
Using Azure Machine Learning
to Quickly Build AI Solutions

Deepak Mukunthu,
Parashar Shah & Wee Hyong Tok

Practical Automated
Machine Learning on

Azure

INTELLIGENCE (AI) & SEMANTIC S

“Extracting insights from
data has, to this date,
required deep machine
learning expertise. This
book makes machine
learning accessible to
enterprise customers
and shows the fastest
way to deliver results
like an experienced
data scientist.”

—Mark Russinovich
CTO and Technical Fellow,

Microsoft Azure

Practical Automated
Machine Learning on Azure

ISBN: 978-1-492-05559-4

US $59.99 CAN $79.99

Twitter: @oreillymedia
facebook.com/oreilly

Demand for machine learning is skyrocketing. Organizations
across every industry are trying to infuse intelligence into
their products and processes to delight customers and amplify
business impact. But developing a good machine learning
model is an iterative and time-consuming process. Automated
ML makes this process easy by using machine learning to help
you build models. This practical guide shows you how to apply
automated ML to your data right away.

Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide
a mix of technical depth, hands-on examples, and case studies
that show how businesses are solving real-world problems
with automated ML. Data scientists and developers with some
machine learning experience will learn how to use automated
ML to build their models faster and more efficiently.

• Learn best practices for successful machine learning projects

• Get started with automated ML using Azure

• Understand concepts such as classification and regression,
and model interpretability and transparency

• See how to use automated ML in other environments, such
as Azure Databricks, ML.NET, and SQL Server

• Explore tools that make machine learning accessible
to everyone

M
ukunthu,

Sha
h &

 Tok
Pra

ctica
l A

utom
a

ted
 M

a
chine Lea

rning
 on A

zure

Deepak Mukunthu leads automated
ML within the Azure AI team at Microsoft,
where he drives product strategy with
the goal of accelerating and democratizing
AI for everyone.

Parashar Shah is on the Azure AI team
at Microsoft and leads big data and deep
learning projects while engaging with
enterprise customers globally.

Wee Hyong Tok is part of the Azure
Global Customer Engineering team at
Microsoft, where he works with various
deep learning frameworks.

Using Azure Machine Learning
to Quickly Build AI Solutions

Deepak Mukunthu,
Parashar Shah & Wee Hyong Tok

Practical Automated
Machine Learning on
 Azure

Deepak Mukunthu, Parashar Shah,
and Wee Hyong Tok

Practical Automated
Machine Learning on Azure

Using Azure Machine Learning
to Quickly Build AI Solutions

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05559-4

[LSI]

Practical Automated Machine Learning on Azure
by Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok

Copyright © 2019 Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jonathan Hassell
Development Editor: Nicole Taché
Production Editor: Deborah Baker
Copyeditor: Octal Publishing, LLC
Proofreader: Sharon Wilkey

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2019: First Edition

Revision History for the First Edition
2019-09-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492055594 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Practical Automated Machine Learning
on Azure, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492055594

Dedicated to my wife, kids, and parents for their unconditional love, encouragement and
support in everything I do.

—Deepak
Dedicated to the wonderful individuals in my life—Juliet, Nathaniel, and Jayden. My

gratitude and love for them is infinite.
—Wee Hyong

I would like to thank my parents Nita and Mahendra and my sister Vidhi for their uncon‐
ditional love and encouragement throughout my life. I am thankful to my buddies at

Microsoft—Priya, Premal, Vicky, Martha, Savita, Deepti, and Sagar—and my buddies
outside of Microsoft—Kevin, Ritu, Dhaval, Shamit, Priyadarshan, Pradip, and Nikhil—

for their loving friendship.
—Parashar

Table of Contents

Foreword. ix

Preface. xi

Part I. Automated Machine Learning

1. Machine Learning: Overview and Best Practices. 1
Machine Learning: A Quick Refresher 2

Model Parameters 4
Hyperparameters 5

Best Practices for Machine Learning Projects 5
Understand the Decision Process 5
Establish Performance Metrics 6
Focus on Transparency to Gain Trust 7
Embrace Experimentation 8
Don’t Operate in a Silo 8

An Iterative and Time-Consuming Process 10
Feature Engineering 11
Algorithm Selection 12
Hyperparameter Tuning 12
The End-to-End Process 13

Growing Demand 15
Conclusion 17

2. How Automated Machine Learning Works. 19
What Is Automated Machine Learning? 19

Understanding Data 19

v

Detecting Tasks 21
Choosing Evaluation Metrics 23
Feature Engineering 23
Selecting a Model 26
Monitoring and Retraining 30
Bringing It All Together 30

Automated ML 31
How Automated ML Works 31
Preserving Privacy 32
Enabling Transparency 33
Guardrails 34
End-to-End Model Life-Cycle Management 34

Conclusion 35

Part II. Automated ML on Azure

3. Getting Started with Microsoft Azure Machine Learning and Automated ML. 39
The Machine Learning Process 39

Collaboration and Monitoring 40
Deployment 40

Setting Up an Azure Machine Learning Workspace for Automated ML 41
Azure Notebooks 48
Notebook VM 57

Conclusion 58

4. Feature Engineering and Automated Machine Learning. 59
Data Preprocessing Methods Available in Automated ML 61
Auto-Featurization for Automated ML 61

Auto-Featurization for Classification and Regression 64
Auto-Featurization for Time-Series Forecasting 69

Conclusion 74

5. Deploying Automated Machine Learning Models. 75
Deploying Models 75

Registering the Model 77
Creating the Container Image 80
Deploying the Model for Testing 84
Testing a Deployed Model 88
Deploying to AKS 89

Swagger Documentation for the Web Service 91
Debugging a Deployment 92

vi | Table of Contents

Web Service Deployment Fails 93
Conclusion 95

6. Classification and Regression. 97
What Is Classification and Regression? 97

Classification and Regression Algorithms 100
Using Automated ML for Classification and Regression 101

Conclusion 116

Part III. How Enterprises Are Using Automated Machine Learning

7. Model Interpretability and Transparency with Automated ML. 119
Model Interpretability 119

Model Interpretability with Azure Machine Learning 121
Model Transparency 129

Understanding the Automated ML Model Pipelines 129
Guardrails 130

Conclusion 131

8. Automated ML for Developers. 133
Azure Databricks and Apache Spark 133
ML.NET 147
SQL Server 149
Conclusion 149

9. Automated ML for Everyone. 151
Azure Portal UI 152
Power BI 161

Preparing the Data 161
Automated ML Training 163
Understanding the Best Model 166
Understanding the Automated ML Training Process 169
Model Deployment and Inferencing 170

Enabling Collaboration 170
Azure Machine Learning to Power BI 170
Power BI Automated ML to Azure Machine Learning 172

Conclusion 173

Index. 175

Table of Contents | vii

Foreword

I vividly remember my first undergraduate class in artificial intelligence (AI). My
father had worked for years on “expert systems,” and I was at MIT to learn from the
best how to perform this wizardry. Marvin Minsky, one of the founders of the field,
even taught a series of guest lectures there. It was about midway through the semester
when the great disillusionment hit me: “It’s all just a bunch of tricks!” There was no
“intelligence” to be found; just a bunch of brittle rules engines and clever use of math.
This was in the early ’90s and the start of my own personal AI winter, when I dis‐
missed AI as not having much use.

Years later, while I was working on advertising systems, I finally saw that there was
power in this “bunch of tricks.” Algorithms that had been hand-tuned for months by
talented engineers were being beaten by simple models provided with lots of data. I
saw that the explosion that was to come simply needed more data and more compu‐
tation to be effective. Over the past 5 to 10 years, the explosion in both big data and
computation power has unleashed an industry that has had lots of starts and stops to
it.

This time is different. While the hype about AI is still tremendously high, the poten‐
tial applications of practical AI have really just begun to hit the business world. The
rules or people making predictions today will be replaced virtually every place by AI
algorithms. The value AI creates for businesses is tremendous, from being better able
to value the oil available in an oil field to better predicting the inventory a store
should stock of each new sneaker. Even marginal improvements in these capabilities
represent billions of dollars of value across businesses.

We’re now in an age of AI implementation. Companies are working to find all the
best places to deploy AI in their enterprises. One of the biggest challenges is matching
the hype to reality. Half the companies I’ve talked to expect AI to perform some kind
of magic for problems they have no idea how to solve. The other half are underesti‐
mating the power that AI can have. What they need are people with enough

ix

background in AI to help them conceive of what is possible and apply it to their busi‐
ness problems.

Customers I talk to are struggling to find enough people with those skills. While they
have lots of developers and data analysts who are skilled and comfortable making
predictions and decisions with data, they need data scientists who can then build the
model from that data. This book will help fill that gap.

It shows how automated ML can empower developers and data analysts to train AI
models. It highlights a number of business cases where AI is a great fit to the business
problem and show exactly how to build that model and put it into production. The
technology and ideas in this book have been pressure-tested at scale with teams all
across Microsoft, including Bing, Office, Azure Security, internal IT, and many more.
It’s also been used by many external businesses using Azure Machine Learning.

— Eric Boyd
Microsoft Corporate Vice President, Azure AI

September 2019

x | Foreword

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

xi

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/Practical_Automated_ML_on_Azure.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Practical Automated Machine Learn‐
ing on Azure by Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok (O’Reilly).
Copyright 2019 Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok,
978-1-492-05559-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

xii | Preface

https://oreil.ly/Practical_Automated_ML_on_Azure
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

The web page for this book lists errata, examples, and additional information. You
can access this page at http://www.oreilly.com/catalog/9781492055594.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book wouldn’t have been possible without great contributions from these folks–
thank you!

We are thankful to our coworkers at Microsoft (Azure AI product, marketing, and
many other teams) for working together to deliver the best enterprise-ready Azure
Machine Learning service.

Nicolo Fusi, for sharing details on research that lead to the creation of Automated ML
(Chapter 2).

Sharon Gillett, for text inputs to Automated ML introduction (Chapter 2).

Vanessa Milan, for images for Automated ML introduction (Chapter 2).

Akchara Mukunthu, for example scenarios for Machine Learning task detection
(Table 2-1 in Chapter 2).

Krishna Anumalasetty and Thomas Abraham, for technical review of the book.

Jen Stirrup, for feedback on the book.

Preface | xiii

http://www.oreilly.com/catalog/9781492055594
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The amazing O’Reilly team (Nicole Tache, Deborah Baker, Bob Russell, Jonathan
Hassell, Ben Lorica, and many more), for working with us from concept to produc‐
tion and giving us the opportunity to write and share the book with the community.

Members of the Azure Machine Learning and Azure CAT team, for the supportive
environment that enabled the authors to write the book during their off hours, and
many weekends and holidays.

xiv | Preface

PART I

Automated Machine Learning

In this part, you will learn how Automated Machine Learning can help automate
model development.

CHAPTER 1

Machine Learning: Overview
and Best Practices

How are humans different from machines? There are quite a few differences, but
here’s an important one: humans learn from experience, whereas machines follow
instructions given to them. What if machines can also learn from experience? That is
the crux of machine learning. For machines, “data from the past” is the logical equiva‐
lent of “experience.” Machine learning combines statistics and computer science to
enable machines to learn how to perform a given task without being explicitly pro‐
grammed to do so via instructions.

Machine learning is widely used today, and we interact with it every day. Here are a
few examples to illu strate:

• Search engines like Bing or Google
• Product recommendations at online stores like Amazon or eBay
• Personalized video recommendations at Netflix or YouTube
• Voice-based digital assistants like Alexa or Cortana
• Spam filters for our email inbox
• Credit card fraud detection

Why is machine learning as a trend emerging so fast? Why is everyone so interested
in it now? As shown in Figure 1-1, its popularity arises from three key trends: big
data, better/cheaper compute, and smarter algorithms.

1

Figure 1-1. Machine learning growth

In this chapter, we provide a quick refresher on machine learning by using a real-
world example, discuss some of the best practices that differentiate successful
machine learning projects from the rest, and end with challenges around productivity
and scale.

Machine Learning: A Quick Refresher
What does the process of building a machine learning model look like? Let’s dig
deeper using a real scenario: house price prediction. We have past home sales data,
and the task is to predict the sale price for a given house that just came onto the mar‐
ket and isn’t currently in our dataset.

For simplicity, let’s assume that the size of the house (in square feet) is the most
important input attribute (or feature) that determines house value. As shown in
Table 1-1, we have data from four houses, A, B, C, D, and we need to predict the price
of house X.

Table 1-1. House prices based on size

House Size (sq. ft) Price ($)
A 1300 500,000

B 2000 800,000

C 2500 950,000

D 3200 1,200,000

X 1800 ?

We begin by plotting Size on the x-axis and Price on the y-axis, as shown in
Figure 1-2.

2 | Chapter 1: Machine Learning: Overview and Best Practices

Figure 1-2. Plotting price versus size

What’s the best estimate for the price of house X?

• $550,000
• $700,000
• $1,000,000

Let’s figure it out. As shown in Figure 1-3, the four points that we plotted based on
the data form an almost straight line. If we draw this line that best fits our data, we
can find the right point on the line associated with house X on the x-axis and the cor‐
responding point on y-axis, which will give us our price estimate.

Figure 1-3. Creating a straight line to find price estimate

In this case, that straight line represents our model—and demonstrates a linear rela‐
tionship. Linear regression is a statistical approach for modeling a linear relationship

Machine Learning: A Quick Refresher | 3

between input variables (also called feature, or independent, variables) and an output
variable (also called a target, or dependent, variable). Mathematically, this linear rela‐
tionship can be represented as follows:

y = β0 + β1x

where:

• y is the output variable; for example, the house price.
• x is the input variable; for example, size in square feet.
• β0 is the intercept (the value of y when x = 0).
• β1 is the coefficient for x and the slope of the regression line (“the average

increase in y associated with a one-unit increase in x).

Model Parameters
β0 and β1 are known as the model parameters of this linear regression model. When
implementing linear regression, the algorithm finds the line of best fit by using the
model parameters β0 and β1, such that it is as close as possible to the actual data
points (minimizing the sum of the squared distances between each actual data point
and the line representing model predictions).

Figure 1-4 shows this conceptually. Dots represent actual data points, and the line
represents the model predictions. d1 to d9 represent distances between data points
and the corresponding model prediction, and D is the sum of their squares. The line
shown in the figure is the best-fit regression line that minimizes D.

Figure 1-4. Regression

As you can see, model parameters are an integral part of the model and determine the
outcome. Their values are learned from data through the model training process.

4 | Chapter 1: Machine Learning: Overview and Best Practices

Hyperparameters
There is another set of parameters known as hyperparameters. Model hyperparame‐
ters are used during the model training process to establish the correct values of model
parameters. They are external to the model, and their values cannot be estimated
from data. The choice of the hyperparameters will affect the duration of the training
and the accuracy of the predictions. As part of the model training process, data scien‐
tists usually specify hyperparameters based on heuristics or knowledge, and often
tune the hyperparameters manually. Hyperparameter tuning relies more on experi‐
mental results than theory, and thus the best method to determine the optimal set‐
tings is to try many combinations and evaluate the performance of each model.

Simple linear regression doesn’t have any hyperparameters. But variants of linear
regression, like Ridge regression and Lasso, do. Here are some examples of model
hyperparameters for various machine learning algorithms:

• The k in k-nearest neighbors
• The desired depth and number of leaves in a decision tree
• The C and sigma in support vector machines (SVMs)
• The learning rate for a neural network training

Best Practices for Machine Learning Projects
In this section, we examine best practices that make machine learning projects suc‐
cessful. These are practical tips that most companies and teams end up learning with
experience.

Understand the Decision Process
Machine learning–based systems or processes use data to drive business decisions.
Hence, it is important to understand the business problem that needs to be solved,
independent of technology solutions—in other words, what decision or action needs
to be taken that can be informed by data. Being clear about the decision process is
critical. This step is also sometimes referred to as mapping a business scenario/problem
to a data science question.

For our house-price prediction scenario, the key business decision for a home buyer,
is “Should I buy a given house at the listed price?” or “What is a good bid price for
this house to maximize my chance of winning the bid?” This could be mapped to the
data science question: “What is the best estimate of the house price based on past
sales data of other houses?”

Best Practices for Machine Learning Projects | 5

http://bit.ly/lasso-proj

Table 1-2 shows other real-world business scenarios and what this decision process
looks like.

Table 1-2. Understanding a decision process: real-world scenarios

Business scenario Key decision Data science question
Predictive
maintenance

Should I service this piece of
equipment?

What is the probability this equipment will fail within the
next x days?

Energy forecasting Should I buy or sell energy contracts? What will be the long-/short-term demand for energy in a
region?

Customer churn Which customers should I prioritize to
reduce churn?

What is the probability of churn within x days for each
customer?

Personalized
marketing

What product should I offer first? What is the probability that customers will purchase each
product?

Product feedback Which service/product needs attention? What is the social media sentiment for each service/
product?

Establish Performance Metrics
As with any project, performance metrics are important to guide any machine learn‐
ing project toward the proper goals and to ensure progress is made. After we under‐
stand the decision process, the next step is to answer these two key questions:

• How do we measure progress toward a goal or desired outcome? In other words,
how do we define metrics to evaluate progress?

• What would be considered a success? That is, how do we define targets for the
metrics defined?

For our house-price prediction example, we need a metric to measure how close our
predictions are to the actual price. There are quite a few metrics to choose from. One
of the most commonly used metrics for regression tasks is root-mean-square error
(RMSE). This is defined as the square root of the average squared distance between
the actual score and the predicted score, as shown here:

RMSE = 1
n ∑ j = 1

n y j − y j
2

Here, yj denotes the true value for the ith data point, and ŷj denotes the predicted
value. One intuitive way to understand this formula is that it is the Euclidean distance
between the vector of the true values and the vector of the predicted values, averaged
by n, where n is the number of data points.

6 | Chapter 1: Machine Learning: Overview and Best Practices

Focus on Transparency to Gain Trust
There is a common perception that machine learning is a black box that just works
magically. It is critical to understand that although model performance as measured
by metrics is important, it is even more important for us to understand how the
model works. Without this understanding, it is difficult to trust the model and there‐
fore difficult to convince key stakeholders and customers of the business value of
machine learning and machine learning–based systems.

In heavily regulated industries like health care and banking, which are required to
comply with regulation, interpretability of models is critical. Model interpretability is
typically represented by feature importance, which tells you how each input column
(or feature) affects the model’s predictions. This allows data scientists to explain
resulting predictions so that stakeholders can see which data points are most impor‐
tant in the model.

In our house-price prediction scenario, our trust on the model would increase if the
model, in addition to price prediction, indicated key input features that contributed
to the output; for example, house size and age. Figure 1-5 shows feature importance
for our house-price prediction scenario. Notice that age and school rating are the top‐
most features.

Figure 1-5. Feature importance

Best Practices for Machine Learning Projects | 7

Embrace Experimentation
Building a good machine learning model takes time. As with other software projects,
the trick to becoming successful in machine learning projects lies in how fast we try
out new hypotheses, learn from them, and keep evolving. As shown in Figure 1-6, the
path to success isn’t usually easy and requires a lot of persistence, due diligence, and
failures on the way.

Figure 1-6. Success is not easy.

Here are key aspects of a culture that values experimentation:

• Be willing to learn from experiments (successes or failures).
• Share the learning with peers.
• Promote successful experiments to production.
• Understand that failure is a valid outcome of an experiment.
• Quickly move on to the next hypothesis.
• Refine the next experiment.

Don’t Operate in a Silo
Customers typically experience machine learning models through applications.
Figure 1-7 shows how machine learning systems are different from traditional soft‐
ware systems. The key difference is that machine learning systems, in addition to
code workflow, must also consider data workflow.

8 | Chapter 1: Machine Learning: Overview and Best Practices

Figure 1-7. Machine learning system versus traditional systems

After data scientists have built a machine learning model that is satisfactory to them,
they hand it off to an app developer who integrates it into the larger application and
deploys it. Often, any bugs or performance issues go undiscovered until the applica‐
tion has already been deployed. The resulting friction between app developers and
data scientists to identify and fix the root cause can be a slow, frustrating, and expen‐
sive process.

As machine learning enters more business-critical applications, it is increasingly clear
that data scientists need to collaborate closely with app developers to build and
deploy machine learning–powered applications more efficiently. Data scientists are
focused on the data science life cycle; namely, data ingestion and preparation, model
building, and deployment. They are also interested in periodically retraining and
redeploying the model to adjust for freshly labeled data, data drift, user feedback, or
changes in model inputs. The app developer is focused on the application life cycle—
building, maintaining, and continuously updating the larger business application that
the model is part of. Both parties are motivated to make the business application and
model work well together to meet end-to-end performance, quality, and reliability
goals.

What is needed is a way to bridge the data science and application life cycles more
effectively. Figure 1-8 shows how this collaboration could be enabled. We will cover
this in more depth later in the book.

Best Practices for Machine Learning Projects | 9

Figure 1-8. App developer and data scientist working together

An Iterative and Time-Consuming Process
In this section, we dig deeper into the machine learning process by using our house-
price prediction example. We started with house size as the only input, and we saw
the relationship between house size and house price to be linear. To create a good
model that can predict prices more accurately, we need to explore good input fea‐
tures, select the best algorithm, and tune hyperparameter values. But, how do you
know which features are good, and which algorithm and hyperparameter values will
do the best? There is no silver bullet here; we will need to try out different combina‐
tions of features, algorithms, and hyperparameter values. Let’s take a look at each of
these three steps and then see how they apply to our house-price prediction problem.

10 | Chapter 1: Machine Learning: Overview and Best Practices

Feature Engineering
Feature engineering is the process of using our knowledge of the data to create fea‐
tures that make machine learning algorithms work. As shown in Figure 1-9, this
involves four steps.

Figure 1-9. Feature engineering

First, we acquire data—collect the data with all of these possible input variables/
features and get it to a usable state. Most real-world datasets are not clean, and need
work to get the data to a level of quality before using it. This can involve things such
as fixing missing values, removing anomalies and possibly incorrect data, and ensur‐
ing the data distribution is representative.

Next you’ll need to generate features: explore generating more features from available
data. This is typically useful when dealing with text data or time-series data. Text-
related features could be as simple as n-grams and count vectorization or as advanced
as sentiment from review text. Similarly, time-related features could be as simple as
month and week-index-of-year or as complex as time-based aggregations. These
additional features generated can prove helpful in improving accuracy of the model.

With this complete, you’ll need to transform the data to make it suitable for machine
learning. Often, machine learning algorithms require that data be prepared in specific
ways before fitting a machine learning model. For instance, many such algorithms
cannot operate on categorical data directly, and require all input variables and output
variables be numeric. A categorical variable is a variable that can take on one of a
limited, and usually fixed, number of possible values. Examples of these variables
include color (red, blue, green, etc.), country (United States, India, China, etc.), and
blood group (A, B, O, AB). Categorical variables must be converted to a numerical
form, which is typically done by using integer encoding or one-hot encoding techni‐
ques.

The final step is feature selection: choosing a subset of features to train the model on.
Why is this necessary? Why not train the model with the full set of features? Feature
selection identifies and removes the unneeded, irrelevant, and redundant attributes
from data that don’t contribute, or can in fact decrease, the model’s accuracy. The
objective of feature selection is threefold:

An Iterative and Time-Consuming Process | 11

https://oreil.ly/4YTwv

• Improve model accuracy
• Improve model training time/cost
• Provide a better understanding of the underlying process of feature generation

Feature engineering steps are critical for traditional machine learn‐
ing but not so much for deep learning, because features are auto‐
matically generated/inferred through the deep learning network.

We began with a single feature: house size. But we know that the price of a house is
dependent not only on size, but also on other characteristics. What other input fea‐
tures could influence house price? Although size might be one of the most important
inputs, here are few more worth considering:

• Zip code
• Year built
• Lot size
• Schools
• Number of bedrooms
• Number of bathrooms
• Number of garage stalls
• Amenities

Algorithm Selection
After we have chosen a good set of features, the next step is to determine the correct
algorithm for the model. For the data we have, a simple linear regression model might
seem to work. But remember that we have only a few data points (four houses with
price)—small enough to be representative and small enough for machine learning.
Also, linear regression assumes a linear relation between input features and target
variable. As we collect more data points, linear regression might not remain most rel‐
evant, and we will be motivated to explore other techniques (algorithms) depending
on trends and patterns in data.

Hyperparameter Tuning
As discussed earlier in this chapter, hyperparameters play a key role in model accu‐
racy and training performance. Hence, tuning them is a critical step in getting to a

12 | Chapter 1: Machine Learning: Overview and Best Practices

good model. Because different algorithms have different sets of hyperparameters, this
step of tuning hyperparameters adds to the complexity of the end-to-end process.

The End-to-End Process
With that basic understanding of feature engineering, algorithm selection, and hyper‐
parameter tuning, let’s go step by step through our house-price prediction problem.

Let’s begin with Size, Lot size, and Year built features and Gradient Boosted trees with
specific hyperparameter values, as shown in Figure 1-10. The resulting model is 30%
accurate. But we want to do better than that.

Figure 1-10. Machine learning process: step 1

To get underway, we try different values of hyperparameters for the same set of fea‐
tures and algorithm. If that doesn’t improve accuracy of the model to a satisfactory
level, we try different algorithms, and if that doesn’t help either, we add more features.
Figure 1-11 shows one such intermediate state, with School added as a feature and the
k-nearest neighbors (KNN) algorithm used. The resulting model is 50% accurate but
still not good enough, so we continue this process and try different combinations.

Figure 1-11. Machine learning process: intermediate state

An Iterative and Time-Consuming Process | 13

After multiple iterations of trying out different combinations of features, algorithms,
and hyperparameter values, we end up with a model that meets our criteria, as shown
in Figure 1-12.

Figure 1-12. Machine learning process: best model

As you can see, this is an iterative and time-consuming process. To put this in per‐
spective: if there are 10 features, there are a total of 210 (1,024) ways to select features.
If we try five algorithms, and assuming each has an average of five hyperparameters,
we are looking at a total of 1,024 × 5 × 5 = 25,600 iterations!

Figure 1-13 shows the scikit-learn cheat sheet demonstrating that choosing the
proper algorithm could be a complex problem in itself. Now imagine adding feature
engineering and hyperparameter tuning on top of it. As a result, it takes data scien‐
tists anywhere from a couple of weeks to months to arrive at a good model.

Figure 1-13. Scikit-learn algorithm cheat sheet (source: https://oreil.ly/xUZbU)

14 | Chapter 1: Machine Learning: Overview and Best Practices

https://oreil.ly/xUZbU

Growing Demand
Despite the complexity of the model-building process, demand for machine learning
has skyrocketed. Most organizations across all industries are trying to use data and
machine learning to gain a competitive advantage—infusing intelligence into their
products and processes to delight customers and amplify business impact.
Figure 1-14 shows the variety of real-world business problems being solved using
machine learning.

Figure 1-14. Real-world business problems using machine learning

As a result, there is huge demand for machine learning–related jobs. Figure 1-15
shows the percentage growth in various job postings from 2015 to 2018.

Growing Demand | 15

Figure 1-15. Growth in machine learning–related jobs

And Figure 1-16 shows the expected revenue from enterprise applications using
machine learning and artificial intelligence growing astronomically.

16 | Chapter 1: Machine Learning: Overview and Best Practices

Figure 1-16. Machine learning/artificial intelligence revenue projections

Conclusion
In this chapter, you learned some of the best practices that successful machine learn‐
ing projects have in common. We discussed that the process of building a good
machine learning model is iterative and time-consuming, resulting in data scientists
requiring anywhere from a couple of weeks to months to build a good model. At the
same time, demand for machine learning is growing rapidly and is expected to sky‐
rocket.

To balance this supply-versus-demand problem, there needs to be a better way to
shorten the time it takes to build machine learning models. Can some of the steps in
that workflow be automated? Absolutely! Automated Machine Learning is one of the
most important skills that successful data scientists need to have in their toolbox for
improved productivity.

In the following chapters we’ll go deeper into Automated Machine Learning. We will
explore what it is, how to get started, and how it is being used in real-world applica‐
tions today.

Conclusion | 17

CHAPTER 2

How Automated Machine Learning Works

In the previous chapter, we established the need to automate the process of building
machine learning models. In this chapter, we explain what Automated Machine
Learning is, the different techniques involved in this process, and how they all come
together. We will also give a quick overview of automated ML on Microsoft Azure
Machine Learning.

What Is Automated Machine Learning?
In Chapter 1, we discussed how coming up with a good machine learning model can
be time-consuming and tedious, given all the possible combinations to explore. Auto‐
mated Machine Learning is a recent development in machine learning focused on
making that entire process easy, with the goal of bringing efficiency to data scientists
as well as enabling non–data scientists to build models.

Let’s go through the stages of the machine learning process and see how Automated
Machine Learning can help at each stage.

Understanding Data
As briefly discussed in the previous chapter, real-world data is not clean and requires
a lot of effort to get to a usable state. Understanding input data is a crucial step
toward formulating the machine learning problem.

Automated Machine Learning can help here by analyzing the data and automatically
detecting the data type of each column. Column types could be Boolean, numeric
(discrete or continuous), or text. Automatically detecting these column types helps
with subsequent stages like feature engineering.

19

In many cases, Automated Machine Learning can also provide insight into the
semantics or intent of each column. It can detect a wide spectrum of situations,
including the following:

• Detecting the target/label column
• Detecting whether a text column is a categorical-text feature or free-text feature
• Detecting columns that are zip codes, temperatures, geo coordinates, and so on

Before we go ahead, let’s discuss how the model training process works in relation‐
ship to input data. Should we train using all of the data available? The answer is no.

Training the model on the full input data can lead to overfitting. Overfitting means
that the model we trained is fit too closely to the input dataset and mimics the input
dataset. This usually happens when the model is too complex (i.e., too many features/
variables compared to the number of observations). This model will be very accurate
on the input data but will probably perform badly on untrained or new data.

In contrast, when a model is underfit, it means that the model does not fit the input
data and therefore misses the trends in the data. It also means the model cannot be
generalized to new data. This is usually the result of a very simple model (not enough
input variables/features). Adding more input variables/features helps overcome
underfitting.

Figure 2-1 shows overfitting and underfitting for a binary classification problem.

Figure 2-1. Overfitting and underfitting

To overcome the overfitting problem, we usually split input data into two subsets:
training data and testing data (and sometimes further, into three subsets: train, vali‐
date, and test). The model is then fit on the training data to make predictions on the
test data. The training set contains a known output, and the model learns on this so

20 | Chapter 2: How Automated Machine Learning Works

that it can generalize to other data later. We use the test set to test the accuracy of our
model’s predictions.

But, how do we know if the train/test split is good? What if one subset of our data is
skewed compared to the other? This will result in overfitting, even though we’re try‐
ing to avoid that. This is where cross-validation comes in.

Cross-validation is similar to the train/test split, but it’s applied to more subsets. Data
is split into k subsets, and the model is trained on k – 1 of those subsets. The last sub‐
set is held for testing. This is done for each of the subsets. This is called k-fold cross-
validation. Finally, the scores from all the k-folds are averaged to produce the final
score. Figure 2-2 shows this.

Figure 2-2. k-fold cross-validation (source: ttps://oreil.ly/k-ixI)

Detecting Tasks
Data scientists map real-world scenarios to machine learning tasks. Figure 2-3 shows
some examples of types of machine learning tasks.

What Is Automated Machine Learning? | 21

ttps://oreil.ly/k-ixI

Figure 2-3. Machine learning tasks

Automated Machine Learning can automatically determine the machine learning
task, given the input data. This is more relevant in supervised machine learning, in
which target/label columns can be used to predict the machine learning task.
Table 2-1 lists generic machine learning tasks.

Table 2-1. Machine learning task detection

Target/Label
column

Machine learning
task

Example scenarios

Boolean Binary
classification

* Classifying sentiment of Twitter comments as either positive or negative
* Indicating that email is spam or not

Discrete
numerical/
categorical

Multiclass
classification

* Determining the breed of a dog as Havanese, Golden Retriever, Beagle, etc.
* Categorizing hotel reviews by location, price, cleanliness, etc.

Continuous
numerical

Regression * Predicting house prices based on house attributes such as number of bedrooms,
location, or size
* Predicting future stock prices based on historical data and current market trends

In addition to these generic tasks, there are specific variations based on input data.
Forecasting is one such task type that is popular, given its relevance to many business
problems like revenue forecasting, inventory management, predictive maintenance,
and so on. If input data is time-series, determined by availability of a DateTime col‐
umn, it is most likely a forecasting task.

22 | Chapter 2: How Automated Machine Learning Works

https://oreil.ly/baZaJ

Choosing Evaluation Metrics
Choosing a metric to evaluate your machine learning algorithm is fundamentally
driven by the business outcome. This is an important step because it tells you how the
performance of your algorithm is measured and compared. Different tasks have dif‐
ferent sets of evaluation metrics to choose from, and the choice depends on multiple
factors. Figure 2-4 shows possible options for evaluating algorithms used in various
machine learning tasks.

Figure 2-4. Machine learning evaluation metrics

Automated Machine Learning can automate the process of selecting the right evalua‐
tion metric for a given input dataset and machine learning task. For instance, scenar‐
ios like fraud detection (which is a classification task) inherently have imbalanced
data in that a very small percentage of data would be fraudulent. In this case, area
under curve (AUC) is a much better evaluation metric than accuracy. Automatically
detecting class imbalance in the data can help automatically choose AUC as an evalu‐
ation metric for this classification task.

Feature Engineering
As discussed in Chapter 1, feature engineering is the process of getting to the appro‐
priate set of features from input data with the goal of producing a good machine
learning model. Automated feature engineering involves four key steps, which we dis‐
cuss in the subsections that follow.

Detect issues with input data and automatically flag them
Examples of this include the following:

What Is Automated Machine Learning? | 23

• Detecting missing values and automatically imputing them with the most rele‐
vant technique; for example, numeric columns with mean, categorical columns
with mode (most frequently occurring), and so on.

• Detecting class imbalance and automatically fixing it by applying techniques like
the Synthetic Minority Oversampling Technique (SMOTE).

Drop columns that are not useful as features
Here are some examples:

No variance columns
These are columns with the same value across all rows, which are easy to detect
via automation.

High cardinality columns
These are columns with different values across rows; for example, hashes, IDs, or
globally unique identifiers (GUIDs). Cardinality is determined by percentage of
unique values in the column.

Generate features
There are multiple techniques for generating new features from existing features.
Some examples follow:

Encodings and transformations
Most machine learning algorithms require numerical input and output variables.
Real-world datasets are full of text and categorical data. Data scientists convert
them into numerical data by using encodings and transformations.

One-hot encoding is a popular technique to convert categorical data to integer
data. You can easily automate this process. Figure 2-5 shows an example of one-
hot encoding.

Figure 2-5. One-hot encoding

Transformations are applied to input columns to generate interesting features.
Some examples include generating “Year,” “Month,” “Day,” “Day of week,” “Day of

24 | Chapter 2: How Automated Machine Learning Works

year,” “Quarter,” “Week of the year,” “Hour,” “Minute,” and “Second” for a given
DateTime column. This is effective for time-series-related problems.

Other examples might generate term frequency based on unigrams, bi-grams,
and tri-character-grams, and generating word embeddings for text columns.

Aggregations
Another popular technique in feature generation involves generating aggrega‐
tions over multiple data records. Aggregations could be based on specific entities
in the dataset (e.g., average product sales/revenue per store) or based on time
(e.g., number of page views to a website in the past 7 days, 30 days, 180 days,
etc.). Features generated through time-based aggregations are quite useful for
time-series forecasting problems.

Select the most impactful features
Feature selection is an important step in the process because it helps to prioritize the
appropriate set of input features. This becomes even more important when the num‐
ber of input features is very large.

Why do we need to prioritize the proper set of input features? Why not use all the
features? Here are the top benefits of feature selection:

• Faster training
• Simpler model, easier to interpret
• Reduces overfitting
• Improved model accuracy

Let’s go through some different feature selection techniques. Keep in mind that you
can automate all of these techniques:

Filters
According to this technique, the selection of features is independent of any
machine learning algorithms. Features are selected based on their correlation
with the outcome variable, as measured by statistical tests. Because the selection
process is agnostic of the model, this method might not select the most useful
features but is robust against overfitting. As shown in Figure 2-6, selecting the
best subset of features happens before model training.

Wrappers
According to this technique, a subset of features is used to train a model. Based
on the performance of the model, we decide to add or remove features from the
subset and train the model again with the updated subset. This process continues
until the model’s performance is satisfactory. However, this technique can be
computationally expensive due to multiple back-and-forth iterations. Because the

What Is Automated Machine Learning? | 25

selection process is tied to the model, it tends to produce more accurate results
than filter methods but is more prone to overfitting. Figure 2-6 demonstrates
wrapper methods.

Embedded methods
Embedded methods combine the qualities of filter and wrapper methods. Imple‐
mented by algorithms that have their own built-in feature selection methods,
embedded methods are like wrappers but are less computationally expensive
because there are no back-and-forth iterations. This technique is also less prone
to overfitting. Figure 2-6 demonstrates embedded methods.

Figure 2-6. Feature selection

Selecting a Model
As discussed in the previous chapter, a machine learning model is represented by a
combination of an algorithm and associated hyperparameter values. Automated
Machine Learning systems follow different approaches for model selection. In this
section, we discuss two categories of approaches: brute-force approaches and smarter
approaches.

Brute-force approaches
This is the naïve approach of trying out all possible combinations of algorithms and
hyperparameter values to find the one that produces the best model as measured by
the evaluation metric. This is typically achieved by picking algorithms at random and
applying grid search to figure out the right set of hyperparameters. One major draw‐
back of grid search is that dimensionality suffers when the number of hyperparame‐
ters grows exponentially. With as few as four parameters, this problem can become
impracticable because the number of evaluations required for this approach increases
exponentially with each additional parameter, due to the curse of dimensionality.

26 | Chapter 2: How Automated Machine Learning Works

Random search is a technique by which random combinations of the hyperparame‐
ters are used to find the best solution. In this search pattern, random combinations of
parameters are considered in every iteration. Because random values are selected at
each iteration, it is highly likely that the whole space has been covered due to ran‐
domness; hence the chances of finding the best model are comparatively higher than
grid search. It takes a huge amount of time to cover every aspect of the combination
during grid search. Random search works best if all hyperparameters are not equally
important.

Figure 2-7 shows how grid search and random search work. In this example, nine sets
of parameter combinations are being tried. Notice how random search manages to
reach much better model performance, as shown by the dots on the “hills” at top. The
topmost point on the “hill” represents the best parameter combination.

Figure 2-7. Grid search versus random search

Smarter approaches
For real-world problems, the search space is very large, and brute-force approaches
will not be effective. This has led to the emergence of smarter selection and optimiza‐
tions approaches, mostly powered by advanced statistics and machine learning tech‐
niques. Some of these approaches include Bayesian optimization, multiarmed bandit,
and meta-learning. Here, we describe some of these at a high level (details require
digging deeper and are beyond the scope of this book):

Bayesian optimization
This method uses approximation to guess an unknown function with some prior
knowledge. The goal here is to train the model based on available observations.
The trained model will map to a function, which we don’t know. Our task is to
find the hyperparameters that maximize the learning function.

Bayesian optimization can help you find the best model among many, speeding
up the model selection process by reducing the computation task and not requir‐
ing help from a human to guess the values. This optimization technique is based

What Is Automated Machine Learning? | 27

on randomness and probability distributions. Figure 2-8 provides a visual
description of how it works.

Figure 2-8. Bayesian optimization

The dotted line is our True Objective function curve. Unfortunately, we don’t
know this function and its equation. We are trying to approximate it by using a
Gaussian process. Throughout our sample space, we draw an intuitive curve (the
solid line) that fits with our observed samples (the solid dots). t represents differ‐
ent time points when we have a new observation sample. The shaded region is
the Confidence region, where the point could exist. From the preceding prior
knowledge, we can determine that second point as the maximum observed value.
The next maximum point should be above it or equal. If we draw a horizontal
line through the second point, the next maximum point should fall above this
line. From the intersecting points of this line and the Confidence region, we can
discard the curve samples below the line to find the maximum. In so doing, we

28 | Chapter 2: How Automated Machine Learning Works

have narrowed down our area of investigation. This same process continues with
the next sampled points.

Multiarmed bandit
A multiarmed bandit is a problem in which a limited set of resources must be
allocated between competing choices in a way that maximizes their expected gain
when each choice’s properties are only partially known at the time of allocation
and might become better understood as time passes or by allocating resources to
the choice.

This is a classic reinforcement learning problem covering the exploration–exploi‐
tation trade-off dilemma, modeling an agent that simultaneously attempts to
acquire new knowledge (called exploration) and optimize its decisions based on
existing knowledge (called exploitation). As shown in Figure 2-9, the agent
attempts to balance these competing tasks to maximize its total value over the
period considered.

Figure 2-9. Explore versus exploit

Meta-learning
This “learning to learn.” Think of this as applying machine learning to build
machine learning models; hence, the term “meta” in the name. The goal of meta-
learning is to train a model on a variety of learning tasks, such that it can solve
new learning tasks with only a small number of training samples. Not only does
this dramatically speed up and improve the design of machine learning pipelines,
but also allows us to replace a fixed set of manually chosen models with novel
approaches learned in a data-driven way.

With neural networks gaining popularity, meta-learning approaches have been
applied to automatically design optimal neural network architectures. Known as
neural architecture search (NAS), this is a popular area of research. NAS has been
used to design networks that are on par with or outperform hand-designed

What Is Automated Machine Learning? | 29

https://oreil.ly/anwMJ

architectures. Methods for NAS can be categorized according to the search space,
search strategy, and performance estimation strategy used.

The search space defines the type(s) of neural networks that can be designed and
optimized. The search strategy defines the approach used to explore the search
space. The performance estimation strategy evaluates the performance of a possi‐
ble neural network from its design (without constructing and training it).

Monitoring and Retraining
So far, we have covered the stages leading up to building a good model and how
Automated Machine Learning can help with each of those stages. The last and final
stage in the machine learning workflow is monitoring and retraining your model.

Model performance during training can be very different from its performance after
deployment on real data. Thus, it is important to continuously measure model perfor‐
mance even after deployment. Poor model performance is typically caused by change
in characteristics of input data over time, which is known as data drift. Techniques
exist to automatically monitor data drift and model performance over time.

As soon as poor model performance is detected, corrective actions can be taken to
minimize the damage. Corrective actions could include the following:

• Immediately take the model offline (and disable the corresponding user experi‐
ence)

• Retrain the model with the latest data and deploy the retrained model

This stage is particularly critical for companies that have production dependency on
machine learning models. Hence, a good Automated Machine Learning solution
should have support for monitoring and training.

Bringing It All Together
Automated Machine Learning empowers users (with or without machine learning
expertise) to identify an end-to-end machine learning pipeline for any problem, ach‐
ieving higher accuracy while spending far less of their time. And it enables a signifi‐
cantly larger number of experiments to be run, resulting in faster iteration toward
production-ready intelligent experiences. Given input data, it can automate the pro‐
cess of feature engineering, model selection, and hyperparameter tuning, as shown in
Figure 2-10.

30 | Chapter 2: How Automated Machine Learning Works

Figure 2-10. Automated Machine Learning

Automated ML
Automated ML is a capability available within the Microsoft Azure Machine Learning
service. This section provides an overview of how automated ML works, whereas
subsequent chapters will go into more details on how to use automated ML for your
scenarios.

How Automated ML Works
Automated ML is based on a breakthrough from the Microsoft Research division.
The approach combines ideas from collaborative filtering and Bayesian optimization
to search an enormous space of possible machine learning pipelines intelligently and
efficiently. It’s essentially a recommender system for machine learning pipelines. Sim‐
ilar to how streaming services recommend movies for users, automated ML recom‐
mends machine learning pipelines for datasets. Figures 2-11 and 2-12 demonstrate
this analogy.

Figure 2-11. Streaming service: movie recommendation

Automated ML | 31

https://arxiv.org/abs/1705.05355

Figure 2-12. Automated ML: machine learning pipeline recommendation

As indicated by the distributions shown on the right side of Figures 2-11 and 2-12,
automated ML also takes uncertainty into account, incorporating a probabilistic
model to determine the best pipeline to try next. This approach allows automated ML
to explore the most promising possibilities without exhaustive search, and to con‐
verge on the best pipelines for the user’s data faster than competing brute-force
approaches.

Preserving Privacy
Automated ML accomplishes all this without having to see the users’ data, preserving
privacy. As shown in Figure 2-13, users’ data and execution of the machine learning
pipeline both reside in the users’ cloud subscription (or their local machine), for
which they have complete control. Only the model performance metrics of each pipe‐
line run are sent back to the automated ML service, which then makes an intelligent,
probabilistic choice of which pipelines should be tried next.

Automated ML’s probabilistic model has been trained by running hundreds of mil‐
lions of experiments, each involving evaluation of a specific pipeline on a given data‐
set. This training now allows the automated ML service to find good solutions
quickly for new problems. And the model continues to learn and improve as it runs
on new machine learning tasks—even though, as just mentioned, it does not see
users’ data.

32 | Chapter 2: How Automated Machine Learning Works

Figure 2-13. Preserving privacy

Enabling Transparency
Transparency is important for data scientists as well as other users so that they can
understand what’s going on, and trust the output. This is especially crucial for enter‐
prises to use in business-critical scenarios in production.

Automated ML’s heavy focus on transparency makes it easy to understand the pro‐
duced machine learning pipelines, including all of the stages discussed in the previ‐
ous section (e.g., data understanding, feature engineering, model selection/
optimization). Users can either directly use the machine learning pipeline produced
or they can customize it further.

Another aspect of transparency is to understand how the input features contribute to
the outcome of the model, also known as model explainability or interpretability.
Automated ML makes this easy by offering a feature importance capability.
Figure 2-14 shows an example of a customer churn model for which the SupportInci
dents count is the top contributing feature. This makes sense because if a customer
has had a lot of support issues, the likelihood of them churning is much higher.

Automated ML | 33

Figure 2-14. Feature importance

Guardrails
In addition to providing transparency, automated ML on Azure also offers guardrails
to help users understand potential issues with their data (e.g., missing values, class
imbalance) or models and help take corrective actions for improved results. We go
into more detail about this in Chapter 7.

End-to-End Model Life-Cycle Management
Automated ML, being a capability of Azure Machine Learning, offers end-to-end
(E2E) model life-cycle management, including easy deployment, monitoring, drift
analysis, and retraining through integration with ML operationalization (MLOps)
capability of Azure Machine Learning. Figure 2-15 shows this E2E flow.

Figure 2-15. E2E model life-cycle management

34 | Chapter 2: How Automated Machine Learning Works

Conclusion
In this chapter, you learned what Automated Machine Learning is, generally speak‐
ing, and how it can help with every stage of building a good machine learning model
to solve real-world problems. We also provided a brief overview of how the Azure
Machine Learning capability, automated ML, works behind the scenes to build good
machine learning models and enable trust by allowing transparency and preserving
data privacy.

In subsequent chapters, we’ll cover different aspects of what we touched upon here,
and provide hands-on practice and sample scenarios to help you use automated ML
in your work.

Conclusion | 35

PART II

Automated ML on Azure

In this part, you will begin using automated ML on Azure. You’ll also learn how some
machine learning techniques can be used with automated ML.

CHAPTER 3

Getting Started with Microsoft Azure
Machine Learning and Automated ML

In Chapter 2, we explained the concept of Automated Machine Learning and pro‐
vided a brief overview of the automated ML tool on Microsoft Azure Machine Learn‐
ing. In this chapter, we look at how to get started with Azure Machine Learning and,
subsequently, automated ML. Before going into details of automated ML, we’ll first
discuss some of the common challenges that enterprises face in their machine learn‐
ing projects, to better understand these issues.

The Machine Learning Process
When solving problems with machine learning, we begin with a problem statement
in terms of what we are trying to optimize. Next, we look for a dataset that will help
us solve the problem. We begin looking at the data and use a data manipulation
library like Pandas. We look at missing values, distribution of data, and errors in the
data. We try to join multiple datasets. When we think we have a good enough dataset
to get underway, we split it into train, test, and validation datasets, typically in a ratio
of 70:20:10. This helps avoid overfitting, which basically means we’re not using the
same dataset for training and testing. We use the train dataset to train the machine
learning algorithm. The test dataset is used for testing the machine learning model
after training is complete, to ascertain how well the algorithm performed.

We establish a metric to determine algorithm performance and keep iterating until
we get a good algorithm. Then we use the validation dataset to check the algorithm’s
performance. Sometimes, the validation dataset might not be in the main dataset, in
which case we can split the original dataset for training and testing in an 80:20 ratio.
All of these datasets should be representative samples of the main dataset to avoid

39

skewed data (also known as bias). As you can see, this process is iterative and can be
time-consuming. Figure 3-1 shows a summary of the manual process.

Figure 3-1. Manual process for custom artificial intelligence

Let’s look at some of the other challenges a data scientist can face when embarking on
a machine learning project.

Collaboration and Monitoring
Data scientists in the enterprise can work solo or in teams. Nowadays, machine learn‐
ing projects are more complicated, and data scientists often collaborate. However, it
might not be easy for data scientists to share results and review code.

Other challenges that data scientists face when working together are how to track the
machine learning experiments and then track the history of multiple iterations (runs)
within each experiment. There are additional challenges to having a training environ‐
ment that can scale horizontally and vertically. When we need more nodes in a clus‐
ter, we want to scale it horizontally, and when we need more CPU or memory, we
scale each node vertically.

Deployment
After the trained model satisfies the business criteria, the next step is to operational‐
ize it so that we can use it for predictions. This is also known as deployment of the
model. A model can be deployed as a web service for real-time scoring or as a batch-
scoring model for scoring in bulk. Figure 3-2 shows a summary of the steps a data
scientist might perform, from training to deployment. Now, let’s understand how
Azure Machine Learning and automated ML help address some of these challenges.

40 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

Figure 3-2. The steps for machine learning

Setting Up an Azure Machine Learning Workspace for
Automated ML
The Azure Machine Learning service helps data scientists track experiments and iter‐
ations (runs) in a cloud-based workspace. It is a machine learning platform designed
to help with end-to-end (E2E) machine learning.

To use the Azure Machine Learning service (including the Azure Machine Learning
SDK, and automated ML), you must have an Azure Machine Learning workspace.
This workspace resides in your Azure subscription and you can use it as a single col‐
laborative place to track experiments and do more things. Anyone with owner or
contributor access to the resource group can create the workspace in an Azure
resource group. You can create it using Microsoft Azure portal or using the Python
SDK. Later in this chapter, we review in detail the steps of installing the SDK.

When creating the workspace for the first time, you need to register a few resource
providers (RP) in the Azure subscription. Let’s register the RPs needed to use the
Azure Machine Learning workspace. You can search for this RPs in the Azure portal
under your subscription. Here are the steps to do this:

1. Open the Azure portal, and then go to your subscription, as shown in Figure 3-3.

Figure 3-3. Subscription overview

Setting Up an Azure Machine Learning Workspace for Automated ML | 41

2. On the left side of the pane, browse to “Resource providers,” as shown in
Figure 3-4.

Figure 3-4. Resource providers list

3. In the filter, in the Search box, type “machinelearning,” and then register the
Machine Learning RPs, as shown in Figure 3-5.

Figure 3-5. Machine learning–related resource providers

4. Register the KeyVault, ContainerRegistry, and ContainerInstance RPs, as shown
in Figures 3-6 and 3-7.

42 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

Figure 3-6. KeyVault-related RPs

Figure 3-7. Containers-related RPs

Now we’re ready to create an Azure ML workspace. To do this, we need Contributor
or Owner access to the Azure resource group. After we have confirmed the appropri‐
ate access, let’s create the Azure Machine Learning workspace:

1. Go to the Azure portal and search for “machine learning service workspaces,” as
shown in Figure 3-8.

Figure 3-8. Going to the machine learning workspace on Azure portal

2. Fill in the required details in the pane, as shown in Figures 3-9 through 3-11.

Setting Up an Azure Machine Learning Workspace for Automated ML | 43

Figure 3-9. The Azure Machine Learning service creation pane

You can choose an existing resource group or create a new one.

44 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

Figure 3-10. The Azure resource group creation pane

Click Create when you have made all your selections.

Setting Up an Azure Machine Learning Workspace for Automated ML | 45

Figure 3-11. The Azure Machine Learning workspace creation pane

46 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

3. In the upper part of the notification pane that then opens, click the bell icon
(Figure 3-12) to go to the newly created Azure Machine Learning workspace.

Figure 3-12. Azure Machine Learning workspace notification pane

4. As shown in Figure 3-13, the main page of the Azure Machine Learning work‐
space shows you how to get started and all of the assets that are a part of the
workspace. When we run our automated ML experiment, the details will show
up in the Experiments section.

After you create this workspace, you can use it for training, deployment, and more
machine learning–related activities. For the remainder of this chapter, we focus on
using automated ML.

Setting Up an Azure Machine Learning Workspace for Automated ML | 47

Figure 3-13. Azure Machine Learning workspace overview page

Azure Notebooks
There are multiple ways a data scientist or artificial intelligence (AI) developer can
use automated ML. It comes packaged as part of the Azure Machine Learning SDK. It
can be installed in any Python environment as a PyPi package.

Here we use Azure Notebooks (a Jupyter environment in the cloud) to run an E2E
experiment with automated ML. When used with Azure Notebooks, the SDK is pre‐
installed in the environment. Let’s create a project:

1. Start Azure Notebooks by going to https://notebooks.azure.com, as shown in
Figure 3-14. Click the Try It Now button and sign in.

Figure 3-14. Azure Notebooks home screen

48 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

https://notebooks.azure.com

2. From your profile page, you can view the Azure Notebooks projects
(Figure 3-15).

Figure 3-15. An example Azure Notebooks profile page

3. Run the compute as your notebook server, as depicted in Figure 3-16.

Figure 3-16. Associating a Jupyter server for the compute type

4. Once you open the notebook (see Figure 3-17), it spins up the Jupyter kernel.
You can execute the code in the cell by pressing Shift + Enter.

Setting Up an Azure Machine Learning Workspace for Automated ML | 49

Figure 3-17. A Jupyter notebook

5. As shown in Figures 3-18 and 3-19, you begin by authorizing the environment to
access the Azure subscription and thus the Azure Machine Learning workspace
that you created earlier.

Figure 3-18. Connecting to Azure

Figure 3-19. Authorizing the Azure Machine Learning workspace

50 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

6. Now, instantiate the Azure Machine Learning workspace by providing the sub‐
scription, resource group, and workspace name as shown in Figures 3-20 and
3-21. Begin by importing the libraries and then use the get method to instantiate
the workspace object, which can then be used by automated ML and other
related activities.

Figure 3-20. Importing Azure Machine Learning libraries

Figure 3-21. Instantiating the Azure Machine Learning workspace

7. Define an experiment within the Azure Machine Learning workspace to get
started with automated ML, as shown in Figure 3-22.

Setting Up an Azure Machine Learning Workspace for Automated ML | 51

Figure 3-22. Defining an experiment in the Azure Machine Learning workspace

8. From the dataset that will be used for automated ML training, we create the
DataFrames for the feature columns and prediction label. These DataFrames are
represented as X and y in the automated ML configuration. The configuration
takes various other parameters, as shown in Figures 3-23 and 3-24.

Figure 3-23. Configuration parameters for an automated ML experiment in the
Azure Machine Learning workspace

52 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

In addition to the experiment type, these parameters define the constraints that
help control the time it takes and the money we spend on training. Details of
these parameters are available in the official Azure documentation.

Figure 3-24. Configuring an automated ML experiment

Submit this training and monitor the progress of the experiment in the notebook
by using a widget, or through the Azure portal in your Azure Machine Learning
workspace, as shown in Figures 3-25 through 3-27. This shows the metric score,
status, and duration of the experiment run. These metrics can be useful to find
what automated ML tried and the result of each iteration.

Figure 3-25. Monitoring the progress of an experiment in the Azure Machine Learn‐
ing workspace

Setting Up an Azure Machine Learning Workspace for Automated ML | 53

http://bit.ly/2lCRoUy

Figure 3-26. Metrics of an automated ML run in the Azure Machine Learning
workspace

Figure 3-27. Summary and iteration chart in the Azure Machine Learning work‐
space

9. We can explore details in the child runs (iteration) by checking graphs of the true
value and predicted value, as shown in Figures 3-28 and 3-29.

54 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

Figure 3-28. Prediction versus true value

Figure 3-29. Metrics to evaluate model performance

10. You can export the trained model from any of the child runs, as shown in
Figure 3-30. Using Azure Machine Learning, you can deploy this model to the
cloud or edge for making predictions. You also can deploy it to another environ‐
ment of your choice. You can take advantage of the benefits of containerizing the
model and then deploying it as a real-time web service or as a batch service using
Azure Machine Learning. (We examine deployment in Chapter 5.)

Setting Up an Azure Machine Learning Workspace for Automated ML | 55

Figure 3-30. Downloading and deploying a model file

11. Alternatively, after the training is complete, you can select the best model writing
Python code as shown in Figure 3-31.

Figure 3-31. Selecting the model from the best run

12. When you go to the main experiments page in your Azure Machine Learning
workspace, you can look at all the experiments that you have run as well as their
child runs. The portal automatically sorts the child runs based on the metric you
are optimizing. In Figure 3-32, you can see a summary of the experiment run. It
has various panes to show the run config and the run results. The best pipeline is
shown at the top in Figure 3-33.

56 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

Figure 3-32. An automated ML experiment run summary

Figure 3-33. Run results sorted based on metric

Notebook VM
As of this writing, a new cloud-based notebook server is available in preview. This
secure, cloud-based Azure workstation provides a Jupyter notebook server, Jupyter‐
Lab, and a fully prepared machine learning environment. You can learn more about it
in the Azure Machine Learning Notebooks documentation.

Setting Up an Azure Machine Learning Workspace for Automated ML | 57

https://oreil.ly/e-56d

Conclusion
In this chapter, you learned about the Azure Machine Learning workspace and how
to get started with automated ML by using Azure Notebooks. In Chapter 8, you’ll use
more coding environments to run automated ML experiments.

58 | Chapter 3: Getting Started with Microsoft Azure Machine Learning and Automated ML

CHAPTER 4

Feature Engineering and
Automated Machine Learning

Feature engineering is one of the most important parts of the data science process. If
you ask data scientists to break down the time spent in each stage of the data science
process, you’ll often hear that they spend a significant amount of time understanding
and exploring the data, and doing feature engineering. Most experienced data scien‐
tists do not jump into model building. Rather, they first spend time doing feature
engineering.

But what is feature engineering? With feature engineering, you can transform your
original data into a form that is more easily understood by the machine learning algo‐
rithms. For example, you might perform data processing, add new features (e.g.,
additional data columns that combine values from existing columns), or you might
transform the features from their original domain to a different domain. You might
also remove features that are not useful or relevant to the model. When doing feature
engineering, you will generate new features, transform existing features, or select a
subset of features.

To illustrate how you can transform features, let’s consider a simple example of work‐
ing with categorical features (otherwise known as categorical variables). Suppose that
you have a dataset for an airline customer program with a feature called Status, which
determines the status of the customers (e.g., based on how often the customer flies,
total miles traveled, and others). Status contains the following five unique values:
New, Silver, Gold, Platinum, and Diamond. Because some of the machine learning
algorithms can work only with numerical variables, you will need to transform the
feature. A common approach is to use one-hot encoding, as shown in Table 4-1.

59

Table 4-1. One-hot encoding

Status New Silver Gold Platinum Diamond
Gold 0 0 1 0 0

Silver 0 1 0 0 0

New ➪ 1 0 0 0 0

Platinum 0 0 0 1 0

Silver 0 1 0 0 0

Gold 0 0 1 0 0

Another important aspect of feature engineering is taking advantage of domain
expertise. You might consider working with a person who has relevant domain exper‐
tise when doing feature engineering—the inputs from the domain expert will be
invaluable when working toward the goal of delivering a high-quality model.

Transparency and explainability are important considerations when training machine
learning models. Hence, doing feature engineering properly will contribute toward
having high-performing models that can be explained.

Chapter 7 provides a detailed discussion on how Azure Machine
Learning gives you the tools to understand the models generated,
the relative importance of features, and more.

When performing feature engineering, data scientists often ask themselves the fol‐
lowing questions:

• Which features in the dataset are irrelevant to the model? For example, your data
might contain an Identifier (ID) column. Though this column is useful when
combining data from several datasets (e.g., joining two datasets based on an
employee_id), the ID column is not used in any way when training the model.

• Can we combine one or more features to create new features that will be even
more useful?

• For some of the classes that are sparse (i.e., those that contain significantly fewer
observations), can we group them to create more meaningful classes?

In this chapter, we focus on how to use the auto-featurization capabilities provided in
the automated ML tool that is a part of Microsoft Azure Machine Learning. You will
learn how auto-featurization works for classification, regression, and forecasting
tasks. In addition, we share pointers and resources that enable you to go more in-
depth with feature engineering. Before we dive into the auto-featurization performed
by automated ML, let’s look at the data preprocessing methods that are available.

60 | Chapter 4: Feature Engineering and Automated Machine Learning

Data Preprocessing Methods Available in Automated ML
Depending on the type of machine learning task (e.g., classification, regression, fore‐
casting), different types of data preprocessing are performed. When you use automa‐
ted ML and submit an experiment, you will notice that each iteration performs a
different type of data preprocessing.

For example, you will notice that your data is scaled, or normalized, when it is rele‐
vant. When features have different ranges, scaling and normalization helps. Table 4-2
shows the scaling and normalization steps performed by automated ML.

Table 4-2. Data preprocessing performed by automated ML

Scaling and
normalization

Description

MinMaxScalar Each feature is transformed by scaling to the minimum and maximum for that column.

MaxAbsScaler Each feature is scaled by using the maximum absolute value.

RobustScalar Each feature is scaled by using the values from quantile range.

PCA Linear dimensionality reduction using singular value decomposition (SVD) of the data to project
it to a lower dimensional space.

TruncatedSVDWrapper Uses truncated SVD to do linear dimensionality reduction.
Unlike principal component analysis (PCA), the data is not centered before SVD is computed.
Note: This enables it to work efficiently with scipy.sparse matrices.

SparseNormalizer Each sample that contains one or more nonzero components is independently rescaled, enabling
the norm (L1 or L2) to equal one.

For more details on how data is preprocessed in Azure Machine
Learning, see this section of the Microsoft Azure documentation.

Auto-Featurization for Automated ML
Let’s get started with using auto-featurization. By now, you should be familiar with
how to set up the automated ML configuration object. Let’s recap how you set up the
automated ML experiment. In the code example that follows, you first define the
AutoMLConfig object. Next, specify the name of the experiment, number of iterations
to run, the logging granularity, and more. After you have defined the AutoMLConfig
object, submit the experiment by using experiment.submit(…):

Data Preprocessing Methods Available in Automated ML | 61

https://oreil.ly/FBzE4
https://oreil.ly/pGvd2
https://oreil.ly/AUlqU
https://oreil.ly/6wb1B
https://oreil.ly/mNQ86
https://oreil.ly/qmKyn
https://oreil.ly/vEGJu

import time

automl_settings = {
 "name": "AutoML_Book_CH07_FeatureEngineering_{0}".format(time.time()),
 "task": "regression",
 "iteration_timeout_minutes": 10,
 "iterations": 10,
 "max_cores_per_iteration": 1,
 "primary_metric": 'r2_score',
 "max_concurrent_iterations": 10,
 "experiment_exit_score": 0.985,
 "debug_log": "automl_ch07_errors{0}.log".format(time.time()),
 "verbosity": logging.ERROR
}
Local compute
Automl_config = AutoMLConfig(
 preprocess = False,
 X = X_train,
 y = y_train,
 X_valid = X_valid,
 y_valid = y_valid,
 path=project_folder,
 **automl_settings)

Training the model
experiment=Experiment(ws, experiment_name)
local_run = experiment.submit(Automl_config, show_output=True)

After you submit the experiment, notice the data processing that has been performed
in each iteration (see the output in Figure 4-1). From iteration 0 to 7, you can see that
each iteration shows what type of data preprocessing has been performed. For exam‐
ple, in iteration 0, we can see that the StandardScalerWrapper is used. In iteration 3,
the RobustScaler is used.

In the code shown earlier, in which you defined the AutoMLConfig object, notice that
one of the properties, preprocess, is set to False. You can also set preprocess =
True to turn on advanced data preprocessing. This makes it possible for you to use
both data preprocessing and auto-featurization.

The type of auto-featurization performed depends on the machine
learning task you’re planning. For example, if you use automated
ML for classification and regression, auto-featurization might
include dropping features with a high cardinality, or low variance.
If you use automated ML for forecasting, additional features might
be generated for DateTime, or relation of the DateTime to holidays
in various countries.

62 | Chapter 4: Feature Engineering and Automated Machine Learning

Figure 4-1. Data preprocessing using automated ML

Table 4-3 presents the auto-featurization features used by automated ML.

Table 4-3. Auto-featurization performed by automated ML

Preprocessing and
auto-featurization

Description

Drop high-cardinality
or no variance features

Drop these from training and validation sets, including features with all values missing, same value
across all rows, or with extremely high-cardinality (e.g., hashes, IDs, or GUIDs).

Impute missing values For numerical features, impute with average of values in the column.
For categorical features, impute with most frequent value.

Generate additional
features

For DateTime features: Year, Month, Day, Day of week, Day of year, Quarter, Week of the year, Hour,
Minute, Second.
For Text features: Term frequency based on unigrams, bi-grams, and tri-character-grams.

Transform and encode Numeric features with few unique values are transformed into categorical features.
One-hot encoding is performed for low cardinality categorical; for high cardinality, one-hot-hash
encoding.

Word embeddings Text featurizer that converts vectors of text tokens into sentence vectors using a pretrained model.
In a given document, each word’s embedding vector is aggregated to produce a document feature
vector.

Target encodings For categorical features, maps each category to averaged target value for regression problems. For
classification problems, maps each category to the class probability for each class. Frequency-based
weighting and k-fold cross-validation is applied to reduce overfitting of the mapping and noise
caused by sparse data categories.

Auto-Featurization for Automated ML | 63

Preprocessing and
auto-featurization

Description

Text target encoding For text input, a stacked linear model with bag-of-words is used to generate the probability of each
class.

Weight of Evidence
(WoE)

Calculates WoE as a measure of correlation of categorical columns to the target column. It is
calculated as the log of the ratio of in-class versus out-of-class probabilities. This step outputs one
numerical feature column per class and removes the need to explicitly impute missing values and
outlier treatment.

Cluster distance Trains a k-means clustering model on all numerical columns. Outputs k new features, one new
numerical feature per cluster, containing the distance of each sample to the centroid of each cluster.

Auto-Featurization for Classification and Regression
To show auto-featurization in action, let’s work through a predictive maintenance
model using the NASA Turbofan Engine Degradation Simulation dataset. In this
example, even though we show how regression is used to predict the remaining useful
lifetime (RUL) value for the turbofan engine, we can apply the same approach to clas‐
sification problems as well.

To do this, let’s first download the dataset using the code block that follows. After you
download the dataset, you extract the file into the data folder, and read the training
data file, data/train_FD004.txt. Then, you add the column names for the 26 features.
Use the following code to do this:

Download the NASA Turbofan Engine Degradation Simulation Dataset
import requests, zipfile, io
import pandas as pd
nasa_dataset_url = https://ti.arc.nasa.gov/c/6/
r = requests.get(nasa_dataset_url)

z = zipfile.ZipFile(io.BytesIO(r.content))
z.extractall("data/")
train = pd.read_csv("data/train_FD004.txt", delimiter="\s|\s\s",
 index_col=False, engine='python',
 names=['unit','cycle','os1','os2','os3',
 'sm1','sm2','sm3','sm4','sm5','sm6','sm7','sm8',
 'sm9','sm10', 'sm11','sm12','sm13','sm14','sm15','sm16',
 'sm17','sm18','sm19','sm20','sm21'])

An important part of the data science process is to explore the dataset. Since we use
this dataset in other chapters, we won’t explore it here. In addition, we’ll omit the
steps needed to create the Azure Machine Learning experiment and set up the AutoML
Config object (shown earlier) and proceed directly to exploring the differences and
quality of results when preprocess is set to different values (i.e., True or False).

Before we do that, let’s define the utility functions that will be useful in the explora‐
tion. We will create two utility functions: print_model() (Example 4-1), and
print_engineered_features() (Example 4-2). These two utility functions are used

64 | Chapter 4: Feature Engineering and Automated Machine Learning

to print the pipelines for a model, and the features that are generated during auto-
featurization, respectively, as shown in the following examples.

Example 4-1. print_model

from pprint import pprint

def print_model(run, model, prefix=""):
 print(run)
 print("---------")

for step in model.steps:
 print(prefix + step[0])
 if hasattr(step[1], 'estimators') and hasattr(step[1], 'weights'):
 pprint({'estimators': list(e[0] for e in step[1].estimators),
 'weights': step[1].weights})

 print()
 for estimator in step[1].estimators:
 print_model(estimator[1], estimator[0]+ ' - ')
 elif hasattr(step[1], '_base_learners') and
 hasattr(step[1], '_meta_learner'):

 print("\nMeta Learner")
 pprint(step[1]._meta_learner)
 print()

 for estimator in step[1]._base_learners:
 print_model(estimator[1], estimator[0]+ ' - ')
 else:
 pprint(step[1].get_params())
 print()

Example 4-2. print_engineered_features

from pprint import pprint
import pandas as pd
Function to pretty print the engineered features
def print_engineered_features(features_summary):
 print(pd.DataFrame(features_summary,
 columns=["RawFeatureName",
 "TypeDetected",
 "Dropped",
 "EngineeredFeatureCount",
 "Tranformations"]))

Now that we have defined the two utility functions, let’s explore two iterations for an
experiment in which preprocess is set to False, and the data preprocessing shown in
the outputs are similar. (Figure 4-1 shows the output after the experiment is submit‐
ted.) Iterations 4 and 5 of the experiment use the same data processing technique

Auto-Featurization for Automated ML | 65

(StandardScalerWrapper) and the same machine learning algorithm (LightGBM).
What’s the difference between the two iterations, and why do they show two different
R2 score values? Iteration 5 (R2 score of 0.6220) seems to have performed better than
iteration 4 (R2 score of 0.4834).

Using local_run.get_output(), we extracted the run and models that have been
trained for iterations 4 and 5. The run information is stored in explore_run1 and
explore_run2, and the model details are stored in explore_model1 and explore_model2:

explore_run1, explore_model1 = local_run.get_output(iteration = 4)
explore_run2, explore_model2 = local_run.get_output(iteration = 5)

After you have extracted the run information and model details, let’s look at them
closely. From the output for iterations 4 and 5 shown, you will notice the hyperpara‐
meter values are different (e.g., max_bin, max_depth, learning_rate, reg_alpha,
reg_lambda, and others). These hyperparameter values are determined by the auto‐
mated ML meta-model that has been trained to decide which machine learning pipe‐
line will be most relevant to the dataset (see Examples 4-3 and 4-4.

See Chapter 2 for more on how Automated Machine Learning
works.

Example 4-3. Iteration 4 run and model information

Run(Experiment: automl-predictive-rul-ch07,
Id: AutoML_0dc694bd-da06-47aa-b4f4-077d1696d553_4,
Type: None,
Status: Completed)

StandardScalerWrapper
{'class_name': 'StandardScaler',
 'copy': True,
 'module_name': 'sklearn.preprocessing.data',
 'with_mean': False,
 'with_std': True}

LightGBMRegressor
{'boosting_type': 'gbdt',
 'class_weight': None,
 'colsample_bytree': 0.7000000000000001,
 'importance_type': 'split',
 'learning_rate': 0.1894742105263158,
 'max_bin': 7,
 'max_depth': 3,
 'min_child_samples': 139,
 'min_child_weight': 0.001,

66 | Chapter 4: Feature Engineering and Automated Machine Learning

 'min_split_gain': 0.9473684210526315,
 'n_estimators': 800,
 'n_jobs': 1,
 'num_leaves': 7,
 'objective': None,
 'random_state': None,
 'reg_alpha': 0.075,
 'reg_lambda': 0.6,
 'silent': True,
 'subsample': 0.7999999999999999,
 'subsample_for_bin': 200000,
 'subsample_freq': 0,
 'verbose': −1}

Example 4-4. Iteration 5 run and model information

Run(Experiment: automl-predictive-rul-ch07,
Id: AutoML_0dc694bd-da06-47aa-b4f4-077d1696d553_5,
Type: None,
Status: Completed)

StandardScalerWrapper
{'class_name': 'StandardScaler',
 'copy': True,
 'module_name': 'sklearn.preprocessing.data',
 'with_mean': True,
 'with_std': True}

LightGBMRegressor
{'boosting_type': 'gbdt',
 'class_weight': None,
 'colsample_bytree': 0.5,
 'importance_type': 'split',
 'learning_rate': 0.1789484210526316,
 'max_bin': 255,
 'max_depth': 9,
 'min_child_samples': 194,
 'min_child_weight': 0.001,
 'min_split_gain': 0.9473684210526315,
 'n_estimators': 100,
 'n_jobs': 1,
 'num_leaves': 127,
 'objective': None,
 'random_state': None,
 'reg_alpha': 1.125,
 'reg_lambda': 0.75,
 'silent': True,
 'subsample': 0.7,
 'subsample_for_bin': 200000,
 'subsample_freq': 0,
 'verbose': −1}

Auto-Featurization for Automated ML | 67

Next, let’s look at the names of the engineered features. To do this, you can use the
function get_engineered_feature_names (). The code shows how you retrieve the
best run and model by using local_run.get_output() and then extract the names of
the engineered features:

best_run, fitted_model = local_run.get_output()
fitted_model.named_steps['datatransformer']. get_engineered_feature_names ()

Figure 4-2 shows the output. In this example, you will see that the engineered features
are derived from using the MeanImputer transform on the existing features. No addi‐
tional features have been added.

Figure 4-2. Names of engineered features

Let’s dive deeper and look at more details about the engineered features. To do this,
use the get_featurization_summary() function. The utility function print_engi
neered_features() that we defined earlier will enable us to pretty-print the output
and make it easier to read.

Figure 4-3 shows the summary of the engineered features. For each original feature,
you will see that the MeanImputer transform is applied to it and that the count for

68 | Chapter 4: Feature Engineering and Automated Machine Learning

new engineered features is 1. You will also observe that no features were dropped
when data preprocessing and auto-featurization are performed:

Get the summary of the engineered features
features_summary =
 fitted_model.named_steps['datatransformer'].get_featurization_summary()
print_engineered_features(features_summary)

Figure 4-3. Summary of engineered features

Auto-Featurization for Time-Series Forecasting
In this next example, we show how data preprocessing and auto-featurization is per‐
formed for a time-series dataset, in which the data type for some of the features is
DateTime.

Let’s begin by downloading the sample Energy Demand dataset (Figure 4-4 shows the
output from running the code):

import requests, zipfile, io

Download the data for energy demand forecasting

nyc_energy_data_url =
"https://raw.githubusercontent.com/Azure/MachineLearningNotebooks/master/
 how-to-use-azureml/automated-machine-learning/

Auto-Featurization for Automated ML | 69

 forecasting-energy-demand/nyc_energy.csv"

r = requests.get(nyc_energy_data_url)
open('data/nyc_energy.csv', 'wb').write(r.content)

data = pd.read_csv('data/nyc_energy.csv', parse_dates=['timeStamp'])
data.head()

In Figure 4-4, you can see that the Energy Demand time-series dataset consists of
these five columns: ID (leftmost column), timestamp, demand, precip, and temp.

Figure 4-4. Exploring the Energy Demand time-series dataset

Let’s do a simple plot of the data by using the following code (Figure 4-5 shows the
output):

import matplotlib.pyplot as plt

time_column_name = 'timeStamp'
target_column_name = 'demand'

ax = plt.gca()
data.plot(kind='line',x=time_column_name,y=target_column_name,ax=ax)
plt.show()

70 | Chapter 4: Feature Engineering and Automated Machine Learning

Figure 4-5. Visualization of the Energy Demand time-series dataset

Next, let’s split the data into training and testing datasets, into observations before
2017-02-01 (training dataset), and observations after 2017-02-01 (testing dataset). We
extract the target column (the column for the demand values) into y_train and
y_test:

X_train = data[data[time_column_name] < '2017-02-01']
X_test = data[data[time_column_name] >= '2017-02-01']
y_train = X_train.pop(target_column_name).values
y_test = X_test.pop(target_column_name).values

Let’s specify the automated ML configuration that we will use for forecasting. In the
code that follows, notice that we specify the evaluation metrics for the AutoMLConfig
object as the normalized root-mean-square error (RMSE). We also specify the Date
Time column using time_column_name.

As each row of the data denotes hourly observations, it is important to specify the
time horizon for prediction by using the property max_horizon. Suppose that you
want to predict for the next one day (i.e., 24 hours); the value of max_horizon is set to
24. The property country_or_region is commented out in this example. This prop‐
erty is useful if you want to take into consideration autogenerated features that cap‐
ture details about the holidays in the country specified. In this specific example, we
do not need it; thus, we comment it out:

time_series_settings = {
 "time_column_name": time_column_name,
 "max_horizon": 24
 #"country_or_region" : 'US',
}

Auto-Featurization for Automated ML | 71

automl_config = AutoMLConfig(task = 'forecasting',
 primary_metric='normalized_root_mean_squared_error',
 iterations = 10,
 iteration_timeout_minutes = 5,
 X = X_train,
 y = y_train,
 n_cross_validations = 3,
 path=project_folder,
 verbosity = logging.INFO,
 **time_series_settings)

Now that you have defined the AutoMLConfig object, you are ready to submit the
experiment. Figure 4-6 presents the output of running the experiment. When the
automated ML experiment is run, you will see that the experiment starts by perform‐
ing auto-featurization on the time-series dataset. This is captured in the steps “Cur‐
rent status: DatasetFeaturization. Beginning to featurize the dataset.” and “Current
status: DatasetFeaturizationCompleted. Completed featurizing the dataset.” After fea‐
turization is completed, model selection using automated ML begins.

Figure 4-6. Running the automated ML experiment

During model selection, automated ML runs several iterations. Each iteration uses
different data preprocessing methods (e.g., RobustScaler, StandardScalerWrapper,
MinMaxScaler, MaxAbsScaler) and forecasting algorithms (ElasticNet, LightGB,

72 | Chapter 4: Feature Engineering and Automated Machine Learning

LassoLars, DecisionTree, and RandomForest). The last two iterations use different
ensemble methods (e.g., VotingEnsemble and StackEnsemble). For this specific
example, the best result is achieved in iteration 9, which uses StackEnsemble:

local_run = experiment.submit(automl_config, show_output=True)

Now, let’s retrieve detailed information about the best run and the model. Figure 4-7
shows the summary of the engineered features. As this is a time-series dataset, you’ll
notice that for the feature timestamp, 11 additional features are autogenerated (i.e.,
EngineeredFeatureCount is shown as 11), all of data type DateTime.

best_run, fitted_model = local_run.get_output()

Get the summary of the engineered features
fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()

Figure 4-7. Retrieving information for the best run

Let’s now examine the features autogenerated for the DateTime column. To do this,
we’ll use fitted_model for performing forecasting, using the test data we defined ear‐
lier. From the following code, we invoke the forecast function, and the results are
stored in the variables y_fcst and X_trans:

Auto-Featurization for Automated ML | 73

best_run, fitted_model = local_run.get_output()

y_query = y_test.copy().astype(np.float)
y_query.fill(np.NaN)
y_fcst, X_trans = fitted_model.forecast(X_test, y_query)

Next we turn to X_trans. In Figure 4-8, you can see the 11 engineered features, which
took the DateTime column and divided it into the time parts (e.g., year, half, quarter,
month, day, hour, am_pm, hour12, wday, qday, and week). Changing it from a Date
Time to a numerical value makes it more meaningful and easier to use by the machine
learning algorithms during training and scoring.

Figure 4-8. Engineered features for time-series forecasting

Conclusion
In this chapter, you learned about the importance of feature engineering, and how it
affects the quality of the machine learning models produced. Feature engineering is
an art: to do it well, it’s important to understand its foundations, to receive on-the-job
training, and to build your toolbox for doing feature engineering as you work
through various machine learning projects. In recent years, the machine learning
community has been innovating on Python libraries that enable auto-featurization.
For example, you can use the Python package featuretools to perform deep feature
synthesis by taking advantage of the relationships between entities, and more.

We focused in this chapter on how to use the auto-featurization capabilities provided
by automated ML in the Azure Machine Learning service. Using examples of regres‐
sion and forecasting, we explored how to enable auto-featurization in automated ML
and how to understand the engineered features.

Though automated ML provides auto-featurization capabilities (that are continuously
improving and evolving), note that it doesn’t exhaustively cover all aspects of feature
engineering. It’s important for data scientists to perform feature engineering, taking
advantage of domain expertise, before using the dataset as input to automated ML.

74 | Chapter 4: Feature Engineering and Automated Machine Learning

CHAPTER 5

Deploying Automated
Machine Learning Models

Microsoft Azure Machine Learning enables you to manage the life cycle of your
machine learning models. After you have trained the models by using Azure Machine
Learning’s automated ML tool, you can retrieve the best model identified, and register
the model with Azure Machine Learning. Model registration enables you to store
varying versions of models in the machine learning workspace and makes it possible
for you to easily deploy the models to different target environments.

In this chapter, we explore how to use Azure Machine Learning to do the following:

• Register the best model produced by automated ML.
• Specify and develop the scoring file. The scoring will be included as part of the

container images that will be generated.
• Deploy the models to Microsoft Azure Container Instances (ACI) and Azure

Kubernetes Service (AKS).
• Troubleshoot failures during model and web service deployments.

Deploying Models
In Chapter 3, you learned how to build a machine learning model using automated
ML. In this section, you’ll learn how to register and deploy the best model that is
identified by automated ML. Azure Machine Learning supports a rich set of deploy‐
ment environments, ranging from REST APIs hosted in Azure, to models deployed to
different edge devices and hardware. These environments include the following:

• Azure Machine Learning Compute

75

• ACI
• AKS
• Azure IoT Edge

To learn more about the up-to-date list of deployment options that
are supported by Azure Machine Learning, go to the Microsoft
page about deploying models.

Now, let’s walk through the steps that you will use to register, deploy, and test the best
models that have been produced by automated ML:

1. Retrieve the best model.
2. Register the model.
3. Create the container image.
4. Deploy the model to a test environment, then test it.
5. Deploy the model to production.

Because the steps for deploying a model to the different environments are similar, we
focus on deployment to ACI.

To get started with model deployment, you need one or more trained machine learn‐
ing models. If you do not have a trained model yet, you can follow the steps described
in the sample notebook (in this book’s GitHub repository) to train a simple regression
model for predictive maintenance. The code for creating an automated ML run and
submitting the experiment using an AutoMLConfig object is as follows:

Automl_config = AutoMLConfig(task = 'regression',
 primary_metric = 'r2_score',
 iteration_timeout_minutes = 15,
 iterations = 10,
 max_cores_per_iteration = 1,
 preprocess = False,
 experiment_exit_score = 0.985,
 X = X_train,
 y = y_train,
 X_valid = X_valid,
 y_valid = y_valid,
 debug_log = 'automl_errors.log',
 verbosity=logging.ERROR,
 path=project_folder)

Training the predictive maintenance model using AutoML

76 | Chapter 5: Deploying Automated Machine Learning Models

http://bit.ly/2Haqkmv
http://bit.ly/2Haqkmv
https://oreil.ly/Practical_Automated_ML_on_Azure

experiment=Experiment(ws, experiment_name)
local_run = experiment.submit(Automl_config, show_output=True)

After the experiment has completed successfully (see Figure 5-1), you’ll have access to
the local_run object that you will use to register the model.

Figure 5-1. Output from an automated ML experiment

The sample notebook for using automated ML to build and deploy
the predictive maintenance model discussed in this chapter is avail‐
able at https://bit.ly/2k2e6VC.
The predictive maintenance model uses the NASA turbofan failure
dataset. More details on the dataset are available at https://
go.nasa.gov/2J6N1eK.

Registering the Model
Before you register the trained model, you can use the get_output() function to find
out more about the run that corresponds to the best-performing model. The get_out
put() function returns both the best run as well as the corresponding fitted model.

What types of machine learning model can you register? You can
register Python or R models using Azure Machine Learning, as well
as models that have been trained using Azure Machine Learning,
or pretrained models that are available externally.

Deploying Models | 77

https://bit.ly/2k2e6VC
https://go.nasa.gov/2J6N1eK
https://go.nasa.gov/2J6N1eK

Figure 5-2 shows the output from running the code block that follows. You will
notice that under the hood, a regression pipeline is created. The regression pipeline
consists of several steps: StackEnsembleRegressor, StandardScalerWrapper, and
LightGBMRegressor). Notice that the number of folds for cross-validation is set to 5:

best_run, fitted_model = local_run.get_output()
print(best_run)
print(fitted_model)

Figure 5-2. Retrieving the best run, and details of the corresponding fitted model

You are now ready to register the model. First, you specify the descriptions and tags
for the model, and use the register_model() function to register the model with
Azure Machine Learning. By registering the model, you are storing and versioning
the model in the cloud.

Each registered model is identified by its name and version. When you register a
model (with the same name) multiple times, the registry will incrementally update
the version for the model stored in the registry. Metadata tags enable you to provide
more information about the models that you are registering with the model registry.

78 | Chapter 5: Deploying Automated Machine Learning Models

You can search for the model using the metadata tags that are provided when the
model is registered.

After you have registered the model, you can get the model’s identifier. In the follow‐
ing code, you retrieve the identifier using local_run.model_id (Figure 5-3 shows the
output of running the code):

Register best model in workspace
description = 'AutoML-RUL-Regression-20190510'
tags = None
model = local_run.register_model(description = description, tags = tags)

print(local_run.model_id)

Figure 5-3. Getting the identifier for the model registered with Azure Machine Learning

So far, you have learned how to use the register_model() function to register a
model that has been trained with Azure Machine Learning. You might have trained a
model without using Azure Machine Learning or obtained a model from an external
model repository (or model zoo). For example, to register the MNIST Handwritten
Digit Recognition ONNX model provided in this repo, you can use Model.regis
ter() to register it by providing a local path to the model. The following code shows
how to do this:

onnx_model_url = https://onnxzoo.blob.core.windows.net/models/opset_1/
 mnist/mnist.tar.gz

urllib.request.urlretrieve(onnx_model_url, filename="mnist.tar.gz")
!tar xvzf mnist.tar.gz
model = Model.register(workspace = ws,
 model_path ="mnist/model.onnx",
 model_name = "onnx_mnist",
 tags = {"onnx": "automl-book"},
 description = "MNIST ONNX model",)

Deploying Models | 79

https://oreil.ly/18z5e

You can find out more about the Model class on Microsoft’s Models
documentation page.

Creating the Container Image
Next, we work toward deploying the model as a REST API. Azure Machine Learning
helps you create the container image. The container image can be deployed to any
environment where Docker is available (including Docker running on-premises). In
this chapter, you’ll learn how to deploy and serve the model by using either ACI or
AKS.

To do this, you will need to create a scoring file (score.py) and the YAML file
(myenv.yml). The scoring file is used for loading the model, making the prediction,
and returning the results when the REST API is invoked. In the scoring file, you will
notice that two functions need to be defined: init() and run(rawdata).

The init() function is used to load the model into a global model object. When the
Docker container is started, the function is run only once. The run() function is used
to predict a value based on the input data that is passed to it. Because this code is
mostly used in a web service, the input that is passed via rawdata is a JSON object.
The JSON object needs to be deserialized before you pass it to the model for predic‐
tion, as shown in the following code:

%%writefile score.py

import pickle
import json
import numpy
import azureml.train.automl
from sklearn.externals import joblib
from azureml.core.model import Model

def init():
 global model

 # This name is model.id of model that we want to deploy
 model_path = Model.get_model_path(model_name = '<<modelid>>')

 # Deserialize the model file back into a sklearn model
 model = joblib.load(model_path)

 def run(input_data):
 try:
 data = json.loads(input_data)['input_data']
 data = np.array(data)
 result = model.predict(data)

80 | Chapter 5: Deploying Automated Machine Learning Models

http://bit.ly/2E2YqrW
http://bit.ly/2E2YqrW

 return result.tolist()
 except Exception as e:
 result = str(e)
 return json.dumps({"error": result})

After the code is run, the content will be written to a file called score.py. Figure 5-4
shows the output from running the code. We will replace the value for <<modelid>>
in a later step with the actual model identifier value from local_run.model_id.

Figure 5-4. Creating the scoring file—score.py

After the scoring file has been created, we identify the dependencies from the run and
create the YAML file, as demonstrated in the following code (Figure 5-5 shows the
output from running the code):

Deploying Models | 81

experiment = Experiment(ws, experiment_name)
ml_run = AutoMLRun(experiment = experiment, run_id = local_run.id)

dependencies = ml_run.get_run_sdk_dependencies(iteration = 0)

for p in ['azureml-train-automl', 'azureml-sdk', 'azureml-core']:
 print('{}\t{}'.format(p, dependencies[p]))

Figure 5-5. Retrieving the version of the Azure Machine Learning SDK

After you have identified the dependencies, you can create the YAML file with all of
the dependencies specified by using the function CondaDependencies.create(). The
function creates the environment object and enables you to serialize it to the
myenv.yml file by using the function save_to_file(). Figure 5-6 shows the output
from running the following code:

from azureml.core.conda_dependencies import CondaDependencies
myenv = CondaDependencies.create(conda_packages=[
 'numpy','scikit-learn','lightgbm'],
 pip_packages=['azureml-sdk[automl]'])
conda_env_file_name = 'myenv.yml'
myenv.save_to_file('.', conda_env_file_name)

Figure 5-6. Creating the environment YAML file—myenv.yml

82 | Chapter 5: Deploying Automated Machine Learning Models

Now that we have created both the scoring and environment YAML files, we can
update the files’ content with the version of the Azure Machine Learning SDK and
model identifier that we obtained earlier. The following code reads the file, replaces
the affected values, and writes it back to disk:

with open(conda_env_file_name, 'r') as cefr:
 content = cefr.read()
with open(conda_env_file_name, 'w') as cefw:
 cefw.write(content.replace(azureml.core.VERSION, dependencies['azureml-sdk']))

Substitute the actual model id in the script file.
script_file_name = 'score.py'

with open(script_file_name, 'r') as cefr:
 content = cefr.read()
with open(script_file_name, 'w') as cefw:
 cefw.write(content.replace('<<modelid>>', local_run.model_id))

With the values now replaced, you’re ready to configure and create the container
images, which will be registered with the ACI. In the configuration of the container
image, using the function ContainerImage.image_configuration(), you specify the
runtime used, the environment file that provides the Conda dependencies, metadata
tags, and a description for the container image.

When you invoke Image.create(), Azure Machine Learning builds the container
image, and registers the container image with the ACI. Running the container cre‐
ation code (from “Creating image” to “Running”) usually takes several minutes. By
using image.creation.status, you can learn whether the image creation was suc‐
cessful. Figure 5-7 shows the output from running the following code and verifying
that the container creation is successful:

from azureml.core.image import Image, ContainerImage

image_config = ContainerImage.image_configuration(
 runtime= "python",
 execution_script = script_file_name,
 conda_file = conda_env_file_name,
 tags = {'area': "pred maint",
 'type': "automl_regression"},
 description = "Image for AutoML Predictive maintenance")
image = Image.create(name = "automlpredmaintimage",
 models = [model],
 image_config = image_config,
 workspace = ws)
image.wait_for_creation(show_output = True)
if image.creation_state == 'Failed':
 print("Image build log at: " + image.image_build_log_uri)

Deploying Models | 83

Figure 5-7. Creating the Docker container for the predictive maintenance model

Deploying the Model for Testing
After the Docker container images have been created successfully, you are ready to
deploy the model. You can deploy the container to any environment in which Docker
is available (including Docker running on-premises). These include Azure Machine
Learning Compute, ACI, AKS, IoT Edge, and more. Begin by deploying the Docker
container to ACI for testing. For this deploy, do the following:

1. Specify the deploy configuration.
2. Deploy the Docker image to ACI.
3. Retrieve the scoring URI.

The AciWebservice class is used to specify the deploy configuration. First, we specify
this for the ACI web service. In the following code, we specify a configuration that
uses one CPU core with 2 GB of memory. In addition, we add metadata tags as well
as a description:

from azureml.core.webservice import AciWebservice
aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,
 memory_gb=2,
 tags={"data": "RUL", "method" : "sklearn"},
 description='Predict RUL with Azure AutoML')

Next, we use the Webservice class to deploy the Docker image to the ACI. We use
wait_for_deployment(True) after invoking deploy_from_image(). This requires

84 | Chapter 5: Deploying Automated Machine Learning Models

you to wait for the completion of the web service deployment to ACI. When this is
done, we print the state of the ACI web service. Figure 5-8 shows the output from
running the following code:

from azureml.core.webservice import Webservice

aci_service_name = 'automl-book-pred-maint'
print(aci_service_name)

aci_service = Webservice.deploy_from_image(
 deployment_config = aciconfig,
 image = image,
 name = aci_service_name,
 workspace = ws)
aci_service.wait_for_deployment(True)
print(aci_service.state)

The Webservice class provides various functions for deployment,
including deployment from the image (what we’re using here) and
from the Model object, building and deploying a model locally for
testing, and more. To learn how to use the various functions from
the WebService class, see the Microsoft documentation page.

Figure 5-8. Deploying the web service to ACI and checking that the operation completed

Deploying Models | 85

http://bit.ly/2VzN6i5

Here you’re learning how to use the Azure Machine Learning SDK
for deploying the models created by automated ML. Azure
Machine Learning supports deployment of models using the Azure
CLI, via the command az ml model deploy. To learn how to do
that, refer to this Microsoft Azure documentation page.

After the ACI service deployment is complete, you will be able to use the Azure portal
to see the deployment. When an ACI–based web service is created, you will notice the
following:

• A deployment is created in the Azure Machine Learning workspace (see
Figure 5-9).

• When an ACI instance is created for the deployment, two containers are
deployed: azureml-fe-aci (ACI frontend for Azure Machine Learning that
includes AppInsights logging), and a container (with the name that is provided
during deployment) that includes the scoring code.

Figure 5-9. Azure portal—verifying that the deployment to ACI is complete

Using the Azure portal, you can navigate to the ACI created and click Containers.
You will see the two aforementioned containers. Click the container for scoring and
then click Logs. You can observe the received input and how it is processed. You can
also connect to the container by clicking the Connect tab. For the Start Up Com‐
mand, choose /bin/bash, and then click Connect.

If you navigate to /var/azureml-app, you will find the files that you have been speci‐
fied during deployment (e.g., score.py) as well as other supporting files needed for
enabling the web service to be instantiated.

Once the deployment from the image is successful, you’ll have a scoring URI you can
use to test the deployed model:

print(aci_service.scoring_uri)

Figure 5-10 shows the scoring URI for the web service that is created.

86 | Chapter 5: Deploying Automated Machine Learning Models

http://bit.ly/2vYOGdP

Figure 5-10. Scoring URI for the new web service

Using the Azure portal, you can also dive deeper into the deployment log, or use the
portal to connect to the container that is running. Figure 5-11 shows the deployed
containers in the ACI.

Figure 5-11. Azure portal showing the deployed container instance

Figure 5-12 shows the processes that are running in the deployed container.

Deploying Models | 87

Figure 5-12. Connecting to the running container

Testing a Deployed Model
With the web service deployed to ACI, you are now ready to test the web service. To
do this, you randomly identify a row from X_test. X_test contains the test rows
from the NASA data. You then construct the JSON payload, and perform a POST to
the scoring URI, which returns the result. Figure 5-13 shows the output from run‐
ning the following code:

import requests
import json

Send a random row from the test set to score
random_index = np.random.randint(0, len(X_test)-1)
X_test_row = X_test[random_index : (random_index+1)]
Y_test_row = y_test[random_index : (random_index+1)]

input_data = "{\"input_data\": " + str(X_test_row.values.tolist()) + "}"

headers = {'Content-Type':'application/json'}
resp = requests.post(aci_service.scoring_uri, input_data, headers=headers)

print("POST to url", aci_service.scoring_uri)
print("input data:", input_data)
print("label:", Y_test_row)
print("prediction:", resp.text)

88 | Chapter 5: Deploying Automated Machine Learning Models

print(resp.status_code)
print(requests.status_codes._codes[resp.status_code])

Figure 5-13. Testing the ACI web service by using the NASA dataset

Notice in this example that we are sending a POST request directly to the scoring
URI. Because the web service is backed by an ACI instance, authentication is not
enabled. Deploying models to ACI is good for quickly deploying and validating your
models as well as testing a model that is still in development.

Deploying to AKS
For production deployment, consider deploying the models to AKS. To do that, you
will need to create an AKS cluster. You can either use the Azure CLI or Azure
Machine Learning SDK to create the cluster. After you create the AKS cluster, you can
use it to deploy multiple images.

Let’s start by creating the AKS cluster by using the following code:

from azureml.core.compute import AksCompute, ComputeTarget

Use the default configuration
You can also customize the AKS cluster based on what you need
prov_config = AksCompute.provisioning_configuration()

Deploying Models | 89

aks_name = 'myaks'

Create the cluster
aks_target = ComputeTarget.create(workspace = ws,
 name = aks_name,
 provisioning_configuration = prov_config)
Wait for the AKS cluster to complete creation
aks_target.wait_for_completion(show_output = True)

After you’ve created the AKS cluster, you can deploy the model to the service. In the
following code, notice that we are specifying the AKS cluster that we have created as a
deployment_target:

from azureml.core.webservice import AksWebservice

aks_service_name = 'aks-automl-book-pred-maint'
print(aks_service_name)

aks_target = AksCompute(ws,"myaks")

aks_service = AksWebservice.deploy_from_image(image = image,
 name = aks_service_name,
 deployment_target = aks_target,
 workspace = ws)

aks_service.wait_for_deployment(True)
print(aks_service.state)

With the model deployed to AKS, you will need to specify the service key in the
header of the request before being able to invoke the scoring URI. To do that, let’s
modify the test scoring code that you developed earlier:

import requests
import json

Send a random row from the test set to score
random_index = np.random.randint(0, len(X_test)-1)
X_test_row = X_test[random_index : (random_index+1)]
Y_test_row = y_test[random_index : (random_index+1)]

input_data = "{\"input_data\": " + str(X_test_row.values.tolist()) + "}"

For AKS deployment you need the service key in the header as well
headers = {'Content-Type':'application/json'}
api_key = aks_service.get_keys()[0]
headers = {'Content-Type':'application/json',
 'Authorization':('Bearer '+ api_key)}

resp = requests.post(aks_service.scoring_uri, input_data, headers=headers)

print("POST to url", aks_service.scoring_uri)
print("input data:", input_data)
print("label:", Y_test_row)

90 | Chapter 5: Deploying Automated Machine Learning Models

print("prediction:", resp.text)
print(resp.status_code)

Swagger Documentation for the Web Service
After you have deployed the machine learning web service to various compute envi‐
ronments, it is important to provide good documentation describing how to use the
APIs. This helps to accelerate development of applications that depend on the APIs
for prediction. Because the machine learning APIs that you need to manage will
evolve over time (especially during development), it is important to keep the docu‐
mentation up-to-date.

Swagger is an open source software framework that is used by many developers who
are designing, developing, and documenting RESTful web services. Swagger docu‐
mentation makes it easy for a developer to quickly describe and document the inputs
and outputs of a web service. Swagger documentation has evolved over the years to
become a common way of describing RESTful APIs. Having autogenerated Swagger
documentation helps to ensure that up-to-date information is always available when
you deploy your machine learning model and make it available as a web service.

When you deploy a model using Azure Machine Learning, you can use the Python
inference-schema package when creating the scoring file. The inference-schema
package allows you to add function decorators that enable Swagger documentation to
be generated as well as enforce the schema types.

First, import the relevant classes from the inference-schema package, as follows:

from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import
 NumpyParameterType

After you have imported the various classes, you can specify the input and output
schema, by providing the input_schema and output_schema as decorators for the
run() function. The sample input and output data is provided as part of the
input_sample and output_sample variables:

@input_schema('input_data', NumpyParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))

The following code shows the score.py file, with the decorators specified:

%%writefile score.py
import pickle
import json
import numpy as np
from sklearn.externals import joblib

import azureml.train.automl
from azureml.core.model import Model

Swagger Documentation for the Web Service | 91

from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type
 import NumpyParameterType

def init():
 global model

 # Identifier for the model (model.id) to be deployed
 model_path = Model.get_model_path(model_name = '<<modelid>>')

 # Deserialize the model file back into a sklearn model
 model = joblib.load(model_path)
X_test_row = np.array([[-0.0006, −0.0004, 100.0, 518.67,
 642.25, 1589.25, 1412.42, 14.62, 21.61, 553.88,
 2388.15, 9043.21, 1.3, 47.45, 521.88, 2388.18,
 8131.61, 8.4807, 0.03, 392.0, 2388.0,
 100.0, 38.6, 23.2946]])

input_sample = X_test_row
output_sample = np.array([120.0])

@input_schema('input_data', NumpyParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))
def run(input_data):

 try:
 result = model.predict(input_data)
 return result.tolist()

 except Exception as e:
 result = str(e)
 return json.dumps({"error": result})

After you have the score.py file defined and the model deployed, you can retrieve the
Swagger using the Swagger URI, using print(aci_service.swagger_uri).

This enables you to download the file swagger.json, which contains the Swagger docu‐
mentation for the API. For an example of the swagger.json generated, visit this book’s
GitHub repository. You can also generate the documentation by importing the API
using SwaggerHub.

Debugging a Deployment
As you work toward deploying your machine learning models to various compute
environments (e.g., ACI, AKS), you might encounter situations in which the deploy‐
ment fails (e.g., container terminated) or the scoring API is not returning the results
you are expecting. In this section, we cover some common deployment failures and
show you how to resolve them.

92 | Chapter 5: Deploying Automated Machine Learning Models

http://bit.ly/30gu2nz
https://oreil.ly/M818e

Web Service Deployment Fails
After a container image is created and you deploy the image using Webser
vice.deploy_from_image(), the ACI deployment might fail and the web service will
not be available. As a result, you might see the following error message:

[test]

FailedACI service creation operation finished, operation "Failed"
Service creation polling reached terminal state, current service state: Failed
{
 "code": "AciDeploymentFailed",
 "message": "Aci Deployment failed with exception: Your container application
 crashed. This may be caused by errors in your scoring file's init() function.
 Please check the logs for your container instance automl-book-pred-maint2.
 You can also try to run image
 automatedmlnf2e4863f.azurecr.io/automlpredmaintimage-bug:1 locally.
 Please refer to http://aka.ms/debugimage for more information.",
 "details": [
 {
 "code": "CrashLoopBackOff",
 "message": "Your container application crashed. This may be caused by
 errors in your scoring file's init() function.
 \nPlease check the logs for your container instance
 automl-book-pred-maint2.
 \nYou can also try to run image
 automatedmlnf2e4863f.azurecr.io/automlpredmaintimage-bug:1 locally.
 Please refer to http://aka.ms/debugimage for more information."
 }
]
}
Failed

To debug what caused the service creation to fail, download the container image
using the URI provided in the error message. At the same time, you can use the
Azure portal to investigate. Navigate to the resource group where the Azure Machine
Learning workspace has been created, and find the ACI that corresponds to the ser‐
vice you’re creating. Figure 5-14 shows an example of the ACI. To investigate, do the
following:

1. In the pane on the left, click Containers.

Debugging a Deployment | 93

Figure 5-14. The container instance (automl-book-pred-maint2) to which the con‐
tainer image is deployed

2. Click the container that displays the state as Waiting, and the previous state as
Terminated, as shown in Figure 5-15.

Figure 5-15. Investigating a terminated container in ACI

3. Click the Logs tab, and you will see the logs and the errors causing the container
to fail to boot, as depicted in Figure 5-16.

94 | Chapter 5: Deploying Automated Machine Learning Models

Figure 5-16. Error causing the container to fail to start

To learn how to troubleshoot Azure Machine Learning AKS and
ACI deployments, see this Microsoft documentation page on the
topic.

Conclusion
In this chapter, you learned how to register, deploy, and test the models produced by
automated ML to ACI. You also learned how to specify the input and output schema
for the web service so that you can generate Swagger documentation. Sometimes you
might have a buggy scoring script that causes deployment to fail, and containers
might fail to start. For these circumstances, you learned how to use the Azure portal
as well as the Azure Machine Learning Python SDK to debug a failed deployment.

Conclusion | 95

http://bit.ly/2VyQtFZ
http://bit.ly/2VyQtFZ

CHAPTER 6

Classification and Regression

A key ingredient for successful machine learning implementations (based on discus‐
sions with many data scientists, machine learning engineers, and product managers)
is being able to map the business problem and the desired outcome to the appropriate
machine learning problem (or having a frank conversation that machine learning will
not solve the problem!). Classification and regression are two common machine learn‐
ing techniques that are used.

In this chapter, we cover the basics of classification and regression and show you how
to map a business use case to a classification or regression problem. You’ll learn how
to use Microsoft Azure Machine Learning—specifically, automated ML—to automati‐
cally select the best classification or regression models for your specific use case.

Need to Get Started with Azure Machine Learning?
If you’re getting started with Azure Machine Learning, refer to
Chapter 3 to understand the basic concepts before diving into this
chapter.

What Is Classification and Regression?
In supervised learning, you have a set of independent features, X, and a target feature,
Y. The machine learning task is to map from X → Y. Both classification and regres‐
sion are supervised learning, with a requirement on the availability of labeled data.

To train a high-quality model that performs well for testing data and for generalizing
new unseen data, examples need to be sufficiently representative of the test data. One
underlying assumption for many supervised learning algorithms is that the data dis‐
tribution of training examples is identical to that of the test examples (including
unseen examples).

97

In many real-world problems, this is often untrue. Either your data has very few
objects with the target feature that you want to predict (known as the class imbalance,
or the minority class problem), or it isn’t of good quality. In some situations, you might
not even have labeled data! Over the years, the machine learning community has
invented clever ways to deal with each of these problems (e.g., using the Synthetic
Minority Oversampling Technique, or SMOTE, to deal with class imbalance), but it’s
beyond the scope of this book to go into detail about them.

When Y is a discrete feature, and you’re trying to predict the class/label, you are deal‐
ing with a classification problem. Classification helps predict which category (or
class) an object belongs to. When classification is used for data with two distinct
classes, we often refer to it as binary classification. If there are more than two distinct
classes, it is a multiclass classification problem. For example, predicting whether a per‐
son is a good or bad credit risk is a binary classification problem (because there are
two distinct classes: good or bad). Predicting a book category (e.g., fairytale, cook‐
book, biography, travel, and so on) is a multiclass classification problem.

When Y is a continuous feature that you are trying to predict, you are dealing with a
regression problem. Regression helps to predict a continuous value. For example, in
manufacturing’s predictive maintenance scenarios, regression models are used to pre‐
dict the lifespan for systems and equipment. In health care, regression is used to pre‐
dict health-care costs, length of hospital stays for patients, and more. Figure 6-1
shows a typical data science process for training and evaluating machine learning
models. The same workflow applies to both classification and regression problems.

Figure 6-1. Training a classification/regression model

98 | Chapter 6: Classification and Regression

Data is first split into training and testing data. The training data is used as inputs to a
classification/regression algorithm. A machine learning model is produced once
training completes, after which it’s The evaluated using the test data. As part of model
evaluation, you’ll compute different types of metrics (e.g., precision, accuracy, AUC,
F1-score, and so on), which helps you determine its quality.

Let’s illustrate this with an example on credit-risk scoring. In financial services,
credit-risk scoring enables a bank to make credit decisions for customers. The Ger‐
man Credit Risk dataset consists of 1,000 rows (Table 6-1 shows a subset of the data‐
set). Each row uses a set of features (or attributes, or properties) to describe a person.
The last column is the class/label (i.e., Credit Risk), which provides information on
whether the person is a credit risk.

The German Credit Risk dataset is available in the UCI Machine
Learning Repository. The dataset was contributed to the machine
learning community in 1994 by Professor Hans Hofmann and con‐
sists of 20 features (7 numerical, 13 categorical), and one credit risk
label.

Download the file german.data from the UCI Machine Learning Repository:

import pandas as pd
columns = ['status_checking_acc', 'duration_months', 'credit_history',
 'purpose', 'credit_amount', 'saving_acc_bonds',
 'present_emp_since','installment_rate', 'personal_status',
 'other_debtors', 'residing_since', 'property', 'age_years',
 'inst_plans', 'housing', 'num_existing_credits', 'job',
 'dependents', 'telephone', 'foreign_worker', 'status']

creditg_df = pd.read_csv(
 'https://archive.ics.uci.edu/ml/machine-learning-databases/statlog
 /german/german.data',
delim_whitespace = True, header = None)
Assign the header row to
creditg_df.columns = columns

Get the initial rows of data
creditg_df.head()

After you download the data, observe that in each row, the first few columns (e.g.,
existing account status, duration, credit history, foreign worker) describe different
personal attributes. In Table 6-1, you can see that the first column shows the account
status for the person’s checking account. A11 through A13 denote the amount avail‐
able in the checking account (amounts are in DM, Deutsche Marks, the German cur‐
rency until 2002). A14 indicates that the person has no checking account. For
illustration purposes, we omitted many features. The last column shows the credit
risk: a value of 1 indicates no credit risk, and 2 indicates a credit risk.

What Is Classification and Regression? | 99

http://bit.ly/2CxvDet
http://bit.ly/2CxvDet

Table 6-1. German Credit Risk dataset

Existing account status Duration (months) Credit history … Foreign worker Credit risk
A11 6 A34 … Yes 1

A12 48 A32 … No 1

A14 12 A34 … No 2

A11 42 A32 … Yes 1

Before we dive deeper into the German Credit Risk dataset, let’s review classification
and regression algorithms.

Classification and Regression Algorithms
A rich set of classification and regression algorithms has been developed over the
years by the machine learning community. Commonly used classification algorithms
include the naïve Bayes classifier, support vector machines (SVMs), k-nearest neigh‐
bor, decision tree, and random forest. For regression, decision trees, elastic nets,
LARS Lasso, stochastic gradient descent (SGD), and SVMs, are commonly used.

If you’re asking which classification/regression algorithm should I be using?, the
answer is: it depends. Often, a data scientist tries different algorithms (depending on
the problem, the dataset size, requirements for explainable models, speed of the algo‐
rithms, and more). The trade-off is often between speed, model evaluation metrics
(e.g., accuracy), and explainable results.

For example, if you’re looking at the computational speed at which the initial solution
arrives, you might consider decision trees (or any tree-based variant) or simple linear
regression approaches. However, if you’re optimizing for accuracy (and other met‐
rics), you might use random forests, SVMs, or gradient boosting trees. Often, the best
result is an ensemble of different classification/regression models.

For a deeper dive into how each classification algorithm works,
refer to Professor Tom Mitchell’s Machine Learning course, which
provides a fantastic discussion on the different machine learning
algorithms.
New to machine learning? Refer to this Microsoft cheat sheet for
the different classification algorithms and the use cases in which
they can be applied.

Figure 6-2 shows an example of a possible decision tree that is trained using the Ger‐
man Credit Risk dataset. You will notice that the tree starts with a split attribute–
account status. If the values for account status are A13, A14, the person doesn’t
present a credit risk. The tree further chooses other split attributes (duration and
credit history) and uses this to further determine whether a person is a credit risk.

100 | Chapter 6: Classification and Regression

http://bit.ly/2Tqiqtx
http://bit.ly/2YhnjJ2

Figure 6-2. Decision tree for the German Credit Risk dataset

Each of these classification algorithms has hyperparameters that need to be tuned.
Also, the data distribution, dimensionality of data, sparseness of data, and whether
the data is linearly separable matter. As data scientists mature in their practice, they
build their toolboxes and knowledge of the algorithms to use (based on familiarity
with how the algorithms work, and how to tune the hyperparameters).

If you are interested in experimenting with different classification algorithms and
datasets, scikit-learn provides a rich library of various classification algorithms
and is a good Python machine learning library to get started with.

Using Automated ML for Classification and Regression
Let’s begin to get our hands dirty with a classification problem. To jumpstart your
learning of using automated ML for classification of credit risks using the German
Credit Risk dataset, you can use the notebook provided on GitHub and run them
using Microsoft Azure Notebooks.

Though automated ML seems almost magical (i.e., given a dataset, perform some
auto feature engineering, enumerate through different types of models, and select the
best model), having the right input data will help significantly improve the quality of
the models.

What Is Classification and Regression? | 101

https://notebooks.azure.com/

The sample notebook for using automated ML with Azure
Machine Learning to train a credit risk model is available at https://
bit.ly/2m3xlyP.

A rich set of classification and regression algorithms is supported when using auto‐
mated ML, as shown in Table 6-2.

Table 6-2. Classification and regression algorithms supported by automated ML in Azure
Machine Learning

Type of algorithm Classification Regression
C-SVC ✓
Decision tree ✓ ✓
Elastic net ✓
Extremely randomized trees ✓ ✓
Gradient boosting ✓ ✓
k-nearest neighbors ✓ ✓
LARS Lasso ✓
Light GBM ✓ ✓
Linear SVC ✓
Logistic regression ✓
Naïve Bayes ✓
Random forest ✓ ✓
SGD ✓ ✓

To get the updated list of classification algorithms supported by
automated ML, and to understand details about how each algo‐
rithm works, refer to this Microsoft documentation.

Setting up the Azure Machine Learning workspace
Previously, you learned how to set up your Azure Machine Learning workspace and
prepared the configuration file with the subscription ID, resource group, and work‐
space name. Use the following code to set up that configuration file:

config.json
{
 "subscription_id": "<Replace with Azure Subscription ID>",
 "resource_group": "oreillybook",
 "workspace_name": "automl-tutorials"
}

102 | Chapter 6: Classification and Regression

https://bit.ly/2m3xlyP
https://bit.ly/2m3xlyP
http://bit.ly/2TXdUYN

When using Azure Notebooks, the config.json file should be stored in the same folder
or in the aml_config folder, as shown in Figure 6-3.

Figure 6-3. Getting started with running Azure Notebooks

After you’ve uploaded these files to Azure Notebooks or your own local Jupyter Note‐
book environment, you are ready to get started. Let’s begin by importing the relevant
Python packages that you will use in this exercise:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import logging

Next, import the Azure Machine Learning SDK (azureml-sdk):

import azureml.core
from azureml.core.experiment import Experiment
from azureml.core.workspace import Workspace
from azureml.train.automl import AutoMLConfig

After you’ve imported the relevant Python packages, you will create the Azure
Machine Learning workspace using the values from config.json.

Workspace.from_config() reads the config.json file, which is either stored in either
the same folder as the notebook or aml_config/config.json. As discussed in earlier
chapters, the workspace object stores information about the Azure subscription, and
information about various resources used. After you create it, it also creates a cloud
resource that monitors and tracks the model runs:

ws = Workspace.from_config()

Populate a workspace info object

What Is Classification and Regression? | 103

workspace_info = {}
workspace_info['SDK version'] = azureml.core.VERSION
workspace_info['Subscription ID'] = ws.subscription_id
workspace_info['Workspace Name'] = ws.name
workspace_info['Resource Group'] = ws.resource_group
workspace_info['Location'] = ws.location
pd.set_option('display.max_colwidth', −1)
workspace_info = pd.DataFrame(data = workspace_info, index = [''])
workspace_info.T

After you run the Python code, you will see the output shown in Figure 6-4, which
provides information about the version of the Azure Machine Learning SDK, the
Azure subscription ID, and the name and location of the Azure Machine Learning
workspace that’s been created.

Figure 6-4. Preparing the Azure Machine Learning workspace

If this is the first time you are running the code in Azure Notebooks, you might see
the following warning message:

Warning: Falling back to use azure cli login credentials. If you run your
code in unattended mode, i.e., where you can't give a user input, then
we recommend to use ServicePrincipalAuthentication or MsiAuthentication.

Found the config file in: /home/nbuser/library/config.json Performing
interactive authentication. Please follow the instructions on the terminal.

104 | Chapter 6: Classification and Regression

To sign in, use a web browser to open the page https://microsoft.com/devicelogin
and enter the code <9-digit code> to authenticate.

To authenticate with Azure, click https://microsoft.com/devicelogin and enter the
authentication code that is provided. After you have logged in using a valid creden‐
tial, you can rerun the cell, and you will be authenticated.

To run the code as part of an unattended operation, you’ll need to set up an Azure
Service Principal and use that to log in programmatically. To learn more about how
to authenticate with Azure Machine Learning, visit this GitHub repository.

Next, after you’ve created the Azure Machine Learning workspace, you need to create
the experiment object that will be used for this exercise. In the code that follows,
notice that we pass the reference to the workspace object that we created earlier when
creating the experiment. We also specify a project folder to contain the list of files that
will be created, as shown in Figure 6-5.

Choose the experiment name and specify the project folder.

experiment_name = 'automl-classification'
project_folder = './book/automl-classification'

experiment = Experiment(ws, experiment_name)

Figure 6-5. Creating the experiment and specifying the project folder

Data preparation
For this exercise, we’re using data from the UCI Machine Learning Repository, which
contains a rich collection of datasets for both classification and regression problems.
Another good repository of open machine learning datasets is OpenML.org. The
German Credit Risk dataset is available in both dataset repositories.

Because the german.data file from the UCI Machine Learning Repository does not
contain a header row, we first define the names of each of the columns. This helps us
reference the column names as we work with the dataset. After the following code is
executed, you’ll see the first five rows of the dataset shown in Figure 6-6, in which
each row has 21 columns, with the last column being the label column, named Status:

What Is Classification and Regression? | 105

https://microsoft.com/devicelogin
http://bit.ly/2CEBxdM
http://bit.ly/2Opc38V
http://bit.ly/2HGjHLE

Define the column
columns = ['status_checking_acc', 'duration_months', 'credit_history',
 'purpose', 'credit_amount','saving_acc_bonds',
 'present_emp_since', 'installment_rate','personal_status',
 'other_debtors', 'residing_since', 'property',
 'age_years','inst_plans', 'housing', 'num_existing_credits',
 'job', 'dependents', 'telephone', 'foreign_worker', 'status']

creditg_df = pd.read_csv(
 'https://archive.ics.uci.edu/ml/
 machine-learning-databases/statlog/german/german.data',
 delim_whitespace = True, header = None)
creditg_df.columns = columns
creditg_df.head()

Figure 6-6. Specifying the name of the columns and loading the data

The Status column is the class that we are trying to build a model for predicting. Let’s
look at the number of unique values for the Status column. The values in the status
column are 1 and 2; 1 denotes good credit, and 2 denotes bad credit. To make it easier
to read, we subtract 1 from the values so that we use a value of 0 to represent good
credit, and 1 to represent that the person has bad credit:

Get the unique values in the Status Column
creditg_df.status = creditg_df.status − 1
creditg_df['status'].unique()

In addition, we also separated out the column with the target feature:

Get the label column, and remove the label column from the dataframe
When axis is 1, columns specified are dropped

target = creditg_df["status"]
creditg_df = creditg_df.drop(labels='status',axis=1)

We are now ready to split the data into train and test data. In this exercise, we do a
70/30 split (i.e., 70% of the data for training, and the remainder for testing). In the

106 | Chapter 6: Classification and Regression

following code, you can see that we pass in the reference for the target column, as
well, when we call train_test_split:

Split into train and test data
X_train, X_test, y_train, y_test =
 train_test_split(creditg_df, target, test_size=0.3)

Convert y_train and y_test from Pandas Series to ndArray
y_train = y_train.values
y_test = y_test.values

After you have split the data into train and test data, you should double-check both
DataFrames—X_train and X_test.

Both DataFrames should have 20 columns, as shown in Figure 6-7. Because
train_test_split returns the training and testing label columns as Pandas Series
(denoted by y_train, and y_test), we can convert both of these objects to either
ndArray or DataFrame. This will be used as one of the inputs to the AutoMLConfig
object that will be created.

Figure 6-7. Information about DataFrame X_test

What Is Classification and Regression? | 107

Using automated ML to train the model
We are ready to use automated ML to train the classification model for the German
Credit Risk problem.

But before we do that, let’s look at the metrics available for tuning when using auto‐
mated ML, by using the function get_primary_metrics(). Figure 6-8 shows the out‐
put. You’ll see that the common classification metrics are supported. These include
accuracy, precision, AUC, and the weighted precision scores:

Explore the metrics that are available for classification
azureml.train.automl.utilities.get_primary_metrics('classification')

Figure 6-8. Metrics used for classification models

Let’s define the common automated ML settings used in multiple experiments:

import time
automl_settings = {
 "name": "AutoML_Book_CH08_Classification_{0}".format(time.time()),
 "iteration_timeout_minutes": 10,
 "iterations": 30,
 "primary_metric": 'AUC_weighted',
 "preprocess": True,
 "max_concurrent_iterations": 10,
 "verbosity": logging.INFO
}

Next, we create the AutoMLConfig object that specifies the automated ML settings and
the training data (including the label column y_train). We specify the number of
cross-validations to be performed as 5:

automl_config = AutoMLConfig(
 task = 'classification',
 debug_log = 'automl_errors.log',
 X = X_train,
 y = y_train,
 n_cross_validations = 5,
 path = project_folder,
 **automl_settings
)

108 | Chapter 6: Classification and Regression

When creating the AutoMLConfig object, you will notice that in this
example, we specify the task as classification. If you are using
automated ML for automatically selecting the best regression mod‐
els, you should specify the task as regression.
To find out about the various knobs that you can use when creating
the AutoMLConfig object, refer to https://bit.ly/2lZWXwo. You can
use whitelist_models to specify a list of algorithms to be used
when searching for the best model with automated ML. You can
also specify the list of models that are ignored in the experiment
iteration by using blacklist_models.

After you’ve created the AutoMLConfig object, you are ready to submit the experi‐
ment, as follows:

local_run = experiment.submit(automl_config, show_output = True)

When the experiment has been submitted, automated ML will run and evaluate sev‐
eral iterations. Each iteration will use different classification algorithms as well as
auto-featurization techniques, and show you the evaluation metrics. The best itera‐
tion score will also be shown. Figure 6-9 shows the output from the 30 iterations that
are evaluated.

Notice that iteration 14, which uses logistic regression, achieved the best model score
of 0.7727 initially. And in iteration 30 (the last one), an ensemble was used, which
improved the best model score from 0.7727 to 0.7916. You will also see the explana‐
tion for each column shown in the experiment output (e.g., SAMPLING %, DURA‐
TION, METRIC, BEST).

When the experiment has completed successfully, you can view the details of the run
in the Azure portal:

local_run

Or by using the automated ML Jupyter Notebook widgets:

import azureml.widgets
from azureml.widgets import RunDetails
RunDetails(local_run).show()

If you have not installed the Python package for the widget, you
can also pip install azureml-widgets.

What Is Classification and Regression? | 109

https://bit.ly/2lZWXwo

Figure 6-9. Output from submitting the automated ML classification experiment

As shown in Figure 6-10, if you click Link to Azure Portal, you will see the details
from the latest run that you have completed. You can also deep dive into the logs that
are created from running the experiments.

Figure 6-10. Getting information about local_run

110 | Chapter 6: Classification and Regression

Figure 6-11 shows the details for the run, with run number 347. From the chart, you
can see the performance of a model in each iteration of the run.

Figure 6-11. Azure portal—details for a run of an experiment

Once you install the widgets, you’re ready to see the run details directly in Azure
Notebooks.

What Is Classification and Regression? | 111

Figure 6-12 shows the output from RunDetails(local_run).show(). You can also
click each iteration to view more details. For example, if you click the last iteration
(shown as the first row) for Ensemble, you will see detailed charts that capture the
precision-recall, multiclass ROC, lift curve, gains curve, and calibration curve for the
iteration. The confusion matrix is also shown.

Figure 6-12. Using automated ML Jupyter Notebook widgets

A subset of this view is shown in Figure 6-13.

112 | Chapter 6: Classification and Regression

Figure 6-13. Using the automated ML Jupyter Notebook widgets to understand details
about the run

Instead of interactively clicking each iteration, you can tabulate the metrics for each
iteration in a run by using get_children() (the output is shown in Figure 6-14):

Get all child runs
children = list(local_run.get_children())
metricslist = {}
for run in children:
 properties = run.get_properties()
 metrics = {k: v for k,
 v in run.get_metrics().items() if isinstance(v, float)}
 metricslist[int(properties['iteration'])] = metrics
rundata = pd.DataFrame(metricslist).sort_index(1)
rundata

What Is Classification and Regression? | 113

Figure 6-14. Metrics for each iteration in a run

Selecting and testing the best model from the experiment run

To use the best model, you can use the get_output() function (the output is shown
in Figure 6-15):

best_run, fitted_model = local_run.get_output(metric = "AUC_weighted")

print(best_run)

Figure 6-15. Information about the best run

114 | Chapter 6: Classification and Regression

Let’s test the model using the test data, and understand the classification metrics from
the evaluation, as well as the area under the receiver operating characteristic curve
(ROC AUC):

from sklearn.metrics import classification_report
from sklearn.metrics import roc_auc_score

y_pred = fitted_model.predict(X_test)

target_names = ['0','1']
print (classification_report(
 y_test,y_pred, target_names=target_names))
print("AUC: " + str(roc_auc_score(y_test,y_pred)))

Figure 6-16 shows the output from testing the model using the test data, and the rele‐
vant metrics: precision, recall, f1-score, and support for the model.

Figure 6-16. Classification metrics and AUC for the best model selected

What Is Classification and Regression? | 115

Conclusion
In this chapter, you learned how to use automated ML with Azure Machine Learning
to find the best classification models for predicting a person’s credit risk. You can also
use the same approach for identifying the best regression models. After you’ve identi‐
fied the best classification/regression models for a task, refer to Chapter 5 to see how
to deploy the machine learning models to various environments.

116 | Chapter 6: Classification and Regression

PART III

How Enterprises Are Using
Automated Machine Learning

In this part, you will learn how automated ML is democratizing AI and empowering
people across the enterprise to do machine learning with familiar tools.

CHAPTER 7

Model Interpretability and
Transparency with Automated ML

We discussed earlier how building good machine learning models is a pretty time-
consuming process. What is a “good” machine learning model? We saw that this is
usually defined by performance of the model, as measured by accuracy or similar
metrics. As companies get ready to adopt machine learning for business-critical sce‐
narios, interpretability and transparency of machine learning models becomes vital.

In this chapter, we cover key aspects around interpretability and transparency of
machine learning that leads to customer trust. Interpretability and transparency
become even more important when you are trying to use or customize a machine
learning pipeline developed by others, including those generated by Automated
Machine Learning systems. Let’s take a deeper look at how automated ML on Micro‐
soft Azure Machine Learning enables model interpretability and transparency.

Model Interpretability
Most machine learning models are considered black boxes because it’s usually diffi‐
cult to understand or explain how they work. Without this understanding, it is diffi‐
cult to trust the model, and therefore difficult to convince executive stakeholders and
customers of the business value of machine learning and machine learning–based
systems.

Some models, like linear regression, are considered to be fairly straightforward and
therefore easy to understand, but as we add more features or use more complicated
machine learning models like neural networks, understanding them becomes more
and more difficult. Usually, more complex (and not-so-easy-to-understand) models

119

perform much better—that is, they achieve greater accuracy—than those that are sim‐
pler, and easier to understand. Figure 7-1 shows this relationship.

Figure 7-1. Interpretability/explainability versus model performance

Businesses run on transparency and trust, and being able to open the machine learn‐
ing black box to explain a model helps build transparency and trust. In heavily regu‐
lated industries like health care and banking, interpretability and transparency are
critical. Here are few real-world scenarios to illustrate the value of interpretability and
transparency in machine learning:

• A manufacturing company using machine learning to predict future instrument
failure so that it can proactively perform maintenance activity.
— When you know an instrument is about to fail, what’s the most likely cause

going to be so that you can quickly perform preventive maintenance?
• A financial institution using machine learning to process loan or credit card

applications.
— How do you know whether the model is doing the right thing?
— If a customer asks for more details on why their application was rejected, how

will you respond to them?
• An online retailer or an independent software vendor (ISV) using machine learn‐

ing to predict customer churn—in other words, whether a customer is going to
stop using their product/service soon.

120 | Chapter 7: Model Interpretability and Transparency with Automated ML

— What are the key contributors to customer churn?
— How can you prevent customers from churning?

Feature importance is a popular approach used for model interpretability. Feature
importance indicates how each input column (or feature) affects the model’s predic‐
tions. This allows data scientists to explain the resulting model and predictions so
that stakeholders can see which data points are most important in the model.

Model Interpretability with Azure Machine Learning
The Azure Machine Learning Python SDK offers various interpretability packages to
help you understand feature importance. Using these packages, you can explain
machine learning models globally on all data, or locally on a specific data point.

Explainers
There are two sets of explainers in the Azure Machine Learning SDK, specifically the
azureml.explain.model package: direct explainers and meta explainers.

Direct explainers come from integrated libraries. A popular approach for explaining
the output of machine learning model is SHAP (short for “SHapley Additive exPlana‐
tions”). The following is a list of the direct explainers available in the SDK:

SHAP Tree Explainer
SHAP’s Tree Explainer focuses on trees and ensembles of trees.

SHAP Deep Explainer
Based on the explanation from SHAP, Deep Explainer focuses on deep learning
models. TensorFlow models and Keras models using the TensorFlow backend are
supported (there is also preliminary support for PyTorch).

SHAP Kernel Explainer
SHAP’s Kernel Explainer uses a specially weighted local linear regression to esti‐
mate SHAP values for any model.

Mimic Explainer
Mimic Explainer is based on the idea of global surrogate models. A global surro‐
gate model is an intrinsically interpretable model that is trained to approximate
the predictions of a black-box model as accurately as possible. You can interpret a
surrogate model to draw conclusions about the black-box model.

PFI Explainer
Permutation Feature Importance (PFI) Explainer is a technique used to explain
classification and regression models. At a high level, the way it works is by ran‐
domly shuffling data one feature at a time for the entire dataset and calculating

Model Interpretability | 121

how much the performance metric of interest decreases. The larger the change,
the more important that feature is.

LIME Explainer
Local interpretable model-agnostic explanations (LIME) Explainer uses the state-
of-the-art LIME algorithm to create local surrogate models. Unlike the global
surrogate models, LIME focuses on training local surrogate models to explain
individual predictions. This is currently available in only the contrib/preview
package azureml.contrib.explain.model.

HAN Text Explainer
HAN Text Explainer uses a hierarchical attention network for getting model
explanations from text data for a given black-box text model. This is currently
available only in the contrib/preview package: azureml.contrib.explain.model.

Meta explainers automatically select a suitable direct explainer and generate the best
explanation information based on the given model and datasets. Currently, the fol‐
lowing meta explainers are available in the Azure Machine Learning SDK:

Tabular Explainer
Used with tabular datasets

Text Explainer
Used with text datasets

Image Explainer
Used with image datasets

Text Explainer and Image Explainer are currently available only in the contrib/
preview package azureml.contrib.explain.model.

In addition to automatically selecting direct explainers, meta explainers develop addi‐
tional features on top of the underlying libraries and improve the speed and scalabil‐
ity over the direct explainers. Currently TabularExplainer employs the following
logic to invoke the direct explainers:

1. If it’s a tree-based model, apply TreeExplainer, else
2. If it’s a DNN model, apply DeepExplainer, else
3. Treat it as a black-box model and apply KernelExplainer.

The intelligence built into TabularExplainer will become more sophisticated as
more libraries are integrated into the SDK.

Figure 7-2 shows the relationship between direct and meta explainers and which ones
are suitable for different types of data. The SDK wraps all of the explainers so that
they expose a common API and output format.

122 | Chapter 7: Model Interpretability and Transparency with Automated ML

Figure 7-2. Direct and meta explainers

You’ll now see how to use these explainers in generating feature importance for the
following two scenarios: a regression model trained using sklearn and a classification
model trained using automated ML.

Regression model trained using sklearn
We will build a regression model to predict housing prices using the Boston house
price dataset from sklearn. The dataset has 506 rows, 13 input columns (features),
and 1 target column. Here are the input columns:

• CRIM: Per capita crime rate by town
• ZN: Proportion of residential land zoned for lots over 25,000 sq. ft.
• INDUS: Proportion of nonretail business acres per town
• CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise)
• NOX: Nitric oxides concentration (parts per 10 million)
• RM: Average number of rooms per dwelling
• AGE: Proportion of owner-occupied units built prior to 1940
• DIS: Weighted distances to five Boston employment centers
• RAD: Index of accessibility to radial highways
• TAX: Full-value property-tax rate per $10,000
• PTRATIO: Student-teacher ratio by town
• B: 1,000 * (Bk–0.63)2, where Bk is the proportion of African Americans by town

(this dataset is from 1978)

Model Interpretability | 123

https://oreil.ly/xUiJb
https://oreil.ly/xUiJb

• LSTAT: % lower status of the population

And this is the one target column:

• MEDV: Median value of owner-occupied homes in $1,000s

After loading the dataset and splitting it into train and test sets, we train a simple
regression model using sklearn GradientBoostingRegressor. Next we’ll use Tabular
Explainer from the azureml.explain.model package to generate global feature
importance for the trained model. After the global explanations are generated, we use
the methods get_ranked_global_values() and get_ranked_global_names() to get
ranked feature importance values and the corresponding feature names:

from sklearn.ensemble import GradientBoostingRegressor

reg = GradientBoostingRegressor(n_estimators=100, max_depth=4,
 learning_rate=0.1, loss='huber',
 random_state=1)

model = reg.fit(x_train, y_train)

from azureml.explain.model.tabular_explainer import TabularExplainer

tabular_explainer = TabularExplainer(model, x_train, features =
 boston_data.feature_names)

global_explanation = tabular_explainer.explain_global(x_train)

Sorted SHAP values
print('Ranked global importance values:
 {}'.format(global_explanation.get_ranked_global_values()))

Corresponding feature names
print('Ranked global importance names:
 {}'.format(global_explanation.get_ranked_global_names()))

Display in an easy to understand format
dict(zip(global_explanation.get_ranked_global_names(),
 global_explanation.get_ranked_global_values()))

Figure 7-3 shows ranked global feature importance output. This indicates that the
LSTAT (% lower status of the population) feature is most influential on the output of
the model.

124 | Chapter 7: Model Interpretability and Transparency with Automated ML

Figure 7-3. Global feature importance

Next, we look at how to compute local feature importance for a specific row of data.
This is especially relevant at prediction time. We pass one row from the test set to
explain_local() method and print the local feature importance:

local_explanation = tabular_explainer.explain_local(x_test[0,:])

Sorted local feature importance information; reflects original feature order
print('sorted local importance names:
 {}'.format(local_explanation.get_ranked_local_names()))

print('sorted local importance values:
 {}'.format(local_explanation.get_ranked_local_values()))

Display in an easy to understand format
dict(zip(local_explanation.get_ranked_local_names(),
 local_explanation.get_ranked_local_values()))

As seen in Figure 7-4, although LSTAT remains as the topmost feature in terms of
importance for this specific test record, AGE is the second most impactful feature.

Figure 7-4. Local feature importance

Model Interpretability | 125

As discussed in Chapter 4, raw data usually goes through multiple transformations
before going through the training process. Features produced through this process
are called engineered features, whereas the raw input columns are known as raw fea‐
tures. By default, explainers explain the model in terms of features used for training
(i.e., engineered features) and not on the raw features.

However, in most real-world situations, you would like to understand raw feature
importance. Raw feature importance informs you how each raw input column influ‐
ences the model prediction, whereas engineered feature importance is not directly
based on your inputs columns, but on columns generated through transformations
on input columns. Hence, raw feature importance is a lot more understandable and
actionable than engineered feature importance.

Using the SDK, you can pass your feature transformation pipeline to the explainer to
receive raw feature importance. If you skip this, the explainer provides engineered
feature importance. In general, any of the transformations on a single column will be
supported:

from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn_pandas import DataFrameMapper

Assume that we have created two arrays, numerical and categorical,
that hold the numerical and categorical feature names.

numeric_transformations = [([f], Pipeline(steps=[('imputer',
 SimpleImputer(strategy='median')), ('scaler',
 StandardScaler())])) for f in numerical]

categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore',
 sparse=False)) for f in categorical]

transformations = numeric_transformations + categorical_transformations

Append model to preprocessing pipeline.
Now we have a full prediction pipeline.
clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),
 ('classifier', LogisticRegression(solver='lbfgs'))])

clf.steps[-1][1] returns the trained classification model
Pass transformation as an input to create the explanation object
"features" and "classes" fields are optional
tabular_explainer = TabularExplainer(clf.steps[-1][1],
 initialization_examples=x_train, features=dataset_feature_names,
 classes=dataset_classes, transformations=transformations)

So far, you have seen how to generate feature importance during model training time.
It is also important to understand feature importance at inference time for a specific

126 | Chapter 7: Model Interpretability and Transparency with Automated ML

row of data. Let’s consider this scenario: suppose that you own a machine learning–
powered application to do credit card application processing. If your application
rejects a credit card application, you need to explain why the model rejects that spe‐
cific applicant.

To enable inference-time feature importance, the explainer can be deployed along with
the original model and can be used at scoring time to provide the local explanation
information. Next, we examine how to enable feature importance with the automated
ML tool in Azure Machine Learning.

Classification model trained using automated ML
We will use the sklearn iris dataset. This is a well-known classification scenario for
flowers. There are three classes of flowers and four input features: petal length, petal
width, sepal length, and sepal width. The dataset has 150 rows (50 rows per flower
class).

After loading the dataset and splitting it into train and test sets, we train a classifica‐
tion model using automated ML. To enable feature importance for each of the models
trained by automated ML, we set model_explainability=True in AutoMLConfig:

automl_config = AutoMLConfig(task = 'classification',
 debug_log = 'automl_errors.log',
 primary_metric = 'AUC_weighted',
 iteration_timeout_minutes = 200,
 iterations = 10,
 verbosity = logging.INFO,
 X = X_train,
 y = y_train,
 X_valid = X_test,
 y_valid = y_test,
 model_explainability=True,
 path=project_folder)

local_run = experiment.submit(automl_config, show_output=True)

best_run, fitted_model = local_run.get_output()

Because this is a classification problem, you can get not only overall model-level fea‐
ture importance, but also feature importance per class.

Let’s review how to use the azureml.train.automl.automlexplainer package to
extract feature importance values from models generated in automated ML. We use
the best run here as an example, but you can retrieve any run from automated ML
training:

from azureml.train.automl.automlexplainer import retrieve_model_explanation

shap_values, expected_values, overall_summary, overall_imp,

Model Interpretability | 127

https://oreil.ly/1aaIj

 per_class_summary, per_class_imp = \
 retrieve_model_explanation(best_run)

Global model level feature importance
print('Sorted global importance names: {}'.format(overall_imp))
print('Sorted global importance values: {}'.format(overall_summary))

Global class level feature importance
print('Sorted global class-level importance names: {}'.format(per_class_imp))
print('Sorted global class-level importance values:
 {}'.format(per_class_summary))

Figure 7-5 shows the output: global feature importance for the model and class-level
feature importance.

Figure 7-5. Feature importance for automated ML model

In addition to using the SDK to get feature importance values, you can also get it
through widget UX in the notebook or Azure portal. Let’s see how to do that from
widget UX. After automated ML training is complete, you can use RunDetails from
the azureml.widgets package to visualize the automated ML training including all of
the machine learning pipelines tried, which you can see in Figure 7-6.

Figure 7-6. Automated ML widget UX

128 | Chapter 7: Model Interpretability and Transparency with Automated ML

You can click any of the machine learning pipelines to explore more. In addition to a
bunch of charts, you will see a feature importance chart. Use the legend to see overall
model-level as well as class-level feature importance. In Figure 7-7, you can see that
“petal width (cm)” is the most important feature from the overall model perspective,
but “sepal width (cm)” is the most important feature for class 1.

Figure 7-7. Feature importance in the automated ML widget UX

Model Transparency
In the previous section, you learned how feature importance is a powerful way to
understand machine learning models. It is also important to understand the training
process, from input data leading to the machine learning model. In this section, we
will discuss how automated ML makes the end-to-end training process transparent.

Understanding the Automated ML Model Pipelines
As discussed in earlier chapters, automated ML recommends model pipelines with
the goal of producing high-quality ML models based on user inputs. Each model
pipeline includes the following steps:

1. Data preprocessing and feature engineering
2. Model training based on selected algorithm and hyperparameter values

With automated ML, you can analyze steps of each recommended pipeline before
using them in your application or scenario. This transparency not only allows you to
trust the model better, but also enables you to customize it further. For details on how
to get visibility into the end-to-end process, refer to Chapter 4, which covers all of the
steps in automated ML–recommended machine learning pipelines.

Model Transparency | 129

Guardrails
In previous chapters, you saw that automated ML makes it easy to get started with
machine learning by automating most of the iterative and time-consuming steps. In
addition, there are many best practices that you need to apply to achieve reliable
results. Guardrails help users understand potential issues with their data and training
model, so they know what to expect and can correct the issues for improved results.

Following are some common issues to be aware of:

Missing values
As we’ve discussed in earlier chapters, real-world data isn’t clean and could be
missing a lot of values. Before using it for machine learning, data with missing
values needs to be “fixed.” Various techniques can be used to fix missing values,
from dropping entire rows to using various techniques to intelligently populate
missing values based on the rest of the data; this is called imputation.

Class imbalance
Class imbalance is a major problem in machine learning because most machine
learning algorithms assume that data is equally distributed. In the case of imbal‐
anced data, majority classes dominate over minority classes, causing the machine
learning models to be more biased toward majority classes. This results in poor
classification of minority classes. Some real-world examples involve anomaly
detection, fraud detection, and disease detection.

Sampling is a commonly used strategy to overcome class imbalance. There are
two ways to sample:

Undersampling
Balancing the dataset by removing some instance of majority class.

Oversampling
Adding similar instances of the minority class to balance.

Data leakage
Data leakage is another key problem when building machine learning models.
This occurs when the training dataset includes information that would not be
available at the time of prediction. Because the actual outcome is already known
(due to leakage), the model performance will be almost perfect for the training
data but will be very bad during prediction. There are a few tricks you can use to
overcome data leakage:

Remove leaky features
Use simple rule-based models to identify leaky features and remove them.

130 | Chapter 7: Model Interpretability and Transparency with Automated ML

Hold out dataset
Hold back an unseen test set as a final sanity check of your model before you
use it.

Add noise
Add noise to input data to smooth out the effects of possibly leaky features.

As you can see, understanding and safeguarding against common issues like these
can be critical to the performance of the model as well as transparency to users. Auto‐
mated ML offers guardrails to show and protect against common issues and will con‐
tinue to add more sophisticated ones over time.

Conclusion
In this chapter, we discussed two key aspects that become very important when estab‐
lishing trust in a trained machine learning model: interpretability and transparency.
Almost every company or team using machine learning models requires the models
to be interpretable and transparent–to a degree–to gain confidence.

You learned how to take advantage of interpretability/explainability features by using
the Azure Machine Learning Python SDK, as well as the automated ML Python SDK
and widget UX. We also touched upon gaining visibility into end-to-end model-
training pipelines as well as pitfalls to avoid, and why setting up guardrails against
these pitfalls is important to ensure the transparency of your model.

Conclusion | 131

CHAPTER 8

Automated ML for Developers

Earlier, you learned how to use the automated ML tool in Azure Machine Learning
with Jupyter Notebooks. In this chapter, you’ll learn how to use automated ML in
other environments: Azure Databricks, ML.NET, and SQL Server.

Azure Databricks and Apache Spark
Azure Databricks is a fast, easy, and collaborative Apache Spark–based analytics plat‐
form. It is a managed Spark service in Azure and integrates with various Azure serv‐
ices. This means that Azure manages not only the Spark cluster nodes, but also the
Spark application running on top of it. It has other helpful features, as follows:

• Azure Databricks, with its goal of improving productivity for users, is designed
to be scalable, secure, and easy to manage. It has a collaborative workspace,
shared among users who have appropriate permissions. Users can share multiple
notebooks, clusters, and libraries from within the workspace.

• The Azure Databricks workspace is a single place where data engineers, data sci‐
entists, and business analysts can work with all of the required libraries. The data
sources can be available in the same workspace as well.

• In an Azure Databricks workspace, authentication and authorization is based on
a user’s Azure Active Directory (Azure AD) login. Important from a governance
perspective is that it’s easy to add or remove a user from the Azure Databricks
workspace, and users can be given different permissions, as a reader, contributor,
or owner. And it’s important from a security perspective that an Azure Data‐
bricks cluster deploys in Azure Virtual Network by default and it can be changed
to a customer’s VNet.

133

Apache Spark is currently the most popular open source analytics engine for big data
processing. You can use Scala, Python, R, or SQL to write Spark-based applications.
It’s also fast: with Spark, you can improve performance 10 to 100 times over tradi‐
tional big data technologies because it does some computation in memory instead of
reading data from disk. As shown in Figure 8-1, Spark offers powerful libraries like
MLlib for distributed machine learning, and Spark SQL for distributed SQL and other
libraries on top of the core Spark application.

Figure 8-1. Apache Spark stack (source: https://spark.apache.org/)

We’ll begin by creating a workspace via the Azure portal (Figure 8-2).

Figure 8-2. The Azure portal

134 | Chapter 8: Automated ML for Developers

https://spark.apache.org/
https://spark.apache.org/

You can search for Azure Databricks or use the Analytics menu option (Figure 8-3).

Figure 8-3. Search for Azure Databricks in the Azure portal

Figure 8-4 shows the options for creating the workspace.

Azure Databricks and Apache Spark | 135

Figure 8-4. Provide details in the Azure Databricks pane

136 | Chapter 8: Automated ML for Developers

The workspace setup process only takes about a minute:

1. Name the workspace and select the appropriate Azure subscription.
2. Create a new resource group, or an existing resource group.
3. Select a region that will host this workspace. It should have enough quota

assigned for your subscription.
4. Select the pricing tier. For this exercise, select Premium.
5. Keep Custom VNET set to No.

Once this is done, the overview page opens, as shown in Figure 8-5.

Figure 8-5. Overview of the Azure Databricks resource

From the overview page, click Launch Workspace to open the Azure Databricks
workspace page, shown in Figure 8-6. This workspace will have our cluster, note‐
books, and related assets. This workspace can be the central place for people who
want to run notebooks to do advanced analytics with your data. As we mentioned
earlier, you can sign in using your Azure AD credentials. On the left side of the work‐
space are the options to get data, create clusters, and more.

Azure Databricks and Apache Spark | 137

Figure 8-6. The Azure Databricks workspace

Let’s begin by creating a cluster, as shown in Figure 8-7. A Databricks cluster has
driver and worker nodes. When creating a cluster, you provide a cluster name, a Data‐
bricks runtime, worker type, and driver type. You can select these values based on the
type of experiment that you plan to run. For example, for a large dataset, the VM type
should have more memory.

Figure 8-7. The cluster creation page

The cluster uses underlying Azure virtual machines (VMs). As Figure 8-8 shows, you
can pick and choose the VM type based on the memory and CPU for the worker and
driver type.

138 | Chapter 8: Automated ML for Developers

Figure 8-8. Selecting a worker VM type

You now need to consider two autopilot options: autoscaling and autoterminate
(Figure 8-9). Setting a time limit for when the cluster will terminate helps you to
avoid paying for the cluster when it is not in use. Enabling autoscaling allows you to
increase or decrease the compute capacity on demand based on the resources needed.

It can take 10 to 15 minutes to configure your cluster for the first time. This includes
installing the libraries that you want to set up for the cluster. For automated ML,
install azureml-sdk[automl] on Databricks runtime 5.4 and higher.

Azure Databricks and Apache Spark | 139

Figure 8-9. Cluster configuration in the Azure Databricks workspace

For older runtimes, you can install azureml-sdk[autom_databricks], as shown in
Figure 8-10. This is a single package that has everything needed to run automated ML
on Azure Databricks. You can install it from the libraries page.

Figure 8-10. Specifying the automated ML PyPi package

140 | Chapter 8: Automated ML for Developers

If everything goes well, after the cluster is running and a library is installed on it, your
page should like Figure 8-11.

Figure 8-11. Library status

Now let’s look at the data options. Select the Data option from the pane on the left, as
shown in Figure 8-12.

Figure 8-12. Data sources options

You can bring data into your Azure Databricks workspace in multiple ways. Different
templates are available to easily start connecting to various data sources. Let’s explore
the simplest option of connecting to Azure Blob storage, as shown in Figures 8-13
and 8-14 Figure 8-13. We provide the credentials to connect to the storage. The result
is a dataframe.

Azure Databricks and Apache Spark | 141

Figure 8-13. A sample notebook for data, part 1

Figure 8-14. A sample notebook for data, part 2

You can use this dataframe for further data preparation. Let’s now import a notebook
to this Azure Databricks workspace so that you can write machine learning code. You
can import a notebook by importing a file or from a URL, as shown in Figure 8-15.

142 | Chapter 8: Automated ML for Developers

Figure 8-15. Importing a notebook in the workspace

After you import the Notebook, you can attach the cluster to it, as shown in
Figure 8-16. Just to read a notebook, you don’t need a cluster attached to it, but you
need a cluster to execute code.

Figure 8-16. Attaching a cluster to the notebook

After you’ve attached this notebook to your cluster, it can execute the code. To use
automated ML, your dataframe must be converted into a dataflow object, as shown in
Figure 8-17. This is sample code to convert it.

Figure 8-17. Converting a Pandas dataframe to dataflow

After you have a dataflow object, the steps to run automated ML are the same as run‐
ning a notebook on Jupyter, except for a couple of configuration parameters;
Figure 8-18 shows a sample. You can find more details on this Microsoft documenta‐
tion page.

Azure Databricks and Apache Spark | 143

http://bit.ly/2k9J7qS
http://bit.ly/2k9J7qS

Figure 8-18. Sample configuration settings for automated ML

After you submit the experiment for training, you get an outcome that you can view
in the Azure portal, as shown in Figure 8-19. Here, we show the summary and the
primary metric of each run. You can track the results in a single Azure Machine
Learning service workspace independent of which environment that you use to run it.

Figure 8-19. Output of an automated ML

After you complete the training, look at the hyperparameters used in the run.
Figure 8-20 presents the code for printing the parameters. You can run this code in
any environment; it is not specific to Azure Databricks.

144 | Chapter 8: Automated ML for Developers

Figure 8-20. Sample code for getting hyperparameters

The output will be like that shown in Figure 8-21 (this is with respect to the model
trained in your example notebook). This presents some of the parameters used in
training the model.

The notebook to try the full experiment is available on this book’s GitHub repository.

Azure Databricks and Apache Spark | 145

https://github.com/PracticalAutomatedMachineLearning/Azure

Figure 8-21. Sample hyperparameters

Now that you’ve used an Azure Databricks cluster as your compute for training with
automated ML, let’s see how you can use remote compute from within an Azure
Databricks notebook. This is another option that you can use for automated ML
training. You might want to use an Azure Databricks cluster for data preparation
using Spark and then instead of using the worker nodes from the same cluster, you
can use a remote compute option. It can be a viable scenario when your Azure Data‐
bricks cluster is being used for other tasks or doesn’t have enough worker nodes
capacity. This approach can sometimes be more economical, depending on the
experiment.

You can find a sample notebook for using remote compute at http://bit.ly/2lJzVtq.

146 | Chapter 8: Automated ML for Developers

http://bit.ly/2lJzVtq

ML.NET
Let’s learn another way of using automated ML. If you know Visual Studio and are
familiar with C#.NET and are interested in building machine learning models but
might not know Python, you can use automated ML on ML.NET. To install ML.NET:

1. First install a Terminal on your laptop or use the Terminal in Visual Studio code
(installer found on the Visual Studio site; download the appropriate setup). This
works on Linux, Windows, or Mac.

2. Next, install .NET Core SDK (not Runtime). To install the SDK, download the
installer.

3. If you need to, restart the Terminal for these changes to take effect.
4. After you finish this setup, run the dotnet tool install -g mlnet command

in your Terminal.
5. When installation is complete, test whether mlnet has been installed successfully

by running the mlnet command in your Terminal.
6. Next, to start using ML.NET, download the dataset to the laptop on which you

installed mlnet. In this case, you will use the same NASA dataset we used in pre‐
vious experiments. You can start the training by giving a simple command on the
Terminal as follows:

mlnet auto-train --task regression --dataset "df_new.csv"
 --label-column-name rul

This training takes the default configuration for automated ML. When the training is
complete, you will see the results in the same Terminal as that shown in Figure 8-22.

ML.NET | 147

https://code.visualstudio.com/
https://oreil.ly/mUIJu
https://oreil.ly/mUIJu

Figure 8-22. Automated ML results

Currently, automated ML on ML.NET with CLI supports the following:

• Binary classification
• Multiclass classification
• Regression

You can also change the default configuration by using the following command on
the Terminal:

mlnet auto-train

It will give a list of the various parameters available to customize. For example, the
default training time is 30 minutes, but you can change that based on your needs.

The experiment generates the following assets in the output folder:

• A serialized model ZIP (“best model”) for doing our predictions
• C# solution with the following:

— C# code to predict using the generated model, which can be integrated in your
app

— C# code with the training code used to generate the model as a reference

148 | Chapter 8: Automated ML for Developers

— A log file with information of all iterations across the multiple algorithms
evaluated

You can also call the APIs directly in Visual Studio without using the CLI. It will use
the same core automated ML technology as the CLI. Next, let’s look at how to use
SQL Server to train an automated ML model.

SQL Server
In true democratization style, automated ML is also available to SQL users. We don’t
need to know Python for that. To get started, we will utilize the ability to run Python
code in SQL Server 2017. We can use the sp_execute_external_script stored procedure
to call AutoML.

You can use SQL Server Management Studio or Azure Data Studio for running auto‐
mated ML experiments. To give this a try, follow the steps listed in this post on
Microsoft’s SQL Server Blog.

Conclusion
In this chapter, you learned how to use automated ML from within Azure Databricks,
ML.NET, and SQL Server. In Chapter 9, you’ll learn how to use Azure UI and Power
BI for automated ML.

SQL Server | 149

https://oreil.ly/H7Wyh
https://oreil.ly/H7Wyh

CHAPTER 9

Automated ML for Everyone

So far, you’ve seen how data scientists can use the automated ML capability in Micro‐
soft Azure Machine Learning to build machine learning models using the Azure
Machine Learning Python SDK. Not everyone has the data science expertise or is
familiar with Python. Figure 9-1 shows data from a recent Gartner study indicating
lack of skills as the top challenge or barrier in the adoption of artificial intelligence
(AI) and machine learning.

Figure 9-1. Top AI and ML adoption challenges

151

What if we can remove this barrier? Given the increasing demand for AI and
machine learning, people in various departments and roles are becoming interested
and involved. Here are a few examples of roles in which people would love to build
machine learning models but lack the expertise or familiarity with Python (or other
programming languages like R):

• Domain experts or Subject Matter Experts (SMEs)
• Citizen data scientists
• Data analysts
• Data engineers
• Developers

There needs to be a simpler way to use automated ML—ideally, no-code experiences
in familiar interfaces instead of having to learn new tools and techniques. In this
chapter, we focus on how automated ML is being made available to users who are not
experts in machine learning, with the goal of democratizing it.

Azure Portal UI
Although businesses are beginning to fully realize the potential of machine learning,
they are also realizing that it requires advanced data science skills that are difficult to
find. Many business domain experts have a general understanding of machine learn‐
ing and predictive analytics; however, they prefer not to delve into the depths of sta‐
tistics or coding, which are required when working with traditional machine learning
tools. This is where we think the Azure portal UI, or Azure UI, will help.

To begin with automated ML in Azure UI, first create an Azure Machine Learning
workspace and then create an automated ML experiment. We’ve covered these steps
in earlier chapters, so let’s use the same workspace and create a new experiment, as
shown in Figure 9-2.

152 | Chapter 9: Automated ML for Everyone

Figure 9-2. Creating a new automated ML experiment

Provide a name for your experiment. You must provide a training compute name.
This is an Azure Machine Learning managed compute that will run the experiment.
You can also use an existing experiment and compute, as shown in Figure 9-3.

Figure 9-3. Providing an experiment name and compute selection

Next, select the Storage account that has the data for our training. As shown in
Figure 9-4, you are asked to pick a comma-separated values (CSV) file from a Blob
storage container that will have the full dataset including the prediction label column.
This dataset is available at the GitHub repository for this book.

Azure Portal UI | 153

https://github.com/PracticalAutomatedMachineLearning/Azure

Figure 9-4. Dataset selection

Select the sensor data from NASA’s turbofan engine dataset. Once you have selected
your dataset, you can preview the data and select columns that you think are relevant
for the experiment, as shown in Figure 9-5.

Figure 9-5. Explore the dataset

You can also see the profile of your dataset to understand key characteristics for every
column within it, as shown in Figure 9-6. You can see Min, Max, and other types of
profiling in the dataset.

154 | Chapter 9: Automated ML for Everyone

Figure 9-6. Dataset profiling

In this experiment, we will not include the index column because it won’t add value
for the prediction. As shown in Figure 9-7, select Regression as the experiment type.

Figure 9-7. Excluding columns for training

Every automated ML experiment needs a label column. In this case, choose “rul” as
the label column, as shown in Figure 9-8. This represents remaining useful life of the
turbofan engine.

Figure 9-8. Select the task and target column

You’ll need to change some of the Advanced Settings for this experiment. Use
“r2_score” as the metric, which is a common metric for regression-type problems.
Next, change the “Training job time” to 30 minutes and “Max number of iterations”

Azure Portal UI | 155

to 50. In real life, you might want to set the training job time to 120 minutes and
maximum iterations to at least 100 to get good results.

Leave the remaining parameters as is. Figure 9-9 shows these settings.

Figure 9-9. Automated ML settings

Click Start to commence the training. Figure 9-10 shows a pop-up with the new run
ID.

Figure 9-10. An automated ML run getting started

156 | Chapter 9: Automated ML for Everyone

Initially, when the run starts, it will begin preparing the compute for the experiment,
as shown in Figure 9-11. This can take a few minutes.

Figure 9-11. Run in preparation

When the training is running, you will see the list of models ranked based on the
metric. You can also see how many iterations have been completed. The UI autore‐
freshes, as shown in Figure 9-12.

Figure 9-12. Training in progress

After a few minutes, you see the experiment has completed and can see a nice chart
with all iterations, as shown in Figure 9-13.

Azure Portal UI | 157

Figure 9-13. View of completed training

You will also see a table with a list of iterations sorted based on highest to lowest
r2_score metric, as shown in Figure 9-14.

Figure 9-14. View of all iterations

You can look at details of each run by clicking its name. You can see graphs and met‐
rics that help you to understand the model better. For example, during iteration 49, as
shown in Figures 9-15 and 9-16, you can see the predicted versus true values as well
as the metric associated with the model evaluation.

158 | Chapter 9: Automated ML for Everyone

Figure 9-15. Summary for a selected iteration

Figure 9-16. Metrics for a selected iteration

As shown in Figure 9-17, you can download the best-trained model associated with
the experiment, or from any of these iterations, and deploy it. You can do this in
Azure or any suitable environment. After you’ve downloaded it, this model is in the
form of a .pkl file. You can also click the Deploy Best Model button instead of man‐
ually looking at the table.

Azure Portal UI | 159

Figure 9-17. Download or deploy the best model

The steps to deploy the model appear when you click the Deploy Best Model button
after the experiment has completed running, as shown in Figure 9-18.

The steps for model deployment are the same across the Azure Machine Learning
service, independent of the method used to train the machine learning model. Chap‐
ter 5 covers deployment, so we don’t go in the details of it here.

160 | Chapter 9: Automated ML for Everyone

Figure 9-18. Deploying the best model

Next, let’s look at how to use Power BI to train an automated ML model.

Power BI
Many data analysts and BI professionals use Power BI for metrics, dashboards, and
analysis purposes, but they’re looking to take advantage of machine learning to create
intelligent experiences and processes.

We’ll use the same NASA dataset and learn how to build machine learning models in
Power BI using automated ML.

Preparing the Data
As a first step, you need to create a new dataflow in Power BI. Load the NASA dataset
using file Chap_9_PBI_Democratizing_machine_learning_with_AutomatedML.csv
from http://bit.ly/2meKHs8.

Power BI | 161

http://bit.ly/2meKHs8

Go through a new dataflow creation and create a new entity. Power BI dataflows sup‐
port importing data of many formats and sources, as shown in Figure 9-19. For this
experiment, choose the Text/CSV option.

Figure 9-19. Data source selection

Select the dataset path as shown in Figure 9-20.

Figure 9-20. Select path for CSV file

Review the data in the newly created entity and then click “Save & close,” as demon‐
strated in Figure 9-21.

162 | Chapter 9: Automated ML for Everyone

Figure 9-21. Reviewing the data

Automated ML Training
Now, you have a data entity ready to go. You will notice a brain icon in the options for
the newly created entity. You can create a new machine learning model by clicking
this option, as shown in Figure 9-22.

Figure 9-22. Adding a machine learning model

Next, you’ll go through the automated ML authoring steps. Given that the focus is on
data analysts and BI professionals who might not have sophisticated data science
expertise, this process is very simple. The first step is to choose the data entity (which
is autoselected here because we started from that data entity) and the label column
that you want to train on. This is shown in Figure 9-23.

Power BI | 163

Figure 9-23. Selecting the data entity and label column

The system will try to analyze the label column and recommend the appropriate
model type. In this case, it is a regression model, as shown in Figure 9-24.

Figure 9-24. A model type recommendation

164 | Chapter 9: Automated ML for Everyone

You also have flexibility to choose a different model type if you want, as shown in
Figure 9-25.

Figure 9-25. Model type selection

Going ahead with modeling this as a regression problem, the next step is to select
input features. The system will suggest features, but you have the option to select the
ones that you prefer, as shown in Figure 9-26. You can manually deselect a column
like “unit,” which is not helpful for predictions.

Figure 9-26. Feature selection

Power BI | 165

In the final step, shown in Figure 9-27, you provide the model with a name and sub‐
mit it for training.

Figure 9-27. Starting training

This is when automated ML is invoked to train multiple models with the goal of pro‐
ducing a good one for this scenario.

Understanding the Best Model
When the training is complete, you will receive a notification with a link to a report
that can help you to more clearly understand the best model as well as the training
process.

For the best model, Figure 9-28 shows metrics and details of model performance.
Unlike Azure UI that you saw earlier, Power BI directly gives you the best model to
simplify decision making.

166 | Chapter 9: Automated ML for Everyone

Figure 9-28. Model performance

Figure 9-29 demonstrates how this report also provides details on featurization as
well as algorithm and hyperparameter values for the best model.

Figure 9-29. Featurization and algorithm/hyperparameters

Power BI | 167

In this example, the best model is an Ensemble model, and so we get to see more
details on the composition of this model, as depicted in Figure 9-30.

Figure 9-30. The Ensemble model details

This report also has an option to get feature importance or key influencing features
for the model. Figure 9-31 illustrates that number of cycles and sm4 are the top fea‐
tures influencing the model quality.

Figure 9-31. Feature importance

168 | Chapter 9: Automated ML for Everyone

Understanding the Automated ML Training Process
The next section of the report provides details on the training process, as shown in
Figure 9-32. Here, you can see the model quality across different iterations.

Figure 9-32. Automated ML training details

The model performance report also provides options to update the model training
with new parameters and repeat the process. Figure 9-33 shows the “Edit model”
option in the upper right of the screen.

Figure 9-33. The “apply model” and “edit model” options

Power BI | 169

Model Deployment and Inferencing
When you’re satisfied with the model, click the “Apply model” option from the model
performance report (as shown in Figure 9-33). This takes you through a simple and
intuitive flow of selecting a testing data set/entity and having column(s) added to it,
which will be populated based on this trained model. As new data records come into
this dataflow entity, the newly added column will be automatically populated, infer‐
encing the model we just built and deployed.

Enabling Collaboration
So far, you have seen how automated ML is becoming available in multiple products
and tools to help users of different levels of expertise train machine learning models.
As enterprises begin investing more and more in machine learning and AI, a trend is
emerging in which people of different roles want to collaborate to enable the end-to-
end machine learning workflow. In this section, we discuss two scenarios that
demonstrate this.

Azure Machine Learning to Power BI
Although automated ML in Power BI enables data analysts to easily build machine
learning models, they would also like to take advantage of models built by professio‐
nal data scientists from their organization. With the AI Insights feature of Power BI, it
is very easy to consume any machine learning model trained using Azure Machine
Learning, including those built using the Azure UI.

You saw earlier in this chapter how you can train models using the automated ML UI
in Azure and deploy the trained model as a web service. With the Power BI AI
Insights feature, analysts can discover and use all such deployed web services in their
Power BI workloads. Let’s walk through the flow.

The first step is to edit the already created dataflow entity in Power BI, as shown in
Figure 9-34.

Figure 9-34. Editing a dataflow entity

Next, click “AI insights,” as illustrated in Figure 9-35.

170 | Chapter 9: Automated ML for Everyone

Figure 9-35. Selecting “AI insights”

This queries all Azure Machine Learning–deployed models available to use. As
shown in Figure 9-36, select the relevant model for the dataflow entity that you’re
using and then click Apply.

Figure 9-36. AI Insights; selecting the relevant model

This appends a new column to the entity with a prediction based on the model, as
depicted in Figure 9-37.

Enabling Collaboration | 171

Figure 9-37. Prediction

You now understand how analysts can consume a model trained using Azure
Machine Learning in Power BI. The flow from right to left in Figure 9-38 shows this
collaboration scenario.

Figure 9-38. Enabling collaboration

Power BI Automated ML to Azure Machine Learning
Earlier in this chapter, you saw how analysts can use automated ML in Power BI to
build machine learning models. Perhaps these analysts would like to share their mod‐
els as well as training processes with professional data scientists in their organization
to review, approve, or improve. This scenario could come to life if there were a way to
generate Python code covering the automated ML training process that happened in
Power BI. In fact, there is a way, and the flow from left to right in Figure 9-38 shows
this collaboration scenario.

172 | Chapter 9: Automated ML for Everyone

We expect a lot more scenarios like these to come to life in the near future to enable
collaboration between different roles to make it easy to build and manage machine
learning models at scale.

Conclusion
Congratulations for reaching the last chapter of the book!

In this chapter, you saw how anyone can use automated ML, regardless of their data
science and Python expertise. This trend is expected to continue as automated ML
continues to integrate with various products and tools that users already know and
love. This demonstrates true simplification and democratization of machine learning
and AI.

You began this book learning about the innovations happening in the machine learn‐
ing community and on Azure. These innovations are enabling automated machine
learning. You learned how Azure Machine Learning is making it possible for data sci‐
entists to manage the entire machine learning life cycle, training various types of
models (e.g., classification, regression, and forecasting) using Automated Machine
Learning. We also examined model interpretability and how Azure Machine Learning
is providing data scientists with insights into feature importance, and more. You
learned how to build container images, test the deployed model, and deploy it to vari‐
ous compute environments–from a REST API on Azure, to containers or edge devi‐
ces, and more.

We are excited about what Automated Machine Learning will enable you to do, and
we can’t wait to hear about the AI solutions that you’ve built!

Conclusion | 173

Index

A
accuracy, 23
aggregations, 25
algorithm selection, 12
Apache Spark, 134
area under curve (AUC), 23
artificial intelligence, 40
auto-featurization

for automated machine learning, 61
for classification and regression, 64-69
for time-series forecasting, 69-74
selecting type of, 62

automated machine learning
on Azure (see Azure Machine Learning ser‐

vice)
benefits of, 30
best practices, 5-9
code-free machine learning, 151-173
development environments, 133-149
feature engineering in (see feature engineer‐

ing)
for classification and regression, 101-115
growing demand for, 15
how it works, 31-34
iterative process of, 10-14
model deployment, 75-95
model interpretability and transparency, 7,

33, 60, 119-131
overview of, 1-5, 30
what it is, 19-30

Azure Active Directory (Azure AD), 133
Azure Container Instances (ACI), 76, 93, 95
Azure Container Services (ACI), 95
Azure Databricks

authentication and authorization in, 133
automated ML on, 134-144
benefits of, 133
using remote compute from, 146

Azure Kubernetes Service (AKS), 89, 95
Azure Machine Learning service

auto-featurization capabilities, 61-74
Azure Notebooks, 48-56
machine learning process, 39
model deployment, 75-90
model interpretability with, 121-129
Notebook VM, 57
overview of automated ML on, 30-34

Azure Machine Learning software development
kit (SDK), 41, 48

Azure Machine Learning workspace
creating, 43-47
instantiating in Azure Notebooks, 51
resource provider registration, 41

Azure Notebooks
authorizing access to Azure, 50
DataFrame creation, 52
defining experiments within workspace, 51
exploring child runs, 54
instantiating Azure Machine Learning

workspace, 51
monitoring experiment progress, 53
project creation, 48
selecting best model, 56

Azure portal, 86, 93
Azure UI, 152-160
Azure virtual machines (VMs), 138

175

B
Bayesian optimization, 27
best practices

avoid operating in silos, 8
embrace experimentation, 8
establish performance metrics, 6
focus on transparency, 7, 33, 60
understanding decision process, 5, 97

bias, 39
binary classification, 98
business problem, understanding, 5, 97

C
categorical features/variables, 59
class imbalance, 98, 130
classification

algorithms for, 100
auto-featurization for, 64-69
defined, 97
example problem, 99
model training using automated ML, 127
role in machine learning, 97
using automated machine learning for,

101-115
workflow diagram, 98

cloud-based Azure workstations, 57
cluster distance, 62
code examples, obtaining and using, xii
code-free machine learning

Azure portal UI, 152-160
enabling collaboration, 170
Power BI, 161-170

collaboration, 40, 170
container images, creating, 80
ContainerInstance RP, 42
ContainerRegistry RP, 42
Contributor access, 43
cross-validation, 21
custom artificial intelligence, 40
customer trust, 7, 119

D
data drift, 30
data leakage, 130
data preprocessing methods, 61
data understanding, 19
DataFrames creation, 52
debugging, 92

decision process, understanding, 5, 97
dependent variables, 3
deployment of the model, 40
development environments

Apache Spark, 134
Azure Databricks, 133, 134-146
ML.NET, 147
SQL Server, 149

direct explainers, 121
Docker containers, 80
domain expertise, 60
driver nodes, 138

E
embedded feature selection, 26
encodings, 24, 62
end-to-end (E2E) model life cycle manage‐

ment, 34, 41
engineered feature importance, 126
engineered features, 126
evaluation metrics, 23

(see also performance metrics)
experimentation, 8
explainers, 121
exploration versus exploitation, 29

F
feature engineering

auto-featurization, 61-74
data preprocessing methods, 61
domain expertise and, 60
example of, 59
focus points, 60
importance of, 59
mastering the art of, 74
purpose of, 59
steps of, 11, 23-26

feature generation, 24, 62
feature importance, 121, 125
feature selection, 11, 25
features, 3
featuretools package (Python), 74
filters, 25
forecasting, 69-74

G
grid search, 26
guardrails, 34, 130

176 | Index

H
HAN Text Explainer, 122
hold out datasets, 131
house-price prediction scenario

algorithm selection, 12
end-to-end process, 13
feature engineering, 11
feature selection, 12
hyperparameter tuning, 12
increasing model trust, 7
machine learning example, 2-5
performance metrics, 6
understanding decision process, 5

hyperparameter tuning, 12
hyperparameters, 5, 144

I
Image Explainer, 122
imputation, 130
independent variables, 3
input variables, 3
interpretability packages, 121

J
Jupyter kernel, 49

K
k-fold cross-validation, 21
KeyVault RP, 42

L
leaky features, 130
learning to learn, 29
LIME Explainer, 122
linear regression, 3
local feature importance, 125

M
machine learning (see also automated machine

learning)
challenges of, 40
code-free machine learning, 152
crux of, 1
key trends in, 1
practical applications of, 1
process of, 39
stages of, 19-30

steps of, 40
Machine Learning RPs, 42
mapping business scenarios to data science

questions, 5, 97
MaxAbsScaler, 61
meta explainers, 122
meta-learning, 29
Microsoft Azure Machine Learning service (see

Azure Machine Learning service)
mimic explainer, 121
MinMaxScaler, 61
minority class problem, 98
missing values, 62, 130
ML operationalization (MLOps), 34
ML.NET, 147
model deployment

creating container images, 80
debugging, 92
deploying models for testing, 84
deploying to AKS, 89
environments supported, 75
overview of, 75
registering models, 77
Swagger documentation, 91
testing deployed models, 88

model development
model building process, 2-5
stages of, 19-30

model explainability, 33, 60
model interpretability, 7, 33, 119-129
model life cycle management, 34
model parameters, 4
model selection, 26-30, 56
model training process, 5
model transparency, 7, 33, 60, 129-131
monitoring, 30, 40
multiarmed bandit, 29
multiclass classification, 98

N
neural architecture search (NAS), 29
noise, 131
normalization, 61

O
one-hot encoding, 24, 59
output variables, 3
overfitting, 20
oversampling, 130

Index | 177

Owner access, 43

P
parameters, 4
PCA (Principal Component Analysis), 61
performance estimation, 30
performance metrics

accuracy, 23
area under curve (AUC), 23
establishing, 6, 23
root-mean-square error (RMSE), 6

Permutation Feature Importance (PFI)
Explainer, 121

Power BI
automated ML training, 163
data preparation, 161
enabling collaboration, 170
model deployment and inferencing, 170
understanding automated ML training pro‐

cess, 169
understanding best models, 166

privacy, preserving, 32
production deployment, 89

R
random search, 27
raw feature importance, 126
raw features, 126
regression

algorithms for, 100
auto-featurization for, 64-69
defined, 97
example problem, 99
model training using sklearn, 123
role in machine learning, 97
using automated machine learning for,

101-115
workflow diagram, 98

regression pipelines, 78
reinforcement learning, 29
remote compute, 146
resource providers (RPs), 41
retraining, 30
RobustScaler, 61

root-mean-square error (RMSE), 6

S
sampling, 130
scaling, 61
scoring files, creating, 80
scoring URI, 86
search space, 30
search strategy, 30
SHAP Deep Explainer, 121
SHAP Kernel Explainer, 121
SHAP Tree Explainer, 121
skewed data, 39
sklearn, 123
SparseNormalizer, 61
SQL Server, 149
supervised machine learning, 22
Swagger documentation, 91
Synthetic Minority Oversampling Technique

(SMOTE), 24, 98

T
Tabular Explainer, 122
target encodings, 62
targets, 3
task detection, 21
Text Explainer, 122
text target encoding, 62
time-series forecasting, 69-74
transformations, 24, 62
transparency, 7, 33, 60, 129-131
TruncatedSVDWrapper, 61
trust, 7, 119

U
underfitting, 20
undersampling, 130

W
Weight of Evidence (WoE), 62
word embeddings, 62
worker nodes, 138
wrappers, 25

178 | Index

About the Authors
Deepak Mukunthu is a product leader with more than 16 years of experience. With
his experience in big data, analytics, and AI, Deepak has played instrumental leader‐
ship roles in helping organizations and teams become data-driven and to adopt
machine learning. He brings a good mix of thought leadership, customer understand‐
ing, and innovation to design and deliver compelling products that resonate well with
customers. In his current role of principal program manager of the automated ML in
Azure AI platform group at Microsoft, Deepak drives product strategy and roadmap
for Automated ML with the goal of accelerating AI for data scientists and democratiz‐
ing AI for other personas interested in machine learning. In addition to shaping the
product direction, he also plays an instrumental role in helping customers adopt
Automated ML for their business-critical scenarios. Prior to joining Microsoft,
Deepak worked at Trilogy where he played multiple roles—consultant, business
development, program manager, engineering manager—successfully leading dis‐
tributed teams across the globe and managing technical integration of acquisitions.

Parashar Shah is a senior program/product manager on the Azure AI engineering
team at Microsoft, leading big data and deep learning projects to help increase adop‐
tion of AI in enterprises especially automated ML with Spark. At Microsoft and at
Alcatel-Lucent/Bell Labs prior to that, his contributions increased global adoption of
AI/analytics platform contributing to customers’ growth in retail, manufacturing,
telco, and oil and gas verticals. Parashar has an MBA from the Indian Institute of
Management Bangalore and a B.E. (E.C.) from Nirma Institute of Technology, Ahme‐
dabad. He also cofounded a carpool startup in India. He has also coauthored Hands-
On Machine Learning with Azure: Build Powerful Models with Cognitive Machine
Learning and Artificial Intelligence (Packt), published in November 2018. He has filed
for five patents. He has presented at multiple Microsoft and external conferences,
including Spark summit and KDD. His interests span the subjects of photography, AI,
machine learning, automated ML, big data, and the internet of things (IoT).

Wee Hyong Tok is part of the AzureCAT team at Microsoft. He has extensive leader‐
ship experience leading multidisciplinary team of engineers and data scientists, work‐
ing on cutting-edge AI capabilities that are infused into products and services. He is a
tech visionary with a background in product management, machine learning/deep
learning and working on complex engagements with customers. Over the years, he
has demonstrated that his early thought leadership whitepapers on tech trends have
become reality, and deeply integrated into many products. His ability to strategize,
and turn strategy to execution, and hunting for customer adoption has enabled many
projects that he works on to be successful. He is continuously pushing the boundaries
of products for machine learning and deep learning. His team works extensively with
deep learning frameworks, ranging from TensorFlow, CNTK, Keras, and PyTorch.

Wee Hyong has worn many hats in his career—developer, program/product manager,
data scientist, researcher, and strategist—and his range of experience has given him
unique superpowers to lead and define the strategy for high-performing data and AI
innovation teams. Throughout his career, he has been a trusted advisor to the C-suite,
from Fortune 500 companies to startups.

Colophon
The animal on the cover of Practical Automated Machine Learning on Azure is the lit‐
tle blue heron (Egretta caerulea). For most of the year these birds live in the coastal
regions of the Caribbean basin, and along the equatorial coastlines of North and
South America. They nest inland, in the south-central United States.

Adults average about two feet tall, with grey-blue plumage over their wings and bod‐
ies, and a deep violet head and neck. They also have a sharp, pale blue beak and long,
pale yellowish-green legs.

They hunt by stalking through shallow water in freshwater, brackish, and saltwater
environments, feeding on small fish, crustaceans, and insects. When they see prey in
the water, they pause then advance very slowly, until when within reach; then they
swiftly strike down through the water to capture their prey. Though a simple action,
when striking at their prey, herons must correctly allow for how the water’s surface
refracts the light and shifts the image of the fish or crustacean.

When they first fledge, little blue heron chicks have white feathers, and only start to
acquire their slate-blue plumage in their second year. One theory on the evolutionary
advantage of this striking color change is that first-year chicks remain white when
young because they can mix better with flocks of the much larger snowy egret, which
both gives them protection from predators and helps them find food.

Little blue herons are at risk from habitat loss, climate changes, and water contamina‐
tion. Additionally, some are legally shot each year as they hunt for fish at fish hatcher‐
ies, and human intrusion on their habitat during nesting can cause adults to abandon
nests, resulting in the loss of eggs and chicks. The little blue heron currently has an
IUCN Red List conservation status of being of “Least concern.”

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

Color illustration by Karen Montgomery, based on a black-and-white engraving from
British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font
is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/online-learning/

	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Automated Machine Learning
	Chapter 1. Machine Learning: Overview and Best Practices
	Machine Learning: A Quick Refresher
	Model Parameters
	Hyperparameters

	Best Practices for Machine Learning Projects
	Understand the Decision Process
	Establish Performance Metrics
	Focus on Transparency to Gain Trust
	Embrace Experimentation
	Don’t Operate in a Silo

	An Iterative and Time-Consuming Process
	Feature Engineering
	Algorithm Selection
	Hyperparameter Tuning
	The End-to-End Process

	Growing Demand
	Conclusion

	Chapter 2. How Automated Machine Learning Works
	What Is Automated Machine Learning?
	Understanding Data
	Detecting Tasks
	Choosing Evaluation Metrics
	Feature Engineering
	Selecting a Model
	Monitoring and Retraining
	Bringing It All Together

	Automated ML
	How Automated ML Works
	Preserving Privacy
	Enabling Transparency
	Guardrails
	End-to-End Model Life-Cycle Management

	Conclusion

	Part II. Automated ML on Azure
	Chapter 3. Getting Started with Microsoft Azure Machine Learning and Automated ML
	The Machine Learning Process
	Collaboration and Monitoring
	Deployment

	Setting Up an Azure Machine Learning Workspace for Automated ML
	Azure Notebooks
	Notebook VM

	Conclusion

	Chapter 4. Feature Engineering and Automated Machine Learning
	Data Preprocessing Methods Available in Automated ML
	Auto-Featurization for Automated ML
	Auto-Featurization for Classification and Regression
	Auto-Featurization for Time-Series Forecasting

	Conclusion

	Chapter 5. Deploying Automated Machine Learning Models
	Deploying Models
	Registering the Model
	Creating the Container Image
	Deploying the Model for Testing
	Testing a Deployed Model
	Deploying to AKS

	Swagger Documentation for the Web Service
	Debugging a Deployment
	Web Service Deployment Fails

	Conclusion

	Chapter 6. Classification and Regression
	What Is Classification and Regression?
	Classification and Regression Algorithms
	Using Automated ML for Classification and Regression

	Conclusion

	Part III. How Enterprises Are Using Automated Machine Learning
	Chapter 7. Model Interpretability and Transparency with Automated ML
	Model Interpretability
	Model Interpretability with Azure Machine Learning

	Model Transparency
	Understanding the Automated ML Model Pipelines
	Guardrails

	Conclusion

	Chapter 8. Automated ML for Developers
	Azure Databricks and Apache Spark
	ML.NET
	SQL Server
	Conclusion

	Chapter 9. Automated ML for Everyone
	Azure Portal UI
	Power BI
	Preparing the Data
	Automated ML Training
	Understanding the Best Model
	Understanding the Automated ML Training Process
	Model Deployment and Inferencing

	Enabling Collaboration
	Azure Machine Learning to Power BI
	Power BI Automated ML to Azure Machine Learning

	Conclusion

	Index
	About the Authors
	Colophon

