

Joshua Backfield

Becoming Functional

Becoming Functional
by Joshua Backfield

Copyright © 2014 Joshua Backfield. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette and Brian Anderson
Production Editor: Kristen Brown
Copyeditor: Rachel Monaghan
Proofreader: Becca Freed

Indexer: Ellen Troutman
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

July 2014: First Edition

Revision History for the First Edition:

2014-06-30: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449368173 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Becoming Functional, the image of a sheldrake duck, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36817-3

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449368173

Table of Contents

Preface. vii

1. Introduction. 1
Overview of Concepts in Functional Programming 1

First-Class Functions 2
Pure Functions 2
Recursion 2
Immutable Variables 2
Nonstrict Evaluation 2
Statements 2
Pattern Matching 2

Functional Programming and Concurrency 3
Conclusion 3

2. First-Class Functions. 5
Introduction to XXY 5
Functions as Objects 7

Refactoring Using If-Else Structures 8
Refactoring Using Function Objects to Extract Fields 10

Anonymous Functions 16
Lambda Functions 16
Closures 18

Higher-Order Functions 20
Refactoring get Functions by Using Groovy 22
Conclusion 23

3. Pure Functions. 25
Output Depends on Input 25
Purifying Our Functions 29

iii

Side Effects 33
Conclusion 37

Making the Switch to Groovy 38

4. Immutable Variables. 43
Mutability 43
Immutability 48
Conclusion 54

5. Recursion. 55
An Introduction to Recursion 56
Recursion 59
Tail Recursion 61
Refactoring Our countEnabledCustomersWithNoEnabledContacts Function 62
Conclusion 64

Introducing Scala 65

6. Strict and Nonstrict Evaluations. 67
Strict Evaluation 68
Nonstrict (Lazy) Evaluation 69
Laziness Can Create Problems 73
Conclusion 76

7. Statements. 79
Taking the Plunge 80
Simple Statements 80
Block Statements 82
Everything Is a Statement 84
Conclusion 92

8. Pattern Matching. 93
Simple Matches 93
Simple Patterns 95
Extracting Lists 97
Extracting Objects 99
Converting to Pattern Matches 101
Conclusion 103

9. Functional OOP. 105
Static Encapsulation 105
Objects As Containers 107
Code as Data 109

iv | Table of Contents

Conclusion 111

10. Conclusion. 113
From Imperative to Functional 113

Introduce Higher-Order Functions 113
Convert Existing Methods into Pure Functions 114
Convert Loops to Tail/Recursive-Tail Methods 114
Convert Mutable Variables into Immutable Variables 115
What Next? 115

New Design Patterns 115
Message Passing for Concurrency 115
The Option Pattern (Extension of Null Object Pattern) 116
Object to Singleton Method Purity 117

Putting It All Together 117
Conclusion 125

Index. 127

Table of Contents | v

Preface

Although not a new concept, functional programming has started to take a larger hold
in the programming community. Features such as immutable variables and pure func‐
tions have proven helpful when we have to debug code, and higher-order functions
make it possible for us to extract the inner workings of functions and write less code
over time. All of this leads to more expressive code.

Who Is This Book For?
I wrote this book for anyone who is interested in functional programming or is looking
to transition from an imperative style to a functional one. If you’ve been programming
in an imperative or object-oriented style, my hope is that you’ll be able to pick up this
book and start learning how to code in a functional one instead.

This book will teach you how to recognize patterns in an imperative style and then walk
you through how to transition into a more functional one. We will approach this by
looking at a fictional company called XXY and look at their legacy code. We’ll then
refactor its legacy code from an imperative style into a functional one.

We’re going to use a few different languages throughout this book:
Java

I assume that you are familiar with the Java syntax. The version used in this book
is 1.7.0.

Groovy
Using this language, we can keep most of our existing Java syntax; this helps us
begin our transition into a fully functional language. I’ll explain the main parts of
the Groovy syntax as they are needed. The version used in this book is 2.0.4.

vii

Scala
This is a fully functional language into which we will slowly transition. As with
Groovy, I will explain the syntax as it is introduced. The version used in this book
is 2.10.0.

Why No Java 8?
Some people might wonder why I’m not including any Java 8 right
now. As of this writing, Java 7 is the currently stable and widely used
version. Because I want everyone, not just early adopters, to be able
to take something from this book, I thought starting from Java 7
would be most accessible.
Those using Java 8 will be able to use some of the Groovy concepts,
such as higher-order functions, without actually transitioning into
Groovy.

Math Notation Review
Because functional programming is so closely tied to mathematics, let’s go over some
basic mathematical notation.

Functions in mathematics are represented with a name(parameters) = body style. The
example in Equation P-1 shows a very simple function. The name is f, the parameter
list is x, the body is x + 1, and the return is the numeric result of x + 1.

Equation P-1. A simple math function

f (x) = x + 1

if statements in math are represented by the array notation. We will have a list of
operations in which one will be evaluated when the corresponding if statement is true.
The simple example in Equation P-2 shows a set of statements to be evaluated. The
function abs(x) will return x * -1 if our x is less than 0; otherwise, it will return x.

Equation P-2. A simple math if statement

abs(x) = {x * - 1 if x < 0
x else

We also use a summation, the sigma operator, in our notation. The example in
Equation P-3 shows a simple summation. The notation says to have a variable n starting
at 0 (defined by the n=0 below the sigma) and continuing to x (as defined by the x above

viii | Preface

the sigma). Then, for each n we add it to our sum (defined by the body, n in our case,
to the right of the sigma).

Equation P-3. A simple math summation

f (x) = ∑
n=0

x
n

Why Functional over Imperative?
There are quite a few paradigms, each with its own pros and cons. Imperative, func‐
tional, event-driven—all of these paradigms represent another way of programming.
Most people are familiar with the imperative style because it is the most common style
of programming. Languages such as Java and C languages are all imperative by design.
Java incorporates object-oriented programming (OOP) into its language, but it still
primarily uses an imperative paradigm.

One of the most common questions I’ve heard during my time in software is “why
should I bother learning functional programming?” Because most of my new projects
have been in languages like Scala, the easiest response I can give is “that is what the
project is written in.” But let’s take a step back and actually answer the question in depth.

I’ve seen quite a bit of imperative code that requires cryptographers to fully understand
what it does. Generally, with the imperative style, you can write code and make it up as
you go. You can write classes upon classes without fully understanding what the im‐
plementation will be. This usually results in a very large, unsustainable code base filled
with an overuse of classes and spaghetti code.

Functional programming, on the other hand, forces us to better understand our im‐
plementation before and while we’re coding. We can then use that to identify where
abstractions should go and reduce the lines of code we have written to execute the same
functionality.

Why Functional Alongside OOP?
When we think of OOP, we normally think of a paradigm that is in a class of its own.
But if we look at how we write OOP, the OOP is really used for encapsulation of variables
into objects. Our code is actually in the imperative style—that is, it is executed “top to
bottom.” As we transition to functional programming, we’ll see many more instances
in which we just pass function returns into other functions.

Some people see functional programming as a replacement for OOP, but in fact we’ll
still use OOP so that we can continue using objects that can maintain methods. These
methods, hoever, will usually call static versions that allow us to have purer and more

Preface | ix

testable functions. So, we’re not replacing OOP; rather, we’re using object-oriented de‐
sign in a functional construct.

Why Functional Programming Is Important
Concepts such as design patterns in Java are so integral to our daily programming that
it’s almost impossible to imagine life without them. So it is very interesting that, by
contrast, the functional style has been around for many years but remains in the back‐
ground as a main programming paradigm.

Why, then, is functional programming becoming so much more important today if it’s
been around so long? Well, think back to the dot-com era, a time when any web presence
was better than none. And what about general applications? As long as the application
worked, nobody cared about the language or paradigm in which it was written.

Requirements and expectations today are difficult, so being able to closely mirror math‐
ematical functions allows engineers to design strong algorithms in advance and rely on
developers to implement those algorithms within the time frame required. The closer
we bind ourselves to a mathematical underpinning, the better understood our algo‐
rithms will be. Functional programming also allows us to apply mathematics on those
functions. Using concepts such as derivatives, limits, and integrals on functions can be
useful when we are trying to identify where functions might fail.

Large functions are not very testable and also not very readable. Often, as software
developers, we find ourselves presented with large chunks of functionality thrown into
one function. But, if we extract the inner workings of these large, cumbersome functions
into multiple, smaller, more understandable functions, we allow for more code reuse as
well as higher levels of testing.

Code reuse and higher levels of testing are two of the most important benefits of moving
to a functional language. Being able to extract entire chunks of functionality from a
function makes it possible for us to change the functionality later without using a copy-
and-paste methodology.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

x | Preface

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Math Warning
Every now and again, I’ll introduce some mathematics; I’ll try to warn
you beforehand. Check out the section “Math Notation Review” on
page viii if you are rusty on reading mathematical notations.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/jbackfield/BecomingFunctional.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Becoming Functional by Joshua Backfield
(O’Reilly). Copyright 2014 Joshua Backfield, 978-1-449-36817-3.”

If you feel your use of code examples falls outside fair use or the aforementioned per‐
mission, feel free to contact us at permissions@oreilly.com.

Preface | xi

https://github.com/jbackfield/BecomingFunctional
mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/becoming-functional.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xii | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/becoming-functional
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
I’d like to thank my wife, Teri, and my daughter, Alyssa, for putting up with me during
the writing of this book. I’d also like to thank Kevin Schmidt for introducing me to
Simon St.Laurent, who made this book a reality, and my bosses, Gary Herndon and
Alan Honeycutt, for allowing me to push the boundaries at work and try new things.
I’d especially like to thank Meghan Blanchette, who kept moving me along and made
sure that I was continuing to make progress along the way. Finally, I want to thank my
parents, Sue and Fred Backfield, for believing in me and pushing me to continue learning
and growing when I was a kid. If it weren’t for all of you making a difference in my life,
I wouldn’t be here sharing my knowledge with so many other aspiring developers today.

There are lots of other people I’ve met along the way who have helped me become a
better developer; I know I’m going to leave people out (and I’m sorry if I do), but here
is a good attempt at a list: Nick Angus, Johnny Calhoun, Jason Pinkey, Ryan Karetas,
Isaac Henry, Jim Williams, Mike Wisener, Yatin Kanetkar, Sean McNealy, Christopher
Heath, and Dave Slusher.

Preface | xiii

CHAPTER 1

Introduction

Our first step before we get into actual examples is to look at what defines functional
programming. Specifically, we will look at the components that make up functional
programming and how they relate to mathematics.

Functional programming traces its roots all the way back to LISP,
although the paradigm name itself wasn’t truly coined until John
Backus delivered his 1977 Turing Award–winning paper “Can Pro‐
gramming Be Liberated From the von Neumann Style? A Function‐
al Style and Its Algebra of Programs.” In his lecture, Backus discuss‐
es multiple points about applications being built as combinations of
algebraic equations.

Overview of Concepts in Functional Programming
Although there is still some disagreement about what functional programming is, there
are a few features that are generally agreed to be part of it:

• First-class functions
• Pure functions
• Recursion
• Immutable variables
• Nonstrict evaluation
• Statements
• Pattern matching

1

First-Class Functions
First-class functions can either accept another function as an argument or return a
function. Being able to create functions and return them or pass them to other functions
becomes extremely useful in code reusability and code abstractions.

Pure Functions
Pure functions are functions that have no side effects. Side effects are actions a function
may perform that are not solely contained within the function itself. When we think
about side effects, we normally think about other functions, such as println or mutating
a global variable. We can also see this when we pass in a variable and mutate it directly
inside of that function.

Recursion
Recursion allows us to write smaller, more concise algorithms and to operate by looking
only at the inputs to our functions. This means that our function is concerned only with
the iteration it is on at the moment and whether it must continue.

Immutable Variables
Immutable variables, once set, cannot be changed. Although immutability seems very
difficult to do, given the fact that the state must change within an application at some
point, we’ll see ways that we can accomplish it.

Nonstrict Evaluation
Nonstrict evaluations allow us to have variables that have not been computed yet. Strict
evaluations—assigning a variable as soon as it is defined—are what we are used to.
Nonstrict means that we can have a variable that does not get assigned (computed) until
the first time it is referenced.

Statements
Statements are evaluable pieces of code that have a return value. Think about if state‐
ments that have a return value of some kind. Each line of code should be considered a
statement, meaning there are very few side effects within the application itself.

Pattern Matching
Pattern matching doesn’t really appear in mathematics, but assists functional program‐
ming in decreasing the need for specific variables. In code we usually encapsulate a
group of variables together inside of an object. Pattern matching allows us to better

2 | Chapter 1: Introduction

type-check and extract elements from an object, making for simpler and more concise
statements with less need for variable definitions.

Functional Programming and Concurrency
Concurrency enables us to do processing in parallel, and we won’t cover much about it
here because the topic could fill its own book. Some people believe that functional
programming actually solves concurrency issues, but this is not actually the case; rather,
some of the concepts of functional programming help us to create more well-defined
patterns to handle concurrency.

For example, techniques such as message passing help us to create more independent
threads by allowing a thread to receive messages without causing another thread to
block before it is received.

In addition, features such as immutability help us to define global states and allow global
state transitions as a whole rather than partial state changes or major synchronizations
between threads.

Conclusion
This chapter was intended as a high-level overview of the important concepts of func‐
tional programming. At this point you’re probably wondering “how can I actually get
started using these concepts?” As we go through this book, we’ll look at how to imple‐
ment these features in your code.

In each chapter, I’ll introduce a concept, and then we’ll work to refactor and implement
it in our example code for the ficticious company XXY. The examples have no “driver
code.” I assume that everyone reading this book can write simple Java main() functions
to test out the code we’re writing. I’m doing this for two reasons.

First, I really want you to write the code and test it out yourself; just reading the examples
isn’t going to help you understand the concepts or help you become a better functional
programmer.

Second, I want to draw attention away from the driver code. Sometimes, when writing
more extraneous code to actually call the code that we’re refactoring, we either forget
to refactor the driver code or tend to write too much. Would it really be useful to create
a set of driver code to create 10 or 20 Customer objects?

Each language example is compilable and runnable. The language examples will not
rely on external packages. One of the things I truly dislike about some concept books
or language books is that normally the author will push you to download third-party
packages. In contrast, the goal of this book is to teach you how to deal with functional
concepts using the core language.

Functional Programming and Concurrency | 3

CHAPTER 2

First-Class Functions

Although most functional programming books present immutable variables first, we’re
going to start with first-class functions. My hope is that as you read through this chapter,
you will see ways in which you could start using some of these ideas at your job
tomorrow.

First-class functions are functions treated as objects themselves, meaning we can pass
a function as a parameter to another function, return a function from a function, or
store a function in a variable. This is one of the most useful features in functional pro‐
gramming, and also one of the most difficult to learn to use effectively.

Introduction to XXY
Welcome to your new company, XXY. You have been hired for your functional pro‐
gramming skills, which your boss would like to use in order to make the company’s code
more “functional.” XXY currently uses Java but is interested in some newer languages
such as Groovy or Scala. Although you have some ideas, you have been told that the
company can’t afford to just “throw away all of its current code and start over.”

All right, it’s time to get down to business. You have been tasked with adding a new
function to return a list of enabled customers’ addresses. Your boss tells you the code
should be added to the Customer.java file, where XXY is already implementing the same
type of functionality (see Example 2-1).

Example 2-1. Customer.java file contents
import java.util.ArrayList;
import java.util.List;

public class Customer {

 static public ArrayList<Customer> allCustomers = new ArrayList<Customer>();
 public Integer id = 0;

5

 public String name = "";
 public String address = "";
 public String state = "";
 public String primaryContact = "";
 public String domain = "";
 public Boolean enabled = true;

 public Customer() {}

 public static List<String> getEnabledCustomerNames() {
 ArrayList<String> outList = new ArrayList<String>();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 outList.add(customer.name);
 }
 }
 return outList;
 }

 public static List<String> getEnabledCustomerStates() {
 ArrayList<String> outList = new ArrayList<String>();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 outList.add(customer.state);
 }
 }
 return outList;
 }

 public static List<String> getEnabledCustomerPrimaryContacts() {
 ArrayList<String> outList = new ArrayList<String>();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 outList.add(customer.primaryContact);
 }
 }
 return outList;
 }

 public static List<String> getEnabledCustomerDomains() {
 ArrayList<String> outList = new ArrayList<String>();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 outList.add(customer.domain);
 }
 }
 return outList;
 }

 /* TODO: Add a main function */
}

6 | Chapter 2: First-Class Functions

There are four almost identical functions in the preceding example. Each function has:

• The creation of an array list
• A for loop
• An if statement
• A return statement

We have six lines of code duplicated per function. That’s 18 lines of duplicated code:
one of those functions started this, which means we have 12 lines that have been copied
and pasted.

Introduction to the DRY Principle
The DRY (Don’t Repeat Yourself) principle has been around for many
years; the concept is that we should not be duplicating lines of code.
This makes the code harder to maintain. But why is that the case?
Think about what happens if you duplicate a function multiple times.
Now imagine that you just found a bug in one of those functions;
you’ll have to go through however many other functions to see if that
same bug exists.

What would happen if you renamed enabled, or if you decided to deprecate the en
abled field for something else? Now you have four functions that need to be rewritten.
Could you imagine if you got a request for the alternate getDisabled* functions? This
explodes to eight copied-and-pasted functions.

You start getting a little light-headed thinking, “What have I gotten myself into?” You
take a deep breath and realize that you can do this; you’re a functional programmer and
eradicating copy and paste is what you do! Our first step is to begin thinking of functions
as objects.

Functions as Objects
As we said before, first-class functions can be both passed and returned from another
function. Let’s begin by thinking about what a function is. In its most general form, a
function is merely a way to encapsulate a piece of work so that we can easily reference
it again—that is, nothing more than a macro.

What are the components of a function? Functions are made up of a name that is used
to identify the function, a parameter list containing objects to operate on, a body where
we transform the parameters, and finally a return to specify the result.

Functions as Objects | 7

Let’s break down the getEnabledCustomerNames function from the Customer.java file
(see Example 2-2). As we can see, the function name is getEnabledCustomerNames, the
parameter list is empty, and the body contains code that iterates over the Customer.all
Customers list, adding the customer.name field to an output list only if the customer is
enabled. Finally, our return is our output list, outList.

Example 2-2. Customer.getEnabledCustomerNames
public static List<String> getEnabledCustomerNames() {
 ArrayList<String> outList = new ArrayList<String>();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 outList.add(customer.name);
 }
 }
 return outList;
}

Refactoring Using If-Else Structures
Let’s write a new function that performs the same functionality from Example 2-2
(excluding the addition of the field to the outList) and call it getEnabledCustomer
Field. For the moment, we’ll just add a comment //Placeholder where we were grab‐
bing the customer.name field and appending it to outList.

The first thing to do is to create a new ArrayList at the top of our function:

public static List<String> getEnabledCustomerField() {
 ArrayList<String> outList = new ArrayList<String>();

We then create the for loop and the if statement, which checks for the customer being
enabled:

 for(Cutomer customer : Customer.allCustomers) {
 if(customer.enabled) {

As I mentioned, we’re going to put in a placeholder where we were originally appending
the field value to our list. We then close out the if structure and for loop, returning the
new outList:

 //Placeholder
 }
 }
 return outList;
}

8 | Chapter 2: First-Class Functions

Let’s put all of this together to create our new getEnabledCustomerField method, as
shown in Example 2-3.

Example 2-3. getEnabledCustomerField with placeholder
public static List<String> getEnabledCustomerField() {
 ArrayList<String> outList = new ArrayList<String>();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 //Placeholder
 }
 }
 return outList;
}

Because we know all the possible fields that we’re looking for, let’s take a new parameter,
the field name we’re looking for. We’ll then add an if structure to append our list with
the value of the field we are looking for, as shown in Example 2-4.

Example 2-4. getEnabledCustomerField with if structure
public static List<String> getEnabledCustomerField(String field) {
 ArrayList<String> outList = new ArrayList<String>();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 if(field == "name") {
 outList.add(customer.name);
 } else if(field == "state") {
 outList.add(customer.state);
 } else if(field == "primaryContact") {
 outList.add(customer.primaryContact);
 } else if(field == "domain") {
 outList.add(customer.domain);
 } else if(field == "address") {
 outList.add(customer.address);
 } else {
 throw new IllegalArgumentException("Unknown field");
 }
 }
 }
 return outList;
}

Functions as Objects | 9

Type Safety by Exception
In Example 2-4, we’re throwing an IllegalArgumentException to
ensure type safety. This means that we are throwing an exception if
the field is not one of our predefined fields.
Why is this such a bad idea? You are avoiding type safety since you
are relying on string comparisons for field accessors. You are also
now relying on someone spelling it correctly both in the if struc‐
ture as well as when he calls the method itself.
There are other ways to ensure type safety, such as using enumera‐
tions containing a list of valid values and matching the correspond‐
ing enumeration in our if/else structure.

OK, we’ve just consolidated the looping functionality to exist in only one function. So
what happens if we keep adding fields to extract? We’ll keep adding field checks to the
if/else structure, which means we’ll eventually end up with an unmanageable if
structure. What if we could provide a simple function to extract the field we want from
the object itself?

Refactoring Using Function Objects to Extract Fields
We’re going to be using Java interfaces to create an abstraction of a function that we
could pass to another function. Many other languages, including the proposals in Java
8, offer functions as objects; as of this writing, however, Java 7 is the currently released
and stable version. Thus, we are going to use interfaces to create functionality that we
can pass to other functions.

You might be familiar with the Runnable interface, with which you encapsulate some
function that you want to execute on a thread. We have similar functionality here, except
we need a function that can take an object (the object from which we want to extract a
field) and return an object (the value of the field).

10 | Chapter 2: First-Class Functions

Math Warning
Let’s assume that we have a function, f, that does some computation
referencing the function a and returns the value:

f (x) = x 2 / a(x)

Now, let’s assume that we want to rewrite f so that instead of calling a
we call b. Well, to continue rewriting these functions as f and f' (and
so on) would be duplication. Lambda calculus introduced the con‐
cept of passing a function to a function. So, instead of calling the
function a, what if we could pass it in? Let’s redefine f:

f (x , c) = x 2 / c(x)

Now, we can make a call into our function using either a or b fairly
easily. Let’s see the call and substitute our values:

f (20, a) = 202 / a(20)

What should our function take as an argument? Let’s look where it will be called. It will
be replacing the giant if structure. The purpose of our function is to convert a Custom
er record into a String, which means our new function will take a Customer object and
return a String. Let’s build our interface definition.

The first thing that we do is give our interface a name:

private interface ConversionFunction {

Next we’ll define our method, which is the entry point into our function. As I said before,
it will take a Customer and return a String:

 public String call(Customer customer);
}

Example 2-5 shows the entirety of the ConversionFunction definition.

Example 2-5. ConversionFunction definition
private interface ConversionFunction {
 public String call(Customer customer);
}

We’ll want to make this interface public later, moving it into its own file and making it
a little more generic. But for now, let’s focus on using this new ConversionFunction
interface by replacing our giant if structure.

Functions as Objects | 11

First, we replace the field parameter with a ConversionFunction object. We can then
replace the giant if/else structure with a call to func.call(customer). Remember, the
call method inside the ConversionFunction interface will be performing the conver‐
sion for us. All we need to do is execute call and add the result. Check out the code in
Example 2-6.

Example 2-6. getEnabledCustomerField definition with ConversionFunction
public static List<String> getEnabledCustomerField(ConversionFunction func) {
 ArrayList<String> outList = new ArrayList<String>();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 outList.add(func.call(customer));
 }
 }
 return outList;
}

Now that we’re starting to think more functionally, let’s see what one of those Conver
sionFunctions would look like. Just return the field that you want to extract. In the
following example, the CustomerAddress class allows us to take a Customer and return
the address field:

static private class CustomerAddress implements ConversionFunction {
 public String call(Customer customer) { return customer.address; }
}

Let’s go ahead and make your boss happy now by implementing the getEnabledCusto
merAddresses function he wanted. We can create our getEnabledCustomerAddress
es function, which will call our new getEnabledCustomerField method and pass it a
conversion function. Now if the definition of enabled ever changes, we only have to fix
it in one place:

public static List<String> getEnabledCustomerAddresses() {
 return Customer.getEnabledCustomerField(new CustomerAddress());
}

Although we don’t need to do it yet, what would happen if we needed to get a list of all
enabled customers? Well, our current interface really doesn’t help there, because our
interface is strictly defined to take a Customer object and return a String. We should
modify our interface to be more abstract by using generic typing. Let’s start by renaming
our ConversionFunction to Function1, taking two type parameters (A1 and B, which
are the type of the parameter and the return, respectively). Our new function is shown
in Example 2-7.

12 | Chapter 2: First-Class Functions

Example 2-7. Interface for encapsulating a function taking one argument
public interface Function1<A1,B> {
 public B call(A1 in1);
}

Type Parameter Naming Convention
Why are we naming this interface Function1? Well, we’re naming it
Function because it is going to be wrapping a function. The num‐
ber 1 comes from the number of parameters that the function itself
will take. Our generic typing seems a little odd because we have two
parameters, but remember that the final parameter is the return type.

So, what if we needed a function that takes two arguments (shown in Example 2-8) or
four arguments (shown in Example 2-9)?

Example 2-8. Interface for encapsulating a function taking two arguments
public interface Function2<A1,A2,B> {
 public B call(A1, in1,A2 in2);
}

Example 2-9. Interface for encapsulating a function taking four arguments
public interface Function4<A1,A2,A3,A4,B> {
 public B call(A1 in1,A2 in2,A3 in3,A4 in4);
}

Next, we’ll update the CustomerAddress inheritance to be Function1<Custom
er,String>.

static private class CustomerAddress implements Function1<Customer, String> {
 public String call(Customer customer) { return customer.address; }
}

We then update getEnabledCustomerField to take a Function1. Our first parameter
will always be a Customer, but our second parameter will change, so we’ll leave that as
B. We then parameterize the getEnabledCustomerField method to take a parameter B
and finally update our return type for getEnabledCustomerField to return a List of
type B (see Example 2-10).

Example 2-10. getEnabledCustomerField with generic typed Function1
public static List getEnabledCustomerField(Function1<Customer,B> func) {
 ArrayList outList = new ArrayList();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 outList.add(func.call(customer));
 }
 }

Functions as Objects | 13

 return outList;
}

Now that you’ve done what your boss asked, it’s time to convert all the other getEna
bledCustomer* functions. We’ll just create a new class that implements our Func
tion1 interface and then update the getEnabledCustomer* method to call the Custom
er.getEnabledCustomerField() method with a new instance of the appropriate class.
Go ahead and refactor the rest of the file and then check out the code in Example 2-11
to see how it looks.

Example 2-11. Customer.java file after initial refactoring
import java.util.ArrayList;
import java.util.List;

public class Customer {

 static public ArrayList<Customer> allCustomers = new ArrayList<Customer>();
 public Integer id = 0;
 public String name = "";
 public String address = "";
 public String state = "";
 public String primaryContact = "";
 public String domain = "";
 public Boolean enabled = true;

 public Customer() {}

 private interface Function1<A1,B> {
 public B call(A1 in1);
 }

 static private class CustomerAddress implements Function1<Customer, String> {
 public String call(Customer customer) { return customer.address; }
 }

 static private class CustomerName implements Function1<Customer, String> {
 public String call(Customer customer) { return customer.name; }
 }

 static private class CustomerState implements Function1<Customer, String> {
 public String call(Customer customer) { return customer.state; }
 }

 static private class CustomerPrimaryContact implements Function1<Customer, String>
 {
 public String call(Customer customer) { return customer.primaryContact; }
 }

 static private class CustomerDomain implements Function1<Customer, String> {
 public String call(Customer customer) { return customer.domain; }

14 | Chapter 2: First-Class Functions

 }

 static private class CustomerAsCustomer implements Function1<Customer, Customer> {
 public String call(Customer customer) { return customer; }
 }

 public static List<String> getEnabledCustomerAddresses() {
 return Customer.getEnabledCustomerField(new CustomerAddress());
 }

 public static List<String> getEnabledCustomerNames() {
 return Customer.getEnabledCustomerField(new CustomerName());
 }

 public static List<String> getEnabledCustomerStates() {
 return Customer.getEnabledCustomerField(new CustomerState());
 }

 public static List<String> getEnabledCustomerPrimaryContacts() {
 return Customer.getEnabledCustomerField(new CustomerPrimaryContact());
 }

 public static List<String> getEnabledCustomerDomains() {
 return Customer.getEnabledCustomerField(new CustomerDomain());
 }

 public static List getEnabledCustomerField(Function1<Customer,B> func) {
 ArrayList outList = new ArrayList();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 outList.add(func.call(customer));
 }
 }
 return outList;
 }
}

Let’s answer our original question of “what would happen if we needed to get a list of
all enabled customers?” We can create a new class that takes a customer and returns a
customer, as shown in Example 2-12.

Example 2-12. A Customer as Customer class
static private class CustomerAsCustomer implements Function1<Customer, Customer> {
 public String call(Customer customer) { return customer; }
}

Now, we can call Customer.getEnabledCustomerField(new CustomerAsCusto

mer()), which gives us a list of all our enabled cutomers. But what if we didn’t want to
have to create all of these named classes? What if we didn’t actually need to define full
classes? Well, that leads right into the next section on anonymous functions.

Functions as Objects | 15

Anonymous Functions
Anonymous functions are split into two types: lambda functions and closures. Closures
are quite similar to lambdas with a very subtle difference, which we’ll discuss later. As
you learned in the previous section, functions are made up of four parts: name, param‐
eter list, body, and return. But what if we didn’t need the name of the function? This is
the idea behind anonymous functions: being able to create functions that have a limited
scope and need to exist only for a short time.

Math Warning
Let’s bring back our function from the beginning of this chapter:

f (x , c) = x 2 / c(x)

Lambda calculus enables us to create a function without defining it
formally. Our function f is a formal definition, but what if we want to
pass in a function as the parameter c for something really simple, such
as a square of the input? Let’s see that and substitute our variables:

f (10, y → y 2) = 102 / (y → y 2)(10)

The lambda expression is a function that takes an x parameter and
performs the x2 operation. So when we substitute, we can actually
replace the entire c(x) definition with the lambda function itself. Let’s
simplify the function call a little bit, since we can now evaluate our
lambda function:

f (10, y → y 2) = 102 / 102

Back at XXY, your boss is excited to see the company’s code becoming “functional.”
However, he’s concerned with the number of extra classes being created and feels they
are unnecessary. He’s asked you to clean up the code by reducing the number of inner
classes. Luckily, we can do this by using lambda functions.

Lambda Functions
Lambda functions are unnamed functions that contain a parameter list, a body, and a
return. In the following getEnabledCustomerAddresses example, let’s try to use an
anonymous function (in this case, an anonymous instance of Function1) to get rid of
the superfluous CustomerAddress class:

16 | Chapter 2: First-Class Functions

new Function1<Customer, String>() {
 public String call(Customer customer) { return customer.address; }
}

Let’s use this anonymous class by sending it to our getEnabledCustomerField function
(see Example 2-13). We can now remove the CustomerAddress conversion class.

Example 2-13. getEnabledCustomerAddresses using anonymous Function1
public static List<String> getEnabledCustomerAddresses() {
 return Customer.getEnabledCustomerField(new Function1<Customer,String>() {
 public String call(Customer customer) { return customer.address; }
 });
}

Go ahead and see if you can refactor the rest of the functions; when you’re done, check
out Example 2-14 and see how they compare.

Example 2-14. Customer.java file with anonymous classes
import java.util.ArrayList;
import java.util.List;

public class Customer {

 static public ArrayList<Customer> allCustomers = new ArrayList<Customer>();
 public Integer id = 0;
 public String name = "";
 public String address = "";
 public String state = "";
 public String primaryContact = "";
 public String domain = "";
 public Boolean enabled = true;

 public Customer() {}

 private interface Function1<A1,B> {
 public B call(A1 in1);
 }

 public static List<String> getEnabledCustomerAddresses() {
 return Customer.getEnabledCustomerField(new Function1<Customer,String>() {
 public String call(Customer customer) { return customer.addresses; }
 });
 }

 public static List<String> getEnabledCustomerNames() {
 return Customer.getEnabledCustomerField(new Function1<Customer, String>() {
 public String call(Customer customer) { return customer.name; }
 });
 }

 public static List<String> getEnabledCustomerStates() {

Anonymous Functions | 17

 return Customer.getEnabledCustomerField(new Function1<Customer, String>() {
 public String call(Customer customer) { return customer.state; }
 });
 }

 public static List<String> getEnabledCustomerPrimaryContacts() {
 return Customer.getEnabledCustomerField(new Function1<Customer, String>() {
 public String call(Customer customer) { return customer.primaryContact; }
 });
 }

 public static List<String> getEnabledCustomerDomains() {
 return Customer.getEnabledCustomerField(new Function1<Customer, String>() {
 public String call(Customer customer) { return customer.domain; }
 });
 }

 public static List getEnabledCustomerField(Function1<Customer,B> func) {
 ArrayList outList = new ArrayList();
 for(Customer customer : Customer.allCustomers) {
 if(customer.enabled) {
 outList.add(func.call(customer));
 }
 }
 return outList;
 }
}

Your boss is excited by how great a job you’re doing, but he now needs a new piece of
functionality. He needs to have his email prepended to the domain of each Customer.
As with most strange requests, you just kind of stare blankly at him for a moment and
then agree to carry it out.

Your boss then shows you an example of a Customer with the domain xxy.com, which
is already defined in the Customer object. “You should be able to just concatenate my
email with the domain of each Customer object and be done,” he says. “Something like
boss@xxy.com.” You think for a few minutes and realize that it is a perfect time to use
closures!

Closures
Closures are much like lambdas, except they reference variables outside the scope of
the function. In the simplest explanation, the body references a variable that doesn’t
exist in either the body or the parameter list.

Your boss’s request to prepend his email onto customer domains seems like a really
simple function to write. We’re going to use our getEnabledCustomerField, and in our
anonymous function we’ll prepend “boss@” to the customer domains:

18 | Chapter 2: First-Class Functions

public static List<String> getEnabledCustomerBossesEmail() {
 return Customer.getEnabledCustomerField(new Function1<Customer, String>() {
 public String call(Customer customer) {
 return "boss@" + customer.domain;
 }
 });
}

But wait—what happens if the president of XXY comes to you and says, “I want my
email prepended to the customer domains”? The first idea that comes to you is to copy
and paste the function and update it with “president@”. This violates the DRY principle,
however, so you should reconsider this approach. What if we were able to bring in a
variable that was outside of our class definition? Well, this is a perfect use of a closure.

We know that we’re going to have a name of someone passed into our function getEna
bledCustomerSomeoneEmail. This function should have a variable, someone, passed to
it. At this point, we can reference the someone variable from inside our anonymous
function and create the email address (see Example 2-15).

Example 2-15. getEnabledCustomerSomeoneEmail with final field
public static List<String> getEnabledCustomerSomeoneEmail(final String someone) {
 return Customer.getEnabledCustomerField(new Function1<Customer, String>() {
 public String call(Customer customer) {
 return someone + "@" + customer.domain;
 }
 });
}

Remember to Mark Closed-Over Variables as final
Always remember to mark closed-over variables as final. The Java
compiler requires this; otherwise, it will throw a compile-time er‐
ror of local variable someone is accessed from within in
ner class: needs to be declared final.

This is still a real closure, which we can tell from Example 2-16. Notice that we have our
original Closure variable coming in; we can see the variable printed out (providing us
a variable reference) and the contents (which should be a blank string). Next, we set the
internal string variable to bar and then create/run our closure (it is a closure because
the scope of the t variable is “closed over” and brought into the scope of our runnable).

Upon execution, we print out "bar" as is expected, but notice that the reference is the
same! We then set the internal string to baz and exit our closure. The next line in our
function is to print out the internal string, which is now "baz" and still has the same
reference. Although a very simple example, this is a perfect illustration of how a closure
truly works; we have an internal function that closes over a variable outside of its normal
scope.

Anonymous Functions | 19

Example 2-16. A closure in Java showing that the variable is actually closed over
public class Closure {

 public String foo = "";

 public static Closure process(final Closure t) {
 System.out.println(t.toString() + " = " + t.foo);
 t.foo = "bar";
 new Runnable() {
 public void run() {
 System.out.println(t.toString() + " = " + t.foo);
 t.foo = "baz";
 }
 }.run();
 System.out.println(t.toString() + " = " + t.foo);
 return t;
 }

 public static void main(String[] args) {
 process(new Closure());
 }

}

Using closures, you can build functions and pass them to other functions while refer‐
encing local variables. Think about our example of specifying any name to prepend to
customer domains. If we were unable to close over the local variable of someone, we
would be forced to create new functions for every name we wanted to prepend. This
means we would have quite a bit more code duplication.

Higher-Order Functions
The day you have been dreading has come: your boss has asked you to re-create the
functions getEnabledCustomerAddresses, getEnabledCustomerNames, getEnabled
CustomerStates, getEnabledCustomerPrimaryContacts, and getEnabledCustomer
Domains as getDisabled style functions. The first way of doing this is to copy and paste
the .getEnabledCustomerField method and create a .getDisabledField changing if
(customer.enabled) to if (!customer.enabled), as shown in Example 2-17.

Example 2-17. getDisabledField
public static List getDisabledField(Function1<Customer,B> func) {
 ArrayList outList = new ArrayList();
 for(Customer customer : Customer.allCustomers) {
 if (!customer.enabled) {
 outList.add(func.call(customer));
 }
 }

20 | Chapter 2: First-Class Functions

 return outList;
}

It should be obvious that, again, we are violating the DRY principle. Let’s extract the test
functionality in the if statement so that we can pass it into the function. We will accept
a function taking a Customer and returning a Boolean that will tell us whether it should
be included. We then replace our if with the evaluation of the test function call (see
Example 2-18).

Example 2-18. getField with test function
public static List getField(Function1<Customer,Boolean> test,
 Function1<Customer,B> func) {
 ArrayList outList = new ArrayList();
 for (Customer customer : Customer.allCustomers) {
 if (test.call(customer)) {
 outList.add(func.call(customer));
 }
 }
 return outList;
}

Now, at first glance, we see that with this approach we’re going to be copying and pasting
a ton of anonymous functions for each function. Instead, we’ll create two variables in
which we will store the Enabled and Disabled Function1 implementations.

Inside of our Customer class, we’ll create two function variables, EnabledCustomer and
DisabledCustomer. This allows us to apply the DRY principle by not rewriting our
Enabled and Disabled function implementations:

static final public Function1<Customer,Boolean> EnabledCustomer =
 new Function1<Customer,Boolean>()
{
 public Boolean call(Customer customer) {
 return customer.enabled == true;
 }
};

static final public Function1<Customer,Boolean> DisabledCustomer =
 new Function1<Customer,Boolean>()
{
 public Boolean call(Customer customer) {
 return customer.enabled == false;
 }
};

What does a call to this look like? Let’s look at the following getDisabledCustomer
Names function to see that we just pass the DisabledCustomers object as the first
parameter:

Higher-Order Functions | 21

public static List<String> getDisabledCustomerNames() {
 return Customer.getField(
 Customer.DisabledCustomers,
 new Function1<Customer, String>() {
 public String call(Customer customer) {
 return customer.name;
 }
 }
);
}

As you can see, each of our getCustomer* methods looks a little nasty. Normally in
functional programming, we wouldn’t have all of these getCustomer* methods; instead,
we would call the Customer.getField method where we needed the call. In the instance
where we are making multiple calls over the code base—for example, if we called get
DisabledCustomerNames in a few different places—we would then create a method
encapsulating that call (think DRY).

Refactoring get Functions by Using Groovy
Let’s look at an example in Groovy to see how we could implement getDisabledCusto
merNames and getEnabledCustomerNames in a more functional language. Example 2-19
shows these two pieces of functionality.

Notice that we are able to use the findAll function, which allows you to filter a list based
on another function, as we did with our for with the inner if structure inside get
Field. We then use the collect method to convert one object into another, as we did
with our Function1 passed into the getField.

Example 2-19. getEnabledCustomerNames and getDisabledCustomerNames functions
in Groovy
// Get all enabled customer names
allCustomers.findAll(
 { customer -> customer.enabled == true }
).collect(
 { customer -> customer.name }
)

// Get all disabled customer names
allCustomers.findAll(
 { customer -> customer.enabled == false }
).collect(
 { customer -> customer.name }
)

22 | Chapter 2: First-Class Functions

Groovy Syntax
There are a couple of things to note about our code in Example 2-19.

• There is no need for the keyword return. Groovy uses the last
statement in a function as the return of that function.

• An anonymous function is composed of curly braces, {}, with an
arrow, ->. To the left of the arrow is the parameter list, and to the
right is the body of the function.

• No semicolons are necessary when you are writing in Groovy.

The big thing you’ll notice is that we’ve reiterated ourselves with the allCusto
mers.findAll(. . .).collect(. . .) call; and while we might say that this is duplicated
code, it is a very minimal duplication in which we are actually being more expressive.
If you remember back in getDisabledCustomerNames, the amount of code required to
get the names was much higher than in our Groovy code, and not as readable.

A function becomes “higher order” if it accepts or returns a function. Because functions
are not objects in Java, it does not have the concept of a higher-order function. But, in
our interface equivalency, we can see that the higher-order function is actually get
Field from Example 2-18 because it accepts a “function.” In Example 2-19, we can see
that the functions findAll and collect are both higher order because they themselves
accept functions.

Why are higher-order functions so important? Think about the functions as objects: if
we are able to pass functions as objects (without wrapping them in objects), we must
have higher-order functions. Otherwise, what would utilize those functions as objects?

Conclusion
At this point, you should have an idea of how use first-class functions. In our examples,
we made our new code functional and then went back and migrated our pre-existing
code to the functional style. You should always remember that any time is a good time
to make code more functional.

We took a little extra time to refactor our copy-and-paste code into a higher-order
function that iterated over our list of customers. After that, we refactored the inner
workings of our copy-and-paste code into simple, anonymous functions and even used
a closure in case our boss ever wants to extend the functionality of the prepending email
addresses.

The more we converted our copy-and-paste code using these functional concepts, the
simpler our code became. It also became much easier for us to add new functionality

Conclusion | 23

because we no longer had to copy and paste things like our for loops or other pieces
that we extracted into our higher-order function getField.

You don’t always need 10 functions to cover every possible use case in the future. Of
course, if getEnabledCustomerNames were to happen 5 or 10 times, it might make sense
to create the function itself and make it a call to be done such that people aren’t dupli‐
cating that code.

Many of these abstractions, such as our Function1, are already defined in libraries like
Guava. For those of you who can’t switch to a language like Groovy, I would suggest
looking into these types of libraries, which already have these abstractions available.

Further Reading
The next time you are reading a programming language book, be on
the lookout for how you might be able to implement higher-order
functions in that language. All languages can do some form of func‐
tion passing, even C (using function pointers).

24 | Chapter 2: First-Class Functions

CHAPTER 3

Pure Functions

We use functions to perform specific tasks and then combine them to build our appli‐
cations. Each function is designed to do some work, given a set of inputs. When we don’t
return the result of our execution but rather mutate another external (i.e., not contained
within the function scope) object, we call this a side effect. Pure functions, on the other
hand, are functions that have no side effects and always perform the same computation,
resulting in the same output, given a set of inputs. Although most of this seems straight‐
forward, the implementation is quite another story.

Functions performing large amounts of work are difficult to test. Generally, to allow for
your code to grow over time, you need to be able to change functionality. This means
the larger your function becomes, the more parameters you need in order to modify
the functionality. You should break up the function into smaller functions. These smaller
functions can then be pure, allowing for a better understanding of the code’s overall
functionality. When a function is pure, we say that “output depends on input.”

Output Depends on Input
If we pass a set of parameters into a pure function, we will always get the same result.
The return is solely dependent on the parameter list.

Don’t Closures Break Function Purity?
If we pass a closure, aren’t we then dependent on the external (closed-
over) variable? This is an interesting point, so let’s think about clo‐
sures and how they work. Closures work by bringing the closed-
over variable into the scope of the function. Because the variable
becomes part of the function as we pass it to another function, ev‐
erything the receiving function needs to operate has been passed to
the function locally.

25

Math Warning
Let’s think about the following example:

f (x) = ∑
n=0

100
n + x

Here is the key: it does not matter what we pass in; we can always
predict the output.

Back at XXY, your boss has asked you to add a function that can update a Contract
record and set it to enabled. He said there was already a function that could update a
Contract by setting it to disabled by a customer. Right now, Customers have only one
Contract, so that makes things a little simpler for us. Let’s look at Example 3-1.

Example 3-1. Current Contract.java code
import java.util.Calendar;

public class Contract {

 public Calendar begin_date;
 public Calendar end_date;
 public Boolean enabled = true;

 public Contract(Calendar begin_date) {
 this.begin_date = begin_date;
 this.end_date = this.begin_date.getInstance();
 this.end_date.setTimeInMillis(this.begin_date.getTimeInMillis());
 this.end_date.add(Calendar.YEAR, 2);
 }

 public static void setContractDisabledForCustomer(Integer customer_id) {
 for(Customer customer : Customer.allCustomers) {
 if(customer.id == customer_id) {
 customer.contract.enabled = false;
 }
 }
 }

}

But wait—we’re using another for loop. You should remember from the previous chap‐
ter that we need to extract some of this functionality. It is likely we’ll have other times
when we need to get a customer by id.

Let’s start by creating the getCustomerById method in the Customer class. We just need
some basic functionality that can return the customer if it exists and return null if it
doesn’t. For now, let’s check the code in Example 3-2. Inside our function is a for loop

26 | Chapter 3: Pure Functions

that iterates over the customer list; we don’t want this because we have already written
a loop over the allCustomer list. Don’t worry: for many people this is how you would
generally write it.

Example 3-2. getCustomerById method
public static Customer getCustomerById(Integer customer_id) {
 for(Customer customer : Customer.allCustomers) {
 if(customer.id == customer_id) {
 return customer;
 }
 }
 return null;
}

Nullity allows us to represent the absence of a value, but using it can cause many different
issues. Why is nullity considered bad? Well, if we call into getCustomerById and get
back a null, what does that mean to the caller? Does that mean that we errored out?
Does it mean that we were unable to find it? Think about how many places you now
have to check for a null return value, and consider the amount of code necessary to
make sure that the application does not crash with a NullPointerException. What
other options do we have to handle our cases?

We could throw an exception if we were unable to find the Customer object. The problem
with that is that we are telling the caller that we will throw an exception if there is no
user, even though it’s not actually an error.

We could also return a list containing the customer, or an empty list if it doesn’t exist.
This means that no matter what happens, we have a valid object that can be operated
on at all times. Now, our caller can decide how she wants to handle the case in which
the customer doesn’t exist. Let’s look at the code in Example 3-3.

Example 3-3. getCustomerById returning a list
public static ArrayList<Customer> getCustomerById(Integer customer_id) {
 ArrayList<Customer> outList = new ArrayList<Customer>();
 for(Customer customer : Customer.allCustomers) {
 if(customer.id == customer_id) {
 outList.add(customer);
 }
 }
 return outList;
}

But wait a second, that for loop looks quite familiar. Our function filters or finds all of
the customers given a customer_id. Remember in the preceding chapter how our
method getField had a similar for loop?

Output Depends on Input | 27

Let’s not repeat ourselves; instead, let’s abstract that for loop into its own function, which
we’ll call filter. It will take a function that takes a Customer and returns a Boolean.
The Boolean will indicate to us whether to keep the record. Our new function is listed
in Example 3-4.

Example 3-4. filter function
public static ArrayList<Customer> filter(Function1<Customer, Boolean> test) {
 ArrayList<Customer> outList = new ArrayList<Customer>();
 for(Customer customer : Customer.allCustomers) {
 if(test.call(customer)) {
 outList.add(customer);
 }
 }
 return outList;
}

Now that we’ve created this function, let’s think back to the getField function in our
Customer object. We can actually extract the filtering functionality and use our new
filter function. So, let’s refactor this function—we’re not going to rename it, because
it’s the same functionality; instead, we’re extracting the filtering logic out, as shown in
Example 3-5. Now we call into Customer.filter(test) and then iterate over the return
of that result.

Example 3-5. getField function using a filter function
public static List getField(Function1<Customer,Boolean> test,
 Function1<Customer,B> func) {
 ArrayList outList = new ArrayList();
 for(Customer customer : Customer.filter(test)) {
 outList.add(func.call(customer));
 }
 return outList;
}

We also modify our getCustomerById function to use the new filter method by pass‐
ing a new test function, which takes a Customer and returns a Boolean to filter by the
requested customer_id, as shown in Example 3-6.

Example 3-6. getCustomerById method using filter
public static ArrayList<Customer> getCustomerById(final Integer customer_id) {
 return Customer.filter(new Function1<Customer, Boolean>() {
 public Boolean call(Customer customer) {
 return customer.id == customer_id;
 }
 });
}

28 | Chapter 3: Pure Functions

Now let’s return to the Contract class and use our getCustomerById function. We’ll go
ahead and grab our list of customers and iterate over it, setting the contract to en
abled. There’s no need to check that we didn’t return null; the fact that the list will be
populated with something implicitly handles the “if there are no records” issue (see
Example 3-7).

Example 3-7. setContractEnabledForCustomer
public static void setContractEnabledForCustomer(Integer customer_id) {
 for(Customer customer : Customer.getCustomerById(customer_id)) {
 customer.contract.enabled = true;
 }
}

Purifying Our Functions
The first function we’ll make pure is our filter function. We purify a function by
making sure that it isn’t referencing anything outside of its function arguments. This
means that our reference to Customer.allCustomers needs to go away, and instead we
should pass it in as an argument.

As our functions become more pure, it becomes easier to troubleshoot them because
all of our inputs are known. In turn, because all of our inputs are known, all possible
outcomes should be derivable. If they are all derivable, we should be able to determine
what caused failures in logic. Obviously, our calls to the filter function will receive
Customer.allCustomers, which is listed directly below the filter function in
Example 3-8.

Example 3-8. filter function and its callers
public static ArrayList<Customer> filter(ArrayList<Customer> inList,
 Function1<Customer, Boolean> test) {
 ArrayList<Customer> outList = new ArrayList<Customer>();
 for(Customer customer : inList) {
 if(test.call(customer)) {
 outList.add(customer);
 }
 }
 return outList;
}

public static List getField(Function1<Customer,Boolean> test,
 Function1<Customer,B> func) {
 ArrayList outList = new ArrayList();
 for(Customer customer : Customer.filter(Customer.allCustomers, test)) {
 outList.add(func.call(customer));
 }
 return outList;
}

Purifying Our Functions | 29

public static ArrayList<Customer> getCustomerById(final Integer customer_id) {
 return Customer.filter(Customer.allCustomers, new Function1<Customer, Boolean>() {
 public Boolean call(Customer customer) {
 return customer.id == customer_id;
 }
 });
}

Let’s continue by making getCustomerById pure (see Example 3-9). This means that
the method getCustomerById inside Customer.java must be updated to accept our cus‐
tomer list. This way, we no longer reference the Customer.allCustomers object directly.

Example 3-9. getCustomerById
public static ArrayList<Customer> getCustomerById(ArrayList<Customer> inList,
 final Integer customer_id) {
 return Customer.filter(inList, new Function1<Customer, Boolean>() {
 public Boolean call(Customer customer) {
 return customer.id == customer_id;
 }
 });
}

We should also update setContractEnabledForCustomer to pass in Customer.allCus
tomers (see Example 3-10). At this point, we no longer need to have allCustomers
passed in because this method only ever operates on the Customer.allCustomers
object.

Example 3-10. setContractEnabledForCustomer
public static void setContractEnabledForCustomer(Integer customer_id) {
 for(Customer customer : Customer.getCustomerById(Customer.allCustomers,
 customer_id)) {
 customer.contract.enabled = true;
 }
}

We need to have a method so that we can execute the customer.contract.enabled =
true code for each object without needing to duplicate these loops. The first thing that
we need to do is create a new interface, which we’ll call Foreach1.

Foreach1 will be an abstraction for a higher-order function which takes an A1 and has
a void return type, because we really don’t care what type is being returned. In our
instance, we’re not returning anything because we’re just setting contract.enabled =
true. Check out the code for our Foreach1 interface in Example 3-11 and the Func
tion1 interface in Example 3-12.

30 | Chapter 3: Pure Functions

Refactoring Time
We should move the Foreach1 and Function1 interface definitions
into their own Foreach1.java and Function1.java files, respectively.

Example 3-11. Foreach1.java interface definition
public interface Foreach1<A1> {
 public void call(A1 in1);
}

Example 3-12. Function1.java interface definition
public interface Function1<A1,B> {
 public B call(A1 in1);
}

We can then update the Customer class to have its own foreach function that will execute
func for each record in the inList, as shown in Example 3-13.

Example 3-13. foreach function defined in the Customer class
public static void foreach(ArrayList<Customer> inList, Foreach1<Customer> func) {
 for(Customer customer : inList) {
 func.call(customer);
 }
}

We can now use our foreach function. For the inList, we’re going to use a getCusto
merById, which will return a list containing our Customer if it exists. For the func, we’re
going to create a new Function1 that sets the Contract to enabled. You can see the code
in Example 3-14.

Example 3-14. setContractEnabledForCustomer method
public static void setContractEnabledForCustomer(Integer customer_id) {
 Customer.foreach(
 Customer.getCustomerById(Customer.allCustomers, customer_id),
 new Foreach1<Customer>() {
 public void call(Customer customer) {
 customer.contract.enabled = true;
 }
 }
);
}

Unfortunately, this code modifies the customer argument and sets the customer.con
tract.enabled field. We’ll address how we might fix this when we start looking at
immutable variables.

Purifying Our Functions | 31

Returning an Empty List Rather Than Null
In Example 3-14, notice that we’re able to pass the list that was re‐
turned by getCustomerById directly to foreach. This has the nice side
effect that we don’t need to do null checking. The foreach takes care
of “what happens if it doesn’t exist?”

Groovy Version of setContractEnabledForCustomer
The following code shows a simple way to accomplish the same functionality we’ve just
implemented, but in Groovy. Notice that we use findAll, which returns a list, and we
call each to set contract.enabled = true.

def setContractEnabledForCustomer(Integer customer_id) {
 list.findAll(
 { customer -> customer.id == customer_id }
).each(
 { customer -> customer.contract.enabled = true }
)
}

Now, we can easily create a setContractDisabledForCustomer method, as shown in
Example 3-15. It’s the same as Example 3-14, except for the value we’re setting on
enabled (true versus false, respectively).

Example 3-15. setContractDisabledForCustomer
public static void setContractDisabledForCustomer(Integer customer_id) {
 Customer.foreach(
 Customer.getCustomerById(Customer.allCustomers, customer_id),
 new Foreach1<Customer>() {
 public void call(Customer customer) {
 customer.contract.enabled = false;
 }
 }
);
}

Can you think of how we can refactor both of the setContract*ForCustomer methods
into a single function? Check out the code in Example 3-16 after you’ve tried it yourself.

Example 3-16. setContractForCustomer with status passed in
public static void setContractForCustomer(Integer customer_id, final Boolean status)
{
 Customer.foreach(
 Customer.getCustomerById(Customer.allCustomers, customer_id),
 new Foreach1<Customer>() {

32 | Chapter 3: Pure Functions

 public void call(Customer customer) {
 customer.contract.enabled = status;
 }
 }
);
}

That’s right—we can just take the enabled value as a parameter, which will then set the
enabled member!

We’ve mostly purified our functions by extracting a filter function and a foreach
function so that we don’t need to rewrite our iteration functionality. We also changed
our functions so that we’re no longer directly accessing the Customer.allCustomer
object; instead, we’re passing it to our functions each time. This ensures that our func‐
tions’ output will always be dependent on the input.

We still have a bit to do before our functions are completely pure; we need to get rid of
the side effect that exists when we are changing our Contact variable.

Side Effects
Side effects are important: you can use them to persist data, display data, and even change
fields on objects. Without side effects, most applications are completely useless. Here
are a few examples of side effects:

• Printing to a screen
• Saving to a file/database
• Altering a field on an object

Side effects are not bad, they should just be used sparingly. They should be used only
in certain situations because they go outside of the functional concepts. As we’ll see in
Chapter 7, statements allow us to implement side effects.

Back at XXY your boss has come to you again and said, “Boy, it’s awesome that we can
now set specific customers’ contracts as disabled, but we really need to get information
about those contracts after we’ve updated them.” He essentially wants you to update
setContractForCustomer to return a list of Contract objects you modified.

As stated before, assigning a field on an object passed in is technically a side effect. So,
let’s modify the Contract object’s methods and return the Contract after updating the
field. We’re going to create some setters that actually return the object itself after it is
modified! Let’s look at the setters in Example 3-17.

Side Effects | 33

Example 3-17. Customer class setters returning this
public Customer setCustomerId(Integer customer_id) {
 this.id = customer_id;
 return this;
}

public Customer setName(String name) {
 this.name = name;
 return this;
}

public Customer setState(String state) {
 this.state = state;
 return this;
}

public Customer setDomain(String domain) {
 this.domain = domain;
 return this;
}

public Customer setEnabled(Boolean enabled) {
 this.enabled = enabled;
 return this;
}

public Customer setContract(Contract contract) {
 this.contract = contract;
 return this;
}

Let’s also look at the setters that we’re creating for our Contract class in Example 3-18.
Again, we set the member variable and return our instance.

Example 3-18. Contract class setter returning this
public Contract setBeginDate(Calendar begin_date) {
 this.begin_date = begin_date;
 return this;
}

public Contract setEndDate(Calendar end_date) {
 this.end_date = end_date;
 return this;
}

public Contract setEnabled(Boolean enabled) {
 this.enabled = enabled;
 return this;
}

34 | Chapter 3: Pure Functions

Whereas we’re trying to ensure that there are no functions that have side effects, we
should no longer be using our foreach function. Instead, we’ll be using a map or collect
function. Let’s write that really quickly so that we have it ready.

Our map function will take a list of anything and another function that will be used to
transform each individual item it is passed. The code in Example 3-19 shows the new
map function, which will exist inside our Customer class.

Example 3-19. map function from Customer.java
public static <A1,B> List map(List<A1> inList, Function1<A1,B> func) {
 ArrayList outList = new ArrayList();
 for(A1 obj : inList) {
 outList.add(func.call(obj));
 }
 return outList;
}

Let’s remember our setContractForCustomer function; we can refactor it to return the
list of Contracts that were updated, as shown in Example 3-20. Notice how much sim‐
pler writing this code is? We can then use the return to print out each Contract that
was updated.

Example 3-20. setContractForCustomer using map
public static List<Contract> setContractForCustomer(Integer customer_id, final
 Boolean status) {
 return Customer.map(
 Customer.getCustomerById(Customer.allCustomers, customer_id),
 new Function1<Customer, Contract>() {
 public Contract call(Customer customer) {
 return customer.contract.setEnabled(status);
 }
 }
);
}

We’re now at the point where we need to abstract our foreach, map, and filter functions
so that we’re not just bound to our Customer object. Let’s bring these out into their own
singleton class, which we’ll define in FunctionalConcepts.java, as shown in
Example 3-21. Don’t forget to update the references to these methods.

Example 3-21. FunctionalConcepts.java file
import java.util.ArrayList;
import java.util.List;

public class FunctionalConcepts {

 private FunctionalConcepts() {}

Side Effects | 35

 public static <A1,B> List map(List<A1> inList, Function1<A1,B> func) {
 ArrayList outList = new ArrayList();
 for(A1 obj : inList) {
 outList.add(func.call(obj));
 }
 return outList;
 }

 public static <A> void foreach(ArrayList<A> inList, Foreach1<A> func) {
 for(A obj : inList) {
 func.call(obj);
 }
 }

 public static <A> ArrayList<A> filter(ArrayList<A> inList,
 Function1<A, Boolean> test) {
 ArrayList<A> outList = new ArrayList<A>();
 for(A obj : inList) {
 if(test.call(obj)) {
 outList.add(obj);
 }
 }
 return outList;
 }

}

Now we just need to print the Contracts that changed, as shown in Example 3-22.
Notice that we are implementing setContractForCustomer followed by a foreach on
our returned list. We then create our Foreach function, which does the printing for us.

Example 3-22. foreach usage to print all modified contracts
FunctionalConcepts.foreach(
 Contract.setContractForCustomer(1, true),
 new Foreach1<Contract>() {
 public void call(Contract contract) {
 System.out.println(contract.toString());
 }
 }
);

We’ve ended up with a side effect again, so what are we going to do? As I said earlier,
you can’t entirely avoid side effects in your code. This being the case, we just need to
wrap the side effect so that the output is always dependent on the input.

36 | Chapter 3: Pure Functions

Conclusion
So far, we’ve discussed how to use higher-order functions to create more abstract func‐
tionality. I’ve also shown you how to take functions and make them pure, such that the
entirety of the output is reliant on the parameter list.

It takes time and practice to really get the hang of refactoring into a functional style. My
hope is that through this book you’ll gain an understanding of how to make the changes.

How do you know when to make a function pure? Really, you want to make a function
pure whenever possible; it makes the function much more testable and improves un‐
derstandability from a troubleshooting perspective. However, sometimes you don’t need
to go to that extreme.

Let’s look at Example 3-23, in which we’ll refactor our getField method and instead of
passing in the test function, we’ll pass in a prefiltered list. That is a good purification,
but let’s not use the static DisabledCustomers object we created; instead, we’ll create a
new Function1 with which to perform the filter.

Upon trying to purify the function, notice that we’re now creating a new Function1
object for every call to getDisabledCustomerNames. This isn’t a huge deal, but remember
that we have a lot of these getDisabledCustomer* functions, which means that we’re
going to duplicate a lot of these Function1 objects. In this instance, we’ve taken purity
too far, and instead we should’ve just used the Customer.DisabledCustomer object
instead.

Example 3-23. Prefiltered lists with getDisabledCustomerNames
public static List<String> getDisabledCustomerNames() {
 return Customer.getField(
 FunctionalConcepts.filter(Customer.allCustomers,
 new Function1<Customer,Boolean>() {
 public Boolean call(Customer customer) {
 return customer.enabled == false;
 }
 }),
 new Function1<Customer, String>() {
 public String call(Customer customer) { return customer.name; }
 }
);
}

public static List getField(List<Customer> inList,
 Function1<Customer,B> func) {
 ArrayList outList = new ArrayList();
 for(Customer customer : inList) {
 outList.add(func.call(customer));
 }

Conclusion | 37

 return outList;
}

Making the Switch to Groovy

Dynamically Typed Language
Groovy is a dynamically typed language, which means that you can
create new types at runtime and the compiler won’t warn you that
you are passing incompatible types. In Groovy you overcome this by
writing 100% unit tests in your code to ensure that you will not pass
an invalid class to a function.

Your boss has started to see how useful functional programming is; he’s been noticing
how higher-order functions can reduce code duplication and sees the ease of testability
that comes from having pure functions. He’s decided that if you can keep the classes as
they exist right now, you can go ahead and start converting over to another language.

You decide to convert to Groovy because it’s fairly close to Java and allows people to
write in Java if they are not fully comfortable with Groovy. Not only does Groovy allow
us to keep the class definitions we already have, it also allows us to begin a transition to
a fully functional language. As soon as we switch to Groovy, we will be able to get rid
of our custom FunctionalConcepts class, as well as the Function1 and Foreach1
classes.

We will no longer need these classes, because Groovy includes helpful additions to the
List interface such as findAll and collect, which are the same as filter and map,
respectively. Let’s see how we are going to refactor the update contract example. We’ll
begin by retrieving only the customer for the id we want, as shown in Example 3-24.

Example 3-24. getCustomerById in Groovy
def getCustomerById(Integer customerId) {
 Customer.allCustomers.findAll({ customer ->
 customer.id == customerId
 })
}

We now have a list of customers matching that customer_id; this list will be either empty
or have one Customer in it, which, as we saw earlier in the chapter, is much safer to deal
with than checking for nullity. Next, we need to take that list and update and send back
the Contract, as in Example 3-25.

38 | Chapter 3: Pure Functions

Example 3-25. Updating the contract field in Groovy
.collect({ customer ->
 customer.contract.enabled = false
 customer.contract
})

The last step is to print each of the contracts that we updated, as shown in Example 3-26.

Example 3-26. Printing all contracts in Groovy
.each({ contract ->
 println(contract)
})

Now, let’s chain all of these calls together in Example 3-27.

Example 3-27. The setContractForCustomer method in Groovy
def setContractForCustomer(Integer customerId) {
 Customer.allCustomers.findAll({ customer ->
 customer.id == customerId
 }).collect({ customer ->
 customer.contract.setEnabled(false)
 }).each({ contract ->
 println contract
 })
}

What about all of those other methods from the Customer.java file? Let’s go ahead and
refactor our code into functional Groovy code. Let’s do the getDisabledCustomer
Names function first (see Example 3-28).

Example 3-28. getDisabledCustomerNames method in Groovy
public static List<String> getDisabledCustomerNames() {
 Customer.allCustomers.findAll({ customer ->
 customer.enabled == false
 }).collect({ cutomer ->
 cutomer.name
 })
}

Go ahead and refactor the Customer.java code into Groovy syntax. When you’re done,
check out the code in Example 3-29 to see how I refactored it.

Example 3-29. The Java-to-Groovy syntax
import java.util.ArrayList;
import java.util.List;

public class Customer {

Conclusion | 39

 static public ArrayList<Customer> allCustomers = new ArrayList<Customer>();
 public Integer id = 0;
 public String name = "";
 public String address = "";
 public String state = "";
 public String primaryContact = "";
 public String domain = "";
 public Boolean enabled = true;
 public Contract contract;

 public Customer() {}

 public Customer setCustomerId(Integer customer_id) {
 this.customer_id = customer_id;
 return this;
 }

 public Customer setName(String name) {
 this.name = name;
 return this;
 }

 public Customer setState(String state) {
 this.state = state;
 return this;
 }

 public Customer setDomain(String domain) {
 this.domain = domain;
 return this;
 }

 public Customer setEnabled(Boolean enabled) {
 this.enabled = enabled;
 return this;
 }

 public Customer setContract(Contract contract) {
 this.contract = contract;
 return this;
 }

 static def EnabledCustomer = { customer -> customer.enabled == true }
 static def DisabledCustomer = { customer -> customer.enabled == false }

 public static List<String> getDisabledCustomerNames() {
 Customer.allCustomers.findAll(DisabledCustomer).collect({cutomer ->
 cutomer.name
 })
 }

40 | Chapter 3: Pure Functions

 public static List<String> getEnabledCustomerStates() {
 Customer.allCustomers.findAll(EnabledCustomer).collect({cutomer ->
 cutomer.state
 })
 }

 public static List<String> getEnabledCustomerDomains() {
 Customer.allCustomers.findAll(EnabledCustomer).collect({cutomer ->
 cutomer.domain
 })
 }

 public static List<String> getEnabledCustomerSomeoneEmail(String someone) {
 Customer.allCustomers.findAll(EnabledCustomer).collect({cutomer ->
 someone + "@" + cutomer.domain
 })
 }

 public static ArrayList<Customer> getCustomerById(ArrayList<Customer> inList,
 final Integer customer_id) {
 inList.findAll({customer -> customer.customer_id == customer_id })
 }
}

We can now get rid of the FunctionalConcepts.java, Foreach1.java, and Function1.java
files because we’re converting over to Groovy, which already have these built in.

Now that we’ve converted over, we’ll be using Groovy from here on out. As I said before,
Groovy is a fantastic transition language, since it makes it possible for you to bring in
more functional concepts while keeping a syntax familiar to many Java programmers.
You can continue writing in Java until everyone is more comfortable writing in a fully
functional language. It also means that you can keep your libraries and current code
without rewriting them.

Conclusion | 41

CHAPTER 4

Immutable Variables

Immutable variables is a topic that gives everyone the shudders when they first get into
it. Let’s get the big question out of the way first: how can an application run if variables
never change? This is a good question, so let’s look at the following rules about
immutability:

• Local variables do not change.
• Global variables can change only references.

Object variables, especially in Java, are references to the object itself. This means that
changing the “reference” to which the variable points should be an atomic process. This
is important because if we are going to update the variable, we will access it either pre-
or post-update but never in an intermediate state. We’ll discuss this a little later, but
right now, let’s look at mutability.

We’re Getting Groovy Now
Remember from the preceding chapter that we’re going to be writ‐
ing in Groovy from this point on.

Mutability
When we think of variables, we normally think of mutable variables. After all, a variable
is variable, which means that we should be able to store many different values in it and
reuse it.

43

As we think of mutable variables, we realize that this is how we normally write code—
with variables that inherently change over time. In Example 4-1, notice how f changes
and is assigned two distinct values? This is how we normally deal with variables.

Example 4-1. Modifying a variable
def f = 10
f = f + f

So what happens when we have a variable that is passed to a function and we try to
mutate that? Let’s see in Example 4-2.

Example 4-2. Modifying a variable passed to a function
def f = "Foo"

def func(obj) {
 obj = "Bar"
}

println f
func(f)
println f

We can see from the output that we get two "Foo" printouts. This is correct because the
reference that f contained, "Foo", was passed to func, and then we update the variable
obj with a new reference to "Bar". But because there is no connection between obj and
f, f remains unchanged and contains our original reference to "Foo".

This was probably not what the author intended, so he fixes it by using a mutable object
containing the reference he wants to change. Let’s see this in action in Example 4-3.

Example 4-3. Modifying a variable passed into a function
class Foo {
 String str
}

def f = new Foo(str: "Foo")

def func(Foo obj) {
 obj.str = "Bar"
}

println f.str
func(f)
println f.str

44 | Chapter 4: Immutable Variables

We can see that, although f didn’t change, f.str did. This looks like it’s a fairly standard
mutation of an object, but let’s think about this in another light. What if it were not clear
that func was going to mutate f.str, and we now need to determine why f.str has
changed over time? We’ll need to debug to find out that func is indeed changing our
variable.

Using code comments or setting something in the name of the function to indicate that
you are mutating the object is one way to help answer the question “Why did this
change?” Immutability gives us the confidence that our variables will not be changing
and that our objects will be the same no matter to which function we send them.

Let’s head back over to XXY. Your boss has come back with another request, this time
a little more sane. He needs to send emails to the customers if the following conditions
are met:

• The Customer is enabled.
• The Contract is enabled.
• The Contract has not expired.
• The Contact is still enabled.

The boss has indicated that this really shouldn’t be a big deal because someone else
already added a list of Contacts to the Customer class. The definition of a Contact is in
the Contact.java file, shown in Example 4-4.

Example 4-4. Contact.java file
public class Contact {

 public Integer contact_id = 0;
 public String firstName = "";
 public String lastName = "";
 public String email = "";
 public Boolean enabled = true;

 public Contact(Integer contact_id,
 String firstName,
 String lastName,
 String email,
 Boolean enabled) {
 this.contact_id = contact_id;
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 this.enabled = enabled;
 }
}

Mutability | 45

The message template is as follows, where <firstName> and <lastName> are place‐
holders to be replaced by the user’s name:

Hello <firstName> <lastName>,
We would like to let you know that a new product is available for you to try. Please feel
free to give us a call at 1-800-555-1983 if you would like to see this product in action.
Sincerely, Your Friends at XXY

We’re going to add the functionality into the Customer class. Let’s think about this func‐
tionally. First, we will findAll Customer.allCustomer records where both the customer
is enabled and the customer’s contract is enabled. For each of those customers, we will
then findAll contacts that are enabled. And finally, for each of those contacts, we will
sendEmail. Let’s go ahead and write the code in Groovy, as seen in Example 4-5.

Example 4-5. sendEnabledCustomersEmail method
public static void sendEnabledCustomersEmails(String msg) {
 Customer.allCustomers.findAll { customer ->
 customer.enabled && customer.contract.enabled
 }.each { customer ->
 customer.contacts.findAll { contact ->
 contact.enabled
 }.each { contact ->
 contact.sendEmail(msg)
 }
 }
}

I don’t want to get too far into a battle about how best to handle sending emails, so let’s
assume that we’ve already written Contact.sendEmail, which takes a string, performs
a replace for member variables, and then sends out the email. Let’s get even more func‐
tional—we might need to do something else later for each enabled Contact. So, let’s use
a closure, as shown in Example 4-6.

Example 4-6. eachEnabledContact closure
public static void eachEnabledContact(Closure cls) {
 Customer.allCustomers.findAll { customer ->
 customer.enabled && customer.contract.enabled
 }.each { customer ->
 customer.contacts.each(cls)
 }
}

46 | Chapter 4: Immutable Variables

Now, we can call Customer.eachEnabledContact({ contact -> contact.sendE
mail(msg) }) and get our functionality. At this point, we have a nice set of functionality
that we can call anytime we need to do something for all enabled contacts. For example,
we might just want to create a list of all the enabled contacts.

Your boss has asked you to add functionality to change a Contact’s name and email,
because people get married or have other life events requiring name changes. Now let’s
assume that our application is actually threaded (maybe it’s a web server). If you don’t
see an issue, you’re about to.

You just sat down to work, happy that you got the “change name and email” functionality
done and rolled out. You get an email from your boss asking you to take a look at a new
blocker bug: “Send email sometimes sends to an old email address.” The support team
includes the broken email in the bug as well.

from: XXY Product Trials <trials@xxy.com>
to: Jane Doe <jdoe@company.com>
subject: New Product Trial
Hello Jane Smith,
We would like to let you know that a new product is available for you to try. Please feel
free to give us a call at 1-800-555-1983 if you would like to see this product in action.
Sincerely, Your Friends at XXY

In the bug, the support team says Jane just got married and her name changed from
Jane Doe to Jane Smith. The thing they can’t figure out is why the email went to Jane
Doe <jdoe@company.com> but her name is referenced as Jane Smith in the body.

OK, before I break down the entire runtime, I’ll try to explain this. User A updates the
user’s last name and email and clicks Save at the same time that another user clicks Send
email. Because we have no synchronization, it’s possible for the name to be updated but
not the email when the email is actually created. Let’s look at the simplified sequence of
events in Table 4-1.

Table 4-1. Simplified user runtime
Step User A User B

1 Saves user name change Clicks “Send email”

2 System updates last name Unscheduled

3 Unscheduled Sends email with inconsistent data

4 System updates email Unscheduled

Mutability | 47

mailto:trials@xxy.com
mailto:jdoe@company.com
mailto:jdoe@company.com

Concurrency means there is no guarantee that a shared variable will actually be in a
specific state at any given time. How do you even reproduce concurrency bugs? How
do you validate that you have actually fixed a concurrency bug?

We haven’t even looked at a more likely scenario: what happens if we have functionality
to remove a Contact or a Customer? Now we might be iterating over our list and remove
an item from the list. Let’s look at all of these issues in one fell swoop. There are two
primary ways to fix our concurrency issue:

• Synchronize all access to the Customer.allCustomers object.
• Ensure that the Customer.allCustomers list and its members cannot be changed.

Our first option means that we must have a synchronized block for every possible access
of the Customer.allCustomers object. Invariably someone will forget to do a synchron‐
ized access and break the entire paradigm.

Our second option is much better; anyone can write any accessor to the Customer.all
Customers variable without worrying about the list mutating. Of course, this means that
we have to be able to generate new lists with updated members. This is the idea behind
immutability.

Immutability
As we get deeper into immutability, think about database transactions. Database trans‐
actions are atomic, which means that the system is either in a pre-transaction or post-
transaction state, never in a mid-transaction state.

This means that when a database transaction is committed, the new records are made
available to new queries. Older queries are still using older data, which is fine because
the functionality they were doing was predicated on the previous data.

48 | Chapter 4: Immutable Variables

Math Warning
I’m going to show that, if we have two good states, it’s better to be in
one or the other, but we cannot ever be in both. Let’s begin by defin‐
ing our function f(x,y). We also define that our two states (without
the tick mark and with the tick mark) are not equal:

f (x , y) =
x
y

31 * x + y ≠ 31 * x ' + y '

Let’s create a set of our known two good states:

β = { f (x , y), f (x ', y ')}

So, this means that mixing the sets of parameters still works and still
gives us a value; however, these are not values that exist in our set of
good states.

f (x ', y) ∉ β

f (x , y ') ∉ β

So, we’re going to think about variables as placeholders within a specific scope. If we
think back to our email issue, then, we know that we can operate only in a known good
state on both the list and the Customer and Contact records themselves.

Let’s begin working on our fix by doing the simplest thing and making our Custom
er.allCustomers an immutable list. Remember, we’re not making the variable immut‐
able, we’re making the thing the variable contains immutable. Let’s see this in
Example 4-7.

Example 4-7. Mutable allCustomers list that will contain immutable Customer objects
static public List<Customer> allCustomers = new ArrayList<Customer>();

That was simple enough, but now we have to deal with our eachEnabledContact, right?
Actually, we don’t have to do anything, because it was read-only functionality.

Let’s continue our momentum and make all fields of the Customer object immutable.
Again, this is fairly straightforward, as we make all fields final with one caveat: we must
have a constructor that sets every field, as shown in Example 4-8.

Immutability | 49

Example 4-8. Immutable Customer object
 public final Integer customer_id = 0;
 public final String name = "";
 public final String state = "";
 public final String domain = "";
 public final Boolean enabled = true;
 public final Contract contract = null;
 public final List<Contact> contacts = new ArrayList<Contact>();

 public Customer(Integer customer_id,
 String name,
 String state,
 String domain,
 Boolean enabled,
 Contract contract,
 List<Contact> contacts) {
 this.customer_id = customer_id;
 this.name = name;
 this.state = state;
 this.domain = domain;
 this.enabled = enabled;
 this.contract = contract;
 this.contacts = contacts;
 }

Removing Setters
Because we’re changing our fields to immutable, we must remove all
setters. If you think about it, having setters for immutable fields is a
fallacy in and of itself, because the fields can be set only when the
object is created.

Next, let’s update our Contract class and make it immutable as well (Example 4-9). It
is important to understand that as we do this, we will be unable to run and test the
functionality until we’ve completed this refactor. Remember, our original code for up‐
dating a contract sets the field, which does not work with immutable variables.

Example 4-9. Immutable Contract class
import java.util.List;
import java.util.Calendar;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.LinkedBlockingQueue;

public class Contract {

 public final Calendar begin_date;
 public final Calendar end_date;
 public final Boolean enabled = true;

50 | Chapter 4: Immutable Variables

 public Contract(Calendar begin_date, Boolean enabled) {
 this.begin_date = begin_date;
 this.end_date = this.begin_date.getInstance();
 this.end_date.setTimeInMillis(this.begin_date.getTimeInMillis());
 this.end_date.add(Calendar.YEAR, 2);
 this.enabled = enabled;
 }

}

Even though we know we need to update setContractForCustomerList, we’re going
to switch from a concurrent design for now. Instead, we’ll create a new constructor, as
shown in Example 4-10, so that we can create a new object with all members set.

Example 4-10. Constructor for the Contract class
public Contract(Calendar begin_date, Calendar end_date, Boolean enabled) {
 this.begin_date = begin_date;
 this.end_date = end_date;
 this.enabled = enabled;
}

Now, let’s go ahead and update our setContractForCustomerList method so that we
can get things working again. We’ll want to map over our allCustomers list, updating
customers that have specific ids. All of this is shown in Example 4-11.

Example 4-11. setContractForCustomerList with map
 public static List<Customer> setContractForCustomerList(List<Integer> ids,
 Boolean status) {
 Customer.allCustomers.collect { customer ->
 if(ids.indexOf(customer.customer_id) >= 0) {
 new Customer(
 customer.customer_id,
 customer.name,
 customer.state,
 customer.domain,
 customer.enabled,
 new Contract(
 customer.contract.begin_date,
 customer.contract.end_date,
 status
),
 customer.contacts
)
 } else {
 customer
 }
 }
 }

Immutability | 51

Some might think that this looks terrible, but it is a fantastic piece of code. We iterate
over the list of objects, then check to see if the current customer_id is in our list of ids.
If it is, we create a new customer, copying all the fields over except Contract. Instead,
we create a new Contract with the specific status that was passed to us. This new cus‐
tomer is then used in place of the original customer record. If it is not in our list, we
return the original customer.

Let’s try to refactor this so that if we want to, we can change the Contract in any manner.
We’ll add a method to Customer.java called updateContractForCustomerList, which
will do the same thing as Example 4-11, except now we execute a higher-order function
on the contract itself. We will then expect that a contract will be returned. Let’s look at
the code in Example 4-12.

Example 4-12. updateContractForCustomerList function
 public static List<Customer> updateContractForCustomerList(List<Integer> ids,
 Closure cls) {
 Customer.allCustomers.collect { customer ->
 if(ids.indexOf(customer.customer_id) >= 0) {
 new Customer(
 customer.customer_id,
 customer.name,
 customer.state,
 customer.domain,
 customer.enabled,
 cls(customer.contract),
 customer.contacts
)
 } else {
 customer
 }
 }
 }

Now, we update our original setContractForCustomerList function in Con‐
tract.java to call into Customer.updateContractForCustomerList, as shown in
Example 4-13. We are returning a List of Customers, so we are able to execute Custom
er.allCustomers = Contract.setContractForCustomerList(…), which provides us
with a constant, pristine list.

Example 4-13. setContractForCustomerList function, which references updateContract‐
ForCustomerList
 public static List<Customer> setContractForCustomerList(List<Integer> ids,
 Boolean status) {
 Customer.updateContractForCustomerList(ids, { contract ->
 new Contract(contract.begin_date, contract.end_date, status)
 })
 }

52 | Chapter 4: Immutable Variables

Remember how I mentioned an update contact method earlier? This was the entire
reason for our bug; let’s go ahead and update that method so that we can fix the broken
code, which is still trying to update objects.

In Example 4-14, we’ll see our new updateContact method, which will map or collect
all the Customer records.

Example 4-14. updateContactFor using an immutable list
 public static List<Customer> updateContact(Integer customer_id,
 Integer contact_id,
 Closure cls) {
 Customer.allCustomers.collect { customer ->
 if(customer.customer_id == customer_id) {
 new Customer(
 customer.customer_id,
 customer.name,
 customer.state,
 customer.domain,
 customer.enabled,
 customer.contract,
 customer.contacts.collect { contact ->
 if(contact.contact_id == contact_id) {
 cls(contact)
 } else {
 contact
 }
 }
)
 } else {
 customer
 }
 }
 }

But wait: we’re starting to repeat ourselves, so let’s remember DRY and see what we can
abstract. Take a few minutes to work on it yourself, and then check Example 4-15 to see
what I did.

Example 4-15. Refactoring to abstract the looping methodology
 public static List<Customer> updateCustomerByIdList(List<Integer> ids,
 Closure cls) {
 Customer.allCustomers.collect { customer ->
 if(ids.indexOf(customer.customer_id) >= 0) {
 cls(customer)
 } else {
 customer
 }
 }
 }

Immutability | 53

 public static List<Customer> updateContact(Integer customer_id,
 Integer contact_id,
 Closure cls) {
 updateCustomerByIdList([customer_id], { customer ->
 new Customer(
 customer.customer_id,
 customer.name,
 customer.state,
 customer.domain,
 customer.enabled,
 customer.contract,
 customer.contacts.collect { contact ->
 if(contact.contact_id == contact_id) {
 cls(contact)
 } else {
 contact
 }
 }
)
 })
 }

 public static List<Customer> updateContractForCustomerList(List<Integer> ids,
 Closure cls) {
 updateCustomerByIdList(ids, { customer ->
 new Customer(
 customer.customer_id,
 customer.name,
 customer.state,
 customer.domain,
 customer.enabled,
 cls(customer.contract),
 customer.contacts
)
 })
 }

Conclusion
Most people believe that moving to immutable variables will increase the complexity of
their code; however, it actually helps in many different ways. Tracking down bugs—
because we know certain variables cannot change—becomes easier; we can better un‐
derstand what might have been passed into and out of functions.

Immutability is a difficult technique to implement because you will most likely need to
do large refactorings in order to accomplish it. Just look back at our conversion of the
Customer object; we actually had to make changes to other classes and methods to
support this. The key to implementing immutability is to start on your new classes and
work backward during downtime to refactor your old code. Start with smaller classes
that don’t change much and then move on to your harder classes.

54 | Chapter 4: Immutable Variables

CHAPTER 5

Recursion

Immutable variables have an obvious flaw: we cannot change them. This means that it’s
more difficult to do things like changing a single element of a list, or implementing an
if statement that sets a variable. Also, let’s think about immutability in terms of appli‐
cations. How can our applications run if data is never allowed to change? This is where
we must use recursion.

Math Warning
Let’s check out an example of a recursive function in mathematics. We
can see that we have an end case: if x is less than or equal to 0. And we
have the execution to do for every other case—this is our summation.

f (x) = {0 if x ≤ 0

x + f (x - 1) if x > 0

Here we are just summing up each number that we pass in, but what
if we used our first-class functions? Let’s see what we could do.

f (x , c) = {0 if x ≤ 0

c(x) + f (x - 1) if x > 0

Although it doesn’t seem like much has changed, what we’ve effective‐
ly done is create the summation operation.

f (x , c) = ∑
n=0

x
c(n)

55

Many people are afraid of recursion, mainly because they never learned how to write
recursive functions effectively. People also assume that iterative algorithms are inher‐
ently better than recursive algorithms. Recursive algorithms are much simpler because
they deal only with the input values. If we were to use a normal for loop in an iterative
process, the algorithm would have to worry about the list as a whole. Example 5-1 shows
a simple summation in a for loop.

Example 5-1. Summation using a for loop
def f(x) {
 int summation = 0
 for(int i = 1; i <= x; i++) { summation = summation + i }
 return summation
}
println f(10)

Let’s rewrite this summation as a recursive function in Example 5-2.

Example 5-2. Summation using a recursive function
def f(x) {
 if(x <= 0) { return 0 } else { return x + f(x - 1) }
}
println f(10)

As in this case, a recursive algorithm is often much simpler to design, and I hope this
chapter teaches you how to think recursively as you look at algorithms and puts you
more at ease writing recursion.

As most software developers know, there is a limit on how deep recursion can go, or
how many times a function can call into itself. Most of the time, this is bound by memory
(remember, you’re creating a new frame on the stack each time you make a function
call), and in other languages there are limits in the compiler or interpreter. We’ll discuss
ways to get around this limitation, though unfortunately not for all languages.

An Introduction to Recursion
Let’s think about another simple example to replicate the Filter function. We’ll be
writing this function in Groovy. Let’s begin with a normal iterative loop style.

You’ll notice that I annotated the generic typing; although that’s not
required in Groovy, I don’t want anyone to get lost.

56 | Chapter 5: Recursion

def <T> List<T> Filter(List<T> list, Closure cls) {
 ArrayList<T> out = new ArrayList<T>()
 for(T obj : list) {
 if(cls(obj)) {
 out.add(obj)
 }
 }
 return out
}

As you can see, we create a mutable out list and then go through each element in our
input list, adding it to our out list if cls(obj) returns true. As the final statement, we
return out. Let’s try to convert this iteration into recursion.

The first step is to check if the input list is empty; if it is, we’ll return an empty list, as
shown in Example 5-3. So far, we’ve protected ourselves from the end case, the most
important part of a recursive function. This should always be your first step in writing
a recursive function; if you miss this, you will end up with an infinite loop.

Example 5-3. Filter function with only the end case
def <T> List<T> Filter(List<T> list, Closure cls) {
 if(list.isEmpty()) {
 return []
 }
}

Lists, Heads, and Tails, Oh My!
There are generally two main parts of a list that everyone should
understand: the head and the tail. Let’s take, for example, a list of
numbers from 1 to 5. The head is the element 1, whereas the tail is a
list containing 2 through 5:

| 1 | 2 | 3 | 4 | 5 |
 ^ ^^^^^^^^^^^^^
 | |
 head tail

After our if statement, we’ll do our actual processing. We check when we pass
list.head() to cls if that returns true. If it does, we’ll create a new list containing the
head; otherwise, we’ll use an empty list (see Example 5-4).

Example 5-4. Filter function with the head portion of the list
def <T> List<T> Filter(List<T> list, Closure cls) {
 if(list.isEmpty()) {
 return []
 }
 List<T> out = cls(list.head()) ? [list.head()] : []
}

An Introduction to Recursion | 57

At this point, we know whether the current object belongs in our output list. But what
about the rest of our list? That’s easy: we’ll just call back into Filter with the tail() of
the list. We’ll concatenate the returned list from Filter to our out list by using the +
operator. Check out the code in Example 5-5.

Example 5-5. Basic Filter function using recursion
def <T> List<T> Filter(List<T> list, Closure cls) {
 if(list.isEmpty()) {
 return []
 }
 List<T> out = cls(list.head()) ? [list.head()] : []
 return out + Filter(list.tail(), cls)
}

But we can simplify this more. Let’s complete the following steps and check out
Example 5-6 once we’re done:

1. Add an else statement to our if structure; this cleans up the implicit else that
existed.

2. Get rid of the extraneous out variable by replacing it with the ternary statement.

Example 5-6. Simplified Filter function using recursion
def <T> List<T> Filter(List<T> list, Closure cls) {
 if(list.isEmpty()) {
 return []
 } else {
 return (cls(list.head()) ? [list.head()] : []) + Filter(list.tail(), cls)
 }
}

Nullity Is a Scary Thing
You’ll notice that there was no check for list being null. This is
actually intentional, because dealing with nullity is bad design. What
would passing null to this function mean? Would it mean that your
upstream function failed and you failed to handle it? If so, why
should this function ignore nullity?
In my experience, null is a very dangerous construct that should be
avoided at all costs. We’ll see some alternatives to error handling
later, but for now just know that we’ll always pass around full objects.

The thing to notice about this algorithm is that in no instance is an object actually
modified. Our objects are created and destroyed but are never mutated. Remember,
immutability is an important part of functional programming.

58 | Chapter 5: Recursion

Recursion
Sometimes the general filter- and map-style functions aren’t going to help you. Instead,
you will need to perform some operation to reduce the data from a set into a single
piece of output.

XXY has been growing, and your boss has asked that you get a count of all enabled
customers that have no enabled contacts. This is important because every customer
should have at least one enabled contact. You start to write a simple function, falling
back into an imperative style using iteration, as shown in Example 5-7.

Example 5-7. Function that counts a customer if she is enabled but has no enabled
contacts
public static int countEnabledCustomersWithNoEnabledContacts(
 List<Customer> customers) {
 int total = 0
 for(Customer customer : customers) {
 if(customer.enabled) {
 if(customer.contacts.find({ contact -> contact.enabled}) == null) {
 total = total + 1
 }
 }
 }
 return total
}

Uh oh! Notice that we have a mutable variable. There is actually another solution using
function chaining instead of recursion, as shown in Example 5-8.

Example 5-8. Function counting enabled customers, but no enabled contacts, using
function chaining
public static int countEnabledCustomersWithNoEnabledContacts(
 List<Customer> customers) {
 return customers.findAll({ customer ->
 return customer.enabled
 }).findAll({ customer ->
 return (customer.contacts.find({ contact -> contact.enabled }) == null)
 }).size()
}

The problem here is that we’re inherently traversing our list twice. Instead, let’s go ahead
and make this a single traversal by combining our findAll logic, as shown in
Example 5-9.

Recursion | 59

Example 5-9. Function counting enabled customers, but no enabled contacts, in a single
findAll
public static int countEnabledCustomersWithNoEnabledContacts(
 List<Customer> customers) {
 return customers.findAll({ customer ->
 return customer.enabled && (customer.contacts.find({ contact ->
 contact.enabled }) == null)
 }).size()
}

Of course, this is not a recursive function and relies on us creating a new list just to get
the size() of the list. If this list were a couple thousand customers long, we’d be wasting
time creating a new list that we’re just going to throw away. Now, if we were going to
just get the list and operate on that, it would be a different story, but here we’re just
concerned about the count.

Let’s see how we can do this in a much less wasteful way. We’re going to reduce over
our list of customers into a count (see Example 5-10).

Example 5-10. Function counting enabled customers, but no enabled contacts,
recursively
public static int countEnabledCustomersWithNoEnabledContacts(
 List<Customer> customers) {
 if(customers.isEmpty()) {
 return 0
 } else {
 int addition = (customers.head().enabled &&
 (customers.head().contacts.find({ contact ->
 contact.enabled
 }) == null)
) ? 1 : 0
 return addition + countEnabledCustomersWithNoEnabledContacts(customers.tail())
 }
}

Wow, there appears to be quite a bit going on here. There is, but what’s amazing is that
it’s very simple logic and the overall statement is also really simple. Let’s decompose this
function. The first thing we’ll do is define our end case, as shown in Example 5-11.

Example 5-11. Function counting enabled customers but no enabled contacts—end case
public static int countEnabledCustomersWithNoEnabledContacts(
 List<Customer> customers) {
 if(customers.isEmpty()) {
 return 0
 } else {

60 | Chapter 5: Recursion

The next thing to do is define our logic if the customer is enabled and has no enabled
contacts, which is shown in Example 5-12. We do this by saying, “if our logic is true,
then we will add 1; otherwise, we add 0.”

Example 5-12. Function counting enabled customers but no enabled contacts—base
logic
int addition = (customers.head().enabled &&
 (customers.head().contacts.find({ contact ->
 contact.enabled
 }) == null)
) ? 1 : 0

Finally, we return our addition to our recursive call, as shown in Example 5-13.

Example 5-13. Function counting enabled customers but no enabled contacts—recur‐
sive call
 return addition + countEnabledCustomersWithNoEnabledContacts(customers.tail())
 }
}

The logic really isn’t that bad. When we start looking at statements in Chapter 7, you
will find that you really don’t need to use the ternary operator. But for the time being,
we’ll proceed with the tools we have right now.

As I’ve said before, you can end up with some really bad issues if you have to recurse
thousands of times. The main issue with recursing this many times is that you eventually
run out of space on the stack. Remember, each function call pushes information back
onto the stack. But, of course, there are instances for which we need to iterate thousands
of times while keeping track of some state. This is where tail recursion comes in!

Tail Recursion
Tail recursion is very close to recursion, the difference being that there are no out‐
standing calls when you recurse. If you no longer need to keep the stack so that you can
unwind the recursive calls, you no longer have an expanding stack.

Tail recursion happens when the last call of the function is the tail call and there are no
outstanding operations to be done within the function when the return occurs. This is
generally a compiler optimization, except in Groovy, which we will see shortly, for which
you must use trampolining.

Let’s look at our Filter example and see if we can convert this into a tail-recursive call.
So, we know that in a tail call, the function cannot have outstanding processing when
we go into a recurse. In Example 5-14, we’ll add our end case and end parameter to
return at the end.

Tail Recursion | 61

Example 5-14. Filter function using tail recursion—only the end case
def <T> List<T> Filter(List<T> list, List<T> output, Closure cls) {
 if(list.isEmpty()) {
 return output

In our else statement, you’ll notice that now we’re appending to the output list instead
of prepending to it (see Example 5-15). This is because we’re building the list as we
traverse it rather than as we unwind the stack.

Example 5-15. Filter function using tail recursion—the recursive call
 } else {
 return Filter(list.tail(), cls(list.head()) ? output + list.head() : output, cls)
 }
}

Let’s put this all together and see what it looks like in Example 5-16.

Example 5-16. Filter function using tail recursion
def <T> List<T> Filter(List<T> list, List<T> output, Closure cls) {
 if(list.isEmpty()) {
 return output
 } else {
 return Filter(list.tail(), cls(list.head()) ? output + list.head() : output, cls)
 }
}

Refactoring Our
countEnabledCustomersWithNoEnabledContacts Function
Your boss has come back saying that the countEnabledCustomersWithNoEnabledCon
tacts function you wrote needs to handle a couple hundred thousand customers. You’ve
known from the beginning that the function you wrote would fail if you go too deep
into the recursion. But, there is a way to fix our recursive call, so let’s do so.

Let’s begin with the end case again. In Example 5-17, we know that our last step should
be returning the sum. We will then add sum as a parameter to our function to be returned
in the end case.

Example 5-17. Base case of tail-recursive countEnabledCustomersWithNoEnabledCon‐
tacts
public static int countEnabledCustomersWithNoEnabledContacts(
 List<Customer> customers,
 int sum) {
 if(customers.isEmpty()) {
 return sum
 } else {

62 | Chapter 5: Recursion

Again, we have the same logic to determine whether we’re adding anything (see
Example 5-18.

Example 5-18. Base logic of tail-recursive countEnabledCustomersWithNoEnabled‐
Contacts
int addition = (customers.head().enabled &&
 (customers.head().contacts.find({ contact ->
 contact.enabled
 }) == null)
) ? 1 : 0

Finally, we recurse into our function, adding the addition to our sum, which we then
pass forward, as in Example 5-19. This passing forward, and the fact that we have noth‐
ing waiting on the return of that function, is what makes this function tail-recursive. As
soon as we hit the end case, the value returned from the end case will be the same value
that is returned from the entrance into the recursive call itself.

Example 5-19. Return of tail-recursive countEnabledCustomersWithNoEnabledCon‐
tacts
 return countEnabledCustomersWithNoEnabledContacts(customers.tail(),
 sum + addition)
 }
}

As you can see, we’re still not mutating any objects, and we’re compiling our summation
as we recurse instead of having to unwind all of our function calls. Let’s see this all put
together in Example 5-20.

Example 5-20. Tail-recursive countEnabledCustomersWithNoEnabledContacts
public static int countEnabledCustomersWithNoEnabledContacts(
 List<Customer> customers,
 int sum) {
 if(customers.isEmpty()) {
 return sum
 } else {
 int addition = (customers.head().enabled &&
 (customers.head().contacts.find({ contact ->
 contact.enabled
 }) == null)
) ? 1 : 0
 return countEnabledCustomersWithNoEnabledContacts(customers.tail(),
 sum + addition)
 }
}

Refactoring Our countEnabledCustomersWithNoEnabledContacts Function | 63

Awesome! Now we have a tail-recursive call. Unfortunately, Groovy does not actually
do a tail-recursive optimization. But we have one small trick up our sleeves. We need to
turn this into a lambda and use the trampoline() call on it. Our code in Example 5-21
shows this refactor.

So how does trampolining work? It’s pretty simple: the trampoline() call causes the
function to be wrapped in a TrampolineClosure. When we execute the Trampoline
Closure—for example, calling countEnabledCustomersWithNoEnabledContacts(Cus
tomer.allCustomers, 0)—it will then execute the function itself. If the execution re‐
turns a TrampolineClosure, it will run the new TrampolineClosure function. It will
continue to do this until it gets something back that is not a TrampolineClosure.

Example 5-21. Function counting enabled customers, but no enabled contacts, tail re‐
cursively, using trampolining
def countEnabledCustomersWithNoEnabledContacts = null
countEnabledCustomersWithNoEnabledContacts = { List<Customer> customers, int sum ->
 if(customers.isEmpty()) {
 return sum
 } else {
 int addition = (customers.head().enabled &&
 (customers.head().contacts.find({ contact ->
 contact.enabled
 }) == null)
) ? 1 : 0
 return countEnabledCustomersWithNoEnabledContacts.trampoline(customers.tail(),
 sum + addition)
 }
}.trampoline()

Conclusion
In this chapter, we created a new function called countEnabledCustomersWithNoEna
bledContacts as a general recursive function, and then refactored it into a tail-recursive
function call. Notice that the logic is much simpler than using an entire if structure.
Instead, we can just look at the first element from our list, the head, and determine
whether we want to count it.

Many people shy away from recursion because of depth concerns and a perceived “per‐
formance issue.” That is valid when you start looking at extremely large lists and how
many function calls are actually being done. But let’s look at our email example from
Chapter 4.

64 | Chapter 5: Recursion

Let’s assume that we have five threads and a list of n size, and we are going to synchronize
access to the list (allowing mutable objects). Let’s assume that one of those threads needs
to update something in the list, meaning that it’s locking the list and giving a runtime
of O(n). That’s not too bad, but what about the other four threads? They are now blocked
for O(n) and will eventually have their own runtime of O(n). This brings the runtime
to O(2n).

Now, let’s look at this same example but instead using immutability and recursion. Let’s
assume that our update thread has a runtime of O(n), and our other threads also have
their own runtime of O(n). Notice, though, that the other threads do not need to wait
for writing to finish before they are able to access that list. This brings the runtime to
O(n). Let’s remember that in time complexity O(2n) can be simplified to O(n), which
means that both an iterative and a recursive runtime should be fairly similar when we’re
looking at concurrent processing.

Tail recursion solves our depth issues, but we have some challenges with syntax. As we
saw with Groovy, we had to define a variable and then call .trampoline() on the closure
that we were assigning to the variable. We can then use the trampoline() function call
in order to return a function to execute.

Introducing Scala
Let’s revisit our countEnabledCustomersWithNoEnabledContacts method, but this
time let’s look at it in Scala (shown in Example 5-22) and see how it’s different. As we’ll
see in the next few chapters, languages like Scala are more expressive, making recursion
much more readable and understandable.

Example 5-22. Function counting enabled customers, but no enabled contacts, tail re‐
cursively in Scala
def countEnabledCustomersWithNoEnabledContacts(customers : List[Customer],
 sum : Int) : Int = {
 if(customers.isEmpty) {
 return sum
 } else {
 val addition : Int = if(customers.head().enabled &&
 (customers.head().contacts.count(contact =>
 contact.enabled)) > 0) { 1 } else { 0 }
 return countEnabledCustomersWithNoEnabledContacts(customers.tail,
 sum + addition)
 }
}

Conclusion | 65

Scala Syntax
There are a few things to note here about the Scala syntax in
Example 5-22:

• Functions are denoted using the def keyword.
• Types are always listed after the definition and are separated with

the : operator.
• The isEmpty method call does not require us to use an empty set

of parentheses (because we treat it more like a member than a
method).

• Instead of using the ternary operator, we can use a full if state‐
ment to achieve the same effect.

The biggest difference is that we no longer have to call trampoline(); instead, we just
make our recursive call. As a double check, we can actually include the @tailrec an‐
notation on the method, which forces the compiler to make sure this method is tail-
recursive.

The other difference is that we have the if statement, which has a 1 or a 0 inside the if/
else structure setting the addition variable. This is equivalent to the ternary operator.

In the coming chapters, we’ll see more examples of this, specifically when we start talking
about statements.

66 | Chapter 5: Recursion

CHAPTER 6

Strict and Nonstrict Evaluations

Evaluations are the execution of a statement, usually the execution and setting of a
variable. So what exactly does it mean to have a strict versus a nonstrict evaluation?
Generally speaking, we as developers use strict evaluations. This means that the state‐
ment is immediately evaluated and assigned to the variable as soon as the variable is
defined.

This obviously means that with nonstrict evaluations we don’t assign the variable where
it is defined. This is also known as a “lazy” variable; the variable isn’t actually assigned
until the first time it is used. This is really useful when we have variables that may not
be used in a specific situation. Let’s look at a mathematical example.

Math Warning
Let’s assume that we have three functions: a(x), b(x), and f(x).

f (x) = a(x) / b(x)

If we look at this equation, we know to evaluate b(x) first because if it
equals 0, there is no point in evaluating a(x) given that the entire
equation fails. Our lazy value is a(x), and this is the point of a lazy
variable.

When thinking of lazy variables, we tend to also think of mutable variables, because we
think of the variable being defined and eventually being set. We normally think about
the Java example in Example 6-1. However, with nonstrict evaluation, we maintain im‐
mutability; the variable is assigned or evaluated only on the first reference. This means
that before the variable is used, it doesn’t exist; and as soon as it’s referenced, the variable
becomes defined.

67

Example 6-1. A lazy variable in Java
public static double f(int x) {
 int brtn = b(x);
 if(brtn == 0) {
 throw new IllegalArgumentException("Input gave a 0 value from b(x)");
 }
 return a(x) / brtn;
}

Your boss at XXY has asked that you create a new function that can get a list of enabled
Contacts for all enabled Customers. Let’s start with the simplest implementation by
using a method. The method will be called enabledContacts(), and we’ll add it to the
Customer. We see this implementation in Example 6-2.

Example 6-2. All enabled contacts method in Customer.java
public List<Contact> enabledContacts() {
 contacts.findAll { contact -> contact.enabled }
}

Well, that was pretty easy, but what happens if we call this multiple times? That’s an easy
fix: let’s just make this into a member variable instead of a method.

Strict Evaluation
So, strict evaluation means that we will create and evaluate the setting of the variable at
the time we define it. This is how we normally think of variables, so let’s go ahead and
initialize our enabledContacts member during the creation of the Customer object, as
shown in Example 6-3.

Example 6-3. All enabled contacts member being set in constructor
this.enabledContacts = contacts.findAll { contact -> contact.enabled }

Awesome—now we have our enabledContacts member, which can be accessed as many
times as we want and we don’t have to worry about rerunning the findAll. So let’s go
ahead and write our code to actually obtain all enabled Contacts for all enabled Cus
tomers. We’ll need to add a quick function call to flatten() because our enabledCon
tacts is a list, and we’re collecting a list of those lists to have a result of List<List<Con
tact>>. The call to flatten() will collapse all of the inner lists together and return a
List<Contact> (Example 6-4).

68 | Chapter 6: Strict and Nonstrict Evaluations

Example 6-4. Iterate over all customers and get their enabledContacts
Customer.allCustomers.findAll { customer ->
 customer.enabled
}.collect { customer ->
 customer.enabledContacts()
}.flatten()

Uh oh, our boss has come back saying that the application is taking forever to start up
and run. Since we’re using static evaluation, we’re actually creating our enabledCon
tacts list even if the Customer was disabled; so how can we skip evaluating the variable
if we don’t need it? Lazy evaluation allows us to define the variable but not evaluate its
value until the first time it is referenced.

Nonstrict (Lazy) Evaluation
So let’s start by following the normal imperative method most people would use to
accomplish this. We’ll create the member as private and then add a getter method. We’ll
then synchronize the method and check to see if the object is initialized, creating it if
not, and then return that (Example 6-5).

Example 6-5. All enabled contacts method with deduplication in Customer.java
private List<Contact> enabledContacts = null

public synchronized List<Contact> getEnabledContacts() {
 if(this.enabledContacts == null) {
 this.enabledContacts = this.contacts.findAll { contact ->
 contact.enabled
 }
 }
 return this.enabledContacts
}

Obviously this works, but it’s really undesirable because now we have a completely
different methodology to access the enabledContacts member. We’re actually going to
be calling a method rather than doing a simple member access. Good thing we’re using
Groovy and we get the @Lazy annotation!

Before we start throwing around the @Lazy annotation, let’s actually play around with
lazy variables in separate scripts. We’ll create a simple class TestClass, which will have
an array of numbers from 1 to 6, and another that contains only the odd numbers, as
shown in Example 6-6.

Nonstrict (Lazy) Evaluation | 69

Running Examples
For the rest of the examples in this chapter, these are all scripts and
there is no need for compilation.
Groovy examples

Copy the code into a file and run “groovy filename.groovy”.
Scala example

Copy the code into a file and run “scala filename.scala”.

Example 6-6. TestClass with nonlazy member
class TestClass {

 def all = [1,2,3,4,5,6]
 def odd = all.findAll { num -> num%2 == 1 }

}

println(new TestClass().odd)

So we obviously know that the member odd gets initialized as soon as we call new Temp
Class(). But let’s verify this by modifying the code a bit, as in Example 6-7.

Example 6-7. TestClass with nonlazy member and print statements
class TestClass {

 def all = [1,2,3,4,5,6]
 def odd = all.findAll { num -> println("Foo"); num%2 == 1; }

}

def tc = new TestClass()

println("Bar")

println(tc.odd)

As assumed, we see a bunch of "Foo" statements get printed followed by a "Bar", and
finally the array itself. But we can change this functionality by adding the @Lazy anno‐
tation to the odd member, as shown in Example 6-8.

Example 6-8. TestClass with lazy member and print statements
class TestClass {

 def all = [1,2,3,4,5,6]
 @Lazy def odd = all.findAll { num -> println("Foo"); num%2 == 1; }

}

70 | Chapter 6: Strict and Nonstrict Evaluations

def tc = new TestClass()

println("Bar")

println(tc.odd)

As we can see, we have the "Bar" printed out followed by a bunch of "Foo" statements
and finally the array. Notice that the odd member doesn’t actually get evaluated until it’s
referenced. Now, this has a really nasty side effect: if we were to change all before we
called odd, then when we do call odd we’re going to be getting the new evaluation based
on the new value of all. This is shown in Example 6-9.

Example 6-9. TestClass with lazy member; we change the all variable before referencing
odd
class TestClass {

 def all = [1,2,3,4,5,6]
 @Lazy def odd = all.findAll { num -> num%2 == 1 }

}

def tc = new TestClass()

tc.all = [1,2,3]

println(tc.odd)

The output here is the list of odd numbers but only between 1 and 3 (because we ref‐
erenced odd after we had changed the all variable). So what happens if we reference
odd before we change the all variable? Does this mean that the variable odd would be
set and would no longer be updated? Let’s see this in Example 6-10.

Example 6-10. TestClass with lazy member; we change the all variable reference after
referencing odd
class TestClass {

 def all = [1,2,3,4,5,6]
 @Lazy def odd = all.findAll { num -> num%2 == 1 }

}

def tc = new TestClass()

println(tc.odd)

tc.all = [1,2,3]

println(tc.odd)

Nonstrict (Lazy) Evaluation | 71

We see two lists printed out that are exactly the same; they are of odd numbers from 1
to 5. Wait—we changed all, which should mean that the second list we printed out
should’ve been odd numbers, but only from 1 to 3. Ah, but as we said before: the laziness
of the odd variable means that the evaluation only occurs once. This means on the first
reference of odd, it will be set and will not be reevaluated.

So now, let’s make use of the @Lazy annotation on our enabledContacts variable, as in
Example 6-11.

Being Lazy Has Its Own Quirks
In Groovy, when we use the @Lazy annotation, the Groovy compiler
generates a getter for the member, which does a lazy generation of the
member. This means that it will create it on the first access if it doesn’t
already exist, but if it does will reuse it. This works until you try to
use the final modifier.
Groovy will then pass the final modifier directly to Java, and you
will end up trying to modify a final variable due to the way @Lazy
works.

Example 6-11. All enabled contacts as lazy member in Customer.java
@Lazy public volatile List<Contact> enabledContacts = contacts.findAll { contact ->
 contact.enabled
}

Concurrency Notice
In Groovy, you will need to add the volatile keyword when using
@Lazy; otherwise, this code gets converted into non–thread-safe
code.

In Example 6-12, let’s look at a lazy variable definition in Scala for comparison.

Example 6-12. All enabled contacts as lazy member in Scala
lazy val enabledContacts = contacts.filter { contact ->
 contact.enabled
}

Notice that lazy becomes a modifier. For those not familiar with Scala, defining a vari‐
able is done with val or var, meaning an immutable or mutable variable respectively.
Finally, we filter our contacts. Notice that the big difference between Scala and Groovy
within the anonymous function syntax is switching from -> to =>, which separates our
parameters from the body.

72 | Chapter 6: Strict and Nonstrict Evaluations

Laziness Can Create Problems
Sometimes creating lazy variables can cause problems; for example, let’s say that you
have a variable that a large number of threads rely on. If you use a lazy variable, this
means that all the threads will block until the variable has been computed.

Let’s see an example where doing lazy variables might be worse than if we just took the
time to compute it in the beginning. We’re going to step away from XXY and look at a
simple example. Let’s assume that we have a Customer container, as shown in
Example 6-13.

Example 6-13. Problem with laziness shown in Groovy
class Customer {
 final Integer id
 final Boolean enabled
 public Customer(id, enabled) { this.id = id; this.enabled = enabled; }
}

class CustomerContainer {
 public List<Customer> customers = []
 @Lazy public volatile List<Customer> onlyEnabled = {
 customers.findAll { customer ->
 customer.enabled
 }
 }()
 public CustomerContainer() { this([]) }
 public CustomerContainer(customers) { this.customers = customers }
 def addCustomer(c) {
 new CustomerContainer(customers.plus(customers.size(), [c]))
 }
 def removeCustomer(c) {
 new CustomerContainer(customers.findAll { customer -> customer.id != c.id })
 }
}

def cc = new CustomerContainer()
cc = cc.addCustomer(new Customer(1, true))
cc = cc.addCustomer(new Customer(2, false))
println(cc.customers)

So now we have a container that we can keep updating in a thread-safe manner. Notice,
though, that we have our onlyEnabled as a @Lazy variable. The unfortunate part here
is that the runtime slows down if we are constantly changing the container and we have
a multitude of threads. Each time the container refreshes, all threads will block on access
to the onlyEnabled field the first time it is accessed. Let’s try to fix this in Example 6-14.

Laziness Can Create Problems | 73

Example 6-14. Problem with laziness in Groovy, fixed
class Customer {
 final Integer id
 final Boolean enabled
 public Customer(id, enabled) { this.id = id; this.enabled = enabled; }
}

class CustomerContainer {
 public List<Customer> customers = []
 public List<Customer> onlyEnabled = []
 public CustomerContainer() { this([]) }
 public CustomerContainer(customers) {
 this.customers = customers
 this.onlyEnabled = customers.findAll { customer -> customer.enabled }
 }
 def addCustomer(c) {
 new CustomerContainer(customers.plus(customers.size(), [c]))
 }
 def removeCustomer(c) {
 new CustomerContainer(customers.findAll { customer -> customer.id != c.id })
 }
}

def cc = new CustomerContainer()
cc = cc.addCustomer(new Customer(1, true))
cc = cc.addCustomer(new Customer(2, false))
println(cc.customers)

By removing the @Lazy annotation, the only thread responsible for adding/removing
customers will be the one that blocks and takes the time to populate our list. Now, the
rest of our threads can continue to process requests without blocking on the first call
to onlyEnabled.

But where would a good place to use laziness be in this example? Let’s assume that there
is a revenue number tied to every customer which is based on their contracts. In example
Example 6-15 there is a revenue variable in our Customer class, but we don’t always
need to evaluate that variable, which is why we’ve used a @Lazy variable.

Example 6-15. Lazy calculation of revenue variable in Groovy
class Customer {
 final Integer id
 final Boolean enabled
 final List<Double> contracts
 @Lazy volatile Double revenue = calculateRevenue(this.contracts)
 static def calculateRevenue(contracts) {
 Double sum = 0.0
 for(Double contract : contracts) {
 sum += contract
 }

74 | Chapter 6: Strict and Nonstrict Evaluations

 sum
 }
 public Customer(id, enabled, contracts) {
 this.id = id
 this.enabled = enabled
 this.contracts = contracts
 }
}

class CustomerContainer {
 public List<Customer> customers = []
 public List<Customer> onlyEnabled = []
 public CustomerContainer() { this([]) }
 public CustomerContainer(customers) {
 this.customers = customers
 this.onlyEnabled = customers.findAll { customer -> customer.enabled }
 }
 def addCustomer(c) {
 new CustomerContainer(customers.plus(customers.size(), [c]))
 }
 def removeCustomer(c) {
 new CustomerContainer(customers.findAll { customer -> customer.id != c.id })
 }
}

def cc = new CustomerContainer()
cc = cc.addCustomer(new Customer(1, true, [100.0, 200.0, 300.0]))
cc = cc.addCustomer(new Customer(2, false, [100.0, 150.0, 500.0]))
println(cc.customers)
Double sum = 0.0
for(Customer customer : cc.onlyEnabled) {
 sum += customer.revenue
}
println("Enabled Revenue: ${sum}")

Since we’re going to be diving into Scala due to its increased focus on functional pro‐
gramming, in Example 6-16, the exact same functionality shown in Example 6-15 is
rewritten in Scala. This is for a direct comparison and will give you a good idea of the
syntax and some basics of Scala.

Example 6-16. Scala representation of Example 6-15
class Customer(val id : Integer,
 val enabled : Boolean,
 val contracts : List[Double]) {

 lazy val revenue : Double = calculateRevenue(this.contracts)

 def calculateRevenue(contracts : List[Double]) : Double = {
 var sum : Double = 0.0
 for(contract <- contracts) {
 sum += contract

Laziness Can Create Problems | 75

 }
 sum
 }
}

class CustomerContainer(val customers : List[Customer] = List()) {

 val onlyEnabled = customers.filter { customer => customer.enabled }

 def addCustomer(c : Customer) : CustomerContainer = {
 new CustomerContainer(customers ::: List(c))
 }

 def removeCustomer(c : Customer) : CustomerContainer = {
 new CustomerContainer(customers.filter { customer => customer.id != c.id })
 }

}

var cc = new CustomerContainer()

cc = cc.addCustomer(new Customer(1, true, List(100.0, 200.0, 300.0)))
cc = cc.addCustomer(new Customer(2, false, List(100.0, 150.0, 500.0)))

println(cc.customers)

var sum : Double = 0.0
for(customer <- cc.onlyEnabled) {
 sum += customer.revenue
}

println(s"Enabled Revenue: ${sum}")

Conclusion
Lazy evaluations have allowed us to speed up the runtime of our application, since we
only need to build our enabledCustomers when we need it. We’ve also learned that there
are times we need to be careful, as we may end up blocking all of our threads from
working while the lazy variable is evaluated.

There are obvious pros and cons to utilizing strict and nonstrict (lazy) evaluations;
learning when and where to use them is important in producing good functional code.
It allows us to describe variables that we don’t necessarily want to waste processing time
on if we don’t need to.

Many of you may have already seen some of these concepts in Object-Relational Map‐
pers (ORMs) such as Hibernate with a lazy fetch. Generally you use it in relationships
between objects, so that you don’t load hundreds of relationships unless you absolutely
need to.

76 | Chapter 6: Strict and Nonstrict Evaluations

Now think about when you may not want to. For example, you might have a Contact
object as well as a linkage to its friends which were also Contacts. Maybe you need that
every time the user logs in; if so, a lazy variable is not going to help you.

Generally speaking, strict evaluation is important when you have frequently accessed
members of an object—especially if they exist in a multithreaded environment and are
being used by all threads. On the other hand, if you have variables that are referenced
infrequently or are extremely expensive to compute, it’s more useful to evaluate them
only if absolutely necessary.

Conclusion | 77

CHAPTER 7

Statements

When we think of a statement, we think of something like Integer x = 1; or val x =
1 where we are setting a variable. Technically, that line evaluates to nothing, but what if
we had already defined a variable, and we were setting it later—something like x = 1?
Some people already know that in C and Java, this statement actually returns 1, as shown
in Example 7-1.

Example 7-1. A simple assignment statement
public class Test {

 public static void main(String[] args) {
 Integer x = 0;
 System.out.println("X is " + (x = 1).toString());
 }

}

Statements in functional programming introduce the idea that every line of code should
have a return value. Imperative languages such as Java incorporate the concept of the
ternary operator. This gives you an if/else structure that evaluates to a value.
Example 7-2 shows a simple usage of the ternary operator.

Example 7-2. A simple ternary statement
public class Test {

 public static void main(String[] args) {
 Integer x = 1;
 System.out.println("X is: " + ((x > 0) ? "positive" : "negative"));
 }

}

79

But if we’re able to make more use of statements, we can actually reduce the number of
variables we have. If we reduce the number of variables that we have, we reduce the
ability to mutate them and thus increase our ability to perform concurrent processes
and become more functional!

Taking the Plunge
Your boss is very happy with what you’ve been doing over at XXY. He’s actually im‐
pressed with functional programming and wants you to convert from a partially func‐
tional language to a fully functional one. This shouldn’t be difficult, because we’ve al‐
ready become quite functional over the last few chapters.

We’re going to pick a language that still runs on the Java Virtual Machine (JVM) so that
we’re not introducing a new technology such as the LISP runtime or the Erlang runtime.
We could also pick a language such as Clojure or Erjang, but for the purpose of this
book we’re using Scala, which is similar to the Java syntax and should not require a huge
learning curve.

Simple Statements
We’ll be rewriting each of our classes, so let’s begin with the easiest of the files: the
Contact class. You’ll remember the existing file, shown in Example 7-3.

Example 7-3. Contact.java file
public class Contact {

 public final Integer contact_id = 0;
 public final String firstName = "";
 public final String lastName = "";
 public final String email = "";
 public final Boolean enabled = true;

 public Contact(Integer contact_id,
 String firstName,
 String lastName,
 String email,
 Boolean enabled) {
 this.contact_id = contact_id;
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 this.enabled = enabled;
 }

 public static List<Customer> setNameAndEmailForContactAndCustomer(
 Integer customer_id,
 Integer contact_id,

80 | Chapter 7: Statements

 String name,
 String email) {
 Customer.updateContactForCustomerContact(
 customer_id,
 contact_id,
 { contact ->
 new Contact(
 contact.contact_id,
 contact.firstName,
 name,
 email,
 contact.enabled
)
 }
)
 }

 public void sendEmail() {
 println("Sending Email")
 }

}

We’ll refactor this into its Scala equivalent, as shown in Example 7-4. In the Scala ex‐
ample, notice that we define our instance variables in a set of parentheses next to the
class name. We also have an object and a class; static methods and members exist inside
the object rather than the class definition. Types are also defined after the variable rather
than before it.

Example 7-4. Contact.scala file
object Contact {

 def setNameAndEmailForContactAndCustomer(
 customer_id : Integer,
 contact_id : Integer,
 name : String,
 email : String) : List[Customer] = {
 Customer.updateContactForCustomerContact(
 customer_id,
 contact_id,
 { contact =>
 new Contact(
 contact.contact_id,
 contact.firstName,
 name,
 email,
 contact.enabled
)
 }
)
 }

Simple Statements | 81

}

class Contact(val contact_id : Integer,
 val firstName : String,
 val lastName : String,
 val email : String,
 val enabled : Boolean) {

 def sendEmail() = {
 println("Sending Email")
 }

}

Although there are lots of lines added for readability in this book,
including empty lines and method definitions split onto multiple
lines, the number of lines goes from 19 to 9. This results from how
we define members in Java and how we set them via the constructor.

Block Statements
The next class we’re going to tackle is the Contract class. This is a little more difficult
because we were using a Java Calendar object, which is not a very functional con‐
struct. Let’s take a look at the original file in Example 7-5.

Example 7-5. Contract.java file
import java.util.List;
import java.util.Calendar;

public class Contract {

 public final Calendar begin_date;
 public final Calendar end_date;
 public final Boolean enabled = true;

 public Contract(Calendar begin_date, Calendar end_date, Boolean enabled) {
 this.begin_date = begin_date;
 this.end_date = end_date;
 this.enabled = enabled;
 }

 public Contract(Calendar begin_date, Boolean enabled) {
 this.begin_date = begin_date;
 this.end_date = this.begin_date.getInstance();
 this.end_date.setTimeInMillis(this.begin_date.getTimeInMillis());
 this.end_date.add(Calendar.YEAR, 2);
 this.enabled = enabled;
 }

82 | Chapter 7: Statements

 public static List<Customer> setContractForCustomerList(
 List<Integer> ids,
 Boolean status) {
 Customer.updateContractForCustomerList(ids) { contract ->
 new Contract(contract.begin_date, contract.end_date, status)
 }
 }

}

We’ll go ahead and convert the class over, as shown in Example 7-6. Let’s first look at
the List[Integer], which is how Scala denotes generic typing. We’ll also see a very
interesting syntax with def this(begin_date : Calendar, enabled : Boolean),
which is how we define an alternate constructor. We can also see a line that just has a
c; this is actually valid because the line is treated as a statement. This line is then treated
as the return value of that block of code.

What is most interesting about this syntax is the call to this, in which we pass what
appears to be a function where the end_date variable should be passed. Why is the
compiler not complaining that a Calendar instance is expected, not a method that re‐
turns a Calendar instance?

Example 7-6. Contract.scala file
import java.util.Calendar

object Contract {

 def setContractForCustomerList(ids : List[Integer],
 status : Boolean) : List[Customer] = {
 Customer.updateContractForCustomerList(ids, { contract =>
 new Contract(contract.begin_date, contract.end_date, status)
 })
 }

}

class Contract(val begin_date : Calendar,
 val end_date : Calendar,
 val enabled : Boolean) {

 def this(begin_date : Calendar, enabled : Boolean) = this(begin_date, {
 val c = Calendar.getInstance()
 c.setTimeInMillis(begin_date.getTimeInMillis)
 c.add(Calendar.YEAR, 2)
 c
 }, enabled)

}

Block Statements | 83

The compiler infers that you are not passing a method, but instead wanting to evalu‐
ate the brackets {. . .}. So when the alternate constructor is called, we will call into the
actual constructor, and the brackets {. . .} will be evaluated to come up with the
end_date Calendar object. Alternate constructors are much like how Java allows you
to overload constructors to take different arguments.

The code block shown in Example 7-7 is very simple; it creates a Calendar object, setting
the time in milliseconds based on our begin_date object (reminiscent of a closure). It
then adds two years to the time in order to create a time that is two years from the
beginning of the contract. Finally, it returns our newly created c object containing two
years from begin_date.

This statement makes it possible for us to step outside the normal functional paradigm,
in which every line should be a statement that can then be directed into another function
or used directly. You can think of this as a compound statement: you have multiple
statements that must be evaluated in order to come up with an overall statement that is
actually used.

Example 7-7. Code block of end_date
{
 val c = Calendar.getInstance()
 c.setTimeInMillis(begin_date.getTimeInMillis)
 c.add(Calendar.YEAR, 2)
 c
}

The interesting thing about this block of code is that it shows that, quite literally, ev‐
erything is a statement. Think about this: the last line, c, is a statement because it returns
the variable c. And the entire code block is a statement itself; when evaluated, it executes
the lines of code in sequence and returns the new c value we defined.

Everything Is a Statement
Finally, we’re going to convert our Customer class, which shouldn’t be too hard; let’s look
at the original Java file shown in Example 7-8.

Example 7-8. Customer.java file
import java.util.ArrayList;
import java.util.List;
import java.util.Calendar;

public class Customer {

 static public List<Customer> allCustomers = new ArrayList<Customer>();
 public final Integer id = 0;
 public final String name = "";

84 | Chapter 7: Statements

 public final String state = "";
 public final String domain = "";
 public final Boolean enabled = true;
 public final Contract contract = null;
 public final List<Contact> contacts = new ArrayList<Contact>();
 @Lazy public List<Contact> enabledContacts = contacts.findAll { contact ->
 contact.enabled
 }

 public Customer(Integer id,
 String name,
 String state,
 String domain,
 Boolean enabled,
 Contract contract,
 List<Contact> contacts) {
 this.id = id;
 this.name = name;
 this.state = state;
 this.domain = domain;
 this.enabled = enabled;
 this.contract = contract;
 this.contacts = contacts;
 }

 static def EnabledCustomer = { customer -> customer.enabled == true }
 static def DisabledCustomer = { customer -> customer.enabled == false }

 public static List<String> getDisabledCustomerNames() {
 Customer.allCustomers.findAll(DisabledCustomer).collect({cutomer ->
 cutomer.name
 })
 }

 public static List<String> getEnabledCustomerStates() {
 Customer.allCustomers.findAll(EnabledCustomer).collect({cutomer ->
 cutomer.state
 })
 }

 public static List<String> getEnabledCustomerDomains() {
 Customer.allCustomers.findAll(EnabledCustomer).collect({cutomer ->
 cutomer.domain
 })
 }

 public static List<String> getEnabledCustomerSomeoneEmail(String someone) {
 Customer.allCustomers.findAll(EnabledCustomer).collect({cutomer ->
 someone + "@" + cutomer.domain
 })
 }

Everything Is a Statement | 85

 public static ArrayList<Customer> getCustomerById(
 ArrayList<Customer> inList,
 final Integer id) {
 inList.findAll({customer -> customer.id == id })
 }

 public static void eachEnabledContact(Closure cls) {
 Customer.allCustomers.findAll { customer ->
 customer.enabled && customer.contract.enabled
 }.each { customer ->
 customer.contacts.each(cls)
 }
 }

 public static List<Customer> updateCustomerByIdList(
 List<Customer> initialIds,
 List<Integer> ids,
 Closure cls) {
 if(ids.size() <= 0) {
 initialIds
 } else if(initialIds.size() <= 0) {
 []
 } else {
 def idx = ids.indexOf(initialIds[0].id)
 def cust = idx >= 0 ? cls(initialIds[0]) : initialIds[0]
 [cust] + updateCustomerByIdList(
 initialIds.drop(1),
 idx >= 0 ? ids.minus(initialIds[0].id) : ids,
 cls
)
 }
 }

 public static List<Customer> updateContactForCustomerContact(
 Integer id,
 Integer contact_id,
 Closure cls) {
 updateCustomerByIdList(Customer.allCustomers, [id], { customer ->
 new Customer(
 customer.id,
 customer.name,
 customer.state,
 customer.domain,
 customer.enabled,
 customer.contract,
 customer.contacts.collect { contact ->
 if(contact.contact_id == contact_id) {
 cls(contact)
 } else {
 contact
 }
 }

86 | Chapter 7: Statements

)
 })
 }

 public static List<Customer> updateContractForCustomerList(
 List<Integer> ids,
 Closure cls) {
 updateCustomerByIdList(Customer.allCustomers, ids, { customer ->
 new Customer(
 customer.id,
 customer.name,
 customer.state,
 customer.domain,
 customer.enabled,
 cls(customer.contract),
 customer.contacts
)
 })
 }

 public static def countEnabledCustomersWithNoEnabledContacts = {
 List<Customer> customers, Integer sum ->
 if(customers.isEmpty()) {
 return sum
 } else {
 int addition = (customers.head().enabled &&
 (customers.head().contacts.find({ contact ->
 contact.enabled
 }) == null)) ? 1 : 0
 return countEnabledCustomersWithNoEnabledContacts.trampoline(
 customers.tail(),
 addition + sum
)
 }
 }.trampoline()
}

When we convert the class and object over to Scala (see Example 7-9), there is one thing
that doesn’t work: there is no ternary operator! Remember (conditional) ? true :
false? Well, as you can see in the Scala file, we actually replaced it with a true if
statement.

Scala does not include the concept of ternary because everything already is a statement.
This means that our if statement will evaluate to something. We can actually write
if(conditional) { true } else { false } and the if statement will evaluate to
either true or false.

Everything Is a Statement | 87

Example 7-9. Customer.scala file
object Customer {

 val allCustomers = List[Customer]()

 def EnabledCustomer(customer : Customer) : Boolean = customer.enabled == true
 def DisabledCustomer(customer : Customer) : Boolean = customer.enabled == false

 def getDisabledCustomerNames() : List[String] = {
 Customer.allCustomers.filter(DisabledCustomer).map({ customer =>
 customer.name
 })
 }

 def getEnabledCustomerStates() : List[String] = {
 Customer.allCustomers.filter(EnabledCustomer).map({ customer =>
 customer.state
 })
 }

 def getEnabledCustomerDomains() : List[String] = {
 Customer.allCustomers.filter(EnabledCustomer).map({ customer =>
 customer.domain
 })
 }

 def getEnabledCustomerSomeoneEmail(someone : String) : List[String] = {
 Customer.allCustomers.filter(EnabledCustomer).map({ customer =>
 someone + "@" + customer.domain
 })
 }

 def getCustomerById(inList : List[Customer],
 customer_id : Integer) : List[Customer] = {
 inList.filter(customer => customer.customer_id == customer_id)
 }

 def eachEnabledContact(cls : Contact => Unit) {
 Customer.allCustomers.filter({ customer =>
 customer.enabled && customer.contract.enabled
 }).foreach({ customer =>
 customer.contacts.foreach(cls)
 })
 }

 def updateCustomerByIdList(initialIds : List[Customer],
 ids : List[Integer],
 cls : Customer => Customer) : List[Customer] = {
 if(ids.size <= 0) {
 initialIds
 } else if(initialIds.size <= 0) {
 List()

88 | Chapter 7: Statements

 } else {
 val precust = initialIds.find(cust => cust.customer_id == ids(0))
 val cust = if(precust.isEmpty) { List() } else { List(cls(precust.get)) }
 cust ::: updateCustomerByIdList(
 initialIds.filter(cust => cust.customer_id == ids(0)),
 ids.drop(1),
 cls
)
 }
 }

 def updateContactForCustomerContact(customer_id : Integer,
 contact_id : Integer,
 cls : Contact => Contact) : List[Customer] = {
 updateCustomerByIdList(Customer.allCustomers, List(customer_id), { customer =>
 new Customer(
 customer.customer_id,
 customer.name,
 customer.state,
 customer.domain,
 customer.enabled,
 customer.contract,
 customer.contacts.map { contact =>
 if(contact.contact_id == contact_id) {
 cls(contact)
 } else {
 contact
 }
 }
)
 })
 }

 def updateContractForCustomerList(ids : List[Integer],
 cls : Contract => Contract) : List[Customer] = {
 updateCustomerByIdList(Customer.allCustomers, ids, { customer =>
 new Customer(
 customer.customer_id,
 customer.name,
 customer.state,
 customer.domain,
 customer.enabled,
 cls(customer.contract),
 customer.contacts
)
 })
 }

 def countEnabledCustomersWithNoEnabledContacts(customers : List[Customer],
 sum : Integer) : Integer = {
 if(customers.isEmpty) {
 sum

Everything Is a Statement | 89

 } else {
 val addition = if(customers.head.enabled &&
 customers.head.contacts.exists({ contact =>
 contact.enabled
 })) {
 1
 } else {
 0
 }
 countEnabledCustomersWithNoEnabledContacts(customers.tail, addition + sum)
 }
 }
}

class Customer(val customer_id : Integer,
 val name : String,
 val state : String,
 val domain : String,
 val enabled : Boolean,
 val contract : Contract,
 val contacts : List[Contact]) {
}

Let’s look further into the code in Example 7-10, which shows how we can set a variable
based on an if statement.

Example 7-10. if statement result returned
val addition = if(customers.head.enabled &&
 customers.head.contacts.exists({ contact => contact.enabled })) {
 1
} else {
 0
}

As we can see, addition will actually get 1 or 0 depending on the if evaluation. So, why
is this much more interesting than a ternary? Because the if functions like a normal if
statement, which means you can add any amount of code inside the true or false
sections of the if statement. The ternary operator really only allows very simple ex‐
pressions, such as a value or a basic method call.

But what do I really mean by “everything is a statement”? Well, I actually mean that
everything should evaluate to something. But what exactly does that mean? Many of us
know the normal bean methodology in Java—that is, having a member variable with
getters and setters. Obviously, the getter will return some value, but what about the
setter? Check out Example 7-11.

90 | Chapter 7: Statements

Example 7-11. A setter for the Foo field on the Bar class, which returns the object itself
public class Bar {
 public Bar setFoo(Foo foo) { this.foo = foo; return this; }
 public Foo getFoo() { return this.foo; }
}

This makes it possible for us to chain the function calls together and set a bunch of
members in one line, as shown in Example 7-12. But why would we want to do this?
Simply put, by doing this, we can redefine the setter methods and create immutable
variables. Why? Because inside our setter, we can create a new instance of Bar with the
new value and return that! This means that implementing immutable variables becomes
simpler.

Example 7-12. Method chaining on the Bar object
return bar.setFoo(newFoo).setBaz(newBaz).setQux(newQux);

What about things like for loops—are those statements as well? As a matter of fact, yes,
they are, but not in the way you might imagine. for loops generally come in two forms:
one is just a normal loop, whereas the other is called a comprehension. The first type of
loop is shown in Example 7-13.

Example 7-13. A basic for loop example in Scala
val x = for(i <- 0 until 10) {
 println(i)
}

When we run this code, we actually end up printing 0 to 9 on the screen. More important,
the variable x is actually being set to something; in this case, it’s being set to Unit.

That might sound strange, but in Scala, Unit is effectively a void type (meaning it has
no actual type). This means that our for loop actually evaluated to nothing. So what are
comprehensions? Let’s look at a for comprehension in Example 7-14.

Example 7-14. A basic for comprehension in Scala
val x = for(i <- 0 until 10) yield {
 i*2
}

Now, we have an x that is a list from 0 to 18 by twos. The comprehension allows us to
generate a new list of something, or sometimes iterate over another list. Let’s look at
Example 7-15, in which we’re actually iterating over another list.

Example 7-15. A for comprehension over another list in Scala
val x = for(i <- List(1,2,3,4)) yield {
 i*2
}

Everything Is a Statement | 91

So, what is the difference between this and using a map function on the list? Check out
Example 7-16. This functionality is identical to the for comprehension in Example 7-15.

Example 7-16. A map call on a list in Scala
val x = List(1,2,3,4).map({ i => i*2 })

This begs the question, when do you use a map function versus a for comprehension?
Generally, a map is good if you already have a list and need to perform an operation over
it. for comprehensions are good if you are building a list or if need to do an operation
n number of times.

Conclusion
We’ve taken the time to migrate from Java to Scala, marking our transition into a func‐
tional language that we’ll be able to use in the upcoming chapters. Statements allowed
us to reduce some of our code base and, in some instances, are necessary for us to still
use some of our Java “bean” paradigms. We’ve seen in examples such as the Calendar
object that when we need to use setters, we can create a block statement to set up our
Calendar.

Statements also show us that every method should have some form of return value, even
setters. And if we have setters that are statements, we can more easily implement im‐
mutable variables. Statements also make our code concise by forcing us to think about
why we are writing a specific line of code and what that line of code is supposed to
represent when evaluated. By doing this, we can better understand why a line of code
acts the way that it does.

92 | Chapter 7: Statements

CHAPTER 8

Pattern Matching

Mostly when we, as programmers, think of pattern matching we think of regular ex‐
pressions. But in the context of functional programming, this terminology takes on a
new meaning. Instead of regular expression matching, we’re going to be looking at
matching objects against other objects.

Using pattern matching, you can extract from objects, match on members of objects,
and verify that objects are of specific types—all within a statement. Pattern matching
allows for fewer lines of variable assignment and more lines of understandable code.
With pattern matching, you can match on members of an object, which allows you to
write more concise logic for when a specific segment of code should be executed.

Simple Matches
Now that the code has started shaping up, our boss has asked us to create a new function
that will create a new Customer. The requirements are as follows:

• name cannot be blank.
• state cannot be blank.
• domain cannot be blank.
• enabled must be true to start with.
• contract will be created based on today’s date.
• contacts should be created as a blank list for now.

Our basic method, as shown in Example 8-1, uses a large if structure to return null in
the event that an invalid value is passed in. We’re currently printing to the console, but
we should also log the message being sent.

93

Example 8-1. Imperative createCustomer method using an if structure
if(name.isEmpty) {
 println("Name cannot be blank")
 null
} else if(state.isEmpty) {
 println("State cannot be blank")
 null
} else if(domain.isEmpty) {
 println("Domain cannot be blank")
 null
} else {
 new Customer(
 0,
 name,
 state,
 domain,
 true,
 new Contract(Calendar.getInstance, true),
 List()
)
}

This is a huge if structure that we do not want to maintain. Think back to Chapter 1,
in which we were creating extractors from our Customer objects by using an if state‐
ment. We’re almost doing the same thing here, using a giant if structure to determine
whether certain fields are blank. By the end of our examples, we’re going to see how this
will become a much more manageable check.

For now, let’s perform a simple refactor by using a very basic pattern match in
Example 8-2. Using a pattern match is fairly straightforward in this instance: we’re going
to match each of our elements against a blank string, "".

The variable before the match keyword is what we’ll pattern-match against. Inside the
match statement are all of the patterns that we’re going to test against, each defined with
the case keyword. Right now, we just have "", which indicates a blank string, and the
underscore _, which indicates anything.

Example 8-2. Very basic pattern match inside createCustomer
def createCustomer(name : String, state : String, domain : String) : Customer = {
 name match {
 case "" => {
 println("Name cannot be blank")
 null
 }
 case _ => state match {
 case "" => {
 println("State cannot be blank")
 null
 }

94 | Chapter 8: Pattern Matching

 case _ => domain match {
 case "" => {
 println("Domain cannot be blank")
 null
 }
 case _ => new Customer(
 0,
 name,
 state,
 domain,
 true,
 new Contract(Calendar.getInstance, true),
 List()
)
 }
 }
 }
}

Remember, we’re transitioning to a better pattern match, so our first step has been to
re-create the if/else structure, but in a pattern-match style. At first it seems like this
has created an even larger mess, but don’t worry: we’re going to reduce the complexity
quite a bit in the next sections.

Simple Patterns
Let’s modify the pattern match that we created in createCustomer to be only one level
deep. We can do this by creating a tuple (a group of elements) that we can then match
against. Let’s see this refactor in Example 8-3.

We are now defining a tuple (name, state, domain) against which we’re going to
match. What is so different here is that now we can match against each part of the
tuple. We do this with case ("", _, _) which lets us say that this pattern should be a
tuple with a blank string as the first value, and we don’t care what the other two are.

Example 8-3. Collapsed pattern match to handle input validations
def createCustomer(name : String, state : String, domain : String) : Customer = {
 (name, state, domain) match {
 case ("", _, _) => {
 println("Name cannot be blank")
 null
 }
 case (_, "", _) => {
 println("State cannot be blank")
 null
 }
 case (_, _, "") => {
 println("Domain cannot be blank")
 null

Simple Patterns | 95

 }
 case _ => new Customer(
 0,
 name,
 state,
 domain,
 true,
 new Contract(Calendar.getInstance, true),
 List()
)
 }
}

Now that we have a way to convert if statements into pattern matches, let’s see if we
can convert another large if/else structure in our code base. Let’s look at the original
setContractForCustomerList method, shown in Example 8-4, which handles blank
initialIds and ids parameters with a large if statement. Inside the else, we find the
original Customer by id; if the customer is defined, we will execute our cls to update
the Customer, putting it into a list. We then merge the list containing our updated
Customer with the return of the recursive call.

Example 8-4. The original updateCustomerByIdList method
def updateCustomerByIdList(initialIds : List[Customer],
 ids : List[Integer],
 cls : Customer => Customer) : List[Customer] = {
 if(ids.size <= 0) {
 initialIds
 } else if(initialIds.size <= 0) {
 initialIds
 } else {
 val precust = initialIds.find(cust => cust.customer_id == ids(0))
 val cust = if(precust.isEmpty) { List() } else { List(cls(precust.get)) }
 cust ::: updateCustomerByIdList(
 initialIds.filter(cust => cust.customer_id == ids(0)),
 ids.tail,
 cls
)
 }
}

We know how to handle this via pattern matching, so let’s wrap those two variables into
a tuple and match against a blank list. Much like our blank string "", we can imitate the
blank list with List(), as shown in Example 8-5.

96 | Chapter 8: Pattern Matching

Example 8-5. Converting the original if/else structure into a pattern match
def updateCustomerByIdList(initialIds : List[Customer],
 ids : List[Integer],
 cls : Customer => Customer) : List[Customer] = {
 (initialIds, ids) match {
 case (List(), _) => initialIds
 case (_, List()) => initialIds
 case _ => {
 val precust = initialIds.find(cust => cust.customer_id == ids(0))
 val cust = if(precust.isEmpty) { List() } else { List(cls(precust.get)) }
 cust ::: updateCustomerByIdList(
 initialIds.filter(cust => cust.customer_id == ids(0)),
 ids.drop(1),
 cls
)
 }
 }
}

But can we reduce the complexity of this method even further? Yes—by introducing
extractors, specifically list extractors.

Extracting Lists
As their name implies, you can use extractors to pattern-match based on the object and
extract members from the object itself. We’ll see how to extract elements out of objects
in the next section, but right now let’s look at extracting from a list.

As you might recall, lists have a head and a tail, and we should be able to move through
our list one item at a time by looking at the head and passing the tail to look at later. So
let’s check out the list extraction in Example 8-6 to see how we can move through our
ids variable.

The :: operator, when used in a case statement, tells Scala that a list is expected and
that the list should be decomposed into its head element (to the left of the operator) and
its tail element (to the right of the operator). The variables into which the items are
extracted exist only during the specific pattern execution.

The case (_, id :: tailIds) pattern will extract the head of the ids variable into a
new variable called id and the tail of the ids into a new variable called tailIds.

Example 8-6. Extracting the head and tail from a list
def updateCustomerByIdList(initialIds : List[Customer],
 ids : List[Integer],
 cls : Customer => Customer) : List[Customer] = {
 (initialIds, ids) match {
 case (List(), _) => initialIds
 case (_, List()) => initialIds

Extracting Lists | 97

 case (_, id :: tailIds) => {
 val precust = initialIds.find(cust => cust.customer_id == id)
 val cust = if(precust.isEmpty) { List() } else { List(cls(precust.get)) }
 cust ::: updateCustomerByIdList(
 initialIds.filter(cust => cust.customer_id == id),
 tailIds,
 cls
)
 }
 }
}

We’re going to convert the find return into a list and then pattern-match against it.
There are two possibilities here: either we will have a blank list, or we want the head
element from the list itself. Let’s look at the code in Example 8-7, in which we are doing
this match.

The find return is being converted into a list for us to match against. We then perform
the match on that and determine whether the list is blank or has elements (in which
case we take the first one).

Example 8-7. Extracting the found customer during the find call
def updateCustomerByIdList(initialIds : List[Customer],
 ids : List[Integer],
 cls : Customer => Customer) : List[Customer] = {
 (initialIds, ids) match {
 case (List(), _) => initialIds
 case (_, List()) => initialIds
 case (_, id :: tailIds) => {
 val precust = initialIds.find(cust => cust.customer_id == id).toList
 precust match {
 case List() => updateCustomerByIdList(initialIds, tailIds, cls)
 case cust :: custs => updateCustomerByIdList(
 initialIds.filter(cust => cust.customer_id == id),
 tailIds,
 cls
)
 }
 }
 }
}

So, why are we converting the return of find to a list? Well, the find method returns
an Option, which is a generic interface that has two implementing classes: Some or None.
As you might have guessed, the Some class will actually contain the object, whereas the
None object contains nothing. We can convert the Option object to a List, which we
can then pattern-match against.

98 | Chapter 8: Pattern Matching

However, we can actually pattern-match against the Option interface and reduce the
need to convert it to a list. We’ll get rid of our precust variable as well as the toList
conversion. Instead, we’re just going to send the find result directly to our pattern
match.

We will create two case statements: one to match on the None object, and the other to
match on Some. Notice in Example 8-8 that when we match on Some, we can use the
syntax Some(cust), which allows us to extract the member of Some into our own variable,
cust.

Example 8-8. Using the pattern match
def updateCustomerByIdList(initialIds : List[Customer],
 ids : List[Integer],
 cls : Customer => Customer) : List[Customer] = {
 (initialIds, ids) match {
 case (List(), _) => initialIds
 case (_, List()) => initialIds
 case (_, id :: tailIds) => {
 initialIds.find(cust => cust.customer_id == id) match {
 case None => updateCustomerByIdList(initialIds, tailIds, cls)
 case Some(cust) => updateCustomerByIdList(
 initialIds.filter(cust => cust.customer_id == id),
 tailIds,
 cls
)
 }
 }
 }
}

What is that Some class, and how is it that we are able to extract members of the objects
into variables? The Some class is actually a case class, and as we’ll see in the next section,
we can actually match and extract members of case classes.

Extracting Objects
Pattern matching includes the idea of matching on objects and extracting the fields from
an object. As we’ve already seen in some of our examples, the Option pattern allows us
to indicate either None or Some. With Some, we can encapsulate and get some value
without having to write an if structure like the one shown in Example 8-9.

Example 8-9. How to handle the Option pattern in an if structure
var foo : Option[String] = Some("Bar")
if(obj.isDefined) {
 obj.get
} else {

Extracting Objects | 99

 "" /* Not defined */
}

Instead, we can write a pattern match against Option and make it much more readable,
as shown in Example 8-10.

Example 8-10. How to handle the Option pattern in a pattern match
var foo : Option[String] = Some("Bar")
obj match {
 case None => ""
 case Some(o) => o
}

We no longer have to write any if statements to compare types or isDefined calls.
Instead, the pattern match handles the object comparison for us. We can do even more
matches by looking inside the object, much as we did with the Option example. Let’s
say we have a Some object with the contents Bar. We can use the case syntax of case
Some("Bar") to match on the value inside the case object. Let’s see this in Example 8-11.

Example 8-11. How to handle a specific value inside a case object
var foo : Option[String] = Some("Bar")
obj match {
 case None => ""
 case Some("Bar") => "Foo"
 case Some(o) => o
}

What is really interesting about this Option pattern is that we can use it in our create
Customer method. Remember the function in Example 8-3? Well, we can actually im‐
prove it by returning a None object (which does extend Option) on error, and returning
Some if successful. Let’s see this in Example 8-12.

Example 8-12. Returning the Option pattern
def createCustomer(name : String,
 state : String,
 domain : String) : Option[Customer] = {
 (name, state, domain) match {
 case ("", _, _) => {
 println("Name cannot be blank")
 None
 }
 case (_, "", _) => {
 println("State cannot be blank")
 None
 }
 case (_, _, "") => {
 println("Domain cannot be blank")
 None

100 | Chapter 8: Pattern Matching

 }
 case _ => new Some(new Customer(
 0,
 name,
 state,
 domain,
 true,
 new Contract(Calendar.getInstance, true),
 List()
)
)
 }
}

Here is the really interesting thing: we can actually make this more functional and
encapsulate the print statement (logging) and return None because there is no reason
to repeat ourselves. We can extract this into an error function that only needs to exist
inside the createCustomer function. See the refactored code in Example 8-13.

Example 8-13. Extracting the logging of an error and returning of the option
def createCustomer(name : String,
 state : String,
 domain : String) : Option[Customer] = {
 def error(message : String) : Option[Customer] = {
 println(message)
 None
 }
 (name, state, domain) match {
 case ("", _, _) => error("Name cannot be blank")
 case (_, "", _) => error("State cannot be blank")
 case (_, _, "") => error("Domain cannot be blank")
 case _ => new Some(new Customer(
 0,
 name,
 state,
 domain,
 true,
 new Contract(Calendar.getInstance, true),
 List()
)
)
 }
}

Converting to Pattern Matches
There’s another scenario in which converting from an if structure to a pattern match
would actually increase readability. Let’s look at the original countEnabledCustomers
WithNoEnabledContacts method shown in Example 8-14.

Converting to Pattern Matches | 101

Example 8-14. The original countEnabledCustomersWithNoEnabledContacts
def countEnabledCustomersWithNoEnabledContacts(customers : List[Customer],
 sum : Integer) : Integer = {
 if(customers.isEmpty) {
 sum
 } else {
 val addition = if(customers.head.enabled &&
 customers.head.contacts.exists({ contact =>
 contact.enabled
 })) {
 1
 } else {
 0
 }
 countEnabledCustomersWithNoEnabledContacts(customers.tail, addition + sum)
 }
}

Now that we know how to extract from lists, we will try to rewrite this function. The
first thing to do is define our Customer object as a case class, as shown in
Example 8-15, by simply adding the case keyword to the class keyword.

Example 8-15. The Customer class defined as a case class
case class Customer(val customer_id : Integer,
 val name : String,
 val state : String,
 val domain : String,
 val enabled : Boolean,
 val contract : Contract,
 val contacts : List[Contact]) {
}

Now let’s look at Example 8-16. Notice that we are going to handle the empty list first,
then use the same type of syntax with the Some() object, except here we extract only the
enabled and contacts of the Customer and ignore the rest.

For the enabled field, we want to match only if true is set for that field. We also want
to pull out the Contact list into the cont variable.

Next, we have an if statement before our =>, which is called a guard. It allows us to
match a pattern but only if a specific condition occurs. Finally, we call back into our
function with the tail of our list and our sum + 1.

102 | Chapter 8: Pattern Matching

Example 8-16. A pattern match based on the customer being enabled
def countEnabledCustomersWithNoEnabledContacts(customers : List[Customer],
 sum : Integer) : Integer = {
 customers match {
 case List() => sum
 case Customer(_,_,_,_,true,_,cont) :: custs
 if cont.exists({ contact => contact.enabled}) =>
 countEnabledCustomersWithNoEnabledContacts(custs, sum + 1)
 case cust :: custs => countEnabledCustomersWithNoEnabledContacts(custs, sum)
 }
}

Now we can make this more efficient fairly easily: we can add a pattern to skip over our
Contact list for the customer if it is blank, as shown in Example 8-17.

Example 8-17. A pattern match based on the customer being enabled and adding a
check for a blank Contact list
def countEnabledCustomersWithNoEnabledContacts(customers : List[Customer],
 sum : Integer) : Integer = {
 customers match {
 case List() => sum
 case Customer(_,_,_,_,true,_,List()) :: custs =>
 countEnabledCustomersWithNoEnabledContacts(custs, sum)
 case Customer(_,_,_,_,true,_,cont) :: custs
 if cont.exists({ contact => contact.enabled}) =>
 countEnabledCustomersWithNoEnabledContacts(custs, sum + 1)
 case cust :: custs => countEnabledCustomersWithNoEnabledContacts(custs, sum)
 }
}

Conclusion
Throughout this chapter we’ve done quite a bit with pattern matching; we’ve actually
converted our if structures into pattern matches. This has enabled us to perform sim‐
pler recursive loops over lists by using extractions from the lists. We have also been able
to simplify our cases by matching on members inside the objects to reduce the amount
of logic that we need to write.

We’ve also learned about the Option pattern, which allows us to get away from null
objects by handling cases through pattern matching and either extracting the Some or
handling a None case, as appropriate.

Conclusion | 103

CHAPTER 9

Functional OOP

Dealing with immutable variables brings up an interesting question as we dive into
object-oriented programming (OOP): “Why would we have an object if we’re never
going to change it?” This is where I’ve seen many people have an epiphany about func‐
tional programming. They understand the concept that an object is no longer something
that “acts”; instead, it “contains” data.

As we go through this chapter, my hope is that you’ll also understand that objects are
merely containers that encapsulate a set of data. We’ll answer the question “How does
work get done?” by using static functions that will take our objects.

Back at XXY, your boss has asked you to extract the “send email” logic so that you can
send emails for any type of report that might be requested in the future. He wants this
to be done such that no other code that already calls sendEmail() has to be modified.

Static Encapsulation
Let’s begin by refactoring. Your boss wants you to extract the def sendEmail() function
so that the functionality can be reused. Let’s first look at the Contact class and the
corresponding def sendEmail() function that we will be migrating, as shown in
Example 9-1.

105

Example 9-1. Send Email original
class Contact(val contact_id : Integer,
 val firstName : String,
 val lastName : String,
 val email : String,
 val enabled : Boolean) {

 def sendEmail() = {
 println("To: " + email + "\nSubject: My Subject\nBody: My Body")
 }

}

Let’s begin extracting this functionality by creating a function that will take an Email
object. Let’s define our Email class, which will contain three members: address, sub
ject, and body. It will also contain a send() method, which will call the Email.send
method. The code in Example 9-2 shows our new class.

Example 9-2. Our new Email class
case class Email(val address : String,
 val subject : String,
 val body : String) {

 def send() : Boolean = Email.send(this)

}

Now, we can write our function itself. We will create the function send, which takes an
Email object. For those not familiar with Scala, the code in Example 9-3 will seem odd
with an object definition. An object is a singleton; it’s where we will normally keep
our static methods.

The body of our function will actually be the body of the original sendEmail function
from our Email class. We’ve extracted this send function into our Email singleton, as
shown in Example 9-3.

Example 9-3. Our new Email object
object Email {

 def send(msg : Email) : Boolean = {
 println("To: " + msg.address + "\nSubject: " + msg.subject +
 "\nBody: " + msg.body)
 true
 }

}

106 | Chapter 9: Functional OOP

We’ve kept encapsulation by moving the send function into the Email singleton, allow‐
ing us to keep the email functionality within the Email object. We can now modify the
sendEmail method in Contact to create a new Email object and then call its send()
method, as shown in Example 9-4.

Example 9-4. Refactored Contact class
class Contact(val contact_id : Integer,
 val firstName : String,
 val lastName : String,
 val email : String,
 val enabled : Boolean) {

 def sendEmail() = {
 new Email(email, "My Subject", "My Body").send()
 }

}

Now you can see that our Email class has become nothing more than a container of the
data itself; it has a minimal amount of code inside the class. We’re calling into the Email
singleton to perform the actual email functionality. How do objects as containers ac‐
tually change how we see functions and data?

Objects As Containers
Your boss has requested that certain emails contain the name of a Contact in the format
“Dear <name>”. We’ll add two parameters to our Email object, isDearReader and name.
isDearReader indicates whether we should use the format, and name is the name we
will use when sending the email. In Example 9-5, you can see our new Email class with
the added fields.

Example 9-5. The Email class with isDearReader and name fields
case class Email(val address : String,
 val subject : String,
 val body : String,
 val isDearReader : Boolean,
 val name : String) {

 def send() : Boolean = Email.send(this)

}

Next we’ll update the Email object to use these new parameters. In Example 9-6, we’ll
update the send method. We’ll do this with an if statement to test if the isDearRead
er field is true. If it is, we’ll append the name field to our output.

Objects As Containers | 107

Example 9-6. The Email object using isDearReader and name fields
object Email {

 def send(msg : Email) : Boolean = {
 if(msg.isDearReader) {
 println("To: " + msg.address + "\nSubject: " + msg.subject +
 "\nBody: Dear " + msg.name + ",\n" + msg.body)
 } else {
 println("To: " + msg.address + "\nSubject: " + msg.subject +
 "\nBody: " + msg.body)
 }
 true
 }

}

We can refactor this even further by using pattern matching. By using a pattern match
on the msg variable, we will have two case statements: one for when isDearReader is
true, and the other for when isDearReader is any other value. This refactor is shown
in Example 9-7.

Example 9-7. The Email object with isDearReader using a pattern match
object Email {
 def send(msg : Email) : Boolean = {
 msg match {
 case Email(address, subject, body, true, name) =>
 println("To: " + address + "\nSubject: " + subject +
 "\nBody: Dear " + name + ",\n" + body)
 case Email(address, subject, body, _) =>
 println("To: " + address + "\nSubject: " + subject +
 "\nBody: " + body)
 }
 true
 }
}

We can refactor this further still by creating a send method that takes the to, subject,
and body fields and performs the send. We have refactored this based on what we believe
constitutes the most basic components of sending an email. Example 9-8 shows this
refactoring.

Example 9-8. The Email object extracting the send function with common functionality
object Email {

 def send(to : String, subject : String, body : String) : Boolean = {
 println("To: " + to + "\nSubject: " + subject + "\nBody: " + body)
 true
 }

108 | Chapter 9: Functional OOP

 def send(msg : Email) : Boolean = {
 msg match {
 case Email(address, subject, body, true, name) =>
 send(address, subject, "Dear " + name + ",\n" + body)
 case Email(address, subject, body, _, _) =>
 send(address, subject, body)
 }
 true
 }
}

Now that we’ve updated the Email functionality, we need to update our Contact.sen
dEmail() method so that we can take advantage of this new feature. Your boss has asked
that any time you call sendEmail() on the contact, you should use the isDearReader
functionality. We can now update our code as shown in Example 9-9.

Example 9-9. The Contact classes’ sendEmail() method handling isDearReader
def sendEmail() = {
 new Email(this.email, "My Subject", "My Body", true, this.firstName).send()
}

Our Email class is now more of a container; its primary job is to contain all of the fields
that are necessary for creating the email, not necessarily sending it. This illustrates the
harmony that we really want between functional programming and OOP.

Code as Data
Back at XXY, your boss has asked that you allow for a way to create a customer from
the command line. Thus we’re going to create a new CommandLine object, which will
actually have a few different functions:

• Display a question and get input from a user.
• Display all possible options to a user.
• Interpret a user’s input.

Let’s begin by creating a really simple class representing our command-line options.
We’ll call it CommandLineOption, and it will be a case class, as shown in
Example 9-10. Our class will have a description and a function func to be executed
when it is selected.

Extension of the Strategy Design Pattern
This method is fairly similar to the Strategy Java design pattern, ex‐
cept that we can directly pass a function rather than an implement‐
ing class of an interface.

Code as Data | 109

Example 9-10. The CommandLineOption case class
case class CommandLineOption(description : String, func : () => Unit)

Next, let’s create the CommandLine object, which will have two primary methods. The
first will askForInput given some prompt, as shown in Example 9-11.

Example 9-11. The CommandLine.askForInput method
def askForInput(question : String) : String = {
 print(question + ": ")
 readLine()
}

Next, we will create a method that gives the user a prompt of options and asks her for
input. The method will draw from the options variable, which will be of type
Map[String, CommandLineOption] and will allow us to search the Map for the option
that the user selects. Check out the prompt function in Example 9-12.

Example 9-12. The CommandLine.prompt method
def prompt() = {
 options.foreach(option => println(option._1 + ") " + option._2.description))
 options.get(askForInput("Option").trim.toLowerCase) match {
 case Some(CommandLineOption(_, exec)) => exec()
 case _ => println("Invalid input")
 }
}

Notice how we iterate over each option, printing out ._1 and accessing ._2.descrip
tion. The _1 refers to the first option of the Map (the String), whereas the _2 refers to
the second option (the CommandLineOption).

Next, we askForInput and then search the options variable for the option. We will have
either Some, in which case we extract the func from our CommandLineOption class, or
we will have None, for which we assume the user gave us bad input.

So, what does this options variable look like? It’s actually really simple: we build a Map
(indicated by a <key> -> <value> syntax) containing the option that the user will input
(as the key), and the CommandLineOption object (as the value). The definition of all of
our existing options is shown in Example 9-13.

Example 9-13. The CommandLine.options variable
val options : Map[String, CommandLineOption] = Map(
 "1" -> new CommandLineOption("Add Customer", Customer.createCustomer),
 "2" -> new CommandLineOption("List Customers", Customer.list),
 "q" -> new CommandLineOption("Quit", sys.exit)
)

110 | Chapter 9: Functional OOP

The beauty of being able to reference functions is that we can actually set a function
from another Object as part of another function. Notice how we have two options, Add
Customer and List Customers, that reference previously existing functions? This al‐
lows us to use a pre-existing function without breaking the encapsulation.

Your boss has come back to ask you to create an input option that allows users to view
all enabled contacts for all enabled customers. This seems really straightforward. We
already have a function, eachEnabledContact, that we can pass a function to and print
out each contact!

Let’s see what our function would look like to print out each enabled contact in
Example 9-14. Here we will use our eachEnabledContact method and pass a function
that takes a single argument and prints the variable.

Example 9-14. How Customer.eachEnabledContact would be used to print out the
contacts
Customer.eachEnabledContact(contact => println(contact))

And if we needed that to be its own function, we would just use Scala’s empty parentheses
syntax, as in Example 9-15. This example defines a function that takes no arguments
but executes the code in Example 9-14.

Example 9-15. Encapsulating the printing of each enabled contact as its own function
() => Customer.eachEnabledContact(contact => println(contact))

So, let’s look at our new options variable in Example 9-16 and see how it works with
our new option. We’ll just continue down the line and add it as option 3.

Example 9-16. The CommandLine.options variable with the new “print each enabled
contact” option added
val options : Map[String, CommandLineOption] = Map(
 "1" -> new CommandLineOption("Add Customer", Customer.createCustomer),
 "2" -> new CommandLineOption("List Customers", Customer.list),
 "3" -> new CommandLineOption("List Enabled Contacts for Enabled Customers",
 () => Customer.eachEnabledContact(contact => println(contact))
),
 "q" -> new CommandLineOption("Quit", sys.exit)
)

Conclusion
It’s important to understand that functional programming itself is not a replacement
for OOP; in fact, we can still use many OOP concepts. Objects are no longer used to
encapsulate a large group of statements in an imperative manner, but instead are de‐
signed to encapsulate a set of variables into a common grouping.

Conclusion | 111

We are able to expand concepts such as the Command pattern or the State pattern by
just creating a class that contains a method to be defined later. This style of definition
allows us to change the method at runtime without breaking encapsulation or having
lots of erroneous classes living everywhere.

Think back to our CommandLineOption example: we created quite a few options by just
passing functions to a new CommandLineOption. This allows us to create tons of objects
extending from an abstract object without actually defining every type. We can also
more easily implement patterns, such as the Visitor pattern, where Object A accepts
Object B, and Object B does some operation on Object A.

Let’s assume that we have a class Foo that has an accept method. But we’re not going to
accept another class; instead, we just accept the function that performs the visitor work
we want to do. The visitor just becomes a simple function that we’re passing to Foo. See
Example 9-17.

Example 9-17. Visitor pattern using functions
class Foo {
 val value = "bar"
 def accept(func : Foo => Unit) = {
 func(this)
 }
}

new Foo().visit(f => println(f.value))

Now you can see that functional programming allows us to continue using many OOP
concepts and ideas while reducing the number of classes we write. Where we would
write classes to encapsulate a single function, we can now just send a function rather
than an implementing class.

How about an example in which we implement a command pattern where we have a
string transformer (take a string, transform it, return a string)? Think about how you
would implement it and then check out Example 9-18.

Example 9-18. Command pattern using functions
def toUpperCase(str : String) : () => String = { () => str.toUpperCase }
def transform : () => String = toUpperCase("foo")
println(transform())

Notice that we no longer need to create separate objects, but instead we can just return
the command as a function to execute. This decreases the number of classes we’re cre‐
ating and keeping track of, thus increasing the readability of our code.

112 | Chapter 9: Functional OOP

CHAPTER 10

Conclusion

I hope that you’ve found this book to be a helpful stepping-stone toward functional
programming. Most important, I hope that it has demystified some of the concepts and
shown how you might implement them without switching to a purely functional
language.

I also hope that you can take some of the early concepts that might actually provide you
the greatest benefit and apply those to your everyday job, helping you write less code
while implementing more functionality.

From Imperative to Functional
At this point, you should have the knowledge and the understanding of how to transform
your current imperative code into functional code. As you start your transition, you will
want to break it down into steps. Let’s look at the transitional steps and recap how to
implement those concepts:

1. Introduce higher-order functions.
2. Convert existing methods into pure functions.
3. Convert loops over to recursive/tail-recursive methods (if possible).
4. Convert mutable variables into immutable variables.
5. Use pattern matching (if possible).

Introduce Higher-Order Functions
The first step to take is to introduce some higher-order functions, as you saw in Chap‐
ter 2. To accomplish this in Java, you either use pre-existing libraries such as Guava or

113

create your own interface like the Function1 interface so that you can encapsulate
functionality to be passed to another function.

As demonstrated in Chapter 2, you can also begin to convert to a language such as
Groovy, which enables you to use higher-order functions while still keeping the basic
Java syntax. The advantage is that you don’t need to rewrite your entire code base in
order to convert.

If you cannot integrate with a non-type-safe language such as Groovy, I would suggest
starting to integrate with another language, such as Scala, to keep your type safety but
still begin integrating functional concepts.

This has the largest benefit, because you’ll be able to immediately start taking advantage
of code reuse. You’ll start seeing loops where you can abstract the looping logic and just
start passing a higher-order function into the looping logic.

Convert Existing Methods into Pure Functions
The next step is to start converting your normal methods into pure functions, as I
showed in Chapter 3. These should actually be fairly straightforward to convert—and
as you begin converting them, you’ll find how much easier it is to write tests for those
functions.

This is, again, one step that will have a lot of benefit right up front. You’ll begin to reduce
your functions, which will make them even more testable and more understandable.
This is really one of the first times that the concept of expressiveness will come up. As
your decompose your functions into smaller, more pure functions, they will inherently
become more expressive. Expressiveness reflects how much meaning each line of code
has; the more that can be understood per one line of code, the more expressiveness it
has.

Convert Loops to Tail/Recursive-Tail Methods
You don’t want to jump directly into immutable variables, so the first thing to do is
convert your looping structures over to recursive—specifically, tail-recursive if you can
—methods. The caveat here is that some languages, such as Java, don’t support tail
recursion. If you can use it without worrying about buffer overflow, try it.

Recursion is something that many people find unfamiliar at first, but after you get into
a functional mindset and practice with it, you’ll get much better at seeing the conceptual
framework. You’ll see iteration via recursion instead of just normal iterative loops. The
nice thing about recursion is that you’ll be able to truly test your loops to make sure that
you’re looping over what you want. You’ll also be able to more fully test them.

114 | Chapter 10: Conclusion

Convert Mutable Variables into Immutable Variables
One of the last things you can do—without switching to a fully functional language—
is move your normal mutable variables into immutable variables. This has many dif‐
ferent implications, including the ability to do highly concurrent applications without
locking variables.

Immutable variables are one of the more difficult things to get used to working with
because we, as developers, are so accustomed to changing variables over time. The
positive for not changing the variable is that you have no concern that a variable has
“changed out from under you.”

What Next?
After you’ve done these things, generally you will have exhausted most of your func‐
tional abilities in the language you’re using. The next step, then, is to move to a more
functional language, such as Scala or Groovy, or to a fully functional language, such as
Erlang or Clojure. Whatever you choose, the concepts and ways to program in the
functional paradigm will remain the same.

New Design Patterns
There are a few different design patterns based on some of the concepts we’ve seen
throughout this book:

• Message passing for concurrency (actor model for concurrency)
• The Option pattern (extension of Null Object pattern)
• Object to Singleton method purity

Let’s look at some of these design patterns and how we can actually use them in our day-
to-day jobs.

Message Passing for Concurrency
When we think about concurrency, we think about a thread that starts, processes an
amount of work, and then exits. Sometimes we think of a thread pool to which we submit
jobs to be executed. However, with message passing we can actually send a message,
which is then interpreted by the running thread to do processing.

The big difference between message passing and thread pools is that with the latter, an
individual job must be created and executed, whereas in message passing you can have
a thread that exists for a long period of time, and send messages to that thread to tell it
what operations to perform. This allows the threads to communicate without blocking.

New Design Patterns | 115

The Option Pattern (Extension of Null Object Pattern)
The Null Object pattern in Java is a way you can provide an object to be executed, but
the object does nothing when executed and thus removes the need for null. An exten‐
sion of that pattern is the Option pattern. The concept, as we saw in earlier chapters, is
that you have an Option interface that is implemented by a Some and a None case; then
with pattern matching, you are able to extract when the Option has Some or do an else
if there is None.

Even if we don’t have pattern matching, we can still use the Option pattern by creating
a getOrElse(T obj) method on the Option interface. This way, you can actually pass
something to use in the event that you have None. All of the classes are listed in
Example 10-1.

Example 10-1. The implementation of the Option pattern
public interface Option<T> {

 public T getOrElse(T defObj);

}

public class Some<T> implements Option<T> {

 private final T obj;

 public Some(T obj) {
 this.obj = obj;
 }

 public T getOrElse(T defObj) {
 return (this.obj == null) ? defObj : this.obj;
 }

}

public class None<T> implements Option<T> {

 public T getOrElse(T defObj) {
 return obj;
 }

}

Now we can use this by passing a new Some<String>("Foo") or a new

None<String>(), which then forces the method accepting the Option<String> to do a
getOrElse. This means that it will always check for nullity so long as the underlying
object is not null.

116 | Chapter 10: Conclusion

Object to Singleton Method Purity
Generally in object-oriented programming (OOP), our functions will contain lots of
functional logic. In many instances, this functionality may bleed throughout an entire
class. This means that you will eventually need the class to be instantiated to test even
the most basic functionality.

Instead, when we want to have a set of functionality, we should create our static
methods and then have our instance methods call those directly. This allows us to
maintain function purity while being able to have OOP expressiveness. Example 10-2
shows a method on the instance that only calls a static method.

Example 10-2. The singleton method purity
public class Foo {

 public static String bar(Foo f) { return f.toString(); }

 public String bar() { return Foo.bar(f); }

}

Putting It All Together
Throughout this book, I’ve tried to convey the principles of functional programming
by showing you how to start with an imperative paradigm and move to the functional
one. Instead of refactoring, we’re going to put all of these principles into action by
building an example from the ground up.

Over the next few pages, we’re going to work through an example of a very simplistic
database. Here is a very basic overview of the functionality that we’ll be implementing;
it will be a menu-driven system, so it’s not meant to be a full-fledged database. It will
have the following capabilities:

• Can create a table
• Can insert a record
• Can delete a record (by ID)
• Can list all records
• Can query by one field

We’re going to use Scala, and we’ll get started by working with the initial application
object shown in Example 10-3.

Putting It All Together | 117

Example 10-3. The fDB.scala file
import scala.annotation.tailrec

object fDB {

 val options = Map[String, CommandLineOption](
 "create" -> new CommandLineOption("Create Table", Database.createTable),
 "describe" -> new CommandLineOption("Describe Table", Database.describeTable),
 "insert" -> new CommandLineOption("Insert Record", Database.insert),
 "delete" -> new CommandLineOption("Delete Record", Database.delete),
 "select" -> new CommandLineOption("Select Record", Database.select),
 "exit" -> new CommandLineOption("Exit", db => sys.exit)
)

 @tailrec
 def mainLoop(database : Database) : Unit = mainLoop(
 CommandLine.optionPrompt(options) match {
 case Some(opt) => opt.exec(database)
 case _ => { println("Invalid option"); database }
 }
)

 def main(args : Array[String]) = {
 mainLoop(new Database(Map()))
 }

}

The variable options is a mapping of all the possible options that a user can enter. These
options are create, describe, insert, delete, select, and exit. For each one, we’ll
create a CommandLineOption object, shown in Example 10-4, that contains a description
and an executable function.

We’ll also create a mainLoop that will execute the CommandLine (Example 10-5), which
will prompt a user based on the options available and try to grab that Command
LineOption.

If the option doesn’t exist, we make no changes and let the user know that she selected
an invalid option. Otherwise, we will execute the CommandLineOption executable func‐
tion, which will perform the necessary changes to the Database object, and which we
will continue using in our tail-recursive function.

Finally, we have our main function, which will call into our mainLoop with a new blank
Database object.

In Example 10-4, you can see the basic CommandLineOption object. It contains a name
to be used for display purposes so that the user knows what the option does, and the
exec, which will take a Database object, perform some operation based on that object,
and then return either that Database or a new one.

118 | Chapter 10: Conclusion

Example 10-4. The CommandLineOption.scala file
class CommandLineOption(val name : String, val exec : Database => Database)

The CommandLine object in Example 10-5 performs all of our prompting and printing
functionality. We have a wrapOutput function, which will take some wrapping and some
output that we want to display. We will then print the wrapping, followed by the out
put and the wrapping again, so that we have a nice separation of data.

The next function is our optionPrompt function, which takes a mapping of input to
CommandLineOption; this allows us to print out the mapping and then ask the user for
the input. We will print in the format option) CommandLineOption.name and then ask
the user to give us an input.

Our last function is a generic prompt function, which will print a message to the user
and wait for her to input a line of data.

Example 10-5. The CommandLine.scala file
object CommandLine {

 def wrapOutput(wrapper : String, output : String) : Unit = {
 println(wrapper)
 print(output)
 println(wrapper)
 }

 def optionPrompt(options : Map[String, CommandLineOption]) :
 Option[CommandLineOption] = {
 println()
 println("----[Options]----")
 options.foreach(option => println(option._1 + ") " + option._2.name))
 options.get(prompt("Action").toLowerCase)
 }

 def prompt(msg : String) : String = {
 print(msg + ": ")
 readLine()
 }

}

Our Database class in Example 10-6 is really straightforward—it has a set of tables,
which will be a map of table name to Table. We’ll discuss the Table object in
Example 10-7; for now, get to the Database object (singleton).

Putting It All Together | 119

Example 10-6. The Database.scala file
object Database {

 def createTable(database : Database) : Database = {
 new Database(database.tables +
 (CommandLine.prompt("Table Name") -> Table.create()))
 }

 def describeTable(database : Database) : Database = {
 database.tables.get(CommandLine.prompt("Table Name")) match {
 case Some(table) => table.describe()
 case _ => println("Table does not exist")
 }
 database
 }

 def insert(database : Database) : Database = {
 val tableName = CommandLine.prompt("Table Name")
 database.tables.get(tableName) match {
 case Some(table) => {
 new Database(database.tables + (tableName -> table.insert()))
 }
 case _ => { println("Table does not exist"); database }
 }
 }

 def select(database : Database) : Database = {
 database.tables.get(CommandLine.prompt("Table Name")) match {
 case Some(table) => table.select()
 case _ => println("Table does not exist")
 }
 database
 }

 def delete(database : Database) : Database = {
 val tableName = CommandLine.prompt("Table Name")
 database.tables.get(tableName) match {
 case Some(table) => new Database(
 database.tables + (tableName -> table.delete()))
 case _ => { println("Table does not exist"); database }
 }
 }
}

case class Database(tables : Map[String, Table]) {}

Our first method, create, will do just that—create a new table. We implement this by
prompting for a table name that we will then use in our Table Name-to-Table mapping.
We then use the function create to create a new table. You’ll notice that we’re adding

120 | Chapter 10: Conclusion

this new association to our existing table mapping and creating a new Database object
with this new table mapping.

Next, we have a describeTable method, which allows us to print out all of the fields
from a specific table. Notice that we use the pattern match with the Option pattern to
get the table by name and print an error if the table doesn’t exist.

In the insert method, we get the table and create a new database with the table re‐
placed in the map. The important thing here is that the table we’re replacing it with will
be the Table object’s insert return in Example 10-7.

The select method gets the table from which the user wants to select; it then uses a
pattern match on the Option pattern again to perform the select on that table or print
an error if the table doesn’t exist.

Finally, the delete method gets the table from which the user wants to delete, uses the
pattern match on the Option pattern, and then passes to the table for the delete.

Our Table class in Example 10-7 has quite a few pieces to it. Let’s look at the class first,
and notice the use of the static method calls from the instance methods.

Example 10-7. The Table.scala file
object Table {

 def createFields(count : Int,
 fields : List[String]) : List[String] = if(count <= 0) {
 fields
 } else {
 createFields(count - 1, fields ::: List(CommandLine.prompt("Field")))
 }

 def create() : Table = new Table(
 createFields(
 CommandLine.prompt("Number of fields").toInt,
 List()
),
 Map(),
 1
)

 def insert(table : Table) : Table = new Table(
 table.fields,
 table.records + (table.id -> Record.create(table.fields, Map())),
 table.id + 1
)

 def describe(table : Table) : Table = {
 println("(implied) id")
 table.fields.foreach(field => println(field))
 table

Putting It All Together | 121

 }

 def select(table : Table) : Table = {
 CommandLine.prompt("Filter By Field? (y/n)").toLowerCase match {
 case "y" => selectWithFilter(table)
 case "n" => selectAll(table)
 case _ => { println("Invalid selection"); select(table); }
 }
 }

 def selectAll(table : Table) : Table = {
 table.records.foreach(record => record._2.print(table.fields, record._1))
 table
 }

 def selectWithFilter(table : Table) : Table = {
 performFilter(
 table,
 CommandLine.prompt("Filter Field"),
 CommandLine.prompt("Field Value")
).foreach(record =>
 record._2.print(table.fields, record._1)
)
 table
 }

 def performFilter(table : Table,
 fieldName : String,
 fieldValue : String) : Map[Long, Record] = {
 if(fieldName == "id") {
 table.records.get(fieldValue.toLong) match {
 case Some(record) => Map(fieldValue.toLong -> record)
 case _ => Map()
 }
 } else {
 table.records.filter(record =>
 record._2.fieldValues.get(fieldName) match {
 case Some(value) => value == fieldValue
 case _ => false
 }
)
 }
 }

 def delete(table : Table) : Table = {
 new Table(table.fields, table.records - CommandLine.prompt("ID").toLong, table.id)
 }

}

case class Table(fields : List[String], records : Map[Long, Record], id : Long) {

122 | Chapter 10: Conclusion

 def delete() : Table = {
 Table.delete(this)
 }

 def select() : Table = {
 Table.select(this)
 }

 def insert() : Table = {
 Table.insert(this)
 }

 def describe() : Table = {
 Table.describe(this)
 }

}

We have a createFields method that will create all of our fields in a tail-recursive
manner. Notice that we don’t actually need to use a pattern match to do tail recursion.
We also have the create method, which asks for the number of fields and then calls into
createFields to create the list of fields.

We also have an insert method, which will call into Record (shown in Example 10-8)
to ask for each individual field value. We then add the record to our map with the id
from the Table and create a new table with the new map and increment the id for the
new table.

Our describe method iterates over each field and prints it out so that we know the table
structure.

Next, we have our select method, which asks the user if she wants to filter the records
for which she’s looking. Depending on which option she selects, we will go into either
selectAll or selectWithFilter.

The selectAll iterates over each record and calls print. The selectWithFilter asks
the user which field she wants to filter on and the value for which she’s looking. We then
call into the performFilter method, which will return a map of only matching records
and print out those records.

Our performFilter method splits on the field. If the user asks for the id field, we can
directly access it based on the map’s key; otherwise, we will perform a filter on the
records map to find the records that match. Notice that we can pattern-match in the
case that the field is missing, and instead of blowing up, we’re just not going to match.

Finally, we have the delete method, which asks the user what id she wants to remove,
and we remove it from the records map.

Putting It All Together | 123

Our last Record class in Example 10-8 is fairly simple, but again let’s look at the class
first.

Example 10-8. The Record.scala file
object Record {

 def create(fields : List[String],
 fieldValues : Map[String, String]) : Record = fields match {
 case List() => new Record(fieldValues)
 case f :: fs =>
 create(
 fs,
 fieldValues + (f -> CommandLine.prompt("Value [" + f + "]"))
)
 }

 def print(fields : List[String], id : Long, record : Record) : Unit = {
 def _print(fieldList : List[String], output : String) : String = fieldList match {
 case List() => output
 case f :: fs => _print(fs, output + f + ": " + record.fieldValues(f) + "\n")
 }
 CommandLine.wrapOutput("------------", "id: " + id + "\n" + _print(fields, ""))
 }

}

case class Record(fieldValues : Map[String, String]) {

 def print(fields : List[String], id : Long) : Unit = {
 Record.print(fields, id, this)
 }

}

We have a print method on the class itself that calls into the static print method, passing
the list and id of the object along with itself.

In the singleton, we have two primary methods. The first is the create method, which
uses tail recursion to iterate over the field list, asking for each field input. After all fields
have been asked for, we create a new Record with the map we’ve been building through
our recursive function.

The second method, print, takes the list of fields, the id of the record, and the record
itself. We then create a nested function, _print, which does a tail-recursive iteration to
create an output string that will contain each field and value. The print method uses
the inner _print method and passes the output to our CommandLine object’s wrapOut
put method, which then nicely prints out the object.

124 | Chapter 10: Conclusion

We now have a small functional database that we can use for simple queries. Our data‐
base utilizes all of the concepts of functional programming—from higher-order func‐
tions to immutability.

Conclusion
Throughout this chapter, we covered how you can start making the transition from a
legacy imperative style to a functional style of programming. We also looked at both
new design patterns and extensions of existing design patterns.

Finally, we wrote a simple, functional database in Scala. In doing so, we used first-class
functions and functional OOP through the use of our CommandLineOption object. We
also used pattern matching to determine whether the input option was valid. In addition,
we used pure functions, recursion, and immutability throughout the application. Even
when creating/updating/deleting records, we were able to apply immutability using
recursion.

Taking It a Step Further
Here are some ideas to consider if you want to try to expand upon this database concept:

• When selecting by field, add the ability to select by regex or like
• Add save/load functionality
• Turn the database into a client/server model
• Integrate error handling (most of it is done except the data input)
• Create transactional support (you’ll notice with the immutable database, you al‐

ready have some of this ready for use)

By completing more examples and forcing yourself to implement features based on
functional concepts, you’ll become a better functional programmer.

I’ve watched quite a few people start out programming in imperative style while trying
to learn functional programming. At some point—sometimes it’s while covering func‐
tional OOP concepts, and sometimes it’s later—it “clicks” for people, and they start
seeing code in loops and lists. They start thinking of functions as variables and begin to
pass them around instead of just data. When you begin to pass around parts of the
application itself, you open up the possibilities of your code and what you can
accomplish.

Conclusion | 125

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
:: operator, 97
?: (see ternary operator)
@Lazy annotation, 70

example of good usage in Groovy, 74
laziness problem in Groovy, 73

@tailrec annotation, 66

A
alternate constructors (Scala), 83
anonymous functions, 16

closures, 18
lambda functions, 16

appending rather than prepending to output
list, 62

assignment statements, 79

B
Backus, John, 1
bean methodology in Java, 90
block statements, 82
body of a function, 7

C
Calendar object, 82
case classes, 99, 116

CommandLineOption, 109

Customer class defined as, 102
matching a specific value in, 100

case keyword, defining patterns, 94
classes

reducing number with functional OOP, 112
Scala, 81

Clojure, 115
closed-over variables, marking as final, 19
closures, 16, 18

breaking function purity, 25
using with eachEnabledContact (example),

46
code examples from this book, xii
Command pattern, 112

Scala Command pattern using functions,
112

CommandLine object (example), 109
askForInput method, 110
options variable, 110

print each enabled contact option, 111
prompt method, 110
using in functional database, 119

CommandLineOption class (example), 109
using in functional database, 118

comprehensions, 91
concurrency

adding volatile keyword when using @Lazy
in Groovy, 72

bugs in, 48

127

functional programming and, 3
message passing for, 115

Contact class (example)
rewriting from Java into Scala, 80
Scala sendEmail method handling isDear‐

Reader, 109
Scala sendEmail method, original, 105
Scala sendEmail method, refactored, 107

Contact.java file, 45
Contract class (example), 26

constructor to create new object with all
members set, 51

converting Java class to Scala, 82
getCustomerById() function, 29
making it immutable, 50
setters returning this, 34

countEnabledCustomersWithNoEnabledCon‐
tacts function (example), 59–61
refactoring to use tail recursion, 62

Customer class (example)
converting from Java to Scala, 84
Customer.java file, 5
defined as case class, 102
eachEnabledContact method, printing out

contacts, 111
enabledContacts() method, 68–69
getEnabledCustomerNames function, 8
immutable Customer object, 49
making Customer.allCustomers an immuta‐

ble list, 49
map function, 35
refactoring Customer.java code into Groovy,

39
Scala basic pattern match in createCustomer,

94
Scala extraction pattern match in createCus‐

tomer, 95
Scala imperative createCustomer method us‐

ing if structure, 93
sendEnabledCustomersEmail() method, 46
setters returning this, 33
updateContractForCustomerList() method,

52
updating to have its own foreach function,

31
customers, creating from command line (exam‐

ple), 109–111

D
Database object (example), 119
database transactions, 48
databases

ORMs, lazy fetch, 76
writing a functional database, taking it fur‐

ther, 125
writing a simple functional database in Scala

(example), 117–125
depth of recursion, limits on, 56
design patterns, 115

message passing for concurrency, 115
object to singleton method purity, 117
Option pattern, 116

driver code, 3
DRY (Don’t Repeat Yourself) principle, 7
dynamically typed languages, 38

E
Email class (example), 106

as a container, 109
with isDearReader and name fields, 107

Email object (example), 106
extracting the send function with common

functionality, 108
updating to use isDearReader and name

fields, 107
with isDearReader field, using pattern

match, 108
end case, 55

Filter function end case with list head cre‐
ation, 57

Filter function using tail recursion, 61
Filter function with only the end case, 57
recursive function counting enabled custom‐

ers with disabled contacts, 60
Erlang, 115
error logging, extracting into error function in

createCustomer (example), 101
evaluations, strict and nonstrict, 67–77

Groovy TestClass with lazy member, 70
Groovy TestClass with nonlazy member, 70
laziness creating problems, 73
lazy variable definition in Scala, 72
nonstrict evaluation, 69
strict evaluation, 68

exceptions
ensuring type safety with, 10

128 | Index

throwing for null return value, 27
extractors

extracting lists, 97
extracting objects, 99

F
filter function, 27, 56–58

abstracting and putting into singleton class,
35

basic, using recursion, 58
converting to tail-recursive call, 61
getCustomerById method using, 28
getField function using, 28
in Groovy, using iterative loop, 56
purifying, 29
simplified function using recursion, 58

final variables and @Lazy annotation (Groovy),
72

final, marking closed-over variables as, 19
find function return, converting to a list and

pattern-matching against it, 98
first-class functions, 2, 5–24

anonymous functions, 16
closures, 18
lambda functions, 16

functions as objects, 7
refactoring using if-else structures, 8
using function objects to extract fields, 10

higher-order functions, 20
refactoring get functions using Groovy, 22
using in recursive summation, 55
XXY company (example), 5

Customer.java file, 5
DRY principle, 7

flatten() function, 68
for loops, 26

abstracting into a filter function, 28
as statements, 91
basic for loop in Scala (example), 91
for comprehension in Scala (example), 91
for comprehension over another list in Scala,

91
for comprehension versus map function, 92
summation in, 56

foreach function, 30
abstracting and putting into singleton class,

35
defined in Customer class (example), 31
side effects and, 35

function chaining
counting enabled customers with disabled

contacts (example), 59
functional programming

and concurrency, 3
concepts in, 1
first-class functions, 2
immutable variables, 2
importance of, x
nonstrict evaluations, 2
pattern matching, 2
pure functions, 2
recursion, 2
statements, 2
taking the database concept further, 125
transforming imperative code into function‐

al code, 113–115
using with OOP, ix, 105–112
versus imperative programming, ix
writing a simple functional database in Scala

(example), 117–125
functional programming languages, 115
functions, viii

as objects, 7
using function objects to extract fields, 10

components of, 7
in Scala, 66
passing a mutable object to, 44
passing a mutable variable to, 44
referencing, 111

G
generic typing (Scala), 83
get functions, refactoring using Groovy, 22
getCustomerById() method (example), 26

in Groovy, 38
purifying, 30
using a filter function, 28

getDisabledCustomerNames() function (exam‐
ple)
refactoring in Groovy, 39
taking purity too far, 37

getEnabledCustomerField() function (example),
8
passing ConversionFunction object to, 11
using if-else structure, 9
with generic typed Function1, 13

getEnabledCustomerNames() function (exam‐
ple), 8

Index | 129

getters and setters, 90
Groovy, vii

@Lazy annotation and final variables, 72
converting to, 38
dynamic typing, 38
Filter function in, 56
getCustomerById() function in, 38
laziness problem in, 73
lazy usage, good, example of, 74
printing all contracts, 39
refactoring other Customer.java code into,

39
setContractEnabledForCustomer() method

(example), 32
setContractForCustomer method, 39
syntax, 23
TestClass with lazy member (example)

and print statements, 70
lazy member not evaluated until it’s refer‐

enced, 71
TestClass with nonlazy member (example),

70
and print statements, 70

updating contract field, 38
using higher-order functions in, 114
using to refactor get functions, 22
volatile keyword, using with @Lazy annota‐

tion, 72
guard, 102

H
head (lists), 57

extracting in Scala, 97
higher-order functions, 20

defined, 23
introducing, 113

I
if statements, viii, 2

in recursiive function end case, 57
in Scala, 66, 87
using with getEnabledCustomerField func‐

tion, 8
if/else structures

converting to pattern matches
countEnabledCustomersWithNoEna‐

bledContacts method, 102

in getEnabledCustomerField function (ex‐
ample), 8

in Scala updateCustomerByIdList, convert‐
ing to pattern matches, 96

recreated in pattern-match style, 95
using in Scala imperative createCustomer

method, 93
immutability, 45, 48

immutable Contract object, 50
immutable Customer object, 49
in recursive algorithm, 58
maintained with nonstrict evaluation, 67
mutable allCustomers list containing im‐

mutable Customer objects, 49
immutable variables, 2, 43–54

benefits of using, 54
converting mutable variables to, 115

imperative programming, ix
transforming imperative code into function‐

al code, 113–115
changing to functional programming

language, 115
converting existing methods to pure

functions, 114
converting loops to tail/recursive-tail

methods, 114
converting mutable variables into im‐

mutable variables, 115
introducing higher-order functions, 113

instance methods, 117
interfaces (Java)

abstraction for higher-order function, 30
creating abstraction of function to pass to

another function, 10
encapsulating functions, 12

isEmpty method (Scala), 66
iteration

counting enabled customers with disabled
contacts (example), 59

iterative algorithms versus recursive, 56

J
Java, vii

imperative programming, ix
introducing higher-order functions, 113
lazy variable, example of, 67
method chaining (example), 91
Null Object pattern, 116
setter as statement (example), 90

130 | Index

simple assignment statement, 79
singleton method purity, 117
Strategy design pattern, 109

L
lambda functions, 16

using to reduce number of inner classes, 16
lazy evaluations

example of good usage in Groovy, 74
example of good usage in Scala, 75
laziness creating problems in Groovy, 73

lazy variables, 67
definition in Scala, 72

LISP, 1
lists

and for comprehensions in Scala, 91
appending rather than prepending to output

list, 62
extracting from, 97
Filter function end case with head creation,

57
Filter function outputting tail of list, 58
flattening, 68
head and tail of, 57
map function call on, in Scala, 92

looping, 10
abstracting in updateCustomer and update‐

Contract methods, 53
loops, converting to recursive methods, 114

M
macros, 7
map function, 35

abstracting and putting into singleton class,
35

map call on a list in Scala, 92
versus a for comprehension, when to use, 92

match statement, 94
mathematical notation, viii
message passing for concurrency, 115
method chaining in Java, 91
mutability, 43–48
mutable variables, 43

converting to immutable, 115
passed to a function, modifying, 44

N
name (of a function), 7
None class, 98, 116
nonstrict evaluation, 2, 67

Customer.enabledContacts method, 69
Groovy TestClass with lazy member, 70
laziness creating problems, 73
lazy usage, good, in Scala, 75
when and where to use, 76

Null Object pattern, 116
nullity, 27

avoiding null as dangerous construct, 58
NullPointerException, 27
nulls, returning empty list instead of, 32

O
object to singleton method purity, 117
object-oriented programming (OOP)

functional, 105–112
code as data, 109
objects as containers, 107
static encapsulation, 105

functional style with, ix
functions in, 117

objects
extracting, 99
functions as, 5, 7
Scala, 81

Option interface, 98, 116
Option pattern, 99, 116

extracting logging of error and returning of
None object, 101

match structure for, 100
handling specific value in a case object,

100
Scala createCustomer method returning, 100
using with CommandLine.options variable

(example), 110
ORMs (object-relational models), lazy fetch, 76

P
parameter list, 7
passing a function to a function, 11
pattern matching, 2, 93–103

converting if/else structure in Scala update‐
CustomerByIdList method, 96

converting to pattern matches, 101

Index | 131

Email object extracting send function with
common functionality, 108

Email object with isDearReader using, 108
extracting lists, 97
extracting objects, 99
Scala basic pattern match in createCustomer

method, 94
simple matches, 93
simple patterns, 95

patterns, defining, 94
placeholders, variables as, 49
pure functions, 2, 25–41

converting existing methods to, 114
making the switch to Groovy, 38
output depends on input, 25
purifying our functions, 29

filter function, 29
foreach function, 30
getCustomerById() method(example), 30

side effects, 33–36

R
Record class (example), 123
recursion, 2, 55–66

concerns about, 56
converting loops to tail-recursive methods,

114
countEnabledCustomersWithNoEnabled‐

Contacts function in Scala, 65
example of recursive function in mathemat‐

ics, 55
function counting enabled customers with

disabled contacts, 60
addition, returning, 61
defining base logic, 61
end case, 60

introduction to, 56
basic Filter function using recursion, 58
end case, 57
simplified filter function using recursion,

58
refactoring countEnabledCustomersWith‐

NoEnabledContacts function, 62
using trampolining, 64

summation using a recursive function, 56
tail recursion, 61

recursive algorithms versus iterative algorithms,
56

reduce operations, 59
reducing list of customrs into a count, 60

regular expressions, 93
Runnable interface, 10

S
Scala, viii, 65, 80, 114

basic pattern match in createCustomer (ex‐
ample), 94

Command pattern using functions, 112
CommandLine.askForInput method, 110
CommandLine.options variable, 110

print each enabled contact option, 111
CommandLine.prompt method, 110
CommandLineOption case class, 109
Contact class.sendEmail method, 105
Contact.scala file, 81
Contact.sendEmail method, refactored, 107
Contract.scala file, 83
countEnabledCustomersWithNoEnabled‐

Contacts method, 101
Customer class defined as case class, 102
pattern match on enabled customers, 102
pattern match on enabled customers and

blank Contact list, 103
Customer.scala file, 87
Email class, 106
Email class with isDearReader and name

fields, 107
Email object, 106
Email object extracting send function with

common functionality, 108
Email object using isDearReader and name

fields, 107
Email object with isDearReader using pat‐

tern match, 108
end date statement (example), 84
extraction pattern match in createCustomer

(example), 95
extraction pattern match, createCustomer

returning Option pattern, 100
for comprehension (example), 91
for comprehension over another list (exam‐

ple), 91
for loop, basic (example), 91
if statement (example), 90
imperative createCustomer method, using if

structure, 93
lazy usage, good, example of, 75

132 | Index

lazy variable definition (example), 72
map call on a list (example), 92
Option pattern, match structure for, 100

handling specific value in a case object,
100

printing enabled contacts using Custom‐
er.eachEnabledContact, 111

printing enabled contacts, encapsulated as
function, 111

syntax, 66
updateCustomerByIdList method (example),

96
converting if/else structure into pattern

match, 96
extracting found customers during find

call, 98
extracting head and tail from a list, 97
find call return, pattern matching against

Option, 99
Visitor pattern using functions, 112
writing a database in (example), 117–125

setContractDisabledForCustomer function (ex‐
ample), 32

setContractEnabledForCustomer function (ex‐
ample), 29
Groovy implementation, 32
updating to pass in Customer.allCustomers,

30
using Customer.foreach() function, 31

setContractForCustomer function (example)
in Groovy, 39
using map function, 35
with status passed in, 32

setContractForCustomerList method (example),
96
immutable, 51
referencing updateContractForCustomer‐

List(), 52
setters

Java setter as statement (example), 90
removing when making an object’s fields im‐

mutable, 50
side effects, 2, 25, 33–36

assigning a field on an object passed into a
function, 33

uses of, 33
singletons

object to singleton method purity, 117
Scala objects, 106

Some class, 98, 116
using with Option pattern, 99

State pattern, 112
statements, 2, 79–92

block, 82
everything is a statement, 84
for loops as, 91
simple, 80

states, known two good states, 49
static evaluation, 69
static methods, 117

in Scala objects, 106
Strategy design pattern, 109
strict evaluation, 2, 67

Customer.enabledContacts method, 68
when and where to use, 77

summation, viii
example of, 55
using a for loop, 56
using a recursive function, 56

T
Table class (example), 121
tail (lists), 57

extracting in Scala, 97
tail recursion, 61

converting loops to tail-recursive methods,
114

countEnabledCustomersWithNoEnabled‐
Contacts function in Scala, 65

in Scala, 66
refactoring countEnabledCustomersWith‐

NoEnabledContacts function, 62
using trampolining, 64

ternary operator, 79
nonexistent in Scala, 87
using if statement in Scala instead of, 66
versus if statement in Scala, 90

testing your code, 3
thread pools, 115
trampolining, 64
transactions, 48
tuples, 95

defining and matching against, 95
type parameter naming convention, 13
type safety, 114

ensuring by throwing exceptions, 10
types

Groovy, dynamic typing in, 38

Index | 133

Scala, 66, 81

U
updateContactFor() method (example), using

an immutable list, 53
updateContractForCustomerList() method (ex‐

ample), 52
updateCustomerByIdList() method (example),

96–99

V
variables

as placeholders in a specific scope, 49
defining in Scala, 72
immutable (see immutable variables)
lazy, 67
mutable, 43
mutable, converting to immutable, 115
strict evaluations and, 67

Visitor pattern, 112

volatile keyword, using with @Lazy annotation
in Groovy, 72

W
web page for this book, xii

X
XXY company (example), 5

(see also examples listed throughout)
counting enabled customers with disabled

contacts
in single findAll(), 59
iterative approach, 59
recursive function, 60
using function chaining, 59

getting list of enabled contacts for enabled
customers, 68

refactoring countEnabledCustomersWith‐
NoEnabledContacts function, 62

134 | Index

About the Author
Joshua F. Backfield is a Senior Software Development Engineer at Dell SecureWorks,
Inc., an industry-leading MSSP. He is responsible for the design and development of
many internal UI tools, as well as multiple backend processes. He holds a bachelor of
science in electronic systems technologies from Southern Illinois University at Car‐
bondale, and a master’s of science in computer science from DePaul University. He has
worked in a variety of languages, such as C, C++, Perl, Java, JavaScript, and Scala, and
he continues to learn and grow with more languages. He has ported multiple native C
applications to Scala, introduced many coworkers to Scala, and taught them its under‐
lying functional programming concepts.

Colophon
The animal on the cover of Becoming Functional is a sheldrake duck (Tadorna tador‐
na), also known as a common shelduck. The scientific name “tadorna” comes from the
Celtic for “pied waterfowl” (which is also what shelduck means in 14th century English).
The shelduck is widespread throughout Europe and Asia, near coastlines, lakes, rivers,
salt marshes, and other water sources.

The word “pied” refers to having two or more different colors, and the sheldrake duck
is indeed very colorful. It has a white body, a dark green head and neck, and both black
and chestnut patches on the wings and chest. The beak is pinkish-orange, and in males,
topped with a knob on the forehead. They are large ducks (closer to the size of a goose)
that eat shellfish, aquatic snails, crustaceans, plant matter, and small fish.

During breeding season, shelducks build nests in tree hollows, dense bushes, rock clefts,
or abandoned mammal burrows. Most shelduck populations migrate each summer to
specific nesting sites. The largest of these is the Wadden Sea near Germany, where over
100,000 birds congregate each year.

Almost as soon as the young have hatched, their parents will depart for moulting
grounds, leaving their offspring at a nearby “nursery” in the care of a few adults (usually
those who did not breed themselves). These guardians watch over about 20 to 40 duck‐
lings at a time, though the groupings change often. When the colony is approached, the
adults give a warning call and fly into the air as decoys, while the young shelducks quickly
dive underwater. By the fall, the ducklings are grown and able to migrate south.

The cover image is from Cassell’s Book of Birds. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who Is This Book For?
	Math Notation Review
	Why Functional over Imperative?
	Why Functional Alongside OOP?
	Why Functional Programming Is Important
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Overview of Concepts in Functional Programming
	First-Class Functions
	Pure Functions
	Recursion
	Immutable Variables
	Nonstrict Evaluation
	Statements
	Pattern Matching

	Functional Programming and Concurrency
	Conclusion

	Chapter 2. First-Class Functions
	Introduction to XXY
	Functions as Objects
	Refactoring Using If-Else Structures
	Refactoring Using Function Objects to Extract Fields

	Anonymous Functions
	Lambda Functions
	Closures

	Higher-Order Functions
	Refactoring get Functions by Using Groovy
	Conclusion

	Chapter 3. Pure Functions
	Output Depends on Input
	Purifying Our Functions
	Side Effects
	Conclusion
	Making the Switch to Groovy

	Chapter 4. Immutable Variables
	Mutability
	Immutability
	Conclusion

	Chapter 5. Recursion
	An Introduction to Recursion
	Recursion
	Tail Recursion
	Refactoring Our countEnabledCustomersWithNoEnabledContacts Function
	Conclusion
	Introducing Scala

	Chapter 6. Strict and Nonstrict Evaluations
	Strict Evaluation
	Nonstrict (Lazy) Evaluation
	Laziness Can Create Problems
	Conclusion

	Chapter 7. Statements
	Taking the Plunge
	Simple Statements
	Block Statements
	Everything Is a Statement
	Conclusion

	Chapter 8. Pattern Matching
	Simple Matches
	Simple Patterns
	Extracting Lists
	Extracting Objects
	Converting to Pattern Matches
	Conclusion

	Chapter 9. Functional OOP
	Static Encapsulation
	Objects As Containers
	Code as Data
	Conclusion

	Chapter 10. Conclusion
	From Imperative to Functional
	Introduce Higher-Order Functions
	Convert Existing Methods into Pure Functions
	Convert Loops to Tail/Recursive-Tail Methods
	Convert Mutable Variables into Immutable Variables
	What Next?

	New Design Patterns
	Message Passing for Concurrency
	The Option Pattern (Extension of Null Object Pattern)
	Object to Singleton Method Purity

	Putting It All Together
	Conclusion

	Index
	About the Author

