController() {}

 public static CognitoUserPoolController getInstance(Context context) {
 if(instance == null) {
 instance = new CognitoUserPoolController();
 }

 instance.setupUserPool(context);
 return instance;
 }

 private void setupUserPool(Context context) {
 if (userPool == null) {
 mContext = context;
 userPool = new CognitoUserPool(context, userPoolID,
 appClientID, appClientSecret);
 return;
 }

 if (mContext != context) {
 userPool = new CognitoUserPool(context, userPoolID,
 appClientID, appClientSecret);
 }
 }

 public void login(String username,
 final String password,
 final CognitoUserPoolControllerGenericHandler completion) {
 CognitoUser user = userPool.getUser(username);
 user.getSessionInBackground(new AuthenticationHandler() {

 @Override
 public void onSuccess(CognitoUserSession userSession,
 CognitoDevice newDevice) {
 completion.didSucceed();
 }

 @Override
 public void getAuthenticationDetails(AuthenticationContinuation
 authenticationContinuation, String UserId) {
 // The API needs user sign-in credentials to continue
 AuthenticationDetails authenticationDetails =
 new AuthenticationDetails(UserId, password, null);
 authenticationContinuation.
 setAuthenticationDetails(authenticationDetails);
 authenticationContinuation.continueTask();
 }

 @Override
 public void getMFACode(MultiFactorAuthenticationContinuation
 continuation) {
 // Multi-factor authentication is required; get the verification
 code from user
 }

 @Override
 public void authenticationChallenge(ChallengeContinuation
 continuation) {

 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });

 }

 public void signup(String username,
 String password,
 String emailAddress,
 final CognitoUserPoolControllerSignupHandler completion) {

 CognitoUserAttributes userAttributes = new CognitoUserAttributes();
 userAttributes.addAttribute("email", emailAddress);

 userPool.signUpInBackground(username, password, userAttributes,
 null, new SignUpHandler() {
 @Override
 public void onSuccess(CognitoUser user,
 boolean signUpConfirmationState,
 CognitoUserCodeDeliveryDetails cognitoUserCodeDeliveryDetails) {
 completion.didSucceed(user, !signUpConfirmationState);
 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
 }

 public void confirmSignup(CognitoUser user, String confirmationCode,
 final CognitoUserPoolControllerGenericHandler completion) {

 user.confirmSignUpInBackground(confirmationCode, false,
 new GenericHandler() {
 @Override
 public void onSuccess() {
 completion.didSucceed();
 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
 }

 public void resendConfirmationCode(CognitoUser user,
 final CognitoUserPoolControllerGenericHandler completion) {
 user.resendConfirmationCodeInBackground(new VerificationHandler() {
 @Override
 public void onSuccess(CognitoUserCodeDeliveryDetails
 verificationCodeDeliveryMedium) {
 completion.didSucceed();
 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
 }

 public CognitoUser getCurrentUser() {
 return userPool.getCurrentUser();
 }

 public void getUserDetails(CognitoUser user,
 final CognitoUserPoolControllerUserDetailsHandler completion) {
 user.getDetailsInBackground(new GetDetailsHandler() {
 @Override
 public void onSuccess(CognitoUserDetails cognitoUserDetails) {
 completion.didSucceed(cognitoUserDetails);
 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
 }
}

Creating Interfaces

In this section, you create three Java interfaces that have been referenced in the previous section. The code in this book requires that these interfaces be created under the asmtechnology.com.awschat.interfaces package. If you are using a different package name for your project, you should create these interfaces under the package name appropriate for your project.

	Using Android Studio, create a new package called asmtechnology.com.awschat .interfaces.

	Under this package, create a new Java interface called CognitoUserPoolControllerGenericHandler. Update the code in the Java file corresponding to the new interface to match the following snippet:
package asmtechnology.com.awschat.interfaces;

public interface CognitoUserPoolControllerGenericHandler {
 void didSucceed();
 void didFail(Exception exception);
}

	Create another Java interface under the same package, called CognitoUserPoolControllerSignupHandler. Update the code in the Java file corresponding to the new interface to match the following snippet:
package asmtechnology.com.awschat.interfaces;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUser;

public interface CognitoUserPoolControllerSignupHandler {
 void didSucceed(CognitoUser user, boolean userMustConfirmEmailAddress);
 void didFail(Exception exception);
}

	Finally, create a Java interface under the same package, called CognitoUserPoolControllerUserDetailsHandler. Update the code in the Java file corresponding to the new interface to match the following snippet:
package asmtechnology.com.awschat.interfaces;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserDetails;

public interface CognitoUserPoolControllerUserDetailsHandler {
 void didSucceed(CognitoUserDetails userDetails);
 void didFail(Exception exception);
}

Your Android Studio project window should resemble Figure 16.19.

[image: Window shows studio project options like cognitouserpoolcontrolleruserdetailshandler displaying its details as codes and name and id.]

FIGURE 16.19 Android Studio project window

Updating the Login Activity

The CognitoUserPoolController class handles the bulk of the work involved in interacting with Amazon Cognito. The login activity controller needs to only call the login() method of the CognitoUserPoolController class with the username and password provided by the user. Listing 16.2 contains the code for the modified LoginActivity class.

Listing 16.2: LoginActivity.java

package asmtechnology.com.awschat;

import android.content.Context;
import android.content.DialogInterface;
import android.support.v7.app.AlertDialog;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.text.TextUtils;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.content.Intent;

import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerGenericHandler;

public class LoginActivity extends AppCompatActivity {

 private EditText mUsernameView;
 private EditText mPasswordView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_login);

 mUsernameView = (EditText) findViewById(R.id.username);
 mPasswordView = (EditText) findViewById(R.id.password);

 Button mLoginButton = (Button) findViewById(R.id.login_button);
 mLoginButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 attemptLogin();
 }
 });

 Button mSignupButton = (Button) findViewById(R.id.signup_button);
 mSignupButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 displaySignupActivity();
 }
 });
 }

 private void attemptLogin() {
 // Reset errors.
 mUsernameView.setError(null);
 mPasswordView.setError(null);

 // Store values at the time of the login attempt.
 String username = mUsernameView.getText().toString();
 String password = mPasswordView.getText().toString();

 if (TextUtils.isEmpty(username)) {
 mUsernameView.setError(getString(R.string.error_field_required));
 mUsernameView.requestFocus();
 return;
 }

 if (TextUtils.isEmpty(password)) {
 mPasswordView.setError(getString(R.string.error_field_required));
 mPasswordView.requestFocus();
 return;
 }

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);
 userPoolController.login(username, password,
 new CognitoUserPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
 }

 private void displaySignupActivity() {
 Intent intent = new Intent(this, SignupActivity.class);
 startActivity(intent);
 }

 private void displayHomeActivity() {
 Intent intent = new Intent(this, HomeActivity.class);
 startActivity(intent);
 }

 private void displaySuccessMessage() {

 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage("Login succesful!");
 builder.setTitle("Success");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 displayHomeActivity();
 }
 });

 final AlertDialog alert = builder.create();
 alert.show();
 }
 });
 }

 private void displayErrorMessage(final Exception exception) {

 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage(exception.getMessage());
 builder.setTitle("Error");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 }
 });

 final AlertDialog alert = builder.create();

 alert.show();
 }
 });
 }
}

Some of the key aspects of the code presented in Listing 16.2 are discussed next.

When the login button is tapped, the attemptLogin() method is called. This method in turn calls the login() method of the CognitoUserPoolController class after it performs a few basic validation checks on the inputs provided by the user:

private void attemptLogin() {
 // Reset errors.
 mUsernameView.setError(null);
 mPasswordView.setError(null);

 // Store values at the time of the login attempt.
 String username = mUsernameView.getText().toString();
 String password = mPasswordView.getText().toString();

 if (TextUtils.isEmpty(username)) {
 mUsernameView.setError(getString(R.string.error_field_required));
 mUsernameView.requestFocus();
 return;
 }

 if (TextUtils.isEmpty(password)) {
 mPasswordView.setError(getString(R.string.error_field_required));
 mPasswordView.requestFocus();
 return;
 }

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);
 userPoolController.login(username, password,
 new CognitoUserPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
}

If an error occurs, it is displayed to the user with the displayErrorMessage() method. If no errors have occurred, the user is taken to the home activity, which represents the part of the app that should only be accessible to authenticated users.

Updating the Signup Activity

The signup view activity is slightly more complex than the login activity. The signup screen requires the user to provide a username, password, and e-mail address. After these values have been provided, the signup activity calls the signup() method of the CognitoUserPoolController class. Listing 16.3 contains the code for the modified SignupActivity class.

Listing 16.3: SignupActivity.java

package asmtechnology.com.awschat;

import android.content.DialogInterface;
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AlertDialog;
import android.support.v7.app.AppCompatActivity;
import android.text.TextUtils;
import android.view.LayoutInflater;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUser;

import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerGenericHandler;
import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerSignupHandler;

public class SignupActivity extends AppCompatActivity {

 private EditText mUsernameView;
 private EditText mPasswordView;
 private EditText mEmailView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_signup);

 mUsernameView = (EditText) findViewById(R.id.username);
 mPasswordView = (EditText) findViewById(R.id.password);
 mEmailView = (EditText) findViewById(R.id.emailAddress);

 Button mCreateAccountButton =
 (Button) findViewById(R.id.create_account_button);

 mCreateAccountButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 doSignup();
 }
 });
 }

 private void doSignup() {

 mUsernameView.setError(null);
 mPasswordView.setError(null);
 mEmailView.setError(null);

 String username = mUsernameView.getText().toString();
 String password = mPasswordView.getText().toString();
 String email = mEmailView.getText().toString();

 if (TextUtils.isEmpty(username)) {
 mUsernameView.setError(getString(R.string.error_field_required));
 mUsernameView.requestFocus();
 return;
 }

 if (TextUtils.isEmpty(password)) {
 mPasswordView.setError(getString(R.string.error_field_required));
 mPasswordView.requestFocus();
 return;
 }

 if (TextUtils.isEmpty(email)) {
 mEmailView.setError(getString(R.string.error_field_required));
 mEmailView.requestFocus();
 return;
 }

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);
 userPoolController.signup(username, password, email, new
 CognitoUserPoolControllerSignupHandler() {
 @Override
 public void didSucceed(CognitoUser user,
 boolean userMustConfirmEmailAddress) {
 if (userMustConfirmEmailAddress) {
 requestConfirmationCode(user);
 } else {
 displaySuccessMessage();
 }
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
 }

 private void displayHomeActivity() {
 Intent intent = new Intent(this, HomeActivity.class);
 startActivity(intent);
 }

 private void displaySuccessMessage() {
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setMessage("Your account has been created!.");
 builder.setTitle("Success");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.dismiss();
 displayHomeActivity();
 }
 });

 final AlertDialog alert = builder.create();

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 alert.show();
 }
 });
 }

 private void displayErrorMessage(Exception exception) {
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setMessage(exception.getMessage());
 builder.setTitle("Error");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.dismiss();
 }
 });

 final AlertDialog alert = builder.create();

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 alert.show();
 }
 });

 }

 private void requestConfirmationCode(final CognitoUser user) {

 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setCancelable(false);

 LayoutInflater inflater = this.getLayoutInflater();
 View customInflatedView =
 inflater.inflate(R.layout.dialog_confirm_signup, null);
 final EditText confirmationCode = (EditText)
 customInflatedView.findViewById(R.id.confirmationCode);
 builder.setView(customInflatedView);

 builder.setPositiveButton("Ok",
 new DialogInterface.OnClickListener() {

 public void onClick(final DialogInterface dialog, int id) {

 String codeEntered = confirmationCode.getText().toString();

 if (codeEntered.length() == 0) {
 dialog.dismiss();
 requestConfirmationCode(user);
 return;
 }

 dialog.dismiss();
 verifyConfirmationCode(user, codeEntered);
 }
 });

 builder.setNeutralButton("Resend code",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 dialog.dismiss();
 resendConfirmationCode(user);
 }
 });

 final AlertDialog alert = builder.create();

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 alert.show();
 }
 });
 }

 private void verifyConfirmationCode(final CognitoUser user, String code) {

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);

 userPoolController.confirmSignup(user, code, new
 CognitoUserPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 requestConfirmationCode(user);
 }
 });
 }

 private void resendConfirmationCode(final CognitoUser user) {

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);

 userPoolController.resendConfirmationCode(user,
 new CognitoUserPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displayCodeResentMessage(user);
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
 }

 private void displayCodeResentMessage(final CognitoUser user) {
 AlertDialog.Builder builder = new AlertDialog.Builder(this);

 builder.setMessage("A 6-digit confirmation code has been sent to your
 email address.");
 builder.setTitle("Code Resent.");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.dismiss();
 requestConfirmationCode(user);
 }
 });

 final AlertDialog alert = builder.create();

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 alert.show();
 }
 });

 }
}

Some of the key aspects of the code presented in Listing 16.3 are discussed next.

When the create account button is tapped, the doSignup() method is called, which in turn calls the signup() method of the CognitoUserPoolController class after performing basic input validation:

private void doSignup() {

 mUsernameView.setError(null);
 mPasswordView.setError(null);
 mEmailView.setError(null);

 String username = mUsernameView.getText().toString();
 String password = mPasswordView.getText().toString();
 String email = mEmailView.getText().toString();

 if (TextUtils.isEmpty(username)) {
 mUsernameView.setError(getString(R.string.error_field_required));
 mUsernameView.requestFocus();
 return;
 }

 if (TextUtils.isEmpty(password)) {
 mPasswordView.setError(getString(R.string.error_field_required));
 mPasswordView.requestFocus();
 return;
 }

 if (TextUtils.isEmpty(email)) {
 mEmailView.setError(getString(R.string.error_field_required));
 mEmailView.requestFocus();
 return;
 }

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);
 userPoolController.signup(username, password, email,
 new CognitoUserPoolControllerSignupHandler() {
 @Override
 public void didSucceed(CognitoUser user,
 boolean userMustConfirmEmailAddress) {
 if (userMustConfirmEmailAddress) {
 requestConfirmationCode(user);
 } else {
 displaySuccessMessage();
 }
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
}

If an error occurs, the signup() method of the CognitoUserPoolController instance calls the didFail() callback method, which in turn displays the error message to the user using the displayErrorMessage() method. Amazon Cognito can return an error during the signup process for several reasons :

	The username is already in use.

	The format of the password does not satisfy the minimal security requirements that have been set up on the user pool.

	The format of the e-mail address is invalid.

It is important to note that these validations that Amazon Cognito performs are server-side validations. Server-side validations involve a round trip from your app to the Amazon Cognito service and back and are less efficient than any equivalent validation that you could have performed in your app before calling Amazon Cognito.

If there were no errors, the signup() method of the CognitoUserPoolController instance calls the didSucceed() callback method with a reference to a user object and a Boolean value that indicates whether the user should confirm her e-mail address.

public void didSucceed(CognitoUser user, boolean userMustConfirmEmailAddress) {
 if (userMustConfirmEmailAddress) {
 requestConfirmationCode(user);
 } else {
 displaySuccessMessage();
 }
 }

The signup activity doesn’t save an explicit reference to the user object because the user object can also be accessed using the getCurrentUser() method of the CognitoUserPoolController instance.

The user pool for this application is set up to verify e-mail addresses. Therefore, the signup process involves an additional step whereby the user must enter a six-digit code sent to the e-mail address he provided during signup. The signup activity is responsible for presenting the user interface to allow the user to enter the code (Figure 16.20).

[image: Image described by caption and surrounding text.]

FIGURE 16.20 Custom dialog box presented to allow the user to enter a confirmation code

The dialog box that allows the user to enter the confirmation code is defined in the res/layout/dialog_confirm_signp.xml file. The contents of this file are presented in Listing 16.4.

Listing 16.4: res/layout/dialog_confirm_signup.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/condifrmationPrompt" />

 <EditText
 android:id="@+id/confirmationCode"
 android:inputType="phone"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="16dp"
 android:layout_marginLeft="4dp"
 android:layout_marginRight="4dp"
 android:layout_marginBottom="4dp"
 android:hint="@string/condifrmationCodePrompt" />

</LinearLayout>

The requestConfirmationCode() method of the signup activity handles the task of presenting an alert dialog box whereby the user can type in the six-digit verification code:

private void requestConfirmationCode(final CognitoUser user) {

 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setCancelable(false);

 LayoutInflater inflater = this.getLayoutInflater();
 View customInflatedView = inflater.inflate(R.layout.dialog_confirm_signup,
 null);

 final EditText confirmationCode =
 (EditText) customInflatedView.findViewById(R.id.confirmationCode);
 builder.setView(customInflatedView);

 builder.setPositiveButton("Ok", new DialogInterface.OnClickListener() {

 public void onClick(final DialogInterface dialog, int id) {

 String codeEntered = confirmationCode.getText().toString();

 if (codeEntered.length() == 0) {
 dialog.dismiss();
 requestConfirmationCode(user);
 return;
 }

 dialog.dismiss();
 verifyConfirmationCode(user, codeEntered);
 }
 });

 builder.setNeutralButton("Resend code",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 dialog.dismiss();
 resendConfirmationCode(user);
 }
 });

 final AlertDialog alert = builder.create();

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 alert.show();
 }
 });
}

The code for the OnClickListener handler attached to the Ok button calls the verifyConfirmationCode() method. If the confirmation code was entered incorrectly, the user is asked to re-enter it. If the confirmation code was entered correctly, the user is taken to the Home activity, which represents the part of the app that only authenticated users should access.

The alert dialog box that allows the user to enter the six-digit confirmation code also has a Resend code button that calls the resendConfirmationCode() method.

The verifyConfirmationCode() and resendConfirmationCode() methods call the confirmSignup() and resendConfirmationCode() methods of the CognitoUserPoolController class respectively and are presented next:

private void verifyConfirmationCode(final CognitoUser user, String code) {

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);

 userPoolController.confirmSignup(user, code,
 new CognitoUserPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 requestConfirmationCode(user);
 }
 });
}

private void resendConfirmationCode(final CognitoUser user) {

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);

 userPoolController.resendConfirmationCode(user,
 new CognitoUserPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displayCodeResentMessage(user);
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
}

Managing Users

You can use the Amazon Cognito console to perform common housekeeping tasks for users, such as adding users manually, confirming e-mail addresses and phone numbers manually, and deleting users.

To perform these tasks, log in to the Amazon Cognito user pool AWS Management Console. Click on the user pool name and then select the Users and groups menu item (Figure 16.21).

[image: Image described by caption and surrounding text.]

FIGURE 16.21 List of users in the user pool

[image:] You can download the project files created in this chapter from this book’s web page on Sybex.com or from GitHub at https://github.com/asmtechnology/Chapter16.AWSForMobileDevelopers.2017.git.

Summary

	Amazon Cognito is a service that lets you create a cloud-based database of users for use within your mobile applications.

	Amazon Cognito provides all the back-end features and infrastructure that are required to implement a full-fledged user signup and login system.

	Amazon Cognito consists of three key services: user pools, federated identities, and Amazon Cognito sync.

	Some of the APIs exposed by Amazon Cognito do not require an authenticated user, these APIs are typically used to allow users to log in, sign up, or retrieve a forgotten password.

	Unauthenticated Amazon Cognito APIs can only be called by applications that have been pre-registered with Amazon Cognito using the AWS Management Console.

Chapter 17
Implementing Login Using Facebook

WHAT’S IN THIS CHAPTER

	[image: images]Configure an application on the Facebook developer portal.

	[image: images]Add the Facebook SDK to the AWSChat Android project.

	[image: images]Create an Amazon Cognito identity pool and configure the identity pool to federate Facebook identities.

	[image: images]Update the AWSChat Android project to allow users to log in using their Facebook credentials.

	[image: images]Examine the list of identities in the identity pool using the AWS Management Console.

[image:] In this chapter you build on the AWSChat Android application to allow users to log in using their Facebook account credentials. After users have successfully logged in with their Facebook credentials, you use an Amazon Cognito identity pool to exchange these credentials for a temporary set of credentials so you can access AWS cloud resources.

[image:] To follow along with this lesson, download the starter project from either this book’s web page at Sybex.com or from GitHub at https://github .com/asmtechnology/Chapter16.AWSForMobileDevelopers.2017.git.

The sample project that accompanies this chapter uses the asmtechnology .com.awschat namespace. If you would like to change the namespace under which the files are created, open the AndroidManifest.xml file and perform the following steps for each component of the namespace that you want to change.

	Locate the package="asmtechnology.com.awschat" attribute of the manifest tag.

	Select the component of the namespace that you want to rename.

	Right-click the component to reveal a context menu and select the Refactor ➢ Rename menu item.

	Click the Rename Package button in the dialog box that appears and provide a new value for the component of the namespace you want to change.

	Click the Refactor button to finish changing the value of the component of the namespace.

You will also need to ensure that the following options have been set up correctly in the starter project:

	Line 29 of the CognitoUserPoolController.Java file contains the id of your Amazon Cognito user pool.

	Lines 33 – 34 of the CognitoUserPoolController.Java file contain the app client ID and app client secret to allow your app access to unauthenticated APIs of the user pool.

Creating an App on Facebook

To allow developers to log in to your app using their Facebook credentials, first create an entry for the AWSChat application on Facebook under your own Facebook developer account.

If you have followed the instructions in Chapter 10 and created an application on Facebook for the AWSChat iOS app, you do not need to define a separate application for the Android version of the AWSChat app. You can skip ahead to step 3.

	Log in to the Facebook developer portal at https://developers.facebook.com/apps and click the Add a New App button (Figure 17.1).

[image: Window shows adding new app button in facebook developer portal having options like Allen fire, DIY office Lunch, Tring, superGolf 3D, runtimecrash.com.]

FIGURE 17.1 Location of the Add a New App button in the Facebook developer portal

	You are presented with a pop-up dialog box where you need to provide a name for the app and your e-mail address and select an app category. Provide the following values and click the Create App ID button (Figure 17.2).

[image: Image described by caption and surrounding text.]

FIGURE 17.2 Create a new application identifier.

	Display Name: AWSChat

	Contact Email: Type your e-mail address here

	Category: Business

	You now arrive at the dashboard page for the app. Click the Settings menu item on the left side of the page, and then click the Add Platform button (Figure 17.3).

[image: Window shows location of add platform button having settings with basic, advanced, roles, et cetera, with options like app ID, display name, App domains, privacy policy URL, App Icon, App secret, name space, contact email, et cetera.]

FIGURE 17.3 Location of the Add Platform button

	Select Android from the list of platform options that appears when you click the Add Platform button (Figure 17.4).

[image: Image described by caption and surrounding text.]

FIGURE 17.4 Select Android from the list of available platforms.

	Type your application’s package and main activity name in the fields provided. For the AWSChat app that is being built in this book, these values are as follows:

	Package name: com.asmtechnology.awschat

	Class name: LoginActivity

	You also need to provide a hash of the public key that Android Studio uses to sign your debug builds. Each time you debug your project with Android Studio, your APK is signed using a debug certificate. The first time you run or debug your project, Android Studio automatically creates the debug keystore on your computer.

To compute the hash of the public key from your debug certificate, follow these steps if you are using a Mac:

	Launch Terminal and type the following command:

keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore |
openssl sha1 -binary | openssl base64

	You are asked to type the keystore password. The default password is android.

Enter keystore password: android

	The output in your Terminal window now contains a 28-character key hash that should resemble the following:

/K4OARRRbABCDEFxd2UzGHIaJK0=

	If you are using a Windows 10 computer, you need to first ensure that the OpenSSL application has been installed on your computer. You can download a .zip archive containing the openssl.exe file from http://code.google.com/p/ openssl-for-windows/downloads/.

	When the archive file has finished downloading, extract the contents of the archive to a folder on your computer. After you have downloaded the OpenSSL binaries onto your computer, use the following steps to compute the key hash:

	Launch a Command Prompt window.

	Type the following command and press Enter.

"C:\Program Files"\Java\JDK1.8.0_91\bin\keytool" -exportcert -alias
androiddebugkey -keystore C:\Users\Bob\.Android\debug.keystore | C:\openssl-0.9.8k_WIN32\bin\openssl sha1 -binary | C:\openssl-0.9.8k_WIN32\bin\openssl base64

	This command assumes the following:

	

	The keytool.exe application is installed in the C:\Program Files\Java\JDK1.8.0_91\bin folder.

	The openssl.exe application is installed in the C:\openssl-0.9.8k_WIN32\bin folder.

	The debug.keystore file was created by Android Studio in the C\Users\Bob\.Android folder.

	You need to substitute these paths with the corresponding values for your computer.

	

	You are asked to type the keystore password. The default password is android.

	The output in your command prompt window now contains a 28-character key hash that should resemble the following:

/K4OARRRbABCDEFxd2UzGHIaJK0=

	9.	Copy the key hash to the clipboard and paste it into the Key Hashes field of the Facebook Android configuration page in your web browser. Enable the Single Sign On option and click the Save Changes button (Figure 17.5).

[image: Window shows android application on Facebook developer portal having view analytics with properties URL scheme suffix, single sign on, iOS only, deep linking, iPAD store ID, et cetera.]

FIGURE 17.5 Configuring an Android application on the Facebook developer portal

	10.	A warning dialog box may appear on your screen, stating that the package name you have provided could not be verified on the Google Play store. This is because an entry for the app has not been added to the Google Play store yet. You can safely ignore this message. Click the Use this package name button to continue (Figure 17.6).

[image: Image described by caption and surrounding text.]

FIGURE 17.6 Package name warning dialog box

	11.	Select the Dashboard menu item on the menu on the left side of the page and note the value of the App ID field because you will need it in the next section in this chapter (Figure 17.7).

[image: Window shows accessing Facebook application identifier having options for dashboard like AWSChat for APi version v2.8, Facebook login, active login users trend, et cetera.]

FIGURE 17.7 Accessing the Facebook application identifier

Adding the Facebook SDK to the Android Studio Project

Follow the steps outlined below to add the Facebook SDK to the AWSChat Android Studio project using Gradle.

	Open the AWSChat project in Android Studio and click the application-level build.gradle file in the Project tool window (Figure 17.8).

[image: Image described by caption and surrounding text.]

FIGURE 17.8 Accessing the application build.gradle file

	Add the following repository entry before the dependencies section of the file:

repositories {
 mavenCentral()
}

	Add the following lines to the dependencies section of the file:

compile 'com.amazonaws:aws-android-sdk-cognito:2.4.1'
compile 'com.facebook.android:facebook-android-sdk:4.+'

The contents of your build.gradle file should resemble Listing 17.1.

Listing 17.1: build.gradle

apply plugin: 'com.android.application'

android {
 compileSdkVersion 25
 buildToolsVersion "25.0.2"
 defaultConfig {
 applicationId "asmtechnology.com.awschat"
 minSdkVersion 18
 targetSdkVersion 25
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner "android.support.test.runner.
 AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
}

repositories {
 mavenCentral()
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-annotations'
 })
 compile 'com.android.support:appcompat-v7:25.3.1'
 compile 'com.android.support.constraint:constraint-layout:1.0.2'
 compile 'com.android.support:design:25.3.1'
 testCompile 'junit:junit:4.12'

 compile 'com.amazonaws:aws-android-sdk-core:2.3.2'
 compile 'com.amazonaws:aws-android-sdk-cognitoidentityprovider:2.3.2'

 compile 'com.facebook.android:facebook-android-sdk:4.+'
}

	Open the strings.xml file and add the following entry to it using the App ID for your app on Facebook:

<string name="facebook_app_id">{your-app-id}</string>

	Replace the {your-app-id} placeholder string with the App ID for the application you created in the Facebook developer portal.

	Open the AndroidManifest.xml file and add the following metadata element to the application element within the file:

<meta-data android:name="com.facebook.sdk.ApplicationId"
 android:value="@string/facebook_app_id"/>

The contents of your AndroidManifest.xml file should resemble Listing 17.2.

Listing 17.2: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="asmtechnology.com.awschat">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".LoginActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".SignupActivity"></activity>
 <activity android:name=".HomeActivity"></activity>
 <meta-data android:name="com.facebook.sdk.ApplicationId"
android:value="@string/facebook_app_id"/>
 </application>

</manifest>

This concludes the changes you need to the Android project settings. Next, you switch over to Amazon Cognito and create an identity pool.

Creating an Amazon Cognito Identity Pool

An identity pool is a database of identities that can help you obtain a set of temporary credentials to access other AWS services such as Amazon S3 and Amazon DynamoDB. Amazon Cognito can also create federated identities within an identity pool. These federated identities are unique within an identity pool and are linked to identities from third-party providers such as Facebook and Google.

Sharing an Identity Pool Between the iOS and Android App

In Chapter 10 you created an Amazon Cognito identity pool called AWSChatIdentityPool to support the iOS version of the AWSChat app. If you would like to allow users who have signed up using their Facebook credentials to use their accounts interchangeably between the iOS and Android versions of the AWSChat app or to send messages to other users of the app regardless of which platform they are using, you should use the same identity pool for both the iOS and the Android versions of the app.

If you have not created the AWSChatIdentityPool in Chapter 10, follow all the steps in this section. If you have already created the identity pool in Chapter 10 for the iOS app and would like to extend the identity pool to support the Android app, skip ahead to the section titled “Retrieving the Identity Pool ID.”

	Log in to the IAM console using your dedicated IAM user-specific sign-in link and navigate to the Amazon Cognito service home page (Figure 17.9).

[image: Window shows accessing amazon cognito service home page having options like compute, migration, security, identity, compliance, mobile service, application services, messaging, management tools, storage, database, et cetera.]

FIGURE 17.9 Accessing the Amazon Cognito service home page

	Click the Manage Federated Identities button on the Amazon Cognito splash screen to access a list of existing identity pools (Figure 17.10).

[image: Image described by caption and surrounding text.]

FIGURE 17.10 Amazon Cognito splash screen

	To add a new identity pool, click the Create new identity pool button on the top-left corner of the screen (Figure 17.11). Identity pools are specific to AWS regions. Make sure you have set up the AWS Management Console to use the correct region before creating the identity pool.

[image: Image described by caption and surrounding text.]

FIGURE 17.11 Creating a new identity pool

	Specify a name for your identity pool. The code developed in this book uses an identity pool called AWSChatIdentityPool. Ensure the Enable access to unauthenticated identities check box is disabled.

	Expand the Authentication providers section of the page, and enter your Facebook application ID in the Facebook tab of this page (Figure 17.12). Click the Create Pool button at the bottom of the page to proceed.

[image: Image described by caption and surrounding text.]

FIGURE 17.12 Specifying the Facebook app ID in an identity pool

	The next screen lets you create new roles for authenticated and unauthenticated identities (Figure 17.13). You also have the option to select an existing role.

[image: Image described by caption and surrounding text.]

FIGURE 17.13 Amazon Cognito by default, creates new roles for authenticated and unauthenticated Identities.

The authenticated role decides what AWS services from your account are accessible to users who have successfully authenticated with a federated identity. Technically speaking, your users use your app to authenticate with Facebook, and your App then calls an Amazon Cognito service to exchange the Facebook identity for a temporary federated identity from the identity pool. The authenticated role controls what AWS services are available to your app.

The default policy attached to an authenticated role is limiting and only allows your app to send analytics events to the AWS Mobile Analytics service:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "mobileanalytics:PutEvents",
 "cognito-sync:*",
 "cognito-identity:*"
],
 "Resource": [
 "*"
]
 }
]
}

For the purposes of this chapter, this is not an issue. In subsequent chapters we will update this policy to allow your app access to Amazon S3 and Amazon DynamoDB.

Our app will not use the unauthenticated role because we disabled the Enable access to unauthenticated identities check box on the previous screen.

	Click on the Allow button at the bottom of the screen to finish creating the new identity pool.

Retrieving the Identity Pool ID

You need to make a note of the pool ID for the AWSChatIdenityPool identity pool. This value should be stored in the app and provided to the AWS SDK.

	To obtain the identity pool ID, log in to the Amazon Cognito Management Console using your browser and click the Manage Federated Identities button on the splash screen to view a list of identity pools in your account (Figure 17.14).

[image: Image described by caption and surrounding text.]

FIGURE 17.14 List of identity pools in your AWS account

	Click on the name of the identity pool from the list and then click on the Edit identity pool button located at the top-right corner of the page (Figure 17.15).

[image: Window shows location for editing identity pool button with dashboard option having properties like identities this month, total identities, sync this month, total sync, current storage, authentication methods, et cetera.]

FIGURE 17.15 Location of the Edit identity pool button

The identity pool ID is listed on the new page that loads in your browser (Figure 17.16).

[image: Image described by caption and surrounding text.]

FIGURE 17.16 Accessing the identity pool ID

Creating the Identity Pool Controller Class

Follow the steps outlined in this section to create the identity pool class.

	In the AWSChat application, create a new Java class called CognitoIdentityPoolController.
This class implements the singleton design pattern and contains all the logic that deals with the Amazon Cognito identity pool for the app.

[image: images] The code in this book creates this class under the asmtechnology.com .awschat package. If you are using a different package name for your project, you should create it under the package name appropriate for your project.

	Add the following package import statements to the file:

import android.content.Context;
import android.os.AsyncTask;

import com.amazonaws.auth.CognitoCachingCredentialsProvider;
import com.amazonaws.mobileconnectors.cognito.CognitoSyncManager;
import com.amazonaws.mobileconnectors.cognito.Dataset;
import com.amazonaws.mobileconnectors.cognito.Record;
import com.amazonaws.mobileconnectors.cognito.SyncConflict;
import com.amazonaws.mobileconnectors.cognito.exceptions.DataStorageException;
import com.amazonaws.regions.Regions;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import asmtechnology.com.awschat.interfaces.
CognitoIdentityPoolControllerGenericHandler;

If you are using a different package name for your project, you will need to modify the last import statement by substituting the correct package name.

	Add the following constant declarations to the class:

private String identityPoolID = "insert your identity pool id";
private Regions identityPoolRegion = Regions.US_EAST_1;

These constants contain values that identify the identity pool the app will use. You need to replace the values of these constants with appropriate values for the Amazon Cognito identity pool that you created earlier.

	Add the following variables to the class:

public CognitoCachingCredentialsProvider mCredentialsProvider;

private Context mContext;
private CognitoIdentityPoolControllerGenericHandler facebookCompletionHandler;

The mCredentialsProvider variable is an instance of the CognitoCachingCredentialsProvider class and has public scope because it is needed by other parts of the AWSChat app to access AWS services such as Amazon DynamoDB and Amazon S3 in subsequent chapters.

The private variable called mContext is an instance of the android.content.Context class. It represents an application context.

	To ensure that the CognitoIdentityPoolController class is a singleton, add the following code to the class:

private static CognitoIdentityPoolController instance = null;
private CognitoIdentityPoolController() {}

public static CognitoIdentityPoolController getInstance(Context context) {
 if(instance == null) {
 instance = new CognitoIdentityPoolController();
 }

 if (context != null) {
 instance.setupCredentialsProvider(context);
 }

 return instance;
}

The first time getInstance() is called, it uses a private constructor to create an instance of the CognitoIdentityPoolController class and saves a reference to this instance in a private static variable called instance. The next time getInstance() is called, it returns the previously created instance of the CognitoIdentityPoolController class.

Before returning the instance, the CognitoIdentityPoolController, getInstance() method calls the setupCredentialsProvider() private method.

	Add the following code to the CognitoIentityPoolController class to implement the setupCredentialsProvider() method:

private void setupCredentialsProvider(Context context) {

 if (mCredentialsProvider == null) {
 mContext = context;
 mCredentialsProvider = new CognitoCachingCredentialsProvider(mContext,
 identityPoolID, identityPoolRegion);
 return;
 }

 if (mContext != context) {
 mCredentialsProvider = new CognitoCachingCredentialsProvider(mContext,
 identityPoolID, identityPoolRegion);
 }
}

The setupCredentialsProvider() method creates a new CognitoCachingCredentialsProvider instance if one does not exist or if the context parameter is different from what it was when the CognitoCachingCredentialsProvider instance was previously created.

	Add the following method and inner class to the CognitoIdentityPoolController class so that users can exchange their Facebook login token for a federated identity from Amazon Cognito:

public void getFederatedIdentityForFacebook(String idToken,
 String username,
 String emailAddress,
 final CognitoIdentityPoolControllerGenericHandler completion){

 this.facebookCompletionHandler = completion;
 new FacebookIdentityFederationTask().execute(idToken,
 username, emailAddress);
}

class FacebookIdentityFederationTask extends AsyncTask<String, Void, Long> {

 private String idToken;
 private String username;
 private String emailAddress;

 protected Long doInBackground(String... strings) {

 idToken = strings[0];
 username = strings[1];
 emailAddress = strings[2];

 Map<String, String> logins = new HashMap<String, String>();
 logins.put("graph.facebook.com", idToken);
 mCredentialsProvider.setLogins(logins);
 mCredentialsProvider.refresh();

 return 1L;
 }

 protected void onPostExecute(Long result) {

 CognitoSyncManager client = new CognitoSyncManager(mContext,
 identityPoolRegion, mCredentialsProvider);

 Dataset dataset = client.openOrCreateDataset("facebookUserData");
 dataset.put("name", username);
 dataset.put("email", emailAddress);

 dataset.synchronize(new Dataset.SyncCallback() {
 @Override
 public void onSuccess(Dataset dataset, List<Record> updatedRecords) {
 facebookCompletionHandler.didSucceed();
 }

 @Override
 public boolean onConflict(Dataset dataset,
 List<SyncConflict> conflicts) {
 List<Record> resolved = new ArrayList<Record>();
 for (SyncConflict conflict : conflicts) {
 resolved.add(conflict.resolveWithRemoteRecord());
 }
 dataset.resolve(resolved);
 return true;
 }

 @Override
 public boolean onDatasetDeleted(Dataset dataset,
 String datasetName) {
 return true;
 }

 @Override
 public boolean onDatasetsMerged(Dataset dataset,
 List<String> datasetNames) {
 return false;
 }

 @Override
 public void onFailure(DataStorageException dse) {

 }
 });

 }
}

The getFederatedIdentityForFacebook(idToken, username, emailAddress, completion) method is called from the login view controller after the Facebook SDK has provided a login token, name, and e-mail address for the user. This method takes four input parameters:

	idToken: The login token received from the Facebook SDK

	username: The name of the user who has logged in to Facebook

	emailAddress: The e-mail address of the user who has logged in to Facebook

	completion: A callback handler that is called by this method with the results of the identity federation process

The callback handler must implement the CognitoIdentityPoolControllerGenericHandler interface, which will be defined shortly. For now you need to know that the interface will contain two methods:

void didSucceed();
void didFail(Exception exception);

The getFederatedIdentityForFacebook() saves a reference to the callback handler in a private variable and uses an asynchronous task to perform the identity federation.

this.facebookCompletionHandler = completion;
new FacebookIdentityFederationTask().execute(idToken, username, emailAddress);

The FacebookIdentityFederationTask inner class implements the AsyncTask interface. The doInBackground() method of the FacebookIdentityFederationTask class passes the login token provided by Facebook to the credentials provider object and calls the refresh() method on the credentials provider.

protected Long doInBackground(String... strings) {

 idToken = strings[0];
 username = strings[1];
 emailAddress = strings[2];

 Map<String, String> logins = new HashMap<String, String>();
 logins.put("graph.facebook.com", idToken);
 mCredentialsProvider.setLogins(logins);
 mCredentialsProvider.refresh();

 return 1L;
}

The onPostExecute() method of the FacebookIdentityFederationTask class is called after the call to the refresh() method of the credentials provider has completed. The code in the onPostExecute() method uses a CognitoSyncManager instance to save the name and e-mail address provided by Facebook into the Amazon Cognito identity pool.

protected void onPostExecute(Long result) {

 CognitoSyncManager client = new CognitoSyncManager(mContext,
 identityPoolRegion, mCredentialsProvider);

 Dataset dataset = client.openOrCreateDataset("facebookUserData");
 dataset.put("name", username);
 dataset.put("email", emailAddress);

 dataset.synchronize(new Dataset.SyncCallback() {
 @Override
 public void onSuccess(Dataset dataset, List<Record> updatedRecords) {
 facebookCompletionHandler.didSucceed();
 }

 @Override
 public boolean onConflict(Dataset dataset,
 List<SyncConflict> conflicts) {
 List<Record> resolved = new ArrayList<Record>();
 for (SyncConflict conflict : conflicts) {
 resolved.add(conflict.resolveWithRemoteRecord());
 }
 dataset.resolve(resolved);
 return true;
 }

 @Override
 public boolean onDatasetDeleted(Dataset dataset,
 String datasetName) {
 return true;
 }

 @Override
 public boolean onDatasetsMerged(Dataset dataset,
 List<String> datasetNames) {
 return false;
 }

 @Override
 public void onFailure(DataStorageException dse) {
 facebookCompletionHandler.didFail(dse);
 }
 });

}

Amazon Cognito Sync is an AWS service that allows you to store small amounts of key-value data with each federated identity in an identity pool. This key-value data is grouped into data sets. The CognitoSyncManager class allows you to create and synchronize data sets between your device and the Amazon Cognito Sync service.

The following code snippet obtains a CognitoSyncManager instance and creates a data set called facebookData in which a username and e-mail address are stored.

CognitoSyncManager client = new CognitoSyncManager(mContext,
 identityPoolRegion, mCredentialsProvider);

Dataset dataset = client.openOrCreateDataset("facebookUserData");
dataset.put("name", username);
dataset.put("email", emailAddress);

The synchronize() method is called on the Dataset instance to perform a two-way sync between the values in the local Dataset object you have just created and values that may have been saved previously into the identity pool. This method requires you to pass a single argument, which is an object that implements the SyncCallback interface. The interface defines five methods:

void onSuccess(Dataset dataset, List<Record> updatedRecords)
void onFailure(DataStorageException dse)
boolean onConflict(Dataset dataset, List<SyncConflict> conflicts)
boolean onDatasetDeleted(Dataset dataset, String datasetName)
boolean onDatasetsMerged(Dataset dataset, List<String> datasetNames)

	The onSuccess() callback method is called by Amazon Cognito Sync if all the keys in the data set were synchronised successfully.

	The onFailure() callback method is called by Amazon Cognito Sync if there is an error in the synchronization process. Details of the error are encapsulated in an exception object.

	The onConflict() callback method is called when the values of one or more keys of the data set have changed at both ends. You need to resolve the conflicting values by choosing one of the two copies.

public boolean onConflict(Dataset dataset, List<SyncConflict> conflicts) {
 List<Record> resolved = new ArrayList<Record>();
 for (SyncConflict conflict : conflicts) {
 resolved.add(conflict.resolveWithRemoteRecord());
 }
 dataset.resolve(resolved);
 return true;
}

	The onDatasetDeleted() callback method is called by Amazon Cognito Sync if the remote copy of the data set has been deleted. Return true from this method if you want to delete the local data set.

	The onDatasetMerged() callback method is called by Amazon Cognito Sync if two identity objects have been merged. This method must return true if the merge has been resolved, or false if the sync process should be aborted. Merging identities is beyond the scope of this book, so no specific action will be taken in our implementation of this method.

To finish this section, you need to create a new Java interface called CognitoIdentityPoolControllerGenericHandler. Under the asmtechnology.com .awschat.interfaces package, update the code in the Java file corresponding to the new interface to match the following snippet:

package asmtechnology.com.awschat.interfaces;

public interface CognitoIdentityControllerGenericHandler {
 void didSucceed();
 void didFail(Exception exception);
}

Updating the Application User Interface

Open the res/layout/activity_login.xml file and paste the following snippet just before the last </LinearLayout> tag in the file:

<com.facebook.login.widget.LoginButton
 android:id="@+id/facebook_login_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="30dp"
 android:layout_marginBottom="30dp" />

This XML snippet adds a Facebook login button widget to the user interface of the login activity. The Facebook login button widget provides a high-level interface to the underlying Facebook API functionality.

When the button is tapped, the Facebook SDK provides a user interface where the user can log into Facebook. The Facebook SDK then calls methods on a callback handler object that you provide, with results of the login process. Your Android Studio window should resemble Figure 17.17.

[image: Image described by caption and surrounding text.]

FIGURE 17.17 The Facebook login button widget in the activity layout file

The CognitoIdentityPoolController class handles the bulk of the work involved in interacting with Amazon Cognito. The login activity needs to set up the Facebook login button widget and call the getFederatedIdentityForFacebook() method of the identity pool controller class after Facebook has provided an authentication token and the authenticated user’s name and e-mail address.

Listing 17.3 contains the complete source code of the LoginActivity.java file. This listing assumes the project uses the asmtechnology.com.awschat package. If you are using a different package, you may need to modify package references.

Listing 17.3: LoginActivity.java

package asmtechnology.com.awschat;

import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AlertDialog;
import android.support.v7.app.AppCompatActivity;
import android.text.TextUtils;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

import com.facebook.CallbackManager;
import com.facebook.FacebookCallback;
import com.facebook.FacebookException;
import com.facebook.GraphRequest;
import com.facebook.GraphResponse;
import com.facebook.login.LoginManager;
import com.facebook.login.LoginResult;
import com.facebook.login.widget.LoginButton;

import org.json.JSONException;
import org.json.JSONObject;

import java.util.Arrays;

import asmtechnology.com.awschat.interfaces.
CognitoIdentityPoolControllerGenericHandler;
import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerGenericHandler;

public class LoginActivity extends AppCompatActivity {

 private EditText mUsernameView;
 private EditText mPasswordView;
 private LoginButton mFacebookLoginButton;
 private CallbackManager mFacebookCallbackManager;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_login);

 mUsernameView = (EditText) findViewById(R.id.username);
 mPasswordView = (EditText) findViewById(R.id.password);

 Button mLoginButton = (Button) findViewById(R.id.login_button);
 mLoginButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 attemptLogin();
 }
 });

 Button mSignupButton = (Button) findViewById(R.id.signup_button);
 mSignupButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 displaySignupActivity();
 }
 });

 configureLoginWithFacebook();
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 mFacebookCallbackManager.onActivityResult(requestCode, resultCode, data);
 }

 private void configureLoginWithFacebook() {

 final Context context = this;

 LoginManager.getInstance().logOut();

 mFacebookCallbackManager = CallbackManager.Factory.create();

 mFacebookLoginButton =
 (LoginButton) findViewById(R.id.facebook_login_button);
 mFacebookLoginButton.setReadPermissions(
 Arrays.asList("public_profile", "email"));

 mFacebookLoginButton.registerCallback(mFacebookCallbackManager,
 new FacebookCallback<LoginResult>() {
 @Override
 public void onSuccess(LoginResult loginResult) {

 final String authToken = loginResult.getAccessToken().getToken();

 GraphRequest request =
 GraphRequest.newMeRequest(loginResult.getAccessToken(),
 new GraphRequest.GraphJSONObjectCallback() {
 @Override
 public void onCompleted(JSONObject object,
 GraphResponse response) {

 try {
 String username = object.getString("name");
 String email = object.getString("email");

 CognitoIdentityPoolController
 identityPoolController =
 CognitoIdentityPoolController.getInstance(context);
 identityPoolController.
 getFederatedIdentityForFacebook(
 authToken, username, email,
 new CognitoIdentityPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });

 } catch (JSONException e) {
 displayErrorMessage(e);
 }
 }
 });

 Bundle parameters = new Bundle();
 parameters.putString("fields", "id,name,email");
 request.setParameters(parameters);
 request.executeAsync();

 }

 @Override
 public void onCancel() {

 }

 @Override
 public void onError(FacebookException error) {
 displayErrorMessage(error);
 }
 });
 }

 private void attemptLogin() {
 // Reset errors.
 mUsernameView.setError(null);
 mPasswordView.setError(null);

 // Store values at the time of the login attempt.
 String username = mUsernameView.getText().toString();
 String password = mPasswordView.getText().toString();

 if (TextUtils.isEmpty(username)) {
 mUsernameView.setError(getString(R.string.error_field_required));
 mUsernameView.requestFocus();
 return;
 }

 if (TextUtils.isEmpty(password)) {
 mPasswordView.setError(getString(R.string.error_field_required));
 mPasswordView.requestFocus();
 return;
 }

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);
 userPoolController.login(username, password, new
 CognitoUserPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
 }

 private void displaySignupActivity() {
 Intent intent = new Intent(this, SignupActivity.class);
 startActivity(intent);
 }

 private void displayHomeActivity() {
 Intent intent = new Intent(this, HomeActivity.class);
 startActivity(intent);
 }

 private void displaySuccessMessage() {

 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage("Login succesful!");
 builder.setTitle("Success");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 displayHomeActivity();
 }
 });

 final AlertDialog alert = builder.create();
 alert.show();
 }
 });
 }

 private void displayErrorMessage(final Exception exception) {

 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage(exception.getMessage());
 builder.setTitle("Error");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 }
 });

 final AlertDialog alert = builder.create();

 alert.show();
 }
 });
 }
}

A couple of new private variables have been added to the class:

private LoginButton mFacebookLoginButton;
private CallbackManager mFacebookCallbackManager;

The tasks involved in configuring the Facebook login button widget have been encapsulated in a method called configureLoginWithFacebook(), which is called from the onCreate() method.

The configureLoginWithFacebook() method first logs out the user if he has previously logged in to the app using Facebook:

LoginManager.getInstance().logOut();

It then uses the setReadPermissions() method of the Facebook login button widget to specify the information that the app would like to access.

mFacebookLoginButton = (LoginButton) findViewById(R.id.facebook_login_button);
mFacebookLoginButton.setReadPermissions(
 Arrays.asList("public_profile", "email"));

A callback handler is provided to the login button widget. This handler must implement the FacebookCallback interface and will be called by the Facebook SDK with the results of the authentication process:

mFacebookCallbackManager = CallbackManager.Factory.create();

mFacebookLoginButton.registerCallback(mFacebookCallbackManager,
 new FacebookCallback<LoginResult>() {
 @Override
 public void onSuccess(LoginResult loginResult) {

 }

 @Override
 public void onCancel() {

 }

 @Override
 public void onError(FacebookException error) {

 }
});

The callback handler has three methods:

	onSuccess(): This method is called when the user has finished logging with Facebook. An authentication token is accessible within this method.

	onCancel(): This method is called when the user cancels the login journey within the user interface presented by the Facebook SDK.

	onError(): This method is called if the Facebook SDK encounters an error.

The implementation of onSuccess() retrieves the Facebook authentication token and also the username and e-mail address of the user who has just been authenticated by Facebook.

The token, username, and e-mail address are then passed into the getFederaedIdentityForFacebook() method of the CognitoIdentityPoolController class, which then obtains a federated Amazon Cognito identity in exchange for the authentication token provided by Facebook.

public void onSuccess(LoginResult loginResult) {

 final String authToken = loginResult.getAccessToken().getToken();

 GraphRequest request = GraphRequest.newMeRequest(loginResult.getAccessToken(), new GraphRequest.GraphJSONObjectCallback() {
 @Override
 public void onCompleted(JSONObject object, GraphResponse response) {

 try {
 String username = object.getString("name");
 String email = object.getString("email");

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(context);
 identityPoolController.getFederatedIdentityForFacebook(authToken,
 username, email, new CognitoIdentityPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });

 } catch (JSONException e) {
 displayErrorMessage(e);
 }
 }
 });

 Bundle parameters = new Bundle();
 parameters.putString("fields", "id,name,email");
 request.setParameters(parameters);
 request.executeAsync();

}

	Save the project and run it on an Android phone or emulator. Click the Continue with Facebook button on the login screen of the app (Figure 17.18).

[image: Image described by caption and surrounding text.]

FIGURE 17.18 Login activity with the Facebook login widget

The Facebook SDK presents a secure user interface in which your user needs to provide a Facebook username and password (Figure 17.19).

[image: Image described by caption and surrounding text.]

FIGURE 17.19 The Facebook SDK provides the user interface to allow a user to provide their Facebook credentials.

After you have finished authenticating, you are taken back to the AWSChat app where you are informed that the login process is complete.

	To see if the Facebook provided name and e-mail address for the user are visible in Amazon Cognito, open your web browser and access the identity pool from the Amazon Cognito dashboard. Click on the Identity browser menu item from the left-side menu to see a list of federated identities in the pool (Figure 17.20).

[image: Image described by caption and surrounding text.]

FIGURE 17.20 List of federated identities in the identity pool

	Click on an identity to view more details. In the Identity details page, look for the Datasets section and click on the data set called facebookUserData (Figure 17.21).

[image: Image described by caption and surrounding text.]

FIGURE 17.21 Accessing the facebookUserData data set

You see the Facebook-provided name and e-mail address of the user in the data set (Figure 17.22).

[image: Image described by caption and surrounding text.]

FIGURE 17.22 The Facebook-provided name and e-mail address is visible in the data set.

[image:] You can download the project files created in this chapter from this book’s web page on Sybex.com or GitHub at https://github.com/asmtechnology/Lesson17.ProfessionalAWSForMobileDevelopers.2017.git.

Summary

	To allow users to log in with their Facebook credentials, you will need to create an app on Facebook and add the Facebook SDK to your iOS project.

	An identity pool is a database of identities that can access AWS resources in your account.

	A user pool is a database of users that can be used to sign up and authenticate users of your app. However, users in a user pool do not have Identity objects associated with them.

	When creating an identity pool, you specify a set of IAM roles to be used for authenticated and unauthenticated identities.

	You must configure the identity pool to generate federated identities for Facebook identities.

	Amazon Cognito provides all the back-end features and infrastructure that are required to implement a full-fledged user signup and login system.

	Amazon Cognito consists of three key services: user pools, federated identities, and Amazon Cognito sync.

	Some of the APIs exposed by Amazon Cognito do not require an authenticated user. These APIs are typically used to allow users to log in, sign up, or retrieve a forgotten password.

	Unauthenticated Amazon Cognito APIs can only be called by applications that have been pre-registered with Amazon Cognito using the AWS Management Console.

Chapter 18
Implementing Login Using Google

WHAT’S IN THIS CHAPTER

	[image: images]Configure an application in the Google developer portal.

	[image: images]Add the Google SDK to the AWSChat Android Studio project.

	[image: images]Configure an Amazon Cognito identity pool to federate Google identities.

	[image: images]Update the AWSChat Android Studio project to allow users to log in using their Google credentials.

	[image: images]Examine the list of identities in the identity pool using the AWS Management Console.

[image:] In this chapter you build on the AWSChat Android application to allow users to log in using their Google account credentials. After users have successfully logged in with their Google credentials, you use an Amazon Cognito identity pool to exchange these credentials for a temporary set of credentials that allow you to access AWS cloud resources.

[image:] To follow along with this lesson, download the starter project from either this book’s web page at Sybex.com or GitHub at https://github.com/asmtechnology/Chapter18.AWSForMobileDevelopers.2017.git.

The sample project that accompanies this chapter uses the asmtechnology .com.awschat namespace. If you would like to change the namespace under which the files are created, open the AndroidManifest.xml file and perform the following steps for each component of the namespace that you want to change.

	Locate the package="asmtechnology.com.awschat" attribute of the manifest tag.

	Select the component of the namespace that you want to rename.

	Right-click the component to reveal a context menu and select the Refactor ➢ Rename menu item.

	Click the Rename Package button in the dialog box that appears and provide a new value for the component of the namespace you want to change.

	Click the Refactor button to finish changing the value of the component of the namespace.

You also need to ensure that the following options have been set up correctly in the starter project:

	Line 29 of the CognitoUserPoolController.Java file contains the ID of your Amazon Cognito user pool.

	Lines 33 – 34 of the CognitoUserPoolController.Java file contain the app client ID and app client secret to allow your app access to unauthenticated APIs of the user pool.

	Lines 25 – 26 of the CognitoIdentityPoolController.Java file contain the details of your Amazon Cognito identity pool.

Open the strings.xml file and update following entry with the value of your Facebook App ID:

<string name="facebook_app_id">{your-app-id}</string>

Installing the Google Play Services SDK

Before you can begin integrating the Google software development kit (SDK) with the Android Studio project, you need to ensure that the Google Play Services SDK is installed on your computer. Your Android Studio installation should have installed this by default.

	To verify that the Google Play Services SDK is installed, open the AWSChat project in Android Studio and select the Tools ➢ Android ➢ SDK Manager menu item.

	This opens the Default Preferences dialog box. Switch to the SDK Tools tab and locate the Google Repository entry toward the bottom of the list. Ensure that the Google Repository entry is installed (Figure 18.1).

[image: Window shows Google repository entry with options like android SDK displaying list like SDK platforms, SDK tools, and SDK update sites with its name and version.]

FIGURE 18.1 Verify that the Google Repository entry is selected.

Creating an App on the Google Developer Console

After you have verified that the Google Repository package is installed (the package includes the Google Play Services SDK), perform the following steps:

	Visit the following URL in your web browser:
https://developers.google.com/identity/sign-in/android/start-integrating

	Scroll down in the web page until you see a button called GET A CONFIGURATION FILE (Figure 18.2). Click on this button.

[image: Image described by caption and surrounding text.]

FIGURE 18.2 Location of the GET A CONFIGURATION FILE button

	A new web page appears with the Google Developer console loaded in it (Figure 18.3). You need to create an entry for the AWSChat app in the Google Developer console.

[image: Image described by caption and surrounding text.]

FIGURE 18.3 Creating an entry for the AWSChat app on the Google Developer console

	Specify the following application information on this page and click the Choose and configure services button:

	

	App name: AWSChat

	Android package name: asmtechnology.com.awschat

	4.	If you have created an entry for the AWSChat application in Chapter 11, select the AWSChat app from a list of existing applications.

	5.	In the Configure services screen, click on the Cloud Messaging icon and then click on the Enable Google Cloud Messaging button that appears.

	6.	After Google Cloud messaging is enabled, click on the Google Sign-In icon (Figure 18.4).

[image: Image described by caption and surrounding text.]

FIGURE 18.4 Google Sign-In configuration

	7.	You need to provide the SHA1 fingerprint of the certificate that Android Studio uses to sign your debug builds. Each time you debug your project with Android Studio, your APK is signed using a debug certificate. The first time you run or debug your project, Android Studio automatically creates a keystore file called debug.keystore and creates a self-signed debug certificate in this keystore.

	To obtain the SHA1 fingerprint of the debug certificate, follow these steps if you are using a Mac:

	

	Launch Terminal and type the following command:

keytool -exportcert -list -v -alias androiddebugkey -keystore ~
/.android/debug.keystore

	You are asked to type the keystore password; the default password is android.

Enter keystore password: android

	The output in your Terminal window should resemble the following:

Alias name: androiddebugkey
Creation date: 27-Feb-2017
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: C=US, O=Android, CN=Android Debug
Issuer: C=US, O=Android, CN=Android Debug
Serial number: 1
Valid from: Mon Feb 27 19:53:32 GMT 2017 until: Wed Feb 20 19:53:32 GMT 2047
Certificate fingerprints:
 MD5: 41:54:E0:59:6E:6B:94:53:E0:57:83:30:E4:94:C6:F9
 SHA1: FC:AE:0E:49:64:51:6C:54:50:11:71:B1:77:65:33:44:53:DA:54:FD
 SHA256: A6:30:5C:B0:E1:D3:EF:BD:8A:FE:90:6A:3A:A5:07:FC:B9:3D:4C:1E:2B:49:
 18:88:F8:9D:A9:11:75:C0:FF:BF
Signature algorithm name: SHA1withRSA
Version: 1

	Copy the value of the SHA1 fingerprint to the clipboard.

	If you are using a Windows 10 computer, use the following steps to compute the fingerprint:

	

	Launch a Command Prompt window.

	Type the following command and press Enter.

"C:\Program Files\Java\JDK1.8.0_91\bin\keytool" -exportcert -list -v
-alias androiddebugkey -keystore c:\users\abby\.android\debug.keystore

	This command assumes the following:

	

	The keytool.exe application is installed in the C:\Program Files\Java\JDK1.8.0_91\bin folder.

	The debug.keystore file was created by Android Studio in the C\Users\Bob\.Android folder.

	You need to substitute these paths with the corresponding values for your computer.

	

	You are asked to type the keystore password. The default password is android.

	The output in your command prompt window should resemble the following:

Alias name: androiddebugkey
Creation date: 18-Apr-2017
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: C=US, O=Android, CN=Android Debug
Issuer: C=US, O=Android, CN=Android Debug
Serial number: 1
Valid from: Tue Apr 18 18:25:01 BST 2017 until: Thu Apr 11 18:25:01 BST 2047
Certificate fingerprints:
 MD5: 9B:FB:FA:DF:66:79:2F:1A:1E:DB:21:4A:96:E8:16:2E
 SHA1: CA:E4:8C:41:DB:DA:98:5C:07:B9:E3:0D:05:AC:3F:38:C0:30:8B:DF
 SHA256: 02:79:85:22:3A:D3:23:54:C9:1A:E0:4E:11:88:49:48:3E:AA:DF:06:EC:
 E2:3B:0E:5B:F5:30:7B:FC:33:44:4C
 Signature algorithm name: SHA1withRSA
 Version: 1

	Copy the value of the SHA1 fingerprint to the clipboard.

	8.	Scroll down to the bottom of the page and paste the SHA1 hash into the Android Signing Certificate SHA-1 field. Then click the ENABLE GOOGLE SIGN-IN button (Figure 18.5).

[image: Image described by caption and surrounding text.]

FIGURE 18.5 Click the ENABLE GOOGLE SIGN-IN button after providing the SHA-1 hash of your Android debug certificate.

	9.	A message appears on the web page confirming that Google Sign-In has been enabled for your app (Figure 18.6). Click on the Generate configuration files button at the bottom of the page to proceed.

[image: Image described by caption and surrounding text.]

FIGURE 18.6 Confirmation that Google Sign-In has been enabled for the app

	10.	On the next page, click the Download google-services.json button to download a JSON configuration file that contains details for the services you have just enabled (Figure 18.7).

[image: Image described by caption and surrounding text.]

FIGURE 18.7 Download the google-services.json file.

Updating the Android Studio Project

Now that you have created an app on the Google Developer console, perform the following steps to update the AWSChat Android Studio project.

	Look for a file called google-services.json in your downloads folder and copy this file to the app/ subdirectory of the AWSChat project. Switch back to the AWSChat project in Android Studio and change the view mode of the Project tool window to Project. The google-services.json file should be listed under the app folder in the Project tool window (Figure 18.8).

[image: Image described by caption and surrounding text.]

FIGURE 18.8 Adding the google-services.json file to the AWSChat Android Studio project

	Open the project-level build.gradle file and add the following dependency to the file:

classpath 'com.google.gms:google-services:3.0.0'

Your project-level build.gradle file should resemble the following:

// top-level build file where you can add configuration options common to all
// subprojects/modules
buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:2.3.0'
 classpath 'com.google.gms:google-services:3.0.0'

 // NOTE: Do not place your application dependencies here; they belong
 // in the individual module build.gradle files
 }
}
allprojects {
 repositories {
 jcenter()
 }
}
task clean(type: Delete) {
 delete rootProject.buildDir
}

	Open the app-level build.gradle file and locate a line similar to the following:

apply plugin: 'com.android.application'

	Add the following line to the file, just before the line you located in the previous step.

apply plugin: 'com.google.gms.google-services'

	Locate the dependencies section in the file, and add the following repository entry to the file if it does not exist., just before the start of the dependencies section:

repositories {
 mavenCentral()
}

	Add the following compile-time dependency entry to the dependencies section:

compile 'com.google.android.gms:play-services-auth:9.0.0'

Your app-level build.gradle file should resemble the following:

apply plugin: 'com.android.application'
apply plugin: 'com.google.gms.google-services'
android {
 compileSdkVersion 25
 buildToolsVersion "25.0.2"
 defaultConfig {
 applicationId "asmtechnology.com.awschat"
 minSdkVersion 18
 targetSdkVersion 25
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner "android.support.test.runner.
AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'
 }
 }
}
repositories {
 mavenCentral()
}
dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-annotations'
 })
 compile 'com.android.support:appcompat-v7:25.3.1'
 compile 'com.android.support.constraint:constraint-layout:1.0.2'
 compile 'com.android.support:design:25.3.1'
 testCompile 'junit:junit:4.12'
 compile 'com.amazonaws:aws-android-sdk-core:2.4.1'
 compile 'com.amazonaws:aws-android-sdk-cognitoidentityprovider:2.4.1'
 compile 'com.amazonaws:aws-android-sdk-cognito:2.4.1'
 compile 'com.facebook.android:facebook-android-sdk:4.+'
 compile 'com.google.android.gms:play-services-auth:9.0.0'
}

Updating the Identity Pool

In this section you update the AWSChatIdentityPool object created in the previous chapter to handle Google-provided authentication tokens and allow the app to exchange these tokens for temporary federated identity objects that can be used to access AWS services.

	Log in to the IAM console using your dedicated IAM user-specific sign-in link and navigate to the Amazon Cognito service home page (Figure 18.9).

[image: Window shows accessing amazon Cognito home page with its properties like compute, migration, security, identity, compliance, mobile services (cognito), developer tools, et cetera.]

FIGURE 18.9 Accessing the Amazon Cognito service home page

	Click the Manage Federated Identities button on the Amazon Cognito splash screen to access a list of existing identity pools (Figure 18.10).

[image: Image described by caption and surrounding text.]

FIGURE 18.10 Amazon Cognito splash screen

	Locate the AWSChatIdentityPool object in the list of identity pools and click it to access the identity pool’s dashboard (Figure 18.11).

[image: Window shows list of identity pools like create new identity pool with its name AwsChatIdentityPool, mobile analytics shared pool do not modify, getting started, in-depth guides, and community.]

FIGURE 18.11 List of identity pools

	Locate the Edit identity pool button toward the top-right corner of the dashboard page and click it (Figure 18.12).

[image: Window shows editing identity pools with options like dashboard along with resources like filters, total identities, and past 14 days list, identities this month, total identities, sync this month, and total sync.]

FIGURE 18.12 Editing the identity pool

If you had already built the iOS version of the AWSChat app in Part II of this book, you would have updated the AWSChatIdentityPool identity pool in Chapter 11 to support Google Sign-In.

Google requires that you generate separate client ID strings for the iOS and Android versions of your app. The manner in which you set up the Amazon Cognito Identity pool to support Google Sign-In is different if you have multiple client ID strings.

The client ID string for the Android version of the app was already generated when you used the Google Developer portal to add an entry for the AWS Chat app and generate a configuration file. The client ID string is part of the information contained in the google-services.json file that you downloaded.

If you have followed the instructions in Chapter 11, skip ahead to the section titled “Using an OpenID Connect Authentication Provider.” If you have not followed the steps in Chapter 11, follow all the steps in the following section.

Using a Google+ Authentication Provider

Follow the steps in this section to configure your Amazon Cognito identity pool to federate Google identities.

	Locate the Authentication Providers section in the Edit Identity Pool page and expand it to reveal a list of authentication providers. Switch to the Google+ tab and click the Unlock button next to the Google Client ID field (Figure 18.13).

[image: Window shows locating Google Client ID field with authentication providers having Cognito, Amazon, Facebook, Google+, Twitter, OpenID, SAML, and Custom.]

FIGURE 18.13 Locating the Google Client ID field

	Open the google-services.json file you downloaded earlier in this lesson and locate a dictionary similar to the following in the oauth_client array in the file:

{
 "client_id": "332977463957-i3lf03m5e16ai1obc9tfru36vuu887ln.apps.
googleusercontent.com",
 "client_type": 3
}

The value of the client_type key should be 3. Copy the value of the client_id property from the dictionary and paste it into the Google Client ID field. Scroll down to the bottom of the page and click the Save Changes button (Figure 18.14).

[image: Image described by caption and surrounding text.]

FIGURE 18.14 Specifying the Google Client ID

Using an OpenID Connect Authentication Provider

You should follow the instructions in this section only if you want to use a single Amazon Cognito identity pool to Federate Google identities from both the iOS and the Android versions of the AWSChat app.

	Open a new browser window and use your dedicated IAM user-specific sign-in link to log in to the AWS Management Console. Navigate to the IAM service dashboard (Figure 18.15).

[image: Image described by caption and surrounding text.]

FIGURE 18.15 AWS Identity and Access Management dashboard

	Click the Identity Providers link on the left side of the page and then click the Create Provider button (Figure 18.16).

[image: Window shows creation of new identity provider with options for creating provider, its name, type, and creation time.]

FIGURE 18.16 Creating a new identity provider

	You are presented with a set of options that allow you to configure a new identity provider (Figure 18.17).

[image: Image described by caption and surrounding text.]

FIGURE 18.17 Configuring an identity provider

	Select OpenID Connect in the Provider Type combo box. Type https://accounts.google.com in the Provider URL field.

	Open the google-services.json file that you downloaded earlier in this chapter and locate a dictionary in the oauth_client array that resembles the following:

{
 "client_id": "332977463957-5t8ub83otg67o36urs24liupfqu3ouvo.apps.
googleusercontent.com",
 "client_type": 1,
 "android_info": {
 "package_name": "asmtechnology.com.awschat",
 "certificate_hash": "fcae0e4964516c54501171b17765334453da54fd"
 }
}

	Copy the value of the client_id field of the JSON dictionary to the clipboard. Switch back to your web browser and paste the value into the Audience field of the Configure Provider web page. Click the Next Step button to proceed.

	Amazon Cognito connects to https://accounts.google.com and presents you with the thumbprint of the SSL certificate obtained from Google’s server (Figure 18.18).

[image: Image described by caption and surrounding text.]

FIGURE 18.18 Amazon Cognito asks you to verify the thumbprint of the SSL certificate obtained from Google’s server.

In a production scenario, you should obtain the SSL certificate from Google’s server yourself and verify the thumbprint of that certificate against the information presented by Amazon Cognito. For the purposes of the app being built in this book, this is not necessary.

	Click the Create button to finish creating the new identity provider. You see an entry for the accounts.google.com identity provider in the list (Figure 18.19).

[image: Image described by caption and surrounding text.]

FIGURE 18.19 The list of identity providers now contains an entry for accounts.google.com.

	Click the accounts.google.com identity provider from the list to add a new Audience entry for the iOS version of the AWS Chat app. Click the Add an Audience button and type the client ID for the iOS version of the AWSChat app (Figure 18.20). After you have pasted the client ID of the iOS app into the Audience field of the identity provider, click the Save Changes button.

[image: Image described by caption and surrounding text.]

FIGURE 18.20 Adding the Google Client ID of the AWSChat app to the OpenID Connect provider

[image:] You can get the client ID for the iOS version of the AWSChat app using the instructions in Chapter 11, or you can copy the value from the Google+ tab of the Amazon Cognito Identity Pool settings screen.

	Switch to the Edit Identity Pool browser window, which should still be open. Locate the OpenID tab under the Authentication providers section. Enable the accounts.google.com provider (Figure 18.21) and click the Save changes button at the bottom of the page.

[image: Image described by caption and surrounding text.]

FIGURE 18.21 Enabling the accounts.google.com OpenID Connect provider

This concludes the changes that you need to make to the Amazon Cognito identity pool to allow Google identity federation.

Updating the Identity Pool Controller Class

In this section you update the CognitoIdentityPoolController class in the AWSChat Android Studio project to obtain a federated Amazon Cognito identity object for a Google identity object.

	Open the AWSChat project in Android studio and click the CognitoIdentityPoolController class. The code in this book assumes this class was created under the asmtechnology .com.awschat package. If you are using a different package name, you need to look for the class under the package name appropriate to your project.

	Add the following private variable declaration to the class:

private CognitoIdentityPoolControllerGenericHandler googleCompletionHandler;

	Add the following method and inner class to the CognitoIdentityPoolController class so that users can exchange their Google token for a federated identity from Amazon Cognito:

public void getFederatedIdentityForGoogle(String idToken,
 String username,
 String emailAddress,
 final
 CognitoIdentityPoolControllerGenericHandler completion) {
 this.googleCompletionHandler = completion;
 new GoogleIdentityFederationTask().execute(idToken, username, emailAddress);
}
 class GoogleIdentityFederationTask extends AsyncTask<String, Void, Long> {
 private String idToken;
 private String username;
 private String emailAddress;
 protected Long doInBackground(String... strings) {
 idToken = strings[0];
 username = strings[1];
 emailAddress = strings[2];
 Map<String, String> logins = new HashMap<String, String>();
 logins.put("accounts.google.com", idToken);
 mCredentialsProvider.clearCredentials();
 mCredentialsProvider.clear();
 mCredentialsProvider.setLogins(logins);
 mCredentialsProvider.refresh();
 return 1L;
 }
 protected void onPostExecute(Long result) {
 CognitoSyncManager client = new CognitoSyncManager(mContext,
 identityPoolRegion,
 mCredentialsProvider);
 Dataset dataset = client.openOrCreateDataset("googleUserData");
 dataset.put("name", username);
 dataset.put("email", emailAddress);
 dataset.synchronize(new Dataset.SyncCallback() {
 @Override
 public void onSuccess(Dataset dataset, List<Record> updatedRecords) {
 googleCompletionHandler.didSucceed();
 }
 @Override
 public boolean onConflict(Dataset dataset,
 List<SyncConflict> conflicts) {
 List<Record> resolved = new ArrayList<Record>();
 for (SyncConflict conflict: conflicts) {
 resolved.add(conflict.resolveWithRemoteRecord());
 }
 dataset.resolve(resolved);
 return true;
 }
 @Override
 public boolean onDatasetDeleted(Dataset dataset,
 String datasetName) {
 return true;
 }
 @Override
 public boolean onDatasetsMerged(Dataset dataset,
 List<String> datasetNames) {
 return false;
 }
 @Override
 public void onFailure(DataStorageException dse) {
 googleCompletionHandler.didFail(dse);
 }
 });
 }
}

The getFederatedIdentityForGoogle(idToken, username, emailAddress, completion) method is called from the login view controller after a user has successfully authenticated using Google sign-in and the Google SDK has provided our app with an authentication token, name, and e-mail address for the user. This method takes four input parameters:

	idToken: The login token received from the Google SDK

	username: The name of the user who has logged in to Google

	emailAddress: The e-mail address of the user who has logged into Google

	completion: A callback handler that this method calls with the results of the identity federation process

The callback handler must implement the CognitoIdentityPoolControllerGenericHandler interface, which was created in Chapter 17 when you added support for Facebook login. The interface contains two methods:

void didSucceed();
void didFail(Exception exception);

getFederatedIdentityForGoogle() saves a reference to the callback handler in a private variable and uses an asynchronous task to perform the identity federation.

this.googleCompletionHandler = completion;
new GoogleIdentityFederationTask().execute(idToken, username, emailAddress);

The GoogleIdentityFederationTask inner class implements the AsyncTask interface and is similar to the FacebookIdentityFederationTask created in Chapter 17.

The doInBackground() method of the GoogleIdentityFederationTask class passes the authentication token provided by the Google SDK to the Amazon Cognito credentials provider object and calls the refresh() method on the credentials provider.

protected Long doInBackground(String... strings) {
 idToken = strings[0];
 username = strings[1];
 emailAddress = strings[2];
 Map<String, String> logins = new HashMap<String, String>();
 logins.put("accounts.google.com", idToken);
 mCredentialsProvider.setLogins(logins);
 mCredentialsProvider.refresh();
 return 1L;
}

The onPostExecute() method of the GoogleIdentityFederationTask class is called after the call to the refresh() method of the credentials provider has completed. The code in the onPostExecute() method uses a CognitoSyncManager instance to save the name and e-mail address that Google supplies into the Amazon Cognito identity pool.

protected void onPostExecute(Long result) {
 CognitoSyncManager client = new CognitoSyncManager(mContext,
 identityPoolRegion,
 mCredentialsProvider);
 Dataset dataset = client.openOrCreateDataset("googleUserData");
 dataset.put("name", username);
 dataset.put("email", emailAddress);
 dataset.synchronize(new Dataset.SyncCallback() {
 @Override
 public void onSuccess(Dataset dataset, List<Record> updatedRecords) {
 googleCompletionHandler.didSucceed();
 }
 @Override
 public boolean onConflict(Dataset dataset,
 List<SyncConflict> conflicts) {
 List<Record> resolved = new ArrayList<Record>();
 for (SyncConflict conflict: conflicts) {
 resolved.add(conflict.resolveWithRemoteRecord());
 }
 dataset.resolve(resolved);
 return true;
 }
 @Override
 public boolean onDatasetDeleted(Dataset dataset,
 String datasetName) {
 return true;
 }
 @Override
 public boolean onDatasetsMerged(Dataset dataset,
 List<String> datasetNames) {
 return false;
 }
 @Override
 public void onFailure(DataStorageException dse) {
 googleCompletionHandler.didFail(dse);
 }
 });
}

Amazon Cognito Sync is an AWS service that allows you to store small amounts of key-value data with each federated identity in an identity pool. This key-value data is grouped into datasets. The CognitoSyncManager class allows you to create and synchronize datasets between your device and the Amazon Cognito Sync service.

The following code snippet obtains a CognitoSyncManager instance and creates a dataset called googleUserData in which a username and e-mail address are stored.

CognitoSyncManager client = new CognitoSyncManager(mContext,
 identityPoolRegion, mCredentialsProvider);
Dataset dataset = client.openOrCreateDataset("googleUserData");
dataset.put("name", username);
dataset.put("email", emailAddress);

The synchronize() method is called on the Dataset instance to perform a two-way sync between the values in the local Dataset object you just created and values that may have been saved previously into the identity pool. This method requires you to pass a single argument, which is an object that implements the SyncCallback interface. The interface defines five methods:

void onSuccess(Dataset dataset, List<Record> updatedRecords)
void onFailure(DataStorageException dse)
boolean onConflict(Dataset dataset, List<SyncConflict> conflicts)
boolean onDatasetDeleted(Dataset dataset, String datasetName)
boolean onDatasetsMerged(Dataset dataset, List<String> datasetNames)

	The onSuccess() callback method is called by Amazon Cognito Sync if all the keys in the dataset were synchronized successfully.

	The onFailure() callback method is called by Amazon Cognito Sync if there is an error in the synchronization process. Details of the error are encapsulated in an exception object.

	The onConflict() callback method is called when the values of one or more keys of the dataset have changed at both ends. You need to resolve the conflicting values by choosing one of the two copies.

public boolean onConflict(Dataset dataset, List<SyncConflict> conflicts) {
 List<Record> resolved = new ArrayList<Record>(); for (SyncConflict conflict: conflicts) {
 resolved.add(conflict.resolveWithRemoteRecord());
 }
 dataset.resolve(resolved); return true;
}

	The onDatasetDeleted() callback method is called by Amazon Cognito Sync if the remote copy of the dataset has been deleted. Return true from this method if you want to delete the local dataset.

	The onDatasetMerged() callback method is called by Amazon Cognito Sync if two identity objects have been merged. This method must return true if the merge has been resolved, or false if the sync process should be aborted. Merging identities is beyond the scope of this book; therefore, no specific action is taken in our implementation of this method.

Updating the Application User Interface

Open the res/layout/activity_login.xml file and paste the following snippet just before the second to last </LinearLayout> tag in the file:

<com.google.android.gms.common.SignInButton
 android:id="@+id/google_sign_in_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal" />

This XML snippet adds a Google Sign-In button to the user interface of the login activity. Your Android Studio window should resemble Figure 18.22.

[image: Image described by caption and surrounding text.]

FIGURE 18.22 Login Activity layout with the Google Sign-In widget

When the button is tapped, the app transfers control to the Google SDK via an Intent. The Google SDK presents a user interface in which the user can provide Google credentials. The Google SDK then authenticates the user and returns control to the AWSChat app. The AWSChat app can examine the result of the sign-in process and take appropriate action.

The CognitoIdentityPoolController class handles the bulk of the work involved in interacting with Amazon Cognito. The login activity needs to call the getFederatedIdentityForGoogle() method of the identity pool controller class after Google has provided an authentication token and the authenticated user’s name and e-mail address. Listing 18.1 contains the complete source code of the LoginActivity.java file that includes support for Google Sign-In, Facebook sign-in, and Amazon Cognito user pool based sign-in.

This source code assumes you are using the asmtechnology.com.awschat package; if you are using a different package name then your package name references will differ.

Listing 18.1: LoginActivity.java

package asmtechnology.com.awschat;
import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AlertDialog;
import android.support.v7.app.AppCompatActivity;
import android.text.TextUtils;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import com.facebook.CallbackManager;
import com.facebook.FacebookCallback;
import com.facebook.FacebookException;
import com.facebook.GraphRequest;
import com.facebook.GraphResponse;
import com.facebook.login.LoginManager;
import com.facebook.login.LoginResult;
import com.facebook.login.widget.LoginButton;
import com.google.android.gms.auth.api.Auth;
import com.google.android.gms.auth.api.signin.GoogleSignInAccount;
import com.google.android.gms.auth.api.signin.GoogleSignInOptions;
import com.google.android.gms.auth.api.signin.GoogleSignInResult;
import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.SignInButton;
import com.google.android.gms.common.api.GoogleApiClient;
import org.json.JSONException;
import org.json.JSONObject;
import java.util.Arrays;
import asmtechnology.com.awschat.interfaces.
CognitoIdentityPoolControllerGenericHandler;
import asmtechnology.com.awschat.interfaces.
CognitoUserPoolControllerGenericHandler;
public class LoginActivity extends AppCompatActivity implements
 GoogleApiClient.OnConnectionFailedListener {
 private EditText mUsernameView;
 private EditText mPasswordView;
 private LoginButton mFacebookLoginButton;
 private CallbackManager mFacebookCallbackManager;
 private String mGoogleClientId = "your google client id";
 private GoogleSignInOptions mGoogleSignInOptions;
 private GoogleApiClient mGoogleApiClient;
 private SignInButton mGoogleSignInButton;
 private int GOOGLE_SIGNIN_RESULT_CODE = 100;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_login);
 mUsernameView = (EditText) findViewById(R.id.username);
 mPasswordView = (EditText) findViewById(R.id.password);
 Button mLoginButton = (Button) findViewById(R.id.login_button);
 mLoginButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 attemptLogin();
 }
 });
 Button mSignupButton = (Button) findViewById(R.id.signup_button);
 mSignupButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 displaySignupActivity();
 }
 });
 configureLoginWithFacebook();
 configureGoogleSignIn();
 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == GOOGLE_SIGNIN_RESULT_CODE) {
 GoogleSignInResult result =
 Auth.GoogleSignInApi.getSignInResultFromIntent(data);
 handleGoogleSignInResult(result);
 } else {
 mFacebookCallbackManager.onActivityResult(requestCode,
 resultCode, data);
 }
 }
 private void configureGoogleSignIn() {
 mGoogleSignInOptions = new
 GoogleSignInOptions.Builder(
 GoogleSignInOptions.DEFAULT_SIGN_IN)
 .requestEmail()
 .requestIdToken(mGoogleClientId)
 .build();
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .enableAutoManage(this, this)
 .addApi(Auth.GOOGLE_SIGN_IN_API, mGoogleSignInOptions)
 .build();
 mGoogleSignInButton = (SignInButton)
 findViewById(R.id.google_sign_in_button);
 mGoogleSignInButton.setSize(SignInButton.SIZE_STANDARD);
 mGoogleSignInButton.setScopes(mGoogleSignInOptions.getScopeArray());
 mGoogleSignInButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Intent signInIntent =
 Auth.GoogleSignInApi.getSignInIntent(mGoogleApiClient);
 startActivityForResult(signInIntent, GOOGLE_SIGNIN_RESULT_CODE);
 }
 });
 }
 private void configureLoginWithFacebook() {
 final Context context = this;
 LoginManager.getInstance().logOut();
 mFacebookLoginButton = (LoginButton)
 findViewById(R.id.facebook_login_button);
 mFacebookLoginButton.setReadPermissions(
 Arrays.asList("public_profile", "email"));
 mFacebookCallbackManager = CallbackManager.Factory.create();
 mFacebookLoginButton.registerCallback(mFacebookCallbackManager,
 new FacebookCallback<LoginResult>() {
 @Override
 public void onSuccess(LoginResult loginResult) {
 final String authToken = loginResult.getAccessToken().getToken();
 GraphRequest request =
 GraphRequest.newMeRequest(loginResult.getAccessToken(),
 new GraphRequest.GraphJSONObjectCallback() {
 @Override
 public void onCompleted(JSONObject object,
 GraphResponse response) {
 try {
 String username = object.getString("name");
 String email = object.getString("email");
 CognitoIdentityPoolController
 identityPoolController =
 CognitoIdentityPoolController.getInstance(context);
 identityPoolController.
 getFederatedIdentityForFacebook(authToken,
 username,
 email,
 new CognitoIdentityPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }
 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
 } catch (JSONException e) {
 displayErrorMessage(e);
 }
 }
 });
 Bundle parameters = new Bundle();
 parameters.putString("fields", "id,name,email");
 request.setParameters(parameters);
 request.executeAsync();
 }
 @Override
 public void onCancel() {
 }
 @Override
 public void onError(FacebookException error) {
 displayErrorMessage(error);
 }
 });
 }
 private void attemptLogin() { // reset errors
 mUsernameView.setError(null);
 mPasswordView.setError(null); // store values at the time of the login attempt
 String username = mUsernameView.getText().toString();
 String password = mPasswordView.getText().toString();
 if (TextUtils.isEmpty(username)) {
 mUsernameView.setError(getString(R.string.error_field_required));
 mUsernameView.requestFocus();
 return;
 }
 if (TextUtils.isEmpty(password)) {
 mPasswordView.setError(getString(R.string.error_field_required));
 mPasswordView.requestFocus();
 return;
 }
 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);
 userPoolController.login(username, password, new
 CognitoUserPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }
 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
 }
 private void displaySignupActivity() {
 Intent intent = new Intent(this, SignupActivity.class);
 startActivity(intent);
 }
 private void displayHomeActivity() {
 Intent intent = new Intent(this, HomeActivity.class);
 startActivity(intent);
 }
 private void displaySuccessMessage() {
 final Context context = this;
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage("Login succesful!");
 builder.setTitle("Success");
 builder.setCancelable(false);
 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 displayHomeActivity();
 }
 });
 final AlertDialog alert = builder.create();
 alert.show();
 }
 });
 }
 private void displayErrorMessage(final Exception exception) {
 final Context context = this;
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage(exception.getMessage());
 builder.setTitle("Error");
 builder.setCancelable(false);
 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 }
 });
 final AlertDialog alert = builder.create();
 alert.show();
 }
 });
 }
 private void displayErrorMessage(final String title, final String message) {
 final Context context = this;
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage(message);
 builder.setTitle(title);
 builder.setCancelable(false);
 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 }
 });
 final AlertDialog alert = builder.create();
 alert.show();
 }
 });
 }
 private void handleGoogleSignInResult(GoogleSignInResult result) {
 if (result.isSuccess() == false) {
 displayErrorMessage("Error", "Google Sign-In Failed.");
 return;
 }
 GoogleSignInAccount acct = result.getSignInAccount();
 String authToken = acct.getIdToken();
 String username = acct.getDisplayName();
 String email = acct.getEmail();
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(this);
 identityPoolController.getFederatedIdentityForGoogle(authToken,
 username, email,
 new CognitoIdentityPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }
 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
 }
 @Override
 public void onConnectionFailed(final ConnectionResult connectionResult) {
 displayErrorMessage("Error", connectionResult.getErrorMessage());
 }
}

A few new private variables have been added to the class:

private String mGoogleClientId = "insert Google client id";
private GoogleSignInOptions mGoogleSignInOptions;
private GoogleApiClient mGoogleApiClient;
private SignInButton mGoogleSignInButton;
private int GOOGLE_SIGNIN_RESULT_CODE = 100;

The mGoogleClientId variable contains the Google client ID of the app and can be obtained from the second item of the oauth-client array in the google-services.json file.

{
 "client_id": "123434.apps.googleusercontent.com",
 "client_type": 3
}

The tasks involved in configuring the Google Sign-In button and Google SDK have been encapsulated in a method called configureGoogleSignIn(), which is called from the onCreate() method.

private void configureGoogleSignIn() {
 mGoogleSignInOptions =
 new GoogleSignInOptions.Builder(
 GoogleSignInOptions.DEFAULT_SIGN_IN)
 .requestEmail()
 .requestIdToken(mGoogleClientId)
 .build();
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .enableAutoManage(this, this)
 .addApi(Auth.GOOGLE_SIGN_IN_API, mGoogleSignInOptions)
 .build();
 mGoogleSignInButton = (SignInButton)
 findViewById(R.id.google_sign_in_button);
 mGoogleSignInButton.setSize(SignInButton.SIZE_STANDARD);
 mGoogleSignInButton.setScopes(mGoogleSignInOptions.getScopeArray());
 mGoogleSignInButton.setOnClickListener(new View.OnClickListener() {
 @Override
public void onClick(View v) {
Intent signInIntent =
 Auth.GoogleSignInApi.getSignInIntent(mGoogleApiClient);
startActivityForResult(signInIntent, GOOGLE_SIGNIN_RESULT_CODE);
 }
 });
}

The configureGoogleSignIn()method first creates a GoogleSignInOptions instance that represents the user information that the AWSChat app wants to access from a user’s Google profile.

mGoogleSignInOptions = new
GoogleSignInOptions.Builder(
 GoogleSignInOptions.DEFAULT_SIGN_IN)
 .requestEmail()
 .requestIdToken(mGoogleClientId)
 .build();

The requestEmail() and requestIdToken() method calls ensure that the app receives the e-mail address and also the authentication token of the user after he has successfully authenticated with Google.

A GoogleApiClient instance is created next. It is configured with the GoogleSignInOptions object created earlier.

mGoogleApiClient = new GoogleApiClient.Builder(this)
 .enableAutoManage(this, this)
 .addApi(Auth.GOOGLE_SIGN_IN_API, mGoogleSignInOptions)
 .build();

The Google Sign-In button is then set up. When the button is tapped, a sign-in Intent is created using the getSignInIntent() method, and the Intent is started using startActivityForResult().

mGoogleSignInButton = (SignInButton) findViewById(R.id.google_sign_in_button);
mGoogleSignInButton.setSize(SignInButton.SIZE_STANDARD);
mGoogleSignInButton.setScopes(mGoogleSignInOptions.getScopeArray());
mGoogleSignInButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Intent signInIntent =
 Auth.GoogleSignInApi.
 getSignInIntent(mGoogleApiClient);
 startActivityForResult(signInIntent, GOOGLE_SIGNIN_RESULT_CODE);
 }
});

Starting the intent prompts the user to select a Google account and provide credentials. The result of the sign-in process is received in the activity’s onActivityResult() method:

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == GOOGLE_SIGNIN_RESULT_CODE) {
 GoogleSignInResult result =
 Auth.GoogleSignInApi.getSignInResultFromIntent(data);
handleGoogleSignInResult(result);
 } else {
 mFacebookCallbackManager.onActivityResult(requestCode,
resultCode, data);
 }
}

The onActivityResult() method uses the value of the requestCode parameter to differentiate between calls to this method by the Google sign-in intent and the Facebook login intent. It passes the result of the Google Sign-In process to the handleGoogleSignInResult() private method.

private void handleGoogleSignInResult(GoogleSignInResult result) {
 if (result.isSuccess() == false) {
 displayErrorMessage("Error", "Google Sign-In Failed.");
 return;
 }
 GoogleSignInAccount acct = result.getSignInAccount();
 String authToken = acct.getIdToken();
 String username = acct.getDisplayName();
 String email = acct.getEmail();
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(this);
 identityPoolController.getFederatedIdentityForGoogle(authToken,
 username, email,
 new CognitoIdentityPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }
 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
}

The handleGoogleSignInResult method extracts the authentication token, username, and e-mail address of the authenticated user and passes these to the getFederatedIdentityForGoogle() method of the CognitoIdentityPoolController instance.

Save the project and run it on an Android phone or emulator. Click the Google Sign-In button on the login screen of the app (Figure 18.23).

[image: Image described by caption and surrounding text.]

FIGURE 18.23 Login Activity with the Google Sign-In button

The Google SDK presents a secure user interface that users can utilize to provide their Google username and password (Figure 18.24).

[image: Image described by caption and surrounding text.]

FIGURE 18.24 Google SDK provides a secure form where users can provide their Google credentials.

After users have authenticated with their Google credentials, they are taken back to the AWSChat app where they are informed that the sign-in process is complete.

To see if the Google-provided name and e-mail address for the user is visible in Amazon Cognito, open a web browser and access the identity pool from the Amazon Cognito dashboard. Click the Identity browser menu item from the left-side menu to see a list of federated identities in the pool (Figure 18.25).

[image: Window shows list of identities in identity pool with its identity ID, date created, and linked logins with search by identity ID textbox.]

FIGURE 18.25 List of identities in the identity pool

Click an identity to view more details. In the Identity details page, look for the Datasets section and click the dataset called googleUserData (Figure 18.26).

[image: Window shows Google federated identities with identity details, date created, linked logins, datasets, create dataset button, displaying its name, date, last modified, storage, and records.]

FIGURE 18.26 Google federated identities have a dataset called googleUserData.

You see the Google-provided name and e-mail address of the user in the dataset (Figure 18.27).

[image: Image described by caption and surrounding text.]

FIGURE 18.27 Google-provided name and e-mail address of the user associated with the federated identity

[image:] You can download the project files created in this chapter from this book’s web page on Sybex.com or from GitHub at https://github.com/asmtechnology/Chapter18.AWSForMobileDevelopers.2017.git.

Summary

	To allow users to log in with their Google credentials, you need to create an app on Google and add the Google SDK to your Android studio project.

	You must configure the identity pool to generate federated identities for Google identities.

	The iOS and Android version of the AWSChat app will have different Google client IDs.

	If you are using the same identity pool to support Google Sign-In on both iOS and Android apps, you need to define an OpenID connect provider.

	At the start of the Google sign-in process, the Google SDK will launch a web browser on the device and present a user interface that can be used by users to provide their Google credentials.

Chapter 19
Accessing Amazon DynamoDB

WHAT’S IN THIS CHAPTER

	[image: images]Create tables in Amazon DynamoDB.

	[image: images]Create a Node.js Lambda function to copy user data from an identity pool to an Amazon DynamoDB table.

	[image: images]Test an AWS Lambda function using a test event.

	[image: images]Link a user pool to an identity pool.

	[image: images]Update the AWSChat Android app to add other users as friends.

	[image: images]Display a list of friends in the AWSChat Android app.

[image:] In this chapter you build on the AWSChat Android application to allow logged-in users to create a friends list that contains other users of the app. This functionality is built using Amazon DynamoDB tables and AWS Lambda functions.

[image:] To keep this lesson focused on AWS related aspects of developing with Amazon DynamoDB, code listings in this chapter have been abbreviated.

You can view the complete source code for all the files that make up this chapter by downloading the final project from either this book’s web page at Sybex.com or GitHub at https://github.com/asmtechnology/ Chapter19.AWSForMobileDevelopers.2017.git.

The projects that accompany this chapter use the asmtechnology.com .awschat namespace. If you would like to change the namespace under which the files are created, open the AndroidManifest.xml file and perform the following steps for each component of the namespace that you want to change.

	Locate the package="asmtechnology.com.awschat" attribute of the manifest tag.

	Select the component of the namespace that you want to rename.

	Right click the component to reveal a context menu and select the Refactor ➢ Rename menu item.

	Click the Rename Package button in the dialog box that appears and provide a new value for the component of the namespace you want to change.

	Click the Refactor button to finish changing the value of the component of the namespace.

You also need to ensure that the following options have been set up correctly in the starter project:

	Line 29 of the CognitoUserPoolController.Java file contains the ID of your Amazon Cognito user pool.

	Lines 33 – 34 of the CognitoUserPoolController.Java file contain the app client ID and app client secret to allow your app access to unauthenticated APIs of the user pool.

	Lines 25 – 26 of the CognitoIdentityPoolController.Java file contain the details of your Amazon Cognito identity pool.

	Open the strings.xml file and update following entry with the value of your Facebook App ID:

<string name="facebook_app_id">{your-app-id}</string>

If you intend to use Google sign-in, then in addition to the preceding items, you need to ensure that:

	You have set up an application on the Google developer console.

	You have included the GoogleService-Info.plist file in your Android studio project.

	Line 47 of LoginActivity.Java contains the Google client ID.

Creating Amazon DynamoDB Tables

In this section you use the Amazon Web Services (AWS) Management Console to create the following four Amazon DynamoDB tables.

	User

	Friend

	Chat

	Message

If you built the iOS version of the AWSChat app in Part II of this book, you already created these tables in Chapter 12, and you can skip this section.

Figure 19.1 depicts the data to be stored in these tables and the relationships between these tables.

[image: Diagram shows dynamoDB table structure of Amazon having friend (id, user id, friend id), user (id, username, email), chat (id, from user id, to user id), and message (chat id, message id, message text, image, image preview, sender id, date sent).]

FIGURE 19.1 Amazon DynamoDB table structure

Ideally, you should use an AWS Identity and Access Management (IAM) user with administrative privileges to carry out these tasks. If you have not yet created an IAM user under your root account, refer to the process described in Chapter 3.

Log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the Amazon DynamoDB service home page (Figure 19.2).

[image: Window shows accessing amazon Cognito home page with its properties like compute, migration, security, identity, compliance, mobile services (cognito), developer tools, database (dynamoDB), et cetera.]

FIGURE 19.2 Accessing the Amazon DynamoDB service home page

Amazon DynamoDB tables are scoped at the region level, so make sure you have set up the AWS Management Console to use the same region as the one in which you created your Amazon Cognito user pool and identity pool.

Creating the User Table

The User table contains a list of users. Each user has the following fields:

	id

	username

	email_address

The username and e-mail address of registered users are copied from Amazon Cognito into an Amazon DynamoDB table to facilitate development of chat-specific features. For instance, each user in the User table has a unique ID you can use to retrieve a list of friends from the Friend table. The combination of the logged-in user’s ID and his friend’s ID can retrieve a conversation from the Chat table, and so on.

Although Amazon Cognito contains usernames and e-mail addresses of registered users, it does not provide any way by which you can mark users as friends or store conversations between friends. For all these features, you need to use a database system. Amazon Cognito acts as the access control mechanism to your AWS resources; you are responsible for building a solution using AWS resources that can serve the needs of your business.

If you have never used Amazon DynamoDB, you are presented with the DynamoDB splash screen (Figure 19.3).

[image: Image described by caption and surrounding text.]

FIGURE 19.3 Amazon DynamoDB splash screen

If you have used Amazon DynamoDB in the past, you arrive at the DynamoDB dashboard (Figure 19.4).

[image: Image described by caption and surrounding text.]

FIGURE 19.4 Amazon DynamoDB dashboard

Regardless of which screen you arrive at, to get started with creating an Amazon DynamoDB table, follow these steps.

	Click the Create Table button. On the Create DynamoDB table screen (Figure 19.5), provide the following information:

[image: Image described by caption and surrounding text.]

FIGURE 19.5 Creating the User table

	Table name: User

	Primary key: id

The default create table screen is also configured not to create secondary indexes and to reserve a throughput capacity of 5 read units and 5 write units. Not having a secondary index at this point is not a problem because we don’t have data in the table. However, because you are billed for provisioned throughput capacity you reserve, you should start with the smallest number of read and write units and increase these if needed in the future.

	Uncheck the Use default settings check box, and scroll down to the bottom of the page to locate the Provisioned capacity section. Change the number of Read and Write units to 1 each (Figure 19.6).

[image: Window shows changing provisioned IO capacity with table settings like default settings, secondary indexes, provisioned capacity, read capacity units, write capacity units, et cetera.]

FIGURE 19.6 Changing the provisioned IO capacity for the User table

	Click the Create button to create the table. The table takes a few minutes to create. After it is created, your screen should resemble Figure 19.7. Make a note of the value of the Amazon Resource Name (ARN) field. You will need this value in the “Updating the IAM Policy Used by the Identity Pool” section later in this chapter when you are updating an IAM Policy to allow your app access to this Amazon DynamoDB table.

[image: Image described by caption and surrounding text.]

FIGURE 19.7 Overview of the User table

Schemaless Tables

You may be wondering why there is only one field called id in the User table and no option to define the user_name and email_address fields while creating the table.

Amazon DynamoDB tables are schemaless, so a row can have any number of fields, and the fields can vary from row to row. Fields are created on an ad-hoc basis as new rows are added to the table.

The AWSChat app, while inserting a new row, ensures that each row has a field called user_name and email_address and that these fields have meaningful values. Amazon DynamoDB does not place implicit restrictions on the structure of tables except that each row has a primary key field.

Creating the Friend Table

The Friend table is used to obtain a list of friends for a given user. Each row of the Friend table represents a single user/friend mapping and contains the following fields:

	id

	user_id

	friend_id

	Click the Create table button on the Amazon DynamoDB dashboard and provide the following information:

	Table name: Friend

	Primary key: id

	Use default settings: Unchecked

	Provisioned Write capacity units: 1

	Provisioned Read capacity units: 1

	Click the Create button to create the table. The table takes a few minutes to create. Note the Amazon Resource Name (ARN) of the table after it has been created. You will need this value in the “Updating the IAM Policy Used by the Identity Pool” section later in this chapter when you are updating an IAM Policy to allow your app access to this Amazon DynamoDB table.

Creating the Chat Table

Each row in the Chat table represents a conversation between two users. Each row in the table has the following fields:

	id

	from_user_id

	to_user_id

In a production scenario, this table could be used to contain information to customize the appearance of specific conversations, such as a custom background image for each conversation.

	Click the Create table button on the Amazon DynamoDB dashboard and provide the following information:

	Table name: Chat

	Primary key: id

	Use default settings: Unchecked

	Provisioned Write capacity units: 1

	Provisioned Read capacity units: 1

	Click the Create button to create the table. The table takes a few minutes to create. Note the ARN of the table after it has been created. You will need this value in the “Updating the IAM Policy Used by the Identity Pool” section later in this chapter when you are updating an IAM Policy to allow your app access to this Amazon DynamoDB table.

Creating the Message Table

Each row in the Message table represents a message in a conversation between two users. Each row in the table has the following fields:

	chat_id

	message_id

	message_text

	message_image

	message_image_preview

	sender_id

	date_sent

A message can contain either text or an image, but not both. If a message contains text, the content of the message is available in the message_text field. If a message contains an image, the message_image and message_image_preview fields contain the URL of an image file and a thumbnail file.

The image and thumbnail files are stored in an Amazon S3 bucket, which will be created and configured in the next chapter.

	Click the Create table button on the Amazon DynamoDB dashboard and provide the following information:

	Table name: Message

	Primary partition key: chat_id

	Primary partition key data type: String

	Sort key: date_sent

	Sort key data type: Number

	Use default settings: Unchecked

	Provisioned Write capacity units: 1

	Provisioned Read capacity units: 1

This table is slightly different from the others. It has both a partition key and a sort key. Recall from Chapter 7 that the partition key (also known as the hash key) decides the physical volume on which the item is stored. The sort key (also known as the range key) can uniquely retrieve an item (or a range of items) stored on a physical volume. When a sort key is present, multiple items in the table can have the same value for the partition key; however, the combination of partition key and sort key for each item must be unique.

The sort key is called date_sent, and its data type is Number. In Chapter 20 when you build the functionality to send messages to users, you will write a numeric representation of the date in this field. This is so that you can use a query to retrieve all messages in a particular chat within an interval of time.

	Click the Create button to create the table. The table takes a few minutes to create. Note the ARN of the table after it has been created. You need this value in the following section when you are updating an IAM Policy to allow your app access to this Amazon DynamoDB table.

	After all tables have been created, click the Tables links in the Amazon DynamoDB dashboard, and you should see all four tables listed there (Figure 19.8).

[image: Image described by caption and surrounding text.]

FIGURE 19.8 Amazon DynamoDB dashboard showing all four tables

Updating the IAM Policy Used by the Identity Pool

In this section, you modify the IAM policy used by authenticated identities in the AWSChatIdentityPool. You update this policy to allow full access to the Amazon DynamoDB tables you just created. By doing this, you are ensuring that your application code can access your DynamoDB tables.

If you built the iOS version of the AWSChat app in Part II of this book, you made these updates in Chapter 12, and you can skip this section.

	Log in to the IAM Management Console and click the Roles link to view a list of roles in your account. Click the Cognito_AWSChatIdentityPoolAuth_Role role (Figure 19.9).

[image: Window shows role to be edited with its name, description, and creation time along with create new role and role actions.]

FIGURE 19.9 Click the role that you want to edit.

	You are taken to a screen where you can edit the role. Click the Create Role Policy button under the Permissions tab button (Figure 19.10).

[image: Window shows location for creating new role policy button under roles options with permissions, attach policy button, create role policy button.]

FIGURE 19.10 Location of the Create Role Policy button

	You are taken to the Manage Role Permissions screen. Select the Policy Generator option to create a policy (Figure 19.11).

[image: Window shows policy generator to create role permissions having set permissions with its descriptions and custom policy with select button.]

FIGURE 19.11 Using the Policy Generator to create role permissions

	You are taken to a screen where you can allow or deny access to various AWS services in the new policy. You can use a single policy to allow access to all four Amazon DynamoDB tables that you created in the previous section.

	To add an entry to the policy to allow access to the User table, ensure the following options are set up on the screen and click the Add Statement button (Figure 19.12).

[image: Image described by caption and surrounding text.]

FIGURE 19.12 Click the Add Statement Button to Add a Permission to the Role Policy.

	Effect: Allow

	AWS Service: Amazon DynamoDB

	Actions: All Actions

	Amazon Resource Name (ARN): <ARN for the User table>

	Repeat the process for the other three tables, substituting the ARN for each table when needed. At the end of the process, your new policy should contain four permissions that allow access to your Amazon DynamoDB tables. Click the Next Step button (Figure 19.13).

[image: Image described by caption and surrounding text.]

FIGURE 19.13 Four permissions have been added to the role policy.

	You are presented with a summary screen that lets you review the contents of the new policy. Change the name of the new policy to AWSChatIdentityPool_DynamoDBAccess and click the Apply Policy button (Figure 19.14).

[image: Window shows renaming policy before applying policy button along with review policy descriptions and coding for renaming policy.]

FIGURE 19.14 Rename the policy before clicking the Apply Policy button.

You are taken back to the Edit Role screen, and you see your new policy listed under the Inline Policies section of the Permissions tab (Figure 19.15).

[image: Window shows adding new role to IAM role list with attach policy button, create role policy and permissions, trust relationships, access advisor, et cetera.]

FIGURE 19.15 A new policy has been added to the IAM role.

Creating an IAM Service Role

In this section, you create an IAM service role that will be assumed by an AWS Lambda function to write data into Amazon DynamoDB. After you have created this role, you proceed to create the actual Lambda function.

If you built the iOS version of the AWSChat app in Part II of this book, you created this service role in Chapter 12, and you can skip this section.

	If you have left the IAM console or closed your web browser, log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the IAM service home page.

	Click the Roles link to access a list of existing roles in your account, and click the Create New Role button at the top of the list (Figure 19.16).

[image: Window shows creating IAM role with options like create new role and role action displaying name of role and creation time.]

FIGURE 19.16 Creating an IAM role

	You are asked to provide a name for the new role. Type AWSChatLambdaExecutionRole in the Role Name field and click the Next Step button (Figure 19.17).

[image: Image described by caption and surrounding text.]

FIGURE 19.17 Selecting the AWS Lambda service role

	You are asked to select a role type. You are creating a role that will be assumed by a service (AWS Lambda). Select the AWS Lambda item under AWS Service Roles (Figure 19.18).

[image: Window shows amazonDynamoDBFullAccess policy displaying select role type having amazon EC2, AWS directory service, AWS Lambda, amazon redshift, and amazon API gateway.]

FIGURE 19.18 Select the AmazonDynamoDBFullAccess policy.

	You are asked to attach one or more policy documents to the new role. The policies attached to a role determine what AWS services can be accessed by an entity that assumes the role, and also what actions can be performed by the entity on these services. Because you want AWS Lambda to read from and write to Amazon DynamoDB, select the AmazonDynamoDBFullAccess policy and click the Next Step button (Figure 19.19).

[image: Window shows providing name for new role created with attach policy option displaying its name, attached entities, creation time, and edited time.]

FIGURE 19.19 Provide a name for the new role.

	You are asked to review information on the new role that is about to be created. Take a moment to study the information on the review screen and click the Create Role button (Figure 19.20).

[image: Image described by caption and surrounding text.]

FIGURE 19.20 Review IAM role screen

Your new role is listed along with any other roles you may have in your account (Figure 19.21).

[image: Window shows new IAM role addition with other existing role which displays role name and creation time for role AWSChatLambdaExecutionRole.]

FIGURE 19.21 The new IAM role is listed along with other existing IAM roles.

Populating the User Table with an AWS Lambda Function

In this section, you create an AWS Lambda function written in Node.JS to be executed every time a new user is created in an Amazon Cognito user or identity pool. This function adds a new row to the User table and copies the user name and e-mail address from Amazon Cognito.

If you built the iOS version of the AWSChat app in Part II of this book, you created this AWS Lambda function in Chapter 12, and you can skip this section.

	Navigate to the AWS Lambda service home page (Figure 19.22). Ensure the AWS Lambda Management Console is set to the same region in which you have created your Amazon Cognito and Amazon DynamoDB resources.

[image: Window shows accessing amazon Cognito home page with its properties like compute (Cognito), migration, security, identity, compliance, mobile services (cognito), developer tools, database (dynamoDB), et cetera.]

FIGURE 19.22 Accessing the AWS Lambda service home page

	If you are using AWS Lambda for the first time, you are presented with the AWS Lambda splash screen (Figure 19.23). Click the Get Started Now button to begin creating a Lambda function.

[image: Image described by caption and surrounding text.]

FIGURE 19.23 AWS Lambda splash screen

	If you have used AWS Lambda in the past, you arrive at the AWS Lambda dashboard (Figure 19.24). You can click on the Create a Lambda function button to start the process of creating a new Lambda function.

[image: Image described by caption and surrounding text.]

FIGURE 19.24 AWS Lambda dashboard

	After clicking the Create a Lambda function button, you are asked to select a blueprint for the function. Use the runtime drop-down to select the Node.js 4.3 runtime (Figure 19.25), and click the cognito-sync trigger function blueprint.

[image: Window shows cognito-sync-trigger blueprint having Node.js 4.3 with Cognito app and blank function and cognito-sync-trigger option is been selected.]

FIGURE 19.25 Selecting the cognito-sync-trigger blueprint

Sync Trigger Events

A sync trigger is an event generated by Amazon Cognito every time one or more values in a user dataset have been added, removed, or changed, but before the change has been committed.

In Chapters 17 and 18, you added code to the AWSChat app that creates datasets called facebookDataSet and googleDataSet for users who sign up using their Facebook or Google credentials. These datasets capture the name and e-mail address of the user. Datasets store information as key-value pairs.

The payload of a sync trigger event generated when a user signs up using Google credentials is a JSON document that resembles the following:

{
 "version": 2,
 "eventType": "SyncTrigger",
 "region": "us-east-1",
 "identityPoolId": "identityPoolId",
 "identityId": "identityId",
 "datasetName": "facebookDataSet",
 "datasetRecords": {
 "SampleKey1": {
 "oldValue": "oldValue1",
 "newValue": "newValue1",
 "op": "replace"
 },
 "SampleKey2": {
 "oldValue": "oldValue2",
 "newValue": "newValue2",
 "op": "replace"
 },..
 }
}

The dataSetRecords dictionary in the event payload contains one object for each key that has changed in the data set. The object contains information on the change made to the key. Its JSON representation is presented in this snippet:

 "SampleKey1": {
 "oldValue": "oldValue1",
 "newValue": "newValue1",
 "op": "replace"
 },

The object contains three pieces of information about the key:

	oldValue: The previous value of the key

	newValue: The new value of the key

	op: A string that describes the change itself. Allowed values are replace and remove.

An AWS Lambda function based on the cognito-sync-trigger blueprint is executed every time Amazon Cognito generates a sync trigger event. The Lambda function can edit anything in the dataSetRecords dictionary. However, in our case we want the Lambda function to read values from the dataSetRecords dictionary and update an Amazon DynamoDB table.

	After selecting the blueprint, you are asked to customize the AWS Lambda function. The first thing you are asked to set up is the name of the identity pool whose sync triggers events you are interested in. Select AWSChatIdentityPool from the list of available identity pools, ensure the Enable trigger check box is selected, and click Next (Figure 19.26).

[image: Image described by caption and surrounding text.]

FIGURE 19.26 Selecting the source for the Amazon Cognito sync trigger

What About Amazon Cognito User Pools?

Astute readers may have noticed that the Cognito-sync-trigger blueprint only allows you to execute your AWS Lambda function code in response to users being added to an identity pool. There is no option to trigger a Lambda function when a user is added to a user pool.

That is because users in a user pool exist in an isolated space and cannot access AWS resources in your account. To be able to access resources from your AWS account, a user in a user pool needs a set of credentials. Credentials are encapsulated by Identity objects, and Identity objects exist in identity pools, not user pools.

What this means is that, at this moment, only users who have signed up with their Facebook or Google credentials can access your AWS resources. This is because we have written code in the AWSChat app that exchanges Facebook and Google authentication tokens for federated Identity objects within Amazon Cognito.

To allow users who have signed up using the Amazon Cognito user pool access to our AWS resources, we need to request an Identity object from Amazon Cognito. We will do this later in this chapter.

	On the next screen, you are asked to provide some additional information on the new AWS Lambda function, including a name, a short description, and the source code of the function (Figure 19.27). Provide the following values on this screen:

[image: Image described by caption and surrounding text.]

FIGURE 19.27 Setting up the AWS Lambda function

	Name: AddCognitoUserToDynamoDB

	Description: Copy Cognito user details to DynamoDB table

	Runtime: Node.js 4.3

	Code entry type: Edit code inline

	Delete the existing sample Node.js code included in the blueprint and replace it with the contents of Listing 19.1.

Listing 19.1: AddCognitoUserToDynamoDB Function

var doc = require('dynamodb-doc');
 exports.handler = function(event, context, callback) {
 if (event.eventType !== 'SyncTrigger') {
 callback(JSON.stringify(event));
 }
 if (!(('name' in event.datasetRecords) &&
 ('email' in event.datasetRecords))) {
 callback(JSON.stringify(event));
 }
 var name = event.datasetRecords.name.newValue;
 var email = event.datasetRecords.email.newValue;
 var shouldDeleteRecord =
 (event.datasetRecords.name.op === 'remove') ||
 (event.datasetRecords.email.op === 'remove');
 if (shouldDeleteRecord === true) {
 // do not delete from dynamo DB
 callback(null, event);
 }
 var db = new doc.DynamoDB();
 var params = {'TableName' : 'User',
 'Item' : {'id' : event.identityId,
 'username' : name,
 'email_address' : email }};
 db.putItem(params, function(err, data) {
 if (err) {
 console.log('User insert failure', err);
 callback(err);
 } else {
 console.log('User insert success', data);
 callback(null, event);
 }
 });
};

A Brief Analysis of the AWS Lambda Function Code

If you are not a Node.js developer and you are wondering what the code in the AWS Lambda function does, read on.

The AWS Lambda function starts by importing the Amazon DynamoDB Document client module, which is needed to write to DynamoDB. Every Node.js Lambda function has a handler method defined as follows.

exports.handler = function(event, context, callback) {
/// function code goes here
}

When an Amazon Cognito sync-trigger event occurs, this handler function is executed by the AWS Lambda runtime and receives three values:

	event: The event that triggered the AWS Lambda function

	context: An object that provides information on the AWS Lambda runtime

	callback: A function that can be used by the AWS Lambda function to indicate success or failure

In the handler method, you first check the eventType field of the event object to discard any events that you are not expecting to process:

if (event.eventType !== 'SyncTrigger') {
 callback(JSON.stringify(event));
}

If the eventType field does not match the string SyncTrigger, you use the callback function to indicate an error and exit.

Next, the code in the handler method checks to ensure that the event data contains the name and e-mail key of the data set that triggered the event:

if (!(('name' in event.datasetRecords) && ('email' in event.datasetRecords))) {
 callback(JSON.stringify(event));
}

The handler method then extracts the new values of the name and e-mail keys of the data set:

var name = event.datasetRecords.name.newValue;
var email = event.datasetRecords.email.newValue;

The current implementation of the AWS Lambda function does not delete users from the Amazon DynamoDB database. If the sync-trigger event was generated because a data set was deleted, the Lambda function exits without reporting an error:

var shouldDeleteRecord = (event.datasetRecords.name.op === 'remove') ||
 (event.datasetRecords.email.op === 'remove');
if (shouldDeleteRecord == true) {
 // do not delete from DynamoDB
 callback(null, event);
}

Finally, the putItem method of the Amazon DynamoDB document object is used to insert (or append) a row in the User table:

var db = new doc.DynamoDB();
var params = {'TableName' : 'User',
 'Item' : {'id' : event.identityId,
 'username' : name,
 'email_address' : email }};
db.putItem(params, function(err, data) {
 if (err) {
 console.log('User insert failure', err);
 callback(err);
 } else {
 console.log('User insert success', data);
 callback(null, event);
 }
});

	Scroll down to the AWS Lambda function handler and role section of the page and select Choose an existing role in the Role combo box. Select the AWSChatLambdaExecutionRole from the list of roles in the Existing role combo box (Figure 19.28).

[image: Image described by caption and surrounding text.]

FIGURE 19.28 Specifying the AWS Lambda function execution role

	Expand the Advanced settings options on the page, and increase the AWS Lambda function Timeout value to 10 seconds (Figure 19.29).

[image: Window shows specifying execution timeout having lambda function handler and role with handler, role, existing role with advanced settings and memory and timeout.]

FIGURE 19.29 Specifying the execution timeout

	Scroll down to the bottom of the AWS Lambda function configuration page and click the Next button to move to the review screen.

	The review screen contains a summary of the AWS Lambda function that you are about to create (Figure 19.30). Scroll down to the bottom of the page and click the Create function button.

[image: Image described by caption and surrounding text.]

FIGURE 19.30 AWS Lambda function review screen

Testing the AWS Lambda Function

Now that you have given permission to the AWS Lambda function to write to Amazon DynamoDB, it is time to test the Lambda function using the AWS Lambda Management Console.

To get started, navigate to the AWS Lambda service home page and ensure that the AWS Lambda Management Console is set to the same region in which you have created your Lambda function. Click on the AddCognitoUserToDynamoDB function from the list of available functions (Figure 19.31).

[image: Image described by caption and surrounding text.]

FIGURE 19.31 List of AWS Lambda functions

This takes you to the AWS Lambda function dashboard where you can test (and edit) the Lambda function. Click on the Test button (Figure 19.32).

[image: Image described by caption and surrounding text.]

FIGURE 19.32 AWS Lambda function dashboard

A dialog box appears in the web browser, asking you to configure a test event (Figure 19.33).

[image: Image described by caption and surrounding text.]

FIGURE 19.33 Configuring a test event

Replace the sample event data prepopulated in the dialog box with the following event:

{
 "datasetName": "googleUserData",
 "eventType": "SyncTrigger",
 "region": "us-east-1",
 "identityId": "us-east-1:1a8870db-2510-4c42-a1d5-6e895bb52040",
 "datasetRecords": {
 "name": {
 "newValue": "amishra2",
 "oldValue": "amishra",
 "op": "replace"
 },
 "email": {
 "newValue": "amishra2@asmtechnology.com",
 "oldValue": "amishra@asmtechnology.com",
 "op": "replace"
 }
 },
 "identityPoolId": "us-east-1:3a7a90d7-b0e7-4730-b0aa-866c9a16ec85",
 "version": 2
}

Click on the Save and test button in the dialog box. AWS Lambda executes your Lambda function with the test event you have configured and presents the results on your screen (Figure 19.34).

[image: Image described by caption and surrounding text.]

FIGURE 19.34 AWS Lambda function test results

Your screen contains a message indicating that the test has passed. You also have access to the console log generated by the AWS Lambda function.

Updating the AWSChat App

In this section, you will examine the changes that need to be made to the AWSChat app to allow users to view a list of friends, and add other users of the app to their list of friends.

The following dependencies from the AWS SDK for Android will need to be added to the project using one of the methods discussed in Chapter 15:

	Amazon DynamoDB

	Amazon DynamoDB Object Mapper

Using Android Studio, create the following new packages:

	asmtechnology.com.awschat.controllers

	asmtechnology.com.awschat.models

The project created in this book uses the asmtechnology.com.awschat namespace and therefore the controllers and models packages are created under this namespace. If you are using a different namespace in your project, create the packages under the namespace appropriate for your project.

The CognitoIdentityPoolController and CognitoUserPoolController classes will need to be moved into the asmtechnology.com.awschat.controllers package. You can move files between packages using drag-and-drop operations in Android Studio.

Model Classes

To access Amazon DynamoDB tables in your Android project, four model classes have been created that map to the items you intend to store in DynamoDB tables:

	User

	Friend

	Chat

	Message

The User Class

A new Java class called User.java has been created in the asmtechnology.com.awschat .models package. The contents of this class are presented in Listing 19.2.

Listing 19.2: User.Java

package asmtechnology.com.awschat.models;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBAttribute;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBTable;
@DynamoDBTable(tableName = "User")
public class User {
 private String id;
 private String username;
 private String email_address;
 @DynamoDBHashKey(attributeName = "id")
 public String getId() {
 return id;
 }
 public void setId(String id) {
 this.id = id;
 }
 @DynamoDBAttribute(attributeName = "username")
 public String getUsername() {
 return username;
 }
 public void setUsername(String username) {
 this.username = username;
 }
 @DynamoDBAttribute(attributeName = "email_address")
 public String getEmail_address() {
 return email_address;
 }
 public void setEmail_address(String email_address) {
 this.email_address = email_address;
 }
}

The AWS SDK for Android makes use of annotations to define links between a model class and a table in Amazon DynamoDB. These annotations provide a mechanism by which you can specify the following:

	The name of the Amazon DynamoDB table that corresponds to the model class

	The names of the attributes in the table and the corresponding instance variables of the class

	The names of the sort and partition keys and the corresponding instance variables of the class

The following annotations are used in Listing 19.2:

	@DynamoDBTable: Identifies the table in Amazon DynamoDB

	@DynamoDBHashKey: Maps an instance variable to the primary key attribute of the table

	@DynamoDBAttribute: Maps an instance variable to an item attribute

For a complete list of Java annotations for Amazon DynamoDB, visit the following URL:

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html

The User class contains three values: id, username, and email_address. These values are case sensitive and must match attribute names in the corresponding Amazon DynamoDB table.

The Friend Class

A new class called Friend.java has been created in the asmtechnology.com.awschat.models package. The contents of this class are presented in Listing 19.3.

Listing 19.3: Friend.java

package asmtechnology.com.awschat.models;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBAttribute;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBTable;
@DynamoDBTable(tableName = "Friend")
public class Friend {
 private String id;
 private String user_id;
 private String friend_id;
 @DynamoDBHashKey(attributeName = "id")
 public String getId() {
 return id;
 }
 public void setId(String id) {
 this.id = id;
 }
 @DynamoDBAttribute(attributeName = "user_id")
 public String getUser_id() {
 return user_id;
 }
 public void setUser_id(String user_id) {
 this.user_id = user_id;
 }
 @DynamoDBAttribute(attributeName = "friend_id")
 public String getFriend_id() {
 return friend_id;
 }
 public void setFriend_id(String friend_id) {
 this.friend_id = friend_id;
 }
}

The Chat Class

A new class called Chat.java has been created under the asmtechnology.com.awschat .models package. The contents of this class are presented in Listing 19.4.

Listing 19.4: Chat.java

package asmtechnology.com.awschat.models;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBAttribute;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBTable;
@DynamoDBTable(tableName = "Chat")
public class Chat {
 private String from_user_id;
 private String to_user_id;
 private String id;
 @DynamoDBHashKey(attributeName = "id")
 public String getId() {
 return id;
 }
 public void setId(String id) {
 this.id = id;
 }
 @DynamoDBAttribute(attributeName = "from_user_id")
 public String getFrom_user_id() {
 return from_user_id;
 }
 public void setFrom_user_id(String from_user_id) {
 this.from_user_id = from_user_id;
 }
 @DynamoDBAttribute(attributeName = "to_user_id")
 public String getTo_user_id() {
 return to_user_id;
 }
 public void setTo_user_id(String to_user_id) {
 this.to_user_id = to_user_id;
 }
}

The Message Class

A new class called Message.java has been created in the asmtechnology.com.awschat .models package. The contents of this class are presented in Listing 19.5.

Listing 19.5: Message.java

package asmtechnology.com.awschat.models;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBAttribute; import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBHashKey; import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBRangeKey; import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBTable;

@DynamoDBTable(tableName = "Message") public class Message {

 private String chat_id;
 private double date_sent;
 private String message_id;
 private String message_text;
 private String message_image;
 private String mesage_image_preview;
 private String sender_id;

 @DynamoDBHashKey(attributeName = "chat_id")
 public String getChat_id() {
 return chat_id;
 }

 public void setChat_id(String chat_id) {
 this.chat_id = chat_id;
 }

 @DynamoDBRangeKey(attributeName = "date_sent")
 public double getDate_sent() {
 return date_sent;
 }

 public void setDate_sent(double date_sent) {
 this.date_sent = date_sent;
 }

 @DynamoDBAttribute(attributeName = "message_id")
 public String getMessage_id() {
 return message_id;
 }

 public void setMessage_id(String message_id) {
 this.message_id = message_id;
 }

 @DynamoDBAttribute(attributeName = "message_text")
 public String getMessage_text() {
 return message_text;
 }

 public void setMessage_text(String message_text) {
 this.message_text = message_text;
 }

 @DynamoDBAttribute(attributeName = "message_image")
 public String getMessage_image() {
 return message_image;
 }

 public void setMessage_image(String message_image) {
 this.message_image = message_image;
 }

 @DynamoDBAttribute(attributeName = "mesage_image_preview")
 public String getMesage_image_preview() {
 return mesage_image_preview;
 }

 public void setMesage_image_preview(String mesage_image_preview) {
 this.mesage_image_preview = mesage_image_preview;
 }

 @DynamoDBAttribute(attributeName = "sender_id")
 public String getSender_id() {
 return sender_id;
 }

 public void setSender_id(String sender_id) {
 this.sender_id = sender_id;
 }

}

The ChatManager Class

The AWSChat app delegates all chat management responsibilities to a class called the ChatManager. A new class called ChatManager.java has been created in the asmtechnology .com.awschat.controllers package. The contents of this class are presented in Listing 19.6.

Listing 19.6: ChatManager.java

package asmtechnology.com.awschat.controllers;

import android.content.Context;

import java.util.ArrayList;

import asmtechnology.com.awschat.models.User;

public class ChatManager {

 public ArrayList<User> friendList;
 public ArrayList<User> potentialFriendList;

 private Context mContext;

 private static ChatManager instance = null;
 private ChatManager() {}

 public static ChatManager getInstance(Context context) {
 if(instance == null) {
 instance = new ChatManager();
 instance.friendList = new ArrayList<User>();
 instance.potentialFriendList = new ArrayList<User>();
 }

 instance.mContext = context;
 return instance;
 }

 public void clearFriendList() {
 friendList.clear();
 }

 public void addFriend(User user) {
 friendList.add(user);
 }

 public void clearPotentialFriendList() {
 potentialFriendList.clear();
 }

 public void addPotentialFriend(User user) {
 potentialFriendList.add(user);
 }

}

The ChatManager class implements the singleton design pattern and contains two lists of User objects. The first one is called friendList and contains a list of users who are friends with the person who is using the app. The second one is called potentialFriendList and contains a list of users who could be friends with the person who is using the app.

The DynamoDBController Class

The DynamoDBController class is responsible for interacting with Amazon DynamoDB services. A new class called DynamoDBController.java has been created in the asmtechnology .com.awschat.controllers package. The contents of this class are presented in Listing 19.7.

Listing 19.7: DymanoDBController.java

package asmtechnology.com.awschat.controllers;

import android.content.Context;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBMapper;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.
 DynamoDBScanExpression;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.PaginatedScanList;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.UUID;

import asmtechnology.com.awschat.models.Friend;
import asmtechnology.com.awschat.models.User;
import asmtechnology.com.awschat.interfaces.DynamoDBControllerGenericHandler;
import asmtechnology.com.awschat.interfaces.
 DynamoDBControllerRetrieveFriendIDsHandler;
import asmtechnology.com.awschat.interfaces.DynamoDBControllerRetrieveUserHandler;

public class DynamoDBController {

 private Context mContext;

 private static DynamoDBController instance = null;
 private DynamoDBController() {}

 public static DynamoDBController getInstance(Context context) {
 if(instance == null) {
 instance = new DynamoDBController();
 }

 instance.mContext = context;
 return instance;
 }

 public void refreshFriendList(final String userId,
 final DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {
 public void run() {

 retrieveFriendIds(userId,
 new DynamoDBControllerRetrieveFriendIDsHandler() {
 @Override
 public void didSucceed(ArrayList<String> results) {

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);
 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);
 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 DynamoDBScanExpression scanExpression = new
 DynamoDBScanExpression();
 try {
 PaginatedScanList<User> users =
 mapper.scan(User.class, scanExpression);

 // clear friend list in ChatManager ChatManager chatManager =
 ChatManager.getInstance(mContext);
 chatManager.clearFriendList();

 // add User objects for (User u : users) {

 if (results.contains(u.getId())) {
 chatManager.addFriend(u);
 }
 }

 completion.didSucceed();

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });

 }
 };

 Thread mythread = new Thread(runnable);
 mythread.start();
 }

 public void retrieveUser (final String userId,
 final DynamoDBControllerRetrieveUserHandler completion) {

 Runnable runnable = new Runnable() {

 public void run() {
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);
 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);
 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 try {
 User user = mapper.load(User.class, userId);

 completion.didSucceed(user);

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }
 };

 Thread mythread = new Thread(runnable);
 mythread.start();
 }

 public void refreshPotentialFriendList(final String currentUserId,
 final DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {

 public void run() {

 retrieveFriendIds(currentUserId,
 new DynamoDBControllerRetrieveFriendIDsHandler() {
 @Override
 public void didSucceed(ArrayList<String> results) {
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);
 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);
 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 DynamoDBScanExpression scanExpression =
 new DynamoDBScanExpression();
 try {
 PaginatedScanList<User> users =
 mapper.scan(User.class, scanExpression);

 // clear potential friend list in ChatManager ChatManager chatManager =
 ChatManager.getInstance(mContext);
 chatManager.clearPotentialFriendList();

 // add users who are not friends for (User u : users) {

 if (results.contains(u.getId())) {
 continue;
 }

 if (u.getId().equals(currentUserId)) {
 continue;
 }

 chatManager.addPotentialFriend(u);
 }

 completion.didSucceed();

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });
 }
 };

 Thread mythread = new Thread(runnable);
 mythread.start();

 }

 public void addFriend(final String currentUserId,
 final String friendUserId,
 final DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {
 public void run() {

 try {
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);

 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);
 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 Friend friendRelationship = new Friend();
 friendRelationship.setId(generateUUID());
 friendRelationship.setUser_id(currentUserId);
 friendRelationship.setFriend_id(friendUserId);

 mapper.save(friendRelationship);
 completion.didSucceed();
 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }
 };
 Thread mythread = new Thread(runnable);
 mythread.start();
 }

 private String generateUUID() {
 UUID uuid = UUID.randomUUID();
 String uuidString = uuid.toString();
 return uuidString.toUpperCase();
 }

 private void retrieveFriendIds(String userId,
 DynamoDBControllerRetrieveFriendIDsHandler completion) {

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);
 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);
 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 Map<String, AttributeValue> attributeValues =
 new HashMap<String, AttributeValue>();
 attributeValues.put(":val1", new AttributeValue().withS(userId));

 DynamoDBScanExpression scanExpression = new DynamoDBScanExpression()
 .withFilterExpression("user_id = :val1")
 .withExpressionAttributeValues(attributeValues);

 try {
 PaginatedScanList<Friend> results = mapper.scan(Friend.class,
 scanExpression);

 ArrayList<String> friendUserIdList = new ArrayList<String>();

 for (Friend f : results) {
 friendUserIdList.add(f.getFriend_id());
 }

 completion.didSucceed(friendUserIdList);

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }

 }

}

The DynamoDBController class implements the singleton design pattern. The class defines a private initializer. Other parts of the app can access the single instance using the getInstance(context) static method:

public static DynamoDBController getInstance(Context context) {
 if(instance == null) {
 instance = new DynamoDBController();
 }

 instance.mContext = context;
 return instance;
}

Examining the refreshFriendList Method

The refreshFriendList(userId, completion) method is used by the home activity to retrieve a list of friends for the currently authenticated user from Amazon DynamoDB. The method takes two parameters. The first is the ID of an authenticated user, and the second is an object that provides an implementation of a couple of callback methods. These callback methods are defined in the DynamoDBGenericHandler interface and are called when the operation completes:

void didSucceed();
void didFail(Exception exception);

The value that must be specified in the userId must match the ID of the federated Amazon Cognito identity object assigned to the user when she exchanged her Facebook/Google authentication token for an Amazon Cognito identity.

If the list of friends was successfully retrieved from Amazon DynamoDB, the refreshFriendList(userId, completion) method updates the friendList list in the ChatManager object and calls the didSucceed() callback method. If an error occurred while retrieving the list of friends, the didFail(exception) callback method is called.

The implementation of the refreshFriendList(userId, completion) method calls a private method named retrieveFriendIds(userId, completion) on a new thread to obtain a list of user IDs of the user’s friends.

public void refreshFriendList(final String userId,
 final DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {
 public void run() {

 retrieveFriendIds(userId,
 new DynamoDBControllerRetrieveFriendIDsHandler() {
 @Override
 public void didSucceed(ArrayList<String> results) {

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);
 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);
 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 DynamoDBScanExpression scanExpression =
 new DynamoDBScanExpression();
 try {
 PaginatedScanList<User> users = mapper.scan(User.class,
 scanExpression);

 // clear friend list in ChatManager ChatManager chatManager =
 ChatManager.getInstance(mContext);
 chatManager.clearFriendList();

 // add User objects for (User u : users) {

 if (results.contains(u.getId())) {
 chatManager.addFriend(u);
 }
 }

 completion.didSucceed();

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });

 }
 };

 Thread mythread = new Thread(runnable);
 mythread.start();
}

The retrieveFriendIds(userId, completion) method takes two parameters. The first is the user ID of an authenticated user, and the second is a callback handler that implements the methods defined in the DynamoDBRetrieveFriendIDsHandler interface:

void didSucceed(ArrayList<String> results);
void didFail(Exception exception);

If there were no errors while retrieving the list of the friend’s user IDs, the results are available in the didSucceed(results) callback handler. The user IDs returned in this case are the values of the ID attributes of the friend’s corresponding federated Amazon Cognito identities.

The implementation of the didSucceed(results) callback handler performs a single scan on the User table to retrieve information on all rows within the table. Recall from an earlier section in this chapter that the User table contains three pieces of information for any user:

	id

	username

	email_address

CognitoIdentityPoolController identityPoolController =
CognitoIdentityPoolController.getInstance(mContext);

AmazonDynamoDBClient ddbClient = new
AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);

DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

DynamoDBScanExpression scanExpression = new DynamoDBScanExpression();
try {
 PaginatedScanList<User> users = mapper.scan(User.class, scanExpression);

 // clear friend list in ChatManager ChatManager chatManager = ChatManager.getInstance(mContext);
 chatManager.clearFriendList();

 // add User objects for (User u : users) {

 if (results.contains(u.getId())) {
 chatManager.addFriend(u);
 }
 }

 completion.didSucceed();

} catch (AmazonServiceException ex) {
 completion.didFail(ex);
}

A scan is performed by calling the scan() method on a DynamoDBMapper instance. An object mapper maps a model object in your Android Studio project to an Amazon DynamoDB table on the AWS cloud. The scan() method requires two parameters. The first is the model class from your project, and the second is a scan expression that can filter the results of the scan.

A scan expression is an instance of DyamoDBScanExpression. In this case, we want information on all the rows in the User table because we intend to iterate through these results to extract User instances for each of the user’s friends.

If the scan operation succeeded, the existing list of friends from the ChatManager class is cleared:

ChatManager chatManager = ChatManager.getInstance(mContext);
chatManager.clearFriendList();

The results array contains strings. Each value within the array is an ID of a user who is friends with the person using the app.

From a presentation perspective, presenting a list of cryptic user ID strings is not very nice. We would ideally like to present the list of friends using their names instead of IDs.

To do this, we need to retrieve a User object from the User table corresponding to each friend ID. This also ties in nicely with the fact that the friendList array in ChatManager.swift is an array of User objects, and not strings.

for (User u : users) {

 if (results.contains(u.getId())) {
 chatManager.addFriend(u);
 }
 }

Examining the retrieveFriendIds Method

The retrieveFriendIds(userId, completion) method is examined next:

private void retrieveFriendIds(String userId,
DynamoDBControllerRetrieveFriendIDsHandler completion) {

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);

 AmazonDynamoDBClient ddbClient = new
AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);

 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 Map<String, AttributeValue> attributeValues =
 new HashMap<String, AttributeValue>();
 attributeValues.put(":val1", new AttributeValue().withS(userId));

 DynamoDBScanExpression scanExpression = new DynamoDBScanExpression()
 .withFilterExpression("user_id = :val1")
 .withExpressionAttributeValues(attributeValues);

 try {
 PaginatedScanList<Friend> results =
 mapper.scan(Friend.class, scanExpression);

 ArrayList<String> friendUserIdList = new ArrayList<String>();

 for (Friend f : results) {
 friendUserIdList.add(f.getFriend_id());
 }

 completion.didSucceed(friendUserIdList);

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }

}

This method performs a scan on the Friend table, but it uses a filter expression to reduce the result set to contain information on friends of the authenticated user.

let scanExpression = AWSDynamoDBScanExpression()
Map<String, AttributeValue> attributeValues =
 new HashMap<String, AttributeValue>();
attributeValues.put(":val1", new AttributeValue().withS(userId));

DynamoDBScanExpression scanExpression = new DynamoDBScanExpression()
 .withFilterExpression("user_id = :val1")
 .withExpressionAttributeValues(attributeValues);

The result of the scan is an array of Friend instances, or an empty array if the authenticated user has no friends in the Friend table. If the results of the scan contain one of more objects, the user IDs of the friends are copied into an array, and the array is returned.

Recall from an earlier section in this chapter that each row of the Friend table contains three attributes:

	id

	user_id

	friend_id

Unlike the User table, the id attribute in the Friend table is an auto-generated value that merely serves as the primary key for a user-to-friend relationship. The values of user_id and friend_id attributes, on the other hand, are both IDs of Amazon Cognito federated identity objects.

To retrieve the list of all friend relationships for a given Amazon Cognito identity ID, you need to retrieve all rows that have a specific value for the user_id attribute.

Examining the retrieveUser Method

One of the drawbacks of a scan is that it returns all the rows in a table. Not only can a scan take longer to complete, it can also exhaust your table’s read capacity allocation quickly. Even if you provide a filter expression to limit the number of results returned to your Java code, Amazon DynamoDB performs the filtering as a post-processing step, after completing the scan.

If you want to retrieve a single object from an Amazon DynamoDB table and you know the value of its primary key attribute, you can use the load() method on an object mapper. The DynamoDBController contains a method called retrieveUser(userId, completion). This method is not used in this chapter; it is only provided to show you how you can use an object mapper to retrieve a single object:

public void retrieveUser (final String userId, final
 DynamoDBControllerRetrieveUserHandler completion) {

 Runnable runnable = new Runnable() {

 public void run() {
 CognitoIdentityPoolController identityPoolController =
CognitoIdentityPoolController.getInstance(mContext);

 AmazonDynamoDBClient ddbClient = new
AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);

 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 try {
 User user = mapper.load(User.class, userId);

 completion.didSucceed(user);

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }
 };

 Thread mythread = new Thread(runnable);
 mythread.start();
}

The load() method requires a model class and the value of the primary key attribute. It returns a single item from a table or throws an exception if the item was not found.

Examining the refreshPotentialFriendList Method

The next method to be examined is called refreshPotentialFriendList(userId, completion). This method is used in a new activity that allows the logged-in user to add another user to his friend list. The new activity is called AddFriendActivity and presents a list of potential friends to the user.

This new activity is discussed later in the chapter. For now, it’s important that you know that AddFriendActivity needs to retrieve a list of users from Amazon DynamoDB who could be friends with the currently authenticated user.

The implementation of the refreshPotentialFriendList(userId, completion) method is similar to the refreshFriendList(userId, completion) method discussed earlier:

public void refreshPotentialFriendList(final String currentUserId,
 final DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {

 public void run() {

 retrieveFriendIds(currentUserId,
 new DynamoDBControllerRetrieveFriendIDsHandler() {
 @Override
 public void didSucceed(ArrayList<String> results) {
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);
 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);
 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 DynamoDBScanExpression scanExpression =
 new DynamoDBScanExpression();
 try {
 PaginatedScanList<User> users = mapper.scan(User.class,
 scanExpression);

 // clear potential friend list in ChatManager ChatManager chatManager =
 ChatManager.getInstance(mContext);
 chatManager.clearPotentialFriendList();

 // add users who are not friends
 for (User u : users) {

 if (results.contains(u.getId())) {
 continue;
 }

 if (u.getId().equals(currentUserId)) {
 continue;
 }

 chatManager.addPotentialFriend(u);
 }

 completion.didSucceed();

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });
 }
 };

 Thread mythread = new Thread(runnable);
 mythread.start();

}

The key difference between the two methods is that the refreshPotentialFriendList(userId, completion) method only returns information on users who are not friends with the current user. The potential friends list is written to the potentialFriendList list of the ChatManager class.

Examining the addFriend Method

The final method in the DynamoDBController class is called addFriend(currentUserId, friendUserId, completion) and allows a user to add a friend.

public void addFriend(final String currentUserId,
 final String friendUserId,
 final DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {
 public void run() {

 try {
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);

 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);
 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 Friend friendRelationship = new Friend();
 friendRelationship.setId(generateUUID());
 friendRelationship.setUser_id(currentUserId);
 friendRelationship.setFriend_id(friendUserId);

 mapper.save(friendRelationship);
 completion.didSucceed();
 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }
 };
 Thread mythread = new Thread(runnable);
 mythread.start();
}

This is a simple method. It starts by creating a new Friend instance and then uses the save method on a DynamoDBMapper instance to write data to Amazon DynamoDB in the Amazon cloud.

Interfaces for the DynamoDBController Class

The methods that have been added to the DynamoDBController class require three new interfaces to be defined in the asmtechnology.com.awschat.interfaces package:

	DynamoDBControllerGenericHandler

	DynamoDBControllerRetrieveFriendIDsHandler

	DynamoDBControllerRetrieveUserHandler

The DynamoDBControllerGenericHandler interface has been defined in a file called DynamoDBControllerGenericHandler.java as:

package asmtechnology.com.awschat.interfaces;

public interface DynamoDBControllerGenericHandler {
 void didSucceed();
 void didFail(Exception exception);
}

The DynamoDBControllerRetrieveFriendIDsHandler interface is defined in a file called DynamoDBControllerRetrieveFriendIDsHandler as:

package asmtechnology.com.awschat.interfaces;

import java.util.ArrayList;

public interface DynamoDBControllerRetrieveFriendIDsHandler {
 void didSucceed(ArrayList<String> results);
 void didFail(Exception exception);
}

The DynamoDBControllerRetrieveUserHandler interface is defined in a file called DynamoDBControllerRetrieveUserHandler.java as:

package asmtechnology.com.awschat.interfaces;

import asmtechnology.com.awschat.models.User;

public interface DynamoDBControllerRetrieveUserHandler {
 void didSucceed(User user);
 void didFail(Exception exception);
}

Linking the User Pool to the Identity Pool

You need to write some code to allow users who have created accounts in the Amazon Cognito user pool to obtain federated identity objects from the Amazon Cognito identity pool so that the AWSChat app can access AWS resources on behalf of these users.

The signup activity of the AWSChat application allows users to sign up for a new account. These new users are created in an Amazon Cognito user pool, which is a database of users. However, for these new users to be able to access AWS cloud services from your account, they need to be able to assume an IAM role that governs what services these users can access and what they can do with these services.

IAM roles are associated with IAM identities, and Amazon Cognito identity pools provide the mechanism to obtain an identity object. Therefore, when a new user creates an account in the AWSChatUserPool user pool, we need to link the new account to an identity object in the AWSChatIdentityPool identity pool.

You might be tempted to question why we need a user pool at all. Why not just create a new account in the identity pool? The simple answer is that you can’t create new authenticated identities in an identity pool in the same way as you can add users to a user pool. Identities in an identity pool are federated (linked) with a token provider by an external authentication system.

Updating the Identity Pool

You need to allow Amazon Cognito as one of the supported authentication providers in the AWSChatIdentityPool identity pool. If you made these modifications to the identity pool while building the iOS version of the AWSChat app in Chapter 12, you can skip this section.

To get started, log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the Amazon Cognito service home page (Figure 19.35).

[image: Image described by caption and surrounding text.]

FIGURE 19.35 Amazon Cognito splash screen

User pools and identity pools are scoped at the region level. Make sure you have set up the AWS Management Console to use the same region as the one in which you created your Amazon Cognito user pool and identity pool. Click on the Manage Federated Identities button and then select the AWSChatIdentityPool from the list of identity pools (Figure 19.36).

[image: Image described by caption and surrounding text.]

FIGURE 19.36 List of identity pools

Click on the Edit Identity Pool button on the identity pool dashboard and expand the Authentication providers section (Figure 19.37).

[image: Image described by caption and surrounding text.]

FIGURE 19.37 The Authentication Providers section of the identity pool

Type the user pool ID and the app client ID for the AWSChatUserPool in the Amazon Cognito tab and click on the Save changes button. You can retrieve the user pool ID and the app client ID from the user pool itself or from the following lines in the CognitoUserPoolController class in your Android Studio project:

private String userPoolID = "us-east-1_qEyg0l636";
private String appClientID = "5o6ge7468o0iuaso9ego20e2s5";

The Updated CognitoUserPoolControllerSignupHandler Interface

The contents of the CognitoUserPoolControllerSignupHandler.java file have been updated to match the following:

package asmtechnology.com.awschat.interfaces;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUser;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserSession;

public interface CognitoUserPoolControllerSignupHandler {
 void didSucceed(CognitoUser user, CognitoUserSession session,
 boolean userMustConfirmEmailAddress);
 void didFail(Exception exception);
}

The Updated CognitoUserPoolController Class

The following variable declarations have been added to the CognitoUserPoolController class:

private String userPoolRegion = "us-east-1";
private CognitoUserSession mUserSession;

The following private method has been added to the bottom of the class:

public CognitoUserSession getUserSession() {
 return mUserSession;
}

The implementation of the signup(username, password, emailAddress, completion) method has been updated to:

public void signup(String username,
 final String password,
 String emailAddress,
 final CognitoUserPoolControllerSignupHandler completion) {

 CognitoUserAttributes userAttributes = new CognitoUserAttributes();
 userAttributes.addAttribute("email", emailAddress);

 userPool.signUpInBackground(username, password, userAttributes, null,
 new SignUpHandler() {

 @Override
 public void onSuccess(final CognitoUser user,
 final boolean signUpConfirmationState,
 CognitoUserCodeDeliveryDetails cognitoUserCodeDeliveryDetails) {

 final boolean userMustConfirmEmailAddress =
 !signUpConfirmationState;
 if (userMustConfirmEmailAddress == true) {
 completion.didSucceed(user, null, userMustConfirmEmailAddress);
 return;
 }

 user.getSessionInBackground(new AuthenticationHandler() {

 @Override
 public void onSuccess(CognitoUserSession userSession,
 CognitoDevice newDevice) {
 mUserSession = userSession;
 completion.didSucceed(user, userSession,
 userMustConfirmEmailAddress);
 }

 @Override
 public void getAuthenticationDetails(AuthenticationContinuation
 authenticationContinuation, String UserId) {
 // The API needs user sign-in credentials to continue AuthenticationDetails authenticationDetails = new
 AuthenticationDetails(UserId, password, null);

 authenticationContinuation.setAuthenticationDetails(
 authenticationDetails);
 authenticationContinuation.continueTask();
 }

 @Override
 public void getMFACode(
 MultiFactorAuthenticationContinuation continuation) {
 // Multi-factor authentication is required;
 // get the verification code from user
 }

 @Override
 public void authenticationChallenge(
 ChallengeContinuation continuation) {

 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });

 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
}

The implementation of confirmSignup(user, confirmationCode, completion) has been updated to the following:

public void confirmSignup(final CognitoUser user, final String password,
 String confirmationCode,
 final CognitoUserPoolControllerConfirmSignupHandler completion) {

 user.confirmSignUpInBackground(confirmationCode, false,
 new GenericHandler() {
 @Override
 public void onSuccess() {

 user.getSessionInBackground(new AuthenticationHandler() {

 @Override
 public void onSuccess(CognitoUserSession userSession,
 CognitoDevice newDevice) {
 mUserSession = userSession;
 completion.didSucceed(user, userSession);
 }

 @Override
 public void getAuthenticationDetails(
 AuthenticationContinuation authenticationContinuation, String UserId) {
 // The API needs user sign-in credentials to continue
 AuthenticationDetails authenticationDetails = new
 AuthenticationDetails(UserId, password, null);

 authenticationContinuation.setAuthenticationDetails(
 authenticationDetails);
 authenticationContinuation.continueTask();
 }

 @Override
 public void getMFACode(
 MultiFactorAuthenticationContinuation continuation) {
 // Multi-factor authentication is required;
 // get the verification code from user
 }

 @Override
 public void authenticationChallenge(
 ChallengeContinuation continuation) {

 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });

 }

 @Override
 public void onFailure(Exception exception) {
 completion.didFail(exception);
 }
 });
}

The CognitoUserPoolControllerConfirmSignupHandler Interface

The CognitoUserPoolControllerConfirmSignupHandler has been defined in a file called CognitoUserPoolControllerConfirmSignupHandler.java as:

package asmtechnology.com.awschat.interfaces;

import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUser;
import com.amazonaws.mobileconnectors.cognitoidentityprovider.CognitoUserSession;

public interface CognitoUserPoolControllerConfirmSignupHandler {
 void didSucceed(CognitoUser user, CognitoUserSession session);
 void didFail(Exception exception);
}

The Updated CognitoIdentityPoolController Class

The following private variable declaration has been added to the CognitoIdentityPoolController class:

private CognitoIdentityPoolControllerGenericHandler amazonCompletionHandler;

The following method has been added to the CognitoIdentityPoolController class:

public void getFederatedIdentityForAmazon(String idToken,
 String username,
 String emailAddress,
 String userPoolRegion,
 String userPoolID,
 final
 CognitoIdentityPoolControllerGenericHandler completion) {

 this.amazonCompletionHandler = completion;
 new AmazonIdentityFederationTask().execute(idToken, username, emailAddress,
 userPoolRegion, userPoolID);
}

The following inner class definition has been added to the CognitoIdentityPoolController class:

class AmazonIdentityFederationTask extends AsyncTask<String, Void, Long> {

 private String idToken;
 private String username;
 private String emailAddress;
 private String userPoolRegion;
 private String userPoolID;

 protected Long doInBackground(String... strings) {

 idToken = strings[0];
 username = strings[1];
 emailAddress = strings[2];
 userPoolRegion = strings[3];
 userPoolID = strings[4];

 String key = "cognito-idp." + userPoolRegion + ".amazonaws.com/" +
 userPoolID;
 Map<String, String> logins = new HashMap<String, String>();
 logins.put(key, idToken);

 mCredentialsProvider.clearCredentials();
 mCredentialsProvider.clear();

 mCredentialsProvider.setLogins(logins);
 mCredentialsProvider.refresh();

 return 1L;
 }

 protected void onPostExecute(Long result) {

 CognitoSyncManager client = new CognitoSyncManager(mContext,
 identityPoolRegion, mCredentialsProvider);

 Dataset dataset = client.openOrCreateDataset("amazonUserData");
 dataset.put("name", username);
 dataset.put("email", emailAddress);

 dataset.synchronize(new Dataset.SyncCallback() {
 @Override
 public void onSuccess(Dataset dataset, List<Record> updatedRecords) {
 amazonCompletionHandler.didSucceed();
 }

 @Override
 public boolean onConflict(Dataset dataset,
 List<SyncConflict> conflicts) {
 List<Record> resolved = new ArrayList<Record>();
 for (SyncConflict conflict : conflicts) {
 resolved.add(conflict.resolveWithRemoteRecord());
 }
 dataset.resolve(resolved);
 return true;
 }

 @Override
 public boolean onDatasetDeleted(Dataset dataset,
 String datasetName) {
 return true;
 }

 @Override
 public boolean onDatasetsMerged(Dataset dataset,
 List<String> datasetNames) {
 return false;
 }

 @Override
 public void onFailure(DataStorageException dse) {
 amazonCompletionHandler.didFail(dse);
 }
 });

 }
}

The Updated Signup Activity

Lines 85 – 92 of the SignupActivity.java file have been updated from the following code:

@Override
public void didSucceed(CognitoUser user, boolean userMustConfirmEmailAddress) {
 if (userMustConfirmEmailAddress) {
 requestConfirmationCode(user);
 } else {
 displaySuccessMessage();
 }
}

to this code:

@Override
public void didSucceed(CognitoUser user, CognitoUserSession session,
boolean userMustConfirmEmailAddress) {
 if (userMustConfirmEmailAddress) {
 requestConfirmationCode(user);
 } else {
 getFederatedIdentity(user, session);
 }
}

Lines 198 to 213 have been updated from the following code:

private void verifyConfirmationCode(final CognitoUser user, String code) {

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);

 userPoolController.confirmSignup(user, code, new
 CognitoUserPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 requestConfirmationCode(user);
 }
 });
}

to this code:

private void verifyConfirmationCode(final CognitoUser user, String code) {

 String password = mPasswordView.getText().toString();

 CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);
 userPoolController.confirmSignup(user, password, code, new
 CognitoUserPoolControllerConfirmSignupHandler() {
 @Override
 public void didSucceed(CognitoUser user, CognitoUserSession session) {
 getFederatedIdentity(user,session);
 }

 @Override
 public void didFail(Exception exception) {
 requestConfirmationCode(user);
 }
 });
}

A new method called getFederatedIdentity(cognitoUser, userSession) has been added to the SignupActivity class, and is implemented as:

private void getFederatedIdentity(final CognitoUser cognitoUser,
 final CognitoUserSession userSession) {

 final Context context = this;
 final CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);

 userPoolController.getUserDetails(cognitoUser, new
 CognitoUserPoolControllerUserDetailsHandler() {

 @Override
 public void didSucceed(CognitoUserDetails userDetails) {

 CognitoUserAttributes userAttributes = userDetails.getAttributes();
 Map attributeMap = userAttributes.getAttributes();

 String authToken = userSession.getIdToken().getJWTToken();
 String username = mUsernameView.getText().toString();
 String email = attributeMap.get("email").toString();

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(context);
 identityPoolController.getFederatedIdentityForAmazon(authToken,
 username, email,
 userPoolController.getUserPoolRegion(),
 userPoolController.getUserPoolID(),
 new CognitoIdentityPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });

 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
}

The Updated Login Activity

Line 205 in the LoginActivity.java file has been updated from:

displaySuccessMessage();

to this line:

getFederatedIdentity(userPoolController.getCurrentUser(),
 userPoolController.getUserSession());

A method called getFederatedIdentity(cognitoUser, userSession) has also been added to the LoginActivity class:

private void getFederatedIdentity(final CognitoUser cognitoUser, final
 CognitoUserSession userSession) {

 final Context context = this;
 final CognitoUserPoolController userPoolController =
 CognitoUserPoolController.getInstance(this);

 userPoolController.getUserDetails(cognitoUser, new
 CognitoUserPoolControllerUserDetailsHandler() {

 @Override
 public void didSucceed(CognitoUserDetails userDetails) {

 CognitoUserAttributes userAttributes = userDetails.getAttributes();
 Map attributeMap = userAttributes.getAttributes();

 String authToken = userSession.getIdToken().getJWTToken();
 String username = mUsernameView.getText().toString();
 String email = attributeMap.get("email").toString();

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(context);
 identityPoolController.getFederatedIdentityForAmazon(authToken,
 username, email,
 userPoolController.getUserPoolRegion(),
 userPoolController.getUserPoolID(),
 new CognitoIdentityPoolControllerGenericHandler() {
 @Override
 public void didSucceed() {
 displaySuccessMessage();
 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });

 }

 @Override
 public void didFail(Exception exception) {
 displayErrorMessage(exception);
 }
 });
}

With these changes, users who create new accounts in your application’s user pool are given federated identity objects that can access resources such as Amazon DynamoDB from your AWS account.

The Updated Home Activity

The home activity has been updated to present a list of user friends and a button has been added in the toolbar to allows a user to add a friend. The updated home activity resembles Figure 19.38.

[image: Image described by caption and surrounding text.]

FIGURE 19.38 Home Activity showing a list of friends

The list of friends is presented using a RecyclerView, which is a standard component used to present scrollable lists to users. The complete source code of HomeActivity.java is presented in Listing 19.8.

Listing 19.8: HomeActivity.java

package asmtechnology.com.awschat;

import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AlertDialog;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget.DefaultItemAnimator;
import android.support.v7.widget.LinearLayoutManager;
import android.support.v7.widget.RecyclerView;
import android.support.v7.widget.Toolbar;
import android.view.Menu;
import android.view.MenuItem;

import asmtechnology.com.awschat.controllers.CognitoIdentityPoolController;
import asmtechnology.com.awschat.controllers.DynamoDBController;
import asmtechnology.com.awschat.interfaces.DynamoDBControllerGenericHandler;
import asmtechnology.com.awschat.interfaces.RecyclerViewHolderListener;
import asmtechnology.com.awschat.recyclerview.FriendListAdapter;

public class HomeActivity extends AppCompatActivity implements
 RecyclerViewHolderListener {

 private RecyclerView mRecyclerView;
 private FriendListAdapter mAdapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_home);

 this.setTitle("Friend List");

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

 mRecyclerView = (RecyclerView) findViewById(R.id.recycler_view);
 mAdapter = new FriendListAdapter(this, this);

 RecyclerView.LayoutManager mLayoutManager = new
 LinearLayoutManager(getApplicationContext());
 mRecyclerView.setLayoutManager(mLayoutManager);
 mRecyclerView.setItemAnimator(new DefaultItemAnimator());
 mRecyclerView.setAdapter(mAdapter);

 refreshFriendList();
 }

 protected void onResume() {
 super.onResume();
 refreshFriendList();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.menu_home, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 if (id == R.id.add_friend) {
 Intent intent = new Intent(this, AddFriendActivity.class);
 startActivity(intent);
 return true;
 }

 return super.onOptionsItemSelected(item);
 }

 private void refreshFriendList() {

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(this);
 if (identityPoolController.mCredentialsProvider == null) {
 displayMessage("Error", "Cognito Identity has expired. User must
 login again");
 return;
 }

 String userId =
 identityPoolController.mCredentialsProvider.getIdentityId();
 if ((userId == null) || (userId.length() == 0)) {
 displayMessage("Error", "Cognito Identity has expired. User must
 login again");
 return;
 }

 DynamoDBController dynamoDBController =
 DynamoDBController.getInstance(this);
 dynamoDBController.refreshFriendList(userId, new
 DynamoDBControllerGenericHandler() {
 @Override
 public void didSucceed() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mAdapter.notifyDataSetChanged();
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 displayMessage("Error", exception.getMessage());
 }
 });
 }

 private void displayMessage(final String title, final String message) {

 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage(message);
 builder.setTitle(title);
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 }
 });

 final AlertDialog alert = builder.create();

 alert.show();
 }
 });
 }

 public void didTapOnRowAtIndex(int selectedIndex) {
 // show chat activity
 }
}

[image: images] The code for the RecyclerView and FriendListAdapter classes is not presented here. If you want to see how these classes have been built, you can examine the relevant files in the finished project that you can download from the following URL:

https://github.com/asmtechnology/Chapter19 .AWSForMobileDevelopers.2017.git.

The refreshFriendList() method is responsible for using the DynamoDBController class to fetch a list of friends for the logged-in user. This method is implemented as follows:

private void refreshFriendList() {

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(this);
 if (identityPoolController.mCredentialsProvider == null) {
 displayMessage("Error", "Cognito Identity has expired. User must
 login again");
 return;
 }

 String userId =
 identityPoolController.mCredentialsProvider.getIdentityId();
 if ((userId == null) || (userId.length() == 0)) {
 displayMessage("Error", "Cognito Identity has expired. User must
 login again");
 return;
 }

 DynamoDBController dynamoDBController =
 DynamoDBController.getInstance(this);
 dynamoDBController.refreshFriendList(userId, new
 DynamoDBControllerGenericHandler() {
 @Override
 public void didSucceed() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mAdapter.notifyDataSetChanged();
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 displayMessage("Error", exception.getMessage());
 }
 });
 }

When the user taps on the Add(+) button in the toolbar, the following code is used to start the Add Friend activity using an Intent:

@Override
public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 if (id == R.id.add_friend) {
 Intent intent = new Intent(this, AddFriendActivity.class);
 startActivity(intent);
 return true;
 }

 return super.onOptionsItemSelected(item);
}

The AddFriendActivity Class

A new activity called AddFriendActivity has been added to this project. It is responsible for presenting a list of potential friends, and the user can tap on a name from this list to befriend that person.

The Add Friend activity also uses a Recycler View to present a list of users who are not yet friends with the logged-in user. The complete code for the AddFriendActivity.java file is presented in Listing 19.9.

Listing 19.9: AddFriendActivity.java

package asmtechnology.com.awschat;

import android.content.Context;
import android.content.DialogInterface;
import android.os.Bundle;
import android.support.v7.app.AlertDialog;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget.DefaultItemAnimator;
import android.support.v7.widget.LinearLayoutManager;
import android.support.v7.widget.RecyclerView;
import android.support.v7.widget.Toolbar;

import asmtechnology.com.awschat.controllers.ChatManager;
import asmtechnology.com.awschat.controllers.CognitoIdentityPoolController;
import asmtechnology.com.awschat.controllers.DynamoDBController;
import asmtechnology.com.awschat.interfaces.DynamoDBControllerGenericHandler;
import asmtechnology.com.awschat.interfaces.RecyclerViewHolderListener;
import asmtechnology.com.awschat.models.User;
import asmtechnology.com.awschat.recyclerview.PotentialFriendListAdapter;

public class AddFriendActivity extends AppCompatActivity implements
 RecyclerViewHolderListener {

 private RecyclerView mRecyclerView;
 private PotentialFriendListAdapter mAdapter;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_add_friend);

 this.setTitle("Add Friend");

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

 mRecyclerView = (RecyclerView) findViewById(R.id.recycler_view);
 mAdapter = new PotentialFriendListAdapter(this, this);

 RecyclerView.LayoutManager mLayoutManager = new
 LinearLayoutManager(getApplicationContext());
 mRecyclerView.setLayoutManager(mLayoutManager);
 mRecyclerView.setItemAnimator(new DefaultItemAnimator());
 mRecyclerView.setAdapter(mAdapter);

 refreshPotentialFriendList();
 }

 private void refreshPotentialFriendList() {

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(this);
 if (identityPoolController.mCredentialsProvider == null) {
 displayMessage("Error", "Cognito Identity has expired. User must
 login again");
 return;
 }

 String userId =
 identityPoolController.mCredentialsProvider.getIdentityId();
 if ((userId == null) || (userId.length() == 0)) {
 displayMessage("Error", "Cognito Identity has expired. User must
 login again");
 return;
 }

 DynamoDBController dynamoDBController =
 DynamoDBController.getInstance(this);
 dynamoDBController.refreshPotentialFriendList(userId, new
 DynamoDBControllerGenericHandler() {
 @Override
 public void didSucceed() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mAdapter.notifyDataSetChanged();
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 displayMessage("Error", exception.getMessage());
 }
 });
 }

 private void displayMessage(final String title, final String message) {

 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage(message);
 builder.setTitle(title);
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 }
 });

 final AlertDialog alert = builder.create();

 alert.show();
 }
 });
 }

 public void didTapOnRowAtIndex(int selectedIndex) {

 // add selected user as a friend CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(this);
 if (identityPoolController.mCredentialsProvider == null) {
 displayMessage("Error", "Cognito Identity has expired. User must
 login again");
 return;
 }

 String userId =
 identityPoolController.mCredentialsProvider.getIdentityId();
 if ((userId == null) || (userId.length() == 0)) {
 displayMessage("Error", "Cognito Identity has expired. User must
 login again");
 return;
 }

 ChatManager chatManager = ChatManager.getInstance(this);
 User potentialFriend = chatManager.potentialFriendList.get(selectedIndex);

 DynamoDBController dynamoDBController =
 DynamoDBController.getInstance(this);
 dynamoDBController.addFriend(userId, potentialFriend.getId(), new
 DynamoDBControllerGenericHandler() {

 @Override
 public void didSucceed() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 finish();
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 displayMessage("Error", exception.getMessage());
 }
 });

 }
}

The code for the list adapter classes and layout files is included in the finished project that you can download from GitHub using the following URL:

https://github.com/asmtechnology/Chapter19.AWSForMobileDevelopers.2017.git

Download the finished project from GitHub and run it on the emulator or a device. To test the app, you need to have at least two e-mail addresses. Sign up for new accounts using these e-mail addresses. You can use a free service like tenminutemail.com to create a temporary address.

You can verify that the AWS Lambda script is populating the User table in Amazon DynamoDB by looking at the records in the User table. You should find entries for the accounts that you have created (Figure 19.39).

[image: Image described by caption and surrounding text.]

FIGURE 19.39 Contents of the User table

Log in to the AWSChat app using one of these accounts; your friend list is initially empty. Click on the + button on the home view controller to add friends. You should see a new screen appear with a list of users that you can connect with (Figure 19.40).

[image: Image described by caption and surrounding text.]

FIGURE 19.40 You can add other users to your friend list.

Click on an item in the list to add that user as a friend. To check that an entry has been added to the Friend table in Amazon DynamoDB, examine the contents of the Friend table using the DynamoDB Management Console (Figure 19.41).

[image: Image described by caption and surrounding text.]

FIGURE 19.41 Contents of the Friend table

Switch back to the AWSChat app and ensure that you are on the home activity. You should see your new friend listed there.

[image: images] You can download the project files created in this chapter from this book’s web page on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter19.AWSForMobileDevelopers.2017.git.

Summary

	Amazon DynamoDB tables are schemaless, so a row can have any number of fields, and the fields can vary from row to row. Fields are created on an ad-hoc basis as new rows are added to the table.

	An AWS Lambda function built using the cognito-sync-trigger blueprint is triggered when there is a change to the identities in an identity pool.

	While creating an AWS Lambda function you need to provide a service role that will be assumed by AWS while executing the function.

	An AWS Lambda function can be used to insert rows into Amazon DynamoDB tables.

Chapter 20
Adding AWSChat Support with Amazon DynamoDB and Amazon S3

WHAT’S IN THIS CHAPTER

	[image: images]Create Amazon S3 buckets for images and thumbnails.

	[image: images]Update the IAM Role assumed by authenticated Amazon Cognito identities to allow access to the Amazon S3 buckets.

	[image: images]Update the AWSChat Android app to allow friends to send short text messages to each other.

	[image: images]Update the AWSChat Android app to allow users to upload images to Amazon S3 and share the images with their friends.

[image:] In Chapter 19 you modified the AWSChat Android application to allow logged-in users to create a list of friends. In this chapter, you modify the AWSChat app to allow friends to exchange messages with each other. These messages can consist of short strings of text or images. This functionality is built using Amazon DynamoDB tables and Amazon S3.

[image: images] To follow along with this lesson, download the starter project from either this book’s web page at Sybex.com or GitHub at https://github.com/asmtechnology/Chapter20.AWSForMobileDevelopers.2017.git.

You need to ensure that you have followed the instructions presented in Chapter 19 to create relevant Amazon DynamoDB tables and AWS Lambda functions in your AWS account.

The starter project that accompanies this chapter uses the asmtechnology .com.awschat namespace. If you would like to change the namespace under which the files are created, open the AndroidManifest.xml file and perform the following steps for each component of the namespace that you want to change.

	Locate the package="asmtechnology.com.awschat" attribute of the manifest tag.

	Select the component of the namespace that you want to rename.

	Right click the component to reveal a context menu and select the Refactor ➢ Rename menu item.

	Click the Rename Package button in the dialog box that appears and provide a new value for the component of the namespace you want to change.

	Click the Refactor button to finish changing the value of the component of the namespace.

You also need to ensure that the following options have been set up correctly in the starter project:

	Line 29 of the CognitoUserPoolController.Java file contains the ID of your Amazon Cognito user pool.

	Lines 33 – 34 of the CognitoUserPoolController.Java file contain the app client ID and app client secret to allow your app access to unauthenticated APIs of the user pool.

	Lines 25 - 26 of the CognitoIdentityPoolController.Java file contain the details of your Amazon Cognito identity pool.

	Open the strings.xml file and update the following entry with the value of your Facebook App ID:

<string name="facebook_app_id">{your-app-id}</string>

If you intend to use Google sign-in, then in addition to the preceding items, you need to ensure that:

	You have set up an application on the Google developer console.

	You have included the GoogleService-Info.plist file in your Android studio project.

	Line 47 of LoginActivity.Java contains the Google client ID.

Updating Project Settings

In this section you update the minimum SDK version for your project, include the SDK for Amazon S3, and update the application manifest file.

	Open the AWSChat project in Android Studio. From the AWS SDK for Android, add a dependency for Amazon S3 using one of the methods discussed in Chapter 15.

	Update the minimum SDK version of the project to 23. If you are using Gradle for builds, this involves changing the minSdkVersion property in the application build.gradle file to 23.

	Add the following uses-permission elements to the AndroidManifest.xml file:

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

	Add the following element to the application element of the AndroidManifest.xml file:

<service android:name="com.amazonaws.mobileconnectors.s3.transferutility.
TransferService" android:enabled="true" />

Updating the DynamoDBManager Class

In this section you update the DynamoDBManager class created in the previous chapter to provide methods that can be used by the UI layer of the application to exchange messages between friends.

Two Amazon DynamoDB tables were created in Chapter 19 to support chat functionality:

	Chat: A row in this table represents a thread of conversation between two users.

	Message: A row in this table represents a message exchanged over a chat. The message can contain some text or an image. A Message object contains a chat_id attribute that identifies the parent Chat object.

	Open the DynamoDBManager.java file in the Project Tool window. Add a new method called retrieveChat(fromUserId, toUserId, completion) using the following implementation:

public void retrieveChat(final String fromUserId,
 final String toUserId,
 final DynamoDBControllerRetrieveChatHandler completion){

 Runnable runnable = new Runnable() {
 public void run() {

 String chatID = fromUserId + toUserId;
 String alternateChatID = toUserId + fromUserId;

 ChatManager chatManager = ChatManager.getInstance(mContext);

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);

 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);

 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 try {
 Chat chat = mapper.load(Chat.class, chatID);
 if (chat != null) {
 chatManager.addChat(chat);
 completion.didSucceed();
 return;
 }

 Chat alternateChat = mapper.load(Chat.class, alternateChatID);
 if (alternateChat != null) {
 chatManager.addChat(alternateChat);
 completion.didSucceed();
 return;
 }

 completion.didNotFindChat();

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }

 }
 };
 Thread mythread = new Thread(runnable);
 mythread.start();
}

This method is called from the Home Activity when a user taps on the name of a friend to begin a chat session. If a chat session already exists in the Amazon DynamoDB database on the AWS cloud, relevant data is retrieved from DynamoDB and a Chat object is added to the conversations hashmap in the ChatManger object. This dictionary is created in a later section, with its declaration resembling the following:

public HashMap<Chat, ArrayList<Message>> conversations;

If a Chat object cannot be found in Amazon DynamoDB in the cloud, the retrieveChat(fromUserId, toUserId, completion) method calls the didNotFindChat() callback method. The caller calls a different method to create a new Chat instance.

	Create a new Chat object in Amazon DynamoDB by calling a new method in the DynamoDBManager class called createChat(fromUserId, toUserId, completion).

Implement this method as follows:

public void createChat(final String fromUserId,
 final String toUserId,
 final DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {
 public void run() {

 String newChatId = fromUserId + toUserId;
 ChatManager chatManager = ChatManager.getInstance(mContext);

 try {
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);

 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);

 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 Chat chat = new Chat();
 chat.setId(newChatId);
 chat.setFrom_user_id(fromUserId);
 chat.setTo_user_id(toUserId);
 mapper.save(chat);

 chatManager.addChat(chat);
 completion.didSucceed();

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }
 };
 Thread mythread = new Thread(runnable);
 mythread.start();
}

This method creates a new Chat object and calls the save() method on a DynamoDBMapper instance to write the object to Amazon DynamoDB on the AWS cloud. If the write operation succeeds, the createChat(fromUserId, toUserId, completion) method adds the Chat object to the conversations hashmap of the ChatManager object.

	Add the following method to the DynamoDBManager class to send a text message to another user of the app.

public void sendTextMessage(final String fromUserId,
 final String chatId,
 final String messageText,
 final DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {
 public void run() {

 long timeInMillisecondsSince1970 = new Date().getTime();
 long timeInSecondsSince1970 =
 (long)(timeInMillisecondsSince1970 / 1000L);
 ChatManager chatManager = ChatManager.getInstance(mContext);

 try {
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);

 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);

 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 Message message = new Message();
 message.setChat_id(chatId);
 message.setDate_sent((double)timeInSecondsSince1970);
 message.setMessage_id(generateUUID());
 message.setMessage_text(messageText);
 message.setMessage_image("NA");
 message.setMesage_image_preview("NA");
 message.setSender_id(fromUserId);
 mapper.save(message);

 chatManager.addMessage(chatId, message);
 completion.didSucceed();

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }
 };
 Thread mythread = new Thread(runnable);
 mythread.start();
}

This method creates a new Message object and calls the save() method on an DynamoDBMapper instance to write the object to Amazon DynamoDB on the AWS cloud. If the write operation succeeds, the sendTextMessage(fromUserId, chatId, messageText, completion) method adds the Message object to the conversations hashmap of the ChatManager object.

	Add the following method to the DynamoDBManager class to send an image to another user of the app. The caller of this method must ensure that the image has been uploaded to an Amazon S3 bucket before calling this method.

public void sendImage(final String fromUserId,
 final String chatId,
 final String imageFile,
 final String previewFile,
 final DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {
 public void run() {

 long timeInMillisecondsSince1970 = new Date().getTime();
 long timeInSecondsSince1970 =
 (long) (timeInMillisecondsSince1970 / 1000L);
 ChatManager chatManager = ChatManager.getInstance(mContext);

 try {
 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);

 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);

 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 Message message = new Message();
 message.setChat_id(chatId);
 message.setDate_sent((double)timeInSecondsSince1970);
 message.setMessage_id(generateUUID());
 message.setMessage_text("NA");
 message.setMessage_image(imageFile);
 message.setMesage_image_preview(previewFile);
 message.setSender_id(fromUserId);
 mapper.save(message);

 chatManager.addMessage(chatId, message);
 completion.didSucceed();

 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }
 };
 Thread mythread = new Thread(runnable);
 mythread.start();
}

	Finally, add the following method to retrieve a list of messages for a specific chat from Amazon DynamoDB:

public void retrieveAllMessages(final String chatId, final Date fromDate, final
DynamoDBControllerGenericHandler completion) {

 Runnable runnable = new Runnable() {
 public void run() {

 long fromDateInMillisecondsSince1970 = fromDate.getTime();
 long fromDateInSecondsSince1970 =
 (long) (fromDateInMillisecondsSince1970 / 1000L);

 Condition rangeKeyCondition = new Condition()
 .withComparisonOperator(ComparisonOperator.GT.toString())
 .withAttributeValueList(new
 AttributeValue().withN(Long.toString(fromDateInSecondsSince1970)));

 Message messageKey = new Message();
 messageKey.setChat_id(chatId);

 DynamoDBQueryExpression<Message> queryExpression =
 new DynamoDBQueryExpression<Message>()
 .withHashKeyValues(messageKey)
 .withRangeKeyCondition("date_sent", rangeKeyCondition);

 ChatManager chatManager = ChatManager.getInstance(mContext);

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);

 AmazonDynamoDBClient ddbClient = new
 AmazonDynamoDBClient(identityPoolController.mCredentialsProvider);

 DynamoDBMapper mapper = new DynamoDBMapper(ddbClient);

 try {
 List<Message> messages = mapper.query(Message.class,
 queryExpression);
 for (Message m : messages) {
 chatManager.addMessage(chatId, m);
 }
 completion.didSucceed();
 } catch (AmazonServiceException ex) {
 completion.didFail(ex);
 }
 }
 };
 Thread mythread = new Thread(runnable);
 mythread.start();
}

The retrieveAllMessages(chatId, fromDate, completion) method retrieves all messages for a specific chat that were sent after a specific point in time. Instead of performing a scan on the Message table, which would return every single item across every single chat, the retrieveAllMessages(chatId, fromDate, completion) method executes a query on the Message table. The query extracts all items that have a specific partition key value (chatId), and have sort keys that satisfy the range expression date_sent > earliestDate, where earliestDate is a numeric representation of the fromDate parameter.

Configuring Amazon S3

In this section you create two Amazon S3 buckets. The first of these stores images uploaded by users; the second bucket contains thumbnails. In Chapter 21 you create an AWS Lambda function to create thumbnails whenever an image is uploaded into the first bucket. You also update the permissions attached to the IAM role for authenticated Amazon Cognito identities to allow access to S3.

If you have already followed the instructions in Chapter 13 while building the iOS version of the AWSChat app, you can skip this section.

Creating Buckets

Ideally, you should use an IAM user with administrative privileges to carry out these tasks. If you have not yet created an IAM user under your root account, refer to the process described in Chapter 3.

	Log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the Amazon S3 service home page (Figure 20.1).

[image: Window shows accessing amazon Cognito home page with its properties like compute (Cognito), migration, security, identity, compliance, mobile services (cognito), developer tools, database (dynamoDB), storage (S3), et cetera.]

FIGURE 20.1 Accessing the Amazon S3 service home page

	If you have never created an Amazon S3 bucket in your AWS account, you are presented with the S3 landing page (Figure 20.2). Click the Create bucket button.

[image: Window shows amazon S3 landing page having options for create bucket like create new bucket, upload your data, set up your permissions along with get started button.]

FIGURE 20.2 Amazon S3 landing page

	If you have created one or more buckets in the past, the landing page looks slightly different (see Figure 20.3). Locate the Create bucket button on the page and click on it.

[image: Image described by caption and surrounding text.]

FIGURE 20.3 List of existing Amazon S3 buckets in your AWS account

	A popup window appears on your screen (Figure 20.4). Provide a unique name for the bucket and select the region in which you would like to create it. Bucket names must be globally unique, and you should select the same region in which you have created your Amazon Cognito and Amazon DynamoDB resources in previous chapters.

[image: Image described by caption and surrounding text.]

FIGURE 20.4 Specify a bucket name and region.

	The AWSChat app being developed in this book uses buckets in the US-East (N.Virginia) region. Click the Next button to proceed.

	A new set of options appears in the popup dialog box (Figure 20.5). These options allow you to configure bucket versioning, logging, and cost allocation tags.

[image: Image described by caption and surrounding text.]

FIGURE 20.5 Configuring bucket properties

By default, these options are disabled. You do not need any of them for the application that is being built in this book. Leave the settings at their default values and click the Next button.

	The next set of options that appear in the dialog box allow you to configure permissions for your bucket (Figure 20.6).

[image: Image described by caption and surrounding text.]

FIGURE 20.6 Configuring bucket permissions

The default settings allow you full read/write access to the bucket’s contents and its permissions but do not allow access to other users. Leave the settings at their default values and click the Next button.

	The last step before you can create the bucket involves reviewing all the settings for the bucket. If you are happy with the settings, click the Create bucket button (Figure 20.7).

[image: Image described by caption and surrounding text.]

FIGURE 20.7 Reviewing Amazon S3 bucket settings

Repeat these steps to create a new bucket that contains thumbnails for the images uploaded into the first bucket. The two buckets created for the application being created in this book are called:

	com.asmtechnology.awschat.images

	com.asmtechnology.awschat.thumbnails

You cannot use the same names for your buckets, as bucket names must be globally unique. When you have finished creating both buckets, your Amazon S3 Management Console should resemble Figure 20.8.

[image: Image described by caption and surrounding text.]

FIGURE 20.8 The Amazon S3 Management Console after both buckets have been created

Updating the Authenticated Identity Role

Now that you have created the Amazon S3 buckets, you need to update the IAM role that is assumed by authenticated users to allow access to these buckets.

	Use the Services drop-down menu located at the top-left corner of the page to switch to the IAM Management Console.

	Click the Roles link to view a list of roles in your account and then click Cognito_AWSChatIdentityPoolAuth_Role (Figure 20.9).

[image: Window shows editing role by clicking it under roles section displaying role actions with its name and creation time and description.]

FIGURE 20.9 Click a role to edit the role.

	You are taken to a screen where you can edit the role. Click the Create Role Policy button under the Permissions tab (Figure 20.10).

[image: Image described by caption and surrounding text.]

FIGURE 20.10 Click the Create Role Policy button.

	You are taken to the Manage Role Permissions screen. Select the Policy Generator option to create a policy (Figure 20.11).

[image: Image described by caption and surrounding text.]

FIGURE 20.11 Use the Policy Generator to create a policy.

	You are taken to a screen where you can allow or deny access to various AWS services in the new policy. You can use a single policy to allow access to both Amazon S3 buckets that you created earlier in this section.
To add an entry to the policy to allow access to the bucket for image files, ensure the following options are set up on the screen and click the Add Statement button (Figure 20.12).

[image: Image described by caption and surrounding text.]

FIGURE 20.12 Permitting access to an Amazon S3 bucket

	Effect: Allow

	AWS Service: Amazon S3

	Actions: All Actions

	Amazon Resource Name (ARN): <ARN for the bucket>/*

[image:] ARN for Amazon S3 Buckets

The Amazon Resource Name (ARN) for most Amazon S3 buckets can be worked out by replacing <yourbucketname> with the bucket name in the following expression:

arn:aws:s3:::<yourbucketname>

For instance, if the bucket name is:

com.asmtechnology.awschat.images,
then its corresponding ARN is: arn:aws:s3:::com.asmtechnology.awschat.images

The only exception to this is if your bucket is in the China (Beijing) region, where the ARN has a slightly different format:

arn:aws-cn:s3:::<yourbucketname>

Ensure that the ARN for the bucket is followed by the “/*” character sequence. Appending this sequence to the bucket ARN implies that the policy allows access to all items in the bucket.

	Repeat the process for the other bucket. At the end of the process, your new policy should contain two permissions that allow access to your Amazon S3 buckets. Click the Next Step button (Figure 20.13).

[image: Image described by caption and surrounding text.]

FIGURE 20.13 IAM Policy Generator with permissions that allow access to Amazon S3 buckets

	You are presented with a summary screen that lets you review the contents of the new policy. Change the name of the new policy to AWSChatIdentityPool_S3Access and click the Apply Policy button (Figure 20.14).

[image: Image described by caption and surrounding text.]

FIGURE 20.14 Specifying a name for the new policy

	You are taken back to the Edit Role screen, and you see your new policy listed under the Inline Policies section of the Permissions tab (Figure 20.15).

[image: Image described by caption and surrounding text.]

FIGURE 20.15 IAM role with a list of attached policies

Creating the S3Controller Class

The S3Controller provides a set of functions to allow other parts of the application to upload and download images to Amazon S3 buckets. In this chapter you only create a method to upload files; you add a method to download files in the next chapter.

Create a new Java file called S3Controller.java in the controllers package. Update the contents of S3Controller.java to resemble Listing 20.1. Provide the names of the buckets you created for images and thumbnails as values for the imageBucketName and thumbnailsBucketName variables.

[image: images] Listing 20.1 uses the asmtechnology.com.awschat package name. If you are using a different package name, you need to update the package and import statements.

Listing 20.1: S3Controller.java

package asmtechnology.com.awschat.controllers;

import android.content.Context;
import android.util.Log;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;

import asmtechnology.com.awschat.interfaces.S3ControllerGenericHandler;

public class S3Controller {

 private Regions bucketRegion = Regions.US_EAST_1;
 private String imageBucketName = "insert image bucket here";
 private String thumbnailsBucketName =
 "insert thumbnail bucket here";

 private Context mContext;

 private static S3Controller instance = null;
 private S3Controller() {}

 public static S3Controller getInstance(Context context) {
 if(instance == null) {
 instance = new S3Controller();
 }

 instance.mContext = context;
 return instance;
 }

 public void uploadImage(String localFilePath,
 String remoteFileName,
 String remoteFileExtension,
 final S3ControllerGenericHandler completion) {

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);

 AmazonS3Client sS3Client = new
 AmazonS3Client(identityPoolController.mCredentialsProvider);

 sS3Client.setRegion(Region.getRegion(bucketRegion));

 final TransferUtility transferUtility =
 new TransferUtility(sS3Client, mContext);

 final File file = new File(localFilePath);
 final String imageKey = remoteFileName + "." + remoteFileExtension;

 Runnable runnable = new Runnable() {
 public void run() {

 TransferObserver observer =
 transferUtility.upload(imageBucketName, imageKey, file);

 observer.setTransferListener(new TransferListener() {
 @Override
 public void onStateChanged(int id, TransferState state) {
 if (state == TransferState.COMPLETED){
 completion.didSucceed();
 return;
 }
 }

 @Override
 public void onProgressChanged(int id,
 long bytesCurrent, long bytesTotal) {

 int percentage = (int) (bytesCurrent/bytesTotal * 100);
 String message = "Uploaded " +
 Integer.toString(percentage) + "% to file" + imageKey;
 Log.d("AWSChat", message);
 }

 @Override
 public void onError(int id, Exception ex) {
 completion.didFail(ex);
 }
 });

 }
 };
 Thread mythread = new Thread(runnable);
 mythread.start();
 }

}

The S3Controller class implements the singleton pattern similar to the DynamoDBController class. The S3Controller class contains a single method called uploadImage(localFilePath, remoteFileName, remoteFileExtension, completion). The parameters of this method are described next:

	localFilePath: The path to an existing .png file in the application’s documents directory

	remoteFileName: The name of the file, without path components or a file extension, that creates a new item in the Amazon S3 bucket

	remoteFileExtension: The extension of the file

	completion: A completion handler that is called to report the result of the upload process

The uploadImage(localFilePath, remoteFileName, remoteFileExtension, completion) method uploads the image to the com.asmtechnology.awschat.images bucket that was created earlier in this chapter.

The task of uploading the image is performed by calling the upload(bucket, key, file) method on a TransferUtility instance.

TransferUtility is part of the AWS SDK for iOS and provides a convenient interface to upload and download files from Amazon S3 buckets. The upload method has the following parameters:

	bucket: The name of the Amazon S3 bucket to which the file should be uploaded

	key: The name of the item in the Amazon S3 bucket after it has been uploaded

	file: A path to the file that you want to upload

Calling the upload() method returns a TransferObserver object that can be used to configure a listener. Methods on the listener object are called with information on the status of the upload process. The following code snippet shows how to configure a listener and handle upload progress events:

TransferObserver observer = transferUtility.upload(imageBucketName,
 imageKey, file);

observer.setTransferListener(new TransferListener() {
 @Override
 public void onStateChanged(int id, TransferState state) {
 if (state == TransferState.COMPLETED){
 // do something when the upload has finished
 }
 }

 @Override
 public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
 // upload progress increment
 }

 @Override
 public void onError(int id, Exception ex) {
 // do something when the upload has failed
 }
});

In the next chapter you add code to the S3Controller class to download files from Amazon S3 buckets.

Updating the ChatManager Class

In this section you update the ChatManager class created in Chapter 19 to support sending text messages and images to friends.

	Open the ChatManager.java file in Android Studio and add the following variable declaration to the top of the class:

public HashMap<Chat, ArrayList<Message>> conversations;

The conversations variable is a HashMap instance. Each key in the map represents a conversation between two friends. The value associated with the key is a list of messages exchanged between the users.

	Add the following line to the getInstance() method to initialize the conversations variable:

instance.conversations = new HashMap<Chat, ArrayList<Message>>();

The getInstance() method of the ChatManager class should now resemble the following:

public static ChatManager getInstance(Context context) {
 if(instance == null) {
 instance = new ChatManager();
 instance.friendList = new ArrayList<User>();
 instance.potentialFriendList = new ArrayList<User>();
 instance.conversations = new HashMap<Chat, ArrayList<Message>>();
 }

 instance.mContext = context;
 return instance;
}

	Add the following methods to the ChatManager class to clear all chats, add a chat, and add a message to a chat in the conversations map:

public void clearCurrentChatList() {
 conversations.clear();
}

public void addChat(Chat chat) {

 Chat c = findChat(chat.getId());
 if (c != null) {
 return;
 }

 conversations.put(chat, new ArrayList<Message>());
}

public void addMessage(String chatId, Message message) {
 Chat chat = findChat(chatId);
 if (chat == null) {
 return;
 }

 ArrayList<Message> messages = conversations.get(chat);
 for (Message existingMessage : messages) {

 String existingMessageId = existingMessage.getMessage_id();
 if (existingMessageId.equals(message.getMessage_id())){
 return;
 }
 }

 messages.add(message);

}

	Add a couple of private methods to help retrieve a chat from the conversations map:

private Chat findChat(String chatId) {
 Iterator<Chat> it = conversations.keySet().iterator();
 while(it.hasNext()){
 Chat c = it.next();
 if (c.getId().equals(chatId)) {
 return c;
 }
 }

 return null;
}

private Chat findChat(String fromUserId, String toUserId) {
 Iterator<Chat> it = conversations.keySet().iterator();
 while(it.hasNext()){
 Chat c = it.next();

 String fromId = c.getFrom_user_id();
 String toId = c.getTo_user_id();

 if (((fromId.equals(fromUserId)) && (toId.equals(toUserId))) ||
 ((fromId.equals(toUserId)) && (toId.equals(fromUserId)))) {
 return c;
 }
 }

 return null;
}

The first method you just added retrieves a Chat object from the conversations map given a chat ID value. The second method is an overloaded version of the first, and it finds a Chat object given the user IDs of two friends.

	Add the following private method to the ChatManager class to generate a UUID string:

private String generateUUID() {
 UUID uuid = UUID.randomUUID();
 String uuidString = uuid.toString();
 return uuidString.toUpperCase();
}

	Add the following method to the ChatManager class to encapsulate the tasks involved in creating a chat between two users.

public void loadChat(final String fromUserId,
 final String toUserId,
 final ChatManagerLoadChatHandler completion){

 Chat existingChat = findChat(fromUserId, toUserId);
 if (existingChat != null) {

 completion.didSucceed(existingChat);
 return;
 }

 final DynamoDBController dynamoDBController =
 DynamoDBController.getInstance(mContext);
 dynamoDBController.retrieveChat(fromUserId,
 toUserId,
 new DynamoDBControllerRetrieveChatHandler() {
 @Override
 public void didSucceed() {
 Chat c = findChat(fromUserId, toUserId);
 completion.didSucceed(c);
 }

 @Override
 public void didNotFindChat() {
 // no existing chat in dynamoDB; create one dynamoDBController.createChat(fromUserId, toUserId,
 new DynamoDBControllerGenericHandler() {
 @Override
 public void didSucceed() {
 Chat c = findChat(fromUserId, toUserId);
 completion.didSucceed(c);
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });

}

This method takes three arguments. The first two are user IDs of friends involved in the chat, and the third is a completion handler that is called with a Chat instance representing the conversation between the two users.

The loadChat(fromUserId, toUserId, completion) method first checks to see if a suitable Chat object already exists in the conversations dictionary. If a suitable object is found, the method returns the existing object.

Chat existingChat = findChat(fromUserId, toUserId);
if (existingChat != null) {
 completion.didSucceed(existingChat);
 return;
}

If findChat(fromUserId, toUserId) does not return a Chat object, the loadChat(fromUserId, toUserId, completion) method tries to find a suitable row in the Amazon DynamoDB Chat table. If a row is found, a new Chat object is created in the application using a DynamoDB object mapper and added to the conversations array.

If a row could not be found in the Chat table, then a new row is added to the Chat table, and a Chat instance representing the new row is added to the conversations array.

	Add the following method to the ChatManager class to refresh all messages in a chat:

public void refreshAllMessages(Chat chat, final ChatManagerGenericHandler
completion) {

 Date earliestDate = new Date(0);

 DynamoDBController dynamoDBController =
 DynamoDBController.getInstance(mContext);

 dynamoDBController.retrieveAllMessages(chat.getId(),
 earliestDate,
 new DynamoDBControllerGenericHandler() {
 @Override
 public void didSucceed() {
 completion.didSucceed();
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });
}

The refreshAllMessages(chat, completion) method downloads all messages from the Message table in Amazon DynamoDB that have the same chat identifier as the Chat instance provided in the first parameter.

	Add the following method to the ChatManager class to send a text message to a friend:

public void sendTextMessage(final Chat chat,
 String messageText,
 final ChatManagerGenericHandler completion) {

 final Date timeSent = new Date();

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);
 String senderID =
 identityPoolController.mCredentialsProvider.getIdentityId();

 final DynamoDBController dynamoDBController =
 DynamoDBController.getInstance(mContext);

 dynamoDBController.sendTextMessage(senderID,
 chat.getId(),
 messageText,
 new DynamoDBControllerGenericHandler() {
 @Override
 public void didSucceed() {
 dynamoDBController.retrieveAllMessages(chat.getId(),
 timeSent,
 new DynamoDBControllerGenericHandler() {
 @Override
 public void didSucceed() {
 completion.didSucceed();
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });
}

The sendTextMessage(chat, messageText, completion) method of the ChatManager class calls the sendTextMessage(fromUserId, chatId, messageText, completion) method of the DynamoDBController class, providing the user ID of the currently authenticated user in the fromUserId parameter.

	Finally, add the following method to the ChatManager class to send an image to another user:

public void sendImage(final Chat chat,
 String localFilePath,
 final ChatManagerGenericHandler completion){

 String extension = FilenameUtils.getExtension(localFilePath).toLowerCase();
 String uuid = generateUUID();

 final String imageFile = uuid;
 final String previewFile = "NA";

 final Date timeSent = new Date();

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);
 final String senderID =
 identityPoolController.mCredentialsProvider.getIdentityId();

 S3Controller s3Controller = S3Controller.getInstance(mContext);
 s3Controller.uploadImage(localFilePath,
 imageFile,
 extension,
 new S3ControllerGenericHandler() {
 @Override
 public void didSucceed() {
 final DynamoDBController dynamoDBController =
 DynamoDBController.getInstance(mContext);

 dynamoDBController.sendImage(senderID,
 chat.getId(),
 imageFile,
 previewFile,
 new DynamoDBControllerGenericHandler() {
 @Override
 public void didSucceed() {

 dynamoDBController.retrieveAllMessages(chat.getId(),
 timeSent,
 new DynamoDBControllerGenericHandler() {
 @Override
 public void didSucceed() {
 completion.didSucceed();
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 completion.didFail(exception);
 }
 });

}

The sendImage(chat, message, completion) method is similar to the sendTextMessage method you added to this class earlier with a few small differences. To start with, the sendImage(chat, message, completion) method saves the file provided in the second parameter to a file in the documents directory.

It then calls the uploadImage(localFilePath, remoteFileName, remoteFileExtension) method of the S3Controller class to upload the image file to the images bucket in Amazon S3.

If the image has been uploaded to Amazon S3 successfully, the sendImage(chat, message, completion) method then calls the sendImage(fromUserId, chatId, imageFile, previewFile, completion) method of the DynamoDBController class.

Since you haven’t yet created the AWS Lambda function to generate previews for images uploaded to the images bucket in Amazon S3, the previewFile parameter of the sendImage(fromUserId, chatId, imageFile, previewFile, completion) method of the DynamoDBController class is set to a dummy value. You update this method in Chapter 21 to write the correct name of the preview file in the Amazon DynamoDB table.

Updating the User Interface of the App

You have now created all the supporting code and AWS resources to allow the app to send messages to a friend. All that remains is to update the user interface of the app and make calls to methods in the ChatManager, S3Controller, and DynamoDBController classes in the right places.

[image: images] You can download the finished project with the updated user interface from this book’s web page at Sybex.com or anonymously from the following GitHub repository:

https://github.com/asmtechnology/Chapter20.AWSForMobileDevelopers .2017.git.

Two new activities have been added to the project:

	ChatActivity: This activity allows two users to send messages to each other. It uses a recycler view to display the messages as they are exchanged and provides a set of user interface controls to allow the user to type a new message and upload an image. Messages sent by the currently authenticated user are shown in green cells, and messages sent by the other user are shown in blue cells.

	UploadImageActivity: This activity allows the user to select an image file from the photo library and sends the image to the other user.

The complete source code for ChatActivity.java is presented in Listing 20.2. If you are using a different package name then you will need to update the package and import statements.

Listing 20.2: ChatActivity.java

package asmtechnology.com.awschat;

import android.app.ProgressDialog;
import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.graphics.Rect;
import android.os.Bundle;
import android.support.design.widget.CoordinatorLayout;
import android.support.v7.app.AlertDialog;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget.DefaultItemAnimator;
import android.support.v7.widget.LinearLayoutManager;
import android.support.v7.widget.RecyclerView;
import android.support.v7.widget.Toolbar;
import android.text.TextUtils;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewTreeObserver;
import android.widget.Button;
import android.widget.EditText;
import android.widget.LinearLayout;

import asmtechnology.com.awschat.controllers.ChatManager;
import asmtechnology.com.awschat.interfaces.ChatManagerGenericHandler;
import asmtechnology.com.awschat.interfaces.ChatManagerLoadChatHandler;
import asmtechnology.com.awschat.interfaces.RecyclerViewHolderListener;
import asmtechnology.com.awschat.models.Chat;
import asmtechnology.com.awschat.recyclerview.ChatListAdapter;

public class ChatActivity extends AppCompatActivity implements
RecyclerViewHolderListener {

 private Chat currentChat = null;
 private String fromUserId;
 private String toUserId;
 private ChatListAdapter mAdapter;

 private CoordinatorLayout mCoordinatorLayout;
 private LinearLayout mLayout1;
 private RecyclerView mRecyclerView;
 private EditText mMessageTextView;
 private Button mUploadImageButton;
 private Button mSendTextButton;

 private boolean mKeyboardIsVisible = false;
 private int mKeyboardHeight = 0;
 private ProgressDialog mDialog = null;

 private int REQUESTCODE_UPLOAD_ACTIVITY = 381;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_chat);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

 fromUserId = getIntent().getStringExtra("FROM_USER_ID");
 toUserId = getIntent().getStringExtra("TO_USER_ID");

 mCoordinatorLayout = (CoordinatorLayout) findViewById(R.id.layout_0);
 mLayout1 = (LinearLayout) findViewById(R.id.layout_1);
 mRecyclerView = (RecyclerView) findViewById(R.id.recycler_view);
 mMessageTextView = (EditText) findViewById(R.id.message_text);
 mUploadImageButton = (Button) findViewById(R.id.upload_image_button);
 mSendTextButton = (Button) findViewById(R.id.send_text_button);

 setupRecyclerView();
 setupUploadImageButton();
 setupSendTextButton();
 setupRelativeLayout();
 setupGlobalLayoutListener();

 disableUI();
 showProgressDialog();

 if (currentChat == null) {
 prepareForChat(fromUserId, toUserId);
 } else {
 refreshMessages();
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.menu_chat, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 if (id == R.id.refresh_chat) {
 disableUI();
 showProgressDialog();
 refreshMessages();
 }

 return super.onOptionsItemSelected(item);
 }

 private void prepareForChat(String fromUserId, String toUserId) {

 final ChatManager chatManager = ChatManager.getInstance(this);
 chatManager.loadChat(fromUserId,
 toUserId,
 new ChatManagerLoadChatHandler() {

 @Override
 public void didSucceed(Chat chat) {
 currentChat = chat;
 mAdapter.setChat(chat);

 chatManager.refreshAllMessages(chat,
 new ChatManagerGenericHandler() {
 @Override
 public void didSucceed() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 hideProgressDialog();
 mAdapter.notifyDataSetChanged();

 mRecyclerView.postDelayed(new Runnable() {
 @Override
 public void run() {

 mRecyclerView.scrollToPosition(mAdapter.getItemCount() - 1);
 }
 }, 500);
 }
 });
 }

 @Override
 public void didFail(final Exception exception) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 hideProgressDialog();
 displayErrorMessage(exception);
 }
 });
 }
 });
 }

 @Override
 public void didFail(final Exception exception) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 hideProgressDialog();
 displayErrorMessage(exception);
 }
 });
 }
 });

 }

 private void refreshMessages() {

 final ChatManager chatManager = ChatManager.getInstance(this);
 chatManager.refreshAllMessages(currentChat,
 new ChatManagerGenericHandler() {
 @Override
 public void didSucceed() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 hideProgressDialog();
 mAdapter.notifyDataSetChanged();

 mRecyclerView.postDelayed(new Runnable() {
 @Override
 public void run() {

 mRecyclerView.scrollToPosition(mAdapter.getItemCount() - 1);
 }
 }, 500);
 }
 });
 }

 @Override
 public void didFail(final Exception exception) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 hideProgressDialog();
 displayErrorMessage(exception);
 }
 });
 }
 });

 }

 private void setupRecyclerView() {
 mAdapter = new ChatListAdapter(this, this, null, fromUserId);

 RecyclerView.LayoutManager mLayoutManager = new
 LinearLayoutManager(getApplicationContext());
 mRecyclerView.setLayoutManager(mLayoutManager);
 mRecyclerView.setItemAnimator(new DefaultItemAnimator());
 mRecyclerView.setAdapter(mAdapter);
 }

 private void setupUploadImageButton() {
 final Context context = this;

 mUploadImageButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Intent intent = new Intent(context, UploadImageActivity.class);
 intent.putExtra("FROM_USER_ID", fromUserId);
 intent.putExtra("TO_USER_ID", toUserId);
 startActivityForResult(intent, REQUESTCODE_UPLOAD_ACTIVITY);
 }
 });
 }

 private void setupSendTextButton() {

 final Context context = this;

 mSendTextButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 String textToSend = mMessageTextView.getText().toString();
 if (TextUtils.isEmpty(textToSend)) {
 return;
 }

 if (currentChat == null) {
 return;
 }

 disableUI();

 ChatManager chatManager = ChatManager.getInstance(context);
 chatManager.sendTextMessage(currentChat, textToSend,
 new ChatManagerGenericHandler() {

 @Override
 public void didSucceed() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 mAdapter.notifyDataSetChanged();
 }
 });
 }

 @Override
 public void didFail(final Exception exception) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 displayErrorMessage(exception);
 }
 });
 }

 });

 }
 });
 }

 private void setupRelativeLayout() {

 int availableScreenHeight =
 this.getResources().getDisplayMetrics().heightPixels;

 float scale = this.getResources().getDisplayMetrics().density;
 int sendMessageControlLayoutHeight = (int)(100 * scale + 0.5f);

 if (mKeyboardIsVisible) {
 availableScreenHeight -= (mKeyboardHeight - 100);
 }

 int recyclerViewHeight =
 availableScreenHeight - sendMessageControlLayoutHeight;

 mLayout1.getLayoutParams().height = availableScreenHeight;
 mRecyclerView.getLayoutParams().height = recyclerViewHeight - 210;
 mLayout1.requestLayout();
 }

 private void setupGlobalLayoutListener() {
 mRecyclerView.getViewTreeObserver().addOnGlobalLayoutListener(new
 ViewTreeObserver.OnGlobalLayoutListener() {
 @Override
 public void onGlobalLayout() {
 Rect r = new Rect();
 mCoordinatorLayout.getWindowVisibleDisplayFrame(r);

 int screenHeight =
 mCoordinatorLayout.getRootView().getHeight();
 int keyboardHeight = screenHeight - (r.bottom);

 if (keyboardHeight > 150) {
 mKeyboardHeight = keyboardHeight;
 mKeyboardIsVisible = true;
 } else {
 mKeyboardHeight = 0;
 mKeyboardIsVisible = false;
 }

 setupRelativeLayout();
 }
 });
 }

 private void disableUI() {
 mMessageTextView.setEnabled(false);
 mUploadImageButton.setEnabled(false);
 mSendTextButton.setEnabled(false);
 }

 private void enableUI() {
 mMessageTextView.setEnabled(true);
 mUploadImageButton.setEnabled(true);
 mSendTextButton.setEnabled(true);
 }

 private void showProgressDialog() {
 if (mDialog == null) {
 mDialog = new ProgressDialog(this);
 mDialog.setMessage("Loading...");
 mDialog.setCancelable(false);
 mDialog.setProgressStyle(ProgressDialog.STYLE_SPINNER);
 }
 mDialog.show();
 }

 private void hideProgressDialog() {
 if (mDialog != null) {
 mDialog.hide();
 }
 mDialog = null;
 }

 private void displayErrorMessage(final Exception exception) {

 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage(exception.getMessage());
 builder.setTitle("Error");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 dialog.cancel();
 }
 });

 final AlertDialog alert = builder.create();

 alert.show();
 }
 });
 }

 protected void onActivityResult(int requestCode,
 int resultCode,
 Intent intent) {

 super.onActivityResult(requestCode, resultCode, intent);

 if (requestCode == REQUESTCODE_UPLOAD_ACTIVITY) {
 refreshMessages();
 }
 }

 public void didTapOnRowAtIndex(int selectedIndex) {
 // do nothing for now.
 }
}

The complete source code for UploadImageActivity.java is provided in Listing 20.3. If you are using a different package name then you will need to update the package and import statements.

Listing 20.3: UploadImageActivity.java

package asmtechnology.com.awschat;

import android.annotation.SuppressLint;
import android.app.ProgressDialog;
import android.content.ContentUris;
import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.content.pm.PackageManager;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.net.Uri;
import android.os.Build;
import android.os.Bundle;
import android.os.Environment;
import android.provider.DocumentsContract;
import android.provider.MediaStore;
import android.support.annotation.NonNull;
import android.support.v4.content.ContextCompat;
import android.support.v7.app.AlertDialog;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget.Toolbar;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;

import org.apache.commons.io.FilenameUtils;

import java.io.File;
import java.io.FileOutputStream;
import java.util.UUID;

import asmtechnology.com.awschat.controllers.ChatManager;
import asmtechnology.com.awschat.interfaces.ChatManagerGenericHandler;
import asmtechnology.com.awschat.interfaces.ChatManagerLoadChatHandler;
import asmtechnology.com.awschat.models.Chat;

public class UploadImageActivity extends AppCompatActivity {

 private Chat currentChat = null;
 private String fromUserId;
 private String toUserId;

 private String mSelectedImagePath = null;

 private Button mSelectImageButton;
 private Button mUploadImageButton;
 private ImageView mImageView;
 private ProgressDialog mDialog = null;

 private int REQUESTCODE_IMAGEPICKER = 998;
 private int REQUEST_PERMISSIONS = 999;

 private boolean mReadExternalStoragePermissionGranted = false;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_upload_image);

 this.setTitle("Select Image");

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

 fromUserId = getIntent().getStringExtra("FROM_USER_ID");
 toUserId = getIntent().getStringExtra("TO_USER_ID");

 mSelectImageButton = (Button) findViewById(R.id.select_image_button);
 mUploadImageButton = (Button) findViewById(R.id.upload_image_button);
 mImageView = (ImageView) findViewById(R.id.imageView);

 setupSelectImageButton();
 setupUploadImageButton();

 checkPermissions();
 }

 private void setupSelectImageButton() {
 mSelectImageButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 if (mReadExternalStoragePermissionGranted == false) {
 displayPermissionsError();
 return;
 }

 Intent photoPickerIntent = new Intent(Intent.ACTION_PICK,
 android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

 photoPickerIntent.setType("image/*");
 startActivityForResult(photoPickerIntent ,
 REQUESTCODE_IMAGEPICKER);

 }
 });
 }

 private void setupUploadImageButton() {

 final Context context = this;

 mUploadImageButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 if (mSelectedImagePath == null) {
 return;
 }

 sendImage(mSelectedImagePath);

 }
 });
 }

 private void checkPermissions() {

 int permissionCheck = ContextCompat.checkSelfPermission(this,
 android.Manifest.permission.READ_EXTERNAL_STORAGE);
 if (permissionCheck != PackageManager.PERMISSION_GRANTED) {

 requestPermissions(new
 String[]{android.Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_PERMISSIONS);

 } else {
 mReadExternalStoragePermissionGranted = true;
 }
 }

 private void sendImage(String filePath) {

 disableUI();
 showProgressDialog();

 String pngFilePath = filePath;
 String extension = FilenameUtils.getExtension(filePath).toLowerCase();
 if (extension != "png") {
 pngFilePath = convertToPNG(filePath);
 }

 if (pngFilePath == null) {
 enableUI();
 hideProgressDialog();
 displayFormatConversionError();
 return;
 }

 final String inputImagePath = pngFilePath;
 final boolean shouldDeleteInputFileAfterUpload =
 (extension != "png") ? true : false;
 final ChatManager chatManager = ChatManager.getInstance(this);
 chatManager.loadChat(fromUserId, toUserId,
 new ChatManagerLoadChatHandler() {

 @Override
 public void didSucceed(Chat chat) {
 chatManager.sendImage(chat, inputImagePath,
 new ChatManagerGenericHandler() {
 @Override
 public void didSucceed() {

 File f = new File(inputImagePath);
 if (f.exists() &&
 shouldDeleteInputFileAfterUpload == true) {
 f.delete();
 }

 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 hideProgressDialog();
 finish();
 }
 });

 }

 @Override
 public void didFail(final Exception exception) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 hideProgressDialog();
 displayErrorMessage(exception);
 }
 });
 }
 });
 }

 @Override
 public void didFail(final Exception exception) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 enableUI();
 hideProgressDialog();
 displayErrorMessage(exception);
 }
 });
 }
 });
 }

 @SuppressLint("NewApi")
 private String getPath(Uri uri) {

 final boolean needToCheckUri = Build.VERSION.SDK_INT >= 19;
 String selection = null;
 String[] selectionArgs = null;

 if (needToCheckUri &&
 DocumentsContract.isDocumentUri(getApplicationContext(), uri)) {

 if (isExternalStorageDocument(uri)) {

 final String docId = DocumentsContract.getDocumentId(uri);
 final String[] split = docId.split(":");
 return Environment.getExternalStorageDirectory() +
 "/" + split[1];

 } else if (isDownloadsDocument(uri)) {

 final String id = DocumentsContract.getDocumentId(uri);
 uri =
 ContentUris.withAppendedId(Uri.parse(
 "content://downloads/public_downloads"),
 Long.valueOf(id));

 } else if (isMediaDocument(uri)) {

 final String docId = DocumentsContract.getDocumentId(uri);
 final String[] split = docId.split(":");
 final String type = split[0];

 if ("image".equals(type)) {
 uri = MediaStore.Images.Media.EXTERNAL_CONTENT_URI;
 } else if ("video".equals(type)) {
 uri = MediaStore.Video.Media.EXTERNAL_CONTENT_URI;
 } else if ("audio".equals(type)) {
 uri = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI;
 }
 selection = "_id=?";
 selectionArgs = new String[] {split[1]};
 }
 }

 if ("content".equalsIgnoreCase(uri.getScheme())) {

 String[] projection = {MediaStore.Images.Media.DATA};
 Cursor cursor = null;

 try {
 cursor = getContentResolver()
 .query(uri, projection, selection,
 selectionArgs, null);

 int column_index =
 cursor.getColumnIndexOrThrow(MediaStore.Images.Media.DATA);

 if (cursor.moveToFirst()) {
 return cursor.getString(column_index);
 }

 } catch (Exception e) {
 Log.e("AWSCHAT", "Unable to resolve uri into filepath", e);
 return null;
 }
 } else if ("file".equalsIgnoreCase(uri.getScheme())) {
 return uri.getPath();
 }
 return null;
 }

 private boolean isExternalStorageDocument(Uri uri) {
 return "com.android.externalstorage.documents".equals(
 uri.getAuthority());
 }

 private boolean isDownloadsDocument(Uri uri) {
 return "com.android.providers.downloads.documents".equals(
 uri.getAuthority());
 }

 private boolean isMediaDocument(Uri uri) {
 return "com.android.providers.media.documents".equals(
 uri.getAuthority());
 }

 private void disableUI() {
 mUploadImageButton.setEnabled(false);
 mSelectImageButton.setEnabled(false);
 }

 private void enableUI() {
 mUploadImageButton.setEnabled(true);
 mSelectImageButton.setEnabled(true);
 }

 private void showProgressDialog() {
 if (mDialog == null) {
 mDialog = new ProgressDialog(this);
 mDialog.setMessage("Loading...");
 mDialog.setCancelable(false);
 mDialog.setProgressStyle(ProgressDialog.STYLE_SPINNER);
 }
 mDialog.show();
 }

 private void hideProgressDialog() {
 if (mDialog != null) {
 mDialog.hide();
 }
 mDialog = null;
 }

 private void displayPermissionsError() {
 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage("You have not granted this app permission to
 access media files on this device.");
 builder.setTitle("Permission Error");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int id) {
 dialog.cancel();
 }
 });

 final AlertDialog alert = builder.create();

 alert.show();
 }
 });
 }

 private void displayErrorMessage(final Exception exception) {

 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage(exception.getMessage());
 builder.setTitle("Error");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int id) {
 dialog.cancel();
 }
 });

 final AlertDialog alert = builder.create();

 alert.show();
 }
 });
 }

 private void displayFormatConversionError() {
 final Context context = this;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setMessage("Unable to convert the selected
 image to a PNG file");
 builder.setTitle("Error");
 builder.setCancelable(false);

 builder.setPositiveButton(
 "Ok",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int id) {
 dialog.cancel();
 }
 });

 final AlertDialog alert = builder.create();

 alert.show();
 }
 });
 }

 private String convertToPNG(String inputFilePath) {
 String folderPath =
 Environment.getExternalStorageDirectory().toString();
 String fileName = generateUUID() + ".png";
 String tempFilePath = folderPath + "/" + fileName;

 Bitmap b = BitmapFactory.decodeFile(inputFilePath);
 if (b == null) {
 return null;
 }

 try {
 FileOutputStream out = new FileOutputStream(tempFilePath);
 b.compress(Bitmap.CompressFormat.PNG, 100, out);
 out.close();
 } catch (Exception e) {
 Log.e("AWSChat", "Failed to create PNG file");
 return null;
 }

 return tempFilePath;
 }

 private String generateUUID() {
 UUID uuid = UUID.randomUUID();
 String uuidString = uuid.toString();
 return uuidString.toUpperCase();
 }

 protected void onActivityResult(int requestCode, int resultCode,
 Intent intent) {

 super.onActivityResult(requestCode, resultCode, intent);

 if (requestCode == REQUESTCODE_IMAGEPICKER) {

 if (resultCode == RESULT_OK) {
 Uri selectedImageURI = intent.getData();
 mSelectedImagePath = getPath(selectedImageURI);

 Bitmap b = BitmapFactory.decodeFile(mSelectedImagePath);
 mImageView.setImageBitmap(b);
 }
 }
 }

 @Override
 public void onRequestPermissionsResult(final int requestCode,
 @NonNull final String[] permissions,
 @NonNull final int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions,
 grantResults);

 if (requestCode == REQUEST_PERMISSIONS) {
 if (grantResults.length > 0 &&
 grantResults[0] == PackageManager.PERMISSION_GRANTED) {
 mReadExternalStoragePermissionGranted = true;
 } else {
 mReadExternalStoragePermissionGranted = false;
 }
 }

 }
}

Figure 20.16 depicts the chat view and the upload image views while a conversation between two users is underway.

[image: Image described by caption and surrounding text.]

FIGURE 20.16 Chat view and upload image view

Because we have not yet created the code to generate previews of images uploaded to the Amazon S3 image bucket, the chat view uses a placeholder graphic representing an image. This is rectified in the next chapter. You can, however, use the Amazon S3 Management Console to examine the S3 bucket and verify that content is being uploaded by the S3Controller class (Figure 20.17).

[image: Image described by caption and surrounding text.]

FIGURE 20.17 Uploaded images are visible in the Amazon S3 bucket.

You can also use the Amazon DynamoDB Management Console and examine the Message table to see what is being written to the table by the DynamoDBController class (Figure 20.18).

[image: Image described by caption and surrounding text.]

FIGURE 20.18 Messages are visible in the message table.

[image: images] You can download the project files created in this chapter from this book’s web page on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter20.AWSForMobileDevelopers.2017.git.

Summary

	The DynamoDBController class has been updated with methods to allow friends to send messages to each other.

	Separate buckets have been created for images and thumbnails.

	The S3Controller class provides methods to upload images to Amazon S3 buckets.

	You need to update the IAM role assumed by authenticated Amazon Cognito identities to allow access to your Amazon S3 buckets.

Chapter 21
Using AWS Lambda to Generate Thumbnails

WHAT’S IN THIS CHAPTER

	[image: images]Create a Node.js function to generate thumbnails.

	[image: images]Package the function and dependencies into a deployment package.

	[image: images]Upload the deployment package to AWS Lambda.

	[image: images]Test the AWS Lambda function.

	[image: images]Update the AWSChat Android app to download and display thumbnails.

[image:] In Chapter 20 you set up buckets in Amazon S3 and modified the AWSChat Android application to allow logged-in users to send text messages and images to their friends. Images were uploaded to a designated S3 bucket.

In this chapter you set up a Node.js Lambda function to generate a thumbnail of an image when it is uploaded to Amazon S3 and save the thumbnail in a different bucket. You modify the AWSChat Android app to display thumbnails in the chat window.

[image: images] To follow along with this lesson, download the starter project from either this book’s web page at Sybex.com or GitHub at https://github.com/asmtechnology/Chapter21.AWSForMobileDevelopers.2017.git.

You need to ensure that you have followed the instructions presented in Chapters 19 and 20 to create relevant Amazon DynamoDB tables, AWS Lambda functions, and Amazon S3 buckets in your AWS account.

The starter project that accompanies this chapter uses the asmtechnology .com.awschat namespace. If you would like to change the namespace under which the files are created, open the AndroidManifest.xml file and perform the following steps for each component of the namespace that you want to change.

	Locate the package="asmtechnology.com.awschat" attribute of the manifest tag.

	Select the component of the namespace that you want to rename.

	Right click the component to reveal a context menu and select the Refactor ➢ Rename menu item.

	Click the Rename Package button in the dialog box that appears and provide a new value for the component of the namespace you want to change.

	Click the Refactor button to finish changing the value of the component of the namespace.

You also need to ensure that the following options have been set up correctly in the starter project:

	Line 29 of the CognitoUserPoolController.Java file contains the ID of your Amazon Cognito user pool.

	Lines 33 – 34 of the CognitoUserPoolController.Java file contain the app client ID and app client secret to allow your app access to unauthenticated APIs of the user pool.

	Lines 25 – 26 of the CognitoIdentityPoolController.Java file contain the details of your Amazon Cognito identity pool.

	Lines 21 – 24 of the S3Controller.Java file contain the details of your Amazon S3 buckets.

If you intend to use a Facebook sign-in, then in addition to the preceding items, you need to:

	Open the strings.xml file and update the following entry with the value of your Facebook App ID:

<string name="facebook_app_id">{your-app-id}</string>

If you intend to use a Google sign-in, then in addition to the preceding items, you need to ensure that:

	You have set up an application on the Google developer console.

	You have included the GoogleService-Info.plist file in your Android studio project.

	Line 47 of LoginActivity.Java contains the Google client ID.

Creating a Node.js Lambda Function Deployment Package

In Chapter 19 you created an AWS Lambda function that was used to copy records from Amazon Cognito Sync data sets to Amazon DynamoDB. In this section you create a Node.js Lambda function that uses the Async and GraphicsMagick libraries to create thumbnails. Because these libraries are not available in the AWS Lambda execution environment, you must package your Node.js function code and all dependencies into a .zip file. The .zip file is then uploaded to AWS Lambda in the “Creating an AWS Lambda Function Using the Management Console” section later in this chapter.

If you created this AWS Lambda function in Chapter 14 while building the iOS version of the AWSChat app, you can skip this section.

Before you can get started, you need to ensure you have installed Node.js on your computer.

	Visit the Node.js website at https://nodejs.org/ and download the installer for version 7.9.0 (Figure 21.1).

[image: Window shows home page of Node.JS installer’s latest version 7.9.0 having options like download for macOS(x64) with two versions like v6.10.2 LTS and v7.9.0 current.]

FIGURE 21.1 Download the installer for version 7.9.0 of Node.js on your computer.

	Launch the installer and follow the onscreen instructions to install Node.js on your computer (Figure 21.2).

[image: Image described by caption and surrounding text.]

FIGURE 21.2 Node.js Installer

	To check that you have installed Node.js correctly on a Mac, launch the Terminal application, type the following command, and press Enter.

node --version

The output in the Terminal window should contain the version number of the Node.js runtime:

v7.9.0

Now that you have verified that Node.js has been installed correctly on your computer, follow these steps to create a Node.js Lambda function.

	Create a folder on your hard disk called ThumbnailGenerator and navigate to the new folder in a Terminal window.

	Type the following command to download the Async library and press Enter:

npm install async

	Type the following command to install the GraphicsMagick library and press Enter:

npm install gm

	Using your favorite text editor, create a plain text file called index.js in the ThumbnailGenerator folder and update the contents of the new file to match Listing 21.1.
Listing 21.1: index.js

// dependencies
var async = require('async');
var AWS = require('aws-sdk');
var gm = require('gm').subClass({ imageMagick: true });
var util = require('util');

// constants
var MAX_WIDTH = 400;
var MAX_HEIGHT = 400;

// get reference to S3 client
var s3 = new AWS.S3();

exports.handler = function(event, context, callback) {

 // read options from the event
 console.log("Reading options from event:\n",
 util.inspect(event, {depth: 5}));

 // source and destination buckets
 //
 // this code assumes that your source and destination buckets
 // differ only by the last word of the name.
 //
 // For example:
 //
 // source (image) bucket name =
 // com.asmtechnology.awschat.images
 //
 // destination (thumbnail) bucket name =
 // com.asmtechnology.awschat.thumbnails
 var srcBucket = event.Records[0].s3.bucket.name;

 var components = srcBucket.split('.');
 var dstBucket = "";
 for (i = 0; i < components.length - 1; i++) {
 dstBucket += components[i] + ".";
 }
 dstBucket += "thumbnails";

 console.log("Source bucket name:\n", srcBucket);
 console.log("Destination bucket name:\n", dstBucket);

 // object key may have spaces or unicode non-ASCII characters
 var srcKey = decodeURIComponent(event.Records[0].s3.object.key.
replace(/\+/g, " "));
 var dstKey = "thumbnail-" + srcKey;

 console.log("Source file name:\n", srcKey);
 console.log("Destination file name:\n", dstKey);

 // source and destination buckets must not be the same
 if (srcBucket == dstBucket) {
 callback("source and destination buckets must not be the same");
 return;
 }

 var typeMatch = srcKey.match(/\.([^.]*)$/);
 if (!typeMatch) {
 callback("Unknown image type.");
 return;
 }

 var imageType = typeMatch[1];
 if (imageType != "png") {
 callback('Unsupported image type: ${imageType}');
 return;
 }

 // download the image from S3,
 // transform,
 // and upload to a different S3 bucket
 async.waterfall([

 function download(next) {
 // download the image from S3 into a buffer
 s3.getObject({
 Bucket: srcBucket,
 Key: srcKey},
 next);
 },

 function transform(response, next) {
 gm(response.Body).size(function(err, size) {

 // compute dimensions of scaled image
 var scalingFactor = Math.min(
 MAX_WIDTH / size.width,
 MAX_HEIGHT / size.height
);
 var width = scalingFactor * size.width;
 var height = scalingFactor * size.height;

 // scale the image
 this.resize(width, height)
 .toBuffer(imageType, function(err, buffer) {
 if (err) {
 next(err);
 } else {
 next(null,
 response.ContentType, buffer);
 }
 });
 });
 },

 function upload(contentType, data, next) {
 // save the scaled image
 s3.putObject({
 Bucket: dstBucket,
 Key: dstKey,
 Body: data,
 ContentType: contentType
 }, next);
 }],

 function (err) {
 if (err) {
 console.error('Error: ' + err);
 } else {
 console.log('Successfully created ' + dstKey);
 }
 callback(null, "function finished execution.");
 }
);
};

A Brief Analysis of the AWS Lambda Function Code

If you are not a Node.js developer and are wondering what the code in the AWS Lambda function does, read on.

The AWS Lambda function starts by importing a number of modules, including the async and gm (GraphicsMagick) modules. Every Node.js Lambda function has a handler method defined as follows.

exports.handler = function(event, context, callback) {
 /// function code goes here.
}

When a new file is uploaded to the images bucket, this handler function is executed by the AWS Lambda runtime and receives three values:

	event: The event that triggered the AWS Lambda function

	context: An object that provides information on the AWS Lambda runtime

	callback: A function that can be used by the AWS Lambda function to indicate success or failure

In the handler method, you first extract the name of the source bucket and compute the name of the destination bucket:

// source and destination buckets
var srcBucket = event.Records[0].s3.bucket.name;

var components = srcBucket.split('.');
var dstBucket = "";
for (i = 0; i < components.length - 1; i++) {
 dstBucket += components[i] + ".";
}
dstBucket += "thumbnails";

Recall that in Chapter 19, you created Amazon S3 buckets for images and thumbnails:

	com.asmtechnology.awschat.images

	com.asmtechnology.awschat.thumbnails

The function then computes the name of the destination file by prepending the string "thumbnail-" to the name of the source file:

var srcKey = decodeURIComponent(event.Records[0].s3.object.key.
 replace(/\+/g, " "));
var dstKey = "thumbnail-" + srcKey;

The function extracts the extension of the file and ensures that it is.png before proceeding:

var imageType = typeMatch[1];
if (imageType != "png") {
 callback('Unsupported image type: ${imageType}');
 return;
}

The function then uses the async library to execute a list of asynchronous functions in a predefined sequence. The async library simplifies the task of executing a chain of asynchronous functions and having asynchronous functions wait for the results of the previous function in the chain.

The AWS Lambda function calls the async.waterfall function with an array of functions that are executed sequentially, along with a final callback function that is called when all the functions in the array have finished executing. The functions that are executed in sequence perform the following tasks:

	Read the image that has been uploaded to the images bucket:

function download(next) {
 s3.getObject({
 Bucket: srcBucket,
 Key: srcKey
 },
 next);
 }

	Scale the image using the GraphicsMagick library:

function transform(response, next) {

 gm(response.Body).size(function(err, size) {

 // compute dimensions of scaled image
 var scalingFactor = Math.min(
 MAX_WIDTH / size.width,
 MAX_HEIGHT / size.height
);
 var width = scalingFactor * size.width;
 var height = scalingFactor * size.height;

 // scale the image
 this.resize(width, height)
 .toBuffer(imageType, function(err, buffer) {
 if (err) {
 next(err);
 } else {
 next(null, response.ContentType, buffer);
 }
 });
 });
}

	Save the scaled image to the thumbnail bucket:

function upload(contentType, data, next) {
 // save the scaled image
 s3.putObject({
 Bucket: dstBucket,
 Key: dstKey,
 Body: data,
 ContentType: contentType
 }, next);
}

	Save your changes to the index.js file. The contents of the ThumbnailGenerator folder should resemble Figure 21.3

[image: Image described by caption and surrounding text.]

FIGURE 21.3 Contents of the ThumbnailGenerator folder in Finder

The actual content of the node_modules subfolder may differ slightly, but you should have directories called gm and async within the node_modules folder.

Now that you have created your AWS Lambda function, it is time to zip up the index.js file and the node_modules folder into a deployment package.

	Open a Terminal window and change your working directory to the ThumbnailGenerator folder.

	To verify that you are in the correct directory, run the following command to print the contents of the current working directory:

ls -a

The output in your Terminal window should resemble the following:

DS_Store index.js node_modules

	After you have verified that you are in the correct directory, run the following command to create a deployment package:

zip ThumbnailGenerator.zip * -r

A file called ThumbnailGenerator.zip is created in the same directory. Upload this .zip file to AWS Lambda in the “Creating an AWS Lambda Function Using the Management Console” section later in this chapter.

Updating the AWS Lambda Execution Service Role

In this section you update the AWSChatLambdaExecutionRole service role that you created in Chapter 19 with additional permissions to allow access to Amazon S3. The AWS Lambda function that you create in the next section assumes this role.

	Launch your web browser and log in to the AWS Management Console using your dedicated IAM user-specific sign-in link and navigate to the IAM service home page.

	Click on the Roles link to access a list of existing roles in your account, and click on the role called AWSChatLambdaExecutionRole (Figure 21.4).

[image: Window shows list of IAM roles in AWS account displaying its name, description, and creation time with create new role and role action buttons.]

FIGURE 21.4 List of IAM roles in your AWS account

	You are taken to a page where you can update the permissions attached to the role. Click the Attach Policy button under the Managed Policies section of the Permissions tab (Figure 21.5).

[image: Window shows adding policy to IAM role under roles section displaying summary of role like role ARN, role description, instance profile ARNs, path, creation time with permissions leading to attach policy.]

FIGURE 21.5 Adding a policy to the IAM role

Select the AmazonS3FullAccess policy from the list of available policies and click on the Attach Policy button at the bottom of the screen (Figure 21.6).

[image: Window shows amazonS3FullAccesspolicy displaying attach policy with type, name, entities, creation time, and edited time.]

FIGURE 21.6 Select the AmazonS3FullAccess policy.

The new policy is added to the role, and you see the AmazonS3FullAccess policy among the list of policies applied to the role (Figure 21.7).

[image: Image described by caption and surrounding text.]

FIGURE 21.7 The AmazonS3FullAccess policy is present in the list of policies attached to the role.

Creating an AWS Lambda Function Using the AWS Management Console

Follow the steps in this section to create an AWS Lambda function with the AWS Management Console.

	Navigate to the AWS Lambda service home page (Figure 21.8). Ensure the AWS Lambda Management Console is set to the same region in which you have created your Amazon Cognito, Amazon DynamoDB, and Amazon S3 resources.

[image: Window shows accessing amazon Cognito home page with its properties like compute (Cognito), migration, security, identity, compliance, mobile services (cognito), developer tools, database (dynamoDB), storage (S3), et cetera.]

FIGURE 21.8 Accessing the AWS Lambda Management Console

	Click the Create an AWS Lambda function button to start the process of creating a new Lambda function (Figure 21.9).

[image: Image described by caption and surrounding text.]

FIGURE 21.9 Creating an AWS Lambda function

	After clicking the Create a Lambda function button, you are asked to select a blueprint for the function. Use the runtime drop-down to select the Node.js 6.10 runtime (Figure 21.10), and click the Blank Function blueprint.

[image: Window shows selecting blank function blueprint having node.js 4.3 version with cognito along with blank function and cognito-sync-trigger, et cetera.]

FIGURE 21.10 Select the Blank Function blueprint.

	After selecting the blueprint, you are asked to specify an event to trigger the AWS Lambda function. Click the event source placeholder on the page to reveal a context menu that contains a list of standard event sources. Select S3 from the context menu (Figure 21.11).

[image: Window shows event source with configure triggers having cloudwatch events, cloudwatch logs, codecommit, cognito sync trigger, dynamoDB, Kinesis, and S3 (selected).]

FIGURE 21.11 Select S3 as the event source.

	After you have selected the event source, you are presented with options to customize the trigger (Figure 21.12).

[image: Image described by caption and surrounding text.]

FIGURE 21.12 Configuring the S3 trigger

Ensure the following options are set up on the screen and press Next. You need to provide the name of the Amazon S3 bucket that you created in Chapter 20 for images.

	Bucket: provide the name of your image bucket

	Event type: Object Created (All)

	Enable trigger: Checked

	On the next screen you are asked to provide some additional information on the new AWS Lambda function, including a name, a short description, and the source code of the function (Figure 21.13). Provide the following values on this screen:

[image: Image described by caption and surrounding text.]

FIGURE 21.13 Provide a name and description for the AWS Lambda function.

	Name: ThumbnailGenerator

	Description: Generate thumbnail from an S3 bucket

	Runtime: Node.js 6.10

	Code entry type: Upload a .ZIP file

	Click the Upload button and locate the ThumbnailGenerator.zip file that you created earlier. Scroll down to the AWS Lambda function handler and role section and ensure the following options are selected (Figure 21.14):

[image: Image described by caption and surrounding text.]

FIGURE 21.14 Specifying the execution role

	Handler: index.handler

	Role: Choose an existing role

	Existing Role: AWSChatLambdaExecutionRole

	Expand the Advanced settings options on the page, and increase the AWS Lambda function Timeout value to 4 minutes (Figure 21.15).

[image: Image described by caption and surrounding text.]

FIGURE 21.15 Change the AWS Lambda function timeout to 4 minutes.

	Scroll down to the bottom of the AWS Lambda function configuration page and click the Next button to move to the review screen.

	The review screen contains a summary of the AWS Lambda function that you are about to create (Figure 21.16). Scroll down to the bottom of the page and click on the Create function button.

[image: Image described by caption and surrounding text.]

FIGURE 21.16 Click on the Create Function button to finish creating the AWS Lambda function.

Testing the AWS Lambda Function

Now that you have created the AWS Lambda function to generate thumbnails, it is time to test the Lambda function using the AWS Lambda Management Console.

	Navigate to the contents of the Amazon S3 bucket that contains the images (Figure 21.17), and copy the name of one of the files in the bucket to the clipboard.

[image: Image described by caption and surrounding text.]

FIGURE 21.17 Contents of the image bucket

	Navigate to the AWS Lambda Management Console and click the ThumbnailGenerator function from the list of available functions (Figure 21.18).

[image: Image described by caption and surrounding text.]

FIGURE 21.18 The list of AWS Lambda functions in your AWS account

	This takes you to the AWS Lambda function dashboard where you can test (and edit) the Lambda function. Click the Test button (Figure 21.19).

[image: Image described by caption and surrounding text.]

FIGURE 21.19 Testing an AWS Lambda function

	A dialog box appears in the web browser, asking you to configure a test event (Figure 21.20).

[image: Image described by caption and surrounding text.]

FIGURE 21.20 Configuring a Test event

Replace the sample event data prepopulated in the dialog box with the following event:

{
{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "s3": {
 "configurationId": "testConfigRule",
 "object": {
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901",
 "key": "*** specify file name ***",
 "size": 1024
 },
 "bucket": {
 "arn": "*** specify the ARN of the image bucket ***",
 "name": "*** specify the name of the image bucket ***",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 }
 },
 "s3SchemaVersion": "1.0"
 },
 "responseElements": {
 "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/
 mnopqrstuvwxyzABCDEFGH",
 "x-amz-request-id": "EXAMPLE123456789"
 },
 "awsRegion": "us-east-1",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "eventSource": "aws:s3"
 }
]
}

Paste the name of the image file you copied in step 1 of this section into the obkect.key attribute. Specify the ARN of your image bucket in the bucket.arn attribute. Specify the name of your image bucket in the bucket.image attribute.

	Click on the Save and test button in the dialog box. AWS Lambda executes your Lambda function with the test event you have configured and presents the results on your screen (Figure 21.21).

[image: Image described by caption and surrounding text.]

FIGURE 21.21 Results of testing the AWS Lambda function

Your screen contains a message indicating that the test has passed. You also have access to the console log generated by the AWS Lambda function.

If you switch over to the Amazon S3 Management Console and look at the contents of the bucket that you created for thumbnails, you find a new thumbnail file corresponding to the image file in the image bucket (Figure 21.22).

[image: Image described by caption and surrounding text.]

FIGURE 21.22 A thumbnail has been generated by the AWS Lambda function.

Updating the S3Controller Class

In Chapter 20 you created the S3Controller class and added a method to this class to upload files. In this section you add a method to download files.

Open the AWSChat project in Android Studio and click the file called S3Controller.Java located in the controllers package. Add a method to this class called downloadThumbnail(localFilePath, remoteFileName, completion) and implement this method as follows:

public void downloadThumbnail(final String localFilePath,
 final String remoteFileName,
 final S3ControllerGenericHandler completion) {

 CognitoIdentityPoolController identityPoolController =
 CognitoIdentityPoolController.getInstance(mContext);
 AmazonS3Client sS3Client = new
AmazonS3Client(identityPoolController.mCredentialsProvider);
 sS3Client.setRegion(Region.getRegion(bucketRegion));

 final TransferUtility transferUtility =
 new TransferUtility(sS3Client, mContext);

 // delete existing file (if it exists)
 final File file = new File(localFilePath);
 if (file.exists()) {
 file.delete();
 }

 Runnable runnable = new Runnable() {
 public void run() {

 String s3Key = remoteFileName + ".png";
 TransferObserver observer =
 transferUtility.download(thumbnailsBucketName, s3Key, file);
 observer.setTransferListener(new TransferListener() {
 @Override
 public void onStateChanged(int id, TransferState state) {
 if (state == TransferState.COMPLETED){
 completion.didSucceed();
 return;
 }
 }

 @Override
 public void onProgressChanged(int id,
 long bytesCurrent,
 long bytesTotal) {
 if (bytesTotal != 0) {
 int percentage =
 (int) (bytesCurrent / bytesTotal * 100);
 String message = "Downloaded " +
 Integer.toString(percentage) +
 "% to file" + localFilePath;
 Log.d("AWSChat", message);
 }
 }

 @Override
 public void onError(int id, Exception ex) {
 completion.didFail(ex);
 }
 });

 }
 };
 Thread mythread = new Thread(runnable);
 mythread.start();
}

The parameters of this method follow:

	localFilePath: A path in the application’s documents directory where the downloaded file should be saved

	remoteFileName: A key in the thumbnail Amazon S3 bucket

	completion: A completion block that is called to report the result of the download process

The downloadThumbnail(localFilePath, remoteFileName, completion) method downloads a file from the Amazon S3 bucket for thumbnails that was created in Chapter 20. The bucket is populated using the AWS Lambda function you created earlier in this chapter.

The task of downloading the image is performed by calling the download(bucketName, key, file) method on a TransferUtility instance.

TransferUtility is part of the AWS SDK for iOS and provides a convenient interface to upload and download files from Amazon S3 buckets. The download method has the following parameters:

	bucket: The name of the Amazon S3 bucket from which the file should be downloaded

	key: The name of the item in the Amazon S3 bucket that you want to download

	file: A file object that encapsulates a path on the device where the downloaded file will be stored

Calling the download() method returns a TransferObserver object you can use to configure a listener. Methods on the listener object are called with information on the status of the download process. The following code snippet shows how to configure a listener and handle download progress events:

TransferObserver observer = transferUtility.download(thumbnailsBucketName, s3Key,
 file);
observer.setTransferListener(new TransferListener() {
 @Override
 public void onStateChanged(int id, TransferState state) {
 if (state == TransferState.COMPLETED){
 // do something when the download has finished
 }
 }

 @Override
 public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
 // download progress increment
 }

 @Override
 public void onError(int id, Exception ex) {
 // do something when the download has failed
 }
});

Updating the ChatManager Class

You need to make a small change to the sendImage(chat, message, completion) method of the ChatManager.java file. Open the ChatManager.java file by clicking it once in the Android Studio project tool window.

Look for this line of code:

final String previewFile = "NA";

and change it to:

final String previewFile = "thumbnail-" + imageFile;

Save the file when you have finished making the change.

Updating the User Interface of the App

To update the app’s user interface, follow these steps.

	Open the ChatActivity.java file and update line 208 from this:

mAdapter = new ChatListAdapter(this, this, null, fromUserId);

to this:

mAdapter = new ChatListAdapter(this, this, null, fromUserId,
 ChatActivity.this);

	Update the contents of ChatListAdapter.java to match Listing 21.2.

Listing 21.2: ChatListAdapter.java

package asmtechnology.com.awschat.recyclerview;

import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Environment;
import android.support.v7.widget.RecyclerView;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.TextView;

import java.io.File;
import java.util.ArrayList;

import asmtechnology.com.awschat.R;
import asmtechnology.com.awschat.controllers.ChatManager;
import asmtechnology.com.awschat.controllers.S3Controller;
import asmtechnology.com.awschat.interfaces.RecyclerViewHolderListener;
import asmtechnology.com.awschat.interfaces.S3ControllerGenericHandler;
import asmtechnology.com.awschat.models.Chat;
import asmtechnology.com.awschat.models.Message;

public class ChatListAdapter extends RecyclerView.Adapter<RecyclerView.
 ViewHolder> {

 private Activity mActivity;
 private Context mContext;
 private RecyclerViewHolderListener mListener;
 private Chat mChat;
 private String mCurrentUserId;

 private int SENT_TEXT_VIEW = 0;
 private int SENT_IMAGE_VIEW = 1;
 private int RECEIVED_TEXT_VIEW = 2;
 private int RECEIVED_IMAGE_VIEW = 3;

 public class SentTextViewHolder extends RecyclerView.ViewHolder {
 public TextView messageText;
 public int itemIndex;

 public SentTextViewHolder(View view) {
 super(view);
 messageText = (TextView) view.findViewById(R.id.message_text);
 }
 }

 public class SentImageViewHolder extends RecyclerView.ViewHolder {
 public ImageView imageView;
 public int itemIndex;

 public SentImageViewHolder(View view) {
 super(view);
 imageView = (ImageView) view.findViewById(R.id.imageView);
 }

 public void loadImage(final String imageName,
 final Activity activity) {

 String externalStorageDirectory =
 Environment.getExternalStorageDirectory().toString();
 final String localFilePath = externalStorageDirectory + "/" +
 imageName + ".png";
 File file = new File(localFilePath);

 // image exists locally; use local copy if (file.exists()){
 Bitmap b = BitmapFactory.decodeFile(localFilePath);
 imageView.setImageBitmap(b);
 return;
 }

 // image does not exist locally;
 // download from S3 and save to documents directory imageView.setImageResource(R.drawable.placeholder);

 S3Controller s3Controller = S3Controller.getInstance(mContext);
 s3Controller.downloadThumbnail(localFilePath, imageName,
 new S3ControllerGenericHandler() {
 @Override
 public void didSucceed() {
 activity.runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Bitmap b = BitmapFactory.decodeFile(localFilePath);
 imageView.setImageBitmap(b);
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 Log.e("AWSCHAT", "Failed to download remote image:" +
 imageName, exception);
 }
 });
 }

 }

 public class ReceivedTextViewHolder extends RecyclerView.ViewHolder {
 public TextView messageText;
 public int itemIndex;

 public ReceivedTextViewHolder(View view) {
 super(view);
 messageText = (TextView) view.findViewById(R.id.message_text);
 }
 }

 public class ReceivedImageViewHolder extends RecyclerView.ViewHolder {
 public ImageView imageView;
 public int itemIndex;

 public ReceivedImageViewHolder(View view) {
 super(view);
 imageView = (ImageView) view.findViewById(R.id.imageView);
 }

 public void loadImage(String imageName, final Activity activity) {

 }
 }

 public ChatListAdapter(Context context,
 RecyclerViewHolderListener listener, Chat chat,
 String currentUserId, Activity activity) {
 mContext = context;
 mListener = listener;
 mCurrentUserId = currentUserId;
 mChat = chat;
 mActivity = activity;
 }

 public void setChat(Chat c) {
 mChat = c;
 }

 @Override
 public int getItemViewType(int position) {

 if (mChat == null) {
 return SENT_TEXT_VIEW;
 }

 ChatManager chatManager = ChatManager.getInstance(mContext);
 ArrayList<Message> messages = chatManager.conversations.get(mChat);

 Message message = messages.get(position);
 String messageText = message.getMessage_text();
 String senderId = message.getSender_id();

 if (messageText.equals("NA")) {
 // image
 if (senderId.equals(mCurrentUserId)) {
 return SENT_IMAGE_VIEW;
 } else {
 return RECEIVED_IMAGE_VIEW;
 }
 } else {
 // text if (senderId.equals(mCurrentUserId)) {
 return SENT_TEXT_VIEW;
 } else {
 return RECEIVED_TEXT_VIEW;
 }
 }

 }

 @Override
 public RecyclerView.ViewHolder onCreateViewHolder(ViewGroup parent,
 int viewType) {

 if (viewType == SENT_TEXT_VIEW) {
 View itemView = LayoutInflater.from(parent.getContext())
 .inflate(R.layout.sent_text_row, parent, false);
 return new ChatListAdapter.SentTextViewHolder(itemView);

 } else if (viewType == SENT_IMAGE_VIEW) {
 View itemView = LayoutInflater.from(parent.getContext())
 .inflate(R.layout.sent_image_row, parent, false);
 return new ChatListAdapter.SentImageViewHolder(itemView);

 } else if (viewType == RECEIVED_TEXT_VIEW) {
 View itemView = LayoutInflater.from(parent.getContext())
 .inflate(R.layout.received_text_row, parent, false);
 return new ChatListAdapter.ReceivedTextViewHolder(itemView);

 } else if (viewType == RECEIVED_IMAGE_VIEW) {
 View itemView = LayoutInflater.from(parent.getContext())
 .inflate(R.layout.received_image_row, parent, false);
 return new ChatListAdapter.ReceivedImageViewHolder(itemView);
 }

 return null;
 }

 @Override
 public void onBindViewHolder(RecyclerView.ViewHolder holder,
 int position) {

 if (mChat == null) {
 return;
 }

 ChatManager chatManager = ChatManager.getInstance(mContext);
 ArrayList<Message> messages = chatManager.conversations.get(mChat);

 Message message = messages.get(position);
 String messageText = message.getMessage_text();
 String senderId = message.getSender_id();
 String messageImagePreview = message.getMesage_image_preview();

 if (holder.getItemViewType() == SENT_TEXT_VIEW) {
 ((SentTextViewHolder) holder).itemIndex = position;
 ((SentTextViewHolder) holder).messageText.setText(messageText);

 } else if (holder.getItemViewType() == SENT_IMAGE_VIEW) {
 ((SentImageViewHolder) holder).itemIndex = position;
 ((SentImageViewHolder) holder).loadImage(messageImagePreview,
 mActivity);

 } else if (holder.getItemViewType() == RECEIVED_TEXT_VIEW) {
 ((ReceivedTextViewHolder) holder).itemIndex = position;
 ((ReceivedTextViewHolder) holder).messageText.setText(messageText);

 } else if (holder.getItemViewType() == RECEIVED_IMAGE_VIEW) {
 ((ReceivedImageViewHolder) holder).itemIndex = position;
 ((ReceivedImageViewHolder) holder).loadImage(messageImagePreview,
 mActivity);
 }

 }

 @Override
 public int getItemCount() {

 if (mChat == null) {
 return 0;
 }

 ChatManager chatManager = ChatManager.getInstance(mContext);
 ArrayList<Message> messages = chatManager.conversations.get(mChat);

 return messages.size();
 }
}

The modified version of the list adapter class adds a method called loadImage() to each of the SentImageViewHolder and ReceivedImageViewHolder inner classes. The loadImage() method is called from the onBindViewHolder() method of the list adapter.

The lines within onBindViewHolder() where the calls to loadImage() are made are highlighted in boldface in the following snippet:

@Override
public void onBindViewHolder(RecyclerView.ViewHolder holder, int position) {

 if (mChat == null) {
 return;
 }

 ChatManager chatManager = ChatManager.getInstance(mContext);
 ArrayList<Message> messages = chatManager.conversations.get(mChat);

 Message message = messages.get(position);
 String messageText = message.getMessage_text();
 String senderId = message.getSender_id();
 String messageImagePreview = message.getMesage_image_preview();

 if (holder.getItemViewType() == SENT_TEXT_VIEW) {
 ((SentTextViewHolder) holder).itemIndex = position;
 ((SentTextViewHolder) holder).messageText.setText(messageText);

 } else if (holder.getItemViewType() == SENT_IMAGE_VIEW) {
 ((SentImageViewHolder) holder).itemIndex = position; ((SentImageViewHolder) holder).loadImage(messageImagePreview, mActivity);

 } else if (holder.getItemViewType() == RECEIVED_TEXT_VIEW) {
 ((ReceivedTextViewHolder) holder).itemIndex = position;
 ((ReceivedTextViewHolder) holder).messageText.setText(messageText);

 } else if (holder.getItemViewType() == RECEIVED_IMAGE_VIEW) {
 ((ReceivedImageViewHolder) holder).itemIndex = position; ((ReceivedImageViewHolder) holder).loadImage(messageImagePreview,
 mActivity);

 }

}

The implementation of loadImage() is presented next:

public void loadImage(final String imageName, final Activity activity) {

 String externalStorageDirectory =
 Environment.getExternalStorageDirectory().toString();
 final String localFilePath =
 externalStorageDirectory + "/" + imageName + ".png";
 File file = new File(localFilePath);

 // image exists locally; use local copy if (file.exists()){
 Bitmap b = BitmapFactory.decodeFile(localFilePath);
 imageView.setImageBitmap(b);
 return;
 }

 // image does not exist locally; // download from S3 and save to documents directory imageView.setImageResource(R.drawable.placeholder);

 S3Controller s3Controller = S3Controller.getInstance(mContext);
 s3Controller.downloadThumbnail(localFilePath,
 imageName,
 new S3ControllerGenericHandler() {
 @Override
 public void didSucceed() {
 activity.runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Bitmap b = BitmapFactory.decodeFile(localFilePath);
 imageView.setImageBitmap(b);
 }
 });
 }

 @Override
 public void didFail(Exception exception) {
 Log.e("AWSCHAT", "Failed to download remote image:" + imageName,
 exception);
 }
 });
}

The loadImage() method uses the S3Controller class to download an image from Amazon S3 if the image is not present locally on the device. After the file has been downloaded, the view is updated to display the image.

Save all files and run the project on an emulator or a real device. Log in using one of the techniques you built in previous chapters and start a chat with another user. Thumbnails are visible for any new images that you send on the chat session (Figure 21.23).

[image: Image described by caption and surrounding text.]

FIGURE 21.23 Chat window showing thumbnails

Thumbnails are not visible for any images that were exchanged on the chat before the changes described in this lesson were implemented.

[image: images] You can download the project files created in this chapter from this book’s web page on Sybex.com or GitHub at https://github.com/asmtechnology/Chapter21.AWSForMobileDevelopers.2017.git.

Summary

	A deployment package consists of your AWS Lambda function code along with any dependencies.

	You can use the AWS Lambda Management Console to upload a deployment package and create a Lambda function.

	The S3Controller class has been updated with a new method to download thumbnails from an Amazon S3 bucket.

	You need to update the IAM role assumed by authenticated Amazon Cognito identities to allow access to your Amazon S3 image and thumbnail buckets.

		
			
				WILEY END USER LICENSE AGREEMENT

			
			
				Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

			
		
	OPS/images/c04f017.jpg
Select an existing key pair or create a new key pair X

Akey pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key par will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

556 an existing key pair
Create a new key pair
Broceed without a key pair

A No key pairs found
You don't have any key pairs. Please create a new key pair by selecting the
Create a new key pair option above to continue.

Cancel WETLERLECLEEH

OPS/images/c04f020.jpg
800 < >t & comsoeamsamzoncom. ojo|ocim

Py ‘ o0
o Q ° totor
Fooers
ey o o Iwincold = IwincoTipe - AvdabityZovs i S SutvsCocks - Arm Save PUBSSONS

@ onmoasoner toszi eSS G omtia @ serres %
w:»um.

ks Ionance [OS241cO6000155 (mshmazontimSersr) Pret : 721095 m=o
- —
. . Decrton | SinisCrecs || Moty || Tgs
Secuy Grovps S p——— ey
Fucoment s saatn 2 cuseps
Keypacs [— JrG—
[Her— Pray 72312005 (TSGR ———
: Srconsy pires s
e ga— D sk 20101 201172108 4
LS e’ e
oot Groups Frurap— potorn
\mach Contgreos S koo P

'O Engien =

OPS/images/c04f021.jpg
800 < >t & comsoeamsamzoncom. ojo|ocim

iy N e Actoos v cs e
o aQ - ° totor

Fooers

ey o o Iwancod - iwancoTipe - Aty Zone -_oaane S St Chcks —_ Aum Save__PubeONS

o A oot RSt 2o omtia @ s %
| wsancen

Spot oot l

aadindbmcn Instancs 1108824108040 1661 feshmazontinSorver) Priee : 172313008 mmn

@ socts Dosrton | susCracis | Moo T

ki [— sty soos ot 1n
p— Poors VE S5 [OTSCup T ———
. . Secomy ot 25 Saamsons
Ry ge— -

by b 02 0 s0o600)
Fucoment s [y wume
Keypars S v The [sa——
. Essopina rase Carono ey 201 5142658 VTG (1300
ey e U roma

- PP — e

[r——— g

'O Engien

OPS/images/c04f018.jpg
Select an existing key pair or create a new key pair X

Akey pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

awsbook2017KeyPair
Download Key Pair

Q You have to download the private key file (*.pem file) before you can continue. Store
itin a secure and accessible location. You will not be able to download the file
again after it's created.

Cancel WEULERLEELEES]

OPS/images/c04f019.jpg
Launch Status

© Yourinstances aro now launching
o oo tanc o s bon St GROECORREDISST Vi i

© Get notifed of estimated charges.
Cr iy s 1t 3ot en st e o your AW 5o ity et o e,y 520 o 1303)

How to connect 0 your nstances.

Younces v i, oy ke e ke i hy B h vl S, ey i b ey Y1 s, U o s e i vl s et e s
iy o ey s

~ Horo are some helpful resources (o get you started
+ Howto onract oo L e S ——
Vi yourntances r unching youcan 30

s st sk s 58 ot thostance s i, A Sor) ey 5551
PRS- ——

OPS/images/c04f013.jpg
800 < >t & comsoeamsamzoncom. ojo|ocim

Lot 3 Cotaintise ANSSon 515 Contpan tecey 7 i

Step 6: Configure Security Group

Aoty 1o 5t f e nd s conkrol i ¥ e yout e, O P,y 0 0 ok 0 ol o s yous e, o a0 853 weh v 4
ot o 0ch s it s i et 5101 HTTP o ITPS s, Yo ook o sty G/ 500 00 o b, L s st
iz £G2 sy rops.

P —

Secuygroprame: ran T
Decrton: e riad 0170181210924 21400400

o 1 Protocal PortRange @ Sourc 4
= B owen B 00000 £
A Waring

Pt s of 00000 sow o P acoss 5t o et W oo g sy g ks s s o Krown I ks .

e e

'O Engien

OPS/images/c04f014.jpg
Rosourcs Grows

.

Step 6: Configure Security Group
Rsacrty 70 5t f o s it conc 4 o your rtanc, On 1 60y c ik 00 0l 8051 1l o esch your o, o vl
e e e 5 s ok oo T TS50 s o 1 et 5 1 e . L s
Ao securty roup: O s now ey 509
S an i ey o0

g0 s i

Secuygropname: ncnwaars 1

Doncton e et 201701210924 21,0000
0 Pt 1 Pa g & s @
- B won B 00000 °
e B . oun Blosasd ®
sssrs
A Waning

Pl i s f 00000 sk o P acste o ccs et Wa o i sty g s sk s krown P s ny.

Foadback @ Engieh

OPS/images/c04f011.jpg
@00 < >jT & comsoleamsamzoncom. o

Rosourcs Grows

Vv P —

Step 4: Add Storage

sgnoptors Amsion €2

i 1ops () | Theeushou Deteto on Tormination | 0
e Dk | Soobt © o0) veamaTe e -
et i . oo B s W a jp—
e B P 0 po—— B rao wa o
sttt 491930 G o 85 G o 50 Wicrt s Lo e s 5 o S0 0%
piwbede sty (7201

x @ Engien

OPS/images/c04f012.jpg
Rosourcs Grows

T ——

Step 5: Add Tags.

el 7 i e

[—

conce proviwn | [EETETIIY oxt:cantigur Socurty Grovp

OPS/images/c04f015.jpg
Rosourcs Grows

.

Step 7: Review Instance Launch

Amazon L AMI 2016.00.1 (VM) 550 Vokume Type - ami Sbeoisso
o Ao L A O,k AV 555 7.1 S e s AVS i3 o, b Pt 4 e, To o O P18,

[Mpemet—

~ Instance Type st nstanca typo
e U wous Memoy(om) nstance Sersgo 08) [—— Network Portormanca.
amao o 1 ' essany [r—

~ Securty Groups. €t socuty groupe

Secutygroprame mchaonst
Doscrton a1 ceiod 2017.01GAT21 09247211000

o 1 prtocol 1 PortRange 1 owen @
s oo B 00000

» Instance Detals Eoitinstanco dotas

» storage cotsonne
» Tags o
ot (st

'O Engien

OPS/images/c04f016.jpg
Select an existing key pair or create a new key pair X

Akey pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key par will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

Choose an existing key pair B
Select a key pair
No key pairs found

A No key pairs found
You don't have any key pairs. Please create a new key pair by selecting the
Create a new key pair option above to continue.

Cancel WETLERLECLEEH

OPS/images/c04f009.jpg
eoe cono s amszoncon ojojo

Sorvces - Rasource Grow

Step 4: Add Storage

e s wh 0 e i oo e . Yo i 5 35 s s S 0 1 s s
ot st 1. Yo a8 Tl E55 ol et o, o xR, S 1 9995
s s mArsen £G2.

Vhmaon © | Ok D St © 30 | ok 073 © BT n et) S

s oo . crmarmtown B /0 0k a j—
—

P

Frontor gl csomrscn e p 50 G o 55 Ganrl Purps (550 g sarage. Los e st on st skt
[y

Concl | proviun N Ad Toge

OPS/images/c04f010.jpg
VomeType (I Dodico () Smapshet () Sas(G®) (1) VomeType (F 1ops (1 Dutts on Tomination (1) Eneryptad (1

o

- — : e T D
S

OPS/images/c04f007.jpg
o0 < >t & cone s smzoncom. 2 o] ¢ w

Lmotln s ooty 3Gt Ghstonn S AT & CotpmteoryOme .t
Step 2: Choose an Instance Type
b, sty ot oS 4 5 ot ot PR o bt et o 0 o oy o o g

Fitrby, | Atinsancoypes | Curongeneraton ~ Showide Coimns

Curty selctc 2. i EUs, 1¥GPUs, 2.5 G, it Xoon Famy 1 G8 oy, E65 o)

Faiy oo oo i L L JOR e—
conegese 2o i 05 esscay : [R—.

. cocotpapese - ' . By - LowtoMocersts
[2 i B esseny : [—
[s— Py 2 B Eascny [R—
[— i 2 s esseay - [rm—
- g 4 0 esseay - o
Gore e 22 s = esseny - [
- aisme 2 s eBscay o [,
[s—— g . . eBseay o o

ot et [rers—

OPS/images/c04f008.jpg
P —

Step 3: Gonfigure Instance Details
Goni 0t ok you RO, Yo GO i S5 50 530 A 0L ncs 13504301300 e GO, 6513 XG55 TR 08050

Nombocotinstances 1 Laoch o ko Sesing Govp @
Puschssigopten () oqest Spt s
LR —— B C cusermire
St ([Nerwswrs e sarisy ity [oo o st
Ao PP ([e 1) B
W © B C cumsmeviaure
Ssounsenwvior (e B
P R T —
Motonng () Evae Cneten oo momiodos
pot——
Toomncy () shons s e e B

Adasors charys wi 2y forddetedoarcy

» Advanced Detais

ot (i [Prov—

@ Foodback @ Engiah

OPS/images/c04f002.jpg

OPS/images/c04f003.jpg
Rosaurce Grouss

B soae

=
‘Soagocainsy

€8 oosooor s

-

Cosndesoy
Cosapgeine

ManagementToots
GouFamatin

oty

opss

‘S Ganog

Tt v
MaragodSovces
tr—

‘ot oty 8 Compsoncs
posm—
DreconySarics
ComplancaPapors

.) AovicaionSencos
svorecon
LR Gy
Gancameen o L
ovanoe -
oo @ o
sas
o
[Yeeep— s
oy [
g e
Mocnon iy
jrn
I 8
@ romaormen € Doscep Ao Sr0aming
ot
Aonswoanzo
& Gono ocpmont
caman
I vt Sonces
Hebto o
oy
evio s

OPS/images/c03uf001.jpg

OPS/images/c04f001.jpg
Instance 1
(t2.micro)

Amazon Linux
AMI

Instance 2
(m4.xlarge)

Instance 3
(c3.large)

EC2 Instances

OPS/images/c04f006.jpg
W Amazon Linux AMI 2016.09.1 (HVM), SSD Volume Type - ami-9be6f36c m

Amazon Linux_ Tha Amazon Linux AMi s 1 EBS-backed, AWS-supportd image. Tra defal image incudes AWS command ine oo, Python. Aty Pu, and
Java. Tho repasitores incuce Dockes, PHE, MYSOL, PostreSCL, and ther packages.

Vet ot

et

OPS/images/c04f004.jpg
800 < >t & comsoeamsamzoncom. o)o)cim

Rosaurce Grouss

1 cc2oumbons Resources @ Aogouti Attriutes 3
= You w0 using h oo Amazon EC2resmaces nh US st . g ogons “Supported istoms
e 0 Fuving nstanes o Easicips o
Hey 0 Dadeateaross 0 Soaobors o
0 voumes 0 Losd Bamcors oo stz
s HLined ety Ol e 0 g gt

0 Pacament Grou
Soot oot)

Feseneaiosnoss Additional Information

rewnarrind st sl el et sver? Gt vy you ATt your e - comove, g, w03 P
i Potorkng o a o preiciaio e, Ty Aoz L
pee—— [im—
@ swcts Jrsy—
iy Create Instance Foumn
O Tis To st ing Ao G200 AR o nch vt e e 81 Az EGZ e, Py
Seavsnots i You rataon wi s o US st . gk oen AWS Marketpiace
[T e——
s Sorioo Hoalth @ Schoduled Events [totiiatiusai avet
‘Secuy g
by Pe——— ———— Oty thos poer it
. Noomets oo Gt S s (G5 1000
Fucoment s o US s Ve
ey LS Db Coneiiase o
re— e — oo
— Fompidoy
@ wosns o e Peyby ourbor Coco setare and VS
sad o ity s s comstogramaty ey
ey PR [P ——
@ ity o s oot ey VWS st GanatonFroll B2

'@ Engish

OPS/images/c04f005.jpg
Step 1: Choose an Amazon Machine Image (AMI) prs——
Ao et contas e sovar con 0 Pl sy, P10, 3 e i 1y e Yo et AN Gy ANS, ok e ConPnty,of
o WS ;o o cn 30 co o ok o A

uekstant 0318t A
My § Amazon Linux AMI2016.00.1 (HVM), SSD Volume Type - i 9bos 30 =1
T s s T A e A 1439 -k, AV 45501 30, Th U 0 530 VRS v i 1605, o, oy, P 458 e

TN s T ocnsores e Do, PR, 0L P, ao s pchaes.
Communty AMis [P ——

B Red ot Entorprse Linux 7. HVM, SSD Volume Type - i b63768a1
Bt i L s 73 1, 55 G P 550 Wk o

e}
=a

@Fmaterony (@)

D SUSE LinxEntopviso Sorvor 12552 VM), SSD Voo Typo - dntacon

S S e S 1. Pk, B ot e (550 . bk oAbt Sy raemr,
frovisisnigtybelihopepioih

@ Ubintu Servr 1604 LTS VM), SSD Volume Type - ari-e3739%

b S 1604 LTS MLEDS Garc s (550 W e 4 v b Carics
[pe——

& Wicrsoft Windows Server 2016 Base - ani catecs

'@ Engish

OPS/images/c03f035.jpg
800 < > D & comloaws swzoncon W

Rosourcs Grows

- Password Policy

Apsssword plcy 1.5 f st i o ype o pasrd an AV oo an . ot

v e lomasion s s o, go o Mo Pasncrcs s A,
o ot i VS ocour oes ke pasce sy Soecsy a passvrd ek
ks [r—— e

B st s ppraso o ©

py e B sties s owcsso e O

| scounsrecn [rh———"

st ot et g oo vt ©
e smas o crace v cum pesuors O

Enptontons R

Pussworsexienposos) [
Provetpussnsciuss O
[————

Prsnvors xcinon s s s O

e e

- Securty Token Senvce Regions

Yo i a3t e fm vy cn et o rcri, At oy B s tr 1 s Lo e,

Rogions ¢ st Actons ¢

3

OPS/images/c03f036.jpg
ey o

[e——

Welcome to Identity and Access Management

1AM Resources
g1
Custome Maraged P 0

Securty Status
Dol your o access eys
Actvate MEA onyou o account
Crese ingvicual WM users

Usa roups 0 assign permisions

Appy an A password oy

pem—p—

em— o5 coreie

Feature Spotight

‘Addional Information
e —

@ Feetbock @ Englsh

OPS/images/c03f034.jpg
ez

Amazon Web Services Sign In With Authentication Device
The page you are tying to access requires users with authentication devices t sign in sing an
Summenticanon code.
Provideyour authenticaton code I te e below o complets sgn n.

Authentcation Code: |

o sroslems i o uthecaton e Cik bre

About Amszon.com Sign 1n

Amzon i Sricesuss oo o your At o Secunt o Rl o 3 Sl 3 10 Arazon et S, Your s of
e govrnad iy ou o of U an ey Ry 1 b, 00t vt o A G S podots 30 S Govinsd
Y 0 oo Atesman e o 5 100 S<haS e Socucts S es 1o o AVS Vo A R .

P —p—

OPS/images/c03f028.jpg
e0e0 <> D

Rosource Grows.

Attach Policy
St0p1 5t R o
Stp2:oactron e
S0 B s
St 41 s Py

‘Sl o oro o 1 atch Eac ol can v 10 achod

Pt oty Ty Stowing s rosuts

Attched Enton ¢ Gt Tima CotoaTina ¢

50206 1800TC cwrsanrzaenruc
0 @ Anoopancon®> o arsca0s 180uTC s sy
O @ AvstanomneosEec 20150009 R UTC zors0eotamauTc
O @ Awstamossimooston oyan. 260208 181007C aorscz00 mcouTc

-)

OPS/images/c03f029.jpg
St 15t N

Stop2: St Ao Ton

PReE——
P n———
Stop i

Review

R o ik forraion. To o e, i 3 o8, o ik e Rl
RoleNama. DyamcoBAccos v,
Roe AT aavsion: e

Trsted Entton T doreypovir) oc2amzsnawscom

L en———— [E—

...]

OPS/images/c03f026.jpg
e0e < > O « comolo.ams smaioncon 2 6 | o

Set Role Name
Stop 135t L S D —Y

OPS/images/c03f027.jpg
e0e0 <> D « comolo.ams smasoncon.

Rosource Grows.

Select Role Type

St0p1 5t R o OAWS Service Roles.

Stop2:SonctRon o

s » Amezon €62 =
P ——— et
+ AwS Doy Savico Seper
s AN Doy Sai o manag sose o i iy e 1 1 o AWS s
s moda Furcion o o WS shiesanyour b soper
fye—— -
PR S—— o
 Amazon APt Gty e

Rol for Cross-Account Access.

Rol for Identty Provider Access

OPS/images/c03f032.jpg
Manage MFA Device

To activate a virtual MFA device, you must first install an AWS MFA-compatible application on the user's
ssmartphone, PC, or other device. You can find a list of AWS MFA-compatible applications here. After the
application is installed, click Next Step to configure the virtual MFA.

Don't show me this dialog box again,

OPS/images/c03f033.jpg
Manage MFA Device

It your virtual MFA appiication supports scanning QR codes, scan the following image with your smartphone's
camera

» Show secret key for manual configuration

After the application is configured, enter two consecutive authentication codes in the boxes below and click
Activate Virtual MFA.

Authentication Code 1

Authentication Code 2

Cancel | Previous

OPS/images/c03f030.jpg
ey o

[e—

Welcome to Identity and Access Management

e | carion
1AM Resaurces
pasid e
Gutomer e P 0
Secuty Staus — sastsconn
Dot your oo ccss ey v
T et Mo oy e scon >
Crota navoa e >
Use revps 0 asgnpamissins v
A Aoy an Wi passwrd poicy v

Feature Spotight

< >
‘Addional Information
e —

OPS/images/c03f031.jpg
Manage MFA Device

Select the type of MFA device to activate:

© A virtual MFA device
A hardware MFA device

For more information about supported MFA devices, see AWS Multi-Factor Authentication .

[SLEIN Next Step

OPS/images/c03f024.jpg
o080 < > D & conmie mazoncom. -

[——

() wsormame aroups Posamord Prsoword Lot Used & Aocoss Koys reatonime <

OPS/images/c03f025.jpg
- (Pe——

cars
sy ok

@ Feoback @ Engien

OPS/images/c03f023.jpg
ese < >jD « comolo.ams smaioncon. 5 | o |

Dotta Govp.

et e nsnapoey CuomtonTime &

Rerors s fmGrocp w2077 UTC

OPS/images/c03f017.jpg
Rosource Grows.

Pe— a Shoving 1 rosts
g,
s Password Lostsionin Acosshers

sy ok

pr—

Feoack @ Englsh

OPS/images/c03f018.jpg
e0e0 <> D « comolo.ams smasoncon. ¢ oloos

Rosource Grows.

Users: awsbook2017

= O ——
e [
— Coostantine 20181207 819070
Metypokts | Pormimtors | Groupa) | Securtycadente || Acoass At
— 04 pomissions. [—
~ AdministatorAccess - AWS Managed polcy
Exnptcnton -+ 1AMUserChangoPasswor - AWS Managed polcy

© Adainion sy

Feoack @ Englsh

OPS/images/c03f015.jpg
e0e0 <> D « comolo.ams smasoncon.

Rosource Grows.

Add user °

Review

o yeurehcen Ay 5,y con i s i e s 3 6es .

User detals
WS accesstype Progrrinstic acess s A5 Wansgeer Concscess.
Conslapessword e Mg
Bequrepasswordreset Vs
Permissions summary

e Home
[T —
Moragedpoy UsaCrang s

Feeack @ Englsh

o O

[Roviow compios

OPS/images/c03f016.jpg
Rosource Grows.

Add user o

[Formsions Rovow Compiete

© Success
Youscesssy e th s o i Yo i 3 e sy ot Yoo ol i 5 . for 5710 1 AVS Morageran
Gonse i o 7 rse cucenss i b il omriod.wrerts Y i st v sl o y S,

700126218927 i s ez comfonade

& Donond o

e Aocosakord Socmpecasa oy Priswors Emaitogininsinctions

s o oo ey e st

Sontomi

'@ Englen

OPS/images/c03f021.jpg
e0e0 <> D « comolo.ams smasoncon.

wiznd Attach Policy

‘Sl o or okt atch Eac 1 cn e 1 10 peicin s

Ftoe Py @ R_—
[reE— CoatonTina ¢ Cotaatino
© @ s . anscacs wsmunc ot a8 maaunc
O & womcwgoumos 1 wesc02suTc sowrssmUC
O & srovemepancsa o msoronasurc eeroomsure
O & seovetemmose. o msoroeasurc soearonmurc
O @ AmucAPGstemPuhloCo.. 0 20161111 2301 UTC 20161111 2341 UTC
(S aorscacs waounc ot a8 maounc
O 6 Arscssssmamessonn.. 0 ez mioue sowarnue
O 6 Arsmmsevosis.. 0 ae0er e P
R e sieuc s sssuc
() & AmazenCogrtcOevolopariutn... O 201603241722 UTC. 2015-03.24 1722 UTC
O & ameecoproneise 0 aorscu2e r1auTc o602 757UTC.
O & smoocopmny 0 sz mosunc sowons wsaue
O 6 smoucammoin.. o ooz sowormassaunc
(R e———— o mosuTc o tsUc

OPS/images/c03f022.jpg
e%e0 <> D & comloaws smtcncon. ¢ 5] o

B S S Review
St Gepame o e lomaten e ek Crete Group o gocss.
P — g ame Ao
Stop o [————————

ot e

OPS/images/c03f019.jpg
Jm——

OPS/images/c03f020.jpg
e%e0 <> D & consloaws swzoncon ¢ 5] o

te New Group Wizar Set Group Name
St91:Grupeme Spoceyaroupname G rames can o stasany e

[]

OPS/images/c03f014.jpg
ese ¢ >/ D « comolo.ams smaioncon.

Senicos

[—

- Poiey Datae
outous ey [——
caen Omcrsion ot e 0 AN s o i
| otcs
J— -
Aecnetsoris =
- "Stotement": [!
B
- rfect": “Allow
i, Actior ¥

@ Foodback @ Engln

OPS/images/c03f012.jpg
Add user 0 e

e g9 9
Set permissions for
a \
SRS A \
el =, =
i
e e
e —
—— o
M,,M.. —
dgmm e —_——.» E-

RN e — ra— O Proves ey acoes 1o Az lcr v i IS Masgers onss,

[Re———— e p— R —————————

L
L — r— 0 Prove e sy s nd e o S Mo SR,
L

OPS/images/c03f013.jpg
800 <> D & consloaws swzoncon. 6] o

At oo e st gocies sty o o i e 5 Lo e

Crestopotey | Rt

P Py oo Showig 10rosts
policyname + Descrpton
L ——— [P PR ——
e ssmtecton L4z o v sy e e o skt o
T 0 amsseaicons sonticton T T —
= T TP e R oS s s v AT K 100
[—— r— O Provses A scee o sttt AP in Aasen AP Gty v A
[e — 0 Provde rdony cees ot sevincatio i coso,
b N sontcton O Gt ot scess pormsios 1 AWS s i acion e 58 4.
e — O Proves siisiatr scces o pcragn ppicasn i Aazon iSpace.
L — e~ O Provtes kA scoces o AW Coceduk it AV Marageert Gorcl. Ak .

OPS/images/c03f006.jpg
Sovices + Rosourca Grovpa %

AWS senvices Fealured next steps.

0 R

segn g o e

OPS/images/c03f007.jpg
e0e0 <> D « comolo.ams smasoncon.

Rosource Grows.

History.] o Az
o @ comoue o) Anaics Applcation Servicss.
o - pross Py
- T oo e
c g e, . p-
et ppeed oo pro
P} srpron -
& some Coodhiah €3 Messagrg
st Fle System. Clougtal B Antcal ineigence s
pres o P -
frond s =
o e Lo —
) Oatstase Woocs
oros @ @ renormees
s et
— . B cwcosswnsranrs
e o
R stz & Game Deveiopment opsueam20
& sy o i
i Compiance Raports
e
OvctOonneat) Moolo Senvces.
et et
o

@ Mgsson istosets

OPS/images/c03f004.jpg
ez

Sign In or Create an AWS Account

Whot s your emall (phone for mobile accounts)?

peb— AWS Accounts Include

a0y pasewers 5
)

12 Months of Free Tier Access

Incuding uso of Amazon EC2,

‘Amazon S5, and Amazon DynamoDB.
Keep me signes o Dl

Foroe your st

Lo o about AV ety Aces Maoaases nd S MRS Athctiatin, eurs e
Sty o Yo AW R et U1 NS P U T o e

About Amazon.com ign 1n
Amaton i Snicesuss frmaon o your A com SGcount o ety ou s sl s 0 Ao e S, Your e f

e govmad oy ou T o Ut B Pt I o Yot v o A We S Pt o0 S g
Y O oo At e o 5 Y50 PI<hAS s GEUS 410 S e 1o VS Vo A3 R .

OPS/images/c03f005.jpg
Account: o s B

- relnvent

Check out the latest announcements
from AWS re:invent 2016

OPS/images/c03f010.jpg
e < >|D & consloaws swzoncon e 5) o

Servces ~ Rosourco Groups

Uservame - Grows Posswerd Lossionin Aecossbers Creotontine +

sy o
socounsatiogs

Exnpiensors

Q Englen

OPS/images/c03f011.jpg
e0e <

Rosource Grows.

Set user detalls

Yo can a5 o e i 0 s scess o s s Lo s

Select AWS access type

o

[r—

'@ Englen

Programmate accoss
i e sccesa ke 10 s acces Ky 50 AN AP, G, SOK, e s kg 5.
WS Management Consse ccess

Enaios psawond 1 ows ors 1 o 0 AVS aragamont G

Asopemersdpreones

Ueor s vt e s st
s ety gt e AU 0P i 0k 51 g o own RS

e (IR

OPS/images/c03f008.jpg
ey o

[e—

1AM Resoures
o sty o0

Custome Maraged PO

Securiy Status

[]

Dl yourroot accesskeys
Actiato MFA on your roo account
Croste ol 1AM users

Usa roups 0 assign permisions

A
A
A
A

Appy an st password oy

o | Gy

oot conpn

Feature Spotight

< >
‘Addional Information
e —

OPS/images/c03f009.jpg
« Welcome to Identity and Access Management Featurs Spotight

I:::w e ——— e | Grine %

. T

oy [,
s ‘Delete your 100t access keys. v Additional Information
| —— O e
A e .
g ——— |
A AvpYan WM password potcy v

OPS/images/c03f003.jpg
x Elana x Paul
& David x Beren
& Sonam

IAM Group: |AM Group:
Administrators Developers

OPS/images/c03f001.jpg
—)

IAM Group:
Administrators

IAM Group:
DevOps Test Infrastructure

AWS Root Account

IAM Group:
DevOps Prod Infrastructure

OPS/images/c03f002.jpg
2 @» o~ =
L}
User Active Directory 1AM AWS Resource
i Login i i i
: (name, pwd) } : :
! Auth token ! i i
i i | i
; Auth foken 4 i
1 | | I
r Temporary iCredemials i i
1 | I 1
! g i >
(Temporary Credentials)
YourQrganization AWS

OPS/images/c02f008.jpg
 comsoeaws amazencom. c 3

Rosourco Grovps

AV e g coion Featured next steps
e i omed a PR,
el [y Mersn s

e l B ws

E— v coonsomen

OPS/images/c02f009.jpg
Resource Groups

Create a resource group °
gl ctocion e ke co s . S oo Bl b o 3 R 505 A 705 1 o
Goprane Montrg S
e ome - o -
[R P R ———
R 01
Aosoucotpes [12imren0)] Ectonsbuein) 62 0m Goen) | 23 ctinm
T—

ot i Predns 500 you e 1o

Feeheck @ Eng

OPS/images/c02f007.jpg
& « consleams smazoncom. o o >

History C) B~
Gasetons
ot @ corose &r Ny 9 ooy aisenny P repcn soveos
. e e v Jrre
prapa—— as [o— o
i e fon fond ot
P S Mgt pt— =
€5 Ometpur 08 -
Cateconm fo
3 g Comen ooy poveseny i rooyes
« povesed o
P oua e [y —
o B veromtion s e
‘Seommge Gatewny - Quicksight 7
oy
cortg & Gano Dorspmens
) ouansee pe @ manormegs Gt
ros St e i
Opnccn pepovss
fianten .
by wesiora,
oy
Mot oy
s

~p - v TR

OPS/images/c02f012.jpg
a Mo M SrartyCocertn

semou

@ B st Tanscode B o

OPS/images/c02f013.jpg
Buid a solution

P e Tarscose

8 g v
Fealured next g cu o

B s e

it o)
R

peiae—
Pt
PS—

| S |

OPS/images/c02f010.jpg
. - vt corste e stoncom. o > m

Resouce Growps
A Featured next steps
Famom—rs B Moo
@ = B ese o s
Gorbas gt
P s s

OPS/images/c02f011.jpg
L s o i s s

Marketing Servers |q e

- Ec2

fe—
SectyGrupn
supos

Foadbeck @ Engheh

Beions:

Resour pes

@ Loking o mor EC2 s P an e s Tog o oty ppes e

Same

Rogion

Viwing 12012 nsarcen

g c2ecipe
= e

OPS/images/c02f005.jpg
= conson v amazoncom o)&

Rosoure Groups

AWS senves Featurd next steps
@ o
™ & w B e amc

Buid a solution Announcements

e &nvent

Register for the keynote

O b @ e oS

Webstes omops Bociup and ey

- v & ——

OPS/images/c02f006.jpg
Home Services Resource Groups Account Region Support

OPS/images/c02f003.jpg

OPS/images/c02f004.jpg
DATADOG
ok s o b vt Lo sho nbw e ond S tn s e fom o

o AW s, Lo s

Explore Our Products

2 X

OPS/images/c01f009.jpg
Identity Verification

ou b b oy b an somlod syl s prompled i P rmbor o
1. Provide a telephone number ¥

2.Calin progress

s o 7o nincion n h g e by 1 oo Prons Gntfcaton
Romeer PR an o o wha Sonpis

PIN: 3126

1300 v ko recves cal s h b sve s . T e
i i ey

3. Idontty verifcation complete

Panypey Tomactiie

B —
s conpony

o

OPS/images/c01f010.jpg
|

B, S A—.

o Foymeniomsion Koroy s Suoparon Contmasen
Identity Verification
Yo e sty o oo sy 8 ntd o i P e e
1. Provido a tolophon umbor ¥
2.Callin progross ¥

3. dentity verification comploto
[—

Pancypey oot

vt A e e, e i g
s conpony

OPS/images/c02f001.jpg
Availability Availability
Zone 1 Zone 2

Availability

Zone 3

AWS Region (US East N. Virginia)

OPS/images/c02f002.jpg

OPS/images/c01f011.jpg
afnazon pr——
anazon Amazon et Senics Sign U
o o o g
[S——— SR, =

Support Plan

S Sl sl of s ot yur nds, AL lns ok 20 sz o st s,
VS oo s, 33 .5 S, o o A O3 S Sy
e ey oy RS s, o i o s e 41 Do o
S o b

Please Siect Ono

Oasec
st st Sarveo o couet 1 o st s s o O AHS.
oy Foume.
prc ks

Devaaper

s cae Excarmnteg win A5

Doscipton: O iy my s il uators o Spor Caror 308
s o i 334 e e s .

Prc: S Szt o o o i)

Busiess
[R—

Dosciption 26 gt her s o 1.8 e o gt o cass, o
it G 5y S, e S Tl ot ot e
o U e, S e 0 U0 RS Sppat 1 S s 0ok
e oo At v

N ——_—

Prc: S 515 04 s e o)
s g o gt ity ey 8o s st

e e S R

To s o o ot of IS S, g o gessons o ek
ity

[

B y—
ez conpony

OPS/images/c01f012.jpg
..“Pn zon oW &) SgnOut
amazn Amzon Web Senvies Sgn Up
o o o o o
JSUUR- TSR AR AU, A -

Welcome to Amazon Web Services

ko for st a0 Az Wob Serves (S scour, o oo pacssof (1 Lo e |
atingyout e oo i ANS Pt s csmrs acrton

oy i f 0k ks e T e et ==
sl curod) o oy o ol re v s rd s

Prerpey | Tomsctie

B ey n—
K amaasnn ooy

o

OPS/images/c01f003.jpg
Amazon 05,

E£E @y & [shenm

cermicsmaren s s meenen s e
o iR mna it ST orator b v S50 s v AW oo 7051
et oty
Explore Our Products

000]
[

o E=N ANy QY

OPS/images/c01f002.jpg
2003 @
2004 @
2005 @
2006 @
2007 @
2008 @
2009 @
2010 @
2011 @
2012 @
2013 @
2014 @
2015 @
2016 @

Idea conceived by Chris Pinkham & Benjamin Black.

AWS launched as a platfrom.

amazon.com moves over to AWS.

First AWS re:Invent conference.

AWS announces Amazon Aurora.

AWS releases 10T to the general public.

AWS announces Amazon Lex, Amazon Polly, and Amazon Rekognition.

OPS/images/c01f005.jpg
N3
o aiazon

Login Credentials

Use e form b creste i crcentils that can e s for AV 5 well 8 Amszcn <o
by name . Aohishek Mihea
[T == ————
Type topsn: S——————

[E——
Type tspan

About Amszan com Sign i

Ao e erces st o your A com <ot ety o nd 8 s £ A We e, Yo s
i sovrnad o ot oo Ui S sy Pl [s, 100 5 6 Aaon e S ot o s el
T B e e S e o Ao s s 38 Srdce o AV 1o A Resl

0 amazoncn oy

OPS/images/c01f004.jpg
N3
o aiazon

Sign In or Create an AWS Account
What s your emall(phone for mabie accounts)?

AWS Accounts Include
12 Months of Free Tier Access

Including uso of Amazon EG2,
Amazon 53, and Amazon FDS

e e stout A4S Lty ac s Mgt and S Ml i Attt estures s provde
R e

About Amazon com Sign
Amaion e Series ues oo o your Aman o o o ey o nd Sl s 1 Amazon e S Tour i
R gosrned o o e o U sy Ry [S, o0 A B Ao WA A OGSt S S 39
T R B e o S e o o o5 s s 4 Ve o A Voo A Resle

“An amazoncom compony

OPS/images/c01f007.jpg
|

e e

Cotbomsen Pt idoraion ry Vi S Gt
Payment Information

s i yourpamen fomain o Yo e ai 13 100 sat o AWS rscts o o v
e o o By et o G g 1oty o 1o T

 Froquenty Asked Questons
GroditebitCord Numbor Expiration Oste
ERiE
Cardhotcers Namo.
© s cotataess

[res—

OPS/images/c01f006.jpg
s amarencom
agfiazon w3 sem0u
amazn Amazon Wb Senicos Sin Up

Contact Information
Gompany Accout 0 Porsons Aceou

~Raqurd s
L

County" v e B

Addross® | Stoet 0. Bor Company e, o

Aporimon, sute, un.buiang, or, o

State Provinco or Region”
Posta Code

Phone Numbor

e

Rt imse

Please typo the craracter asshown sbove

AWS Gustomer Agtoament
‘Crock st ot ity v s ot o
e RS Coomar Aot

Panypey oot

B —
o smasenc conpary

o

OPS/images/c01f008.jpg
8
=

agfhazon —
anazen Amazon Web Sanics Sign Up

e o e

Conmctiemoton Pomeniomotn ey Vartcaion Spponpin Contmaien

Identity Verification

ou e s iy b n omotod syl prompld 5 P ot o

1. Provide a telephone number
g ro yur i ek o ik 70 Ca M N .

Securty Chock ©

i G|

Rl

Ploasa typo tho craracors as shown abows

Country Codo Phone Number e
ey Bl

2. Callin progress

3. Idontty verifcation complee.

OPS/images/c01f001.jpg
Business process as a service (BPAAS)

SaaS + business process (Accounting, Auditing)

Software as a service (SAAS)

PaaS + end user applications (Microsoft® Office 365™).

Platform as a service (PAAS)
laa$ + applications (Apache, Node.JS, Python™)

Infrastructure as a service (IAAS)

Hardware characteristics (number of CPUs, RAM, hard disk capacity)
Base operating system (Linux, Windows™)

OPS/images/advert.jpg
CusvBex

A Wiley Brand

OPS/images/c08f007.jpg
Choose options for your new project:

Product Name: | AWSSDKWithCarthage

Team: None B
Organization Name: | ASM Technology Ltd.

com.asmtechnology

Bundle Identifier: com.asmtechnology. AWSSDKWithCarthage.
Language: Swit
Devices: _ iPhone

Use Core Data
Include Unit Tests.
Include Ul Tests

Cancel Previous

OPS/images/c08f008.jpg
eoe 1 AWSSDKWithCarthage.
<[> 3 = R By Q search
Name Date Modiied Size Knd
53 Dropbox » [AWSSDKViithCarthage Today, 09:08 -~ Folder
¢ < [y AWSSDKWithCarthage.xcodeproj Today, 09:08 26KB Xcode Project
(B Chos Oe Cartfle Today, 09:11 26bytes TextEd..ument
@ irdrop Cartfle.resolved Today, 09:36 33bytes _Document
() Desktop v T Carthage, Tocay, 0612 ~— Folder
S > I suiid Today, 0014 - Foldor
G abishekmishra |, g chockouts Today, 0912 ~ Folder
33 From Author
Devices

MRS T S N

OPS/images/c08f009.jpg
P B A Assocmrcara) @ ooe 7 ASSORNAC e sy | Tode 341797 DX (==1l=]

BRA6OEOO B B bo
g _ [e et e o st smes e e
T [Ipr—
P " e
(e) B o
h B e
B =

o "]
ot A ey

B e
Bwien
(]
— nooo

OPS/images/c08f010.jpg
P B A Assocmrcara) e ASSORNACD0e sy | Todey 3471

BRA6O6EOCO B B

sooa

OPS/images/c08f003.jpg
Choose options for your new project:

Product Name: | AWSSDKWithCacoaPods

Team: None B
Organization Name: | ASM Technology Ltd.

com.asmtechnology

Bundle Identifier: com.asmtechnology. ANSSDKWithCacoaPods
Language: Swift
Devices: _ iPhone

Use Core Data
Include Unit Tests.
Include Ul Tests

Cancel Previous

OPS/images/c08f004.jpg
oo
<

Favortes
) Dropbox
& iCloud Drive.
@ Airdrop
() Desktop
1} abhishekmishra
53 From Author

1 AWSSDKWithCocoaPods.
v 2 Q Search

Size Kind

Ho o

Name ~ DatoMe
> 51 AWSSDKWithCocoaPods Yesterday, 17:39
AWSSDKWithCocoaPods.xcodepr Yesterday, 17:39 28Ke
%1 AWSSDKWithCocoaPods.xcworkspace 237bytes _ Xcode..kspace
Podf 595 bytes _Textea..ument
Podfile.lock Today, 09:62 3K8 Document
> [Pods Today, 09:62 Folder

OPS/images/c08f005.jpg
Carthage | Carthage

Own e wem o Yie e

0.20: Unary, Binary, Ternary

Added

& escr-batin fog o oy et for now) 1o cache s cal (¢1489). Thanks Gbaek o,
Gissonboyl, ans @BobEIDew
+ Supportfor .ta.ge bivryachies 41758, Tharks @deaunt
Improved
- Pre-but St i wil oy b ueadf hey wae Bt vilh the same vasn of e
comoier (11755).Tronks @scottuhont!
- Carthage pcects il bo bl withindhidua,pcverson DaiedOuta diecires (41419),
Thnks @hkesyo!
« The o intalle i noonger et you stl o vaumes ithout mac0S (47721, Thanis
Gacaunt
+ Submodulos chaciad ot i
Gianeaty!

Carthoge il go yminksfor o depondancos (4715, Tharks

Fied
+ Toe sackagaino forthe ke install il ave the corect version (4773), Thnks @mciep!

Thank you o Gjohnmekarre, @dcaunt,Glousdh, and @scotrhoyt o nproverents 1o
ocumantaon Thaiyou o ikesyo fo mprovament o tho cadbase. Thark you o @mp and
@NachaSoto o reviening i reuests.

Downloads
> canmage =
Sourco cade o)

[-YS——"

OPS/images/c08f006.jpg
@ Introduction

Destination Select

tallation Type
nstallation

Summary

@ Install

‘Welcome to the Installer

You will be guided through the steps necessary to install this

software.

Continue

OPS/images/c08f001.jpg
[XX) 4 abhishekmishra — -bash — 99x19

Last login: Thu Mar 2 15:39:14 on ttys0a0
Abhisheks-MacBook:~ abhishekmishra$ sudo gem install cocoapods
Password:

Fetching: ruby-macho-0.2.6.gem (100%)

Successfully installed ruby-macho-0.2.6

Fetching: cocoapods-1.2.0.gem (100%)

Successfully installed cocoapods-1.2.0

Parsing docunentation for ruby-nacho-0.2.6

Installing ri documentation for ruby-macho-0.2.6

Parsing docunentation for cocoapods-1.2.8

Installing ri documentation for cocoapods-1.2.0

2 genms installed

Abhisheks-MacBooki~ abhishekmishras [

OPS/images/c08f002.jpg
7 abhishekmishra — -bash — 99x36

Abhisheks-HacBook:~ abhishekmishra$ pod

Usage
$ pod COMMAND

CocoaPods, the Cocoa library package manager.

Commands:.

+ cache
+ deintegrate
+ env

+ init

+ install

+ ipc
+ lib

+ list

+ outdated
+ plugins
+ repo

+ search

+ setup

+ spec

+ trunk

+ try

+ update

Abhisheks-HacBook:

Manipulate the CocoaPods cache

Deintegrate CocoaPods from your project

Display pod environment

Generate a Podfile for the current directory

Install project dependencies according to versions from a
Podfile.lock

Inter-process communication

Develop pods

List pods

Show outdated project dependencies

Show available CocoaPods plugins

Manage spec-repositories

Search for pads

Setup the CocoaPods environment

Manage pod specs

Interact with the CocoaPods API (e.g. publishing new specs
Try a Pod!

Update outdated project dependencies and create new Podfile.lock

Show nothing

Show the version of the tool

Show more debugging information

Show output without ANSI codes

Show help banner of specified command
abhishekmishras I

OPS/images/c09f003.jpg
Hetory C o
OwieaFarm @ Computo Migation) Anatcs Apptcaton S
ourg @ Jrei— s i
o Ugntsa 7 ‘Sorver Migation Coudseach AP Gatoway.
i st Boarsia Srowbat Enstcsnach Sovoo st Tanscoser
feis o
o o s Y-
s o ss
by Coandopy B Atsoa nioigancs ses
o froneed -
s oo 8
r—
o) st oo Jrocarviig frores
B uabaso. CousFormaton Amazon Chene
nos. Couttd @ mornor O Things.
— = e [P —
e
Tused Ao & GamoDovopmont Aossiam20
ol Camn
41 Noworm s Conom ooy
we
Goctes ooy oy Congiocs [} Noblonees
‘Druct Coneoct - Joste >
- —
‘Cotfcato Manager s
Comsainiin ek
e ssnsa preen

ks s RO

OPS/images/c09f004.jpg
Amazon Cognito

Amazon Cognito makes it easy for you to have users sign up and sign in to
your apps, federate identities from social identity providers, secure access to

AWS resources and synchronize data across ml

b

'Add Sign-up and Sign-in

W Cogn You U o, ooty sy 5.
it —————

applications.

Manage your User Pools Jll Manage Foderated identies

CH

Federate User Identiies

Wi oo oo, s s cn - s
S arty provirs s ek T,
e onnidrtay s, o can corke s S,

le devices, platforms, and

PG

Synchronize Data Across Devices

W oot S yor 0 e e sch s
e o st e s Gt s o

OPS/images/c09f005.jpg
T censoeams amsioncon J °

B oo st ot S

Your User Pools ' Crosn 8 User Poct ’

Yoshors 0 e pok. Gk e e er

OPS/images/c08f014.jpg
BB A ASSORmOmerieees) @ Orere TPn | ASSORN O e Moty
O I R T —
¥ =1 |)

nooo

NoNtohes

OPS/images/c08f015.jpg
ey st
[T —

A S (OILT_PROSCTS DIE/ BRI, FOLDXR_PATR
e ek s Haceror

nooo

NoMatches

OPS/images/c09f001.jpg
BB Ao @ o reun ASChN | Guks SOt Scondod Ty 0736 =2 o000

<o B) s s B o) B ey i 5 Snmie) O 6
> Diogesn

Bt

By
iy
jibie
> Civer

S

—>| Navigation Controller —®->) —@-| ===

O B o] e T

OPS/images/c09f002.jpg
BB Ao @ o s

B2 Q60 M 0 O () s m Ao o sesees) B Cwemey st) B ire v oS O e on G

[r—

> Navigation Controller

O Ve iohane 7 6

—o

OPS/images/c08f011.jpg
e T e TV

oF) + -

[P — .
[]

o LRI oS R L0 AT

Y a——
o —

sooa

OPS/images/c08f012.jpg
Choose options for your new project:

Product Name:

Team:

Organization Name: ASM Technology Ltd.

com.asmtechnology

Bundle Identifier: com.asmtechnology. ANSSDKWithDynamicFra
Language: Swift

Devices: ~ iPhone

Use Core Data
Include Unit Tests.
Include Ul Tests

Cancel Previous

OPS/images/c08f013.jpg
P B A SO) @ oreneTPun

SRabomoa

¥ oo 4| ()

e soremomnaens
[y
>

B¢ > B aewopmamems

e e meesn e bsde oo

Pra— B

ot s Bo
nrerns s o

tncer s et [l

nooo

NoNtohes

OPS/images/c07f009.jpg
o ovmas- 1 consle.ams smazincon. 3

Lambda unction code

Provis e cod for your hrcion. Us 5 o your code oo ok 0 it e ke e 4, 104 e st
v, o o yur cod e 3. 1 . Lo o b o Lo s

Codaaniytpe | Eotcosorine o

1 e st
3 concote oo rbto ction Voo,

5 oot ronter - coet, coners, aneaed) o ¢
;

:

Console.LogC Received event”, JSON.stringfyCevent, null, 230;

e F Gevent.occoumthusber - “1234” 5 avent sortCode —— 6787 {

B callback(rall, “This 15 the correct account.);

e ¢

15 Callback(Something ment aroeg. This is ot the correct account.”
)

Youcan st Envronmer arais 5 ey pars vt v s oy fncon g, Thes st s conaten
g bt 20 o1 chang i code.Los . For S e o1 o FoTNTRT GO39 Vs LS KIS
e conn s e

Enaie e s

OPS/images/c12f017.jpg
 consteoms maioncar ¢ o

[

toR Select Role Type
Prop— OAWS Sorvico Rokes
FucTR—
: Abows AUS Dioctory Senvics to manage acoess fo existing drectory users and gogs o AWS senvicss.]
Ndows Amazon Racsrit Custrs to cal AWS service cn your bonat L
[yeer— e

Rolo fo Cross-Account Accoss.

Rl for dentity Provider Access.

OPS/images/c07f010.jpg
o

et o ama sratoncom <

Yo can gt Enronmer i ey s st r e o o o o Thes r st o e cerdraon
g it 50 o g i o, Lo e, e o i 01w 0TV G ks IS
et c————

Entiocnptonbopus
Lambda unction handierand rolo

[rrmpp— o

Bt Crseenrmeromtengie) v O

L syt e i perier e iy s e ot
oo s o3 ot o e 4 55 YT A S,

Reoramet testaaarinronio °

potcrtemoites ~e

Advanced sattings

Theo o o 1o con 50 o ancution o ot o your L frcton,Changigyou 019 s .
ncin mamn) g rw ry mpactyout hcincot. w3k b s k.

Momory ey 120 ~o

OPS/images/c07f005.jpg
 ovmas 1 conscle.ams smazincon. o

| otctbageint

Select blueprint)

Cortguaies Bl sl gt of v ssc o L cion. hocs Bt ks iy G et
s e e, o e o vt 0 Lt o i 05 A, v s

ooyt e e o e s .

i

Vi o AN Lo Yo can gt i et your s L by choosin 00 o e Buepet b,

TR
e T

Comtper
prme— | prs—
ot | oo kst on i | [PS——
T Ereome || S

= .
= L s cloudfront-modiify-response-h... ‘s3-get-object-python
P e Sl otiverstllillie it
vl s
R - = loudiront - osponse hoader & 27 £y
| [

e
Py | pee——
Shmcuaerie | | Sieems p———

- crurmery . e [paion et a e

OPS/images/c12f013.jpg
< = corsieams amasoncom. 3 °

Manage Rolo Pormission Edit Permissions

0 ot enrtor o 01 crat et o e o Wt S ANS) 14 i e, ot o TSt a5 et s,
S0 G P i o S oty e s Moo

Bect A OOy

WS Sordcn A5 Atenin Doy 5.

o

s~

o apanca [—— o
now o [— o
N - R o
Ao apanca aevsmanad s 1700282127kt o

OPS/images/c07f006.jpg
| otctbageint
Cotirevaes
Comgancion

Select blueprint

e o s con i of s s L frcions Croo s o ot bt s wih e o s
oo oo, o S U3t hopdyou a0 et L tcion o v S sopurlh Exo s
sy ——"—y

Blank Function

ot o tntion o e
[—
by g e v

onfg-rle-change-tiggered
T p—
contuaion changes to €2 s
Cocks e s

s et B

nspector-scheduecirun

[T —

Knesis-frehoso-sysiog-to-son

ocessrnatcones ot st
o 164 Sy et 5O

‘dynamod-process-siream
[—
ounistos s oati,
) .

Vg 100181 > >

aloxa:kil-it-sdk factsiil

A Mo 550K

microservice-htip-endpoint
s bckand ottt
[——
endportusg Az AP sty

aloxa-sil it sdcrhiaskil

[——
pyeery

OPS/images/c12f014.jpg
Groups

 consteoms maioncar ¢ o

Review Policy

oo soasiors by i g ey Gt Fr o i 3504 568 1 5898, 58 O i s i 0 T
ek et o i eyt g Yo e, oo A Py S

Pty
scctsensityol oymmecsss

oty Dot

“Verston': “2012-10-17",
“Stotenent: [

"Sid": "Snt1491765202000°

(g
s dynanodbius-east -1: 00128248927 table/User™
1
3
«
Sid": "Stnt191765306000°
“Allon,
C
ootz
1
“Resource’s [
“ar:ons: dyncredb:us-cast-1:700128248927: table Messoge”
1
i
¢

i St aon RSSO

OPS/images/c07f007.jpg
< ovmes- 1 concle.ams smazoncon. c 0. b &

Sorvees -~ Rosourco Groups < % 4 moosmiro

St sompts Configure triggers
[r—— Youcan choces st e et wl ke e et
Cotatncion

R ‘ =)
» Lambda

@ Foodack @ Engiah

OPS/images/c12f015.jpg
Rosouree Grvps ~

e ———

- Summary
Duroours v . S S————y
o [esaps——
oy o Pormisons | TstResnonps | Aosss ior | Bevaks Sessions
[re— Managea Poicos ~
T ————
Ercnpronters

e poicios

- nctons
S poty | sy | R Pt | Skwe Py

ASeriy s DyronaDcess

G Cogs AR e ORI St [Py o Py | Srtem ey

OPS/images/c07f008.jpg
< ot ol s smason com. c o ¢

Resource Groups

Seectiompn Gonfigure function
oo o ALamoa oo ot o o i oy var o sk, L o s am i
| ontiurscson

i s o i

Lambda unction codo
Proic o cod o your cton, Use e ar o cocdoe 1 e st s (a1 s 94 s

Codneniytypo | Ectcoseine -

1+ exports.pondler - Cevent, context, callbock) = {
2 0 000 tmptustnt
5 Collbock(eatl, Hello from Lanbde);

OPS/images/c12f016.jpg
< consteoms maioncar 3 o

() moeteme s rssionTine &

T ——— 2ov0329 1801 UTCA0100

s o AvaCrspoo s e ez orurcons

oty ot O oranconscoms ore2101716 G010

;":“”‘ B e————, 201702 201834 TGH0100
Ercnpronters

OPS/images/c07f001.jpg
< vt s ammamazoncon. &)

History)

= I
e @ comoue € Ooveloner Tocks) Anovcs 3 Aocscation Servces.
openss = s
“ oo sven ooy - -
el Lo provert et -
oemouress foeand jromnsi O e
L oy
= oo)
) Management Tooks 3 L] ”Mussw
B swoage CousFomason v
B Couan B Antcal ieigence. ses.
- o
o oos o
S e ol [—
e Machos Lo Worues
rauiindt —
8 o ot ey Savco
ros G termet Of hings. o2
- — = -
Enssacne 9 Secury, enty & Compiance WorkSpaces.
o N et
&
jot D r—
D N oy o =
g Vocdae | vesiosovins
S Mobie Kb
il s
frort o
forrl
[l

& vegaion poauat

OPS/images/c12f009.jpg
Rosource Grvps ~

o ST s - ale o

- Sowrgsresuts
s () olename s Doscrpton GrstonTimo ¢
| s (SR — sovroscs sssuncioico

P JIpye————r 17923 1801 TG00

oty pos ST -

P S 10210 16UTCA010

eE 70120 584 UTCAON0
enpronion

OPS/images/c07f002.jpg
AWS Lambda

AWS Lambda s you run code in response 1o events, without provisioning or
managing servers. Just upload your Gode and Lambda willtake care of
everything required 1o run and scale it with high availabi

Loammor ot A Lambs
No Servers to Manage Continuous Scaling Subsecond Metering

RS Lmoc omasca ot code ot 0036 AVS Lo sy sses s sppiaton By ear VI ANS Ly e o o cvery 1007 s

o 1o Lam o oo e DN, 44k ey W Yo oy 4450 e Yk o e,

AWS Lambca Documentation and Support

OPS/images/c12f010.jpg
[——
e ———
- Summary
Ouroours v . S S————y
[esaps——

Sty | sy | R Pt | Skse Py

creCik Cagnto AChatert PO sh P, 45029200453

OPS/images/c07f003.jpg
< ovmas 1 conscle.ams smazincon. 3 ol &

wrLamnes) esorcerte gy prov
| Dashboard Lambaatnctots) [—
Functions Fev—— . + AWS Groengrass, now in kmitod preview
e
P—
‘Account-level metrics (last 24 hours) oo
Thechrtsbkow how s acros s i rcionsia i rgkn, Gk on o chr et semaperfncton + AVSWiable DK
eeskooun, uuum\mmﬁ(wyhmmmmgmcm:mw + AWS ookt for Ecipse.
s
@ Invocation errors. < @ Thwottied invocations. 3 e
e
Reiiie
e
.
Lot
P o 5

Fosdback @ Engleh

OPS/images/c12f011.jpg
Groups

 consteoms maioncar ¢ o

Set Permissions

seoct gy enpue
g o o 1

(s iy 30 o0 o o0 Sk 103

OPolicy Generator

S —— St

Gustom Pollcy

OPS/images/c07f004.jpg
ese < v el s smazincon. c o >

Sorviees Rasource Groupe

proeE——rE——— .
.
— T T =S v [T S [<
e P | o

@ Feeteck O Sngian g

OPS/images/c12f012.jpg
Sovicos ~ Rasourco roupa ~

ge Role Permission Edit Permissions

oot enctoretio ot crts oot o e Ao Wt S ANS) 1 e, o o formsta s st o,
o Bk P U S ey e s oo

et MO0y

WS Sarvcn | Az O .

Actons - Sosct Ao

Amazon Resourcs Name
=

-

prre—

OPS/images/c12f008.jpg
< = corsleoms amasoncom. 3 o

Rosouce Grvps

Opamove — Message Coss ae m e
‘W"’ & | Ommten tems Mot N Goomty | ndoes | Tigos Ao T
[e— . Recontalents

oot Stroam dotaits

Fu—

Mansgesvsom,

Table detalls

[T————
Py putonker 45503
Priory s ko
Timeto v st OSABLED Mansge TTL
Crostondats A5 2178183008 PMUTGS
Provscnad eadcopachyins 1
Proveionnd v copciyunts |
Storsgasan by O7es
[
Rogn U5 st Vg
Araon s N (W) o o o 17002621007 abbesso

g 820 Rt b, Ty ttnd pcat, gy vy s

OPS/images/c07f020.jpg
& = oumestA o arazon om ¢ o &

Sovcos ~ Rasourco roupe - o~ St
outen [
s « o0 0
M s Sncrptons
i o ot o Amon 55
Itoos

@ Feodinck O Enghen i o R oI

OPS/images/c07f016.jpg
< = owemestA conel o arazon com. ¢ o & E

AWS Lambda Lanbs > Foctors > tstambiiecion AN e vt T st ncion

oesnvours P - JE
Functons. —

o

Fp——

© Execution resul: sucoeeded (og¢) ams

o oo shows et mer e i o, Lo 7 S0 o . oy e

Summary. Log output
ot 0TSy et o o Do e e G 5
Recuest 600220105605 ccotars Kok e

ourston 50 .

st e e e
e e e e

Maxmomory 1648 5

Foocback @ Engh

OPS/images/c12f024.jpg
[

oo

e

'Q Englen

Select blueprint

et vl ot f vt ks o Lo, Grosa B it ih e desind s
w0 3 L s s g e s o it s

feoasivivshabparririghiy

e o

Bank Function

Contp ot s
Ouioa o e st e codo
oy seppn e

cognto-sync-tngger
M Anazon Com Sy g i
natten o Gttt e

z B

<V 1202

OPS/images/c07f017.jpg
Rosource Grups ~ B mbona0 0 0%

[P R — °
Ousnvours [~ U
Fnctons TS

o it i rowns o masmen

@ Feodbsck @ Engien Py ol im0

OPS/images/c12f025.jpg
= corsleoms amasoncom. ¢ o

| cotiueswigers
Cortgro rcion

Configure triggers

r o
Cognito Sync Trgger :J » Lambda

Conmto ity oot Aot -0

Lo it st sy o o s Cppt s o Lt ity L. Lot

enoie e < °

ot | provens | [0

OPS/images/c07f018.jpg
Rosource arovps

Netnoing & ContntOsivery

O Carret
Posnss

Onsttons
SveoCasiy
oo
Pepcsen Doy S

9 oy, onty Compianco
e
Gt s
ooy s
Conmpiocaizons

o

[

oioa mesgonco
ot
Moo Lariog

ot Of Tinge
s ior

Gamo Omoiopment
oot

Mol Senvs.
o
Oesam
o pcaics
Proont

B ovtctonscos
o

B mossagng
s
s

) oo ooy

D ouskiop & A0p Smaring

sopsreanzo

OPS/images/c12f026.jpg
< = corsleoms amasoncom. 3 o 6

Rosouce Grvps

Lambsa > Nowectaneingbuepit coro s e

Sact et Configure function
- ALanbca o ot o o it codyou wor 0 Lo o st o i,
Icontawe ncton
e [T o——
Descoton | Cop ogro s o Oyarc00s
Lamoda functon code

Proc macos o your e, Us 1 ackor e o o s oy s (e 7 1045y o i
s, yo con o you o 13 i .4 2 Lo e s i Lo ek,

Cosmomiytype Edtcodoinion -
B e oderest v dotorancond eml menlve,
2

2

5 o goroms « {

2 Flobletre’ : apietone,

i

z

i consoleLogC Taserting user”, paran);

»

F putitenGporans, functionCer, date) {

3 Consote-toaGere, datad:

)

5 i cern

34 Corsole.LogCCuser tnsert foblure’, erey;
3 Callbacicern;

H Jaseq

i

e, Lng("tcar ngert smcass”, datady

OPS/images/c07f019.jpg
< = st o s amazen com ¢ o &

- Rosource Grvps ~ S —

——
oo ¢ I

— S e
=3 e e e

@ Feoack @ Engiah e

OPS/images/c12f027.jpg
Lambia functon handier and role

py— °
[——— <o
oot Aot~
jyee—
[re—— p—— - |

€ et O R

OPS/images/c07f012.jpg
< v conscl s smazoncon. c o >

p———— o
s .
T T S NS T T o
| i T —

@ Fosdbeck @ Engiah

OPS/images/c12f020.jpg
[——

-

- Pa——
e
-) ename s ousrpion crsionTion ©
e R e
ices B o o uCe
ey [T ——— [—
Sosainibos O oremoanees w60 mapUTC.0cn
[o— -
[e— e
O woessons oz ssruTc.o
epinser

OPS/images/c07f013.jpg
< ovmas 1 conscle.ams smazincon. c 0. b

T S

Dashboard autton « s

Funciors — °
oo oty g | ot

consote.ogLembda unceton Loaded.";

consoteLogC Received event:", JSON.stringifyCevent, nall, 230;

conso.LogCaccounthoe =, event accounthane);

2

3

1

5+ exports.nangler - Ceven, context, collback) > (

i

3

3 CaneolelagCioccomhmnir -, evene accominmbery;

1 consoleltogCsoricose -, sven.soreCode);
. A Covent.accomtumber — “1234" 85 eventsortCode — “S678°) {

) Callback(rull, “This 1 the correct sccount. D;

e et d

35 <allbock(Sonsthing ment mrong. This i ot the correct aceount.
6

vy

H

Yo ot Eicimt Vi a ot s oy o o The s 106 COnRpasien 5033 7 0

OPS/images/c12f021.jpg
® coroue
-
|- N——
o

8 souwe

S0 ey

2 Notworkng & Contont Dy
e
o
Rossss

& wirasn

e
Seven Caog
HaragaSovors
Sosicaion Dacovey S

9 Sy ety Compiams
o
Compioca s

[

Aoatcs
[P,

o pesne
Quasen ¢

Jurp—
poy
R

et O g

Gomo Dmclopment
Gamatn

Vot Sariss
ot
Dot
N oyt

"

Aopicaton Seves
[r—

prt—

OPS/images/c07f014.jpg
Input test event &

Use the editor below to enter an event to test your function with. You can edit the event again by choosing Configure test
eventin the Actions list. Note that changes to the event will only be saved locally.

Sample event template Hello World -

nd t

Cancel | Save Sa

OPS/images/c12f022.jpg
= corsleoms amasoncom. ¢ o

AWS Lambda

AWS Lambda lets you run code in response to events, without provisioning or
managing servers. Just upload your code and Lambda will take care of
‘everything required to run and scale it with high avalabilty.

[re———
=}
No Servers to Manage Continuous Scaling Subsecond Metering
WS Lty s your oo vk ong AN L sy s o apican by e WEh AV Lo you e chrd o ey 1007 your
outorovenc g s,k i o G 00 o o e Yo o s sl . G s e o vyt e g
vy rosoate ke e S, sl oty i he Yoo o ety o e

AWS Lamba Documentation and Support

P T P N e

OPS/images/c07f015.jpg
< = owemestA conel o arazon com. ¢ o & E

T —— [———
e owstan - | [| et -
Functons — °
G| ot | o | ok
Gadesryope | Gt conrion -

3 console.tenk"Lenbcn function Loaded."3;

© Execution resul: sucoeeded (og¢) ams

o oo shows et mer e i o, Lo 7 S0 o . oy e

s
ot ST [T T e e G e
I —— T e
foeicy e

edrion 1107 s s
contird BRI G (el (0116 o oI ccomthoter + 0

Moxmomory 1618

Foocback @ Engh

OPS/images/c12f023.jpg
< consleoms amasoncor 3 o

Resource Grovps

AWSLambds s Reses Py
EEVR o~ B
uoctons —
et S © hniee o o o Lttt
[S S S - oani sebm 2o

@ Feoctnck @ Ergien

OPS/images/c12f018.jpg
< conscie.ams amatoncrn 3 o

ato Rl Attach Policy

Sup1: 5w erams B S —
swp2:SooctRoa

Pa——

P Pty pn - Shoing 258 et
-
i from— PR P Canearne &

O 6 manmvoncces : DeRuEmICHn me@etmucon
© 6 Arecopenecaiiee 1 oo mauiGot s 1262 ic.ows
T 6 s 0 e o mwaro e
O 6 Amscoposmapmonne. o msoanBUcom oo mRUcom
O 6 Arscorcsmmpece.. o s s o,
R a— DE@eBaTCom 2@ maUCom
(SR —Y T e
O 6 Ascoosstommtovconcon 0 Do 0 UTCom,
O @ Arcitmasittoom o [T R
O 6 Areomconampusoms o ov@soaCom o ueom
O @ Araccmeononfmaony.. 0 oreuneucon orenneucos
O 6 Arsecogrcomsspansren.. 0 [T TR -
O & st 0 s TTGo 6aor m5r UGt
O & Arsocogrchusaony o DEoUTEICO 260 tRUTCon
O 6 ArscouSOmmamise o oBmuTCom oeerornuucom

ot | revonn | [T

OPS/images/c07f011.jpg
& ovmast oo s sraioncon. o

St sumprs Review

oo s v e L ot Yoo 9 ch 006 g o achstn W you oy, ik et fction 0
e e

Tress Lambda function Py

Doscrption Thais it o s et

[—l

Roloname! tostamisfoctoric

potcytampites

Momory) 120

OPS/images/c12f019.jpg
P pe—
Frca—

Stop et s

Set role name and review
ot escsion

Tustdantios T ety ot s sz con

Polcos ey avs by AmorymancOSF s ion

OPS/images/c04f043.jpg
£ puTTY Configuration

Category:
£ Terminal
Keyboard
Bell

Features
= Window
Appearance
Behaviour
Translation
Selection
Colours
&= Connection
Data
Proxy
Telnet
Rlogin
= SSH

Options controling SSH authentication

Bypass authentication entirely (SSH-2 only)

[v/] Display pre-authentication banner (SSH-2 only)

z

thentication methods

<

Attempt authentication using Pageant

Attempt TIS or CryptoCard auth (SSH-1)

<

Attempt "keyboard-interactive” auth (SSH-2)

Authentication parameters

Alow agent forwarding

Allow attempted changes of usemame in SSH-2
D gy ile for authentication:

(C\Abby\AWS\credentials\awsbook2017K | Browse. '

OPS/images/c10f013.jpg
BB A o) @ o7 ASCON | ouks SO Succondod 1993200197 an =2 o 000

R R R e e e —— ey <@
o
3 comsranmmonconconersnite
1 g e
£ 10 ceantes oy sontsn wisnes o0 ssesiaesy.
b SR R S v e,

LR S rentopeoniser

T Tp——

E s
B ter sctiencio « “sesserissoiumusmesoaoass®

Al R R enatssorstzamtcienesiss

51 e cornpmasesaiscomscatsantitnenet ¢

H - oot wwsert)

T1 steic o snrenstnces CeptasarssGotzates = GptasassiGmsesioct)

1 e it ¢

H [serrosegion, ersdonisisproie
H et soolantiguetion = Avscogicor tontetientios spciicatio,

H P
H Beattar T

H Ascosteteentitserpuecogister(aitn surviesconiguration,

H e e sicnrigtion

ol
lof
&

OPS/images/c14f014.jpg
Lambda function handler and role

Handler indexhandler

Rola* | Choose an existing role

Existing role® | AWSChatLambdaExecutionRole

OPS/images/c19f041.jpg
< &« comol e smaroncon. ¢ o & E

Oynamade o | e o aame
pae— ‘ —

f— P ... [e o

sssgn osar

e

Foodback @ Engh

OPS/images/c04f044.jpg
g PuTTY Configuration
Categ

=) Terminal
Keyboard
Bell
Features

=) Window
Appearance

Behaviour

Basic options for your PuTTY session
Specify the destination you want to connect to
Host Na
|ec2-user@52 90 63.73
Connection type:
ORaw OTeine{ ORiogn @ssH O Serial

1
Load, save or delete 3 stored session

ec2-user@52 90.63.73
Default Settings
ec2-user@52.90.63.73

Close window on exit
OAways ONever (8 Only on clean exit

Open || Cancel

OPS/images/c10f014.jpg
Choose a template for your new file:

OS macos

Cocoa Touch Ul Test Case
Class Class
m h
Objective-C File er File

User Interface

D

Storyboard View

Cancel

Uniit Test Case
Class

C

CFile

Empty

3

Playground

C+

C++ File

Launch Screen

3

Swift File

AN

Metal File

OPS/images/c14f015.jpg
~ Advanced settings
These settings allow you to control the code execution performance and Gosts for your Lambda function. Changing your resource settings (by
selecting memony) or changing the timeout may impact your function cost. Learn more about how Lambxia pricing works.

Memory (vBy: | 256 ~le

Timeout® | 4 z/min 0 3 sec

OPS/images/c04f045.jpg
rnam

cating wit
n: Mon Jan

https://aws .ama;
5 package (s) n
Run "sudo yum uj

(e

on.
ded for security, out of 9

2-user@ip-172-31-30

lic key

mported-openssh-key'
:37 2017 from 97e07cl6. skybroadband

Amazon Linux AMI

on/a

n-linux-ami/2016.09-re

vailable
11 updates

OPS/images/c10f015.jpg
>

B A awscn) @ ovee7oun

Raaomoon

om

B <o B

[y
Ao

St | Bk Ao Faea_Tosny 4 1736 ane EQ2 o000
Y
ot Cotie Manatn o Wt Smen Sinem

-

= o
s one
s omptr ot

R
> Got bt

UV —————

fraht oo B s —
b ompir v

N Ao
[s

OPS/images/c05f001.jpg
. £C2 Conios S
o -
G et Borak

1 Notworkng & Cortont Dohery

st
Orect Conost

& Mgason

St Caso
Vanage Savces
rr——

Socurty, ontty & Complance
st g
DencoySanien

Camptancn Papots

Mobda Sons

e patics

[x)

ses

Busnass prosseery
Wedocs

Desiton Aop Ssaming

Aopsirean20

OPS/images/c04f039.jpg
PuTTY Dowaload Page

{lome Liccce | FAQ| Do | Dowlond Ko | ik
o e Foo | e oot Eom

Hoc et PUTTY il e

- PUTIY b 1 Toat it)
PR (5P <k . ommand i s Bl o)

1P (031 st 1 s e s s s i 1)
BTV Telcony sy
 Plak(comnd o et s YTTY bck s}
* Puter o S seriat o g o PTTV.PSCP.SFTF, 1 i)
Ty om R sk DS K i i

LEGAL WARNING: Us of VITY. SCP.FSETP s Pk i cousis e encyption s otansd We bl s gl 0 s VTTY. PSP, FSE T o ik Englind s Wols s iy ot
om0 ot sl e 4 i bl dowsndn . o1y s e XL, i Gl AT 0 OPPEaE o
oane, o e v comatn

v

o e Teactnly by (NTIYie s st by sny gy v

Tl ypigapic gt b o all e s we s ko e splyypogapialysigned st of k. Todewsod o bl e T ok v ot ot g gl it

BT 2 I pond o o poga o compots DS chcksas, o ol o ot . Ll . (T MDS e 45 cplogphcly o 1o owiser)
Binaries

e it el veion (067

i il gy be vesicawe in i ety kel sk wel o v bl with h e v, migh b ol gt s st deveoeest pee (o) s weve sy
etz e perig i,

T —

et PATTY e,k he el e

Zpti fon hETR ()
A Windows VST stller prckagefor verybing except PaTTV e

OPS/images/c10f009.jpg
eoce 5 AWSChat
e B=oo sy % 6 O B Q search

Favorites
E proshox - -
& iCloud Drive
® AirDrop AWSChat AWSChatxcodepr Cartfile Cartfileresolved Carthage
oj
7 Desktop

&} abhishekmishra
5 From Author

Devices
[Abhishek’s M...

©) Remote Disc

Shared

OPS/images/c14f010.jpg
[
Catrnigges

Select blueprint

et o i orfuaton f vt s L. Cocs bt o it i e s s>
o oG 4 1 . 5 0 L4708 7 370 SR) e 51 SO, RN
e R npets o crd o G

[

Bank Function

L r—
et e s o e c0%0
oy sapp o s

conigrro-chango-tiggered
A ontg it s Vg
cotgusion s 0 £G2 sarce.

s

ox-make-appointment

S o st e
e ——
[et———

Kiness-frahosa-sysiogo-feon

o PECO164 5y mat 500

nspoctor-schoduled-run
[T ——

ey &

‘simplo-mobile-backend

O ——
jeuiaces

< ewng 1904365 >

alora-ski-Kitsdicfactskil

ora skl Kt sk riaskil

[——

‘sos-notficaton:nodefs

orces so.rem, s

OPS/images/c19f037.jpg
[=y ===~ pe—

Adbonsonodrlo 0 Sop I < | s

» Unauthonticatod idontts o

= Autbortication providers 0

5200 o 7 s W TS5 M3 itk ATSZ00 Cor A 47y U1 O, I o ke U 0 APl U o 1 L0
rrs o o ey e sl o s e 1, e 6125111 ety s 5 k0w e x5 s o S0
i A G Lo sk e et v

Coma | Amaion | Facibok | Googer | Tltac/Digis | Opend | SAML | Cstom,
ot your ooty Pak10 5t s e i your e s Pok 5 .0 h s Pok 043 10 Agp i .

ey

.

P e——

Authanticated o ssection

kot 1 it oo v i bl .ol o you o ek o i horcnion . Tho s 0
sk e ey v Toyco o by 35 0o . .| Al e i v . 30 pcly o i
o CutonouaB st Lo .

OPS/images/c04f040.jpg
&P PuTTY Key Generator
File Key Conversions Help
Key
No key.

Actions
Generate a public/private key pair
Load an existing private key fie
Save the generated key

Parameters

Type of key to generate:
(OSSH1(RSA) (©)SSH-2RSA

Number of bits in a generated key:

Load

Save public key Save private key

()SSH2DSA
2048

OPS/images/c10f010.jpg
onsers

[T —

Dosinien Coy s et

st o © v o
o

sestowns 1 A Ancrc

L ——

OPS/images/c14f011.jpg
< - corsleoms amasoncom. 4 o +

[——

e Configure triggers
| contiueswigers Yocanchoosa 0ot gt i sk s hecton.
Cortgroncion

@ Feonck @ Engian

OPS/images/c19f038.jpg
[o) T 452%5 1510

Friend List el

abhishek mishra
abbymishra@googlemail.com

testuser4

vksgbtdx@sharklasers.com

OPS/images/c04f041.jpg
&P PuTTY Key Generator
File Key Conversions Help

Key
Public key for pasting into OpenSSH authorized_keys file:
sshrsa "
\AAAAB3NZaC 1yc2EAAAADAQABAAABAQCaILge/AnhFgkILhVSVX5ATNOYfUpBFED
veriHADWMgWDdh6+/KUurAs4 YKXXBbXgE/dOE8210ID/MUGqTbgXOW1SSERCIGq

'UDMD/FekStSWmFCyOP
+cuhlgiJ2NiW2i0bbUgILUmdPqtPvDI7SIOVPGBUPENif6q/4hM/aGxCGN94zQFN/TbPhS v

Key fingerprint: 'ssh-rsa 2048 b6:68:ba:41:97:4€:00.96:90.:3d:84:¢7:16:c0:92:05
Key comment: imported-openssh-key
Key passphrase:
Confirm passphrase:
Aclions
Generale a public/private key pair Generate
Load an existing private key file Load
Save the generated key Save pubiickey
Parameters
Type of key to generate:
(OSSH-1(RSA) (®)SSH-2RSA (OSSH-2DSA
Number of bits in a generated key: 2048

OPS/images/c10f011.jpg
o8

ASCON | ouks SO Succondod 1993200197 an

s it o Mo b sssnee

s Ao
L

Q2 o

ooo
<@

e r—

OPS/images/c14f012.jpg
< = corsleoms amasoncom. 3 o

s Configure triggers
| cotiueswigers Socanchoose oot g vt i ik o s
Cortgro rcion

Rntre o
s » Lambda

Bkt | comasnisanmanctiiv * O

et O G A1 -0
ot o
PP o

[°

OPS/images/c19f039.jpg
< &« comol e smaroncon. ¢ o & E

“ ST —

Foodback @ Engh

OPS/images/c04f042.jpg
g PuTTY Configuration

Category:
(C Basic options for your PUTTY session

ST ;:Igng"g Specify the destination you want to connect to
Keyboard P-address Port
Bell Cec2- user@sz 9063 731 : 2
Features =

= Window octiof
Appoarance ORaw (OTelnet ORiogin @SSH () Serial
Dehandone Load, save or delete a stored session
Translation
Selection Saved Sessions.
Colours

= Connection
Data Default Settings Load
Proxy
Telnet Save
Riogin

@ SSH Delete
Serial
Close window on exit:
OAways (ONever (@) Only on clean exit

oo o

OPS/images/c10f012.jpg
5 € o) 2 v - it ot

Newcroon
New G fom Seion

Pt inigoc iy

+[@ om)

OPS/images/c14f013.jpg
Configure function
A Lo furcion const o e o cae Yo w0 e, Lo st L s

ssrston | Ganata bt fom 10 ik

[es——y 0

Lambda unction codo

Provo o codfoyour rcton Usnth oo e cod s o it 0 e s 54,1y o
s,y cinriond oG o i 503 Lo e bt B Lo ks

Cosooniytpe Usossa 20 -

Funcionpackeoe” |2 Upoad | T ecortors

Yo o vkt Vo e Ky 5 s v << o yout i code, T o sl e coobston
i i o 10 ot coc, L . Fr o o TS, S i ks g KIS,
e coraes o hoper.

Entio e s

Lambda function handior and role

OPS/images/c19f040.jpg
L =N] T 4l 52% 4 15:10

Add Friend

Abhishek Mishra
mishra_abhishek@hotmail.com
testuser3
03049143@mvrht.com

testuser2

7963yl+Bep5wj2uoiddg@sharklasers.com

OPS/images/c14f006.jpg
e amasoncon ¢ o

Attach Policy

Shawing 8 et
(e : ssoieueos sensisies
T om0 s In v -

OPS/images/c19f033.jpg
nput tost event

vt Ao Mot chisgo 11 e i sy s .

Samsaovnttomplte | Gt Sy T 5

+ “qosgleuserooa”,

= Tomtria,
st 088725102015
¢

o “enishrar

e ye——
alie-; “catsnrohasanechnotody con
o “replace”

OPS/images/c10f006.jpg
< semvepers ctooncom. e °

[—— FE——]
o S
o en >
i
Ps———

G) Ot

080y teg

OPS/images/c14f007.jpg
Resource Grvps ~

- Summary
Doy Rt S ———
e — =
oty st
ook ks [e w——
[SP——
Managed Poices ~
eremmrontorn ko g i v s 0 ol Yo s 010 e .
poterame Ao
5 Amsrsascons S ot | Duscn oty | S 2oty

L r— S ot | Duac oy | Sevsae Py

ninopoicies

OPS/images/c19f034.jpg
« comol e smaroncon. c o

Rosour o
R ———— T m———
Oasnboars owiton + | [| ctons -
Functons —
Gote | Contton | Tiogers | Morvans °
3+ exorts.nandler - functlor(event, context, calloocd
2
© Executon esut:succoaded (008 CLL]

oo shows h et ey youe i nscuton, Lo 7o s o o oo e

¢
ety Sperigoer
P

Summary Log output

okt ooz o0 o e sy o e g g o i e G 9 7
Frettss comsponcng o Lot reton o ety

Reuentip 26tecn o0 11 STT e e80TSO e, RATEST
s B e ——

Foocback @ Engh " =

OPS/images/c04f037.jpg
C:\Users\Abby>aws configure

AUS Access Key ID [®rxersxxsrsxxx<iNQRA]: AKIAIOARKFMFAU34NQRA

AWS Secret Access Key [**xxsxmrxxxxxxxx{CI6]: LEIPcunkTaClt+GXDiUy]74mNsRnkMKX03S1UCLE
Default region name [eu-west-1]: eu-west-1

Default output format [Nonel:

C:\Users\Abby>

OPS/images/c10f007.jpg
st com. ¢ °
B s -, P——]

Dashbosrd

AWSChat o

&3 [E—

Frcsvooktopn

[

OPS/images/c14f008.jpg
2 Networkn & Conort uory

e
o
Rossss

viraen

e
Seven Caog
HaragaSovors
Sosicaion Dacovey S

9 Sy ety Compiams
o
Compioca s

[

Aoatcs
[P,

o pesne
Quasen ¢

Jurp—
poy
R

et O g

Gomo Dmclopment
Gamatn

Vot Sariss
ot
Dot
N oyt

"

Aopicaton Seves
[r—

prt—

OPS/images/c19f035.jpg
Amazon Cognito

Amazon Cognito makes it easy for you to have users sign up and sign in to
your apps, federate identities from social identity providers, secure access to
AWS resources and synchronize data across multple devices, platforms, and

i

‘Add Sign-up and Sign-in

W Gognto Yoo e o, o con sy sty s
s S ncraly o ot s g
iy moned s P e o e ks

applications.

Varns v o

CH

Federate User Identies

W oo e, yor v cn s
st Sarty roviors i 5P r T, e s
e cun eny 39, ey an corescess O A,

&

Synchronize Data Across Devices

W ot S yor 9 co s s
e . o sk, sy ok Gt ok yox
s e consotnt e s s s e .

OPS/images/c04f038.jpg
Signin credentials
LY S S —

redNthdnics

P

5H keys for AWS CodeComit

OPS/images/c10f008.jpg
= < semvepers ctooncom. 3 © ¢ o

L R T e —— o o BB

sumson

g Facebook SDK for Swift

rontms

s Ao S i A L e Ao s, o
el Withthe Facebook SOK for Swil you g o swif-aylored exporenca for o of the core Faonbook SOK for
vl 105 AP, This nchudes:

© FcebaseLagn Ao s wih s Faaosk e
© S sS40 o B i o o o 210 oo
+ Ao B Lo vens oot o,

- Gl 491 R and e o G A9

Frameworks.

T s o 3 Faceook SOK IS iz 3 590 iy 3 e Fo ok SOK 5.
Ty oo enih Facak SOK o 05, o iy change s e e

FacabcokCor. frameuork Depo cn FESORCoroi .

ety e ckdd,ith et o i

OPS/images/c14f009.jpg
< = corsleoms amasoncom. 3 o

Resource orvps

AWSLambda s> Resers °
Dasnboars EEESERy
|Funcions =~

Functonrame - owenon < Mmoot - | Lbodtes <

ASUCoptoUssToOyamaD Copy Copno e dals oDy e Nownis sobmm 200

OPS/images/c19f036.jpg
< &« comol e smaroncon. ¢ o & E

Avicrtentypool Mobte Ansts shred 59166 ot oy Gotting Started
Gty Sanewin s
Gaog Sard 5.

ey A tuecn

/m" SHUED S G D S G S ot ot

In-Depth Guides

ettes 2| O 10005 o 1o 0%

s Copvo i Doa
s Cop Yo W
g e o s Pt

Community

[y —
o ooty
b aposiny

Foocback @ Engh

OPS/images/c19f032.jpg
< &« comol e smaroncon. ¢ o & E

P ——— P ——
e owsta | [et -
Functons °

ot Contiuaton | Tgpers | Monkor

1 var dac = recuireC eymonoto-dec'S;

2
3 comoteagCLooting foctin: spte ver o By’
5+ exports.nendier - functioneven, contest, catlbace) {

¢
7 comole.tonCReceived events”, JSON stringi fyeventd);

H

5 /7 G for the ovent g0

1 € et = Setrie ¢

2 1/ Chck i1 his user as ever been created bafore

B {7 Cramer 5 svent dotosetReconds . eoail” i1 svent. cotasethacords)
it ¢

i var 6o = new docDynan
i Ver Sabtename - Uaers”

b vor vaer 1

I 16 e seemtisye,

1 Usernora’ < evet.dtasetRecords.are.nodalue,

a ot e vt dsoreiRecords. oot esvelue,

2 ¥

z

2 vor parons - {

2 B : taplovare,

2 Tt vser

= ¥

Ve om0t Evoenns Vi Ky 100 3 1 5 023 o et o, The 0 A1 Gk 51 2003 TG0 ka3 G rcion
o L . o s s it we e 50 ko 13 1S 3 o s reen s

Foocback @ Engh

OPS/images/c05f009.jpg
A
==

You can drag and drop files and folders in Chrome and Firefox

OPS/images/c10f024.jpg
Sorvcos ~ Resourco Gro

oty poot ttasrarome Spesmamone [P —
| Dashoned 1 3 0.1KB FacevokLogn NN 1000% 1
Sarplocsde
ey i :

Resources.

Getingsatod with Amazon Gognto Loarn sbout tho AWS Mobil SOKs Gonnoctwih o community
e sl i g, Low et At Cogeolacracf b sk Pmen Cogoconmiy e
orcn s e, s 161 o b AN O X o, o e

e piotesibonfm s it il]

oA Copbs ool oo iy ks by o

v v

Gt ot Ao Gt g NS Nkl S o Ancko | ebio S 08

OPS/images/c16f001.jpg
]
AWSChat

Enter username

@ 526

(] @ 5:37

AWSChat

Enter usemame

sword

SIGN UP.

Login screen.

LOGIN

CREATE ACCOUNT

Signup screen.

OPS/images/c05f010.jpg
Upload X
@ selecties (@) setpermissions (8) set properties (@) Roview

1 Files

KB Target path: com.asmtechnology.awsbook.testbucket1

~ Manage users
UserID Objects Object permissions.

testclouduser(Owner) Read [Write Read [Write X3

~ Manage public permissions
Group. Objects Object permissions:

Everyone % Read [l Write W Read W Write

s [Proioss R

OPS/images/c10f025.jpg
idarty poot Edit identity pool

= From i g youcan oty ot o e Koty . A ey bt st v i s et of et nd o s T ks s
Shngn e ey 05 S v 0 10 ot 0 B Ay A1l 15 S50 . o A S 1 5004 oy Bt
oy b o 05 whn tikan h Ao g chr K. Lew o o373 U i i Ao G,

ety pot et A
ity pot 0.0 u5-cast-1: 30709057007 4710 - 660 LGecES o AN
sttt rlo 0 | Sope Aot | s

> Unauthanticated identites o

» Authontication providors o

» Push synctronization

» Cogaio Streams

» CognitoEvents

» Delete identity pool

OPS/images/c05f011.jpg
Upload X
@ selecties @) st permissions @ Set properties (@) Roview

1 Files

ize: 139.9KB Target pat

asmtechnology.awsbook testbucket!

Storage class
Ghoose one depending on your use case scenario and performence access requiremen

© stancas (@) Stendarc-ia (@) Reduoed recundancy

Encryption
Protec: data at rest by using Amazon S3 master-ey or oy using AWS KMS master-key

@ Noe @) Amazon S3masterkey (@) AWS KMS master-key

Metadata

Metadata s a set of name-va

i pairs. You carnot medify object metadata after i s uploaded

Header Value

s [Proioss R

OPS/images/c05f005.jpg
~ Manage users

testclouduser(Owner) % Read [Wiite [Read B Wiite X

~ Manage public permissions

Everyone. % Reac [l Write W Read W Wiite

~ Manage system permissions:

Log Delivery M Read M Write M Read M Wiite

OPS/images/c10f020.jpg
T 4 conon e smazencon. 3 o

[——

T —

Ao 10 v picaion e o s you et s o WS st A Coi 20 ey i by s Voragont AN o st el o bkt

Byt Ao Copnt s e ol w8 e 'y v o Gogrido Sy Mol Aoy You i oy 1 9plcotonsods e 1 e AHS
frbsanpirat y ey

~ Hide Dotais
[—3
Bl Doscrption Yo tercatod o wok o ccss o G,

WRle | Gt o e
RoloNamo | Conto AmsChatentooh e

» Vi oty Oocument

frre—
Rl Docrpion Yo s ortio o sces 0 G

» i ey Oscumens

OPS/images/c14f021.jpg
< = corsleoms amasoncom. 3 o

Sarices | Fawmircs Grou

AWS Lambda Lanbca > Rectars > Trrbostesr T aem——

Dasnboars ot - | [| pcrs -

Functions —
oo | Gontigunton || Toggers || o || Monkodog °

Cosoontytpe Estcosninine 5

o sy - requireC'asyney;

Vo S < recureC on 206

Vo gn = reanireC gn'> suiossCl Tropogik: true 1)
Var W1~ reqreCil

Vo AT 400
Vo WACHTGNT 400,

© Execution esul: succeeded (oge) LLL)
s ko sho ot ey i xkten, Lo 7 855 i st oo i

Sommary Log output
o SR T T e e
i i i i e s e e
i T S Y e
[b=

@ Footnck Q Engmn

OPS/images/c20f007.jpg
Create anew bucket e

— e Systom pormisions
e svearcy

Deck @ Engh

et Ragion L5,

permissions

o tfct o s,
o s o gk

OPS/images/c05f006.jpg
Name and region Edit
Bucket name com.asmtechnology.awsbook testoucket! Region: EU (London)
Properties Edit
Versioning

Logging Disadied

Tagging 0Tags

Permissions Edit
Users il

Public permissions Disadled

System permissions Disadled

OPS/images/c10f021.jpg
ASCON | ouks SO Succondod 1993200197 an =2 o000

55 € > B A 2 e 2 et - S Jo) e 3) © e Ve bo@ouoe
Bt
.

e W l0oa
S = o —
e e
B | —
e i
S | r—
B ol R - — S

OPS/images/c14f022.jpg
< = corsleoms amasoncom. 3 o &

Resourea o

[

=N ===N ===

@ s
Eol - B usst i vigna
Q o e oot 12 e et

P SR———————— Jp— e e

OPS/images/c20f008.jpg
Wont o mansgo yourdata basod on wht s instaad o whoro s storod?

+ croso b

Bucustrame
PRE———
® comasntochnsogyschat umseals

(D Svichomeciconde B Dicovrthonmwconscie 9 ekt
200w Taom ©

Pogn oo crtea

s s vV ep—

[~ rorrz. o7 si020m

OPS/images/c05f007.jpg
Sorvcos ~ Rosourco Groupe %

Want 0 manage your data basad on what it instesd of whre s stred? Ty S3 Oect Tsggiag [—

Properies Euens OActheetfnions
Vesoing Dt
Logong Dasies
St e hosiog Dbl
oos 0T
Croseregonpcion it

[Epr— e sostcston

[~
Parmissions owner
Bucsatpoter
CoRS comauion o

Management Lincrle Dins
nopes

OPS/images/c10f022.jpg
@ &)

0DeE T B 6

Custom Class
Class

Module

Identity

Restoration ID

User Defined Runtime Attributes
Key Path Type Value

OPS/images/c15f001.jpg
DHGO €A XD QAR ¢ >N
[3 AWSSDKWithGradle) Fapp)~ src) -~ main) - java)
4| [Project - O = Bl
¥ " TR - e Ve
i Packages

~ Scratches

Android

Project Files

Problems

Production

Tests

Local Unit Tests

Android Instrumented Tests
v =reonrexampre.abhishekmishra.i

© % MainActivity
» Pares

«{ 7: Structure

@ Captures

OPS/images/c20f009.jpg
Oescrpton GrstonTimo &

oty s B B
oot ki T ormca o210 10UICAO0
pe—— -
(SR — mira0 asvTcaor0
O Wdprassove o ssevTCo0
Erenpronters

Foodback @ Engh

OPS/images/c05f008.jpg
<o K 4 consa s smsisncon ¢ o

Mo - EUondon) &

0 got started.

Upload an object Set object properties Set object permissions.
06t ppamsrsona e,

[——— Ay st yocn o o 0y 4o o 2
e e oo g yos e v EU I i

OPS/images/c10f023.jpg
P Mot Ansyts shre. oot oot oty

LI T TV

@ Feectnck @ Engh

Gotting Started

[—
P ——
Gaeg S w05,
ety AP e

St Roleerca

n-Dopth Guides

[——
[Esce—
Usng e ot Gt o

Community

[y —
s otsasiog
-

OPS/images/c15f002.jpg
DUG ¢4 X0F AR ¢» ACee- P t8e0E R EQL? @
o) e S i

G B e o .
v s o S i <3
S y i
= H
s 4
§ " e o
P 4
H .o :
5" B i
T T —
| ow i
L I,
: 15 sl X .
ebeiaad i R ——
© Corm i
1 mockable-android-25 57
e | 2
e H
sos, H
el B
B H
Simaens 2
e H =R
@ setings.gudte. » emiie T
s E
= ;
i H
¢ i
I) ey

OPS/images/c20f010.jpg
Rosouree Grovps -

- Summary

o Jm—
ity povites
oot ki Tovramons | Toatratonstin | e [rr—
pe——
Managoa oicios
Syt gt T —
nopoicios

[———— S ot Py | Remors Pty

OPS/images/c10f016.jpg
ity)
canto ot & ot § o ortty 8 Campiorco] Wotio S
b B b,
- - = s
T it fme iy S
Sl ‘Enstc Boaran Srowear Oiroctory Sanvice. Moo Ansytcs.
" — et f
= —— i
ebpnasis i [o—
oon — Py P
. o - =
-3 e P e
— Y~ e fer
frodb —
) Management Tooss Outa Ppatine &) Messaging
£ ouaso o ot veanores
s — -
EustCache Conf. @ Avtcal meligence
fsy -3 N
e - NO—
- Trusted Advser Rokogriton e
4 N oy o oo -
w e BOEY
e ——
= g [sy—
roviasy
frmaerl
& oo Dropment

Amazon Gamatit

OPS/images/c14f017.jpg
< = corsleoms amasoncom. 3 o 6

[

[P ——

=N ===N ===

a
[1 e JEEE ~] usst i vigna
O w12 oot 12 e et

P — per—— wsva -

Vg 1101

OPS/images/c20f003.jpg
rdoos - RosoursoGrocps - %

Wt maioga your dta bosad on whatt s st ofwhero €5 stord?

W s) svro s W O poroncnts§ ks
a

+ oo Toon Tagm ©
[oo f—
[Yr— [ProT— [o—

Feoback @ Englh

OPS/images/c05f002.jpg
Rescurca

Welcome to Amazon Simple Storage Service

P ——

LR ————

s3ataglance
Craate s
@ J @ N

oo o ot s ey vyt e s Yot st s,
ot ey v o o g e i o sy oty

Feadback @ Enghsh

Addiionatinformatin

OPS/images/c10f017.jpg
Amazon Cognito

Amazon Cognito makes it easy for you to have users sign up and sign in to
your apps, federate identities from social identity providers, secure access to

AWS resources and synchronize data across mul

b

'Add Sign-up and Sign-in

W Cogn Your U o, o con sty ndsocuy 5.
0 i ity o e s 10 W a5
it R ————

applications.

Manage your User Pools Jll Manage Foderated identiies

CH

Federate User Identiies

Wi oo oo, s cn - s
St arty provirs s ek T,
e onnidrty s, o cortes s VS,

le devices, platforms, and

a

Synchronize Data Across Devices

e . G st e s Gt s o

OPS/images/c14f018.jpg
< = corsleoms amasoncom. 3 o

Resource orvps

AWSLambda s> Resers °

Dasnboars EEESERy

|Funcions =8 a °
Finctonsame - | oetptem o Amtme o cxmin o | tebetes -
- oo et v 3 ke Mopso were s

ASCompToOyrana8 Copy Coprt e cutie 0Oy Nowsez sibmm e

OPS/images/c20f004.jpg
Wt o manoga your data basod on what s

Copy setings o o existingbusket

Create anew bucket

Busots e gy i catarrs
it sy

OPS/images/c05f003.jpg
Create bucket X

(@inersandrosion (@) satproparivs (3 Setpormissions. (3) oviw

Name and region

Bucket name

Copy settings from an existing bucket

OPS/images/c10f018.jpg
<> & 4 oo e amazencon. ¢ o

Sorvcos ~ Resourco Groupe %

) resvattmin VP

[p—

Fr Gotting Stared

[—
o ———
Gag S w5
ety 19 e

—e e e o o S AetRleerce
In-Depth Guides

s Gt Sy oea
[ESscc—
s e gt Gt o

[

Community

[——
s ooy
[Etr—"

® Fescinck O Enghah

OPS/images/c14f019.jpg
Rosouce Grvps

AWS Lambda Lanbca > Rectars > Trrbostesr T aem——
Dasnboars o+ (2R | rctors -
Functions

[—

Cose | Contguaton Toggers | Tgs | Monong

Codotytype | Esteasaimis -

11 dependencies
Vo sty < requreCasync:
Vo S recuireC om0k
Vo gn - reanireC gu sublass({ trogdgick: tre)
var W1~ reqrec it

Vo AT 400,
vor waCHErONT 00,

L/ get roference to 53 client
12 s ren B850

)
18- exports.hendier = functionCevent, content, callbace) {

i

16| 1 teod ptians frm the et

17 Conole.log(Reading aptions frem v\, wtll spectCevent, (depth: SHD:
1

18 /7 source ond destination buckets

2 lar srehuciet - event Recordsld) 3. ucket. ases

% vor components - sreducket. p1icC .

B vor dathucket - 1

e o by 4 < componente.tengn

2 dstBucket 1» coponentsli] ¢ "3
%

OPS/images/c20f005.jpg
Wt o manoge your data based on what it nstzad ot

W s

Versioning Logging

Create anew bucket

B e gty cotares
e svearcy

OPS/images/c05f004.jpg
Create bucket X

@ Name and region @ Set properties @ Set permissions. @ Review

Versioning Logging

Keep multiple versions of an object in Set up access log records that provice
the same bucket. details about access reque:

Learn more Learn more

Tags

Use tags to track your cost against

projects or other criteria,

Learn more

OPS/images/c10f019.jpg
<o K 4 conon e smazencon. ¢ o

[——

Getting started wizard

| sws tcrmmismntyost Create new identity pool
S5 Sl eyt e o str nd o i o dcirs i ey o v e

ety o nome’
xanoi 00 ams

~ Uneutrontcated identtos o

Ama100 g ca it et o v s it 300 ANS rdril s oot AR 30 onty Do, ot
rpaton iows e 1515 ACHIO W G .Y i o i o e L1 S50) e

~ Authontcaton providors o

st Copnssppors ke thrcson oo i sz Cog iy . 0 e s s gy o s bl
o yo cansechy e a5icton s . Yorar A a1 0 1y ety a5 ko 0 vt 87 s aescaioy
g s G Lo 850 e it s,

Comta | Amazon | Focmook || Googer | Tltar/Digts | Opond || SAML | Custom

Frcnsonkpgpi s

@ Feonck @ Engh

OPS/images/c14f020.jpg
gt tost ovent

st ol 10 e v 0,1t e o . Yo <40 8 v a3 <hosng Conlur st

P —] <

OIS e ST e,
s GREZ S FErIo0T,
S “ORSEOASO-ACER 410 EEAD-CAIZGZFFEADS.

fen

v ¢
+rarnions3:com.asmiechnology.onschat.tses”,
e asetechalogy erschat. ages”,
v
s e

e {
TR e ————ry
o OBz

“usesaster”,
| “GojectCreotedion”

reliih)
“owee

ot owsisz

OPS/images/c20f006.jpg
Wont 1 managa your data based on what s ntead ot schec e st o2 o

Create anew bucket

B e gty cotares
e svearcy

Managa vsers

o oson

ey
[—— B B Bres B
Managspusc pemissions

—
.

o tfct o s,
o g

OPS/images/c20f001.jpg
Rosource arops

History [Gow | Az
il @ compue €6 DovooperTods) Anstcs B} Appicaon Sovcss
Rl w2 Caammt s omackns
Py [rr—— ey o P
o pres Camomor Couseren e
o Cacoroine J——— e o
e froiy x oy
s ouarpore
poisans) s
£ Mercosmnt Toos gk MO
8 sowe Cottc S oesion S
[} Gouomaen [e— oy
G ot o
St Gy pand o [Te——
s sy Maa g oo
B ovawse i i &
s
Ros = & onorormoge
Omancos. sior
Pt © Sueuy ey & Compioncs D Doston Aop S
ey e vespoces
rsooctor £3) Contactonter Aspsvean20
o~ A Gorct
1 NevokrmaConenohey o
G e R ——
s s Ao Gt
Dot
poes
[votseSenins
& v e
Aopiason Docovery Sev oo

OPS/images/c14f016.jpg
[v—
-
Cotmvgps

Review

s v yur L o . os 4 00 bk 008 i o 6915k, Wh Yo ey, i rotarchon s

Trggers.
s
comasmtechnsigymchatmges Erer
o Oblctrested
Lambda function
Namo

Emiconment vrition

xstng ol

oaRssones

oo st o sn S cker

Eratog

OPS/images/c20f002.jpg
Wt maniogs your dta bosad on whatt i st ofwhero €5 stord?

(3 Svichovecicone BN Dscovronmwconsie § Oukktps

e

You 0o not have any buckets. Hero is how 1o gat started with Amazon S3,

Y
| |

Create a new bucket

Busats s gy cotanrs o oy
et pyivarey

Upload your data

e o st sk you o sy
O . o o o oo .

2o

Set up your permissions.
Byttt porsiors o sn b v e,

iy can i e ol Pt 0
limetnriey

OPS/images/c09f015.jpg
Create a user pool

soon

T

rap—

Vi poswers e
[—

r——

OPS/images/c09f011.jpg
Create a user pool

s

Do you want to add tags for this user pool?

Yoo st a5 i s v e

OPS/images/c13f011.jpg
Resource orvps

90 ole Permission Set Permissions

et sy enpte, gt oty s s sy, A oSy e 1 lmaly e r o or TS Yoo i e By o
g e 5 3 v 5 3 o o100 S0k

OPaiicy Genorator

N —— ==

Gustom Polcy

OPS/images/c19f019.jpg
< < comole e amezoncon. c o &

Attach Policy

Supt: St P —

Sop2:Sooc o oo

o3 i ot P poscy e | peo—

St neen sy

poscytame ¢ Jrr— conatonTine o [

(S — : os@sEmICon e emucom
© 6 roremosnanes 1 e ST etz e
" TR T e e,
O 0 s o oo eeuCa0 zorsara tezoUTC.on0
R P TG i 2541 UTG00
O & ssovsrennacas o W mOC D 2oz M0UTCN0
O @ Acokpsmmmessonkc.. 0 msmeOUCad meizarsoUC.an
O 6 Amopsimmsevoess 0 e eTUCom e 0k UTC.ot
O & scorresiincs o DN TCOm 2610 64UTC0Nm,
O @ sccococes o orasaCon womason e
O @ smscocomncomucy.. o mramnaucon oranmeucen
R r— msanaCEd s naucon
O 6 om0 Do T 2006 1T UG
O @ Amcotcrmatony o osoummICon e rnucon
O 8 ssccouscomcniconss o WO UG 260107 as TG00

T - |

OPS/images/c09f012.jpg
<> K contoeams amsioncon J °

Create a user pool

Do you want to remember your user's devices?

e Aways User Optin No

OPS/images/c13f012.jpg
Sovicos ~ Rasourco roupa ~

90 Rolo Pormissons Edit Permissions

oot enctoretio ot crts oot o e Ao Wt S ANS) 1 e, o o formsta s st o,
o Bk P U S ey e s oo

et MO0y
Actions At s Sotod

e I —
[e

[r——

OPS/images/c19f020.jpg
« comol e smaroncon. c o

ol Review
Sup 2 Stk o

o o s TR OoNSCrSta

st s T ity vt

Potces amansas oy Araroc Oy a6 [—

OPS/images/c09f013.jpg
T contoeams amsioncon J °

Which apps will have access to this user pool?

sy s o b g e 08 5k s Ky 1 0ot 50 e

OPS/images/c13f013.jpg
Rosouce Grvps

Edit Permissions

o ot genroretio ot crts o Pt o e o Ao W S AVS) 3t e, o i s s st s,
o Bk P U S ey e s oo

Actions

Now@ouy

A Atcnin Dy S 4

Amzon Rosoucaame

oy

[ors—

Posaurce
a3 com it eaoay v e

s commcrrogy et i

OPS/images/c19f021.jpg
Rosouree Grovps -

‘ . - slels
e S
) RoleNome ¢ Creation Time ¢
| nots: (O_wrommtmemsoion o048 1630 UTGr010)
e e .
i s () Coppito AwsCratidentiyPookunautn Ao 2017-03-23 1801 UTCH0100
s () OmamedBAccess 2016-12-10 1716 UTCH0100
——| O
FE—— e
e s
-

OPS/images/c09f014.jpg
<> K = consoeams amason o J °

05 i Vig)

Create a user pool

Which apps will have access to this user pool?

o gt oo b it g i 103 1 ol st oy e 5 ke ol

o 2o rame
ool

== [——

6
% Gansto ot vt
Ertio s A9 o o o st ADMNLNO, S50 AU L

Oncees oty o Custom Adersston CUSTOMN ALTLFLOW.ONY) s v

= Satstrut resd st possons

= =

NN | T T N ——
2
§

=

OPS/images/c13f014.jpg
= corsleoms amasoncom. ¢ o

Rosouce Grvps

ermission .

Policy
Cusaransoasors b i e ey Gt Fr o o s 4 56t 1 5998, 508 O o i n Uk W 0. T
e e o i ey fr I Yo s, o A Py S
potey o
scrstsenitgr siccess

=0

Verston": "2012-10-17",

“Stotenent: [

i
S "stnt1492076959000°,
y
“arntonsis3: £ con.astechnology. anschat thusbral 15"
1
}

YU g ..]

OPS/images/c09f007.jpg
EAFNN - = consleams amasoncon e °

Create a user pool

Which standard attributes do you want to require?

Aot 1o staird vt can b for e e, bty s i1 o .o a5l change st e
P ik o 4 o0 e 50 1 e e 5 204 ot 5 AT 1 5

e e——
esirs = &

[s—

|
£
!
1

Do you want to add custom attributes?

o s st e s et o st s

® Feoctnck O Englah

OPS/images/c13f007.jpg
Name and region
Bockntrame i i agon L
Propertes

Verioning
Logoing
Tiggng

Parmissions

Create anew bucket

Duss gty i ot
o e S

Feeck O Eng

OPS/images/c19f015.jpg
T —

- Summary
] moan v ————

- Juss—

ety poides e nosorsion | Ao ot | e s

‘Crodental roport Managed Poices ~

B

nina Poscies

peteyame
Ao Opranasscces

S ety | Py | Pomar oty | Sy

G Cas PSS e TR ot | 3% ey | Pomars P | S PoRT

® Feonck @ enh

OPS/images/c09f008.jpg
<> K = consleams ymaionc J °

05 i Vig)

Create a user pool

e What password strength do you want to require?

Meimumiooan

g s

ot Epera——
E e a—
Vestrs e omcse s

Do you want to allow users to sign themselves up?
getedet) Yo oo o oty s s o et s o ur 0 89 D P, e s

T ———

e © Aow sasioson pameens .

5% How quickly should user accounts created by administrators expire if not used?
Yo can oot o b o e ot rtad by 3 contr apeenfh ccn .ot sk

g o tomste

OPS/images/c13f008.jpg
Rosourea Grovps ~

Wt 1 manoge your data bosad on what it i nstoad of whro

L

(3 sviehomeciconmio M Dscovrboreweonuss Qv

a

Qe Yoo ©
e o e
[FpSee—— -

o207 53008
PR Tr— s vpns o201 102090

OPS/images/c19f016.jpg
« comol e smaroncon. o &

O oame s pe—

) ot sty o w1 worurcio
B R ———— 17020 18010
[I— D s e
JU— S r——— 7220 1034u1C.000
S O Wb sorrn0 1554 rcoen
nponiers

Foodback @ Engiet

OPS/images/c09f009.jpg
<o & = consleams amssonco e °

5 Ve

Create a user pool

-— [otk it G oo Ay 5 i A 4 5 7

Do you want to enable Multi-Factor Authentication (MFA)?

e s (74 s sy o o a0 . I g coce RO, 15 o MEA i Y0 can oy chose T
iy st o ok o .4 50 NEA P o v FA i Lo 7 5 5

Vst ot suparat haros my gy o saing ot ressges.
@Ot O onsorst O equres

Do you want to require verification of emails or phone numbers?

s e
7
1

owe ey o a1 o e

- crat (] mroneruns

v You must provide a role to allow Amazon Cognito to send SMS messages
ez o e o st S mesags s oy bt Lo e s k.

@ Footnck @ Engien

OPS/images/c13f009.jpg
Resource Grvps ~

oty st
PP——

0

o

C

Rotorams &
R e———r—
[T ———r—
[—

[

GrstonTimo ¢
10210 16UTCA010

70120 584 UTCAO0

Sowrgsresuts

OPS/images/c19f017.jpg
o Grovps

Set Role Name

OPS/images/c09f010.jpg
<o K = consleams amsson o e °

15 . Vi

= Do you want to customize your email verification messages?
I ot ot
|~ [Rera—

] Do you want to customize your user invitation messages?
| -~ Yo e s s oy pemwds 1.
ot ot
S [——
[R—

Yo oo o] nd oy pasce s 881

Do you want to customize your email address?

© Asacusom RO sasses

© Asacutom RESUTO sgcvss

'Q Englen s Ry R U

OPS/images/c13f010.jpg
s

oty i
PP——

Resource Grvps ~

- Summary

Managoa poicios

S ot ooy

[T ————

canck Cagnto AmsGhRIr Pt R, ROZTEE0S) v ot EstPoey

R oy | S Pocy

OPS/images/c19f018.jpg
= consoenamazoncon ¢ o

Select Role Type
p 15w e OAWS Sorvico Rolos
St 2: St Tom

e —
s AV Doy S o o o i try s g o A s

Rol for Gross-Account Access

POE[E(E

Rolo fo dontity rovidor Accoss

OPS/images/c19f012.jpg
Rosouree Grovps -

Manago Rolo Pormissions Edit Permissions.

o ot enrtor ey 1 et ekl Pt ol cce A Wet S S s o e, ox el et pokie
o i o Pl U S ey i s e

Eoct MO0y

WS Sorvcn [ArcsaOpares 3

Actions -~ Sasct At

(=

0 Contnr snens)

prrre—

ot ot | (T

OPS/images/c13f005.jpg
Wt 0 manoge your data basod on what it st

0 s

Versioning Logging

OPS/images/c19f013.jpg
< « comol e smaroncon. o °

Manage Rlo Permissions Edit Permissions.

ot genctor o010t ki Pt o204 5 AT Wt S NS 104 89 s, o i A 80 et ORHS
o Gk ks sy S ey s Mot

Efect A OOy

WS Sordcn | A1 Aepcaion Doy St

AmazonResource ame
.
A onirs o)
ow s [———— o
ow e [E————————— [
ow - vy s TON 2B HGET d .
ow s [e

- |

OPS/images/c09f006.jpg
Create a user pool

What do you want to name your user pool?

oo ot s sy o sy oy i

s)
- AWSChausorpool

How do you want to create your user pool?

Review defaults Step through settings
sty g recanss s Swp o s o s

OPS/images/c13f006.jpg
Wt 1 mansge your data based on whatt s Py TouE

oo
o) B Buwre Bruss Bwee
[o—
Nnsge syem pemissors

Create anew bucket

Duss gty i ot
o e S

ok Q gl

OPS/images/c19f014.jpg
< = consoe enamazoncom c o &

Review Policy

usaanpomasors b i e i ey Gocumant Fx o et aut hacess ok e, s O o oo o s M 0k T
o et o i ey bl Yo e, L A Py S

Foter e
scntisesicyol oyvmccess

e
€
“Verston': *2012-10-17",
“Statenent™: [

Sd": "Stnt1491765202000"
Allon,

Resource’”

i *ShmrAa1 PSSO

[CIRR—— Concel | vt posey

OPS/images/c10f002.jpg
densosersncsbastcon)

fbostomabousl] i 0w ks o St — R

Q searen apps by e EES

st

Cre:

aNew App ID

OPS/images/c14f003.jpg
Favorites
(51 Dropbox
& iCloud Drive
@ Airdrop
[Desktop
12} abhishekmishra
53 From Author
Devices
21 Abhishek's M...
© Remote Disc

| ThumbnailGenerator

node_modules

Bzl 6l © B Q Search

>
>

%) index.js 1 array-parallel
5 aray-eres
19 async.
1 cross-spawn
19 debug
9 gm
1 isexe
13 lodash
19 Inu-cache
9 ms
1 pseudomap
9 which
19 yallist

OPS/images/c19f030.jpg
< &« comol e smaroncon. ¢ o & E

Rosouree ar

Lo > Nowncioning Dt cor e oo
ot ot Review

Gortqo s P i o L o, You c5n 0 ack .8 chinge o sch o Whe s e, ik et oo
T oottt s s

| oo Tiggers P

C'J ‘Cognito Sy Tigger eaona

o 2a7a0087.5007.

Lambda function P
Name. AceCosnteboToramo08

Descrpion Copy G s s 0 Do

[e——

oaResonce

OPS/images/c10f003.jpg
< semvepers ctooncom. e °

B o [P RS]

o crangoiog x:

ey —
B

OPS/images/c14f004.jpg
oty poibes

GrotonTmo ¢

e —

20170009 1630 TG00

E———r—
O oo
) Orencossces

Aty oousarn e

SR ——

[re——

w0210 16UTC 010

o719 884 UTGA0rE0

OPS/images/c19f031.jpg
< comole s amatoncom ¢ o & ¥

AWStambda s s °
EECR - R
Fuctons s

Anctonrame e | mete o o o lestes

ASSCoHTOOATI8 Copy Cognla e el 0 Dymad8 Nowisas Gisom Thomsgo

OPS/images/c10f004.jpg

OPS/images/c14f005.jpg
Rosouree Grvps ~

< sy
— fv T ———
aoer o amern
s
-

- G
Bempptsi U managed policios o atached 10 th k. You can atach up o 10 managed poices.

rorton =

[yS—— S ety | O oy | S Py

iinopoicos

OPS/images/c10f005.jpg
B L Ry

Y —

o e B
e —
m—

S 0t st

Pl
ot
e oo B
L ——
ot o B

OPS/images/c09f018.jpg
= consleams ymaionc J °

B o

AWSChatUserPool

| oo Which apps will have access to this user pool?

a5y s o i g ee 08 5k s Ky 1 0ot 48 e .

s Ao rame
roicns

cz=x]
ostrs e e

oy s Cutom Aspersaton CUSTOM AUTILFLH.ONY, oo

[ST ook
e e yp————"
Erbi g o s s stk AOMILHO.SRPAUTY) Lo
o0
s

OPS/images/c13f018.jpg
< = corsleoms amasoncom. 3 o

Resourcs Grovps

[——

=N === ===

a
] [oo usEs L vigna
O 12 oot 12 e emnem e

3 5000460 ACH-410E 0ADCAVEZFFEADD 300 pr—— wsva -

Vg 1101

OPS/images/c19f026.jpg
< &« comol e smaroncon. ¢ o & E

Lomosa » New ncion s e o s e

k] Configure triggers
| Contiueewagers: Yo canchooss 1003 g et i vk s becton.
Gortg rcion
Cognito Syne Trgger :J » Lombda
Comto ety poot Mot -0

Lo 050t sy s or Ao et v oL rcton o . e s

Ensv e+ o

PRSpp— . |

Foocback @ Engh

OPS/images/c09f019.jpg
Confirmation.

Please type the 6-digit confirmation
code that has been sent to your email
address.

OPS/images/c13f019.jpg
< = corsleoms amasoncom. ¢ o

p—— [r—— wlalne
“ Overview Mems Mevics Alrms Copacty Indexes Trggers Accesscontol Togs
oo a %
pa— - [e o
- e e
= [e
. - OAdd e

L ——

OPS/images/c19f027.jpg
Lo > Nowncioning Dt cor e oo

ot ot
Gortqo s

| Contisrscon
[

Configure function

[
Ooserption Cop G e s o Orancos

Lamba functon codo

Provs e cos o yor Anch. U th ke o s e st e 4 8055501y o
.13 o 0o Yo coc 1 3 53 2 e, Lo 7 iy L Ancire.

Cosmonytype Edk o <
"ot address’ : event.datosetRecords. sxatl newvalue,
i3

paras - (
Tomoioe” : toblone,

console.logC Tnserting ser”, pares);

@ putleescparaes, funceiontere, cate) {
Consote-togGere, datad;

i ¢
Console.LoaC User tnsert fotlure’, ere);
callaacicern:;

betse
il o e It o

OPS/images/c09f020.jpg
AWSChatUserPool

[s e

[s pones

— —— s conmien 1720720031

i

v 1,007 2022000

OPS/images/c14f001.jpg
Join us for Node s Interactive
. happening in Vancouver, Canada
Interactiu October 4- 6,2017

Node,s°is 2 JavaScriptruntime buit on Chrome's 8 JaveScript engine. Node s uses
an event driven, non blocking/0 model that makes it lightweight and efcient.
Node ' package ecosystem, npm, isthe largest ecosystem of open source libraries in
the word.

Download for macOS (x64)

V6.10.2 LTS VI

Current

Orhave: look atthe LTS schedule

OPS/images/c19f028.jpg
Lambida functon handier and role

[Rvpp— °
LR p—— “o
g | ASChatarbironiote v ©
» Advanced setings

OPS/images/c10f001.jpg

OPS/images/c14f002.jpg
@ Introduction
License
Destination Select
Installation Type
Installation

Summary

ne

‘@ Install Node.js

Welcome to the Node.js Installer

This package will install Node.js v7.9.0 and npm v4.2.0 into /

usr/local/.

Continue

OPS/images/c19f029.jpg
Lambda function handler and role

Handlort index nandler o
Role* Choose an existing role. - e
Existing role* AWSChatLambdaExecutionRole - e

~ Advanced settings

‘These settings allow you to control the code execution performance and costs for your Lambda function. Changing your resource settings By
selecting memory) or changing the timeout may impact your funcion cost. Learn more about how Lambda pricing works.

Memory (MB)® 128 - e

OPS/images/c19f022.jpg
@

Storage

StoageGatowsy

Ouatasn

Notworing & CortontOotory

Drect et

wraton

Nemagement Tooks

[roemr——

Sty ity & Compianco

e

Conpiaa apons

e Ao

ey
D ppeioe
auasen &

o
poy
Mchin Lo

et O g

Gams Dorspment
pesery

Mot Sacicos
oo
o
e s

)

Aopkcation Servees
SopFunctars

ot ey

Nossagng

Busnoss Prosucty

Ousiacp & o Stearming
onspuces
sessviam20

OPS/images/c13f015.jpg
Resource Grvps ~

- Summary
e J— P
oty st
[SP——
Managoa poicios ~
Ereowronion T v 0 ranog s s o i

Suceos S ot 1Py | Removs Py | St oy
T ——— v ot st Pucy | RemovsPscy | S oy
(RSP S —— P e T————

OPS/images/c19f023.jpg
 comole s matoncom ¢ o

AWS Lambda

AWS Lambda lets you run code in response to events, without provisioning or.
managing servers. Just upload your code and Lambda will take care of
‘everything required to run and scale it with high avalabilty.

RO

23

No Servers to Manage Continuous Scaling Subsecond Metering
S Lol s your oo wibk ooy WS L s sy acoalon y i WehANS Lai you s chrged o ey 1007 o
Yoo ovnor manag s st et poGode 1 o 1o o g, Yo code s e G ot uror o i e cod < o
vty rosote i e b, oo oty wih e Yot p iy i YD

AWS Lamba Documentation and Support

OPS/images/c09f016.jpg
T contoeams amsioncon °

User Pooks

Your User Pools

AWSChatUserPool

OPS/images/c13f016.jpg
s nerieg S o e 1
<o R) st St B oy) s oG) T e

R -
[|
|
|
SN e
s v
T =

O View sionona 7 630

OPS/images/c19f024.jpg
< « comol e smaroncon. ¢ o

AWS Lambda °
Dashboars <
|Functions ==
Funcsenrone - osrpon ¢ Mmoo v LsModtes -
Ao ToDaTD8 Copy Cognla e el o Dynad8 Neiss3 G 20mm0

Foocback @ Engh

OPS/images/c09f017.jpg
T contoeams amsioncon J °

AWSChatUserPool

| oo Which apps will have access to this user pool?

a5y s o i g ee 08 5k s Ky 1 0ot 48 e .

s Tomrms
roicns
oo certia

OPS/images/c13f017.jpg
Carrier &

6:58 PM D Carrier ¥ 6:58 PM .
£ Friend List
Hit
are you there?
Hello, Sorry I couldn't reply.

sooner.
B _

Send Image
Nothing much , just some

gardening. Cancel

What are you doing this weekend?

OPS/images/c19f025.jpg
et
Gortqo s

Gortg i

Select blueprint

et o i oot ans of vt e L i, Groose et o bt g i e dsend sk

o oo 9 0 .y w1 800 8 LA 1o e ok v 01 a0, Xt s
e o mprts o orsod e 50

i p—
P e
i P S—
o, || e
e || mme

=

Foocback @ Engh

OPS/images/c06f011.jpg
v teem (6)
Eiratema String + John
Lastane sering ¢ Hoods
addrons String 17 Hollov Road, Bronley
postcodo sering ¢ B34 580
countey sexing : United Kingdon.

OPS/images/c11f021.jpg
Carrier & 6:52 PM -

Username:

Password:

Sign up

G signin

OPS/images/c17f009.jpg
Hstory
Mo sravics

@

Ston ey

[

Py

orng & Corent ooy

&

vgaen
Aoskction DscoreySavcn

Syt
oty

DevelperToos

Socurty ey & Compirco.
g

Orectoy Seicn

ey

Conptace osors

sosircs
soers
ontescn
Gatnn Saven
ousg ¢

pr—
Poty
ek

eanet OFThnge
s ior

Gamo Daiopment
Amazon Gametit

D) vobsoSorvoss
Vet
jroet

B oo

B oston 8 App Sveameg
vensesce
sossieanzo

OPS/images/c06f012.jpg
Create item X

OyramoDs 150N

“Eieatuasa-: “sonn”,
“adarosas "17 Roiloe Rosd, Bromley”,
B34 580",

“Eountey: "uniced Kingdca®

7
3
s
i
.

e

OPS/images/c11f022.jpg
Carrier 8:15PM -

Done & accounts.google.com &

Google
Signin

to continue to AWSChat

Email or phone

More options NEXT

English (United States) ~

OPS/images/c17f010.jpg
Resouce Grvps

Amazon Cognito

Amazon Cognito makes it easy for you to have users sign up and sign in to
your apps, federate identities from social identity providers, secure access to
AWS resources and synchronize data across multiple devices, platforms, and

)

‘Add Sign-up and Sign-in

W Cost Your e P, o con sty nd sy 5.
2y manged st ot ot o P rs
i

applications.

Manago your User Pools Jll Manage Foderated identities

CH

Federate User Identities

Vi oo e ot yor s con s v
Sk rty povir i 5 Fcabon T, s
ot ounidety oo,y un crwe e NS,

ac

Synchronize Data Across Devices

o o s,y ok 6l ke x

OPS/images/c06f013.jpg
o0 < 5 vt 2ccosoeamsamazencon 3 +

Sardons ~ Boscrcn G ~ ol
Opamoos — customer o= me
| % x Overview Moms Metics Aarms Copacity Indexes Accesscontrol Settings

J—— m— 7 st CRRY

Viowing 101 toms

[em—

o
e e e o e

@ Feedback @ Engiah Ry TR

OPS/images/c11f023.jpg
Success.
Login succesful!

OPS/images/c06f014.jpg
Oynamona

[a
R copacey

customer Coso e m e

D (T)

oAt

Feedbeck @ Engish

OPS/images/c06f007.jpg
o0e < 5 ovwest 2cosceemsamarencon.

oranoe | g— . customer Ceso 0= .o
I"“‘"’“"‘ a «Owew Mome Mecs Name | Copecty idesn | Accossconrl Setigs
s copasty — . Fecentalerts
® oo No Gouatih o hvs beo gered o i e,
Stroam dotalls
View e
Mansge sroam
Tablo detals

Primnypation Koy caterrd)
primarysorthey
Crumandate Sy 29,2017 476751 PU UTC
Prowsionadrosscapscy v
Provsoned wrte capsey s

Storage szo nbytos) Oty

Rogon £ Lancen
Amazon Rasrce Name ARN) v rmod o wesk 2700128048527 ascsoner

Sorage s s ko o ot pctd v, Tyt pco3c, Py v s o

@ Engian ~=r

OPS/images/c11f017.jpg
> B Awce) @ oveesc

Braso

+ O o) [

© G B < B At) 2 o) B i) B st) nept e) o) i) v

O]

sonn

1O View s hame7 6 0 =

OPS/images/c17f005.jpg
B o

[- o

r Smesmon | Do

DT

o &

Loonaciey

oSO

JR———

owptrios

OPS/images/c06f008.jpg
Sarvios ~ Rosourco Groupe

LAR-

Vw0100 oms

st ofov o mor st Eah o coretof o, .t e, vk ey 1093
ko o o oo ot r e . ek o ey . o 10

@ Foodbeck O Englsh —

OPS/images/c11f018.jpg
0O ®

Custom Class
GIDSigninButton S

GIDSignInButton
GLKView
MKMapView
SCNView
UlActionSheet

Class

Module

Identity

Restoration ID

User Defined Runtime Attributes

Key Path Type Value

OPS/images/c17f006.jpg
Google Play Package Name

There was a problem verifying the package name
com.asmtechnology.awschat on Google Play. Please check the
package name and try again.

If your app isn't listed publicly on Google Play yet you can ignore
this message.

[CERTYSSONTEE Use this package name

OPS/images/c06f009.jpg
0 coommrms seris

OPS/images/c11f019.jpg
At | s A5 Succended | 20N 12121 =0 000

() wosers saamems onn

P R -

OPS/images/c17f007.jpg
= deiopeaaonbook con e o &

R FR——]

T —
Dashbosrd

AWSChat o

o <

[ET——

OPS/images/c06f010.jpg

OPS/images/c11f020.jpg
J

Untitled 8

Identifier. com.asmtechnology. AWSChat URL Schemes com.googleusercontent.apps.

No 332977463957-7gm2ujbe6a2citTiotetbg
ima%ed feon (M avpanrbgkb
deth Role _Editor

» Additional url type properties (0)

&

OPS/images/c17f008.jpg
X0F QR ¢o ACm-bsSsGE R EFQL? an

5 B4 0 1 i ¢ ComisemmCorserstantri % oo et st . 500 %
T s ot e

s ¢
S B
i

5+ Somsesams
Cosagate o vy

@bt e e 301

s gt seopate e v

5 o s e oo e o 58

s propares 0 o)

@Sy e 1o 15,

octpopete 501 ocan,

Tt e
it e *sarosasport. s, s AorolAnichwr”

GCpmrn <3} e

ibtmis e
it AR ——

)
>

3D Forvcve i Dol Verlene

+
i
i
i

1000 & s a 0w Bren @ e @ossecuson

B e e R R

A

T

OPS/images/c17f001.jpg

OPS/images/c11f014.jpg
Servicos ~ Rasourco Groupe %

derty oot eokiae, Bseiiiens Omms bsacmaiits
| onsoous 1 4 0.1KB [
p—
1 4
.
Resources
Gottng srted it Amazon Cognto Leam about 1 AWS Mabla SOKs

U strriaton's sk b Lo o
et s o,y o 1
e dorcn o o vy v
oot i e s oyt v o
0 A Copts S tten h w0
v s,

Gt st wn Ao G g e 05

Az Gt crof s i comes
Dyerno06 sy v s e s ke
o o ey 15 iy 3y s
e sepeaen

el 501 Aok s S 05

‘Comectwith the community
Gopvoconmaiyfonm

A Mo By

o mpostory

OPS/images/c17f002.jpg
ook com °

P e — |]
O
Lo
App 1D BB

M Crocto a N

OPS/images/c06f005.jpg
Resource Groups

Create DynamoDB table s | @

a0 schee-dos dtbos h oy ere 1 iy K. Tho i ey Ky o 5 f oo

e
— s BO

s BO

OPS/images/c11f015.jpg
°

oy pot 0.0 05-a05t1: 307004707 4730-50c-BEECS0T6RCES S0]

U e R

Aabanictodrla 0 |Som e o= | G

> Unauthonticated identitis o

~ Authntcaton providers 0

A Gt soor et s b i Az Goa iy bl iy e s o et s o e i
o, yo o ety o ppaton Grr e Y a3 om0 41y ey kb 5 10 et s s o
i Ao G Lo s s i ety o

oo pmszon | ociook [Googer | iter/igts_ Opon> s Custom

p— e
e 12345678012 sc0m grfasconencon

Mot oo seocr s cr Gorg Cer i ey o 0. Jou it 0 sl g win G o b O 22 Ankol 5, wich 1asd
10,y w5 G 1 0l v o2 A Cer s 15w et e Crrac e e oo Dovspr

con

Auanticated roe ssection

o st e dfasre i b s et s, o o a5k B s o 3 b v T v
59 rer oy v Thy o s by g i . kil sl o 3 U Y 9964 oty ol i
Cmtmas ot s .

> Push syncivonization

OPS/images/c17f003.jpg
B o

Osiaytane

sop0omsea

Jr—

o &

OPS/images/c06f006.jpg
@ Engiah

P o
Prmanykey Py
s = BO
p—
Table settings

vt sting s sty o gt sty ke sy hs 5 g o

forio,

‘Socondary indexes

Noms Twe Purtlonkey Sotkey ProjectedAwioues O
Provisioned capacity
Resd capacty it Wt capacty it
Etimated cost 8063/ montn (Capaciy caottor)

OPS/images/c11f016.jpg
 corsieams amatoncom ¢ o &
oo,y con sty o pplcaton Gl i, WG 390y oy i 0 et g s a0
i Ao o Lo s i ity o

Comte | Amazon | Faciosk | Googer | Twter/igts | Opend | sAML | Cstom

ool Chant10 5573453t s s s
S ——"

Mot oo s s h G e 91 ety o 0.1 ik 104 g Wi G o b 05 1o Akl 55, wic e
et 10,y w1561 G000 1 el rorcer o 2 A Coras 0P o P10 Oer)Cnrec e e oo Dever
e

Auhanticated roe ssection

o o o st o dfencd sre v a5 et s, o o Sk o B s o 14 bt v T s
a5 tr oy s Thf o 5 s 3 T 1 0 el 0 Y 950 5 0 0
s aa st e

» Push synetvonizaton

» Cognito Streams

» Cognito Events

» Doloo dontity oot

OPS/images/c17f004.jpg

OPS/images/c06f022.jpg
Viewing 110 3 items

e Viewing 110 3 items

{ scan &l index) firstName-lastiame-index: fistName, lastName
© Add filter
customerlD firstName lastName address country isHomeOwner postCode
Jon Woods 17 Hollow Ro... United Kingd BR34 980
‘Sonam Mishra true.

Sonam Mishra

OPS/images/c12f006.jpg
Table sottings

ettt roc sty ot i iy i, Yo ca Sy e S A 1 e 454 e

T—
Secondary indexes
Nemo Tpe pattonser Senkey Pt ©
Frovisioned capaity
[—— [r—

ottt cont 5050/ metn (Copacey o)

OPS/images/c17f020.jpg
oy sou
ey poot Identities
A ‘Search by idontity 10 -
[e—
[P —
o oot o 16) Lovesigon

RT———— o razsa

OPS/images/c06f023.jpg
Scan: [Table] custome:

=Y o Addiitter

ustomeriD A

OPS/images/c12f007.jpg
Rosouce Grvps

Opamove User Cose ae m e
“"“”’"’ & | Ommten tems Mot N Goomty | ndoes | Tigos Ao T
[e— . Recontalents
e No Coutic sama v b g o s .
Stroam dotaits
Fu—
Mansgesvsom,
Table detalls
Py putonker 45503
Priory s ko
Timeto v st OSABLED Mansge TTL
Coustondta 063,207 817232 PMUTGo

Brovncoad resdcoptyunte
Proveisond v copctyunis
Storagosae ooy

Begin

Je -

onpes
o

s s vegn

v e o 70018200 e

Sag 820 Rt b, Ty ttnd pcat, gy vy s

OPS/images/c06f024.jpg
[— s cusomer sl
e = S | T T ——
[= A setons CAR:Y

[T "]
== [——

)

Son g cerag

peeies
e R e e e R

Feedback @ Englsh

OPS/images/c06f018.jpg
Create item

v i)
© customerio sering
° eazosame string
° [—

-]

OPS/images/c12f002.jpg
800 <>, D

Hstory

Conasoams

=

&1 Novorking & Cortort Dovory
wo
OrectCormect
Rosnsa

& wgaion

®

Mamgersnt Toos
Goustisen

Carty

Opators

San Catnog

Teta vt
MaragedSonss
Sopscsion Doy Sarics

Securty. donty & Complance

Fopestr
[m—
OreconySanics

Comoianc pors

i) Aoaies

@

Cousaacn
Gutesmaon Soncn
[o—
Quasen 7

Aottt tosgenco
Poy

Recpiion
Mo eaiog

et 0 Things

Game Devecpment
Gaman

Mot Saniss
vesto
Conrto
enioresyics

B

L=l

(]

] el a2
-

oo s

.

Busnoss Productiy

[ry—

Povsinam20

OPS/images/c17f016.jpg
Edit identity pool

From i g s cun sy it o o ory b, A ey ok s v i st o ercro oo i Th s wo s
iy ety o APl Rt .58 ot 0 e Ay A1 14 15 50 e 6 A 6 R 500 Gy Pk
o i po her i h Ao Cgrcas SOK. Lo 71 s i A s Ao ot

[
e T ——

> Unauthontcated doniios o
> Authontcaton providers o
» Push syncivonization

» Cognto Stroams,

» Cogaito Evonts

» Delate identity pool

OPS/images/c06f019.jpg
Sorvices + Resouce Qs ~ B | emionrr 0 ouvne

opanoda — customer Gso aam e

IZ’:”" a = Overvow homs | Wotcs | Ams | Copecty | Indexos Access conrl | Satngs

[—— pre=s A cien [AR
o s P —— Voo 103 toms

@ Fooctack Q@ Engieh PracyPokcy Temacime

OPS/images/c12f003.jpg
< = corsleoms amasoncom. 3 o

Amazon DynamoDB

Amazon DynamoDB s a fast and flexbie NoSGL database senvice for al appicalions th need consistent, singleigt
milisacond latency at any scale. s flexibi Gata model and reiable performance mak it a great it for mobile, web, gaming, ad-
tech, loT, end meny other appications.

P—

- =
E=o =

Create tables Add and query items Mornitor and manage tables

o Dm0 bl it o ok st sty esd o o v crsted OB e, AN
e vt Bt o sl o D andon i S0 . oty sy e
oo O,

s o S st Garsleyo 3 o pccrarc 3
Ut A —

R - Oanc08 AP s ot i

OPS/images/c17f017.jpg
DUG ¢4 X003 QAR ¢» ACue- >t 860

o) o))))) 8 v)
Ty
ey
s
- Cppa
* Bsreertcnycomamicnst :
* Eimatacs e
5 Copmsempoconates
 Comonacomloen
© Copaviamokonmliio
g ————
© CopnwdemiplConie 3

O Comutsemaconioer 2

zsovenre [NERNE

eponchiy a

" Bismechaiopcom et (1)
- G
e
” Bl
Bl romesm
S
o ssnpam
B e pont
ey
Bk
© S]
e —
o et o 1
[aanswappe soperie e v
S s e oo e
adeopemes oot

| e
| gummmo

1

!

:

!

* Dugn| Ten

N ——

AR

sREal?

0% 0t @ lopeerinn x| @ wopsopman ¢

[iooriay com i i i oo
e et -

B

e
o

B3O O ec s Oprre G
EELIET omoma o

arr

=

oo ey v

ot et e e

Bt T o et e .

@

E

OPS/images/c06f020.jpg
[—

i . [customer Gsa o= = e

Owniew Noms Movcs Mama Copocy Indoxes Accossonwl | Sesngs

e - sctensy AR
Pr— T) oo oot 2> Vi 03 ko
D T)

s

lsNomo sddwws conty HomeOwner postGodo
s S .

@ Feetock @ Ergn Ao o Ua!

OPS/images/c12f004.jpg
< = corsleoms amasoncom. 3 o

DynamodB Greate tablo Bost practcos.

Tk oetoraeeow sty Dynamons pay201c Ho

PO oo | How to Design NosQL

Tables and Avold Hot Keys

Rocontalrts erpt from:

moDB Day
[FS———— I January 20, 2016
Total capacity for US East (. Virginia)
Provsaomdmdciscty | Ressosdrsdciscty 0
Provisosd e copacty | Resandwriocopsoty 0

What's now
Service heath B
= = g s igion
PR LT —
o s s remoes Fkiied services
Je—

‘Addtonsl esources

+ Gag o
© Domcpur e
P veation
£ Gy o

@ Feotnck © Engmn

OPS/images/c17f018.jpg
@t E@@O0 ¢ & & 9%l 14:28

AWSChat

Enter usemame

o
7

Enter pe

SIGN UP LOG IN

Continue with Facebook

OPS/images/c06f021.jpg
Scan: [Table] customer: customeriD A Viewing 1 to 1 items

[Table] customer: customerID.

T icsivome

© Add fitter

customerlD firstName lastName address country postCode

1 John Woods 17 Hollow Ro... United Kingd... BR34 980

OPS/images/c12f005.jpg
= corsleoms amasoncom. ¢ o

Create DynamoDB table oot @

L T ——
ko i ety R, prtin 0 G, 1 i i P,

Ttorane o °
[—
0 o BO
po—
Table settings

et o ot ey 0ot i iy i, Yo 4 sy e ka4 o
Qe cotm setngs

© Pronoscssocy st 5 0 i
B s 3 e sl g S 5 s

OPS/images/c17f019.jpg
aa gt dm@@®O0 $ 7 9%B1429

®

OPS/images/c11f024.jpg
< = corsle s amatoncern c o

1) Fosenuaganton s - [ry—
. Identities
sarplocsan P s
[E—
Rt oo o+ | - Showing 12012
senty 0 o ctos) L iopns
(oo re sort oo osswoszon] T
Snowog 1202

® Fooeck @ mmgen Gl

OPS/images/c17f012.jpg
= corsleoms amasoncom. ¢ o

Getting started wizard

1 st e rawn sty oot
poee—

Create new identity pool
ety s ot o Moo, oot o ey o o e

nntypoctmamer i ©
P——
~ Unauthentcated denttos o

Ao Gogco i Ut e 04 1 et 350 AN T ot DA 8 ey PO 1yt
Cocaion hovs e 150 <o WA 350 Y0 6 i o et e, Lo 1 S50 rbercstod s

~ Autrentcaton providers 0
A Gt ot o et b i Ao CogtoSvin oy bl .10 o youe s 10 s g o e bl
raa.yo con sech s et on orrs e Vo5 a3 a0 4110 ey L 5 0t 0 s ST
g Ao Cop Lo o sk b it o

Comto | Amszon | Focioon || Googer | Twter/Oipts | OponD | ML | Gustom

O

R

“Raquess e (D

OPS/images/c06f015.jpg
Sarios ~ Rosourco Groupe ~

Oynamons = . customer Ceso o= .o
| = | Owwew Nome Mecs Name Copacty idoes | Accossconrl Setigs
[—

ole

St - o Puttonkey - Sortkey e —

Gt econdy e (50 oyt ey ity vy ol k) your Dy i, G5
oty SAs 2.5y ovn it e o . Vot 1l

@ Foodback @ Engiah

OPS/images/c11f025.jpg
< = corsle s amaroncom. c o

1) Fosenuaiganttios s - Eatidoty st

f [e R ————
- Identity details

)

s oo com

Datasets

et] - Sttt
s or s ottt S0t
[s o s amomE o B}

Feouck O g

OPS/images/c17f013.jpg
< = corsleoms amasoncom. 3 o 6

Resourca

e ——
A1 a0 e bpican s s o et s o WS s A o2 1+t i sy Aes Monsgor A s o s e i iy

1t Ao ot s e s s i 5o o 9 4 Mt AnY(Y o ey 38 e Gt e 8 1 b AU
s, o 50 a0,

~ Hido Dotas

Bl sumnary ©
PoloDoscrpion Yo st s vk e s o o

RoloName | Conto AmsChatkentioothuh e

» e Pty D

Botssummy ©
Rl Doscrpion Yo o ortio o e o G

RooName | Cognto AvsChitdentifoolnah foe

> e oy Oscumans

OPS/images/c06f016.jpg
Create index X

Primary key* Partition key

sting
Add sort key
Index name* i)
Projected attributes | Al Be
Read capacity units Write capacity units
" .

Estimated cost $0.69/ month (Capacity calculator)

Approximate creation time Is & minutes. Additional write capacity may decrease creation time. A
notification will be sent to the SNS topic dynamodb once the index creation is complete.

Basic Alarms with 80% upper threshold using SNS topic 'dynamodb' will be automaticaly created.
Additional charges may apply if you excead the AWS Free Tier levels for CloudWatch or Simple
Notifcation Service. Advar

d configuration for alarms can be done In the alarms tab.

OPS/images/c11f026.jpg
ety st
Identity poot danen 5 st 0TS 5104020105 GRS > ropenan
Outecas Gurrent dataset - googleUserData
| 1oty rowser —_ s
Pt - oo 1212
e vave
Soowia 1202

@ Feodtock @ Englan

OPS/images/c17f014.jpg
[

) reswna dmnes Usrros

e Mobde Anais share oot do ot mocly Gting Started
e 1 Chargo WA st | Crango 0% e
Gaig S wir s
et S wn 05
ety A e

S S D SN SO N S Y b
/ In-Dopth Guies
[——

s Copro Y et
s o oprto s P

Communiy

Cooro oo Fem
s ety
ooty

OPS/images/c06f017.jpg
Sarios ~ Rosourco Groupe

Oynamons

p———— wialale

e Overview Moms Metics Aarms Copacity Indexes Accossconrol Sottings

| ttin x

i iy ... [ole
= = R g

o b Ao Sl oo Nemeund AL '

@ Foatbeck @ Engien

OPS/images/c12f001.jpg
Friend

id
user_id
friend_id

User Chat
id id
1 usermame 2) from_user_id
email_address to_user_id
1 1
Message
chat_id
message_id 1

message_text
message_image
message_image_preview
sender_id

date_sent

OPS/images/c17f015.jpg
Servicos ~ Rasourco Groupe %

sty poot Gsparotme Spamamone Cumtsoe Aedcatonmenedso
| Ossstears: 1 3 0.1KB FocavoskLopn R 1%00% .
pe—
sy P— s

1 3

e
Rosources.
Goting startod i Amazon Cognto Loarn bt the AWS Madlo SOKs ‘Gonnect it th communty
s i’ b brpror Losn it Ao gl croof b tcanes ot conmany
o s e vk bl o b MO X Ot B e risomes
eieion e i s . S B et O
rohraren Co s b st 34 ks By i
i ot st

Ot st wn Ao ot g 05 Mbi S0 Aokl s S 05

OPS/images/c17f011.jpg
e

[r———

Gting Started

Gaing S i s
et S win 05
ety A e

P T

In-Dopth Guies

[
Usng Copro Yo et
s e oo G P

Communiy

Coor oo Fem
s et iog
pse—

OPS/images/c05f020.jpg
< 4 consa s smsisncon o -

OPS/images/c11f003.jpg
MRS | ks NSO Succnosnd AN T N e

[uS— .

+@ @)+ - ©

OPS/images/c05f021.jpg
Espeaion
s}

s

OPS/images/c05f016.jpg
ece o & s3.eu-west-2.amazonaws.com

“This XML fle does not appear to have any style information associated with it. The document tre is shown below.

a

v<grrors
<Code>AccessDenicds/Code
<Hessage>Access Denieds/Nossager
<RoquestT4>858D991CTBEIBENCS, RoquostTds
v <kost1d>
‘unDN9KmgeS /0DeU3IIVAVGAONHBYANDA 69 4TI Oxe STRDOWIKDEINS000607Q7 IQRAPT K/ 4 1=
</Host1d>
</zrroe>

OPS/images/c10f031.jpg
Sorvcos ~ Resourco Groupe % T

[—— ooty poot

Outtas Identity details
p——
J—

P

Likaaiogn
[

Datasets
e

Dot ame e comad UTE) Lo mited UTC) Storase o) fecorts

OPS/images/c16f008.jpg
< = consleams amasoncor 3 o

Create a user pool s
1= e e e
I Do you want to enable Multi-Factor Authentication (MFA)?
I o i v o o T o e . P e LS Bl P oA L s S brton
| vt st gt shges oy o e s s
I Oon O ommi Ot
PR—
1= P
| = O S —
o o L G RO
1= Do Omeonrer
| o You must provide a role to allow Amazon Cognito to send SMS messages
1= A ooty et 8 e o o it Lo s i
s

OPS/images/c20f018.jpg
< &« comol e smaroncon. ¢ o & E

Oynamade == Message Goso aa e
I“’M"’ 3 | Ommion Them | Mot Nome | Gosay ndus | Tgs | Acsmcon | Tgn

Ronoscecty — - ° o

L —p—

o o o
L7
R el

Foodback @ Engh

OPS/images/c05f017.jpg
=

Espeaion
s}

OPS/images/c10f032.jpg
Sorvcos ~ Rosourco Groupe % o S

[— rp—

SH— Current dataset - facebookUserData
| e =2 &
for— S pp———
s -
S22

@ Feectack O Englen

OPS/images/c16f009.jpg
Create a user pool

o

Do you want to customize your email verification messages?

sk stict

Do you want to customize your user i

[y pm——peTo——

et stict
gy s

witation messages?

et

LR ———

Do you want to customize your email address?

Yool o an SES v onty. s e s SES vt ort o

© Addcumom oM adsvss

© Addcstom REPLYTO o

OPS/images/c21f001.jpg
Join us for Node s Interactive
happening in Vancouver, Canada
October 4- 6, 2017

Node,s*is 2 JavaScript runtime bult on Chrome's 8 JavaScript engine. Node s uses
anevent drven, non blocking /0 model that makes i ightuweight and efficent.
Nodej' package ecosystem, npm, i the largest ccosystem of open source libraris in
thewerld,

Download for macOS (x64)

-
v6.10.2 LTS v7.9.0 Current

Orhave alook at the LTS schedule

OPS/images/c05f018.jpg
Make public X

You have selected Objects affected @ Learn more
0 Folders 1 Objects 1 Total objects 139.9 KB Total size
sunset.jpg
8 39918

OPS/images/c11f001.jpg
Google Signin for 105

Tsnmerss.

it —
saasinin
poro—

P —
[oa—
oy

Mo amorgr S

Get the Google Sign-In SDK for i0S HRdfk | -

ot
ey

e ocommended w1 h G2 S SEK 0 10 ORI 105 Coco 0 A4 0 350 s

counoad he SOk an morulyconure st e & Jr—
e

Download the Google Signrin SOK e
St

Sataim e
e

Oldversions

« GoogleSignin 96400
« GoogleSignin 506300

+ Googleignin S9€2.40 deprecated)
+ GosgleSignin 594232 deprecated)
« GasgleSignin 59K 230 cepecates)
« Google Signin $962.20 Geprecsied)
+ GoogleSgnin S96.21. depocated)
+ GosgleSignin 594201 (deprecated)
« GoogleSgnin 5061 00 ceprecated)

Add the SDK your Xcode project

1. Extoc the SOK rchiv youcannloaded axd copy he followng s 0 your Xoodeprec:

OPS/images/c16f010.jpg
Do you want to add tags for this user pool?

e —

OPS/images/c21f002.jpg
[X} ‘@ Install Node.js

Welcome to the Node.js Installer

This package will install Node.js v7.9.0 and npm v4.2.0 into /
© Introduction usr/local/.

License
Destination Select
Installation Type
Installation

Summary

ne

Continue

OPS/images/c05f019.jpg
‘amishra@asmicchnology.com”

OPS/images/c11f002.jpg
m < £
Favorites 1 AWSChat

2 Recents

£ Dropbox

& iCloud Drive

() Desktop

2} abhishekmishra

3 From Author
Devices.

2 Abhishek's Ma...

Destination:

1 google_signin_sdk 4 0.1 &

(=] Q search

fu]
> [AwsChat i @ Googlennpy..cs framework
% AWSChat xcodepro]
Carttile
Carttile.resolved
19 Carthage
159 FacebookSDKs-108-4.20.2
14 google_signin_sdk_4_0_1

Copy items if needed

‘Added folders: @) Create groups
Create folder references

Add to targets:) /A, AWSChat

New Folder Options

Cancel Add

OPS/images/c16f011.jpg
&

Create a user pool

ovress

o

Do you want to remember your user's devices?

Aways

User Optin

No

°

OPS/images/c05f012.jpg
Files.

Edit

1 Files

Permissions

Size: 139.9 KB

Edit

1 grantees

Properties

Edit

Encryption
No

Metadata

Storage class
Standard

OPS/images/c10f027.jpg
Carrier & 9:24 PM

4 A

Done & facebook.com

To personalise content, tailor and measu
adverts and provide a safer
cookies. By tapping on the i
use of cookies on and
including about co

perience, we use
e o our
n more,

facebook

Log in to your Facebook
account to connect to
AWSChat

Email address

>hone numbe

OPS/images/c16f004.jpg
conss omssmaioncon. o

B oo S —

Your User Pools =D
—

OPS/images/c20f014.jpg
&« comol e smaroncon. ¢ o & E

Rosouree ar

Rolo Pormissions Rev

Policy
iz pmisos by acitngth oo ol documert. For e oo v sy e, o0 v of ol i Uy Wl e To
et o i ey blr 51 Y0 10,3 A Py S

potey e

sctisetityol s

PoteyDecunant

i
“Verston": "2012-10-17",
“Stotenent™: [

i
S "SUat1492078959000",
y
“arn:ans:3: ::con.asatechnology..anschat. thusbnatls"
1
)

U T - |

OPS/images/c05f013.jpg
< = consomams smsssecon 3 o

a
EULondon) &
Ve 111
oo Latmadtes = sompncse
| wnseton r— 0k o |

OPS/images/c10f028.jpg
Carrier & 9:24 PM -
Done a facebook.com [

Bl Login With Facebook

AWSChat will receive:
your public profie.

& Leam More

Continue as Abhishek

& This doesn't let the app post to Facebook.

Cancsl

OPS/images/c16f005.jpg
&

Create a user pool

What do you want to name your user pool?

e pot s o sy 5 sy ity 17

o

s et
- AwsOnasopool

Vesssgo i

o

How do you want to create your user pool?

Review defaults

Sty ovning o ot o e

Step through settings

PO —

OPS/images/c20f015.jpg
< &« comol e smaroncon. ¢ o & E

Rosouree Grovps -

- Summary

o Jm— e
ity povites
oot ki Tovramons | Toatratonstin | e [rr—
pe——
Managoa oicios -
Syt gt oo e o manaod oo st
nopoicios ~
cras Cogto AChan Pocu i USOZIEDS) S ot 1Py | Ramors Pty | St Py

OPS/images/c05f014.jpg

OPS/images/c10f029.jpg
Success.
Login succesfult

OPS/images/c16f006.jpg
I Narme. ‘Which standard attributes do you want to require?

I ot yos s a5 et ol S e o o, L e o e o
| Poscen ot

| o = E

— ==

= b=

= =

| - e

| -

] o =

Do you want to add custom attributes?

e s sk 1 o3 i st i

=3 - |

o

OPS/images/c20f016.jpg
Hil
are you there?

Hello, Sorry I couldn't reply
sooner.

What are you doing this
weekend?

SELECT IMAGE

Nothing much , just some
gardening. UPLOAD IMAGE

UPLOAD IMAGE SEND TEXT

OPS/images/c05f015.jpg
=

Espeaion
s}

OPS/images/c10f030.jpg
CeCou . G
) sttt | it -)
dontypoct Identities

soroncsse P—— =

-

seniy Dut rsted UTG) Lo e

Shomoa 11001

@ Feoctnck O Englah

OPS/images/c16f007.jpg
= corsieoms amasoncom. ¢ o

Create a user pool

Vesssgo i

o

What password strength do you want to require?
-

oot
% R sl crrscir
s oporcs s
Erenum—
Do you want to allow users to sign themselves up?
Yo canchos 0yl it ot sl e 109 PATShs L1 5

[T
 Mlow s o8 prsas >

How quickly should user accounts created by administrators expire f not used?
Yoo chsa o i sz sy 1 st s v st ot
-

L=

OPS/images/c20f017.jpg
< &« comol e smaroncon. ¢ o & E

[——

o I e Nl

a

[2 vscos [+ oo oo IR o [US East (N. Virginia) &
Vewrg 1101

O e Lot ot e 0 p—

() B S008080.AC2-4106 80ADCAVEZFFEDB ot zor7 9z oM saoma S

Veuig 1101

OPS/images/c20f011.jpg
Rolo Pormissions Set Permissions

et ey gt gt oy v ot o, Aty

e ot oty s e ror prisiens Yo ot o gy o0

Oaiicy Genorator

N —— ot

Gustom Poley

e

OPS/images/c16f002.jpg
< conscie.ams amatoncrn 3 o &

- C) e
Onteram @ comoue & wigmion o Ansyes) Aopication Sarvos.
ey @ Joduuu— oy Seorecins
ki [ey s
L € et fro s
ot ciastic Boanstak Snowvar Bastosearch Sarvce. ‘st Tanscoder
o v
€5 omoortoss fomient B ey
B sow Py hed
w0 Goseoupoy B sl itgenco e
s foste -
o o
1B Busivess Procketiy
A) versoin T el rovy
ot sy
8 costmo Gontamacn Ao
os Couamas € et Ot Thnge.
s c pested
o i D Desion 8 2gp Steaming
fosn ke & Garo Dogooment Sopsieom20
%1 Notworkng & Content Doivory SR
P 9 ooy sy oo [} Moo S
Deect Cornect - Mot b
foorsy e
Cariicate Manager s
Oroctory Servce. fessevamunnd
s ooy

tisionsoiis o0y

OPS/images/c20f012.jpg
Rosouree Grovps -

Manago Rolo Pormissions Edit Permissions.

o ot gerrtor ey 1 et ekl Pt ol et A Wet S S s o e, ox el et pokie
o i o Pl U S ey s e

Eoct MO0y
PO .

Amton Resource ame

et

s ononateons

ot ot | (T

OPS/images/c10f026.jpg
Carrier = 24 PM -

Username:

Password:

OPS/images/c16f003.jpg
Resouce Grvps

Amazon Cognito

Amazon Cognito makes it easy for you to have users sign up and sign in to
your apps, federate identities from social identity providers, secure access to
AWS resources and synchronize data across multiple devices, platforms, and

)

‘Add Sign-up and Sign-in

W Cost Your e P, o con sty nd sy 5.
2y manged st ot ot o P rs
i

applications.

Manago your User Pools Jll Manage Federated identities

CH

Federate User Identities

Vi oo e ot yor s con s v
Sk rty povir i 5 Fcabon T, s
ot ounidety oo,y un crwe e NS,

ac

Synchronize Data Across Devices

o o s,y ok 6l ke x

OPS/images/c20f013.jpg
= consoe enamazoncom c L)

Edit Permissions

o ok genrtr oo o crte it o e o Ao W S AVS) ot e, o s e s stng g,
o Bt ek i 0 S ey i s o
Efoct 3k O0y
WS Sorce | Ao Doy 3
Actons - SosctActors

Aszon Rsoures s
w0

P —

prre—

seton Resours

T - |

OPS/images/c06f004.jpg
o0e < 5 ovwest 2cosceemsamarencon.

Create DynamoDB table Taorst | @

01 schers-oss dtabseht oy e o ey ke Tho s ey Ky 4 5 f o v
e o ey oty P, i, 75 ok et o £

primay oy Pty

s BO
o
Table setings
g ot o 1 e o 1 P O S 1S

ke cotat st

+ Nosscondey .
~ Provsonad capaty w05 s 0 e,
B w505 oo veshrd i NS ok "o’

@ Engian

OPS/images/c05f027.jpg
EU (London)

Veuig 1101

OPS/images/c11f010.jpg
B A Ascre) @ orere s

@ sy sres
- B

Pengpate e

P ——

e

+[@ o8|+ - ©

OPS/images/c16f019.jpg
BuglesiXOdQR ¢S Ao bs8dlmRiZQILI?)
o) o))) 3) B b)) B) Bt) Copmthmaomolain s
S P e S

bttt ersesteser|
ks ety e

[————————

e ot
T

e e sopate e v
5 o s e Grocvd e o 58
e roperes 0 i)

@S e 1o 125,
o popetes S35 oo,

R e S)

i
i

Broms o & gaeme e 3o s @i
T T T e

OPS/images/c21f011.jpg
< - corsoemmnamazoncon c () 5

[

Configure triggers

'® Foodbock @ Engl

OPS/images/c06f001.jpg
History

) [osel a2

@ compue

ey
Gt Boriak

B soan

oo Grewsy

B oaanso

Tecon

%1 Networking & Content Detvery.

o ot
Roesa

& wayaton

€6 oo s P

Conty
opsters

Sonic Gatoiog

Tnstos Ao

Varoged Servcrs
SomcatenOscormy Sarveo

@

9 Soosty oty £ Comptorea
rspector &
evesason

iy

Compmcanets g

s
e
Catesoann Savin
-
Qusgn

Atcinigonco
poty

Retogriton
Machno Lewing

et 01 hnge

Gamo Dovsopmont

Mobia Sanicss
Vst
oo
Dieafam
Mot syics

B

Aopteaton Seveos.
SepFuncions
ArGsonsy

st oo

Vessagng

Busnes Prodctiy
Wotocs
s

[y r—
Woksoaces
Popsinan20

OPS/images/c11f011.jpg
< conscie.ams amatoncrn 3 o &

History [] Gowp AZ
ot @ comowo & vagmen 9 Socry, oty 8 Complarco. F] Wobao Socos.
omarem « Joduu— w s
[o e
o e s Gevenatione e
s ciastc Boanstatk Snowvar Oectory Semvicn. Woblo Aayics.
s oy froreon oo
— P Gt
pvaty X P sostonsvcos
& seoe Py i Arrs Seprocirs
M provsed o P
e st vasony
. pret Gt e
Sn oo s
- e D s
£ owe ey soonsee
omarta = -
Jumid L yro—
prover -
- B ooy
%2 Networking & ontent Devory Macos Laarng v
oot f——_—
ey @ BT - 1 Deskion & App Streaming
Ve
Jromanch

Amazon Gamett

OPS/images/c16f020.jpg
L P-4 L) ik 5, 4l 78%M17:03

Please type the 6-digit confirmation code that has
n sent to your email address.

HEHHH

OPS/images/c21f012.jpg
< « comol e smaroncon. ¢ o & E

At Configure triggers
| Contiueewagers: Yo canchooss 1003 g et i vk s becton.
Gortg rcion

= 0t I o —

Bkt | commaimskmancigs v O

et O oA -0
ot o
o o

Foocback @ Engh

OPS/images/c06f002.jpg
Amazon DynamoDB

Amazon DynamoDB s afast and flexiole NoSQL database service for al applications that need consistent,

[——

single-digit

S e e 5
——
- F_ Y
-0 Q] ~©
Create tables Add and query items Monitor and manage tables.
oo orame e amotrmas || Geamimscmsspmmmeu ot ! ek cent it s e
et imriogeoricio s Rl oty o oo

Ly Oynanacs praceeny

vodbeck @ Engish

OPS/images/c11f012.jpg
Resouee Grvps

Amazon Cognito

Amazon Cognito makes it easy for you to have users sign up and sign in to

your apps, federate identities from soci

identity providers, secure access to

AWS resources and synchronize data across multiple devices, platforms, and

Add Sign-up and Sign-in

W Cognt Yoo e P, o con sty nd sy 5
iy manged s ot st o P rs
e

applications.

Manago your User Pools Jll Manage Foderated identities.

CH

Federate User Identities

Vi oo e ot yor s con s v
Sk oty pevir i s Fcabon T, s
ot ounidety oo,y an crwe e NS,

ac

Synchronize Data Across Devices

o o s, sy ok 6l e x

OPS/images/c16f021.jpg
AWSChatUserPool

| oo e

| vnrsgemn

OPS/images/c06f003.jpg
p——
| oo Amazon Dynama i by managed non-iationa dataase senica hat pecvides fat and
= e
-

f—

[P ———
[ra—t
Total capacty for EU (London)

Provekonsdroadcopecy 1 Reservdroadcopocty 0
Proveionedurtecopecty | Reservdwrtocopocy 0
Sonvico health

O Arsmommens arsen [r—

@ Engian

Bost practicos.

2200 Dnam0DB 0y 2016: o 10

How to Design NosQL
Tables and Avold Hot Keys

rpt from:

jmoDB Day
January 20,2016

What's now
+ Ervacosmercs

T g s ogaion
Gl mgaion

Rolated sorvicos
fe—
‘Additonal resources

g s

Dovwoper g

OPS/images/c11f013.jpg
< conscteoms maioncar 3 o

) g tnes vnrrocs

—— —

i oo WA st | ot Bupu it
o S win

i St w05
ety A s

D
/ In-Dopth Guices
s Gt Sy Do

s Copro Y s
s o oprta Gt P

Communiy

[S—
s etio oy
prse—

OPS/images/c05f023.jpg
Upload X
@ selecties (@) setpermissions (3) set properties (@) Review

4408 Target path: testoucket!

» Manage users

~ Manage public permissions
Group Objects. Object permissions

Everyone Read [l Write M Read M Write

s [Proioss R

OPS/images/c11f006.jpg
€ Google Developers

Create or choose an app

< ios
reate orchoose app

AWSChat o (AT e

comasmiemoog A+

OPS/images/c16f015.jpg
ool oms amaioncor ¢ °

S

Your User Pools

AWSChatUserPool

OPS/images/c21f007.jpg
Rosouree Grovps -

- Summary
o Jm— e
ity povites
oot ki [l T ——
pe——

Managed Poicies ~
e ot e ki vt . o can s o 10 ol
[rys—t— S ot | Doty | Sy

[y —e—, S oty | O oty | Sy

ine poicies

OPS/images/c05f024.jpg
fos | [Jun21, 2017 73840 AM st

© noetn ants 21782
B wn2, 2017735220

s o

Opetions Olpogms 25wcem Ok

OPS/images/c11f007.jpg
Developers

gmatcom

sy Choose and configure services

o B T P ————— x
 AwsChat

Coose senvices.
Seecineh Gogle senic ou 4010 59010 your 9p oo

BIE o Seytarmtioes e

OPS/images/c16f016.jpg
< conss oms amazoncon. o

[Which apps will have access to this user pool?

-

OPS/images/c21f008.jpg
@

Storage
s

StoageGatowsy

Ouatasn

Notworing & CortontOotory

Drect et

wraton

Nemagement Tooks

[roemr——

Sty ity & Compianco

e

Conpiaa apons

e Ao

ey
D ppeioe
auasen &

o
poy
Mchin Lo

et O g

Gams Dorspment
pesery

Mot Sacicos
oo
o
e s

)

Aopkcation Servees
SopFunctars

ot ey

Nossagng

Busnoss Prosucty

Ousiacp & o Stearming
onspuces
sessviam20

OPS/images/c05f025.jpg
Latest version v

[Jun 21,2017 7:38:49 AM (Latest version) St

dard :

@ Jun 21, 2017 7:33:22 AM Standard

OPS/images/c11f008.jpg
& eviaper o com. 4 o

€3 Google Developers

Choose and configure services

< o8
 Awschat

Coose senvices.
Seectheh Gogle senics o 4o 10 5410 your sp e

L] o

cLose

OPS/images/c16f017.jpg
B oo

AWSChatUserPool

Which apps will have access to this user pool?

T O SR —

oomame

Topciartia
o ——

pr—
B

et then expeston o)

i s 91 sover s a st BOMLNO.SHPAUTH) Lo

oy st e CUSTOM AUTH FLOW.ONY) Lo

OPS/images/c21f009.jpg
< « comol e smaroncon. ¢ o

AWS Lambda °
Dashboars <
|Functions ==
Funcsenrone - osrpon ¢ Mmoo v LsModtes -
Ao ToDaTD8 Copy Cognla e el o Dynad8 Neiss3 G 20mm0

Foocback @ Engh

OPS/images/c05f026.jpg
e o
<o K 4 conson s smsisnson

5 b [+ o [N ~] e o

[o 72 Stope s 1=

& oetn Ryr—— o

OPS/images/c11f009.jpg
< Google Developers

Enable Google services fo

< ios
 Awschat
1 newseniice

Download confi ies

-

Download and install configuration

el contin confgraion detes, suh s ey and e o e
Stces you st esbed Drg e Googeservice-Tnfo.piist ioyou
Juscomniondd it e oot of your Xeode e s 504 10 et

CocoaPods

Tousethe SOK et youtre PRRR——r—
[T ———

OPS/images/c16f018.jpg
BuglesiXBdafes AombibdlmiRizalli? an
o) o) Ervc)) i)
S seion et
e
* Blntens
[y
- o
* Bmecavstoaysomancns
* Bataces
© Comatnemacontier
@ amrctor
@ e
% oty
R
T
» B
© s
frraap—
Sonagude tocse sm

<35 Swwvors.

ot s ropetes G vesin) ey el . ARG

o s e Grocows e o)
e ropares 0t o) i
@Sy e 1o 5125, 2

o emtrmtd o
i
.
.
i i
i
: o [t i
Broms wrom sswssin Rt e Y -
e L T T G S

OPS/images/c21f010.jpg
« comol e smaroncon. ¢ o

Rosource arovps

It Select blueprnt °

cotamovioen it st e s i Gt ey S s

o et s o byt st s bt e e e e, Bt
ot ot e 55

o

V100138 > »

Knesisfrenose-sysiog-to-son
alova st sdcfactsiil

(oS Spogematio SN BaASK oS00

= = s
B

onfg - chango-tiggerec

inspactorscheduled-un olora-sl- kit sdcrviaskil
A ottt ey
Conpasion durge 0 ECA o | Schocus g Anaion et Dusirt 0 i kit
o £l

oo sty oo oo & | | oo +
lox-make-appointment ‘ses-notfcaton-nodels

simplo-mobile-backend
Schoia ot aporinor. s 0 Ao 55 nceationrcie o
A Lot e el mebiasicunassitots | pckiog bunios onpants 1
ongon insaary Oameon. .y
= B B

OPS/images/c21f003.jpg
< 3

| w ENES
| Final

| Initial
| ThumbnallGenerator

Favorites
3 bropbox
& iCloud Drive
) Airbrop
[Desktop
{3} abhishekr
[From Author

hra

Devices
L2 Abhishek's M...
© Remote Disc

1 node_modules

#v)| &
> €] indexjs

Q search

array-parallel

> CEEET N) errey-series

1 async

1 cross-spawn
129 debug

= gm

I isexe

19 lodash

9 Iru-cache
B ms

19 pseudomap
1 which

1 yallist

B e g

OPS/images/c16f012.jpg
e Which apps will have access to this user pool?

OPS/images/c21f004.jpg
< « comol e smaroncon. ¢ o &

Clemss s oo tion o
rom (O sameamassmre oo e o
ol D cormomcamamnnoe e
dnoios | O e ——" i
e | o T
vt | O

R o nsuoon

O o v oo
Ju—

OPS/images/c11f004.jpg
- Ao

+[@ o8 + -

OPS/images/c16f013.jpg
< = corsieoms amasoncom. ¢ o

B - .

Create a user pool o

— Which apps will have access to this user pool?

00098ty 050 b g 1033 psonl st o o e k.

Vesssgo i

e e
o e
= T

e |

OPS/images/c21f005.jpg
- Summary
o Jm— e
ity povites
Ao et (Tremissons) ot rttoraio. Acess A Bevon sesios
pe——

s orcen ~
e 0 My s ot v st . Yo can s o 10 ol

PSS ——. St | Doty | Sty

inepoicies

Foodback @ Engh

OPS/images/c05f022.jpg
Versioning Logging Static website hosting

et s g st o o s ezt v s
oo e o o o
Advanced settings
Tags Cross-region replication Transfer acceleration
ot s s con st sanstcopog s o e oy sy ook
n o s e S g [t et

[R Lo

OPS/images/c11f005.jpg
Google Signin for 105

Tysemaerss.

p—
Pt
seasomn

Gt

o —
Py

Mops umongr S0

Geta configuration file -
e
prrTEeR—— i
et ettt s |25
ot e e e
=
11700 600t o addons! senvices wihen you crsted th confiustn e, you contned 0 copy 10 our et -~
I b |

Add URL scheme to your project

10the Projoct > Toget oo URL Types pnel,ciate e m and pste your FEVERSED_CLIENT_TD o the AL
‘Schemes i You can i your REVERSED_GLIENT_10 nhe GosglaService-Info. phsat i

Next steps

o hat youedownloaded hepojctdependencics and conired your Xeode project youca o the gudoto
3 Google S 0 your 05 9.

e v 20 oo G, s oS4 Pt ' e G e it

Cotpavesteeonsr 2206

OPS/images/c16f014.jpg
Create a user pool

Vesssgo i

o

e

P ——
[—
[Ee——

Toggers

et

OPS/images/c21f006.jpg
c o &

Attach Policy

OPS/images/c21f019.jpg
< « comol e smaroncon. ¢ o & E

T —
e owsta | [| et -
Functons

s cson o s e U v i i overde s .

oo Contunion | Toggers | Tgs | enorg

Codoeny e Eatcscnrioe

2 Lar ceyne - reastreCasyne”
3 var S - reauireCons 5030
3 ar gu = reqsreCigr' suassC{ insggick: e
5 var GeiL - reauireC util”

a
5

Vo WAHEIGHT - 400

1L/ get roference to 53 client
2 s ren W30

18- exports.hendler = functiorkevent, content, callbace) {
16 /7 Reod options from the even

37 ool e e o evnt, uL gt (o S5
1 source and destination buckets

2 lar Srchucket - vant,Recordald) 3. bucket ane;,

2

5

i

= dstauchet - components(3] .3

%)

Foocback @ Engh

OPS/images/c21f020.jpg
It tost ovent

s h oo e 3 e 0 e ot .Y i 8 v 3381 b hgs Contiger

P —— <

L
y: *93SE0450-AC21-410€-BGAR-CALIG2FFEADR. pog”
fon

«
+ rarmions53:com asmtechology.omschat. 105",
con.asntechralony. nschat iages-,

¢
ncipella-; e

5 ¢
EAAPLEL23/5678cbcde g 3 bt swesone o Sty ASCOEE
TG NPT

nuseeastrn,
| “iojeercrestesion”

i L

“ansiss

OPS/images/c21f021.jpg
< « comol e smaroncon. ¢ o & E

AWS Lambda [T e —

oesnvours Y - [
Functons.

Code Comiguston Tiogers Togs Momtoring o

2/ dependencies
Lar ceyrc - reasieeCasyne”
Var S < recutreons 4031
Vor gn - reareCigu abClossCl imogelgick: trve 1
Vor GRS~ peauireC i1 3;

Lo WAHIOTH - s00;
Ve WCHELGHT - 400,

© Execution resul: succeeded (ogs) ELL)
o e o v 1 e o o o e, Lo e e ey s

Summary Log output

T sk st 03305 o oo o, Thes o s o i o CusHekch 392

Codo SHA8. 850K TOECHo45ie
Caresbonsn o i et ik v 0w 4 ol 00010

s oz s 275 16 “ o otons from e

CCemmsesion: 2.

Rescces 25610 Frasnter: soscPis: .08),

OPS/images/c21f022.jpg
« comol e smaroncon. ¢ o & -+

[r—

[P —

o I e Nl

a
Eul -) Usesm L vegna
O e oot 1 - =

[per—————————— e e e

OPS/images/c21f015.jpg
~ Advanced settings
These settings allow you to Gontrol the Gode execution performance and costs for your Lambda function. Changing your resource settings (by.
selecting memory) or changing the timeout may impact your funetion cost. Learn more about how Lambda pricing Works.

Memory (MB)" | 256 v e

Timeout® | 4 2/min 0 2 sec

OPS/images/c21f016.jpg
rooGroups + %

P Review
ot s e e yor L rcion i os can o ek 0 6 g 2 schin W you s e c et fnchon >
carpetotr s s
|Revow Tiggers e
. s3 erstios
comasmecmogyawacames v
o Obfctrested
Lambaa function P

Emeonment aristion

oaRsoucs

oo s o an St

OPS/images/c21f017.jpg
< « comol e smaroncon. ¢ o & E

[——

o I e Nl

a

[2 vscos [+ oo oo IR o [US East (N. Virginia) &
Vewrg 1101

O e Lot ot e 0 p—

() B S008080.AC2-4106 80ADCAVEZFFEDB ot zor7 9z oM saoma S

Veuig 1101

OPS/images/c21f018.jpg
P —
PR [
racto —
T Ty
— e
s ooyeomoaneoen oyt

Foocback @ Engh

Nodois 10

sane

snnpes

Pra—

-

OPS/images/c21f013.jpg
[—

e Configure function
ot vges AL o const o ooy et o, Lo st L o
| conie hncion
wscrpon | Garactothunbest fom S sk
[G
Lambda function codo

Provco h o foyour rcton.Usnh ooy cod dogs 1ol i e o e 5. oo o
v,y on o s oo oo 5021 Lo e i o Lo At

P T—) -

Funcionpockege’ |2 Uploed | ThmbnsiGaorstor s,

Yoo o Enicmnk Vi s Koy 5k s ko s o our i o, e sl s confain
g o 10 ATt o, L . e o 4 TS, A A 50 KOS
s e cors's encytion .

P —

Lambda function handlor and role

OPS/images/c21f014.jpg
Lambda function handler and role

Handler* index handler

Role* | Choose an existing role.

Existing role* | AWSChatLambdaExecutionRole

OPS/images/note.jpg

OPS/images/Wiley_Wordmark_white_fmt1.jpg

OPS/images/c21f023.jpg
il 95% W 19:26

AWSChat

are you there?

Hello, Sorry | couldn't reply
sooner.

What are you doing this
weekend?

Nothing much, just some
gardening.

UPLOAD IMAGE SEND TEXT

OPS/images/clogo.jpg

OPS/images/correction.png

OPS/images/cover.jpg
Abhishek Mishra

Amazon
Web Services

for Mobile Developers
Building Apps with AWS

Covers both i0S and Android Devices

+ Learn about the AWS ecosystem

+ Get the most out of popular services such
asEC2,53, DynamoDB, Lambda, Mobile
Analytics, Device Farm through the
console and command line

+ Build a chat application in Swift and Java

OPS/images/c12f036.jpg
Unnhtcatod i | Cope At e | s

Aahtctodrlo 0 [Sop A | G ro i

» Unauthonticatod identits o

~ Autrontcaton providors 0
A Gt ot oo et b i Aazon Cooo Sin oy b1 .yl e s 0 sl g e o e ik
rda. v o sech s st on corrs e Yo om0 410 ey L 0 0t 1 03 s S0
i A G Lo o sk i ey rodrs.

Comie | Amazon | Focibock | Googer | Toite/Dips | OpenD | SAML | Custom
oot i ooty Pk et ers oA your Gy Use P by e e Uss Pk 10 A Gl .

[
ot A2

rovcienio

Pr———

Autnorticated roo seecton

7t 1 otk o o b i oo 15y et e oo i it on e Th s 10
ey e Toy o o by a3 oo e x| Al e o v o, o 430 G sty Do w1

0 CltonoAR g Lo

OPS/images/c19f001.jpg
Friend

id
user_id
friend_id

User Chat
id id
username from_user_id
email_address to_user_id
1 1
Message
chat_id
message_id 1

message_text
message_image
message_image_preview
sender_id

date_sent

OPS/images/c12f037.jpg
DeO=m ¢ 3o

Table View

Content Dynamic Prototypes

&1

Prototype Cells

Style Plain
Separator Default
+ [Default

Separator Inset Default

Selection Single Selection

ol ol olo1o]

EditingNo Selection During Editing [

OPS/images/c12f032.jpg
nput tost ovent

Useth o ot o 5 e 01t e et . Yo a0 04 h v 38 <hosn Conlur s
vt 4 A Mot 330 5 tr B i 5.

Sampa evnttompite | Cognto S T -

-+ “oooglevseroata”.
ey merei s
o cost-1: BT 2510-Aeh2-oLdS CeOSSHSEONE
W

“onisheazsosetechnotogy. con”,
“amiswatasmtechnolony o
“replace”

Sa765047-b0e7-4730- oo BEGESelGeck

OPS/images/c18f024.jpg
&o @ s T 4l 86%H 21:51

Choose account for AWSChat

abhishek mishra
abbymishra@googlemail.com

Add account

OPS/images/c12f033.jpg
< = corsleoms amasoncom. 3 o

AWS Lambda O Y T e ——— ARN s gt 7OV ZRUTET A ASGCER U TDyan08
Dasnboard o+ (2R | rctors -
Functions prmmry
Code Coniguaton Thogers Mockorng o
Cosmontytpe | Estcodnioie 5

3+ exports hendier - function(event, centent, callback) {

© Execution resut: succoeded (oge) LEL)

T mon ko shoe it e e i st Lo 5 80 i st o o i

ety Sy

st {

Summary Logoutput

oo s g cat st .o om0 v i CosSHEn 9)

P —
o Carend o i L eton, ok s oY oo 09 70,

Friman

Poqustio 2058 1001147005 ST Bt 24 M-SR erson: UGS
ety B S et —

outon E0sare

OPS/images/c18f025.jpg
<)o & comonam amazoncom ¢ ° >

JE— ety oot
Wy o Identities
sl csca pe—)
J—

Pt papage 1 Showig1-2012

oty o7 trkoons
[e \
Soomen 12012

@ Foociack O Engen

OPS/images/c12f034.jpg
Resouce Grvps

Amazon Cognito

Amazon Cognito makes it easy for you to have users sign up and sign in to

your apps, federate identities from soci

identity providers, secure access to

AWS resources and synchronize data across multiple devices, platforms, and

)

‘Add Sign-up and Sign-in

W Cost Your e P, o con sty nd sy 5.
2y manged st ot ot o P rs
i

applications.

Manago your User Pools Jll Manage Federated identities

CH

Federate User Identities

Vi oo e ot yor s con s v
Sk rty povir i 5 Fcabon T, s
ot ounidety oo,y un crwe e NS,

ac

Synchronize Data Across Devices

o o s,y ok 6l ke x

OPS/images/c18f026.jpg
& = corsomam pmatoncom o o

[—— ity ok

o Identity dotails
Resunsl e
owscemea T

Lkediogs
acconss o com

Datasets

osrame oo cnssatre mosmstre s
[s o amomE

OPS/images/c12f035.jpg
< = corsleoms amasoncom. 3 o

[

) reswna dmnes Usrros

e Mobde Anais share oot do ot mocly Gting Started
sten 2| g 100850 st | Crango 0% e
Gaig S wir s
et S wn 05

ety A e

/m" SHUD S G GOSN S W gt s

In-Dopth Guies

[——
s Copro Y et
s o oprto s P

Communiy

Cooro oo Fem
s ety
ooty

OPS/images/c18f027.jpg
o
Services ~ Rascurce Groupe = %

) resmtiten it -

iy poo

ortion » 0 . 1087080 26104042 165 SSSSRSEN0 > Q003

ortoms Current dataset - googleUserData
p—
| denity trowser = o
Pt perpone - | Showa1-2012
o ot

Snowes 12012

@ Feoctnck @ Engiah

OPS/images/c12f028.jpg
Lambda function handler and role

Mondrs soxnancer o
[en—— <o
PO ')

~ Advancod softings

o st a0 o 5 s e an 3 ot LATSA T, G0 s S RS O
o o) o rana Ty Sy L1 oS, L e T A g W,

OPS/images/c18f020.jpg
arouse

Summary

e g
o [
poicn oty
|ty v

Ercoptontors

@ Foodbock @ Engien

S ————
o0c

rostsoraT UGN

secus googacom

Py —

PN A
Lyerre—

OPS/images/c12f029.jpg
Sarices | Fawmircs Grou

= corsleoms amasoncom. ¢ o

Lambsa > Nowectaneingbuepit coro s e

e =
bl e T o e S R R
e S
o e =
) S spern —
31 Stosme oo
o
e -

e—

o0 Resouce

prE—

T ——

OPS/images/c18f021.jpg
From g e cas sy ot f s oy s, A Gray okt Pt 1 1l 13 VR0 1 565 Th 1008w s
iy oy oo 2w oo e .2 e o i Oy Ui a0 1 S5y . o A b sy o ey gk
m s po whr Aain o Ao o i S Leam v i 403 A5 ks o A Coy .
[P—
B e T T—
Unsdbentistodrlo 0 (Som St e | exasren

Aabatctodrto 0 (S0P A) 1o

» Unauthonticatod iontes o

~ Autrontcaton providors 0

201Gt g thertcaon o i ATaron G S ry ke o,y o s s 0 el g s of e
ora v o ech ot s6icarn o e, V10 203001 0 11 Bk 4 10 e A A A
i A G Lo o s i ety o

Cognte | Amason | Facivook | Googer | Twtar/Opts | Oponi® | ML Comom

AnaronCog con e v e iy Oprk G s, e o b o ot i Ay can st 5 prer o ko
Lo e st g O Corract s

© scnstsgoogcon

» Push synetronization

» Cognito Streams

OPS/images/c12f030.jpg
< = corsieoms amasoncom. 4 o

Resource Grovps

AWSLambda s> Resers Py
Dasnboard ISRy e
|Funcions v

Functonsan Pre—— < Reiee < ot - Lbodts <

ASCoptUsToOamaD Copy Copno e dals o Dyamd . Nosonas Gt homoz

OPS/images/c18f022.jpg
ODWO ¢4 XD AR ¢sACw- btSslEREQL? i
s i)) i) Cars)) 3 sy o

s D0 et Bmsesricnsin x © G 8o pner < peten o
o

3
i

© L smpctty
> Eoamechoaycomawsct ot -
> Ernmechagy comavich)

S Cp Rl s

B Samnsmpar
o cotrm savipet

+ Somipmp
> s o

s - KT

R e)

] e © reseraras @)
T T Ty e
T e T (T

OPS/images/c12f031.jpg
oroup

AWS Lambda O Y T e ———
Dasnboars o+ (2R | rctors -
Functions prmmry

oo | Gontiuraton || Tiggws || Monkorng

2
5
15
5

1
1
=
o
z
2.
2
»

Yo et ot o ko st sl o e i o These s 1 540 crfgeaon 03 i 5 0 S rcion
ot Lo 1, ot g e i s v 3 KO o il 0o PP

Cosoontytpe Estcosninine 5

o do = recureCtyro-doc'y;
consote. i Logsing function: add/update usse §n Oynane”

exports hendler - function(event, centent, <allback) {
console.logC"Received event®, JSON.string fyCevent))s

17 reck for the event ype
6 CeventeventType < "Syncteigner’ ¢

1/ Chck 1 ehis user s ever been created before
F Cncne i even otoneiRecords 5 “enalh 1n avert.dotosetecorés)
¢
vor @ - e doc Oymone
Vo tobiokne - Ui
ety
O event.ddentityte,
errans 3 evens.datasetRecorcsranenewialue,
oL odir s+ evene GatasenRecords.anal menialue,

»

o goroms - ¢
Tobtevane” : tovlehone,

»

ARN s gt 7OV ZRUTET A ASGCER U TDyan08

o

OPS/images/c18f023.jpg
86% M 21:51

AWSChat

Enter usemame

o
7

Enter pe

SIGN UP LOG IN

Continue with Facebook

G signin

OPS/images/c18f019.jpg
Rosource arops

© You havo frishad croaing an OpeniD Connoct provider.

x
s o e s et M 0 i e b 'k 058
p— et ok e s o Ol oot o
s === Eliciie
s E Pr—
|mtyproisos () prtamn s s Crton i ¢

s 0 seertsguogacon o0 Conct ir.on 180737 UTCA0100

eremeontos

@ Foodbock @ Engien

OPS/images/c13f004.jpg
Wt o manage your data bosod on what s

Capy seting rom a eisting bucket

Create anew bucket

Ouss s gty cotaras
e sy

OPS/images/c12f043.jpg
P

Carrier 7:04 PM

-
Friend List =

testuser3
03049143@mvrht.com

OPS/images/c19f008.jpg
Oynamade == Message Goso aame
‘ Actons
pae—
| S Ot toms | Mot Noe | Gocy ndois | Tigos | Acsmcon | Tgn
[— . Recontalerts
oot Stroam dotits
Sl Fo—
[Vewpe.
Mansgessom.
Tablo detais

—
Py partonkey 55902
ey st xoy
Time oo stute OSASLED Mansge TTL
Coosondta Ao, 20178300 P UTCe1
Proviicons wod copciyunts |
Proveiansd witocopctyunts |
Storopesasinoron 0oren
Region U5 (Vi
Amazon s Namo (M) s i o 1700128248027 abioosso

a5 v it b, Ty e S pdeay, o ey s,

OPS/images/c13f001.jpg
Hstory

) =l
= @ comoue €5 Owvelopar Tocks.] Avpicaton Servces.
ot & covomr Son s
— -, — -
o e oo e
il foroad el
e — b
. Sanpeces
oo) wsaarg
[) vanagorent Tocs ‘Smpo s e
g sr can Joiotimioisolil
— ym— b
o e -
et s e
Sricesta froraralil
€ onoms bt
A0S G temet O Tings.
ocon —
EnsiCoche. 9 Secuty. identty & Compience
feant e € Contctcanier
B Nreot oy o
P et & Gmoaconnt
OmectConnect S Amazon Gameltt
) Mool senvioss.
& wgraton Mol Hib

Aoptcaon DscovrySevicn sy

OPS/images/c19f009.jpg
— g o
g [SRET=N [GrostonTimo =
™ e —— 20170409 1830 UTC-0100
Poscen] o0 01 TG
ety ey EEr
RO — sironse 1scouTc.orce
[——

@ Feonck O Englen

OPS/images/c13f002.jpg
Want o manoge your dta bosed on whatt i instod of wheo s stored?

(3 ovicnopeciconmis M Dscovroreweonuss § Qukios

You do not have any buckets. Hero is how 1o gat started with Amazon S3.

||
(Create a new bucket

s et s o v

Upload your data

Aty o sk, o o oo
s o eyt poo e v sy

)

Set up your permissions
oyt o prmsrs onen s e,
[iind oot i
s

OPS/images/c19f010.jpg
T —

- Summary
] Ry P TS ————r
Goun nsance Pt A

peteame ctons
crei o Aaaririn oo e WIOZZS) St | Py | Pomar ety | Sy

® Feonck @ enh

OPS/images/c13f003.jpg
Sarioes')| Fammroe Groiya 11 %

Wt manoge your data bosad on what it i nsted of whero s storod?

(3 sviehomeciconmio M Dscovrboreweonuss Qv

a
oo Tnom @
e o o 72
[FpSe—— - pra—

OPS/images/c19f011.jpg
Set Permissions

St oy e, rate oy s s ey A oy . e ko e o s Yo con e e iy o
o oo o1 v o o o, 58 S 103

‘OPolcy Genorator

N —

Gustom Poliy

OPS/images/c12f039.jpg
BB A o) o sc e ey NS n 1 5

e

R L e Ty
S ot
R —
[

| Prapecets

—>| Navigation Controller —9->

Tablo View

@ O Ve s Bhona7 (00 1

[

ortpecess
Table View

OPS/images/c19f004.jpg
&« comol e smaroncon. c o

PE————
| ousrvonrs Arazn DynamoD i a Ay managed no-wlatons daabase sendce tha peovides (st and precictaie

o St T ——
o < e

Tables and Avold Hot Keys

Bost practcos.

Rocont alrts

erpt from:

moDB Day
[— e - January 20,2016
Total capacity for US East (N, Virgnia)
Proiensdnsdceocty 1 Rossndrodcaossty 0
Proaneawre oty | Mesensawrtocoosty ©

What's now

Servco health
o oue * ol on
PR T R pe—

Vo s e o Rolated sencos

Foodback @ Engh

OPS/images/c12f040.jpg
< = corsleoms amasoncom. 3 o

[— User coue oaimo
o Overviow ems Movics Alarms Copacity ndexes Tiggers Accesscontrol Togs.
e a x
pae— - [e o
o Soon Tt i 2 Vg1 e
veson
o e

OPS/images/c19f005.jpg
< &« comol e smaroncon. ¢ o & E

Create DynamoDB table o @

Oy schana o dtoos oty o ol v sy oy, Th ' by v o5t
et et e g e

[——

0 we BO

Table settings.

ol o ottt vy ot s winyou . Yo sty s ol e e o e s o
P

P ooyt e 0wt
B e 9 e el g S e s

Foodback @ Engh

OPS/images/c12f041.jpg
Carrier ¥ 7:04 PM
& Friend List Add friend
testuser3
03049143@mvrht.com

testuser2
7963yl+8ep5wj2uciddg@sharklasers.com

testuser1
03047433@mvrht.com

OPS/images/c19f006.jpg
Table sottings

vt et v oot ey 0ot v your . Yo oty s ol A g o e 4541 o

‘Secondary indexes

Neme Tpe Pastenker Sanike Propcied Aurbutes

Provisionod capacity

s capaiy s [—

[S—

'O Engien

OPS/images/c12f042.jpg
< = corsleoms amasoncom. 3 o

Rosouce Grvps

[— Frend Cose oamo
| " & Ovorview Moms Meuics Alems Capocity lndexos Triggers Accessconol Tags.
pae— st e o
o e o o Vg 1103 eme
o s
v

OPS/images/c19f007.jpg
< &« comol e smaroncon. ¢ o &

Oynamade = User oo aame
‘ Actons
pae— —_—
| S Ot toms | Mot Noe | Gocy ndois | Tigos | Acsmcon | Tgn
[— . Recontalents
o e Mo Gt aama e oo k.
Stroam dotits
Vewpe.
Mansgessom.
Tablo detais

Py partonkey 5590
ey st xoy
Time oo stute OSASLED Mansge TTL
Coosondte Ao, 2017 7232 UTCH
Proviicons wod copciyunts |
Proveiansd witocopctyunts |
Storopesasinoron 0oren
Region U5 (Vi
Amazon s N (M) s s s 1700128248027 b

a5 v it b, Ty e S pdeay, o ey s,

OPS/images/c19f002.jpg
History
p—

@ compue
62 Conaer s
Gt ¢
Sas Borsac

€ DmoperToos
cobuis
CosOugoy
CosnPpainn

) Management Toos
Coutinen
o
oty
Opieds
Sona Catoog
Maroged Senices
AopieaonDacorsy Sarion

9 Socusy. oty & Conpianca
ropecir
-
DraciySanicn
Vi 8 Skt
Complancapers

i

&

B

et O hinge
ansiar

Gamo Dovopmat
e

Moo Sanicss
Vasioks
Corto

Ve sesics

B

=)

i}

Appteaton Senis.
Sup st

Py
[sicon

OPS/images/c12f038.jpg
BB A s oo se v nereg NS i e 56

il

]
- == 8 0T

H roller
i s
Bt :
2 5008
| Bowememe 4 e s

|

o)|[® P T T @B

OPS/images/c19f003.jpg
< &« comol e smaroncon. ¢ o &

Amazon DynamoDB

7d flexible NoSCL databese service for & applcations that need consistent, sngle-digit
s b et model and reiable performance meke it a great it for moble, web, gaming, ad-
tech, loT, and many other appications.

Amazon DynamoDB s a fast
milisecond latency at any scal

[p—
Greate tables Add and query tems Monitor and manage tables
oo 0D s it i St sty Ddrrs O et D09 . s ANS - S N
et bty Bt 53t ot s ot hrgre YO Lt O e ot priee
= — - s
[—— openo0n 1 wen s

@ e

OPS/images/c18f006.jpg
Google Developers

Google Sign-in.

Generate configuration i

OPS/images/c18f007.jpg
Google Developers.

Enable Google services foryour app

 Androis
 Awschat
 Tnewsenvee

Download config fles

Download and install configuration

Thele contanscefiurtion s such s keys snd denifrs, for he
sevces you st nsied. Al dnriosdo oy e googeseices o
e a2 mobe module ecton e Aok o

Implement your new services.

FELAELOE 40164151 60154150111 17181 77165:00144152:0A:5

OPS/images/c18f008.jpg
DWO ¢4 XDA AR ¢»ACw- PsSslBREQL? 3

B cosmscnae nsovc roscs oo v
Ry
* e
-
B
- B
" Emin
=
B ananee
Gt i

N e

|

» G b

© G i
Sigrare

i i

Comaarde H

Ggrcpoperis ;

S ader H 7

Bram H | e o

Ssetinas e =

+ s s 3

G ettt) |

R e)
T

T e e———— @ ties e coon
T e T o e el

OPS/images/c18f002.jpg
Google Signin for Android

2 Scrol1o1h bttom f the packoge st and seec Extas > Googla Reposiory. Th pockog s conrloadedto | <ot

Lve— faneeiiy
U ———r

e ot ooge ool sevces carcotmte

i

Stintagratng. “This guide s written for users of Android Studio, which s the recommended development environment. SR

stz Mive g

et tomen o

S O Usr s O 5. Get a configuration file -alad

o P

bl Sl At ccrs ek tho bt blow 0 ge conturaion o 0 30d 1 your e O Z0 et

Addiionsl Capabiites The configuration file provides service-specific information for your app. To get i, you must select an existing project for L

o bt Yot 9P et et e, YT e 1o Rl PRCKenae o o 39,

T A ———

Authenicaing Yo Clntfornformston

e
e

f— Add the configuration file o your project

Copythe geante-services.fsan e youjot donoaded intothe app/ o sl rctoyof yor Ancicd St
profet pen the ko Studo Terminl pane:

S ov path-to-domnloadsgongle-survices san 3pp!

K. oty oty Gosle 54 o o oo e contpain o 3 kip s 10 Gong S
Goes ot e e coniueaton et e i ou project-genraing the e porfoms e ey

OPS/images/c18f003.jpg
<) Google Developers

Enable Google services for your app.

fose Create or choose an app.

< Ancroid
Create or choose app. AWSChat 2 O et o
smehwbacmanhn -
s

3 Google Developers

OPS/images/c18f004.jpg
€ Google Developers

Enable Google services for your app.

somrscamaleon

S s e Choose and configure services
o Yot cnfoutng e AWSCHS a5 e pciae e semchnlycom macha x
 AWSChat

Choose services
S i ool sanicos oud e 0 504 your 99w

“ e a

Google Sign-in

TouseGol S5 younnod oo SHAT ot
St cotite 3 e con i 1 ANl 3 Pk

OPS/images/c18f005.jpg
oogle Developers

~ AwsChat

Choase services
Sclectieh Google senices youd e o940 your a3 bl

24

Google Sign-in

Tous Googe S you et rovi b A of i
g canfiea o e ca st 30 ORR s A9ty

FO1AEL0E 149:64151160:54150111:71181:77:65:33: 44153 0A54:71)

[T

ENABLE GOOGLE SIGN-N

OPS/images/c17f021.jpg
-

dentity poot PR
- Identity details

)

Ukasiogs
o tssaasicon

Datasets

[pp——r
Coesaac) Lot mitos U1C) tomse o) B

OPS/images/c17f022.jpg
Eanidoty oot

dartin o . CoRET2 6204010 0200 4O > cbanczatta

Do Current dataset - facebookUserData
| 1aonty browser —_ s
er [

Showing 12012

(T

OPS/images/c18f001.jpg
LK Default Preferances.

a Appearance & Behavior > System Settings > Android SDK
Appearance & Behavior ‘Manager for the Android SOK and Tools used by Android Studio
Appearance Android SOK Location: /Users/abhishekmishra/Library/Android/sdk Edic

Menus and Toolbars
System Settings

[esaie s «check for updates.
T oy
WG Los Not Installed
Androd Auto AP Simultors 1 Notnstaled
Androtd SOk Android Auto Deskiop ead Unit el 11 Notnstaled
Android Emulaor 2600 ntaled
Android S Plaorm-Toots 2504 nstaled
LTI Android SDK Tools 26.0.1 Installed
ath Varales Documentton for Andrld SOK f Not nstled
Keymap Coosle Py APK Expansion brary 1 Not nstaled
b Goosle ly iling Urary s Not nstaled
Goosle ly Licensing Ubrary 1 Notnstaled
Plugins Google Play services 39 Not installed
Suild,Exccutio, Deployment Google e rver 2 Not instlled
Tools Intel x86 Emulator Accelerator (HAXM insfaller) 611 Installed
NDK. 14.1.3816874 Installed
@ supportRepository
Consrinitayout for Andrcid nstalled
Solver for ConstraintLayout Installed
Android Support Repository 47.0.0 Installed

(@ _Google Repository 6 nstalied)
) Show Package Details

0 cce | oy | T

OPS/images/c04f035.jpg
ﬁ AWS Command Line Interface Setup

friramazon

webservices

Welcome to the AWS Command Line
Interface Setup Wizard

The Setup Wizard allows you to change the way AWS Command
Line Interface features are installed on your computer or to
remove it from your computer. Click Next to continue or Cancel
to exit the Setup Wizard.

S e

OPS/images/c04f036.jpg
Microsoft Windows [Version 10.0.10586]
(c) 2015 Microsoft Corporation. ALl rights reserved.

C:\Users\Abby>aus help

aws

AAA

Description
Kok R R A

The AWS Command Line Interface is a unified tool to manage your AWS
services.

Synopsis

-~

aws [options] <command> <subcommand> [parameters]

Use *aws command help* for information on a specific command. Use *aws
help topics* to view a list of available help topics. The synopsis for
each command shows its parameters and their usage. Optional parameters
are shown in square brackets. G

OPS/images/c04f033.jpg
ece 7 abhishekmishra — -bash — 96x11

Last login: Mon Jan 9 16:17:30 on ttysee®

Abhisheks-MacBook:~ abhisheknishras aws configure

AWS Access Key 1D [ioxkiorkboktookamokEQTQ] : AKIAIOARKFMFAU34NQRA

AVS Secret Access Key [siokxsmckaionkfrpp] : LEJPCUnkTaClt+GXDily)74nNsRakHKx03STUCIS
Default region name [eu-west-1]: eu-west-1

Default output format [None]

Abhisheks-MacBook:~ abhishekmishra$ I

OPS/images/c04f034.jpg
Rosourcs Grows

s
Roee
posces
socoun saings
s et
P B T e m—
Uastiogn 2017010 02207C
Nou
Novo s

Aecoss oy croned Lastusea s

AMAOARGHEAMANGRA 017018 192UIC WA etve | Muwpoe %

S5+ keys for AWS CodeGommit

X @ Engien =

OPS/images/c04f027.jpg
Rosourcs Grows

Soot oot

Fucoment s

Keypars

oot Groups

L Gongraions

'O Engien

Crase ey Grovp [T o0
Q copin: st ° e
o o s e e ourpon
ey [, e [SS————r—rrT)
==
oo 0 protecat porcrange Sourea 1
s o0 2 o000

OPS/images/c04f028.jpg
P -
= 2
=

S
e—

i Descrvton | St Crecks

el pramcrs.
s . Sxccoty o 90

Euaops

fe—— y——

tannvonizaTs NSRRI
e e = O

Peto— s

ansom Sy

PR
ot o
Timinen [y

o0
° Torer

et

[——

% s,

OPS/images/c04f031.jpg
Change Instance Type X
Instance ID i-0636241c96edb1551

Instance Type t2.micro
EBS-optimized

OPS/images/c18f017.jpg
< coraonams masoncen c ° 6 6

Sorvices ~ Rascurce Groups

Configure Provider
[STeRna— [o—

[ey ——

L N —"r

Motencet (4730 b0 s66com160 0

— - |

OPS/images/c04f032.jpg
eoe > abhishekmishra — less « aws -- help — 98x29

AWs () Aus ()
NAME
aws -
DESCRIPTION
The AWS Command Line Interface is a unified tool to manage your AWS
services,
SYNOPSIS

aws [options] <command> <subcommand> [parameters]

Use aus command help for information on a specific command. Use aus
help topics to view a list of available help topics. The synopsis for
each command shows its parameters and their usage. Optional parameters
are shown in square brackets.

OPTIONS

debug (boolean)

Turn on debug logging.

endpoint-url (string)

Override command's default URL with the given URL.

OPS/images/c18f018.jpg
Sorvices ~ Rascurce Groups

Verify Provider Information

Usn o ko umop o vty o o o . Losr .

s sty i oo ca s yous VS o 19 i 8ot g, Wb h s ke e, o st
o o et ok o

hmaty G
ey o 200206210 201802
[R e ——

OPS/images/c04f029.jpg
Change Security Groups

Instance ID:1-063624196edb1551
Interface ID:eni-b0636072

Select Security Group(s) to associate with your instance
Security Group ID Security Group Name

sgatassede defaull

sg-6057a390 launch-wizard-1

Description
defaull VPC securily group

launch-wizard-1 created 2017-01-08T21:09:24.221+00:00

cancel ([

OPS/images/c04f030.jpg
St

-
ey g
Fucoment s
Keypars

oot Groups

L Gongraions

'O Engien

Secomy ot 25

———"

Kayposrame

° e
° totor

%

e p———
P

Sy, 2017 812939 M UTG s .

OPS/images/c18f013.jpg
< coson e smazoncon ° °
ity 1D O s-5058-1:387290G7-b0GT-A750-003-B5SR1G0CES S A

Unsaetistoario 0 [Som st o | Gvsnren s

Acncntodrlo) (Sor St o = e roe i

» Unauthonticatod enitcs o

~ Authentcaton providers ©

ez ot 001 ko enicasin mods i ATazo Coar S ry sl o,y i e s o el i of s
v yo on sy ot oS s, W A 2 S5 810 B 4 0 e A 8 S

g A o Lo sk . ety .

Counte | Amston | cabok [Googer || Twtar/igts | Open> | saML | Cumom

[rn——
i, 2344788012359 gogscaint .

Mot 1y e o st mor o Gl Gl 0108 Gy P 0 you w1 4 og i Goo e b 0 0% ARG a5, W
et 15}y A e 15 Gooi 1 et rcr o1 A Corae b oW <107 O Corrac o e oo evr

Guce,

Authontiatod roo seoction

57 Gt 70 ol o s o i o s, Yo € loc 0 O o o s et o e T
ey ot Thoy o s 13 1 a0 il i K 30 Yk 95 540 20 ol

CosmAsaA parw L .

» Push synctronizaion

OPS/images/c18f014.jpg
< comoe e smazoncen. [© & 6
it you con sy s o o i, WG o st it you e Bk i 0 et o s ooy
o Ao o Lo sk i ety o

Comte | Amszon | rocnosk | Googer | Twter/Dpts | Opon> | SaML | Gustom

oo Chan | 55757t s
oty eus o s mor o ool Gl 101 th Gy P .. You var 1034 090 i Gool o b5 i A a8 w1 e

e 1)y w15t Goh .1 e rr K 1 A G oW 5 Pt O CorecFrors o ogrdo v
e

Authenticated roe seection

Gt 70 o i o o i i 1 o, Y ca slect i s 55 et e T e
o9 re oy v iy 3 s by 395 2P0 5 o o A0l ki o 3tk Yo 9960 96y 0o Wi T

> Push synetvonizaion

» Gognio Streams

» Cognito Events

» Deleto dentty pool

Feodack @ Ench

OPS/images/c18f015.jpg
 coraonams masoncen c ° 6 6

Sorvices ~ Rascurce Groups

« Welcome to Identity and Access Management

e ——— PRpp—
1AM Resources.

Customes sy P2

Aocen s Securty Status — ot oo < . >
i — Acthate MFA on your ot sccount v ‘Additionalnformation
et i) W sars v o dosrersion
Ercoptontors [—
s groups o asein pormissons v Py S
AopYyan M password polcy v e e st

Rotatsyouracoess keys v

@ Foodbock @ Engien

OPS/images/c18f016.jpg
< coraonams masoncen c ° 6 6

Rosource arops

[==

- P

- () proerime &

| oty provine

Ercoptontors

@ Foodbock @ Engien

OPS/images/c18f009.jpg
History)

e a2
Sl @ comoure & Mgaton © Secuty, identty & Complance] Moble Servces
omerem o s Dcone S "
ey [t s —
. g oo posunt— o
e ‘€astic Boansiak ‘Snowvat Owectony Servon Mobie Anaytcs.
« - pseuitoy
Cosecammit) P orsonion somios
[Py o s Sophurin
® proveat Jrvi S
o v o e
o et . prbeanii
S ey e s
B vt s . g
8 ovarmso o foskeng™ S
ey Gotamen prlatenmebi
o G =
g crs Jr—.
ey s -
o o
. . pepreed g
R o e
foston © v
fntey pr

& Gamo Dowsopment

OPS/images/c18f010.jpg
Sorvicos

Amazon Cognito

Amazon Gognito makes it easy for you to have users sign up and sign in to
your apps, federate identities from social identity providers, secure access to

AWS resources and synchronize data across m

<

'Add Sign-up and Sign-in

W Cogrits Your s o, o con sty sy -

01 0 sty o 4 W 808 Y

Sty g s i st o g o iers
e

applications.

Manage your User Pools Jll Manage Fodorated Identies

oo

Federate User Identiies

WonCagi ekt orton your s an s g

o ity v s ok s T,

e oun iy s, e you an corte s O RS,
esoren oyt 55

le devices, platforms, and

ac

‘Synchvonize Data Across Devices

Wi Gogno S yur s con s o e s
i s g .1 kG5 10

OPS/images/c18f011.jpg
< coraonams masoncen c ° 6 6

Sorvices ~ Rescurce Groupe

o —

o 1 Crango WA ot | rango s fadvuais
i S

Gt S wn 05,
ety A e

S At Rt
/ In-Depth Guices

[——
s o Yoo s
s o o s v

Communiy

Coopo Dorope e
S otia g0y
G ey

@ Foodbock @ Engien

OPS/images/c18f012.jpg
) etotttten s

PSS
1 4
1 4

0.1KB Foconoon

Rosources

Getting started with Amazon Cogrito
Vst superscan' st o s, Los s
ot G i o,y £ ho!
o ot A vy e
mdortat 1 i i i iy B
s

ot s i A Gatt o vin 05

Lear about the AWS Moble SDKs
sz Cogos ra o e s v o
D08, i e s v a0 st
T P

Nobin SO for Aokl Motk SOK fr 05

Gonnect vith the community
Coomoconmmsyfrn
e

kb moostoy

OPS/images/c04f024.jpg
Add/Edit Tags X

Apply tags to your resources to help organize and identify them.
Atag consists of a case-sensitive key-value pair. For example, you could define a tag

with key = Name and value = Webserver. Learn more about tagging your Amazon EG2
resources.

Key Value

Name testAmazonLinuxServer @ Hide Column

Create Tag Cancel w

OPS/images/c04f025.jpg
| wsancen
Spot oot

ey g
Fucoment s
Keypars

oot Groups

L Gongraions

'O Engien

@ neny

-
PrisoOns 17231300802 Jr—
Prany 2312088 s gns
Stk Tor Kepouarame
[vagp—, s
PP — fresen

T g e

Puble ONS: 2 5414711219 sompute-1 amszonws.com

i

[—

ity 2017119830 UTC s

OPS/images/c04f022.jpg
800 < >t & comsoeamsamzoncom. ojsjo

° e

o a 0/ < tmran
s x
Uamis . Name [Emchie o] Avalabisty Zone - Insiance Siate - Status Checks - Alam Statve Public ONS.
. T -
1
SIS e 151 et o B 21055 ==c
i oo | st || g || Tam
e [t -
s [it [—
I ——" Pt
P B

soumyomes gt
s [o
o s Coppra srcuap
. [-
Coch [e rore

[istosiynsn e

L Gongraions) -

'O Engien

OPS/images/c04f023.jpg
800 < >t & comsoeamsamzoncom. ojsjo

Rosourcs Grows

‘ s o e e
e a 0 K< roten

© s [N

| ot

Spo s

ks ey oo
- = [re—— s
ey g

Fucoment s

Keypars

oot Groups

L Gongraions

'O Engien

OPS/images/c04f026.jpg
| wsancen
Spot oot

ey g

Fucoment s

Keypars

oot Groups

L Gongraions

'O Engien

Frsoons

@ neny

T g e

Puble ONS: 2 5414711219 sompute-1 amszonws.com

oy Keyposrame
. s
s .

i

[—

ity 2017119830 UTC s

