
Matt Harrison

Machine
Learning

Working with Structured Data
in Python

Pocket
Reference

Matt Harrison

Machine Learning
Pocket Reference

Working with Structured Data
in Python

978-1-492-04754-4

[LSI]

Machine Learning Pocket Reference
by Matt Harrison

Copyright © 2019 Matt Harrison. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://oreilly.com).
For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Rachel Roumeliotis
Development Editor: Nicole Tache
Production Editor: Christopher Faucher
Copyeditor: Sonia Saruba
Proofreader: Christina Edwards
Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2019: First Edition

Revision History for the First Edition
2019-08-27: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492047544 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Machine
Learning Pocket Reference, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent
the publisher’s views. While the publisher and the author have used good faith
efforts to ensure that the information and instructions contained in this work
are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages result‐
ing from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492047544

Table of Contents

Preface ix

Chapter 1: Introduction 1
Libraries Used 2
Installation with Pip 5
Installation with Conda 6

Chapter 2: Overview of the Machine Learning Process 9

Chapter 3: Classification Walkthrough: Titanic Dataset 11
Project Layout Suggestion 11
Imports 12
Ask a Question 13
Terms for Data 13
Gather Data 15
Clean Data 16
Create Features 23
Sample Data 25

iii

Impute Data 25
Normalize Data 27
Refactor 27
Baseline Model 29
Various Families 29
Stacking 31
Create Model 32
Evaluate Model 33
Optimize Model 34
Confusion Matrix 35
ROC Curve 36
Learning Curve 38
Deploy Model 39

Chapter 4: Missing Data 41
Examining Missing Data 42
Dropping Missing Data 47
Imputing Data 47
Adding Indicator Columns 49

Chapter 5: Cleaning Data 51
Column Names 51
Replacing Missing Values 52

Chapter 6: Exploring 55
Data Size 55
Summary Stats 56
Histogram 58
Scatter Plot 59
Joint Plot 60

iv | Table of Contents

Pair Grid 63
Box and Violin Plots 64
Comparing Two Ordinal Values 65
Correlation 67
RadViz 71
Parallel Coordinates 73

Chapter 7: Preprocess Data 77
Standardize 77
Scale to Range 79
Dummy Variables 80
Label Encoder 81
Frequency Encoding 82
Pulling Categories from Strings 82
Other Categorical Encoding 84
Date Feature Engineering 86
Add col_na Feature 87
Manual Feature Engineering 88

Chapter 8: Feature Selection 89
Collinear Columns 90
Lasso Regression 92
Recursive Feature Elimination 94
Mutual Information 96
Principal Component Analysis 97
Feature Importance 97

Chapter 9: Imbalanced Classes 99
Use a Different Metric 99
Tree-based Algorithms and Ensembles 99

Table of Contents | v

Penalize Models 100
Upsampling Minority 100
Generate Minority Data 101
Downsampling Majority 101
Upsampling Then Downsampling 103

Chapter 10: Classification 105
Logistic Regression 106
Naive Bayes 111
Support Vector Machine 113
K-Nearest Neighbor 116
Decision Tree 119
Random Forest 127
XGBoost 133
Gradient Boosted with LightGBM 143
TPOT 148

Chapter 11: Model Selection 153
Validation Curve 153
Learning Curve 156

Chapter 12: Metrics and Classification Evaluation 159
Confusion Matrix 159
Metrics 162
Accuracy 164
Recall 164
Precision 164
F1 165
Classification Report 165
ROC 166

vi | Table of Contents

Precision-Recall Curve 167
Cumulative Gains Plot 169
Lift Curve 171
Class Balance 172
Class Prediction Error 173
Discrimination Threshold 175

Chapter 13: Explaining Models 177
Regression Coefficients 177
Feature Importance 178
LIME 178
Tree Interpretation 180
Partial Dependence Plots 181
Surrogate Models 185
Shapley 186

Chapter 14: Regression 191
Baseline Model 193
Linear Regression 194
SVMs 198
K-Nearest Neighbor 200
Decision Tree 202
Random Forest 208
XGBoost Regression 211
LightGBM Regression 218

Chapter 15: Metrics and Regression Evaluation 223
Metrics 223
Residuals Plot 226
Heteroscedasticity 227

Table of Contents | vii

Normal Residuals 228
Prediction Error Plot 230

Chapter 16: Explaining Regression Models 233
Shapley 233

Chapter 17: Dimensionality Reduction 239
PCA 239
UMAP 259
t-SNE 264
PHATE 268

Chapter 18: Clustering 273
K-Means 273
Agglomerative (Hierarchical) Clustering 280
Understanding Clusters 283

Chapter 19: Pipelines 289
Classification Pipeline 289
Regression Pipeline 292
PCA Pipeline 293

Index 295

viii | Table of Contents

Preface

Machine learning and data science are very popular right now
and are fast-moving targets. I have worked with Python and
data for most of my career and wanted to have a physical book
that could provide a reference for the common methods that I
have been using in industry and teaching during workshops to
solve structured machine learning problems.

This book is what I believe is the best collection of resources
and examples for attacking a predictive modeling task if you
have structured data. There are many libraries that perform a
portion of the tasks required and I have tried to incorporate
those that I have found useful as I have applied these techni‐
ques in consulting or industry work.

Many may lament the lack of deep learning techniques. Those
could be a book by themselves. I also prefer simpler techniques
and others in industry seem to agree. Deep learning for
unstructured data (video, audio, images), and powerful tools
like XGBoost for structured data.

I hope this book serves as a useful reference for you to solve
pressing problems.

ix

What to Expect
This book gives in-depth examples of solving common struc‐
tured data problems. It walks through various libraries and
models, their trade-offs, how to tune them, and how to inter‐
pret them.

The code snippets are meant to be sized such that you can use
and adapt them in your own projects.

Who This Book Is For
If you are just learning machine learning, or have worked with
it for years, this book should serve as a valuable reference. It
assumes some knowledge of Python, and doesn’t delve at all
into syntax. Rather it shows how to use various libraries to
solve real-world problems.

This will not replace an in-depth course, but should serve as a
reference of what an applied machine learning course might
cover. (Note: The author uses it as a reference for the data ana‐
lytics and machine learning courses he teaches.)

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

x | Preface

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is avail‐
able at https://github.com/mattharrison/ml_pocket_reference.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing
this book and quoting example code does not require permis‐
sion. Incorporating a significant amount of example code from
this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For
example: “Machine Learning Pocket Reference by Matt Harrison
(O’Reilly). Copyright 2019 Matt Harrison, 978-1-492-04754-4.”

Preface | xi

https://github.com/mattharrison/ml_pocket_reference

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly
Media has provided technology
and business training, knowledge,

and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, conferences,
and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses,
in-depth learning paths, interactive coding environments, and
a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at http://www.oreilly.com/catalog/9781492047544.

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

xii | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
http://oreilly.com
http://www.oreilly.com/catalog/9781492047544
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Much thanks to my wife and family for their support. I’m
grateful to the Python community for providing a wonderful
language and toolset to work with. Nicole Tache has been
lovely to work with and provided excellent feedback. My tech‐
nical reviewers, Mikio Braun, Natalino Busa, and Justin Fran‐
cis, kept me honest. Thanks!

Preface | xiii

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

This is not so much an instructional manual, but rather notes,
tables, and examples for machine learning. It was created by the
author as an additional resource during training, meant to be
distributed as a physical notebook. Participants (who favor the
physical characteristics of dead-tree material) could add their
own notes and thoughts and have a valuable reference of cura‐
ted examples.

We will walk through classification with structured data. Other
common machine learning applications include predicting a
continuous value (regression), creating clusters, or trying to
reduce dimensionality, among others. This book does not dis‐
cuss deep learning techniques. While those techniques work
well for unstructured data, most recommend the techniques in
this book for structured data.

We assume knowledge and familiarity with Python. Learning
how to manipulate data using the pandas library is useful. We
have many examples using pandas, and it is an excellent tool
for dealing with structured data. However, some of the index‐
ing operations may be confusing if you are not familiar with
numpy. Full coverage of pandas could be a book in itself.

1

https://pandas.pydata.org

Libraries Used
This book uses many libraries. This can be a good thing and a
bad thing. Some of these libraries may be hard to install or con‐
flict with other library versions. Do not feel like you need to
install all of these libraries. Use “JIT installation” and only
install the libraries that you want to use as you need them.

>>> import autosklearn, catboost,
category_encoders, dtreeviz, eli5, fancyimpute,
fastai, featuretools, glmnet_py, graphviz,
hdbscan, imblearn, janitor, lime, matplotlib,
missingno, mlxtend, numpy, pandas, pdpbox, phate,
pydotplus, rfpimp, scikitplot, scipy, seaborn,
shap, sklearn, statsmodels, tpot, treeinterpreter,
umap, xgbfir, xgboost, yellowbrick

>>> for lib in [
... autosklearn,
... catboost,
... category_encoders,
... dtreeviz,
... eli5,
... fancyimpute,
... fastai,
... featuretools,
... glmnet_py,
... graphviz,
... hdbscan,
... imblearn,
... lime,
... janitor,
... matplotlib,
... missingno,
... mlxtend,
... numpy,
... pandas,
... pandas_profiling,
... pdpbox,
... phate,

2 | Chapter 1: Introduction

... pydotplus,

... rfpimp,

... scikitplot,

... scipy,

... seaborn,

... shap,

... sklearn,

... statsmodels,

... tpot,

... treeinterpreter,

... umap,

... xgbfir,

... xgboost,

... yellowbrick,

...]:

... try:

... print(lib.__name__, lib.__version__)

... except:

... print("Missing", lib.__name__)
catboost 0.11.1
category_encoders 2.0.0
Missing dtreeviz
eli5 0.8.2
fancyimpute 0.4.2
fastai 1.0.28
featuretools 0.4.0
Missing glmnet_py
graphviz 0.10.1
hdbscan 0.8.22
imblearn 0.4.3
janitor 0.16.6
Missing lime
matplotlib 2.2.3
missingno 0.4.1
mlxtend 0.14.0
numpy 1.15.2
pandas 0.23.4
Missing pandas_profiling
pdpbox 0.2.0
phate 0.4.2

Libraries Used | 3

Missing pydotplus
rfpimp
scikitplot 0.3.7
scipy 1.1.0
seaborn 0.9.0
shap 0.25.2
sklearn 0.21.1
statsmodels 0.9.0
tpot 0.9.5
treeinterpreter 0.1.0
umap 0.3.8
xgboost 0.81
yellowbrick 0.9

NOTE

Most of these libraries are easily installed with pip or
conda. With fastai I need to use pip install

--no-deps fastai. The umap library is installed with pip
install umap-learn. The janitor library is installed
with pip install pyjanitor. The autosklearn library is
installed with pip install auto-sklearn.
I usually use Jupyter for doing an analysis. You can use
other notebook tools as well. Note that some, like Google
Colab, have preinstalled many of the libraries (though they
may be outdated versions).

There are two main options for installing libraries in Python.
One is to use pip (an acronym for Pip Installs Python), a tool
that comes with Python. The other option is to use Anaconda.
We will introduce both.

4 | Chapter 1: Introduction

https://anaconda.org

Installation with Pip
Before using pip, we will create a sandbox environment to
install our libraries into. This is called a virtual environment
named env:

$ python -m venv env

NOTE

On Macintosh and Linux, use python; on Windows, use
python3. If Windows doesn’t recognize that from the com‐
mand prompt, you may need to reinstall or fix your install
and make sure you check the “Add Python to my PATH”
checkbox.

Then you activate the environment so that when you install
libraries, they go in the sandbox environment and not in the
global Python installation. As many of these libraries change
and are updated, it is best to lock down versions on a per-
project basis so you know that your code will run.

Here is how we activate the virtual environment on Linux and
Macintosh:

$ source env/bin/activate

You will notice that the prompt is updated, indicating that we
are using the virtual environment:

 (env) $ which python
 env/bin/python

On Windows, you will need to activate the environment by
running this command:

C:> env\Scripts\activate.bat

Installation with Pip | 5

Again, you will notice that the prompt is updated, indicating
that we are using the virtual environment:

 (env) C:> where python
 env\Scripts\python.exe

On all platforms, you can install packages using pip. To install
pandas, type:

(env) $ pip install pandas

Some of the package names are different than the library
names. You can search for packages using:

(env) $ pip search libraryname

Once you have your packages installed, you can create a file
with all of the versions of the packages using pip:

(env) $ pip freeze > requirements.txt

With this requirements.txt file you can easily install the pack‐
ages into a new virtual environment:

(other_env) $ pip install -r requirements.txt

Installation with Conda
The conda tool comes with Anaconda and lets us create envi‐
ronments and install packages.

To create an environment named env, run:

$ conda create --name env python=3.6

To activate this environment, run:

$ conda activate env

This will update the prompt on both Unix and Windows sys‐
tems. Now you can search for packages using:

(env) $ conda search libraryname

To install a package, like pandas, run:

(env) $ conda install pandas

6 | Chapter 1: Introduction

To create a file with the package requirements in it, run:

(env) $ conda env export > environment.yml

To install these requirements in a new environment, run:

(other_env) $ conda create -f environment.yml

WARNING

Some of the libraries mentioned in this book are not avail‐
able to install from Anaconda’s repository. Don’t fret. It
turns out you can use pip inside of a conda environment
(no need to create a new virtual environment), and install
these using pip.

Installation with Conda | 7

CHAPTER 2

Overview of the Machine Learning
Process

Cross-Industry Standard Process for Data Mining (CRISP-
DM) is a process for doing data mining. It has several steps that
can be followed for continuous improvement. They are:

• Business understanding
• Data understanding
• Data preparation
• Modeling
• Evaluation
• Deployment

Figure 2-1 shows my workflow for creating a predictive model
that expands on the CRISP-DM methodology. The walk‐
through in the next chapter will cover these basic steps.

9

Figure 2-1. Common workflow for machine learning.

10 | Chapter 2: Overview of the Machine Learning Process

CHAPTER 3

Classification Walkthrough:
Titanic Dataset

This chapter will walk through a common classification prob‐
lem using the Titanic dataset. Later chapters will dive into and
expand on the common steps performed during an analysis.

Project Layout Suggestion
An excellent tool for performing exploratory data analysis is
Jupyter. Jupyter is an open-source notebook environment that
supports Python and other languages. It allows you to create
cells of code or Markdown content.

I tend to use Jupyter in two modes. One is for exploratory data
analysis and quickly trying things out. The other is more of a
deliverable style where I format a report using Markdown cells
and insert code cells to illustrate important points or discover‐
ies. If you aren’t careful, your notebooks might need some
refactoring and application of software engineering practices
(remove globals, use functions and classes, etc.).

The cookiecutter data science package suggests a layout to cre‐
ate an analysis that allows for easy reproduction and sharing
code.

11

https://oreil.ly/PjceO
https://jupyter.org
https://oreil.ly/86jL3

Imports
This example is based mostly on pandas, scikit-learn, and Yel‐
lowbrick. The pandas library gives us tooling for easy data
munging. The scikit-learn library has great predictive model‐
ing, and Yellowbrick is a visualization library for evaluating
models:

>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> from sklearn import (
... ensemble,
... preprocessing,
... tree,
...)
>>> from sklearn.metrics import (
... auc,
... confusion_matrix,
... roc_auc_score,
... roc_curve,
...)
>>> from sklearn.model_selection import (
... train_test_split,
... StratifiedKFold,
...)
>>> from yellowbrick.classifier import (
... ConfusionMatrix,
... ROCAUC,
...)
>>> from yellowbrick.model_selection import (
... LearningCurve,
...)

12 | Chapter 3: Classification Walkthrough: Titanic Dataset

http://pandas.pydata.org/
https://scikit-learn.org/
http://www.scikit-yb.org/
http://www.scikit-yb.org/

WARNING

You might find documentation and examples online that
include star imports like:

from pandas import *

Refrain from using star imports. Being explicit makes your
code easier to understand.

Ask a Question
In this example, we want to create a predictive model to answer
a question. It will classify whether an individual survives the
Titanic ship catastrophe based on individual and trip charac‐
teristics. This is a toy example, but it serves as a pedagogical
tool for showing many steps of modeling. Our model should be
able to take passenger information and predict whether that
passenger would survive on the Titanic.

This is a classification question, as we are predicting a label for
survival; either they survived or they died.

Terms for Data
We typically train a model with a matrix of data. (I prefer to use
pandas DataFrames because it is very nice to have column
labels, but numpy arrays work as well.)

For supervised learning, such as regression or classification,
our intent is to have a fuction that transforms features into a
label. If we were to write this as an algebra formula, it would
look like this:

y = f(X)

X is a matrix. Each row represents a sample of data or informa‐
tion about an individual. Every column in X is a feature. The
output of our function, y, is a vector that contains labels (for
classification) or values (for regression) (see Figure 3-1).

Ask a Question | 13

Figure 3-1. Structured data layout.

This is standard naming procedure for naming the data and the
output. If you read academic papers or even look at the docu‐
mentation for libraries, they follow this convention. In Python,
we use the variable name X to hold the sample data even though
capitalization of variables is a violation of standard naming
conventions (PEP 8). Don’t worry, everyone does it, and if you
were to name your variable x, they might look at you funny.
The variable y stores the labels or targets.

Table 3-1 shows a basic dataset with two samples and three fea‐
tures for each sample.

Table 3-1. Samples (rows) and features (columns)

pclass age sibsp

1 29 0

1 2 1

14 | Chapter 3: Classification Walkthrough: Titanic Dataset

1 Even though we don’t directly call this library, when we load an Excel
file, pandas leverages it behind the scenes.

Gather Data
We are going to load an Excel file (make sure you have pandas
and xlrd1 installed) with the Titanic features. It has many col‐
umns, including a survived column that contains the label of
what happened to an individual:

>>> url = (
... "http://biostat.mc.vanderbilt.edu/"
... "wiki/pub/Main/DataSets/titanic3.xls"
...)
>>> df = pd.read_excel(url)
>>> orig_df = df

The following columns are included in the dataset:

• pclass - Passenger class (1 = 1st, 2 = 2nd, 3 = 3rd)
• survival - Survival (0 = No, 1 = Yes)
• name - Name
• sex - Sex
• age - Age
• sibsp - Number of siblings/spouses aboard
• parch - Number of parents/children aboard
• ticket - Ticket number
• fare - Passenger fare
• cabin - Cabin
• embarked - Point of embarkation (C = Cherbourg, Q =

Queenstown, S = Southampton)
• boat - Lifeboat
• body - Body identification number

Gather Data | 15

• home.dest - Home/destination

Pandas can read this spreadsheet and convert it into a Data‐
Frame for us. We will need to spot-check the data and ensure
that it is OK for performing analysis.

Clean Data
Once we have the data, we need to ensure that it is in a format
that we can use to create a model. Most scikit-learn models
require that our features be numeric (integer or float). In addi‐
tion, many models fail if they are passed missing values (NaN in
pandas or numpy). Some models perform better if the data is
standardized (given a mean value of 0 and a standard deviation
of 1). We will deal with these issues using pandas or scikit-
learn. In addition, the Titanic dataset has leaky features.

Leaky features are variables that contain information about the
future or target. There’s nothing bad in having data about the
target, and we often have that data during model creation time.
However, if those variables are not available when we perform a
prediction on a new sample, we should remove them from the
model as they are leaking data from the future.

Cleaning the data can take a bit of time. It helps to have access
to a subject matter expert (SME) who can provide guidance on
dealing with outliers or missing data.

>>> df.dtypes
pclass int64
survived int64
name object
sex object
age float64
sibsp int64
parch int64
ticket object
fare float64
cabin object
embarked object

16 | Chapter 3: Classification Walkthrough: Titanic Dataset

boat object
body float64
home.dest object
dtype: object

We typically see int64, float64, datetime64[ns], or object.
These are the types that pandas uses to store a column of data.
int64 and float64 are numeric types. datetime64[ns] holds
date and time data. object typically means that it is holding
string data, though it could be a combination of string and
other types.

When reading from CSV files, pandas will try to coerce data
into the appropriate type, but will fall back to object. Reading
data from spreadsheets, databases, or other systems may pro‐
vide better types in the DataFrame. In any case, it is worthwhile
to look through the data and ensure that the types make sense.

Integer types are typically fine. Float types might have some
missing values. Date and string types will need to be converted
or used to feature engineer numeric types. String types that
have low cardinality are called categorical columns, and it
might be worthwhile to create dummy columns from them (the
pd.get_dummies function takes care of this).

NOTE

Up to pandas 0.23, if the type is int64, we are guaranteed
that there are no missing values. If the type is float64, the
values might be all floats, but also could be integer-like
numbers with missing values. The pandas library converts
integer values that have missing numbers to floats, as this
type supports missing values. The object typically means
string types (or both string and numeric).

As of pandas 0.24, there is a new Int64 type (notice the
capitalization). This is not the default integer type, but you
can coerce to this type and have support for missing
numbers.

Clean Data | 17

The pandas-profiling library includes a profile report. You can
generate this report in a notebook. It will summarize the types
of the columns and allow you to view details of quantile statis‐
tics, descriptive statistics, a histogram, common values, and
extreme values (see Figures 3-2 and 3-3):

>>> import pandas_profiling
>>> pandas_profiling.ProfileReport(df)

Figure 3-2. Pandas-profiling summary.

18 | Chapter 3: Classification Walkthrough: Titanic Dataset

Figure 3-3. Pandas-profiling variable details.

Use the .shape attribute of the DataFrame to inspect the num‐
ber of rows and columns:

>>> df.shape
(1309, 14)

Use the .describe method to get summary stats as well as see
the count of nonnull data. The default behavior of this method
is to only report on numeric columns. Here the output is trun‐
cated to only show the first two columns:

>>> df.describe().iloc[:, :2]
 pclass survived
count 1309.000000 1309.000000
mean 2.294882 0.381971
std 0.837836 0.486055
min 1.000000 0.000000
25% 2.000000 0.000000
50% 3.000000 0.000000
75% 3.000000 1.000000
max 3.000000 1.000000

Clean Data | 19

The count statistic only includes values that are not NaN, so it
is useful for checking whether a column is missing data. It is
also a good idea to spot-check the minimum and maximum
values to see if there are outliers. Summary statistics are one
way to do this. Plotting a histogram or a box plot is a visual
representation that we will see later.

We will need to deal with missing data. Use the .isnull
method to find columns or rows with missing values. Call‐
ing .isnull on a DataFrame returns a new DataFrame with
every cell containing a True or False value. In Python, these
values evaluate to 1 and 0, respectively. This allows us to sum
them up or even calculate the percent missing (by calculating
the mean).

The code indicates the count of missing data in each column:

>>> df.isnull().sum()
pclass 0
survived 0
name 0
sex 0
age 263
sibsp 0
parch 0
ticket 0
fare 1
cabin 1014
embarked 2
boat 823
body 1188
home.dest 564
dtype: int64

20 | Chapter 3: Classification Walkthrough: Titanic Dataset

TIP

Replace .sum with .mean to get the percentage of null val‐
ues. By default, calling these methods will apply the opera‐
tion along axis 0, which is along the index. If you want to
get the counts of missing features for each sample, you can
apply this along axis 1 (along the columns):

>>> df.isnull().sum(axis=1).loc[:10]
0 1
1 1
2 2
3 1
4 2
5 1
6 1
7 2
8 1
9 2
dtype: int64

A SME can help in determining what to do with missing data.
The age column might be useful, so keeping it and interpolat‐
ing values could provide some signal to the model. Columns
where most of the values are missing (cabin, boat, and body)
tend to not provide value and can be dropped.

The body column (body identification number) is missing for
many rows. We should drop this column at any rate because it
leaks data. This column indicates that the passenger did not
survive; by necessity our model could use that to cheat. We will
pull it out. (If we are creating a model to predict if a passenger
would die, knowing that they had a body identification number
a priori would let us know they were already dead. We want
our model to not know that information and make the predic‐
tion based on the other columns.) Likewise, the boat column
leaks the reverse information (that a passenger survived).

Clean Data | 21

Let’s look at some of the rows with missing data. We can create
a boolean array (a series with True or False to indicate if the
row has missing data) and use it to inspect rows that are miss‐
ing data:

>>> mask = df.isnull().any(axis=1)

>>> mask.head() # rows
0 True
1 True
2 True
3 True
4 True
dtype: bool

>>> df[mask].body.head()
0 NaN
1 NaN
2 NaN
3 135.0
4 NaN
Name: body, dtype: float64

We will impute (or derive values for) the missing values for the
age column later.

Columns with type of object tend to be categorical (but they
may also be high cardinality string data, or a mix of column
types). For object columns that we believe to be categorical,
use the .value_counts method to examine the counts of the
values:

>>> df.sex.value_counts(dropna=False)
male 843
female 466
Name: sex, dtype: int64

Remember that pandas typically ignores null or NaN values. If
you want to include those, use dropna=False to also show
counts for NaN:

22 | Chapter 3: Classification Walkthrough: Titanic Dataset

>>> df.embarked.value_counts(dropna=False)
S 914
C 270
Q 123
NaN 2
Name: embarked, dtype: int64

We have a couple of options for dealing with missing embarked
values. Using S might seem logical as that is the most common
value. We could dig into the data and try and determine if
another option is better. We could also drop those two values.
Or, because this is categorical, we can ignore them and use pan‐
das to create dummy columns if these two samples will just
have 0 entries for every option. We will use this latter choice for
this feature.

Create Features
We can drop columns that have no variance or no signal. There
aren’t features like that in this dataset, but if there was a column
called “is human” that had 1 for every sample this column
would not be providing any information.

Alternatively, unless we are using NLP or extracting data out of
text columns where every value is different, a model will not be
able to take advantage of this column. The name column is an
example of this. Some have pulled out the title t from the name
and treated it as categorical.

We also want to drop columns that leak information. Both boat
and body columns leak whether a passenger survived.

The pandas .drop method can drop either rows or columns:

>>> name = df.name
>>> name.head(3)
0 Allen, Miss. Elisabeth Walton
1 Allison, Master. Hudson Trevor
2 Allison, Miss. Helen Loraine
Name: name, dtype: object

Create Features | 23

>>> df = df.drop(
... columns=[
... "name",
... "ticket",
... "home.dest",
... "boat",
... "body",
... "cabin",
...]
...)

We need to create dummy columns from string columns. This
will create new columns for sex and embarked. Pandas has a
convenient get_dummies function for that:

>>> df = pd.get_dummies(df)

>>> df.columns
Index(['pclass', 'survived', 'age', 'sibsp',
 'parch', 'fare', 'sex_female', 'sex_male',
 'embarked_C', 'embarked_Q', 'embarked_S'],
 dtype='object')

At this point the sex_male and sex_female columns are per‐
fectly inverse correlated. Typically we remove any columns
with perfect or very high positive or negative correlation. Mul‐
ticollinearity can impact interpretation of feature importance
and coefficients in some models. Here is code to remove the
sex_male column:

>>> df = df.drop(columns="sex_male")

Alternatively, we can add a drop_first=True parameter to the
get_dummies call:

>>> df = pd.get_dummies(df, drop_first=True)

>>> df.columns
Index(['pclass', 'survived', 'age', 'sibsp',
 'parch', 'fare', 'sex_male',
 'embarked_Q', 'embarked_S'],
 dtype='object')

24 | Chapter 3: Classification Walkthrough: Titanic Dataset

Create a DataFrame (X) with the features and a series (y) with
the labels. We could also use numpy arrays, but then we don’t
have column names:

>>> y = df.survived
>>> X = df.drop(columns="survived")

TIP

We can use the pyjanitor library to replace the last two
lines:

>>> import janitor as jn
>>> X, y = jn.get_features_targets(
... df, target_columns="survived"
...)

Sample Data
We always want to train and test on different data. Otherwise
you don’t really know how well your model generalizes to data
that it hasn’t seen before. We’ll use scikit-learn to pull out 30%
for testing (using random_state=42 to remove an element of
randomness if we start comparing different models):

>>> X_train, X_test, y_train, y_test = model_selec
tion.train_test_split(
... X, y, test_size=0.3, random_state=42
...)

Impute Data
The age column has missing values. We need to impute age
from the numeric values. We only want to impute on the train‐
ing set and then use that imputer to fill in the date for the test
set. Otherwise we are leaking data (cheating by giving future
information to the model).

Sample Data | 25

https://oreil.ly/_IWbA

Now that we have test and train data, we can impute missing
values on the training set, and use the trained imputers to fill in
the test dataset. The fancyimpute library has many algorithms
that it implements. Sadly, most of these algorithms are not
implemented in an inductive manner. This means that you can‐
not call .fit and then .transform, which means you cannot
impute for new data based on how the model was trained.

The IterativeImputer class (which was in fancyimpute but has
been migrated to scikit-learn) does support inductive mode. To
use it we need to add a special experimental import (as of
scikit-learn version 0.21.2):

>>> from sklearn.experimental import (
... enable_iterative_imputer,
...)
>>> from sklearn import impute
>>> num_cols = [
... "pclass",
... "age",
... "sibsp",
... "parch",
... "fare",
... "sex_female",
...]

>>> imputer = impute.IterativeImputer()
>>> imputed = imputer.fit_transform(
... X_train[num_cols]
...)
>>> X_train.loc[:, num_cols] = imputed
>>> imputed = imputer.transform(X_test[num_cols])
>>> X_test.loc[:, num_cols] = imputed

If we wanted to impute with the median, we can use pandas to
do that:

>>> meds = X_train.median()
>>> X_train = X_train.fillna(meds)
>>> X_test = X_test.fillna(meds)

26 | Chapter 3: Classification Walkthrough: Titanic Dataset

https://oreil.ly/Vlf9e

Normalize Data
Normalizing or preprocessing the data will help many models
perform better after this is done. Particularly those that depend
on a distance metric to determine similarity. (Note that tree
models, which treat each feature on its own, don’t have this
requirement.)

We are going to standardize the data for the preprocessing.
Standardizing is translating the data so that it has a mean value
of zero and a standard deviation of one. This way models don’t
treat variables with larger scales as more important than
smaller scaled variables. I’m going to stick the result (numpy
array) back into a pandas DataFrame for easier manipulation
(and to keep column names).

I also normally don’t standardize dummy columns, so I will
ignore those:

>>> cols = "pclass,age,sibsp,fare".split(",")
>>> sca = preprocessing.StandardScaler()
>>> X_train = sca.fit_transform(X_train)
>>> X_train = pd.DataFrame(X_train, columns=cols)
>>> X_test = sca.transform(X_test)
>>> X_test = pd.DataFrame(X_test, columns=cols)

Refactor
At this point I like to refactor my code. I typically make two
functions. One for general cleaning, and another for dividing
up into a training and testing set and to perform mutations that
need to happen differently on those sets:

>>> def tweak_titanic(df):
... df = df.drop(
... columns=[
... "name",
... "ticket",
... "home.dest",
... "boat",
... "body",

Normalize Data | 27

... "cabin",

...]

...).pipe(pd.get_dummies, drop_first=True)

... return df

>>> def get_train_test_X_y(
... df, y_col, size=0.3, std_cols=None
...):
... y = df[y_col]
... X = df.drop(columns=y_col)
... X_train, X_test, y_train, y_test =
model_selection.train_test_split(
... X, y, test_size=size, random_state=42
...)
... cols = X.columns
... num_cols = [
... "pclass",
... "age",
... "sibsp",
... "parch",
... "fare",
...]
... fi = impute.IterativeImputer()
... X_train.loc[
... :, num_cols
...] = fi.fit_transform(X_train[num_cols])
... X_test.loc[:, num_cols] = fi.transform(
... X_test[num_cols]
...)
...
... if std_cols:
... std = preprocessing.StandardScaler()
... X_train.loc[
... :, std_cols
...] = std.fit_transform(
... X_train[std_cols]
...)
... X_test.loc[
... :, std_cols
...] = std.transform(X_test[std_cols])

28 | Chapter 3: Classification Walkthrough: Titanic Dataset

...

... return X_train, X_test, y_train, y_test

>>> ti_df = tweak_titanic(orig_df)
>>> std_cols = "pclass,age,sibsp,fare".split(",")
>>> X_train, X_test, y_train, y_test =
get_train_test_X_y(
... ti_df, "survived", std_cols=std_cols
...)

Baseline Model
Creating a baseline model that does something really simple
can give us something to compare our model to. Note that
using the default .score result gives us the accuracy which can
be misleading. A problem where a positive case is 1 in 10,000
can easily get over 99% accuracy by always predicting negative.

>>> from sklearn.dummy import DummyClassifier
>>> bm = DummyClassifier()
>>> bm.fit(X_train, y_train)
>>> bm.score(X_test, y_test) # accuracy
0.5292620865139949

>>> from sklearn import metrics
>>> metrics.precision_score(
... y_test, bm.predict(X_test)
...)
0.4027777777777778

Various Families
This code tries a variety of algorithm families. The “No Free
Lunch” theorem states that no algorithm performs well on all
data. However, for some finite set of data, there may be an algo‐
rithm that does well on that set. (A popular choice for struc‐
tured learning these days is a tree-boosted algorithm such as
XGBoost.)

Baseline Model | 29

Here we use a few different families and compare the AUC
score and standard deviation using k-fold cross-validation. An
algorithm that has a slightly smaller average score but tighter
standard deviation might be a better choice.

Because we are using k-fold cross-validation, we will feed the
model all of X and y:

>>> X = pd.concat([X_train, X_test])
>>> y = pd.concat([y_train, y_test])
>>> from sklearn import model_selection
>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.linear_model import (
... LogisticRegression,
...)
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import (
... KNeighborsClassifier,
...)
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.svm import SVC
>>> from sklearn.ensemble import (
... RandomForestClassifier,
...)
>>> import xgboost

>>> for model in [
... DummyClassifier,
... LogisticRegression,
... DecisionTreeClassifier,
... KNeighborsClassifier,
... GaussianNB,
... SVC,
... RandomForestClassifier,
... xgboost.XGBClassifier,
...]:
... cls = model()
... kfold = model_selection.KFold(
... n_splits=10, random_state=42
...)
... s = model_selection.cross_val_score(

30 | Chapter 3: Classification Walkthrough: Titanic Dataset

... cls, X, y, scoring="roc_auc", cv=kfold

...)

... print(

... f"{model.__name__:22} AUC: "

... f"{s.mean():.3f} STD: {s.std():.2f}"

...)
DummyClassifier AUC: 0.511 STD: 0.04
LogisticRegression AUC: 0.843 STD: 0.03
DecisionTreeClassifier AUC: 0.761 STD: 0.03
KNeighborsClassifier AUC: 0.829 STD: 0.05
GaussianNB AUC: 0.818 STD: 0.04
SVC AUC: 0.838 STD: 0.05
RandomForestClassifier AUC: 0.829 STD: 0.04
XGBClassifier AUC: 0.864 STD: 0.04

Stacking
If you were going down the Kaggle route (or want maximum
performance at the cost of interpretability), stacking is an
option. A stacking classifier takes other models and uses their
output to predict a target or label. We will use the previous
models’ outputs and combine them to see if a stacking classifier
can do better:

>>> from mlxtend.classifier import (
... StackingClassifier,
...)
>>> clfs = [
... x()
... for x in [
... LogisticRegression,
... DecisionTreeClassifier,
... KNeighborsClassifier,
... GaussianNB,
... SVC,
... RandomForestClassifier,
...]
...]
>>> stack = StackingClassifier(
... classifiers=clfs,

Stacking | 31

... meta_classifier=LogisticRegression(),

...)
>>> kfold = model_selection.KFold(
... n_splits=10, random_state=42
...)
>>> s = model_selection.cross_val_score(
... stack, X, y, scoring="roc_auc", cv=kfold
...)
>>> print(
... f"{stack.__class__.__name__} "
... f"AUC: {s.mean():.3f} STD: {s.std():.2f}"
...)
StackingClassifier AUC: 0.804 STD: 0.06

In this case it looks like performance went down a bit, as well
as standard deviation.

Create Model
I’m going to use a random forest classifier to create a model. It
is a flexible model that tends to give decent out-of-the-box
results. Remember to train it (calling .fit) with the training
data from the data that we split earlier into a training and test‐
ing set:

>>> rf = ensemble.RandomForestClassifier(
... n_estimators=100, random_state=42
...)
>>> rf.fit(X_train, y_train)
RandomForestClassifier(bootstrap=True,
 class_weight=None, criterion='gini',
 max_depth=None, max_features='auto',
 max_leaf_nodes=None,
 min_impurity_decrease=0.0,
 min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, n_estimators=10,
 n_jobs=1, oob_score=False, random_state=42,
 verbose=0, warm_start=False)

32 | Chapter 3: Classification Walkthrough: Titanic Dataset

Evaluate Model
Now that we have a model, we can use the test data to see how
well the model generalizes to data that it hasn’t seen before.
The .score method of a classifier returns the average of the
prediction accuracy. We want to make sure that we call
the .score method with the test data (presumably it should
perform better with the training data):

>>> rf.score(X_test, y_test)
0.7964376590330788

We can also look at other metrics, such as precision:

>>> metrics.precision_score(
... y_test, rf.predict(X_test)
...)
0.8013698630136986

A nice benefit of tree-based models is that you can inspect the
feature importance. The feature importance tells you how
much a feature contributes to the model. Note that removing a
feature doesn’t mean that the score will go down accordingly, as
other features might be colinear (in this case we could remove
either the sex_male or sex_female column as they have a per‐
fect negative correlation):

>>> for col, val in sorted(
... zip(
... X_train.columns,
... rf.feature_importances_,
...),
... key=lambda x: x[1],
... reverse=True,
...)[:5]:
... print(f"{col:10}{val:10.3f}")
age 0.277
fare 0.265
sex_female 0.240
pclass 0.092
sibsp 0.048

Evaluate Model | 33

The feature importance is calculated by looking at the error
increase. If removing a feature increases the error in the model,
the feature is more important.

I really like the SHAP library for exploring what features a
model deems important, and for explaining predictions. This
library works with black-box models, and we will show it later.

Optimize Model
Models have hyperparameters that control how they behave. By
varying the values for these parameters, we change their per‐
formance. Sklearn has a grid search class to evaluate a model
with different combinations of parameters and return the best
result. We can use those parameters to instantiate the model
class:

>>> rf4 = ensemble.RandomForestClassifier()
>>> params = {
... "max_features": [0.4, "auto"],
... "n_estimators": [15, 200],
... "min_samples_leaf": [1, 0.1],
... "random_state": [42],
... }
>>> cv = model_selection.GridSearchCV(
... rf4, params, n_jobs=-1
...).fit(X_train, y_train)
>>> print(cv.best_params_)
{'max_features': 'auto', 'min_samples_leaf': 0.1,
 'n_estimators': 200, 'random_state': 42}

>>> rf5 = ensemble.RandomForestClassifier(
... **{
... "max_features": "auto",
... "min_samples_leaf": 0.1,
... "n_estimators": 200,
... "random_state": 42,
... }
...)
>>> rf5.fit(X_train, y_train)

34 | Chapter 3: Classification Walkthrough: Titanic Dataset

>>> rf5.score(X_test, y_test)
0.7888040712468194

We can pass in a scoring parameter to GridSearchCV to opti‐
mize for different metrics. See Chapter 12 for a list of metrics
and their meanings.

Confusion Matrix
A confusion matrix allows us to see the correct classifications
as well as false positives and false negatives. It may be that we
want to optimize toward false positives or false negatives, and
different models or parameters can alter that. We can use
sklearn to get a text version, or Yellowbrick for a plot (see
Figure 3-4):

>>> from sklearn.metrics import confusion_matrix
>>> y_pred = rf5.predict(X_test)
>>> confusion_matrix(y_test, y_pred)
array([[196, 28],
 [55, 114]])

>>> mapping = {0: "died", 1: "survived"}
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> cm_viz = ConfusionMatrix(
... rf5,
... classes=["died", "survived"],
... label_encoder=mapping,
...)
>>> cm_viz.score(X_test, y_test)
>>> cm_viz.poof()
>>> fig.savefig(
... "images/mlpr_0304.png",
... dpi=300,
... bbox_inches="tight",
...)

Confusion Matrix | 35

Figure 3-4. Yellowbrick confusion matrix. This is a useful evaluation
tool that presents the predicted class along the bottom and the true
class along the side. A good classifier would have all of the values along
the diagonal, and zeros in the other cells.

ROC Curve
A receiver operating characteristic (ROC) plot is a common
tool used to evaluate classifiers. By measuring the area under
the curve (AUC), we can get a metric to compare different clas‐
sifiers (see Figure 3-5). It plots the true positive rate against the
false positive rate. We can use sklearn to calculate the AUC:

>>> y_pred = rf5.predict(X_test)
>>> roc_auc_score(y_test, y_pred)
0.7747781065088757

36 | Chapter 3: Classification Walkthrough: Titanic Dataset

Or Yellowbrick to visualize the plot:

>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> roc_viz = ROCAUC(rf5)
>>> roc_viz.score(X_test, y_test)
0.8279691030696217
>>> roc_viz.poof()
>>> fig.savefig("images/mlpr_0305.png")

Figure 3-5. ROC curve. This shows the true positive rate against the
false positive rate. In general, the further it bulges out the better. Meas‐
uring the AUC gives a single number to evaluate. Closer to one is bet‐
ter. Below .5 is a poor model.

ROC Curve | 37

Learning Curve
A learning curve is used to tell us if we have enough training
data. It trains the model with increasing portions of the data
and measures the score (see Figure 3-6). If the cross-validation
score continues to climb, then we might need to invest in gath‐
ering more data. Here is a Yellowbrick example:

>>> import numpy as np
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> cv = StratifiedKFold(12)
>>> sizes = np.linspace(0.3, 1.0, 10)
>>> lc_viz = LearningCurve(
... rf5,
... cv=cv,
... train_sizes=sizes,
... scoring="f1_weighted",
... n_jobs=4,
... ax=ax,
...)
>>> lc_viz.fit(X, y)
>>> lc_viz.poof()
>>> fig.savefig("images/mlpr_0306.png")

38 | Chapter 3: Classification Walkthrough: Titanic Dataset

Figure 3-6. This learning curve shows that as we add more training
samples, our cross-validation (testing) scores appear to improve.

Deploy Model
Using Python’s pickle module, we can persist models and load
them. Once we have a model, we call the .predict method to
get a classification or regression result:

>>> import pickle
>>> pic = pickle.dumps(rf5)
>>> rf6 = pickle.loads(pic)
>>> y_pred = rf6.predict(X_test)
>>> roc_auc_score(y_test, y_pred)
0.7747781065088757

Using Flask to deploy a web service for prediction is very com‐
mon. There are now other commercial and open source prod‐
ucts coming out that support deployment. Among them are
Clipper, Pipeline, and Google’s Cloud Machine Learning
Engine.

Deploy Model | 39

https://palletsprojects.com/p/flask
http://clipper.ai/
https://oreil.ly/UfHdP
https://oreil.ly/1qYkH
https://oreil.ly/1qYkH

CHAPTER 4

Missing Data

We need to deal with missing data. The previous chapter
showed an example. This chapter will dive into it a bit more.
Most algorithms will not work if data is missing. Notable
exceptions are the recent boosting libraries: XGBoost, Cat‐
Boost, and LightGBM.

As with many things in machine learning, there are no hard
answers for how to treat missing data. Also, missing data could
represent different situations. Imagine census data coming
back and an age feature being reported as missing. Is it because
the sample didn’t want to reveal their age? They didn’t know
their age? The one asking the questions forgot to even ask
about age? Is there a pattern to missing ages? Does it correlate
to another feature? Is it completely random?

There are also various ways to handle missing data:

• Remove any row with missing data
• Remove any column with missing data
• Impute missing values
• Create an indicator column to signify data was missing

41

Examining Missing Data
Let’s go back to the Titanic data. Because Python treats True
and False as 1 and 0, respectively, we can use this trick in pan‐
das to get percent of missing data:

>>> df.isnull().mean() * 100
pclass 0.000000
survived 0.000000
name 0.000000
sex 0.000000
age 20.091673
sibsp 0.000000
parch 0.000000
ticket 0.000000
fare 0.076394
cabin 77.463713
embarked 0.152788
boat 62.872422
body 90.756303
home.dest 43.086325
dtype: float64

42 | Chapter 4: Missing Data

To visualize patterns in the missing data, use the missingno
library. This library is useful for viewing contiguous areas of
missing data, which would indicate that the missing data is not
random (see Figure 4-1). The matrix function includes a spark‐
line along the right side. Patterns here would also indicate non‐
random missing data. You may need to limit the number of
samples to be able to see the patterns:

>>> import missingno as msno
>>> ax = msno.matrix(orig_df.sample(500))
>>> ax.get_figure().savefig("images/mlpr_0401.png")

Figure 4-1. Where data is missing. No clear patterns jump out to the
author.

Examining Missing Data | 43

https://oreil.ly/rgYJG
https://oreil.ly/rgYJG

We can create a bar plot of missing data counts using pandas
(see Figure 4-2):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> (1 - df.isnull().mean()).abs().plot.bar(ax=ax)
>>> fig.savefig("images/mlpr_0402.png", dpi=300)

Figure 4-2. Percents of nonmissing data with pandas. Boat and body
are leaky so we should ignore those. Interesting that some ages are
missing.

44 | Chapter 4: Missing Data

Or use the missingno library to create the same plot (see
Figure 4-3):

>>> ax = msno.bar(orig_df.sample(500))
>>> ax.get_figure().savefig("images/mlpr_0403.png")

Figure 4-3. Percents of nonmissing data with missingno.

We can create a heat map showing if there are correlations
where data is missing (see Figure 4-4). In this case, it doesn’t
look like the locations where data are missing are correlated:

>>> ax = msno.heatmap(df, figsize=(6, 6))
>>> ax.get_figure().savefig("/tmp/mlpr_0404.png")

Examining Missing Data | 45

Figure 4-4. Correlations of missing data with missingno.

We can create a dendrogram showing the clusterings of where
data is missing (see Figure 4-5). Leaves that are at the same
level predict one another’s presence (empty or filled). The verti‐
cal arms are used to indicate how different clusters are. Short
arms mean that branches are similar:

>>> ax = msno.dendrogram(df)
>>> ax.get_figure().savefig("images/mlpr_0405.png")

46 | Chapter 4: Missing Data

Figure 4-5. Dendrogram of missing data with missingno. We can see
the columns without missing data on the upper right.

Dropping Missing Data
The pandas library can drop all rows with missing data with
the .dropna method:

>>> df1 = df.dropna()

To drop columns, we can note what columns are missing and
use the .drop method. We can pass in a list of column names or
a single column name:

>>> df1 = df.drop(columns="cabin")

Alternatively, we can use the .dropna method and set axis=1
(drop along the column axis):

>>> df1 = df.dropna(axis=1)

Be careful about dropping data. I typically view this as a last
resort option.

Imputing Data
Once you have a tool for predicting data, you can use that to
predict missing data. The general task of defining values for
missing values is called imputation.

If you are imputing data, you will need to build up a pipeline
and use the same imputation logic during model creation and

Dropping Missing Data | 47

prediction time. The SimpleImputer class in scikit-learn will
handle mean, median, and most frequent feature values.

The default behavior is to calculate the mean:

>>> from sklearn.impute import SimpleImputer
>>> num_cols = df.select_dtypes(
... include="number"
...).columns
>>> im = SimpleImputer() # mean
>>> imputed = im.fit_transform(df[num_cols])

Provide strategy='median' or strategy='most_frequent' to
change the replaced value to median or most common, respec‐
tively. If you wish to fill with a constant value, say -1, use
strategy='constant' in combination with fill_value=-1.

TIP

You can use the .fillna method in pandas to impute
missing values as well. Make sure that you do not leak data
though. If you are filling in with the mean value, make sure
you use the same mean value during model creation and
model prediction time.

The most frequent and constant strategies may be used with
numeric or string data. The mean and median require numeric
data.

The fancyimpute library implements many algorithms and fol‐
lows the scikit-learn interface. Sadly, most of the algorithms are
transductive, meaning that you can’t call the .transform

method by itself after fitting the algorithm. The IterativeIm
puter is inductive (has since been migrated from fancyimpute
to scikit-learn) and supports transforming after fitting.

48 | Chapter 4: Missing Data

Adding Indicator Columns
The lack of data in and of itself may provide some signal to a
model. The pandas library can add a new column to indicate
that a value was missing:

>>> def add_indicator(col):
... def wrapper(df):
... return df[col].isna().astype(int)
...
... return wrapper

>>> df1 = df.assign(
... cabin_missing=add_indicator("cabin")
...)

Adding Indicator Columns | 49

CHAPTER 5

Cleaning Data

We can use generic tools like pandas and specialized tools like
pyjanitor to help with cleaning data.

Column Names
When using pandas, having Python-friendly column names
makes attribute access possible. The pyjanitor clean_names
function will return a DataFrame with columns in lowercase
and spaces replaced by underscores:

>>> import janitor as jn
>>> Xbad = pd.DataFrame(
... {
... "A": [1, None, 3],
... " sales numbers ": [20.0, 30.0, None],
... }
...)
>>> jn.clean_names(Xbad)
 a _sales_numbers_
0 1.0 20.0
1 NaN 30.0
2 3.0 NaN

51

TIP

I recommend updating columns using index assignment,
the .assign method, .loc or .iloc assignment. I also rec‐
ommend not using attribute assignment to update col‐
umns in pandas. Due to the risk of overwriting existing
methods with the same name as a column, attribute assign‐
ment is not guaranteed to work.

The pyjanitor library is handy, but doesn’t allow us to strip
whitespace around columns. We can use pandas to have more
fine-grained control of the column renaming:

>>> def clean_col(name):
... return (
... name.strip().lower().replace(" ", "_")
...)

>>> Xbad.rename(columns=clean_col)
 a sales_numbers
0 1.0 20.0
1 NaN 30.0
2 3.0 NaN

Replacing Missing Values
The coalesce function in pyjanitor takes a DataFrame and a
list of columns to consider. This is similar to functionality
found in Excel and SQL databases. It returns the first nonnull
value for each row:

>>> jn.coalesce(
... Xbad,
... columns=["A", " sales numbers "],
... new_column_name="val",
...)
 val
0 1.0

52 | Chapter 5: Cleaning Data

1 30.0
2 3.0

If we want to fill missing values with a particular value, we can
use the DataFrame .fillna method:

>>> Xbad.fillna(10)
 A sales numbers
0 1.0 20.0
1 10.0 30.0
2 3.0 10.0

or the pyjanitor fill_empty function:

>>> jn.fill_empty(
... Xbad,
... columns=["A", " sales numbers "],
... value=10,
...)
 A sales numbers
0 1.0 20.0
1 10.0 30.0
2 3.0 10.0

Often, we will use finer-grained imputations in pandas, scikit-
learn, or fancyimpute to perform per-column null replacement.

As a sanity check before creating models, you can use pandas
to ensure that you have dealt with all missing values. The fol‐
lowing code returns a single boolean if there is any cell that is
missing in a DataFrame:

>>> df.isna().any().any()
True

Replacing Missing Values | 53

CHAPTER 6

Exploring

It has been said that it is easier to take a SME and train them in
data science than the reverse. I’m not sure I agree with that
100%, but there is truth that data has nuance and an SME can
help tease that apart. By understanding the business and the
data, they are able to create better models and have a better
impact on their business.

Before I create a model, I will do some exploratory data analy‐
sis. This gives me a feel for the data, but also is a great excuse to
meet and discuss issues with business units that control that
data.

Data Size
Again, we are using the Titanic dataset here. The pandas .shape
property will return a tuple of the number of rows and
columns:

>>> X.shape
(1309, 13)

We can see that this dataset has 1,309 rows and 13 columns.

55

Summary Stats
We can use pandas to get summary statistics for our data.
The .describe method will also give us the count of non-NaN
values. Let’s look at the results for the first and last columns:

>>> X.describe().iloc[:, [0, -1]]
 pclass embarked_S
count 1309.000000 1309.000000
mean -0.012831 0.698243
std 0.995822 0.459196
min -1.551881 0.000000
25% -0.363317 0.000000
50% 0.825248 1.000000
75% 0.825248 1.000000
max 0.825248 1.000000

The count row tells us that both of these columns are filled in.
There are no missing values. We also have the mean, standard
deviation, minimum, maximum, and quartile values.

56 | Chapter 6: Exploring

NOTE

A pandas DataFrame has an iloc attribute that we can do
index operations on. It will let us pick out rows and col‐
umns by index location. We pass in the row positions as a
scalar, list, or slice, and then we can add a comma and pass
in the column positions as a scalar, list, or slice.
Here we pull out the second and fifth row, and the last
three columns:

>>> X.iloc[[1, 4], -3:]
 sex_male embarked_Q embarked_S
677 1.0 0 1
864 0.0 0 1

There is also a .loc attribute, and we can put out rows and
columns based on name (rather than position). Here is the
same portion of the DataFrame:

>>> X.loc[[677, 864], "sex_male":]
 sex_male embarked_Q embarked_S
677 1.0 0 1
864 0.0 0 1

Summary Stats | 57

Histogram
A histogram is a great tool to visualize numeric data. You can
see how many modes there are as well as look at the distribu‐
tion (see Figure 6-1). The pandas library has a .plot method to
show histograms:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> X.fare.plot(kind="hist", ax=ax)
>>> fig.savefig("images/mlpr_0601.png", dpi=300)

Figure 6-1. Pandas histogram.

Using the seaborn library, we can plot a histogram of continu‐
ous values against the target (see Figure 6-2):

fig, ax = plt.subplots(figsize=(12, 8))
mask = y_train == 1
ax = sns.distplot(X_train[mask].fare, label='sur
vived')
ax = sns.distplot(X_train[~mask].fare,
label='died')
ax.set_xlim(-1.5, 1.5)
ax.legend()

58 | Chapter 6: Exploring

fig.savefig('images/mlpr_0602.png', dpi=300,
bbox_inches='tight')

Figure 6-2. Seaborn histogram.

Scatter Plot
A scatter plot shows the relationship between two numeric col‐
umns (see Figure 6-3). Again, this is easy with pandas. Adjust
the alpha parameter if you have overlapping data:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> X.plot.scatter(
... x="age", y="fare", ax=ax, alpha=0.3
...)
>>> fig.savefig("images/mlpr_0603.png", dpi=300)

Scatter Plot | 59

Figure 6-3. Pandas scatter plot.

There doesn’t appear to be much correlation between these two
features. We can do Pearson correlation between two (pandas)
columns with the .corr method to quantify the correlation:

>>> X.age.corr(X.fare)
0.17818151568062093

Joint Plot
Yellowbrick has a fancier scatter plot that includes histograms
on the edge as well as a regression line called a joint plot (see
Figure 6-4):

>>> from yellowbrick.features import (
... JointPlotVisualizer,
...)
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> jpv = JointPlotVisualizer(
... feature="age", target="fare"
...)
>>> jpv.fit(X["age"], X["fare"])

60 | Chapter 6: Exploring

>>> jpv.poof()
>>> fig.savefig("images/mlpr_0604.png", dpi=300)

Figure 6-4. Yellowbrick joint plot.

WARNING

In this .fit method, X and y refer to a column each.
Usually, the X is a DataFrame, not a series.

Joint Plot | 61

You can also use the seaborn library to create a joint plot (see
Figure 6-5):

>>> from seaborn import jointplot
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> new_df = X.copy()
>>> new_df["target"] = y
>>> p = jointplot(
... "age", "fare", data=new_df, kind="reg"
...)
>>> p.savefig("images/mlpr_0605.png", dpi=300)

Figure 6-5. Seaborn joint plot.

62 | Chapter 6: Exploring

https://seaborn.pydata.org

Pair Grid
The seaborn library can create a pair grid (see Figure 6-6). This
plot is a matrix of columns and kernel density estimations. To
color by a column from a DataFrame, use the hue parameter.
By coloring with the target, we can see if features have different
effects on the target:

>>> from seaborn import pairplot
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> new_df = X.copy()
>>> new_df["target"] = y
>>> vars = ["pclass", "age", "fare"]
>>> p = pairplot(
... new_df, vars=vars, hue="target", kind="reg"
...)
>>> p.savefig("images/mlpr_0606.png", dpi=300)

Figure 6-6. Seaborn pair grid.

Pair Grid | 63

Box and Violin Plots
Seaborn has various plots to visualize distributions. We show
examples of a box plot and a violin plot (see Figure 6-7 and
Figure 6-8). These plots can visualize a feature against a target:

>>> from seaborn import box plot
>>> fig, ax = plt.subplots(figsize=(8, 6))
>>> new_df = X.copy()
>>> new_df["target"] = y
>>> boxplot(x="target", y="age", data=new_df)
>>> fig.savefig("images/mlpr_0607.png", dpi=300)

Figure 6-7. Seaborn box plot.

Violin plots can help with distribution visualization:

>>> from seaborn import violinplot
>>> fig, ax = plt.subplots(figsize=(8, 6))
>>> new_df = X.copy()
>>> new_df["target"] = y
>>> violinplot(
... x="target", y="sex_male", data=new_df

64 | Chapter 6: Exploring

...)
>>> fig.savefig("images/mlpr_0608.png", dpi=300)

Figure 6-8. Seaborn violin plot.

Comparing Two Ordinal Values
Here is pandas code to compare two ordinal categories. I’m
simulating that by binning age into ten quantiles, and pclass
into three bins. The plot is normalized so it fills all of the verti‐
cal area. This makes it easy to see that in the 40% quantile most
of the tickets were in 3rd class (see Figure 6-9):

>>> fig, ax = plt.subplots(figsize=(8, 6))
>>> (
... X.assign(
... age_bin=pd.qcut(
... X.age, q=10, labels=False
...),
... class_bin=pd.cut(
... X.pclass, bins=3, labels=False
...),

Comparing Two Ordinal Values | 65

...)

... .groupby(["age_bin", "class_bin"])

... .size()

... .unstack()

... .pipe(lambda df: df.div(df.sum(1), axis=0))

... .plot.bar(

... stacked=True,

... width=1,

... ax=ax,

... cmap="viridis",

...)

... .legend(bbox_to_anchor=(1, 1))

...)
>>> fig.savefig(
... "image/mlpr_0609.png",
... dpi=300,
... bbox_inches="tight",
...)

NOTE

The lines:

.groupby(["age_bin", "class_bin"])

.size()

.unstack()

can be replaced by:

.pipe(lambda df: pd.crosstab(
 df.age_bin, df.class_bin)
)

In pandas, there is often more than one way to do some‐
thing, and some helper functions are available that com‐
pose other functionality, such as pd.crosstab.

66 | Chapter 6: Exploring

Figure 6-9. Comparing ordinal values.

Correlation
Yellowbrick can create pairwise comparisons between the fea‐
tures (see Figure 6-10). This plot shows a Pearson correlation
(the algorithm parameter also accepts 'spearman' and
'covariance'):

>>> from yellowbrick.features import Rank2D
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> pcv = Rank2D(
... features=X.columns, algorithm="pearson"
...)
>>> pcv.fit(X, y)
>>> pcv.transform(X)
>>> pcv.poof()
>>> fig.savefig(
... "images/mlpr_0610.png",
... dpi=300,
... bbox_inches="tight",
...)

Correlation | 67

Figure 6-10. Covariance correlation created with Yellowbrick.

A similar plot, a heat map, is available in the seaborn library
(see Figure 6-11). We need to pass in a correlation DataFrame
as the data. Sadly, the colorbar does not span between -1 and 1
unless the values in the matrix do, or we add the vmin and vmax
parameters:

>>> from seaborn import heatmap
>>> fig, ax = plt.subplots(figsize=(8, 8))
>>> ax = heatmap(
... X.corr(),
... fmt=".2f",
... annot=True,
... ax=ax,
... cmap="RdBu_r",
... vmin=-1,
... vmax=1,
...)

68 | Chapter 6: Exploring

>>> fig.savefig(
... "images/mlpr_0611.png",
... dpi=300,
... bbox_inches="tight",
...)

Figure 6-11. Seaborn heat map.

The pandas library can also provide a correlation between
DataFrame columns. We only show the first two columns of
the result. The default method is 'pearson', but you can also
set the method parameter to 'kendall', 'spearman', or a custom
callable that returns a float given two columns:

>>> X.corr().iloc[:, :2]
 pclass age
pclass 1.000000 -0.440769
age -0.440769 1.000000

Correlation | 69

sibsp 0.060832 -0.292051
parch 0.018322 -0.174992
fare -0.558831 0.177205
sex_male 0.124617 0.077636
embarked_Q 0.230491 -0.061146
embarked_S 0.096335 -0.041315

Highly correlated columns don’t add value and can throw off
feature importance and interpretation of regression coeffi‐
cients. Below is code to find the correlated columns. In our
data none of the columns are highly correlated (remember we
removed the sex_male column).

If we had correlated columns, we could choose to remove
either the columns from level_0 or level_1 from the feature
data:

>>> def correlated_columns(df, threshold=0.95):
... return (
... df.corr()
... .pipe(
... lambda df1: pd.DataFrame(
... np.tril(df1, k=-1),
... columns=df.columns,
... index=df.columns,
...)
...)
... .stack()
... .rename("pearson")
... .pipe(
... lambda s: s[
... s.abs() > threshold
...].reset_index()
...)
... .query("level_0 not in level_1")
...)

>>> correlated_columns(X)
Empty DataFrame
Columns: [level_0, level_1, pearson]
Index: []

70 | Chapter 6: Exploring

Using the dataset with more columns, we can see that many of
them are correlated:

>>> c_df = correlated_columns(agg_df)
>>> c_df.style.format({"pearson": "{:.2f}"})
 level_0 level_1 pearson
3 pclass_mean pclass 1.00
4 pclass_mean pclass_min 1.00
5 pclass_mean pclass_max 1.00
6 sibsp_mean sibsp_max 0.97
7 parch_mean parch_min 0.95
8 parch_mean parch_max 0.96
9 fare_mean fare 0.95
10 fare_mean fare_max 0.98
12 body_mean body_min 1.00
13 body_mean body_max 1.00
14 sex_male sex_female -1.00
15 embarked_S embarked_C -0.95

RadViz
A RadViz plot shows each sample on a circle, with the features
on the circumference (see Figure 6-12). The values are normal‐
ized, and you can imagine that each figure has a spring that
pulls samples to it based on the value.

This is one technique to visualize separability between the
targets.

Yellowbrick can do this:

>>> from yellowbrick.features import RadViz
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> rv = RadViz(
... classes=["died", "survived"],
... features=X.columns,
...)
>>> rv.fit(X, y)
>>> _ = rv.transform(X)
>>> rv.poof()
>>> fig.savefig("images/mlpr_0612.png", dpi=300)

RadViz | 71

Figure 6-12. Yellowbrick RadViz plot.

The pandas library can plot RadViz plots as well (see
Figure 6-13):

>>> from pandas.plotting import radviz
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> new_df = X.copy()
>>> new_df["target"] = y
>>> radviz(
... new_df, "target", ax=ax, colormap="PiYG"
...)
>>> fig.savefig("images/mlpr_0613.png", dpi=300)

72 | Chapter 6: Exploring

Figure 6-13. Pandas RadViz plot.

Parallel Coordinates
For multivariate data, you can use a parallel coordinates plot to
see clustering visually (see Figure 6-14 and Figure 6-15).

Again, here is a Yellowbrick version:

>>> from yellowbrick.features import (
... ParallelCoordinates,
...)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> pc = ParallelCoordinates(
... classes=["died", "survived"],
... features=X.columns,
...)

Parallel Coordinates | 73

>>> pc.fit(X, y)
>>> pc.transform(X)
>>> ax.set_xticklabels(
... ax.get_xticklabels(), rotation=45
...)
>>> pc.poof()
>>> fig.savefig("images/mlpr_0614.png", dpi=300)

Figure 6-14. Yellowbrick parallel coordinates plot.

And a pandas version:

>>> from pandas.plotting import (
... parallel_coordinates,
...)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> new_df = X.copy()
>>> new_df["target"] = y
>>> parallel_coordinates(
... new_df,
... "target",
... ax=ax,
... colormap="viridis",

74 | Chapter 6: Exploring

... alpha=0.5,

...)
>>> ax.set_xticklabels(
... ax.get_xticklabels(), rotation=45
...)
>>> fig.savefig(
... "images/mlpr_0615.png",
... dpi=300,
... bbox_inches="tight",
...)

Figure 6-15. Pandas parallel coordinates plot.

Parallel Coordinates | 75

CHAPTER 7

Preprocess Data

This chapter will explore common preprocessing steps using
this data:

>>> X2 = pd.DataFrame(
... {
... "a": range(5),
... "b": [-100, -50, 0, 200, 1000],
... }
...)
>>> X2
 a b
0 0 -100
1 1 -50
2 2 0
3 3 200
4 4 1000

Standardize
Some algorithms, such as SVM, perform better when the data
is standardized. Each column should have a mean value of 0
and standard deviation of 1. Sklearn provides a .fit_transform
method that combines both .fit and .transform:

>>> from sklearn import preprocessing
>>> std = preprocessing.StandardScaler()

77

>>> std.fit_transform(X2)
array([[-1.41421356, -0.75995002],
 [-0.70710678, -0.63737744],
 [0. , -0.51480485],
 [0.70710678, -0.02451452],
 [1.41421356, 1.93664683]])

After fitting, there are various attributes we can inspect:

>>> std.scale_
array([1.41421356, 407.92156109])
>>> std.mean_
array([2., 210.])
>>> std.var_
array([2.000e+00, 1.664e+05])

Here is a pandas version. Remember that you will need to track
the original mean and standard deviation if you use this for
preprocessing. Any sample that you will use to predict later will
need to be standardized with those same values:

>>> X_std = (X2 - X2.mean()) / X2.std()
>>> X_std
 a b
0 -1.264911 -0.679720
1 -0.632456 -0.570088
2 0.000000 -0.460455
3 0.632456 -0.021926
4 1.264911 1.732190

>>> X_std.mean()
a 4.440892e-17
b 0.000000e+00
dtype: float64

>>> X_std.std()
a 1.0
b 1.0
dtype: float64

78 | Chapter 7: Preprocess Data

The fastai library also implements this:

>>> X3 = X2.copy()
>>> from fastai.structured import scale_vars
>>> scale_vars(X3, mapper=None)
>>> X3.std()
a 1.118034
b 1.118034
dtype: float64
>>> X3.mean()
a 0.000000e+00
b 4.440892e-17
dtype: float64

Scale to Range
Scaling to range is translating data so it is between 0 and 1,
inclusive. Having the data bounded may be useful. However, if
you have outliers, you probably want to be careful using this:

>>> from sklearn import preprocessing
>>> mms = preprocessing.MinMaxScaler()
>>> mms.fit(X2)
>>> mms.transform(X2)
array([[0. , 0.],
 [0.25 , 0.04545],
 [0.5 , 0.09091],
 [0.75 , 0.27273],
 [1. , 1.]])

Here is a pandas version:

>>> (X2 - X2.min()) / (X2.max() - X2.min())
 a b
0 0.00 0.000000
1 0.25 0.045455
2 0.50 0.090909
3 0.75 0.272727
4 1.00 1.000000

Scale to Range | 79

Dummy Variables
We can use pandas to create dummy variables from categorical
data. This is also referred to as one-hot encoding, or indicator
encoding. Dummy variables are especially useful if the data is
nominal (unordered). The get_dummies function in pandas cre‐
ates multiple columns for a categorical column, each with a 1
or 0 if the original column had that value:

>>> X_cat = pd.DataFrame(
... {
... "name": ["George", "Paul"],
... "inst": ["Bass", "Guitar"],
... }
...)
>>> X_cat
 name inst
0 George Bass
1 Paul Guitar

Here is the pandas version. Note the drop_first option can be
used to eliminate a column (one of the dummy columns is a
linear combination of the other columns):

>>> pd.get_dummies(X_cat, drop_first=True)
 name_Paul inst_Guitar
0 0 0
1 1 1

The pyjanitor library also has the ability to split columns with
the expand_column function:

>>> X_cat2 = pd.DataFrame(
... {
... "A": [1, None, 3],
... "names": [
... "Fred,George",
... "George",
... "John,Paul",
...],
... }
...)

80 | Chapter 7: Preprocess Data

>>> jn.expand_column(X_cat2, "names", sep=",")
 A names Fred George John Paul
0 1.0 Fred,George 1 1 0 0
1 NaN George 0 1 0 0
2 3.0 John,Paul 0 0 1 1

If we have high cardinality nominal data, we can use label
encoding. This is introduced in the next section.

Label Encoder
An alternative to dummy variable encoding is label encoding.
This will take categorical data and assign each value a number.
It is useful for high cardinality data. This encoder imposes ordi‐
nality, which may or may not be desired. It can take up less
space than one-hot encoding, and some (tree) algorithms can
deal with this encoding.

The label encoder can only deal with one column at a time:

>>> from sklearn import preprocessing
>>> lab = preprocessing.LabelEncoder()
>>> lab.fit_transform(X_cat)
array([0,1])

If you have encoded values, applying the .inverse_transform
method decodes them:

>>> lab.inverse_transform([1, 1, 0])
array(['Guitar', 'Guitar', 'Bass'], dtype=object)

You can also use pandas to label encode. First, you convert the
column to a categorical column type, and then pull out the
numeric code from it.

This code will create a new series of numeric data from a pan‐
das series. We use the .as_ordered method to ensure that the
category is ordered:

>>> X_cat.name.astype(
... "category"
...).cat.as_ordered().cat.codes + 1
0 1

Label Encoder | 81

1 2
dtype: int8

Frequency Encoding
Another option for handling high cardinality categorical data is
to frequency encode it. This means replacing the name of the
category with the count it had in the training data. We will use
pandas to do this. First, we will use the pandas .value_counts
method to make a mapping (a pandas series that maps strings
to counts). With the mapping we can use the .map method to
do the encoding:

>>> mapping = X_cat.name.value_counts()
>>> X_cat.name.map(mapping)
0 1
1 1
Name: name, dtype: int64

Make sure you store the training mapping so you can encode
future data with the same data.

Pulling Categories from Strings
One way to increase the accuracy of the Titanic model is to pull
out titles from the names. A quick hack to find the most com‐
mon triples is to use the Counter class:

>>> from collections import Counter
>>> c = Counter()
>>> def triples(val):
... for i in range(len(val)):
... c[val[i : i + 3]] += 1
>>> df.name.apply(triples)
>>> c.most_common(10)
[(', M', 1282),
 (' Mr', 954),
 ('r. ', 830),
 ('Mr.', 757),
 ('s. ', 460),
 ('n, ', 320),

82 | Chapter 7: Preprocess Data

 (' Mi', 283),
 ('iss', 261),
 ('ss.', 261),
 ('Mis', 260)]

We can see that “Mr.” and “Miss.” are very common.

Another option is to use a regular expression to pull out the
capital letter followed by lowercase letters and a period:

>>> df.name.str.extract(
... "([A-Za-z]+)\.", expand=False
...).head()
0 Miss
1 Master
2 Miss
3 Mr
4 Mrs
Name: name, dtype: object

We can use .value_counts to see the frequency of these:

>>> df.name.str.extract(
... "([A-Za-z]+)\.", expand=False
...).value_counts()
Mr 757
Miss 260
Mrs 197
Master 61
Dr 8
Rev 8
Col 4
Mlle 2
Ms 2
Major 2
Dona 1
Don 1
Lady 1
Countess 1
Capt 1
Sir 1
Mme 1

Pulling Categories from Strings | 83

Jonkheer 1
Name: name, dtype: int64

NOTE

A complete discussion of regular expressions is beyond the
scope of this book. This expression captures a group with
one or more alphabetic characters. This group will be fol‐
lowed by a period.

Using these manipulations and pandas, you can create dummy
variables or combine columns with low counts into other cate‐
gories (or drop them).

Other Categorical Encoding
The categorical_encoding library is a set of scikit-learn trans‐
formers used to convert categorical data into numeric data. A
nice feature of this library is that it supports outputting pandas
DataFrames (unlike scikit-learn, which transforms them into
numpy arrays).

One algorithm implemented in the library is a hash encoder.
This is useful if you don’t know how many categories you have
ahead of time or if you are using a bag of words to represent
text. This will hash the categorical columns into n_components.
If you are using online learning (models that can be updated),
this can be very useful:

>>> import category_encoders as ce
>>> he = ce.HashingEncoder(verbose=1)
>>> he.fit_transform(X_cat)
 col_0 col_1 col_2 col_3 col_4 col_5
col_6 col_7
0 0 0 0 1 0 1
0 0
1 0 2 0 0 0 0
0 0

84 | Chapter 7: Preprocess Data

https://oreil.ly/JbxWG

The ordinal encoder can convert categorical columns that have
order to a single column of numbers. Here we convert the size
column to ordinal numbers. If a value is missing from the map‐
ping dictionary, the default value of -1 is used:

>>> size_df = pd.DataFrame(
... {
... "name": ["Fred", "John", "Matt"],
... "size": ["small", "med", "xxl"],
... }
...)
>>> ore = ce.OrdinalEncoder(
... mapping=[
... {
... "col": "size",
... "mapping": {
... "small": 1,
... "med": 2,
... "lg": 3,
... },
... }
...]
...)
>>> ore.fit_transform(size_df)
 name size
0 Fred 1.0
1 John 2.0
2 Matt -1.0

This reference explains many of the algorithms of the categori‐
cal_encoding library.

If you have high cardinality data (a large number of unique val‐
ues) consider using one of the Bayesian encoders that output a
single column per categorical column. These are TargetEn
coder, LeaveOneOutEncoder, WOEEncoder, JamesSteinEncoder,
and MEstimateEncoder.

For example, to convert the Titanic survival column to a blend
of posterior probability of the target and the prior probability
given the title (categorical) information, use the following code:

Other Categorical Encoding | 85

https://oreil.ly/JUtYh

>>> def get_title(df):
... return df.name.str.extract(
... "([A-Za-z]+)\.", expand=False
...)
>>> te = ce.TargetEncoder(cols="Title")
>>> te.fit_transform(
... df.assign(Title=get_title), df.survived
...)["Title"].head()
0 0.676923
1 0.508197
2 0.676923
3 0.162483
4 0.786802
Name: Title, dtype: float64

Date Feature Engineering
The fastai library has an add_datepart function that will gener‐
ate date attribute columns based on a datetime column. This is
useful as most machine learning algorithms would not be able
to infer this type of signal from a numeric representation of a
date:

>>> from fastai.tabular.transform import (
... add_datepart,
...)
>>> dates = pd.DataFrame(
... {
... "A": pd.to_datetime(
... ["9/17/2001", "Jan 1, 2002"]
...)
... }
...)

>>> add_datepart(dates, "A")
>>> dates.T
 0 1
AYear 2001 2002
AMonth 9 1
AWeek 38 1

86 | Chapter 7: Preprocess Data

ADay 17 1
ADayofweek 0 1
ADayofyear 260 1
AIs_month_end False False
AIs_month_start False True
AIs_quarter_end False False
AIs_quarter_start False True
AIs_year_end False False
AIs_year_start False True
AElapsed 1000684800 1009843200

WARNING

add_datepart mutates the DataFrame, which pandas can
do, but normally doesn’t!

Add col_na Feature
The fastai library used to have a function for creating a column
to fill a missing value (with the median) and indicate that a
value was missing. There might be some signal in knowing that
a value was missing. Here is a copy of the function and an
example using it:

>>> from pandas.api.types import is_numeric_dtype
>>> def fix_missing(df, col, name, na_dict):
... if is_numeric_dtype(col):
... if pd.isnull(col).sum() or (
... name in na_dict
...):
... df[name + "_na"] = pd.isnull(col)
... filler = (
... na_dict[name]
... if name in na_dict
... else col.median()
...)
... df[name] = col.fillna(filler)
... na_dict[name] = filler

Add col_na Feature | 87

... return na_dict
>>> data = pd.DataFrame({"A": [0, None, 5, 100]})
>>> fix_missing(data, data.A, "A", {})
{'A': 5.0}
>>> data
 A A_na
0 0.0 False
1 5.0 True
2 5.0 False
3 100.0 False

Here is a pandas version:

>>> data = pd.DataFrame({"A": [0, None, 5, 100]})
>>> data["A_na"] = data.A.isnull()
>>> data["A"] = data.A.fillna(data.A.median())

Manual Feature Engineering
We can use pandas to generate new features. For the Titanic
dataset, we can add aggregate cabin data (maximum age per
cabin, mean age per cabin, etc.). To get aggregate data per cabin
and merge it back in, use the pandas .groupby method to create
the data. Then align it back to the original data using
the .merge method:

>>> agg = (
... df.groupby("cabin")
... .agg("min,max,mean,sum".split(","))
... .reset_index()
...)
>>> agg.columns = [
... "_".join(c).strip("_")
... for c in agg.columns.values
...]
>>> agg_df = df.merge(agg, on="cabin")

If you wanted to sum up “good” or “bad” columns, you could
create a new column that is the sum of the aggregated columns
(or another mathematical operation). This is somewhat of an
art and also requires understanding the data.

88 | Chapter 7: Preprocess Data

CHAPTER 8

Feature Selection

We use feature selection to select features that are useful to the
model. Irrelevant features may have a negative effect on a
model. Correlated features can make coefficients in regression
(or feature importance in tree models) unstable or difficult to
interpret.

The curse of dimensionality is another issue to consider. As you
increase the number of dimensions of your data, it becomes
more sparse. This can make it difficult to pull out a signal
unless you have more data. Neighbor calculations tend to lose
their usefulness as more dimensions are added.

Also, training time is usually a function of the number of col‐
umns (and sometimes it is worse than linear). If you can be
concise and precise with your columns, you can have a better
model in less time. We will walk through some examples using
the agg_df dataset from the last chapter. Remember that this is
the Titanic dataset with some extra columns for cabin informa‐
tion. Because this dataset is aggregating numeric values for
each cabin, it will show many correlations. Other options
include PCA and looking at the .feature_importances_ of a
tree classifier.

89

Collinear Columns
We can use the previously defined correlated_columns func‐
tion or run the following code to find columns that have a cor‐
relation coefficient of .95 or above:

>>> limit = 0.95
>>> corr = agg_df.corr()
>>> mask = np.triu(
... np.ones(corr.shape), k=1
...).astype(bool)
>>> corr_no_diag = corr.where(mask)
>>> coll = [
... c
... for c in corr_no_diag.columns
... if any(abs(corr_no_diag[c]) > threshold)
...]
>>> coll
['pclass_min', 'pclass_max', 'pclass_mean',
 'sibsp_mean', 'parch_mean', 'fare_mean',
 'body_max', 'body_mean', 'sex_male', 'embarked_S']

The Yellowbrick Rank2 visualizer, shown previously, will plot a
heat map of correlations.

The rfpimp package has a visualization of multicollinearity. The
plot_dependence_heatmap function trains a random forest for
each numeric column from the other columns in a training
dataset. The dependence value is the R2 score from the out-of-
bag (OOB) estimates for predicting that column (see
Figure 8-1).

The suggested way to use this plot is to find values close to 1.
The label on the X axis is the feature that predicts the Y axis
label. If a feature predicts another, you can remove the predic‐
ted feature (the feature on the Y axis). In our example, fare
predicts pclass, sibsp, parch, and embarked_Q. We should be
able to keep fare and remove the others and get similar
performance:

90 | Chapter 8: Feature Selection

https://oreil.ly/MsnXc

>>> rfpimp.plot_dependence_heatmap(
... rfpimp.feature_dependence_matrix(X_train),
... value_fontsize=12,
... label_fontsize=14,
... figsize=(8, 8),sn
...)
>>> fig = plt.gcf()
>>> fig.savefig(
... "images/mlpr_0801.png",
... dpi=300,
... bbox_inches="tight",
...)

Figure 8-1. Dependence heat map. Pclass, sibsp, parch, and
embarked_Q can be predicted from fare, so we can remove them.

Here is code showing that we get a similar score if we remove
these columns:

Collinear Columns | 91

>>> cols_to_remove = [
... "pclass",
... "sibsp",
... "parch",
... "embarked_Q",
...]
>>> rf3 = RandomForestClassifier(random_state=42)
>>> rf3.fit(
... X_train[
... [
... c
... for c in X_train.columns
... if c not in cols_to_remove
...]
...],
... y_train,
...)
>>> rf3.score(
... X_test[
... [
... c
... for c in X_train.columns
... if c not in cols_to_remove
...]
...],
... y_test,
...)
0.7684478371501272

>>> rf4 = RandomForestClassifier(random_state=42)
>>> rf4.fit(X_train, y_train)
>>> rf4.score(X_test, y_test)
0.7659033078880407

Lasso Regression
If you use lasso regression, you can set an alpha parameter that
acts as a regularization parameter. As you increase the value, it
gives less weight to features that are less important. Here we use

92 | Chapter 8: Feature Selection

the LassoLarsCV model to iterate over various values of alpha
and track the feature coefficients (see Figure 8-2):

>>> from sklearn import linear_model
>>> model = linear_model.LassoLarsCV(
... cv=10, max_n_alphas=10
...).fit(X_train, y_train)
>>> fig, ax = plt.subplots(figsize=(12, 8))
>>> cm = iter(
... plt.get_cmap("tab20")(
... np.linspace(0, 1, X.shape[1])
...)
...)
>>> for i in range(X.shape[1]):
... c = next(cm)
... ax.plot(
... model.alphas_,
... model.coef_path_.T[:, i],
... c=c,
... alpha=0.8,
... label=X.columns[i],
...)
>>> ax.axvline(
... model.alpha_,
... linestyle="-",
... c="k",
... label="alphaCV",
...)
>>> plt.ylabel("Regression Coefficients")
>>> ax.legend(X.columns, bbox_to_anchor=(1, 1))
>>> plt.xlabel("alpha")
>>> plt.title(
... "Regression Coefficients Progression for
Lasso Paths"
...)
>>> fig.savefig(
... "images/mlpr_0802.png",
... dpi=300,
... bbox_inches="tight",
...)

Lasso Regression | 93

Figure 8-2. Coefficients of features as alpha varies during lasso
regression.

Recursive Feature Elimination
Recursive feature elimination will remove the weakest features,
then fit a model (see Figure 8-3). It does this by passing in a
scikit-learn model with a .coef_ or .feature_importances_
attribute:

>>> from yellowbrick.features import RFECV
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> rfe = RFECV(
... ensemble.RandomForestClassifier(
... n_estimators=100
...),
... cv=5,
...)
>>> rfe.fit(X, y)

>>> rfe.rfe_estimator_.ranking_
array([1, 1, 2, 3, 1, 1, 5, 4])

>>> rfe.rfe_estimator_.n_features_
4

94 | Chapter 8: Feature Selection

>>> rfe.rfe_estimator_.support_
array([True, True, False, False, True,
 True, False, False])

>>> rfe.poof()
>>> fig.savefig("images/mlpr_0803.png", dpi=300)

Figure 8-3. Recursive feature elimination.

We will use recursive feature elimination to find the 10 most
important features. (In this aggregated dataset we find that we
have leaked the survival column!)

>>> from sklearn.feature_selection import RFE
>>> model = ensemble.RandomForestClassifier(
... n_estimators=100
...)
>>> rfe = RFE(model, 4)
>>> rfe.fit(X, y)
>>> agg_X.columns[rfe.support_]
Index(['pclass', 'age', 'fare', 'sex_male'],
dtype='object')

Recursive Feature Elimination | 95

Mutual Information
Sklearn provides nonparametric tests that will use k-nearest
neighbor to determine the mutual information between features
and the target. Mutual information quantifies the amount of
information gained by observing another variable. The value is
zero or more. If the value is zero, then there is no relation
between them (see Figure 8-4). This number is not bounded
and represents the number of bits shared between the feature
and the target:

>>> from sklearn import feature_selection

>>> mic = feature_selection.mutual_info_classif(
... X, y
...)
>>> fig, ax = plt.subplots(figsize=(10, 8))
>>> (
... pd.DataFrame(
... {"feature": X.columns, "vimp": mic}
...)
... .set_index("feature")
... .plot.barh(ax=ax)
...)
>>> fig.savefig("images/mlpr_0804.png")

96 | Chapter 8: Feature Selection

Figure 8-4. Mutual information plot.

Principal Component Analysis
Another option for feature selection is to run principal compo‐
nent analysis. Once you have the main principal components,
examine the features that contribute to them the most. These
are features that have more variance. Note that this is an unsu‐
pervised algorithm and doesn’t take y into account.

See “PCA” on page 239 for more details.

Feature Importance
Most tree models provide access to a .feature_importances_
attribute following training. A higher importance typically
means that there is higher error when the feature is removed
from the model. See the chapters for the various tree models
for more details.

Principal Component Analysis | 97

CHAPTER 9

Imbalanced Classes

If you are classifying data, and the classes are not relatively bal‐
anced in size, the bias toward more popular classes can carry
over into your model. For example, if you have 1 positive case
and 99 negative cases, you can get 99% accuracy simply by clas‐
sifying everything as negative. There are various options for
dealing with imbalanced classes.

Use a Different Metric
One hint is to use a measure other than accuracy (AUC is a
good choice) for calibrating models. Precision and recall are
also better options when the target sizes are different. However,
there are other options to consider as well.

Tree-based Algorithms and Ensembles
Tree-based models may perform better depending on the dis‐
tribution of the smaller class. If they tend to be clustered, they
can be classified easier.

Ensemble methods can further aid in pulling out the minority
classes. Bagging and boosting are options found in tree models
like random forests and Extreme Gradient Boosting
(XGBoost).

99

Penalize Models
Many scikit-learn classification models support the
class_weight parameter. Setting this to 'balanced' will attempt
to regularize minority classes and incentivize the model to clas‐
sify them correctly. Alternatively, you can grid search and spec‐
ify the weight options by passing in a dictionary mapping class
to weight (give higher weight to smaller classes).

The XGBoost library has the max_delta_step parameter, which
can be set from 1 to 10 to make the update step more conserva‐
tive. It also has the scale_pos_weight parameter that sets the
ratio of negative to positive samples (for binary classes). Also,
the eval_metric should be set to 'auc' rather than the default
value of 'error' for classification.

The KNN model has a weights parameter that can bias neigh‐
bors that are closer. If the minority class samples are close
together, setting this parameter to 'distance' may improve
performance.

Upsampling Minority
You can upsample the minority class in a couple of ways. Here
is an sklearn implementation:

>>> from sklearn.utils import resample
>>> mask = df.survived == 1
>>> surv_df = df[mask]
>>> death_df = df[~mask]
>>> df_upsample = resample(
... surv_df,
... replace=True,
... n_samples=len(death_df),
... random_state=42,
...)
>>> df2 = pd.concat([death_df, df_upsample])

>>> df2.survived.value_counts()
1 809

100 | Chapter 9: Imbalanced Classes

https://xgboost.readthedocs.io

0 809
Name: survived, dtype: int64

We can also use the imbalanced-learn library to randomly sam‐
ple with replacement:

>>> from imblearn.over_sampling import (
... RandomOverSampler,
...)
>>> ros = RandomOverSampler(random_state=42)
>>> X_ros, y_ros = ros.fit_sample(X, y)
>>> pd.Series(y_ros).value_counts()
1 809
0 809
dtype: int64

Generate Minority Data
The imbalanced-learn library can also generate new samples of
minority classes with both the Synthetic Minority Over-
sampling Technique (SMOTE) and Adaptive Synthetic (ADA‐
SYN) sampling approach algorithms. SMOTE works by choos‐
ing one of its k-nearest neighbors, connecting a line to one of
them, and choosing a point along that line. ADASYN is similar
to SMOTE, but generates more samples from those that are
harder to learn. The classes in imbanced-learn are named
over_sampling.SMOTE and over_sampling.ADASYN.

Downsampling Majority
Another method to balance classes is to downsample majority
classes. Here is an sklearn example:

>>> from sklearn.utils import resample
>>> mask = df.survived == 1
>>> surv_df = df[mask]
>>> death_df = df[~mask]
>>> df_downsample = resample(
... death_df,
... replace=False,
... n_samples=len(surv_df),

Generate Minority Data | 101

... random_state=42,

...)
>>> df3 = pd.concat([surv_df, df_downsample])

>>> df3.survived.value_counts()
1 500
0 500
Name: survived, dtype: int64

TIP

Don’t use replacement when downsampling.

The imbalanced-learn library also implements various down‐
sampling algorithms:

ClusterCentroids

This class uses K-means to synthesize data with the
centroids.

RandomUnderSampler

This class randomly selects samples.

NearMiss

This class uses nearest neighbors to downsample.

TomekLink

This class downsamples by removing samples that are
close to each other.

EditedNearestNeighbours

This class removes samples that have neighbors that are
either not in the majority or all of the same class.

RepeatedNearestNeighbours

This class repeatedly calls the EditedNearestNeighbours.

AllKNN

This class is similar but increases the number of nearest
neighbors during the iterations of downsampling.

102 | Chapter 9: Imbalanced Classes

CondensedNearestNeighbour

This class picks one sample of the class to be downsam‐
pled, then iterates through the other samples of the class,
and if KNN doesn’t misclassify, it adds that sample.

OneSidedSelection

This classremoves noisy samples.

NeighbourhoodCleaningRule

This class uses EditedNearestNeighbours results and
applies KNN to it.

InstanceHardnessThreshold

This class trains a model, then removes samples with low
probabilities.

All of these classes support the .fit_sample method.

Upsampling Then Downsampling
The imbalanced-learn library implements SMOTEENN and SMOTE
Tomek, which both upsample and then apply downsampling to
clean up the data.

Upsampling Then Downsampling | 103

CHAPTER 10

Classification

Classification is a supervised learning mechanism for labeling a
sample based on the features. Supervised learning means that
we have labels for classification or numbers for regression that
the algorithm should learn.

We will look at various classification models in this chapter.
Sklearn implements many common and useful models. We will
also see some that are not in sklearn, but implement the sklearn
interface. Because they follow the same interface, it is easy to
try different families of models and see how well they perform.

In sklearn, we create a model instance and call the .fit method
on it with the training data and training labels. We can now call
the .predict method (or the .predict_proba or
the .predict_log_proba methods) with the fitted model. To
evaluate the model, we use the .score with testing data and
testing labels.

The bigger challenge is usually arranging data in a form that
will work with sklearn. The data (X) should be an (m by n)
numpy array (or pandas DataFrame) with m rows of sample
data each with n features (columns). The label (y) is a vector
(or pandas series) of size m with a value (class) for each sample.

105

The .score method returns the mean accuracy, which by itself
might not be sufficient to evaluate a classifier. We will see other
evaluation metrics.

We will look at many models and discuss their efficiency, the
preprocessing techniques they require, how to prevent overfit‐
ting, and if the model supports intuitive interpretation of
results.

The general methods that sklearn type models implement are:

fit(X, y[, sample_weight])

Fit a model

predict(X)

Predict classes

predict_log_proba(X)

Predict log probability

predict_proba(X)

Predict probability

score(X, y[, sample_weight])

Get accuracy

Logistic Regression
Logistic regression estimates probabilities by using a logistic
function. (Careful; even though it has regression in the name, it
is used for classification.) This has been the standard classifica‐
tion model for most sciences.

The following are some model characteristics that we will
include for each model:

Runtime efficiency
Can use n_jobs if not using 'liblinear' solver.

Preprocess data
If solver is set to 'sag' or 'saga', standardize so that con‐
vergence works. Can handle sparse input.

106 | Chapter 10: Classification

Prevent overfitting
The C parameter controls regularization. (Lower C is more
regularization, higher means less.) Can specify penalty to
'l1' or 'l2' (the default).

Interpret results
The .coef_ attribute of the fitted model shows the deci‐
sion function coefficients. A change in x one unit changes
the log odds ratio by the coefficient. The .intercept_
attribute is the inverse log odds of the baseline condition.

Here is an example using this model:

>>> from sklearn.linear_model import (
... LogisticRegression,
...)
>>> lr = LogisticRegression(random_state=42)
>>> lr.fit(X_train, y_train)
LogisticRegression(C=1.0, class_weight=None,
 dual=False, fit_intercept=True,
 intercept_scaling=1, max_iter=100,
 multi_class='ovr', n_jobs=1, penalty='l2',
 random_state=42, solver='liblinear',
 tol=0.0001, verbose=0, warm_start=False)
>>> lr.score(X_test, y_test)
0.8040712468193384

>>> lr.predict(X.iloc[[0]])
array([1])
>>> lr.predict_proba(X.iloc[[0]])
array([[0.08698937, 0.91301063]])
>>> lr.predict_log_proba(X.iloc[[0]])
array([[-2.4419694 , -0.09100775]])
>>> lr.decision_function(X.iloc[[0]])
array([2.35096164])

Instance parameters:

penalty='l2'

Penalization norm, 'l1' or 'l2'.

Logistic Regression | 107

dual=False

Use dual formulation (only with 'l2' and 'liblinear').

C=1.0

Positive float. Inverse regularization strength. Smaller is
stronger regularization.

fit_intercept=True

Add bias to the decision function.

intercept_scaling=1

If fit_intercept and 'liblinear', scale the intercept.

max_iter=100

Maximum number of iterations.

multi_class='ovr'

Use one versus rest for each class, or for 'multinomial',
train one class.

class_weight=None

Dictionary or 'balanced'.

solver='liblinear'

'liblinear' is good for small data. 'newton-cg', 'sag',
'saga', and 'lbfgs' are for multiclass data. 'liblinear'
and 'saga' only work with 'l1' penalty. The others work
with 'l2'.

tol=0.0001

Stopping tolerance.

verbose=0

Be verbose (if nonzero int).

warm_start=False

If True, remember previous fit.

njobs=1

Number of CPUs to use. -1 is all. Only works with
multi_class='over' and solver is not 'liblinear'.

108 | Chapter 10: Classification

Attributes after fitting:

coef_

Decision function coefficients

intercept_

Intercept of the decision function

n_iter_

Number of iterations

The intercept is the log odds of the baseline condition. We can
convert it back to a percent accuracy (proportion):

>>> lr.intercept_
array([-0.62386001])

Using the inverse logit function, we see that the baseline for
survival is 34%:

>>> def inv_logit(p):
... return np.exp(p) / (1 + np.exp(p))

>>> inv_logit(lr.intercept_)
array([0.34890406])

We can inspect the coefficients. The inverse logit of the coeffi‐
cients gives the proportion of the positive cases. In this case, if
fare goes up, we are more likely to survive. If sex is male, we are
less likely to survive:

>>> cols = X.columns
>>> for col, val in sorted(
... zip(cols, lr.coef_[0]),
... key=lambda x: x[1],
... reverse=True,
...):
... print(
... f"{col:10}{val:10.3f} {inv_logit(val):
10.3f}"
...)
fare 0.104 0.526
parch -0.062 0.485

Logistic Regression | 109

sibsp -0.274 0.432
age -0.296 0.427
embarked_Q -0.504 0.377
embarked_S -0.507 0.376
pclass -0.740 0.323
sex_male -2.400 0.083

Yellowbrick can also visualize the coefficients. This visualizer
has a relative=True parameter that makes the largest value be
100 (or -100), and the others are the percentages of that (see
Figure 10-1):

>>> from yellowbrick.features.importances import (
... FeatureImportances,
...)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> fi_viz = FeatureImportances(lr)
>>> fi_viz.fit(X, y)
>>> fi_viz.poof()
>>> fig.savefig("images/mlpr_1001.png", dpi=300)

Figure 10-1. Feature importance (relative to largest absolute regression
coefficient).

110 | Chapter 10: Classification

Naive Bayes
Naive Bayes is a probabilistic classifier that assumes independ‐
ence between the features of the data. It is popular for text
classification applications, such as catching spam. One advan‐
tage of this model is that because it assumes feature independ‐
ence, it can train a model with a small number of samples. (A
downside is that it can’t capture the interactions between fea‐
tures.) This simple model can also work with data that has
many features. As such, it serves as a good baseline model.

There are three classes in sklearn: GaussianNB, MultinomialNB,
and BernoulliNB. The first assumes a Gaussian distribution
(continuous features with a normal distribution), the second is
for discrete occurrence counts, and the third is for discrete
Boolean features.

This model has the following properties:

Runtime efficiency
Training O(Nd), where N is the number of training exam‐
ples and d is dimensionality. Testing O(cd), where c is the
number of classes.

Preprocess data
Assumes that data is independent. Should perform better
after removing colinear columns. For continuous numeri‐
cal data, might be good to bin data. Gaussian assumes nor‐
mal distribution, and you might need to transform data to
convert to normal distribution.

Prevent overfitting
Exhibits high bias and low variance (ensembles won’t
reduce variance).

Interpret results
Percentage is the likelihood that a sample belongs to a
class based on priors.

Naive Bayes | 111

Here is an example using this model:

>>> from sklearn.naive_bayes import GaussianNB
>>> nb = GaussianNB()
>>> nb.fit(X_train, y_train)
GaussianNB(priors=None, var_smoothing=1e-09)
>>> nb.score(X_test, y_test)
0.7837150127226463

>>> nb.predict(X.iloc[[0]])
array([1])
>>> nb.predict_proba(X.iloc[[0]])
array([[2.17472227e-08, 9.99999978e-01]])
>>> nb.predict_log_proba(X.iloc[[0]])
array([[-1.76437798e+01, -2.17472227e-08]])

Instance parameters:

priors=None

Prior probabilities of classes.

var_smoothing=1e-9

Added to variance for stable calculations.

Attributes after fitting:

class_prior_

Probabilities of classes

class_count_

Counts of classes

theta_

Mean of each column per class

sigma_

Variance of each column per class

epsilon_

Additive value to each variance

112 | Chapter 10: Classification

TIP

These models are susceptible to the zero probability prob‐
lem. If you try to classify a new sample that has no training
data, it will have a zero probability. One solution is to use
Laplace smoothing. Sklearn controls this with the alpha
parameter, which defaults to 1 and enables smoothing on
the MultinomialNB and BernoulliNB models.

Support Vector Machine
A Support Vector Machine (SVM) is an algorithm that tries to
fit a line (or plane or hyperplane) between the different classes
that maximizes the distance from the line to the points of the
classes. In this way it tries to find a robust separation between
the classes. The support vectors are the points of the edge of the
dividing hyperplane.

NOTE

There are a few different SVM implementations in sklearn.
SVC wraps the libsvm library, while LinearSVC wraps the
liblinear library.

There is also the linear_model.SGDClassifier, which
implements SVM when using the default loss parameter.
This chapter will describe the first implementation.

SVM generally performs well and can support linear spaces or
nonlinear spaces by using a kernel trick. The kernel trick is the
idea that we can create a decision boundary in a new dimen‐
sion by minimizing a formula that is easier to calculate than
actually mapping the points to the new dimension. The default
kernel is the Radial Basis Function ('rbf'), which is controlled
by the gamma parameter and can map an input space into a high
dimensional space.

Support Vector Machine | 113

SVMs have the following properties:

Runtime efficiency
The scikit-learn implementation is O(n⁴), so it can be hard
to scale to large sizes. Using a linear kernel or the Line
arSVC model can improve the runtime performance at per‐
haps the cost of accuracy. Upping the cache_size parame‐
ter can bring that down to O(n³).

Preprocess data
The algorithm is not scale invariant. Standardizing the
data is highly recommended.

Prevent overfitting
The C (penalty parameter) controls regularization. A
smaller value allows for a smaller margin in the hyper‐
plane. A higher value for gamma will tend to overfit the
training data. The LinearSVC model supports a loss and
penalty parameter to support regularization.

Interpret results
Inspect .support_vectors_, though these are hard to
explain. With linear kernels, you can inspect .coef_.

Here is an example using scikit-learn’s SVM implementation:

>>> from sklearn.svm import SVC
>>> svc = SVC(random_state=42, probability=True)
>>> svc.fit(X_train, y_train)
SVC(C=1.0, cache_size=200, class_weight=None,
 coef0=0.0, decision_function_shape='ovr',
 degree=3, gamma='auto', kernel='rbf',
 max_iter=-1, probability=True, random_state=42,
 shrinking=True, tol=0.001, verbose=False)
>>> svc.score(X_test, y_test)
0.8015267175572519

>>> svc.predict(X.iloc[[0]])
array([1])
>>> svc.predict_proba(X.iloc[[0]])
array([[0.15344656, 0.84655344]])

114 | Chapter 10: Classification

>>> svc.predict_log_proba(X.iloc[[0]])
array([[-1.87440289, -0.16658195]])

To get probability, use probability=True, which will slow down
fitting of the model.

This is similar to a perceptron, but will find the maximum
margin. If the data is not linearly separable, it will minimize the
error. Alternatively, a different kernel may be used.

Instance parameters:

C=1.0

The penalty parameter. The smaller the value, the tighter
the decision boundary (more overfitting).

cache_size=200

Cache size (MB). Bumping this up can improve training
time on large datasets.

class_weight=None

Dictionary or 'balanced'. Use dictionary to set C for each
class.

coef0=0.0

Independent term for poly and sigmoid kernels.

decision_function_shape='ovr'

Use one versus rest ('ovr') or one versus one.

degree=3

Degree for polynomial kernel.

gamma='auto'

Kernel coefficient. Can be a number, 'scale' (default in
0.22, 1 / (num features * X.std())), or 'auto' (default
prior, 1 / num features). A lower value leads to overfitting
the training data.

kernel='rbf'

Kernel type: 'linear', 'poly', 'rbf' (default), 'sigmoid',
'precomputed', or a function.

Support Vector Machine | 115

max_iter=-1

Maximum number of iterations for solver. -1 for no limit.

probability=False

Enable probability estimation. Slows down training.

random_state=None

Random seed.

shrinking=True

Use shrinking heuristic.

tol=0.001

Stopping tolerance.

verbose=False

Verbosity.

Attributes after fitting:

support_

Support vector indices

support_vectors_

Support vectors

n_support_vectors_

Count of per-class support vectors

coef_

Coefficients (for linear) kernel

K-Nearest Neighbor
The K-Nearest Neighbor (KNN) algorithm classifies based on
distance to some number (k) of training samples. The algo‐
rithm family is called instance-based learning as there are no
parameters to learn. This model assumes that distance is suffi‐
cient for inference; otherwise it makes no assumptions about
the underlying data or its distributions.

The tricky part is selecting the appropriate k value. Also, the
curse of dimensionality can hamper distance metrics as there is

116 | Chapter 10: Classification

little difference in high dimensions between nearest and far‐
thest neighbor.

Nearest neighbor models have the following properties:

Runtime efficiency
Training O(1), but need to store data. Testing O(Nd)
where N is the number of training examples and d is
dimensionality.

Preprocess data
Yes, distance-based calculations perform better when
standardized.

Prevent overfitting
Raise n_neighbors. Change p for L1 or L2 metric.

Interpret results
Interpret the k-nearest neighbors to the sample (using
the .kneighbors method). Those neighbors (if you can
explain them) explain your result.

Here is an example of using the model:

>>> from sklearn.neighbors import (
... KNeighborsClassifier,
...)
>>> knc = KNeighborsClassifier()
>>> knc.fit(X_train, y_train)
KNeighborsClassifier(algorithm='auto',
 leaf_size=30, metric='minkowski',
 metric_params=None, n_jobs=1, n_neighbors=5,
 p=2, weights='uniform')
>>> knc.score(X_test, y_test)
0.7837150127226463

>>> knc.predict(X.iloc[[0]])
array([1])

>>> knc.predict_proba(X.iloc[[0]])
array([[0., 1.]])

K-Nearest Neighbor | 117

Attributes:

algorithm='auto'

Can be 'brute', 'ball_tree', or 'kd_tree'.

leaf_size=30

Used for tree algorithms.

metric='minkowski'

Distance metric.

metric_params=None

Additional dictionary of parameters for custom metric
function.

n_jobs=1

Number of CPUs.

n_neighbors=5

Number of neighbors.

p=2

Minkowski power parameter: 1 = manhattan (L1). 2 =
Euclidean (L2).

weights='uniform'

Can be 'distance', in which case, closer points have more
influence.

Distance metrics include: 'euclidean', 'manhattan',
'chebyshev', 'minkowski', 'wminkowski', 'seuclidean',
'mahalanobis', 'haversine', 'hamming', 'canberra',
'braycurtis', 'jaccard', 'matching', 'dice',
'rogerstanimoto', 'russellrao', 'sokalmichener',
'sokalsneath', or a callable (user defined).

NOTE

If k is an even number and the neighbors are split, the
result depends on the order of the training data.

118 | Chapter 10: Classification

Decision Tree
A decision tree is like going to a doctor who asks a series of
questions to determine the cause of your symptoms. We can
use a process to create a decision tree and have a series of ques‐
tions to predict a target class. The advantages of this model
include support for nonnumeric data (in some implementa‐
tions), little data preparation (no need for scaling), support for
dealing with nonlinear relationships, feature importances are
revealed, and it is easy to explain.

The default algorithm used for creation is called the classifica‐
tion and regression tree (CART). It uses the Gini impurity or
index measure to construct decisions. This is done by looping
over the features and finding the value that gives the lowest
probability of misclassifying.

TIP

The default values will lead to a fully grown (read overfit)
tree. Use a mechanism such as max_depth and cross-vali‐
dation to control for this.

Decision trees have the following properties:

Runtime efficiency
For creation, loop over each of the m features, and sort all
n samples, O(mn log n). For predicting, you walk the tree,
O(height).

Preprocess data
Scaling is not necessary. Need to get rid of missing values
and convert to numeric.

Prevent overfitting
Set max_depth to a lower number, raise
min_impurity_decrease.

Decision Tree | 119

Interpret results
Can step through the tree of choices. Because there are
steps, a tree is bad at dealing with linear relationships (a
small change in a number can go down a different path).
The tree is also highly dependent on the training data. A
small change can change the whole tree.

Here is an example using the scikit-learn library:

>>> from sklearn.tree import DecisionTreeClassifier
>>> dt = DecisionTreeClassifier(
... random_state=42, max_depth=3
...)
>>> dt.fit(X_train, y_train)
DecisionTreeClassifier(class_weight=None,
 criterion='gini', max_depth=None,
 max_features=None, max_leaf_nodes=None,
 min_impurity_decrease=0.0,
 min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, presort=False,
 random_state=42, splitter='best')

>>> dt.score(X_test, y_test)
0.8142493638676844

>>> dt.predict(X.iloc[[0]])
array([1])
>>> dt.predict_proba(X.iloc[[0]])
array([[0.02040816, 0.97959184]])
>>> dt.predict_log_proba(X.iloc[[0]])
array([[-3.8918203 , -0.02061929]])

Instance parameters:

class_weight=None

Weights for class in dictionary. 'balanced' will set values
to the inverse proportion of class frequencies. Default is a
value of 1 for each class. For multiclass, need a list of dic‐
tionaries, one-versus-rest (OVR) for each class.

120 | Chapter 10: Classification

criterion='gini'

Splitting function, 'gini' or 'entropy'.

max_depth=None

Depth of tree. Default will build until the leaves contain
less than min_samples_split.

max_features=None

Number of features to examine for split. Default is all.

max_leaf_nodes=None

Limit the number of leaves. Default is unlimited.

min_impurity_decrease=0.0

Split node if a split will decrease impurity >= value.

min_impurity_split=None

Deprecated.

min_samples_leaf=1

Minimum number of samples at each leaf.

min_samples_split=2

Minimum number of samples required to split a node.

min_weight_fraction_leaf=0.0

Minimum sum total of weights required for leaf nodes.

presort=False

May speed up training with a small dataset or restricted
depth if set to True.

random_state=None

Random seed.

splitter='best'

Use 'random' or 'best'.

Attributes after fitting:

classes_

Class labels

feature_importances_

Array of Gini importance

Decision Tree | 121

n_classes_

Number of classes

n_features_

Number of features

tree_

Underlying tree object

View the tree with this code (see Figure 10-2):

>>> import pydotplus
>>> from io import StringIO
>>> from sklearn.tree import export_graphviz
>>> dot_data = StringIO()
>>> tree.export_graphviz(
... dt,
... out_file=dot_data,
... feature_names=X.columns,
... class_names=["Died", "Survived"],
... filled=True,
...)
>>> g = pydotplus.graph_from_dot_data(
... dot_data.getvalue()
...)
>>> g.write_png("images/mlpr_1002.png")

For Jupyter, use:

from IPython.display import Image
Image(g.create_png())

122 | Chapter 10: Classification

Fi
gu

re
 1

0-
2.

 D
ec

isi
on

 tr
ee

.

Decision Tree | 123

The dtreeviz package can aid in understanding how the deci‐
sion tree works. It creates a tree with labeled histograms, which
gives valuable insight (see Figure 10-3). Here is an example. In
Jupyter we can just display the viz object directly. If we are
working from a script, we can call the .save method to create a
PDF, SVG, or PNG:

>>> viz = dtreeviz.trees.dtreeviz(
... dt,
... X,
... y,
... target_name="survived",
... feature_names=X.columns,
... class_names=["died", "survived"],
...)
>>> viz

124 | Chapter 10: Classification

https://github.com/parrt/dtreeviz

Fi
gu

re
 1

0-
3.

 d
tre

ev
iz

 o
ut

pu
t.

Decision Tree | 125

Feature importance showing Gini importance (reduction of
error by using that feature):

>>> for col, val in sorted(
... zip(X.columns, dt.feature_importances_),
... key=lambda x: x[1],
... reverse=True,
...)[:5]:
... print(f"{col:10}{val:10.3f}")
sex_male 0.607
pclass 0.248
sibsp 0.052
fare 0.050
age 0.043

You can also use Yellowbrick to visualize feature importance
(see Figure 10-4):

>>> from yellowbrick.features.importances import (
... FeatureImportances,
...)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> fi_viz = FeatureImportances(dt)
>>> fi_viz.fit(X, y)
>>> fi_viz.poof()
>>> fig.savefig("images/mlpr_1004.png", dpi=300)

126 | Chapter 10: Classification

Figure 10-4. Feature importance (Gini coefficient) for decision tree
(normalized to male importance).

Random Forest
A random forest is an ensemble of decision trees. It uses bag‐
ging to correct the tendency of decision trees to overfit. By cre‐
ating many trees trained on random subsamples of the samples
and random features of the data, the variance is lowered.

Because they train on subsamples of the data, random forests
can evaluate OOB error and evaluate performance. They can
also track feature importance by averaging the feature impor‐
tance over all of the trees.

The intuition for understanding bagging comes from a 1785
essay by Marquis de Condorcet. The essence is that if you are
creating a jury, you should add anyone who has a greater than
50% chance of delivering the correct verdict and then average
their decisions. Every time you add another member (and their
selection process is independent of the others), you will get a
better result.

The idea with random forests is to create a “forest” of decision
trees trained on different columns of the training data. If each
tree has a better than 50% chance of correct classification, you

Random Forest | 127

should incorporate its prediction. The random forest has been
an excellent tool for both classification and regression, though
it has recently fallen out of favor for gradient-boosted trees.

It has the following properties:

Runtime efficiency
Need to create j random trees. This can be done in parallel
using n_jobs. Complexity for each tree is O(mn log n),
where n is the number of samples and m is the number of
features. For creation, loop over each of the m features,
and sort all n samples, O(mn log n). For predicting, walk
the tree O(height).

Preprocess data
Not necessary.

Prevent overfitting
Add more trees (n_estimators). Use lower max_depth.

Interpret results
Supports feature importance, but we don’t have a single
decision tree that we can walk through. Can inspect single
trees from the ensemble.

Here is an example:

>>> from sklearn.ensemble import (
... RandomForestClassifier,
...)
>>> rf = RandomForestClassifier(random_state=42)
>>> rf.fit(X_train, y_train)
RandomForestClassifier(bootstrap=True,
 class_weight=None, criterion='gini',
 max_depth=None, max_features='auto',
 max_leaf_nodes=None, min_impurity_decrease=0.0,
 min_impurity_split=None, min_samples_leaf=1,
 min_samples_split=2,
 min_weight_fraction_leaf=0.0,
 n_estimators=10, n_jobs=1, oob_score=False,
 random_state=42, verbose=0, warm_start=False)
>>> rf.score(X_test, y_test)

128 | Chapter 10: Classification

0.7862595419847328

>>> rf.predict(X.iloc[[0]])
array([1])
>>> rf.predict_proba(X.iloc[[0]])
array([[0., 1.]])
>>> rf.predict_log_proba(X.iloc[[0]])
array([[-inf, 0.]])

Instance parameters (these options mirror the decision tree):

bootstrap=True

Bootstrap when building trees.

class_weight=None

Weights for class in dictionary. 'balanced' will set values
to the inverse proportion of class frequencies. Default is a
value of 1 for each class. For multiclass, need a list of dic‐
tionaries (OVR) for each class.

criterion='gini'

Splitting function, 'gini' or 'entropy'.

max_depth=None

Depth of tree. Default will build until leaves contain less
than min_samples_split.

max_features='auto'

Number of features to examine for split. Default is all.

max_leaf_nodes=None

Limit the number of leaves. Default is unlimited.

min_impurity_decrease=0.0

Split node if a split will decrease impurity >= value.

min_impurity_split=None

Deprecated.

min_samples_leaf=1

Minimum number of samples at each leaf.

Random Forest | 129

min_samples_split=2

Minimum number of samples required to split a node.
min_weight_fraction_leaf=0.0- Minimum sum total of
weights required for leaf nodes.

* n_estimators=10
Number of trees in the forest.

n_jobs=1

Number of jobs for fitting and predicting.

oob_score=False

Whether to estimate oob_score.

random_state=None

Random seed.

verbose=0

Verbosity.

warm_start=False

Fit a new forest or use the existing one.

Attributes after fitting:

classes_

Class labels.

feature_importances_

Array of Gini importance.

n_classes_

Number of classes.

n_features_

Number of features.

oob_score_

OOB score. Average accuracy for each observation not
used in trees.

130 | Chapter 10: Classification

Feature importance showing Gini importance (reduction of
error by using that feature):

>>> for col, val in sorted(
... zip(X.columns, rf.feature_importances_),
... key=lambda x: x[1],
... reverse=True,
...)[:5]:
... print(f"{col:10}{val:10.3f}")
age 0.285
fare 0.268
sex_male 0.232
pclass 0.077
sibsp 0.059

Random Forest | 131

TIP

The random forest classifier computes the feature impor‐
tance by determining the mean decrease in impurity for
each feature (also known as Gini importance). Features
that reduce uncertainty in classification receive higher
scores.
These numbers might be off if features vary in scale or car‐
dinality of categorical columns. A more reliable score is
permutation importance (where each column has its values
permuted and the drop in accuracy is measured). An even
more reliable mechanism is drop column importance
(where each column is dropped and the model is re-evalu‐
ated), but sadly this requires creating a new model for each
column that is dropped. See the importances function in
the rfpimp package:

>>> import rfpimp
>>> rf = RandomForestClassifier(ran
dom_state=42)
>>> rf.fit(X_train, y_train)
>>> rfpimp.importances(
... rf, X_test, y_test
...).Importance
Feature
sex_male 0.155216
fare 0.043257
age 0.033079
pclass 0.027990
parch 0.020356
embarked_Q 0.005089
sibsp 0.002545
embarked_S 0.000000
Name: Importance, dtype: float64

132 | Chapter 10: Classification

XGBoost
Although sklearn has a GradientBoostedClassifier, it is better
to use a third-party implementation that uses extreme boost‐
ing. These tend to provide better results.

XGBoost is a popular library outside of scikit-learn. It creates a
weak tree and then “boosts” the subsequent trees to reduce the
residual errors. It tries to capture and address any patterns in
the errors until they appear to be random.

XGBoost has the following properties:

Runtime efficiency
XGBoost is parallelizeable. Use the n_jobs option to indi‐
cate the number of CPUs. Use GPU for even better
performance.

Preprocess data
No scaling necessary with tree models. Need to encode
categorical data.

Prevent overfitting
The early_stopping_rounds=N parameter can be set to
stop training if there is no improvement after N rounds.
L1 and L2 regularization are controlled by reg_alpha and
reg_lambda, respectively. Higher numbers are more
conservative.

Interpret results
Has feature importance.

XGBoost has an extra parameter for the .fit method. The
early_stopping_rounds parameter can be combined with the
eval_set parameter to tell XGBoost to stop creating trees if the
evaluation metric has not improved after that many boosting
rounds. The eval_metric can also be set to one of the follow‐
ing: 'rmse', 'mae', 'logloss', 'error' (default), 'auc',
'aucpr', as well as a custom function.

XGBoost | 133

https://oreil.ly/WBo0g

Here is an example using the library:

>>> import xgboost as xgb
>>> xgb_class = xgb.XGBClassifier(random_state=42)
>>> xgb_class.fit(
... X_train,
... y_train,
... early_stopping_rounds=10,
... eval_set=[(X_test, y_test)],
...)
XGBClassifier(base_score=0.5, booster='gbtree',
 colsample_bylevel=1, colsample_bytree=1, gamma=0,
 learning_rate=0.1, max_delta_step=0, max_depth=3,
 min_child_weight=1, missing=None,
 n_estimators=100, n_jobs=1, nthread=None,
 objective='binary:logistic', random_state=42,
 reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
 seed=None, silent=True, subsample=1)

>>> xgb_class.score(X_test, y_test)
0.7862595419847328

>>> xgb_class.predict(X.iloc[[0]])
array([1])
>>> xgb_class.predict_proba(X.iloc[[0]])
array([[0.06732017, 0.93267983]], dtype=float32)

Instance parameters:

max_depth=3

Maximum depth.

learning_rate=0.1

Learning rate (also called eta) for boosting (between 0 and
1). After each boost step, the newly added weights are
scaled by this factor. The lower the value, the more conser‐
vative, but will also need more trees to converge. In the
call to .train, you can pass a learning_rates parameter,
which is a list of rates at each round (i.e., [.1]*100 + [.
05]*100).

134 | Chapter 10: Classification

n_estimators=100

Number of rounds or boosted trees.

silent=True

Opposite of verbose. Whether to print messages while
running boosting.

objective='binary:logistic'

Learning task or callable for classification.

booster='gbtree'

Can be 'gbtree', 'gblinear', or 'dart'.

nthread=None

Deprecated.

n_jobs=1

Number of threads to use.

gamma=0

Controls pruning. Range is 0 to infinite. Minimum loss
reduction needed to further split a leaf. Higher gamma is
more conservative. If training and test scores are diverg‐
ing, insert a higher number (around 10). If training and
test scores are close, use a lower number.

min_child_weight=1

Minimum value for sum of hessian for a child.

max_delta_step=0

Make update more conservative. Set 1 to 10 for imbal‐
anced classes.

subsample=1

Fraction of samples to use for next round.

colsample_bytree=1

Fraction of columns to use for round.

colsample_bylevel=1

Fraction of columns to use for level.

colsample_bynode=1

Fraction of columns to use for node.

XGBoost | 135

reg_alpha=0

L1 regularization (mean of weights) encourages sparsity.
Increase to be more conservative.

reg_lambda=1

L2 regularization (root of squared weights) encourages
small weights. Increase to be more conservative.

scale_pos_weight=1

Ratio of negative/positive weight.

base_score=.5

Initial prediction.

seed=None

Deprecated.

random_state=0

Random seed.

missing=None

Value to interpret for missing. None means np.nan.

importance_type='gain'

The feature importance type: 'gain', 'weight', 'cover',
'total_gain', or 'total_cover'.

Attributes:

coef_

Coefficients for gblinear learners

feature_importances_

Feature importances for gbtree learners

Feature importance is the average gain across all the nodes
where the feature is used:

>>> for col, val in sorted(
... zip(
... X.columns,
... xgb_class.feature_importances_,
...),
... key=lambda x: x[1],

136 | Chapter 10: Classification

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")
fare 0.420
age 0.309
pclass 0.071
sex_male 0.066
sibsp 0.050

XGBoost can plot the feature importance (see Figure 10-5). It
has an importance_type parameter. The default value is
"weight", which is the number of times a feature appears in a
tree. It can also be "gain", which shows the average gain when
the feature is used, or "cover", which is the number of samples
affected by a split:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> xgb.plot_importance(xgb_class, ax=ax)
>>> fig.savefig("images/mlpr_1005.png", dpi=300)

Figure 10-5. Feature importance showing weight (how many times a
feature appears in the trees).

XGBoost | 137

We can plot this in Yellowbrick, which normalizes the values
(see Figure 10-6):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> fi_viz = FeatureImportances(xgb_class)
>>> fi_viz.fit(X, y)
>>> fi_viz.poof()
>>> fig.savefig("images/mlpr_1006.png", dpi=300)

Figure 10-6. Yellowbrick feature importance for XGBoost (normalized
to 100).

XGBoost provides both a textual representation of the trees and
a graphical one. Here is the text representation:

>>> booster = xgb_class.get_booster()
>>> print(booster.get_dump()[0])
0:[sex_male<0.5] yes=1,no=2,missing=1
 1:[pclass<0.23096] yes=3,no=4,missing=3
 3:[fare<-0.142866] yes=7,no=8,missing=7
 7:leaf=0.132530
 8:leaf=0.184
 4:[fare<-0.19542] yes=9,no=10,missing=9
 9:leaf=0.024598
 10:leaf=-0.1459
 2:[age<-1.4911] yes=5,no=6,missing=5
 5:[sibsp<1.81278] yes=11,no=12,missing=11

138 | Chapter 10: Classification

 11:leaf=0.13548
 12:leaf=-0.15000
 6:[pclass<-0.95759] yes=13,no=14,missing=13
 13:leaf=-0.06666
 14:leaf=-0.1487

The value in the leaf is the score for class 1. It can be converted
into a probability using the logistic function. If the decisions
fell through to leaf 7, the probability of class 1 is 53%. This is
the score from a single tree. If our model had 100 trees, you
would sum up each leaf value and get the probability with the
logistic function:

>>> # score from first tree leaf 7
>>> 1 / (1 + np.exp(-1 * 0.1238))
0.5309105310475829

Here is the graphical version of the first tree in the model (see
Figure 10-7):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> xgb.plot_tree(xgb_class, ax=ax, num_trees=0)
>>> fig.savefig("images/mlpr_1007.png", dpi=300)

Figure 10-7. Tree of XGBoost.

The xgbfir package is a library built on top of XGBoost. This
library gives various measures about feature importance. What

XGBoost | 139

https://oreil.ly/kPnRv

is unique is that it provides these measures about the columns,
and also pairs of columns, so you can see the interactions. In
addition, you can get information about triplets (three-
column) interactions.

The measures it provides are:

Gain

Total gain of each feature or feature interaction

FScore

Amount of possible splits taken on a feature or feature
interaction

wFScore

Amount of possible splits taken on a feature or feature
interaction, weighted by the probability of the splits to
take place

Average wFScore

wFScore divided by FScore

Average Gain

Gain divided by FScore

Expected Gain

Total gain of each feature or feature interaction weighted
by the probability to gather the gain

The interface is simply an export to a spreadsheet, so we will
use pandas to read them back in. Here is the column
importance:

>>> import xgbfir
>>> xgbfir.saveXgbFI(
... xgb_class,
... feature_names=X.columns,
... OutputXlsxFile="fir.xlsx",
...)
>>> pd.read_excel("/tmp/surv-fir.xlsx").head(3).T
 0 1 2
Interaction sex_male pclass fare
Gain 1311.44 585.794 544.884

140 | Chapter 10: Classification

FScore 42 45 267
wFScore 39.2892 21.5038 128.33
Average wFScore 0.935458 0.477861 0.480636
Average Gain 31.2247 13.0177 2.04076
Expected Gain 1307.43 229.565 236.738
Gain Rank 1 2 3
FScore Rank 4 3 1
wFScore Rank 3 4 1
Avg wFScore Rank 1 5 4
Avg Gain Rank 1 2 4
Expected Gain Rank 1 3 2
Average Rank 1.83333 3.16667 2.5
Average Tree Index 32.2381 20.9778 51.9101
Average Tree Depth 0.142857 1.13333 1.50562

From this table, we see sex_male ranks high in gain, average
wFScore, average gain, and expected gain, whereas fare tops
out in FScore and wFScore.

Let’s look at pairs of column interactions:

>>> pd.read_excel(
... "fir.xlsx",
... sheet_name="Interaction Depth 1",
...).head(2).T
Interaction pclass|sex_male age|sex_male
Gain 2090.27 964.046
FScore 35 18
wFScore 14.3608 9.65915
Average wFScore 0.410308 0.536619
Average Gain 59.722 53.5581
Expected Gain 827.49 616.17
Gain Rank 1 2
FScore Rank 5 10
wFScore Rank 4 8
Avg wFScore Rank 8 5
Avg Gain Rank 1 2
Expected Gain Rank 1 2
Average Rank 3.33333 4.83333
Average Tree Index 18.9714 38.1111
Average Tree Depth 1 1.11111

XGBoost | 141

Here we see that the top two interactions involve the sex_male
column in combination with pclass and age. If you were only
able to make a model with two features, you would probably
want to choose pclass and sex_male.

Finally, let’s look at triplets:

>>> pd.read_excel(
... "fir.xlsx",
... sheet_name="Interaction Depth 2",
...).head(1).T
 0
Interaction fare|pclass|sex_male
Gain 2973.16
FScore 44
wFScore 8.92572
Average wFScore 0.202857
Average Gain 67.5719
Expected Gain 549.145
Gain Rank 1
FScore Rank 1
wFScore Rank 4
Avg wFScore Rank 21
Avg Gain Rank 3
Expected Gain Rank 2
Average Rank 5.33333
Average Tree Index 16.6591
Average Tree Depth 2

This is only showing the first triplet due to space limitations,
but the spreadsheet has many more:

>>> pd.read_excel(
... "/tmp/surv-fir.xlsx",
... sheet_name="Interaction Depth 2",
...)[["Interaction", "Gain"]].head()
 Interaction Gain
0 fare|pclass|sex_male 2973.162529
1 age|pclass|sex_male 1621.945151
2 age|sex_male|sibsp 1042.320428
3 age|fare|sex_male 366.860828
4 fare|fare|sex_male 196.224791

142 | Chapter 10: Classification

Gradient Boosted with LightGBM
LightGBM is an implementation by Microsoft. LightGBM uses
a sampling mechanism to deal with continuous values. This
allows quicker creation of trees (than say XGBoost), and
reduces memory usage.

LightGBM also grows trees depth first (leaf-wise rather than
level-wise). Because of this, rather than using max_depth to
control overfitting, use num_leaves (where this value is
< 2^(max_depth)).

NOTE

Installation of this library currently requires having a com‐
piler and is a little more involved than just a pip install.

It has the following properties:

Runtime efficiency
Can take advantage of multiple CPUs. By using binning,
can be 15 times faster than XGBoost.

Preprocess data
Has some support for encoding categorical columns as
integers (or pandas Categorical type), but AUC appears
to suffer compared to one-hot encoding.

Prevent overfitting
Lower num_leaves. Increase min_data_in_leaf. Use
min_gain_to_split with lambda_l1 or lambda_l2.

Interpret results
Feature importance is available. Individual trees are weak
and tend to be hard to interpret.

Here is an example using the library:

>>> import lightgbm as lgb
>>> lgbm_class = lgb.LGBMClassifier(

Gradient Boosted with LightGBM | 143

... random_state=42

...)
>>> lgbm_class.fit(X_train, y_train)
LGBMClassifier(boosting_type='gbdt',
 class_weight=None, colsample_bytree=1.0,
 learning_rate=0.1, max_depth=-1,
 min_child_samples=20, min_child_weight=0.001,
 min_split_gain=0.0, n_estimators=100,
 n_jobs=-1, num_leaves=31, objective=None,
 random_state=42, reg_alpha=0.0, reg_lambda=0.0,
 silent=True, subsample=1.0,
 subsample_for_bin=200000, subsample_freq=0)

>>> lgbm_class.score(X_test, y_test)
0.7964376590330788

>>> lgbm_class.predict(X.iloc[[0]])
array([1])
>>> lgbm_class.predict_proba(X.iloc[[0]])
array([[0.01637168, 0.98362832]])

Instance parameters:

boosting_type='gbdt'

Can be: 'gbdt' (gradient boosting), 'rf' (random forest),
'dart' (dropouts meet multiple additive regression trees),
or 'goss' (gradient-based, one-sided sampling).

class_weight=None

Dictionary or 'balanced'. Use dictionary to set weight for
each class label when doing multiclass problems. For
binary problems, use is_unbalance or scale_pos_weight.

colsample_bytree=1.0

Range (0, 1.0]. Select percent of features for each boosting
round.

importance_type='split'

How to calculate feature importance. 'split' means num‐
ber of times a feature is used. 'gain' is total gains of splits
for a feature.

144 | Chapter 10: Classification

learning_rate=0.1

Range (0, 1.0]. Learning rate for boosting. A smaller value
slows down overfitting as boosting rounds have less
impact. A smaller number should give better performance
but will require more num_iterations.

max_depth=-1

Maximum tree depth. -1 is unlimited. Larger depths tend
to overfit more.

min_child_samples=20

Number of samples required for a leaf. Lower numbers
mean more overfitting.

min_child_weight=0.001

Sum of hessian weight required for a leaf.

min_split_gain=0.0

Loss reduction required to partition leaf.

n_estimators=100

Number of trees or boosting rounds.

n_jobs=-1

Number of threads.

num_leaves=31

Maximum tree leaves.

objective=None

None is 'binary' or 'multiclass' for classifier. Can be a
function or string.

random_state=42

Random seed.

reg_alpha=0.0

L1 regularization (mean of weights). Increase to be more
conservative.

reg_lambda=0.0

L2 regularization (root of squared weights). Increase to be
more conservative.

Gradient Boosted with LightGBM | 145

silent=True

Verbose mode.

subsample=1.0

Fraction of samples to use for next round.

subsample_for_bin=200000

Samples required to create bins.

subsample_freq=0

Subsample frequency. Change to 1 to enable.

Feature importance based on 'splits' (number of times a
product is used):

>>> for col, val in sorted(
... zip(cols, lgbm_class.feature_importances_),
... key=lambda x: x[1],
... reverse=True,
...)[:5]:
... print(f"{col:10}{val:10.3f}")
fare 1272.000
age 1182.000
sibsp 118.000
pclass 115.000
sex_male 110.000

The LightGBM library supports creating a feature importance
plot (see Figure 10-8). The default is based on 'splits', the
number of times a feature is used. You can specify
'importance_type' if you want to change it to 'gain':

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> lgb.plot_importance(lgbm_class, ax=ax)
>>> fig.tight_layout()
>>> fig.savefig("images/mlpr_1008.png", dpi=300)

146 | Chapter 10: Classification

Figure 10-8. Feature importance splits for LightGBM.

WARNING

As of version 0.9, Yellowbrick doesn’t work with
LightGBM for creating feature importance plots.

We can create a tree of the decisions as well (see Figure 10-9):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> lgb.plot_tree(lgbm_class, tree_index=0, ax=ax)
>>> fig.savefig("images/mlpr_1009.png", dpi=300)

Figure 10-9. LightGBM tree.

Gradient Boosted with LightGBM | 147

TIP

In Jupyter, use the following command to view a tree:

lgb.create_tree_digraph(lgbm_class)

TPOT
TPOT uses a genetic algorithm to try different models and
ensembles. This can take hours to days to run as it considers
multiple models and preprocessing steps, as well as the hyper‐
parameters for said models, and ensembling options. On a typ‐
ical machine, a generation may take five or more minutes to
run.

It has the following properties:

Runtime efficiency
Can take hours or days. Use n_jobs=-1 to use all CPUs.

Preprocess data
You need to remove NaN and categorical data.

Prevent overfitting
Ideally, results should use cross-validation to minimize
overfitting.

Interpret results
Depends on the results.

Here is an example of using the library:

>>> from tpot import TPOTClassifier
>>> tc = TPOTClassifier(generations=2)
>>> tc.fit(X_train, y_train)
>>> tc.score(X_test, y_test)
0.7888040712468194

>>> tc.predict(X.iloc[[0]])
array([1])
>>> tc.predict_proba(X.iloc[[0]])
array([[0.07449919, 0.92550081]])

148 | Chapter 10: Classification

https://oreil.ly/NFJvl

Instance parameters:

generations=100

Iterations to run.

population_size=100

Population size for genetic programming. Larger size usu‐
ally performs better but takes more memory and time.

offspring_size=None

Offspring for each generation. Default is population_size.

mutation_rate=.9

Mutation rate for algorithm [0, 1]. Default is .9.

crossover_rate=.1

Cross-over rate (how many pipelines to breed in a genera‐
tion). Range [0, 1]. Default is .1.

scoring='accuracy'

Scoring mechanism. Uses sklearn strings.

cv=5

Cross-validation folds.

subsample=1

Subsample training instances. Range [0, 1]. Default is 1.

n_jobs=1

Number of CPUs to use, -1 for all cores.

max_time_mins=None

Maximum amount of minutes to run.

max_eval_time_mins=5

Maximum amount of minutes to evaluate a single
pipeline.

random_state=None

Random seed.

config_dict

Configuration options for optimization.

TPOT | 149

warm_start=False

Reuse previous calls to .fit.

memory=None

Can cache pipelines. 'auto' or a path will persist in a
directory.

use_dask=False

Use dask.

periodic_checkpoint_folder=None

Path to a folder where the best pipeline will be persisted
periodically.

early_stop=None

Stop after running this many generations with no
improvement.

verbosity=0

0 = none, 1 = minimal, 2 = high, or 3 = all. 2 and higher
shows a progress bar.

disable_update_check=False

Disable version check.

Attributes:

evaluated_individuals_

Dictionary with all pipelines that were evaluated.

fitted_pipeline_

Best pipeline.

After you are done, you can export the pipeline:

>>> tc.export("tpot_exported_pipeline.py")

The result might look like this:

import numpy as np
import pandas as pd
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model_selection import \
 train_test_split
from sklearn.pipeline import make_pipeline, \

150 | Chapter 10: Classification

 make_union
from sklearn.preprocessing import Normalizer
from tpot.builtins import StackingEstimator

NOTE: Make sure that the class is labeled
'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE',
 sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, \
 training_target, testing_target = \
 train_test_split(features,
 tpot_data['target'].values, random_state=42)

Score on the training set was:0.8122535043953432
exported_pipeline = make_pipeline(
 Normalizer(norm="max"),
 StackingEstimator(
 estimator=ExtraTreesClassifier(bootstrap=True,
 criterion="gini", max_features=0.85,
 min_samples_leaf=2, min_samples_split=19,
 n_estimators=100)),
 ExtraTreesClassifier(bootstrap=False,
 criterion="entropy", max_features=0.3,
 min_samples_leaf=13, min_samples_split=9,
 n_estimators=100)
)

exported_pipeline.fit(training_features,
 training_target)
results = exported_pipeline.predict(
 testing_features)

TPOT | 151

CHAPTER 11

Model Selection

This chapter will discuss optimizing hyperparameters. It will
also explore the issue of whether the model requires more data
to perform better.

Validation Curve
Creating a validation curve is one way to determine an appro‐
priate value for a hyperparameter. A validation curve is a plot
that shows how the model performance responds to changes in
the hyperparameter’s value (see Figure 11-1). The chart shows
both the training data and the validation data. The validation
scores allow us to infer how the model would respond to
unseen data. Typically, we would choose a hyperparameter that
maximizes the validation score.

In the following example, we will use Yellowbrick to see if
changing the value of the max_depth hyperparameter changes
the model performance of a random forest. You can provide a
scoring parameter set to a scikit-learn model metric (the
default for classification is 'accuracy'):

153

TIP

Use the n_jobs parameter to take advantage of the CPUs
and run this faster. If you set it to -1, it will use all of the
CPUs.

>>> from yellowbrick.model_selection import (
... ValidationCurve,
...)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> vc_viz = ValidationCurve(
... RandomForestClassifier(n_estimators=100),
... param_name="max_depth",
... param_range=np.arange(1, 11),
... cv=10,
... n_jobs=-1,
...)
>>> vc_viz.fit(X, y)
>>> vc_viz.poof()
>>> fig.savefig("images/mlpr_1101.png", dpi=300)

154 | Chapter 11: Model Selection

Figure 11-1. Validation curve report.

The ValidationCurve class supports a scoring parameter. The
parameter can be a custom function or one of the following
options, depending on the task.

Classification scoring options include: 'accuracy', 'aver

age_precision', 'f1', 'f1_micro', 'f1_macro', 'f1_weighted',
'f1_samples', 'neg_log_loss', 'precision', 'recall', and
'roc_auc'.

Clustering scoring options: 'adjusted_mutual_info_score',
'adjusted_rand_score', 'completeness_score',
'fowlkesmallows_score', 'homogeneity_score',
'mutual_info_score', 'normalized_mutual_info_score', and
'v_measure_score'.

Regression scoring options: 'explained_variance',
'neg_mean_absolute_error', 'neg_mean_squared_error',
'neg_mean_squared_log_error', 'neg_median_absolute_error',
and 'r2'.

Validation Curve | 155

Learning Curve
To select the best model for your project, how much data do
you need? A learning curve can help us answer that question.
This curve plots the training and cross-validation score as we
create models with more samples. If the cross-validation score
continues to rise, for example, that could indicate that more
data would help the model perform better.

The following visualization shows a validation curve and also
helps us explore bias and variance in our model (see
Figure 11-2). If there is variability (a large shaded area) in the
training score, then the model suffers from bias error and is too
simple (underfit). If there is variability in the cross-validated
score, then the model suffers from variance error and is too
complicated (overfit). Another indication that the model is
overfit is that the performance of the validation set is much
worse than the training set.

Here is an example of creating a learning curve using
Yellowbrick:

>>> from yellowbrick.model_selection import (
... LearningCurve,
...)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> lc3_viz = LearningCurve(
... RandomForestClassifier(n_estimators=100),
... cv=10,
...)
>>> lc3_viz.fit(X, y)
>>> lc3_viz.poof()
>>> fig.savefig("images/mlpr_1102.png", dpi=300)

156 | Chapter 11: Model Selection

Figure 11-2. Learning curve plot. The plateau in the validation score
indicates that adding more data would not improve this model.

This visualization can also be used for regression or clustering
by changing the scoring options.

Learning Curve | 157

CHAPTER 12

Metrics and Classification
Evaluation

We’ll cover the following metrics and evaluation tools in this
chapter: confusion matrices, various metrics, a classification
report, and some visualizations.

This will be evaluated as a decision tree model that predicts
Titanic survival.

Confusion Matrix
A confusion matrix can aid in understanding how a classifier
performs.

A binary classifier can have four classification results: true pos‐
itives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). The first two are correct classifications.

Here is a common example for remembering the other results.
Assuming positive means pregnant and negative is not preg‐
nant, a false positive is like claiming a man is pregnant. A false
negative is claiming that a pregnant woman is not (when she is
clearly showing) (see Figure 12-1). These last two types of
errors are referred to as type 1 and type 2 errors, respectively
(see Table 12-1).

159

Another way to remember these is that P (for false positive) has
one straight line in it (type 1 error), and N (for false negative)
has two vertical lines in it.

Figure 12-1. Classification errors.

Table 12-1. Binary classification results from a confusion matrix

Actual Predicted negative Predicted positive

Actual negative True negative False positive (type 1)

Actual positive False negative (type 2) True positive

Here is the pandas code to calculate the classification results.
The comments show the results. We will use these variables to
calculate other metrics:

>>> y_predict = dt.predict(X_test)
>>> tp = (
... (y_test == 1) & (y_test == y_predict)
...).sum() # 123
>>> tn = (
... (y_test == 0) & (y_test == y_predict)
...).sum() # 199
>>> fp = (
... (y_test == 0) & (y_test != y_predict)
...).sum() # 25
>>> fn = (

160 | Chapter 12: Metrics and Classification Evaluation

... (y_test == 1) & (y_test != y_predict)

...).sum() # 46

Well-behaving classifiers ideally have high counts in the true
diagonal. We can create a DataFrame using the sklearn confu
sion_matrix function:

>>> from sklearn.metrics import confusion_matrix
>>> y_predict = dt.predict(X_test)
>>> pd.DataFrame(
... confusion_matrix(y_test, y_predict),
... columns=[
... "Predict died",
... "Predict Survive",
...],
... index=["True Death", "True Survive"],
...)
 Predict died Predict Survive
True Death 199 25
True Survive 46 123

Yellowbrick has a plot for the confusion matrix (see
Figure 12-2):

>>> import matplotlib.pyplot as plt
>>> from yellowbrick.classifier import (
... ConfusionMatrix,
...)
>>> mapping = {0: "died", 1: "survived"}
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> cm_viz = ConfusionMatrix(
... dt,
... classes=["died", "survived"],
... label_encoder=mapping,
...)
>>> cm_viz.score(X_test, y_test)
>>> cm_viz.poof()
>>> fig.savefig("images/mlpr_1202.png", dpi=300)

Confusion Matrix | 161

Figure 12-2. Confusion matrix. The upper left and lower right are cor‐
rect classifications. The lower left is false negative. The upper right is
false positive.

Metrics
The sklearn.metrics module implements many common clas‐
sification metrics, including:

'accuracy'

Percent of correct predictions

'average_precision'

Precision recall curve summary

'f1'

Harmonic mean of precision and recall

162 | Chapter 12: Metrics and Classification Evaluation

'neg_log_loss'

Logistic or cross-entropy loss (model must support
predict_proba)

'precision'

Ability to find only relevant samples (not label a negative
as a positive)

'recall'

Ability to find all positive samples

'roc_auc'

Area under the receiver operator characteristic curve

These strings can be used as the scoring parameter when doing
grid search, or you can use functions from the sklearn.metrics
module that have the same names as the strings but end in
_score. See the following note for examples.

NOTE

'f1', 'precision', and 'recall' all support the follow‐
ing suffixes for multiclass classifers:

'_micro'

Global weighted average of metric

'_macro'

Unweighted average of metric

'_weighted'

Multiclass weighted average of metric

'_samples'

Per sample metric

Metrics | 163

Accuracy
Accuracy is the percentage of correct classifications:

>>> (tp + tn) / (tp + tn + fp + fn)
0.8142493638676844

What is good accuracy? It depends. If I’m predicting fraud
(which usually is a rare event, say 1 in 10,000), I can get very
high accuracy by always predicting not fraud. But this model is
not very useful. Looking at other metrics and the cost of pre‐
dicting a false positive and a false negative can help us deter‐
mine if a model is decent.

We can use sklearn to calculate it for us:

>>> from sklearn.metrics import accuracy_score
>>> y_predict = dt.predict(X_test)
>>> accuracy_score(y_test, y_predict)
0.8142493638676844

Recall
Recall (also called sensitivity) is the percentage of positive val‐
ues correctly classified. (How many relevant results are
returned?)

>>> tp / (tp + fn)
0.7159763313609467

>>> from sklearn.metrics import recall_score
>>> y_predict = dt.predict(X_test)
>>> recall_score(y_test, y_predict)
0.7159763313609467

Precision
Precision is the percent of positive predictions that were cor‐
rect (TP divided by (TP + FP)). (How relevant are the results?)

>>> tp / (tp + fp)
0.8287671232876712

164 | Chapter 12: Metrics and Classification Evaluation

>>> from sklearn.metrics import precision_score
>>> y_predict = dt.predict(X_test)
>>> precision_score(y_test, y_predict)
0.8287671232876712

F1
F1 is the harmonic mean of recall and precision:

>>> pre = tp / (tp + fp)
>>> rec = tp / (tp + fn)
>>> (2 * pre * rec) / (pre + rec)
0.7682539682539683

>>> from sklearn.metrics import f1_score
>>> y_predict = dt.predict(X_test)
>>> f1_score(y_test, y_predict)
0.7682539682539683

Classification Report
Yellowbrick has a classification report showing precision, recall,
and f1 scores for both positive and negative values (see
Figure 12-3). This is colored, and the redder the cell (closer to
one), the better the score:

>>> import matplotlib.pyplot as plt
>>> from yellowbrick.classifier import (
... ClassificationReport,
...)
>>> fig, ax = plt.subplots(figsize=(6, 3))
>>> cm_viz = ClassificationReport(
... dt,
... classes=["died", "survived"],
... label_encoder=mapping,
...)
>>> cm_viz.score(X_test, y_test)
>>> cm_viz.poof()
>>> fig.savefig("images/mlpr_1203.png", dpi=300)

F1 | 165

Figure 12-3. Classification report.

ROC
A ROC curve illustrates how the classifier performs by tracking
the true positive rate (recall/sensitivity) as the false positive rate
(inverted specificity) changes (see Figure 12-4).

A rule of thumb is that the plot should bulge out toward the
top-left corner. A plot that is to the left and above another plot
indicates better performance. The diagonal in this plot indi‐
cates the behavior of a random guessing classifier. By taking the
AUC, you get a metric for evaluating the performance:

>>> from sklearn.metrics import roc_auc_score
>>> y_predict = dt.predict(X_test)
>>> roc_auc_score(y_test, y_predict)
0.8706304346418559

Yellowbrick can plot this for us:

>>> from yellowbrick.classifier import ROCAUC
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> roc_viz = ROCAUC(dt)
>>> roc_viz.score(X_test, y_test)
0.8706304346418559
>>> roc_viz.poof()
>>> fig.savefig("images/mlpr_1204.png", dpi=300)

166 | Chapter 12: Metrics and Classification Evaluation

Figure 12-4. ROC curve.

Precision-Recall Curve
The ROC curve may be overly optimistic for imbalanced
classes. Another option for evaluating classifiers is using a
precision-recall curve (see Figure 12-5). Classification is a bal‐
ancing act of finding everything you need (recall) while limit‐
ing the junk results (precision). This is typically a trade-off. As
recall goes up, precision usually goes down and vice versa.

>>> from sklearn.metrics import (
... average_precision_score,
...)
>>> y_predict = dt.predict(X_test)
>>> average_precision_score(y_test, y_predict)
0.7155150490642249

Precision-Recall Curve | 167

Here is a Yellowbrick precision-recall curve:

>>> from yellowbrick.classifier import (
... PrecisionRecallCurve,
...)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> viz = PrecisionRecallCurve(
... DecisionTreeClassifier(max_depth=3)
...)
>>> viz.fit(X_train, y_train)
>>> print(viz.score(X_test, y_test))
>>> viz.poof()
>>> fig.savefig("images/mlpr_1205.png", dpi=300)

Figure 12-5. Precision-recall curve.

168 | Chapter 12: Metrics and Classification Evaluation

Cumulative Gains Plot
A cumulative gains plot can be used to evaluate a binary classi‐
fier. It models the true positive rate (sensitivity) against the
support rate (fraction of positive predictions). The intuition
behind this plot is to sort all classifications by predicted proba‐
bility. Ideally there would be a clean cut that divides positive
from negative samples. If the first 10% of the predictions has
30% of the positive samples, you would plot a point from (0,0)
to (.1, .3). You continue this process through all of the samples
(see Figure 12-6).

A common use for this is determining customer response. The
cumulative gains curve plots the support or predicted positive
rate along the x-axis. Our chart labels this as “Percentage of
sample”. It plots the sensitivity or true positive rate along the y-
axis. This is labeled as “Gain” in our plot.

If you wanted to contact 90% of the customers that would
respond (sensitivity), you can trace from .9 on the y-axis to the
right until you hit that curve. The x-axis at that point will indi‐
cate how many total customers you need to contact (support)
to get to 90%.

In this case we aren’t contacting customers that would respond
to a survey but predicting survival on the Titanic. If we ordered
all passengers on the Titanic according to our model by how
likely they are to survive, if you took the first 65% of them, you
would have 90% of the survivors. If you have an associated cost
per contact and revenue per response, you can calculate what
the best number is.

In general, a model that is to the left and above another model
is a better model. The best models are lines that go up to the
top (if 10% of the samples are positive, it would hit at (.1, 1))
and then directly to the right. If the plot is below the baseline,
we would do better to randomly assign labels that use our
model.

The scikit-plot library can create a cumulative gains plot:

Cumulative Gains Plot | 169

https://oreil.ly/dg0iQ

>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> y_probas = dt.predict_proba(X_test)
>>> scikitplot.metrics.plot_cumulative_gain(
... y_test, y_probas, ax=ax
...)
>>> fig.savefig(
... "images/mlpr_1206.png",
... dpi=300,
... bbox_inches="tight",
...)

Figure 12-6. Cumulative gains plot. If we ordered people on the Titanic
according to our model, looking at 20% of them we would get 40% of
the survivors.

170 | Chapter 12: Metrics and Classification Evaluation

Lift Curve
A lift curve is another way of looking at the information in a
cumulative gains plot. The lift is how much better we are doing
than the baseline model. In our plot below, we can see that if
we sorted our Titanic passengers by the survival probability
and took the first 20% of them, our lift would be about 2.2
times (the gain divided by sample percent) better than ran‐
domly choosing survivors (see Figure 12-7). (We would get 2.2
times as many survivors.)

The scikit-plot library can create a lift curve:

>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> y_probas = dt.predict_proba(X_test)
>>> scikitplot.metrics.plot_lift_curve(
... y_test, y_probas, ax=ax
...)
>>> fig.savefig(
... "images/mlpr_1207.png",
... dpi=300,
... bbox_inches="tight",
...)

Lift Curve | 171

Figure 12-7. Lift curve.

Class Balance
Yellowbrick has a simple bar plot to view the class sizes. When
the relative class sizes are different, accuracy is not a good eval‐
uation metric (see Figure 12-8). When splitting up the data into
training and test sets, use stratified sampling so the sets keep a
relative proportion of the classes. (The test_train_split func‐
tion does this when you set the stratify parameter to the
labels.)

>>> from yellowbrick.classifier import ClassBalance
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> cb_viz = ClassBalance(

172 | Chapter 12: Metrics and Classification Evaluation

... labels=["Died", "Survived"]

...)
>>> cb_viz.fit(y_test)
>>> cb_viz.poof()
>>> fig.savefig("images/mlpr_1208.png", dpi=300)

Figure 12-8. A slight class imbalance.

Class Prediction Error
The class prediction error plot from Yellowbrick is a bar chart
that visualizes a confusion matrix (see Figure 12-9):

Class Prediction Error | 173

>>> from yellowbrick.classifier import (
... ClassPredictionError,
...)
>>> fig, ax = plt.subplots(figsize=(6, 3))
>>> cpe_viz = ClassPredictionError(
... dt, classes=["died", "survived"]
...)
>>> cpe_viz.score(X_test, y_test)
>>> cpe_viz.poof()
>>> fig.savefig("images/mlpr_1209.png", dpi=300)

Figure 12-9. Class prediction error. At the top of the left bar are people
who died, but we predicted that they survived (false positive). At the
bottom of the right bar are people who survived, but the model predic‐
ted death (false negative).

174 | Chapter 12: Metrics and Classification Evaluation

Discrimination Threshold
Most binary classifiers that predict probability have a discrimi‐
nation threshold of 50%. If the predicted probability is above
50%, the classifier assigns a positive label. Figure 12-10 moves
that threshold value between 0 and 100 and shows the impact
to precision, recall, f1, and queue rate.

This plot can be useful to view the trade-off between precision
and recall. Assume we are looking for fraud (and considering
fraud to be the positive classification). To get high recall (catch
all of the fraud), we can just classify everything as fraud. But in
a bank situation, this would not be profitable and would
require an army of workers. To get high precision (only catch
fraud if it is fraud), we could have a model that only triggers on
cases of extreme fraud. But this would miss much of the fraud
that might not be as obvious. There is a trade-off here.

The queue rate is the percent of predictions above the thres‐
hold. You can consider this to be the percent of cases to review
if you are dealing with fraud.

If you have the cost for positive, negative, and erroneous calcu‐
lations, you can determine what threshold you are comfortable
with.

The following plot is useful to see what discrimination thres‐
hold will maximize the f1 score or adjust precision or recall to
an acceptable number when coupled with the queue rate.

Discrimination Threshold | 175

Yellowbrick provides this visualizer. This visualizer shuffles the
data and runs 50 trials by default, splitting out 10% for
validation:

>>> from yellowbrick.classifier import (
... DiscriminationThreshold,
...)
>>> fig, ax = plt.subplots(figsize=(6, 5))
>>> dt_viz = DiscriminationThreshold(dt)
>>> dt_viz.fit(X, y)
>>> dt_viz.poof()
>>> fig.savefig("images/mlpr_1210.png", dpi=300)

Figure 12-10. Discrimination threshold.

176 | Chapter 12: Metrics and Classification Evaluation

CHAPTER 13

Explaining Models

Predictive models have different properties. Some are designed
to handle linear data. Others can mold to more complex input.
Some models can be interpreted very easily, others are like
black boxes and don’t offer much insight into how the predic‐
tion is made.

In this chapter we will look at interpreting different models. We
will look at some examples using the Titanic data.

>>> dt = DecisionTreeClassifier(
... random_state=42, max_depth=3
...)
>>> dt.fit(X_train, y_train)

Regression Coefficients
The intercepts and regression coefficients explain the expected
value, and how features impact the prediction. A positive coef‐
ficient indicates that as a feature’s value increases, the predic‐
tion increases as well.

177

Feature Importance
Tree-based models in the scikit-learn library include
a .feature_importances_ attribute for inspecting how the fea‐
tures of a dataset affect the model. We can inspect or plot them.

LIME
LIME works to help explain black-box models. It performs a
local interpretation rather than an overall interpretation. It will
help explain a single sample.

For a given data point or sample, LIME indicates which fea‐
tures were important in determining the result. It does this by
perturbing the sample in question and fitting a linear model to
it. The linear model approximates the model close to the sam‐
ple (see Figure 13-1).

Here is an example explaining the last sample (which our deci‐
sion tree predicts will survive) from the training data:

>>> from lime import lime_tabular
>>> explainer = lime_tabular.LimeTabularExplainer(
... X_train.values,
... feature_names=X.columns,
... class_names=["died", "survived"],
...)
>>> exp = explainer.explain_instance(
... X_train.iloc[-1].values, dt.predict_proba
...)

LIME doesn’t like using DataFrames as input. Note that we
converted the data to numpy arrays using .values.

TIP

If you are doing this in Jupyter, follow up with this code:

exp.show_in_notebook()

This will render an HTML version of the explanation.

178 | Chapter 13: Explaining Models

https://oreil.ly/shCR_

We can create a matplotlib figure if we want to export the
explanation (or aren’t using Jupyter):

>>> fig = exp.as_pyplot_figure()
>>> fig.tight_layout()
>>> fig.savefig("images/mlpr_1301.png")

Figure 13-1. LIME explanation for the Titanic dataset. Features for the
sample push the prediction toward the right (survival) or left
(deceased).

Play around with this and notice that if you switch genders, the
results are affected. Below we take the second to last row in the
training data. The prediction for that row is 48% deceased and
52% survived. If we switch the gender, we find that the predic‐
tion shifts toward 88% deceased:

>>> data = X_train.iloc[-2].values.copy()
>>> dt.predict_proba(
... [data]
...) # predicting that a woman lives
[[0.48062016 0.51937984]]
>>> data[5] = 1 # change to male
>>> dt.predict_proba([data])
array([[0.87954545, 0.12045455]])

LIME | 179

NOTE

The .predict_proba method returns a probability for
each label.

Tree Interpretation
For sklearn tree-based models (decision tree, random forest,
and extra tree models) you can use the treeinterpreter package.
This will calculate the bias and the contribution from each fea‐
ture. The bias is the mean of the training set.

Each contribution lists how it contributes to each of the labels.
(The bias plus the contributions should sum to the prediction.)
Since this is a binary classification, there are only two. We see
that sex_male is the most important, followed by age and fare:

>>> from treeinterpreter import (
... treeinterpreter as ti,
...)
>>> instances = X.iloc[:2]
>>> prediction, bias, contribs = ti.predict(
... rf5, instances
...)
>>> i = 0
>>> print("Instance", i)
>>> print("Prediction", prediction[i])
>>> print("Bias (trainset mean)", bias[i])
>>> print("Feature contributions:")
>>> for c, feature in zip(
... contribs[i], instances.columns
...):
... print(" {} {}".format(feature, c))
Instance 0
Prediction [0.98571429 0.01428571]
Bias (trainset mean) [0.63984716 0.36015284]
Feature contributions:
 pclass [0.03588478 -0.03588478]
 age [0.08569306 -0.08569306]

180 | Chapter 13: Explaining Models

https://oreil.ly/vN1Bl

 sibsp [0.01024538 -0.01024538]
 parch [0.0100742 -0.0100742]
 fare [0.06850243 -0.06850243]
 sex_male [0.12000073 -0.12000073]
 embarked_Q [0.0026364 -0.0026364]
 embarked_S [0.01283015 -0.01283015]

NOTE

This example is for classification, but there is support for
regression as well.

Partial Dependence Plots
With feature importance in trees we know that a feature is
impacting the outcome, but we don’t know how the impact
varies as the feature’s value changes. Partial dependence plots
allow us to visualize the relation between changes in just one
feature and the outcome. We will use pdpbox to visualize how
age affects survival (see Figure 13-2).

Partial Dependence Plots | 181

https://oreil.ly/O9zY2

This example uses a random forest model:

>>> rf5 = ensemble.RandomForestClassifier(
... **{
... "max_features": "auto",
... "min_samples_leaf": 0.1,
... "n_estimators": 200,
... "random_state": 42,
... }
...)
>>> rf5.fit(X_train, y_train)

>>> from pdpbox import pdp
>>> feat_name = "age"
>>> p = pdp.pdp_isolate(
... rf5, X, X.columns, feat_name
...)
>>> fig, _ = pdp.pdp_plot(
... p, feat_name, plot_lines=True
...)
>>> fig.savefig("images/mlpr_1302.png", dpi=300)

182 | Chapter 13: Explaining Models

Fi
gu

re
 1

3-
2.

 P
ar

tia
l d

ep
en

de
nc

e p
lo

t s
ho

w
in

g w
ha

t h
ap

pe
ns

 to
 th

e t
ar

ge
t a

s a
ge

 ch
an

ge
s.

Partial Dependence Plots | 183

We can also visualize the interactions between two features (see
Figure 13-3):

>>> features = ["fare", "sex_male"]
>>> p = pdp.pdp_interact(
... rf5, X, X.columns, features
...)
>>> fig, _ = pdp.pdp_interact_plot(p, features)
>>> fig.savefig("images/mlpr_1303.png", dpi=300)

Figure 13-3. Partial dependence plot with two features. As fare goes up
and sex goes from male to female, survival goes up.

184 | Chapter 13: Explaining Models

NOTE

The partial dependence plot pins down a feature value
across the samples and then averages the result. (Be careful
about outliers and means.) Also, this plot assumes features
are independent. (Not always the case; for example, hold‐
ing width of a sepal steady would probably have an effect
on the height.) The pdpbox library also prints out the indi‐
vidual conditional expectations to better visualize these
relationships.

Surrogate Models
If you have a model that is not interpretable (SVM or neural
network), you can fit an interpretable model (decision tree) to
that model. Using the surrogate you can examine the feature
importances.

Here we create a Support Vector Classifier (SVC), but train a
decision tree (without a depth limit to overfit and capture what
is happening in this model) to explain it:

>>> from sklearn import svm
>>> sv = svm.SVC()
>>> sv.fit(X_train, y_train)
>>> sur_dt = tree.DecisionTreeClassifier()
>>> sur_dt.fit(X_test, sv.predict(X_test))
>>> for col, val in sorted(
... zip(
... X_test.columns,
... sur_dt.feature_importances_,
...),
... key=lambda x: x[1],
... reverse=True,
...)[:7]:
... print(f"{col:10}{val:10.3f}")
sex_male 0.723
pclass 0.076
sibsp 0.061

Surrogate Models | 185

age 0.056
embarked_S 0.050
fare 0.028
parch 0.005

Shapley
The SHapley Additive exPlanations, (SHAP) package can visu‐
alize feature contributions of any model. This is a really nice
package because not only does it work with most models, it
also can explain individual predictions and the global feature
contributions.

SHAP works for both classification and regression. It generates
“SHAP” values. For classification models, the SHAP value sums
to log odds for binary classification. For regression, the SHAP
values sum to the target prediction.

This library requires Jupyter (JavaScript) for interactivity on
some of its plots. (Some can render static images with matplot‐
lib.) Here is an example for sample 20, predicted to die:

>>> rf5.predict_proba(X_test.iloc[[20]])
array([[0.59223553, 0.40776447]])

In the force plot for sample 20, you can see the “base value.”
This is a female who is predicted to die (see Figure 13-4). We
will use the survival index (1) because we want the right-hand
side of the plot to be survival. The features push this to the
right or left. The larger the feature, the more impact it has. In
this case, the low fare and third class push toward death (the
output value is below .5):

>>> import shap
>>> s = shap.TreeExplainer(rf5)
>>> shap_vals = s.shap_values(X_test)
>>> target_idx = 1
>>> shap.force_plot(
... s.expected_value[target_idx],
... shap_vals[target_idx][20, :],

186 | Chapter 13: Explaining Models

https://oreil.ly/QYj-q

... feature_names=X_test.columns,

...)

Figure 13-4. Shapley feature contributions for sample 20. This plot
shows the base value and the features that push toward death.

You can also visualize the explanations for the entire dataset
(rotating them by 90 and plotting them along the x axis) (see
Figure 13-5):

>>> shap.force_plot(
... s.expected_value[1],
... shap_vals[1],
... feature_names=X_test.columns,
...)

Figure 13-5. Shapley feature contributions for dataset.

Shapley | 187

The SHAP library can also generate dependence plots. The fol‐
lowing plot (see Figure 13-6) visualizes the relationship
between age and SHAP value (it is colored by pclass, which
SHAP chooses automatically; specify a column name as an
interaction_index parameter to choose your own):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> res = shap.dependence_plot(
... "age",
... shap_vals[target_idx],
... X_test,
... feature_names=X_test.columns,
... alpha=0.7,
...)
>>> fig.savefig(
... "images/mlpr_1306.png",
... bbox_inches="tight",
... dpi=300,
...)

Figure 13-6. Shapley dependency plot for age. Young and old have a
higher rate of survival. As age goes up, a lower pclass has more chance
of survival.

188 | Chapter 13: Explaining Models

TIP

You might get a dependence plot that has vertical lines.
Setting the x_jitter parameter to 1 is useful if you are
viewing ordinal categorical features.

In addition, we can summarize all of the features. This is a very
powerful chart to understand. It shows global impact, but also
individual impacts. The features are ranked by importance. The
most important features are at the top.

Also the features are colored according to their value. We can
see that a low sex_male score (female) has a strong push
toward survival, while a high score has a less strong push
toward death. The age feature is a little harder to interpret.
That is because young and old values push toward survival,
while middle values push toward death.

Shapley | 189

When you combine the summary plot with the dependence
plot, you can get good insight into model behavior (see
Figure 13-7):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> shap.summary_plot(shap_vals[0], X_test)
>>> fig.savefig("images/mlpr_1307.png", dpi=300)

Figure 13-7. Shapley summary plot showing most important features at
the top. The coloring shows how the values of the feature affect the
target.

190 | Chapter 13: Explaining Models

CHAPTER 14

Regression

Regression is a supervised machine learning process. It is simi‐
lar to classification, but rather than predicting a label, we try to
predict a continuous value. If you are trying to predict a num‐
ber, then use regression.

It turns out that sklearn supports many of the same classifica‐
tion models for regression problems. In fact, the API is the
same, calling .fit, .score, and .predict. This is also true for
the next-generation boosting libraries, XGBoost and
LightGBM.

Though there are similarities with the classification models and
hyperparameters, the evaluation metrics are different for
regression. This chapter will review many of the types of
regression models. We will use the Boston housing dataset to
explore them.

Here we load the data, create a split version for training and
testing, and create another split version with standardized data:

>>> import pandas as pd
>>> from sklearn.datasets import load_boston
>>> from sklearn import (
... model_selection,
... preprocessing,
...)

191

https://oreil.ly/b2bKQ

>>> b = load_boston()
>>> bos_X = pd.DataFrame(
... b.data, columns=b.feature_names
...)
>>> bos_y = b.target

>>> bos_X_train, bos_X_test, bos_y_train,
bos_y_test = model_selection.train_test_split(
... bos_X,
... bos_y,
... test_size=0.3,
... random_state=42,
...)

>>> bos_sX = preprocessing.Stand
ardScaler().fit_transform(
... bos_X
...)
>>> bos_sX_train, bos_sX_test, bos_sy_train,
bos_sy_test = model_selection.train_test_split(
... bos_sX,
... bos_y,
... test_size=0.3,
... random_state=42,
...)

Here are descriptions of the features of the housing dataset
taken from the dataset:

CRIM
Per capita crime rate by town

ZN
Proportion of residential land zoned for lots over 25,000
square feet

INDUS
Proportion of nonretail business acres per town

192 | Chapter 14: Regression

CHAS
Charles River dummy variable (1 if tract bounds river; 0
otherwise)

NOX
Nitric oxides concentration (parts per 10 million)

RM
Average number of rooms per dwelling

AGE
Proportion of owner-occupied units built prior to 1940

DIS
Weighted distances to five Boston employment centers

RAD
Index of accessibility to radial highways

TAX
Full-value property tax rate per $10,000

PTRATIO
Pupil-teacher ratio by town

B
1000(Bk - 0.63)^2, where Bk is the proportion of black
people by town (this dataset is from 1978)

LSTAT
Percent lower status of the population

MEDV
Median value of owner-occupied homes in increments of
$1000

Baseline Model
A baseline regression model will give us something to compare
our other models to. In sklearn, the default result of the .score
method is the coefficient of determination (r² or R²). This num‐
ber explains the percent of variation of the input data that the

Baseline Model | 193

prediction captures. The value is typically between 0 and 1, but
it can be negative in the case of particulary bad models.

The default strategy of the DummyRegressor is to predict the
mean value of the training set. We can see that this model does
not perform very well:

>>> from sklearn.dummy import DummyRegressor
>>> dr = DummyRegressor()
>>> dr.fit(bos_X_train, bos_y_train)
>>> dr.score(bos_X_test, bos_y_test)
-0.03469753992352409

Linear Regression
Simple linear regression is taught in math and beginning statis‐
tics courses. It tries to fit a form of the formula y = mx + b
while minimizing the square of the errors. When solved, we
have an intercept and coefficient. The intercept gives a base
value for a prediction modified by adding the product of the
coefficient and the input.

This form can be generalized to higher dimensions. In that case
each feature has a coefficient. The larger the absolute value of
the coefficient, the more impact the feature has on the target.

This model assumes that the prediction is a linear combination
of the inputs. For some datasets, this is not flexible enough.
Complexity can be added by transforming the features (the
sklearn preprocessing.PolynomialFeatures transformer can
create polynomial combinations of the features). If this leads to
overfitting, ridge and lasso regression may be used to regularize
the estimator.

This model is also susceptible to heteroscedasticity. This is the
idea that as the input values change in size, the error of the pre‐
diction (or the residuals) often changes as well. If you plot the
input against the residuals, you will see a fan or cone shape. We
will see examples of that later.

194 | Chapter 14: Regression

Another issue to be aware of is multicollinearity. If columns
have high correlation, it can hinder interpretation of the coeffi‐
cients. This usually does not impact the model, only coefficient
meaning.

A linear regression model has the following properties:

Runtime efficiency
Use n_jobs to speed up performance.

Preprocess data
Standardize data before training the model.

Prevent overfitting
You can simplify the model by not using or adding poly‐
nomial features.

Interpret results
Can interpret results as weights for feature contribution,
but assumes normality and independence of features. You
might want to remove colinear features to improve inter‐
pretability. R² will tell you how much of the total variance
of the outcome is explained by the model.

Here is a sample run with the default data:

>>> from sklearn.linear_model import (
... LinearRegression,
...)
>>> lr = LinearRegression()
>>> lr.fit(bos_X_train, bos_y_train)
LinearRegression(copy_X=True, fit_intercept=True,
 n_jobs=1, normalize=False)
>>> lr.score(bos_X_test, bos_y_test)
0.7109203586326287
>>> lr.coef_
array([-1.32774155e-01, 3.57812335e-02,
 4.99454423e-02, 3.12127706e+00,
 -1.54698463e+01, 4.04872721e+00,
 -1.07515901e-02, -1.38699758e+00,
 2.42353741e-01, -8.69095363e-03,

Linear Regression | 195

 -9.11917342e-01, 1.19435253e-02,
 -5.48080157e-01])

Instance parameters:

n_jobs=None

Number of CPUs to use. -1 is all.

Attributes after fitting:

coef_

Linear regression coefficients

intercept_

Intercept of the linear model

The .intercept_ value is the expected mean value. You can see
how scaling the data affects the coefficients. The sign of the
coefficients explains the direction of the relation between the
feature and the target. A positive sign indicates that as the fea‐
ture increases, the label increases. A negative sign indicates that
as the feature increases, the label decreases. The larger the
absolute value of the coefficient, the more impact it has:

>>> lr2 = LinearRegression()
>>> lr2.fit(bos_sX_train, bos_sy_train)
LinearRegression(copy_X=True, fit_intercept=True,
 n_jobs=1, normalize=False)
>>> lr2.score(bos_sX_test, bos_sy_test)
0.7109203586326278
>>> lr2.intercept_
22.50945471291039
>>> lr2.coef_
array([-1.14030209, 0.83368112, 0.34230461,
 0.792002, -1.7908376, 2.84189278, -0.30234582,
 -2.91772744, 2.10815064, -1.46330017,
 -1.97229956, 1.08930453, -3.91000474])

You can use Yellowbrick to visualize coefficients (see
Figure 14-1). Because the scaled Boston data is a numpy array
rather than a pandas DataFrame, we need to pass the labels
parameter if we want to use the column names:

196 | Chapter 14: Regression

>>> from yellowbrick.features import (
... FeatureImportances,
...)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> fi_viz = FeatureImportances(
... lr2, labels=bos_X.columns
...)
>>> fi_viz.fit(bos_sX, bos_sy)
>>> fi_viz.poof()
>>> fig.savefig(
... "images/mlpr_1401.png",
... bbox_inches="tight",
... dpi=300,
...)

Figure 14-1. Feature importance. This indicates that RM (number of
rooms) increases the price, age doesn’t really matter, and LSTAT (per‐
cent of low status in population) lowers the price.

Linear Regression | 197

SVMs
Support vector machines can perform regression as well.

SVMs have the following properties:

Runtime efficiency
The scikit-learn implementation is O(n⁴), so it can be hard
to scale to large sizes. Using a linear kernel or the Line
arSVR model can improve the runtime performance at per‐
haps the cost of accuracy. Upping the cache_size parame‐
ter can bring that down to O(n³).

Preprocess data
The algorithm is not scale invariant, so standardizing the
data is highly recommended.

Prevent overfitting
The C (penalty parameter) controls regularization. A
smaller value allows for a smaller margin in the hyper‐
plane. A higher value for gamma will tend to overfit the
training data. The LinearSVR model supports a loss and
penalty parameter for regularization. The epsilon param‐
eter can be raised (with 0 you should expect overfitting).

Interpret results
Inspect .support_vectors_, though these are hard to
interpret. With linear kernels, you can inspect .coef_.

Here is an example of using the library:

>>> from sklearn.svm import SVR
>>> svr = SVR()
>>> svr.fit(bos_sX_train, bos_sy_train)
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3,
 epsilon=0.1, gamma='auto', kernel='rbf',
 max_iter=-1, shrinking=True, tol=0.001,
 verbose=False)

>>> svr.score(bos_sX_test, bos_sy_test)
0.6555356362002485

198 | Chapter 14: Regression

Instance parameters:

C=1.0

The penalty parameter. The smaller the value, the tighter
the decision boundary (more overfitting).

cache_size=200

Cache size (MB). Bumping this up can improve training
time on large datasets.

coef0=0.0

Independent term for poly and sigmoid kernels.

epsilon=0.1

Defines a margin of tolerance where no penalty is given to
errors. Should be smaller for larger datasets.

degree=3

Degree for polynomial kernel.

gamma='auto'

Kernel coefficient. Can be a number, 'scale' (default in
0.22, 1 / (num features * X.std())), or 'auto' (default
prior, 1 / num_features). A lower value leads to overfitting
the training data.

kernel='rbf'

Kernel type: 'linear', 'poly', 'rbf' (default), 'sigmoid',
'precomputed', or a function.

max_iter=-1

Maximum number of iterations for solver. -1 for no limit.

probability=False

Enable probability estimation. Slows down training.

random_state=None

Random seed.

shrinking=True

Use shrinking heuristic.

tol=0.001

Stopping tolerance.

SVMs | 199

verbose=False

Verbosity.

Attributes after fitting:

support_

Support vector indices

support_vectors_

Support vectors

coef_

Coefficients (for linear) kernel

intercept_

Constant for decision function

K-Nearest Neighbor
The KNN model also supports regression by finding k neigh‐
bor targets to the sample for which you want to predict. For
regression, this model averages the targets together to deter‐
mine a prediction.

Nearest neighbor models have the following properties:

Runtime efficiency
Training runtime is O(1), but there is a trade-off as the
sample data needs to be stored. Testing runtime is O(Nd),
where N is the number of training examples and d is
dimensionality.

Preprocess data
Yes, distance-based calculations perform better when
standardized.

Prevent overfitting
Raise n_neighbors. Change p for L1 or L2 metric.

Interpret results
Interpret the k-nearest neighbors to the sample (using
the .kneighbors method). Those neighbors (if you can
explain them) explain your result.

200 | Chapter 14: Regression

Here is an example of using the model:

>>> from sklearn.neighbors import (
... KNeighborsRegressor,
...)
>>> knr = KNeighborsRegressor()
>>> knr.fit(bos_sX_train, bos_sy_train)
KNeighborsRegressor(algorithm='auto',
 leaf_size=30, metric='minkowski',
 metric_params=None, n_jobs=1, n_neighbors=5,
 p=2, weights='uniform')

>>> knr.score(bos_sX_test, bos_sy_test)
0.747112767457727

Attributes:

algorithm='auto'

Can be 'brute', 'ball_tree', or 'kd_tree'.

leaf_size=30

Used for tree algorithms.

metric='minkowski'

Distance metric.

metric_params=None

Additional dictionary of parameters for custom metric
function.

n_jobs=1

Number of CPUs.

n_neighbors=5

Number of neighbors.

p=2

Minkowski power parameter. 1 = manhattan (L1). 2 =
euclidean (L2).

weights='uniform'

Can be 'distance', in which case, closer points have more
influence.

K-Nearest Neighbor | 201

Decision Tree
Decision trees support classification and regression. At each
level of the tree, various splits on features are evaluated. The
split that will produce the lowest error (impurity) is chosen.
The criterion parameter can be adjusted to determine the
metric for impurity.

Decision trees have the following properties:

Runtime efficiency
For creation, loop over each of the m features we have to
sort all n samples: O(mn log n). For predicting, you walk
the tree: O(height).

Preprocess data
Scaling not necessary. Need to get rid of missing values
and convert to numeric.

Prevent overfitting
Set max_depth to a lower number, raise
min_impurity_decrease.

Interpret results
Can step through the tree of choices. Because there are
steps, a tree is bad at dealing with linear relationships (a
small change in the values of a feature can cause a com‐
pletely different tree to be formed). The tree is also highly
dependent on the training data. A small change can
change the whole tree.

Here is an example using the scikit-learn library:

>>> from sklearn.tree import DecisionTreeRegressor
>>> dtr = DecisionTreeRegressor(random_state=42)
>>> dtr.fit(bos_X_train, bos_y_train)
DecisionTreeRegressor(criterion='mse',
 max_depth=None, max_features=None,
 max_leaf_nodes=None, min_impurity_decrease=0.0,
 min_impurity_split=None, min_samples_leaf=1,
 min_samples_split=2,
 min_weight_fraction_leaf=0.0, presort=False,

202 | Chapter 14: Regression

 random_state=42, splitter='best')

>>> dtr.score(bos_X_test, bos_y_test)
0.8426751288675483

Instance parameters:

criterion='mse'

Splitting function. Default is mean squared error (L2 loss).
'friedman_mse' or 'mae' (L1 loss).

max_depth=None

Depth of tree. Default will build until leaves contain less
than min_samples_split.

max_features=None

Number of features to examine for split. Default is all.

max_leaf_nodes=None

Limit number of leaves. Default is unlimited.

min_impurity_decrease=0.0

Split node if a split will decrease impurity >= value.

min_impurity_split=None

Deprecated.

min_samples_leaf=1

Minimum number of samples at each leaf.

min_samples_split=2

Minimum number of samples required to split a node.

min_weight_fraction_leaf=0.0

Minimum sum of weights required for leaf nodes.

presort=False

May speed up training with small dataset or restricted
depth if set to True.

random_state=None

Random seed.

Decision Tree | 203

splitter='best'

Use 'random' or 'best'.

Attributes after fitting:

feature_importances_

Array of Gini importance

max_features_

Computed value of max_features

n_outputs_

Number of outputs

n_features_

Number of features

tree_

Underlying tree object

View the tree (see Figure 14-2):

>>> import pydotplus
>>> from io import StringIO
>>> from sklearn.tree import export_graphviz
>>> dot_data = StringIO()
>>> tree.export_graphviz(
... dtr,
... out_file=dot_data,
... feature_names=bos_X.columns,
... filled=True,
...)
>>> g = pydotplus.graph_from_dot_data(
... dot_data.getvalue()
...)
>>> g.write_png("images/mlpr_1402.png")

For Jupyter, use:

from IPython.display import Image
Image(g.create_png())

204 | Chapter 14: Regression

Fi
gu

re
 1

4-
2.

 D
ec

isi
on

 tr
ee

.

Decision Tree | 205

This plot was a little wide. On a computer you can zoom in on
portions of it. You can also limit the depth of the chart (see
Figure 14-3). (It turns out that the most important features are
typically near the top of the tree.) We will use the max_depth
parameter to do this:

>>> dot_data = StringIO()
>>> tree.export_graphviz(
... dtr,
... max_depth=2,
... out_file=dot_data,
... feature_names=bos_X.columns,
... filled=True,
...)
>>> g = pydotplus.graph_from_dot_data(
... dot_data.getvalue()
...)
>>> g.write_png("images/mlpr_1403.png")

Figure 14-3. The first two layers of a decision tree.

We can also use the dtreeviz package to view a scatter plot at
each of the nodes of the tree (see Figure 14-4). We will use a
tree limited to a depth of two so we can see the details:

206 | Chapter 14: Regression

>>> dtr3 = DecisionTreeRegressor(max_depth=2)
>>> dtr3.fit(bos_X_train, bos_y_train)
>>> viz = dtreeviz.trees.dtreeviz(
... dtr3,
... bos_X,
... bos_y,
... target_name="price",
... feature_names=bos_X.columns,
...)
>>> viz

Figure 14-4. Regression with dtviz.

Feature importance:

>>> for col, val in sorted(
... zip(
... bos_X.columns, dtr.feature_importances_
...),
... key=lambda x: x[1],

Decision Tree | 207

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")
RM 0.574
LSTAT 0.191
DIS 0.110
CRIM 0.061
RAD 0.018

Random Forest
Decision trees are good because they are explainable, but they
have a tendency to overfit. A random forest trades some of the
explainability for a model that tends to generalize better. This
model can also be used for regression.

Random forests have the following properties:

Runtime efficiency
Need to create j random trees. This can be done in parallel
using n_jobs. Complexity for each tree is O(mn log n),
where n is the number of samples and m is the number of
features. For creation, loop over each of the m features,
and sort all n samples: O(mn log n). For predicting, you
walk the tree: O(height).

Preprocess data
Not necessary as long as the input is numeric and not
missing values.

Prevent overfitting
Add more trees (n_estimators). Use lower max_depth.

Interpret results
Supports feature importance, but we don’t have a single
decision tree that we can walk through. Can inspect single
trees from the ensemble.

Here is an example of using the model:

>>> from sklearn.ensemble import (
... RandomForestRegressor,

208 | Chapter 14: Regression

...)
>>> rfr = RandomForestRegressor(
... random_state=42, n_estimators=100
...)
>>> rfr.fit(bos_X_train, bos_y_train)
RandomForestRegressor(bootstrap=True,
 criterion='mse', max_depth=None,
 max_features='auto', max_leaf_nodes=None,
 min_impurity_decrease=0.0,
 min_impurity_split=None,_samples_leaf=1,
 min_samples_split=2,
 min_weight_fraction_leaf=0.0,
 n_estimators=100, n_jobs=1,
 oob_score=False, random_state=42,
 verbose=0, warm_start=False)

>>> rfr.score(bos_X_test, bos_y_test)
0.8641887615545837

Instance parameters (these options mirror the decision tree):

bootstrap=True

Bootstrap when building trees.

criterion='mse'

Splitting function, 'mae'.

max_depth=None

Depth of tree. Default will build until leaves contain less
than min_samples_split.

max_features='auto'

Number of features to examine for split. Default is all.

max_leaf_nodes=None

Limit number of leaves. Default is unlimited.

min_impurity_decrease=0.0

Split node if a split will decrease impurity by this value or
more.

min_impurity_split=None

Deprecated.

Random Forest | 209

min_samples_leaf=1

Minimum number of samples at each leaf.

min_samples_split=2

Minimum number of samples required to split a node.

min_weight_fraction_leaf=0.0

Minimum sum total of weights required for leaf nodes.

n_estimators=10

Number of trees in the forest.

n_jobs=None

Number of jobs for fitting and predicting. (None means 1.)

oob_score=False

Whether to use OOB samples to estimate score on unseen
data.

random_state=None

Random seed.

verbose=0

Verbosity.

warm_start=False

Fit a new forest or use existing one.

Attributes after fitting:

estimators_

Collection of trees

feature_importances_

Array of Gini importance

n_classes_

Number of classes

n_features_

Number of features

oob_score_

Score of the training dataset using OOB estimate

210 | Chapter 14: Regression

Feature importance:

>>> for col, val in sorted(
... zip(
... bos_X.columns, rfr.feature_importances_
...),
... key=lambda x: x[1],
... reverse=True,
...)[:5]:
... print(f"{col:10}{val:10.3f}")
RM 0.505
LSTAT 0.283
DIS 0.115
CRIM 0.029
PTRATIO 0.016

XGBoost Regression
The XGBoost library also supports regression. It builds a sim‐
ple decision tree, then “boosts” it by adding subsequent trees.
Each tree tries to correct the residuals of the previous output.
In practice, this works quite well on structured data.

It has the following properties:

Runtime efficiency
XGBoost is parallelizeable. Use the n_jobs option to indi‐
cate the number of CPUs. Use GPU for even better
performance.

Preprocess data
No scaling necessary with tree models. Need to encode
categorical data. Supports missing data!

Prevent overfitting
The early_stopping_rounds=N parameter can be set to
stop training if there is no improvement after N rounds.
L1 and L2 regularization are controlled by reg_alpha and
reg_lambda, respectively. Higher numbers mean more
conservative.

XGBoost Regression | 211

Interpret results
Has feature importance.

Here is an example using the library:

>>> xgr = xgb.XGBRegressor(random_state=42)
>>> xgr.fit(bos_X_train, bos_y_train)
XGBRegressor(base_score=0.5, booster='gbtree',
 colsample_bylevel=1, colsample_bytree=1,
 gamma=0, learning_rate=0.1, max_delta_step=0,
 max_depth=3, min_child_weight=1, missing=None,
 n_estimators=100, n_jobs=1, nthread=None,
 objective='reg:linear', random_state=42,
 reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
 seed=None, silent=True, subsample=1)

>>> xgr.score(bos_X_test, bos_y_test)
0.871679473122472

>>> xgr.predict(bos_X.iloc[[0]])
array([27.013563], dtype=float32)

Instance parameters:

max_depth=3

Maximum depth.

learning_rate=0.1

Learning rate (eta) for boosting (between 0 and 1). After
each boost step, the newly added weights are scaled by this
factor. The lower the value, the more conservative, but will
also need more trees to converge. In the call to .train, you
can pass a learning_rates parameter, which is a list of
rates at each round (i.e., [.1]*100 + [.05]*100).

n_estimators=100

Number of rounds or boosted trees.

silent=True

Whether to print messages while running boosting.

objective="reg:linear"

Learning task or callable for classification.

212 | Chapter 14: Regression

booster="gbtree"

Can be 'gbtree', 'gblinear', or 'dart'. The 'dart'
option adds dropout (drops random trees to prevent over‐
fitting). The 'gblinear' option creates a regularized linear
model (read not a tree but similar to lasso regression).

nthread=None

Deprecated.

n_jobs=1

Number of threads to use.

gamma=0

Minimum loss reduction needed to further split a leaf.

min_child_weight=1

Minimum value for sum of hessian for a child.

max_delta_step=0

Make update more conservative. Set 1 to 10 for imbal‐
anced classes.

subsample=1

Fraction of samples to use for next boosting round.

colsample_bytree=1

Fraction of columns to use for boosting round.

colsample_bylevel=1

Fraction of columns to use for level in tree.

colsample_bynode=1

Fraction of columns to use for split (node in tree).

reg_alpha=0

L1 regularization (mean of weights). Increase to be more
conservative.

reg_lambda=1

L2 regularization (root of squared weights). Increase to be
more conservative.

base_score=.5

Initial prediction.

XGBoost Regression | 213

seed=None

Deprecated.

random_state=0

Random seed.

missing=None

Value to interpret for missing. None means np.nan.

importance_type='gain'

The feature importance type: 'gain', 'weight', 'cover',
'total_gain', or 'total_cover'.

Attributes:

coef_

Coefficients for gblinear learners (booster = 'gblinear')

intercept_

Intercept for gblinear learners

feature_importances_

Feature importances for gbtree learners

Feature importance is the average gain across all the nodes
where the feature is used:

>>> for col, val in sorted(
... zip(
... bos_X.columns, xgr.feature_importances_
...),
... key=lambda x: x[1],
... reverse=True,
...)[:5]:
... print(f"{col:10}{val:10.3f}")
DIS 0.187
CRIM 0.137
RM 0.137
LSTAT 0.134
AGE 0.110

XGBoost includes plotting facilities for feature importance.
Note that the importance_type parameter changes the values in

214 | Chapter 14: Regression

this plot (see Figure 14-5). The default is using weight to deter‐
mine feature importance:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> xgb.plot_importance(xgr, ax=ax)
>>> fig.savefig("images/mlpr_1405.png", dpi=300)

Figure 14-5. Feature importance using weight (how many times a fea‐
ture is split on in the trees).

Using Yellowbrick to plot feature importances (it will normal‐
ize the feature_importances_ attribute) (see Figure 14-6):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> fi_viz = FeatureImportances(xgr)
>>> fi_viz.fit(bos_X_train, bos_y_train)
>>> fi_viz.poof()
>>> fig.savefig("images/mlpr_1406.png", dpi=300)

XGBoost Regression | 215

Figure 14-6. Feature importance using relative importance of gain
(percent importance of the most important feature).

XGBoost provides both a textual representation of the trees and
a graphical one. Here is the text representation:

>>> booster = xgr.get_booster()
>>> print(booster.get_dump()[0])
0:[LSTAT<9.72500038] yes=1,no=2,missing=1
 1:[RM<6.94099998] yes=3,no=4,missing=3
 3:[DIS<1.48494995] yes=7,no=8,missing=7
 7:leaf=3.9599998
 8:leaf=2.40158272
 4:[RM<7.43700027] yes=9,no=10,missing=9
 9:leaf=3.22561002
 10:leaf=4.31580687
 2:[LSTAT<16.0849991] yes=5,no=6,missing=5
 5:[B<116.024994] yes=11,no=12,missing=11
 11:leaf=1.1825
 12:leaf=1.99701393
 6:[NOX<0.603000045] yes=13,no=14,missing=13

216 | Chapter 14: Regression

 13:leaf=1.6868
 14:leaf=1.18572915

The leaf values can be interpreted as the sum of the base_score
and the leaf. (To validate this, call .predict with the
ntree_limit=1 parameter to limit the model to using the result
of the first tree.)

Here is a graphical version of the tree (see Figure 14-7):

fig, ax = plt.subplots(figsize=(6, 4))
xgb.plot_tree(xgr, ax=ax, num_trees=0)
fig.savefig('images/mlpr_1407.png', dpi=300)

XGBoost Regression | 217

Figure 14-7. XGBoost tree.

LightGBM Regression
The gradient boosting tree library, LightGBM, also supports
regression. As mentioned in the classification chapter, it can be
faster than XGBoost for creating trees due to the sampling
mechanism used to determine node splits.

218 | Chapter 14: Regression

Also, remember that it grows trees depth first, so limiting depth
may harm the model. It has the following properties:

Runtime efficiency
Can take advantage of multiple CPUs. By using binning,
can be 15 times faster than XGBoost.

Preprocess data
Has some support for encoding categorical columns as
integers (or pandas Categorical type), but AUC appears
to suffer compared to one-hot encoding.

Prevent overfitting
Lower num_leaves. Increase min_data_in_leaf. Use
min_gain_to_split with lambda_l1 or lambda_l2.

Interpret results
Feature importance is available. Individual trees are weak
and tend to be hard to interpret.

Here is an example of using the model:

>>> import lightgbm as lgb
>>> lgr = lgb.LGBMRegressor(random_state=42)
>>> lgr.fit(bos_X_train, bos_y_train)
LGBMRegressor(boosting_type='gbdt',
 class_weight=None, colsample_bytree=1.0,
 learning_rate=0.1, max_depth=-1,
 min_child_samples=20, min_child_weight=0.001,
 min_split_gain=0.0, n_estimators=100,
 n_jobs=-1, num_leaves=31, objective=None,
 random_state=42, reg_alpha=0.0,
 reg_lambda=0.0, silent=True, subsample=1.0,
 subsample_for_bin=200000, subsample_freq=0)

>>> lgr.score(bos_X_test, bos_y_test)
0.847729219534575

>>> lgr.predict(bos_X.iloc[[0]])
array([30.31689569])

LightGBM Regression | 219

Instance parameters:

boosting_type='gbdt'

Can be 'gbdt' (gradient boosting), 'rf' (random forest),
'dart' (dropouts meet multiple additive regression trees),
or 'goss' (gradient-based, one-sided sampling).

num_leaves=31

Maximum tree leaves.

max_depth=-1

Maximum tree depth. -1 is unlimited. Larger depths tend
to overfit more.

learning_rate=0.1

Range (0, 1.0]. Learning rate for boosting. A smaller value
slows down overfitting as the boosting rounds have less
impact. A smaller number should give better performance
but will require more num_iterations.

n_estimators=100

Number of trees or boosting rounds.

subsample_for_bin=200000

Samples required to create bins.

objective=None

None - Does regression by default. Can be a function or
string.

min_split_gain=0.0

Loss reduction required to partition leaf.

min_child_weight=0.001

Sum of hessian weight required for a leaf. Larger will be
more conservative.

min_child_samples=20

Number of samples required for a leaf. Lower numbers
mean more overfitting.

subsample=1.0

Fraction of samples to use for the next round.

220 | Chapter 14: Regression

subsample_freq=0

Subsample frequency. Change to 1 to enable.

colsample_bytree=1.0

Range (0, 1.0]. Select percent of features for each boosting
round.

reg_alpha=0.0

L1 regularization (mean of weights). Increase to be more
conservative.

reg_lambda=0.0

L2 regularization (root of squared weights). Increase to be
more conservative.

random_state=42

Random seed.

n_jobs=-1

Number of threads.

silent=True

Verbose mode.

importance_type='split'

Determines how importance is calculated: split (times a
feature was used) or gain (total gains of splits when a fea‐
ture was used).

LightGBM supports feature importance. The importance_type
parameter determines how this is calculated (the default is
based on how many times a feature was used):

>>> for col, val in sorted(
... zip(
... bos_X.columns, lgr.feature_importances_
...),
... key=lambda x: x[1],
... reverse=True,
...)[:5]:
... print(f"{col:10}{val:10.3f}")
LSTAT 226.000
RM 199.000

LightGBM Regression | 221

DIS 172.000
AGE 130.000
B 121.000

Feature importance plot showing how many times a feature is
used (see Figure 14-8):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> lgb.plot_importance(lgr, ax=ax)
>>> fig.tight_layout()
>>> fig.savefig("images/mlpr_1408.png", dpi=300)

Figure 14-8. Feature importance showing how many times a feature is
used.

TIP

In Jupyter, use the following command to view a tree:

lgb.create_tree_digraph(lgbr)

222 | Chapter 14: Regression

CHAPTER 15

Metrics and Regression Evaluation

This chapter will evaluate the results of a random forest regres‐
sor trained on the Boston housing data:

>>> rfr = RandomForestRegressor(
... random_state=42, n_estimators=100
...)
>>> rfr.fit(bos_X_train, bos_y_train)

Metrics
The sklearn.metrics module includes metrics to evaluate
regression models. Metric functions ending in loss or error
should be minimized. Functions ending in score should be
maximized.

The coefficient of determination (r²) is a common regression
metric. This value is typically between 0 and 1. It represents the
percent of the variance of the target that the features contrib‐
ute. Higher values are better, but in general it is difficult to
evaluate the model from this metric alone. Does a .7 mean it is
a good score? It depends. For a given dataset, .5 might be a
good score, while for another dataset, a .9 may be a bad score.
Typically we use this number in combination with other met‐
rics or visualizations to evaluate a model.

223

For example, it is easy to make a model that predicts stock pri‐
ces for the next day with an r² of .99. But I wouldn’t trade my
own money with that model. It might be slightly low or high,
which can wreak havoc on trades.

The r² metric is the default metric used during grid search. You
can specify other metrics using the scoring parameter.

The .score method calculates this for regression models:

>>> from sklearn import metrics
>>> rfr.score(bos_X_test, bos_y_test)
0.8721182042634867

>>> metrics.r2_score(bos_y_test, bos_y_test_pred)
0.8721182042634867

NOTE

There is also an explained variance metric
('explained_variance' in grid search). If the mean of the
residuals (errors in predictions) is 0 (in ordinary least
squares (OLS) models), then the variance explained is the
same as the coefficient of determination:

>>> metrics.explained_variance_score(
... bos_y_test, bos_y_test_pred
...)
0.8724890451227875

Mean absolute error ('neg_mean_absolute_error' when used in
grid search) expresses the average absolute model prediction
error. A perfect model would score 0, but this metric has no
upper bounds, unlike the coefficient of determination. How‐
ever, since it is in units of the target, it is more interpretable. If
you want to ignore outliers, this is a good metric to use.

224 | Chapter 15: Metrics and Regression Evaluation

This measure cannot indicate how bad a model is, but can be
used to compare two models. If you have two models, the
model with a lower score is better.

This number tells us that the average error is about two above
or below the real value:

>>> metrics.mean_absolute_error(
... bos_y_test, bos_y_test_pred
...)
2.0839802631578945

Root mean squared error ('neg_mean_squared_error' in grid
search) also measures model error in terms of the target. How‐
ever, because it averages the square of errors before taking the
square root, it penalizes large errors. If you want to penalize
large errors, this is a good metric to use. For example, if being
off by eight is more than two times worse than being off by
four.

As with mean absolute error, this measure cannot indicate how
bad a model is, but can be used to compare two models. If you
assume that errors are normally distributed, this is a good
choice.

The result tells us if we square the errors and average them, the
result will be around 9.5:

>>> metrics.mean_squared_error(
... bos_y_test, bos_y_test_pred
...)
9.52886846710526

The mean squared logarithmic error (in grid search,
'neg_mean_squared_log_error') penalizes underprediction
more than overprediction. If you have targets that experience
exponential growth (population, stock, etc.), this is a good met‐
ric.

If you take the log of the error and then square it, the average
of these results will be 0.021:

Metrics | 225

>>> metrics.mean_squared_log_error(
... bos_y_test, bos_y_test_pred
...)
0.02128263061776433

Residuals Plot
Good models (with appropriate R2 scores) will exhibit homo‐
scedasticity. This means the variance is the same for all values
of targets regardless of the input. Plotted, this looks like ran‐
domly distributed values in a residuals plot. If there are pat‐
terns, the model or the data are problematic.

Residuals plots also show outliers, which can have a big impact
on model fitting (see Figure 15-1).

Yellowbrick can make residuals plots to visualize this:

>>> from yellowbrick.regressor import ResidualsPlot
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> rpv = ResidualsPlot(rfr)
>>> rpv.fit(bos_X_train, bos_y_train)
>>> rpv.score(bos_X_test, bos_y_test)
>>> rpv.poof()
>>> fig.savefig("images/mlpr_1501.png", dpi=300)

226 | Chapter 15: Metrics and Regression Evaluation

Figure 15-1. Residuals plot. Further testing will show these to be heter‐
oscedastic.

Heteroscedasticity
The statsmodel library includes the Breusch-Pagan test for het‐
eroscedasticity. This means that variance of the residuals varies
over the predicted values. In the Breusch-Pagan test, if the p-
values are significant (p-value less than 0.05), the null hypothe‐
sis of homoscedasticity is rejected. This indicates that residuals
are heteroscedastic, and the predictions are biased.

The test confirms heteroscedasticity:

>>> import statsmodels.stats.api as sms
>>> hb = sms.het_breuschpagan(resids, bos_X_test)
>>> labels = [
... "Lagrange multiplier statistic",
... "p-value",
... "f-value",
... "f p-value",
...]
>>> for name, num in zip(name, hb):
... print(f"{name}: {num:.2}")

Heteroscedasticity | 227

https://oreil.ly/HtIi5

Lagrange multiplier statistic: 3.6e+01
p-value: 0.00036
f-value: 3.3
f p-value: 0.00022

Normal Residuals
The scipy library includes a probability plot and the
Kolmogorov-Smirnov test, both of which measure whether the
residuals are normal.

We can plot a histogram (see Figure 15-2) to visualize the
residuals and check for normality:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> resids = bos_y_test - rfr.predict(bos_X_test)
>>> pd.Series(resids, name="residuals").plot.hist(
... bins=20, ax=ax, title="Residual Histogram"
...)
>>> fig.savefig("images/mlpr_1502.png", dpi=300)

Figure 15-2. Histogram of residuals.

228 | Chapter 15: Metrics and Regression Evaluation

Figure 15-3 shows a probability plot. If the samples plotted
against the quantiles line up, the residuals are normal. We can
see that this fails in this case:

>>> from scipy import stats
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> _ = stats.probplot(resids, plot=ax)
>>> fig.savefig("images/mlpr_1503.png", dpi=300)

Figure 15-3. Probability plot of residuals.

The Kolmogorov-Smirnov test can evaluate whether a distribu‐
tion is normal. If the p-value is significant (< 0.05), then the
values are not normal.

This fails as well, which tells us the residuals are not normal:

>>> stats.kstest(resids, cdf="norm")
KstestResult(statistic=0.1962230021010155,
pvalue=1.3283596864921421e-05)

Normal Residuals | 229

Prediction Error Plot
A prediction error plot shows the real targets against the pre‐
dicted values. For a perfect model these points would line up in
a 45-degree line.

As our model seems to predict lower values for the high end of
y, the model has some performance issues. This is also evident
in the residuals plot (see Figure 15-4).

Here is the Yellowbrick version:

>>> from yellowbrick.regressor import (
... PredictionError,
...)
>>> fig, ax = plt.subplots(figsize=(6, 6))
>>> pev = PredictionError(rfr)
>>> pev.fit(bos_X_train, bos_y_train)
>>> pev.score(bos_X_test, bos_y_test)
>>> pev.poof()
>>> fig.savefig("images/mlpr_1504.png", dpi=300)

230 | Chapter 15: Metrics and Regression Evaluation

Figure 15-4. Prediction error. Plots predicted y (y-hat) versus actual y.

Prediction Error Plot | 231

CHAPTER 16

Explaining Regression Models

Most of the techniques used to explain classification models
apply to regression models. In this chapter, I will show how to
use the SHAP library to interpret regression models.

We will interpret an XGBoost model for the Boston housing
dataset:

>>> import xgboost as xgb
>>> xgr = xgb.XGBRegressor(
... random_state=42, base_score=0.5
...)
>>> xgr.fit(bos_X_train, bos_y_train)

Shapley
I’m a big fan of Shapley because it is model agnostic. This
library also gives us global insight into our model and helps
explain individual predictions. If you have a black-box model, I
find it very useful.

We will first look at the prediction for index 5. Our model pre‐
dicts the value to be 27.26:

>>> sample_idx = 5
>>> xgr.predict(bos_X.iloc[[sample_idx]])
array([27.269186], dtype=float32)

233

To use the model, we have to create a TreeExplainer from our
model and estimate the SHAP values for our samples. If we
want to use Jupyter and have an interactive interface, we also
need to call the initjs function:

>>> import shap
>>> shap.initjs()

>>> exp = shap.TreeExplainer(xgr)
>>> vals = exp.shap_values(bos_X)

With the explainer and the SHAP values, we can create a force
plot to explain the prediction (see Figure 16-1). This informs us
that the base prediction is 23, and that the population status
(LSTAT) and property tax rate (TAX) push the price up, while
the number of rooms (RM) pushes the price down:

>>> shap.force_plot(
... exp.expected_value,
... vals[sample_idx],
... bos_X.iloc[sample_idx],
...)

Figure 16-1. Force plot for regression. The expected value is pushed up
from 23 to 27 due to the population status and tax rate.

We can view the force plot for all of the samples as well to get
an overall feel of the behavior. If we are using the interactive
JavaScript mode on Jupyter, we can mouse over the samples
and see what features are impacting the result (see Figure 16-2):

234 | Chapter 16: Explaining Regression Models

>>> shap.force_plot(
... exp.expected_value, vals, bos_X
...)

Figure 16-2. Force plot for regression for all samples.

From the force plot of the sample, we saw that the LSTAT fea‐
ture had a big impact. To visualize how LSTAT affects the
result, we can create a dependence plot. The library will auto‐
matically choose a feature to color it by (you can provide the
interaction_index parameter to set your own).

From the dependence plot for LSTAT (see Figure 16-3), we can
see that as LSTAT increases (the percent of lower status popula‐
tion), the SHAP value goes down (pushing down the target). A
very low LSTAT value pushes SHAP up. From viewing the col‐
oring of the TAX (property tax rate), it appears that as the rate
goes down (more blue), the SHAP value goes up:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> shap.dependence_plot("LSTAT", vals, bos_X)
>>> fig.savefig(
... "images/mlpr_1603.png",
... bbox_inches="tight",
... dpi=300,
...)

Shapley | 235

Figure 16-3. Dependence plot for LSTAT. As LSTAT goes up, the pre‐
dicted value goes down.

Here is another dependence plot, shown in Figure 16-4, to
explore the DIS (distance to employment centers). It appears
that this feature has little effect unless it is very small:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> shap.dependence_plot(
... "DIS", vals, bos_X, interaction_index="RM"
...)
>>> fig.savefig(
... "images/mlpr_1604.png",
... bbox_inches="tight",
... dpi=300,
...)

236 | Chapter 16: Explaining Regression Models

Figure 16-4. Dependence plot for DIS. Unless DIS is very small, SHAP
stays relatively flat.

Finally, we will look at the global effect of the features using a
summary plot (see Figure 16-5). The features at the top have
the most impact to the model. From this view you can see that
large values of RM (number of rooms) push up the target a lot,
while medium and smaller values push it down a little:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> shap.summary_plot(vals, bos_X)
>>> fig.savefig(
... "images/mlpr_1605.png",
... bbox_inches="tight",
... dpi=300,
...)

Shapley | 237

Figure 16-5. Summary plot. The most important features are at the top.

The SHAP library is a great tool to have in your toolbelt. It
helps understand the global impact of features and also helps
explain individual predictions.

238 | Chapter 16: Explaining Regression Models

CHAPTER 17

Dimensionality Reduction

There are many techniques to decompose features into a
smaller subset. This can be useful for exploratory data analysis,
visualization, making predictive models, or clustering.

In this chapter we will explore the Titanic dataset using various
techniques. We will look at PCA, UMAP, t-SNE, and PHATE.

Here is the data:

>>> ti_df = tweak_titanic(orig_df)
>>> std_cols = "pclass,age,sibsp,fare".split(",")
>>> X_train, X_test, y_train, y_test =
get_train_test_X_y(
... ti_df, "survived", std_cols=std_cols
...)
>>> X = pd.concat([X_train, X_test])
>>> y = pd.concat([y_train, y_test])

PCA
Principal Component Analysis (PCA) takes a matrix (X) of
rows (samples) and columns (features). PCA returns a new
matrix that has columns that are linear combinations of the
original columns. These linear combinations maximize the
variance.

239

Each column is orthogonal (a right angle) to the other col‐
umns. The columns are sorted in order of decreasing variance.

Scikit-learn has an implementation of this model. It is best to
standardize the data prior to running the algorithm. After call‐
ing the .fit method, you will have access to
an .explained_variance_ratio_ attribute that lists the percent‐
age of variance in each column.

PCA is useful to visualize data in two (or three) dimensions. It
is also used as a preprocessing step to filter out random noise
in data. It is good for finding global structures, but not local
ones, and works well with linear data.

In this example, we are going to run PCA on the Titanic fea‐
tures. The PCA class is a transformer in scikit-learn; you call
the .fit method to teach it how to get the principal compo‐
nents, then you call .transform to convert a matrix into a
matrix of principal components:

>>> from sklearn.decomposition import PCA
>>> from sklearn.preprocessing import (
... StandardScaler,
...)
>>> pca = PCA(random_state=42)
>>> X_pca = pca.fit_transform(
... StandardScaler().fit_transform(X)
...)
>>> pca.explained_variance_ratio_
array([0.23917891, 0.21623078, 0.19265028,
 0.10460882, 0.08170342, 0.07229959,
 0.05133752, 0.04199068])

>>> pca.components_[0]
arrayarray([-0.63368693, 0.39682566,
 0.00614498, 0.11488415, 0.58075352,
 -0.19046812, -0.21190808, -0.09631388])

240 | Chapter 17: Dimensionality Reduction

Instance parameters:

n_components=None

Number of components to generate. If None, return same
number as number of columns. Can be a float (0, 1), then
will create as many components as needed to get that ratio
of variance.

copy=True

Will mutate data on .fit if True.

whiten=False

Whiten data after transform to ensure uncorrelated
components.

svd_solver='auto'

'auto' runs 'randomized' SVD if n_components is less
than 80% of the smallest dimension (faster, but an approx‐
imation). Otherwise runs 'full'.

tol=0.0

Tolerance for singular values.

iterated_power='auto'

Number of iterations for 'randomized' svd_solver.

random_state=None

Random state for 'randomized' svd_solver.

Attributes:

components_

Principal components (columns of linear combination
weights for original features).

explained_variance_

Amount of variance for each component.

explained_variance_ratio_

Amount of variance for each component normalized
(sums to 1).

singular_values_

Singular values for each component.

PCA | 241

mean_

Mean of each feature.

n_components_

When n_components is a float, this is the size of the
components.

noise_variance_

Estimated noise covariance.

Plotting the cumulative sum of the explained variance ratio is
called a scree plot (see Figure 17-1). It will show how much
information is stored in the components. You can use the elbow
method to see if it bends to determine how many components
to use:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> ax.plot(pca.explained_variance_ratio_)
>>> ax.set(
... xlabel="Component",
... ylabel="Percent of Explained variance",
... title="Scree Plot",
... ylim=(0, 1),
...)
>>> fig.savefig(
... "images/mlpr_1701.png",
... dpi=300,
... bbox_inches="tight",
...)

242 | Chapter 17: Dimensionality Reduction

Figure 17-1. PCA scree plot.

Another way to view this data is using a cumulative plot (see
Figure 17-2). Our original data had 8 columns, but from the
plot it appears that we keep around 90% of the variance if we
use just 4 of the PCA components:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> ax.plot(
... np.cumsum(pca.explained_variance_ratio_)
...)
>>> ax.set(
... xlabel="Component",
... ylabel="Percent of Explained variance",
... title="Cumulative Variance",
... ylim=(0, 1),
...)
>>> fig.savefig("images/mlpr_1702.png", dpi=300)

PCA | 243

Figure 17-2. PCA cumulative explained variance.

How much do features impact components? Use the matplotlib
imshow function to plot the components along the x axis and
the original features along the y axis (see Figure 17-3). The
darker the color, the more the original column contributes to
the component.

It looks like the first component is heavily influenced by the
pclass, age, and fare columns. (Using the spectral colormap
(cmap) emphasizes nonzero values, and providing vmin and
vmax adds limits to the colorbar legend.)

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> plt.imshow(
... pca.components_.T,
... cmap="Spectral",
... vmin=-1,
... vmax=1,
...)
>>> plt.yticks(range(len(X.columns)), X.columns)
>>> plt.xticks(range(8), range(1, 9))

244 | Chapter 17: Dimensionality Reduction

>>> plt.xlabel("Principal Component")
>>> plt.ylabel("Contribution")
>>> plt.title(
... "Contribution of Features to Components"
...)
>>> plt.colorbar()
>>> fig.savefig("images/mlpr_1703.png", dpi=300)

Figure 17-3. PCA features in components.

An alternative view is to look at a bar plot (see Figure 17-4).
Each component is shown with the contributions from the
original data:

>>> fig, ax = plt.subplots(figsize=(8, 4))
>>> pd.DataFrame(
... pca.components_, columns=X.columns
...).plot(kind="bar", ax=ax).legend(
... bbox_to_anchor=(1, 1)
...)
>>> fig.savefig("images/mlpr_1704.png", dpi=300)

PCA | 245

Figure 17-4. PCA features in components.

If we have many features, we may want to limit the plots above
by showing only features that meet a minimum weight. Here is
code to find all the features in the first two components that
have absolute values of at least .5:

>>> comps = pd.DataFrame(
... pca.components_, columns=X.columns
...)
>>> min_val = 0.5
>>> num_components = 2
>>> pca_cols = set()
>>> for i in range(num_components):
... parts = comps.iloc[i][
... comps.iloc[i].abs() > min_val
...]
... pca_cols.update(set(parts.index))
>>> pca_cols
{'fare', 'parch', 'pclass', 'sibsp'}

PCA is commonly used to visualize high dimension datasets in
two components. Here we visualize the Titanic features in 2D.
They are colored by survival status. Sometimes clusters may
appear in the visualization. In this case, there doesn’t appear to
be clustering of survivors (see Figure 17-5).

We generate this visualization using Yellowbrick:

>>> from yellowbrick.features.pca import (
... PCADecomposition,
...)

246 | Chapter 17: Dimensionality Reduction

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> colors = ["rg"[j] for j in y]
>>> pca_viz = PCADecomposition(color=colors)
>>> pca_viz.fit_transform(X, y)
>>> pca_viz.poof()
>>> fig.savefig("images/mlpr_1705.png", dpi=300)

Figure 17-5. Yellowbrick PCA plot.

If you want to color the scatter plot by a column and add a leg‐
end (not a colorbar), you need to loop over each color and plot
that group individually in pandas or matplotlib (or use sea‐
born). Below we also set the aspect ratio to the ratio of the
explained variances for the components we are looking at (see
Figure 17-6). Because the second component only has 90% of
the first component, it is a little shorter.

Here is the seaborn version:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> pca_df = pd.DataFrame(
... X_pca,
... columns=[

PCA | 247

... f"PC{i+1}"

... for i in range(X_pca.shape[1])

...],

...)
>>> pca_df["status"] = [
... ("deceased", "survived")[i] for i in y
...]
>>> evr = pca.explained_variance_ratio_
>>> ax.set_aspect(evr[1] / evr[0])
>>> sns.scatterplot(
... x="PC1",
... y="PC2",
... hue="status",
... data=pca_df,
... alpha=0.5,
... ax=ax,
...)
>>> fig.savefig(
... "images/mlpr_1706.png",
... dpi=300,
... bbox_inches="tight",
...)

248 | Chapter 17: Dimensionality Reduction

Figure 17-6. Seaborn PCA with legend and relative aspect.

Below, we augment the scatter plot by showing a loading plot on
top of it. This plot is called a biplot because it has the scatter
plot and the loadings (see Figure 17-7). The loadings indicate
how strong features are and how they correlate. If their angles
are close, they likely correlate. If the angles are at 90 degrees,
they likely don’t correlate. Finally, if the angle between them is
close to 180 degrees, they have a negative correlation:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> pca_df = pd.DataFrame(
... X_pca,
... columns=[
... f"PC{i+1}"
... for i in range(X_pca.shape[1])
...],
...)

PCA | 249

>>> pca_df["status"] = [
... ("deceased", "survived")[i] for i in y
...]
>>> evr = pca.explained_variance_ratio_
>>> x_idx = 0 # x_pc
>>> y_idx = 1 # y_pc
>>> ax.set_aspect(evr[y_idx] / evr[x_idx])
>>> x_col = pca_df.columns[x_idx]
>>> y_col = pca_df.columns[y_idx]
>>> sns.scatterplot(
... x=x_col,
... y=y_col,
... hue="status",
... data=pca_df,
... alpha=0.5,
... ax=ax,
...)
>>> scale = 8
>>> comps = pd.DataFrame(
... pca.components_, columns=X.columns
...)
>>> for idx, s in comps.T.iterrows():
... plt.arrow(
... 0,
... 0,
... s[x_idx] * scale,
... s[y_idx] * scale,
... color="k",
...)
... plt.text(
... s[x_idx] * scale,
... s[y_idx] * scale,
... idx,
... weight="bold",
...)
>>> fig.savefig(
... "images/mlpr_1707.png",
... dpi=300,
... bbox_inches="tight",
...)

250 | Chapter 17: Dimensionality Reduction

Figure 17-7. Seaborn biplot with scatter plot and loading plot.

From previous tree models, we know that age, fare, and sex are
important for determining whether a passenger survived. The
first principal component is influenced by pclass, age, and fare,
while the fourth is influenced by sex. Let’s plot those compo‐
nents against each other.

Again, this plot is scaling the aspect ratio of the plot based on
the ratios of variance of the components (see Figure 17-8).

This plot appears to more accurately separate the survivors:

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> pca_df = pd.DataFrame(
... X_pca,
... columns=[
... f"PC{i+1}"
... for i in range(X_pca.shape[1])

PCA | 251

...],

...)
>>> pca_df["status"] = [
... ("deceased", "survived")[i] for i in y
...]
>>> evr = pca.explained_variance_ratio_
>>> ax.set_aspect(evr[3] / evr[0])
>>> sns.scatterplot(
... x="PC1",
... y="PC4",
... hue="status",
... data=pca_df,
... alpha=0.5,
... ax=ax,
...)
>>> fig.savefig(
... "images/mlpr_1708.png",
... dpi=300,
... bbox_inches="tight",
...)

Figure 17-8. PCA plot showing components 1 against 4.

Matplotlib can create pretty plots, but it is less useful for inter‐
active plots. When performing PCA, it is often useful to view
the data for scatter plots. I have included a function that uses
the Bokeh library for interacting with scatter plots (see
Figure 17-9). It works well in Jupyter:

>>> from bokeh.io import output_notebook
>>> from bokeh import models, palettes, transform
>>> from bokeh.plotting import figure, show

252 | Chapter 17: Dimensionality Reduction

https://bokeh.pydata.org

>>>
>>> def bokeh_scatter(
... x,
... y,
... data,
... hue=None,
... label_cols=None,
... size=None,
... legend=None,
... alpha=0.5,
...):
... """
... x - x column name to plot
... y - y column name to plot
... data - pandas DataFrame
... hue - column name to color by (numeric)
... legend - column name to label by
... label_cols - columns to use in tooltip
... (None all in DataFrame)
... size - size of points in screen space unigs
... alpha - transparency
... """
... output_notebook()
... circle_kwargs = {}
... if legend:
... circle_kwargs["legend"] = legend
... if size:
... circle_kwargs["size"] = size
... if hue:
... color_seq = data[hue]
... mapper = models.LinearColorMapper(
... palette=palettes.viridis(256),
... low=min(color_seq),
... high=max(color_seq),
...)
... circle_kwargs[
... "fill_color"
...] = transform.transform(hue, mapper)
... ds = models.ColumnDataSource(data)
... if label_cols is None:

PCA | 253

... label_cols = data.columns

... tool_tips = sorted(

... [

... (x, "@{}".format(x))

... for x in label_cols

...],

... key=lambda tup: tup[0],

...)

... hover = models.HoverTool(

... tooltips=tool_tips

...)

... fig = figure(

... tools=[

... hover,

... "pan",

... "zoom_in",

... "zoom_out",

... "reset",

...],

... toolbar_location="below",

...)

...

... fig.circle(

... x,

... y,

... source=ds,

... alpha=alpha,

... **circle_kwargs

...)

... show(fig)

... return fig
>>> res = bokeh_scatter(
... "PC1",
... "PC2",
... data=pca_df.assign(
... surv=y.reset_index(drop=True)
...),
... hue="surv",
... size=10,

254 | Chapter 17: Dimensionality Reduction

... legend="surv",

...)

Figure 17-9. Bokeh scatter plot with tooltips.

Yellowbrick can also plot in three dimensions (see
Figure 17-10):

>>> from yellowbrick.features.pca import (
... PCADecomposition,
...)
>>> colors = ["rg"[j] for j in y]
>>> pca3_viz = PCADecomposition(
... proj_dim=3, color=colors
...)
>>> pca3_viz.fit_transform(X, y)

PCA | 255

>>> pca3_viz.finalize()
>>> fig = plt.gcf()
>>> plt.tight_layout()
>>> fig.savefig(
... "images/mlpr_1710.png",
... dpi=300,
... bbox_inches="tight",
...)

Figure 17-10. Yellowbrick 3D PCA.

The scprep library (which is a dependency for the PHATE
library, which we discuss shortly) has a useful plotting func‐
tion. The rotate_scatter3d function can generate a plot that
will animate in Jupyter (see Figure 17-11). This makes it easier
to understand 3D plots.

You can use this library to visualize any 3D data, not just
PHATE:

>>> import scprep
>>> scprep.plot.rotate_scatter3d(
... X_pca[:, :3],
... c=y,

256 | Chapter 17: Dimensionality Reduction

https://oreil.ly/Jdq1s

... cmap="Spectral",

... figsize=(8, 6),

... label_prefix="Principal Component",

...)

Figure 17-11. scprep 3D PCA animation.

If you change the matplotlib cell magic mode in Jupyter to note
book, you can get an interactive 3D plot from matplotlib (see
Figure 17-12).

>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = plt.figure(figsize=(6, 4))
>>> ax = fig.add_subplot(111, projection="3d")
>>> ax.scatter(
... xs=X_pca[:, 0],
... ys=X_pca[:, 1],

PCA | 257

... zs=X_pca[:, 2],

... c=y,

... cmap="viridis",

...)
>>> ax.set_xlabel("PC 1")
>>> ax.set_ylabel("PC 2")
>>> ax.set_zlabel("PC 3")

Figure 17-12. Matplotlib interactive 3D PCA with notebook mode.

WARNING

Note that switching the cell magic for matplotlib in Jupyter
from:

% matplotlib inline

to:

% matplotlib notebook

can sometimes cause Jupyter to stop responding. Tread
with caution.

258 | Chapter 17: Dimensionality Reduction

UMAP
Uniform Manifold Approximation and Projection (UMAP) is a
dimensionality reduction technique that uses manifold learn‐
ing. As such it tends to keeps similar items together topologi‐
cally. It tries to preserve both the global and the local structure,
as opposed to t-SNE (explained in “t-SNE” on page 264), which
favors local structure.

The Python implementation doesn’t have multicore support.

Normalization of features is a good idea to get values on the
same scale.

UMAP is very sensitive to hyperparameters (n_neighbors,
min_dist, n_components, or metric). Here are some examples:

>>> import umap
>>> u = umap.UMAP(random_state=42)
>>> X_umap = u.fit_transform(
... StandardScaler().fit_transform(X)
...)
>>> X_umap.shape
(1309, 2)

Instance parameters:

n_neighbors=15

Local neighborhood size. Larger means use a global view,
smaller means more local.

n_components=2

Number of dimensions for embedding.

metric='euclidean'

Metric to use for distance. Can be a function that accepts
two 1D arrays and returns a float.

n_epochs=None

Number of training epochs. Default will be 200 or 500
(depending on size of data).

UMAP | 259

https://oreil.ly/qF8RJ

learning_rate=1.0

Learning rate for embedding optimization.

init='spectral'

Initialization type. Spectral embedding is the default. Can
be 'random' or a numpy array of locations.

min_dist=0.1

Between 0 and 1. Minimum distance between embedded
points. Smaller means more clumps, larger means spread
out.

spread=1.0

Determines distance of embedded points.

set_op_mix_ratio=1.0

Between 0 and 1: fuzzy union (1) or fuzzy intersection (0).

local_connectivity=1.0

Number of neighbors for local connectivity. As this goes
up, more local connections are created.

repulsion_strength=1.0

Repulsion strength. Higher values give more weight to
negative samples.

negative_sample_rate=5

Negative samples per positive sample. Higher value has
more repulsion, more optimization costs, and better
accuracy.

transform_queue_size=4.0

Aggressiveness for nearest neighbors search. Higher value
is lower performance but better accuracy.

a=None

Parameter to control embedding. If equal to None, UMAP
determines these from min_dist and spread.

b=None

Parameter to control embedding. If equal to None, UMAP
determines these from min_dist and spread.

260 | Chapter 17: Dimensionality Reduction

random_state=None

Random seed.

metric_kwds=None

Metrics dictionary for additional parameters if function is
used for metric. Also minkowsi (and other metrics) can be
parameterized with this.

angular_rp_forest=False

Use angular random projection.

target_n_neighbors=-1

Number of neighbors for simplicity set.

target_metric='categorical'

For using supervised reduction. Can also be 'L1' or 'L2'.
Also supports a function that takes two arrays from X as
input and returns the distance value between them.

target_metric_kwds=None

Metrics dictionary to use if function is used for
target_metric.

target_weight=0.5

Weighting factor. Between 0.0 and 1.0, where 0 means
base on data only, and 1 means base on target only.

transform_seed=42

Random seed for transform operations.

verbose=False

Verbosity.

Attributes:

embedding_

The embedding results

Let’s visualize the default results of UMAP on the Titanic data‐
set (see Figure 17-13):

>>> fig, ax = plt.subplots(figsize=(8, 4))
>>> pd.DataFrame(X_umap).plot(
... kind="scatter",

UMAP | 261

... x=0,

... y=1,

... ax=ax,

... c=y,

... alpha=0.2,

... cmap="Spectral",

...)
>>> fig.savefig("images/mlpr_1713.png", dpi=300)

Figure 17-13. UMAP results.

To adjust the results of UMAP, focus on the n_neighbors and
min_dist hyperparameters first. Here are illustrations of chang‐
ing those values (see Figures 17-14 and 17-15):

>>> X_std = StandardScaler().fit_transform(X)
>>> fig, axes = plt.subplots(2, 2, figsize=(6, 4))
>>> axes = axes.reshape(4)
>>> for i, n in enumerate([2, 5, 10, 50]):
... ax = axes[i]
... u = umap.UMAP(
... random_state=42, n_neighbors=n
...)
... X_umap = u.fit_transform(X_std)
...
... pd.DataFrame(X_umap).plot(
... kind="scatter",
... x=0,

262 | Chapter 17: Dimensionality Reduction

... y=1,

... ax=ax,

... c=y,

... cmap="Spectral",

... alpha=0.5,

...)

... ax.set_title(f"nn={n}")
>>> plt.tight_layout()
>>> fig.savefig("images/mlpr_1714.png", dpi=300)

Figure 17-14. UMAP results adjusting n_neighbors.

>>> fig, axes = plt.subplots(2, 2, figsize=(6, 4))
>>> axes = axes.reshape(4)
>>> for i, n in enumerate([0, 0.33, 0.66, 0.99]):
... ax = axes[i]
... u = umap.UMAP(random_state=42, min_dist=n)
... X_umap = u.fit_transform(X_std)
... pd.DataFrame(X_umap).plot(
... kind="scatter",
... x=0,
... y=1,
... ax=ax,
... c=y,
... cmap="Spectral",

UMAP | 263

... alpha=0.5,

...)

... ax.set_title(f"min_dist={n}")
>>> plt.tight_layout()
>>> fig.savefig("images/mlpr_1715.png", dpi=300)

Figure 17-15. UMAP results adjusting min_dist.

Sometimes PCA is performed before UMAP to reduce the
dimensions and speed up the computations.

t-SNE
The t-Distributed Stochastic Neighboring Embedding (t-SNE)
technique is a visualization and dimensionality reduction tech‐
nique. It uses distributions of the input and low dimension
embedding, and minimizes the joint probabilities between
them. Because this is computationally intensive, you might not
be able to use this technique with a large dataset.

One characteristic of t-SNE is that it is quite sensitive to hyper‐
parameters. Also, while it preserves local clusters quite well,
global information is not preserved. As such, the distance

264 | Chapter 17: Dimensionality Reduction

between clusters is meaningless. Finally, this is not a determin‐
istic algorithm and may not converge.

It is a good idea to standardize the data before using this
technique:

>>> from sklearn.manifold import TSNE
>>> X_std = StandardScaler().fit_transform(X)
>>> ts = TSNE()
>>> X_tsne = ts.fit_transform(X_std)

Instance parameters:

n_components=2

Number of dimensions for embedding.

perplexity=30.0

Suggested values are between 5 and 50. Smaller numbers
tend to make tighter clumps.

early_exaggeration=12.0

Controls cluster tightness and spacing between them.
Larger values mean larger spacing.

learning_rate=200.0

Usually between 10 and 1000. If data looks like a ball,
lower it. If data looks compressed, raise it.

n_iter=1000

Number of iterations.

n_iter_without_progress=300

Abort if no progress after this number of iterations.

min_grad_norm=1e-07

Optimization stops if the gradient norm is below this
value.

metric='euclidean'

Distance metric from scipy.spatial.distance.pdist,
pairwise.PAIRWISE_DISTANCE_METRIC, or a function.

init='random'

Embedding initialization.

t-SNE | 265

verbose=0

Verbosity.

random_state=None

Random seed.

method='barnes_hut'

Gradient calculation algorithm.

angle=0.5

For gradient calculation. Less than .2 increases runtime.
Greater than .8 increases error.

Attributes:

embedding_

Embedding vectors

kl_divergence_

Kullback-Leibler divergence

n_iter_

Number of iterations

Here’s a visualization of the results of t-SNE using matplotlib
(see Figure 17-16):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> colors = ["rg"[j] for j in y]
>>> scat = ax.scatter(
... X_tsne[:, 0],
... X_tsne[:, 1],
... c=colors,
... alpha=0.5,
...)
>>> ax.set_xlabel("Embedding 1")
>>> ax.set_ylabel("Embedding 2")
>>> fig.savefig("images/mlpr_1716.png", dpi=300)

266 | Chapter 17: Dimensionality Reduction

Figure 17-16. t-SNE result with matplotlib.

Changing the value of perplexity can have big effects on the
plot (see Figure 17-17). Here are a few different values:

>>> fig, axes = plt.subplots(2, 2, figsize=(6, 4))
>>> axes = axes.reshape(4)
>>> for i, n in enumerate((2, 30, 50, 100)):
... ax = axes[i]
... t = TSNE(random_state=42, perplexity=n)
... X_tsne = t.fit_transform(X)
... pd.DataFrame(X_tsne).plot(
... kind="scatter",
... x=0,
... y=1,
... ax=ax,
... c=y,
... cmap="Spectral",
... alpha=0.5,
...)
... ax.set_title(f"perplexity={n}")
... plt.tight_layout()
... fig.savefig("images/mlpr_1717.png", dpi=300)

t-SNE | 267

Figure 17-17. Changing perplexity for t-SNE.

PHATE
Potential of Heat-diffusion for Affinity-based Trajectory
Embedding (PHATE) is a tool for visualization of high dimen‐
sional data. It tends to keep both global structure (like PCA)
and local structure (like t-SNE).

PHATE first encodes local information (points close to each
other should remain close). It uses “diffusion” to discover
global data, then reduce dimensionality:

>>> import phate
>>> p = phate.PHATE(random_state=42)
>>> X_phate = p.fit_transform(X)
>>> X_phate.shape

268 | Chapter 17: Dimensionality Reduction

https://phate.readthedocs.io

Instance parameters:

n_components=2

Number of dimensions.

knn=5

Number of neighbors for the kernel. Increase if the
embedding is disconnected or dataset is larger than
100,000 samples.

decay=40

Decay rate of kernel. Lowering this value increases graph
connectivity.

n_landmark=2000

Landmarks to use.

t='auto'

Diffusion power. Smoothing is performed on the data.
Increase if embedding lacks structure. Decrease if struc‐
ture is tight and compact.

gamma=1

Log potential (between -1 and 1). If embeddings are con‐
centrated around a single point, try setting this to 0.

n_pca=100

Number of principle components for neighborhood
calculation.

knn_dist='euclidean'

KNN metric.

mds_dist='euclidean'

Multidimensional scaling (MDS) metric.

mds='metric'

MDS algorithm for dimension reduction.

n_jobs=1

Number of CPUs to use.

random_state=None

Random seed.

PHATE | 269

verbose=1

Verbosity.

Attributes (note that these aren’t followed by _):

X

Input data

embedding

Embedding space

diff_op

Diffusion operator

graph

KNN graph built from input

Here is an example of using PHATE (see Figure 17-18):

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> phate.plot.scatter2d(p, c=y, ax=ax, alpha=0.5)
>>> fig.savefig("images/mlpr_1718.png", dpi=300)

Figure 17-18. PHATE results.

270 | Chapter 17: Dimensionality Reduction

As noted in the instance parameters above, there are a few
parameters that we can adjust to change the behavior of the
model. Below is an example of adjusting the knn parameter (see
Figure 17-19). Note that if we use the .set_params method, it
will speed up the calculation as it uses the precomputed graph
and diffusion operator:

>>> fig, axes = plt.subplots(2, 2, figsize=(6, 4))
>>> axes = axes.reshape(4)
>>> p = phate.PHATE(random_state=42, n_jobs=-1)

>>> for i, n in enumerate((2, 5, 20, 100)):
... ax = axes[i]
... p.set_params(knn=n)
... X_phate = p.fit_transform(X)
... pd.DataFrame(X_phate).plot(
... kind="scatter",
... x=0,
... y=1,
... ax=ax,
... c=y,
... cmap="Spectral",
... alpha=0.5,
...)
... ax.set_title(f"knn={n}")
... plt.tight_layout()
... fig.savefig("images/mlpr_1719.png", dpi=300)

PHATE | 271

Figure 17-19. Changing the knn parameter for PHATE.

272 | Chapter 17: Dimensionality Reduction

CHAPTER 18

Clustering

Clustering is an unsupervised machine learning technique used
to divide a group into cohorts. It is unsupervised because we
don’t give the model any labels; it just inspects the features and
determines which samples are similar and belong in a cluster.
In this chapter, we will look at the K-means and hierarchical
clustering methods. We will also explore the Titanic dataset
again using various techniques.

K-Means
The K-means algorithm requires the user to pick the number
of clusters or “k.” It then randomly chooses k centroids and
assigns each sample to a cluster based on a distance metric
from the centroid. Following the assignment, it recalculates the
centroids based on the center of every sample assigned to a
label. It then repeats assigning samples to clusters based on the
new centroids. After a few iterations it should converge.

Because clustering uses distance metrics to determine which
samples are similar, the behavior may change depending on the
scale of the data. You can standardize the data and put all of the
features on the same scale. Some have suggested that a SME
might advise against standardizing if the scale hints that some

273

features have more importance. We will standardize the data
here in this example.

In this example, we will cluster the Titanic passengers. We will
start with two clusters to see if the clustering can tease apart
survival (we won’t leak the survival data into the clustering and
will only use X, not y).

Unsupervised algorithms have a .fit method and a .predict
method. We only pass X into .fit:

>>> from sklearn.cluster import KMeans
>>> X_std = preprocessing.Stand
ardScaler().fit_transform(
... X
...)
>>> km = KMeans(2, random_state=42)
>>> km.fit(X_std)
KMeans(algorithm='auto', copy_x=True,
 init='k-means', max_iter=300,
 n_clusters=2, n_init=10, n_jobs=1,
 precompute_distances='auto',
 random_state=42, tol=0.0001, verbose=0)

After the model is trained, we can call the .predict method to
assign new samples to a cluster:

>>> X_km = km.predict(X)
>>> X_km
array([1, 1, 1, ..., 1, 1, 1], dtype=int32)

Instance parameters:

n_clusters=8

Number of clusters to create.

init='kmeans++'

Initialization method.

n_init=10

Number of times to run the algorithm with different cent‐
roids. Best score will win.

274 | Chapter 18: Clustering

max_iter=300

Number of iterations for a run.

tol=0.0001

Tolerance until convergence.

precompute_distances='auto'

Precompute distances (takes more memory but is faster).
auto will precompute if n_samples * n_clusters is less
than or equal to 12 million.

verbose=0

Verbosity.

random_state=None

Random seed.

copy_x=True

Copy data before computing.

n_jobs=1

Number of CPUs to use.

algorithm='auto'

K-means algorithm. 'full' works with sparse data, but
'elkan' is more efficient. 'auto' uses 'elkan' with dense
data.

Attributes:

cluster_centers_

Coordinates of centers

labels_

Labels for samples

inertia_

Sum of squared distance to cluster centroid

n_iter_

Number of iterations

K-Means | 275

If you don’t know ahead of time how many clusters you need,
you can run the algorithm with a range of sizes and evaluate
various metrics. It can be tricky.

You can roll your own elbow plot using the .inertia_ calcula‐
tion. Look for where the curve bends as that is potentially a
good choice for the number of clusters. In this case, the curve is
smooth, but after eight there doesn’t seem to be much improve‐
ment (see Figure 18-1).

For plots without an elbow, we have a few options. We can use
other metrics, some of which are shown below. We can also
inspect a visualization of the clustering and see if clusters are
visible. We can add features to the data and see if that helps
with clustering.

Here is the code for an elbow plot:

>>> inertias = []
>>> sizes = range(2, 12)
>>> for k in sizes:
... k2 = KMeans(random_state=42, n_clusters=k)
... k2.fit(X)
... inertias.append(k2.inertia_)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> pd.Series(inertias, index=sizes).plot(ax=ax)
>>> ax.set_xlabel("K")
>>> ax.set_ylabel("Inertia")
>>> fig.savefig("images/mlpr_1801.png", dpi=300)

276 | Chapter 18: Clustering

Figure 18-1. Elbow plot that is looking rather smooth.

Scikit-learn has other clustering metrics when the ground truth
labels are not known. We can calculate and plot those as well.
The Silhouette Coefficient is a value between -1 and 1. The
higher the score, the better. 1 indicates tight clusters, and 0
means overlapping clusters. From that measure, two clusters
gives us the best score.

The Calinski-Harabasz Index is the ratio of between-cluster dis‐
persion and within-cluster dispersion. A higher score is better.
Two clusters gives the best score for this metric.

The Davis-Bouldin Index is the average similarity between each
cluster and the closest cluster. Scores range from 0 and up. 0
indicates better clustering.

Here we will plot inertia, the silhouette coefficient, the
Calinski-Harabasz Index, and the Davies-Bouldin Index over a
range of cluster sizes to see if there is a clear size of clusters for
the data (see Figure 18-2). It appears that most of these metrics
agree on two clusters:

>>> from sklearn import metrics
>>> inertias = []

K-Means | 277

>>> sils = []
>>> chs = []
>>> dbs = []
>>> sizes = range(2, 12)
>>> for k in sizes:
... k2 = KMeans(random_state=42, n_clusters=k)
... k2.fit(X_std)
... inertias.append(k2.inertia_)
... sils.append(
... metrics.silhouette_score(X, k2.labels_)
...)
... chs.append(
... metrics.calinski_harabasz_score(
... X, k2.labels_
...)
...)
... dbs.append(
... metrics.davies_bouldin_score(
... X, k2.labels_
...)
...)
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> (
... pd.DataFrame(
... {
... "inertia": inertias,
... "silhouette": sils,
... "calinski": chs,
... "davis": dbs,
... "k": sizes,
... }
...)
... .set_index("k")
... .plot(ax=ax, subplots=True, layout=(2, 2))
...)
>>> fig.savefig("images/mlpr_1802.png", dpi=300)

278 | Chapter 18: Clustering

Figure 18-2. Cluster metrics. These metrics mostly agree on two
clusters.

Another technique for determining clusters is to visualize the
silhouette scores for each cluster. Yellowbrick has a visualizer
for this (see Figure 18-3).

The vertical dotted red line in this plot is the average score.
One way to interpret it is to make sure that each cluster bumps
out above the average, and the cluster scores look decent. Make
sure you are using the same x limits (ax.set_xlim). I would
choose two clusters from these plots:

>>> from yellowbrick.cluster.silhouette import (
... SilhouetteVisualizer,
...)
>>> fig, axes = plt.subplots(2, 2, figsize=(12, 8))
>>> axes = axes.reshape(4)
>>> for i, k in enumerate(range(2, 6)):
... ax = axes[i]
... sil = SilhouetteVisualizer(
... KMeans(n_clusters=k, random_state=42),
... ax=ax,
...)
... sil.fit(X_std)

K-Means | 279

... sil.finalize()

... ax.set_xlim(-0.2, 0.8)
>>> plt.tight_layout()
>>> fig.savefig("images/mlpr_1803.png", dpi=300)

Figure 18-3. Yellowbrick silhouette visualizer

Agglomerative (Hierarchical) Clustering
Agglomerative clustering is another methodology. You start off
with each sample in its own cluster. Then you combine the
“nearest” clusters. Repeat until done while keeping track of the
nearest sizes.

When you have finished this, you will have a dendrogram, or a
tree that tracks when clusters were created and what the dis‐
tance metric was. You can use the scipy library to visualize the
dendrogram.

We can use scipy to create a dendrogram (see Figure 18-4). As
you can see, if you have many samples the leaf nodes are hard
to read:

>>> from scipy.cluster import hierarchy
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> dend = hierarchy.dendrogram(

280 | Chapter 18: Clustering

... hierarchy.linkage(X_std, method="ward")

...)
>>> fig.savefig("images/mlpr_1804.png", dpi=300)

Figure 18-4. Scipy hierarchical clustering dendrogram

Once you have the dendrogram, you have all the clusters (from
one to the size of the samples). The heights represent how simi‐
lar clusters are when they are joined. In order to find how
many clusters are in the data, you would want to “cut” a hori‐
zontal line through where it would cross the tallest lines.

In this case, it looks like when you perform that cut, you have
three clusters.

The previous plot was a little noisy with all of the samples in it.
You can also use the truncate_mode parameter to combine the
leaves into a single node (see Figure 18-5):

>>> from scipy.cluster import hierarchy
>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> dend = hierarchy.dendrogram(
... hierarchy.linkage(X_std, method="ward"),
... truncate_mode="lastp",
... p=20,

Agglomerative (Hierarchical) Clustering | 281

... show_contracted=True,

...)
>>> fig.savefig("images/mlpr_1805.png", dpi=300)

Figure 18-5. Truncated hierarchical clustering dendrogram. If we cut
across the largest vertical lines, we get three clusters.

Once we know how many clusters we need, we can use scikit-
learn to create a model:

>>> from sklearn.cluster import (
... AgglomerativeClustering,
...)
>>> ag = AgglomerativeClustering(
... n_clusters=4,
... affinity="euclidean",
... linkage="ward",
...)
>>> ag.fit(X)

282 | Chapter 18: Clustering

NOTE

The fastcluster package provides an optimized agglomera‐
tive clustering package if the scikit-learn implementation is
too slow.

Understanding Clusters
Using K-means on the Titanic dataset, we will make two clus‐
ters. We can use the grouping functionality in pandas to exam‐
ine the differences in the clusters. The code below examines the
mean and variance for each feature. It appears that the mean
value for pclass varies quite a bit.

I’m sticking the survival data back in to see if the clustering was
related to that:

>>> km = KMeans(n_clusters=2)
>>> km.fit(X_std)
>>> labels = km.predict(X_std)
>>> (
... X.assign(cluster=labels, survived=y)
... .groupby("cluster")
... .agg(["mean", "var"])
... .T
...)
cluster 0 1
pclass mean 0.526538 -1.423831
 var 0.266089 0.136175
age mean -0.280471 0.921668
 var 0.653027 1.145303
sibsp mean -0.010464 -0.107849
 var 1.163848 0.303881
parch mean 0.387540 0.378453
 var 0.829570 0.540587
fare mean -0.349335 0.886400
 var 0.056321 2.225399
sex_male mean 0.678986 0.552486
 var 0.218194 0.247930

Understanding Clusters | 283

https://oreil.ly/OuNuo

embarked_Q mean 0.123548 0.016575
 var 0.108398 0.016345
embarked_S mean 0.741288 0.585635
 var 0.191983 0.243339
survived mean 0.596685 0.299894
 var 0.241319 0.210180

NOTE

In Jupyter you can tack on the following code to a Data‐
Frame, and it will highlight the high and low values of each
row. This is useful for visually seeing which values stand
out in the above cluster summary:

.style.background_gradient(cmap='RdBu',
axis=1)

In Figure 18-6 we plot a bar plot of the means for each cluster:

>>> fig, ax = plt.subplots(figsize=(6, 4))
... (
... X.assign(cluster=labels, survived=y)
... .groupby("cluster")
... .mean()
... .T.plot.bar(ax=ax)
...)
>>> fig.savefig(
... "images/mlpr_1806.png",
... dpi=300,
... bbox_inches="tight",
...)

284 | Chapter 18: Clustering

Figure 18-6. Mean values of each cluster

I also like to plot the PCA components, but colored by the clus‐
ter label (see Figure 18-7). Here we use Seaborn to do that. It is
also interesting to change the values for hue to dive into the fea‐
tures that are distinct for the clusters.

>>> fig, ax = plt.subplots(figsize=(6, 4))
>>> sns.scatterplot(
... "PC1",
... "PC2",
... data=X.assign(
... PC1=X_pca[:, 0],
... PC2=X_pca[:, 1],
... cluster=labels,
...),
... hue="cluster",
... alpha=0.5,
... ax=ax,
...)
>>> fig.savefig(

Understanding Clusters | 285

... "images/mlpr_1807.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 18-7. PCA plot of clusters

If we want to examine a single feature, we can use the pan‐
das .describe method:

>>> (
... X.assign(cluster=label)
... .groupby("cluster")
... .age.describe()
... .T
...)
cluster 0 1
count 362.000000 947.000000
mean 0.921668 -0.280471
std 1.070188 0.808101
min -2.160126 -2.218578
25% 0.184415 -0.672870
50% 0.867467 -0.283195

286 | Chapter 18: Clustering

75% 1.665179 0.106480
max 4.003228 3.535618

We can also create a surrogate model to explain the clusters.
Here we use a decision tree to explain them. This also shows
that pclass (which had a large difference in the mean) is very
important:

>>> dt = tree.DecisionTreeClassifier()
>>> dt.fit(X, labels)
>>> for col, val in sorted(
... zip(X.columns, dt.feature_importances_),
... key=lambda col_val: col_val[1],
... reverse=True,
...):
... print(f"{col:10}{val:10.3f}")
pclass 0.902
age 0.074
sex_male 0.016
embarked_S 0.003
fare 0.003
parch 0.003
sibsp 0.000
embarked_Q 0.000

And we can visualize the decisions in Figure 18-8. It shows that
pclass is the first feature the surrogate looks at to make a
decision:

>>> dot_data = StringIO()
>>> tree.export_graphviz(
... dt,
... out_file=dot_data,
... feature_names=X.columns,
... class_names=["0", "1"],
... max_depth=2,
... filled=True,
...)
>>> g = pydotplus.graph_from_dot_data(
... dot_data.getvalue()
...)
>>> g.write_png("images/mlpr_1808.png")

Understanding Clusters | 287

Figure 18-8. Decision tree explaining the clustering

288 | Chapter 18: Clustering

CHAPTER 19

Pipelines

Scikit-learn uses the notion of a pipeline. Using the Pipeline
class, you can chain together transformers and models, and
treat the whole process like a scikit-learn model. You can even
insert custom logic.

Classification Pipeline
Here is an example using the tweak_titanic function inside of
a pipeline:

>>> from sklearn.base import (
... BaseEstimator,
... TransformerMixin,
...)
>>> from sklearn.pipeline import Pipeline

>>> def tweak_titanic(df):
... df = df.drop(
... columns=[
... "name",
... "ticket",
... "home.dest",
... "boat",
... "body",
... "cabin",

289

...]

...).pipe(pd.get_dummies, drop_first=True)

... return df

>>> class TitanicTransformer(
... BaseEstimator, TransformerMixin
...):
... def transform(self, X):
... # assumes X is output
... # from reading Excel file
... X = tweak_titanic(X)
... X = X.drop(column="survived")
... return X
...
... def fit(self, X, y):
... return self

>>> pipe = Pipeline(
... [
... ("titan", TitanicTransformer()),
... ("impute", impute.IterativeImputer()),
... (
... "std",
... preprocessing.StandardScaler(),
...),
... ("rf", RandomForestClassifier()),
...]
...)

With a pipeline in hand, we can call .fit and .score on it:

>>> from sklearn.model_selection import (
... train_test_split,
...)
>>> X_train2, X_test2, y_train2, y_test2 =
train_test_split(
... orig_df,
... orig_df.survived,
... test_size=0.3,
... random_state=42,
...)

290 | Chapter 19: Pipelines

>>> pipe.fit(X_train2, y_train2)
>>> pipe.score(X_test2, y_test2)
0.7913486005089059

Pipelines can be used in grid search. Our param_grid needs to
have the parameters prefixed by the name of the pipe stage, fol‐
lowed by two underscores. In the example below, we add some
parameters for the random forest stage:

>>> params = {
... "rf__max_features": [0.4, "auto"],
... "rf__n_estimators": [15, 200],
... }

>>> grid = model_selection.GridSearchCV(
... pipe, cv=3, param_grid=params
...)
>>> grid.fit(orig_df, orig_df.survived)

Now we can pull out the best parameters and train the final
model. (In this case the random forest doesn’t improve after
grid search.)

>>> grid.best_params_
{'rf__max_features': 0.4, 'rf__n_estimators': 15}
>>> pipe.set_params(**grid.best_params_)
>>> pipe.fit(X_train2, y_train2)
>>> pipe.score(X_test2, y_test2)
0.7913486005089059

We can use the pipeline where we use scikit-learn models:

>>> metrics.roc_auc_score(
... y_test2, pipe.predict(X_test2)
...)
0.7813688715131023

Classification Pipeline | 291

Regression Pipeline
Here is an example of a pipeline that performs linear regression
on the Boston dataset:

>>> from sklearn.pipeline import Pipeline

>>> reg_pipe = Pipeline(
... [
... (
... "std",
... preprocessing.StandardScaler(),
...),
... ("lr", LinearRegression()),
...]
...)
>>> reg_pipe.fit(bos_X_train, bos_y_train)
>>> reg_pipe.score(bos_X_test, bos_y_test)
0.7112260057484934

If we want to pull parts out of the pipeline to examine their
properties, we can do that with the .named_steps attribute:

>>> reg_pipe.named_steps["lr"].intercept_
23.01581920903956
>>> reg_pipe.named_steps["lr"].coef_
array([-1.10834602, 0.80843998, 0.34313466,
 0.81386426, -1.79804295, 2.913858 ,
 -0.29893918, -2.94251148, 2.09419303,
 -1.44706731, -2.05232232, 1.02375187,
 -3.88579002])_

We can use the pipeline in metric calculations as well:

>>> from sklearn import metrics
>>> metrics.mean_squared_error(
... bos_y_test, reg_pipe.predict(bos_X_test)
...)
21.517444231177205

292 | Chapter 19: Pipelines

PCA Pipeline
Scikit-learn pipelines can also be used for PCA.

Here we standardize the Titanic dataset and perform PCA on
it:

>>> pca_pipe = Pipeline(
... [
... (
... "std",
... preprocessing.StandardScaler(),
...),
... ("pca", PCA()),
...]
...)
>>> X_pca = pca_pipe.fit_transform(X)

Using the .named_steps attribute, we can pull properties off of
the PCA portion of the pipeline:

>>> pca_pipe.named_steps[
... "pca"
...].explained_variance_ratio_
array([0.23917891, 0.21623078, 0.19265028,
 0.10460882, 0.08170342, 0.07229959,
 0.05133752, 0.04199068])
>>> pca_pipe.named_steps["pca"].components_[0]
array([-0.63368693, 0.39682566, 0.00614498,
 0.11488415, 0.58075352, -0.19046812,
 -0.21190808, -0.09631388])

PCA Pipeline | 293

Index

A
accuracy, of classifications, 164
Adaptive Synthetic (ADASYN),

101
agglomerative (hierarchical) clus‐

tering, 280-283
Anaconda, package installation

on, 6
area under the curve (AUC), 36,

166

B
bagging, 127
baseline model, 29
baseline regression model, 193
Bayesian encoders, 85
bias, 156, 180
binary classifiers

and confusion matrix,
159-161

and discrimination threshold,
175

cumulative gains plot for eval‐
uation, 169-169

possible classification results,
159

tree interpretation, 180

biplot, 249
black box models

LIME and, 178-180
SHAP and, 233

Bokeh, 252
box plots, 64

C
Calinski-Harabasz Index, 277
CART (classification and regres‐

sion trees) algorithm, 119
categorical encoding, 84
categories, pulling from strings,

82-84
class balance, 172
class prediction error, 173
classification

algorithm families for, 29
asking a question to create

predictive model for, 13
baseline model, 29
cleaning data, 16-23
confusion matrix and, 35
decision tree, 119-126
evaluation (see classification

evaluation)
feature creation, 23-25

295

gathering data, 15
gradient boosted with

LightGBM, 143-148
imbalanced classes (see

imbalanced classes)
imports, 12
imputing data, 25
k-nearest neighbor, 116-118
learning curve, 38
logistic regression, 106-110
model creation, 32
model deployment, 39
model evaluation, 33
model optimization, 34
models, 105-150
Naive Bayes classifier,

111-113
normalizing data, 27
pipelines for, 289-291
project layout suggestion, 11
random forest, 127-132
refactoring code, 27
ROC curve, 36
sampling data, 25
SHAP and, 186
stacking, 31
support vector machine,

113-116
terms for data, 13
TPOT, 148-150
walkthrough with Titanic

dataset, 11-39
XGBoost, 133-142

classification and regression trees
(CART) algorithm, 119

classification evaluation, 159-176
accuracy, 164
class balance, 172
class prediction error, 173
classification report, 165
confusion matrix, 159-161
cumulative gains plot,

169-169

discrimination threshold, 175
F1, 165
lift curve, 171
metrics, 162
precision, 164
precision-recall curve, 167
recall, 164
ROC, 166

classification report, 165
cleaning data, 16-23, 51-53

Python-friendly column
names, 51

replacing missing values, 52
clustering, 273-287

agglomerative, 280-283
k-means, 273-279
metrics, 277
parallel coordinates plot, 73
understanding clusters,

283-287
code, refactoring, 27
coefficient of determination, 193,

223
collinear columns, 90
columns

collinear, 90
correlation between, 67-71
dropping, 23
Python-friendly names, 51
updating, 52

col_na feature, 87
conda

installation of libraries with, 6
pip in conda environment, 7

confusion matrix, 35, 159-161
cookiecutter, 11
correlation, in exploratory data

analysis, 67-71
Cross-Industry Standard Process

for Data Mining (CRISP-
DM), 9

CSV files, 17

296 | Index

cumulative gains plot, 169-169,
171

cumulative plot, 243
curse of dimensionality, 89

D
data

cleaning, 16-23, 51-53
(see also cleaning data)

gathering, 15
imputing, 25
missing (see missing data)
sampling, 25
terms for, 13

date feature engineering, 86
Davis-Bouldin Index, 277
decision tree, 119-126

for regression, 202-207
random forest and, 127-132
surrogate models and, 185
tree interpretation, 180

dendrograms, 46, 280-282
dependence plots, 188, 235
dimensionality reduction,

239-271
PCA, 239-258
PHATE, 268-271
t-SNE, 264-267
UMAP, 259-264

discrimination threshold, 175
downsampling, 101
drop column importance, 132
dtreeviz, 124, 206
dummy variables, 80

E
elbow method, 242
ensemble methods, 99
evaluation tools (see classification

evaluation)
explained variance, 224
exploratory data analysis, 55-74

box and violin plots, 64
comparing two ordinal values,

65
correlation, 67-71
data size, 55
histograms for, 58
joint plot for, 60
pair grid for, 63
parallel coordinates plot, 73
RadViz plot, 71
scatter plot for, 59
summary statistics, 56

F
F1, 165
false negatives, 159
false positives, 159, 166
fancyimpute, 26, 48
fastai, 86
fastcluster, 283
feature

column as, 13
creating, 23-25
dimensionality reduction (see

dimensionality reduction)
feature engineering

date feature engineering, 86
manual, 88

feature importance
decision trees, 126
feature selection, 97
LightGBM, 146, 221
model interpretation, 178
partial dependence plots,

181-185
random forests, 131-132
tree-based models, 33
xgbfir package, 139-142
XGBoost, 136, 214

feature selection, 89-97
collinear columns, 90
feature importance and, 97
lasso regression, 92

Index | 297

principal component analysis
(PCA), 97

recursive feature elimination,
94

frequency encoding, 82

G
Gini importance, 131-132
gradient boosting (see

LightGBM)
grid search, 291

H
hash encoder, 84
heat map, 68
heteroscedasticity

defined, 194
regression evaluation and, 227

hierarchical (agglomerative) clus‐
tering, 280-283

histograms, 58
homoscedasticity, 226
hyperparameters

model optimization and, 34
model selection and, 153-157
t-SNE and, 264
UMAP and, 259, 262
validation curve for determin‐

ing values, 153-155

I
imbalanced classes, managing,

99-103
downsampling majority

classes, 101
ensemble methods, 99
generating minority data, 101
penalizing models, 100
tree-based algorithms, 99
upsampling the minority

class, 100

upsampling then downsam‐
pling, 103

using metric other than accu‐
racy, 99

imbalanced-learn
downsampling algorithms,

102
upsampling minority class,

101
upsampling then downsam‐

pling, 103
imputing data, 25, 47
index assignment, 52
installation of libraries

with conda, 6
with pip, 5-6

instance-based learning, 116

J
joint plot, exploratory data analy‐

sis with, 60
Jupyter

and regression models, 234
cluster summary with, 284
decision tree creation, 122
for exploratory data analysis,

11
interactive scatter plots, 252,

257-258

K
k-fold cross-validation, 30
k-means clustering, 273-279
k-nearest neighbor (KNN),

116-118
for mutual information deter‐

mination, 96
for regression, 200-201
weights parameter, 100

kernel trick, 113
Kolmogorov-Smirnov test, 229

298 | Index

L
label encoding, 81
Laplace smoothing, 113
lasso regression, 92
leaky features

defined, 16
dropping columns with, 23

learning curve, 38, 156-157
libraries

installation with conda, 6
installation with pip, 5-6
list of, 2-4

lift (term), 171
lift curve, 171
LightGBM

for regression, 218-222
gradient boosted with,

143-148
linear regression, 194-196
Linux, library installation on, 5
loading plot, 249
Local Interpretable Model-

Agnostic Explanations
(LIME), 178-180

logistic regression, 106-110

M
machine learning, overview of

process, 9
Macintosh, library installation on,

5
majority classes, 101
manifold learning (see Uniform

Manifold Approximation and
Projection (UMAP))

manual feature engineering, 88
matplotlib

interactive scatter plots,
257-258

t-SNE visualization, 266
mean absolute error, 224
mean squared logarithmic error,

225

metrics
classification evaluation, 162
clustering, 277
for regression model evalua‐

tion, 223-225
imbalanced classes, 99
random forest, 223-230
regression evaluation,

223-225
minority class

generating new samples of,
101

upsampling, 100
missing data, 41-49

cleaning data, 20-23
dropping rows with, 47
examining, 42-46
imputing, 47
indicator columns for, 49
replacing, 52

missingno
for missing data bar plot,

45-46
for visualizing patterns in

missing data, 43
model

creating with random forest
classifier, 32

deployment, 39
evaluating, 33

model explanation/interpretation,
177-190
feature importance, 178
LIME, 178-180
partial dependence plots,

181-185
regression coefficients, 177
Shapley, 186-190
surrogate models, 185
tree interpretation, 180

model selection, 153-157
multicollinearity, 90, 195
multivariate data, 73

Index | 299

mutual information, 96

N
Naive Bayes classifier, 111-113
normal residuals, 228
normalizing data, 27

(see also preprocessing data)
null values, percentage of, 21

O
optimization, model, 34
ordinal encoder, 85
ordinal values, comparing, 65
OSX, library installation on, 5
out-of-bag (OOB) error, 127
overfitting, 156

P
pair grid, 63
pairwise comparisons, 67-71
pandas

classification calculations, 160
column names, 51
data standardization, 78
DataFrame column correla‐

tion, 69-71
determining data size, 55
dropping rows with missing

data, 47
dummy variable creation, 80
feature examination in clus‐

ters, 286
for indicator columns, 49
for missing data bar plot, 44
frequency encoding, 82
histograms with, 58
iloc attribute, 57
imports with, 12
imputing missing values with,

48
int64 vs. Int64 types, 17
label encoding, 81

manual feature engineering,
88

ordinal category comparison,
65

parallel coordinates plot, 74
profile report with, 18
RadViz plots, 72
scaling data to range, 79
scatter plot generation, 59
summary stats, 56
updating columns, 52

parallel coordinates plot, 73
partial dependence plots, 181-185
PCA (see principal component

analysis)
Pearson correlation, 60, 67
permutation importance, 132
PHATE (Potential of Heat-

diffusion for Affinity-based
Trajectory Embedding),
268-271

pip
in conda environment, 7
installation of libraries with,

5-6
pipelines, 289-293

classification, 289-291
imputing data with, 47
PCA, 293
regression, 292

Potential of Heat-diffusion for
Affinity-based Trajectory
Embedding (PHATE),
268-271

precision
discrimination threshold and,

175
F1 and, 165
of classifications, 164

precision-recall curve, 167
prediction error plot, 230
preprocessing data, 27, 77-88

300 | Index

and categorical_encoding
library, 84

col_na feature, 87
date feature engineering, 86
dummy variables, 80
frequency encoding, 82
label encoding, 81
manual feature engineering,

88
pulling categories from

strings, 82-84
scaling to range, 79
standardizing, 16, 27, 77
various categorical encoding

approaches, 84
principal component analysis

(PCA), 97
component plotting with clus‐

tering, 285
for dimensionality reduction,

239-258
pipelines for, 293

probability plot, 229
pyjanitor, 25

cleaning data, 51-53
splitting columns, 80

Q
queue rate, 175

R
RadViz plot, 71
random forest, 127-132

for regression, 208-211
metrics and regression evalu‐

ation, 223-230
model creation with, 32
tree interpretation, 180

recall (sensitivity)
discrimination threshold and,

175
F1 and, 165

of classifications, 164
receiver operating characteristic

(ROC) curve, 36, 166
recursive feature elimination, 94
refactoring, 27
regression, 191-222

baseline model, 193
decision tree, 202-207
k-nearest neighbor, 200-201
LightGBM for, 218-222
linear, 194-196
metrics, 223-225
pipelines for, 292
random forest, 208-211
SHAP and, 186
SVMs and, 198-200
XGBoost for, 211-217

regression coefficients, 177
regression evaluation, 223-230

heteroscedasticity, 227
metrics, 223-225
normal residuals, 228
prediction error plot, 230
residuals plot, 226

regression models, 233-238
Shapley, 233-238

regular expressions, 83
residuals plot, 226, 228
rfpimp, 90
ROC (receiver operating charac‐

teristic) curve, 36, 166
root mean squared error, 225

S
sample (term), 13
sampling data, 25
sandbox environment, for library

installation, 5
scaling data to range, 79
scatter plot

exploratory data analysis
with, 59

PCA and, 252

Index | 301

scikit-learn
categorical encoding, 84
class_weight parameter, 100
clustering metrics, 277
clustering models, 282
feature_importances_

attribute, 178
imports with, 12
numeric features with, 16
PCA implementation, 240
pipelines, 289-293
recursive feature elimination,

94
scipy, 228, 280
scprep, 256
scree plot, 242
seaborn

box and violin plots, 64
heat maps, 68
histograms with, 58
joint plot creation, 62
pair grid creation, 63
PCA, 247
PCA component plotting with

clustering, 285
sensitivity (see recall)
SHapley Additive exPlanations

(SHAP), 186-190, 233-238
silhouette coefficient, 277
simple linear regression, 194-196
sklearn

classification metrics imple‐
mentation, 162

coefficient of determination,
193

data format for, 105
data standardization, 77
DataFrame from confu‐

sion_matrix function, 161
downsampling majority

classes, 101
for confusion matrix, 35
Laplace smoothing with, 113

methods implemented by type
models, 106

model optimization, 34
mutual information determi‐

nation, 96
Naive Bayes classes, 111
regression model evaluation,

223-225
scaling data to range, 79
SVM implementations in, 113
tree interpretation, 180
upsampling minority class,

100
SME (see subject matter expert)
splits, 146
stacking classifier, 31
standardizing data, 16, 27, 77
star imports, avoiding, 13
stratified sampling, 172
strings, pulling categories from,

82-84
subject matter expert (SME)

and cleaning data, 16
and missing data, 21
and nuance in data, 55

summary statistics, 56
supervised learning

classification and, 105
regression and, 191

support vector machines (SVMs),
113-116, 198-200

surrogate models, 185, 287
Synthetic Minority Over-

sampling Technique
(SMOTE), 101

T
t-Distributed Stochastic Neigh‐

boring Embedding (t-SNE),
264-267

Titanic dataset, classification
walkthrough with, 11-39

TPOT, 148-150

302 | Index

training data, 38
transductive algorithms, 48
tree interpretation, 180
tree-based algorithms, 99
true positives, 166
type 1/type 2 errors, 159
types, for storage of columns of

data, 17

U
underfitting, 156
Uniform Manifold Approxima‐

tion and Projection (UMAP),
259-264

unsupervised learning (see clus‐
tering)

upsampling, 100

V
validation curve, 153-155
violin plots, 64
virtual environment, for library

installation, 5

W
Windows, library installation on,

5

X
xgbfir, 139-142
XGBoost, 133-142

for regression, 211-217
max_delta_step parameter,

100
regression models, 233-238

Y
Yellowbrick

class prediction error plot,
173

class size bar plot, 172
classification report, 165
coefficient visualization, 110,

196
confusion matrix, 35, 161
correlation heat map, 90
discrimination threshold vis‐

ualization, 176
feature importance for

XGBoost, 138
feature importance visualiza‐

tion, 126, 215
imports with, 12
learning curve plot, 156
pairwise comparisons, 67-71
parallel coordinates plot, 73
prediction error plot, 230
RadViz plot, 71
residuals plot, 226
ROC curve, 166
scatter plot, 60
scatter plot for 3D PCA, 255
silhouette score visualizer,

279
validation curve report,

153-155

Z
zero probability problem, 113

Index | 303

About the Author
Matt Harrison runs MetaSnake, a Python and Data Science
training and consulting company. He has been using Python
since 2000 across a breadth of domains: data science, BI, stor‐
age, testing and automation, open source stack management,
finance, and search.

Colophon
The animal on the cover of Machine Learning Pocket Reference
is the northern crested newt (Triturus cristatus), an amphibian
found near standing water in Britain eastward through main‐
land Europe to Western Russia.

This newt has a gray-brown back with dark spots and a yellow-
orange underside with white speckles. Males develop large jag‐
ged crests during the mating season, while females always have
an orange stripe on their tails.

While not hibernating in mud or under rocks during the winter
months, the northern crested newt hunts for other newts, tad‐
poles, young froglets, worms, insect larvae, and water snails in
water and for insects, worms, and other invertebrates on land.
They live for as long as 27 years and can be up to 7 inches long.

While the northern crested newt’s current conservation status
is designated as of Least Concern, many of the animals on
O’Reilly covers are endangered; all of them are important to the
world.

The cover illustration is by Karen Montgomery, based on a
black and white engraving from Meyers Kleines Lexicon. The
cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Preface
	What to Expect
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Libraries Used
	Installation with Pip
	Installation with Conda

	Chapter 2. Overview of the Machine Learning Process
	Chapter 3. Classification Walkthrough: Titanic Dataset
	Project Layout Suggestion
	Imports
	Ask a Question
	Terms for Data
	Gather Data
	Clean Data
	Create Features
	Sample Data
	Impute Data
	Normalize Data
	Refactor
	Baseline Model
	Various Families
	Stacking
	Create Model
	Evaluate Model
	Optimize Model
	Confusion Matrix
	ROC Curve
	Learning Curve
	Deploy Model

	Chapter 4. Missing Data
	Examining Missing Data
	Dropping Missing Data
	Imputing Data
	Adding Indicator Columns

	Chapter 5. Cleaning Data
	Column Names
	Replacing Missing Values

	Chapter 6. Exploring
	Data Size
	Summary Stats
	Histogram
	Scatter Plot
	Joint Plot
	Pair Grid
	Box and Violin Plots
	Comparing Two Ordinal Values
	Correlation
	RadViz
	Parallel Coordinates

	Chapter 7. Preprocess Data
	Standardize
	Scale to Range
	Dummy Variables
	Label Encoder
	Frequency Encoding
	Pulling Categories from Strings
	Other Categorical Encoding
	Date Feature Engineering
	Add col_na Feature
	Manual Feature Engineering

	Chapter 8. Feature Selection
	Collinear Columns
	Lasso Regression
	Recursive Feature Elimination
	Mutual Information
	Principal Component Analysis
	Feature Importance

	Chapter 9. Imbalanced Classes
	Use a Different Metric
	Tree-based Algorithms and Ensembles
	Penalize Models
	Upsampling Minority
	Generate Minority Data
	Downsampling Majority
	Upsampling Then Downsampling

	Chapter 10. Classification
	Logistic Regression
	Naive Bayes
	Support Vector Machine
	K-Nearest Neighbor
	Decision Tree
	Random Forest
	XGBoost
	Gradient Boosted with LightGBM
	TPOT

	Chapter 11. Model Selection
	Validation Curve
	Learning Curve

	Chapter 12. Metrics and Classification Evaluation
	Confusion Matrix
	Metrics
	Accuracy
	Recall
	Precision
	F1
	Classification Report
	ROC
	Precision-Recall Curve
	Cumulative Gains Plot
	Lift Curve
	Class Balance
	Class Prediction Error
	Discrimination Threshold

	Chapter 13. Explaining Models
	Regression Coefficients
	Feature Importance
	LIME
	Tree Interpretation
	Partial Dependence Plots
	Surrogate Models
	Shapley

	Chapter 14. Regression
	Baseline Model
	Linear Regression
	SVMs
	K-Nearest Neighbor
	Decision Tree
	Random Forest
	XGBoost Regression
	LightGBM Regression

	Chapter 15. Metrics and Regression Evaluation
	Metrics
	Residuals Plot
	Heteroscedasticity
	Normal Residuals
	Prediction Error Plot

	Chapter 16. Explaining Regression Models
	Shapley

	Chapter 17. Dimensionality Reduction
	PCA
	UMAP
	t-SNE
	PHATE

	Chapter 18. Clustering
	K-Means
	Agglomerative (Hierarchical) Clustering
	Understanding Clusters

	Chapter 19. Pipelines
	Classification Pipeline
	Regression Pipeline
	PCA Pipeline

	Index

