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Preface

The future of data science and artificial intelligence has never looked brighter. AI now
beats humans at games ranging from twitchy, reflexive Pong to deep, contemplative
Go. Deep learning models recognize objects nearly as well as humans. Some even say
self-driving cars perform better than their distracted human counterparts. The past
decade’s massive gains in data volume, storage capacity, and computing power have
enabled rapid advances in data science.

And of course technology has spread into every facet of your business (from finance
and sales to production and logistics). However, is each part of your business turbo‐
charged by data science and AI? Likely not. As wonderful as they might be, if you are
not designing a self-driving car or predicting customer behavior, you are probably
not using these technologies.

Many organizations may have access to business data from an enterprise resource
planning (ERP) system such as SAP, and yours is likely no different. Data coming
from a business system such as SAP is largely perfect as often validations and checks
are in place before it is allowed to save to the database (and, one of the most essential
and least rewarding tasks of a data scientist is cleaning the data). This means ERP
data in SAP is ripe for the picking, and data science is here to do the harvesting!

Let’s take a hypothetical scenario. The SAP Team at Big Bonanza Warehouse is in a
constant state of process improvement. They know how to configure their SAP sys‐
tem to do the tasks their users want, and they play that system like a fiddle, dutifully
taking requests and delivering solutions. However, there is a bit of a problem with
reporting and analytics; they have a data warehouse and a business intelligence sys‐
tem, but developing reports is a multimonth process. The team often resorts to using
standard ALV (ABAP List Viewer) reports, which are quite limited in power because
they require a developer to code; in addition, it is very hard to harness the wealth of
public data that could be used in conjunction with SAP. Just like at countless other
enterprises, SAP data at Big Bonanza Warehouse is an island, siloed within its own
system. Teams that don’t work with SAP have no idea what’s in there, and the teams
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1 If you’re not the kind of person who has fun with data, how did you find this book?

that do work with it spend so much time maintaining the systems that they don’t get
the chance to look outside them.

SAP data shouldn’t be an island, though. The team knows their data, how to find it,
and what they want to do with it. However, when it comes to analyzing that data,
everyone’s hands are tied by that multimonth report development process.

Sound familiar? It’s the story at nearly every SAP shop with whom we’ve ever worked.
And that’s a lot in our combined 30+ years of experience.

We want to give that SAP team (and yours!) some modern insight—tools and techni‐
ques they can use without defining data cubes, data warehouse objects, or learning
complex frontend reports. In this book, we’ll present simple scenarios such as dump‐
ing data straight out of SAP into a flat file and into a reporting tool. This is useful for
ad-hoc reporting and investigations. We’ll also consider more complex scenarios,
including using extractor tools and neural network models in the cloud to analyze
data in ways not possible within SAP or contemporary data warehouses.

How to Read This Book
You’ll need to approach this book from a conceptual point of view. We present alter‐
native techniques for analyzing business data.We ask—nay, we beg—the reader to
think about business data (in particular SAP data) in new and interesting ways. This
book is designed to awaken ideas around how to bridge the gap between your partic‐
ular business data and the advances in data science. You need not be an expert in the
complex algorithms that calculate gradient descent in a neural network, nor do you
need to be an expert in your business data. But you do need to have a desire to strad‐
dle these two camps and have fun in the process.1

From the data scientist’s perspective, the data science principles in this book are an
introduction. If you can spot a sigmoid, tanh, or relu activation function at fifty
paces, you can skip those parts. But we’re betting that if your guru level is that high in
data science, you’re a novice at the SAP stuff. Focus in on the SAP stories, showing
you how to pull things out and demonstrating working with the real business data in
the system.

From the SAP professional’s perspective, you’ll break out of traditional reporting and
analytics models. You’ll learn to think of business applications and reporting in
machine and deep learning terms. This may sound mystical, but by the end of the
book you will have the tools necessary to take this step. Along the way you’ll automat‐
ically detect anomalies in sales data, predict the future from past data, process text as
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natural language, segment customers into smart groups, visualize all these things bril‐
liantly, and teach bots to use business data.

In our world of AI and data science, asking the same old questions of your data is
stale, naive, and (quite frankly) boring. We want you to ask questions of your data
that you didn’t even know you could ask. Maybe the price of tea in China really does
have an outsize effect on your sales.

From the developer’s perspective, you’ll be inspired to learn wonderful programming
languages like Python and R. We don’t teach you these languages, but we challenge
you to dip your toe into these warm and effervescent waters. If you are already an
experienced R or Python developer, you’re in good shape for the code sections. For
the novice, we will point you to resources to get you started. Don’t feel left out if you
are inclined to use another language such as Java. The “meta” goal of this book is to
get you to think of how to think of business data differently and if that means you
want to use Java, by all means do so.

Operationalizing data science is a whole book in itself. We’ll frequently touch on how
to operationalize ideas we present, but it is beyond the scope of this book to dive deep
on creating robust pipelines.

Data scientists may be able to skip over Chapter 2. SAP professio‐
nals, you might be able to skip Chapter 3. The stories we tell later in
the book merge these two disciplines, so we want readers who
come from one or the other side to get a fair understanding of how
we’ll be poking around to work our magic.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Practical Data Science with SAP by
Greg Foss and Paul Modderman (O’Reilly). Copyright 2019 Greg Foss and Paul Mod‐
derman, 978-1-492-04644-8.” 

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.
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Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/practical-data-sci-sap.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction

Telling Better Stories with Data
Not enough gets said about abandoning crap.

—Ira Glass

We’ve all seen them. The intimidating PowerPoint presentations with the army of bul‐
let points marching down the screen. Often the lecturer will even apologize for the
busy slide and then continue to present, reading every word on the slide exactly as
printed. You start to wonder if you left the oven on last night. We all like stories. A
well-constructed narrative in the form of a movie, book, television show, or podcast
wraps around us like a blanket and draws our attention. The bullet-ridden Power‐
Point…not so much. With the deluge of data that has come with the advent of the
internet and IoT, we are tempted to splash some findings in a presentation, wipe our
hands, and say “that is that.” However, as data professionals we can’t just rain data
findings down on our audience. The prevailing advice is that you must tell a story
with data—make sure it’s a compelling story that people want to hear. Don’t deny
yourself the joy that storytelling can bring.

To tell a compelling story, you must identify it. What is being asked of my data? What
insights are my users looking for? A company that specializes in providing services
and equipment might ask, “What equipment needs servicing the most? The least? Is
there a correlation between equipment type and parts replacement?” At that same
company someone in the finance department might ask, “How can we more accu‐
rately predict cash-on-hand?” In sales the question might be, “What kind of customer
churn do I have?”

After you’ve identified your story, you’ll need to find your audience. There are many
ways to break them down, but generally your audience includes executives, business
professionals, and technical professionals. While they might manage or direct many
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business processes, executives often know little about the daily functioning of such
processes. The detail is irrelevant (or possibly confusing) to them—they want to
know the story in big bold letters. Business professionals are the daily administrators
of a business process, such as super users and business analysts. They know the pro‐
cess in detail and can understand raw tabular data. Technical professionals are the
smallest segment of your audience; they usually comprise colleagues in data analytics
and data science teams. This group requires less business and process background
and more technical details such as the root-mean-squared error of the regression or
the architecture of the neural network.

Once you’ve got your story and audience set, you’ll need to move forward with the
most difficult and tenuous part of the journey: finding the data. Without the data to
support your story, your journey will quickly come to an end. Let’s say you wanted to
tell the story of how sunspots correlate to sales of hats and mittens in the northern
hemisphere. Surprisingly, sunspot data is easy to obtain. You got that. However, you
only have details on sales of hats, not mittens. You can’t find that data. A cautious step
is needed here. Do you alter your story to fit the data or do you cut bait and find
another story? Reversing the process can be done but it’s a slippery slope. As a gen‐
eral rule, do not change your hypothesis to match your data.

Before you fully trust that data, you’ll need to vet it and start asking a lot of questions:

Is the source reputable? Did you scrape the data from a table on a website? What
sources did that website use for the data, and how was it obtained? Sources such as
Data.gov, ProPublica, the US Census Bureau, and GapMinder are trustworthy, but
others might need a dash of caution.

Do you have too much data? Are there easily recognizable, worthless features? Look
for features that are obviously precisely correlated. In the sunspot data mentioned
earlier, perhaps you have a UTC timestamp feature and two other features for date
and time. Either the date and time should be thrown out or the timestamp. You can
quickly look at correlations using techniques we will discuss later to help you identify
when two features are too closely correlated for both of them to be useful.

Is the data complete? Use some preliminary data tools to make sure your data is not
missing too much information. We’ll discuss this process in more detail later.

With the story in place, the audience identified, and the data vetted, what’s next?
You’re now ready for the art and fun of the story—identifying what tools to use to
either support or reject your null hypothesis. To say you’re using “data science” as a
tool is a slippery slope. You have advanced reporting, machine learning, and deep
learning in your arsenal. Often, just the organization of the data into an easy-to-use
dashboard tells the whole story. Nothing more needs to be done. As deflating as that
has been in our careers, it has happened more times than any other scenario. We start
the journey thinking that we have a case for a recursive neural network with either a
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gated recurrent unit or a long short-term memory module. And the excitement
builds while we’re gathering the data. Then we realize a support vector machine or a
simple regression would do just as well. Later, with not a little disappointment, we
realize that a dashboard for users to explore the data is more than enough to tell the
story. Not everything requires deep or even machine learning. Although it can often
be entertaining, shoehorning your story into these paradigms often does not tell the
story any better.

Finally, take a little time to learn a bit about the art of storytelling. Even our dry data
science stories deserve some love and attention. Ira Glass is a fantastic storyteller. He
has a series of four short videos on the art of storytelling. Watch them and sprinkle
some of his sage advice into your story.

A Quick Look: Data Science for SAP Professionals
SAP professionals are busy every day supporting the business and users, constantly
looking for process improvements. They gather requirements, configure or code in
the SAP system, and, more often than not, live in the SAP GUI. They have intimate
knowledge of the data within SAP as well as the business processes and can summon
an army of transaction codes like incantations. When asked for a report with analyt‐
ics, they really have two options: code the report in SAP or push the data to a data
warehouse where someone else will generate the report. Both of these processes are
typically long, resource-intensive endeavors that lead to frustration for the end user
and the SAP professional. For one particular client, the biggest complaint from the
SAP users was that by the time they actually got a requested report, it was no longer
relevant.

Reading this book will help you—the SAP professional—build a bridge between the
worlds of the business professional and the data scientist. Within these pages you will
find ideas for getting out of the typical reporting and/or analytics methodology that
has hitherto been so restrictive. As we discussed earlier, one of the first ways to do
that is to simply ask better questions.

Here’s a typical SAP scenario: Cindy works in Accounts Receivable. She needs a
30-60-90 day overdue report listing past due customers and putting them into buck‐
ets according to whether they are 30 days, 60 days, or 90 days past due. Sharon in
Finance gets the request and knows that she can have a standard ALV (ABAP List
Viewer) report created or can extract the data and push it to a business warehouse
(BW) where they will generate a report using Microstrategy or whatever tools they
have.

What if we shifted Sharon’s perspective to that of a data scientist? Sharon gets the
report request. She knows she can deliver just what was requested, but then she
thinks, “What more can be done?” She opens up a notepad and jots down some ideas.

A Quick Look: Data Science for SAP Professionals | 3
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Are there repeat offenders in late payments?

Are there any interesting correlations in the data? We know the customer name, cus‐
tomer payment history, customer purchases, and dollar amount.

Can we predict when a person will be paying late? How late?

Can we use this data to help rate our customers? Lower rated customers may not get
an order when inventory is low and a higher rated customer also makes the same
request.

What types of visualizations would be helpful?

Sharon sketches out an interactive dashboard report that she thinks would be very
useful for her users. Armed with these ideas and sketches, Sharon asks the depart‐
ment data scientist (or SAP developer) about the possibilities.

There is a distinctive difference in approaches here. The first is a typical SAP
response, and limits the creative and intellectual capacity of the business analysts. The
second leverages their creativity. Sharon won’t just provide the requested informa‐
tion. When she sees the data in SAP and asks better questions, she’ll be instrumental
in substantial process improvements.

This is just one example. Think of the possibilities with all the requests a typical SAP
team gets, and hence this book!

Another way to shift the thinking of the SAP team to be more dynamic and data cen‐
tric is to use better tools. This is the responsibility of the SAP developer. Most SAP
developers live in the world of its application programming language called ABAP
(Advanced Business Application Programming), and when asked to provide reports
or process improvements turn instantly to the SAP GUI or Eclipse. This is where
they’re expected to spend time and deliver value.

ABAP was originally Allgemeiner Berichts-Aufbereitungs-Prozessor.
It’s a server-side language specially designed to extend the core
functionality of SAP. You can create programs that display reports,
run business transactions or ingest outside system data and inte‐
grate it into SAP. A great deal of SAP ERP transactions run solely
on ABAP code.

ABAP developers often specialize in one or more of the business functions that SAP
provides. Since ABAP programs often directly enhance standard SAP features, ABAP
developers become very familiar with how enterprises design their processes. It’s very
common for people familiar with ABAP to perform both technical programming
roles and business analyst roles.
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SAP developers, we implore you: view SAP as a data source. The
presentation layer and logic layer of reports should be abstracted
away from the database layer (see Figure 1-1). It is worth noting
that SAP data is highly structured with strict business rules. One of
the most obvious advantages to this approach is the logic layer has
access to other sources of data, such as public data. Within an SAP
system, if a request was made to view the correlations between sales
of galoshes and weather patterns, the weather data from the NOAA
would have to be brought into either BI or SAP itself. However, by
using a tiered model the data can be accessed by the logic tier and
presented in the presentation layer. Often the data may be an API,
which allows for access without storage. This model also allows the
logic tier to tie into tools like Azure Machine Learning Studio to
perform machine or deep learning on the SAP data.

Figure 1-1. A simple, layered approach to databases, logic, and presentation of data sci‐
ence findings

A Quick Look: Data Science for SAP Professionals | 5



1 For a taste of how expansive the R package landscape is, see this blog post for perspective on package list
growth and search strategies for finding the right ones.

SAP lacks the thousands of libraries in Python or the thousands of packages in R.1 It
also lacks the ability to easily create dynamic/interactive dashboards and visualiza‐
tions. Don’t get us wrong: SAP does have tools to do advanced analytics, dashboards,
and visualizations. It’s just that they cost a lot of money, effort, and time. Some places
have lead times measured in months or quarters before reports can be created, and
sometimes the window for a valid business question is measured in hours. With the
tools in this book, we intend to close that gap. If you’re an SAP developer, we would
strongly advise you to learn programming languages like Python and R so that you
can use them to do your analytics on SAP data. Firstly, they are not limited to the
SAP ecosystem and secondly, they are free.

Outside of SAP, there are numerous other tools to help SAP developers present their
SAP data. You can use RMarkdown in R, Shiny in R, Jupyter Notebooks in Python,
PowerBI, Tableau, Plotly...the list goes on. In this book we will provide presentation
examples using PowerBI, RMarkdown, and Jupyter Notebooks.

A Quick Look: SAP Basics for Data Scientists
The lack of awareness around SAP is often surprising considering its size and ubiq‐
uity. Here’s an amazing fact: 77% of the world’s transaction revenue is involved—in
one way or another—with an SAP system. If you spend money, you have more than
likely interacted with SAP. And 92% of the Forbes Global 2000 largest companies are
SAP customers.

But how in the world does SAP software touch all that? What does it do? While in
recent years SAP has acquired a number of SaaS (Software as a Service) companies to
broaden its portfolio and make shareholders richer, it began with its core focus on
ERP: enterprise resource planning.

SAP started in Germany in 1972 under the sexy moniker Systemanalyse und Pro‐
grammentwicklung. Running under DOS on IBM servers, the first functionality was
a back-office financial accounting package. Modules soon followed for purchasing,
inventory management, and invoice verification. You can see the theme emerging:
doing the common stuff that businesses need to do.

That list of functionality may seem rather dull at first, especially to us cool hipster
data scientists with Python modules and TensorWhatsits who know how to make a
computer tell us that a picture has a dog (but not an airplane) in it. It’s not magic like
searching Google or using Siri on your iPhone. But SAP added a twist to those first
few boring modules: integration. Inventory management directly affected purchasing,
which directly affected financials, which directly affected...well, everything. That sin‐
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gle SAP ERP system contained all of these modules. Now, instead of having to pur‐
chase and run separate financial/inventory/invoicing systems, companies saved loads
of money. When one system gave them all the answers to business questions, custom‐
ers started buying in droves. That was the value and the win of ERP. By the time Gart‐
ner coined the term ERP in the 1990s, SAP was doing over a billion Deutsche marks
in yearly sales.

Acronyms for SAP Insiders
Since the 1970s, SAP has expanded into other areas of the back-office business. A
modern SAP ERP implementation contains the option to run complex modules for
many business functions. They have acronyms that SAP insiders know very well:

SD: Sales and Distribution
Manage sales, shipping, and billing activities.

QM: Quality Management
Manage quality inspections and notifications raised from there.

PM: Plant Maintenance
Planning maintenance of plant equipment, and tasks to perform during that
maintenance.

FICO: Financial Accounting, Controlling
Vital organizational financial data, managing profit/cost centers and internal
orders.

HCM: Human Capital Management
Everything you think of when you think “HR.”

PP: Production Planning
Capacity planning, material planning, and activities related to actually making
the things you make.

MM: Materials Management
Inventory, procurement, and master data for materials.

PS: Project System
Project and portfolio management, for both internally and externally financed
projects.

When you consider all the other capabilities that SAP’s satellite products bring, this
list doesn’t even scratch the surface. There’s Customer Relationship Management,
Transportation Management, Supplier Relationship Management, and acquired cloud
offerings like Ariba (B2B network and marketplace) and Concur (travel and expense
management).
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No single book could possibly capture all of this functionality. In this book, we focus
on data scenarios in a couple of the ERP modules and in SAP CRM.

Since such a high percentage of large companies around the world
use SAP for so many business-critical functions, is it any wonder
that so much business can be conducted inside it?

Getting Data Out of SAP
Like most large business applications, SAP ERP uses a relational database to house
transactional and master data. It’s designed such that customers can choose from
many relational database management systems (RDBMS) to function as the SAP
application database. Microsoft SQL Server, IBM DB2, Oracle, and SAP’s MaxDB are
all supported. In the last few years, SAP has rapidly introduced another proprietary
database technology, HANA, as an RDBMS solution with in-memory technology.
While future versions of SAP’s core ERP product will one day require HANA, most
SAP installations today still use one of the other technologies as their database.

In this book, we will introduce several ways of getting data out of
your SAP system, none of which will require you to know exactly
which DB your SAP system runs on. But if you’re a true nerd, you’ll
find out anyway.

The relational databases that power the SAP instances at your company are huge and
full of transactional and master data. They fully describe the shape of the vital busi‐
ness information stored and processed by SAP. The databases at the heart of your
SAP systems are the source of truth for the discoveries you can make.

And unless it’s your absolute last resort, you should never directly connect to them.

All right, we’re being a little facetious here. You will find valid times to directly query
data from the SAP databases with SQL statements. But the sheer size and incredible
complexity of the data model make it so that fully understanding the structure of a
simple sales order can involve over 40 tables and 1000+ fields. Even SAP black belts
have difficulty remembering all the various tables and fields they need to use, so
imagine how inefficient it would be for a data scientist who is new to SAP to unpack
all the various bits of requisite data.

BAPIs: Using the NetWeaver RFC Library
Data nerds who don’t know SAP that well should start by examining the available
Business Application Programming Interfaces (BAPIs) in the SAP system. BAPIs are
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remote-callable functions provided by SAP that expose the data in various business
information documents. Instead of figuring out which of the 40+ sales order tables
apply to your particular data question, you can look at the structure of various sales
order BAPIs and determine if they fill that gap. The trouble of reverse engineering the
data model is gone.

BAPIs also help by covering over system limitations from earlier versions. During the
early period of SAP’s core product development, the various modules restricted the
number of characters that could denote a table or field. With SAP’s remarkable stabil‐
ity over the years, those table and field names have stuck around. Without living
inside SAP, how could you possibly know that “LIKP” and “VBELN” have anything to
do with delivery data? BAPIs are a later addition, so they have grown up with inter‐
faces that better describe their shape and function.

OData
SAP NetWeaver Gateway represents one of SAP’s many ways of breaking into the
modern web era. It’s an SAP module—in some cases running enough of its own stuff
to be worth a separate system—that allows SAP developers to quickly and easily
establish HTTP connections to SAP backend business data. We predict that you’ll see
examples of using SAP NetWeaver Gateway in Chapter 6.

The foundational layer of transport is known as OData. OData represents many tech
companies coming together to put forward a standard way of communicating over
the web via RESTful APIs. It provides a common format for data going over the web
using either XML or JSON, ways for clients to indicate the basic create/read/update/
delete operations for server data, and an XML-based method for servers to specify to
clients exactly the fields, structure, and options for interacting with data that the
servers provide via metadata.

Using OData through SAP NetWeaver Gateway requires programming in SAP’s
native backend language, ABAP. Some of our SAP-native readers may be well versed
in this language and can produce Gateway OData APIs. Other readers will likely be
unfamiliar, but should take solace: if your company runs SAP in any meaningful way,
your company will have people who know ABAP. These people will either know how
to create OData services, or will be able to quickly learn since it’s not difficult.

Choose OData when you can’t find a BAPI that meets your data needs. It’s a great
middle ground that provides SAP administrators with the flexibility to meter and
monitor its usage. It also gives developers the ability to put together data in any way
they choose. Another benefit of using OData is that it doesn’t require a NetWeaver
connector like the BAPI method: any device that can make HTTP requests safely
inside the corporate network will be able to make OData requests.
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2 However, this book couldn’t be called “Practical” if we didn’t acknowledge that the worst hacks and ill-advised
duct-tape solutions make up at least 50% of any real-world environment.

Other ways to get data
If you can’t find the right BAPI and you can’t find the resources to make an OData
service, there are always a few other routes you can take. We’ll cover those more
briefly, since they aren’t things we typically recommend.2

Web services.    SAP allows you to create web services based on its Internet Communi‐
cation Manager (ICM) layer. These web services allow you to work even more flexibly
than OData, but they still require ABAP knowledge. The space between OData with
Gateway and a totally custom SAP web service is small—consider carefully whether
your data question can’t be answered with OData.

Direct database access.    Everyone says you shouldn’t, but we’ve all also encountered
one or two times when it was the only thing that would work. If you need to go this
route, a key task will be ensuring that the data you extract matches up with what SAP
provides on the screen to end users. Many times there are hidden input/output con‐
versions and layers of data modeling that don’t become apparent when just browsing
through a data model.

Seriously. Picking directly from an SAP database is like driving a Formula One car
with brake problems. You’ll get where you need to go really fast, but you’ll probably
smash into a wall or two on the way.

Screen dumps to Excel.    Sometimes an end user will know exactly which screen has the
right data for them. Many times this screen will have a mechanism for exporting data
to Excel.

Which Way?
A simple set of rules for deciding how to get your SAP data from the system:

BAPI
I know what data I want, and SAP provides the exact right remote function to get
it.

OData
I know what data I want, but SAP doesn’t provide the exact right function for it—
or I want to be able to extract this data with a simple web call.

Web services
I know what data I want, but OData doesn’t quite let me shape the data exactly as
I want.
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Direct DB access
I know what data I want, and I know exactly what the SAP application data
model provides for this, but I don’t have ABAP skills to build it myself.

Screen dumps to Excel
Somebody else knows what data I want, and can only provide it by going to a
screen to get it for me.

Roles and Responsibilities
Data science combines a range of skill sets. These often include statistics, program‐
ming, machine learning, analysis, architecture, and engineering. Many blogs and
posts online discuss the differences between data science roles. There are innumera‐
ble job titles and delineations. One camp defines roles into data analysts, data engi‐
neers, data architects, data scientists, and data generalists. Other groups have their
own delineations.

Readers should understand something very important. Unless you are at a very large
company with a data science team, you will be lucky to have one person on your team
with some of these skills. These job delineations exist in theory for all, but in practice
for only a small percentage. Be prepared to wear many hats. If you apply some of
these forays into data science at your company, be prepared to do the work yourself.
Don’t have a SQL database and want to extract and store some SAP data? We’ll intro‐
duce this. Want to automate a workflow for extraction? Here you go. Everything from
the SAP data to the presentation layer will be covered.

Our intention is clear: we want to create citizen data scientists who understand what
it takes to make data science work at their organizations. You may not have any
resources to help you, and you may get resistance when you ask for some of these
things. Often, you must prove your theory before someone helps. We understand that
the roles and responsibilities are not well defined. We hope to give you an overview of
the landscape. If you’re reading this book, you’ve already rolled up your sleeves and
are ready to do everything from building SQL databases to presenting machine learn‐
ing results in PowerBI.

Summary
A huge part of getting value is communicating it. We went over how to tell great sto‐
ries with the data you find in SAP: identify your story, find the audience, discover the
data, and apply rigorous tooling to that discovered data. Sometimes all it takes to
communicate the story is one simple graph. Other times it may require detailed lists
of results. But no matter what visual method conveys your findings, be prepared to
tell a story with it.
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SAP professionals looking to tell stories about their data should look at tools such as
programming languages like Python and R, and visualization tools like Tableau and
Power BI. Look at Chapter 2 to dive deeper.

Data scientists looking to discover what’s in SAP should look at ways of getting that
data out. BAPIs provide a function-based approach to retrieving data, OData sets up
repeatable and predictable HTTP services, and you can always dump screen data to
Excel or directly query the SAP database as a last resort. Look at Chapter 3 to find out
more.

We want you to get the most out of the SAP data that’s ripe for the picking in your
enterprise, and the best way to get value out of raw data is by applying data science
principles. This book will show you how to marry the world of SAP with the world of
data science.
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CHAPTER 2

Data Science for SAP Professionals

If you’re a data scientist, you may not need much of the informa‐
tion in this chapter. We’re trying to get SAP professionals up to
speed on things that you probably already know.

As a SAP business analyst, Fred is always looking for process improvements. That’s
his job, and he is good at it. He’s heard a lot of buzz about data science, but to him, it
is just that...buzz. Data science is creating the self-driving car, beating world cham‐
pions at Go, and translating languages. Fred works at a US manufacturer, and data
science has no real relevance to him.

Or does it?

If Fred knew the basic concepts around data science, he would understand how it
could be leveraged to provide business value. He recently worked with the product
development team, which is looking to IT for help in streamlining their processes.
They have lots of unorganized data. They present Fred with an idea, a dashboard to
help them track their process. When Fred evaluates the project his first response is to
put the data in a SQL database. Once there he can use a presentation tool like Pow‐
erBI to create a dashboard. It is a solution that everyone likes.

Fred doesn’t know the basics of data science. There are features in this data that might
help the company make better, data-driven decisions. If he knew the basic concepts of
regression and clustering, he would see it. He would know that he could do more
with this business data than the project team requested.

Therein lies the point of this chapter. We’re not trying to create data scientists. We are
trying to get business analysts to think a little like a data scientist; we’re trying to cre‐
ate citizen data scientists. These are business analysts and professionals who under‐
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stand enough about data science to ask questions about how it can be applied to their
data (in particular, useful to their SAP data). To do that, we need to introduce the fun‐
damentals of data science, including the different types of learning models: machine
learning and neural networks.

What follows is a rabbit race through the subject that will leave you with, at the very
least, enough information to think about business processes in a slightly different
way...in a data science way. Ideally you can think about your projects and data and say
to your data scientist or developer, “Maybe a classification algorithm like Naive Bayes
might work on this.” Imagine the jaws that will drop to that response!

This is a conceptual chapter that provides an overview of the main data science con‐
cepts, and as such we will not discuss tactical ideas such as exploratory data analysis
(EDA) or data preparation. We’ve covered the topics we feel are most relevant, but
one could easily argue that we left out things of importance, such as automated
machine learning (autoML) and ensemble methods; however, we had to draw a line
in the sand somewhere to keep this chapter manageable. Nonetheless, we will later
take a look at tactical concepts such as EDA (discussed in Chapter 4), so stay tuned.

Machine Learning
The syntax in data science can be confusing and overlapping. Deep learning is a com‐
ponent of machine learning by definition, but we refer to deep learning as those
models that use more complex neural networks. Deep learning requires more com‐
puting power, more time, and more data to be successful. Often, simpler machine
learning models perform equally, and sometimes better. Don’t overlook them in the
face of shiny and fancy neural networks.

Most data scientists spend the majority of their time finding, clean‐
ing, and organizing huge amounts of data. Some estimates say that
data scientists spend 80% of their time on this unrewarding task.
We have good news for the data scientist looking at SAP data. SAP
is an ERP system. The millions of rows of business data are already
in a relational database. While this does not end the need to do
some cleaning and reorganizing, it does reduce that effort. We will
show how to find and extract this data, but often there is very little
cleaning or organizing needed.

14 | Chapter 2: Data Science for SAP Professionals

http://bit.ly/2NBXPTJ


Machine learning falls roughly into four categories:

• Supervised
• Unsupervised
• Semi-supervised
• Reinforcement

Deep learning includes these categories as well. It is considered a
subset of machine learning. For the purposes of this book, here we
refer to machine learning and not the subset of deep learning. We
will present deep learning a little later. There is a lot of overlap and
confusion in the terminology. If you follow news about machine
learning, you’ll see that no two people on Earth are using the same
terminology in the same way—so don’t feel bad about getting con‐
fused.

Supervised Machine Learning
Supervised machine learning is done on labeled data. It works well on classification,
which is a method to classify or predict categorical labels for a set of data. In market‐
ing, for instance, it may be determining the customer who will buy a product. Super‐
vised machine learning also works well on prediction. Prediction is a method to
determine a numerical value from a set of data. Using the same analogy as for classifi‐
cation, in marketing it may be used to try and determine how much a customer will
spend. For example, the well-known Iris dataset includes information about the petal
length, petal width, sepal length, and sepal width of 150 iris flowers, and identifies
their species. Once we train a model against this data, it can accurately predict the
species of a new iris flower, given its sepal and petal data. Let’s take a closer look at
some of the different types of supervised machine learning models.

Linear regression
Linear regression is an approach to modeling the relationship between a dependent
variable and one or more explanatory variables. The relationship between a home’s
value and its square footage is a good example (Figure 2-1). If you have several home
values and their respective square footage you could surmise the value of an
unknown home if you know its size. Granted, there’s more to a home’s value than
that, but you get the point.
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Figure 2-1. Linear regression of housing prices by square footage

Logistic regression
Logistic regression, like linear regression, uses the same basic formula. However,
logistic regression is categorical while linear is continuous. Using the same home
value example, linear regression would be used to determine the home value, whereas
logistic regression could be used to determine if it would sell.

Decision trees
Decision trees are a type of model that simply asks questions and makes decisions.
The nodes of the decision tree ask questions that lead to either other nodes, or to end
nodes (leaves) which are classifications or predictions (Figure 2-2).
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1 The authors recommend learning to park before Formula One racing, but we did not analyze this using any of
the techniques in this book. So who knows? Maybe it is better to be an Formula One driver but not learn to
park! More data is needed.

Figure 2-2. Decision tree for eating a cookie

Random forest
Random forests are groups of decision trees that help solve one of the biggest prob‐
lem of decision trees: overfitting (Figure 2-3). Overfitting a model means that it is
very good at solving problems it knows, but when introduced to new data it will fall
short. Think of it as training yourself to be a world-class Formula One driver—but
never learning to park.1
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2 Euclidean distance is simply the ordinary straight-line distance between two points, either on a plane or in
three-dimensional space. Why say “straight-line” when you can say “Euclidean distance” and sound scholarly?
Bonus points if you have a pipe or tweed jacket.

Figure 2-3. Random forest

Unsupervised Machine Learning
Unsupervised machine learning, as you may have guessed, does not have labeled data.
That is, you have a pile of data, but you do not know the output label. For example,
you have a set of voting records with age, sex, income, occupation, and other features.
What you do not know is how they relate. Let’s take a look at some of the different
types of unsupervised machine learning.

k-means clustering
k-means clustering takes data and groups it into a given set of points (Figure 2-4). An
example would be to segment or cluster a group of customers into groups represent‐
ing their buying frequency. One way it does this by grouping them with the nearest
mean value. It also works on words if you use a non-Euclidean2 distance, such as Lev‐
enshtein. We will go more into this in Chapter 7.
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Figure 2-4. Clustering

Naive Bayes
Naive Bayes is not a single algorithm but a collection of classification algorithms
within the Bayes’ theorem family (Figure 2-5). The common concept is that every fea‐
ture of the data is classified as independent of every other feature. For example, a car
has a hood, a trunk, wheels, and seats. Naive Bayes sees all of these as independent
contributors to the probability the object is a car. Naive Bayes is extremely fast and is
often the first classifier tried for machine learning tasks.

Figure 2-5. Bayes’ theorem

Here are the terms of Bayes’ theorem, in plain language:

P(c | x)
The probability the hypothesis (c) is true given the data (x).

P(x | c)
The probability of the data (x) if the hypothesis (c) is true.

P(c)
The probability the hypothesis (c) is true regardless of the data.
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3 A much more detailed explanation of this scenario can be found at http://yudkowsky.net/rational/
bayes#content.

P(x)
The probability of the data (x) regardless of the data.

This is a common explanation of Bayes; it’s found everywhere. However, it’s a bit
tricky to understand so let’s simplify.

There is a very common and intuitive explanation of Bayes using breast cancer as an
example. Consider this scenario: a patient goes to the doctor for a checkup and the
results of a mammogram come back abnormal. What are the odds the patient has
cancer? You might intuitively think that cancer must be present because of the test
results, but applying Bayes to the situation shows something different. Let’s take a
look.

Consider these statistics:3

• 1% of women age 40 who participate in routine screenings have breast cancer.
99% do not.

• 80% of mammograms will detect cancer when present and 20% miss it.
• 9.5% of mammograms return a false positive; they detect cancer when it is not

there. Meaning 89.5% do not detect cancer and it is not there (true negative).
• The probability of the event is the event divided by all possibilities.

P(c|x) = .01 * .8 / (.99 * .095) + (.01 * .8) = .0776

Intuitively you hear that the mammogram is 80% accurate, so a positive result would
mean you have an 80% chance of having cancer. But the truth is...you only have a
7.8% chance even if you get a positive result.

Hierarchical clustering
Hierarchical clustering is a method of grouping results into a dendrogram, or tree
(Figure 2-6). If it starts from many clusters and moves to one it is called divisive. If it
starts from one cluster and moves to many clusters it is agglomerative. A divisive
method partitions a given cluster by computing the greatest difference (or distance)
between two of its features. An agglomerative method does the opposite. It computes
the differences between all clusters and combines the two with the least common dis‐
tances between their features. They both continue until they are either out of data or
the dendrogram splits the predefined number of times. We will go into more detail in
Chapter 7.
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Figure 2-6. Agglomerative and divisive hierarchical clustering

Semi-Supervised Machine Learning
Semi-supervised machine learning is a combination of supervised and unsupervised
learning. In this scenario you have a lot of data but not all of it is labeled. Consider
the scenario for fraud detection. Credit card companies and banks have huge
amounts of transaction data, some of which has been properly labeled as fraudulent.
However, they do not know of all the fraudulent transactions. Ideally, they would
properly label all of the fraudulent transactions manually. However, this process is not
practical and would take far too much time and effort. There exists a small set of
labeled data and a very large set of unlabeled data. In semi-supervised learning one
common technique is called pseudo-labeling. In this process the labeled data is mod‐
eled using traditional supervised learning methods. Once the model is built and
tuned, the unlabeled data is fed into the model and labeled. Finally, the labeled data
and the newly pseudo-labeled data is used to train the model again (Figure 2-7).

Machine Learning | 21



Figure 2-7. Pseudo-labeling for semi-supervised learning

Reinforcement Machine Learning
Reinforcement machine learning is when you train a model to make decisions based
on trial and error. This model interacts with its environment by learning from past
successes and failures. It then determines a course of action for the next attempt or
iteration. It works on the premise of maximizing a reward. The most common
example of this is training a machine to play a game. Let’s take a closer look at some
of the different types of reinforcement learning.
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Hidden Markov models
Hidden Markov models (HMMs) are a series of observable emissions. These are the
results of a given state that a model passed through to make those emissions. This is a
bit confusing so let us clarify. In a HMM you cannot directly observe the state, but
you can observe the results of those states. You work in an office without windows
and you cannot see the weather outside. You can see what people are wearing when
they show up to the office. Say 75% of people are carrying umbrellas...you can sur‐
mise that it’s raining outside. HMMs are popular ways to identify sequences and time
series. They do not look at the true state; rather, they look at the emissions from the
true states. The simplest models assume that each observation is independent of the
next. However, HMMs assume a relationship between the observations. As another
example, a series of data is observed for weather. That data has features in it like baro‐
metric pressure, temperature, and day of the year. The corresponding emission data
has the binary feature of “not cloudy” or “cloudy.” Observing many days in succes‐
sion, the model predicts the state of the weather not only on today’s observable fea‐
tures, but on the previous days’ features. HMMs attempt to identify the most likely
underlying unknown sequence to explain the observed sequence.

The concept is a bit tricky so let’s use another example. Say you’re wanting to use a
HMM to determine if there is going to be an increase or decrease in the number of
purchase orders placed at your company for widgets. SAP has a history of purchase
order data with timestamps. It also has other states that might influence when widgets
are purchased. There are sales orders, time of year (seasonality), warehouse inventory
levels, and production orders. Each of these could be used by the HMM. Think of it
in this way: “past behavior predicts future behavior.”

Q-learning
Q-learning is a value-based reinforcement learning algorithm. It is based on the qual‐
ity of an action. Q-learning goes through steps where it learns to optimize its out‐
come (Figure 2-8). In a way, it builds a secret cheat sheet of how it should behave. In
the example of game play, it takes an action, evaluates that action, updates its cheat
sheet with whether it was good or not, and then tries again. It iterates on this incredi‐
bly fast.
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Figure 2-8. Q-learning steps

A common illustration is to imagine a game where you are a dog and you must find
the pile of bones. Every step you take costs one bone. If you run into that pesky cat
you lose 10 bones and die (Figure 2-9). The goal is to maximize the number of bones.

Figure 2-9. Q-learning dog optimizes for most bones

It may seem like a simple game to us, but a computer doesn’t know how to start. So
first it goes down and gets two bones. Yaaaah! Man, that was a good move. It records
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that and takes a step to the right. Damn that cat...game over. It updates the cheat sheet
with that information. Next time it takes a right step first, then another right, and
then it only has the option of down. Yes—a motherlode of bones!! Remember there is
a –1 bone price per step. The result is –1 +2 –1 –1 +1 –1 –1 +10 = 8. It logs the results
and tries again. This time it takes a right because it knows there is a +1 there. It takes
another right and then a down to hit the motherlode. The result is –1 +1 –1 –1 +10 =
8. Both paths are equally as valuable, but if there is a bonus or limit on the number of
steps option 2 wins.

You may be thinking, “Pretty cool, but how would this apply to anything but games?”
Take the image of the bulldog finding the path to the motherlode. Now imagine it is a
simple warehouse...expand it greatly (Figure 2-10). Reinforcement learning could
reduce transit time for picking, packing, and stocking as well as optimizing space uti‐
lization. It is more complex, but fundamentally the same as the dog and bones game.

Figure 2-10. This warehouse is more complex than a dog finding a bone, but pathfinding
through reinforcement learning works here, too
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Neural Networks
Both of us authors have been programming for many years and have experienced
some wonderful “wow” moments along the way. Greg learned to program using Basic
on the Apple IIe. He had been programming for about a year before learning the
PEEK, POKE, and CALL commands. The first time he used these evocations and ran
his program, he sat back and thought, “Wow!”; he’s been programming in one form
or another ever since. Greg and Paul both had that feeling when they wrote their first
few deep learning programs. “Wow!” is all we could say.

Let’s talk about deep learning and what that term means.

Traditional programming follows a tale of straightforward, predefined logic. IF this
THEN perform that action 10 times. It’s so powerful that we can simulate beautiful
scenery and create games that transport us to magic, imaginary realms. But it makes
tasks such as language translation near impossible. Imagine the program it would
take to translate English to Korean. That program would need to have conditions for
words, phrases, negations, syntax, vernacular, punctuation, and on and on, ad infini‐
tum. Imagine nesting all that in linear logic. Along comes machine learning. Now you
input a set of English texts and their translated Korean equal. You train the model by
showing it the input and the expected output. The more data you have, the more you
can train your model. Finally, you input a set of English texts that do not have a
Korean translation and kazam! It performs the translation as it has learned.

That is remarkable in itself, but it gets better. Google built a deep learning algorithm
in 2016 that translated from English to Korean, Korean to English, Japanese to
English, and English to Japanese. Pretty incredible by itself—but that’s not the amaz‐
ing part. The network was able to translate from Japanese to Korean and Korean to
Japanese without first translating through English. Let that sink in. What is happening
in the network to allow for such a thing to happen? The network learned a metalan‐
guage—a type of linguistic mapping that transcended simple one-to-one language
translation.

When translating from Japanese to Korean one would expect the model to go
through the English first (the curved lines); see Figure 2-11. After all, the model was
not trained to go from Japanese to Korean. However, the model did not do this. It
went directly from Japanese to Korean (the dotted line). Amazing! Kind of spooky
actually.
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4 Image classification refers to the process of extracting information from an image and classifying it; for exam‐
ple, to identify when a picture is of a Chihuahua or a blueberry muffin.

Figure 2-11. Google’s language translator

Google’s language translator is a neural network in action. Let’s take a look at a few
basic neural network architectures. This is a gentle introduction to neural networks
and deep learning. We hope it piques your curiosity enough for you to want to take a
deeper dive. At its foundation, a neural network is a series of interconnected process‐
ing modules that work together to take inputs and solve for a given output. They are
inspired by the way neurons and synapses in the brain process information. They
have been instrumental in solving problems ranging from image classification4 to lan‐
guage translation. We will go into more depth on this in Chapter 9.

There are three basic layers to a neural network:

The input layer
This is where the data is input into the network.

The hidden layer(s)
This layer performs basic computation and then transfers weights to the next
layer. The next layer can be another hidden layer or the output layer.

The output layer
This is the end of the network and where the model outputs results.

Neural networks have six foundational concepts, as described in the following sec‐
tions.

Feed-forward propagation
Data (weights and biases) flows forward through the network from the input layer
through various hidden layers and finally to the output layer (Figure 2-12).
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Figure 2-12. Feed-forward propagation

Backward propagation
After data is fed forward through the network, the error (desired value minus the
obtained value) is fed backward through the network to adjust the weights and biases
with the aim of reducing the error (Figure 2-13).
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Figure 2-13. Backward propagation

Gradient descent
An optimization function that attempts to find the minimum value of a function. 
Another way of saying it is that gradient descent has the goal of minimizing the cost
function as much as possible (Figure 2-14). When this is achieved, the network is
optimized. A common analogy is a man walking down a mountain. Every step he
takes he wants to head in a downward direction until he reaches the lowest possible
point; it is here where the cost function is at a minimal. When this is achieved the
model has the highest accuracy.
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Figure 2-14. Gradient descent

Learning rate
The learning rate is the size of the steps we take to achieve the minimum of gradient
descent (bottom of the mountain). If the learning rate is too large, it will pass the
minimum and potentially spin out of control. If it is too small, the process takes far
too long (Figure 2-15).

Figure 2-15. Learning rates
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Neuron
A neuron is the foundation of a neural network. It takes an input, or inputs, applies a
function to those inputs and renders an output. It is loosely based on the human neu‐
ron (Figure 2-16).

Figure 2-16. Neuron

Functions
A function is a mathematical equation within a neuron that takes the input values
and decides whether it should activate (or fire). There are many activation functions,
but these are the are most common in neural networks:

Sigmoid
Takes the input value and puts it in a range from 0 to 1 (Figure 2-17).

Figure 2-17. Sigmoid

Neural Networks | 31



Tanh
Takes the input value and puts it in the range of –1 to 1 (Figure 2-18).

Figure 2-18. Tanh

ReLU
Rectified Linear Unit takes the input value and puts it in the range of 0 to infinity.
It makes all negative values 0 (Figure 2-19).

Figure 2-19. Rectified Linear Unit

Leaky ReLU
Takes an input value and puts the range from a very small negative value to infin‐
ity (Figure 2-20).
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Figure 2-20. Leaky Rectified Linear Unit

Softmax
Takes the inputs and predicts a result over a certain set of possibilities. For
instance, in digit recognition the softmax function returns a result of 10 possibili‐
ties (0-9) with probabilities for each. If you have five different sodas, it would
return five possibilities with probabilities for each (Figure 2-21).

Figure 2-21. Softmax Function
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ReLUs have the problem of “dying”—getting stuck on the negative
side and always outputting a value of 0. Using Leaky ReLUs with
their slight negative slope can remedy the problem, as can lowering
the learning rate.

As business analysts we recommend taking a high-level view of machine learning
and, in particular, neural networks. You can go down many rabbit holes here trying to
understand the exact difference between sigmoid or tanh, or how exactly to deter‐
mine gradient descent. You can dig into the math of this to such an extent you could
write many doctoral theses on it. Our goal with this overview is to impart to SAP
business analysts the sheer depth of this beautiful science. Furthermore, a basic
understanding of this science will allow you to leverage it for real-world results.

Now that we have some of the fundamentals, what are some of the basic neural net‐
works we see in practice today?

Single layer perceptron
A Single layer perceptron is the simplest form of a neural network (Figure 2-22). It has
no hidden layers. It has only an input and output layer. You might think that diagram
has two layers, but the input layer is not considered a layer because it does no compu‐
tation. A single layer perceptron receives multiple input signals, sums them, and if the
value is above a predetermined threshold it fires. Because they either have a value or
not, they are only capable of discerning between two linearly separable classes. What’s
the big deal? In themselves, the single layer perceptron is quite limited. However, they
comprise other neural networks. Imagine: the average human brain has 100 billion
neurons. Each neuron has a simple function, as simple as this single layer perceptron.
It is the concert of these neurons in our brains that makes the music of who we are.
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Figure 2-22. Single layer perceptron

Multilayer perceptron
A Multilayer perceptron is composed of multiple layers (Figure 2-23). They are nor‐
mally interconnected. Nodes in the first hidden layer connect to the nodes in the
input layer. A bias node can be added in the hidden layer that is not connected to the
input layer. Bias nodes increase flexibility of the network to fit the data and their
value is normally set to 1. In more advanced neural networks the process of batch
normalization performs this function.
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Figure 2-23. Multilayer perceptron

Convolutional network
A convolutional neural network (CNN) is a multilayer network that passes weights
and biases back and forth through the layers. CNNs assume that the inputs are
images and therefore there are special layers and encoding to these networks. Why
not use a multilayer perceptron for image classification? Well, image data is big...it
would not scale well. CNNs use three-dimensional tensors composed of width,
height, and depth as their input.

Figure 2-24. Convolutional neural network layers
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There are three unique layers to a CNN:

Convolutional Layer
The primary purpose is to extract features from the input. Every image is a
matrix of pixel values, which are converted to features using a filter which slides
over the image and computes a dot product.

Pooling Layer
This layer is also sometimes called downsampling or subsampling. It reduces the
dimensionality of the features presented by the convolutional layer by using
either Max, Average, or Sum values.

Fully Connected Layer
Similar to a multilayer perceptron that uses a SoftMax activation function to
deliver to the output layer a probability distribution.

CNNs can become very complex. Check out Google’s Inception model, shown in
Figure 2-25.

Figure 2-25. Google’s Inception model
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The field of neural networks is undergoing rapid and exciting
change. Brilliant minds are working ardently to push this field for‐
ward incredibly fast. Along come researchers Sara Sabour, Nicholas
Frost, and Geoffrey Hinton with a proposal called CapsNets (Cap‐
sule Networks). (Hinton is an icon in this field; when his name is
on a paper...you read it.) In a multilayer neural network you add
more and more layers depending on your needs. In a CapsNet you
add a neural network inside another layer.
As Hinton says, “The pooling operation used in convolutional neu‐
ral networks is a big mistake and the fact that it works so well is a
disaster.”
What makes capsule networks so exciting is they, like our own
image processing, do not take into account the orientation of the
image. When a child looks at a dog, the orientation of the dog does
not affect his/her perception of the image.
CapsNets are too new at this time, but if they continue to gain trac‐
tion we will discuss them more fully in future editions of this book.

Recursive neural network
A recursive neural network is a multilayer network that leverages time-series or
sequential data. They perform very well and are often the go-to model for natural lan‐
guage processing (NLP) tasks and time-series data. We will see them in action in the
chapter Language and Text Processing. In our other neural networks, once data is
passed to the next layer the previous layer is forgotten. However, when trying to make
predictions along a sequence of data it is important to remember what came before it.
These networks are recurrent in that they double back and look at the previous input
or inputs. In a sense, they have a memory.

The arrows circling back show the recurrence in the RNN (Figure 2-26). As you can
see, this recurrence is very short; it only circles back on the same layer. In essence, it
has only a short-term memory. This problem is overcome by introducing to the net‐
work a long short-term memory (LSTM).

LSTMs allow the network to learn over a long period of time. They have three gates:
input, output, and forget. The input gate determines what data is let in. The output
gate determines what data is let out. Finally, the forget gate decides what data should
be forgotten. Their architecture can be difficult for the beginner so suffice it to say
that LSTMs allow the network to remember over a long period. If you are interested
in a deeper dive into them, read this blog.
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Figure 2-26. Feed forward and recurrent networks
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Temporal networks
A temporal convolutional network (TCN) is a multilayer network that has the advan‐
tages of a convolutional network while also considering placement and position.

Convolutional networks are generally very good at image recognition and language
classification. They do not however, care about placement. For instance, a CNN
wants to know if the image contains a tail, a brown button nose, and floppy ears.
Then it classifies that image as a dog. It does not care about the positioning of the
image. In language classification, a CNN wants to know the presence of certain key‐
words that will indicate if it is looking at a legal document, a comic book, or a Hemi‐
ngway novel. The position, again, does not really matter. What if you want to work
on data in which position and placement is important, such as time-series data?
Time-series data is simply a dataset on a timeline with date and/or timestamps. As we
mentioned earlier, the industry go-to model for such tasks is the RNN. However, like
many things in data science, that model has recently been unseated...by the mighty
TCN.

Compared to RNNs, TCNs have the advantage of being computationally less expen‐
sive and using a simpler architecture. RNNs need resources, the LSTM layers, to
remember. TCNs use input steps that map to outputs that are used in the next layer of
the input (Figure 2-27). Instead of using recurrence, they use the results of one layer
to feed the next layer.

Figure 2-27. Temporal convolutional network

In Chapter 6, we do a simple sales forecast. TCNs seem like the proper model to use
for such a task; we will attempt to use it to forecast the sales for a particular product
from an SAP system.

Autoencoder
The Autoencoder is a feed-forward-only neural network with a deceptively simple
definition. It is a network that takes input data and tries to copy it as the output. It is
comprised of two parts:
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Encoder
Deconstructs the input data.

Decoder
Reconstructs the data for output.

The most common use for this type of network is image denoising and image genera‐
tion. The real value in the autoencoder is not the output, which is the case for our
other neural networks. The real value is in the representation that the neural network
has of the output in the compressed data. To clarify this further, the model at its most
compressed has learned the salient features of the object. Let’s say it is looking at the
image of a dog. The salient features are ears, eyes, mouth, snout, dog-like nose, and so
on. If the model compresses too far it may think the only salient features are eyes and
won’t be able to tell the difference between a dog and any other animal. If the model
is not compressed enough such that it recognizes too many features (such as coloring
and facial shape) it will know only one type of dog. The trick in this model is know‐
ing the balance. As a recap, the neural network is optimized not when the output is
closer to the input, but when the output still represents the key features of the input
and the data is compressed as much as possible.

A key concept with Autoencoders is that the output dimension
must be smaller than the input dimension for the network to learn
the most relevant features.

Figure 2-28. Autoencoder
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Autoencoders are typically used for reducing the dimensionality of the data and fea‐
ture learning. They are commonly part of another neural network where it helps
reduce feature dimensionality.

Generative adversarial network
A generative adversarial network (GAN) is a neural network architecture where two
networks, to put it frankly, fight. Hence the term adversarial. The two networks are
referred to as the Generator and the Discriminator. Imagine this commonly used sce‐
nario. The GAN wants to make fake money. The generator creates a bill and sends it
to the discriminator for testing. Well, the discriminator knows what bills look like
because it has learned from a set of real-world images. The generator’s first attempt is
woeful, it fails and it gets feedback on its failure. Then it tries again, and again, and
again until it is able to produce a bill that the discriminator thinks is real. Then it is
the discriminator’s turn to learn. It finds out that it was wrong and learns not to
accept that fake bill again. This bickering goes back and forth until a point where the
networks fairly evenly fail and succeed...a point where no more learning is happening
on either side.

Figure 2-29. Generative adversarial network
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You may wonder how a network like this would be used. Well, these networks like to
mimic data. Therefore they have been taught to mimic art, music, images, and even
poetry. They can be taught to merge concepts in images. For instance, you train the
network on images of men wearing hats, women wearing no hats and ask the GAN to
generate images of women wearing hats, and it does a pretty good job. Sounds nifty,
but what is the use in our business scenarios? Well, GANs have been used to detect
anomalies in data and also to generate training data for other networks when a limi‐
ted amount is available. In the introduction to neural networks we provide here, we
would be remiss to not mention GANs. However, we admit it is harder to apply them
to business applications. Presenting them here is illustrative of our goal of creating a
type of Citizen Data Scientist within the SAP business analyst community. Keep in
mind all the concepts, including GANs, and perhaps you will identify a business sce‐
nario where a GAN could be employed.

Summary
If this was your first introduction to data science concepts, we understand it was a lot
to take in. If you are an experienced data scientist you may have asked questions such
as “Where is XGBoost?” or “Why not AutoML?” Remember our main intent, we
want to get business analysts to think a little like data scientists. The creation of citi‐
zen data scientists if you will. There are many other areas of data science that we did
not cover in this chapter but will address later such as exploratory data analysis and
data visualization. Business analysts, we hope that you found in this chapter ideas that
will get you thinking about your own data—and in particular for this book, your SAP
data. In the following chapters we will go into detailed business scenarios using SAP
data and the concepts we introduced in this chapter.
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1 Please permit us this one instance of authorial hubris.

CHAPTER 3

SAP for Data Scientists

If you’re an SAP professional, you may not need much of the infor‐
mation in this chapter. We’re trying to get data scientists up to
speed on things that you probably already know.

At Big Bonanza Warehouse, Greg and Paul1 make up the entire data science team.
They’re surrounded by delicious data everywhere they look: plant automation sys‐
tems, transportation records for customer shipments, marketing campaign data, and
the copious spreadsheets and Microsoft Access databases that seem to sprout up
everywhere at big enterprises. They can’t get up to get coffee without hearing about
another fascinating data opportunity. They’re simultaneously overjoyed and swam‐
ped: they get to come in and work on interesting problems every day, but there’s no
way they can ever catch up to the insane backlog of data requests.

Well, of course, there’s one way they could catch up. They could dive in and learn
SAP.

Because SAP is the leviathan that continues to swallow other Big Bonanza Warehouse
systems whole. As Big Bonanza moves to consolidate its enterprise software resources
into the SAP portfolio, more of that delicious data disappears into the belly of the
beast. Greg and Paul know the amount of data—and therefore opportunity—in SAP
boggles the mind. They just have no idea how to go poking around to get it. Talking
to SAP end users doesn’t reveal the true data model, and talking to SAP administra‐
tors hardly goes anywhere, because they’re so incredibly overworked. Greg and Paul
need a way in.
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Data scientists, listen up. This chapter lays out the SAP basics that will get you where
you need to go. SAP professionals spent many years becoming familiar with the
waters of SAP. You will not be able to navigate like Magellan after one chapter of a
book. This is your way of becoming conversant enough to work with your SAP team
and SAP data.

If you’ve ever heard the expression “I know just enough to be dangerous”—that’s our
goal.

Getting Started with SAP
SAP is enterprise resource planning (ERP) software with multiple highly configurable
capabilities. Enterprises that install and run SAP choose from many possible modules
(see Chapter 1 for a partial list), but the most common release of SAP in use is R/3
ERP, a client/server architecture that places heavy application processing require‐
ments on application servers.

The application servers will almost certainly be set up and maintained by a set of
administrators known within the SAP community as SAP Basis administrators. They
specialize in installing and configuring SAP systems to run with high availability. SAP
Basis administrators perform database administration, server administration, sched‐
uling and troubleshooting batch jobs, managing low-level security, patching both the
application and the base OS that runs the application, and many other technical tasks.

Working with SAP means you’ll use the powerful (if a bit antiquated-looking) SAP
GUI. It’s likely that you will have to get it installed by—or get instructions from—
your corporate IT department. Most often there are connection settings maintained
by the Basis team that point your installation to the right servers. Once the GUI is
installed, you start SAP by opening the SAP GUI Logon Pad (Figure 3-1).
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Figure 3-1. The SAP GUI Logon Pad

If your SAP logon pad has lots and lots of system connections in it, don’t fret. This is
normal. When you consider that separate systems can be installed for many of the
SAP R/3 applications, and that each system is present in sandbox, development, QA,
pre-prod, and production environments, you can see: often there are hundreds of
possible systems to log into. Knowing where the data you need exists among all these
systems will probably require at least one initial pointer from the SAP experts in your
company.

But once you find the right system, and you get the proper access, you’re ready to sign
in. Remember: just like in any enterprise system, getting this access usually goes
through a team of security pros and approvals, and can take anywhere from seconds
to weeks. Once that’s squared away and you enter your credentials, you’ll see some‐
thing like Figure 3-2 (though some companies choose to put other pictures in the
righthand side of the GUI screen).
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Figure 3-2. The SAP Easy Access screen, ready to run transactions

Now you’re ready to do some real exploration. The screen you find yourself at ini‐
tially lets you launch into any of the SAP GUI functionality via the use of transaction
codes (you’ll hear SAP pros refer to them as “t-codes”). The command field at the top
allows you to manually type t-codes, and all the files and folders on the lefthand side
are shortcuts to t-codes.

Think of t-codes as SAP’s internal shortcuts to programs. Entering t-code VA03 as in
Figure 3-3 will start the SAP program to view sales orders, SE37 will take you to the
editor for SAP functions, and so on. End users have alternative ways of viewing their
business t-codes, like web interfaces or mobile apps—but data scientists will need to
explore the administrative side of the SAP application suite.
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Figure 3-3. The first screen for displaying and editing sales orders

As you can see from the VA03 screenshot shown in Figure 3-3, the SAP end user
experience can get incredibly confusing. A typical SAP user will only need to use a
small subset of the available fields for an order. In some cases, entering data into a
normally unused field can trigger unintended functionality.

This is part of what makes the SAP and data science intersection so weird yet so inter‐
esting. There’s so much data to be had from SAP. Where do you find it? How would
you even know it’s there?

For you data scientists, this book will help you answer some of those questions, some
of the time. For you SAP gurus, rest assured that all that hard-won experience and
domain knowledge has immense value to the data science process.

The ABAP Data Dictionary
One of the great powers of SAP systems is their built-in flexibility for customers to
add or change delivered functionality. This allows SAP to deliver support packs and
enhancements that customers can implement for themselves, but also allows custom‐
ers to create their own data objects and programs inside the SAP system.
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2 Just because we’re nice like that.

SAP systems lay out a process for letting customers define custom data objects. The
collection of tools, objects, and processes is commonly referred to as the ABAP Data
Dictionary. Data scientists and other programmers are probably familiar with com‐
mon SQL commands for creating data types and tables. SAP provides the same func‐
tionality in concept, but in fact turbo-charges it. Data definition changes instantly
impact the system’s raw application functionality. For example, by altering the defini‐
tion of a field in an SAP table, you can make a screen immediately give the user a
friendly drop-down list of values for an input field.

We’ll go over some of the main pieces of the ABAP Data Dictionary here, since they
are of great use in sleuthing out what data is in the systems you can access.

With great power comes great responsibility! You data scientists
out there peeking into SAP for the first time should avoid the
temptation to edit SAP data dictionary objects. If your administra‐
tors have given you developer access, you may find that you have
the right permissions to do this. Don’t!
Changing data dictionary objects can lead to instability across
many areas of the system. The authors have seen an unwise data
dictionary change require an entire SAP instance to be restored
from a backup. It should tell you something that the most seasoned
SAP veterans are also the most paranoid to touch data dictionary
objects.

Tables
In most SAP systems the application runs on top of a traditional RDBMS like Micro‐
soft SQL Server, Oracle, or IBM DB2. Rather than directly editing those database sys‐
tems to make changes to them, SAP gives users several t-codes that can view and
change the system DB. In the last few years SAP has released its own RDBMS, called
HANA. It’s gaining a foothold in SAP environments around the world, but as of this
writing it’s not a majority shareholder of the market for SAP databases. Later in this
chapter we’ll show an example of creating a data service for HANA systems.2

Let’s examine a couple of SAP tables in depth. Go to t-code SE11 and enter VBAK
into the Database Table field. Click the Display button, and the table definition is dis‐
played as in Figure 3-4.
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3 In the newest SAP releases of HANA, pooled and clustered tables have been de-pooled and de-clustered. So if
you don’t understand them, don’t bother—they’re going away.

Figure 3-4. The VBAK table definition in t-code SE11

VBAK is a transparent table, which means that the fields and other information pre‐
sented on the screen match one-to-one with the table in the lower-level RDBMS. This
is way better than staring at some DDL statement in SQL. SAP also allows two other
sorts of tables: pooled and cluster. For the purposes of this book we don’t need to go
into a lot of details, but understand that SAP pooled and cluster tables are not one-to-
one with the lower-level RDBMS tables, so the screen does not show a perfect repre‐
sentation of how the data is physically stored in the database. For most programming
tasks in SAP, this distinction doesn’t matter much.3

VBAK is the sales order header table. VBAP is a sales order item
table. As you hunt around SAP tables, remember: SAP is German
software. Ks often stand for “Kopf ” or head. Ps often stand for
“Position” or item.
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4 We weren’t kidding with that note at the beginning of the chapter—only do this if you are an SAP system
administrator, have system backups, and have performed the required rituals.

The SAP GUI lists out the fields that are part of this table in the lower section, with
their data types and lengths. The Field column gives you the name of the field in the
database—MANDT in our first example row. Rows that have the Key checkbox
checked are enforced to be unique together, so in our example MANDT and VBELN
must be unique in combination before a record is written to this table. The Data Ele‐
ment column identifies the referencing data object type, further specified by the Data
Type, Length, and Decimals columns. For data scientists trying to identify a field’s
purpose, the Short Description column gives you just that. If you scroll to the bottom
of the list of fields, you may see one or more fields with Y or Z prefixes to their
names. This indicates fields that the company has added to the delivered database
tables, since data scientists may need to collect other unique data inside the SAP sys‐
tem.4 SAP segments these fields by using a Y or Z to name them. But those new fields
do actually become part of the underlying database table when they are added.

T-code SE11 gives you another valuable feature when searching for SAP data. There’s
an “Indexes…” button near the top. This lets you know which fields are optimized for
searching this table, an incredibly important note when considering some of the
larger SAP tables. Indices are another key point of flexibility—the SAP application
lets you add your own indices to the base system tables to improve search perfor‐
mance. Indices aren’t perfect, though. They can incur a performance cost, so be cau‐
tious and pragmatic when adding your own to the SAP tables.

If our intrepid data scientists Greg and Paul need to examine a particular set of sales
orders to see what sort of data exists in their system, they can use t-code SE16 (Gen‐
eral Table Display) or the newer SE16N as shown in Figure 3-5. Knowing that VBAK
is the order header table on a tip from their SAP colleagues, they can enter search
criteria in the lower section, and view results. Note that they can restrict the number
of records returned—great for discovering if they’re searching for the right things
without having to wait for 30 million rows to return to the screen. SE16/SE16N are
better designed for viewing the data in tables, whereas SE11 is better for inspecting
setup details of the tables.
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Figure 3-5. The VBAK table displayed in SE16N, for querying

Structures
SE11 is also used to define SAP structures. Structures are groups of fields defined in
the dictionary that provide common ways to refer to data in SAP ABAP code. In
“OData Services” on page 68, we use a dictionary-defined structure to hold SAP phys‐
ical plant data. If you define a structure in the dictionary as in Figure 3-6, programs
all over the SAP system can use that structure to create internal variables. Structures
do not persist data permanently in and of themselves; they’re just the cookie-cutter
that stamps out data cookies.
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Figure 3-6. Structure view of t-code SE11

The visual is very similar to the table view. You can review the field names, data types,
and some basic descriptions. As a data scientist you probably won’t find yourself
defining new structures very often, but the nice thing is that defining your own struc‐
tures carries far less risk than redefining the base application tables. For an example,
in Chapter 5, you’ll learn about anomaly detection, where we define our own struc‐
ture to use for extracting data from SAP.

Data Elements and Domains
The SAP application layer uses data elements as the lowest-level piece of structures
and table definitions (outside of elementary types like integers and strings). They can
be used in structures, tables, and programs all over the system, making them a key
part of the flexibility of available in custom dictionary definitions.

Data elements are also defined in SE11 (Figure 3-7).

Here, you define a data element as made up of either a predefined elementary type or
of a domain. In the screenshot shown in Figure 3-8, the SAP-provided LOGSYS data
element uses the same-named LOGSYS domain. This comes installed with the base
system. Whenever possible, use a domain to give your data elements some extra
power.
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Figure 3-7. A data element defined in t-code SE11

Figure 3-8. Domain definition for LOGSYS (in this case, LOGSYS is the domain for the
LOGSYS data element)
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Domains can act as a kind of sensibility layer on top of data elements. Most power‐
fully, you can define a list of acceptable values for that domain, either by hardcoding
your list (as shown in Figure 3-9 for the VBTYP domain), or by specifying an SAP
table as the definition of possible values for that domain (as shown in Figure 3-10 for
the LOGSYS domain).

Figure 3-9. Hardcoded list of acceptable values for the VBTYP domain

As you sleuth around in SAP trying to find information about the data, having data
elements defined with domains can be extremely helpful for finding possible values.
Knowing the possible values and their meaning grants an immediate boost to the
insight you’re trying to get about the data at your fingertips. For example, if Greg and
Paul extract information from the VBTYP field seen in Figure 3-9, the data comes out
of SAP with those A, B, C… and so on shortcut values. Greg and Paul can quickly
translate those values by referring to the domain definition of VBTYP.
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Figure 3-10. Possible values for the LOGSYS domain defined in table TBDLS, as config‐
ured in SE11
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Where-Used
We’ve talked about tables, structures, data elements, and domains as the key points of
defining data in the SAP system. As you explore things and hunt for the right set of
information to science up your data, one of the most powerful tools available is the
where-used list, available for all those elements. The little weird-looking box with
arrows (Figure 3-11) means you can hunt around for related information.

Figure 3-11. The “where-used” button, to find references to the ABAP object you’re look‐
ing at

For example, Greg and Paul came to know that the table VBAK is the sales order
header table. They suspect that other system tables contain valuable related informa‐
tion, but don’t know where to find them. They read the short descriptions of the
fields and decided to drill in further on VBELN.

To see how they’d do this, click to highlight the field VBELN, then double-click the
data element VBELN_VA as in Figure 3-12. In the Data Element screen, click the
where-used icon. Choose Table Fields from the dialog that appears as in Figure 3-13,
and voila! A listing of other tables that contain the VBELN field appears like in
Figure 3-14. Then, with a combination of further analysis through the general table
display in t-code SE16 and finding related data, you can piece together the model
you’re looking for from the available table data.
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Figure 3-12. Choosing data element VBELN_VA for where-used analysis
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Figure 3-13. Restricting the where-used search to just table fields
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Figure 3-14. A partial list of VBELN_VA results for where-used in tables

The same goes with individual domains and data elements. If your investigation has
led you to find a data element that you suspect is vital to your data sleuthing, you can
where-used that little guy and find out where else the system uses this field. In this
way you can find the table in which that data element is used; hopefully that table has
the data you need.

In addition to uncovering the model structure of SAP tables, you can also often dis‐
cover program elements that support your search. By searching functions, classes,
and other program objects for your chosen dictionary object, you gain access to pos‐
sible utility functions and reusable code. In several of the later chapters, we’ll use SAP
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5 Which is good, because it’s not as fun as Python or R.
6 EKKO is the purchase order header table and EKPO is for the line items. Notice the “K” and the “P” as men‐

tioned earlier?

functions and tables to show these relationships, but teaching you how to write SAP
ABAP code is not a main objective of this book.5

ABAP QuickViewer
Most often you’ll want to view data from multiple tables. For instance, you may want
to see purchase order data—but like most data in SAP, it’s split out by the header and
the item. If you were to use SE16 or SE16N you’d need to query data from both
EKKO and EKPO6—not the most effective method. To further complicate things,
there are hundreds of fields on each of these tables—the vast majority of which you
won’t want.

There’s a better tool to look at multiple related tables: ABAP Quick Viewer. This tool
allows you to make quick queries that you can view in the SAP GUI or extract for
another tool. Let’s take a look at a quick example.

Enter t-code SQVI into the command bar. You will see the Quick Viewer Initial
Screen as in Figure 3-15. Put in a name for your query, Purchasing, and click on the
Create button.

Figure 3-15. The QuickViewer initial screen

Enter a Title and change the Data Source to Table join. Click on the Enter button (the
one with a checkmark inside a green circle).
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You will see a blank canvas where you can visualize the tables you work with. Click
on the Insert Table button (Figure 3-16).

Figure 3-16. The Insert Table button

In the Add Table dialog (Figure 3-17) enter the primary table EKKO for the query.
Click on the Enter button.

Figure 3-17. Add a table to the QuickViewer setup

You will now see on the canvas the primary table you selected. Click on the Insert
Table button again to add another table—EKPO. Click on the Enter button again to
accept it.

SAP tries to detect the proper relationship between the two tables and displays the
result on the canvas; however, it doesn’t always get it quite right. Figure 3-18 shows
that there are two relationships between EKKO and EKPO—specifically, EKKO-
EBELN to EKPO-EBELN and EKKO-LPONR to EKPO-EBELP. The second of these
is not correct (for our purposes) and needs to be removed.
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Figure 3-18. Two automatically proposed relationships between EKKO and EKPO

Right-click the connection to be removed and select “Delete Link” from the context
menu.

Figure 3-19. Context menu for link

Now that the relationship is correct, click on the Back button to see a screen like
Figure 3-20, and select the fields. On the right is a list of the available fields. There are
hundreds of them, but we only want a few. Click on the ones desired and then click
on the Add Field button.
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Figure 3-20. QuickViewer field selection

The selected fields (Figure 3-21) will move to the left panel.
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Figure 3-21. Fields selected in QuickViewer

Click on the “Selection fields” tab shown in Figure 3-21, and select those fields by
which you want to query the data (Figure 3-22). For instance, we only want to filter
our data by date so we’ll select “Date on which the record was created” and move that
value to the left as we did earlier.

Figure 3-22. Selecting the fields for display
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7 At this point you may see a log detail dialog box. Just click through it.

That’s it! The query is ready to go! Click on the Save button to save your work. Next
click on the Execute button to test it.7 You will see a simple report with only the selec‐
tion criteria we specified. Put in a date range for purchase orders and then click on
the Execute button. SAP shows a simple table report (as in Figure 3-23) of the pur‐
chasing details you requested.

Figure 3-23. Results of QuickViewer query

This toolbar is found throughout SAP and is part of nearly all standard reports.

Notice in particular the Export button. When you click on it you are given a number
of options for exporting the data (Figure 3-24). Selecting Local File will then take you
to the local file options (Figure 3-25).

Figure 3-24. Query export options
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Figure 3-25. Local file options

As a data scientist you already know how to import tab-delimited files into R, Python,
or Weka. The ABAP Quick Viewer provides an easy way to do some initial data
exports and crucial exploratory data analysis. By using this technique, you can
quickly get data out of SAP and perform proof-of-concept without too much effort.

SE16 Export
Now that you can see the data in SAP you want to do some exploratory data analysis
and visualization in your tool of choice. Perhaps you plan to use R and R Studio or
the Jupyter Notebook. Maybe even Weka! Let’s get this tabular data pulled out from
the SAP GUI.

The General Table Display t-code SE16 comes with this handy toolbar (Figure 3-26).

Figure 3-26. SE16 General Table Display toolbar options

There are two buttons of interest to the data scientist: “Open in Excel” (left circle) and
“Local file” (right circle). They both do what you would expect. The “Local file” but‐
ton offers options on formatting before export.

A data scientist that has access to a raw data file is a happy data scientist.

OData Services
Now that you know a bit about how to find the right data and manually pull it out,
let’s look at how to reproduce that data pull and make it externally available. Recall
from Chapter 1 that OData services have advantages for data extraction.
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• They fit the popular REST paradigm.
• They expose data services to any device/client that can make HTTP calls.
• They allow for filtering and paging through result data.

Now that we know how data dictionary objects are defined, we can use that to build
the components of a simple OData service using SAP NetWeaver Gateway. A few
things to keep in mind before we begin:

Gateway architecture
Some SAP installations use a separate system to run the Gateway component,
and others use Gateway installed right into the same system as all the ERP mod‐
ules. For simplicity, we’ll assume we’re on the same system as all the modules, and
just note when there may be some differences.

ABAP programming
We’ll minimize the amount of code written for our example. As mentioned ear‐
lier, this book is not an ABAP primer. Hopefully you data scientists out there
won’t have to spend a lot of time learning the language when all you really need is
the data.

Security matters
By default, most companies that run NetWeaver Gateway run it behind the cor‐
porate firewall. You will likely need a computer running inside the corporate net‐
work to make use of the OData services you create. It is possible to expose them
to the broader internet, but do heed the advice of your security team in coming
up with the best way to secure and monitor the APIs as they’re created.

Other OData capabilities
OData also allows for the full RESTful set of operations—create/read/update/
delete—if they’re programmed in. We will only make use of and explain the read
capabilities as they’re most pertinent to this book, but if your scenarios expand to
other data gathering and analysis, OData is a great place to start creating those
capabilities.

Since we’ll use OData for other use cases throughout this book, let’s do a simple
example just to show how to set things up. We’ll make a simple service that returns a
listing of all the plants configured in the SAP ERP system.

First, we’ll create a structure to define the shape of the data we’ll serve out. Start by
going to t-code SE11 and clicking on the radio button next to “Data type.” Enter ZEX
AMPLE_PLANT in the field next to it, and then click the Create button, as in
Figure 3-27.
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Figure 3-27. Defining a new structure in SE11

When you click Create, you’ll see an option for one of three kinds of types: Data Ele‐
ment, Structure, and Table Type. Choose Structure as in Figure 3-28 and click the
checkmark to continue.

Figure 3-28. Structure type selection

On the next screen (Figure 3-29), you define the actual fields that go into the struc‐
ture. Keep it simple and define only plant and description fields. When you’re done,
click the magic wand button to activate this structure. This will make it so that the
structure is available to outside programs. Note that you’re required to enter a
description of the structure itself in the top section.

70 | Chapter 3: SAP for Data Scientists



Figure 3-29. Plant and Description fields defined for our new ZEXAMPLE_PLANT
structure

How did we know what types and data elements to use for this structure? We discov‐
ered that plants are stored at the line item level of sales orders in table VBAP. Using
SE11 to view that table, we found the plant field (WERKS) and its associated data ele‐
ment (WERKS_EXT). By clicking into the data element, we found the domain that
defines WERKS_EXT to be WERKS. We used the properties of that domain to dis‐
cover the table that underlies it: T001W (Figure 3-30). By then opening T001W in its
own SE11 session, we found the WERKS and NAME1 fields to contain the informa‐
tion that we wanted. Just like we showed you for the data dictionary stuff! So for our
two fields, PLANT and DESCRIPTION, we use the same data elements as the corre‐
sponding fields in T001W.
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Figure 3-30. T001W table defining plants and branches viewed in t-code SE11

Now that we have the right shape of our returned data, let’s set up the OData service
to feed it. Enter t-code SEGW. This is the Gateway Service Builder (Figure 3-31), your
one stop to set up and maintain OData services. Click the little white paper button to
start building our service.

Figure 3-31. The Gateway Service Builder
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In the pop-up, enter the values as shown in Figure 3-32. Make sure to replace
[YOUR_USER] with your actual user ID (it should be filled in by default), then click the
checkmark. You’ll see that there’s a skeleton of your service created. Now we can plug
in the structure we created and automatically make it into a part of the service.

Figure 3-32. Naming and defining the SEGW project

OData services can have multiple sources of data plugged in to them. These sources
of data are referred to as entities and entity sets. Think of an entity as defining the
single-record structure of a data source endpoint, and an entity set as a collection of
records matching that structure. A single service can have multiple entities and entity
sets attached to it, and each entity can choose whether to implement some or all of
the create/read/update/delete operations. We will turn our plant information into one
of the available entity sets in our service, and only implement the read functionality.

Right-click the Data Model folder and choose “Import...DDIC Structure” (DDIC
means “data dictionary”), as shown in Figure 3-33.

In the first step of the wizard (Figure 3-34), enter Plant as the name of the entity,
enter ZEXAMPLE_PLANT as the ABAP Structure (remember we just created that struc‐
ture), and make sure Create Default Entity Set is selected.
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Figure 3-33. Import DDIC structure

Figure 3-34. OData setup wizard step 1
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In the second step (Figure 3-35), check all the available fields from the structure as
imports, and click the Next button.

Figure 3-35. OData setup wizard step 2

In the final step (Figure 3-36), mark the Plant field as the key field, as this will be the
uniquely identifying piece of information for these records. Click Finish.

What we just did ensures that the structure we created is imported into the service as
the definition of the Plant entity. The SAP system uses information from the structure
to ensure that the OData service is properly type-defined.

Next, we generate some data extraction classes. SAP Gateway uses generated classes
to handle default behavior of the OData services when particular actions (create/read/
update/delete) are called, and developers can use those generated classes as hooks to
implement their own unique code and features for the OData services. To generate
those classes, click the little checkerboarded circle icon (circled in Figure 3-37).
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Figure 3-36. OData setup wizard final step

Figure 3-37. Generating base OData classes
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When this completes, we’re ready to write some brief data retrieval code. Open the
Service Implementation folder and expand the PlantSet item. Right-click on GetEnti‐
tySet (Query) and choose Go to ABAP Workbench (Figure 3-38). You will get a
nasty-sounding information popup indicating that a method has not yet been imple‐
mented. That is OK—that’s what we’re going to do!

Figure 3-38. Navigating to ABAP Workbench

You’ll be taken to the class builder screen. Using the lefthand side of the screen, navi‐
gate to the inherited method PLANTSET_GET_ENTITYSET. Right-click on it and
choose Redefine, as in Figure 3-39.
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Figure 3-39. Preparing to redefine OData ABAP code

On the righthand side of the screen, you’ll be greeted with a text editor allowing you
to edit the code of the method. We’re not going to dive all the way into ABAP pro‐
gramming here, so just trust us and input the following code and click the magic
wand to activate the code:

METHOD plantset_get_entityset.

SELECT werks AS plant

name1 AS description

INTO CORRESPONDING FIELDS OF TABLE et_entityset

FROM t001w

ORDER BY werks ASCENDING.

ENDMETHOD.

By entering this code, we’ve done enough to set up the service to have runnable code.
Now we have to do a couple more steps to get it working as a web service. Go to
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t-code /N/IWFND/MAINT_SERVICE and click the Add Service button near the top
of the catalog. The next screen will allow you to search, and you may have to talk to
your local SAP expert to understand your system environment to know whether you
have to use the local system as the Gateway or if you have a separate Gateway server.
If you have to use the local system you’ll enter a system alias of LOCAL or similar,
whereas if you have to use a Gateway hub system then you’ll have to find out the right
alias to use.

Click Get Services after entering the alias, and scroll down to our service: ZEXAM‐
PLE_PLANT_SRV. Click on the service to see a single-screen activation wizard—just
accept its defaults and go back to the main service catalog. Now your new service will
be in the main catalog and ready to test.

Scroll down in the list to find ZEXAMPLE_PLANT_SRV, and click on it. At the bot‐
tom of the screen, you’ll see an “ICF Nodes” section expand like in Figure 3-40. Click
the Gateway Client button in that section to be taken to the SAP GUI Gateway testing
tool.

Figure 3-40. Navigating to the Gateway Client

Change the request URI to /sap/opu/odata/sap/ZEXAMPLE_PLANT_SRV/PlantSet?
$format=json and click Execute. You’ll see JSON-formatted data appear as results of
your service call as in Figure 3-41. There you go! You’ve set up a simple, web-callable
service for getting SAP plant data. OData services we set up in later chapters will have
more complexity to them, but this initial process will get you off on the right foot.
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Figure 3-41. Results of OData request for our sample service

Core Data Services
As promised earlier in this chapter, here’s a look at making SAP data stored in HANA
available. Remember, HANA is the new backend database that the latest SAP ERP
systems run on top of. If your system is new (or newly updated) you may have this
capability ready to use. If you’re a data science nerd, check with your SAP nerd collea‐
gues.

Core Data Services (CDS) is a new SAP feature with which a user can develop data
models that can be exposed to client requests via HTTP. These models can be tables,
SQL views, associations, and user-defined structures. Think of them like the NetWea‐
ver Gateway…but no gateway. They are incredibly powerful and useful ways of expos‐
ing, modeling, and analyzing SAP data. Their capabilities are one of the most
compelling reasons for an SAP shop to upgrade to HANA.

While there are many features to CDS, we’ll stick to a simple sales order data extrac‐
tion example. In order to create these views you will need to install and modify
Eclipse such that it can be used with SAP. Most ABAP developers have already migra‐
ted to Eclipse for their development needs, but that was a choice not a requirement.
CDS views require Eclipse.

Download the latest version of Eclipse from www.eclipse.org and follow the wizard
instructions to install it. You will need to install the Eclipse IDE for Java Developers as
a minimum.

80 | Chapter 3: SAP for Data Scientists

http://www.eclipse.org


Once installed, you will need to add some additions to make it work with SAP.
Launch Eclipse and navigate to the menu path Menu → Install New Software as in
Figure 3-42.

Figure 3-42. Installing new add-ons to Eclipse

In the dialog that displays (Figure 3-43) enter the URL https://tools.hana.onde
mand.com/photon. Replace photon with the version of Eclipse you are using.
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Figure 3-43. Choose Eclipse version to download add-ons

Hit Enter to see the options for installation. Then select the components you’d like to
install. In our example, we are selecting all the SAP options in Figure 3-44.

Figure 3-44. Software selections for installing into Eclipse

Click on the Next button and wait for the components to install. When finished, it
will display all the software components it added to the Eclipse environment. Click
Next again to accept the license agreement and then click on the Finish button.

When the software is done installing you will need to restart Eclipse. Once restarted,
click on the Open Perspective button to open up your new SAP environment. Select
the ABAP perspective as in Figure 3-45 and then click on the Open button.
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Figure 3-45. Choose the ABAP perspective to open Eclipse with the correct SAP develop‐
ment settings

The first step is to create a CDS document. These are design-time source files that
contain the DDL (Data Definition Language) code describing the model.

In Eclipse, follow the menu path File → New → Other (Figure 3-46).
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Figure 3-46. Selecting a new project for a CDS document

In the dialog window expand the ABAP and the Core Data Services and select the
Data Definition option (Figure 3-47).

Click on the Next button and accept the default project.

Enter a package for the development objects. For our purposes, we will use $TMP,
which is SAP’s designation for a local/nontransportable object.

Enter a name for your service and a description, then click on the Finish button
(Figure 3-48).
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Figure 3-47. New ABAP repository object for CDS

Figure 3-48. Finishing the new CDS data definition
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In the workspace there are some default annotations. We will change a few and add
some new ones.

The annotations begin by default:

@AbapCatalog.sqlViewName: 'sql_view_name'
@AbapCatalog.compiler.compareFilter: true
@AbapCatalog.preserveKey: true
@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Data Definition for Sales Orders'

Change the sqlViewName and the authorizationCheck:

@AbapCatalog.sqlViewName: 'Sales_Orders'
@AccessControl.authorizationCheck: #NOT_REQUIRED

Two new annotations are needed:

@VDM.viewType: #CONSUMPTION

Indicates that we want to consume this data definition.

@OData.publish: true

Indicates that we want the definition to be published automatically.

The annotations section should now look like this:

@AbapCatalog.sqlViewName: 'Sales_Orders'
@AbapCatalog.compiler.compareFilter: true
@AbapCatalog.preserveKey: true
@AccessControl.authorizationCheck: #NOT_REQUIRED
@EndUserText.label: 'Data Definition for Sales Orders'
@VDM.viewType: #CONSUMPTION
@OData.publish: true

Now you can set up the shape and relationships of the data. First, define the main
table to be read:

define view YBD_DD_SALES
  as select from vbak as header 

If there are other tables that are associated with the main table, identify and name
them:

    association[0..*] to vbap as line 
      on header.vbeln = line.vbeln 

Identify and name the fields to be extracted from the SAP system. Note we’ve
included a calculated line to show on-the-fly output for NetPrice:

{
  key header.vbeln as SalesDocument,
  key line.posnr as SalesDocumentLine,
  header.erdat as CreateDate,
  header.erzet as CreateTime,
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  header.vbtyp as DocumentCategory,
  header.auart as DocumentType,
  header.kunnr as Customer,
  line.matnr as Material,
  @Semantics.quantity.unitOfMeasure: 'UoM'
  line.kwmeng as Quantity,
  line.meins as UoM,
  line.kdmat as CustomerMaterial,
  line.pstyv as ItemCategory,
  round(line.netpr * line.kwmeng,2) as NetPrice
}

Add any conditions to the selection:

where header.auart = 'ZOR'

The complete final definition:

@AbapCatalog.sqlViewName: 'Sales_Orders'
@AbapCatalog.compiler.compareFilter: true
@AbapCatalog.preserveKey: true
@AccessControl.authorizationCheck: #NOT_REQUIRED
@EndUserText.label: 'Data Definition for Sales Orders'
@VDM.viewType: #CONSUMPTION
@OData.publish: true

define view YBD_DD_SALES
  as select from vbak as header
    association[0..*] to vbap as line
      on header.vbeln = line.vbeln

{
  key header.vbeln as SalesDocument,
  key line.posnr as SalesDocumentLine,
  header.erdat as CreateDate,
  header.erzet as CreateTime,
  header.vbtyp as DocumentCategory,
  header.auart as DocumentType,
  header.kunnr as Customer,
  line.matnr as Material,
  @Semantics.quantity.unitOfMeasure: 'UoM'
  line.kwmeng as Quantity,
  line.meins as UoM,
  line.kdmat as CustomerMaterial,
  line.pstyv as ItemCategory,
  round(line.netpr * line.kwmeng,2) as NetPrice
}

where header.auart = 'ZOR'

Click on the Save button, and then click on the Activate button to publish the data
definition.

Test the service by pressing F8. The results are shown in another tab (Figure 3-49).
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Figure 3-49. CDS data results in Eclipse

The service should properly activate. If you happen to receive the following warning
next to the OData annotation then the service did not actually publish. The following
steps allow you to manually do so.

Within Eclipse, click on the SAP GUI button (Figure 3-50). Select the project to be
launched and click the OK button. This is the same project where the data definition
is made.

Figure 3-50. Launching SAP GUI with the CDS project

In the transaction field, enter the transaction code /n/iwfnd/maint_service

(Figure 3-51).
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Figure 3-51. Enter the transaction code for maintaining services

Click the Enter button (circled), then click on the Add Service button.

Enter the System Alias, which in our case will be LOCAL, and the Technical Service
Name as in Figure 3-52. This is the name of the data definition with “_CDS”
appended. Then click on the Get Services button.

Figure 3-52. Settings for starting the technical service

The service definition will appear in the report. Highlight the appropriate service and
click on the Add Selected Services button.

Figure 3-53. Adding the new service to the Gateway backend services

The last “Add Service” screen appears, as shown in Figure 3-54. Accept the default set‐
tings and add the package assignment, which in our case is $TMP.
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Figure 3-54. Accept defaults and add $TMP package assignment to add the service to
Gateway

Click on the Enter button (circled). If all was done correctly, you’ll see the message
shown in Figure 3-55.

Figure 3-55. Successfully creating the CDS OData service
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Return to the data definition screen with the CDS annotations and click on the Acti‐
vate button (Figure 3-56).

Figure 3-56. The activate button let you make your CDS definition usable in the SAP
system

There is a new Generated OData Service indicator next to the OData annotation. Put
your cursor over that symbol to show a pop-up with the OData-Service details. Click
on the OData-Service highlighted link like the one in Figure 3-57 to see the OData
service definition in your browser.

Figure 3-57. OData service publishing results

Summary
Having exhaustively perused the data dictionary, data export, OData, and CDS infor‐
mation, Greg and Paul feel ready to dive in to create their SAP data science stories!

Data scientists working with SAP data should never forget the real live resources
available to them. SAP teams working in the enterprise are filled with people who
know the data model intimately. They also have that wonderfully helpful tribal
knowledge of how their particular enterprise has customized SAP for its own
business purposes. Just like hackers who socially engineer passwords from people
before attempting to crack difficult encryption, data scientists working with SAP
should seek knowledge from those experienced with SAP before trying to reverse
engineer all the nooks and crannies of the SAP data model. Inspecting the data dictio‐
nary as we’ve laid out here will eventually allow you to navigate to the data you need
for business answers, but it will take serious time. A human being sitting right behind
you may very likely have all those goofy SAP table names in her head.
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CHAPTER 4

Exploratory Data Analysis with R

Pat is a manager in the purchasing department at Big Bonanza Warehouse. His
department specializes in the manufacture of tubing for a variety of construction
industries, which requires procuring a lot of raw and semi-raw materials. However,
Pat has a problem; he receives up to a hundred purchase requisitions per day in SAP,
which need approval before becoming purchase orders. It is a burdensome and time-
consuming process he would like help streamlining. He decides to ask his IT depart‐
ment and the SAP team if anything can be done to help.

The SAP team has already configured the system to be optimal for the purchase
requisition process. When Pat and the SAP team reach out to their colleagues on the
data science team, they immediately wonder: “Could we build a model to learn if a
purchase requisition is going to be approved?” There is ample data in the SAP system
—nearly 10 years of historical data—for which they know all the requisition appro‐
vals and rejections. It turns out to be millions of records of labeled data. All those
records indicate approval or rejection. Doesn’t this fall into supervised learning? It
certainly does!

We introduced four different types of learning models in Chapter 2. Those are:

• Supervised
• Unsupervised
• Semi-supervised
• Reinforcement

We are inclined to think that the scenario mentioned here is a supervised one because
we have data that is labeled. That is, we have purchase requisitions that have been
approved and rejected. We can train a model on this labeled data, therefore it is a
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supervised scenario. Having identified the type of learning model we are working, the
next step is to explore the data.

One of the most vital processes in the data scientist’s workflow is exploratory data
analysis (EDA). The data scientist uses this process to explore the data and determine
whether it can be modeled, and if so, how. EDA’s goal is to understand the data by
summarizing the main characteristics, most often using visualizations. This is the
step in the data science process that asks the data scientist to become familiar with the
data.

Readers who know SAP well: if you think you’re familiar with your data, go through
this exercise. You’ll be surprised how much you learn. There’s a vast difference
between knowing the general shape of the relational data and knowing the cleaned,
analyzed, and fully modeled results of EDA.

In this chapter we will walk through the EDA process. To make it more understanda‐
ble, we will go through it in real time. That is, we will not manipulate data to make
this lesson easy to write; rather, we’re going to make this as realistic and relatable as
possible. We will run into problems along the way, and we will work through them as
a real scenario. As shown in Figure 4-1, EDA runs through four main phases: collec‐
tion, cleansing, analysis, and modeling. Let’s break down each phase briefly before we
dive deeper into our scenario.

Figure 4-1. Workflow for exploratory data analysis
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The Four Phases of EDA
In the Collect Data phase, we start with our source system’s data. It’s important to
understand how the source system records data. If, for example, we don’t know what
purchase requisitions look like in SAP tables, we can’t pull them out for later analysis.

Once we’ve understood the source data, we choose the methods and tools to get it out
and examine it. In this chapter, we use a flat-file extraction from SAP as an intermedi‐
ate storage, and the R data analysis language as the method to process and play with
the data. In EDA that focuses on business scenarios it’s important to iterate on
hypotheses quickly. Therefore, choose tools that you are comfortable and familiar
with.

If you’re not familiar with any tools yet, fear not! Many options exist for extracting
and analyzing. Chapter 3 discusses several alternative SAP data extraction methods
and later chapters of this book use many of them. The R language is a favorite among
statisticians and data scientists, but Python also has a very strong community. In this
book we’ll use examples and tools from both languages.

After successfully extracting the data, we enter the Clean Data phase. The source sys‐
tem’s database, data maintenance rules, and the method we choose to extract can all
leave their own unique marks on the data. For example, as we’ll see sometimes a CSV
extract can have extra unwanted header rows. Sometimes an API extraction can for‐
mat numbers in a way incompatible with the analysis tool. It can—and often does—
happen that when we extract years’ worth of data the source system’s own internal
rules for governing data has changed.

When we clean the data right after extracting, we’re looking for the things that are
obviously wrong or inconsistent. In this chapter we use R methods to clean the data
whereas you may feel more comfortable in another language. Whatever your
approach, our goal for this phase is having the data stripped of obviously bad things.

Having met the goal of removing those bad things, it’s time to proceed to the Analysis
phase. This is where we begin to set up hypotheses and explore questions. Since the
data is in a state we can trust after cleansing, we can visualize relationships and decide
which ones are the strongest and most deserving of further modeling.

In this phase, we will often find ourselves reshaping and reformatting the data. It’s a
form of cleansing the data that is not focused on removing bad (or badly formatted)
data; rather, it’s focused on taking good data and shaping it so that it can effectively be
used in the next phase. The Analysis phase often presents several opportunities for
this further reshaping.

The final phase is Modeling. By this phase, we’ve discovered several relationships
within the data that are worth pursuing. Our goal here: create a model that allows us
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to draw insightful conclusions or make evidence-supported predictions. The model
ought to be reliable and repeatable. By modeling this purchasing scenario, the SAP
team seeks to arm Pat the purchasing manager with information and tools that have
an insightful impact on his business processes.

Greg and Paul know this process well, so let’s get started!

Phase 1: Collecting Our Data
An easy way to get data out of SAP is by using the ABAP QuickViewer. This transac‐
tion allows the user to view fields of a table or a collection of tables joined together.
For the purchase requisition to purchase order scenario we need two tables: EBAN
for purchase requisitions and EKPO for purchase order lines. Use transaction code
SQVI to start the QuickViewer transaction.

Enter a name for the QuickView (Figure 4-2).

Figure 4-2. QuickView first screen

Click on the Create button and give the QuickView a title (Figure 4-3).

Figure 4-3. QuickView title
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Change the “Data source” to “Table join” (Figure 4-4).

Figure 4-4. QuickView type options

Click on the Enter button, then click on the Insert Table button (indicated in
Figure 4-5).

Figure 4-5. QuickView Insert Table button

Enter the name of the first table and click Enter (Figure 4-6).

Figure 4-6. First QuickView Table
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Repeat the process, click on the Insert Table button, and then click Enter (Figure 4-7).

Figure 4-7. Second Quick View Table

The tables will be displayed on the screen with their default relationships determined
(Figure 4-8). Always check these relationships to make sure they are what is wanted.
In this case, four relationships were determined but only two are needed.

Figure 4-8. QuickView default join properties
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Right-click on the links for BANFN and BNFPO and select Delete Link (Figure 4-9).

Figure 4-9. Removing a default join in a QuickView

Double-check the remaining two relationships to make sure they are correct. Tables
EBAN and EKPO should be linked by EBELN and EBELP (Figure 4-10); these are the
purchase order number and the purchase order item.
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Figure 4-10. Confirming remaining joins in a QuickView

Click on the Back button. The next screen allows for the selection of fields for the
report. Open the caret on the left to show all the fields for a table (Figure 4-11).

Figure 4-11. QuickViewer open table

Select the fields to be seen in the first column and the selection parameters for the
table in the second column (Figure 4-12). Choosing fields as selection parameters
enables those fields for filtering the overall results.
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Figure 4-12. Selection and list options for a QuickView

Next, repeat the process for the Purchase Document Item table.

Click on the Execute button to run the report. Because the data may be very large, we
made one of the selection criteria the Changed On date. This allows us to narrow the
result data. Set the date range and then click on the Execute button. For our example,
we will select a small one-month set of data just to see if the results are what we
expect. Then we will rerun the report for the full 10 years of data.

Phase 1: Collecting Our Data | 101



Figure 4-13. QuickView test report

The report is displayed with the fields selected (Figure 4-14).

Figure 4-14. QuickView ALV (ABAP List Viewer) report

Click on the Export button (circled in Figure 4-14) and select Spreadsheet.

Figure 4-15. QuickView export options

Accept the default setting for Excel and click Enter (Figure 4-16).
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Figure 4-16. QuickView export to xlsx

Format options here will depend on the SAP version, so the screen may look slightly
different. Whatever other formats are visible, make sure to choose Excel.

Name the file and save it (Figure 4-17).

Figure 4-17. QuickView Save As dialog box
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1 For instructions on how to install R Studio and R, go to https://www.rstudio.com/products/rstudio/download/.

Excel will open automatically. Save it as a CSV file so it can easily be loaded into R or
Python.

Importing with R
If you have not yet done anything with R or R Studio,1 there are many excellent
resources online with step-by-step installation guides. It is no more difficult than
installing any other software on your computer. While this book is not intended to be
a tutorial in R, we will cover a few of the basics to get you started. Once you have
installed R Studio, double-click on the icon in Figure 4-18 to start it.

Figure 4-18. R Studio icon

One of the basic concepts in R is the use of packages. These are collections of func‐
tions, data, and compiled code in a well-defined format. They make coding much eas‐
ier and consistent. You will need to install the necessary packages in order to use
them. One of our favorites is tidyverse. There are two ways to install this package.
You can do it from the console window in R Studio using the install.packages()
function as shown in Figure 4-19. Simply hit Enter, and it will download and install
the package for you.

Figure 4-19. Install packages from the console window

The other method of installation is from the menu path Tools → Install Packages as
shown in Figure 4-20.
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Figure 4-20. Install packages from the menu path

Start typing the package name in the Packages line and then select it from the
options, as in Figure 4-21.

Figure 4-21. Select package from the drop-down options

Finish by clicking on the Install button.

Now that you’ve installed one package, let’s start a new script. Click on the New but‐
ton and select R Script from the drop-down menu, as in Figure 4-22.
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Figure 4-22. Starting a new R Studio script

Now you will have a blank canvas from which to start your data exploration using the
R programming language.

Now, let’s get started. It is easy to import data into R or R Studio using the
read.csv() function. We read the file with the following settings: header is set to
TRUE because we have a header on the file. We do not want the strings set to factors so
stringsAsFactors is set to FALSE.

It often makes sense to set your strings to factors. Factors represent
categorical data and can be ordered or unordered. If you plan on
manipulating or formatting your data after loading it, most often
you will not want them as factors. You can always convert your cat‐
egorical variables to factors later using the factor() function.

Finally, we want any empty lines or single blank spaces set to NA:

pr <- read.csv("D:/DataScience/Data/prtopo.csv",
              header=TRUE,
              stringsAsFactors = FALSE,
              na.strings=c("", " ","NA"))

Once the data has loaded we can view a snippet of the file using the head command,
as shown in Figures 4-23 and 4-24.

head(pr)
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Figure 4-23. Viewing header dataframe in R

Figure 4-24. Viewing header dataframe in R continued

We can quickly see that some cleanup is in order. The row numbers came in as col‐
umns and some formatting problems created some arbitrary columns such as X and
X.1. Cleaning them up is our first task.

Phase 2: Cleaning Our Data
Our goal in this phase is to remove or correct the obvious errors within the extrac‐
tion. By taking the time to clean the data now, we greatly improve the effectiveness of
our analysis and modeling steps. Greg and Paul know that cleaning can take up a
major portion of the EDA time so they hunker down with R Studio at the ready.

Null Removal
First, we remove all rows where there is no purchase requisition number. This is erro‐
neous data. There may not actually be any rows to remove, but this is a good standard
process. Making sure that the key features of the data actually have entries is a good
start:

pr <- pr[!(is.na(pr$Purch.Req.)), ]

Binary Indicators
Next, the D and the D.1 columns are our deletion or rejection indicators for the pur‐
chase requisition. Making that a binary will be a true or false indicator. We can easily
do that by making blanks equal to 0 (false) and any other entry equal to 1 (true). Why
use a binary and not just put in text as “Rejected” or “Not Rejected”? Keep in mind
that you will be visualizing and perhaps modeling this data. Models and visualizations
do not do well with categorical variables or text. However, visualizing and modeling 0
and 1 is easy:
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2 We have referenced this before, but we’ll link to it again (it is that good): https://vita.had.co.nz/papers/tidy-
data.pdf.

pr = within(pr, {
  deletion = ifelse(is.na(D) & is.na(D.1), 0, 1)
})

Removing Extraneous Columns
Let’s get rid of the worthless and erroneous columns. Why do this? Why not simply
ignore those columns? Keeping the data free of extra columns frees up memory for
processing. In our current example, this is not truly necessary. However, later if we
build a neural network we want to be as efficient as possible. It is simply good practice
to have clean and tidy2 data. We create a list of column names and assign them to the
“drops”variable. Then we create a new dataframe that is old dataframe with the
“drops” excluded:

drops <- c("X.2","X", "Un.1", "Crcy.1", "Per.1", "X.1",
          "Purch.Req.", "Item", "PO", "Item.1", "D", "D.1",
          "Per", "Crcy")
pr <- pr[ , !(names(pr) %in% drops)]

There are many different types of data structures in R. A dataframe
is a table in which each column represents a variable and each row
contains values for each column, much like a table in Excel.

Whitespace
A common problem when working with data is whitespace. Whitespace can cause
lookup and merge problems later. For instance, you want to merge two dataframes by
the column customer. One data frame column has “Smith DrugStore” and the other
has “ Smith DrugStore”. Notice the spaces before and after the name in the second
dataframe? R will not think that these two customers are the same. These spaces or
blanks in the data look like legitimate entries to the program. It is a good idea to
remove whitespace and other “invisible” elements early. We can clean that up easily
for all columns in the dataframe with the following code:

pr <- data.frame(lapply(pr, trimws), stringsAsFactors = FALSE)

What is that lapply() function doing? Read up on these useful functions to get more
out of your R code.
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Numbers
Next, we modify the columns that are numeric or integer to have that characteristic.
If your column has a numeric value then it should not be stored as a character. This
can happen during the loading of data. Simply put, a value of 1 does not equal the
value of “1”. Making sure the columns in our dataframe are correctly classified with
the right type is another one of the key cleaning steps that will solve potential prob‐
lems later:

pr$deletion <- as.integer(pr$deletion)
pr$Qty.Requested <- as.numeric(pr$Qty.Requested)
pr$Valn.Price <- as.numeric(pr$Valn.Price)
pr$Net.Price <- as.numeric(pr$Net.Price)

Next, we replace NA values with zeros in the numeric values we just created. NA sim‐
ply means the value is not present. R will not assume discrete variables such as quan‐
tity will have a value of zero if the value is not present. In our circumstance, however,
we want the NAs to have a value of zero:

pr[,c("Qty.Requested", "Valn.Price", "Net.Price")] <-
   apply(pr[,c("Qty.Requested", "Valn.Price", "Net.Price")], 2,
        function(x){replace(x, is.na(x), 0)})

Finally, we clean up those categorical variables by replacing any blanks with NA. This
will come in handy later when looking for missing values...blanks can sometimes look
like values in categorical variables, therefore NA is more reliable. We already treated
whitespace earlier, but this is another good practice step that will help us to avoid
problems later:

pr <- pr %>% mutate(Des.Vendor = na_if(Des.Vendor, ""),
                    Un = na_if(Un, ""),
                    Material = na_if(Material, ""),
                    PGr = na_if(PGr, ""),
                    Cat = na_if(Cat, ""),
                    Document.Type = na_if(Document.Type, ""),
                    Tax.Jur. = na_if(Tax.Jur., ""),
                    Profit.Ctr = na_if(Profit.Ctr, ""))

Phase 3: Analyzing Our Data
We’ve cleaned up the data and are now entering the analysis phase. We’ll recall two
key goals of this phase: asking deeper questions to form hypotheses, and shaping and
formatting the data appropriately for the Modeling phase. Greg and Paul’s cleanup
process left them with data in a great position to continue into the Analysis phase.
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3 Dive deep into DataExplorer using the vignette available at https://cran.r-project.org/web/packages/Data
Explorer/vignettes/dataexplorer-intro.html.

DataExplorer
Let’s cheat and take some shortcuts. That is part of the glory of all the libraries that R
has to offer. Some very quick and easy data exploration can be done using the Data
Explorer library.3

Install and include the library using the following R commands:

install.packages("DataExplorer")
library(DataExplorer)

Perform a quick visualization of the overall structure of the data (Figure 4-25):

plot_str(pr)

Figure 4-25. Viewing overall structure of data using DataExplorer
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We can use the introduce command from the DataExplorer package to get an over‐
view of our data:

introduce(pr)
      rows columns discrete_columns continuous_columns
   3361850      13                9                  4
  all_missing_columns total_missing_values complete_rows
                    0                    0       3361850
  total_observations memory_usage
             43704050    351294072

We see that we have over three million rows of data with thirteen columns. Nine of
them are discrete and four of them are continuous.

It is important to see if any of the columns are missing a lot of data. In general, col‐
umns that are largely empty (over 90%) don’t have any value in modeling
(Figure 4-26):

plot_missing(pr)

Because of the large number of missing entries for the Des.Vendor field we will
remove it:

pr$Des.Vendor = NULL
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Figure 4-26. Identifying missing or near missing variables with DataExplorer
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4 Remember from Chapter 2 that discrete or categorical features are features with definable boundaries. Think
categories such as colors or types of dogs.

Discrete Features
Understanding the discrete features4 helps in selecting data that will improve model
performance, and removing data that does not. We can plot the distribution of all dis‐
crete features quite easily (Figures 4-27 through 4-29):

plot_bar(pr)

Discrete variables with more than 50 entries are excluded.

What we notice right away is that there is a mysterious and obvious erroneous entry.
In the distribution for Document Type there is a document type called…“Document
Type.” Same with all the other discrete features. Let’s find out where that line is and
take a look at it:

pr[which(pr$Document.Type == "Document Type"),]
count(pr[which(pr$Document.Type == "Document Type"),])

What we see is a list and count of 49 entries where the document type is “Document
Type” and all other columns have the description of the column and not a valid value.
It is likely that the extraction from SAP had breaks at certain intervals where there
were header rows. It is easy to remove:

pr <- pr[which(pr$Document.Type != "Document Type"),]
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Figure 4-27. Bar charts of discrete features (part I)
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Figure 4-28. Bar charts of discrete features (part II)
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Figure 4-29. Bar charts of discrete features (part III)
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When we run plot_bar(pr) again we see that these bad rows have been removed.

We also noticed that some of the variables were not plotted. This is because they had
more than 50 unique values. If a discrete variable has too many unique values it will
be difficult to code for in the model. We can use this bit of code to see the count of
unique values in the variable Material:

length(unique(pr$Material))

Wow, we find that we have more than 500,000 unique values. Let’s think about this.
Will the material itself make a good feature for the model? We also have a variable
Matl.Group, which represents the grouping into which the material belongs. This
could be office supplies, IT infrastructure, raw materials, or something similar. This
categorization is more meaningful to us than an exact material number. So we’ll
remove those material number values as well:

pr$Material = NULL

We also notice from this bar plot that the variable Cat only has one unique value.
This variable will have no value in determining the approval or disapproval of a pur‐
chase requisition. We’ll delete that variable as well:

pr$Cat = NULL

Continuous Features
Next we want to get to know our numeric/continuous variables, such as Net.Price. Do
our continuous variables have a normal bell-shaped distribution? This is helpful in
modeling, because machine learning and neural networks prefer distributions that
are not skewed left or right. Our suspicions are that the continuous variables are all
right skewed. There will be more purchase requisition requests for one or two items
than 20 or 30. Let’s see if that suspicion is correct.

Nature loves a uniform/Gaussian distribution. School grades, rain‐
fall over a number of years or by country, and individual heights
and weights all follow a Gaussian distribution. Machine learning
and neural networks prefer these distributions. If your data is not
Gaussian, it is a good choice to log transform, scale, or normalize
the data.

We can see a distribution of the data with a simple histogram plot. Using the Data
Explorer package in R makes it easy to plot a histogram of all continuous variables at
once (Figure 4-30):

plot_histogram(pr)
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Figure 4-30. Histograms of continuous features
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We are only concerned with the histograms for Qty.Requested, Valn.Price, and
Net.Price. The deletion column we know is just a binary we created where 1 means
the item was rejected (deleted) and 0 means it was not. We quickly see that all histo‐
grams are right skewed as we suspected. They have a tail running off to the right. It is
important to know this as we may need to perform some standardization or normal‐
ization before modeling the data.

Normalization reduces the scale of the data to be in a range from 0
to 1:
Xnormalized = X−Xmin / (Xmax−Xmin)

Standardization reduces the scale of the data to have a mean(μ) of 0
and a standard deviation(σ) of 1:
Xstandardized = X−μ / σ

Another test is the QQ plot (quantile-quantile). This will also show us if our continu‐
ous variables have a normal distribution. We know that the distributions were not
normally distributed by the histograms. The QQ plot here is for illustration purposes.

A QQ plot will display a diagonal straight line if it is normally distributed. In our
observations we can quickly see that these variables are not normally distributed. The
QQ plot in DataExplorer (see Figure 4-31 for interesting continuous features, and
Figure 4-32 for the deletion flag) by default compares the data to a normal distribu‐
tion:

plot_qq(pr, sample=1000L)
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Figure 4-31. QQ plots of continuous features
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Figure 4-32. QQ plots showing the data is not normally distributed

Phase 4: Modeling Our Data
Now that we’ve familiarized ourselves with the data, it’s time to shape and feed it into
a neural network to check whether it can learn if a purchase requisition is approved
or rejected. We will be using TensorFlow and Keras in R to do this. Greg and Paul
know that the Modeling phase is where value actually gets extracted—if they
approach modeling correctly, they know they’ll glean valuable insight unlocked by
following through on the Collect, Clean, and Analyze phases.
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TensorFlow and Keras
Before we dive deep into our model, we should pause a bit and discuss TensorFlow
and Keras. In the data science and machine learning world, they’re two of the most
widely used tools.

TensorFlow is an open source software library that, especially since its 1.0.0 release in
2017, has quickly grown into widespread use in numerical computation. While high-
performance numerical computation applies across many domains, TensorFlow grew
up inside the Google Brain team in their AI focus. That kind of pedigree gives its
design high adaptability to machine learning and deep learning tasks.

Even though TensorFlow’s hardest-working code is highly tuned and compiled C++,
it provides a great Python and R API for easy consumption. You can program directly
using TensorFlow or use Keras. Keras is a higher level API for TensorFlow that is
user-friendly, modular, and easy to extend. You can use TensorFlow and Keras on
Windows, macOS, Linux, and Android/iOS. The coolest piece of the TensorFlow uni‐
verse is that Google has even created custom hardware to supercharge TensorFlow
performance. Tensor Processing Units (TPUs) were at the heart of the most advanced
versions of AlphaGo and AlphaZero, the game-focused AIs that conquered the game
of Go—long thought to be decades away from machine mastery.

Core TensorFlow is great for setting up powerful computation in complex data sci‐
ence scenarios. But it’s often helpful for data scientists to model their work at a higher
level and abstract away some of the lower-level details.

Enter Keras. It’s extensible enough to run on top of several of the major lower-level
ML toolkits, like TensorFlow, Theano, or the Microsoft Cognitive Toolkit. Keras’
design focuses on Pythonic and R user-friendliness in quickly setting up and experi‐
menting on deep neural network models. And as data scientists, we know that quick
experiments provide the best results—they allow you to fail fast and move toward
being more correct!

Quick pause over. Let’s dive back into the scenario. We will be using TensorFlow and
Keras in a bit, but first we’ll use basic R programming.

Training and Testing Split
The first step of the process is to split the data into training and testing sets. This is
easy with the library rsample.

tt_split <- initial_split(pr, prop=0.85)
trn <- training(tt_split)
tst <- testing(tt_split)

Looking in the global environments of R Studio shows there are two new dataframes:
TRN for training and TST for testing (Figure 4-33).
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5 Sometimes called creating “dummy variables.”

Figure 4-33. View of the training and testing dataframes

Shaping and One-Hot Encoding
We are still in the process of shaping our data for TensorFlow and Keras. We continue
with basic R programming in the next steps. The next steps are to shape the data such
that it will work well with a neural network. Neural networks, in general, work best
on data that is normally distributed. The data that we are feeding into our network
needs to be nominal: we can’t feed the categorical variables we find in our purchase
requisition data into the model. The network wouldn’t know what to do with some‐
thing such as “Material Group.” We will convert our categorical data to sparse data
using a process called one-hot encoding.5 For instance, the result of a one-hot encod‐
ing for the Matl.Group column would look like Figure 4-34.

Figure 4-34. Visualization of one-hot encoding

We know that we want to one-hot encode our categorical variables, but what do we
want to do with the others, if anything? Consider the Qty.Requested column, and the
number of options on a purchase requisition for quantity requested. A purchase
requisition for a new vehicle would likely not be more than one. However, the quan‐
tity requested for batches of raw materials might be a thousand pounds. This makes
us curious, what is the range of values in the Qty.Requested column? We can see that
easily with these commands:
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max(pr$Qty.Requested)
min(pr$Qty.Requested)

We see that the values range from 0 to 986. What? Quantities of zero? How many of
them are there?

count(pr[which(pr1$Qty.Requested == 0),])

We see that there are 313 rows with a quantity of 0! What could this mean? We are
confused about this data, so do we throw it out? Data science is not a vacuum, as
much as us coders would like it to be. We have to return to the business with a couple
examples of purchase requisitions with quantities of zero and ask them if they know
why. If they don’t, then we’ll toss the rows with zero quantities.

We learned something through this process. When Pat is asked about these strange
requisitions he says, “Sometimes when I’m not at my computer and someone calls
about a purchase requisition that I reject, they zero out the quantity because they
don’t have authority to reject the line.” In essence, zero quantity purchase requisitions
are rejected purchase requisitions. We have to convert the deletion indicator on these
to 1 to indicate they are rejected:

pr = within(pr, {
    deletion = ifelse(Qty.Requested == 0, 1 ,0)
})

Now that we’ve properly dealt with zero quantity purchase requisitions we return to
the task at hand. The model will not perform optimally on individual variables from
0 to a thousand. Bucketing these order quantities into groups will allow the model to
perform better. We will create three buckets of values. We’ve chosen this value rather
arbitrarily and can change it later as we test the performance of our model.

Recipes
We’ve decided to one-hot encode our categorical variables and scale and bucket our
numeric ones. To do this we will use the recipes library in R. This very convenient
library allows us to create “recipes” for our data transformation.

The recipes concept is intuitive: define a recipe that can be used later to apply encod‐
ings and processing. The final result can then be applied to machine learning or neu‐
ral networks.

We’ve already decided what we want to do with our data to prepare it for a network.
Let’s go through the code from the recipes package that will make that happen.

First we want to create a recipe object that defines what we are analyzing. In this
code we say we want to predict the deletion indicator based on the other features in
our data:
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library(recipes)
recipe_object <- recipe(deletion ~ Document.Type +
                    PGr +
                    Matl.Group +
                    Qty.Requested +
                    Un +
                    Valn.Price +
                    Tax.Jur. +
                    Profit.Ctr,
                    data = trn)
#We could also just use the . like this to indicate all, but the above is done 
#for clarity. recipe_object <- recipe(deletion ~ ., data = trn)

If you run into memory errors such as “Error: cannot allocate vec‐
tor of size x.x Gb” you can increase the memory allowed by using
the following command (the first two numbers indicate how many
gigs you are allocating; in this case, it’s 12):

memory.limit(1210241024*1024)

Our next step is to take that recipe object and apply some ingredients to it. We
already stated that we want to put our quantity and price values into three bins. We
use the step_discretize function from recipes to do that:

Some modelers prefer binning and some prefer keeping continu‐
ous variables continuous. We bin here to improve performance of
our model later.

recipe_object <- recipe_object %>%
   step_discretize(Qty.Requested, options = list(cuts = 3)) %>%
   step_discretize(Valn.Price, options = list(cuts = 3))

We wanted to also one-hot encode all of our categorical variables. We could list them
out one at a time, or we could use one of the many selectors that come with the rec
ipes package. We use the step_dummy function to perform the encoding and the
all_nominal selector to select all of our categorical variables:

recipe_object <- recipe_object %>%
  step_dummy(all_nominal())

Then we need to scale and center all the values. As mentioned earlier, our data is not
Gaussian (normally distributed) and therefore some sort of scaling is in order:

rec_obj <- rec_obj %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors())
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There are many normalization methods; in our example, we use
min-max feature scaling and standard score.

Notice so far that we’ve not done anything with the recipe. Now we need to prepare
the data and apply the recipe to it using the prep command:

recipe_trained <- prep( recipe_object, training = trn, retain = TRUE)

Now we can apply the recipe to any dataset we have. We will start with our training
set and also put in a command to exclude the deletion indicator:

x <- bake(rec_obj, new_data = trn) %>% select(-deletion)

Preparing Data for the Neural Network
Now that we are done with our recipe, we need to prepare the data for the neural net‐
work.

Our favorite (and commonly excepted best) technique is to not
jump directly into a neural network model. It is best to grow from
least to most complex models, set a performance bar, and then try
to beat it with ever more increasingly complex models. For
instance, we should first try a simple linear regression. Because we
are trying to classify approved and not-approved purchase requisi‐
tions we may then try classification machine learning techniques
such as a support vector machine (SVM) and/or a random forest.
Finally, we may come to a neural network. However, for teaching
purposes we will go directly to the neural network. There was no a
priori knowledge that led to this decision; it is just a teaching
example.

First we want to create a vector of the deletion values:

training_vector <- pull(trn, deletion)

If this is your first time using TensorFlow and Keras you will need to install it. It is a
little different than regular libraries so we’ll cover the steps here. First you install the
package like you would any other package using the following command:

install.packages("tensorflow")

Then, to use TensorFlow you need an additional function call after the library decla‐
ration:

library(tensorflow)
install_tensorflow()
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Finally, it is good process to check and make sure it is working with the common
print hello lines below. If you get the “Hello, TensorFlow!"” statement, it’s working:

sess = tf$Session()
 hello <- tf$constant('Hello, TensorFlow!')
 sess$run(hello)

Keras installs like any other R library. Let’s create our model in Keras. The first step is
to initialize the model, which we will do using the keras_model_sequential() func‐
tion:

k_model <- keras_model_sequential()

Models consist of layers. The next step is to create those layers.

Our first layer is an input layer. Input layers require the shape of the input. Subse‐
quent layers infer the shape from the first input layer. In our case this is simple, the
input shape is the number of columns in our training set ncol(x_trn). We will set the
number of units to 18. There are two key decisions to play with while testing your
neural network. These are the number of units per layer and the number of layers.

Our next layer is a hidden layer with the same number of inputs. Notice that it is the
same as the previous layer but we did not have to specify the shape.

Our third layer is a dropout layer set to 10%. That is, randomly 10% of the neurons in
this layer will be dropped.

Dropout layers control overfitting, which is when a model in a
sense has memorized the training data. When this happens, the
model does not do well on data it has not seen...kind of defeating
the purpose of a neural network. Dropout is used during the train‐
ing phase and essentially randomly drops out a set of neurons.

Our final layer is the output layer. The number of units is 1 because the result is
mutually exclusive. That is, either the purchase requisition is approved or it is not.

Finally, we will compile the model or build it. We need to set three basic compilation
settings:

Optimizer
The technique by which the weights of the model are adjusted. A very common
starting point is the Adam optimizer.

Initializer
The way that the model sets the initial random weights of the layers. There are
many options; a common starting point is uniform.
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Activation
Refer to Chapter 2 for a description of activation functions. Keras has a number
of easily available activation functions.

k_model %>%
  #First hidden layer with 18 units, a uniform kernel initializer,
  #the relu activation function, and a shape equal to 
  #our "baked" recipe object. 
  layer_dense(
    units = 18,
    kernel_initializer = "uniform",
    activation = "relu",
    input_shape = ncol(x_trn)) %>%

  #Second hidden layer - same number of layers with
  #same kernel initializer and activation function.
  layer_dense(
    units = 18,
    kernel_initializer = "uniform",
    activation = "relu") %>%

  #Dropout
 layer_dropout(rate = 0.1) %>%

  #Output layer - final layer with one unit and the same initializer
  #and activation. Good to try sigmoid as an activation here. 
  layer_dense(
    units = 1,
    kernel_initializer = "uniform",
    activation = "relu") %>%

  #Compile - build the model with the adam optimizer. Perhaps the 
  #most common starting place for the optimizer. Also use the 
  #loss function of binary crossentropy...again, perhaps the most 
  #common starting place. Finally, use accuracy as the metric 
  #for seeing how the model performs. 
  compile(
    optimizer = "adam",
    loss = "binary_crossentropy",
    metrics = c("accuracy"))
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Setting the parameters of your neural network is as much an art as
it is a science. Play with the number of neurons in the layers, the
dropout rate, the loss optimizer, and others. This is where you
experiment and tune your network to get more accuracy and lower
loss.

To take a look at the model, type k_model:

___________________________________________________________________________
 Layer (type)                       Output Shape                    Param #     
 =========================================================================
 dense_2 (Dense)                    (None, 18)                      2646        
 ___________________________________________________________________________
 dropout_1 (Dropout)                (None, 18)                      0           
 ___________________________________________________________________________
 dense_3 (Dense)                    (None, 18)                      342         
 ___________________________________________________________________________
 edropout_2 (Dropout)               (None, 18)                      0           
 ___________________________________________________________________________
 dense_4 (Dense)                    (None, 1)                       19          
 =========================================================================
 Total params: 3,007
 Trainable params: 3,007
 Non-trainable params: 0
 ___________________________________________________________________________

The final step is to fit the model to the data. We use the data that we baked with the
recipe, which is the x_trn:

history <- fit(
    #fit to the model defined above
  object = k_model,
      #baked recipe
  x = as.matrix(x_trn),
    #include the training_vector of deletion indicators
  y = training_vector,
    #start with a batch size of 100 and vary it to see performance
  batch_size = 100,
    #how many times to run through?
  epochs = 5,
    #no class weights at this time, but something to try
    #class_weight <- list("0" = 1, "1" = 2)
    #class_weight = class_weight,
  validation_split = 0.25)
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The model displays a log while it is running:

Train on 1450709 samples, validate on 483570 samples
Epoch 1/5
1450709/1450709 [==============================] 
- 19s 13us/step - loss: 8.4881e-04 - acc: 0.9999 -
val_loss: 0.0053 - val_acc: 0.9997
Epoch 2/5
1450709/1450709 [==============================] 
- 20s 14us/step - loss: 8.3528e-04 - acc: 0.9999 -
val_loss: 0.0062 - val_acc: 0.9997
Epoch 3/5
1450709/1450709 [==============================] 
- 19s 13us/step - loss: 8.5323e-04 - acc: 0.9999 -
val_loss: 0.0055 - val_acc: 0.9997
Epoch 4/5
1450709/1450709 [==============================] 
- 19s 13us/step - loss: 8.3805e-04 - acc: 0.9999 -
val_loss: 0.0054 - val_acc: 0.9997
Epoch 5/5
1450709/1450709 [==============================] 
- 19s 13us/step - loss: 8.2265e-04 - acc: 0.9999 -
val_loss: 0.0058 - val_acc: 0.9997

Results
What we want from our model is for the accuracy to be high and for it to improve
over the number of epochs. However, this is not what we see. Note the second graph
in Figure 4-35. We see that the accuracy is very high from the start and never
improves. The loss function also does not decrease but stays relatively steady.

This tells us that the model did not learn anything. Or rather, it learned something
quickly that made it very accurate and quit learning from that point. We can try a
number of tuning options, perhaps different optimizers and loss functions. We can
also remodel the neural network to have more or less layers. However, let’s think at a
higher level for a minute and turn back to the raw data with some questions.

Did we select the right features from SAP from the beginning? Are there any other
features that might be helpful?
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Figure 4-35. Accuracy and loss results from the model learning

Did we make mistakes along the way or did we make assumptions that were incor‐
rect? This requires a review of the process.

Is this data that can be modeled? Not all data is model ready.

After going through these questions we stumble upon this. What if the number of
approved purchase requisitions is overwhelming? What if the model just learned to
say “Yes” to everything because during training it was nearly always the right answer?
If we go back and look at the numbers before any modeling, we see that Pat approves
over 99% of all purchase requisitions. We can try different models and different fea‐
tures in our data, but the likely truth to this data exploration saga is that this data can‐
not be modeled. Or rather it can be modeled, but because of the high number of
approvals the model will learn only to approve. It will find it has great accuracy and
low loss and therefore on the surface it is a good model.
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Summary
Despite the failure to model the purchase requisition data, this example teaches a lot
of good lessons. Sometimes data can’t be modeled, it just happens...and it happens a
lot. A model that has high accuracy and low loss doesn’t mean it is a good model. Our
model had 99% accuracy, which should raise a suspicious eyebrow from the start. But
it was a worthless model; it didn’t learn. A common role of a data scientist is to report
on findings and to propose next steps. We failed, but we failed fast and can move past
it toward the right solution.

It could be argued that Greg and Paul failed Pat. After all, we can’t make any good
predictions based on the data we found and explored. But just because we didn’t find
a way to predictively model the scenario doesn’t mean we failed. We learned! If data
science is truly science, it must admit negative results as well as positive. We didn’t
learn to predict purchase requisition behavior, but we did learn that trying to do so
wouldn’t be cost effective. We learned that Pat and his colleagues have created solid
processes that make the business very disciplined in its purchasing behavior.

In exploratory data analysis, the only failure is failing to learn. The model may not
have learned, but the data scientists did. Greg and Paul congratulate themselves with
an extra trip to the coffee machine.

In this chapter we have identified a business need, extracted the necessary data from
SAP, cleansed the data, explored the data, modeled the data, and drawn conclusions
from the results. We discovered that we could not get our model to learn with the
current data and surmised this was because the data is highly skewed in favor of
approvals. At this point, we are making educated guesses; we could do more.

There are other approaches we could take. For instance, we could augment the data
using encoders, which would be beyond the scope of this book. We could weight the
variables such that the rejected purchase requisitions have greater value than the
accepted ones. In testing this approach, however, the model simply loses all accuracy
and fails for an entirely different reason. We could also treat the purchase requisitions
that are rejected as anomalies and use a completely different approach. In Chapter 5,
we will dig into anomaly detection, which might provide other answers if applied to
this data.

We have decided that the final course of action to be taken in our example is not a
data approach (much to our chagrin). The business should be informed that because
over 99% of all purchase requisitions are approved, the model could not find salient
features to determine when a rejection would occur. Without significantly more
work, this is likely a dead end. Perhaps there are different IT solutions, such as a
phone app that could help Pat do his job more efficiently. The likely solution, how‐
ever, cannot be found through machine learning and data science.
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CHAPTER 5

Anomaly Detection with R and Python

McKesson Corporation (McKesson), one of the nation’s largest distributors of pharmaceutical
drugs, agreed to pay a record $150 million civil penalty for alleged violations of the Con‐
trolled Substances Act (CSA), the Justice Department announced today.

—Department of Justice, January 17, 2017

Upon reading those headlines, Janine’s heart sank. She read the article with rapt atten‐
tion; this affected her. She worked in the regulatory department at Big Bonanza Ware‐
house where she was responsible for maintaining corporate compliance. She was
aware of Suspicious Order Monitoring Regulations (21 C.F.R. 1301.74(b)). Lately the
Department of Justice was hitting companies left and right for noncompliance with
this regulation, much more than they had done in the past. The regulation loosely
states that companies that manufacture and distribute controlled substances “know
their customers.” In the regulation’s exact words,

It is fundamental for sound operations that handlers take reasonable measures to identify
their customers, understand the normal and expected transactions typically conducted by
those customers, and, consequently, identify those transactions conducted by their customers
that are suspicious in nature.

—21 C.F.R. 1301.74(b)

But what exactly did this mean? She knew that her company had their sales orders in
SAP. There were over 10 years of sales orders. But what did it mean to understand the
normal and expected transactions of their customers? She decided to take this to the
SAP team and discuss with them what, if anything, could be done to protect them
from noncompliance and potential fines.

Duane, an analyst on the SAP team, was intrigued by her query. SAP contains/stores
sales orders and sales order history, but it doesn’t provide ordering patterns or a sys‐
tem to detect when there is an anomaly. The first question: “What is an anomaly?” It’s
not as simple as saying a customer typically orders 5 of a product one week and then
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suddenly orders 10. What if they missed a week? What if they had steadily been
increasing their supply chain and now 10 was acceptable?

When Duane brought the problem to data scientists Greg and Paul, they immediately
smelled an anomaly detection issue. Anomaly detection is fundamentally a method of
identifying unusual patterns in data that do not conform to what is expected. Most of
us have experienced anomaly detection using data science already. When you get that
text message or call from your credit card company asking you about a recent trans‐
action, you have experienced anomaly detection. Fraud detection is a sophisticated
method of anomaly detection that credit card companies use to prevent loss.

Greg and Paul fired up their program editors, ready to find those anomalies. Duane
stuck around, primarily to provide SAP insight to Greg and Paul—but also to check
out how they went about doing what they did. Duane felt pretty sure that while he
didn’t have a PhD in statistics or computer science, he could follow along enough to
start to understand.

Types of Anomalies
There are three general types of anomalies:

Point
Anomalies in data identified by a significant outlier. In our ordering pattern
example, let’s say a customer typically orders 10 of an item per week but one
week they order 100. This increase of 10 times their typical order is a simple
point anomaly.

Contextual
Anomalies within a condition. Often, this is an analysis within time-series data.
Taking sales data as an example, let’s say a customer orders many products
throughout the year, but they order mittens in July. An order of mittens in
December is not an anomaly, but in July it is.

Collective
Anomalies viewed within the context of a set of data. This relates to patterns
overall in the data, like an EKG or sine wave. If a customer’s ordering pattern
breaks out of their typical wave or pattern, this would be anomalous.

Perhaps the simplest method of detecting anomalies is to flag data points as anoma‐
lous if they are a certain standard deviation from the mean or median. Sales data is
over a time series so a rolling window will have to be taken into consideration. Defin‐
ing the width of the rolling window would be determined by the business conditions,
as each business’s situation is a little different. In our case of suspicious order detec‐
tion, a three-year window would be appropriate. The rolling window (or rolling aver‐
age) flattens fluctuations over the short term and emphasizes long-term fluctuations.
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1 See Chapter 2 for a refresher on supervised and unsupervised learning.

In our current scenario, we could use a regression and fit the line with a tolerance.
Anything that appears outside the tolerance is an anomaly.

However, this is a fairly static approach and for us...not enough. It would not take
into consideration any context, such as seasonality. We do not know if there is sea‐
sonality in our sales order data; therefore, to be prudent we should at least check for
it. We know that our requirement is to know our customers so we want to see ordering
patterns over time. Simply put, we want to identify collective anomalies.

Tools in R
There are many well-documented techniques for detecting anomalies using static
methods (like the ones discussed earlier), machine learning techniques, and neural
network models. When considering which technique to use, answer the following
questions:

• What type of data is it?
For our scenario, it is time-series data.

• Is the data labeled?
We don’t have labeled data so we are in an unsupervised learning scenario.1 If the
data is labeled it can be broken into test and training sets and basically turned
into a classification problem.

We have a number of tools in the data scientist’s toolbox to conduct unsupervised
learning with time-series data. We could go all sledgehammer on this and build a
recursive neural network using TensorFlow/Keras. That would complicate things
greatly and not necessarily (actually unlikely) return us any better results than a cou‐
ple of R libraries and Python packages built for this very purpose.

In R there are vignettes. These are tutorials for packages and most
of the time they are very informative and useful. To see the avail‐
able vignettes for your packages, type browseVignettes() in the
console of your R tool. To see a detailed tutorial on dplyr, for
instance, type browseVignettes(“dplyr”). In this case there are
multiple tutorials for this essential package in R.

AnomalyDetection
This is a package that has been open sourced by Twitter. It is built to detect anomalies
in time-series data...just what we are looking to do. It is based on a seasonal extreme
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2 More details on the mechanics of how a generalized ESD works can be found at https://www.itl.nist.gov/
div898/handbook/eda/section3/eda35h3.htm.

3 A wonderful presentation of this package can be found on Business Science’s website: https://www.business-
science.io/code-tools/2018/04/08/introducing-anomalize.html.

studentized deviate (ESD), which in turn is based on the generalized ESD. The gener‐
alized ESD is a test to detect anomalies in univariate data that is approximately nor‐
mally distributed. The advantage of the generalized ESD is that it does not require the
number of outliers to be specified, just that there is an upper bound for the suspected
number.

Given this upper bound, let’s say u, the package essentially performs u number of
tests, first a test for one anomaly, then two, and so on up to u anomalies.2

Anomalize
The anomalize package is yet another testament to the functionality and power of
programming languages like R and Python. There is wonderful documentation on
this package on CRAN.

This package is designed to detect all types of anomalies: point, contextual, and col‐
lective. It is a scalable adaptation of the Twitter AnomalyDetection package developed
by Business Science.3 It is a time-series based anomaly detection package that is scala‐
ble from one to many time series.

We understand the scenario and the data needed from SAP. We have also identified
some useful libraries in R for the detecting anomalies. Our mission is defined by the
Justice Department. We need to understand our customers and their ordering pat‐
terns. Namely, we want to know when there are anomalies. The steps that follow will
walk through the process of taking our SAP order data and turning it into a report of
anomalies.

Getting the Data
There are many ways to get data out of SAP. For our anomaly detection scenario we
could simply download the data in a CSV, read it through SAP Gateway, or use a CDS
view. We may or may not need to house the data in a separate system, but for illustra‐
tive purposes, we will do so here. In our scenario, we will read data from SAP via the
NetWeaver Gateway using SQL Server Integration Services (SSIS). We then pull that
data from SQL into Power BI. Finally we’ll use R and Python code to create an inter‐
active dashboard for anomaly detection.
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SAP ECC System
Our first step is to define a structure of data that we would like to analyze. We want to
see sales order line quantities by material and customer.

Enter transaction code SE11 into SAP and give a name to the data structure and then
click on the Create button (Figure 5-1).

Figure 5-1. SAP data dictionary

Select the Structure radio button and click on Enter (Figure 5-2).

Figure 5-2. SAP structure selection

We want to gather sales order, sales order item, material ordered, quantity, customer,
and the order date. Enter a Short Description of the data and the fields (Figure 5-3).
(Staying with the original SAP names as field names makes integration with the gate‐
way simpler. We will rename them out of the gateway as something meaningful.)

Figure 5-3. Components of a data structure
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Click on the Currency/quantity fields tab to add a reference value for the quantity
field.

If you do not know what the reference table and field are you can refer to the tables
from which we will be reading. In this case those tables are VBAK (sales order
header) and VBAP (sales order item).

Figure 5-4. Currency and quantity fields copied from the VBAP table for the quantity
(KWMENG)

Follow the menu path Extras → Enhancement Category to enter whether this struc‐
ture can be enhanced or not. We do not need enhancements, so we will choose Can‐
not be Enhanced (Figures 5-5 and 5-6).

Figure 5-5. Data structure enhancement category

Figure 5-6. Selection for enhancement category

Click on the Copy button, then click on the Activate button. The pop-up dialog is
asking for a package to assign this structure. For our purposes we are using a $TMP
object so it will not be transported.
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Figure 5-7. Activating the SAP structure

If all is done correctly, you will get a confirmation “Object saved and activated” at the
bottom of the screen.

Next, click on the Back button. A table type is needed for the function module. We
will create that now.

Enter the same name as used for the structure but prepend a “_TT” to it, as shown in
Figure 5-8.

Figure 5-8. Creating a table type in SAP

Click on the Create button. This time choose the “Table type” radio button and press
Enter (Figure 5-9).

Figure 5-9. SAP table type selection

Enter a “Short text” and put in the structure previously created into the Line Type
field (Figure 5-10).

Click on the Activate button. You will be asked again for a package and will get the
confirmation “Object saved and activated” once finished.
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Figure 5-10. Assigning the structure to the table type

The next step is to create a function module for reading the data. Enter transaction
code SE37 into the command line and hit Enter. Give the function module a mean‐
ingful name and then click on the Create button (#sap_function_builder). Enter a
“Function group” and a “Short text” description and then click on the Save button. If
you don’t know a function group, you can get one from your Basis administrator or
ABAP developer.

Figure 5-11. SAP Function Builder

You will get an information message (#sap_function_module_warning). Click Enter
to move past it.
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Figure 5-12. SAP function module warning

Click on the Attributes tab and ensure that the function module is remote-enabled
(Figure 5-13). Without this, the NetWeaver Gateway will not be able to call this.

Figure 5-13. SAP remote enabled function selection

Click on the Export tab and enter a Parameter Name and the Associated Type, which
is the table type created earlier. Click on the Pass Value checkbox to ensure data is
passed to this export parameter (Figure 5-14).

Figure 5-14. Parameters for function module
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Click on the “Source code” tab. Enter the following code. It is going to read all sales
order line items greater than 01/01/2014. Generally, it would be a good idea to add an
import date parameter so it is more dynamic. However, for the purposes of illustra‐
tion, we will keep this super simple:

SELECT DISTINCT vbak~vbeln
                vbak~erdat
                vbak~kunnr
                vbap~posnr
                vbap~matnr
                vbap~kwmeng
  INTO CORRESPONDING FIELDS OF TABLE e_salesdata
  FROM vbak JOIN vbap ON vbak~vbeln = vbap~vbeln
  WHERE vbak~erdat >= '2014101'.

Click on the Activate button, then click on the Test button to make sure it works and
doesn’t run too terribly long. Click on the Execute button. The function will return a
table of data. If the table is large, like the one we have, do not click on the table button
to view it. SAP will try to render the entire table and run into paging problems and
simply quit.

Figure 5-15. Results of function module test

SAP NetWeaver Gateway
Now for the SAP NetWeaver Gateway. As pointed out earlier, the great function of
this utility is to expose our newly found data in an OData feed (either XML or JSON).
If your SAP environment has a separate NetWeaver Gateway server, log in and enter
the transaction code SEGW. Click on the Create button to create a new project. Enter a
name for the Project, a Description, and a Package. Then click on the Enter button
(Figure 5-16).
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Figure 5-16. Creating a new NetWeaver Gateway project in SAP

Your new project will appear below (Figure 5-17).

Figure 5-17. Project in transaction SEGW

Right-click on the Data Model node and select Import → RFC/BOR Interface from
the context menu to read in the function definition we just created (Figure 5-18).

Figure 5-18. Importing the RFC into the model
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Enter an Entity Type Name, select your target system, and enter the Name of the
function module. In this example, since our gateway is embedded within SAP ERP,
we use Local. Then click on the Next button (Figure 5-19).

Figure 5-19. Defining the RFC for the gateway model

Select all the checkboxes for the elements to be used in the service. We want all of
them so only the top node needs to be selected. Click on the Next button
(Figure 5-20).

Figure 5-20. Selecting the necessary fields from the FM export

Identify what the key fields are for the structure, then click on the Finish button
(Figure 5-21). The key fields are the unique fields for your structure—in this case, the
sales order (VBELN) and the sales order item (POSNR). In an SAP system there will
never be the same sales order number for the same sales order item.
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Figure 5-21. Identifying the keys for the model

Open the project folders Data Model → Entity Types → SalesOrder and click on the
Properties folder. Add some meaningful names (as shown in Figure 5-22 to the ser‐
vice in the Name column and identify any values that can be Null by clicking in the
checkbox in the Nullable column. When finished click on the Generate Runtime
Objects button.

Figure 5-22. Giving the entity meaningful names

Accept the default values for the objects about to be generated. Click on the Enter
button (Figure 5-23).
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Figure 5-23. Generating the model and service definition

Again, assign this to a transport if necessary in pop-up dialog. Click on the Save but‐
ton (Figure 5-24).

Figure 5-24. Selecting a package for the gateway project

Open the project folders Service Implementation → SalesorderSet and right-click on
the GetEntitySet (Query) line (Figure 5-25). Select the Map to Data Source option, as
shown in Figure 5-26.
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Figure 5-25. Mapping the gateway to the data source

Figure 5-26. Selecting the Map to Data Source option

This will give the mapping option for our service and the backend function. Identify
the Target System of the function module, the Type, and the Name. Press the Enter
button (Figure 5-27).

Figure 5-27. Identifying the source function module

Map each field from the function module to the field in the service. If you’ve defined
the function with common parameter types, you can make your life easier and click
Propose Mapping (Figure 5-28). In this example, that works well.
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Figure 5-28. Mapping using the propose mapping option

When finished click on the Generate Runtime Objects button (Figure 5-29).

Open the Service Maintenance folder, right-click on the hub to be used, and select
Register (Figure 5-30).

Figure 5-29. Node for the service maintenance

Figure 5-30. Selecting to register the gateway components
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Select the system alias and then click on the Enter button (Figure 5-31).

Figure 5-31. Identifying a system alias for the gateway service

The system will now register the service. Accept the default entries, assign a package,
and then click on the Enter button (Figure 5-32).

Figure 5-32. Generating and activating gateway services and components

If you do not have a hub under the Service Maintenance folder
then your system is not properly configured. Refer to your Basis
Administration for help doing this. There are some excellent blogs
at blogs.sap.com that walk through this very well.

Let’s test this and see if it works. Right-click on the hub again but this time select
Maintain (Figure 5-33).
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Figure 5-33. Maintaining the gateway service

The service is displayed with some additional functionality. It is easiest to call the ser‐
vice in a browser so click on the Call Browser button (Figure 5-34).

Figure 5-34. Testing the gateway service in the browser

The default browser opens with the service and entity sets displayed:

<app:service xml:base="http://<host>:<port>/sap/opu/odata/sap/ZGMF_SALES_SRV/">
  <app:workspace>
  <atom:title type="text">Data</atom:title>
  <app:collection sap:creatable="false" sap:updatable="false"
     sap:deletable="false" sap:pageable="false"
     sap:content-version="1" href="SalesOrderSet">
     <atom:title type="text">SalesOrderSet</atom:title>
     <sap:member-title>SalesOrder</sap:member-title>
  </app:collection>
</app:workspace>
<atom:link rel="self" 
  href="http://<host>:<port>/sap/opu/odata/sap/ZGMF_SALES_SRV/"/>
<atom:link rel="latest-version" 
  href="http://<host>:<port>/sap/opu/odata/sap/ZGMF_SALES_SRV/"/>
</app:service>
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To try the actual entityset and function module, copy out the entityset name (in our
case, SalesOrderSet) and put it at the end of the URL between the / and ?. For our
example, this URL would work:

https://[YOUR_SAP_HOSTNAME]/sap/opu/odata/sap/ZGMF_SALES_SRV/SalesOrderSet?
    $format=xml

And would produce an output like this:

...
<id>
  http://<host>:<port>/sap/opu/odata/sap/YGMF_SALES_SRV/SalesOrderSet
</id>
<title type="text">SalesOrderSet</title>
<updated>2019-04-25T17:39:37Z</updated>
<author>
  <name/>
</author>
<link href="SalesOrderSet" rel="self" title="SalesOrderSet"/>
<entry>
  <id>
http://<host>:<port>/sap/opu/odata/sap/YGMF_SALES_SRV/SalesOrderSet
  (Vbeln='5000000',Posnr='000010')
  </id>
  <title type="text">SalesOrderSet(Vbeln='5000000',Posnr='000010')</title>
  <updated>2019-04-25T17:39:37Z</updated>
  <category term="YGMF_SALES_SRV.SalesOrder"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>
  <link href="SalesOrderSet(Vbeln='5000000',Posnr='000010')"
     rel="self" title="SalesOrder"/>
  <content type="application/xml">
    <m:properties>
      <d:Vbeln>5000000</d:Vbeln>
      <d:Erdat>2017-07-03T00:00:00</d:Erdat>
      <d:Posnr>000010</d:Posnr>
      <d:Matnr>12345678</d:Matnr>
      <d:Kwmeng>1.000</d:Kwmeng>
      <d:Kunnr>56789</d:Kunnr>
    </m:properties>
  </content>
 </entry>
...

Now that we know our data feed is working, we can move onto reading with SSIS and
putting it into SQL. For high volume and frequently accessed analytical data, storing
it in an intermediate SQL database can save the SAP system from memory errors. At
lower volumes or occasionally accessed frequencies, this could work just fine as an
OData service read directly from PowerBI. The right answer for your environment
will vary.
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The first step is to define a database structure. This is easy since we can query the
metadata of our service by adding /$metadata/ to the end of the service URL. Like
this…

https://[YOUR_SAP_HOST_NAME]/sap/opu/odata/sap/ZGMF_SALES_SRV/$metadata/

The <entitytype> tag will have all the data definitions necessary for us to create the
SQL database:

<edmx:Edmx xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
  xmlns:sap="http://www.sap.com/Pro
tocols/SAPData" Version="1.0">
 <edmx:DataServices m:DataServiceVersion="2.0">
 <Schema xmlns="http://schemas.microsoft.com/ado/2008/09/edm" 
   Namespace="YGMF_SALES_SRV" xml:lang="en"
sap:schema-version="0">
 <EntityType Name="SalesOrder" sap:content-version="1">
 <Key>
 <PropertyRef Name="Vbeln"/>
 <PropertyRef Name="Posnr"/>
 </Key>
 <Property Name="Vbeln" Type="Edm.String" Nullable="false" MaxLength="10" 
   sap:label="Sales Document" sap:creatable="false" sap:updatable="false" 
   sap:sortable="false"sap:filterable="false"/>
<Property Name="Erdat" Type="Edm.DateTime" Precision="7" sap:label="Created on" 
   sap:creatable="false"
sap:updatable="false" sap:sortable="false"sap:filterable="false"/>
<Property Name="Posnr" Type="Edm.String" Nullable="false" MaxLength="6" 
   sap:label="Item" sap:creatable="false" sap:updatable="false" 
   sap:sortable="false"sap:filterable="false"/>
<Property Name="Matnr" Type="Edm.String" MaxLength="18" 
sap:label="Material" sap:creatable="false"
sap:updatable="false" sap:sortable="false" sap:filterable="false"/>
<Property Name="Kwmeng" Type="Edm.Decimal" Precision="13" Scale="3" 
  sap:label="Quantity" sap:creatable="false" sap:updatable="false" 
  sap:sortable="false"sap:filterable="false"/>
<Property Name="Kunnr" Type="Edm.String" MaxLength="10" sap:label="Customer" 
   sap:creatable="false" sap:updatable="false" sap:sortable="false" 
   sap:filterable="false"/>
</EntityType>
<EntityContainer Name="YGMF_SALES1_SRV_Entities" 
   m:IsDefaultEntityContainer="true" sap:supported-formats="atom json">
<EntitySet Name="SalesOrderSet" EntityType="YGMF_SALES_SRV.SalesOrder" 
   sap:creatable="false" sap:updatable="false" sap:deletable="false" 
   sap:pageable="false"sap:content-version="1"/>
</EntityContainer>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="self"
href="http://<host>:<port>/sap/opu/odata/sap/YGMF_SALES1_SRV/$metadata"/>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="latest-version"
href="http://scsecccid.sces1.net:8001/sap/opu/odata/sap/
      YGMF_SALES1_SRV/$metadata"/>
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4 Download SQL Server Express here.
5 Installation tutorial for SQL Express at https://www.sqlshack.com/install-microsoft-sql-server-express-localdb/.
6 Download SQL Server Management Studio at https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-

management-studio-ssms?view=sql-server-2017.
7 Connect SSMS to SQL at https://docs.microsoft.com/en-us/sql/relational-databases/lesson-1-connecting-to-the-

database-engine?view=sql-server-2017.
8 Visual Studio Community at https://visualstudio.microsoft.com/downloads/.

</Schema>
</edmx:DataServices>
</edmx:Edmx>

To do the next steps you will need SQL, SQL Server Management
Studio, and Microsoft Visual Studio Community. If you don’t cur‐
rently have a SQL Server we recommend playing with SQL
Express4 first. There are many good tutorials on the installation
process.5 If you haven’t had fun with SQL Server Management Stu‐
dio, you’re about to. Install SQL Server Management Studio6 and
connect it to your SQL Express.7 Finally, if you have not used Vis‐
ual Studio Community, we envy you. It’s like telling a friend about a
wonderful movie that you wish you could watch again for the first
time. Download Visual Studio Community8 and install it. If you
haven’t used any of these tools it may seem at first daunting, but
trust us, these are powerful and fun tools that will change how you
look at data and analytics. Dive in, don’t look back, have fun.

SQL Server
Before we build our database, let’s talk about what we intend to do. We want to load
from our backend system in the simplest and easiest way possible. To do this we will
load all data first into a Repository table. The data types of this repository will be sim‐
ple Unicode strings. Then the data moves to a staging table where the data definitions
are more precise. Upon successful completion of this, the data will be then loaded
into the final mart table using an Upsert command. This will insert any new records
and overwrite any existing records based on the keys we define (which will be Sales
Order and Line Item).

Tools in R | 153

https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.sqlshack.com/install-microsoft-sql-server-express-localdb/
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/lesson-1-connecting-to-the-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/lesson-1-connecting-to-the-database-engine?view=sql-server-2017
https://visualstudio.microsoft.com/downloads/


Figure 5-35. Data flow for storing data in SQL

Open SQL Server Management Studio, enter your Server Name and your credentials,
and click on the Connect button (Figure 5-36).

Figure 5-36. Connecting to your server
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Right-click on the Databases folder (Figure 5-37) and select New Database
(Figure 5-38).

Figure 5-37. SQL hierarchy

Figure 5-38. Creating a new database

Enter a Database name and click on the OK button (Figure 5-39).

Figure 5-39. Entering a SQL database name
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Click on the newly created database and then right-click on the Tables folder. Select
New → Table (Figure 5-40).

Figure 5-40. Creating a new SQL table

Enter the details of the table using Unicode Data Types with an ample length
(Figure 5-41).

Figure 5-41. Entering the SQL table variables

Click on the Save button.

Enter the name of the table denoting in some way that it is the repository table. Click
on the OK button (Figure 5-42).

Figure 5-42. Naming the SQL table for repo

156 | Chapter 5: Anomaly Detection with R and Python



Repeat the process and create another table but this time with the types accurately
defined, as shown in Figure 5-43.

Figure 5-43. Identifying the SQL variables for stage

Click on the Save button.

Enter the name of the table denoting in some way that it is the stage table. Click on
the OK button (Figure 5-44).

Figure 5-44. Naming the SQL table for stage

Repeat the process again exactly as was done for the stage table but denote this one as
the mart table (Figure 5-45). This will be the location from which we read into Pow‐
erBI.

Figure 5-45. Entering the SQL table name for mart

Now that our database is ready, we need to create the operation that will load the data
from SAP into it.

SQL Server Integration Services (SSIS)
First, let’s open Visual Studio Community.

Follow the menu path File → New → Project (Figure 5-46).
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Figure 5-46. Creating a new SSIS project

Here are the steps you’ll need to follow (Figure 5-47):

1. Open the folder Business Intelligence.
2. Click on Integration Services.
3. In the righthand panel, right-click on Integration Services Project.
4. Enter a Name for the project.
5. Click on the OK button.

Figure 5-47. Steps for starting an Integration Services project
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In the Solution Manager panel, right-click on Connection Manager and select New
Connection. This is where we will define our connection to the OData model we have
from SAP. The connection manager has by default an OData option (Figure 5-48).

Figure 5-48. Adding a new connection in SSIS

Select the type of connection we will be reading from the NWG (NetWeaver Gate‐
way). This is an OData connection; therefore, click on ODATA and then click the
Add button. Then follow these steps (Figure 5-49):

1. Enter a meaningful Connection manager name.
2. Enter the Service document location, which is the URL to our NWG data feed.

Make sure to use the service and not the collection.
3. Change the Authentication Type to Basic Authentication.
4. Enter an authorized User name.
5. Enter the Password.
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Figure 5-49. Connection settings in SSIS for SAP Gateway service

Click on the Test Connection button to make sure the settings are all correct. You
should then see the dialog box shown in Figure 5-50.

Figure 5-50. Testing the connection from SSIS to SAP

Click on the OK button and then click on OK again to save the connection. Next we
need to define the workflow for the reading process. Click on the Data Flow Task in
the SSIS Toolbox and drag it to the Control Flow panel (Figure 5-51).

Figure 5-51. Creating a data flow task
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Rename the data flow task (Figure 5-52).

Figure 5-52. Rename the data flow task

Double-click on the data flow task to navigate to the Control Flow or click on the
Control Flow tab. Drag a OData Source component from the Common section.
Rename it something meaningful (Figure 5-53).

Figure 5-53. Creating an OData source connection within the data flow

1. Double-click on the OData Component.
2. Select the connection created earlier.
3. The collections or entity sets from the NWG service will display.
4. Click on the Preview button (Figure 5-54).
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Figure 5-54. OData source settings for the SAP connection

A small preview will display (Figure 5-55). If things look good, close the preview win‐
dow and click on the OK button.

Figure 5-55. Previewing the data coming from SAP in SSIS

We can read the data from SAP, and now we need to put it in the SQL database we
created earlier.

In the Solution Manager panel, right-click on Connection Managers and select New
Connection Manager (Figure 5-56). This is where we will define our connection to
SQL Database.
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Figure 5-56. Adding a connection to SQL from SSIS

Select OLEDB from the list and then click the Add button (Figure 5-57).

Figure 5-57. Selecting the OLEDB connection type for SQL
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Click on the New button. Enter the SQL Server name, Authentication, and Database
name. Then click on the Test Connection button (Figure 5-58).

Figure 5-58. SQL database connection settings in SSIS

If all is successful a positive test will result (Figure 5-59).

Figure 5-59. Testing the connection to SQL

Click on the OK button three times to save.

The Connection Managers pane now shows both of the connections we created
(Figure 5-60).

Figure 5-60. The connections to the different systems in SSIS
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The next step is to connect the SAP connection to the SQL connection. Select the
OLE DB Destination component and drag it into the Data Flow tab. Give it a mean‐
ingful name (Figure 5-61).

Figure 5-61. Creating a OLE DB Destination in SSIS

Connect the SAP component to the SQL component with the blue arrow
(Figure 5-62). The red arrow is for errors.

Figure 5-62. Connecting SAP and SQL in SSIS

Double-click on the SQL component. It will automatically connect to the SQL con‐
nection as there is only one. If there is more than one option select the appropriate
one from the OLE DB connection manager. Select the repository table from the SQL
database (Figure 5-63).
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Figure 5-63. Connecting to a specific SQL database table

Click on the Mappings option on the left. If the names are the same in the database as
they are in the SAP feed then the entries will map automatically. If they are not, map
them manually. Then click on the OK button (Figure 5-64).

Figure 5-64. Mapping from SAP source to SQL database destination
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The data flow should now show no errors (Figure 5-65).

Figure 5-65. No errors present in current mapping

Click on the Save button and then click on the Start button to test the process. When
it is complete there will be two green checkmarks (one for the successful reading
from SAP and one for the successful writing to the SQL repository table), as shown in
Figure 5-66.

Figure 5-66. Executing the SAP to SQL Database flow in SSIS

Let’s make sure that the data is in our database. Open SQL Server Management Studio
and navigate to the repository table. Right-click on the table and select Select Top
1000 Rows from the context menu (Figure 5-67).
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Figure 5-67. Checking SQL Database

The results from SAP are now in the database repository table (Figure 5-68).

Figure 5-68. SAP data is now in SQL via SSIS

Why did we create two more tables? Well, we load simply without rules to the reposi‐
tory table. What that means is we will not check if integers are integers, dates are
dates, or any other validation. Remember our flow from Figure 5-35. If there are data
errors, they will be caught when we move to Stage. There is little risk of error because
we are using large Unicode character strings. Now we will move the data from the
repository to the stage table.
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In Visual Studio, click on the Stop button to end the test. In the SSIS Toolbox drag the
Execute SQL Task to the Control Flow tab and give it a meaningful name
(Figure 5-69).

Figure 5-69. Creating an Execute SQL Task in SSIS

Double-click on the SQL task to bring up the properties. Ensure that the Connection
is pointed at the SQL Server. Click on the ellipsis button to bring up the SQL editor
(Figure 5-70).

Figure 5-70. Opening the SQL editor in an SSIS task

Enter the SQL statement to move all data from the repository table into the stage
table. Then click on the OK button twice (Figure 5-71).
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Figure 5-71. SQL code to move data from the repo table to the stage table

Right-click on Execute SQL Task and select Execute Task to test. Upon successful
completion of this task there will be data in the stage table in the SQL database
(Figure 5-72).

Figure 5-72. Executing the single task in SSIS

Finally, we will move the data from stage to mart. Drag another Execute SQL Task to
the Control Flow tab. Give it a meaningful name (Figure 5-73).
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Figure 5-73. Adding another Execute SQL Task to the workflow

As we had done for the move from the repository to stage, double-click on the SQL
task to bring up the properties. Ensure that the Connection is pointed at the SQL
Server. Click on the ellipsis button to bring up the SQL editor.

The SQL code here is a bit different. It uses a MERGE statement based on the sales
order and item. If the mart table already has this sales order and item it will update it,
otherwise it will insert it. Once finished, click on the OK button twice (Figure 5-74).

Figure 5-74. SQL code to move data from the stage table to the mart table

As we had done before, right-click on the Execute SQL Task and select Execute Task
to test. Upon successful completion of this task there will be data in the mart table in
the SQL database.
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The concept here is to dump to the repository table, insert to the stage table, and
merge to the mart table. For this flow to work, we must clean up the repo table upon
successful completion of the load to stage and clean up the stage table upon success‐
ful load to the mart table. By not writing directly to the mart table we have a safe pro‐
cess and reduce the risk of accidentally corrupting our mart table.

Copy two new Execute SQL Tasks to the Control Flow panel. Give them names indi‐
cating what they are going to do. We are going to truncate or drop the repo and stage
tables once the data has successfully moved on (Figure 5-75).

Figure 5-75. Adding SQL Tasks to truncate the previous tables

As we had done earlier, assign the proper connection to the SQL database and open
the SQL editor. For the Truncate Repo task, put in the simple code:

TRUNCATE TABLE SalesOrders_Repo;

For the Truncate Stage task put in:

TRUNCATE TABLE SalesOrder_Stage;

Test them and then check in SQL Server Management Studio to ensure that the repo
and stage tables are empty.

Each of these components are standalone, for the moment. Connect them to create a
workflow Figure 5-76. If any of these steps fail, the process will stop there and not
continue—which is what we want! Refer back to Figure 5-35 again. We want to pro‐
tect our MART such that errors anywhere in the process will stop the overall process
before data is moved to mart.
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Some may assume that the whole repo → stage → mart process
adds an unnecessary level of complexity. If you wisely monitor
your data and are cautious on data loads you can directly load to
mart. However, recently when updating a more than 70 million
row database for pharmaceutical analytics our process failed at the
INSERT to stage. The source data structure had unknowingly
changed. The repo → stage → mart design saved us a major
rebuild, tons of time, and perhaps most importantly, avoided any
system downtime.

Figure 5-76. Connecting the tasks into a single workflow

Click on the Save button and then click on the Start button to test the process. All the
components will show a green check if they have successfully completed
(Figure 5-77).

Figure 5-77. Executing the entire workflow and checking the status
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9 In our humble opinion, tools like PowerBI and Tableau with their ETL layers are the death knell of traditional
data warehouse models.

10 PowerBI can be downloaded from https://powerbi.microsoft.com/en-us/downloads/.

We have completed the process of extracting the data from SAP via the NetWeaver
Gateway. We have used an extraction tool SSIS to automate the process and pull the
data into a SQL Database. Now the data is available for advanced analytics and
machine learning!

Finding Anomalies
For the advanced analytics and machine learning work, we will use PowerBI and R
with the anomalize package introduced earlier. For nerdy fun, we’ll also do the same
thing with PowerBI and Python—illustrating some key capabilities of both languages
and the PowerBI tool itself. Greg’s an R addict, while Paul hacks around in Python.
PowerBI is the perfect place to meld those preferences.

PowerBI and R
Let’s learn about yet another powerful tool in our data scientist’s toolbox...PowerBI.
What exactly is PowerBI? In technical terms, PowerBI is an abstraction layer between
the data and the presentation. You can model and transform your data before pre‐
senting it to the user. Furthermore, you can merge and modify disparate data sources
into one report using PowerBI. How about an example for our SAP users. You know
that ALV (ABAP List Viewer) report that is so ubiquitous? That is an abstraction
between the data and the reporting. PowerBI is hundreds of times more powerful
than that. For those familiar with Business Intelligence models, PowerBI provides an
ETL (Extract-Transform-Load) layer before the actual reporting.9

First, download and install PowerBI.10 To use R together with PowerBI, we need to set
up the connection to our SQL mart. Open up PowerBI and click on the Get Data but‐
ton. Then select the Database option and highlight SQL Server database. Click on the
Connect button (Figure 5-78).
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Figure 5-78. Connecting PowerBI to a SQL database

Enter the Server and the Database name and click the OK button (Figure 5-79).

Figure 5-79. Naming the SQL database connection in PowerBI

Accept the authorization settings or change them if not using Windows credentials.
Click on the Connect button (Figure 5-80).
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Figure 5-80. Authorization for connecting to a SQL database in PowerBI

PowerBI will notify you that it tried an encrypted connection first unsuccessfully and
now it is going to use an unencrypted connection. Click on the OK button
(Figure 5-81).

Figure 5-81. Warning message in PowerBI for encryption support

Select the mart table from the SQL database. A preview will show in the right panel.
Click on the Load button (Figure 5-82).
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Figure 5-82. Previewing the SQL data in PowerBI

While PowerBI loads the data, it will display the dialog box shown in Figure 5-83.

Figure 5-83. PowerBI loading indicator

Once the data is finished loading PowerBI will display a blank canvas with tools for
visualizations and the fields from our SQL database. Click on the Slicer button first
(Figure 5-84). This allows us to filter our data dynamically in the PowerBI report.
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Figure 5-84. Selecting the slicer visualization in PowerBI

Then click on the field for Customer to assign it to the slicer. The slicer on the canvas
shows the assignment. If you want there to be a “searchable” capability in the slicer,
click on the ellipsis in the upper-right corner and select Search, as in Figures 5-85 and
5-86.

Figure 5-85. Using the searchable option for the slicer visual in PowerBI

Figure 5-86. The searchable option in the slicer visual
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Repeat the process for Material and Date (Figure 5-87).

Figure 5-87. Adding other slicer visuals in PowerBI

Our first visualization is a simple line chart showing sales of material by date. Click
on the Line chart button and place it on the canvas. As shown in Figure 5-88, assign
Date to the axis, Quantity to the values, and Material to the legend. Then add what‐
ever tooltips you’d like.
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Figure 5-88. Adding variables to the line chart visual in PowerBI

The line chart is very busy because it has not been filtered yet. We’ve created a slicer
for the report, but we haven’t put any filter criteria into it yet (Figure 5-89).

Figure 5-89. Preview of the line chart visual in PowerBI

The next step is to add an R visualization. Click on the R button and place it on the
canvas under the line chart. Drag the variables we are going to use to the R visualiza‐
tion. These are Date and Quantity (Figure 5-90).
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Figure 5-90. Using the R visual in PowerBI

In the script editor the fields selected will be shown as part of the dataset
(Figure 5-91).

Figure 5-91. Selecting variables for the dataset in R in PowerBI

Place the following R code in the script editor (the comments in the code are pre‐
ceded by a hash mark (#) and will describe what the next line of code is doing):

#anomalize package by Matt Dancho and Davis Vaughan @business-science.io 
library(anomalize)
#tidyverse package by Hadley Wickham @ RStudio.com
library(tidyverse)
#tibble time package by Matt Dancho and Davis Vaughan @business-science.io
library(tibbletime)

#make sure that R sees the Date as a date variable
dataset$Date <- as.Date(dataset$Date)

#convert the dataframe to a tibble, which is still a dataframe but
#with tweaks to old behavior to make life easier
dataset <- as_tbl_time(dataset, index = Date)

#identify the dataset to be used   
#Reference 
#https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html                
dataset %>%                                                                                              
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  as_period("weekly") %>%       #set the period to daily                                   
  time_decompose(Quantity) %>%  #generate a time series decomposition
  anomalize(remainder) %>%      #detect outliers in a distribution
  time_recompose() %>%          #generate bands around the normal levels
  plot_anomalies(time_recomposed = TRUE) +
    ggtitle("Anomalies")      #plot the findings with the time_recompose

Then press the Play button to see it work.

It doesn’t make a lot of sense at first since it is evaluating anomalies across all avail‐
able materials for all customers. It hasn’t been filtered yet (Figure 5-92).

Figure 5-92. Unfiltered view of R and line visual in PowerBI

Select one material to see anomalies across all customers for that particular material
(Figure 5-93).

Figure 5-93. Filtering the line and R visual via the slicer
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The first thing to notice is that the line chart does not intuitively show anomalies.
One would guess that spikes are anomalies, but the anomalize package did not always
classify them as such. Now click on a customer to subset the values further to display
anomalies for a particular customer and material combination (Figures 5-94 and
5-95).

Figure 5-94. Subsetting the visual by material and customer for accurate anomaly detec‐
tion

Anomalies are now more in line with the line chart and large spikes do show as
anomalies, but not all of them.
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Figure 5-95. Closer view of just the charts in the PowerBI report

PowerBI and Python
Whether you’re a SAP analyst or a data scientist, everyone who wrangles code has
their own preferences for language, syntax, style, and platform. Microsoft took this to
heart when designing PowerBI. The preceding section set up and analyzed sales order
data looking for anomalies in R—but let’s make the jump to Python. A couple of
packages help us make this an efficient process:

luminol
A package designed for time series data analysis. It’s open sourced from the folks
at LinkedIn. Considering the sheer amount of data being handled at LinkedIn, as
well as its relative worth in the value of that product, it’s easy to imagine that their
data science team is top-notch. And this package proves it, by providing an easy-
to-use API for detecting anomalies as well as fine-tuning how the detection
works.
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11 There are many ways to install new packages in Python. In our example, we are using a basic command line.

Matplotlib
A package designed for 2D plotting. Very powerful, feature-packed, and com‐
mon across the Python world. We’ll visualize our results using this library.

We can even keep our language preference in the same tool, because PowerBI has
built-in support for using Python to output charts and graphs, allowing us to use
these libraries. This support is currently available in preview, so let’s set it up. After
all, a huge part of data science is daring to try something new!

To make sure your computer can run the new Python feature, install the latest version
of Python and then use the following three pip commands to install the packages
we’ll use:11

$ pip install pandas
$ pip install luminol
$ pip install matplotlib

Next, open PowerBI and use the same file we created earlier for R analysis. Navigate
to the settings menu, and in the Global section, the Preview Features menu allows
you to add upcoming features that are not part of the full current release
(Figure 5-96).

Figure 5-96. Turning on the Python support in PowerBI
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Check the box next to Python support and close the options menu. You’re set to use
Python in this document. We’ll add a Python graph right below the R graph we cre‐
ated. In the Visualizations menu, choose Py to add another analysis section to the
dashboard (Figure 5-97).

Figure 5-97. The Python visual in PowerBI

For the last bit of PowerBI setup, make sure the Fields properties for this visualization
match the properties of the R visualization we set up earlier (Figure 5-98).
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Figure 5-98. Selection fields for the Python visual in PowerBI

With PowerBI set up and packages installed, we’re ready. Click on the Python analysis
section and enter the following code:

from luminol.anomaly_detector import AnomalyDetector
import matplotlib.pylab as plt 
import matplotlib.ticker as plticker 
# Helper function to make the raw dates into numbers for  
# luminol to interpret 
def make_date_int(date): 
    date_parts = date.split('-') 
    year = int(date_parts[0]) * 10000 
    month = int(date_parts[1]) * 100 
    day = int(date_parts[2][:2]) 
    return year + month + day 
# PowerBI sends the dataset as a dataframe with the field values 
# as individual lists.  
dataset_parts = dataset.to_dict('list') 
# Create a list of integer-ified dates, then make a dictionary with 
# keys as those integer-ified dates and values as the Quantity  
dates_to_int = list(map(make_date_int, dataset_parts['Date'])) 
data_for_detection = dict(zip(dates_to_int, dataset_parts['Quantity'])) 
# Keep a copy of the data with original dates on hand, zipped up nice 
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base_preserved_dates = dict(zip(dataset_parts['Date'],  
                                dataset_parts['Quantity'])) 
anomalies = AnomalyDetector(time_series=data_for_detection,  
                            score_threshold=2,  
                            algorithm_name='exp_avg_detector' 
                           ).get_anomalies() 
# Extract out the dates that the AnomalyDetector found. 
# (List comprehensions are the best) 
anomaly_dates = [int(x.start_timestamp) for x in anomalies] 
# Here's where we set up a plot.  
ordered_data = sorted(base_preserved_dates.items()) 
xaxis, yaxis = zip(*ordered_data) 
fig, ax = plt.subplots() 
# Plot all the data, and then loop on the anomaly data to add  
# markers to the graph. 
plt.plot(xaxis, yaxis) 
for date in anomaly_dates: 
    highlight = data_for_detection[date] 
    timestamp_str = str(date) 
    timestamp = timestamp_str[:4] + '-' + timestamp_str[4:6] +
    '-' + timestamp_str[6:8] + 'T00:00:00.0000000' 
    plt.plot(timestamp, highlight, 'ro') 
# Showing the plot with x-axes ticks every 25 data points,  
# and makes the data nicely readable in '2018-09-12' date format. 
loc = plticker.MultipleLocator(base=25.0) 
ax.xaxis.set_major_locator(loc) 
ax.get_xaxis().set_major_formatter( 
    plticker.FuncFormatter(lambda x, p: xaxis[int(x)][:10] if int(x) < 
                           len(xaxis) else "")) 
plt.show()

Click the Play button in the code console, and watch as the graph is generated
(Figure 5-99).

If you compare this graph to the one generated from the R code, you’ll see that the
two packages agree on the late January 2017 spike as an anomaly, as well as a July
2016 spike. The R graph captured a couple of other points later in 2017 as suspect that
weren’t flagged by the luminol library.

There are two great things about running your questions through two analyses. First,
you get the chance to learn new approaches and tools. SAP analysts and data scien‐
tists alike can surely see the value in expanding their toolsets. Today’s technology pro‐
fessionals can’t afford not to do that.

188 | Chapter 5: Anomaly Detection with R and Python



Figure 5-99. Anomalies identified in Python visual in PowerBI

Second, and most important for our data analysis purposes, is that you get to use
multiple approaches to fine-tune your answers to the questions you ask of the data.
For example, note that in the Python code the AnomalyDetector constructor takes a
score_threshold parameter. By using a score_threshold value of 2, we set the algo‐
rithm to only unpack certain anomalies. While experimenting with that parameter,
note that in this case setting the parameter to a lower or higher number will start to
uncover anomalies that exist in the lower bounds of the data as well.

Janine in the regulatory department and Duane the SAP analyst need to ask them‐
selves: for the purposes of the analysis and meeting the regulatory requirements, are
suspiciously low orders something to watch out for? Conversely for high number
thresholds, what do I know about this customer? Are they ordering more product
than they can fit in their warehouse? Is that suspicious? Many ERP and EDI systems
can store information about customer facilities.

Summary
In this chapter the data science team completed a process of extracting sales data
from SAP, storing it in SQL, and displaying the results in a PowerBI dashboard with
the help of either R or Python. It may have seemed like a lot of steps to get this to
work, but one could follow these steps and in a single day create a sales order anom‐
aly dashboard from SAP. With large data warehouse teams trying to stay ahead of
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hundreds of similar requests from departments all over the business, the same pro‐
cess would take weeks if not months. We have been able to prototype an anomaly
detection system for SAP sales orders in a single day. This is illustrative of the speed
and power of data science when applied to business data with modern tools.

We discovered through readily available libraries in R (anomalize) and Python (lumi
nol) that we can quickly and easily detect anomalies in our data. We have only
scratched the surface of anomaly detection, but we’ve exposed ourselves to the possi‐
bility of doing this with business data from SAP. The processes we’ve learned in this
chapter encompass much more than just anomaly detection. Extracting data from
SAP through NetWeaver Gateway and storing it in SQL via SSIS is a common useful
process for all types of data science endeavors. In our example, it is not truly neces‐
sary to store the data outside of SAP; however, if you find yourself working with
financials in SAP this technique will likely help. Financial data in SAP is nearly always
voluminous and often requires extraction before analysis.

Despite our good start, this is likely not the end of our journey in detecting sales
order anomalies. We have provided the business with a proof-of-concept and a proto‐
type. Janine from the regulatory department has always known what the regulations
state about remaining compliant. Now, however, she understands what type of analyt‐
ics and data science the IT department can provide. This prototype will go through
some iterations and refinement before being the robust dashboard that will protect
Janine and her company from noncompliance with government standards. This
project would have served other companies well—companies that came under gov‐
ernment scrutiny and ended up with hefty fines.
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1 Time series: a series of data points indexed over time.

CHAPTER 6

Predictive Analytics in R and Python

The team at Big Bonanza Warehouse is running into some problems with sales fore‐
casting, and the VP of Sales has turned to Duane, who works as a Sales and Distribu‐
tion Analyst, for some help. About once per quarter they gather their data and send it
to an outside company that performs some magic on it. The result is a forecast of all
their products for the upcoming quarters, but they’ve found that the forecast being
generated for them is too generic (based on quarters) and often woefully inaccurate.
Couldn’t they get something that would help them understand what sales might be
next week? To put it succinctly, they want a forecast of sales of their top-selling prod‐
ucts by week.

Duane has some ideas. Having worked with his company’s data scientists Greg and
Paul, he knows a little bit about data science. Sales of a product over a period is a
time-series1 problem. They have enough historical data to attempt to look for pat‐
terns. This is not pure forecasting, but pattern detection. It is something that the sales
team could use, rather than their gut feelings. Duane decides to use a bit of predictive
analytics. With the right set of R or Python tools and some up-front knowledge of
predictive analytics, Duane won’t need to spend months of time paying expensive
consultants to build massive data lakes. He can get his hands dirty and find answers.

There are many slippery terms in data science (including data science itself!), but pre‐
dictive analytics owns a special share of un-graspability. You may have heard of the
now infamous “prediction” tale. Retail giant Target predicted a teenager’s pregnancy
before her father even knew. In case you haven’t heard the story... Target started send‐
ing baby coupons to a teenage girl. Her father complained that they were encouraging
her daughter to get pregnant. The reality was, the girl was already pregnant. Did
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2 You may disagree with this sharp distinction between inference and forecasting and our use of the term pre‐
diction. This is a very slippery semantic slope. However, you should understand the need to make the defini‐
tion clear for the purposes of teaching.

Target predict this teenager’s pregnancy? The answer is no. This is not a prediction;
this is inference or classification. The features they use are the shopping behaviors of
their customers. The buying habits of the teenage girl led the classification algorithm
to put her in the category “pregnant.”

The point of this story is to highlight two common uses of the word prediction. One
of those predictions is statistical inference and the other is forecasting. Let’s be honest
here, you can debate these definitions ad nauseum. For our purposes, we will draw a
line in the sand between forecasting and inference. Prediction for us will be forecast‐
ing.2 Let’s make sure we have a common understanding of the term: prediction is the
act of predicting the future.

The litmus test for determining if the analysis falls into prediction is to ask, “Has the
event occurred?” If it has, then, from our definition, it is likely something other than
prediction.

Below are some examples of common topics and exercises in data science learning
materials that are often mislabeled as predictions:

Predicting Boston housing value
This is a classification/inference problem based on the features of a given prop‐
erty such as location, square footage, number of bedrooms, etc.

Predicting the survival rate on the Titanic
This is another classification/inference problem based on features such as sex,
cabin number (location), number of family members, embarking point, and
others.

Predicting fraudulent credit card behavior
This is an anomaly detection problem determining if the behavior of the card
holder falls within tolerance. It’d be more descriptive to call it “detecting fraudu‐
lent credit card behavior.”

Predicting why and when a patient will readmit
This sounds very close to prediction. It is another classification/inference prob‐
lem based on patients that have already readmitted. If their features match the
features of a patients not yet readmitted, there is a likelihood they will readmit.

Some examples of topics and exercises that are properly labeled as predictions:
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3 EDGAR: The government’s open source Electronic Data Gathering, Analysis, and Retrieval system. It uses
XBRL (eXtensible Business Reporting Language). Trust us, it’s a fun rabbit hole. https://www.codeproject.com/
Articles/1227765/Parsing-XBRL-with-Python.

Predicting Boston housing value next year
Next year’s house values is a classification of the current value of the home based
on certain features. This classification merges with other salient data such as
GDP to make a future prediction.

Predicting future stock value
You figure this one out...let us know. Many different sources of data contribute to
predicting a stock’s performance. A company’s quarterly performance reports in
EDGAR3 is a good starting point.

Predicting Sales in R
In this chapter, we will walk through Duane’s exercise in predictive analytics and try
to do sales order predictions. We will follow the process in Figure 6-1 for this
mission.

Figure 6-1. Flow for data analysis and prediction

Step 1: Identify Data
Not ready to completely fly on his own, Duane approached the data science team to
obtain better metrics for predicting sales in the near and semi-near future—the
upcoming weeks, months, quarters, and as far out as one year. Prediction accuracy
becomes more volatile the further out we get. Quite simply, it is much easier to pre‐
dict tomorrow’s sales because we know yesterday’s. However, it is not the same to say
we can predict next year’s sales because we knew last year’s. What we do know is that
we will have sales data for a list of products over time.

Step 2: Gather Data
Our source of data is SAP. We will extract the data using the same method used in
Chapter 4. Using an ABAP QuickViewer Query, we gather simple sales data from the
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VBAP and VBAK tables. We will take only the created date ERDAT from VBAK. We
will take MATNR (material) and KWMENG (quantity sold) from table VBAP.

Step 3: Explore Data
Once we have exported the data as a CSV file from SAP we will read it into R to take a
look at it:

sales <- read.csv('D:/DataScience/Data/Sales.csv')

Let’s take a look at the first 10 rows:

head(sales)

   X DailySales Material       ReqDeliveryDate
 1 0   48964.75     1234 /Date(1420416000000)/
 2 1   30853.88     1234 /Date(1420502400000)/
 3 2   65791.00     1234 /Date(1420588800000)/
 4 3   17651.20     1234 /Date(1420675200000)/
 5 4   36552.90     1234 /Date(1420761600000)/
 6 5    5061.00     1234 /Date(1420848000000)/

We see two things right away. The rows came in under column X, we don’t need that.
Also, the date field came in oddly, it looks like UNIX time and we need to convert it.
When we look into it further we see it is indeed UNIX, but it is padded on the end
with three unnecessary zeros. Let’s correct these before moving on:

#Remove the X column
sales$X <- NULL
#Remove all nonnumeric from the date column
sales$ReqDeliveryDate <- gsub("[^0-9]", "", sales$ReqDeliveryDate)
#Convert the unix time to a regular date time using the anytime library
library(anytime)
#First trim the whitespace
sales$ReqDeliveryDate <- trimws(sales$ReqDeliveryDate)
#Remove the final three numbers
sales$ReqDeliveryDate <- gsub('.{3}$', '', sales$ReqDeliveryDate)
#Convert the field to numeric
sales$ReqDeliveryDate <- as.numeric(sales$ReqDeliveryDate)
#Convert the unix time to a readable time
sales$ReqDeliveryDate <- anydate(sales$ReqDeliveryDate)

Now that we’ve done some manipulation let’s take a look at the structure of our data.
Use the function str() to view the structure of the data:

str(sales)
 'data.frame': 2359 obs. of 3 variables:
  $ DailySales  : num 48965 30854 65791 17651 36553 ...
  $ Material    : int 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 ...
  $ ReqDeliveryDate: Date, format: "2015-01-04" "2015-01-05" "2015-01-06"  ...
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We see that we have a dataframe with 2,359 observations of three variables. Let’s find
the distribution of the materials in the dataframe. Use the following command from
the ggplot2 library (this renders in Figure 6-2).

ggplot(sales, aes(Material)) + geom_bar()

Figure 6-2. The distribution of materials in our sales data

We have the data in a format we’d like. Now it is time to plot and explore the data.

Step 4: Model Data
We will use the ggplot2, dplyr, and scales libraries from R to model our data. These
are some of the most useful and versatile packages in the R ecosystem:

library(ggplot2)
library(dplyr)
require(scales)

First let’s do some up-front work. We want our chart to have nice numbers, so we use
the format_format function from scales to define this for us. The effect of this func‐
tion is to simply format our numbers such that the decimal is a period, the thousands
break is a comma, and scientific notation is not used.

point <- format_format(big.mark = ",", decimal.mark = ".", scientific = FALSE)
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Let’s simply plot the sales of the materials over time:

sales %>%
  ggplot(aes(x=ReqDeliveryDate, y=DailySales)) +
  geom_point(color = "darkorchid4") +
  scale_y_continuous(labels = point) +
  labs(title = "Sales over time",
       subtitle = "sales for all materials",
       y = "Sales Quantities",
       x = "Date") +
  theme_bw(base_size = 15)

In human-speak this R code says, “Take the sales dataframe and send it (“%>%”) to
ggplot. Make the x-axis the ReqDeliveryDate and the y-axis the DailySales. Use
points with a color palette of darchorchid4. Then scale the y to have the point for‐
mat. Finally, label everything nicely and give it a basic theme and size.” The results are
shown in Figure 6-3.

Figure 6-3. Sales for all materials over time

This gives us an idea of the distribution of sales over time, but it mixes the materials
and points aren’t the best for plotting a time series. Let’s break out the materials and
choose line instead of point. We see the results in Figure 6-4.
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Figure 6-4. Sales for materials broken out by color over time

This is better, but the materials are still too mixed to be clear. Perhaps we need to
break them out completely. ggplot2’s facet_wrap does this nicely. The following
code produces the chart in Figure 6-5:

sales %>%
  ggplot(aes(x=ReqDeliveryDate, y=DailySales, color)) +
  geom_line(color = "darkorchid4") +
  facet_wrap( ~ Material) +
  scale_y_continuous(labels = point) +
  labs(title = "Sales over time",
       subtitle = "sales for all materials",
       y = "Sales Quantities",
       x = "Date") +
  theme_bw(base_size = 15)
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Figure 6-5. Sales of material over time broken up so we can see each plot separately

We can more easily see now the distributions of each of the materials. We can quickly
spot that two of these materials only recently began to sell.

Let’s focus on just one material, 1234. We will add a simple linear model using the
geom_smooth function. We only have one material here, but we leave in facet_wrap
because it makes such a nice header (the results are shown in Figure 6-6).

sales %>%
  subset(Material == '1234') %>%
  ggplot(aes(x=ReqDeliveryDate, y=DailySales, color)) +
  geom_line(color = "darkorchid4") +
  facet_wrap( ~ Material ) +
  geom_smooth(method = "lm") +
  scale_y_continuous(labels = point) +
  labs(title = "Sales over time",
     subtitle = "sales for all materials",
     y = "Sales Quantities",
     x = "Date") +
  theme_bw(base_size = 15)
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Figure 6-6. Sales over time with a simple linear mapping

We are curious about how these sales by year match up against one another. The line
chart makes it difficult to see if overall sales by week are greater in 2015 than they are
in 2018.

Let’s sit back and approach this in an intuitive way. There are many important con‐
cepts in R programming, but two of the most influential are Tidy Data and Split-
Apply-Combine.

Simple Data Analysis Strategies
Hadley Wickham described these two influential data analysis software concepts in
the Journal of Statistical Software. Follow these and you can’t go wrong.

Tidy Data (from https://vita.had.co.nz/papers/tidy-data.pdf).
• “Each variable forms a column.”
• “Each observation forms a row.”
• “Each type of observational unit forms a table.”
• The tidyverse package applies all the tidy data concepts.

library(tidyverse)

Split-Apply-Combine (from https://vita.had.co.nz/papers/plyr.pdf)
• “Break up a big problem into manageable pieces.”
• “Operate on each piece independently.”
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• “Put all the pieces back together.”

The library most applicable for this, dplyr, will be put to use later in this chapter.

Understanding these concepts will help you think through problems more easily. We
will simply split our sales dataframe into one that we can more easily plot with. First
we will copy our sales data into a subsetted dataframe for just our material:

sales_week <- sales %>% subset(Material == '1234')

Secondly, we need to make a week variable and a year variable from our date variable.
This is easy in R with the base function strftime:

sales_week$week <- strftime(sales_week$ReqDeliveryDate, format = '%V')
sales_week$year <- strftime(sales_week$ReqDeliveryDate, format = '%Y')

We no longer need the ReqDeliveryDate or the Material:

sales_week$ReqDeliveryDate <- NULL
sales_week$Material <- NULL

We also want to aggregate our weeks into one bucket. We may have had multiple sales
for a given week in our sales dataframe, which we want in only one week in our
sales_week dataframe:

sales_week <- sales_week %>% group_by(year, week) %>% summarise_all(sum)

If we look at our dataframe now it has these columns:

 head(sales_week)
 # A tibble: 6 x 3
 # Groups:   year [1]
   year week DailySales
   <chr> <chr>      <dbl>
 1 2015 01        48965.
 2 2015 02       173920.
 3 2015 03       213616.
 4 2015 04       243433.
 5 2015 05       304793.
 6 2015 06       265335.

Now we can use ggplot2 again to see what the sales year over year look like when the
weeks are compared (the results are in Figure 6-7):

sales_week %>% 
  ggplot(aes(x = week, y = DailySales, group = year)) +
  geom_area(aes(fill = year), position = "stack") +
  labs(title = "Quantity Sold: Week Plot", x = "", y = "Sales") +
  scale_y_continuous() +
  theme_bw(base_size = 15)
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Figure 6-7. Area chart of sales by year

This chart shows us something that we couldn’t see clearly before. The spikes and val‐
leys of each year’s sales are strongly correlated. Such a strong correlation between the
years would lead us to believe we can model based on that pattern. 2018 did not have
a full recorded year of sales so that chart stops on week 29. We also see a distinct
uptick in sales between weeks 35 and 40 and 4 and 9.

To move further in our exploration we need to visit a base object in R, the ts (time-
series) object. It is an array of values over time periods. What we have been working
with thus far is a dataframe. It is easy to convert a data.frame to a ts object in R.
This function takes the data itself as its first argument and then has a series of other
arguments we will cover now. Type args(ts) into the console to see a list of argu‐
ments for the base ts function:

args(ts)
function (data = NA, start = 1, end = numeric(), frequency = 1,
    deltat = 1, ts.eps = getOption("ts.eps"), class = if (nseries >
        1) c("mts", "ts", "matrix") else "ts", 
        names = if (!is.null(dimnames(data))) 
        colnames(data) else paste("Series",
        seq(nseries)))

The arguments that we will use are:

• The start and end arguments define the starting date and ending date of the ts
object.

• The frequency argument specifies the number of observations per unit of time.
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In order to do this more easily and clearly we need to reformat our dataframe. This
will lead to a nice clean ts object.

This time we will do an analysis by month. Just like we did with the week-by-week
analysis, we will subset the sales dataframe. However, this time we will rename the
columns so they are easier to use and remember:

sales_month <- sales %>% subset(Material == '1234')
 sales_month$Material <- NULL
 colnames(sales_month) <- c('sales', 'date')

Also, ts objects do not like gaps. If you are going to analyze data by days, ts objects
want every day represented...even if there is no data for that day. If you are going to
analyze data by minutes, likewise every minute has to have a presence. For instance, if
there were no sales of this material for a particular day there will be a gap in the date
sequence. We want to fill all of these gaps with 0 because that is how much was
actually sold on that day. First we create a new dataframe with all the possible dates
starting at our first day of our sales_month and ending with the last:

all_dates = seq(as.Date(min(sales_month$date)),
                as.Date(max(sales_month$date)),
                by="day")

Then we want to merge this dataframe with sales_month:

sales_month <- merge(data.frame(date = all_dates),
                      sales_month,
                      all.x=T,
                      all.y=T)

Let’s take a look at our data:

head(sales_month, n=10)
         date    sales
 1  2015-01-04 48964.75
 2  2015-01-05 30853.88
 3  2015-01-06 65791.00
 4  2015-01-07 17651.20
 5  2015-01-08 36552.90
 6  2015-01-09 5061.00
 7  2015-01-10       NA
 8  2015-01-11 18010.00
 9  2015-01-12 24015.00
 10 2015-01-13 39174.25

We notice right away that we have NAs in our data. This is for the days when there
were no sales. Let’s replace that with zeros:

sales_month$sales[is.na(sales_month$sales)] = 0
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Now it is easy to create a ts object. Frankly, ts objects in R have always been a bit of a
quandary. Follow our advice—take the time to nicely and simply format your data‐
frame and you’ll breeze through the ts object part:

require(xts)
sales_ts <- xts(sales_month$sales, order.by = as.Date(sales_month$date))

Now that we have a nicely formatted ts object, we can do some simple charting on it:

plot(sales_ts)

Figure 6-8. Simple plot of ts object

We can also see monthly sales and averages easily. Looking at the average sales across
months in Figure 6-9 we can see that the overall sales amount is relatively equal
despite the peaks and valleys:

monthplot(sales_ts)
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4 The forecast library https://cran.r-project.org/web/packages/forecast/forecast.pdf is written by Rob J. Hynda‐
man and contains methods for displaying and analyzing univariate time series.

Figure 6-9. Month plot of ts object

Plots for prediction
There are three types of simple plots that we typically want to use in predictive ana‐
lytics: mean, naive, and drift. Let’s examine each of these.

The first plot is a simple prediction of the mean into the future. This prediction
assumes that the average of past sales will continue to be the average. To make these
charts we will need the forecast4 library. We see the results of the mean forecast in
Figure 6-10:

library(forecast)
sales_ts <- ts(sales_month$sales) 
sales_ts_mean = meanf(sales_ts,h=35,level=c(90,90), 
                      fan=FALSE, lambda = NULL)
plot(sales_ts_mean)

You may wonder what the gray rectangular area of the chart (at far right) is telling
you. The gray area is the confidence interval, which by default is 95%. The line in the
middle of the gray area indicates where the prediction should fall, the gray area says,
“I am 95% confident that the value, if not on the line, is within the grey area.” As may
be assumed, a 95% confidence interval is pretty high so the area must therefore be
large enough to ensure this.
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Figure 6-10. Simple mean prediction with confidence intervals

The naive assumption is that the sales will be the same as the last observation as seen
in Figure 6-11:

sales_ts_naive <- naive(sales_ts,h=35,level=c(90,90),
                         fan=FALSE,lambda=NULL)
plot(sales_ts_naive)

Figure 6-11. Simple naive prediction with confidence intervals

Finally, we can view the drift of the chart easily with the forecast library. Drift starts
with the naive beginning, but then is adjusted positively or negatively based on the
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average overall change in the data. We see the results in Figure 6-12. Notice the ever
so slight downward trend:

sales_ts_drift <- rwf(sales_ts,h=35,drift=T,level=c(90,90),
                      fan=FALSE,lambda=NULL)
plot(sales_ts_drift)

Figure 6-12. Simple drift prediction with confidence intervals

Clearly these plots are not going to be satisfying to the VP of sales, but it is the start of
our prediction process and we will refine this process until we have results we like.

Step 5: Evaluate Model
First, let’s analyze the accuracy of the three plots that we just created. With the fore
cast package this is easy, but before we do that we need to discuss how accuracy can
be measured. There are six ways we will analyze accuracy, and Table 6-1 illustrates the
most commonly used measurements.

Table 6-1. Measures of acccuracy

Measurement Description Notation
ME Mean error: the average of the total number of errors in predictions. The

positive errors have the potential of wiping out the negatives.
mean(ei)

MAE Mean absolute error: measurement of the mean of the errors in predictions. This
does not take into consideration whether it is over or under…just the
magnitude of the error.

mean(|ei|)

RMSE Root mean squared error: same as the MAE but errors are squared before the
square root of the total is taken. This results in large errors having more value
than small errors. Consider this an improvement over MAE if you want to
strongly penalize large errors.

SQRT(mean(e2
i))
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5 https://cran.r-project.org/web/packages/tseries/tseries.pdf

Measurement Description Notation
MPE Mean percentage error: the mean of the percentage of the errors. mean((ei / actuali) *100)
MAPE Mean absolute percentage error: the mean of the absolute percentage of the

errors.
mean((|ei / actuali) *100|)

MASE Mean absolute scaled error: the mean of the absolute values of the scaleda (q)
errors. Scaling is an alternative to percentage errors. A MASE of > 1 indicates
the prediction is worse than the naive prediction. If it is < 1 it is better.

mean(|qi|)

a MASE was proposed in 2005 by statistician Rob Hyndman and is used for determining comparative accuracy of forecasts.

We can view these values easily with the forecast package (see Table 6-2):

accuracy(sales_ts_mean)
accuracy(sales_ts_naive)
accuracy(sales_ts_drift)

Table 6-2. Measures of accuracy for mean, naive, and drift forecasts

 ME RMSE MAE MPE MAPE MASE
Mean -2.46E-13 28535.31 23019.78 -Inf Inf 1
Naïve -33.81419 31653.02 23017.03 -Inf Inf 1
Drift 1.25E-12 31653 23021.87 NaN Inf 1.00021

What are good values for these evaluations? Consider that every set of data is differ‐
ent and has different scales. Data in one experiment might have a range of 1 to
1,000,000 and the RMSE is 10, which seems pretty good. However, the same RMSE
value if the data has a range of 1 to 20 is terrible. Because of this, consider using your
evaluation methods as a comparison between different plots and tests; avoid the pit‐
fall of blindly seeing small evaluation results as good. In the simple methods we just
looked at, the mean seems to pull ahead. Our results also shows us some of the dan‐
gers of using percentages. There is a risk of division by zero or near zero, which leads
to infinite values.

Another thing we can look for in our data is seasonality. This is a different way to
explore the data that is made much easier using the tseries5 library. Is there some
kind of pattern based on a recurring event? An example of seasonality in a time series
would be the sales of mittens. Clearly sales of mittens increase in the winter and
decrease in the summer. Another way of stating this is to say that the data is either
stationary or not stationary. Stationary data is independent of the actual time series.
We can test for stationarity or nonstationarity with the tseries package by using the
adf.test method:
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6 Fitting an ARIMA model is sometimes referred to as the Box–Jenkins method.

library(tseries)
sales_ts_adf <- adf.test(sales_ts) 
sales_ts_adf

The result we get indicates clearly that the data is stationary (has no seasonality):

Augmented Dickey-Fuller Test
data: sales_ts[, 1]
Dickey-Fuller = -5.8711, Lag order = 10, p-value = 0.01
alternative hypothesis: stationary

Now it is time to do some predictions that are better than mean, naive, or drift. We
will use the ARIMA model to start with. ARIMA6 stands for Autoregressive Integra‐
ted Moving Average. ARIMA is a prediction (forecasting) technique that projects the
future values of a series depending on its previous data points. Like the name says, it
uses a moving average. First we create the future values with the following command:

sales_future <- forecast(auto.arima(sales_ts))

To better understand the results, let’s take a look at the structure of the time series
object we are working with. Use the str() command:

> str(sales_ts)
An 'xts' object on 2015-01-04/2018-07-20 containing:
  Data: num [1:1294, 1] 48965 30854 65791 17651 36553 ...
  Indexed by objects of class: [Date] TZ: UTC
  xts Attributes: NULL

This tells us that we have 1,294 objects in our time series. Our forecast function will
plot out another 10 values into the future. This gives us the following sales values
with confidence intervals of 80 and 95. Let’s look at time series object 1300 as an
example. This tells us that the forecast is 20892.628 with a Lo 80 of -8393.256 and a Hi
80 of 50178.51. This means that we are 80% confident sales will be between
$-8,393.256 and $50,178.51. A confidence interval of 95 is obviously wider to account
for a higher degree of confidence and therefore has a higher range of $-23,896.27 to
$65,681.52:

      Point Forecast      Lo 80    Hi 80     Lo 95    Hi 95
 1295        907.887 -26883.351 28699.12 -41595.14 43410.92
 1296      11811.826 -16743.171 40366.82 -31859.27 55482.93
 1297      21790.271 -6768.050 50348.59 -21885.91 65466.45
 1298      23937.037 -5022.613 52896.69 -20352.92 68227.00
 1299      25546.677 -3730.630 54823.98 -19229.10 70322.46
 1300      20892.628 -8393.256 50178.51 -23896.27 65681.52
 1301      10542.993 -19636.125 40722.11 -35611.98 56697.97
 1302       5537.931 -27502.193 38578.06 -44992.58 56068.44
 1303      10655.408 -24005.266 45316.08 -42353.52 63664.34
 1304      19295.901 -15714.125 54305.93 -34247.31 72839.12
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Now let’s plot this chart. This time we will have a starting point that is later than the
beginning of the chart so we don’t have such a small prediction interval. We will only
plot the time series from point 750 to 1304. The results in Figure 6-13 show the point
value in a dark line, the 80% confidence interval in a light shading, and the 90% con‐
fidence interval in an even lighter shading:

plot(sales_futue, xlim = c(750,1304))

Figure 6-13. ARIMA forecasting

We’ve done a bit of prediction so far and learned a lot along the way. Perhaps we
should sit back and look at our data and wonder if this ARIMA is good enough as it
is? Should we try something new? What comes to mind when you look at
Figure 6-13? When we look at it we see those flat lines on the bottom. That is where
we put in missing dates, those dates when the material has zero sales. Should that be
included in the model that does the prediction? In many cases the answer would be
no. However, there is a good argument here that sales of zero are important. Any day
of sale is a data point as well as any day of nonsales.

Next we will shift to a different language and a different model. We will take the same
series of data that we explored in R and perform the same five-step analysis in
Python.
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Predicting Sales in Python
There are many ways to analyze data using different tools such as Python and R. In
this section we will approach the same data from a Python perspective.

Step 1: Identify Data
This time we will use a quick OData utility class that could speed up future identify-
gather phases. We will use OData and Python to help predict future sales for upcom‐
ing weeks, months, and up to a year. This identification phase is the same as what we
did for R earlier.

Step 2: Gather Data
Remember Chapter 3 when we created an example OData service for listing plants
out of the SAP backend? We’re going to do exactly the same thing here—only with
some adjusted structures, fields, and a little bit of ABAP code to make the pull easy.
Most importantly, defining a process in this way will allow you to programmatically
gather different sets of materials and date ranges with ease! We’ll highlight the major
differences here versus the approach as laid out in Chapter 3.

First, create a structure in transaction SE11 and choose the fields from Figure 6-14 to
populate it. We’re going to give this the same basic shape as the R example from
before.

Figure 6-14. SE11 structure for the sales data

Next, go to transaction SEGW to create a new OData service and enter project details
as noted in Figure 6-15.
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Figure 6-15. OData service details from SEGW

Remember to import the structure we created, just like in Chapter 3. See Figures
6-16, 6-17, and 6-18 for settings to use.

Figure 6-16. Importing the SE11 structure into a new OData service
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Figure 6-17. Choose all the available fields to import

Figure 6-18. MATERIAL and REQ_DELIVERY_DATE are the key fields

Again just like Chapter 3, redefine the GetEntitySet (Query) method for the entity
we just created. Use the following ABAP code to set up a quick filtering operation on
sales order item data. Remember, as discussed before: we won’t dive deep into explan‐
ations of ABAP code in this book. If you’re a data scientist who really wants SAP data
and you don’t have a SAP team to help you, then you might wish to supplement this
material with some of the ABAP basics available on SAP’s free training site, https://
open.sap.com:

"This code will return a list of sales dollars by date per material. 
"The filtering mechanism for OData allows us to limit this to a subset 
"of materials, and the below Python code incorporates this feature.
 
"If you named your entity set differently than our example screenshots,
"this method will be named differently.
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METHOD dailymaterialsal_get_entityset.
  DATA lr_matnr TYPE RANGE OF matnr.
  DATA ls_matnr LIKE LINE OF lr_matnr.
  DATA lr_vdatu TYPE RANGE OF edatu_vbak.
  DATA ls_vdatu LIKE LINE OF lr_vdatu.

   "Here we extract the filters that our Python code will insert.
  LOOP AT it_filter_select_options INTO DATA(ls_select).
    IF ls_select-property EQ 'Material'.
      LOOP AT ls_select-select_options INTO DATA(ls_option).
        MOVE-CORRESPONDING ls_option TO ls_matnr.
        ls_matnr-low = |{ ls_option-low ALPHA = IN }|.
        APPEND ls_matnr TO lr_matnr.
      ENDLOOP.
    ELSEIF ls_select-property EQ 'ReqDeliveryDate'.
      LOOP AT ls_select-select_options INTO ls_option.
        MOVE-CORRESPONDING ls_option TO ls_vdatu.
        ls_vdatu-low = |{ ls_option-low ALPHA = IN }|.
        APPEND ls_vdatu TO lr_vdatu.
      ENDLOOP.
    ENDIF.
  ENDLOOP.
 
  "This SELECT statement incorporates the filters that are sent by the
  "Python code below into the SQL logic. For example, if the programmer
  "enters 3 materials to filter, then the variable 'lr_matnr' contains
  "a reference to those 3 materials to pass to the database engine.
  SELECT item~matnr AS material
         head~vdatu AS req_delivery_date
         SUM( item~netpr ) AS daily_sales
    FROM vbak AS head
      INNER JOIN vbap AS item ON head~vbeln = item~vbeln
      INNER JOIN knvv AS cust ON head~kunnr = cust~kunnr
        AND head~vkorg = cust~vkorg
        AND head~vtweg = cust~vtweg
        AND head~spart = cust~spart
      INNER JOIN mara AS mtrl ON item~matnr = mtrl~matnr
    INTO CORRESPONDING FIELDS OF TABLE et_entityset
     WHERE head~vdatu IN lr_vdatu
       AND item~matnr IN lr_matnr
    GROUP BY item~matnr vdatu
    HAVING SUM( item~netpr ) > 0
    ORDER BY item~matnr vdatu.
ENDMETHOD.

Once the SAP Gateway code is completed and activated, you have a service that can
send the required sales data to any client that can make OData requests. Naturally,
you’d love to use your own laptop as one of those clients, so we came up with a little
utility class that can do some basic OData filtering, requesting, and creating of CSV
files on your local computer. This may be useful in many SAP data retrieval scenarios,
since any basic OData service should work:
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# Utility is exposed as a class to be instantiated per request run
class GatewayRequest(object):
     def __init__(self, gateway_url='', service_name='', entity_set_name='',
                  user='', password=''):
        self.gateway_url = gateway_url.strip('/')
        self.service_name = service_name.strip('/')
        self.entity_set_name = entity_set_name.strip('/')
        self.filters = [] 

        # Basic authentication: a username and password base64 encoded  
        # and sent with the OData request. There are many flavors of 
        # authentication for available for OData - which is just a RESTful 
        # web service - but basic authentication is common inside corporate 
        # firewalls.
        self.set_basic_auth(user, password)

    # Adds a filter to the main set of filters, which means our OData  
    # utility can support multiple filters in one request.
    def add_filter(self, filter_field, filter_option, filter_value): 
        # OData supports logical operators like 'eq' for equals,  
        # 'ne' for does not equal, 'gt' for greater than, 'lt' for less 
        # than, 'le' for less than or equal, and 'ge' for greater than or  
        # equal. 'eq' is the most common, so if the logical operator is  
        # omitted we assume 'eq'
        if not filter_option:
            filter_option = 'eq'
         
        new_filter = [filter_field, filter_option, filter_value]
        self.filters.append(new_filter)

    # Encode the basic authentication parameters to send with the request.    
    def set_basic_auth(self, user, password):
        self.user = user
        self.password = password
        string_to_encode = user + ':' + password
        self.basic_auth =  
             base64.b64encode(string_to_encode.encode()).decode()

    # OData works through sending HTTP requests with particular query  
    # strings attached to the URL. This method sets them up properly.
    def build_request_url(self):
        self.request_url = self.gateway_url + '/' + self.service_name
        self.request_url += '/' + self.entity_set_name
         
        filter_string = ''
         
        if len(self.filters) > 0:
            filter_string = '?$filter='
            for filter in self.filters:
                filter_string += filter[0] + ' ' + filter[1]
                filter_string += ' \'' + filter[2] + '\' and '
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            filter_string = filter_string.rstrip(' and ')
         
        if not filter_string:
            self.request_url += '?$format=json'     
        else:
           self.request_url += filter_string + '&$format=json'

    # Perform the actual request, by adding the authentication header and 
    # the filtering options to the URL.       
    def perform_request(self):
        try:
           self.build_request_url()
           if self.basic_auth:
               headers = {'Authorization':'Basic ' + self.basic_auth}
               self.result = requests.get(self.request_url, 
                                          headers=headers)
           else:
               self.result = requests.get(self.request_url)
         except Exception as e:
             raise Exception(e)
      
    # Utility function to return a pandas dataframe from the results of  
    # the OData request.
     def get_result_dataframe(self):
         try:
             self.perform_request()
             json_obj = json.loads(self.result.text)
             json_results = json.dumps(json_obj['d']['results'])
             return pandas.read_json(json_results).drop('__metadata',axis=1)
         except Exception as e:
             raise Exception(e)
    
    # Utility function to return a basic JSON object as the results of 
    # the query.
     def get_result_json(self):
         self.perform_request()
         return json.loads(self.result.text)
      
    # The utility function we use, to save the results to a local .csv
    def save_result_to_csv(self, file_name):
        self.get_result_dataframe().to_csv(file_name)
          
    # A utility to properly parse the dates that are returned in a json  
    # request.
    @staticmethod
    def odata_date_to_python(date_string):
         date_string = date_string.replace('/Date(', '').replace(')/', '')
         date_string = date_string[:-3]
         new_date = datetime.datetime.utcfromtimestamp(int(date_string))
         return new_date
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With the utility class defined, we are ready to perform the request. You’ll need to
replace the code set in italics with your own values.

sales_request = GatewayRequest(gateway_url='http://YOUR_SAP_HOST/sap/opu/
                               odata/sap/',
               entity_set_name='DailyMaterialSalesSet',
               service_name='ZTEST_MATERIAL_PREDICT01_SRV',
               user='YOUR_USER', password='YOUR_PASS') 

# We added three materials here, but you could add as many as you like in this
# syntax 
sales_request.add_filter('Material', 'eq', 'YOUR_MATERIAL1') 
sales_request.add_filter('Material', 'eq', 'YOUR_MATERIAL2') 
sales_request.add_filter('Material', 'eq', 'AS_MANY_AS_YOU_WANT') 

# Note for dates OData requires the below filtering syntax 
# Yes - dates are a little weird 
sales_request.add_filter('ReqDeliveryDate', 'gt',         
                         "datetime'2015-01-01T00:00:00'")

sales_request.save_result_to_csv('D:/Data/Sales.csv')

Step 3: Explore Data
Now that we have our data we can easily read it into Python. We will need some stan‐
dard libraries to start with. These are very common, oft-used libraries:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime

We will use the pandas library to read in the data:

df = pd.read_csv('D:/Data/Sales.csv')

Let’s view our data by taking a look at the first few rows:

df.head()

It should be of no surprise that the data has the same problems we experienced when
reading it into R. In Figure 6-19 we see that there are columns to be removed, and a
date column to be adjusted.
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Figure 6-19. Unconverted sales dataframe in Python

We will perform the same functions we did in R but this time in Python. Those basic
steps are:

1. Drop a column
2. Convert the date column to a true date
3. Subset the dataframe by a single material
4. Drop the material column
5. Make the date the index of the dataframe

#Drop the column 'Unnamed'
df = df.drop(['Unnamed: 0'], axis = 1)
#Convert the date column to numeric and take out any nonnumeric chars.
df.ReqDeliveryDate = pd.to_numeric(df.ReqDeliveryDate.str.replace('[^0-9]', ''))
#Convert the date column to a proper date using to_datetime
df['ReqDeliveryDate'] = pd.to_datetime(df['ReqDeliveryDate'], unit='ms')
#Subset the dataframe by the single material 8939
df_8939 = df['Material']==8939
df = df[df_8939]
#Drop the material column
df = df.drop(columns=['Material'])
#make the date column the index
df = df.set_index(['ReqDeliveryDate'])

Let’s take a look at our dataframe again, but this time by doing a quick plot (which is
shown in Figure 6-20):

plt.plot(df)
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Figure 6-20. Initial plot of sales in Python

We will then use the statsmodels package in Python to perform a decomposition of
the time series. This is a statistical task that deconstructs the time series object into
several categories or patterns. These patterns are observed, trend, seasonal, and resid‐
ual. Residuals can also be referred to as errors. We will decompose our time series and
plot it (the results are in Figure 6-21):

from statsmodels.tsa.seasonal import seasonal_decompose
result = seasonal_decompose(df, model='multiplicative', freq = 52)
result.plot()

This gives us a general view of our time-series data. The Observed chart gives us an
exact representation of what is observed in the data. The Trend chart shows us what
the overall trend of the observations. Think of this as the smoothing of the observa‐
tions. The Seasonal chart highlights if there are any seasonal aspects to the data. If you
observe repeating patterns here there could be seasonality in your data. Finally, the
Residual chart shows the errors between the observed value and a predicted value.
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Figure 6-21. Decomposed charts of our sales data

Step 4: Model Data
Like we did in R, we are now going to create an ARIMA prediction. This is made easy
in Python with the pyramid.arima7 package. Explore the package to understand all
the settings that can be made:

from pyramid.arima import auto_arima
step_model = auto_arima(df, start_p=1, start_q=1,
                           max_p=3, max_q=3, m=12,
                           start_P=0, seasonal=True,
                           d=1, D=1, trace=True,
                           error_action='ignore',
                           suppress_warnings=True,
                           stepwise=True)
 print(step_model.aic())

The log will print as it is running:

Fit ARIMA: order=(1, 1, 1) seasonal_order=(0, 1, 1, 12); AIC=21114.204, 
  BIC=21138.271, Fit time=2.342 seconds
. 
. 
. 
Fit ARIMA: order=(1, 1, 2) seasonal_order=(0, 1, 1, 12); AIC=21076.593, 
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  BIC=21105.474, Fit time=4.335 seconds
Total fit time: 35.598 seconds

The next step is to break our time series into two sets. One for training and one for
testing. We want to train on the majority of our data and test on the remaining. For
our dataset, we have a time series from 2015-01-05 to 2018-07-21. Therefore, we’ve
decided to take the range from 2015-01-05 to 2018-04-01 to train against and the
remaining dates to validate against:

train = df.loc['2015-01-05':'2018-04-01']
test = df.loc['2018-04-02':]

The next step is to fit the model to the training data:

step_model.fit(train)

Let’s predict what will come after 2018-04-01 for the number of time steps in the test
set. The number of time steps in the test series is seen with:

len(test)
73

The command to make the prediction is easy:

future = step_model.predict(n_periods=73)

To see the results of our prediction you can simply type future. Our future object is
an array of predictions made from our training data. We used 73 periods because we
want the length of the prediction to be exactly as long as the length of our test array.
This way, as you will see later, we can plot them on top of one another and visualize
the accuracy:

array([26912.93298004, 31499.53327771, 31600.12890142, 25459.90672847,
        30282.82366396, 27135.66098529, 28756.53431911, 31096.66619926,
 … ])

Step 5: Evaluate Model
While this all looks fine now, what does our prediction look like when charted against
the real results of our test dataframe? First we need to convert our future to a proper
dataframe with a column title “Prediction.”

future = pd.DataFrame(future,index = test.index,columns=['Prediction'])

Next, we simply concatenate the test and the future together and plot them, which is
made easy using Pandas (the results are shown in Figure 6-22):

pd.concat([test,future],axis=1).plot()
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Figure 6-22. Results of actuals and predictions using ARIMA model

The results of the ARIMA model look like they are somewhat close to the mean of the
sales for the time period. Looking at the combination of peaks and valleys of the pre‐
diction compared to the actuals shows that the direction of the prediction is in line
with the actuals, just not to the same degree. This means that when the actuals go up,
often the prediction goes up on or near that time period.

To see how the prediction looks against the entirety of the data is just as simple (the
results are in Figure 6-23):

pd.concat([df,future],axis=1).plot()
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Figure 6-23. Results of prediction when compared to the original data

The results of our visualization make something clear that was not previously appa‐
rent. When looking at the daily sales over time we cannot really tell if sales are declin‐
ing or increasing from 2015 to 2018. The prediction that is plotted here makes it clear
that sales overall are declining. We can see that by the distinct downward trend of the
prediction line.

Summary
In this chapter we have completed the process of identifying a business need for pre‐
diction, extracting data from SAP, exploring the data, modeling that data, and evalu‐
ating the accuracy of that model. Time-series predictions are a fascinating and
multifaceted area of data science. In our model we simply had univariate time series
data; that is, simply a date and a value. With that we looked for patterns in the data
that might help us make future predictions using standard ARIMA models in both R
and Python. Multivariate time-series analysis is when there are multiple factors influ‐
encing the target variable. This is often more robust and can take into account fea‐
tures that affect a target variable (such as sales) across time.
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8 For example, see https://ieeexplore.ieee.org/document/7955659 and https://www.tandfonline.com/doi/full/
10.1080/23322039.2017.1367147.

Univariate time-series data is simply a single value over time.
Think of the closing price of a stock over time. You could easily
employ the techniques here for stock data and get some interesting
results. However, it would not be very robust and would not take
into account countless other factors that affect the stock price.
Multivariate time-series data is multiple features over time. Let’s
use our closing stock price again. We have the value of stock over
time, but we also have the quarterly company’s earnings from
EDGAR (see footnote 2) and social sentiment analysis from Twit‐
ter.8 Making stock predictions based on these multiple features
would be more robust, but significantly more difficult. As an intro‐
duction to making predictions, we felt inclined not to go with mul‐
tivariate analysis.

Back to our univariate times series data. What if you just have sales and date and
nothing more, like we have here? Are we stuck with just univariate analysis? Maybe
not. Think of what else in that data could influence sales. Perhaps day of the week?
Week of the year? There could be value within the date variable itself. With R and
Python, it is easy to extract those values. In Python for instance, these commands
give you all the help you need from a date variable:

df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['week_of_year'] = df['date'].dt.week
df['day_of_week'] = df['date'].dt.weekofyear
df['day_of_year'] = df['date'].dt.dayofyear
df['day_of_month'] = df['date'].dt.day

In an afternoon’s work, the data scientists made some basic predictions using SAP
data and common tools. They return to Duane from the SAP team and show him that
Big Bonanza can indeed do predictions on sales data. It is up to him and the business
to decide if the current ARIMA model, either in R or Python, is good enough or if
they need something more accurate and robust. If business leaders want more accu‐
racy, then a multivariate time-series analysis is likely in order and perhaps a recursive
neural network or a temporal convolutional network.
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CHAPTER 7

Clustering and Segmentation in R

Big Bonanza Warehouse is at the beginning of a big change: they’re going to upgrade
their current SAP system to S/4HANA. Furthermore, they’ve decided they will not
migrate all of their old data unless necessary. Each department has been tasked with
identifying its own crucial data. Rod works as a national account rep and his respon‐
sibility is to identify which customers in their system should be migrated. They have
decades of customer data, much of which is obsolete.

Rod has long wanted to understand his customers better so this process will be
rewarding for him. Which customers are the highest value? Does this exercise entail a
simple calculation of the top N sales by customer? Is it the frequency of a customer
purchase? Maybe it is a combination of factors. He turns to Duane, his SAP Sales and
Distribution Analyst, for suggestions on how to approach this. Duane, having read
this book, thinks immediately, “This is a task for clustering and segmentation!”

Clustering is any one of several algorithmic approaches to dividing a dataset into
smaller, meaningful groups. There’s no predetermined notion of what dimension (or
dimensions) best allow that grouping. Practically speaking, you’ll almost always have
some idea what dimension (or features) you want to analyze. For example, we have
sales data and you want to know customer value. Well, clearly overall purchase his‐
tory and dollar value is important. What about the frequency of a customer purchase?
What about how recent they purchased? Perhaps they moved away? We will use all
three of these features to demonstrate clustering in this chapter.

Segmentation applies the clustering to business strategies. Its most common use
comes in researching markets. If you can identify groups of customers (or potential
customers, or opportunities), you can identify efficient ways to approach them based
on their cluster position. For example, you could cluster customers based on what
time of the week they are likely to respond to ads, then fine-tune your advertising
from that information.
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1 A nice introduction with a great cheat sheet can be found on the R Studio website.

Clustering and segmentation are often used interchangeably. How‐
ever, there is a technical distinction. Clustering is considered the
act of using machine learning to bunch the customers together.
Segmentation is used to apply the results of clustering. It absolutely
looks like nit-picky semantics, but it’s more than that. It also
reminds us of a coworker who had a fit when someone used the
term on-premise incorrectly...calm yourself.

In this chapter we will walk through the process of clustering and segmenting cus‐
tomer data using a variety of techniques. This is a one-time report to be delivered to
Rod. We’ve decided to use R Markdown1 as it is an easy way to report our results.
There is no need to build a dynamic dashboard such as PowerBI as we did in Chap‐
ter 5 since the data is not going to change. R Markdown can become quite complex;
however, in our example we’re going to use the basic features. Figure 7-1 shows the
process we will follow. We have seen this flow before, but this time we’ve added a
“Report” as the final step. Remember, Rod is a national account representative; sales
people don’t want to see code.

Figure 7-1. Process flow used for segmenting customer data

Understanding Clustering and Segmentation
Before we can segment our customers, we need to understand a few different types of
clustering and segmentation techniques. There are many different clustering techni‐
ques, but we will focus on:

• The recency, frequency, and monetary value (RFM) approach
• k-means clustering
• k-medoid or partitioning around medoids (PAM) clustering
• Hierarchical clustering
• Time-series clustering

226 | Chapter 7: Clustering and Segmentation in R

http://bit.ly/2lSzWLO


RFM
RFM is a clustering method that evaluates customers based solely on their purchase
history. The scenario is pretty straightforward. The customer is evaluated based on
the following three factors:

Recency
When was the last purchase?

Frequency
How many purchases did they make in a given time period?

Monetary value
What is the total dollar value of the purchases in this time period?

Once these questions are answered the customer is assigned a value for each factor,
typically 5 for the top 20%, 4 for the next 20%, and so on. Once they are given values
in each category, we can cluster the customers based on those values. These are indi‐
vidual RFM values. These values are combined (concatenated) into the RFM score.
For instance, if a customer has a recency of 5, a frequency of 4, and a monetary value
of 3, their RFM score would be 543.

These customers are then placed into a category from which actions can be taken
(i.e., during segmentation), as shown in Table 7-1. This can be a very granular or
more generic approach; there is a detailed list of options on the Putler website.

Table 7-1. RFM customer segment characteristics

Customer Segment Factor Characteristics
Champions R - High Bought recently

F - High Buy often
M - High Spend the most

Potential Champions R - High Bought recently
F - Medium Not often
M - High Spent a lot

Middle of the Road R - Medium to High Bought fairly recently
F - Medium to High Have some frequency
M - Medium Spend a medium amount

Almost Inactive R - Low to Medium Haven’t bought in a while
F - Medium Had some frequency
M - Low to Medium Spent a medium to low amount

Inactive R - Low No recent activity
F - Low Not much if any frequency
M - Low Not spending much

One-Timers R - Anything Any time frame recently

Understanding Clustering and Segmentation | 227

https://www.putler.com/rfm-analysis


Customer Segment Factor Characteristics
F - Low Not much if any frequency
M - Anything Any monetary value

Penny Pinchers R - Anything Any time frame recently
F - Anything Any type of frequency
M - Low Low monetary value

Businesses will have different definitions of what they consider High, Medium, and
Low. For our purposes, we will say High is 4 to 5, Medium is 2 to 3, and Low is 1.

Pareto Principle
Many clustering and evaluation techniques that are ultimately used for customer seg‐
mentation are based on the Pareto principle, which is summed up in Figure 7-2.

Figure 7-2. The Pareto principle

This principle indicates that 80% of the sales for Big Bonanza Warehouse is driven by
only 20% of the customers. For our conversion task, that means we want to make sure
that these key customers are converted into the new system.
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k-Means
k-means is an algorithm that clusters values around a geometric center. When using
k-means you need to define the number of clusters you’d like to use. The process of
choosing the number of clusters is both intuitive (in the respect that you may know
your data and have an idea of how many clusters or groups you will need) and experi‐
mental. We will also explore automatically finding the optimal clusters later in this
chapter. For now, let’s choose three. The algorithm randomly initializes three points
called centroids. Then it goes through each of the data points (our customers’ RFM
score perhaps) and assigns them to the closest centroid. Then the algorithm focuses
back on the centroids and moves them to the average distance from all points that
were assigned to it. This process repeats until the centroids stop moving. If there are
few centroids, k-means is computationally fast. An example process might look some‐
thing like Figures 7-3 through 7-6.

Figure 7-3. Step 1 in k-means—random centroid initialization

Figure 7-4. Step 2 in k-means—moving centroids via average distance
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Figure 7-5. Step 3 in k-means—continuing to move centroids via average distance

Figure 7-6. Final position in k-means - centroid average distance convergence

k-Medoid
k-medoid is a data partitioning algorithm like k-means, except where k-means mini‐
mizes the total squared error of centroid distance k-medoid minimizes the sum of the
dissimilarities. This can make it more robust to noise and outliers when compared to
k-means. The most common implementation of k-m is the PAM algorithm. The steps
would look similar to the ones shown above for k-means.
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Simply put, k-means uses the mean and k-m uses the median.

Hierarchical Clustering
Hierarchical clustering uses a technique to build a hierarchy from the ground up. It
does not require the number of clusters to be specified beforehand. There are two
types of hierarchical clustering: agglomerative and divisive. We introduced these con‐
cepts in Chapter 2. To quickly recap, agglomerative clustering works by first putting
each point into its own cluster. For our example, every customer would be a cluster.
Then it identifies the closest two clusters and combines them into one. It repeats this
process until every data point is in one cluster. Divisive clustering works in reverse.
All of our customers are put into a cluster. That cluster is split recursively until all the
customers are in their own individual cluster.

There are different linkage types that can be used to determine the pairing of the data
points into clusters. The two most common are complete and mean:

Complete linkage
Finds the maximum possible distance between two points belonging to two clus‐
ters.

Mean linkage
Finds all possible pairwise distances for points belonging to two different clusters
and then takes the mean.

These cluster regions become wider and more discernible as the categories move
upward as shown in Figure 7-7. Diagrams of hierarchical clustering are referred to as
dendrograms.
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Figure 7-7. Cluster dendrogram (the colored bars on the y-axis represent the levels of
clustering)

What Are Distances?
You may be wondering what these distances actually are. Here is a simple method to
help you understand it more intuitively. The distances calculated in this diagram are
the pairwise distances between all the values for an observation in a cluster. Let’s take
a look at some illustrative code.

Create a matrix of five observations and with one variable by using this R code in
your RStudio console; the results are shown after the code.

x <- matrix(rnorm(5), ncol=1)

Create a distance matrix with the dist function. Format it in as a normal matrix
using the as.matrix function. The results are shown after the code.

as.matrix(dist(x))
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Notice all the distances along the diagonal are zero. These are the distances of each
observation to themselves. The other distances are simply the difference between
each of the points. For instance, the difference between point 1 (0.8486870) and 5
(-0.6591891) is 1.5078761. It can get much more complex than this, but we think this
is a good illustration of hierarchical clustering basics.

Time-Series Clustering
Time-series clustering is not something we are going to do with our customer seg‐
mentation, as it requires much more computational power and data than regular
clustering. However, it is a fascinating type of clustering and something we want to
mention. Time-series clustering creates clusters from the data based on their behavior
over time. For instance, considering our scenario, we may have customers that exhibit
a particular behavior right before going inactive. They had a high frequency of pur‐
chases in the past, slowed gradually, and the monetary value decreased. Perhaps we
have additional data and we can see that these customers had an increased number of
returns (and therefore frustration). By clustering this pattern over time we can see
when a current customer, exhibiting the same pattern and belonging to the same
cluster, has not yet gone inactive. Marketing, in particular, would be interested in
knowing about these customers to prevent churn.

There is a very robust and wonderful R package TSclust made
specifically for time-series clustering. Time-series hierarchical clus‐
tering is not only useful—it’s also a lot of fun.

Step 1: Collecting the Data
We have explored a number of ways to extract data from SAP. This time we are going
to use a Core Data Service (CDS) view. In Chapter 3 we detail the process for defining
a CDS view for sales data. That is the exact CDS view we will use here, so make sure
to brush up on Chapter 3!
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Step 2: Cleaning the Data
Once we have downloaded the data from SAP, we need to clean it. We have done this
so far for every chapter, and you may recall in the introduction that SAP data is clean!
Here’s some perspective: if you are a data scientist, you will agree that this data is as
clean as it gets. Data scientists are often dealing with wildly unclean data. For
instance, data we recently worked with from the FDA’s Orange Book has a particu‐
larly interesting “therapeutic class” column. These classes can be of multiple cate‐
gories. If there is more than one class it is just added to the field. You never know how
many classes of which group are going to be in that one field. There may be one class,
there may be a dozen. To get the data out of this column you have to split it, stack it,
shape it, do some regular expression (regex) work on it, and then it still isn’t quite
there. We use this as an example of what a dirty column might look like, and this is
not a very complex example of the daily toils of cleaning data. From that perspective,
SAP’s data is sparkling clean.

Nonetheless, our sparkling data still needs a little shine. First let’s load the libraries
that we are going to need for our next steps:

library(tidyverse)
library(cluster)
library(factoextra)
library(DT)
library(ggplot2)
library(car)
library(rgl)
library(httr)

The httr library in R makes it easy to extract data directly from our CDS view. The
first step is to identify the URL (refer back to “Core Data Services” on page 80 for a
refresher on this).

url <- 'http:/<host>:<port>/sap/opu/odata/sap/ZBD_DD_SALES_CDS/ZBD_DD_SALES'

The next step is to simply call the service and authenticate with your SAP credentials:

r <- GET(url, authenticate("[YOUR_USER_ID]", "[PASSWORD]", "basic"))

The r object is a response object. It contains details on the HTTP response including
the content. Access the content with the following command:

customers <- content(r)

The customers object is a large list. We need to get that into a friendlier format before
we move on. First we will extract the results of the list in this way:

customers <- customers$d$results
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We still have a list, but it is only a list of the results of our call and not the HTTP
details. We can turn that list into a dataframe using a do.call command and binding
all the rows of the list together:

customers <- do.call(rbind, customers)

Take some time to get to know do.call. This simple and unassum‐
ing command will become a well-used tool in your data scientist’s
toolbox.

Finally, we convert our object into a dataframe:

customers <- as.data.frame(customers)

Let’s take a look at it. This time instead of using the messy head function by itself, we
will leverage the DT library. Here’s the command we’ll need to run (the results are
shown in Figure 7-8):

datatable(head(customers))

Figure 7-8. Datatables view (datatables are a nicely formatted and sortable dataframe
from the DT library)

As we have done a few times already, there are some quick and easy cleanups to do—
get rid of a couple extra columns, some whitespace, and a few columns that we don’t
want. We also drop the __metadata, CreateTime, CustomerMaterial, ItemCategory,
DocumentType, and DocumentCategory columns as they are not needed for our
analysis:

customers$__metadata <- NULL
customers$CreateTime <- NULL
customers$Material <- trimws(tab$Material)
customers$DocumentType <- NULL
customers$CustomerMaterial <- NULL
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customers$ItemCategory <- NULL
customers$DocumentCategory <- NULL

We notice that the date comes over in Unix format. We will fix this the same way we
fixed it in Chapter 6:

#Remove all nonnumeric from the date column
customers$CreateDate <- gsub("[^0-9]", "", customers$CreateDate)

#Convert the unix time to a regular date time using the anytime library
library(anytime)

#First trim the whitespace
customers$CreateDate <- trimws(customers$CreateDate)

#Remove the final three numbers
customers$CreateDate <- gsub('.{3}$', '', customers$CreateDate)

#Convert the field to numeric
customers$CreateDate <- as.numeric(customers$CreateDate)

#Convert the unix time to a readable time
customers$CreateDate <- anydate(customers$CreateDate)

detach(package:anytime)

We also noticed when previewing our data that some units of measure (UoM) were
blank. Units of measure are an important and complex master data concept in SAP. If
our transactional data is missing the UoM, this indicates we do not know the actual
quantity. For example, if we have a quantity of 10 but no UoM do we have 10 each or
10 boxes of 12 each? In the event the UoM is missing, we should exclude those
entries:

customers <- customers[customers$UoM != '',]

Let’s also make sure that the fields are appropriately typed: dates are dates, integers
are integers, and so on. We will also clear up whitespace that appears in some of the
columns:

#The price has commas - remove 'em
customers$NetPrice <- gsub(',', '', customers$NetPrice)

#The price should be converted to a numeric
customers$NetPrice <- as.numeric(customers$NetPrice)

#There are commas in the quantity, take them out.
customers$Quantity <- gsub(',', '', customers$Quantity)

#The quantity should also be numeric
customers$Quantity <- as.numeric(customers$Quantity)
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#The date should be in a standard date format. It is currently MM/DD/YYYY.
customers$CreateDate<- as.Date(customers$Created.on, '%m/%d/%Y')

#trim the whitespace out of the unit of measure.
customers$UoM <- trimws(customers$UoM)

Now we have a dataframe of customers and their sales. Let’s think for a moment
about our mission. We want to identify characteristics per customer, so our dataframe
should have unique rows per customer. Currently, we have all sales for each customer.
Our key therefore is not customer; it is order. Let’s change that and create a dataframe
of RFM values for each customer as the basis for all other analysis.

First we will work on recency. To do this, create a new entry in the dataframe that
indicates the number of days since the sale:

#get the number of days since the last purchase
customers$last_purchase <- Sys.Date() - customers$CreateDate

Remember that important statistical paper titled “The Split-Apply-Combine Strategy
for Data Analysis” referenced in Chapter 6? We will use those same techniques here.
We want a dataframe of the most recent purchase by customers. We do this using the
aggregate function and taking the minimum value. We are splitting data off of our
main dataframe by aggregating it and applying the minimum function to it:

#create a dataframe of most recent orders by customer.
recent <- aggregate(last_purchase ~ Customer, data=customers, FUN=min, na.rm=TRUE)

In true combine fashion we put them back together again, which will create a column
of the most recent purchase by customer:

#Merge the recent back to the original
customers <- merge(customers, recent, by='Customer', all=TRUE, sort=TRUE)
names(customers)[names(customers)=="last_purchase.y"] <- "most_recent_order_days"
#What we have now is the most_recent_order_days in our original dataframe

Next we will work on frequency, following the same theory as we did for recency.
Create a dataframe for the count of orders by customer by aggregating the data by
sales document and customer. The way you count in R is by asking “what is the
length?” Because we have multiple lines on an individual order and we want to count
orders not lines we say, “what is the unique length?” or “how many lines are on the
order?”

#create a seperate dataframe of the count of orders for a customer
order_count <- aggregate(SalesDocument ~ Customer, data=customers, 
  function(x) length(unique(x)))

Again, add the newly split dataframe back into the original to leave a column of order
count assigned to the customer:

#Merge the order_count back
customers <- merge(customers, order_count, by='Customer', all=TRUE, sort=TRUE)
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#Rename the field to be nice
names(customers)[names(customers)=='SalesDocument.y'] <- 'count_total_orders'

Finally, we will deal with the monetary value of a customer. We have in our dataframe
columns for price and quantity. Multiply these together to get the value per line:

#calculate order values. Get per line then aggregate.
customers$order_value <- customers$Quantity * customers$NetPrice

Again, in true Split-Apply-Combine fashion, aggregate the values of all lines per cus‐
tomer:

#Split off the aggregated value per customer.
total_value <- aggregate(order_value ~ Customer, data=customers, FUN=sum, 
                            na.rm = TRUE)

Repeat the process to merge the newly split dataframe back to the original.

#Merge the total_value back
customers <- merge(customers, total_value, by='Customer', all=TRUE)

#nicify  the name
names(customers)[names(customers)=='order_value.y'] <- 'total_purchase_value'

All those split-off dataframes are no longer of use. To keep your
workspace clean and free up some memory, remove them with this
simple command:

rm(recent, order_count, total_value)

A little cleanup of our main dataframe is in order after all that splitting and combin‐
ing. We want to make sure that each row is unique. There should be no duplicate
rows when comparing all fields. After all, no order number and line number should
be the same for multiple rows:

customers <- customers[!duplicated(customers), ]

We also want to ensure that there are no customer values that are blank. We are iden‐
tifying customers and their RFM values so obviously a blank customer is of no use.
There should be none, but it is good practice to double-check this:

customers <- na.omit(customers)

What we want is a dataframe of our four key values: customer number,
most_recent_order_days, count_total_orders, and total_purchase_value. View
the column names and position with the colnames function.
colnames(customers)
 [1] "Sold.To.Pt"            "Sales.Doc..x"          "Created.on"            "Name.1"
 [5] "City"                  "Rg"                    "PostalCode"            "Material"
 [9] "Matl.Group"            "Order.Quantity"        "SU"                    "Net.Price"
[13] "Material.description"  "last_purchase.x"       "most_recent_order_days" "count_total_orders"
[17] "order_value.x"         "total_purchase_value"
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We want only the columns 1, 15, 16, and 18. All the other columns are no longer nec‐
essary, they were just needed to create the RFM values. We want a dataframe of these
RFM values by customer only. This is simple, as we just slice off all other columns:

#slice off the required columns
customer <- customers[, c(1, 15, 16, 18)]

Now when we look at the dataframe we see just the columns we want. However, we
also notice at this point that we have duplicate rows:

> head(customer)
 Sold.To.Pt most_recent_order_days count_total_orders total_purchase_value
1      1018                  153                  1            37734.08
2      1035                  138                  1               89.85
3      1082                  143                  1            36181.46
4      1082                  143                  1            36181.46
5      1082                  143                  1            36181.46
6      1082                  143                  1            36181.46

Remove the duplicate rows with the !duplicated command:

#remove customer duplicates
customer <- customer[!duplicated(customer$Customer),]

How in the world are we going to rank them the way we need them? This seems like a
big task. Not with R! We simply create a new dataframe from customer. Make a col‐
umn titled R that is a mutation of most_recent_order_days. The mutation is to cre‐
ate a percentage ranking based on 5. That is, put the top 20% in 5, the next 20% in 4,
and so on. Repeat this process for count_total_orders and total_purchase_value.

#Now that we have a value for each of our customers, we can create an RFM
customer_rfm <- customer %>%
  mutate(R = ntile(desc(most_recent_order_days), 5),
         F = ntile(count_total_orders, 5),
         M = ntile(total_purchase_value, 5))

Now that we have our R, F, and M values, we can turn the column for customer into
an index and clean up our workspace:

#make the customer the row names
row.names(customer_rfm) <- customer$Customer

#ditch customer because it is an index
customer_rfm$Customer <- NULL

#clean up the workspace and free memory
rm(customer, customers)
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Ever worked with someone who complained they lost all their work because their
computer crashed? “I was working on that for four hours and now it’s lost!” Well, that
can happen to us too, so let’s create a little output that can be read in easily if we want
to pick up from this point:

#We now have a clean file with customers and their RFM values.
#(recency, frequency, monetary value)
#To save time in the future, we will write this to a csv.
write.csv(customer_rfm, 'D:/Data/customer_rfm.csv')

Step 3: Analyzing the Data
After those simple steps the data is ready to analyze. We have six different techniques
we are going to employ in analysis. It is redundant, but illustrative of the different
ways you can analyze data. These methods are:

• Pareto principle
• k-means clustering
• k-medoid clustering
• Hierarchical clustering
• Manual clustering

Revisiting the Pareto Principle
Remember the Pareto principle suggests that 80% of our sales is dictated by 20% of
our customers. How close is our data to that principle? For that matter, how would
we tell which customers contribute to 80% of the sales? Let’s break the concept into
small components:

1. Calculate what the cutoff is for 80% of the sales.
2. Order our dataframe from largest monetary value to smallest.
3. Create a column that has the cumulative sum of the monetary value. That is, it

will add row by row.
4. Label each customer as “Top 20” if the cumulative sum is less than the cutoff and

“Bottom 80” if it is greater than the cutoff.
5. Calculate the percentage of customers in each group.
6. Interpret the findings.

Calculating 80% of the sales is simple:

#first question is what is 80% of the total sales?
p_80 <- 0.8 * sum(customer_rfm$total_purchase_value)
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Then we sort the dataframe from largest to smallest monetary value:

#First step is to order the dataframe by monetary value.
customer_rfm <- customer_rfm[order(-customer_rfm$total_purchase_value),]

Add a column to the dataframe that is the rolling sum of the monetary values:

customer_rfm$pareto <- cumsum(customer_rfm$total_purchase_value)

Label the customers before and after the cutoff:

customer_rfm$pareto_text <- ifelse(customer_rfm$pareto <= p_80,
                                   'Top 20', 'Bottom 80')

Calculate the percentages using prop.table.

prop.table(table(customer_rfm$pareto_text))*100
Bottom 80  Top 20
94.090016  5.909984

By our calculations, roughly the top 6% of the customers contribute to 80% of the
sales. This sounds quite far off of the Pareto principle until you consider that Big
Bonanza Warehouse has a lot of customers. However, they also have distributors and
resellers. It is the distributors and the resellers that are driving the vast majority of the
sales. At first glance, this feature in the data may not seem very useful. Until you think
about it. Big Bonanza Warehouse has stores and distribution centers all over the Uni‐
ted States. Distributors and resellers get their product from distribution centers and
not the stores. If it comes to making a decision whether to close a distribution center
or a store, the choice is clear: close the store.

Finding Optimal Clusters
For k-means and k-medoid clustering we need to manually choose the optimal num‐
ber of clusters. This process is as much an art as it is a science. However, there are
some tools we can employ to choose the optimal number of clusters. The R library
factoextra has a method fviz_nbclust that will help to find and visualize the opti‐
mal cluster number. We want to do this before we start our k-means and k-medoid
clustering. There are three possible options in this method:

Elbow method
Minimizes the within-cluster sum of squares (wss). The total of the wss measures
how compact a cluster is. Theoretically, this should be as small as possible. It is
referred to as the Elbow method because the chart has an elbow in it where
increasing the number of clusters no longer contributes much to minimizing the
wss.
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Average Silhouette method
Measures how well each point falls within a cluster. A high value indicates good
clustering. It performs this by measuring the average distance between the clus‐
ters.

Gap Statistic method
Measures the total within intra-cluster variation. The gap statistic is optimal
when it is maximized and further clusters do not contribute much if any to the
value.

We will use each of these methods and then decide which one or combination to use.
Our dataframe has over a quarter million rows, which is too much for these statistical
methods. We can deal with this by taking a representative sample of the data with
enough points to ensure a similar distribution. Because we want reproducibility in
our sampling, we need to set a seed. Otherwise, every time this step is run the ran‐
domness could lead to slightly different results. We also only want the RFM values for
which we are clustering:

#Set a seed for reproducibility
set.seed(12345)
#Take only the R, F and M values from the dataframe, in columns 4,5,6
customer_rfm_sample <- customer_rfm[, c(4,5,6)]
#Take a sample using sample_n from dplyr library (in tidyverse)
customer_rfm_sample <- sample_n(customer_rfm_sample, 1000)

These clustering algorithms run better when the data is normalized. We will log
transform the data for each of our features:

#Log transform the data
customer_rfm_sample$R <- log(customer_rfm_sample$R)
customer_rfm_sample$F <- log(customer_rfm_sample$F)
customer_rfm_sample$M <- log(customer_rfm_sample$M)

Now we use fviz_nbclust to optimize and visualize our different methods. The first
will be the Elbow method shown in Figure 7-9:

#Finding the optimal number of clusters
 fviz_nbclust(customer_rfm_sample, kmeans, method="wss")

Second is the visualization of the optimal number of clusters using the Silhouette
method (the results are shown in Figure 7-10):

fviz_nbclust(customer_rfm_sample, kmeans, method="silhouette")
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Figure 7-9. Optimal number of clusters for Elbow method

Figure 7-10. Optimal number of clusters for the Silhouette method
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Finally, we will use the Gap Statistic method (the results are shown in Figure 7-11):

fviz_nbclust(customer_rfm_sample, kmeans, method="gap_stat")

Figure 7-11. Optimal number of clusters using the Gap Statistic method

Each method had different results. The Elbow method left a chart that did not have a
distinct “elbow” in it. When we look at it, it seems the elbow could be at point 5, 6, or
7. The silhouette method distinctly shows the average distance between the clusters
peaking at 3. The Gap Statistic method also clearly shows the optimal number to be at
5. We know our data and we feel comfortable with five clusters. Three we feel is too
small. Five clusters would be in agreement with two of the three methods we have
charted.

k-Means Clustering
Once the data is formatted and the number of clusters is identified, executing k-
means is easy. The first step is to set the number of clusters:

#Identify the number of clusters
 number_of_clusters <- 5
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Then we create a dataframe of our original values (not the RFM values, but the actual
values from the customer):

cust <- customer_rfm[, c(1,2,3)]

Because we do not have a normal distribution we want to normalize these values. If
we do not, the charting we do will be squashed and not be very legible. There are
many different methods for normalizing data (previously we’ve used min-max scal‐
ing). In this example, we will use a log transformation:

cust$most_recent_order_days <- log(cust$most_recent_order_days)
cust$count_total_orders <- log(cust$count_total_orders)
cust$total_purchase_value <- log(cust$total_purchase_value)

Now we simply use the k-means method. We put in the dataframe we created, the
number of clusters, and the number of times the process should run. By default, k-
means initializes its starting point (or initial position) randomly. Because of this, there
are occasions when it starts so poorly it fails to cluster well. There is a simple way to
overcome this. Simply run k-means numerous times. It’s extremely unlikely to start
poorly every time. The nstart parameter can be used to specify the number of run
times:

#Perform the kmeans calculation on our
km <- kmeans(cust, centers = number_of_clusters, nstart = 20)

km is a structure with clusters and other attributes related to clustering as is shown in
Figure 7-12. For our purposes, we are only interested in the cluster attribute.

Figure 7-12. Large k-means structure

We want to create a new dataframe with our customer details and the clusters from
km. The clusters need to be factors:

viz <- data.frame(cust, cluster=factor(km$cluster))
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Now we are ready to chart. Our first chart will be a simple ggplot of the monetary
value and recency (the result is shown in Figure 7-13):

ggplot(viz, aes(x=most_recent
_order_days, y=total_purchase_value, 
color=cluster)) + geom_point()

Figure 7-13. k-means clustering of customer data by recency and monetary value

This is not a very satisfying representation of our clusters. While we can see the val‐
ues of recency and monetary value clearly clustered by color, we do not see how they
relate to frequency. What if we try a change to this and plot recency by frequency and
then size the points by order value. We will apply an alpha to the points because there
are so many of them and this allows us to see when they are blending together (the
results are shown in Figure 7-14):

ggplot(viz, aes(x=most_recent_order_days,
               y=count_total_orders,
               size=total_purchase_value,
               color=cluster)) +
geom_point(alpha=.05)
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Figure 7-14. k-means clustering of customer data by recency, frequency, and monetary
value

Again, not very satisfying. When we chart more than two variables on a two-
dimensional plane the results can be rather disappointing. Fortunately in R there are
ways to create three-dimensional plots. We will use the car and the rgl libraries to do
this (the results are shown in Figure 7-15):

#create a color scheme for our chart
 colors <- c('red', 'blue', 'orange', 'darkorchid4', 'pink1')

scatter3d(x = viz$count_total_orders,
          y = viz$total_purchase_value,
          z = viz$most_recent_order_days,
          groups = viz$cluster,
          xlab = "Log of Frequency",
          ylab = "Log of Monetary Value",
          zlab = "Log of Recency",
          surface.col = colors,
          axis.scales = FALSE,
          surface = TRUE,
          fit = "smooth",
          ellipsoid = TRUE,
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          grid = TRUE,
          axis.col = c("black", "black", "black"))

You may need to change the recency values from a difftime
attribute to numeric. To do this execute the following command:

viz$most_recent_order_days <- as.numeric(viz$most_recent
_order_days)

Figure 7-15. k-means clustering of customer data in three dimensions

This is a much more satisfying representation of our clusters in k-means and gives us
a good idea of how our customers group into five clusters. You can see one group of
clusters in the upper right that represents our most recent, most frequent, and highest
monetary valued customers. Likewise, in the lower left of the chart we see the least
frequent, least recent, and least monetary valued.

Next, we will use k-medoid to get a different view of these clusters.
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k-Medoid Clustering
k-medoid is similar to k-means except that k-means uses the mean distance to create
clusters, while k-medoid uses the median. This makes k-medoid less sensitive to
noise and outliers. As we discussed earlier, the most common k-medoid clustering
method is the PAM algorithm.

From our work on k-means we have a dataframe titled cust with a scaled (log) value
of most_recent_order_days, count_total_orders, and total_purchase_value.
This is also the format needed for PAM. The pam function itself is limited to 65,536
observations so sampling is needed first (we’ve already done this when estimating the
number of clusters):

cust_sample <- sample_n(cust, 10000)

Execute the PAM clustering algorithm with the following command:

#First identify the number of clusters
number_of_clusters <- 5
#Execute PAM with euclidean distance and stand set to
#false as we've already standardized our observations
pam <- pam(cust_sample,
           number_of_clusters,
           metric = "euclidean",
           stand = FALSE)

The PAM object consists of the components medoids and clustering. To view these
results use the following commands:

head(pam$medoids)
          most_recent_order_days count_total_orders total_purchase_value
 2126695                4.406719          0.6931472             7.799405
 10041958               4.442651          0.0000000             2.618125
 10040360               4.454347          0.0000000             4.245634
 10043047               4.330733          0.6931472             6.116488
 2911968                4.174387          1.0986123            10.480677

head(pam$clustering)
 2382503 3048698 2843476 10055962 10079604   490487
       1        2        1        1        3        4

Visualizing the clusters is also easy using the fviz_cluster method (the results are
shown in Figure 7-16):

 fviz_cluster(pam, geom='point',
                 show.clust.cent = TRUE,
                 ellipse = TRUE)
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2 If you are wondering, “why not use pamk simply to determine the optimal number of clusters?” This process
can be computationally expensive and run a long time.

Figure 7-16. k-medoid PAM clustering

pamk() in the fpc library is a wrapper for pam. It prints the sug‐
gested number of clusters based on the optimum average silhouette
width.

The k-medoid visualization of the five clusters gives us a new view of our observa‐
tions. There appears to be a lot of overlap in this type of clustering, leading us to
believe the optimal number of clusters for using this technique is less than what we
chose. As an investigation, we will try the pamk function, which determines the num‐
ber of clusters for us:2

 library(fpc)
    pamk <- pamk(cust_sample,
            metric = "euclidean",
            stand = FALSE)

Next we will again use the three-dimensional visualization to see how many clusters
pamk thinks are optimal (the results are shown in Figure 7-17):

colors <- c('red',
           'blue',
           'orange',
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           'darkorchid4',
           'pink1')

viz <- data.frame(cust_sample,
                  cluster=factor(pamk$pamobject$cluster))

scatter3d(x = viz$count_total_orders,
           y = viz$total_purchase_value,
           z = viz$most_recent_order_days,
           groups = viz$cluster,
           xlab = "Log of Frequency",
           ylab = "Log of Monetary Value",
           zlab = "Log of Recency",
           surface.col = colors,
           axis.scales = FALSE,
           surface = TRUE,
           fit = "smooth",
           ellipsoid = TRUE,
           grid = TRUE,
           axis.col = c("black", "black", "black"))

Remember that the pamk function uses the Silhouette method for
determining the optimal number of clusters.

These results are interesting and should be cause for pause. Using the optimal Aver‐
age Silhouette method yields two clusters. Why? Remember that there are distribu‐
tors and resellers in our customer base. Earlier when we applied the Pareto principle
we saw that a very small number of our customers contributed to the majority of
sales. We surmised that these were our distributors and resellers. In the preceding
chart, the upper cluster likely represents our distributors and resellers. The lower
cluster likely represents regular customers. The SAP business analyst and data scien‐
tist should be questioning these results. What is this visualization telling us? We think
this visualization is telling us that the distributors and resellers are skewing the clus‐
tering results. We may want to start this process over again but this time exclude the
distributors and resellers.
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Figure 7-17. Visual results for pamk clustering

What if your SAP system does not discriminate between distribu‐
tors and resellers and regular customers? How would we exclude
distributors and resellers, then? The clustering process we’ve used
with pamk seems to have done that pretty nicely. Save the customers
from the lower cluster and restart the clustering process again on
that subset.

Next, we will use hierarchical clustering to get another perspective.
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3 In Chapter 2 we discussed the two types of hierarchical clustering: divisive and agglomerative. Take note that
hierarchical clustering is sensitive to outliers.

Hierarchical Clustering
Hierarchical clustering, as we’ve discussed, is another approach for identifying seg‐
ments among observations. Unlike k-means and k-medoids, it does not require that
the number of clusters be identified.3

We will perform one of each type of hierarchical clustering. Both of them have five
fundamental steps:

• The observations are put in a dataframe, where each column is a value by which
to cluster.

• The data is scaled (we will use log).
• A dissimilarity matrix is calculated (distance).
• Clustering is performed.
• Results are displayed.

Our first step is to create a new RFM dataframe. We have done this process a few
times now:

cust <- customer_rfm[, c(4,5,6)]

Now we’ll apply logarithm to our values:

cust$R <- log(cust$R)
cust$F <- log(cust$F)
cust$M <- log(cust$M)

Like our other machine learning clustering techniques, we are limited to a particular
maximum number of observations so we must again sample our data:

cust_sample <- sample_n(cust, 10000)

Now we are ready to create a dissimilarity matrix. We will apply it with the standard
default values. The dist() function returns the computed distances between the rows
of a data matrix.

d <- dist(cust)

To view the parameters and details of the dist function put ?dist
into the console and press Enter. Documentation will appear in the
right panel of RStudio. If this isn’t enough, try ??dist for even
more.
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Agglomerative hierarchical clustering is performed with hclust(). Alternatively,
divisive hierarchical clustering can be performed with agnes(). We will perform both
of them here:

#Agglomerative Hierarchical Clustering
hcl_a <- hclust(d)
#Divisive Hierarchical Clustering
hcl_d <- agnes(d)

Visualizing our findings is easy with the plot command (the results of agglomerative
hierarchical clustering are shown in Figure 7-18):

#Plot Aggplomerative HC - hang the results a bit
#to line them up.
plot(hcl_a, cex = 0.6, hang = -1)

Figure 7-18. Agglomerative hierarchical clustering plot

We can do the same for divisive hierarchical clustering (the results are shown in
Figure 7-19):

plot(hcl_d, hang = -1)
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4 There are a number of ways to display dendrograms—do a simple internet search for “beautiful dendrograms”
for some options. Some of our favorite techniques can be done using the ape# package. You can get pretty
creative with colors and shapes in dendrograms. This is more than simply aesthetics. Visualizations bring out
the data in ways that our minds more easily interpret. The Functional Art: An Introduction by Alberto Cairo is
a wonderful, insightful must for anyone wanting to get more from their visualizations.

Figure 7-19. Divisive hierarchical clustering plot

Both of these dendrograms are showing the same thing—the clustering of customers
based on their recency, frequency, and monetary value. They come to slightly differ‐
ent clusters because their techniques differ.

Personally, we don’t think that our observations (customers) worked well as dendro‐
grams. For one thing, to get accurate and readable visualizations we had to sample
down quite a bit, probably too much actually to maintain integrity in our observa‐
tions’ relationships. However, the purpose here was to demonstrate another type of
clustering.4

Manual RFM
For our final technique, we will define manual buckets into which our RFM scores
fall. It is a method of manual clustering of the customers. It may seem cheap, but it
works and fulfills the requirements for many types of analyses.

Step 3: Analyzing the Data | 255



Sometimes the simplest tool is the best. The range of neural net‐
works and machine learning algorithms is wide and robust. It is
tempting to grab the shiniest one and try to make that fit your data.
We are guilty of that, especially when it comes to nature-inspired
algorithms. Read the fantastic book Clever Algorithms and you’ll
try to apply ant colony optimization to everything. We make this
comment now because in this exercise we just use “if ” state‐
ments...about the least flashy technique there is.

The hardest part of performing manual RFM is defining the categories. What consti‐
tutes a champion customer as opposed to a potential champion? Big Bonanza Ware‐
house moves a large number of products to individual customers, but they also have
distributors. The distributors are going to always look like champions compared to
customers. Their definitions for the RFM model will vary drastically from the defini‐
tions for a company that does not have distributors. This business process requires
you to work closely with marketing and sales teams to define the RFM categories. For
our purposes, we will define them exactly as Table 7-1 above defines them. The code
is a simple nest of ifelse statements:

#What about manual clustering? Why not? Don't overlook the simple for the #shiny. 
customer_rfm$segment <- ifelse(customer_rfm$R >= 4 &
                               customer_rfm$F >= 4 &
                               customer_rfm$M >= 4,
                               'Champion', '')
customer_rfm$segment <- ifelse(customer_rfm$segment == '',
                               ifelse(customer_rfm$R >= 4 &
                                      customer_rfm$F >= 2 &
                                      customer_rfm$F <= 3 &
                                      customer_rfm$M >= 4,
                                      'Potential Champion', ''),
                               customer_rfm$segment)
customer_rfm$segment <- ifelse(customer_rfm$segment == '',
                               ifelse(customer_rfm$R >= 2 &
                                      customer_rfm$R <= 5 &
                                      customer_rfm$F >= 2 &
                                      customer_rfm$F <= 5 &
                                      customer_rfm$M >= 2 &
                                      customer_rfm$M <= 3,
                                      'Middle Of The Road', ''),
                              customer_rfm$segment)
customer_rfm$segment <- ifelse(customer_rfm$segment == '',
                              ifelse(customer_rfm$R >= 1 &
                                     customer_rfm$R <= 3 &
                                     customer_rfm$F >= 2 &
                                     customer_rfm$F <= 3 &
                                     customer_rfm$M >= 1 &
                                     customer_rfm$M <= 3,
                                     'Almost Inactive', ''),
                              customer_rfm$segment)
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customer_rfm$segment <- ifelse(customer_rfm$segment == '',
                               ifelse(customer_rfm$R == 1 &
                                      customer_rfm$F == 1 &
                                      customer_rfm$M == 1,
                                      'Inactive', ''),
                               customer_rfm$segment)
customer_rfm$segment <- ifelse(customer_rfm$segment == '',
                               ifelse(customer_rfm$F == 1,
                                      'One Timers', ''),
                               customer_rfm$segment)
customer_rfm$segment <- ifelse(customer_rfm$segment == '',
                               ifelse(customer_rfm$M == 1,
                                      'Penny Pinchers', ''),
                               customer_rfm$segment)
customer_rfm$segment <- ifelse(customer_rfm$segment == '',
                               'Unclassified', customer_rfm$segment)

Once the code is done we can see the results with a table statement:

table(customer_rfm$segment)
Almost Inactive           Champion           Inactive
             28933              34264               5134
Middle Of The Road          One Timers     Penny Pinchers
             61326              44640              13839
Potential Champion       Unclassified
             11907              48824

The ggplot2 package can quickly show us a visual distribution of the classes (the
results are shown in Figure 7-20):

ggplot(customer_rfm, aes(segment)) + geom_bar().

This chart shows us some interesting findings. In particular, there is a high number of
customers who did not get classified at all (unclassified). Most of the customers, not
surprisingly, fall into the Middle of the Road category. Our initial goal was to identify
customers who should be converted to the new system. Clearly Champion and Poten‐
tial Champion should make the cut. However, it is up to the business to decide if Mid‐
dle of the Road and Unclassified should make it. Our recommendation would be to err
on the side of caution and keep them. However, even if we keep those large groups
we’ve reduced our conversion task substantially by not including the Almost Inactive,
Inactive, One-Timers, and Penny Pinchers.
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Figure 7-20. Distribution of manually segmented customers

Step 4: Report the Findings
We’ve done the analysis and have some interesting findings. Now, however, we want
to report these findings to others. Presenting lines of code will not go over well in
meetings. We will use R Markdown to generate a unique report. First we will code the
R Markdown document. Then we will knit the document to make it presentable to
end users. Knitting in R studio is similar to publishing.

To begin, start a new R Markdown document by following the menu path File → R
Markdown in RStudio, as shown in Figure 7-21.
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Figure 7-21. Menu path to create a Markdown document in RStudio

Create a title for the presentation and add your name as the author (Figure 7-22).

Figure 7-22. Create R Markdown document

Let’s take a look at the basic structure of an R Markdown document, as shown in
Figure 7-23.
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Figure 7-23. Basic structure of Markdown document

The basic information of your document:

1. The type of document you are creating. HTML is default but you could have
PDFs, Word or RTF documents, GitHub files, and others.

2. Click the Knit button to create/render the report.
3. Write code between ```{ } and ``` sections.
4. Test code for specific sections using the run button.
5. Use text to describe and document your code and findings.
6. Put plots in your document and hide the code that runs them with the

echo=FALSE command.

There is much more to R Markdown than this! Refer to this cheat sheet—one of
many—at R Studio.
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R Markdown Code
We have already done our analysis so to be concise we will create a very simple report
in R Markdown for illustrative purposes. This is the code created in RStudio:

---
title: "Customer Segmentation"
author: "Greg Foss"
date: "March 5, 2019"
output: html_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(message = FALSE)
library(tidyverse)
library(ggplot2)
library(knitr)
library(kableExtra)
customer_rfm <- read.csv('D:/DataScience/Oreily/customer_rfm.csv', 
                    stringsAsFactors = FALSE)
row.names(customer_rfm) <- customer_rfm$X
customer_rfm$X <- NULL

#RMarkedown is a rich and rewarding way to display your findings. Refer to
https://rmarkdown.rstudio.com/index.html for a wealth of information. 
```
## Simple Customer Segmentation

Our customers are important to us. Therefore we want to know as much about them as
possible. We collected sales data from our SAP system to analyze and investigate. 
In this document we will explore a small range of our customer data. If our findings 
prove fruitful, we may want to continue this adventure. One of the first things we 
should explain is the number of customers in our dataset.
<br><b>Number of Customers</b>
```{r range_of_order_dates, echo=FALSE}
count(customer_rfm)
```
Customers display a recency, a frequency and a monetary value. Below is displayed 
the distribution of these values for our customers and the overall average.
```{r median_recency, echo=FALSE, fig.height = 7, fig.width = 14}
#use the mutate function to limit the number. Outliers will be binned in one value.
In this case 100.
customer_rfm %>%
  mutate(mrod = ifelse(most_recent_order_days > 100, 100, most_recent_order_days)) 
  %>% ggplot(aes(mrod)) +
  geom_histogram(binwidth = .7,
                 col = "black",
                 fill = "blue") +
  ylab('Count') +
  xlab('Most Recent Order Days') +
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  ggtitle('Histogram of Most Recent Orders')
```
```{r median_recency_number, echo=FALSE}
wd <- mean(customer_rfm$most_recent_order_days)
print(paste0("Average Recenct Order: ", wd))
```

```{r median_frequency, echo=FALSE, fig.height = 7, fig.width = 14}
customer_rfm %>%
  mutate(cto = ifelse(count_total_orders > 20, 20, count_total_orders)) %>%
  ggplot(aes(cto)) +
  geom_histogram(binwidth = .7,
                 col = "black",
                 fill = "green") +
  ylab('Count') +
  xlab('Order Count or Frequency') +
  ggtitle('Histogram of Frequency of Orders')
```
```{r median_frequency_number, echo=FALSE}
wd <- mean(customer_rfm$count_total_orders)
print(paste0("Average Order Frequency: ", wd))
```

```{r median_monetary_large, echo=FALSE, fig.height = 7, fig.width = 14}
#We need to break the monetary value into two because of potential great   
#differences between distributors and regular customers
customer_rfm_big_players <- 
  customer_rfm[customer_rfm$total_purchase_value >= 100000 &
customer_rfm$total_purchase_value < 1000000,]
customer_rfm_big_players %>%
  mutate(tpv = ifelse(total_purchase_value > 1000000, 
    1000000, total_purchase_value)) %>%
  ggplot(aes(tpv)) +
  geom_histogram(binwidth = .7,
                 col = "black",
                 fill = "orange") +
  ylab('Count') +
  xlab('Total Monetary Value') +
  ggtitle('Histogram of Customer Monetary Value ( > 100,000 )')
```

This is just a very small example of reporting with R Markdown. This is just the tip of
the iceberg and hopefully it inspires you to dive deeper into the world of R Mark‐
down. We will end with this simple example because, quite frankly, we could write an
entire book on this wonderful tool alone.

R Markdown Knit
Obviously you will not report your data science findings using lines of code. R Mark‐
down allows you to knit your findings into a report to be distributed to the business.
Click on the Knit button in RStudio to display the report in Figures 7-24 and 7-25.
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Figure 7-24. R Markdown document rendered
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Figure 7-25. R Markdown document rendered (continued)

Summary
We’ve completed quite a journey in clustering and segmentation, starting with the
concepts and ending with a report to display to the business. Remember that our
original requirement came from Rod at Big Bonanza Warehouse. He wanted to know
which customers should be migrated to the new system and which should be left
behind. We’ve gained insight into that question and much more in our data explora‐
tion. For the migration to the new system we will keep the Champion, Potential
Champion, Middle of the Road, and Unclassified customers. This will reduce conver‐
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sion time, validation, and cost by not converting tens of thousands of unnecessary
customer records. Duane takes the findings to the Master Data team in preparation
for their work in the S/4HANA conversion.

Furthermore, the results helped us understand the importance of distributors in our
customer base as well as the key evaluation parameters of recency, frequency, and
monetary value. In addition to Rod’s project, surely the marketing team would like to
see this evaluation to guide or validate their efforts.

Like all of our previous exploration, this is just the beginning. Knowing your custom‐
ers is a valuable and often underappreciated aspect of business. Techniques we have
touched upon in this chapter will help you gain insight into your SAP business data
and raise questions the business may not have thought to ask.
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CHAPTER 8

Association Rule Mining

Amir is the VP of Sales at Big Bonanza Warehouse. The other evening while shop‐
ping for cookies on Amazon he got a little message. “People who ordered cookies also
ordered cookie-holders.” “Cookie-holders? That’s ridiculous.” He thought. But he
clicked on the item anyway. “Cookie-holders are only a buck, I’ll try one.” A moment
later he realized, “I bought something I didn’t intend to buy. I’m happy with the pur‐
chase and the recommendation. How can I do this for my own sales and customers?”

The next day in the office he called in Duane, the SAP business analyst for Sales. He
explained what he was thinking and wanted to know how they could do it. “I want to
provide sales recommendations for all my retail locations. When a customer buys a
product, I want the system to provide recommendations for related products.”
Duane’s first thought was, “SAP doesn’t do that.”

Upon talking to Greg and Paul, Duane learns that what Amir wants can be achieved
by using a technique called association rule mining. We intend to take sales orders
from SAP and create associations, or discover the general rules of patterns in item
purchases. We want to know what products are most often purchased together. Con‐
sider groceries: if a customer buys bread and eggs, what is the likelihood they will buy
milk?

However, if you understand that association rule mining employs the rules of proba‐
bility, you start to see many more applications:

Laboratory studies
What is the probability of a result based on previous study results? If X and Y
happen in a study, what is the likelihood of Z? In the pharmaceutical industry,
ending a study at the right time can have significant financial impacts.
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Medical diagnoses
Diagnosing a patient is not always an easy process. Understanding the co-
occurrences of symptoms helps healthcare providers make more accurate diag‐
noses.

Class schedules
Understanding what classes a student may take can help an organization accu‐
rately use resources and avoid scheduling bottlenecks.

Equipment maintenance
Predicting a malfunction on the manufacturing line can greatly assist in produc‐
tivity. What is the probability that a piece of equipment will malfunction if it has
gone through maintenance A, B, and C?

Customer order assistance: as a distinct subset of straight upselling, take into account
that certain products are often bought together for a reason. If a customer buys hun‐
dreds of perfectly square tiles, it is likely they need some corner or oddly shaped tiles
to complete their project. Use association rule mining to create ways for customer
service to guide customers to ensuring their interactions meet their needs the first
time around.

In this chapter, our goal is to create an application that will create a sales order in SAP
and provide the user with product recommendations. To do this we use SAPUI5, a
standard SAP frontend technology.

By now the basic order of operations should be familiar. We will follow much the
same course of action we have with the other chapters, except this time we will opera‐
tionalize the results (Figure 8-1). Operationalization of data science is an important
and often overlooked step, which is dependent on your company’s infrastructure. Per‐
haps your company uses Azure or Amazon Web Services heavily. Perhaps they only
use on-premise machines. In this chapter, we will create a locally accessible webser‐
vice in R, but the deployment options will vary depending on you and your compa‐
ny’s infrastructure and preference.

Figure 8-1. Process flow used for finding associations in sales data
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1 Sequence mining is a type of association rule mining but is not included here. Some things just can’t make it.

Understanding Association Rule Mining
The techniques in association rule mining (ARM) are all about associating observa‐
tions with rules—for example, we can associate the observation in our data X with the
rule Y. Unlike sequence mining,1 ARM does not care about the order of the observa‐
tions. ARM only cares that they occur together. ARM is a mature and well-known
method of discovering associations in large datasets and it works well with categorical
data. There are four main concepts in ARM. These are support, confidence, lift, and
the apriori algorithm.

Support
Support is how frequently the set appears in the data. For example, Figure 8-2 shows
that whiskey and beer purchases occur in 10 out of 100 total purchases. This means a
support of 10/100 or 10%.

Support(X to Y) → Transactions containing X and Y / Total transactions

Figure 8-2. Associations between whiskey and beer purchases

Confidence
Confidence indicates how often a rule is true. Using the same example as before, out
of all the orders, 10 contain whiskey and beer, 15 contain at least beer, and 80 contain
at least whiskey. So 10 / 10 + 5 is a confidence value of .67. That is a pretty high confi‐
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dence value indicating these two items are bought together. However, confidence can
be misleading; items that are simply frequent will naturally have higher confidence
values. Limitations such as this are overcome by using support, confidence, and lift
together.

Confidence(X to Y) → Transactions containing X and Y / Transactions containing X

Lift
Lift is an indication of how likely something is to be purchased with the presence of
another item, as opposed to how often it is likely to be purchased independently. In
other words, how much does product A lift the likelihood of product B? Using our
example with the lift formula: lift = (10 / 10 + 5 ) / (80/100). The result is .84. A lift
value of near one indicates there is no effect of one item on the other. A lift value of
less than one indicates there could be a replacement (negative lift) happening. Despite
our high confidence from earlier, there is no lift to the relationship between whiskey
and beer. In fact, the lift is less than one, indicating whiskey might be a replacement
for beer or visa versa:

Lift(X to Y) → Confidence(X to Y) / ((Probability of Y without X) / Total transactions)

Apriori Algorithm
The apriori algorithm was presented by R. Agrawal and R. Srikant in 1994. It is a
method of finding frequent itemsets in a dataset. It uses prior knowledge of frequent
itemset properties to do this. It is this algorithm in the R arules library that creates
the association rules. We will use this library later in the chapter, when we analyze the
data.

Operationalization Overview
Before we begin creating our application, we need to clearly define our programming
goals. The architecture of our process is not complex, but it is important to under‐
stand the pieces of the process that will bring our vision to life. Figure 8-3 shows a
basic flow of the extraction and transformation, going from extracting the data
through to display in an SAP Fiori (SAPUI5) application.
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Figure 8-3. Programs and applications overview

SAP developed SAPUI5 as an HTML5/JavaScript-based web application development
framework. SAP also created a set of design standards called Fiori that SAPUI5
strives to help developers meet. The reason? The standard SAP user interface, the
decades-old SAP GUI, stinks. Nobody likes to use it.

SAPUI5 helps developers to create applications that responsively scale all the way
from desktop-sized monitor screens to mobile handheld screens. SAPUI5 with Fiori
design principles has become commonplace for SAP end users, and this includes the
sales staff at Big Bonanza. We’ll detail one way to use SAPUI5 to enhance the sales
experience and display the recommendations that we generate from our data science
adventure. Data scientist and SAP analyst readers please note: just like our other brief
forays into ABAP, this book is not intended as an SAPUI5 primer.

Collecting the Data
This business problem requires a process that ultimately creates association rules
around purchases. This is something that would not be done too frequently, perhaps
on a quarterly basis. Our plan is to create a process that we can update once a quarter
and will be the foundation of an API to an SAP application.

Sales data is easily found in SAP in the VBAK and VBAP tables. All we want to know
is what products are purchased together. In the end, we want something like
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Table 8-1, where each record has separate columns for the individual items sold. The
first row represents an order where two items were sold, the second row an order
where four were sold, and so on.

Table 8-1. Flattened product-to-order mapping

item1 item2 item3 item4 item5
ProductA ProductB
ProductC ProductB ProductE ProductG
ProductA ProductC

However, when we select data from the tables in SAP, we end up with Table 8-2.

Table 8-2. Product-to-order mapping before flattening

Sales Document (VBAK) Sales Material
10001 ProductA
10001 ProductB
10002 ProductC
10002 ProductB
10002 ProductE
10002 ProductG
10003 ProductZ

There are a few things that we need to take into consideration here:

• We don’t care about orders with only one item; there is no association there.
• We want our data wide and not long. Recall that we’re aiming for records that

have columns identifying individual items on the order, not separate records for
each item in the order.

• We don’t care about the sales order number; it is just used to group materials.
• Flipping back to anomaly detection concepts in Chapter 5, we determine that any

order with more than 25 lines is an anomaly and simply cut off the table at 25
items.

Finding that 25-line cutoff simplifies this step. If we allowed for any
number of lines we would need to dynamically build the internal
table in ABAP thereby adding complexity.
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We created the simple ABAP program that follows to fulfill our needs. It reads all
sales order items for a specified date range and creates a local CSV file in the format
we want. This will make our code for doing the association rules super-simple and
intuitive. This is a good example of merging various technologies. We can format and
extract from SAP using ABAP, then the process for R and Python is simplified. By
simplifying and designing the extract from SAP in a thoughtful manner, we turned
the R process into three lines of code:

REPORT zgmf_sales_wide.
 ************************************************************************
 *Data Declarations
 ************************************************************************
 TABLES: vbak, vbap.
* ty_items is our limited-to-25-items column-per-record structure.
 TYPES: BEGIN OF ty_items,
          item1 TYPE matnr,
          item2 TYPE matnr,
          item3 TYPE matnr,
          item4 TYPE matnr,
          item5 TYPE matnr,
          item6 TYPE matnr,
          item7 TYPE matnr,
          item8 TYPE matnr,
          item9 TYPE matnr,
          item10 TYPE matnr,
          item11 TYPE matnr,
          item12 TYPE matnr,
          item13 TYPE matnr,
          item14 TYPE matnr,
          item15 TYPE matnr,
          item16 TYPE matnr,
          item17 TYPE matnr,
          item18 TYPE matnr,
          item19 TYPE matnr,
          item20 TYPE matnr,
          item21 TYPE matnr,
          item22 TYPE matnr,
          item23 TYPE matnr,
          item24 TYPE matnr,
          item25 TYPE matnr,
        END OF ty_items.
DATA: lt_items TYPE TABLE OF ty_items,
      wa_items LIKE LINE OF lt_items.
TYPES: BEGIN OF ty_base,
         vbeln TYPE vbeln,
         matnr TYPE matnr,
       END OF ty_base.
DATA: member   TYPE ty_base,
      members TYPE STANDARD TABLE OF ty_base WITH EMPTY KEY,
      position TYPE i,
      xout     TYPE string,
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      iout     TYPE TABLE OF string,
      l_string TYPE string,
      t_csv    TYPE truxs_t_text_data,
      c_csv    TYPE truxs_t_text_data,
      h_csv    LIKE LINE OF t_csv.
FIELD-SYMBOLS: <fs_str> TYPE ty_items.
 ************************************************************************
*Selections               ₍ᐢ•ع•ᐢ₎*･ﾟ｡
************************************************************************
SELECT-OPTIONS: s_auart FOR vbak-auart, "Sales Order Type
                s_erdat FOR vbak-erdat, "Sales Order Create Date
                s_pstyv FOR vbap-pstyv. "Sales Order Line Item Category
PARAMETERS: p_lnam TYPE char75 DEFAULT 'C:\temp\'. "Directory to save to
************************************************************************
*Start-of-Selection        ₍ᐢ•ع•ᐢ₎*･ﾟ｡
************************************************************************
 PERFORM get_data.
 PERFORM write_file.
************************************************************************ 
* ROUTINES               ₍ᐢ•ع•ᐢ₎*･ﾟ｡
************************************************************************
FORM get_data. 
* Select all order numbers and materials from VBAK and VBAP 
* based on the selection criteria on the first screen.
  SELECT vbak~vbeln, vbap~matnr
      INTO TABLE @DATA(lt_base)
      FROM vbak JOIN vbap ON vbak~vbeln = vbap~vbeln
      ##DB_FEATURE_MODE[TABLE_LEN_MAX1]
          WHERE vbak~auart IN @s_auart
            AND vbak~erdat IN @s_erdat
            AND vbap~pstyv IN @s_pstyv
            GROUP BY vbak~vbeln, vbap~matnr.

*Assign the work area structure to a field-symbol
  ASSIGN wa_items TO <fs_str>. 
 
*LOOP at the list of orders and materials and group this by order number
  LOOP AT lt_base INTO DATA(wa) GROUP BY wa-vbeln.
    CLEAR members. 

*LOOP at the group (single order number) and put it into the members  
*table.
    LOOP AT GROUP wa INTO member.
      members = VALUE #( BASE members ( member ) ).
    ENDLOOP. 

*How big is the members table? If it is not greater than  
*one line then skip it. There is no association for one line orders.
    DESCRIBE TABLE members LINES DATA(i).
     IF i > 1.
       CLEAR: position, <fs_str>.
       LOOP AT members ASSIGNING FIELD-SYMBOL(<member>). 
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*We don't want to go over 25 lines on an order.
        IF position = 25.
          EXIT.
         ENDIF.
         position = position + 1. 

*Create a variable for the item from item1 to item25.
        DATA(item_position) = `ITEM` && position. 

*Assign the item (let's say ITEM1) to the field-symbol.  
*This is like a pointer and if it is successful we can  
*move the value into our work area.
        ASSIGN COMPONENT item_position OF STRUCTURE <fs_str>
             TO FIELD-SYMBOL(<fs>).
        IF <fs> IS ASSIGNED.
           <fs> = <member>-matnr.
        ENDIF.
      ENDLOOP. 

*Append the work area to our table of items.
      APPEND <fs_str> TO lt_items.
    ENDIF.
  ENDLOOP.
ENDFORM.
************************************************************************
FORM write_file. 

*Create a header. This is not truly necessary, but it doesn't hurt
  h_csv = 'item1' && `,` && 'item2' && `,` && 'item3' && `,` && 'item4' &&
  `,` && 'item5' && `,` && 'item6' && `,` && 'item7' && `,` && 'item8' &&
  `,` && 'item9' && `,` && 'item10' && `,` && 'item11' && `,` && 'item12' &&
   `,` && 'item13' && `,` && 'item14' && `,` && 'item15' && `,` && 'item16' &&
 `,` && 'item17' && `,` && 'item18' && `,` && 'item19' && `,` && 'item20' &&
  `,` && 'item21' && `,` && 'item22' && `,` && 'item23' && `,` && 'item24' &&
   `,` && 'item25'.
 
*Loop at the table of items and write it to a work area separated by commas
  LOOP AT lt_items INTO DATA(items).
    CLEAR xout.
    DO.
       ASSIGN COMPONENT sy-index OF STRUCTURE items TO FIELD-SYMBOL(<csv>).
       IF sy-subrc <> 0.
         EXIT.
       ENDIF.
       IF sy-index = 1.
         xout = <csv>.
       ELSE.
         l_string = <csv>.
         xout = xout && `,` && l_string.
       ENDIF.
     ENDDO.
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     APPEND xout TO iout.
   ENDLOOP.
 
*First append our header to the final csv output table 
*then append all the lines of the csv.
  APPEND h_csv TO t_csv.
  APPEND LINES OF iout TO t_csv.

*Use SAPs standard download method to create a file and download it locally
  CALL METHOD cl_gui_frontend_services=>gui_download
    EXPORTING
      filename = p_lnam && `sales_wide_` &&  
                 sy-datum && sy-uzeit+0(4) && '.csv '
    CHANGING
       data_tab = t_csv.
ENDFORM.

Cleaning the Data
We always need to do some cleaning of our data from SAP. However, because we
wrote our own small custom program to extract the data, we took care to do it in
such a way that the data would be pristine. It is important to not make assumptions
about how well we did the extract program, so we’ll read the CSV file into R Studio
and take a look at it (the results are shown in Figure 8-4):

investigate <- read.csv("D:/DataScience/Data/mat.csv")
library(DT)
datatable(head(investigate))

Figure 8-4. Investigating the data from SAP for Sales Data Wide

Things look exactly as we would want them with the exception of the X column.
However, this is something being added by our read.csv function. We could avoid
this using the row.names = NULL parameter. When we load the data in a different
way in our next step, we won’t have this problem.
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Analyzing the Data
Using the arules package allows us some amazing results very easily. Because we
have nicely formatted our data using ABAP we can transform it into a transaction
object in R using the following code:

transactions <- read.transactions("D:/DataScience/Data/mat.csv",
                                  format = "basket",
                                  sep = ',',
                                  rm.duplicates=TRUE)

To create rules based on the transactions we loaded, use the following code. This is
where the apriori algorithm (mentioned earlier) comes into play. We will set the sup‐
port to be a minimum of .1% and our confidence to be 80%. The support is low
because the dataset is huge and varied. We have over a half million rows of item sets.
A support of .1% is still 500 occurrences. A confidence of .8 means that 80% of the
time the rule is considered to be true.

Data science is a combination of business logic, art, and actual
machine learning knowhow. A certain degree of trial and error is
needed to properly set the support and confidence values.

rules_transactions <- apriori(transactions,
                              parameter = list(supp = 0.001, conf = 0.8))
 rules_transactions <- sort(rules_transactions,
                           by="confidence",
                           decreasing=TRUE)

We can see our results with confidence, lift, and support using the following com‐
mand:

inspect(head(rules_transactions))

     lhs          rhs     support     confidence lift     count
 [1] {4614440} => {79353} 0.001040583 1          2.426768 2    
 [2] {4360037} => {79353} 0.001040583 1          2.426768 2    
 [3] {8996481} => {79353} 0.001040583 1          2.426768 2    
 [4] {8709402} => {79353} 0.001040583 1          2.426768 2    
 [5] {8135285} => {79353} 0.001040583 1          2.426768 2    
 [6] {2911738} => {79353} 0.001040583 1          2.426768 2

Lhs stands for lefthand side; rhs stands for righthand side. Items on the right were fre‐
quently purchased with items on the left with the listed support, confidence, and lift.
While our support values are not very high, the amount of data we have is enough to
provide good confidence and lift among our top values. For instance, line 1 above
indicates that when item 4614440 is purchased there is a 100% confidence that item
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79353 is also purchased. Furthermore, there is a lift of 2.4267 for this relationship.
(Remember, a lift value near 1 indicates there is no effect of one item on the other.)

We have created our association rules; now we will save them as a transaction object
to be used in our operationalization later:

save(rules_transactions,
     file = "D:/DataScience/Oreily/association_rules.RData")

We are going to operationalize this at a local level first and move to
a more universal level later.

Before we operationalize, we want to test what would happen if we analyze a simple
result. Create a simple vector from a dataframe with the top result in it:

dataset <- as.vector(t(c("8135285")))

Now match the rules created with the results of our vector:

matchRules <- subset(rules_transactions, lhs %ain% dataset)

Inspect those rules like we did earlier with the inspect function. We see that it
returns the same values that we had earlier when inspecting the rules manually:

inspect(matchRules)
      lhs          rhs     support     confidence lift     count
 [1] {8135285} => {79353} 0.001040583 1          2.426768 2

Now to create a simple API we need to first create a function from the following code
with the dataset set as an input variable:

subset(rules_transactions, lhs %ain% <input_vector>)

You can create a very quick and simple web API in R Studio using the plumber
library. You need to be on version > 1.2 of R Studio to use some of the features we
will outline here. The first step to creating a web API is to open a new plumber file
using the menu path File → New File → Plumber API, as shown in Figure 8-5.
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Figure 8-5. Creating your first Plumber API

This will give you a base file for plumber with a few examples in it. We will discard
those examples and use the following code:

library(plumber)
#Load the association rules created in the load program
load(file = "D:/DataScience/Oreily/association_rules.RData")
#* Send back the confidence and lift
#* @param input Material Number
#* @get /arm
function(input) {
  #Convert the input value(s) into a vector. 
  dset <- as.vector(t(c(input)))
  #Create a subset of rules matching the input
  match_rules <- subset(rules_transactions, lhs %ain% dset)
  #Display/Return those values (by default JSON)
  inspect(match_rules)
}

What this code says in human-speak is, “Take the input received and make it a vector
so we can search with it. Create a new object that is a subset of our association rules
that matched our input with the lhs (lefthand side). Return that result using the
inspect() function.”

The preceding code will render our association rules results in a JSON format when
queried from a browser. The Plumber API is easy to use from R Studio; simply click
on the Run API button in the upper-right corner of the window.
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A window will appear that will allow the API to be reviewed and tested. It is shown in
Figure 8-6.

Figure 8-6. Swagger and the Plumber API
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Click on the “Try it out” button and enter a material number. When finished click on
the Execute button, as shown in Figure 8-7.

Figure 8-7. Testing the Plumber API with a material number

The results of the web API are displayed in the response section, as shown in
Figure 8-8.

Figure 8-8. Results of the Plumber API call
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2 We will be providing a follow-up blog on using Digital Ocean as a platform for a public API with R and
plumber.

3 Also recall that SAPUI5 is a web application development framework. SAP’s user experience capabilities have
evolved a great deal in the last four to five years, and SAPUI5 is the leader of those changes.

The results of the API show the following in JSON format:

• LHS (antecedent)
• RHS (consequent)
• Support
• Confidence
• Lift

This is all data that can be used in an application providing sales recommendations.
We’ve successfully created a web API, but it is restricted to our local computer. There
are many ways to host and publish APIs. This is largely governed by your company’s
environment. Does your company use Azure, Amazon Web Services, Digital Ocean,
or something else? Perhaps there is no cloud environment at all and an on-premises
server is deployed. The options are too varied to be covered in this little book.2

Remember: we’re not building an entire mobile app here. This sce‐
nario assumes that Big Bonanza has an existing SAPUI5-based
Fiori application, and that Greg, Paul, and Duane are just sprin‐
kling in some extra logic. All of the changes suggested here are
contrived examples, and while they require knowledge of HTML,
JavaScript, and XML they do not require knowledge of developing
full-functioning iOS or Android apps in their native programming
languages.

Fiori
We have an operational, web-accessible point of reference to get at our Plumber API.
As discussed at the beginning of the chapter, Big Bonanza uses an SAPUI5-based
Fiori3 application to allow field sales personnel to enter sales orders via smartphone.
Before getting heavily into fun data science scenarios, Duane from the SAP team had
a hand in designing the sales order entry application. He did a great job simplifying
what can be very complex in the normal desktop SAP GUI down to a couple of
screens on mobile.
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4 The model-view-controller structure is one of the oldest, most-used architectures in software development
with graphical user interfaces.

To get the field salespeople really pushing those cookie-holder extras, let’s map out a
small enhancement to Duane’s order entry app. We’ll add a screen that pops up after
the sales staff confirms a new order, which will list out the additional materials that
are often purchased together with the order’s items. The salesperson can then choose
to add one or more of those items to the order by suggesting them to the customer on
the spot.

Visit https://open.sap.com/ and search “SAPUI5” to learn more
about building SAPUI5 applications for the Fiori experience.

SAPUI5 applications follow a common model-view-controller4 structure. “View” files
define the layout of the elements on the screen. “Controller” files define the behavior
and logic. Woven through both are references to “models” that define how the data is
stored on the client device for application use. For our use case, we will modify view
files to create a little pop-up screen that holds the suggested new items. We will create
a new model to hold information about the suggested products. Finally, we will mod‐
ify controller files to ensure that the pop-up screen appears at the right time.

Big Bonanza has a very stripped-down UI like Figure 8-9. Just add items to the last
screen after selecting a customer to submit to SAP to create the order.

We’re going to put our recommendation flow into the process where the salesperson
would tap Complete Order. Let’s start with the view files that govern our buttons.

In the main view file (Table.view.xml, which governs this screen), the SAPUI5 devel‐
oper has already defined the buttons in the footer. We can quickly check on that to
see where we can hook up our extra logic:

<!-- SNIP! Lots of other application view code -->
 <footer>
     <OverflowToolbar>
         <ToolbarSpacer/>
         <Button text="Add Product"/>
      <Button text="Complete Order" press="onOrderPress" type="Accept"/>
     </OverflowToolbar>
 </footer>
 <!-- SNIP! Lots of other application view code -->
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Figure 8-9. Simplified order entry with ability to add another product or to complete the
order

The press attribute of the Complete Order button tells us what function (onOrder
Press) will be executed when the user taps that button. So let’s jump into that code, in
the Table.controller.js file:

// SNIP! Lots of other application controller code
 onOrderPress: function (oEvent) {
     // If the dialog box has never been opened, we initiate it
     if (!this._oDialog) {
         var oSuggestionsModel = new JSONModel();
         this.getView().setModel(oSuggestionsModel, "suggestions");
         this._oDialog = sap.ui.xmlfragment("Table.RecommendDialog", this);
         this._oDialog.setModel(oSuggestionsModel, "suggestions");
     }
     
     // Retrieve the product already entered on the screen,
     // build a query URL to the Big Bonanza ARM endpoint, 
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     // then load that data into an intermediate placeholder, ARMModel. 
     var oModel = this.getView().getModel();
     var product = oModel.getProperty("/ProductCollection/0/ProductId");
     var bigBonanzaInternalUrl = "[FILL_IN_YOURS]";
     var oARMModel = new JSONModel();
     var endpoint = bigBonanzaInternalUrl + "/arm?input=" + product;
     oARMModel.loadData(endpoint, {}, false);
     
     // Based on results from the ARM retrieval, create a filter to retrieve
     // the full product information for the recommended products.
     var armData = oARMModel.getData();
     var aFilters = [];

     // The "Filter" object sets up the OData filter for SAPUI5
     for (var i = 0; i < armData.length; i++) {
         aFilters.push(new Filter("ProductId", "EQ", armData[i].rhs);
         var finalFilters = new Filter({
             filters: aFilters,
             and: false
         });
     }

     // The base OData model is the OData API that is serving out the rest
     // of the data points of this app. This is the API that houses the
     // "ProductCollection" endpoint, where we can retrieve more details
     // about the recommended data.
     var baseODataModel = this.getView().getModel();
     var that = this;
     baseODataModel.read("/ProductCollection", {
         filters: finalFilters,
         success: function (oData) {
             // In here, we assign the suggestions to that model and open
             // the dialog box. See the "Table.RecommendDialog" listing.
             var oSuggestionsModel = that.getView().getModel("suggestions");
             oSuggestionsModel.setData(oData.results);
             that._oDialog.open();
         }
     });
}
 // SNIP! Lots of other application controller code.

There’s one more piece to this puzzle. Near the top of the onOrderPress function, we
call out to an XML fragment. This fragment defines the look and feel of the pop-up
dialog that appears (Figure 8-10) after pressing Complete Order.
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Figure 8-10. On mobile phone, the suggestions list shows over the top of the existing
order items list, and allows for selecting one or multiple items to add to the sales order.

To set up the suggestion list dialog, create a file called RecommendDialog.frag‐
ment.xml in your SAPUI5 project, and add the following XML:

<core:FragmentDefinition
    xmlns="sap.m"
    xmlns:core="sap.ui.core">
    <SelectDialog
         noDataText="No Products Found"
         title="Suggested Add-Ons"
         confirm="handleClose"
         cancel="handleClose"
         multiSelect="true"
         items="{
             path: 'suggestions>/'
         }" >
         <StandardListItem
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                 title="{suggestions>Description}"
                 description="{suggestions>ProductId}"
                 type="Active" />
     </SelectDialog>
 </core:FragmentDefinition>

Summary
With a mid-process prompt for selling associated items, Duane has given Amir the
VP of Sales a powerful tool to prod his sales team to upsell on the spot. We used sales
data gathered from SAP tables in an ABAP program that packed things nicely into a
CSV file. Using R, we analyzed this data looking for three key factors in association
rule mining: support, confidence, and lift.

The arules package gave us a quick way to analyze the raw data for those three fac‐
tors. We layered a function on top of it, so as to quickly allow an input of a product
number and an output of 1 to n products that have strong associations. Using the
plumber library in R, we quickly turned that function into a web-callable API.

Given that sales team members in the field use SAP Fiori apps on their mobile
phones to enter sales orders from customers, we looked at how to quickly adapt the
SAPUI5 codebase of the Fiori application to present a “suggested items” prompt to
users. This gives them one last upsell tool before submitting the order. Not every cus‐
tomer chooses to add the upsell items—but enough of them do that it has positively
impacted Amir’s sales numbers.

Association rule mining has been around in one way or another for a long time.
Putting it in the hands of SAP users is a fresh take on a mature approach; the infor‐
mation is right there for the taking!
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CHAPTER 9

Natural Language Processing with the
Google Cloud Natural Language API

“How often do consumers cut companies loose because of terrible service? All the time.”
—Harvard Business Review, “Stop Trying to Delight Your Customers”

Jeana is the Sr. Director of Customer Service at Big Bonanza Warehouse. According
to the CEO the job is simply: “turn angry customers into happy customers.” Angry
customers have lots of power to hurt companies, since they can not only stop doing
business but also multiply their effects by voicing their complaints via social media.
Big Bonanza (along with every other company in the world!) is hyper-sensitive about
what customers are saying about them online.

Customers register their complaints through the consumer-facing web storefront in a
contact form designed to gather descriptions of their issues. Big Bonanza hooks up
this contact form directly to SAP Customer Relationship Management (CRM) to cap‐
ture these notes and create trackable complaint documents. After the CRM complaint
is created, Jeana’s team steps in. Her team deals with hundreds of complaints every
day. They make their best effort to react quickly and provide quality service, but Jeana
knows that in the daily pile of complaints are customers who will churn away if they
do not get high-quality service, fast.

Duane, the SAP business analyst, also has deep knowledge of CRM. Jeana pitched
him an interesting idea: “I have budget available to give small gifts or offers to cus‐
tomers who complain. It’s not a huge budget, so I have to be careful how I spread out
the love. I want to identify the most unhappy customers as quickly as possible, so I
can apply this budget to them.” Her hypothesis was that acting early in the process
could prevent customer churn and bad social media messaging, but to engage that
hypothesis she needed to find potential churners fast.
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Duane knew from talking to Greg and Paul that data science has continued to make
remarkable advances in natural language processing (NLP). He asked, “If I can
extract those text complaints out of CRM, can we use NLP to quickly identify cus‐
tomers who may churn?” Greg and Paul showed Duane the possibilities afforded by
using publicly available cloud APIs to efficiently examine the complaints for senti‐
ment, shortcutting the modeling and training they’d had to use in other Big Bonanza
SAP projects.

In this chapter, our goal is to establish a fast time-to-analysis pipeline of extracting
sentiment from customer complaints, in order to help Duane recommend the best
candidates for special support attention from Jeana’s team. To do this we’ll use ABAP
to extract customer complaint notes from SAP CRM, and then use Google Cloud
APIs to discover the positive or negative human emotion in each complaint.

This may be the most practical of all of this book’s chapters. That is
intentional! We want you to understand that sometimes the model‐
ing has been done already, and you can use preexisting tools to stay
focused on the business scenario. One of the best ways to do that is
to use the cloud AI toolkits offered from Amazon Web Services,
Microsoft Azure, Google Cloud, and others. To keep things focused
on the scenario we had to choose one toolkit, so we chose Google.
No disrespect intended to the others.

Understanding Natural Language Processing
Natural language processing is a subfield of AI that focuses on enabling computers to
understand human language. Two of the most common areas of NLP are sentiment
analysis and translation.

Sentiment Analysis
Often referred to as opinion mining, sentiment analysis attempts to identify opinions
from text. There are two basic approaches to sentiment analysis: the rule-based
approach and the machine learning approach. Sometimes there is a hybrid of the two.
The rule-based approach uses a set of manually crafted rules. Think of a list of posi‐
tive words such as awesome, incredible, neat, and good put into one list labeled posi‐
tive sentiment. Another list labeled negative sentiment has words such as terrible,
awful, sad, and depressing. In a nutshell, the rule-based approach counts the occur‐
rence of these words in a sentence, paragraph, or tome and decides if the overall sen‐
timent is positive or negative. The machine learning approach is more modern and
sophisticated. There are mature libraries in both R and Python such as topicmodels
and NLTK to make sentiment analysis simpler.
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1 Examples taken from Porter’s algorithm: http://snowball.tartarus.org/algorithms/porter/stemmer.html.

Both of these approaches use techniques such as removing stop words, tokenization,
stemming, and lemmatization to format the human words into something a little eas‐
ier to analyze.

Removing stop words simply eliminates words that have little or no value in opinions
or sentiment—words such as and, but, or, and the.

Tokenization is the act of taking a sequence of words and breaking it up into pieces,
or tokens. Along the way it often discards pesky things like punctuation. Figure 9-1 is
an example of a sentence that has the stop words removed and has been tokenized.

Figure 9-1. Removing stop words and tokenizing a sentence

Stemming and lemmatization are processes of removing the variance in word forma‐
tion. Stemming simply removes the end of words to end up with the “stem” of a word
while lemmatization uses a more sophisticated approach to find a word’s true base.
These are simple processes, but difficult to explain without examples. Figure 9-2
shows how a list of words would be stemmed based on standard rules, and Figure 9-3
is how a set of words would be lemmatized.1

Figure 9-2. Stemming rules according to Porter’s algorithm
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Figure 9-3. Lemmatization of words

This is the basics of sentiment analysis. However, in this chapter we are not building
our own sentiment analyzer. Rather, we are going to use publicly available Google
Cloud APIs that do the analysis for us.

Translation
In The Hitchhiker’s Guide to the Galaxy Douglas Adams presents the reader with the
“oddest thing in the universe”: a Babel Fish. This little creature fed on brain waves
and when put in your ear would translate any language. With machine learning for
translation, such a thing is foreseeable. Modern machine learning translation uses
neural networks to learn to translate one language to another. (We introduced neural
networks in Chapter 2.) The accuracy and reliability of machine learning translations
is reaching (some would argue it has already met) human-level translation capabili‐
ties.

Preparing the Cloud API
With a basic understanding of NLP, let’s get down to the business of helping Duane
and Jeana get what they need. We’ll run this example through Google Cloud, but
readers should note that comparable offerings exist from Amazon Web Services
(AWS) and Microsoft Azure.

In a world full of publicly available artificial intelligence services, we love the way
Google has established their toolset. Their libraries are high quality, simple, and flexi‐
ble. Most importantly, their decades of machine learning research are at your finger‐
tips. It’s easy—almost shamefully so—to get started using Google Cloud APIs. Let’s
get started by setting up Google Cloud Platform to process the scenario.
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To use Google’s cloud services, you’ll need a Google account. If you have a Gmail
account or if your company uses Google for Work or GSuite, you’re already all set.
Otherwise, head to https://accounts.google.com/signup to sign up for an account. This
is the same thing as signing up for a Gmail account; you’ll have a new email address
at the end of the process.

With that Google account, you’re ready to gain access to the APIs. Head over to
https://console.cloud.google.com/ to start setting up the correct access. Depending on
what type of account you have, you may need to set up a billing account. Don’t worry:
the free tier of service for our example in this chapter will be more than enough to get
us learning and moving. Billing only applies when you start using these services for
thousands of API requests, and at that point we hope you’ll be providing so much
value to your business that it won’t matter.

In the Google Cloud Platform Console you need to give yourself access to the API
we’ll use for Jeana’s work. Start by navigating to the APIs & Services section as shown
in Figure 9-4.

Figure 9-4. Click “APIs & Services” then Dashboard to control AI APIs
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You’ll be taken to a screen like Figure 9-5. Just click on “Enable APIs and Services” in
the top portion of the screen.

Figure 9-5. Click “Enable APIs and Services” to proceed to the search dashboard

You’re then taken to the main screen to search among Google’s hundreds of APIs. For
Jeana’s scenario, we’ll enable just the Natural Language API. Start by searching for
“language” in the search bar. You should see a result like Figure 9-6. Click on the
“Natural Language API” result.

Figure 9-6. Search “language” in the API console search
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Turn on your usage of the Cloud Natural Language API by clicking the Enable button
in the detail screen, like Figure 9-7.

Figure 9-7. Enable the Cloud Natural Language API

Once you’ve clicked the Enable button, you’re done with turning the API on. But
there’s one more step in our preparation. We need to get a service account that has
the right credentials to make use of the APIs we just enabled. From the main Google
Cloud Console screen (https://console.cloud.google.com), click on “IAM & Admin”
then “Service accounts” as in Figure 9-8.

Figure 9-8. Service account navigation
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In the service accounts screen, click Create Service Account at the top to go to the
service account creation wizard. In the first screen of the wizard, fill out details simi‐
lar to Figure 9-9. Be sure to write a good description so that when you come back to
this project in two years, you’ll have written documentation of which users perform
what roles (believe us, you’ll likely need a refresher!).

Figure 9-9. Service account details

Click Create at the bottom and move to the second step. You will want this service
account to have full ownership of the project we’re working with, so grant full project
ownership to the accounts as seen in Figure 9-10.

Finally, on the last page of the wizard, create a JSON private key Figure 9-11. This is a
file that will allow your computer to make service requests right from the Python
command line, using the same credentials as the service user we’ve just created. Make
sure you save that file in the same place where you’ll be creating your Python scripts.
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Figure 9-10. Granting full project owner rights to the service account

Figure 9-11. Creating a JSON key file

In one quick command, let’s get the Google Python client set up and ready to go. In
your favorite Python environment, run this pip command:

$ pip install --upgrade google-cloud-language
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That’s it! You’re set up and ready to use the Google Cloud APIs to solve problems just
like Jeana is facing at Big Bonanza.

Collecting the Data
Just like in Chapter 8, the simplest path is to output the complaint documents with
their associated customer notes in CSV format. We have created the ABAP program
shown here to meet this need:

REPORT zcomplaint_csv.

"We kept the variable declarations at the top to 
"increase readability of comments 
"with code below. 
DATA csv_line TYPE string. 
DATA csv_table TYPE TABLE OF string. 
DATA full_note TYPE string. 
DATA core TYPE REF TO cl_crm_bol_core. 
DATA header TYPE crmst_adminh_btil. 
DATA entity_up TYPE REF TO cl_crm_bol_entity. 
DATA query TYPE REF TO cl_crm_bol_dquery_service. 
DATA valid_from TYPE string. 
DATA valid_to TYPE string. 
DATA result TYPE REF TO if_bol_entity_col. 
DATA entity TYPE REF TO cl_crm_bol_entity. 
DATA entity_header TYPE REF TO cl_crm_bol_entity. 
DATA entity_textid TYPE REF TO cl_crm_bol_entity. 
DATA textid_col TYPE REF TO if_bol_entity_col. 
DATA bt_textid TYPE crmst_textid_btil. 
  
  "PARAMETERS sets up the SAP GUI screen to accept input, 
   PARAMETERS: p_from TYPE dats, 
              p_to   TYPE dats. 
 
   "CRM uses the Business Object Library to provide 
   "query services to access its data. 
   core = cl_crm_bol_core=>get_instance( ). 
   core->load_component_set( 'BTBP' ). 
  
   "Use t-code GENIL_BOL_BROWSER to find the right query, 
   query = cl_crm_bol_dquery_service=>get_instance( 
     iv_query_name = 'BTQCompl' ). 
  
   "Here and in the next block we limit the query to the two 
   "dates entered on the input screen. 
   valid_from = p_from. 
   query->add_selection_param( 
     EXPORTING 
       iv_attr_name = 'VALID_FROM' 
       iv_sign      = 'I' 
       iv_option    = 'EQ' 
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       iv_low       = valid_from ). 
  
   valid_to = p_to. 
   query->add_selection_param( 
     EXPORTING 
       iv_attr_name = 'VALID_TO' 
       iv_sign      = 'I' 
       iv_option    = 'EQ' 
       iv_low       = valid_to ). 
  
   "get_query_result( ) invokes the query. 
   result = query->get_query_result( ). 
  
   "This WHILE loop moves through each query result 
   "one at a time. 
   entity ?= result->get_first( ). 
   WHILE entity IS BOUND. 
     "To get the text data from the complaint, we have to 
     "move through several BOL relations. Again see GENIL_BOL_BROWSER. 
     entity_up = entity->get_related_entity( 
       iv_relation_name = 'BTADVSCompl' ). 
     entity_header = entity_up->get_related_entity( 
       iv_relation_name = 'BTOrderHeader' ). 
     entity_textid = entity_header->get_related_entity( 
       iv_relation_name = 'BTHeaderTextIdSet' ). 
     textid_col = entity_textid->get_related_entities( 
       iv_relation_name = 'BTTextIdHAll' ). 
  
     "Retrieve header information to get the object ID - the 
     "number of the complaint document. 
     entity_header->if_bol_bo_property_access~get_properties( 
       IMPORTING 
         es_attributes = header ). 
  
     csv_line = header-object_id && ','. 
  
     "This WHILE block goes line by line through the text 
     "lines in the complaint to build one long string of text. 
     CLEAR full_note. 
     entity_textid ?= textid_col->get_first( ). 
     WHILE entity_textid IS BOUND. 
       entity_textid->if_bol_bo_property_access~get_properties( 
         IMPORTING 
           es_attributes = bt_textid ). 
  
       IF bt_textid-conc_lines IS NOT INITIAL. 
         CONCATENATE full_note bt_textid-conc_lines 
           INTO full_note RESPECTING BLANKS. 
       ENDIF. 
   
       entity_textid ?= textid_col->get_next( ). 
     ENDWHILE. 
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     "Safety check - if there were no actual texts added 
     "don't send this to the .csv 
     IF full_note IS NOT INITIAL. 
       csv_line = csv_line && full_note. 
       APPEND csv_line TO csv_table. 
     ENDIF. 
 
    entity ?= result->get_next( ). 
  ENDWHILE. 
 
  "Document downloads to end user's computer. 
  cl_gui_frontend_services=>gui_download( 
    EXPORTING 
      filename = 'C:\Users\paul\Desktop\' && 
        sy-datum && sy-uzeit+0(4) && '_Complaints.csv' 
    CHANGING 
      data_tab = csv_table ).
  

This ABAP program stands out from other ABAP written in this
book in that it does not retrieve data directly with SELECT state‐
ments. SAP CRM uses relational tables just like the ECC system in
other chapters, but has been designed to be accessed through SAP’s 
Business Object Layer (BOL) technology. The BOL defines rela‐
tionships between business objects (for example, service orders’
relationships to the parts they consume) and lets programmers use
those relationships without having to know the underlying table
structure.

Running this program in an SAP GUI screen produces a simple UI that asks for the
two boundary dates in the PARAMETERS statement, as in Figure 9-12.

Figure 9-12. The SAP ABAP program screen to download the complaint data
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This code produces a file filled with entries like below, a document ID and the text of
the complaint:

5507234,"When the order was delivered, I could see the box was clearly mis-
handled. It is really up to you to make sure the product gets to me without 
being destroyed...I want a full shipping refund!"  

Analyzing the Data
Jeana and her customer service team want to act on this data frequently, so we will
focus on an analysis that simply gives them an ordered list of priority customer com‐
plaints based on sentiment extracted from the text. We’ll do that by using the pro‐
gram we just looked at to gather the day’s complaints, store them in the CSV file, and
then use Python to cycle through each complaint and ask Google’s Natural Language
API to analyze it for sentiment.

First, make sure that you’re using the credentials you downloaded from “Preparing
the Cloud API” on page 292:

$ export GOOGLE_APPLICATION_CREDENTIALS='[YOUR_PATH_TO_FILE]'

Next, we call the API to have a sentiment value extracted for each note. The senti‐
ment analysis returns two values: sentiment and magnitude. The sentiment score
ranges from -1.0 (fully and completely negative sentiment) to +1.0 (fully and com‐
pletely positive). The magnitude score represents how strongly the text is weighted to
that sentiment, and can range from 0 to infinity.

# Get the right Google Cloud stuff imported.
from google.cloud import language
from google.cloud.language import enums
from google.cloud.language import types
import pandas as pd

comp = pd.read_csv('example.csv', names=['document', 'complaint'])

# A LanguageServiceClient handles the interchange 
# between computer and Google services.
lsc = language.LanguageServiceClient()

# We are going to add the sentiment score and magnitude
# to the dataframe as we process them.
score = []
magnitude = []
for index, row in comp.iterrows():
    # Create a document for the request
    lsc_doc = types.Document(
        content=row['complaint'],
        type=enums.Document.Type.PLAIN_TEXT)

    # Send the document to be analyzed.
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    sentiment = lsc.analyze_sentiment(document=lsc_doc).document_sentiment

    # Push the sentiment score and magnitude into lists for later.
    score.append(round(sentiment.score, 2))
    magnitude.append(round(sentiment.magnitude, 2))

# After we finish processing them all, add 'score' and
# 'magnitude' columns.
comp['score'] = score
comp['magnitude'] = magnitude

We’re not quite done here. We have a sentiment score and magnitude for every docu‐
ment that has been queried, but let’s ponder a bit before we give Jeana suggestions.

Consider this complaint raised on the Big Bonanza site: “Big Bonanza is the worst
company ever.” Google rates the sentiment of this statement at -0.9: extremely nega‐
tive. But the magnitude is 0.9—and recall that the magnitude does not range from -1
to +1, it ranges from 0 to infinity! Jeana probably doesn’t want to allocate any of her
budget to give special attention to this complaint, as it is not specific. Giving this per‐
son a Starbucks gift card or some other form of reward is likely to be useless. They
may not have even ordered any products. Clearly the magnitude affects the overall
usefulness of the raw sentiment score.

Now consider this complaint: “I think this battery-powered coffee mug should be
improved, because it doesn’t heat my beverages properly. I’d like to return it.” Google
rates the sentiment as slightly negative at -0.2, and the magnitude is 0.5. In this case
the reviewer does not appear to have high negative affectation, and the small magni‐
tude suggests that the text has some positivity weighing in as well. Jeana probably
doesn’t want to allocate any of her budget for incentives to this complaint, as our
reading and the scores indicate this person is not highly angry.

What about this one? “My mini-microwave stopped working almost as soon as I
plugged it in. Somehow the door fell off the hinges after the first heating session, and
then after repairing the hinge I could no longer power it on. This product is not good.
I want a complete refund, including shipping!” Google rates it at a -0.5 sentiment and
a 2.1 magnitude. Jeana probably should consider this person for a reward, as their
sentiment is well into the negative range, and the magnitude has gone higher than the
others. This person appears to be displeased, and has said a number of things sup‐
porting that.

Duane sets a couple of initial parameters to give Jeana data to act on. Given what he
has observed in the data from these examples, he filters out complaints that do not
fall below -2.5 in the raw score as well as complaints that do not have at least a 1.5
magnitude. He sorts the remaining complaints two ways—once to order by raw score
and another to order by magnitude, and displays both for Jeana to review:

# Create a dataframe that filters out the higher scores and
# lower magnitudes.
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filtered = comp.loc[(comp['score'] < -0.25) & (comp['magnitude'] > 1.5)]

# Create separate dataframes that order differently.
sort_score = filtered.sort_values(by='score')
sort_magnitude = filtered.sort_values(by='magnitude', ascending=False)

# Print them both out for director review. 
print('Complaints weighing in as most heavily negative: ')
print(sort_score[['document', 'score', 'magnitude']].head())

print('Complaints with more total negative magnitude: ')
print(sort_magnitude[['document', 'score', 'magnitude']].head())

The results appear like this in the printout:

Complaints weighing in as most heavily negative: 
   document score magnitude
10 7093024   -0.9        1.9
31 7065438   -0.8        2.1
16 7034597   -0.8        2.3
75 7084738   -0.7        2.0
22 7071324   -0.7        3.1

Complaints with more total negative magnitude: 
   document score magnitude
52 7060923   -0.4        4.3
99 7092489   -0.5        4.1
77 7065486   -0.3        3.8
32 7098254   -0.5        3.6
44 7060766   -0.4        3.3

Summary
NLP enables computers to process human language in ways that were not possible
only a few years ago. By training models on massive sets of human language data,
cloud companies who offer NLP APIs have a unique advantage in generalized
approaches to NLP. It’s now possible to get high-quality textual sentiment analysis
quickly and easily.

In this chapter we helped Jeana, a customer service director, apply NLP to suggest the
most highly actionable customer complaints. We emphasized speed of delivery by
using a pre-trained, cloud-enabled API from Google to analyze the individual com‐
plaints for human sentiment. By focusing in on the negatively scored complaints,
Jeana can apply her limited budget of perks and make an effort to improve relations
with customers who might otherwise churn away or even harm Big Bonanza in social
media.

We deliberately chose a cloud API example to highlight to SAP analysts and data sci‐
entists alike: your job does not always have to be reinventing base, foundational algo‐
rithms. After listening to what Jeana needed, Duane, Greg, and Paul agreed that using
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a cloud API was the best approach here. Google Cloud Platform doesn’t have a “Solve
Big Bonanza Problems API,” but when Big Bonanza employees apply creative think‐
ing, SAP knowledge, and data science they can’t be stopped!
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CHAPTER 10

Conclusion

With this chapter our journey comes to an end. We bid farewell and wish you the best
in your continued travels with data science and SAP. As a conclusion, we’d like to
revisit the original mission, recap what has been covered in the previous nine chap‐
ters, give you some tips and recommendations, and finally provide ways we can keep
in touch.

Original Mission
We have been promised everything from self-driving cars (which, despite advance‐
ments, have not yet been widely manufactured) to AI we fall in love with (as depicted
in the films Ex Machina and Her). We are also warned of a grim and desolate future
in which we are replaced in the workforce by our own creations. These juxtaposing
visions undermine the practical value of data science. The field of AI and data science
has encountered a number of winters in its history. These were periods of marked
hype followed by disappointment and a loss of interest. There is unfortunate specula‐
tion that we are entering, or even currently in, another downturn of interest. We hope
to have shown in this book the immediate value simple machine learning methods
can provide to enterprise data. When used with SAP data in particular, data science
and AI aren’t overhyped—they’re underdelivered.

What we wanted most to do in this book was to build a bridge between business ana‐
lysts and data scientists. Business analysts often have a clear understanding of their
company’s data and business processes. However, they lack a data science perspective.
Data scientists have clear approaches to modeling and analyzing data. However, they
often lack business process understanding. You’ve likely seen the popular data science
use case example depicted in Figure 10-1). It is a scenario where machine learning or
deep learning is asked to identify whether an image is of a Chihuahua or a blueberry
muffin. With a scenario like this, it is no wonder business analysts have a hard time
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understanding how data science applies to enterprise data. We hoped to show that
data science is more than just image recognition and Chihuahuas.

There is a reason we have no examples of image recognition in this
book. While it is probably the most cited example of data science
and AI, it is rarely necessary in enterprise data.

Figure 10-1. Is it a Chihuahua or blueberry muffin? How does this apply to business?

Recap
Chapter 1: Introduction
We introduced the concept of bridging the gap between enterprise data and data sci‐
ence. We also explained some of the fundamental concepts (and joy) of telling stories
with data. In this chapter we first introduced data scientists to SAP concepts and SAP
business analysts to data science concepts.

Chapter 2: Data Science for SAP Professionals
This chapter was for the SAP business analysts and introduced many data science
terms. We explored concepts from machine learning and deep learning. The idea was
to give a basis to the business analysts, a preview if you will, of what was to come.

Chapter 3: SAP for Data Scientists
Data scientists were the focus audience for this chapter. SAP has a wealth of data, but
what is SAP, what kind of data lives there, and how can you get it? This chapter pro‐
vided answers to those questions.

306 | Chapter 10: Conclusion



Chapter 4: Exploratory Data Analysis
The fundamental start to exploring data with data science is EDA. In this chapter, we
introduced concepts for looking at SAP data from a data science perspective. In the
end, we modeled our data and failed. This represents an important discovery—some‐
times machine and deep learning models don’t provide answers to our questions. The
lesson in this chapter was to understand that our investment was minimal and move
on to other data science ideas.

We deliberated on showing the failure of data science in a business
scenario. However, we decided in the end, “This is real life,” and left
it as an example.

Chapter 5: Anomaly Detection with R and Python
This was a hefty chapter full of a lot of different concepts. We showed how to extract
data using the NetWeaver Gateway, automate that function using Visual Studio, store
the data in a SQL database, model the data using R and Python, and finally report on
the findings using PowerBI. We showed how all these techniques used in concert can
yield impressive first results when looking for anomalies.

Chapter 6: Prediction with R
The goal of this chapter was to make predictions on sales data. We created examples
of prediction using both R and Python. We again used the NetWeaver Gateway to
extract the data, but this time we augmented it. However, this was just the beginning
and much more can be done.

Chapter 7: Clustering and Segmentation in R
Customers are an important but often neglected part of SAP data. This chapter
sought to cluster and segment customers based on their buying habits. We showed
how that can be done using a variety of machine learning techniques such as k-
means, k-medoids, hierarchical clustering, and manual clustering. Telling a good
story about results sometimes gets overlooked, so we showed how R Markdown can
be used to deliver impressive reports.

Chapter 8: Association Rule Mining
In this chapter, we operationalized our data science investigation. Association rules
are a common technique in finding customer buying patterns. We extracted SAP data
using a simple program, created association rules in R, created an API of those rules,
and then consumed the results in an SAP Fiori application. This illustrated how easy
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it is to use Fiori to deliver an operationalized model to the user. In this case, the oper‐
ationalized model will likely lead to upsales when creating sales orders.

Chapter 9: Natural Language Processing with the Google Cloud
Natural Language API
This chapter introduced publicly available Google Cloud APIs to the business user.
We provided a scenario on sentiment analysis that required very little model pro‐
gramming. Publicly available APIs are so easy to use they almost seem like cheat
codes. As avid developers, this was a hard chapter to write. We like to code, not just
access APIs. However, from a business perspective, if an API fits the solution, often
the economical choice is to use it.

Tips and Recommendations
If experience has taught us anything, it’s these three principles: be creative, be practi‐
cal, and enjoy the ride.

Be Creative
SAP and other forms of enterprise data are often easy to access and clean. This data is
a goldmine. Business analysts who understand the basics of data science are in a great
position to leverage this data. When receiving business requirements or project
requests, think of the examples in this book and try and apply them to your situation.
The business won’t ask you for something to detect anomalies or to create association
rules. You are the bridge. Innovative thinking about data and data science will lead
you to rewarding solutions.

Be Practical
“If you build it...they will come.” This is a common belief among data science consult‐
ing firms. In order to do data science you need a Hadoop cluster (perhaps a few),
Spark, an ingestion engine, 17 R programmers, and a director with a doctorate in
business analytics. We’ve seen companies spend millions on this thinking and end up
with nothing. What do you need to plant a data science seed at your company? You
need a computer, you need a programming language such as R or Python, you need
to understand your data, and you need to be innovative. Data science is rewarding
and fun. Don’t let it get bogged down on its own infrastructure and buzzwords. You
may need Hadoop later, you may want Spark or Cassandra later; cross that bridge
when you get to it. For now, be practical and use tools that you already have.
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Enjoy the Ride
Data science is challenging and rewarding beyond anything we’ve done in IT in our
combined 40 years. Gravitate toward an aspect that you find appealing: association
rule mining, anomaly detection, forecasting and prediction, or even deep neural net‐
work modeling. For us, nature-inspired algorithms are particularly appealing. We
hope you have as much fun as we’ve had!

Stay in Touch
This is the beginning, not the end of our journey. We will follow up with blogs to aug‐
ment this book...we’ve already begun. What kind of ideas do you have for your data?
Has this book led you on a tangential journey you’d like to share? Is there something
that is yet unclear or are you stuck? Well, you’re on your own now. Good luck.

Just kidding. We are always available and truly look forward to hearing from you. You
can reach us through any of the following means:

Greg
• Email: gregfoss@bluedieseldata.com
• Twitter: @bluedieseldata
• LinkedIn: https://www.linkedin.com/in/greg-foss

Paul
• Email: paul@paulmodderman.com
• Twitter: @PaulModderman
• LinkedIn: https://www.linkedin.com/in/paulmodderman/
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