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Preface

Interest in synthetic data has been growing rapidly over the last few years. This inter‐
est has been driven by two simultaneous trends. The first is the demand for large
amounts of data to train and build artificial intelligence and machine learning
(AIML) models. The second is recent work that has demonstrated effective methods
for generating high-quality synthetic data. Both have resulted in the recognition that
synthetic data can solve some difficult problems quite effectively, especially within the
AIML community. Companies like NVIDIA, IBM, and Alphabet, as well as agencies
such as the US Census Bureau, have adopted different types of data synthesis
methodologies to support model building, application development, and data
dissemination.

This book provides you with a gentle introduction to methods for the following: gen‐
erating synthetic data, evaluating the data that has been synthesized, understanding
the privacy implications of synthetic data, and implementing synthetic data within
your organization. We show how synthetic data can accelerate AIML projects. Some
of the problems that can be tackled by having synthetic data would be too costly or
dangerous to solve using more traditional methods (e.g., training models controlling
autonomous vehicles), or simply cannot be done otherwise. We also explain how to
assess the privacy risks from synthetic data, even though they tend to be minimal if
synthesis is done properly.

While we want this book to be an introduction, we also want it to be applied. There‐
fore, we will discuss some of the issues that will be encountered with real data, not
curated or cleaned data. Real data is complex and messy, and data synthesis needs to
be able to work within that context.

Our intended audience is analytics leaders who are responsible for enabling AIML
model development and application within their organizations, as well as data scien‐
tists who want to learn how data synthesis can be a useful tool for their work. We will
use examples of different types of data synthesis to illustrate the broad applicability of
this approach. Our main focus here is on the synthesis of structured data.
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CHAPTER 1

Introducing Synthetic Data Generation

We start this chapter by explaining what synthetic data is and its benefits. Artificial
intelligence and machine learning (AIML) projects run in various industries, and the
use cases that we include in this chapter are intended to give a flavor of the broad
applications of data synthesis. We define an AIML project quite broadly as well, to
include, for example, the development of software applications that have AIML
components.

Defining Synthetic Data
At a conceptual level, synthetic data is not real data, but data that has been generated
from real data and that has the same statistical properties as the real data. This means
that if an analyst works with a synthetic dataset, they should get analysis results simi‐
lar to what they would get with real data. The degree to which a synthetic dataset is an
accurate proxy for real data is a measure of utility. We refer to the process of generat‐
ing synthetic data as synthesis.

Data in this context can mean different things. For example, data can be structured
data, as one would see in a relational database. Data can also be unstructured text,
such as doctors’ notes, transcripts of conversations or online interactions by email or
chat. Furthermore, images, videos, audio, and virtual environments are types of data
that can be synthesized. Using machine learning, it is possible to create realistic pic‐
tures of people who do not exist in the real world.

There are three types of synthetic data. The first type is generated from actual/real
datasets, the second type does not use real data, and the third type is a hybrid of these
two. Let’s examine them here.

1
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Synthesis from Real Data
The first type of synthetic data is synthesized from real datasets. This means that the
analyst has some real datasets and then builds a model to capture the distributions
and structure of that real data. Here structure means the multivariate relationships
and interactions in the data. Once the model is built, the synthetic data is sampled or
generated from that model. If the model is a good representation of the real data, then
the synthetic data will have statistical properties similar to those of the real data.

This is illustrated in Figure 1-1. Here we fit the data to a generative model first. This
captures the relationships in the data. We then use that model to generate synthetic
data. So the synthetic data is produced from the fitted model.

Figure 1-1. The conceptual process of data synthesis

For example, a data science group specializing in understanding customer behaviors
would need large amounts of data to build its models. But because of privacy or other
concerns, the process for accessing that customer data is slow and does not provide
good enough data on account of extensive masking and redaction of information.
Instead, a synthetic version of the production datasets can be provided to the analysts
to build their models with. The synthesized data will have fewer constraints on its use
and will allow them to progress more rapidly.

Synthesis Without Real Data
The second type of synthetic data is not generated from real data. It is created by
using existing models or the analyst’s background knowledge.

These existing models can be statistical models of a process (developed through sur‐
veys or other data collection mechanisms) or they can be simulations. Simulations
can be, for instance, gaming engines that create simulated (and synthetic) images of
scenes or objects, or they can be simulation engines that generate shopper data with

2 | Chapter 1: Introducing Synthetic Data Generation



particular characteristics (say, age and gender) for people who walk past a store at dif‐
ferent times of the day.

Background knowledge can be, for example, knowledge of how a financial market
behaves that comes from textbook descriptions or the movements of stock prices
under various historical conditions. It can also be knowledge of the statistical distri‐
bution of human traffic in a store based on years of experience. In such a case, it is
relatively straightforward to create a model and sample from background knowledge
to generate synthetic data. If the analyst’s knowledge of the process is accurate, then
the synthetic data will behave in a manner that is consistent with real-world data. Of
course, the use of background knowledge works only when the analyst truly under‐
stands the phenomenon of interest.

As a final example, when a process is new or not well understood by the analyst, and
there is no real historical data to use, then an analyst can make some simple assump‐
tions about the distributions and correlations among the variables involved in the
process. For example, the analyst can make a simplifying assumption that the vari‐
ables have normal distributions and “medium” correlations among them, and create
data that way. This type of data will likely not have the same properties as real data
but can still be useful for some purposes, such as debugging an R data analysis pro‐
gram, or some types of performance testing of software applications.

Synthesis and Utility
For some use cases, having high utility will matter quite a bit. In other cases, medium
or even low utility may be acceptable. For example, if the objective is to build AIML
models to predict customer behavior and make marketing decisions based on that,
then high utility will be important. On the other hand, if the objective is to see if your
software can handle a large volume of transactions, then the data utility expectations
will be considerably lower. Therefore, understanding what data, models, simulators,
and knowledge exist, as well as the requirements for data utility, will drive the specific
approach for generating the synthetic data.

A summary of the synthetic data types is given in Table 1-1.

Table 1-1. Different types of data synthesis with their utility implications

Type of synthetic data Utility
Generated from real nonpublic datasets Can be quite high

Generated from real public data Can be high, although there are limitations because public data
tends to be de-identified or aggregated

Generated from an existing model of a process, which can
also be represented in a simulation engine

Will depend on the fidelity of the existing generating model

Based on analyst knowledge Will depend on how well the analyst knows the domain and the
complexity of the phenomenon

Defining Synthetic Data | 3



1 US Government Accountability Office, “Artificial Intelligence: Emerging Opportunities, Challenges, and
Implications for Policy and Research” (March 2018) https://www.gao.gov/products/GAO-18-644T.

2 McKinsey Global Institute, “Artificial intelligence: The next digital frontier?”, June 2017. https://oreil.ly/pFMkl.
3 Deloitte Insights, “State of AI in the Enterprise, 2nd Edition” 2018. https://oreil.ly/EiD6T.
4 Ben Lorica and Paco Nathan, The State of Machine Learning Adoption in the Enterprise (Sebastopol: O’Reilly,

2018).

Type of synthetic data Utility
Generated from generic assumptions not specific to the
phenomenon

Will likely be low

Now that you have seen the different types of synthetic data, let’s look at the benefits
of data synthesis overall and of some of these data types specifically.

The Benefits of Synthetic Data
We will highlight two important benefits of data synthesis: providing more efficient
access to data and enabling better analytics. Let’s examine each of these in turn.

Efficient Access to Data
Data access is critical to AIML projects. The data is needed to train and validate mod‐
els. More broadly, data is also needed for evaluating AIML technologies that have
been developed by others, as well as for testing AIML software applications or appli‐
cations that incorporate AIML models.

Typically, data is collected for a particular purpose with the consent of the individual
—for example, for participating in a webinar or a clinical research study. If you want
to use that same data for a different purpose, such as to build a model to predict what
kind of person is likely to sign up for a webinar or to participate in a clinical study,
then that is considered a secondary purpose.

Access to data for secondary purposes, such as analysis, is becoming problematic. The
Government Accountability Office1 and the McKinsey Global Institute2 both note
that accessing data for building and testing AIML models is a challenge for their
adoption more broadly. A Deloitte analysis concluded that data-access issues are
ranked in the top three challenges faced by companies when implementing AI.3 At
the same time, the public is getting uneasy about how its data is used and shared, and
privacy laws are becoming stricter. A recent survey by O’Reilly highlighted the pri‐
vacy concerns of companies adopting machine learning models, with more than half
of companies experienced with AIML checking for privacy issues.4

Contemporary privacy regulations, such as the US Health Insurance Portability and
Accountability Act (HIPAA) and the General Data Protection Regulation (GDPR) in
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5 Khaled El Emam et al., “A Review of Evidence on Consent Bias in Research,” The American Journal of Bioethics
13, no. 4 (2013): 42–44.

6 Other governance mechanisms would generally be needed, and we cover these later in the book.

Europe, require a legal basis to use personal data for a secondary purpose. An exam‐
ple of that legal basis would be additional consent or authorization from individuals
before their data can be used. In many cases this is not practical and can introduce
bias into the data because consenters and nonconsenters differ on important
characteristics.5

Given the difficulty of accessing data, sometimes analysts try to just use open source
or public datasets. These can be a good starting point, but they lack diversity and are
often not well matched to the problems that the models are intended to solve. Fur‐
thermore, open data may lack sufficient heterogeneity for robust training of models.
For example, open data may not capture rare cases well enough.

Data synthesis can give the analyst, rather efficiently and at scale, realistic data to
work with. Synthetic data would not be considered identifiable personal data. There‐
fore, privacy regulations would not apply and additional consent to use the data for
secondary purposes would not be necessary.6

Enabling Better Analytics
A use case where synthesis can be applied is when real data does not exist—for exam‐
ple, if the analyst is trying to model something completely new, and the creation or
collection of a real dataset from scratch would be cost-prohibitive or impractical.
Synthesized data can also cover edge or rare cases that are difficult, impractical, or
unethical to collect in the real world.

Sometimes real data exists but is not labeled. Labeling a large amount of examples for
supervised learning tasks can be time-consuming, and manual labeling is error-
prone. Again, synthetic labeled data can be generated to accelerate model develop‐
ment. The synthesis process can ensure high accuracy in the labeling.

Analysts can use the synthetic data models to validate their assumptions and demon‐
strate the kind of results that can be obtained with their models. In this way the syn‐
thetic data can be used in an exploratory manner. Knowing that they have interesting
and useful results, the analysts can then go through the more complex process of get‐
ting the real data (either raw or de-identified) to build the final versions of their
models.

For example, if an analyst is a researcher, they can use their exploratory models on
synthetic data to then apply for funding to get access to the real data, which may
require a full protocol and multiple levels of approvals. In such an instance, efforts

The Benefits of Synthetic Data | 5



7 Jerome P. Reiter, “New Approaches to Data Dissemination: A Glimpse into the Future (?),” CHANCE 17, no. 3
(June 2004): 11–15.

with the synthetic data that do not produce good models or actionable results would
still be beneficial, because they will redirect the researchers to try something else,
rather than trying to access the real data for a potentially futile analysis.

Another scenario in which synthetic data can be valuable is when the synthetic data is
used to train an initial model before the real data is accessible. Then when the analyst
gets the real data, they can use the trained model as a starting point for training with
the real data. This can significantly expedite the convergence of the real data model
(hence reducing compute time) and can potentially result in a more accurate model.
This is an example of using synthetic data for transfer learning.

The benefits of synthetic data can be dramatic—it can make impossible projects doa‐
ble, significantly accelerate AIML initiatives, or result in material improvement in the
outcomes of AIML projects.

Synthetic Data as a Proxy
If the utility of the synthetic data is high enough, analysts are able to get results with
the synthetic data that are similar to what they would have with the real data. In such
a case, the synthetic data plays the role of a proxy for the real data. Increasingly, there
are more use cases where this scenario is playing out: as synthesis methods improve
over time, this proxy outcome is going to become more common.

We have seen that synthetic data can play a key role in solving a series of practical
problems. One of the critical factors for the adoption of data synthesis, however, is
trust in the generated data. It has long been recognized that high data utility will be
needed for the broad adoption of data synthesis methods.7 This is the topic we turn to
next.

Learning to Trust Synthetic Data
Initial interest in synthetic data started in the early 1990s with proposals to use multi‐
ple imputation methods to generate synthetic data. Imputation in general is the class
of methods used to deal with missing data by using realistic data to replace the miss‐
ing values. Missing data can occur, for example, in a survey in which some respond‐
ents do not complete a questionnaire.

Accurate imputed data requires the analyst to build a model of the phenomenon of
interest using the available data and then use that model to estimate what the imputed
value should be. To build a valid model the analyst needs to know how the data will
eventually be used.

6 | Chapter 1: Introducing Synthetic Data Generation



With multiple imputation you create multiple imputed values to capture the uncer‐
tainty in these estimated values. This results in multiple imputed datasets. There are
specific techniques that can be used to combine the analysis that is repeated in each
imputed dataset to get a final set of analysis results. This process can work reasonably
well if you know in advance how the data will be used.

In the context of using imputation for data synthesis, the real data is augmented with
synthetic data using the same type of imputation techniques. In such a case, the real
data is used to build an imputation model that is then used to synthesize new data.

The challenge is that if your imputation models are different than the eventual mod‐
els that will be built with the synthetic data, then the imputed values may not be very
reflective of the real values, and this will introduce errors in the data. This risk of
building the wrong model has led to historic caution in the application of synthetic
data.

More recently, statistical machine learning models have been used for data synthesis.
The advantage of these models is that they can capture the distributions and complex
relationships among the variables quite well. In effect, they discover the underlying
model in the data rather than requiring that model to be prespecified by the analyst.
And now with deep learning data synthesis, these models can be quite accurate
because they can capture much of the signal in the data—even subtle signals.

Therefore, we are getting closer to the point where the generative models available
today produce datasets that are becoming quite good proxies for real data. But there
are also ways to assess the utility of synthetic data more objectively.

For example, we can compare the analysis results from synthetic data with the analy‐
sis results from the real data. If we do not know what analysis will be performed on
the synthetic data, then a range of possible analyses can be tried based on known uses
of that data. Or an “all models” evaluation can be performed, in which all possible
models are built from the real and synthetic datasets and compared.

Synthetic data can also be used to increase the heterogeneity of a training dataset to
result in a more robust AIML model. For example, edge cases in which data does not
exist or is difficult to collect can be synthesized and included in the training dataset.
In that case, the utility of the synthetic data is measured in the robustness increment
to the AIML models.

The US Census Bureau has, at the time of writing, decided to leverage synthetic data
for one of the most heavily used public datasets, the 2020 decennial census data. For
its tabular data disseminations, it will create a synthetic dataset from the collected
individual-level census data and then produce the public tabulations from that

The Benefits of Synthetic Data | 7



8 Aref N. Dajani et al., “The Modernization of Statistical Disclosure Limitation at the U.S. Census Bureau”
(paper presented at the Census Scientific Advisory Committee meeting, Suitland, MD, March 2017).

synthetic dataset. A mixture of formal and nonformal methods will be used in the
synthesis process.8

This, arguably, demonstrates the large-scale adoption of data synthesis for one of the
most critical and heavily used datasets available today.

Beyond the census, data synthesis is being used in a number of industries, as we illus‐
trate later in this chapter.

Synthetic Data Case Studies
While the technical concepts behind the generation of synthetic data have been
around for a few decades, their practical use has picked up only recently. One reason
is that this type of data solves some challenging problems that were quite hard to
solve before, or solves them in a more cost-effective way. All of these problems per‐
tain to data access: sometimes it is just hard to get access to real data.

This section presents a few application examples from various industries. These
examples are not intended to be exhaustive but rather to be illustrative. Also, the
same problem may exist in multiple industries (for example, getting realistic data for
software testing is a common problem that data synthesis can solve), so the applica‐
tions of synthetic data to solve that problem will therefore be relevant in these multi‐
ple industries. Because we discuss software testing, say, only under one heading does
not mean that it would not be relevant in another.

The first industry that we examine is manufacturing and distribution. We then give
examples from healthcare, financial services, and transportation. The industry exam‐
ples span the types of synthetic data we’ve discussed, from generating structured data
from real individual-level and aggregate data, to using simulation engines to generate
large volumes of synthetic data.

8 | Chapter 1: Introducing Synthetic Data Generation



9 Jonathan Tilley, “Automation, Robotics, and the Factory of the Future,” McKinsey, September 2017. https://
oreil.ly/L27Ol.

10 Lori Cameron, “Deep Learning: Our No. 1 Tech Trend for 2018 Is Set to Revolutionize Industrial Robotics,”
IEEE Computer Society, accessed July 28, 2019. https://oreil.ly/dKcF7.

Manufacturing and Distribution
The use of AIML in industrial robots, coupled with improved sensor technology, is
further enabling factory automation for more complex and varied tasks.9 In the ware‐
house and on the factory floor, these systems are increasingly able to pick up arbi‐
trary objects off shelves and conveyor belts, and then inspect, manipulate, and move
them, as illustrated by the Amazon Picking Challenge.10

However, robust training of robots to perform complex tasks in the production line
or warehouse can be challenging because of the need to obtain realistic training data
covering multiple anticipated scenarios, as well as uncommon ones that are rarely
seen in practice but are still plausible. For example, recognizing objects under differ‐
ent lighting conditions, with different textures, and in various positions requires
training data that captures the variety and combinations of these situations. It is not
trivial to generate such a training dataset.

Let’s consider an illustrative example of how data synthesis can be used to train a
robot to perform a complex task that requires a large dataset for training. Engineers
at NVIDIA were trying to train a robot to play dominoes using a deep learning model
(see Figure 1-2). The training needed a large number of heterogeneous images that
capture the spectrum of situations that a robot may encounter in practice. Such a
training dataset did not exist, and it would have been cost-prohibitive and very time-
consuming to manually create these images.
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Figure 1-2. The dominoes-playing robot

The NVIDIA team used a graphics-rendering engine from its gaming platform to
create images of dominoes in different positions, with different textures, and under
different lighting conditions (see Figure 1-3).11 No one actually manually set up dom‐
inoes and took pictures of them to train the model—the images that were created for
training were simulated by the engine.
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Figure 1-3. An example of a synthesized domino image

In this case the image data did not exist, and creating a large enough dataset manually
would have taken a lot of people a long time—not a very cost-effective option. The
team used the simulation engine to create a large number of images to train the robot.
This is a good example of how synthetic data can be used to train a robot to recog‐
nize, pick up, and manipulate objects in a heterogeneous environment—the same
type of model building that would be needed for industrial robots.

Healthcare
Getting access to data for building AIML models in the health industry is often diffi‐
cult because of privacy regulations or because the data collection can be expensive.
Health data is considered sensitive in many data-protection regimes, and its use and
disclosure for analytics purposes must meet a number of conditions. These condi‐
tions can be nontrivial to put in place (e.g., by providing patients access to their own
data, creating strong security controls around the retention and processing of the
data, and training staff).12 Also, the collection of health data for specific studies or
analyses can be quite expensive. For instance, the collection of data from multiple
sites in clinical trials is costly.

The following examples illustrate how synthetic data has solved the data-access chal‐
lenge in the health industry.
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Data for cancer research
There are strong currents pushing governments and the pharmaceutical industry to
make their health data more broadly available for secondary analysis. This is intended
to solve the data-access problem and encourage more innovative research to under‐
stand diseases and find treatments. Regulators have also required companies to make
health data more broadly available. A good example of this is the European Medicines
Agency, which has required pharmaceutical companies to make the information that
they submitted for their drug approval decisions publicly available.13 Health Canada
has also recently done so.14

Medical journals are also now strongly encouraging researchers who publish articles
to make their data publicly available for other researchers to replicate the studies,
which could possibly lead to innovative analyses on that same data.

In general, when that data contains personal information, it needs to be de-identified
or made nonpersonal before it is made public (unless consent is obtained from the
affected individuals beforehand, which is not the case here). However, in practice it is
difficult to de-identify complex data for a public release.15 There are a number of rea‐
sons for this:

• Public data has few controls on it (e.g., the data users do not need to agree to
terms of use and do not need to reveal their identities, which makes it difficult to
ensure that they are handling it securely). Therefore, the level of data transforma‐
tions needed to ensure that the risk of re-identification is low can be extensive,
which ensures that data utility has degraded significantly.

• Re-identification attacks on public data are getting more attention by the media
and regulators, and they are also getting more sophisticated. As a consequence,
de-identification methods need to err on the conservative side, which further
erodes data utility.

• The complexity of datasets that need to be shared further amplifies the data util‐
ity problems because a lot of the information in the data would need to be trans‐
formed to manage the re-identification risk.

Synthetic data makes it feasible to have complex open data. Complexity here means
that the data has many variables and tables, with many transactions per individual.
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For example, data from an oncology electronic medical record would be considered
complex. It would have information about, for instance, the patient, visits, treatments,
drugs prescribed and administered, and laboratory tests.

Synthesis can simultaneously address the privacy problem and provide data that is of
higher utility than the incumbent alternative. A good example of this is the synthetic
cancer registry data that has been made publicly available by Public Health England.
This synthetic cancer dataset is available for download and can be used to generate
and test hypotheses, and to do cost-effective and rapid feasibility evaluations for
future cancer studies.

Beyond data for research, there is a digital revolution (slowly) happening in medi‐
cine.16 For example, the large amounts of health data that exist with providers and
payers contain many insights that can be detected by the more powerful AIML tech‐
niques. New digital medical devices are adding more continuous data about patient
health and behavior. Patient-reported outcome data provides assessments of function,
quality of life, and pain. And of course genomic and other -omic data is at the core of
personalized medicine. All this data needs to be integrated into and used for point-of-
care and at-home decisions and treatments. Innovations in AIML can be a facilitator
of that.

In the next section we examine how digital health and health technology companies
can use synthetic data to tap into this innovation ecosystem. And note that more tra‐
ditional drug and device companies are becoming digital health companies.

Evaluating innovative digital health technologies
Health technology companies are constantly looking for data-driven innovations
coming from the outside. These can be innovations from start-up companies or from
academic institutions. Typical examples include data analysis (statistical machine
learning or deep learning models and tools), data wrangling (such as data standardi‐
zation and harmonization tools, and data cleansing tools), and data type detection
tools (that find out where different types of data exist in the organization).

Because adopting new technologies takes resources and has opportunity costs, the
decision to do so must be made somewhat carefully. These companies need a mecha‐
nism to evaluate these innovations in an efficient way to determine which ones really
work in practice, and, more importantly, which ones will work with their data. The
best way to do that is to give these innovators some data and have them demonstrate
their wares on that data.
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Some large companies get approached by innovators at a significant pace—some‐
times multiple parts of an organization are approached at the same time. The pitches
are compelling, and the potential benefits to their business can be significant. The
large companies want to bring these innovations into their organizations. But experi‐
ence has told them that, for instance, some of the start-ups are pitching ideas rather
than mature products, and the academics are describing solutions that worked only
on small problems or in situations unlike the companies’. There is a need to test these
innovations on their own problems and data.

In the pharmaceutical industry, it can be complex to provide data to external parties
because much of the relevant data pertains to patients or healthcare providers. The
processes that would be needed to share that data would usually include extensive
contracting and an audit of the security practices at the data recipient. Just these two
tasks could take quite some time and investment.

Sometimes the pharmaceutical company is unable to share its data externally because
of this complexity or because of internal policies, and in that case it asks the innova‐
tor to come in and install the software in its environment (see “Rapid Technology
Evaluation” for an example). This creates significant complexity and delays because
now the company needs to audit the software, address compatibility issues, and figure
out integration points. This makes technology evaluations quite expensive and uses
up a lot of internal resources. Plus, this is not scalable to the (potentially) hundreds of
innovations that the company would want to test every year.

These companies have started to do two things to make this process more efficient
and to enable them to bring innovations in. First, they have a standard set of syn‐
thetic datasets that are representative of their patient or provider data. For example, a
pharmaceutical company would have a set of synthetic clinical trial datasets in vari‐
ous therapeutic areas. These datasets can be readily shared with innovators for pilots
or quick proof-of-concept projects.

Rapid Technology Evaluation
Cambridge Semantics (CS), a Boston company developing a graph database and vari‐
ous analytics tools on top of that, was planning to do a pilot with a large prospect in
the health space to demonstrate how its tools can be used to harmonize pooled clini‐
cal trial data. To do this pilot, it needed to get data from the prospect. That way CS
could demonstrate that its tools worked on real data that was relevant for the prospect
—there are few things more compelling than seeing a problem solved in an elegant
way on your own data.

The initial challenge was that to get data from the prospect, CS would need to go
through an audit to ensure that it had adequate security and privacy practices to han‐
dle personal health information. That process would have taken three to four months
to complete.
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An alternative that was considered was for CS to install its software on the prospect’s
private cloud and then run it there using real data. However, the complexities of
introducing new software into a regulated computing environment are not trivial.
Furthermore, giving CS staff access to the internal computing environment would
have required additional checks and processes. This also would have taken three to
four months.

The team landed on a synthetic data solution whereby a number of synthetic datasets
were created and given to CS to demonstrate how it would solve the specific problem.
The pilot was completed in a few days.

The second process that is used is competitions. The basic idea is to define a problem
that needs to be solved and then invite a number of innovators to solve that problem,
using synthetic data to demonstrate their solutions. These can be open or closed com‐
petitions. With the former, any start-up, individual, or institution can participate,
such as by organizing public hackathons or datathons. With the latter, closed compet‐
itions, specific innovators are invited to participate.

With public hackathons or datathons, entrants are invited to solve a given problem
with a prize at the end for the winning individual or team. The main difference
between such public events and the competitions described previously is that the
innovators are not selected in advance; rather, participation tends to be more open.
The diversity in these competitions means that many new ideas are generated and
evaluated in a relatively short period of time. Synthetic data can be a key enabler
under these circumstances by providing datasets that the entrants can access with
minimal constraints.

A good example of an open competition is the Heritage Health Prize (HHP). The
HHP was notable for the size of the prize and the size of the dataset that was made
available to entrants. At the time of the competition, which lasted from 2011 to 2013,
the availability of synthetic data was limited, and therefore a de-identified dataset was
created.17 Because of the challenges of de-identifying open datasets that were noted
earlier, it has been more common for health-related competitions to be closed. How‐
ever, at this point in time there is no compelling reason to maintain that restriction.
Synthetic data is now being used to enable such competitions as described in “Data‐
thons Enabled by Synthetic Data.”

In practice, only a small percentage of those evaluations succeed when given a realis‐
tic dataset to work with. The innovators that make it through the evaluation or com‐
petition are then invited to go through the more involved process to get access to real
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data and do more detailed demonstrations, or the company may decide to license the
innovation at that point. But at least the more costly investments in the technology
evaluation or adoption are performed only on candidates that are known to have an
innovation that works.

Datathons Enabled by Synthetic Data
The Vivli-Microsoft Data Challenge was held in June 2019 in Boston. The goal of the
competition was to propose innovative methods to facilitate the sharing of rare dis‐
ease datasets, in a manner that maintains the analytic value of the data while safe‐
guarding participant privacy. Rare disease datasets are particularly difficult to share
while maintaining participant privacy because they often contain relatively few indi‐
viduals, and individuals may be identified using only a handful of attributes.

This event gathered 60 participants on 11 teams from universities, hospitals, and
pharmaceutical, biotech, and software companies. Each team had five hours to plan
and propose a solution, then five minutes to present the solution to the judges. The
solutions combined new and existing technologies in interesting ways that were tail‐
ored for use in rare disease datasets. Unsurprisingly, the winning team proposed a
solution built around the use of synthetic data.

Synthetic data was critical to this event’s success as it allowed all participants to “get
their hands dirty” with realistic clinical trial data, without needing to use costly secure
computational environments or other control mechanisms. The synthetic data groun‐
ded the competition in reality by providing participants with example data that their
solutions would need to be able to accommodate. Groups that built demos of their
solutions were also able to apply their methods to the synthetic data as a proof of
concept.

Data challenges like this depend on providing high-quality data to participants, and
synthetic data is a practical means to do so.

Another large consumer of synthetic data is the financial services industry. Part of the
reason is that this industry has been an early user of AIML technology and data-
driven decision making, such as in fraud detection, claims processing, and consumer
marketing. In this next section we examine specific use cases in which synthetic data
has been applied in this sector.

Financial Services
Getting access to large volumes of historical market data in the financial services
industry can be expensive. This type of data is needed, for example, for building
models to drive trading decisions and for software testing. Also, using consumer
financial transaction data for model building, say, in the context of marketing retail
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banking services, is not always easy because that requires the sharing of personal
financial information with internal and external data analysts.

The following use cases illustrate how synthetic data has been used to solve some of
these challenges.

Synthetic data benchmarks
When selecting software and hardware to process large volumes of data, financial
services companies need to evaluate vendors and solutions in the market. Instead of
having each company evaluate technologies from innovative vendors and academics
one by one, it is common to create standardized data benchmarks.

A data benchmark would consist of a dataset and a set of tests that would be per‐
formed on that dataset. Vendors and academics can then use their software and hard‐
ware to produce the outputs using these data as inputs, and they can all be compared
in a consistent manner. Creating a benchmark would make the most sense in situa‐
tions where the market is large enough and the community can agree on a bench‐
mark that is representative.

In competitive scenarios where multiple vendors and academics can supply solutions
to the same set of problems, the benchmarks must be constructed in a manner that
ensures that no one can easily game the system. With a standard input dataset, the
solutions can just be trained or configured to produce the correct output without per‐
forming the necessary analytic computations.

Synthetic data benchmarks are produced from the same underlying model, but each
vendor or academic gets a unique and specific set of synthetic data generated from
that model. In that way, each entity running the benchmark will need to produce dif‐
ferent results to score well on the benchmark.

An example is the STAC-A2 benchmark for evaluating software and hardware used
to model financial market risk. The benchmark has a number of quality measures in
the output that are assessed during the computation of option price sensitivities for
multiple assets using Monte Carlo simulation. There is also a series of performance/
scaling tests that are performed using the data.

When financial services companies wish to select a technology vendor, they can com‐
pare the solutions on the market using a consistent benchmark that was executed on
comparable data. This provides a neutral assessment of the strengths and weaknesses
of available offerings without the companies having to perform their own evaluations
(which can be expensive and time-consuming) or relying on vendor-specific assess‐
ments (which may be biased toward that vendor).
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Software testing
Software testing is a classic use case for synthetic data. This includes functional and
performance testing of software applications by the software developers. In some
cases large datasets are needed to benchmark software applications to ensure that
they can perform at certain throughputs or with certain volumes. Extensions of the
testing use case are datasets for running software demos by a sales team, and for
training users of software on realistic data.

Software testing is common across many industries, and the problems being
addressed with synthetic data will be the same. In the financial services sector there
are two common use cases. The first is to test internal software applications (e.g.,
fraud detection) to ensure that they perform the intended functions and do not have
bugs. For this testing, realistic input data is needed, and this includes data covering
edge cases or unusual combinations of inputs. The second is to test that these applica‐
tions can scale their performance (for example, response times in automated trading
applications are important) to handle the large volumes of data that are likely to be
met in practice. This testing must also simulate unusual situations—for example,
when trading volumes spike due to an external political or environmental event.

In most software engineering groups, it is not easy to obtain production data. This
may be because of privacy concerns or because the data contains confidential busi‐
ness information. Therefore, there is reluctance to make that data available to a large
group of software developers. The same applies to making data available for demos
and for training purposes. Furthermore, in some cases the software is new and there
is insufficient customer data to use for testing.

One alternative that has been used is to de-identify the production data before mak‐
ing it available to the test teams. Because the need for test data is continuous, the de-
identification must also be performed on a continuous basis. The cost-effectiveness of
continuous de-identification versus that of synthetic data would have to be consid‐
ered. However, a more fundamental issue is the level of controls that would need to
be in place for the software developers to work with the de-identified data. As will be
noted later on, re-identification risk is managed by a mix of data transformation and
security and privacy controls. Software development groups are accustomed to work‐
ing with lower levels of these controls.

The data utility demands for software testing are not as high as they are for some of
the other use cases that we have looked at. It is possible to generate synthetic data
from theoretical distributions and then use them for testing. Another approach that
has been applied is to use public datasets (open data) and replicate those multiple
times to create larger test datasets or resample with replacement (draw samples from
the dataset so that each record can be drawn more than once).

There are more principled methods for the generation of synthetic data for testing,
demos, and training. These involve the generation of synthetic data from real data
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using the same approaches that are used to generate data for building and testing
AIML models. This will ensure that the data is realistic and has correct statistical
characteristics (e.g., a rare event in the real data will also be a rare event in the syn‐
thetic data), and that these properties are maintained if large synthetic datasets are
generated.

The next industry that we will consider is transportation. Under that heading we will
consider data synthesis for planning purposes through microsimulation models and
data synthesis for training models in autonomous vehicles.

Transportation
The use of synthetic data in the transportation industry goes back a few decades. The
main driver is the need to make very specific planning and policy decisions about
infrastructure in a data-limited environment. Hence the use of microsimulation mod‐
els became important to inform decision making. This is the first example we con‐
sider. The second example is the use of gaming engines to synthesize virtual
environments that are used to train AIML models, which are then embedded in the
autonomous vehicles.

Microsimulation models
Microsimulation environments allow users to do “what-if ” analyses and run novel
scenarios. These simulation environments become attractive when there is no real
data available at all, and therefore synthetic data needs to be created.

In the area of transportation planning it is, for example, necessary to evaluate the
impact of planned new infrastructure, such as a new bridge or a new mall. Activity-
based travel demand models can use synthetic data to allow planners to do that.

A commonly used approach to creating synthetic data for these models combines
aggregate summaries—for example, from the census, with sample individual-level
data that is collected from surveys. Census data would normally provide information
like household composition, income, and number of children. The aggregate data
would normally cover the whole population of interest but may not have all the
needed variables and not to the level of granularity that is desired. The survey data
will cover a sample of the population but have very detailed and extensive variables.

Synthetic reconstruction then uses an iterative process such as iterative proportional
fitting (IPF) to create synthetic individual-level data that plausibly generates the
aggregate summaries and uses the sample data as the seed. The IPF procedure was
developed some time ago and has more recently been applied to the data synthesis
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problem.18,19 IPF has some known disadvantages in the context of synthesis—for
example, when the survey data does not cover rare situations. More robust techni‐
ques, such as combinatorial optimization, have been developed to address them.20

The next step is to use other data, also collected through surveys or directly from
individuals’ cell phones, characterizing their behaviors and movements. This data is
used to build models, such as the factors that influence an individual’s choice of mode
of transportation.

By combining the synthetic data with the models, one can run microsimulations of
what would happen under different scenarios. Note that the models can be cascaded
in the simulation describing a series of complex behaviors and outcomes. For exam‐
ple, the models can inform decisions concerning the impact on traffic, public trans‐
portation usage, bicycle trips, and car usage caused by the construction of a new
bridge or a new mall in a particular location. These microsimulators can be validated
to some extent by ensuring that they give outputs that are consistent with reality
under known historical scenarios. But they can also be used to simulate novel scenar‐
ios to inform planning and policy making.

Let’s now consider a very different use case for synthetic data in the context of devel‐
oping AIML models for autonomous vehicles. Some of these models need to make
decisions in real time and can have significant safety impacts. Therefore, the robust‐
ness of their training is critical.

Data synthesis for autonomous vehicles
One of the key functions on an autonomous vehicle is object identification. This
means that the analysis of sensor data needs to recognize the objects in the vehicle’s
path and surroundings. Cameras, lidar systems, and radar systems provide the data
feeds to support object identification, as well as speed and distance determination of
these objects.

Synthetic data is essential to train the AIML models that process some of these sig‐
nals. Real-world data cannot capture every edge case, or rare or dangerous scenario—
such as an animal darting into the vehicle’s path or direct sunlight shining into a
camera sensor—that an autonomous vehicle could encounter. Additionally, the cap‐

20 | Chapter 1: Introducing Synthetic Data Generation

https://oreil.ly/GSP7v


tured environment is fixed and cannot respond to changes in the system’s behavior
when it is run through the scenario multiple times.

The only way to address these gaps is to leverage synthetic data. By generating cus‐
tomizable scenarios, engineers can model real-world environments—and create
entirely new ones—that can change and respond to different behaviors. While real-
world tests provide a valuable tool for validation, they are not nearly exhaustive
enough to prove that a vehicle is capable of driving without a human at the wheel.

The synthetic data used in simulation is generated using gaming technology from
video games or other virtual worlds. First, the environment must be created. It can
either replicate a location in the real world, like New York City, using actual data, or
be an entirely synthetic place. In either case, everything in the environment must
accurately simulate the same material properties as the real world—for example, the
reflection of light off of metal or the surface of asphalt.

This level of fidelity makes it possible to accurately re-create how a car sees the envi‐
ronment it is driving in, simulating the output from camera, radar, and lidar sensors.
The processors on the car then receive the data as if it is coming from a real-world
driving environment, make decisions, and send vehicle control commands back to
the simulator. This closed-loop process enables bit-accurate, timing-accurate
hardware-in-the-loop testing. It also enables testing of the functions of the vehicle
under very realistic conditions.

Of course, the computing capacity needed to perform hardware-in-the-loop testing
can be quite significant: achieving the fidelity necessary for autonomous vehicle vali‐
dation is incredibly compute-intensive. First, a detailed world has to be generated.
Then the sensor output must be simulated in a physically accurate way—which takes
time and massive amounts of compute horsepower.

Summary
Over the last few years we have seen the adoption of synthetic data grow in various
industries, such as manufacturing, healthcare, transportation, and financial services.
Because data-access challenges are not likely to get any easier or go away anytime
soon, the applicability of data synthesis to more use cases is expected to grow.

In this chapter we started with an overview of what synthetic data is and discussed its
benefits. We then looked at a number of industries where we have seen how synthetic
data can be applied in practice to solve data-access problems. Again, a characteristic
of these use cases is their heterogeneity and the plethora of problems that synthesis
can solve. Ours is not a comprehensive list of industries and applications, but it does
highlight what early users are doing and illustrate the potential.
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The examples we gave in this chapter cover multiple types of data. Our focus in this
book is on structured data. Many of the concepts we will cover, however, are generally
applicable to other types of data as well. In the next chapter we cover important
implementation considerations, starting with ensuring that data synthesis is aligned
with your organization’s priorities. This is followed by a description of the synthesis
process and deploying synthesis pipelines. We close with programmatic considera‐
tions as you scale data synthesis within the enterprise.
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CHAPTER 2

Implementing Data Synthesis

The first decision to be made is whether data synthesis is the best approach for pro‐
viding data access, compared to alternative privacy-enhancing technologies (PETs).
To ensure success with implementing synthesis, it must be aligned with an organiza‐
tion’s priorities. In this chapter we first present a decision framework that will enable
the objective selection of data synthesis and help you decide when it will fit business
priorities, compared to alternatives.

Once data synthesis is selected as the appropriate solution, we can consider the
implementation process.

There are two key components to the implementation of data synthesis at the enter‐
prise level: the process and the structure. The process consists of the key process
steps, and demonstrates how to integrate synthesis into a data pipeline. Structure
would typically be operationalized through a Synthesis Center of Excellence1 that
would have dedicated skills and capacity to generate data for the organization and its
customers, as well as provide education and consulting on data synthesis to the rest of
the organization. This chapter describes the process and structure in some detail to
provide guidance and describe the critical success factors.

In practice, there are many possible scenarios where data synthesis capabilities will
need to be deployed. For example, there will be large organizations as well as solo
practitioners. Therefore, the following descriptions will need to be tailored to accom‐
modate the specific circumstances.

23



When to Synthesize
There are many instances in which data synthesis is a better solution to the data-
access problem than other methods that can be used. In this section we present a
decision framework for choosing among privacy-enhancing technologies (PETs) that
can be used to enable data access, including data synthesis.

As we will see, data synthesis is a powerful approach for many situations that opti‐
mize business criteria. There will be specific situations where other privacy-
enhancing technologies can also work, and we will present these to ensure that the
reader selects the best available tools for the task.

Identifiability Spectrum
An important concept that can help unify the thinking around different PETs is the
spectrum of identifiability, illustrated in Figure 2-1.

Figure 2-1. The identifiability spectrum

You can think of identifiability as being a probability of assigning a correct identity to
a record in a dataset. Because it is a probability, it varies from 0 to 1. At one end of
this spectrum is perfect identifiability, where the probability of assigning a correct
identity to a record is one. At the other end is zero identifiability, where it is impossi‐
ble to assign an identity to a record correctly.

Zero risk is never really achieved—if your aim is zero risk, then all data will have to
be treated as personal information. Therefore, discussions of the “impossibility” of
identifying a record or the “irreversibility” of a record’s true identity are goals that
cannot be attained in practice. In such a case, we are really talking about personal
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information because zero risk is an impossible standard to meet. Because of that, we
will move away from the concept of zero risk and focus on a more pragmatic model.

Any dataset can have a probability of identification along this spectrum (except zero).
As you can see in Figure 2-1, along the spectrum there is a threshold value that
divides personal information and nonpersonal information or data. When the meas‐
ured probability in the data is above the threshold, then we have personal informa‐
tion. When the measured probability in the data is at or below the threshold, then we
have nonpersonal information.

The PETs that we are interested in place a dataset at a particular point on that spec‐
trum, either above or below the threshold.

This threshold is then also a probability. What should this threshold be? In practice
there are a large number of precedents for what this threshold should be in different
contexts. We, as a society, have been sharing nonpersonal data for many decades, and
there are many examples of organizations around the world that have been setting
thresholds and sharing data both publicly and nonpublicly. For example, national
statistical agencies such as the Census Bureau in the United States, Statistics Canada
in Canada, and the Office of National Statistics in the United Kingdom have been
sharing data and using a set of thresholds to do so for a considerable amount of time.
And there are others, such as departments of health at the state or provincial levels,
large health data custodians, and so on. All this is to say that the choice of a threshold
and its interpretation is not very controversial because there are so many precedents
that have worked well in practice.

Another key point here is that we are able to measure the probability of identification.
There is at least 50 years’ worth of literature in statistical disclosure control on this
very topic. Any such measurement of risk is based on a model, and models make
assumptions; some are very conservative while others can be very permissive.

Just because the probability of identification is measured does not mean that it is
done well or in a reasonable way. Some models, for example, are so permissive that
they will be very difficult to defend if something goes wrong. Others are so conserva‐
tive that they will always inflate the risk. The choice of models does matter.

Trade-Offs in Selecting PETs to Enable Data Access
The traditional trade-off when applying any PET was between privacy protection and
data utility. This is illustrated in Figure 2-2. The reasoning was that applying PETs
would have a negative impact on data utility because PETs imply that the data is
transformed. More transformations to the data means that data quality is being grad‐
ually reduced. If you wanted a higher level of privacy, then you would pay for this by
having a lower level of utility.
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Maximum utility would be the original data without any transformations or controls.
But the original data, assuming that it is personal information, will have the mini‐
mum amount of privacy. Similarly, maximum privacy is attained when the data is not
used or disclosed, which is the minimal utility. Both of these extremes are
undesirable.

Figure 2-2. The trade-off between data privacy and data utility

Therefore, PETs needed to solve an optimization problem by finding the best point
on that curve that would achieve a balance between data privacy and data utility, as
illustrated in Figure 2-3. Good privacy-enhancing technology solutions would find a
point somewhere along the midpoint on that curve that would simultaneously be
below the threshold and result in good data utility. The choice of technology was
therefore very important to ensure that an organization was operating as close to the
threshold as possible to maximize data utility.
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Figure 2-3. The optimal point along the curve is just above the threshold

In addition to data transformations, various controls are sometimes required from
the data processors (see Figure 2-4). Controls would be a series of security and pri‐
vacy practices that are used to manage the overall risk. Therefore, the probability of
identification was a function of both data transformations and the controls put into
place. Various models were developed to simultaneously assess the risk from the data
and the controls.

The advantage of this approach is that you do not need as many data transformations. 
Because there is a second lever to manage risks, putting in place security and privacy
controls was another way to move to a lower probability on that identifiability spec‐
trum. This allows an organization to get closer to the threshold and maximize data
utility. So what we have effectively done here is move the line so that at the same level
of privacy protection, a higher level of data utility can be achieved.

In general, regulators in many jurisdictions have been open to the concept of manag‐
ing risk through a combination of data transformations and controls. However, the
acceptance has not been universal because there is still some doubt that organizations
will truly implement the controls required and maintain them. And that is a big
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challenge—maintaining trust. Being able to use controls as a mechanism to manage
identifiability works in practice only if there is a high level of trust and/or if there is a
reliable audit process to ensure that these controls are really in place. Regarding the
former, we are on shaky ground, and regarding the latter, it has an impact on the eco‐
nomics of applying a particular approach.

Figure 2-4. Data transformations and controls are sometimes proposed to ensure that the
identifiability risk is below the threshold

Decision Criteria
Practically speaking, organizations do not make decisions about which PETs to
deploy based only on the balance between data privacy and data utility. There are typ‐
ically four main factors that are taken into account, as illustrated in Figure 2-5:

• The extent of privacy protection (and the extent to which that is compliant with
contemporary regulations). This comes down to whether the threshold is accept‐
able and if the measured risk is below the threshold.

• The extent to which the data utility achieves the business objectives. Maximizing
data utility is not a universal objective. For example, nonpersonal data used for
software testing may have a lower data utility than a dataset that is used by data
scientists to drive innovation around clinical trial recruitment. Therefore, there
are different degrees of acceptable data utility. An alternative example could be a
company that is required by regulation to make its nonpersonal data available to
third parties. Such a company may not want to emphasize data utility because it
does not perceive that it would benefit from the data sharing.

• Cost is also very important. There are two types of costs. The first is implementa‐
tion cost, which is the cost of implementing the PETs, say through pseudonymiza‐
tion. These costs will vary greatly depending on the vendor. The second type of
cost is operational cost. This is the cost of maintaining the infrastructure and con‐
trols to process the data after it has gone through the PET.

• The final factor is consumer trust. This will influence whether the consumers
(defined here to mean, for example, customers or patients, or even the general
public in the case of a government entity) will want to continue to transact with a
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particular organization. In a healthcare context, it is known that when patients
are concerned about how their information will be used, they adopt privacy-
preserving behaviors such as not seeking care, self-treating or self-medicating, or
omitting vital details in their interactions with their physicians. There is also
some evidence that lack of trust in health IT products is slowing their adoption,
despite data that supports the benefits of adopting such technology. According to
one recent survey from Kantar, the lack of confidence in the privacy and security
of health technology platforms has an impact on adoption. Consequently, organi‐
zations want to use the best available PETs to ensure that they maintain this pub‐
lic trust.

Figure 2-5. Organizations use four criteria to decide on the specific PETs to use

PETs Considered
Let’s take a look at the two other PETs and compare them to data synthesis on the
data transformations and controls dimensions. More details on secure-multiparty
computation can be found in “Secure Multiparty Computation.”
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Secure Multiparty Computation
Another approach that can be applied to access the data is to use secure multiparty
computation. This technology allows computations to be performed on encrypted or
garbled data, and it typically involves multiple independent entities that perform the
computation collaboratively without sharing or leaking any raw data among them‐
selves. There are multiple ways to do this, such as using what are called secret-sharing
techniques (where the data is randomly split among the collaborating entities) or
homomorphic encryption techniques (where the data is encrypted and computations
are performed on the encrypted values).

In general, to use secure computation techniques the analytics that will be applied
need to be known in advance, and the security properties of each analysis protocol
must be validated. A good example of this is in public health surveillance where the
rate of infections in nursing homes is aggregated without revealing any individual
home’s rate.2 This works well in the surveillance case where the analysis is well-
defined and static, but setting up secure multiparty computation protocols in practice
is complex.

Perhaps more of an issue is that there are few people who understand the secure com‐
putation technology and methods underlying many of these techniques, and who can
perform these security proofs. This creates key dependencies on very few skilled
resources.

Pseudonymization is the first PET we will examine. Organizations that transform
only the direct identifiers in their data are using pseudonymization. These direct
identifiers are things like names and Social Security numbers, for example. The
resulting datasets would have a higher identifiability than any reasonable threshold.
Unfortunately, it remains a common (incorrect) belief that pseudonymous informa‐
tion is no longer personal information—that the identifiability is below the threshold.

The HIPAA limited dataset (LDS) also masks only direct identifiers. The LDS allows
HIPAA-covered entities to share this pseudonymized data without patient consent (or
authorization) for limited purposes such as research, public health, and healthcare
operations. The additional control required under the LDS provision is a data-
sharing agreement with the data recipient that should ensure, among other things,
that the data will not be re-identified, will not be used to contact individuals, and that
the obligations will be passed on to subcontractors. Also, because this is still consid‐
ered personal information, the security provisions under the HIPAA Security Rule
would still apply. This means that there is a layer of security controls that must
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accompany the LDS. The main advantage for an LDS then is avoiding the obligation
to obtain consent, but it is not considered to have an identifiability below the thres‐
hold.

Under the GDPR, pseudonymous data includes the requirement that additional
information that can be used to identify individuals is kept separately and is subject
to technical and organizational measures to ensure that it cannot be used in such a
way. Also, because pseudonymous data remains personal information, appropriate
controls are needed to process the data. The main advantage to using pseudonymiza‐
tion under the GDPR is to reduce the extent of controls required.

Let’s consider de-identification. There are a number of different methods that fall
under the label of de-identification, which we will discuss.

The HIPAA Safe Harbor method involves removing or generalizing a fixed set of
attributes. There are some provisions in Safe Harbor that expand its scope somewhat.
For example, one attribute is “any other uniquely identifying number, characteristic
or code,” which can be interpreted broadly. Also, the covered entity must have no
actual knowledge that the remaining information could be used to identify the
patient. In practice, these last two items have been applied very lightly, if at all.

It is acknowledged in the disclosure control community that Safe Harbor is not a very
strong de-identification standard, and it is not generally recommended. However, for
a HIPAA-covered entity, applying that standard provides a straightforward way for
that box to be checked and for the data to be declared de-identified. Also, the Safe
Harbor standard has been copied in various ways globally. It is attractive because it is
very simple to understand and apply. However, strictly speaking, the standard applies
only to HIPAA-covered entities and its empirical basis is grounded in analyses per‐
formed on US census data. Therefore, the international application of Safe Harbor is
questionable.

Risk-based de-identification methods combine statistical methods for measuring the
probability of identification and the application of robust controls to further manage
the risk of identifiability.

You can see in Figure 2-6 how the three classes of PETs map to the transformation
and control dimensions. For example, LDS and GDPR pseudonymization both
require data transformations as well as some amount of controls (security, privacy,
and/or contractual) to be in place. Fully synthetic data makes minimal demands in
terms of controls.
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Figure 2-6. Mapping the different classes of PETs on the transformation and control
dimensions to see how these trade off

There is of course a trade-off between cost and data utility. For example, implement‐
ing a high level of controls entails higher operational costs. This cost becomes more
acceptable when the data utility achieved is also high (assuming that data utility is a
priority to the organization). Of course, the ideal is when there is low operational cost
and high data utility. While this is perhaps a simple view, Figure 2-7 illustrates some
important trade-offs that an organization can make.

Higher controls increases the operational cost of a particular PET. More data trans‐
formations reduces the data utility. The ideal quadrant is minimal cost and maximum
utility, which is the lower left quadrant. The worst quadrant is the top right one,
where the operational costs are high and utility is low.
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Figure 2-7. The trade-offs between adding controls versus using transformations to man‐
age identifiability

Decision Framework
Figure 2-8 illustrates a model that allows us to select the appropriate PET given the
key drivers.

In the first column are the weights assigned to each of the four criteria by the organi‐
zation. A weight is a value between 0 and 1 to indicate how important a particular
criterion is. A higher weight means that it is more important. The weights should
reflect an organization’s priorities, culture, and risk tolerance.
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Figure 2-8. The decision framework template for evaluating different PETs

Figure 2-9 contrasts two organizations with very different priorities. On the left is an
organization that values privacy protection but is cost-sensitive. In that case, the
operational costs will be a factor in its decision making. On the right is an organiza‐
tion that is very focused on utility and that is also very cost-sensitive. In these two
examples, trust was scored low. Of course, every organization can make its own
trade-offs and can change them over time.

Figure 2-9. A spider diagram can be used to illustrate the trade-offs made by two organi‐
zations with differing priorities
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The second component of our framework in Figure 2-8 is the rankings. This is the
middle part of the table. The rankings would be a number between 1 and 6 for each
PET on each of the four criteria. A ranking of 1 means that the PET is better able to
meet that criterion. The default rankings that we have been using are shown in
Figure 2-10, and our rationale follows.

Figure 2-10. The decision framework with the rankings included

The transform direct identifier option is assumed to have no controls and are there‐
fore a reflection of some current approaches that are arguably not good practice. The
other two types of pseudonymization, HIPAA LDS and GDPR pseudo, do require
substantial controls, and under the GDPR additional (all applicable) data is subject to
access obligations.

We can see that transforming direct identifiers and HIPAA Safe Harbor have the low‐
est ranking on privacy because they transform a very small subset of the data and
require no additional controls. But they are also the two with the lowest operational
costs.

On the trust dimension, data anonymization techniques have been getting negative
press recently, and this has eroded consumer trust and raised regulator concerns—
hence its ranking. The other methods are not seen as PETs that can guarantee that
identifiability is below the threshold.
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The score at the bottom is a normalized sum rank, and it is scaled so that a higher
value means that it is an option that better matches the priorities of the organization.
We can now go through a few examples.

Examples of Applying the Decision Framework
When all of the priorities have the same ranking as in Figure 2-11, we will see that
HIPAA Safe Harbor is the least preferred option, with the lowest score. Data synthesis
ranks highest because it provides a good balance for the organization across all PETs.

Figure 2-11. A decision example in which the organization has no specific preferences on
which criterion to optimize on

By changing the weights we can see which PETs make the most sense under different
priorities.
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For example, if we have an organization that is very focused on cost minimization
and utility maximization at the expense of privacy protection, as in Figure 2-12, just
transforming the direct identifiers may be the best option, while methods like HIPAA
Safe Harbor are also quite attractive. These will provide very weak privacy assurances
and may have an impact on consumer trust. However, these are business priorities
that are used today, and with these priorities the simple transformation of direct iden‐
tifiers is a rational decision.

Figure 2-12. A decision example in which the organization optimizes on cost and utility
at the expense of privacy and trust
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An organization that puts a lot of weight on trust and privacy, as in Figure 2-13,
would select data synthesis as a good solution for data access.

Figure 2-13. A decision example in which the organization optimizes on privacy and
trust

Hence, we have a rational way to model and to understand the choices that are being
made. Of course, the implication is that when a particular PET is misaligned with an
organization’s priorities, any attempt to implement the misaligned PET is not going to
be successful.

Note that this ranking model is based on certain assumptions. Firstly, we assume that
the use cases are applicable. For example, if a form of pseudonymization is found to
be a preference, but it is not possible to get consent and no real case can be made for
legitimate interests under the GDPR, then pseudonymization will not be a viable
option. Therefore, the ranking is applicable only when the PETs are true alternatives
for a particular use case. The priority given to data utility is affected by what the orga‐
nization was accustomed to prior to implementing PETs. For example, if analysts
within an organization were historically provided with access to raw data, then they
will expect high data utility. If, on the other hand, the analysts were not provided
access to any data in the past, then having access to data in any form will be seen as a
plus. Therefore, the perception of good enough data utility does depend on history.

Now that we have a method for selecting a PET, and (specifically for our purpose)
ensuring that data synthesis is aligned with an organization’s priorities and optimizes
them, we can examine in more detail the implementation process for data synthesis.
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Data Synthesis Projects
Data synthesis projects have some processes that are focused on the generation of
synthetic data and the validation of the outputs, and some processes that prepare real
data so that it can be synthesized. Validation includes the evaluation of both data util‐
ity and privacy assurance. In this section we describe these processes and provide
guidance on their application.

Data Synthesis Steps
A general data synthesis process is shown in Figure 2-14. This illustrates the complete
process. However, in certain situations and use cases not all of the steps would be
needed. We will now go through each of the steps.

Figure 2-14. The overall data synthesis process3

In cases where synthetic data is generated from real data, we need to start from the
real data. The real data may be (a) individual-level datasets (or household-level data‐
sets, depending on the context), (b) aggregated data with summaries and cross-
tabulations characterizing the population, or (c) a combination of disaggregated and
aggregate data. The real data may be open data or nonpublic data coming from a pro‐
duction system, for example.

The synthesis process itself can be performed using different techniques, such as deci‐
sion trees, deep learning techniques, and iterative proportional fitting. If real data
does not exist, then existing models or simulations can be used for data synthesis. The
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exact choice will be driven by the specific problem that needs to be solved and the
level of data utility that is desired.

In many situations a utility assessment needs to be done. This provides assurance to
the data consumers that the data utility is acceptable and helps with building trust in
the synthesized data. These utility comparisons can be formalized using various simi‐
larity metrics so that they are repeatable and automated.

There are two stages to the utility assessment. The first stage is general-purpose com‐
parisons of parameters calculated from the real and synthetic data—for example,
comparisons of distributions and bivariate correlations. These act as a “smoke test” of
the synthesis process. The second stage is more workload-aware utility assessments.

Workload-aware utility assessments involve doing analyses on the synthetic data that
are similar to the types of analyses that would be performed on the real data if it was
available. For example, if the real data would be used to build multivariate prediction
models, then utility assessment would examine the relative accuracy of the prediction
models built on synthetic datasets.

In cases where the synthetic data pertains to individuals and there are potential pri‐
vacy concerns, then a privacy assurance assessment should also be performed. Pri‐
vacy assurance evaluates the extent to which real people can be matched to records in
the synthetic data and how easy it would be to learn something new if these matches
were correct. There are some frameworks that have been developed to assess this risk
empirically.

If the privacy assurance assessment demonstrates that the privacy risks are elevated,
then it is necessary to revisit the synthesis process and change some of the parame‐
ters. For example, the stopping criterion for training the generative model may need
to be adjusted because it was overfit and the synthetic records were quite similar to
the real records.

The utility assessment needs to be documented to provide the evidence that the level
of utility is acceptable. Data analysts will likely want that utility confidence for the
data that they are working on. And for compliance reasons, privacy assurance assess‐
ments must also be documented.

In practice, data generation would include utility assessment every time, and there‐
fore they are bundled together as part of the “Data Synthesis Services” component in
Figure 2-14. Privacy assurance can be performed across multiple synthesis projects
because the results are expected to hold across similar datasets and would apply to the
whole generation methodology. Hence that is bundled into a separate “Privacy Assur‐
ance Services” component in Figure 2-14.

The activities described previously assume that the input real data is ready to be
synthesized. In practice, data preparation will be required before real data can be
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synthesized. Data preparation is not unique to synthesis projects; however, it is an
important step that we need to emphasize.

Data Preparation
When generating synthetic data from real data, as with any data analysis project that
starts with real data, there will be a need for data preparation, and this should be
accounted for as part of the overall process.

Data preparation includes the following:

• Data cleansing to remove errors in the data * Data standardization to ensure that
all of the fields are using consistent coding schemes

• Data harmonization to ensure the data from multiple sources is mapped to the
same data dictionary (for example, all the “age” fields in the data, irrespective of
the field name and type, are recognized as an “age” field)

• Linking of data from multiple sources—it is not possible to link synthetic data
because the generated data does not match real people; therefore, all linking has
to happen in advance

With data synthesis, the generated data will reflect any quality challenges of the input
data. Data analysis in general requires clean data, and synthesis is a form of analysis;
it is easier to cleanse the data before the synthesis process. Messy data can distort the
utility assessment process and cause the training of the synthesis models to take
longer. Furthermore, as we discuss in the next section with respect to pipelines, data
synthesis may happen multiple times for the same real dataset, and therefore it is
much easier to have data quality issues addressed before synthesis.

Real data will have certain deterministic characteristics, such as structural zeros
(these are zero values in the data where it does not make sense for them to be non-
zero, i.e., the zero is not a data collection artifact). For example, five-year-olds cannot
get pregnant, and therefore the “pregnancy?” value for someone who is five will
always be NULL. Also, body mass index (BMI) is a deterministic calculation derived
from height and weight. This means that there is no uncertainty in deriving BMI
from height and weight. The data synthesis process needs to capture these character‐
istics and address them. They can be specified a priori either as a series of rules to be
satisfied or as edits applied to the synthetic data after the fact. This way the synthe‐
sized data will maintain high logical consistency.

A key consideration when implementing data synthesis is how to integrate it within a
data architecture or pipeline. In the next section we address this issue and provide
some common pipelines.
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The Data Synthesis Pipeline
Understanding the data flows that are bringing in data to the data analysts for their
AIML projects is important when deciding where data preparation and data synthesis
should be implemented in those data flows. It is easiest to explain this through a few
examples. All of these examples represent actual situations that we have seen in a
variety of industries (such as healthcare and financial services).

One relatively noncomplex setting is where there is a single production dataset or a
single data source. In that case the data flows are simple, as illustrated in Figure 2-15.
The analysts receiving the synthetic data can then work on that data internally or
share it with external parties.

Figure 2-15. Synthesizing data from a production environment

There is a more complex situation in which the data source is in a different organiza‐
tion. For example, the data may be coming from a financial institution to an analytics
consultancy or analytics vendor. This is illustrated in the data flows in Figure 2-16.

Under these data flows, the data analysts/data consumers are not performing the data
synthesis because they do not have authority or the controls to process the real data
(which may be, for example, personally identifying financial information). Under
contemporary data protection regulations, such as the GDPR, the obligations and
risks to process personally identifying information are not trivial. Therefore, if the
data analyst/data consumer can avoid these obligations by having the data supplier or
a trusted third party perform the data synthesis, that would be preferable.

There are three common scenarios. Scenario (a) is when the data preparation and
data synthesis both happen at the data supplier. In scenario (b) a trusted third party
performs both tasks, and in scenario (c) the data supplier performs the data prepara‐
tion and the trusted third party performs the data synthesis. In this context a trusted
third party would be an independent entity that has the authority and controls in
place to process the real data.
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Figure 2-16. Synthesizing data coming from an external data supplier
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The last set of examples of data flows that we will look at is where there are many data
sources. These are extensions of the examples that we saw in Figure 2-16. In the first
data flow shown in Figure 2-17, the data is synthesized at the source by each of multi‐
ple data suppliers. For example, the suppliers may be different banks or different
pharmacies sending the synthesized data to an analytics company to be pooled and to
build models on. Or a medical software developer may be collecting data centrally
from all of its deployed customers, with the synthesis performed at the data supplier.
Once the synthesized data reaches the data analysts they can build AIML models
without the security and privacy obligations of working with real data.

Figure 2-17. Synthesizing data coming from multiple external data suppliers
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Another data flow with multiple data sources involves using a trusted third party who
prepares and synthesizes the data on behalf of all of them. The synthesis may be per‐
formed on each individual data supplier’s data, or the data may be pooled first and
then the synthesis is performed on the pooled data. The exact setup will depend on
the characteristics of the data and the intervals at which the data is arriving at the
third party. This is illustrated in Figure 2-18.

Figure 2-18. Synthesizing data coming from multiple external data suppliers going
through a single trusted third party who performs data preparation and synthesis

The final data flow that we will consider, illustrated in Figure 2-19, is a variant of the
one we examined earlier in which the data preparation is performed at the source
before the data is sent to the trusted third party.
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Figure 2-19. Synthesizing data coming from multiple external data suppliers going
through a single trusted third party who performs only synthesis

The exact data flow that would be used in a particular situation will depend on a
number of factors:

• The number of data sources
• The costs and readiness of the data analyst/data consumer to process real data

and meet any regulatory obligations
• The availability of qualified, trusted third parties to perform these tasks
• The ability of data suppliers to implement automated data preparation and data

synthesis processes
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In large organizations, data synthesis needs to be part of a broader structure that is
scalable and that can serve multiple business units and client needs. We present the
concept of program management, which supports such scalability, in the next section.

Synthesis Program Management
As data synthesis becomes a core part of an organization’s data pipeline, an
enterprise-wide structure is needed to ensure that the activities are repeatable and
scalable. Scale here can mean data synthesis being used by multiple internal business
units or as a capability used by multiple clients. This can be supported at a program‐
matic level by a Center of Excellence (CoE).

A Synthesis CoE is a mechanism that allows an organization to centralize expertise
and technology for the generation of synthetic data. In large organizations such cen‐
tralization is beneficial because it ensures there is learning over time (a shorter feed‐
back loop), methodologies are standardized across projects and datasets, and
economies of scale are enabled with respect to the technologies and computational
capacity that may be needed.

A CoE can serve a single organization or a consortium of companies operating in the
same space. The end users of the synthetic data can be internal, or the CoE can sup‐
port clients in implementing, say, analytics tools by making appropriate synthetic data
available to them.

The skills needed by those operating the CoE span both technical skills, to generate
synthetic data and perform privacy assurance, and business analysis skills, to under‐
stand user requirements and translate those into synthesis specifications. More
importantly, change management is key because transitioning analysts to using syn‐
thetic data will require them to provide some education and possibly a series of utility
assessments.

CoE for an Analytics Service Provider
ConsultingCo provides management consulting services to a broad spectrum of cli‐
ents. Some years ago the company created a data analytics business that supports cli‐
ents by helping them build data analysis capacity (e.g., find, organize, and cleanse the
data, and build AIML models to inform the business lines) and doing actual model
building for them. One of the big challenges was getting data early on in the process.

At the beginning of these engagements it was often the case that the clients did not
have a full accounting of all of their data assets and the quality of that data. There
were also questions about the lawful basis for performing secondary analysis on that
data. Complicating matters was the internal reluctance by business lines to share data
or to invest in making data available for analytics before the value of the analytics was
demonstrated.
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The data synthesis team at ConsultingCo provides synthetic data early on in these
engagements to enable analysts to demonstrate the value of using the data that is
available to the clients, and to show how models that can be built would inform busi‐
ness decisions. The synthetic data can be generated without real data or it can be
based on small samples of real data.

The ability to demonstrate value at the beginning of the process greatly facilitates get‐
ting buy-in for acquiring, cleaning, and using the data within the organization. The
synthesis CoE gives ConsultingCo a competitive advantage because the likelihood of
success of these engagements increases.

Data synthesis will be a new methodology for many organizations. While the intro‐
duction of any data analytics method and technology involves some organizational
change, data synthesis introduces some specific considerations during the implemen‐
tation. In the next section, best practices for the implementation of data synthesis will
be discussed to help increase your likelihood of smoothly adopting this approach.

Summary
This chapter provided a decision framework to assess the alignment of data synthesis
with an organization’s priorities, followed by the workflows and pipelines that can be
used for this implementation. We closed with some practical considerations for pro‐
gram management with synthesis implemented at scale. These three components are
important from an enterprise implementation perspective.

After getting this far, you should have a high-level implementation road map and
some key elements of a business case for synthesizing data to enable access to data. In
the next few chapters we will focus more on the methodology and technology of data
synthesis.
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CHAPTER 3

Getting Started: Distribution Fitting

A straightforward way to think about the process of data synthesis is that we are try‐
ing to model both the distributions of the real data and the structure of the real data.
Based on that model we can then generate synthetic data that retains the characteris‐
tics of the original data. In this chapter we cover the first step in that process—model‐
ing distributions. Once you know how to do that, we’ll move on to modeling the
structure of the data in Chapter 5.

The starting point of modeling distributions is understanding how to fit individual
variables to known distributions (or “classical” distributions, such as the normal and
exponential). Once we are able to do that, we can generate data from these distribu‐
tions that have the same characteristics as the original data.1

The next step will be to enable the modeling of nonclassical distributions. Some real-
world data or real-world phenomena do not follow a classical distribution. We still
want to be able to synthesize data that does not follow classical distributions. There‐
fore, we outline how machine learning models can be used to fit unconventional data
distributions.
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Framing Data
Any data analysis task begins with a pile of data that needs to be transformed into a
data frame. A data frame is a table of data in which each row, also known as a record,
is a complete, self-contained example of the data being represented. Each column,
also known as a variable or field, is a detail about the record. Every field in a column
must be of the same data type.

Framing the data can be hard work. Columns must be regimented into the expected
data type; errors and exceptions need to be weeded out; relational data must be unfol‐
ded into the frame by joins; missing data needs to be estimated, extrapolated, neutral‐
ized, or omitted. This requires knowledge about the data that is not in the data,
notably knowledge about what to expect. Like my hairdresser, the person who does
the data preparation is not going to be replaced by artificial intelligence anytime
soon.

Once data has been framed, a substantial arsenal of analytical weaponry developed in
the last three hundred years can be deployed to dissect it, from the probabilities of
Thomas Bayes to the machine learning guiding the electrons-with-consequences in
our increasingly virtual world today. We can use these techniques to model a data fra‐
me’s distributions and probabilities, forecast future values, measure how much infor‐
mation it contains, estimate the error around any data model we create, and create
control strategies for optimizing real-time data in real time. So many exciting things.

But the topic of this book is data synthesis, which brings in a new angle: anonymity.
Not only do we need to model the distribution of real data and then create synthetic
data that fits it well, but we also have to ensure that the original data cannot be deter‐
mined from the synthetic data. There will be more on the privacy question later in the
book.

Once we have a data frame, we need to understand and model the distribution of the
fields within it.

How Data Is Distributed
Individual data variables can have many types and distributions. The following are
among the most common:

Unbounded real numbers, potentially ranging from –infinity to +infinity—for exam‐
ple, the Gaussian or normal distribution, which tends to apply when random num‐
bers are added together, as in Figure 3-1.
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Figure 3-1. Example of a normal distribution for the difference between a husband’s and
wife’s ages

Bounded real numbers with definite upper and lower bounds—for example, Bayesian
probabilities ranging from 0 to 1, or, equivalently, 0% to 100%. These are particularly
useful for expressing the likelihood of an estimate or confidence level, as in
Figure 3-2.

Figure 3-2. Example of a Bayesian distribution illustrating the likelihood that a defend‐
ant is innocent
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Nonnegative integers—for example, Poisson distributed counts of events, ranging
from 0 to n, in Figure 3-3.

Figure 3-3. Example of a Poisson distribution illustrating the number of rainy days per
month in San Francisco
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Logarithmic distributions, which may be integers or real numbers and tend to reflect
physical systems with multiplicative effects—for example, Benford’s distribution of
first digits in accounting numbers, as in Figure 3-4.

Figure 3-4. Example of a logarithmic distribution illustrating the distribution of
accounting numbers
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Binomial integers, which model the number of successes from a series of independent
experiments—for example, the probability of the number of heads from 10 coin
tosses, as in Figure 3-5.

Figure 3-5. Example of a binomial distribution showing the probability of a specific
number of heads in 10 coin tosses
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Nonclassical distributions based on physical realities—for example, the hospital dis‐
charge data in Figure 3-6. This shows the distribution of ages of individuals who were
discharged from hospitals in a specific US state.

Figure 3-6. The distribution of ages of individuals discharged from a hospital
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Factor data, or category data, has a definite number of categories, as in Figure 3-7.

Figure 3-7. The probability of being in a particular astrological sign—an example of a
factor distribution

Factor data is a little different from other types of data because a factor’s relationship
with other factors is not linear:

• It may have sequence: birth, marriage, death events, with the second being
optional and not necessarily unique

• It may have quasi-sequence: Sunday, Monday, Tuesday… (peppered with national
holidays!)

• It may have no sequence: red, green, blue…

To work with the established analytical techniques, factor data needs to be turned
into numbers. The usual approach is to split the factor into multiple variables, one for
each factor, containing 1 if it is that factor and 0 if it isn’t (this is also called one-hot
encoding). This approach excludes some analysis techniques such as multivariate
regression, due to matrix inversion failure. However, when used with more advanced
neural network modeling techniques, it has the advantage that the results are in the
range 0 to 1 and represent probability of a particular factor being right.
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The challenge with this approach is that when there are many categories, this results
in a large number of new variables being added to the dataset. A more efficient alter‐
native is binary encoding, in which each factor is encoded into its binary equivalent.
For example, if we have five possible values, then the third value is encoded “011.”

Time series data contains records of sequential measurements in which the probabil‐
ity distribution for the present record will depend on earlier measurements. In data
science courses, the time to the next eruption of the Old Faithful geyser in Yellow‐
stone National Park is a common teaching example, and is illustrated in Figure 3-8.

Figure 3-8. Modeling Old Faithful eruptions
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2 At the time of the final editing of this book, the market conditions changed dramatically. Therefore, this is
only an example reflective of the good old days.

Similarly, in financial markets, price changes relative to previous values are quite
important. The Dow Jones Industrial Average (DJIA) over the last five years can be
seen in Figure 3-9.2

Figure 3-9. Financial market time series

But do we care what the actual stock price is? People are more interested in knowing
how much their investment is now relative to when they bought in. That, again, raises
questions: What time horizon is relevant? Is the time horizon eroding my data qual‐
ity? The charts shown in Figures 3-10 and 3-11 show data rebased (or recalculated)
from Figure 3-9 as a percentage change over time, and they indicate the data erosion
penalty. (And they give a lesson in long-term rather than short-term investing!)
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Figure 3-10. One-month returns based on Dow Jones data

Figure 3-11. One-year returns based on Dow Jones data

Time series data gets worse. Longitudinal data (for example, maintenance records or
doctor’s visits) is composed of sparse records that are taken at sporadic intervals but
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that happen in a clear sequence and can be modeled by Markov chains, which is
beyond the scope of this chapter.

Finally, unstructured data, such as Twitter feeds or doctor’s notes, can really be
applied only if they can be structured in some manner—for example, using keywords
to create sentiment indicators, which is again beyond the scope of this chapter.

Fitting Distributions to Real Data
Fitting a distribution to individual variables (univariate distributions) is, on the sur‐
face, fairly straightforward. An error function, such as squared error, can be used to
measure how close a distribution is to the real data. Frequency distribution functions
are parameterized equations. For example, Gaussian distributions have mean and
standard deviation parameters; machine learning models have neural network
weights. Fitting is searching for the parameters that optimize the error function, and
plenty of optimization algorithms exist to help us do that.

Modeling univariate distributions, however, is often not enough. Let’s revisit Old
Faithful and plot the probability density for each variable along its axis, as in
Figure 3-12.

Figure 3-12. Old Faithful data with the probability density along each axis

If we blindly generate synthetic data according to those distributions, the synthesized
data will have unintended ellipses of high density, as shown in Figure 3-13.
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Figure 3-13. Old Faithful data illustrating high-density ellipses

What we really need is a “multivariate” probability, which is a distribution that takes
into consideration both variables at once, as in Figure 3-14.

Figure 3-14. Old Faithful data illustrating synthesis from a multivariate distribution
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Note that by considering both variables together, we have not only removed the unin‐
tended ellipses of high density but also allowed the desired ellipses to rotate.

Generating Synthetic Data from a Distribution
If the fitted distribution is a known or classical one, and the fitting process has deter‐
mined the distribution parameters, then synthetic data can be generated using Monte
Carlo methods. That is, data is just sampled from these distributions.

The brute-force approach to generating synthetic data from nonclassical distributions
is straightforward: generate randomized datapoints evenly across the data range, or as
probability suggests, and adopt or reject it according to whether it improves the fit to
the distribution.

More sophisticated methods exist, such as using histogram equalization to generate
distributed synthetic data from uniform random data, but with sufficient computing
capacity, it can be easiest to keep it simple.

Measuring How Well Synthetic Data Fits a Distribution
Several measures exist to grade how well a probability distribution fits to a single
variable within a dataset, including the Chi-squared measure and the Kolmogorov-
Smirnov (KS) test.

KS is particularly robust because it looks at the difference between the cumulative
probability and the cumulative data count, which makes it fairly indifferent to the
actual distribution of the data. Let’s plot the cumulative distribution of the probability
(assuming it follows a quadratic distribution) and sample data in Figure 3-6 in
Figure 3-15.

The KS measure is essentially the area between the two curves. The smaller the area,
the better the fit of the distribution to the data.

Extending the KS approach to multiple dimensions is tricky: it is not easy to define
cumulative across many variables of different types, with a sparse dataset occupying
tiny pockets within the total volume of space. One approach is to use the sparse data‐
set as a guide to what is important, limiting the measurement to areas where data
exists.
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Figure 3-15. KS test of hospital discharge data

The Overfitting Dilemma
Let’s take a look at the hospital discharge rate again. The red line in Figure 3-16 is a
quadratic fit based on three variables and is a generalization of the 51-datapoint
distribution.

Figure 3-16. The hospital discharge data with a best fit standard distribution
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We can improve the fit by using models with more variables. For example, a spline
might produce something like Figure 3-17.

Figure 3-17. Overfitting to a distribution of hospital discharge ages

While this passes through every datapoint, can it be justified? For example, given that
we don’t have any evidence for there being a sudden peak at 50, should we incorpo‐
rate it into the model? This is known as the problem of overfitting, where we start to
fit to artifacts in a particular dataset, rather than to the actual distribution that the
sample represents. We’re probably looking for something more like Figure 3-18.
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Figure 3-18. Better fit to a hospital discharge age distribution

This issue is widespread and causes many problems. Models that appear to fit well
don’t perform well when applied to new data because the analyst tried too hard to fit
to the old data.

The problem is acute when the intent is to anonymize data by synthesis: overfitting
gives away the original data, defeating the object of the exercise.

Solving this problem requires two things. The first is an approach that allows a distri‐
bution to start from a neutral point and journey slowly to a closer and closer fit to the
data, trading off between simplicity of distribution and goodness of fit at each step.
The second is a measure to know when the best trade-off point has been reached.

Most distribution-fitting approaches can find some kind of journey from a neutral
start to an overfitted state. A B-tree, for example, can add more and more branches;
neural networks can use weight pruning or steepest descent (my favorite for its
purity); radial basis functions can add more bases.

A measure to know when the best trade-off point has been reached requires a sub-
sample approach. Let’s go back to how we expressed it a few paragraphs ago: models
that appear to fit well don’t perform well when applied to new data because the ana‐
lyst tried too hard to fit to the old data. So somehow we need to measure how repre‐
sentative the data is of the distribution from which it comes.
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How can we do that without more data to compare it to? We can’t, so we do the next
best thing: we hold back some of the data (i.e., create a holdout sample, which can be,
say, 25% or 33% of the training dataset) and see how well it fits to the distribution
created with the rest of the data. What we see is something like Figure 3-19.

Figure 3-19. Ensuring that the model does not overfit the data

Notice how the goodness of fit to the holdout sample reaches a peak and then, as
overfitting starts to happen, drops off, even though the in-sample fit continues to get
better. In this example, the optimal fit occurs at 50 steps. The fitting process can then
be repeated without the holdout sample, stopping at the 50th step to avoid overfitting
and thus finding the optimum trade-off between goodness of fit and the risk of
identification.

With small datasets, the process is repeated with multiple holdout samples in order to
determine the optimum trade-off point.
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A Little Light Weeding
This process allows univariate synthetic data to be generated that retains as much of
the underlying structure as possible without capturing so much information that the
original data can be identified. However, a synthetic datapoint could be generated that
is coincidentally close to one of the original datapoints. Therefore, as a final step, it is
worth checking whether this is the case and rejecting any datapoints that are too
close.

Summary
In this chapter we first looked at classical distributions and how we can fit real data to
them. Many real datasets do not follow classical distributions, and therefore there will
be a mismatch between the fitted distributions and the real data. One can use
machine learning models to learn the distribution of the data. This allows the model‐
ing of nonclassical distributions that can be multimodal, which can be heavily skewed
or have other unusual characteristics. However, when we do that we need to be aware
of the risk of overfitting and ensure that we are learning the distribution in a manner
that is generalizable to other data.

In the next chapter we will start exploring the second component of data synthesis:
modeling the structure of the data. The first step in that process is to look at ways to
evaluate data utility. To understand what is a good data structure, we need to be able
to define and measure the concept of a good data structure.
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1 Jerome P. Reiter, “New Approaches to Data Dissemination: A Glimpse into the Future (?),” CHANCE 17, no. 3
(June 2004): 11–15.

CHAPTER 4

Evaluating Synthetic Data Utility

To achieve widespread use and adoption, synthetic data needs to have sufficient util‐
ity to produce analysis results similar to the original data’s.1 This is the trust-building
exercise that was discussed in Chapter 1. If we know precisely how the synthetic data
is going to be used, we can synthesize the data to have high utility for that purpose—
for example, if the specific type of statistical analysis or regression model that will be
performed on the synthetic data is known. However, in practice, synthesizers will
often not know a priori all of the analyses that will be performed with the synthetic
data. The synthetic data needs to have high utility for a broad range of possible uses.

This chapter outlines a data utility framework that can be used for synthetic data. A
common data utility framework would be beneficial because it would allow for the
following:

• Data synthesizers to optimize their generation methods to achieve high data
utility

• Different data synthesis approaches to be consistently compared by users choos‐
ing among data synthesis methods

• Data users to quickly understand how reliable the results from the synthetic data
would be
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There are three types of approaches to assess the utility of synthetic data that have
been used:

• Workload-aware evaluations
• Generic data utility metrics
• Subjective assessments of data utility

Workload-aware metrics look at specific feasible analyses that would be performed on
the data and compare the results or specific parameters from the real and the syn‐
thetic data.2 These analyses can vary from simple descriptive statistics to more com‐
plex multivariate models. Typically an analysis that was done or was planned on the
real data is replicated on the synthetic data.

Generic assessments would consider, for example, the distance between the original
and transformed data.3 These often do not reflect the very specific analysis that will
be performed on the data but rather provide broadly useful utility indicators when
future analysis plans are unknown. To interpret generic metrics, they need to be
bounded (e.g., from 0 to 1), and there should be some accepted yardsticks for decid‐
ing whether a value is high enough or too low.

A subjective evaluation would get a large enough number of domain experts who
would look at a random mix of real and synthetic records and then attempt to classify
each as real or synthetic. If a record looks realistic enough, then it would be classified
as real, and if it has unexpected patterns or relationships, then it may be classified as
synthetic. For example, for a health dataset, clinicians may be asked to perform the
subjective classification. The accuracy of that classification would then be evaluated.

In the next few sections we present a hybrid framework for evaluating the utility of
synthetic data by considering some workload-aware metrics as well as some generic
metrics covering possible univariate, bivariate, and multivariate models that would be
constructed from the data. We do not illustrate a subjective evaluation.

In addition to replicating an analysis performed on a real dataset, our metrics are
generic in that exact knowledge of the desired analysis is not required, and they are
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workload-aware in that they consider many likely simple and complex models that
would be developed in practice.

Synthetic Data Utility Framework: Replication of Analysis
We use the census data from the UC Irvine machine learning repository to illustrate
the replication of an analysis. This dataset has 48,842 records, with the variables sum‐
marized in Figure 4-1.

Figure 4-1. The variables that we use in the census dataset. The top table contains the
categorical variables and their valid values, and the bottom table contains the continu‐
ous variables.
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We built a classification tree to classify the income variable, which has two categories.
All of the other variables were used as predictors. This is a typical analysis that is per‐
formed on this dataset. The tree-building exercise used 10-fold cross-validation.

The resulting tree on the real dataset is shown in Figure 4-2. The tree built from the
synthetic data was exactly the same, and therefore we will not repeat it here.

Figure 4-2. The classification tree developed from the census dataset to predict the
income class

The first split in the tree is based on the relationship variable. If the relationship is
husband or wife, then we go to node number 2; otherwise, we go to node number 3.
In node 3 the split is based on capital gains of just over $7,000.00. Therefore, those
who are not husbands or wives and have capital gains over $7,055.50 will tend to have
an income greater than $50K.
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In node 2 there is another split. Here, those husbands or wives who have a bachelor’s,
a master’s, a doctorate, or who went to a professional school also have an income
greater than $50K. Otherwise, those with less education go to node 5, which splits on
capital again. And so on as we navigate through the tree.

The importance of the variables in the real and synthetic datasets is shown in
Figure 4-3. This reflects each variable’s contributions to the classification of income.
As can be seen, the variable importance is exactly the same in models from both types
of datasets.

Figure 4-3. The importance of the variables in terms of their contribution to the classifi‐
cation of income

We can see from this replication of analysis that the real and synthetic data generated
the same classification tree. That is a meaningful test of whether a synthetic dataset
has sufficient utility. If the same results can be obtained from real and synthetic data,
then the synthetic data can serve as a proxy.

However, it is not always possible to perform the same analysis as the real data. For
example, the original analysis may be very complex or labor-intensive, and it would
not be cost-effective to replicate it. Or an analysis on the real dataset may not have
been performed on the original data yet; therefore, there is nothing to compare
against. In such a case, more general-purpose metrics are needed to evaluate the util‐
ity of the data, which is the topic we turn to next.
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Synthetic Data Utility Framework: Utility Metrics
Different types of analyses that may be performed on a synthetic dataset and the dis‐
tinguishability of the synthetic dataset from the original dataset are the basis of our
data utility framework. We use the clinical trial datasets described in “Example Clini‐
cal Trial Data” to illustrate the various techniques.

To generate each synthetic clinical trial dataset, a model was built from the real data
and then the synthetic data was sampled from that model. Specifically, a form of clas‐
sification and regression tree (CART)4 called a conditional inference tree was used to
generate the synthetic data.5 The main advantage of this method is that it can capture
the structure of the data by finding interactions and nonlinear relationships in a data-
driven way, addressing variable selection biases and handling missing data in an
unbiased manner.

Example Clinical Trial Data
For the illustrations that we use in the remainder of this chapter, we synthesized the
data for two oncology clinical trials.

The first trial was an evaluation of a drug that is given post-surgery to patients who
have had their gastrointestinal stromal tumors removed. A total of 732 patients par‐
ticipated in the trial, and the primary endpoint was recurrence-free survival. The sec‐
ond trial was a comparison of a novel gemcitabine treatment for inoperable, and
potentially metastatic, prostate cancer with standard treatment. A total of 367 patients
participated in the second trial. The data was obtained from Project Data Sphere,
which makes oncology clinical trial data accessible for secondary analysis.

For the purposes of this chapter, we focus on the synthesis of the cross-sectional com‐
ponent of the two datasets. The first trial had 129 variables detailing each patient’s
demographics, treatment received, and outcomes. The second trial had 88 variables.
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Comparing Univariate Distributions
This type of comparison between real and synthetic data indicates whether the vari‐
able distributions are similar.

Let’s look at the example in Figure 4-4. Here we have the original age variable and the
synthesized age variable for one of the clinical trial datasets we have been looking at.
The synthesized age distribution is quite similar to the original age distribution, and
therefore the data utility here is expected to be high. We do not want the distribution
to be exactly the same because that could be an indicator of a privacy problem.

Figure 4-4. A comparison of real and synthetic distributions on age when the distribu‐
tions are similar

It is informative to look at some examples in which there are differences between the
real and synthetic distributions.

When data synthesis methods do not work well (for example, poorly fitted models),
we get something like the examples in Figure 4-5 for clinical trial height data and in
Figure 4-6 for clinical trial weight data. In these examples you can clearly see the mis‐
match between the original distributions and the generated distributions. It does not
look like the synthesized data took much of the real data into account during the gen‐
eration process! We don’t want that outcome, of course. However, one of the first
things to look at in the synthetic data is how well the distributions match the original
data.
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Figure 4-5. A comparison of real height data from a clinical trial and the synthesized
version when the data synthesis did not work well

Figure 4-6. A comparison of real weight data from a clinical trial and the synthesized
version when the data synthesis did not work well
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In practice, there will be many variables in a dataset, and we want to be able to com‐
pare the real and synthetic distributions for all of them in a concise way. It is not
practical to generate two histograms for every variable and visually compare them to
decide if they are close enough or not: that is just not scalable and the reliability will
not always be high (two analysts may assess the similarity of two distributions incon‐
sistently). Therefore, we need some sort of summary statistic.

The Hellinger distance can be calculated to measure the difference in distribution
between each variable in the real and synthetic data. The Hellinger distance is a prob‐
abilistic measure between 0 and 1, where 0 indicates no difference between distribu‐
tions. It has been shown to behave in a manner consistent with other distribution
comparison metrics when comparing original and transformed data (to protect data
privacy).6

One important advantage of the Hellinger distance is that it is bounded, and that
makes it easier to interpret. If the difference is close to 0, then we know that the dis‐
tributions are similar, and if it is close to 1, then we know that they are very different.
It can also be used to compare the univariate data utility for different data synthesis
approaches. And another advantage is that it can be computed for continuous and
categorical variables.

When we have many variables we can represent the Hellinger distances in a box-and-
whisker plot, which shows the median and the inter-quartile range (IQR). This gives
a good summary view of how similar the univariate distributions are between the real
and synthetic data. The box-and-whisker plot shows the box bounded by the 75th
and 25th percentiles, and the median is a line in the middle.

For a high-utility synthetic dataset, we expect the median Hellinger distance across all
variables to be close to 0 and the variation to be small, indicating that the synthetic
data replicates the distribution of each variable in the real data accurately.

Figure 4-7 summarizes the differences between the univariate distributions of the
synthetic data relative to the real data for the first trial. The median Hellinger distance
was 0.01 (IQR = 0.02), indicating that the distributions of real and synthetic variables
were nearly identical. Figure 4-8 summarizes the differences in the univariate distri‐
bution of the synthetic data relative to the real data for the second trial. The median
Hellinger distance was 0.02 (IQR = 0.03), also indicating that the real and synthetic
variables were nearly identical in distribution.
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Figure 4-7. The Hellinger distance as percent for all variables in the dataset. This indi‐
cates how similar the univariate distributions are between the real and the synthetic
data for the first trial.

Figure 4-8. The Hellinger distance as percent for all variables in the dataset. This indi‐
cates how similar the univariate distributions are between the real and the synthetic
data for the second trial.
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Comparing Bivariate Statistics
Computing differences between correlations in the real and synthetic data is a com‐
monly used approach for evaluating the utility of synthetic data.7 In such a case, the
absolute difference in correlations between all variable pairs in the real and synthetic
data can be computed as a measure of data utility. We would want the correlations to
be very similar between the two datasets.

The type of correlation coefficient will depend on the types of variables. For example,
a different coefficient is needed for a correlation between two continuous variables
versus a correlation between a binary variable and a categorical variable.

For relationships between continuous variables, Pearson correlation coefficients can
be used. For correlation between continuous and nominal variables, the multiple cor‐
relation coefficient can be used, while for continuous and dichotomous variables,
point-biserial correlation is used. If one of the variables is nominal and the other is
nominal or dichotomous, Cramér’s V can be used. Lastly, if both variables are dichot‐
omous, the phi coefficient can be calculated to quantify correlation.

The absolute difference in bivariate correlations should then be scaled as necessary to
ensure all difference values are bounded by 0 and 1. For a high-utility synthetic data‐
set, we would expect that the median absolute differences in these correlation meas‐
ures calculated on the real data and on the synthetic data would be close to 0.

Again, to represent the utility in a concise manner, we can plot the absolute difference
in correlations on a box-and-whisker plot across all possible pairwise relationships or
we can represent these as a heat map. A heat map shows the difference value in
shades to illustrate which bivariate correlation differences are big versus small.
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Examining the difference in bivariate correlations for the first trial in Figure 4-9, the
median absolute difference in the correlation observed in the real data compared to
the correlation observed in the synthetic data was 0.03 (IQR = 0.04). In Figure 4-10,
we have the results for the second trial, where the median absolute difference in the
correlation observed in the synthetic data compared to the correlation observed in
the real data was 0.03 (IQR = 0.04). This indicates that the bivariate relationships in
the data have been broadly preserved during the synthetic data generation process.

Figure 4-9. Absolute differences in bivariate correlations between the real and synthetic
data for the first trial. Lighter shades indicate that the differences were close to 0, while
gray corresponds to where correlation could not be computed due to missing values or
low variability.
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Figure 4-10. Absolute differences in bivariate correlations between the real and synthetic
data for the second trial. Lighter shades indicate that the differences were close to 0,
while gray corresponds to where correlation could not be computed due to missing values
or low variability.

The box-and-whisker graphs for these differences are shown in Figures 4-11 and
4-12. These are more informative than the heat maps, although keep in mind that the
box-and-whisker plots are summarizing thousands of bivariate correlations for every
one of these datasets. For example, for the second trial there are 6,916 correlations
actually computed from 7,056 possible correlations.

The outliers in this plot are the circles above the top whisker. In these datasets they
occur because rare observations in the data can affect the correlation coefficients, or
because some variables have many missing values which makes the correlation coeffi‐
cients unstable. In general, we aim for a small median and consider all of the utility
metrics together.

Synthetic Data Utility Framework: Utility Metrics | 81



Figure 4-11. Absolute differences in bivariate correlations between the real and synthetic
data for the first trial. The box-and-whisker plot illustrates the median and distributions
clearly.

Figure 4-12. Absolute differences in bivariate correlations between the real and synthetic
data for the second trial. The box-and-whisker plot illustrates the median and distribu‐
tions clearly.
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Comparing Multivariate Prediction Models
To determine whether the real and synthetic data have similar predictive ability using
multivariate models, we can build classification models with every variable in the
dataset as an outcome. Since it is not known a priori what an actual analyst would
want to do with the dataset, we examine all possible models. This is called the all
models test.

Generalized boosted models (GBM) can be used to build classification trees. These
can produce quite accurate prediction models in practice.

A Description of ROCs
The receiver operating characteristics (ROC) curve is a way to measure how well a
prediction model is performing. It addresses some of the problems with other com‐
mon measures, especially with unbalanced datasets. This sidebar describes how ROCs
work for binary predictions.

When predictions are made, they can be classified into a confusion matrix, as illustra‐
ted in Figure 4-13. The values are computed from running the prediction model on a
test dataset that was not used in building the model. In this example the model is pre‐
dicting a 0 or 1 value.

Figure 4-13. A confusion matrix

For many binary prediction models, the actual prediction is a probability. For exam‐
ple, a classification tree or logistic regression will predict the probability that a partic‐
ular observation is in the class labeled 1. This probability is converted into a binary
value by specifying a cutoff value, c. For example, if the cutoff is 0.5, then any predic‐
ted probability equal to or larger than 0.5 would be put into class 1.

The ROC curve plots the values of the True Positive Fraction against the values of the
False Positive Fraction for all possible values of c. An example of an ROC curve is
shown in Figure 4-14. The diagonal line indicates a useless prediction that is equal to
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tossing a coin. Lines B and C are better than chance. The closer the line is to the top
left corner, the more accurate the predictions.

Figure 4-14. A receiver operating characteristics curve

A common measure of overall performance of a classifier is the area under the ROC
curve (or AUROC). This measure can be used to compare different classifiers or pre‐
diction models. In our case, we used the AUROC to compare the accuracy of models
built using real versus synthetic data.

We needed to compute the accuracy of the models that we built. To do that, we used
the area under the receiver operating characteristics curve (known as the AUROC;
see “A Description of ROCs”).8 The AUROC is a standardized way to evaluate predic‐
tion model accuracy. To compute the AUROC we used 10-fold cross-validation. This
is when we split the dataset into multiple training and testing subsets.
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Let’s describe 10-fold cross-validation briefly. We take a dataset and split it into 10
equally sized subsets numbered (1) to (10). We first keep subset (1) as a test set and
build a model with the remaining nine subsets. We then test the model on the subset
(1) that we took out. We compute the AUROC on that test set. We then put subset (1)
back in as part of the training data and take subset (2) out and use it for testing, and
we compute AUROC for that. The process is repeated 10 times, each time taking one
of the subsets out and using it for testing. At the end we have 10 values for AUROC.
We take the average of these to compute the overall AUROC.

This average AUROC was computed for every model we built on the synthetic data
and its counterpart on the real data (the counterpart being a model with the same
outcome variable). The absolute difference between the two AUROC values was com‐
puted. A box-and-whisker plot was then generated from all of these absolute differ‐
ences in the AUROC values.

To ensure that all of the models can be summarized in a consistent way, continuous
outcome variables can be discretized to build the classification models. We used uni‐
variate k-means clustering, with optimal cluster sizes chosen by the majority rule.9

High-utility synthetic data would have little difference in predictive ability compared
to the real data, indicated by the median percent difference in mean AUROC.

Figure 4-15 shows the results of 10-fold cross-validation to assess the predictive accu‐
racy of each GBM for the first trial. The absolute percent difference in the AUROC is
near 0 for many variables, with a median of 0.5% (IQR = 3%). This indicates that
analysis conducted using the synthetic data instead of the real dataset has very similar
predictive ability, and that generally the models trained using synthetic data will pro‐
duce the same conclusion when applied to real data as models that were trained using
real data.

In Figure 4-16 we have a similar result for the second trial. The absolute percent dif‐
ference in the AUROC has a median of 0.02% (IQR = 1%). This also indicates that the
synthetic data has very similar predictive ability to the real data.
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Figure 4-15. Absolute percent difference between the real and synthetic models for the
first trial

Figure 4-16. Absolute percent difference between the real and synthetic models for the
second trial
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Another approach, which we will refer to as an external validation of sorts, is as
follows:

1. Divide the real data into 10 equally sized random segments.
2. Remove segment one and make it a test set, and generate the synthetic data on

the remaining nine segments.
3. Build a GBM using the synthetic data and predict on the test segment from the

real data and compute the AUROC.
4. Repeat the process another nine times with each segment taken out as the test set.
5. Once all predictions have been made across the 10 folds, compute the average

AUROC.

This multivariate external validation tests whether the synthesized data can generate
good predictive models where the goodness is evaluated on the holdout real data.

Distinguishability
Distinguishability is another way to compare real and synthetic data in a multivariate
manner. We want to see if we can build a model that can distinguish between real and
synthetic records. Therefore, we assign a binary indicator to each record, with a 1 if it
is a real record and a 0 if it is a synthetic record (or vice versa). We then build a classi‐
fication model that discriminates between real and synthetic data. We use this model
to predict whether a record is real or synthetic. We can use a 10-fold cross-validation
approach to come up with a prediction for each record.

This classifier can output a probability for each prediction. If the probability is closer
to 1, then it is predicting that a record is real. If the probability is closer to 0, then it is
predicting that a record is synthetic. This is effectively a propensity score for every
record.

In health research settings, the propensity score is typically used to balance treatment
groups in observational studies when random assignment to the treatment (versus
the control) is not possible. It provides a single probabilistic measure that weighs
the effect of multiple covariates on the receipt of treatment in these observational
studies.10 Using the propensity score as a measure to distinguish between real and
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synthetic data is becoming a somewhat common practice.11 Propensity scores can be
computed quite accurately using generalized boosted models.12

If the two datasets are exactly the same, then there will be no distinguishability
between them—this is when the synthetic data generator was overfit and effectively
re-created the original data. In such a case the propensity score of every record will be
0.5, in that the classifier is not able to distinguish between real and synthetic data.
This is illustrated in Figure 4-17. In the same manner, if the label of “real” versus
“synthetic” is assigned to the records completely at random, then the classifier will
not be able to distinguish between them. In such a case the propensity score will also
be 0.5.

Figure 4-17. An example of distinguishability using propensity scores when there is no
difference between real and synthetic data

If the two datasets are completely different, then the classifier will be able to distin‐
guish between them. High distinguishability means that the data utility is low. In such
a case the propensity score will be either 0 or 1, as illustrated in Figure 4-18.
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Figure 4-18. An example of distinguishability using propensity scores when there is
almost a perfect difference between real and synthetic data

Of course, in reality, datasets will fall somewhere in between. We would not want
them to be at either of these two extremes. Synthetic data that is difficult to distin‐
guish from real data is considered to have relatively high utility.

We can also summarize this propensity score across all records. There are a few gen‐
eral methods that can be used for doing so (we call them the propensity score for syn‐
thesis, or PSS, 1 to 3):

PSS1: computing the mean square difference between the propensity score and the 0.5
value

The 0.5 value is what the value would be if there were no difference between the
real and synthetic data. It is also the expected value if labels were assigned ran‐
domly. Therefore, such a propensity mean square difference would have a value
of 0 if the two datasets were the same, and a value of 0.25 if they were different.

PSS2: converting the propensity score into a binary prediction
If the propensity score is greater than 0.5, predict that it is a real record. If the
propensity score is less than 0.5, predict that it is a synthetic record. If the pro‐
pensity score is 0.5, toss a coin. After that, compute the accuracy of these predic‐
tions. The accuracy will be closer to 1 if the two datasets are very different, which
means that the classifier is able to distinguish perfectly between the real and
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synthetic data. The accuracy will be closer to 0.5 if the classifier is not able to dis‐
tinguish between the two datasets.13

PSS3: computing the mean square difference between the propensity score and the actual
0/1 label of a record

In such a case the difference will be 0 if the classifier is able to distinguish per‐
fectly between the two datasets, and 0.25 if it is unable to distinguish between the
datasets.

A summary of these different metrics is provided in Table 4-1.

Table 4-1. The different summary statistics for the propensity score

Type of metric Datasets the same Datasets different
Mean square difference from 0.5 0 0.25

Accuracy of prediction 0.5 1

Mean square difference from label 0.25 0

In general we prefer to use the mean square difference from 0.5 or PSS1, but in prac‐
tice all three methods will provide similar conclusions about data utility.

The comparison on the propensity score for the first trial indicates that generalized
boosted models are not able to confidently distinguish the real data from the syn‐
thetic (see Figure 4-19). For the second trial, see Figure 4-20. In both cases the PSS1
scores are close to 0.1.
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Figure 4-19. The propensity scores computed for the first trial, contrasting the values for
real versus synthetic data

Figure 4-20. The propensity scores computed for the second trial, contrasting the values
for real versus synthetic data
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This result is a bit different than what we saw for the same datasets under the “all
models” utility evaluation. That is not surprising because the utility tests are measur‐
ing different things. One possible explanation is as follows. The multivariate “all mod‐
els” test selects the most important variables to build the model. It is plausible that
variable importance varies between the real and synthetic datasets in these models
but that the overall prediction is equivalent. In the PSS1 measure, the possibility that
some variables are less/more important for some prediction tasks will be captured.

This highlights the importance of considering multiple utility metrics in order to get
a broader appreciation of the utility of the dataset. Each method for assessing utility is
covering a different dimension of utility that is complementary to the others.

We need a way to interpret these values. For example, is a PSS1 value of 0.1 good or
bad?

One way to interpret the PSS1 score is to split the range into quintiles, as shown in
Figure 4-21. We would ideally want the score to be at level 1, or at most at level 2, to
ensure that the utility of the dataset is adequate. This also provides an easy-to-
interpret approach to compare the distinguishability of different synthesis methods
and datasets.

Figure 4-21. The PSS1 range can be split into quintiles, with a value closer to level 1
showing less distinguishability

Summary
The growing application and acceptance of synthetic data is evidenced by the plan to
generate the heavily used general-purpose public tabulations from the US 2020
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decennial census from synthetic data.14 A key question from synthetic data users is
about its data utility. This chapter presented and demonstrated a framework to assess
the utility of synthetic data, combining both generic and workload-aware measures.

A replicated analysis of a US census dataset showed that an original analysis could be
replicated with high precision. This is an example of evaluating the utility when the
eventual workload is known reasonably well in advance.

The utility analysis on two oncology trial datasets showed that by a variety of metrics,
the synthetic datasets replicate the structure and distributions, as well as the bivariate
and multivariate relationships of the real datasets reasonably well. While it uses only
two studies, it does provide some initial evidence that it is possible to generate analyt‐
ically useful synthetic clinical trial data. Such a framework can provide value for data
users, data synthesizers, and researchers working on data synthesis methods.

The results of a utility assessment can be summarized in a dashboard, as in
Figure 4-22. This gives in a single picture the key metrics on utility.

Figure 4-22. A dashboard summarizing the utility metrics for a synthetic dataset
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In terms of limitations of the framework, we examined all variables and all models in
our utility framework, then summarized across these. In practice, some of these vari‐
ables or models may be more important than others, and will be driven by the ques‐
tion being addressed in the analysis. However, this framework still provides more
meaningful results than generic data utility metrics, which would not reflect all
workloads.

Note that in this chapter we focused on cross-sectional data. For longitudinal data,
other types of utility metrics may be needed. This is a more complex topic because it
is more dependent on the type of data (e.g., health data versus financial data).

In the next chapter, we examine in more detail how to generate synthetic data. Now
that we know how to assess data utility, we can more easily compare alternative syn‐
thesis methods.
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CHAPTER 5

Methods for Synthesizing Data

After describing some basic methods for distribution fitting in the last chapter, we
will now use these concepts to generate synthetic data. We will start off with some
basic approaches and build up to some more complex ones as the chapter progresses.
We will refer to more advanced techniques later on that are beyond the scope of an
introductory text, but what we cover should give you a good introduction.

Generating Synthetic Data from Theory
Let’s consider the situation where the analyst does not have any real data to start off
with, but has some understanding of the phenomenon that they want to model and
generate data for. For example, let’s say that we want to generate data reflecting the
relationship between height and weight. It is generally known that height and weight
are positively associated.

According to the Centers for Disease Control, the average height for men in the US is
approximately 175 cm,1 and for the sake of our example we will assume a standard
deviation of 5 cm. The average weight is 89.7 kg, and we will assume a standard devi‐
ation of 10 kg. For the sake of our example, we will model these as normal (Gaussian
or bell-shaped) distributions and assume that the correlation between them is 0.5.
According to Cohen’s guidelines for the interpretation of effect sizes, a correlation of
magnitude equal to 0.5 is considered to be large, 0.3 is considered to be medium, and
0.1 is considered to be small. Any correlation above 0.5 would be a strong correlation
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in practice.2 Therefore, at 0.5 we are assuming a large correlation between height and
weight. Based on these specifications, we can create a dataset of 5,000 observations
that models this phenomenon.

We will present three ways to do this: (a) sampling from multivariate (normal) distri‐
butions, (b) inducing a correlation during the sampling process, and (c) using copu‐
las. Each will be illustrated below.

Sampling from a Multivariate Normal Distribution
In the first method, we generate data from these two distributions by sampling from
the density function, and during the generation process we can ensure that the gener‐
ated values of height and weight are correlated at 0.5. In this example we want to gen‐
erate 5,000 synthetic observations. Because the two variables are normally
distributed, we can sample from a multivariate normal distribution. When we do
that, we end up with a two-variable dataset with 5,000 observations with a correlation
of 0.5, which is shown in Figure 5-1.

Figure 5-1. A simulated dataset of 5,000 observations consisting of height and weight
generated from a multivariate normal distribution

96 | Chapter 5: Methods for Synthesizing Data



3 Ronald L. Iman and W. J. Conover, “A Distribution-Free Approach to Inducing Rank Correlation Among
Input Variables,” Communications in Statistics - Simulation and Computation 11, no. 3 (1982): 311–334.

That was easy. And the basic process can be extended to as many variables as we want
(i.e., we are not limited to two variables).

Inducing Correlations with Specified Marginal Distributions
Now let’s say that we want to generate data showing the relationship between a
patient’s weight and their length of stay (LOS) at the hospital. The length-of-stay vari‐
able has an exponential distribution, as illustrated in Figure 5-2. We will assume that
the correlation is weak between these two variables—say, 0.1.

Figure 5-2. An exponential distribution representing the length of stay

Sampling from a multivariate normal distribution works well when we know that the
distributions of the variables are normal. But what if they are not, as in the current
example? We cannot generate this synthetic data from a multivariate normal because
the length-of-stay variable is not a normal distribution.

In that case, we can sample from the normal and exponential distributions but at the
same time induce the desired correlation during the sampling process.3 We then have
the synthetic data distributions in Figure 5-3 with an actual correlation between them
that was computed at 0.094, which is quite close to the desired correlation of 0.1.

This basic process can be further expanded to multiple variables. We can specify a
correlation matrix of bivariate relationships among multiple variables and use the
same process to induce the desired correlations as we are sampling.
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Figure 5-3. The generated synthetic data for weight and length of stay by inducing a cor‐
relation when sampling

This process can work well if we are able to specify the data distributions in terms of
one of the classical distributions (e.g., normal, exponential, Beta, and so on). In
Chapter 3 we discussed ways of finding the best fit of real data to the classical
distributions.

Copulas with Known Marginal Distributions
Another approach for generating synthetic data is to use copulas to model marginal
distributions that are different and still maintain the correlations among them. A key
characteristic of copulas is that they separate the definition of the marginal distribu‐
tions from the correlation structure, and they still allow the sampling from these dis‐
tributions to create new data while maintaining the correlation structure.

In our last example we had two marginal distributions, a normal distribution and an
exponential distribution. For our purposes, we will use a Gaussian copula. With a
Gaussian copula we would generate observations from a standard multivariate nor‐
mal distribution with a correlation of 0.1, and then map the generated values to our
normal and exponential distributions through the cumulative density functions
(CDF). This is called a probability integral transform. We compute the CDFs from
standard multivariate normal distribution, and then compute the quantiles back to
our exponential and normal distributions for LOS and weight. By using copulas we
sampled 5,000 observations for the two distributions, and these are shown in
Figure 5-4 with an actual 0.094 correlation between them, which is very close to the
desired correlation.
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Figure 5-4. The generated synthetic data for weight and length of stay using a Gaussian
copula

Again, the concept behind copulas can be extended to multiple variables, and when
their marginal distributions are specified, the generated datasets will generally main‐
tain the marginal distributions and bivariate correlations, even when the distributions
are quite different from each other.

We are not limited to 5,000 observations. When generating the datasets, we can do so
for much larger datasets, or very small datasets. The generated sample size will be a
function of the analyst’s needs.

In the next section we will look at the case when we have real data and we want to
synthesize data from that. In such a case, we do not have theoretical distributions to
work from. This can happen when the phenomenon is complex or not well
understood.

Generating Realistic Synthetic Data
When there is real data available, then the process described previously can be
applied. The main difference is that we need to generate synthetic data based on a
model of real datasets and not theoretical relationships. We will use an example of a
hospital discharge dataset to illustrate this process. This example dataset is detailed in
“A Description of the Hospital Discharge Dataset.”
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A Description of the Hospital Discharge Dataset
Whenever a patient is discharged, all the data related to that patient’s experience at the
hospital is aggregated and put into standardized discharge databases. These databases
are very important for analyzing healthcare system performance and costs, quality
improvement, and public health, among other reasons. This data is called discharge
abstracts or summaries.

The dataset we use is for one year and comes from one US state. We consider only
three variables:

• Age at the time of discharge (AGE)
• Number of days since last service (DSLS), which indicates how many days ago a

patient last received service at the hospital
• Length of stay (LOS), which indicates how many days a patient was in the

hospital

An AGE of 0 means that this was a birth. A DSLS of 0 means that this was a first
admission. A LOS of 0 means that the patient did not stay overnight at the hospital.
The distributions of these three variables is shown in Figure 5-5. There are a total of
189,042 observations in this dataset.

Figure 5-5. Density of the three variables in the hospital discharge dataset that we are
using for illustrative purposes. Note that the y-axes are not the same for the three graphs.
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We will need to fit the marginal distributions in our data to some kind of classical
distribution. We discussed distribution fitting in more detail in Chapter 3. Therefore,
we are still generating data from classical distributions, except that these distributions
are derived from best fits with real data.

Fitting Real Data to Known Distributions
For our three hospital variables, we will first fit them to classic distributions. We
determined that AGE follows a Beta distribution (multiplied by a constant, which in
this case was approximately 100) and that both DSLS and LOS follow an exponential
distribution. Then to generate the synthetic data we can sample from the fitted distri‐
butions, as described previously, and induce the same correlations as the original
data.4 The sampling process can generate synthetic datasets of any size (the synthetic
data can be much larger or smaller than the original data).

This process gives us the correlations in Figure 5-6. As you can see, the synthetic data
correlations are quite close to the real correlations.

Figure 5-6. A correlation matrix giving a comparison between the original correlations
and the synthetic correlations for pairs of variables in the hospital discharge data. The
values in parentheses are the original correlations, and the values above them are the
induced correlations in the synthesized data.

The problem here is that the fitted distributions (Beta and exponential) are not good
fits to the real data. We can see that in Table 5-1. These were the best distributions
from the most common known ones that we could fit with. In that table, the Hellin‐
ger distance is an interpretable measure of how similar the distributions are.
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Table 5-1. The Hellinger distances between the samples from the fitted distributions and the
real variables from the hospital discharge dataset

Variable Hellinger distance
AGE 0.972

DSLS 0.910

LOS 0.917

Let’s try doing the same thing with Gaussian copulas, where we generate synthetic
data that matches the fitted distributions from the real data. The correlations among
the variables are shown in Figure 5-7. As can be seen, the generated data does main‐
tain the correlations quite well.

Figure 5-7. A comparison between the original correlations and the synthetic correla‐
tions for pairs of variables in the hospital discharge data. The values in parentheses are
the original correlations, and the values above them are the correlations using data gen‐
erated with a Gaussian copula.

The Hellinger distances for the marginal distributions generated using the Gaussian
copula are the same as shown in Table 5-1. The conclusion is the same as before: the
fits are not that convincing.

Therefore, when we try to fit classic distributions to real data, the fits may be the best
available, but that does not mean that they will be very good. Of course, the veracity
of that last statement will be data dependent, but we work with complex health and
consumer data, and we often see poor fits. We need to find a repeatable and scalable
solution that will work for all kinds of real data.

Using Machine Learning to Fit the Distributions
As we saw in the previous chapter, we can use machine learning models to fit the dis‐
tributions. This allows us to build a model that can generate synthetic data that more
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faithfully reflects the real distributions in the data. With these ML fitted distributions,
we can then apply these distributions with the methods of inducing a correlation and
with copulas.

The similarity between the fitted distributions and the real distributions is quite high,
as illustrated in Table 5-2. We can use these fitted models to generate marginal distri‐
butions of any size.

Table 5-2. The Hellinger distances for the synthetic marginal distributions using a machine
learning method for fitting a model to the real marginal distributions

Variable Hellinger distance
AGE 0.0001

DSLS 0.001

LOS 0.04

We will now also use the distinguishability metric that we discussed in the utility
chapter. This tells us how similar the synthetic dataset is to the real dataset. The sum‐
mary in Table 5-3 shows the distinguishability metric for the three approaches. With
the methods of inducing correlations during sampling and Gaussian copulas, we used
the ML fitted distributions instead of the known distributions. As can be seen, the
distinguishability is low across the board, and all of the methods produce very com‐
parable results.

Table 5-3. The distinguishability between the real and synthetic data when distributions
fitted to the real data using machine learning models are used

Method Distinguishability
Inducing correlations 0.005

Gaussian copulas 0.02

Decision trees 0.003

The key lesson here is that the machine learning models are far superior to modeling
distributions of real datasets. They will generally outperform trying to fit real data to
classic distributions.

Hybrid Synthetic Data
Now let’s consider the situation where we want to create hybrid data. This is where
one part of the synthetic data is based on real data, and the second part is based on a
theoretical understanding of the phenomenon, but we do not actually have data. In
essence, this is adding signal to the data.

Hybrid Synthetic Data | 103



Taking our example of the hospital data, let’s add a new variable indicating the num‐
ber of cigarettes smoked and then synthesize the dataset using a Gaussian copula.
This would have an exponential distribution where 86% of individuals do not smoke
(ensuring consistency with the general population). The assumed correlations that we
have added to the original data are shown in Figure 5-8. Here we assumed that there
is a weak positive correlation with age, and a moderate negative correlation with
DSLS, and a moderate positive correlation with LOS. The real data correlations are
shown in parentheses in the diagram. As can be seen, the overall correlation structure
has been maintained quite well in the data that was synthesized.

Figure 5-8. The correlation matrix showing real and synthetic data that was generated
using a copula. The values in parentheses are the original correlations, and the values
below them are the induced correlations in the synthesized data.

We can now use the methods that were examined earlier to synthesize a dataset that is
partially based on real data and has additional signals added to it, while maintaining
the original correlations. Again, we can see the Hellinger distances comparing the
synthetic distributions to the real data for the three real variables using both methods
in Table 5-4.

Table 5-4. The Hellinger distances for the synthetic marginal distributions using a Gaussian
copula to generate the hybrid data

Variable Hellinger distance
AGE 0.0036

DSLS 0.004

LOS 0.007

Smoking 0.006
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This synthetic dataset merged real information with hypothetical information to gen‐
erate a hybrid. The basic principles can be easily extended to more variables and used
with other techniques.

The set of methods we have described here provides a toolbox for the generation of
artificial, realistic, and hybrid data. Furthermore, the methods can be extended to an
arbitrary number of variables to create quite complex datasets.

Sequential Machine Learning Synthesis
One way to generate synthetic data is to build on commonly used regression and clas‐
sification algorithms. Commonly used algorithms are classification and regression
trees (CARTs),5 although variants of these can also be used. Other algorithms, such as
support vector machines, can be used as well. For the sake of illustration, we will
assume that CART is being used for synthesis.

Let’s say we have five variables, A, B, C, D, and E. The generation is performed
sequentially, and therefore we need to have a sequence. Various criteria can be used to
choose a sequence. For our example, we define the sequence as A → E → C → B → D.

Let the prime notation indicate that the variable is synthesized. For example, A′
means that this is the synthesized version of A. The following are the steps for
sequential generation:

• Sample from the A distribution to get A′

• Build a model F1: E ~ A
• Synthesize E as E′ = F1(A′)
• Build a model F2: C ~ A + E
• Synthesize C as C′ = F2(A′, E′)
• Build a model F3: B ~ A + E + C
• Synthesize B as B′ = F3(A′, E′ ,C′)
• Build a model F4: D ~ A + E + C + B
• Synthesize D as D′ = F4(A′, E′, C′, B′)

The process can be thought of as initially fitting a series of models {F1, F2, F3, F4}.
These models make up the generator. Then these models can be used to generate data.
When a model is used to generate data, we sample from the predicted terminal node
to get the synthetic values. The distribution in the node can be smoothed before
sampling.
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Machine Learning Methods
We will examine a representative machine learning method for the generation of syn‐
thetic data. We will use a decision tree, although any kind of regression and classifica‐
tion method can be used. The principle for each is the same in that we sequentially
synthesize variables using classification and regression models. For the decision tree
we use CART (see “Sequential Machine Learning Synthesis” on page 105).

The marginal distribution results on our hospital discharge data are shown in
Table 5-5. Here we can see quite a good match between the synthesized distributions
and the original ones.

Table 5-5. The Hellinger distances for the synthetic marginal distributions using a machine
learning method to generate all of the synthetic datasets

Variable Hellinger distance
AGE 0.0033

DSLS 0.005

LOS 0.0042

We can similarly see concordant correlations between the synthetic and the original
data. Therefore, the tree was able to retain a good amount of the data utility. The dis‐
tinguishability metric was 0.003, which is also quite low, indicating that the synthetic
data retained much of the structure of the original data. See the matrix in Figure 5-9,
which illustrates the correlation between variables in the original and synthetic
datasets.

Figure 5-9. The correlation matrix for the hospital data generated using a decision tree.
The values in parentheses are the original correlations, and the values above them are
the induced correlations in the synthesized data.
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Deep Learning Methods
There are two general types of artificial neural network architectures that have been
used to generate synthetic data. Both can work well, and in some cases they have been
combined.

The first is the variational autoencoder (VAE). It is an unsupervised method to learn
a meaningful representation of a multidimensional dataset. It first compresses the
dataset into a more compact representation with fewer dimensions, which is often a
multivariate Gaussian distribution. This acts as a bottleneck. The encoder performs
that initial transformation. Then the decoder takes that compressed representation
and reconstructs the original input data, as illustrated in Figure 5-10. The VAE is
trained by optimizing the similarity between the decoded data and the input data. In
this context, a VAE functions similarly to principal component analysis, except that it
is able to capture nonlinear relationships in the data.

Figure 5-10. A high-level view of how a VAE works

Another architecture is the generative adversarial network (GAN). With a GAN there
are two components, a generator and a discriminator. The generator network takes as
input random data, often sampled from a normal or uniform distribution, and syn‐
thetic data is generated. The discriminator compares the synthetic data with the real
data—creating a propensity score similar to what we saw before. The output of that
discrimination is then fed back to train the generator. A good synthetic model is cre‐
ated when the discriminator is unable to distinguish between the real and synthetic
datasets. A GAN architecture is shown in Figure 5-11.
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Figure 5-11. A high-level view of how a GAN works

Both of these approaches have demonstrated quite high synthesis utility on complex
datasets and are a very active area of research.

Synthesizing Sequences
Many datasets consist of sequences of events that need to be modeled. Here we will
assume that the dataset has a series of discrete events. For example, the dataset may
consist of healthcare encounters, such as visiting a doctor, getting a lab test done,
going to get a prescription, and so on. An example of such a dataset is illustrated in
the data model in Figure 5-12.
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Figure 5-12. An example of a complex health dataset with multiple sequences

Here we have a relational data model with some patient demographics for each
patient. Then there are possibly multiple events reflecting the drugs that have been
prescribed to that patient over time. There can also be multiple events per patient,
one for each visit to the clinic. A patient may be admitted more than once to the hos‐
pital over the period of the data collection. There may also be multiple lab tests and
insurance claims per patient. Thus in the dataset there will be multiple events occur‐
ring per individual over time.

Some of these events, such as death, may end the sequence; or, if the event is a study,
there can be another event signifying the end of the study. In many cases, these data‐
sets will also be ordered.

To synthesize this dataset, we need to first compute the transition matrix among all of
the events. This can be estimated empirically by looking at the proportion of times
that a particular event follows another one. For instance, let’s say that we have four
events A, B, C, and D. And let’s say that C is a terminal event, in that nothing comes
after C in terms of outgoing transitions. If 40% of the time an event B follows an
event A, then we can say that the transition from A to B has a probability of 0.4.
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Creating such a transition matrix assumes that an event is dependent on only one
previous event. This can be quite limiting, and the synthesis will not be able to cap‐
ture longer-term trends. Therefore, we can assume that an event depends on the pre‐
vious two events (or more—that is a design decision; for our purposes though we will
assume that we want to capture two previous events).

An example of a transition matrix is shown in Figure 5-13. Here we have the two pre‐
vious events, in a particular order because in a healthcare context the order will mat‐
ter, along with the transition probabilities. The rows indicate the previous states, and
the columns indicate the next state. Each row needs to add up to 1 because the sum of
the total transitions from a pair of consecutive states must be 1. Also, there are no
previous states with a C event in them because that is a terminal event.

Figure 5-13. An example of a transition matrix with four events, with C being a termi‐
nal event and an order of two

For every individual that we want to synthesize for, we need to determine the start
state. The start state can be synthesized from other data. But this is still not sufficient.
We need to construct another transition matrix from the start state to the second
state. This is illustrated in Figure 5-14. This acts as a “starter” transition matrix.
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Figure 5-14. An example of a transition matrix for starting the generation sequence

For each patient, we can begin from their starting state and then select the next state
randomly according to the transition probabilities. For example, if the starter state is
A, then there is a 40% chance that the next state is B. Let’s say that B was selected.
Then we have a sequence of AB. We then start from the AB row (Figure 5-13) in the
second transition matrix and go on a random walk through that matrix until we hit a
terminal node. For example, after AB we may randomly select another A event. Now
the previous two events are BA, which may lead to a C event, and that would be the
end of the sequence for that individual. This is repeated for however many sequences
we want to generate.

Once a sequence is generated, we can compute the Hellinger distance between each
row of the synthetic transition matrix and the real data matrix to evaluate how similar
that sequence is to the original data. A median across all rows would provide an over‐
all measure of similarity of sequences.

This approach works well but has some limitations, which we will summarize in the
following paragraphs.

The example we looked at considered only two historical events. For complex data‐
sets, the history that needs to be taken into account would be larger, otherwise the
generated utility may be limited. We can create transition matrices with more history,
of course. This can be done if there is sufficient data to estimate or compute the tran‐
sition probabilities; otherwise, these can be somewhat unstable.

Another common challenge is that some events do not have an order that is discerni‐
ble from the data. For example, during a hospital visit, there may be lab tests and
diagnostic imaging events. The data will likely capture these events not by the minute
but by the day. Therefore, all of these events effectively occurred at the same time.

The interval between events would need to be considered as well. For example, some
events will happen a week apart, and some will happen months apart. The interval
may not be fixed (of course, that will depend on the dataset). In a health dataset, for
example, these intervals can vary quite a bit between events for the same individual.
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And the interval information is very important because many analyses will look at
time to event (for example, the survival time of cancer patients).

Finally, the events may have additional attributes associated with them. For example,
a lab test event will have the results of the lab test associated with that event. We did
not consider these attributes in this description.

Therefore, modeling sequence, or longitudinal, data in the manner described previ‐
ously is a good starting point, but it has limitations hat would require more advanced
techniques to be applied. For this type of data, recurrent neural networks would be a
good way to model the sequences and take into account more of the history.

Summary
In this chapter, we outlined a few methods that are relatively straightforward to
implement for data synthesis and that in practice will give good results in terms of
data utility. We also provided some direction for handling sequential data.

As a general recommendation, data synthesis with machine learning methods will
provide better data utility than inducing correlated data and using copulas, although
the latter are both useful techniques to have available for simpler datasets.

When datasets get more complex, machine learning and deep learning methods will
perform better. Furthermore, there are no real practical techniques to handle high
data complexity except machine learning and deep learning models. There has not,
however, been a comprehensive comparison of these methods. Different analysts
choose a method they prefer and continuously optimize it.

Important criteria for choosing a synthesis method are that it works with the types of
data that you need to synthesize and that it does not require extensive tuning to work.

There are small datasets, for example, with which deep learning techniques may
struggle to perform well. In such cases, statistical machine learning techniques could
be a good option. Also, statistical machine learning methods can easily work with
datasets that are heterogeneous with a mix of continuous, categorical, and binary
variables.

To enable the wider adoption of data synthesis, we do not want to be continuously
tweaking the parameters of the synthesis models to get them to work. Ideally, a syn‐
thesis approach would produce pretty good results all of the time without much
labor. That way synthesis can be used by nonexperts in the domain or in the synthesis
techniques. The greater the burden, the fewer people will be able to use the
methodology.
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In the next chapter, we will examine the other side of the ledger: privacy. While we
can create high-utility data, it is also important to ensure that the privacy risks are
managed. Privacy assurance is an important capability when synthesizing data. In
today’s regulatory environment, the liability to an organization can be significant if it
uses synthetic data as if it is not personal data and then finds out later that the privacy
risks were still high.
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CHAPTER 6

Identity Disclosure in Synthetic Data

The analysis of privacy risks with synthetic data remains an important topic. In the
context of a privacy analysis, we are concerned here with data that pertains to indi‐
viduals. If the data does not pertain to individuals, then there will be no privacy con‐
cerns. For example, if the data pertains to prescriptions or cars, then we would not
worry as much about privacy. However, data synthesis is being used extensively to
generate data about individuals, and therefore we need to understand the privacy
implications.

There is a general belief that synthetic data has negligible privacy risk because there is
no unique mapping between the records in the synthetic data and the records in the
original data.1 Reiter noted that “identification of units and their sensitive data from
synthetic samples is nearly impossible,”2 and Taub et al. said that “it is widely under‐
stood that thinking of risk within synthetic data in terms of re-identification, which is
how many other SDC [statistical disclosure control] methods approach disclosure
risk, is not meaningful.”3

However, in practice, when generating synthetic data it is possible to overfit the syn‐
thesis model to the real data, and we have discussed that in earlier chapters of this
book. This means that the generated data will look very similar to the original data,
hence creating a privacy problem whereby we can map the records in the synthetic

115

https://arxiv.org/abs/1804.02784


data to individuals in the real world. Therefore, we still need a framework to reason
about the privacy risks in synthetic data and methodologies to measure these risks. In
practice, we have also seen that the legal teams in many organizations are still looking
for concrete evidence that the privacy risks in synthetic data are low, and these teams
are not comforted by general assurances from the literature.

In this chapter, we first define more precisely what types of disclosures data synthesis
is intended to protect against. We then present a detailed review of how synthetic data
is treated in some of the key privacy regulations in the US and the EU. We close the
chapter with some ideas on how to start doing a privacy assurance analysis.

Types of Disclosure
This section examines the different types of disclosure of personal information and
then shows which ones are relevant from the perspective of data synthesis. We take a
pragmatic perspective that attempts to balance the conservative theoretical views
sometimes expressed in the literature while acknowledging that many uses of data
analysis are beneficial (for example, health research).

Identity Disclosure
Consider the simple dataset in Table 6-1. We have three records with a person’s origin
and a person’s income. For now we assume that this is a real dataset that has not been
perturbed.

Let’s say that an adversary or hacker is trying to find the record that belongs to some‐
one named Hiroshi. The adversary knows that Hiroshi is in that dataset, and that
Hiroshi is Japanese. By using that background knowledge, the adversary would be
able to conclude that the first record in the dataset belongs to Hiroshi. In this case,
the adversary assigned an identity to the first record. This is called identity disclosure.

Table 6-1. An example of a simple dataset to illustrate identity disclosure

Origin Income
Japanese $120K

North African $100K

European $110K

After matching the first record with Hiroshi, the adversary learns something new
about Hiroshi that they did not know beforehand: Hiroshi’s income is $120K. This is
a material point that we will return to later in this chapter.

We care only about correct assignments of an identity to a record. This is one of the
fundamental criteria for considering whether records in synthetic data (or any kind
of depersonalized data) have been compromised. For example, if an adversary is
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unable to find a record that matches Hiroshi’s criteria, then disclosure has not occur‐
red. If the adversary assigns the second record to Hiroshi, that would be incorrect,
and therefore disclosure has not occurred. Being able to incorrectly assign identities
to records is not a problem that we can solve, and therefore the focus is only on cor‐
rect identity disclosure.

Learning Something New
Another situation is illustrated in Table 6-2. Here, the adversary knows that Hiroshi is
in the dataset, that his year of birth is 1959, that he is male, and that he earns $120K.
Knowing these four things, the adversary can say with certainty that the first record
belongs to Hiroshi. However, the adversary used all of the information in the data to
determine Hiroshi’s record. In fact, the adversary does not learn anything new by fig‐
uring out which record belongs to Hiroshi—the information gain is zero.

Even though the adversary did identify the record that belongs to Hiroshi, when the
information gain is zero it is not really a meaningful identity disclosure. In theory, it
is not a good thing to be able to assign a record to an individual, but in practice, if the
information gain is zero, then there is no point to the identity disclosure. In such
cases the risk of harm to the individual is arguably negligible.

Table 6-2. An example of a simple dataset to illustrate identity disclosure where nothing new
is learned by the adversary

Year of birth Gender Income
1959 Male $120K

1959 Male $100K

1959 Female $120K

1959 Male $110K

1955 Male $120K

Therefore, an important criterion to consider when deciding whether a disclosure has
occurred is whether there is an information gain from the disclosure.

Attribute Disclosure
Another type of disclosure is attribute disclosure, when we learn something new about
a group of individuals in the dataset without actually assigning an identity to a
record. Consider the data in Table 6-3, which is a health dataset showing ages, gen‐
ders, and diagnoses.

Let’s assume that the adversary knows that Hiroshi is in the data, is male, and was
born in 1959. By looking at this dataset the adversary would conclude that Hiroshi is
one of the first three records, but it is not possible to know which record specifically
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belongs to Hiroshi. The adversary can also conclude that Hiroshi has prostate cancer
with 100% certainty. In this case, Hiroshi is a member of a group of males born
between 1950 and 1959, and all of the members of this group have prostate cancer.
Even though the adversary was not able to assign a record to Hiroshi, by virtue of the
fact that Hiroshi is a member of that group the adversary could draw conclusions
about him and learn something new.

Table 6-3. An example of a simple dataset to illustrate attribute disclosure

Decade of birth Gender Diagnosis
1950–1959 Male Prostate cancer

1950–1959 Male Prostate cancer

1950–1959 Male Prostate cancer

1980–1989 Male Lung cancer

1980–1989 Female Breast cancer

What the adversary effectively did here is build a model that relates age and gender to
diagnosis. It just happens that based on this dataset the model has no uncertainty (i.e.,
all males born between 1950 and 1959 have a prostate cancer diagnosis).

Let’s go one step further and say that an analysis was performed, and the decision tree
in Figure 6-1 was built using a machine learning algorithm run on the data and was
published in a journal. If we then go through the tree and match Hiroshi’s specifics,
we see that he is very likely to have prostate cancer according to that model. In this
case, we are drawing inferences from the model based on Hiroshi’s characteristics.

Figure 6-1. A decision tree that was built from an oncology dataset

The model the adversary built was simple, but one can imagine that in other types of
datasets these models can be more complex, with additional variables and interac‐
tions among the variables. The complexity of the model does not matter for making
the main point, though. The adversary engaged in statistics or data analysis. The
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4 This assumes that the data is about individuals. If the dataset is about cars, then the models are built for draw‐
ing conclusions about types of cars.

essence of data analysis is to build models that draw conclusions about groups of
individuals with certain characteristics.4

The other thing to note here is that the adversary can draw conclusions about indi‐
viduals who are not in the data. If the dataset is representative of the population, then
a conclusion can be drawn about all men born between 1950 and 1959 in the popula‐
tion. For example, if Satoshi is a male born in 1955 and is a member of the population
that data comes from, then one can reasonably conclude that Satoshi also has prostate
cancer. Here, the adversary is learning something new about individuals who are not
even in the data, and with high certainty. Again, this is the essence of statistics.

The adversary did not identify the record that belongs to Satoshi because it does not
exist in the data. The existence of Satoshi’s record in the data, or not, is not relevant
here—there is a model that can be used to make inferences without identity
disclosure.

We do not want to constrain statistics—that would defeat the whole purpose of AI
and data analysis. Therefore, a blanket ban on attribute disclosure would be a bit of
an overreach.

Inferential Disclosure
Now let’s consider the dataset in Table 6-4. Here, the adversary has the same back‐
ground information about Hiroshi as in the previous example (he is in the data, male,
and born in 1959). The adversary can conclude that Hiroshi has prostate cancer with
only 50% certainty. Similarly for Satoshi, the adversary can conclude that he has pros‐
tate cancer with 50% certainty, even though Satoshi is not in the data.

Table 6-4. An example of a simple dataset to illustrate attribute disclosure

Decade of birth Gender Diagnosis
1950–1959 Male Prostate cancer

1950–1959 Male Prostate cancer

1950–1959 Male Lung cancer

1950–1959 Male Lung cancer

1980–1989 Female Breast cancer

The basic point about this being the essence of statistics/data analysis still holds. The
difference between this case and the one in Table 6-3 is the level of certainty. In one
case a more accurate model has been built. But the record belonging to Hiroshi still
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cannot be identified, and the only reason we can learn something new about him is
because he is a member of a group that has been modeled.

Meaningful Identity Disclosure
We need to specify what data synthesis is going to protect against. We have argued
previously that attribute and inferential disclosure are both forms of statistical analy‐
sis, and therefore we would not want synthesis to protect against these. We would
want models to be built from synthetic data. We would want inferences to be derived
from synthetic data. Both of these would pertain to groups with specific characteris‐
tics without identifying the records that belong to individuals in that dataset. The rea‐
son it is necessary to make this clear is that there have been some regulatory leanings
toward requiring methods that render personal information to be nonpersonal to also
protect against attribute disclosure and inferences.5

We would want synthesis to protect against identity disclosure. This is a necessary but
insufficient condition for a disclosure that would be problematic. The second condi‐
tion is that there is some information gain. If both of these conditions are met, then
we call this a meaningful identity disclosure.

Learning something new about a group of individuals without identifying any
records can potentially be harmful to members of the group. For example, if the
adversary learns that members of the group have a stigmatized disease or condition,
then this can potentially be harmful. Or perhaps the model that is built from the data
can be used in ways that are harmful to members of the group—for example, by dis‐
criminating against them when deciding who to give bank loans or insurance to.
These are legitimate concerns, but data synthesis will not protect against them. Syn‐
thetic data that retains high utility will allow models to be built that retain the original
relationships in the data. Therefore, if models from real data can be used in inappro‐
priate ways, so can models from synthetic data. These types of concerns need to be
dealt with through ethics reviews on the data and model uses. They are not going to
be dealt with through changes to the synthesis process.

Whether particular information is harmful or whether the uses of models from the
data are potentially discriminatory may be relative to current cultural norms and the
expectations of the public, and these change over time. For example, the question of
whether it is appropriate to build biobanks holding people’s DNA and use that for
research and other secondary purposes was controversial a decade ago but is less so
now. Therefore, these assessments are subjective, and a group of individuals who are
tasked with making such ethical calls is a known way to manage these kinds of risks.
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Defining Information Gain
Now let’s consider the concept of information gain from an identity disclosure. The
notion of information gain needs to evaluate how unusual the information is. For
example, let’s say that Aiko has four children. Among Asian Americans, only 10% of
women ages 40 to 44 have four or more children. On the other hand, Keiko has only
two children, which is quite common among Asian American women in the US
(50%). Therefore, learning Aiko’s number of children is more informative than Kei‐
ko’s number of children because Aiko’s will stand out within the population of Asian
American. In fact, two is the most common number of children among all races in
the US, and just guessing that number would have a higher likelihood of getting it
right.

An important factor when evaluating meaningful identity disclosure is how usual or
common a particular piece of information that we learn about an individual is. Of
course, in this analysis we assumed that Aiko’s and Keiko’s number of children were
correct in the synthetic data. In practice, these values will be synthesized as well, and
therefore if the numbers generated in the synthetic record are not the same as or close
to the true values of the real person, then there will be no or limited information gain.

Bringing It All Together
The decision tree in Figure 6-2 illustrates the types of risks that data synthesis would
protect against: meaningful identity disclosure. The risks from other types of disclo‐
sure shown here would be managed through ethics reviews and other governance
mechanisms, but not through data synthesis.

Figure 6-2. Decision tree to determine whether there is a risk of meaningful identity
disclosure
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In the next section we will examine the legal aspects of managing meaningful identity
disclosure through data synthesis

Unique Matches
In many datasets the real data sample (the “real sample”) is a subsample from some
population. This real sample may have records that match the synthetic dataset (the
“synthetic sample”). This matching happens on quasi-identifiers, which are the subset
of variables that an adversary can know about real people in the population. If an
adversary is able to match a synthetic record with a person in the population, then
this is an identity disclosure. The concept is illustrated in Figure 6-3.

One simple way to screen the synthesized data for records that can potentially be
identifying is to identify and remove unique records in the real sample that can be
matched with a unique record in the synthetic sample, with the matching done on the
quasi-identifiers. For example, if there was only one 50-year-old male (the age and
gender variables are the quasi-identifiers) in the real sample and only one 50-year-old
male in the synthetic sample, then these two records match with certainty. The next
question is whether that 50-year-old male in the real sample can be matched with
someone in the population with a high probability.

Figure 6-3. The process of matching a synthetic record to a real person

The risk of identification is a function of individuals in the population, and because
most real datasets represent samples from that population, this means that records
that are unique in the real data are not necessarily unique in the population. For
example, if there are ten 50-year-old males in the population, then there is a 1:10
chance that the real record can be correctly matched to the right individual. A very
conservative approach would be to assume that if the record is unique in the real
sample, then it will match correctly and with certainty with a person in the popula‐
tion. And if that record in turn matches a unique record in the synthetic sample, then
that establishes a one-to-one mapping between the synthetic sample and an
individual.
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In our example from the previous chapter with using decision trees for synthesis on
the hospital discharge data, we found that 4% of the records were unique in the syn‐
thetic data and were also unique in the real dataset. Therefore, these records can be
removed from the synthetic dataset as a privacy protection measure.

This approach is really quite conservative and can be considered a simple first step to
empirically evaluating the identity disclosure risks in a synthetic dataset. More
sophisticated methods can be applied to statistically estimate the probability of
matching a synthetic record to a real person, accounting for different attack methods
that an adversary can use.

How Privacy Law Impacts the Creation and Use of
Synthetic Data
Synthetic data offers a compelling solution to data sharing and data-access barriers—
one that promotes greater scientific and commercial research while protecting indi‐
vidual privacy.6

An original set of real personal information is used in the creation and evaluation of a
synthetic dataset. A synthetic dataset is generated from a real dataset. The synthetic
dataset has the same statistical properties as the real data. But it is not real data. It is
not data about or related to any real individual person or people. A single record in a
synthetic dataset does not correspond to an individual or record in the real dataset.
And to ensure that the resulting synthetic dataset does not inadvertently reveal infor‐
mation about a real person from the original dataset, a privacy assurance process
evaluates the privacy risk of the synthetic data—comparing the real and the synthetic
data to assess and remove any such risk.

Synthetic data differs from what is traditionally thought of as the de-identification of
data. De-identification is a means of altering a dataset to remove, mask, or transform
direct and indirect identifiers. But the de-identified data is still real data related to real
individuals. It has just made it less likely that any individual in the record can be
identified from the data. Depending on the method and strength of the de-
identification, it can be an excellent risk-mitigation measure. But depending on the
applicable laws, it may still be treated as personal information, and there still can be
significant regulatory overhead. Contracts with data recipients may need to be in
place, security precautions must be taken, and distribution may need to be limited.
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Synthetic data is different. It is not real data related to real people. There is no link
between a synthetic dataset and records in the original (real) dataset. If done properly,
the creation of synthetic data should result in a dataset that cannot be reverse engi‐
neered to reveal identities of real people or information specific to a real person.7 For
any given synthetic dataset, this conclusion is testable and verifiable through statisti‐
cal analysis. Thus, a properly created and verified synthetic dataset that is not con‐
strained by privacy law can be freely distributed (including publicly released) and
used broadly for analysis and research.

But that does not mean that privacy laws are irrelevant. Because synthetic data must
start with a real dataset, the handling and use of that real dataset is still likely to be
regulated by privacy law.

If an organization does not have the capability and expertise to create synthetic data
in-house, it may need to share the original (real) dataset with a service provider to
create the synthetic data. That sharing is also likely to be subject to privacy law.

This section addresses how the creation and use of synthetic data is regulated under
three key privacy laws: the European General Data Protection Regulation (GDPR),8

the California Consumer Privacy Act (CCPA),9 and the US Health Insurance Porta‐
bility and Accountability Act (HIPAA).10

For each of these privacy laws, this chapter will examine three key questions:

• Is the use of the original (real) dataset to generate and/or evaluate a synthetic
dataset restricted or regulated under the law?

• Is sharing the original dataset with a third-party service provider to generate the
synthetic dataset restricted or regulated under the law?

• Does the law regulate or otherwise affect (if at all) the resulting synthetic dataset?

In sum, while these laws regulate or potentially regulate the generation and evaluation
of synthetic data, as well as the sharing of the original dataset with third-party service
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11 GDPR Art. 4(2).
12 See Khaled El Emam et al., “A Review of Evidence on Consent Bias in Research,” The American Journal of

Bioethics 13, no. 4 (2013): 42–44. https://oreil.ly/5x5kg; Michelle E. Kho et al., “Written Informed Consent and
Selection Bias in Observational Studies Using Medical Records: Systematic Review,” BMJ 338:b866 (March
2009). https://doi.org/10.1136/bmj.b866.

providers, none pose a significant barrier to doing so. Sharing the original data with a
service provider is permitted as long as an appropriate contract is in place and the
parties adhere to its requirements. And once a fully synthetic dataset is created, this
data should be seen as falling outside the scope of these laws, and therefore not sub‐
ject to any restrictions on the subsequent use or dissemination of the data (including
making the data publicly available).

We conclude the section with an analysis of an opinion on what makes information
identifiable, published by an advisory body of European regulators (the Article 29
Working Party). We provide a pragmatic interpretation of that opinion and explain
how that can be applied to synthetic data.

Issues Under the GDPR
Here we address some common questions regarding how the GDPR applies to syn‐
thetic data generation and use.

Is the use of the original (real) dataset to generate and/or evaluate a synthetic dataset
restricted or regulated under the GDPR?
Yes. The GDPR regulates any “processing” of personal data. And “processing” is
defined as “any operation or set of operations which is performed on personal data or
on sets of personal data, whether or not by automated means.”11 Because the genera‐
tion of synthetic data involves the processing of a real dataset, the obligations that the
GDPR imposes on the processing of personal data apply to this operation.

In particular, the GDPR requires there to be a “legal basis” to process personal data.
Thus, to the extent that the original dataset includes personal data, the use of that
dataset to generate or evaluate a synthetic dataset requires a legal basis. There are sev‐
eral legal bases available under the GDPR. One well-known legal basis is the consent
of the individual.

But obtaining consent from every individual contained in a dataset in order to
develop a synthetic dataset will often be impractical or impossible. Further, seeking
consent from data subjects to process data in order to create synthetic data (and
excluding the data from those individuals who do not consent) could undermine the
statistical validity of the generated synthetic data because there is significant evidence
of consent bias.12
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13 GDPR Art. 32 (“Taking into account the state of the art, the costs of implementation and the nature, scope,
context and purposes of processing as well as the risk of varying likelihood and severity for the rights and
freedoms of natural persons, the controller and the processor shall implement appropriate technical and
organisational measures to ensure a level of security appropriate to the risk”).

14 GDPR Art. 13(1) (“the controller shall, at the time when personal data are obtained, provide the data subject
with all of the following information… (c) the purposes of the processing for which the personal data are
intended”).

Instead, a more practical and appropriate legal basis will be “legitimate interests.” This
legal basis applies when the legitimate interests of the data controller or a third party
outweigh the interests or rights of the data subject. Inherent in the use of this legal
basis is a balancing test. In this context, one must consider the interest in processing
personal data in order to create a synthetic dataset and weigh that interest against the
risks to the data subject.

An organization that has a need or desire to use data for a purpose that a synthetic
dataset can help achieve, or that wishes to advance beneficial research while reducing
the organization’s legal risk and protecting the privacy of individuals, will have a very
strong interest in the creation of a synthetic dataset that can be used for research in
lieu of using real data. On the other side of the equation, assuming the creation of
synthetic data is done in a secure environment, there is little or no risk to the data
subject. On the contrary, the data subject has an interest in the creation of the syn‐
thetic data because it eliminates the risk inherent in sharing and using the original
(real) dataset for a research purpose when the synthetic data can be used instead.
Thus, the legitimate interests balancing test comes out strongly in favor of using the
personal data to create the synthetic dataset.

Beyond the need to establish a legal basis for processing, the GDPR includes a num‐
ber of additional obligations relating to the collection, use, and disclosure of personal
data—which apply in this scenario just as they apply to any processing of personal
data. Thus, the organization handling the original dataset must ensure that the per‐
sonal data is kept secure and protected from unauthorized access or disclosure.13 The
organization must meet its notice and transparency obligations, so it may be prudent
to ensure that the applicable privacy notice(s) contemplate and disclose the types of
processing that are involved in the creation and testing of synthetic datasets.14 And
the organization must maintain records of its processing activities; here too the orga‐
nization should simply make sure that this use of data to create synthetic data is in
some way reflected in those records.

However, these are obligations the organization must meet with respect to its collec‐
tion and processing of the original dataset in any event, whether or not that set is
used in the generation of synthetic data. The use of personal data to create synthetic
data will, at most, have a modest impact on how the organization meets those
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15 GDPR Art. 28(2), (3)(d), and (4). “General” consent for the processor to use subcontractors can be provided
in advance, including as part of the contract, so long as the processor informs the controller of any addition of
replacement of subcontractors, and gives the controller the opportunity to object.

obligations. But it does not create fundamentally new obligations, nor does it signifi‐
cantly increase the burden or difficulty of meeting these existing obligations.

Is sharing the original dataset with a third-party service provider to generate the synthetic
dataset restricted or regulated under the GDPR?
Under the GDPR, any entity processing personal data will be either a “data controller”
or a “data processor.” A data controller is an entity that “alone or jointly with others,
determines the purposes and means of the processing of personal data.” A data pro‐
cessor is an entity that processes personal data on behalf of, and at the direction of,
the controller. For the purposes of this discussion, we can assume that the owner of
the dataset is the data controller, and the service provider that the controller hires to
generate synthetic data from that original dataset is a data processor.

A data controller can provide personal data to a data processor as necessary to enable
the data processor to perform a service at the direction of and on behalf of the data
controller. So, sharing an original dataset with a third-party service provider to gener‐
ate a synthetic dataset is permitted under the GDPR. However, the GDPR imposes
certain restrictions on that data sharing and on the parties involved.

A controller that wishes to share personal data with a processor has a duty of care in
selecting a processor that can provide “sufficient guarantees” that it will process per‐
sonal data in compliance with the requirements of the GDPR and will protect the
rights of the data subject(s).

The GDPR further requires that there be a contract between the controller and the
processor that obligates the processor to do the following:

• Process the personal data “only on documented instructions from the controller”
• Ensure that each person processing the personal data is subject to a duty of confi‐

dentiality with respect to the data
• Implement and maintain reasonable security procedures and practices to protect

personal data
• Engage a subcontractor only pursuant to a written contract that passes through

the data protection requirements and only with the general or specific prior con‐
sent of the controller15
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16 GDPR Art. 28(3)(e). In cases where a data processor holds personal data for a relatively short period of time,
as would be the case here, where the original dataset containing personal data is processed by the service pro‐
vider for only as long as is required to create and test the synthetic dataset, it is unlikely that this obligation to
assist the data controller with requests from data subjects (such as requests to access or delete data) would
apply in a significant way.

17 GDPR Art. 4(1).

• Assist the controller in enabling data subjects to exercise their rights under the
GDPR16

• Assist the controller as needed to meet the controller’s obligations with respect to
data security, notification of data breaches, risk assessments, and consultation
with regulators

• Delete or return all personal data to the controller at the completion of the ser‐
vice(s)—unless retention is required by law

• Provide to the controller, upon request, “all information necessary to demon‐
strate compliance with [the processor’s] obligations…and allow for and contrib‐
ute to audits, including inspections, conducted by the controller or another
auditor mandated by the controller”

As long as the contract with the required terms for data processors is in place, and
those measures are adhered to, providing the original dataset to a service provider in
order to create a synthetic dataset will be permissible under the GDPR.

Does the GDPR regulate or otherwise affect (if at all) the resulting synthetic dataset?
Once the synthetic dataset has been generated, any regulation of that dataset under
the GDPR depends on whether it can be considered “personal data.”

The GDPR defines “personal data” as follows:

Any information relating to an identified or identifiable natural person (“data sub‐
ject”); an identifiable natural person is one who can be identified, directly or indirectly,
in particular by reference to an identifier such as a name, an identification number,
location data, an online identifier or to one or more factors specific to the physical,
physiological, genetic, mental, economic, cultural or social identity of that natural
person.17

Synthetic data is not real data about a person. Although it is based on a real dataset, a
single record in a synthetic dataset does not correspond to an individual or record in
the original (real) dataset. Thus, a record in a synthetic dataset does not relate to an
actual natural person. It does not include an identifier that corresponds to an actual
natural person. It does not reference the physical, physiological, genetic, mental, eco‐
nomic, cultural, or social identity of an actual natural person. In short, a fully syn‐
thetic dataset does not meet the GDPR definition of “personal data.” As such, it is
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18 Note that virtually every organization shares some data with a service provider from time to time, so the
organization’s privacy notice should already have such a disclosure.

outside the scope of the GDPR. It therefore can be used and distributed, including
being made publicly available, without restriction.

Issues Under the CCPA
Here we address some common questions regarding how the CCPA applies to syn‐
thetic data generation and use.

Is the use of the original (real) dataset to generate and/or evaluate a synthetic dataset
restricted or regulated under the CCPA?
Unlike the GDPR, the CCPA does not require the establishment of a legal basis for
the processing of personal information. Nor does it place significant restrictions on a
company’s collection or internal use of personal information. Instead, it is largely
focused on regulating the “sales” of personal information, which is defined broadly to
cover many transfers of personal information in a commercial context.

As a result, the act of using an existing dataset to create a synthetic dataset is not
specifically regulated by the CCPA. Thus, the CCPA does not prevent or restrict the
use of personal information to generate and/or evaluate a synthetic dataset.

Instead, as with the GDPR, such data use may be subject to some CCPA obligations,
such as providing notice of how the personal information is used, which will apply to
the organization whether or not it uses the data to generate synthetic data.

Is sharing the original dataset with a third-party service provider to generate the synthetic
dataset restricted or regulated under the CCPA?
As noted previously, the CCPA regulates the “sale” of personal information, and sales
are defined very broadly. However, certain transfers of personal information to a “ser‐
vice provider” are exempt from the definition of “sale.”18 Specifically, if personal data
is transferred by a business to a service provider, that transfer will not be regulated as
a sale under the CCPA as long as the following requirements are met:

• The business has provided notice that personal information will be shared with
service providers

• The service provider does not collect, use, sell, or disclose the personal data for
any purpose other than as necessary to provide the service(s) on behalf of the
business

• There is a written contract between the business and the service provider that
specifies the service provider is prohibited from retaining, using, selling, or
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19 Some of the contract terms required under the CCPA for service providers are similar, but not identical, to the
contract terms required under the GDPR for data processors. However, it is possible, and often prudent, to
create terms that meet both, so that a single contract works for both CCPA and GDPR purposes.

disclosing the personal information for any purpose other than performing the
services specified in the contract on behalf of the business

Thus, as long as these criteria are met, including having a contract in place between
the business and the service provider,19 a business subject to the CCPA can share a
dataset containing personal information with a service provider that uses it to gener‐
ate synthetic data on behalf of that business.

Does the CCPA regulate or otherwise affect (if at all) the resulting synthetic dataset?
The CCPA defines “personal information” as any information “that identifies, relates
to, describes, is reasonably capable of being associated with, or could reasonably be
linked, directly or indirectly, with a particular consumer or household.” While this is
a very broad definition of personal information, it should not include synthetic data.
As noted previously, synthetic data is not real data that relates to a real person. When
a synthetic dataset is created using a real dataset, there is no association between an
individual record in a real set and an individual record in the resulting synthetic data‐
set. Thus, records in a synthetic set should not be seen as being associated, linked, or
related to a particular real consumer or household.

Further, the CCPA definition of personal information specifies that it does not
include aggregate consumer information. And “aggregate consumer information” is
defined as “information that relates to a group or category of consumers, from which
individual consumer identities have been removed, that is not linked or reasonably
linkable to any consumer or household, including via a device.” Thus, although a syn‐
thetic dataset could be seen as applying to a group or category of consumers, the
exclusion for aggregate data gives additional weight to the conclusion that a synthetic
dataset is not covered by the CCPA definition of personal information.

Thus, because synthetic data is not “personal information” under the CCPA, it is not
subject to the requirements of the CCPA. It can therefore be freely used and dis‐
tributed—even sold—without restriction under the CCPA.

Issues Under HIPAA
Here we address some common questions regarding the application of HIPAA to
synthetic data generation and use.
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20 HIPAA Privacy Rule § 164.502(d)(1).
21 A “limited data set” is a dataset that has had certain identifiers removed but that does not meet the HIPAA

standard for fully de-identified information. See HIPAA Privacy Rule § 164.514(e)(2).

Is the use of the original (real) dataset to generate and/or evaluate a synthetic dataset
restricted or regulated under HIPAA?
HIPAA permits the use of protected health information (PHI) to create a synthetic
dataset. The HIPAA Privacy Rule specifies certain uses of PHI that are permitted
without the authorization of the individual and without providing the individual the
opportunity to agree or object.

One such permitted use is described as follows:

Uses and disclosures to create de-identified information. A covered entity may use pro‐
tected health information to create information that is not individually identifiable
health information or disclose protected health information only to a business asso‐
ciate for such purpose.20

That permitted use is reinforced in a different section of the HIPAA Privacy Rule that
describes health care operations as another permitted use. Health care operations is
defined to include “general administrative activities of the entity, including, but not
limited to…creating de-identified health information or a limited data set.”21

The creation of a synthetic dataset is distinct from what has traditionally been
thought of as de-identification. De-identification typically involves removing, mask‐
ing, or transforming direct and indirect identifiers within a record. But the resulting
de-identified dataset is generally thought of as an altered version of the original data‐
set in which there remains some correlation between records in the original dataset
and records in the de-identified dataset. By contrast, synthetic data is the creation of a
completely new dataset, and while the synthetic dataset is statistically similar to the
original (real) dataset, there is no direct correlation between records in the original
dataset and those in the synthetic dataset.

Nevertheless, although both of these sections of the HIPAA Privacy Rule reference
de-identification, both should be interpreted broadly enough to include the creation
of synthetic data as a permitted use of PHI. In the first quoted section, the key phrase
is “to create information that is not individually identifiable health information,”
which is precisely what is happening when PHI is used to create synthetic data
because synthetic data is not individually identifiable data (more on that following).
And in describing de-identification in that way, the HIPAA Privacy Rule strongly
indicates that the concept of de-identification in HIPAA is broad enough to encom‐
pass any action that uses PHI to create a dataset that does not contain individually
identifiable information.
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22 Guidance from the US Department of Health and Human Services on the required elements of a business
associate agreement, as well as sample contractual language, is available at https://oreil.ly/53Ef0.

23 If the service provider is performing a broader range of services, and the creation of synthetic data is an inher‐
ent part of those services, the parties could argue that it is permitted even if the contract does not explicitly
state that. But for the avoidance of doubt, any time a covered entity is sharing data containing PHI with a
service provider to create a synthetic dataset, the parties should explicitly reference synthetic data creation in
the contract as a permitted use of the PHI.

Additionally, the part of the “health care operations” definition that includes “creating
de-identified health information or a limited data set” is preceded by the phrase
“including, but not limited to.” So, it is easy to conclude that a very similar type of
operation that results in strong privacy protections for individuals is also included in
that category of permitted uses. Further, with respect to both sections, given that syn‐
thetic data will almost always be even more privacy-protecting than de-identified
data, there is no policy reason why these aspects of the HIPAA Privacy Rule should be
interpreted narrowly or that HIPAA should treat the creation of synthetic data less
favorably than the use of PHI to create a de-identified dataset.

Thus, viewing the creation of synthetic data as a permitted use of PHI under the
HIPAA Privacy Rule is both a sensible and sound conclusion.

Is sharing the original dataset with a third-party service provider to generate the synthetic
dataset restricted or regulated under HIPAA?
Under HIPAA, a covered entity is permitted to share PHI with another entity provid‐
ing a service on behalf of that covered entity. Such a service provider is called a “busi‐
ness associate” of the covered entity.

There must be a contract or similar arrangement in place between a covered entity
and the business associate. The contract must specify the nature of the service for
which the PHI is shared, describe the permitted and required uses of protected health
information by the business associate, provide assurances that the business associate
will appropriately protect the privacy and security of the PHI, and meet certain other
requirements.22 Thus, a contract for the creation of synthetic data should state that the
service provider may use PHI to generate and evaluate one or more synthetic data‐
sets.23 In addition to the contractual terms, business associates are directly subject to
the HIPAA Security Rule and certain aspects of the HIPAA Privacy Rule.

Thus, a service provider that receives PHI from a HIPAA-covered entity for the pur‐
pose of creating synthetic data is likely to be considered a business associate of the
covered entity. As long as there is an appropriate contract in place that meets the
requirements of a business associate agreement under the HIPAA Privacy Rule, and
the service provider meets its other obligations under the rule, the sharing of PHI
with the service provider is allowed.
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24 The Article 29 Working Party is an advisory body made up of representatives from the European data protec‐
tion authorities, the European Data Protection Supervisor, and the European Commission. From time to time
it has published opinions interpreting and clarifying various aspects of data protection regulation.

25 Article 29 Data Protection Working Party, “Opinion 05/2014 on Anonymisation Techniques,” April 2014.
https://www.pdpjournals.com/docs/88197.pdf.

26 Khaled El Emam and Cecilia Alvarez, “A Critical Appraisal of the Article 29 Working Party Opinion 05/2014
on Data Anonymization Techniques,” International Data Privacy Law 5, no. 1 (2015): 73–87.

Does HIPAA regulate or otherwise affect (if at all) the resulting synthetic dataset?
Synthetic data falls outside the scope of HIPAA. HIPAA regulates “individually iden‐
tifiable health information” and “protected health information.” “Individually identi‐
fiable health information” is information created or received by a covered entity,
relating to the physical or mental health or condition of an individual, the provision
of healthcare to an individual, or the payment for the provision of healthcare to an
individual, where that information either identifies the individual or for which there
is a reasonable basis to believe the information can be used to identify the individual.
“Protected health information” is roughly the same; it is defined as “individually iden‐
tifiable health information,” subject to a few minor exclusions for certain educational
records and employment records.

Because synthetic data is not “real” data related to actual individuals, synthetic data
does not identify any individual, nor can it reasonably be used to identify an individ‐
ual. Synthetic data is therefore outside the scope of HIPAA and not subject to the
requirements of the HIPAA rules. It can therefore be freely used for secondary analy‐
sis, shared for research purposes, or made publicly available without restriction.

Article 29 Working Party Opinion
The Article 29 Working Party (now the European Data Protection Board) published
an influential opinion in 2014 on anonymization.24 Although our focus here is not on
anonymization, that opinion does describe European regulators’ views on when
information no longer becomes identifiable.25 As well as being influential, the opinion
has been critiqued on multiple dimensions.26 Nevertheless, in the following sections
we describe the criteria from this opinion for information to be non-identifiable,
present our interpretation of these criteria, and explain how synthetic data would
meet these criteria. At the end, we make the case that synthetic data can meet the
three criteria and therefore would be considered nonpersonal information under this
opinion.

The three criteria, their interpretations, and an assessment of synthetic data on each
criterion are below.
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27 Khaled El Emam and Cecilia Alvarez, “A Critical Appraisal of the Article 29 Working Party Opinion 05/2014
on Data Anonymization Techniques,” International Data Privacy Law 5, no. 1 (2015): 73–87.

Singling out
Singling out is defined as the ability to isolate some or all of the records that identify
an individual in a dataset. This can be interpreted in two ways. The first is that there
should be no individuals in the dataset that are also unique in the population (on the
quasi-identifiers). The second is that there should not be a correct mapping between
a record in the dataset and a real person.

In the case of synthetic data, there would be no unique synthetic records that map to
unique real records, and hence by definition there would not be a mapping to a
unique individual in the population. With respect to the second interpretation, a key
premise of synthetic data is that there is no one-to-one mapping between synthetic
records and individuals, and therefore this interpretation should also be met in
practice.

Linkability
Linkability is the ability to link at least two records concerning the same data subject
or a group of data subjects. One interpretation of this is that linkability applies to
linking records that belong to the same person in the same database. This is essen‐
tially a ban on longitudinal data.27 That interpretation has been criticized because it
would have a significant negative impact on, for example, health research.

Another interpretation is that this criterion bans assigning individuals to groups,
which essentially prohibits building statistical models from data (since models are
based on detecting group patterns across individuals). Again, in the real world such
an interpretation would halt many secondary uses of data.

Therefore, the interpretation that is generally adopted is that individuals cannot be
linked across databases. This criterion is met by definition because the likelihood of
successfully linking synthetic records in one database with real records in another
database is going to be very low.

Inference
Inference is defined as the possibility of deducing with a high likelihood the value of
an attribute from the values of a set of other attributes. One interpretation of this cri‐
terion is that it is a ban on statistics and model building, which is likely not the intent
here because that would also limit the uses of aggregate/summary statistics from data
involving more than one variable.

Therefore, the general interpretation is that it should not be possible to make inferen‐
ces that are specific to individuals. However, inferences that pertain to groups of
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individuals (which is the essence of model building) would not fall within its scope.
Since synthetic data does not have records that pertain to real individuals, any indi‐
vidual inferences would not be about specific individuals. In practice, the inferences
are mostly about groups of individuals. In particular, our definition of meaningful
identity disclosure would limit the information gain about specific individuals, which
supports meeting this criterion.

Closing comments on the Article 29 opinion
The previous sections are a pragmatic interpretation of the three criteria in the Arti‐
cle 29 Working Party opinion. Synthetic data would meet these criteria in a relatively
straightforward manner because it would not be matched to unique individuals,
records cannot be linked across datasets, and individual-level inferences would not be
possible.

Also note that some of the more general interpretations of these criteria are intended
to limit risks from misuses of data and AIML models, which are best addressed
through governance mechanisms and ethics reviews rather than through data trans‐
formation or generation methods.

Summary
Synthetic data is intended to protect against meaningful identity disclosure. That is, it
protects against when a synthetic record is associated with a real person, and an
adversary can learn something new and unusual about the target individual. Syn‐
thetic data therefore offers the promise of extracting great value from data without
the privacy risk and regulatory compliance costs associated with the use of personal
data or even de-identified data.

The creation of synthetic data involves the processing of a real dataset containing per‐
sonal information, so the initial creation and testing of a synthetic dataset likely will
fall within the scope of privacy law. But most privacy laws allow such use, subject to
certain requirements such as keeping the original dataset secure and ensuring that
applicable privacy notices do not preclude such use. But these are typically compli‐
ance measures that the owner of the original dataset will need to undertake in any
event.

Likewise, most privacy laws allow the original dataset to be shared with third-party
service providers. So data owners can provide an original dataset to a service provider
that will use the data to create the synthetic data on behalf of the data owner, as long
as certain data protection measures are taken. Those measures include implementing
security safeguards and ensuring that an appropriate contract is in place.
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And once the synthetic data is created, because it is not real data relating to real indi‐
viduals, it will fall outside the scope of privacy law. It can therefore be freely used and
distributed for research and other purposes.

This chapter examined three key privacy laws—Europe’s GDPR, California’s CCPA,
and the US federal HIPAA law. Although these laws take different approaches to reg‐
ulating data protection, and their details differ significantly, the conclusions regard‐
ing the creation, distribution, and use of synthetic data are similar for each. And
although there can be wide variation in privacy laws across jurisdictions and sectors,
they all tend to rely on similar principles and make allowances for uses of personal
information that can create great social and individual benefit so long as the risks are
appropriately managed. Thus, although these questions must be examined for any
privacy law to which the relevant parties are subject, it is likely that the conclusions
will be similar.
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CHAPTER 7

Practical Data Synthesis

Real data is messy. When data has been cleaned up and heavily curated, then data
synthesis methods (and for that matter any data analysis methods) become much eas‐
ier. But the actual requirement in practice is to synthesize data that has not been
curated.

This chapter presents a number of pragmatic considerations for handling real-world
data based on our experiences delivering synthetic datasets and synthetic data genera‐
tion technology. While our list is not comprehensive, it covers some of the more
common issues that will be encountered. We highlight the challenges as well as pro‐
vide some suggestions for addressing them.

At this point, we do not make explicit assumptions about the scale of the data that
will be synthesized. For example, some datasets, such as financial transactions or
insurance claims, can have a few variables (tens or maybe even hundreds) but a very
large number of records. Other datasets can have few individuals covered but a large
number of variables (thousands or tens of thousands). These narrow and deep versus
wide and shallow datasets present different challenges when processing them for data
synthesis. In some cases, the challenges can be handled manually, and in other cases
full automation is a necessity.

Managing Data Complexity
The first set of items that we want to cover pertains to how to manage data complex‐
ity. If you work with data then you are used to handling data challenges. In the con‐
text of synthesis there are some additional considerations.
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For Every Pre-Processing Step There Is a Post-Processing Step
The data users expect their synthetic data to have the same structure as the real data.
This means that the variable names have to be the same, the field types need to be the
same, and the data model for the real data has to be maintained in the synthetic data.
However, the data synthesis methods that we discussed need inputs in a certain for‐
mat. The data may have to be scaled to be within a certain range (say, 0 to 1) and all of
the data tables joined to create a single data frame. All such data pre-processing steps
must be undone during the post-processing step.

We are making a distinction between data preparation and data pre-processing. Data
preparation can be performed by the data provider. For example, if there are multiple
datasets that are being pooled together, a certain amount of data harmonization has
to be performed beforehand. Data preparation needs to be performed, typically, for
any kind of data analysis work and not just for data synthesis. This would similarly be
the case when different datasets are being linked to create an integrated dataset to
work with. Such data integration happens during the preparation stage by the data
providers.

Data shaping, on the other hand, is a synthesis pre-processing step. For example, data
with attribute-value pairs are often difficult to work with in standard statistical analy‐
sis tools, and therefore this data will need to be reshaped into a more common tabu‐
lar format. The synthesis pre-processing is part of the methodology and technology,
and will be closely tied to the methods used for data synthesis.

Field Types
The pre-processing of datasets for synthesis will depend largely on the type of fields.
For example, a continuous variable is pre-processed quite differently than a nominal
variable. For large datasets with hundreds or thousands of variables it is not practical
to do this classification manually. It is therefore important to be able to autoclassify
field types to determine in an efficient manner the best way to pre-process and post-
process each variable.

While this seems like a trivial thing to do, when there is no metadata, and domain
knowledge is limited, it is not trivial at all.

The Need for Rules
It is quite common that datasets have deterministic relationships. Examples of these
are calculated fields where the inputs are other fields, such as BMI (body mass index),
which is calculated from height and weight. This relationship is deterministic. But the
synthesis methods are mostly stochastic and will have some error in them when syn‐
thesized. It is better to detect these deterministic relationships in advance and remove
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the calculated fields before synthesis. Then after the covariates are synthesized, these
derived values are calculated and inserted into the synthetic data.

Calculated fields show up in questionnaires and surveys—for example, where an
index score is computed from the responses to the questions. Deterministically
derived fields can be interpretations from laboratory results based on some rules. For
example, if a lab result exceeds a threshold, then it is considered not normal.

In large datasets, manually documenting every calculated field can be time-
consuming. In such cases, methods are needed to automatically detect such rules in
the dataset and perform the necessary pre-processing and post-processing steps.

Not All Fields Have to Be Synthesized
There will almost always be at least one field that is a unique identifier. This could be
a Social Security number, for example, that is used to identify every individual in the
dataset. Or it can be a hospital identifier or a subject ID in a clinical trial dataset. For
more complex datasets there will be more than one—for example, an identifier for
every visit that the person makes to a hospital or a bank, and a unique transaction
identifier for every drug that is dispensed from the pharmacy or item sold at the
store.

The methods we have described thus far would not apply to unique identifiers. As a
first step, it will be necessary to detect these unique identifiers in the original dataset.
In many instances that is relatively straightforward to do because these fields will
have the same number of values as there are records. But that is not always the case.
Sometimes we see orphan records that do not have unique identifiers. A decision
needs to be made about the orphan records. From a data synthesis perspective they
can be synthesized, but if the unique identifiers link multiple sources of information,
then the correlations with other information about these individuals will not be
accounted for.

Sometimes there are compound unique identifiers. These are more challenging to
detect, and a good understanding of the data model is needed to find them. A com‐
pound identifier is when more than one field makes up the unique identifier.

Once the unique identifiers are found, they are then pseudonymized in the synthetic
data. There are multiple methods for pseudonymization. Cryptographic techniques
can be used for that purpose (e.g., encryption or hashing), or the unique identifiers
can be replaced by random values that are a one-to-one mapping to the original
identifiers.

It is recommended that you prepend a special character (such as an “s_”) to the syn‐
thetic pseudonymized values. This will ensure that the data users do not mistake the
synthetic data for real data. Knowing the provenance of the dataset is important.
However, adding an “s_” at the beginning of the pseudonymized values may not work

Managing Data Complexity | 139



if the value is an integer and we want to maintain field types. Therefore, other mecha‐
nisms may need to be used.

Synthesizing Dates
The synthesis of dates needs special consideration. There are at least two types of
dates. We will call them demographic dates (date of birth, date of death, date of mar‐
riage) where the exact date (or an approximation of it) is important. And there are
event dates where the interval between them is the most important.

Demographic dates can be represented as an integer and synthesized using the tradi‐
tional approach for integers. For example, demographic dates can be treated as the
number of days since January 1, 1990.

For event dates, it is easiest to convert them to relative dates. This means that an
anchor date that is specific to the individual (and that exists for all individuals in the
data) is selected, and all dates are converted to days since that anchor. For example, in
a clinical trial dataset it can be the date of randomization or date of screening. In an
oncology dataset it can be the date of diagnosis. For a financial services dataset it can
be the date the individual became a client or opened an account. Then the relative
dates can be synthesized.

When there are multiple related dates and no obvious anchor to use, it is important
to maintain the relationships among the dates. For example, the synthesized dataset
should not have a date of discharge that occurs before a date of admission. In such a
case, a length of stay can be calculated and the admission date is synthesized. Then
the discharge date is computed after synthesis using the synthesized length of stay
and admission date. Caution is needed to manage these temporal relationships.

Alternatively, we can add an independent random offset to each patient’s dates. That
way the relative intervals are maintained, but no exact dates are retained.

In datasets with a large number of events, there are a few ways to deal with the tem‐
poral nature of the data. One approach is to “flatten” the data and have all of the
events appear as columns. This works well when all the individuals in the dataset will
have the same series of events. For example, this happens in clinical trials in which
the visits are preplanned or in oncology datasets in which the treatment plans have a
predetermined schedule. With such a flattened dataset, commonly used cross-
sectional data synthesis techniques can be applied. In other cases where the data is
more transactional, more sophisticated methods that account for the temporal
dependencies would be needed for accurate data synthesis.
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Synthesizing Geography
A typical example of a geographic variable is a zip code or a postal code. Since these
are nominal variables in a dataset, they can be treated as other nominal variables and
synthesized.

If location is captured by longitude and latitude, there is more complexity because the
synthesized locations cannot be, for example, in the middle of the ocean or in a mine.
Therefore, again, auxiliary information is needed to handle location.

In practice, more traditional data protection methods, such as generalization or per‐
turbation of locations, are used here. Exact location fields cannot be treated in the
same manner as other fields in the dataset.

Lookup Fields and Tables
Some datasets will have lookup fields. This is when the value in a field is a key to look
up the true value in a different table. In general this is not a problem because the syn‐
thesis process can work equally well on the lookup values instead of the actual values.
However, in such cases the lookup tables themselves should not be synthesized. The
detection and carving out of these tables is an important step in pre-processing.

Missing Data and Other Data Characteristics
Real data will have missing values. These are generally not a problem for synthesis
because the synthesis process will just replicate the missingness patterns in the origi‐
nal data. In some cases, the data synthesis analysts will try to impute the missing val‐
ues before synthesis, and then synthesize from a complete dataset. This can also be
performed as long as the imputation is performed reliably; the only caveat is that this
adds significantly to the complexity of the synthesis project, and end-user data ana‐
lysts will likely want to have control of the imputation process.

The general assumption is that other data quality issues have been dealt with prior to
the synthesis process. If not, then these data quality issues will be reflected in the syn‐
thetic data—data synthesis does not clean dirty data. For example, if the coding
scheme used in a variable is not applied consistently (e.g., it was entered manually
and has errors, or different versions of the same coding dictionary were used over
time with no version indicator), then that characteristic will be reflected in the syn‐
thetic data.

Under the general scheme that we have described in this book, text fields cannot be
synthesized. While there is a whole body of work on the synthesis of text, we have not
addressed that here. Therefore, we are assuming that text fields will be deleted from
the synthesized datasets for the time being.
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Datasets that consist of long sequences, such as genomic data, have a specialized set
of techniques for their synthesis, similar to text. Long sequences also show up in
movement trajectories (e.g., cars, people, and trucks). Trajectories have location and
temporal complexities added to them—in that sense every event in the sequence has a
number of attributes associated with it. The methods we have discussed in this book
will not address these types of data, and synthesizing this kind of information repre‐
sents areas of ongoing research.

Partial Synthesis
Some datasets are quite complex, and the synthesis process needs to maintain a large
amount of information between the entities. When these entities are individual
records rather than tables, the complexity can be significant. For such datasets the
solution is to create a partially synthetic dataset. This is when some of the variables
are synthesized, and some other variables are retained. This is similar to the approach
that is used with traditional de-identification methods. However, with partial synthe‐
sis the number of synthesized variables can still be quite large.

When partial synthesis is used, it is recommended that the organization or analyst
perform a privacy assurance check on every dataset that is generated. This provides
additional assurance that the privacy risks have been managed.

Organizing Data Synthesis
The success of synthetic data generation projects depends on a set of technical and
change management factors. Change management is used here to refer to the activi‐
ties that are needed to support the analyst and analytics leadership in changing their
practices to embed the use of synthetic data into their work. The practices we cover in
the following sections can have an outsize influence on the outcome of implementing
data synthesis.

While the amount of manual effort to synthesize data is relatively small, many data
synthesis methods are computationally intensive. Therefore, we first discuss the
importance of computing capacity. We next consider the situation in which analysts
need to work only with cohorts rather than with full datasets. The section closes with
a discussion of the importance of validation studies, initially and continuously, to get
and maintain the buy-in of data analysts and data users.

Computing Capacity
Data synthesis and privacy assurance, especially for large and complex datasets, can
be computationally intensive. This is especially true for large datasets with many vari‐
ables and many transactions. One should not underestimate this because the
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synthesis process can take a long time otherwise. While arguably it is only a matter of
time before this problem is solved, there are also some structural issues to consider.

For example, when using decision trees for data synthesis, the number of categories in
a data field can be a problem. Decision trees select variables and perform binary splits
on them to build the tree. For nominal variables these algorithms evaluate all possible
splits. For example, if a variable has three possible values {A, B, C}, then the possible
splits are {{A},{B,C}}, {{A,B},{C}}, or {{A,C},{B}}. Each of these is evaluated to find the
best split. When there are many categories, the number of possible splits can be very
large and computationally infeasible to perform. In such cases, special manipulations
of the data during pre-processing are needed to enable the synthesis process to
proceed.

These are just some of the practical issues that must be considered during the synthe‐
sis process. As you synthesize data, there will be more added to this list depending on
the types of data that you are working with.

A Toolbox of Techniques
There are multiple methods that can be used for data synthesis. Some methods are
best suited to smaller datasets, whereas others will work well only when the datasets
are large and can train a deep learning model. Also, some methods will be better
suited to cross-sectional data, and for longitudinal data various approaches can be
used, depending on the degree of complexity of the longitudinal sequences.

In practice, unless an organization’s datasets are homogeneous, they will need to have
a toolbox of synthesizers, with each suited to particular data characteristics. Heuris‐
tics can be applied manually or in an automated manner to select the most suitable
synthesizer for a particular dataset. Assuming that there is a singular unicorn synthe‐
sizer is not going to be the most prudent way to approach the building of data synthe‐
sis capacity.

Synthesizing Cohorts Versus Full Datasets
As a practical matter, many data analyses and AIML models are performed or devel‐
oped, respectively, on specific cohorts or subsets of the full dataset. For example, only
a subset of consumers within a specific age range may be of interest or only a subset
of the variables. Then that cohort is extracted from the master dataset and sent to the
analysts.

For data synthesis, it is much easier to synthesize the full dataset than to synthesize
each cohort as it is extracted. The data utility will generally be higher that way, and
there is no obvious advantage to the synthesis of individual cohorts.
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Given this argument, it is recommended that the data be synthesized as it is coming
in rather than as it is going out. For example, if an organization has a data lake and is
extracting cohorts from that for specific analyses, then the data synthesis should be
performed when the data is going into the data lake such that the data lake consists of
only synthetic data.

Continuous Data Feeds
We often see continuous data feeds that need to be synthesized. The common
approach is to batch the incoming data, train or update a model with the new data,
and then generate a new sequence. Since training does take time, retraining may not
have to be performed if there are response-time constraints on the data feeds. In such
a case, data can be synthesized using existing models with only periodic updates.

Privacy Assurance as Certification
In the current regulatory environment and with contemporary public discourse that
is heavily focused on privacy risks, a prudent organization will err on the conservative
side. Regulators’ and the public’s concerns about privacy risks and the increasingly
negative narrative on the secondary uses of data mean that it is important for organi‐
zations to perform privacy assurance on their synthetic data. As noted before, it
should not be taken for granted that the synthesis models were not overfit—that is an
empirical question.

There are a few reasons that regular privacy assurance on synthetic data is important:

• It provides the documentation necessary to demonstrate that the identification
risks are very small. Such documentation may become helpful if questions are
raised about the uses of secondary data.

• It provides assurance to the data provider that the synthesis process was done
well and that the synthesis model did not overfit to the original data.

• It demonstrates to the public a level of due diligence when using data for secon‐
dary purposes.

Therefore, as a matter of practice, organizations performing data synthesis should
consider incorporating privacy assurance as a standard part of the synthesis
workflow.

Performing Validation Studies to Get Buy-In
Perhaps the key factor in the success of data synthesis projects is getting the buy-in of
the data users and data analysts. In many instances, the use of synthetic data is new
for data analysts, for example. Including validation steps in the process of deploying
data synthesis will be important, and we have included that explicitly in the process
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illustrated in Figure 2-14. Validation means that a number of case studies are per‐
formed to demonstrate the utility of the synthetic data for the task at hand. Even if
case studies exist in other organizations, demonstrations on an organization’s own
data can be much more impactful for the data analysts using the synthetic data.

A validation means showing that the results from the synthetic data are similar to the
results from the real data. The extent of the similarity will depend on the specific use
case. For example, if the use case is to use synthetic data for software testing, then the
criteria for similarity would be less stringent than if the data will be used to build an
AIML model to identify high-risk insurance claims.

Such validation studies should be chosen to be representative of the datasets and sit‐
uations that are likely going to be encountered in practice. Choosing the most chal‐
lenging dataset or context for a validation is not going to be very informative and
increases the chances of unsuccessful outcomes. Going in the other direction and
choosing the simplest scenarios may not be convincing for the eventual synthetic data
users.

Motivated Intruder Tests
Another approach to perform privacy assurance is to organize an attack on the syn‐
thetic data to empirically test the extent to which a synthetic record can be mapped to
a real person. These are typically called motivated intruder tests in the privacy
community.

A motivated intruder test mimics the behavior of an adversary who may attempt to
identify synthetic data (with some constraints, such as no criminal or unethical
behavior). The individual or team performing such a test should be independent of
the team that performed the synthesis.

For a motivated intruder test to be effective, there must be a meaningful way to verify
a suspected match of a synthetic record with a real person. Since that is not going to
be possible with synthetic data, the limitation of this type of test is that it will result
only in suspected matches with no ability to verify them.

Who Owns Synthetic Data?
We decided to leave the most controversial question to the end of the last chapter.
The question here is who owns synthetic data. Let’s say that an insurance company
owns a particular claims dataset. If a vendor creates a synthetic variant of that dataset,
is the synthetic data still owned by the insurance company?

Part of the answer to this question will depend on the contracts that are in place.
Since many existing contracts would not have contemplated data synthesis, it is likely
that this issue was not directly addressed.
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Because there is no one-to-one mapping between the synthetic records and the real
customers of that insurance company, it is not the same data. However, the inferences
that can be drawn from the synthetic data would be similar to those from the original
data.

We will leave the answering of this question as an exercise for the reader.

Conclusions
In this chapter we touched upon some of the practical challenges and solutions that
can occur in a data synthesis project.

After completing this chapter (assuming that you have read all of the previous ones as
well) you will have a good understanding of the basic concepts and techniques
behind data synthesis, as well as the use cases for synthesis and the types of problems
that it can solve. As important, you should now have an appreciation of the balance
between privacy protection and data utility in synthetic data.
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The animal on the cover of Practical Synthetic Data Generation is a common potoo
(Nyctibius griseus), a nocturnal bird native to the tropics of Central and South Amer‐
ica. It can be found in forested habitats with scattered trees, such as forest edges along
rivers or roadsides.

The common potoo resembles a combination of an owl and a nightjar—it has large,
black-striped head and striking yellow eyes. Thanks to its splotchy pattern of gray-
brown feathers, the potoo becomes almost completely invisible during the day,
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The female common potoo does not build a nest but instead lays a single egg, white
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While the common potoo’s conservation status is listed as of Least Concern, many of
the animals on O’Reilly covers are endangered; all of them are important to the
world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from The English Cyclopedia: Natural History. The cover fonts are Gilroy Semibold
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.



There’s much more  
where this came from.
Experience books, videos, live online  
training courses, and more from O’Reilly  
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k 

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Synthetic Data Generation
	Defining Synthetic Data
	Synthesis from Real Data
	Synthesis Without Real Data
	Synthesis and Utility

	The Benefits of Synthetic Data
	Efficient Access to Data
	Enabling Better Analytics
	Synthetic Data as a Proxy
	Learning to Trust Synthetic Data

	Synthetic Data Case Studies
	Manufacturing and Distribution
	Healthcare
	Financial Services
	Transportation

	Summary

	Chapter 2. Implementing Data Synthesis
	When to Synthesize
	Identifiability Spectrum
	Trade-Offs in Selecting PETs to Enable Data Access
	Decision Criteria
	PETs Considered
	Decision Framework
	Examples of Applying the Decision Framework

	Data Synthesis Projects
	Data Synthesis Steps
	Data Preparation

	The Data Synthesis Pipeline
	Synthesis Program Management
	Summary

	Chapter 3. Getting Started: Distribution Fitting
	Framing Data
	How Data Is Distributed
	Fitting Distributions to Real Data
	Generating Synthetic Data from a Distribution
	Measuring How Well Synthetic Data Fits a Distribution
	The Overfitting Dilemma
	A Little Light Weeding

	Summary

	Chapter 4. Evaluating Synthetic Data Utility
	Synthetic Data Utility Framework: Replication of Analysis
	Synthetic Data Utility Framework: Utility Metrics
	Comparing Univariate Distributions
	Comparing Bivariate Statistics
	Comparing Multivariate Prediction Models
	Distinguishability

	Summary

	Chapter 5. Methods for Synthesizing Data
	Generating Synthetic Data from Theory
	Sampling from a Multivariate Normal Distribution
	Inducing Correlations with Specified Marginal Distributions
	Copulas with Known Marginal Distributions

	Generating Realistic Synthetic Data
	Fitting Real Data to Known Distributions
	Using Machine Learning to Fit the Distributions

	Hybrid Synthetic Data
	Machine Learning Methods
	Deep Learning Methods
	Synthesizing Sequences
	Summary

	Chapter 6. Identity Disclosure in Synthetic Data
	Types of Disclosure
	Identity Disclosure
	Learning Something New
	Attribute Disclosure
	Inferential Disclosure
	Meaningful Identity Disclosure
	Defining Information Gain
	Bringing It All Together
	Unique Matches

	How Privacy Law Impacts the Creation and Use of Synthetic Data
	Issues Under the GDPR
	Issues Under the CCPA
	Issues Under HIPAA
	Article 29 Working Party Opinion

	Summary

	Chapter 7. Practical Data Synthesis
	Managing Data Complexity
	For Every Pre-Processing Step There Is a Post-Processing Step
	Field Types
	The Need for Rules
	Not All Fields Have to Be Synthesized
	Synthesizing Dates
	Synthesizing Geography
	Lookup Fields and Tables
	Missing Data and Other Data Characteristics
	Partial Synthesis

	Organizing Data Synthesis
	Computing Capacity
	A Toolbox of Techniques
	Synthesizing Cohorts Versus Full Datasets
	Continuous Data Feeds
	Privacy Assurance as Certification
	Performing Validation Studies to Get Buy-In
	Motivated Intruder Tests
	Who Owns Synthetic Data?

	Conclusions

	Index
	About the Authors
	Colophon



