
P L A Y F U L P R O G R A M M I N G A C T I V I T I E S

T O M A K E Y O U S M A R T E R

I M P R A C T I C A L
P Y T H O N P R O J E C T S

I M P R A C T I C A L
P Y T H O N P R O J E C T S

L E E V A U G H A N

SHELVE IN
: PRO

GRAM
M

ING
LANGUAGES/PYTHO

N

$29.95 ($39.95 CDN)

Python undeniably makes programming easier than
ever to learn. But once you understand the basics,
what do you do next? Maybe you just need some
inspiration for your next weekend project.

With Impractical Python Projects, you’ll explore the
farthest reaches of the galaxy, the souls of poets,
the world of high finance, the trickery of spies, and
more—using modules like tkinter, matplotlib, cProfile,
Pylint, pygame, pillow, and python-docx.

Follow along and flex your problem-solving skills to:

• Help James Bond crack a high-tech safe with a
hill-climbing algorithm

• Write poems using Markov chain analysis

• Breed a race of gigantic rats with genetic algorithms

• Plan a secure retirement with a Monte Carlo
simulation

• Model the Milky Way and calculate our odds of
detecting alien civilizations

• Map Mars and learn orbital mechanics with your own
personal space probe

And so much more! Whether you’re looking to pick
up some new Python skills or just want some creative
programming exercises, you’ll find endless educational
and geeky fun with Impractical Python Projects.

A B O U T T H E A U T H O R

Lee Vaughan is a programmer, pop culture enthusiast,
and educator. Lee’s professional work involves the
construction and review of computer models; the devel-
opment, testing, and commercialization of software;
and the training of geoscientists and engineers. He
wrote Impractical Python Projects to help self-learners
hone their Python skills and have fun doing it!

M O D E L ,
E X P E R I M E N T ,

S I M U L A T E ,
P L A Y

M O D E L ,
E X P E R I M E N T ,

S I M U L A T E ,
P L A Y

COVERS
PYTHON 3 IM

P
R

A
C

T
IC

A
L

 P
Y

T
H

O
N

 P
R

O
JE

C
T

S
IM

P
R

A
C

T
IC

A
L

 P
Y

T
H

O
N

 P
R

O
JE

C
T

S
V

A
U

G
H

A
N

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

Impractical Python Projects

i m p r a c t i c a l
p y t h o n

p r o j e c t s
P l a y f u l P r o g r a m m i n g A c t i v i t i e s

t o M a k e Y o u S m a r t e r

by Lee Vaughan

San Francisco

Impractical Python Projects. Copyright © 2019 by Lee Vaughan.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-890-X
ISBN-13: 978-1-59327-890-8

Publisher: William Pollock
Production Editor: Janelle Ludowise
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editor: Zach Lebowski
Technical Reviewers: Jeremy Kun, Michael Contraveos, and Michele Pratusevich
Copyeditor: Rachel Monaghan
Compositor: David Van Ness
Proofreader: Paula L. Fleming
Indexer: Beth Nauman-Montana

The following images are reproduced with permission: Figure 4-1 courtesy of the Library of Congress;
Figure 7-1 created by vecteezy.com; rat silhouette in Figure 7-2 created by vecteezy.com; door image in Figures
11-1, 11-3, 11-4, 11-5, and 11-6 created by Dooder at Freepik.com; goat and moneybag images in Figures 11-1,
11-4, 11-5, and 11-6 created by Freepik.com; Figures 10-1, 10-7, 13-1, 14-21, and 15-1 from NASA; satellite im-
ages in Figures 14-13 and 14-24 courtesy of www.aha-soft.com/; output in Figure 12-5 supplied by ifa.com

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Vaughan, Lee, author.
Title: Impractical Python projects : playful programming activities to make
 you smarter / Lee Vaughan.
Description: First edition. | San Francisco : No Starch Press, Inc., [2019]
 | Includes bibliographical references and index.
Identifiers: LCCN 2018027576 (print) | LCCN 2018029119 (ebook) | ISBN
 9781593278915 (epub) | ISBN 1593278918 (epub) | ISBN 9781593278908 (pbk. :
 alk. paper) | ISBN 159327890X (pbk. : alk. paper)
Subjects: LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 (ebook) | LCC QA76.73.P98 V38 2019 (print) |
 DDC 005.13/3--dc23
LC record available at https://lccn.loc.gov/2018027576

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com
https://lccn.loc.gov/2018027576

For the Accidental Programmers,
the Dedicated Non-Specialists,

the Dibblers and Dabblers:
all the non-professionals who find
themselves writing code every day.

May this help you on your way.

About the Author
Lee Vaughan is a geologist with more than 30 years of experience in the
petroleum industry. As the Senior Technical Professional for Geological
Modeling at a major international oil company, he was involved in the
construction and review of computer models; the development, testing,
and commercialization of software; and the training of geoscientists and
engineers. An advocate for nonprogrammers who must use programming
in their careers, he wrote Impractical Python Projects to help self-learners
hone their skills with the Python language.

About the Technical Reviewer
Jeremy Kun graduated with his PhD in mathematics from the University
of Illinois at Chicago. He writes the blog Math ∩ Programming (https://
jeremykun.com/) and currently works on datacenter optimization at
Google.

B r i e f C o n t e n t s

Acknowledgments . xix

Introduction . xxi

Chapter 1: Silly Name Generator . 1

Chapter 2: Finding Palingram Spells . 19

Chapter 3: Solving Anagrams . 35

Chapter 4: Decoding American Civil War Ciphers . 63

Chapter 5: Encoding English Civil War Ciphers . 91

Chapter 6: Writing in Invisible Ink . . 105

Chapter 7: Breeding Giant Rats with Genetic Algorithms . 125

Chapter 8: Counting Syllables for Haiku Poetry . 145

Chapter 9: Writing Haiku with Markov Chain Analysis . 161

Chapter 10: Are We Alone? Exploring the Fermi Paradox . 187

Chapter 11: The Monty Hall Problem . 217

Chapter 12: Securing Your Nest Egg . 239

Chapter 13: Simulating an Alien Volcano . 265

Chapter 14: Mapping Mars with the Mars Orbiter . 285

Chapter 15: Improving Your Astrophotography with Planet Stacking 325

Chapter 16: Finding Frauds with Benford’s Law . 347

Appendix: Practice Project Solutions . 367

Index . . 389

C o n t e n t s i n D e t a i l

Acknowledgments	 xix

Introduction	 xxi
Who This Book Is For . xxii
What’s in This Book . xxii

Python Version, Platform, and IDE . xxiv
The Code . xxiv
Coding Style . xxv

Where to Get Help . xxv
Onward! . xxv

1
Silly Name Generator	 1
Project #1: Generating Pseudonyms . 1
Planning and Designing a Project . 2

The Strategy . 3
The Pseudocode . 3

The Code . 4
Using the Python Community’s Style Guide . 6
Checking Your Code with Pylint . 7
Describing Your Code with Docstrings . 10
Checking Your Code Style . 11

Summary . 14
Further Reading . 14

Pseudocode . 14
Style Guides . 14
Third-Party Modules . 15

Practice Projects . 15
Pig Latin . 15
Poor Man’s Bar Chart . 15

Challenge Projects . 16
Poor Foreign Man’s Bar Chart . 16
The Middle . 17
Something Completely Different . 17

2
Finding Palingram Spells	 19
Finding and Opening a Dictionary . 20

Handling Exceptions When Opening Files . 21
Loading the Dictionary File . 21

Project #2: Finding Palindromes . 23
The Strategy and Pseudocode . 23
The Palindrome Code . 24

xii Contents in Detail

Project #3: Finding Palingrams . 25
The Strategy and Pseudocode . 25
The Palingrams Code . 28
Palingram Profiling . 29
Palingram Optimization . 31

dnE ehT . 33
Further Reading . 33
Practice Project: Dictionary Cleanup . 33
Challenge Project: Recursive Approach . 34

3
Solving Anagrams	 35
Project #4: Finding Single-Word Anagrams . 36

The Strategy and Pseudocode . 36
Anagram-Finder Code . 38

Project #5: Finding Phrase Anagrams . 39
The Strategy and Pseudocode . 40
The Anagram Phrase Code . 43

Project #6: Finding Voldemort: The Gallic Gambit . 49
Project #7: Finding Voldemort: The British Brute-Force . 51

Strategy . 51
The British Brute-Force Code . 54

Summary . 61
Further Reading . 61
Practice Project: Finding Digrams . 61
Challenge Project: Automatic Anagram Generator . 62

4
Decoding American Civil War Ciphers	 63
Project #8: The Route Cipher . 64

The Strategy . 66
The Pseudocode . 69
The Route Cipher Decryption Code . 69
Hacking the Route Cipher . 72
Adding a User Interface . 74

Project #9: The Rail Fence Cipher . 80
The Strategy . 81
The Rail Fence Cipher Encryption Code . 82
The Rail Fence Cipher Decryption Code . 84

Summary . 86
Further Reading . 87
Practice Projects . 87

Hacking Lincoln . 87
Identifying Cipher Types . 88
Storing a Key as a Dictionary . 88
Automating Possible Keys . 88
Route Transposition Cipher: Brute-Force Attack . 88

Challenge Projects . 90
Route Cipher Encoder . 90
Three-Rail Fence Cipher . 90

Contents in Detail xiii

5
Encoding English Civil War Ciphers	 91
Project #10: The Trevanion Cipher . 92

Strategy and Pseudocode . 93
The Trevanion Cipher Code . 94

Project #11: Writing a Null Cipher . 98
The List Cipher Code . 99
The List Cipher Output . 100

Summary . 101
Further Reading . 101
Practice Projects . 101

Saving Mary . 102
The Colchester Catch . 103

6
Writing in Invisible Ink	 105
Project #12: Hiding a Vigenère Cipher . 106
The Platform . 107
The Strategy . 107

Creating Invisible Ink . 108
Manipulating Word Documents with python-docx . 110
Downloading the Assets . 112

The Pseudocode . 113
The Code . 114

Importing python-docx, Creating Lists, and Adding a Letterhead 114
Formatting and Interleaving the Messages . 115
Adding the Vigenère Cipher . 118

Detecting the Hidden Message . 119
Summary . 122
Further Reading . 122
Practice Project: Checking the Number of Blank Lines . 122
Challenge Project: Using Monospace Font . 123

7
Breeding Giant Rats with Genetic Algorithms	 125
Finding the Best of All Possible Solutions . 126
Project #13: Breeding an Army of Super-Rats . 126

Strategy . 127
The Super-Rats Code . 130
Summary . 136

Project #14: Cracking a High-Tech Safe . 137
Strategy . 139
The Safecracker Code . 140
Summary . 143

Further Reading . 143
Challenge Projects . 144

Building a Rat Harem . 144
Creating a More Efficient Safecracker . 144

xiv Contents in Detail

8
Counting Syllables for Haiku Poetry	 145
Japanese Haiku . 146
Project #15: Counting Syllables . 147
The Strategy . 147

Using a Corpus . 148
Installing NLTK . 148
Downloading CMUdict . 149
Counting Sounds Instead of Syllables . 150
Handling Words with Multiple Pronunciations . 150

Managing Missing Words . 151
The Training Corpus . 151
The Missing Words Code . 151

The Count Syllables Code . 156
Prepping, Loading, and Counting . 156
Defining the main() Function . 158

A Program to Check Your Program . 158
Summary . 159
Further Reading . 160
Practice Project: Syllable Counter vs. Dictionary File . 160

9
Writing Haiku with Markov Chain Analysis	 161
Project #16: Markov Chain Analysis . 162
The Strategy . 164

Choosing and Discarding Words . 165
Continuing from One Line to Another . 167

The Pseudocode . 167
The Training Corpus . 168
Debugging . 169

Building the Scaffolding . 170
Using the logging Module . 170

The Code . 171
Setting Up . 171
Building Markov Models . 172
Choosing a Random Word . 173
Applying the Markov Models . 174
Generating the Haiku Lines . 175
Writing the User Interface . 178

The Results . 181
Good Haiku . 182
Seed Haiku . 183

Summary . 184
Further Reading . 184
Challenge Projects . 184

New Word Generator . 184
Turing Test . 185
Unbelievable! This Is Unbelievable! Unbelievable! . 185
To Haiku, or Not to Haiku . 186
Markov Music . 186

Contents in Detail xv

10
Are We Alone? Exploring the Fermi Paradox	 187
Project #17: Modeling the Milky Way . 188
The Strategy . 189
Estimating the Number of Civilizations . 190
Selecting Radio Bubble Dimensions . 191
Generating a Formula for the Probability of Detection . 192
The Probability-of-Detection Code . 194

Calculating Probability of Detection for a Range of Civilizations 195
Generating a Predictive Formula and Checking the Results 198

Building the Graphical Model . 199
Scaling the Graphical Model . 201
The Galaxy Simulator Code . 202

Results . 211
Summary . 212
Further Reading . 212
Practice Projects . 212

A Galaxy Far, Far Away . 212
Building a Galactic Empire . 213
A Roundabout Way to Predict Detectability . 214

Challenge Projects . 214
Creating a Barred-Spiral Galaxy . 214
Adding Habitable Zones to Your Galaxy . 215

11
The Monty Hall Problem	 217
Monte Carlo Simulation . 218
Project #18: Verify vos Savant . 220

The Strategy . 220
The vos Savant Verification Code . 221

Project #19: The Monty Hall Game . 223
A Brief Introduction to Object-Oriented Programming 223
The Strategy and Pseudocode . 226
Game Assets . 227
The Monty Hall Game Code . 228

Summary . 238
Further Reading . 238
Practice Project: The Birthday Paradox . 238

12
Securing Your Nest Egg	 239
Project #20: Simulating Retirement Lifetimes . 240
The Strategy . 240

Historical Returns Matter . 243
The Greatest Uncertainty . 245
A Qualitative Way to Present Results . 246

The Pseudocode . 248
Finding Historical Data . 249

xvi Contents in Detail

The Code . 250
Importing Modules and Defining Functions to Load Data and Get User Input . . 250
Getting the User Input . 251
Checking for Other Erroneous Input . 253
Defining the Monte Carlo Engine . 253
Simulating Each Year in a Case . 256
Calculating the Probability of Ruin . 257
Defining and Calling the main() Function . 258

Using the Simulator . 259
Summary . 263
Further Reading . 263
Challenge Projects . 264

A Picture Is Worth a Thousand Dollars . 264
Mix and Match . 264
Just My Luck! . 264
All the Marbles . 264

13
Simulating an Alien Volcano	 265
Project #21: The Plumes of Io . 266
A Slice of pygame . 267
The Strategy . 268

Using a Game Sketch to Plan . 268
Planning the Particle Class . 269

The Code . 271
Importing Modules, Initiating pygame, and Defining Colors 271
Defining the Particle Class . 272
Ejecting a Particle . 274
Updating the Particle and Handling Boundary Conditions 276
Defining the main() Function . 277
Completing the main() Function . 278

Running the Simulation . 280
Summary . 281
Further Reading . 281
Practice Project: Going the Distance . 282
Challenge Projects . 283

Shock Canopy . 283
The Fountainhead . 283
With a Bullet . 284

14
Mapping Mars with the Mars Orbiter	 285
Astrodynamics for Gamers . 286

The Law of Universal Gravity . 286
Kepler’s Laws of Planetary Motion . 287
Orbital Mechanics . 288

Project #22: The Mars Orbiter Game . 293
The Strategy . 293
Game Assets . 296

Contents in Detail xvii

The Code . 297
Importing and Building a Color Table . 297
Defining the Satellite Class Initialization Method . 298
Setting the Satellite’s Initial Position, Speed, Fuel, and Sound 299
Firing Thrusters and Checking for Player Input . 300
Locating the Satellite . 301
Rotating the Satellite and Drawing Its Orbit . 302
Updating the Satellite Object . 303
Defining the Planet Class Initialization Method . 304
Rotating the Planet . 306
Defining the gravity() and update() Methods . 307
Calculating Eccentricity . 308
Defining Functions to Make Labels . 309
Mapping Soil Moisture . 311
Casting a Shadow . 311
Defining the main() Function . 312
Instantiating Objects, Setting Up Orbit Verification, Mapping,

and Timekeeping . 314
Starting the Game Loop and Playing Sounds . 315
Applying Gravity, Calculating Eccentricity, and Handling Failure 316
Rewarding Success and Updating and Drawing Sprites 318
Displaying Instructions and Telemetry and Casting a Shadow 318

Summary . 320
Challenge Projects . 320

Game Title Screen . 320
Smart Gauges . 320
Radio Blackout . 320
Scoring . 320
Strategy Guide . 321
Aerobraking . 321
Intruder Alert! . 322
Over the Top . 322

15
Improving Your Astrophotography
with Planet Stacking	 325
Project #23: Stacking Jupiter . 326
The pillow Module . 327
Working with Files and Folders . 327

Directory Paths . 328
The Shell Utilities Module . 329

The Video . 330
The Strategy . 331
The Code . 331

The Cropping and Scaling Code . 331
The Stacking Code . 337
The Enhancing Code . 340

Summary . 343
Further Reading . 343
Challenge Project: Vanishing Act . 344

xviii Contents in Detail

16
Finding Frauds with Benford’s Law	 347
Project #24: Benford’s Law of Leading Digits . 348

Applying Benford’s Law . 350
Performing the Chi-Square Test . 352

The Dataset . 353
The Strategy . 354
The Code . 355

Importing Modules and Loading Data . 355
Counting First Digits . 356
Getting the Expected Counts . 357
Determining Goodness of Fit . 357
Defining the Bar Chart Function . 358
Completing the Bar Chart Function . 359
Defining and Running the main() Function . 361

Summary . 363
Further Reading . 364
Practice Project: Beating Benford . 364
Challenge Projects . 366

Benfording the Battlegrounds . 366
While No One Was Looking . 366

Appendix
Practice Project Solutions	 367
Chapter 1: Silly Name Generator . 367
Chapter 2: Finding Palingram Spells . 368
Chapter 3: Solving Anagrams . 369
Chapter 4: Decoding American Civil War Ciphers . 370
Chapter 5: Encoding English Civil War Ciphers . 375
Chapter 6: Writing in Invisible Ink . 377
Chapter 8: Counting Syllables for Haiku Poetry . 378
Chapter 10: Are We Alone? Exploring the Fermi Paradox . 379
Chapter 11: The Monty Hall Problem . 384
Chapter 13: Simulating an Alien Volcano . 385
Chapter 16: Finding Frauds with Benford’s Law . 387

index	 389

A c k n o w l e d g m e n t s

Writing a book is a family affair, and I couldn’t have
succeeded without the support of both my real fam-
ily and my surrogate family at No Starch Press. First,
thanks to my wife, Hannah, and daughters, Sarah and
Lora, for their understanding, patience, and endless
editing support.

At No Starch, thanks to Bill Pollock and Tyler Ortman for accepting
my proposal; Zach Lebowski for making sense of what I was trying to say;
Janelle Ludowise for a highly professional job of production editing; Rachel
Monaghan and Paula Fleming for taking on the difficult job of copyedit-
ing and proofing a technical book; David Van Ness for composition; and
Serena Yang and Josh Ellingson for the awesome cover design. Thanks also
to my technical reviewers, Jeremy Kun, Michael Contraveos, and Michele
Pratusevich, for significantly improving the book with invaluable sugges-
tions and corrections.

xx Acknowledgments ﻿

External to No Starch, Sarah Vaughan, Eric Evenchick, Xiao-Hui Wu,
Brooks Clark, Brian Proett, Brent Francis, and Glenn Krum provided sig-
nificant technical support.

Finally, thanks to Mark Nathern for introducing me to Python, and to
Guido van Rossum for inventing the thing in the first place!

I n t r o d u c t i o n

Welcome to Impractical Python Projects! Here,
you’ll use the Python programming lan-

guage to explore Mars, Jupiter, and the far-
thest reaches of the galaxy; the souls of poets;

the world of high finance; the underworld of espio-
nage and vote tampering; the trickery of game shows;
and more. You’ll use techniques such as Markov chain
analysis to write haiku, Monte Carlo simulation to model financial markets,
image stacking to improve your astrophotography, and genetic algorithms
to breed an army of gigantic rats, all while gaining experience with mod-
ules like pygame, Pylint, pydocstyle, tkinter, python-docx, matplotlib, and pillow.
And most of all, you’ll have fun.

xxii Introduction

Who This Book Is For
You can think of this as your second Python book. It’s designed to fol-
low and complement either a complete beginner’s book or an introduc-
tory class. You’ll be able to continue self-training using a project-based
approach, without wasting your money or shelf space on a thorough rehash-
ing of concepts you’ve already learned. But don’t worry, I won’t leave you
hanging; all the code is annotated and explained.

These projects are for anyone who wants to use programming to con-
duct experiments, test theories, simulate nature, or just have fun. This
includes people who use programming as part of their jobs (like scientists
and engineers) but who aren’t programmers per se, as well as those I call
the “determined non-specialists”—dilettantes and dabblers who enjoy
programming problems as a fun pastime. If you’ve wanted to toy with the
concepts presented here but found starting potentially complicated proj-
ects from scratch too daunting or time-consuming, this book is for you.

What’s in This Book
As you work through the projects, you’ll increase your knowledge of useful
Python libraries and modules; learn more shortcuts, built-in functions, and
helpful techniques; and practice designing, testing, and optimizing pro-
grams. Additionally, you’ll be able to relate what you’re doing to real-world
applications, datasets, and issues.

To quote Ralph Waldo Emerson, “Nothing great was ever achieved
without enthusiasm.” This includes the learning experience. The ultimate
goal of this book is to spark your imagination and lead you to develop
interesting projects of your own. Don’t worry if they seem too ambitious at
first; a little diligence and a lot of googling can work miracles—and faster
than you think.

The following is an overview of the chapters in this book. You don’t
have to work through them sequentially, but the easiest projects are at the
beginning, and I explain new concepts, modules, and techniques more
thoroughly when they’re first introduced.

Chapter 1: Silly Name Generator  This warm-up project introduces
the Python PEP 8 and PEP 257 style guides as well as the Pylint and
pydocstyle modules, which analyze your code’s conformance to these
guidelines. The end product is a goofy-name generator inspired by the
USA Network TV show Psych.

Chapter 2: Finding Palingram Spells  Learn how to profile your
code while saving DC Comics sorceress Zatanna from a painful death.
Search online dictionaries for the magical palingrams that Zatanna
needs to beat a time-reversing villain.

Chapter 3: Solving Anagrams  Write a program that helps a user
create a phrase anagram from their name; for example, Clint Eastwood
yields old west action. Then help Tom Marvolo Riddle derive his ana-
gram, “I am Lord Voldemort,” using linguistic sieves.

Introduction xxiii

Chapter 4: Decoding American Civil War Ciphers  Investigate and
crack one of the most successful military ciphers in history, the Union
route cipher. Then help spies on both sides send and decode secret
messages using the zig-zagging rail fence cipher.

Chapter 5: Encoding English Civil War Ciphers  Read a message
hidden in plain sight by decoding a null cipher from the English Civil
War. Then save the head of Mary, Queen of Scots, by designing and
implementing code to accomplish the more difficult task of writing a
null cipher.

Chapter 6: Writing in Invisible Ink  Help a corporate mole betray
Sherlock Holmes’s dad and evade detection with invisible electronic
ink. This chapter is based on an episode of the CBS television show
Elementary.

Chapter 7: Breeding Giant Rats with Genetic Algorithms  Use genetic
algorithms—inspired by Darwinian evolution—to breed a race of
super-rats the size of female bullmastiffs. Then help James Bond crack
a safe with 10 billion possible combinations in the blink of an eye.

Chapter 8: Counting Syllables for Haiku Poetry  Teach your com-
puter to count syllables in English as a prelude to writing Japanese
poetry, or haiku, in the next chapter.

Chapter 9: Writing Haiku with Markov Chain Analysis  Teach your
computer to write haiku by combining the syllable-counting module
from Chapter 8 with Markov chain analysis and a training corpus of
several hundred ancient and modern haiku.

Chapter 10: Are We Alone? Exploring the Fermi Paradox  Investigate
the absence of alien radio signals using Drake’s equation, the dimensions
of the Milky Way galaxy, and assumptions about the size of detectable
“emissions bubbles.” Learn and use the popular tkinter module to build
a graphical display of the galaxy and Earth’s own radio bubble.

Chapter 11: The Monty Hall Problem  Help the world’s smartest
woman win the Monty Hall problem argument. Then use object-
oriented programming (OOP) to build a version of Monty’s famous
game with a fun graphical interface.

Chapter 12: Securing Your Nest Egg  Plan your (or your parents’)
secure retirement using a Monte Carlo–based financial simulation.

Chapter 13: Simulating an Alien Volcano  Use pygame to simulate a
volcanic eruption on Io, one of Jupiter's moons.

Chapter 14: Mapping Mars with the Mars Orbiter  Build a gravity-
based arcade game and nudge a satellite into a circular mapping orbit
without running out of fuel or burning up in the atmosphere. Display
readouts of key parameters, track orbital paths, add the planet’s shadow,
and spin Mars slowly on its axis, all while learning orbital mechanics!

Chapter 15: Improving Your Astrophotography with Planet Stacking ​
Reveal Jupiter’s cloud bands and Great Red Spot by optically stacking

xxiv Introduction

poor-quality video images using the Python imaging library. Learn how
to work with files, folders, and directory paths using the built-in os and
shutil modules.

Chapter 16: Finding Frauds with Benford’s Law  Use Benford’s law
to investigate vote tampering in the 2016 presidential election. Use
matplotlib to summarize the results in a chart.

Each chapter ends with at least one Practice Project or Challenge Project.
Each Practice Project comes with a solution. That doesn’t mean it’s the
best solution—you may come up with a better one on your own, so don’t
peek ahead!

With the Challenge Projects, however, you’re truly on your own. When
Cortez invaded Mexico in 1519, he burned his caravels so that his conquis
tadors would realize there was no going back; they would have to face the
Aztecs with grim and unwavering determination. Thus, the expression “burn
your boats” has come to represent wholeheartedness or full commitment to a
task. This is how you should face the Challenge Projects—as if your boat were
burned—and if you do, you’re likely to learn more from these exercises than
from any other part of the book!

Python Version, Platform, and IDE
I constructed each of the projects in this book with Python v3.5 in a
Microsoft Windows 10 environment. If you’re using a different operating
system, no problem: I suggest compatible modules for other platforms,
where appropriate.

The code examples and screen captures in this book are from either
the Python IDLE text editor or the interactive shell. IDLE stands for inte-
grated development and learning environment. It’s an integrated development
environment (IDE) with an L added so that the acronym references Eric Idle
of Monty Python fame. The interactive shell, also called the interpreter, is a
window that lets you immediately execute commands and test code without
needing to create a file.

IDLE has numerous drawbacks, such as the lack of a line-number col-
umn, but it is free and bundled with Python, so everyone has access to it. You
are welcome to use whichever IDE you wish. There are many choices avail-
able online, such as Geany (pronounced genie), PyCharm, and PyScripter.
Geany works with a wide range of operating systems, including Unix, macOS,
and Windows. PyCharm works with Linux, Windows, and macOS. PyScripter
works with Windows. For an extensive listing of available Python devel-
opment tools and compatible platforms, visit https://wiki.python.org/moin​
/DevelopmentTools/.

The Code
Every line of code is provided for each project in this book, and I recom-
mend you enter it by hand whenever possible. A college professor once told
me that we “learn through our hands,” and I have to agree that keying in
code forces you to pay maximum attention to what’s going on.

https://wiki.python.org/moin/DevelopmentTools/
https://wiki.python.org/moin/DevelopmentTools/

Introduction xxv

But if you want to complete a project quickly or you accidentally delete
all your work, you can download all of the code, including solutions to the
Practice Projects, from https://www.nostarch.com/impracticalpython/. This
site also contains the book's errata sheet, in the event of future updates or
changes.

Coding Style
This book is about problem solving and beginner-level fun, so the code
may deviate at times from best practices and peak efficiency. Occasionally,
you may use list comprehension or a special operator, but for the most part,
you’ll focus on simple, approachable code that’s easy to learn.

Keeping things simple is important for the programming nonprogram-
mers who read this book. Much of their code may be “Kleenex code”—used
once or twice for a specific purpose and then thrown away. This is the type
of code that might be shared with colleagues, or thrust upon them during
staff changes, so it should be easy to pick up and understand.

All of the main project code is annotated and explained in a stand-
alone manner, and it generally follows the style recommendations from
Python Enhancement Proposal 8, otherwise known as PEP 8. Details on PEP 8,
and software to help you honor these guidelines, are in Chapter 1.

Where to Get Help
Taking on a programming challenge can be, well, challenging. Coding isn’t
always something that you can intuitively figure out—even with a language
as friendly as Python. Throughout the following chapters, I will provide
links and references to useful sources of information, but for projects you
formulate on your own, nothing can beat online searches.

The key to successful searching is knowing what to ask. This can be
quite frustrating at first, but think of it as a game of Twenty Questions.
Keep honing your keywords with each successive search until you find an
answer or reach a point of diminishing returns.

If books and online searches fail, then the next step is to ask someone.
You can do this online, either for a fee or at free forums like Stack Overflow
(https://stackoverflow.com/). But be warned: the members of these sites don’t
suffer fools gladly. Be sure to read their “How do I ask a good question?”
pages before posting; for example, you can find the one for Stack Overflow
at http://stackoverflow.com/help/how-to-ask/.

Onward!
Thanks for taking the time to read the Introduction! You clearly want to
get as much as possible from this book, and you’re off to a good start. When
you reach the other end, you’ll be more adept at Python and better pre-
pared to solve challenging real-world problems. Let’s get to work.

https://www.nostarch.com/impracticalpython/
http://stackoverflow.com/help/how-to-ask

1
S i l ly N a m e G e n e r a t o r

The USA Network television channel once
ran a detective dramedy called Psych, in

which hyper-observant amateur sleuth Sean
Spencer solved cases while pretending to use

psychic abilities. A trademark of the show was the
way he would introduce his sidekick, Gus, with goofy
names made up on the fly, like Galileo Humpkins, Lavender Gooms, and
Bad News Marvin Barnes. This made an impression on me because, years
ago, someone who worked at the Census Bureau gave me a list of real
names every bit as strange as those invented by Sean.

Project #1: Generating Pseudonyms
In this warm-up project, you’ll write a simple Python program that gen-
erates nutty names by randomly combining first names and surnames.
With any luck, you’ll produce a plethora of aliases that would make any

2 Chapter 1

sidekick proud. You’ll also review best-practice coding guidelines and
apply external programs that will help you write code that conforms to
those guidelines.

Psych not your thing? Replace the names in my list in the code with
your own jokes or theme. You could just as easily turn this project into a
Game of Thrones name generator, or perhaps you want to discover your very
own “Benedict Cumberbatch” name; my favorite is Bendylick Cricketbat.

t he objec t i v e

Randomly generate funny sidekick names using Python code that conforms to established
style guidelines.

Planning and Designing a Project
Planning time is never wasted time. It doesn’t matter whether you’re pro-
gramming for fun or profit; at some point, you’ll need to estimate—fairly
accurately—how long the project will take, what obstacles you may encoun-
ter, and what tools and resources you’ll need to do the work. And to accom-
plish that, you’ll need to know what you’re trying to create in the first place!

A successful manager once told me that his secret was simply to ask lots
of questions: What are you trying to do? Why are you doing it? Why are you
doing it this way? How much time do you have? How much money? Answering
these questions is extremely helpful to the design process and gives you a
clear line of sight.

In his book Think Python, 2nd Edition (O’Reilly, 2015), Allen Downey
describes two types of software development plans: “prototype and patch”
and “designed development.” With prototype and patch, you start with a
simple program and then use patches, or edited code, to handle problems
encountered in testing. This can be a good approach when you’re work-
ing through a complex problem you don’t understand very well. But it can
also produce complicated and unreliable code. If you have a clear view
of the problem and how you want to solve it, you should use a designed
development plan to avoid future issues and their subsequent patches. This
approach can make coding easier and more efficient, and it typically leads
to stronger and more reliable code.

For all the projects in this book, you’ll start with a clearly defined prob-
lem or goal that will form the basis of your design decisions. Then we’ll
discuss strategy to better understand the issues and create a designed devel-
opment plan.

Silly Name Generator 3

The Strategy
You’ll start with two lists—first and last—of funny names. The lists will be
relatively short, so they won’t be memory intensive, won’t need to be dynam-
ically updated, and shouldn’t present any runtime issues. Since all you’ll
need to do is read names from the list, you’ll use a tuple as a container.

With your two tuples of names, you’ll generate new names—pairing a
first name with a last—at the touch of a button. That way, the user can eas-
ily repeat the process until a sufficiently funny name appears.

You should also highlight the name in the interpreter window some-
how so it stands out from the command prompts. The IDLE shell doesn’t
provide many font options, but you probably know—all too well—that
errors appear in red. The default for the print() function is the standard
output, but with the sys module loaded, you can redirect the output to the
error channel, with its trademark red coloring, using the file parameter:
print(something, file=sys.stderr).

Finally, you’ll determine what style recommendations exist for Python
programming. These guidelines should address not only the code but also
documentation embedded within the code.

The Pseudocode
“You can always count on the Americans to do the right thing after they
have tried everything else.” That quote, weakly linked to Winston Churchill,
sums up the way many people approach writing pseudocode.

Pseudocode is a high-level, informal way to describe computer programs
using structured English or any human language. It should resemble a sim-
plified programming language and include keywords and proper indenta-
tions. Developers use it to ignore all the arcane syntax of true programming
languages and focus on the underlying logic. Despite its widespread use,
pseudocode has no official standards—only guidelines.

If you find you’ve hacked your way into frustration, it may be because
you didn’t take the time to write pseudocode. I am a true believer in it, as
pseudocode has—without fail—guided me to solutions when I was other-
wise lost in the woods. Consequently, you’ll use some form of pseudocode
in most of the projects in this book. At the very least, I hope you’ll see its
utility, but I also hope you’ll develop the discipline to write it in your own
projects.

A very high-level pseudocode for our funny name generator could look
like this:

Load a list of first names
Load a list of surnames
Choose a first name at random
Assign the name to a variable
Choose a surname at random
Assign the name to a variable

4 Chapter 1

Print the names to the screen in order and in red font
Ask the user to quit or play again
If user plays again:
 repeat
If user quits:
 end and exit

Unless you’re trying to pass a programming class or provide clear
instructions to others, focus on the purpose of the pseudocode; don’t worry
about slavishly complying with the (nonstandard) guidelines for writing it.
And don’t stop with programming—you can apply the pseudocode process
to much more. Once you get the hang of it, you might find it helps you com-
plete other tasks like doing your taxes, planning your investments, build-
ing a house, or getting ready for a camping trip. It’s a great way to focus
your thinking and carry programming successes over into real life. If only
Congress would use it!

The Code
Listing 1-1 is the code for the funny name generator, pseudonyms.py, which
compiles and prints a list of pseudonyms from two tuples of names. If you
don’t want to type all the names, you can type a subset or download the
code from https://nostarch.com/impracticalpython/.

 import sys, random

 print("Welcome to the Psych 'Sidekick Name Picker.'\n")
print("A name just like Sean would pick for Gus:\n\n")

first = ('Baby Oil', 'Bad News', 'Big Burps', "Bill 'Beenie-Weenie'",
 "Bob 'Stinkbug'", 'Bowel Noises', 'Boxelder', "Bud 'Lite' ",
 'Butterbean', 'Buttermilk', 'Buttocks', 'Chad', 'Chesterfield',
 'Chewy', 'Chigger", "Cinnabuns', 'Cleet', 'Cornbread', 'Crab Meat',
 'Crapps', 'Dark Skies', 'Dennis Clawhammer', 'Dicman', 'Elphonso',
 'Fancypants', 'Figgs', 'Foncy', 'Gootsy', 'Greasy Jim', 'Huckleberry',
 'Huggy', 'Ignatious', 'Jimbo', "Joe 'Pottin Soil'", 'Johnny',
 'Lemongrass', 'Lil Debil', 'Longbranch', '"Lunch Money"',
 'Mergatroid', '"Mr Peabody"', 'Oil-Can', 'Oinks', 'Old Scratch',
 'Ovaltine', 'Pennywhistle', 'Pitchfork Ben', 'Potato Bug',
 'Pushmeet','Rock Candy', 'Schlomo', 'Scratchensniff', 'Scut',
 "Sid 'The Squirts'", 'Skidmark', 'Slaps', 'Snakes', 'Snoobs',
 'Snorki', 'Soupcan Sam', 'Spitzitout', 'Squids', 'Stinky',
 'Storyboard', 'Sweet Tea', 'TeeTee', 'Wheezy Joe',
 "Winston 'Jazz Hands'", 'Worms')

last = ('Appleyard', 'Bigmeat', 'Bloominshine', 'Boogerbottom',
 'Breedslovetrout', 'Butterbaugh', 'Clovenhoof', 'Clutterbuck',
 'Cocktoasten', 'Endicott', 'Fewhairs', 'Gooberdapple', 'Goodensmith',
 'Goodpasture', 'Guster', 'Henderson', 'Hooperbag', 'Hoosenater',
 'Hootkins', 'Jefferson', 'Jenkins', 'Jingley-Schmidt', 'Johnson',

pseudonyms.py

Silly Name Generator 5

 'Kingfish', 'Listenbee', "M'Bembo", 'McFadden', 'Moonshine', 'Nettles',
 'Noseworthy', 'Olivetti', 'Outerbridge', 'Overpeck', 'Overturf',
 'Oxhandler', 'Pealike', 'Pennywhistle', 'Peterson', 'Pieplow',
 'Pinkerton', 'Porkins', 'Putney', 'Quakenbush', 'Rainwater',
 'Rosenthal', 'Rubbins', 'Sackrider', 'Snuggleshine', 'Splern',
 'Stevens', 'Stroganoff', 'Sugar-Gold', 'Swackhamer', 'Tippins',
 'Turnipseed', 'Vinaigrette', 'Walkingstick', 'Wallbanger', 'Weewax',
 'Weiners', 'Whipkey', 'Wigglesworth', 'Wimplesnatch', 'Winterkorn',
 'Woolysocks')

 while True:
  firstName = random.choice(first)

  lastName = random.choice(last)

 print("\n\n")
  print("{} {}".format(firstName, lastName), file=sys.stderr)

 print("\n\n")

  try_again = input("\n\nTry again? (Press Enter else n to quit)\n ")
 if try_again.lower() == "n":
 break

 input("\nPress Enter to exit.")

Listing 1-1: Generates silly pseudonyms from tuples of names

First, import the sys and random modules . You’ll use sys to access the
system-specific error message functionality, so you can color your output an
eye-catching red in the IDLE window. And random lets you pick, at random,
items from your name lists.

The print statements at  introduce the program to the user. The
newline command \n forces a new line, and single quotes '' allow you to
use quotes in the printout without having to resort to the backslash escape
character, which would reduce code readability.

Next, define your tuples of names. Then initiate the while loop .
Setting while = True basically means “Keep running until I tell you to stop.”
Eventually, you’ll use a break statement to end the loop.

The loop starts by choosing a name from the first tuple at random
and then assigns that name to the variable firstName . It uses the random
module’s choice method to return a random element from a nonempty
sequence—in this case, the tuple of first names.

Next, choose a surname at random from the last tuple and assign it
to the variable lastName . Now that you have both names, print them and
trick IDLE into using the red “error” font by supplying the optional argu-
ment file=sys.stderr to the print statement . Use the newer string format
method, rather than the older string format operator (%), to convert the name
variables to a string. To read more about the new method, see https://docs​
.python.org/3.7/library/string.html.

Once the name is displayed, ask the user to choose to play again or
quit, using input to provide the instruction in quotes. In this case, include a
few blank lines as well to make the funny name more obvious in the IDLE

http://docs.python.org/3.7/library/string.html
http://docs.python.org/3.7/library/string.html

6 Chapter 1

window. If the user responds by pressing the enter key, nothing is returned
to the try_again variable . With nothing returned, the condition on the if
statement isn’t met, the while loop continues, and a new name is printed. If
the user instead presses the N key, the if statement results in a break com-
mand, and the loop ends because the while statement no longer evaluates to
True. Use the lowercase string method .lower() to mitigate the player’s caps
lock key being engaged. In other words, it doesn’t matter whether the user
inputs a lowercase or uppercase N, because the program will always read it
as lowercase.

Finally, ask the user to exit by pressing the enter key . Pressing
enter doesn’t assign the return value of input() to a variable, the program
ends, and the console window closes. Pressing F5 in the IDLE editor win-
dow executes the completed program.

This code works, but working isn’t enough—programs in Python
should work with style.

Using the Python Community’s Style Guide
According to the Zen of Python (https://www.python.org/dev/peps/pep-0020/),
“There should be one—and preferably only one—obvious way to do some-
thing.” In the spirit of providing a single obvious “right way” of doing things
and building consensus around these practices, the Python community
releases Python Enhancement Proposals, which are coding conventions for the
Python code comprising the standard library in the main Python distribu-
tion. The most important of these is PEP 8, a style guide for Python pro-
gramming. PEP 8 evolves over time as new conventions are identified and
past ones are rendered obsolete by changes in the language.

PEP 8 (https://www.python.org/dev/peps/pep-0008/) sets standards for
naming conventions; use of blank lines, tabs, and spaces; maximum line
length; comments; and so on. The goal is to improve the readability of code
and make it consistent across a wide spectrum of Python programs. When
you start programming, you should strive to learn and follow the accepted
conventions, before bad habits become engrained. The code in this book
will conform closely to PEP 8, but I have overridden some conventions (by
using less commented code, fewer blank lines, and shorter docstrings, for
example) in deference to the publishing industry.

Standardized names and procedures are especially important when
you’re working in cross-functional teams. A lot can get lost in translation
between scientists and engineers, as in 1999, when engineers lost the Mars
Climate Orbiter because different teams used different measurement units.
For almost two decades, I built computer models of the earth that were
transferred to an engineering function. The engineers used scripts to load
these models into their own proprietary software. They would share these
scripts among projects for efficiency and to help the inexperienced. Since
these “command files” were customized to each project, the engineers were
understandably annoyed when attribute names changed during model
updates. In fact, one of their internal guidelines was “Beg, bribe, or bully
your modeler into using consistent property names!”

https://www.python.org/dev/peps/pep-0008/

Silly Name Generator 7

Checking Your Code with Pylint
You should become familiar with PEP 8, but you’ll still make mistakes, and
comparing your code to the guide is a major drag. Luckily, programs such
as Pylint, pycodestyle, and Flake8 can help you easily follow the PEP 8 style
recommendations. For this project, you’ll use Pylint.

Installing Pylint

Pylint is a source code, bug, and quality checker for the Python program-
ming language. To download a free copy, go to https://www.pylint.org/#install
and find the install button for your platform. This button will show the com-
mand for installing Pylint. For example, in Windows, go to the folder that
contains your copy of Python (such as C:\Python35), use shift-right-click to
open a context menu, and then click either open command window here
or open PowerShell window here, depending on which version of Windows
you’re using. Run pip install pylint (pip3 if Python 2 and 3 are installed).

Running Pylint

In Windows, Pylint is run from a command window or, for newer systems,
the PowerShell (you open both by using shift-right-click in the folder con-
taining the Python module you want to check). Type pylint filename to run
the program (see Figure 1-1). The .py extension is optional, and your direc-
tory path will vary from the one shown. On macOS or another Unix-based
system, use the terminal emulator.

Figure 1-1: The Windows command window with the command to run Pylint

The command window will display the Pylint results. Here’s a sample of
a useful output:

C:\Python35\Python 3 Stuff\Psych>pylint pseudonyms.py
No config file found, using default configuration
************* Module pseudonyms
C: 45, 0: No space allowed around keyword argument assignment
 print(firstName, lastName, file = sys.stderr)
 ^ (bad-whitespace)
C: 1, 0: Missing module docstring (missing-docstring)
C: 2, 0: Multiple imports on one line (sys, random) (multiple-imports)
C: 7, 0: Invalid constant name "first" (invalid-name)
C: 23, 0: Invalid constant name "last" (invalid-name)
C: 40, 4: Invalid constant name "firstName" (invalid-name)
C: 42, 4: Invalid constant name "lastName" (invalid-name)
C: 48, 4: Invalid constant name "try_again" (invalid-name)

8 Chapter 1

The capital letter at the start of each line is a message code. For example,
C: 15, 0 refers to a coding standard violation in line 15, column 0. You can
reference the following key for the various Pylint message codes:

R  Refactor for a “good practice” metric violation

C  Convention for coding standard violation

W  Warning for stylistic problems or minor programming issues

E  Error for important programming issues (i.e., most probably a bug)

F  Fatal for errors that prevent further processing

Pylint will end its report by grading your program’s conformance to
PEP 8. In this case, your code received a 4 out of 10:

Global evaluation

Your code has been rated at 4.00/10 (previous run: 4.00/10, +0.00)

Handling False Constant Name Errors

You might have noticed that Pylint incorrectly assumes all variable names
in the global space refer to constants, and should therefore be in all caps.
You can work around this shortcoming in a number of ways. The first is to
embed your code in a main() function (as shown in Listing 1-2); that way, it’s
out of the global space.

def main():
 some indented code
 some indented code
 some indented code

 if __name__ == "__main__":
  main()

Listing 1-2: Defines and calls a main() function

The __name__ variable is a special built-in variable that you can use to
evaluate whether a program is being run in stand-alone mode or as an
imported module; remember that a module is just a Python program used
inside of another Python program. If you run the program directly, __name__
is set to __main__. In Listing 1-2 __name__ is used to ensure that, when the pro-
gram is imported, the main() function isn’t run until you intentionally call it,
but when you run the program directly, the condition in the if statement is
met  and main() is automatically called . You don’t always need this con-
vention. For example, if your code just defines a function, you can load it as
a module and call it without the need for __name__.

Let’s embed everything in pseudonyms.py, except for the import state-
ment, under a main() function and then embed the main() function call
under an if statement, as in Listing 1-2. You can make the changes yourself
or download the pseudonyms_main.py program from the website. Rerun
Pylint. You should get the following results in your command window.

Silly Name Generator 9

C:\Python35\Python 3 Stuff\Psych>pylint pseudonyms_main
No config file found, using default configuration
************* Module pseudonyms_main
C: 47, 0: No space allowed around keyword argument assignment
 print(firstName, lastName, file = sys.stderr)
 ^ (bad-whitespace)
C: 1, 0: Missing module docstring (missing-docstring)
C: 2, 0: Multiple imports on one line (sys, random) (multiple-imports)
C: 4, 0: Missing function docstring (missing-docstring)
C: 42, 8: Invalid variable name "firstName" (invalid-name)
C: 44, 8: Invalid variable name "lastName" (invalid-name)

Now those annoying comments about invalid constant names have
disappeared, but you aren’t out of the woods yet. As much as I like them,
Python conventions don’t allow for camel case names, like firstName.

Configuring Pylint

When evaluating small scripts, I prefer to use the Pylint defaults and ignore
the false “constant name” errors. I also like to run the option -rn (short for
-reports=n) to suppress the large volume of extraneous statistics that Pylint
returns:

C:\Python35\Python 3 Stuff\Psych>pylint -rn pseudonyms_main.py

Note that using -rn will disable the code-grading option.
Another issue with Pylint is that its maximum line length default is

100 characters but PEP 8 recommends 79 characters. To comply with PEP 8,
you can run Pylint with the following option:

C:\Python35\Python 3 Stuff\Psych>pylint --max-line-length=79 pseudonyms_main

Now you’ll see that indenting the names for the main() function caused
some lines to exceed the guidelines:

C: 12, 0: Line too long (80/79) (line-too-long)
C: 14, 0: Line too long (83/79) (line-too-long)
--snip--

You probably don’t want to configure Pylint every time you run it, and
fortunately, you don’t have to. Instead, you can make your own customized
configuration file using the command –-generate-rcfile. For example, to
suppress reporting and set the maximum line length to 79, enter the follow-
ing into your command prompt:

your pathname>pylint -rn --max-line-length=79 --generate-rcfile > name.pylintrc

Put the changes you want before the –-generate-rcfile > name.pylintrc
statement and provide your own name before the .pylintrc extension. You
can create a configuration file either stand-alone, as just shown, or at the

10 Chapter 1

same time you evaluate a Python program. The .pylintrc file is automatically
saved in your current working directory, though there is an option for add-
ing a directory path (see https://pylint.org and https://pylint.readthedocs.io/en/
latest/user_guide/run.html for more details).

To reuse your custom configuration file, use the --rcfile option fol-
lowed by the name of your personal configuration file and the name of
the program you’re evaluating. For example, to run myconfig.pylintrc on the
pseudonyms_main.py program, enter the following:

C:\Python35\Python 3 Stuff\Psych>pylint --rcfile myconfig.pylintrc pseudonyms_main

Describing Your Code with Docstrings
Pylint identifies that the pseudonyms_main.py program is missing a docstring.
According to the PEP 257 style guide (https://www.python.org/dev/peps/pep​
-0257/), a docstring is a string literal that occurs as the first statement in a
module, function, class, or method definition. A docstring is basically a short
description of what your code does, and it may include specifics on aspects
of the code such as required inputs. Here, in triple quotes, is an example of
a single-line docstring for a function:

def circ(r):
 """Return the circumference of a circle with radius of r."""
 c = 2 * r * math.pi
 return c

The preceding docstring simply states what the function does, but
docstrings can be longer and include more information. For instance, the
following is a multiline docstring for the same function that displays infor-
mation about the function’s input and output:

def circ(r):
 """Return the circumference of a circle with radius of r.

 Arguments:
 r – radius of circle

 Returns:
 float: circumference of circle
 """
 c = 2 * r * math.pi
 return c

Unfortunately, docstrings are person-, project-, and company-specific
things, and you can find a lot of conflicting guidance. Google has its own
format and an excellent style guide. Some members of the scientific com-
munity use a NumPy docstring standard. And reStructuredText is a popular

https://pylint.org
https://pylint.readthedocs.io/en/latest/user_guide/run.html
https://pylint.readthedocs.io/en/latest/user_guide/run.html
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

Silly Name Generator 11

format used mainly in conjunction with Sphinx—a tool that uses docstrings
to generate documentation for Python projects in formats such as HTML
and PDF. If you’ve ever read the docs (https://readthedocs.org/) for a Python
module, then you’ve seen Sphinx in action. You can find links to guides for
some of these different styles in “Further Reading” on page 14.

You can check how well your docstrings conform to the PEP 257 con-
ventions with a free tool called pydocstyle. To install it in Windows or any
other operating system, open a command window and run pip install
pydocstyle (use pip3 if both Python 2 and 3 are installed).

To run pydocstyle, open a command window in the folder containing
the code you want to check. If you don’t specify a filename, pydocstyle will
run on all the Python programs in the folder and give you feedback:

C:\Python35\Python 3 Stuff\Psych>pydocstyle
.\OLD_pseudonyms_main.py:1 at module level:
 D100: Missing docstring in public module
.\OLD_pseudonyms_main.py:4 in public function `main`:
 D103: Missing docstring in public function
.\ pseudonyms.py:1 at module level:
 D100: Missing docstring in public module
.\ pseudonyms_main_broken.py:1 at module level:
 D200: One-line docstring should fit on one line with quotes (found 2)
.\ pseudonyms_main_broken.py:6 in public function `main`:
 D205: 1 blank line required between summary line and description
(found 0)

If you specify a file with no docstring issues, pydocstyle will return
nothing:

C:\Python35\Python 3 Stuff\Psych>pydocstyle pseudonyms_main_fixed.py

C:\Python35\Python 3 Stuff\Psych>

I’ll use fairly simple docstrings in all of the projects in this book in
order to reduce visual noise in the annotated code. Feel free to expand
on these if you wish to practice. You can always check your results with
pydocstyle.

Checking Your Code Style
When I was growing up, my uncle would drive from our rural town to a
larger city to have his hair “styled.” I never understood how that was differ-
ent from a regular haircut, but I do know how to “style” our funny name
generator code so that it complies with PEP 8 and PEP 257.

Make a copy of pseudonyms_main.py called pseudonyms_main_fixed.py and
immediately evaluate it with Pylint using this command:

your_path>pylint --max-line-length=79 pseudonyms_main_fixed

https://readthedocs.org/

12 Chapter 1

Don’t suppress the report using -rn. You should see this output at the
bottom of the command window:

Global evaluation

Your code has been rated at 3.33/10

Now correct the code based on the Pylint output. In the following
example, I have provided the corrections in bold. I made changes to the
name tuples to correct for line-length issues. You can also download the
corrected code, pseudonyms_main_fixed.py, from the book’s resources at
https://www.nostarch.com/impracticalpython/.

"""Generate funny names by randomly combining names from 2 separate lists."""
import sys
import random

def main():
 """Choose names at random from 2 tuples of names and print to screen."""
 print("Welcome to the Psych 'Sidekick Name Picker.'\n")
 print("A name just like Sean would pick for Gus:\n\n")

 first = ('Baby Oil', 'Bad News', 'Big Burps', "Bill 'Beenie-Weenie'",
 "Bob 'Stinkbug'", 'Bowel Noises', 'Boxelder', "Bud 'Lite'",
 'Butterbean', 'Buttermilk', 'Buttocks', 'Chad', 'Chesterfield',
 'Chewy', 'Chigger', 'Cinnabuns', 'Cleet', 'Cornbread',
 'Crab Meat', 'Crapps', 'Dark Skies', 'Dennis Clawhammer',
 'Dicman', 'Elphonso', 'Fancypants', 'Figgs', 'Foncy', 'Gootsy',
 'Greasy Jim', 'Huckleberry', 'Huggy', 'Ignatious', 'Jimbo',
 "Joe 'Pottin Soil'", 'Johnny', 'Lemongrass', 'Lil Debil',
 'Longbranch', '"Lunch Money"', 'Mergatroid', '"Mr Peabody"',
 'Oil-Can', 'Oinks', 'Old Scratch', 'Ovaltine', 'Pennywhistle',
 'Pitchfork Ben', 'Potato Bug', 'Pushmeet', 'Rock Candy',
 'Schlomo', 'Scratchensniff', 'Scut', "Sid 'The Squirts'",
 'Skidmark', 'Slaps', 'Snakes', 'Snoobs', 'Snorki', 'Soupcan Sam',
 'Spitzitout', 'Squids', 'Stinky', 'Storyboard', 'Sweet Tea',
 'TeeTee', 'Wheezy Joe', "Winston 'Jazz Hands'", 'Worms')

 last = ('Appleyard', 'Bigmeat', 'Bloominshine', 'Boogerbottom',
 'Breedslovetrout', 'Butterbaugh', 'Clovenhoof', 'Clutterbuck',
 'Cocktoasten', 'Endicott', 'Fewhairs', 'Gooberdapple',
 'Goodensmith', 'Goodpasture', 'Guster', 'Henderson', 'Hooperbag',
 'Hoosenater', 'Hootkins', 'Jefferson', 'Jenkins',
 'Jingley-Schmidt', 'Johnson', 'Kingfish', 'Listenbee', "M'Bembo",
 'McFadden', 'Moonshine', 'Nettles', 'Noseworthy', 'Olivetti',
 'Outerbridge', 'Overpeck', 'Overturf', 'Oxhandler', 'Pealike',
 'Pennywhistle', 'Peterson', 'Pieplow', 'Pinkerton', 'Porkins',
 'Putney', 'Quakenbush', 'Rainwater', 'Rosenthal', 'Rubbins',
 'Sackrider', 'Snuggleshine', 'Splern', 'Stevens', 'Stroganoff',
 'Sugar-Gold', 'Swackhamer', 'Tippins', 'Turnipseed',

pseudonyms
_main_fixed.py

Silly Name Generator 13

 'Vinaigrette', 'Walkingstick', 'Wallbanger', 'Weewax', 'Weiners',
 'Whipkey', 'Wigglesworth', 'Wimplesnatch', 'Winterkorn',
 'Woolysocks')

 while True:
 first_name = random.choice(first)
 last_name = random.choice(last)

 print("\n\n")
 # Trick IDLE by using "fatal error" setting to print name in red.
 print("{} {}".format(first_name, last_name), file=sys.stderr)
 print("\n\n")

 try_again = input("\n\nTry again? (Press Enter else n to quit)\n ")

 if try_again.lower() == "n":
 break

 input("\nPress Enter to exit.")

if __name__ == "__main__":
 main()

Pylint gives the revised code a grade of 10 out of 10:

Global evaluation

Your code has been rated at 10.00/10 (previous run: 3.33/10, +6.67)

As you saw in the previous section, running pydocstyle on pseudonyms_
main_fixed.py yields no errors, but don’t be fooled into thinking that means
it’s good or even adequate. For example, this docstring also passes:
"""ksjkdls lskjds kjs jdi wllk sijkljs dsdw noiu sss."""

It’s hard to write sparse, succinct, and truly useful docstrings and
comments. PEP 257 will help with docstrings, but comments are more
freestyle and “open range.” Too many comments create visual noise, can
be off-putting to the user, and shouldn’t be needed, as well-written code
is largely self-documenting. Good reasons for adding comments include
clarifying intent and heading off potential user errors, such as when
specific measurement units or input formats are required. To find the
right balance in commenting, take note of good examples when you run
across them. Also, think about what you would want to see if you had to
pick up your own code after a five-year hiatus!

Pylint and pydocstyle are easy to install, are easy to run, and will help
you learn and comply with the accepted coding standards of the Python
community. Running your code through Pylint prior to posting it on
web forums is also a good practice when you’re seeking help and should
prompt “kinder, gentler” responses!

14 Chapter 1

Summary
You should now know how to write code and documentation that conforms
to the Python community’s expectations. More importantly, you’ve gener-
ated some seriously funny names for a sidekick, gangster, informant, who-
ever. Here are a few of my favorites:

Pitchfork Ben Pennywhistle ‘Bad News’ Bloominshine

Chewy Stroganoff ‘Sweet Tea’ Tippins

Spitzitout Winterkorn Wheezy Joe Jenkins

‘Big Burps’ Rosenthal Soupcan Sam Putney

Bill ‘Beenie-Weenie’ Clutterbuck Greasy Jim Wigglesworth

Dark Skies Jingley-Schmidt Chesterfield Walkingstick

Potato Bug Quakenbush Jimbo Woolysocks

Worms Endicott Fancypants Pinkerton

Cleet Weiners Dicman Overpeck

Ignatious Outerbridge Buttocks Rubbins

Further Reading
For a clickable version of these resources, visit https://www.nostarch.com/
impracticalpython/.

Pseudocode
Descriptions of some fairly formal pseudocode standards can be found at
http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html and http://www.slideshare​
.net/sabiksabz/pseudo-code-basics/.

Style Guides
Here’s a list of style guides you can reference when creating Python
programs.

•	 The PEP 8 style guide can be found at https://www.python.org/dev/peps/
pep-0008/.

•	 The PEP 257 guidelines can be found at https://www.python.org/dev/peps/
pep-0257/.

•	 Google has its own format and style guide at https://google.github.io/
styleguide/pyguide.html.

•	 Examples of Google style can be found at https://sphinxcontrib-napoleon​
.readthedocs.io/en/latest/example_google.html.

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/
http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html
http://www.slideshare.net/sabiksabz/pseudo-code-basics
http://www.slideshare.net/sabiksabz/pseudo-code-basics
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html

Silly Name Generator 15

•	 NumPy docstring standards are at https://numpydoc.readthedocs.io/en/latest/.

•	 NumPy docstrings examples can be found at https://sphinxcontrib-napoleon​
.readthedocs.io/en/latest/example_numpy.html.

•	 You can find out about reStructuredText at https://docs.python.org/
devguide/documenting.html, https://docs.python.org/3.1/documenting/rest​
.html, and https://wiki.python.org/moin/reStructuredText/.

•	 The Hitchhiker’s Guide to Python (http://docs.python-guide.org/en/latest/
writing/style/) contains a section on code styles and autopep8, which
will automatically reformat code for PEP 8 (to a point).

•	 Effective Python by Brett Slatkin (Addison-Wesley, 2015) contains a useful
section on documenting programs.

Third-Party Modules
The following are some resources for using third-party modules.

•	 Details on Pylint are at https://docs.pylint.org/en/1.8/tutorial.html.

•	 Details on pydocstyle can be found at http://www.pydocstyle.org/en/latest/.

Practice Projects
Try out these projects for working with strings. My own solutions are avail-
able in the appendix.

Pig Latin
To form Pig Latin, you take an English word that begins with a consonant,
move that consonant to the end, and then add “ay” to the end of the word.
If the word begins with a vowel, you simply add “way” to the end of the
word. One of the most famous Pig Latin phrases of all time is “ixnay on the
ottenray,” uttered by Marty Feldman in Mel Brooks’s comedic masterpiece
Young Frankenstein.

Write a program that takes a word as input and uses indexing and
slicing to return its Pig Latin equivalent. Run Pylint and pydocstyle on
your code and correct any style mistakes. You can find a solution in the
appendix or download pig_latin_practice.py from https://www.nostarch.com/
impracticalpython/.

Poor Man’s Bar Chart
The six most commonly used letters in the English language can be remem-
bered with the mnemonic “etaoin” (pronounced eh-tay-oh-in). Write a Python
script that takes a sentence (string) as input and returns a simple bar chart–
type display as in Figure 1-2. Hint: I used a dictionary data structure and two
modules that I haven’t covered yet, pprint and collections/defaultdict.

https://numpydoc.readthedocs.io/en/latest/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://docs.python.org/devguide/documenting.html
https://docs.python.org/devguide/documenting.html
https://docs.python.org/3.1/documenting/rest.html
https://docs.python.org/3.1/documenting/rest.html
https://wiki.python.org/moin/reStructuredText
http://docs.python-guide.org/en/latest/writing/style/
http://docs.python-guide.org/en/latest/writing/style/
https://docs.pylint.org/en/1.8/tutorial.html
http://www.pydocstyle.org/en/latest/
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

16 Chapter 1

Figure 1-2: Bar chart–like output of the ETAOIN_practice.py program in the appendix

Challenge Projects
No solutions are provided for challenge projects. You’re on your own with
these!

Poor Foreign Man’s Bar Chart
Use an online translator to change your text into another Latin-based writ-
ing system (such as Spanish or French), rerun your code from the Poor
Man’s Bar Chart, and compare the results. For example, a Spanish version
of the text in Figure 1-2 yields the results in Figure 1-3.

Figure 1-3: The results of running EATOIN_challenge.py on a Spanish translation of the
text in Figure 1-2

Silly Name Generator 17

Twice as many Ls and three times as many Us appear in the Spanish
sentence. To make the bar charts for different inputs directly comparable,
change the code so every letter of the alphabet has a key and is displayed
even if there are no values.

The Middle
Rewrite the funny name generator code to include middle names. First,
create a new middle_name tuple, then split apart existing first name–middle
name pairs (such as “Joe ‘Pottin Soil’” or “Sid ‘The Squirts’”) and add
them to the tuple. You should also move some obvious nicknames (like
“Oil Can”) to your middle_name tuple. Finally, add some new middle names
(such as “The Big News,” or “Grunts,” or “Tinkie Winkie”). Use Python’s
random module so that a middle name is chosen only one-half or one-third
of the time.

Something Completely Different
Start your own list of funny names and add to the funny name generator.
Hint: movie credits are a rich hunting ground!

2
F i n d i n g P a l i n g r a m S p e l l s

Radar. Kayak. Rotator. Sexes. What do
these words all have in common? They’re

palindromes, words that are spelled the same
forward and backward. Even better are pal-

ingrams, whole phrases that behave the same way.
Napoleon is the author of the most famous palin-
gram. When he first saw Elba, the island of his exile,
he said, “Able was I ere I saw Elba.”

In 2011, DC Comics published an interesting story that made clever
use of palingrams. The superhero sorceress Zatanna was cursed so that she
could cast spells only by speaking palindromically. She managed to think up
just enough two-word phrases like nurses run, stack cats, and puff up to defeat
her sword-wielding attacker. This got me wondering: just how many “com-
bative” palingrams are there? And are there better choices for Zatanna?

20 Chapter 2

In this chapter, you’ll load dictionary files from the internet and use
Python to discover first palindromes and then the more complex palin-
grams in those files. Then you’ll use a tool called cProfile to analyze your
palingram code so that you can make it more performant. Finally, you’ll sift
through the palingrams to see how many have an “aggressive” nature.

Finding and Opening a Dictionary
All the projects in this chapter require a listing of words in a text file for-
mat, commonly referred to as a dictionary file, so let’s start by learning how
to load one.

Despite their name, dictionary files contain only words—no pronun-
ciation, syllable count, definitions, and so on. This is good news, as those
things would just get in our way. And even better, dictionary files are avail-
able online for free.

You can find suitable dictionary files at the locations listed in Table 2-1.
Download one of the files or, if it opens directly, copy and paste the con-
tents into a text editor like Notepad or WordPad (TextEdit on macOS) and
save it as a .txt file. Keep the dictionary in the same folder as the Python
code. I used the 2of4brif.txt file to prepare this project. It can be found in
the downloadable 12dicts-6.0.2.zip file on the website listed first in Table 2-1.

Table 2-1: Downloadable Dictionary Files

File Number of words

http://wordlist.aspell.net/12dicts/ 60,388

https://inventwithpython.com/dictionary.txt 45,000

http://www-personal.umich.edu/~jlawler/wordlist.html 69,903

http://greenteapress.com/thinkpython2/code/words.txt 113,809

In addition to the files in Table 2-1, Unix and Unix-like operating sys-
tems come packaged with a large newline-delimited word file of more than
200,000 words. It is usually stored in /usr/share/dict/words or /usr/dict/words.
On Debian GNU/Linux, word lists are in /usr/share/opendict/dictionaries.
The macOS dictionaries are generally found in /Library/Dictionaries, and
non-English dictionaries are included. You may need to do an online search
for your operating system and version to find the exact directory path if you
want to use one of these files.

Some dictionary files exclude a and I as words. Others may include
every letter in the dictionary as a single word “header” (such as d at the
start of words beginning with d). We’ll ignore one-letter palindromes in
these projects, so these issues shouldn’t be a problem.

Finding Palingram Spells 21

Handling Exceptions When Opening Files
Whenever you load an external file, your program should automatically
check for I/O issues, like missing files or incorrect filenames, and let you
know if there is a problem.

Use the following try and except statements to catch and handle excep-
tions, which are errors detected during execution:

u try:
 v with open(file) as in_file:

 do something
except IOError as e:

  print("{}\nError opening {}. Terminating program.".format(e, file),
 file=sys.stderr)

  sys.exit(1)

The try clause is executed first . The with statement will automatically
close the file after the nested block of code, regardless of how the block
exits . Closing files prior to terminating a process is a good practice. If
you don’t close those files, you could run out of file descriptors (mainly a
problem with large scripts that run for a long time), lock the file from fur-
ther access in Windows, corrupt the files, or lose data if you are writing to
the file.

If something goes wrong and if the type of error matches the excep-
tion named after the except keyword , the rest of the try clause is skipped,
and the except clause is executed . If nothing goes wrong, the try clause is
executed, and the except clause is skipped. The print statement in the except
clause lets you know there’s a problem, and the file=sys.stderr argument
colors the error statement red in the IDLE interpreter window.

The sys.exit(1)  statement is used to terminate the program. The 1
in sys.exit(1) indicates that the program experienced an error and did not
close successfully.

If an exception occurs that doesn’t match the named exception in the
except clause, it is passed to any outer try statements or the main program
execution. If no handler is found, the unhandled exception causes the pro-
gram to stop with a standard “traceback” error message.

Loading the Dictionary File
Listing 2-1 loads a dictionary file as a list. Manually enter this script or
download it as load_dictionary.py from https://nostarch.com/impracticalpython/.

You can import this file into other programs as a module and run it
with a one-line statement. Remember, a module is simply a Python program
that can be used in another Python program. As you’re probably aware,
modules represent a form of abstraction. Abstraction means you don’t have
to worry about all the coding details. A principle of abstraction is encapsu-
lation, the act of hiding the details. We encapsulate the file-loading code
in a module so you don’t have to see or worry about the detailed code in
another program.

22 Chapter 2

"""Load a text file as a list.

Arguments:
-text file name (and directory path, if needed)

Exceptions:
-IOError if filename not found.

Returns:
-A list of all words in a text file in lower case.

Requires-import sys

"""
 import sys

 def load(file):
 """Open a text file & return a list of lowercase strings."""
 try:
 with open(file) as in_file:

  loaded_txt = in_file.read().strip().split('\n')
  loaded_txt = [x.lower() for x in loaded_txt]

 return loaded_txt
 except IOError as e:

  print("{}\nError opening {}. Terminating program.".format(e, file),
 file=sys.stderr)
 sys.exit(1)

Listing 2-1: The module for loading a dictionary file as a list

After the docstring, we import system functions with sys so that our
error-handling code will work . The next block of code defines a function
based on the previous file-opening discussion . The function takes a file-
name as an argument.

If no exceptions are raised, the text file’s whitespace is removed, and its
items are split into separate lines and added to a list . We want each word
to be a separate item in the list, before the list is returned. And since case
matters to Python, the words in the list are converted to lowercase via list
comprehension x. List comprehension is a shorthand way to convert a list, or
other iterable, into another list. In this case, it replaces a for loop.

If an I/O error is encountered, the program displays the standard error
message, designated by the e, along with a message describing the event and
informing the user that the program is ending y. The sys.exit(1) command
then terminates the program.

This code example is for illustrative purposes, to show how these steps
work together. Generally, you wouldn’t call sys.exit() from a module, as
you may want your program to do something—like write a log file—prior
to terminating. In later chapters, we’ll move both the try-except blocks and
sys.exit() into a main() function for clarity and control.

load_dictionary.py

Finding Palingram Spells 23

Project #2: Finding Palindromes
You’ll start by finding single-word palindromes in a dictionary and then
move on to the more difficult palindromic phrases.

t he objec t i v e

Use Python to search an English language dictionary file for palindromes.

The Strategy and Pseudocode
Before you get into the code, step back and think about what you want to
do conceptually. Identifying palindromes is easy: simply compare a word
to itself sliced backward. Here is an example of slicing a word front to back
and then back to front:

>>> word = 'NURSES'
>>> word[:]
'NURSES'
>>> word[::-1]
'SESRUN'

If you don’t provide values when slicing a string (or any sliceable type),
the default is to use the start of the string, the end of the string, and a posi-
tive step equal to 1.

Figure 2-1 illustrates the reverse slicing process. I’ve provided a start-
ing position of 2 and a step of –1. Because no end index is provided (there
is no index or space between the colons), the implication is to go backward
(because the index step is −1) until there are no more characters left.

Start Step
End of
word

word[2::-1]

0 1 2 3 4 5 6

−6 −5 −4 −3 −2 −1

0 1 2 3 4 5 Position values

N U R S E S
−6 −5 −4 −3 −2 −1 Position values

Endpoints

Endpoints

R U N

Figure 2-1: An example of negative slicing for word = 'NURSES'

24 Chapter 2

Negative slicing doesn’t behave exactly the same way as forward slicing,
and the positive and negative position values and endpoints are asymmetri-
cal. This can lead to confusion, so let’s restrict our negative slicing to the
simple [::-1] format.

Finding palindromes in the dictionary will take fewer lines of code
than loading the dictionary file! Here’s the pseudocode:

Load digital dictionary file as a list of words
Create an empty list to hold palindromes
Loop through each word in the word list:
 If word sliced forward is the same as word sliced backward:
 Append word to palindrome list
Print palindrome list

The Palindrome Code
Listing 2-2, palindromes.py, reads in an English dictionary file, identifies
which words are palindromes, saves them to a list, and prints the list as
stacked items. You can download this code from the book’s resources
at https://www.nostarch.com/impracticalpython/. You will also need load_​
dictionary.py and a dictionary file; save all three files in the same folder.

"""Find palindromes (letter palingrams) in a dictionary file."""

 import load_dictionary
 word_list = load_dictionary.load('2of4brif.txt')
 pali_list = []

 for word in word_list:
 if len(word) > 1 and word == word[::-1]:
 pali_list.append(word)

print("\nNumber of palindromes found = {}\n".format(len(pali_list)))
 print(*pali_list, sep='\n')

Listing 2-2: Finds palindromes in loaded dictionary file

Start by importing load_dictionary.py as a module . Note that the .py
extension is not used for importing. Also, the module is in the same folder
as this script, so we don’t have to specify a directory path to the module.
And since the module contains the required import sys line, we don’t need
to repeat it here.

To populate our word list with words from the dictionary, call the load()
function in the load_dictionary module with dot notation . Pass it the name
of the external dictionary file. Again, you don’t need to specify a path if the
dictionary file is in the same folder as the Python script. The filename you
use may be different depending on the dictionary you downloaded.

Next, create an empty list to hold the palindromes  and start loop-
ing through every word in word_list , comparing the forward slice to the
reverse slice. If the two slices are identical, append the word to pali_list.
Notice that only words with more than one letter are allowed (len(word) >
1), which follows the strictest definition of a palindrome.

palindromes.py

https://www.nostarch.com/impracticalpython/

Finding Palingram Spells 25

Finally, print the palindromes in an attractive way—stacked and with
no quotation marks or commas . You can accomplish this by looping
through every word in the list, but there is a more efficient way to do it.
You can use the splat operator (designated by the *), which takes a list as
input and expands it into positional arguments in the function call. The
last argument is the separator used between multiple list values for print-
ing. The default separator is a space (sep=' '), but instead, print each item
on a new line (sep='\n').

Single-word palindromes are rare, at least in English. Using a 60,000-
word dictionary file, you’ll be lucky to find about 60, or only 0.1 percent of
all the words. Despite their rarity, however, they’re easy enough to find with
Python. So, let’s move on to the more interesting, and more complicated,
palingrams.

Project #3: Finding Palingrams
Finding palingrams requires a bit more effort than finding one-word
palindromes. In this section, we’ll plan and write code to find word-pair
palingrams.

t he objec t i v e

Use Python to search an English language dictionary for two-word palingrams. Analyze
and optimize the palingram code using the cProfile tool.

The Strategy and Pseudocode
Example word-pair palingrams are nurses run and stir grits. (In case you’re
wondering, grits are a ground-corn breakfast dish, similar to Italian
polenta.)

Like palindromes, palingrams read the same forward and backward.
I like to think of these as a core word, like nurses, from which a palindromic
sequence and reversed word are derived (see Figure 2-2).

NURSES RUN

“Core” word

Second part is
a palindromic

STIR GRITS

“Core” word

First part is a

sequence
palindromic

sequence Second part is a
reversed word

First part is a
reversed word

Figure 2-2: Dissecting word-pair palingrams

26 Chapter 2

Our program will examine the core word. Based on Figure 2-2, we can
make the following inferences about the core word:

1.	 It can have either an odd or even number of letters.

2.	 One contiguous part of the word spells a real word when read backward.

3.	 This contiguous part can occupy part or all of the core word.

4.	 The other contiguous part contains a palindromic sequence of letters.

5.	 The palindromic sequence can occupy part or all of the core word.

6.	 The palindromic sequence does not have to be a real word (unless it
occupies the whole word).

7.	 The two parts cannot overlap or share letters.

8.	 The sequence is reversible.

N o t e 	 If the reversed word occupies the whole core word and is not a palindrome, it’s called a
semordnilap. A semordnilap is similar to a palindrome except for one key difference:
rather than spelling the same word when read backward, it spells a different word.
Examples are bats and stab, and wolf and flow. Semordnilap, by the way, is palin-
dromes spelled backward.

Figure 2-3 represents an arbitrary word of six letters. The Xs represent
the part of the word that might form a real word when read backward (like
run in nurses). The Os represent the possible palindromic sequence (like ses
in nurses). The word represented in the left column in Figure 2-3 behaves
like nurses in Figure 2-2, with the reversed word at the start. The word repre-
sented by the right column behaves like grits, with the reversed word at the
end. Note that the number of combinations in each column is the total
number of letters in the word plus one; note too that the top and bottom
rows represent an identical circumstance.

The top row in each column rep-
resents a semordnilap. The bottom
row in each represents a palindrome.
These are both reversed words, just
different types of reversed words.
Hence, they count as one entity and
both can be identified with a single
line of code in a single loop.

To see the diagram in action,
consider Figure 2-4, which shows the
palingrams devils lived and retro porter.
Devils and porter are both core words
and mirror images of each other with
respect to palindromic sequences
and reversed words. Compare this to
the semordnilap evil and the palin-
drome kayak.

XXXXXO
XXXXOO

XXXXXX

XXXOOO
XXOOOO
XOOOOO
OOOOOO

XXXXXX

OOOOOO

OOOOOX
OOOOXX
OOOXXX
OOXXXX
OXXXXX

Figure 2-3: Possible positions for letters
of the reversed word (X) and the pal-
indromic sequence (O) in a six-letter
core word

Finding Palingram Spells 27

DEVILS PORTER
XXXXXO OXXXXX
EVIL LIVE
XXXX XXXX

KAYAK KAYAK
XXXXX XXXXX
OOOOO OOOOO

Figure 2-4: Reversed words (Xs) and palindromic sequences (Os) in words,
semordnilaps, and palindromes.

Palindromes are both reversed words and palindromic sequences. Since
they have the same pattern of Xs as in semordnilaps, they can be handled
with the same code used for semordnilaps.

From a strategy perspective, you’ll need to loop through each word
in the dictionary and evaluate it for all of the combinations in Figure 2-3.
Assuming a 60,000-word dictionary, the program will need to take about
500,000 passes.

To understand the loops, take a look at the core word for the palingram
stack cats in Figure 2-5. Your program needs to loop through the letters in the
word, starting with an end letter and adding a letter with each iteration. To
find palingrams like stack cats, it will simultaneously evaluate the word for the
presence of a palindromic sequence at the end of the core word, stack, and a
reversed word at the start. Note that the first loop in Figure 2-5 will be suc-
cessful, as a single letter (k) can serve as a palindrome in this situation.

STACK
First

Reversed
Word?

Second

Third

Fourth

First

Second

Third
Fourth

Palindromic?

Figure 2-5: Example loops through a core word,
simultaneously looking for palindromes and
reversed words

28 Chapter 2

But you’re not through yet. To capture the “mirror image” behavior in
Figure 2-3, you have to run the loops in reverse, looking for palindromic
sequences at the start of the word and reversed words at the end. This will
allow you to find palingrams like stir grits.

Here is the pseudocode for a palingram-finding algorithm:

Load digital dictionary as a list of words
Start an empty list to hold palingrams
For word in word list:
 Get length of word
 If length > 1:
 Loop through the letters in the word:
 If reversed word fragment at front of word is in word list and letters
 after form a palindromic sequence:
 Append word and reversed word to palingram list
 If reversed word fragment at end of word is in word list and letters
 before form a palindromic sequence:
 Append reversed word and word to palingram list
Sort palingram list alphabetically
Print word-pair palingrams from palingram list

The Palingrams Code
Listing 2-3, palingrams.py, loops through a word list, identifies which words
form word-pair palingrams, saves those pairs to a list, and prints the list as
stacked items. You can download the code from https://www.nostarch.com/
impracticalpython/. I suggest you use the 2of4brif.txt dictionary file to start so
that your results will match mine. Store your dictionary and load_dictionary​
.py in the same folder as the palingrams script.

"""Find all word-pair palingrams in a dictionary file."""
import load_dictionary

word_list = load_dictionary.load('2of4brif.txt')

find word-pair palingrams
u def find_palingrams():

 """Find dictionary palingrams."""
 pali_list = []
 for word in word_list:

  end = len(word)
  rev_word = word[::-1]
  if end > 1:
  for i in range(end):
  if word[i:] == rev_word[:end-i] and rev_word[end-i:] in word_list:

 pali_list.append((word, rev_word[end-i:]))
  if word[:i] == rev_word[end-i:] and rev_word[:end-i] in word_list:

 pali_list.append((rev_word[:end-i], word))
  return pali_list

 palingrams = find_palingrams()

palingrams.py

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

Finding Palingram Spells 29

sort palingrams on first word
palingrams_sorted = sorted(palingrams)

display list of palingrams
 print("\nNumber of palingrams = {}\n".format(len(palingrams_sorted)))

for first, second in palingrams_sorted:
 print("{} {}".format(first, second))

Listing 2-3: Finds and prints word-pair palingrams in loaded dictionary

After repeating the steps you used in the palindromes.py code to load a
dictionary file, define a function to find palingrams . Using a function
will allow you to isolate the code later and time how long it takes to process
all the words in the dictionary.

Immediately start a list called pali_list to hold all the palingrams the
program discovers. Next, start a for loop to evaluate the words in word_list.
For each word, find its length and assign its length to the variable end .
The word’s length determines the indexes the program uses to slice
through the word, looking for every possible reversed word-palindromic
sequence combination, as in Figure 2-3.

Next, negatively slice through the word and assign the results to the
variable rev_word . An alternative to word[::-1] is ''.join(reversed(word)),
which some consider more readable.

Since you are looking for word-pair palingrams, exclude single-letter
words . Then nest another for statement to loop through the letters in the
current word .

Now, run a conditional requiring the back end of the word to be pal-
indromic and the front end to be a reverse word in the word list (in other
words, a “real” word) . If a word passes the test, it is appended to the pal-
ingram list, immediately followed by the reversed word.

Based on Figure 2-3, you know you have to repeat the conditional, but
change the slicing direction and word order to reverse the output. In other
words, you must capture palindromic sequences at the start of the word
rather than at the end . Return the list of palingrams to complete the
function .

With the function defined, call it . Since the order in which diction-
ary words are added to the palingram list switches during the loop, the
palingrams won’t be in alphabetical order. So, sort the list so that the first
words in the word pair are in alphabetical order. Print the length of the
list , then print each word-pair on a separate line.

As written, palingrams.py will take about three minutes to run on a
dictionary file with about 60,000 words. In the next sections, we’ll investi-
gate the cause of this long runtime and see what we can do to fix it.

Palingram Profiling
Profiling is an analytical process that gathers statistics on a program’s
behavior—for example, the number and duration of function calls—as

30 Chapter 2

the program executes. Profiling is a key part of the optimization process.
It tells you exactly what parts of a program are taking the most time or
memory. That way, you’ll know where to focus your efforts to improve
performance.

Profiling with cProfile

A profile is a measurement output—a record of how long and how often
parts of a program are executed. The Python standard library provides a
handy profiling interface, cProfile, which is a C extension suitable for profil-
ing long-running programs.

Something in the find_palingrams() function probably accounts for the
relatively long runtime of the palingrams.py program. To confirm, let’s run
cProfile.

Copy the following code into a new file named cprofile_test.py and save
it in the same folder as palingrams.py and the dictionary file. This code
imports cProfile and the palingrams program, and it runs cProfile on the
find_palingrams() function—called with dot notation. Note again that you
don’t need to specify the .py extension.

import cProfile
import palingrams
cProfile.run('palingrams.find_palingrams()')

Run cprofile_test.py and, after it finishes (you will see the >>> in the inter-
preter window), you should see something similar to the following:

 62622 function calls in 199.452 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 199.451 199.451 <string>:1(<module>)
 1 199.433 199.433 199.451 199.451 palingrams.py:7(find_palingrams)
 1 0.000 0.000 199.452 199.452 {built-in method builtins.exec}
 60388 0.018 0.000 0.018 0.000 {built-in method builtins.len}
 2230 0.001 0.000 0.001 0.000 {method 'append' of 'list' objects}

All that looping, slicing, and searching took 199.452 seconds on my
machine, but of course your times may differ from mine. You also get addi-
tional information on some of the built-in functions, and since each palin-
gram called the built-in append() function, you can even see the number of
palingrams found (2,230).

N o t e 	 The most common way to run cProfile is directly in the interpreter. This lets you
dump your output to a text file and view it with a web viewer. For more information,
visit https://docs.python.org/3/library/profile.html.

Finding Palingram Spells 31

Profiling with time

Another way to time the program is to use time.time(), which returns an
epoch timestamp—the number of seconds since 12 am on January 1, 1970
UTC (the Unix epoch). Copy palingrams.py to a new file, save it as palingrams_
timed.py, and insert the following code at the very top:

import time
start_time = time.time()

Now go to the end of the file and add the following code:

end_time = time.time()
print("Runtime for this program was {} seconds.".format(end_time - start_time))

Save and run the file. You should get the following feedback at the bot-
tom of the interpreter window—give or take a few seconds:

Runtime for this program was 222.73954558372498 seconds.

The runtime is longer than before, as you are now evaluating the whole
program, including printing, rather than just the find_palingrams() function.

Unlike cProfile, time doesn’t provide detailed statistics, but like cProfile,
it can be run on individual code components. Edit the file you just ran,
moving the start and end time statements (as shown below in bold) so they
bracket our long-running find_palingrams() function. Leave the import and
print statements unchanged at the top and bottom of the file, respectively.

start_time = time.time()
palingrams = find_palingrams()
end_time = time.time()

Save and run the file. You should get the following feedback at the bot-
tom of the interpreter window:

Runtime for this program was 199.42786622047424 seconds.

This now matches the initial results using cProfile. You won’t get the
exact same time if you rerun the program or use a different timer, but don’t
get hung up on it. It’s the relative times that are important for guiding code
optimization.

Palingram Optimization
I’m sorry, but three minutes of my life is too long to wait for palingrams.
Armed with our profiling results, we know that the find_palingrams() function
accounts for most of the processing time. This probably has something to do
with reading and writing to lists, slicing over lists, or searching in lists. Using
an alternative data structure to lists—like tuples, sets, or dictionaries—might

32 Chapter 2

speed up the function. Sets, in particular, are significantly faster than lists
when using the in keyword. Sets use a hashtable for very fast lookups. With
hashing, strings of text are converted to unique numbers that are much
smaller than the referenced text and much more efficient to search. With a
list, on the other hand, you have to do a linear search through each item.

Think of it this way: if you’re searching your house for your lost cell
phone, you could emulate a list by looking through every room before find-
ing it (in the proverbial last place you look). But by emulating a set, you can
basically dial your cell number from another phone, listen for the ringtone,
and go straight to the proper room.

A downside to using sets is that the order of the items in the set isn’t
controllable and duplicate values aren’t allowed. With lists, the order is pre-
served and duplicates are allowed, but lookups take longer. Fortunately for
us, we don’t care about order or duplicates, so sets are the way to go!

Listing 2-4 is the find_palingrams() function from the original
palingrams.py program, edited to use a set of words rather than a list of
words. You can find it in a new program named palingrams_optimized.py,
which you can download from https://www.nostarch.com/impracticalpython/,
or just make these changes to your copy of palingrams_timed.py if you want
to check the new runtime yourself.

def find_palingrams():
 """Find dictionary palingrams."""
 pali_list = []

  words = set(word_list)
  for word in words:

 end = len(word)
 rev_word = word[::-1]
 if end > 1:
 for i in range(end):

  if word[i:] == rev_word[:end-i] and rev_word[end-i:] in words:
 pali_list.append((word, rev_word[end-i:]))

  if word[:i] == rev_word[end-i:] and rev_word[:end-i] in words:
 pali_list.append((rev_word[:end-i], word))
 return pali_list

Listing 2-4: The find_palingrams() function optimized with sets

Only four lines change. Define a new variable, words, which is a set of
word_list . Then loop through the set , looking for membership of word
slices in this set , rather than in a list as before.

Here’s the new runtime for the find_palingrams() function in palingrams​
_optimized.py:

Runtime for this program was 0.4858267307281494 seconds.

Wow! From over three minutes to under a second! That’s optimization!
And the difference is in the data structure. Verifying the membership of a
word in a list was the thing that was killing us.

palingrams​
_optimized.py

Finding Palingram Spells 33

Why did I first show you the “incorrect” way to do this? Because that’s
how things happen in the real world. You get the code to work, and then you
optimize it. This is a simple example that an experienced programmer would
have gotten right from the start, but it is emblematic of the overall concept of
optimization: get it to work as best as you can, then make it better.

dnE ehT
You’ve written code to find palindromes and palingrams, profiled code
using cProfile, and optimized code by using the appropriate data struc-
ture for the task. So how did we do with respect to Zatanna? Does she
have a fighting chance?

Here I’ve listed some of the more “aggressive” palingrams found in the
2of4brif dictionary file—everything from the unexpected sameness enemas to
the harsh torsos rot to my personal favorite as a geologist: eroded ore.

dump mud drowsy sword sameness enemas

legs gel denims mined lepers repel

sleet eels dairy raid slam mammals

eroded ore rise sir pots nonstop

strafe farts torsos rot swan gnaws

wolfs flow partner entrap nuts stun

slaps pals flack calf knobs bonk

Further Reading
Think Python, 2nd Edition (O’Reilly, 2015) by Allen Downey has a short and
lucid description of hashtables and why they are so efficient. It’s also an excel-
lent Python reference book.

Practice Project: Dictionary Cleanup
Data files available on the internet are not always “plug and play.” You may
find you need to massage the data a bit before applying it to your project.
As mentioned earlier, some online dictionary files include each letter of
the alphabet as a word. These will cause problems if you want to permit the
use of one-letter words in palingrams like acidic a. You could always remove
them by directly editing the dictionary text file, but this is tedious and for
losers. Instead, write a short script that removes these after the diction-
ary has been loaded into Python. To test that it works, edit your dictionary
file to include a few one-letter words like b and c. For a solution, see the
appendix, or find a copy (dictionary_cleanup_practice.py) online at https://
www.nostarch.com/impracticalpython/.

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

34 Chapter 2

Challenge Project: Recursive Approach
With Python, there is usually more than one way to skin a cat. Take a look at
the discussion and pseudocode at the Khan Academy website (https://www​
.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/
using-recursion-to-determine-whether-a-word-is-a-palindrome/). Then rewrite the
palindrome.py program so that it uses recursion to identify palindromes.

https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/using-recursion-to-determine-whether-a-word-is-a-palindrome
https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/using-recursion-to-determine-whether-a-word-is-a-palindrome
https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/using-recursion-to-determine-whether-a-word-is-a-palindrome

3
S o l v i n g A n a g r a m s

An anagram is a word formed by rearrang-
ing the letters of another word. For example,

Elvis yields the eerie trio evils, lives, and veils.
Does this mean Elvis still lives but veils his evil

existence? In the book Harry Potter and the Chamber of
Secrets, “I am Lord Voldemort” is an anagram of the
evil wizard’s real name, Tom Marvolo Riddle. “Lord
Earldom Vomit” is also an anagram of Tom Marvolo
Riddle, but author J.K. Rowling had the good sense to
pass on that one.

In this chapter, first you’ll find all the anagrams for a given word
or name. Then, you’ll write a program that lets a user interactively build
an anagram phrase from their own name. Finally, you’ll play computer
wizard and see what it takes to extract “I am Lord Voldemort” from
“Tom Marvolo Riddle.”

36 Chapter 3

Project #4: Finding Single-Word Anagrams
You’ll start by analyzing simple single-word anagrams and figuring out how
to identify them programmatically. Having accomplished this, you’ll be
ready to take on anagram phrases in the following section.

T he Objec t i v e

Use Python and a dictionary file to find all the single-word anagrams for a given English
word or single name. You can read instructions for finding and loading dictionary files at
the start of Chapter 2.

The Strategy and Pseudocode
More than 600 newspapers and 100 internet sites carry an anagram game
called Jumble. Created in 1954, it’s now the most recognized word-scramble
game in the world. Jumble can be really frustrating, but finding anagrams
is almost as easy as finding palindromes—you just need to know the com-
mon characteristic of all anagrams: they must have the same number of the
same letters.

Identifying an Anagram

Python doesn’t contain a built-in anagram operator, but you can easily
write one. For the projects in this chapter, you’ll load the dictionary file
from Chapter 2 as a list of strings. So the program needs to verify that
two strings are anagrams of each other.

Let’s look at an example. Pots is an anagram of stop, and you can verify
that stop and pots have the same number of letters with the len() function.
But there’s no way for Python to know whether two strings have the same
number of any single character—at least not without converting the strings
to another data structure or using a counting function. So, instead of look-
ing at these two words simply as strings, you can represent them as two lists
containing single-character strings. Create these lists in a shell, like IDLE,
and name them word and anagram, as I’ve done here:

>>> word = list('stop')
>>> word
['s', 't', 'o', 'p']
>>> anagram = list('pots')
>>> anagram
['p', 'o', 't', 's']

These two lists match our description of an anagram pair; that is, they
contain the same number of the same letters. But if you try to equate them
with the comparison operator ==, the result is False.

Solving Anagrams 37

>>> anagram == word
False

The problem is that the operator (==) considers two lists equivalent
only if they have the same number of the same list items and those items
occur in the same order. You can easily solve this problem with the built-
in function sorted(), which can take a list as an argument and reorder its
contents alphabetically. So, if you call sorted() twice—once for each of the
lists—and then compare the sorted lists, they will be equivalent. In other
words, == returns True.

>>> word = sorted(word)
>>> word
['o', 'p', 's', 't']
>>> anagram = sorted(anagram)
>>> anagram
['o', 'p', 's', 't']
>>> anagram == word
True

You can also pass a string to sorted() to create a sorted list like the ones
in the preceding code snippet. This will be useful for converting the words
from the dictionary file into sorted lists of single-character strings.

Now that you know how to verify that you’ve found an anagram, let’s
design the script in its entirety—from loading a dictionary and prompt-
ing the user for a word (or name) to searching for and printing all the
anagrams.

Using Pseudocode

Remember that planning with pseudocode will help you spot potential
issues and spotting those issues early will save you time. The following
pseudocode should help you better understand the script we’ll write in the
next section, anagrams.py.

Load digital dictionary file as a list of words
Accept a word from user
Create an empty list to hold anagrams
Sort the user-word
Loop through each word in the word list:
 Sort the word
 if word sorted is equal to user-word sorted:
 Append word to anagrams list
Print anagrams list

The script will start by loading words from a dictionary file into a list as
strings. Before you loop through the dictionary in search of anagrams, you
need to know which word you want anagrams of, and you need a place to
store anagrams when you find them. So, first ask the user to input a word

38 Chapter 3

and then create an empty list to store the anagrams. Once the program
has looped through every word in the dictionary, it will print that list of
anagrams.

Anagram-Finder Code
Listing 3-1 loads a dictionary file, accepts a word or name specified within
the program, and finds all the anagrams in the dictionary file for that word
or name. You’ll also need the dictionary-loading code from Chapter 2.
You can download these from https://www.nostarch.com/impracticalpython/
as anagrams.py and load_dictionary.py, respectively. Keep both files in the
same folder. You can use the same dictionary file you used in Chapter 2
or download another one (see Table 2-1 on page 20 for suggestions).

 import load_dictionary

 word_list = load_dictionary.load('2of4brif.txt')

 anagram_list = []

input a SINGLE word or SINGLE name below to find its anagram(s):
 name = 'Foster'

print("Input name = {}".format (name))
 name = name.lower()

print("Using name = {}".format(name))

sort name & find anagrams
 name_sorted = sorted(name)
 for word in word_list:

 word = word.lower()
 if word != name:
 if sorted(word) == name_sorted:
 anagram_list.append(word)

print out list of anagrams
print()

 if len(anagram_list) == 0:
 print("You need a larger dictionary or a new name!")
else:

  print("Anagrams =", *anagram_list, sep='\n')

Listing 3-1: Given a word (or name) and a dictionary file, this program searches for and
prints a list of anagrams.

You start by importing the load_dictionary module you created in
Chapter 2 . This module will open a dictionary text file and, with its
load() function, load all the words into a list . The *.txt file you use may
be different, depending on which dictionary file you downloaded (see
“Finding and Opening a Dictionary” on page 20).

Next, create an empty list, called anagram_list, to hold any anagrams
you find . Have the user add a single word, such as their first name . This

anagrams.py

Solving Anagrams 39

doesn’t have to be a proper name, but we’ll refer to it as name in the code
to distinguish it from a dictionary word. Print this name so the user can see
what was entered.

The next line anticipates a problematic user action. People tend to
type their name with an uppercase first letter, but dictionary files may not
include uppercase letters, and that matters to Python. So, first convert all
letters to lowercase with the .lower() string method .

Now sort the name . As mentioned previously, you can pass sorted() a
string as well as a list.

With the input sorted alphabetically in a list, it’s time to find anagrams.
Start a loop through each word in the dictionary word list . To be safe, con-
vert the word to lowercase, as comparison operations are case-sensitive. After
the conversion, compare the word to the unsorted name, because a word
can’t be an anagram of itself. Next, sort the dictionary word and compare it
to the sorted name. If it passes, append that dictionary word to anagram_list.

Now display the results. First, check whether the anagram list is empty.
If it is, print a whimsical reply so you don’t just leave the user hanging . If
the program found at least one anagram, print the list using the splat (*)
operator. Remember from Chapter 2 that splat lets you print each member
of a list on a separate line .

The following is example output for this program, using the input
name Foster:

Input name = Foster
Using name = foster

Anagrams =
forest
fortes
softer

If you’d like to use another input, change the value of the name variable
in the source code. As an exercise, try to adjust the code so that the user
is prompted to input the name (or word); you can do this with the input()
function.

Project #5: Finding Phrase Anagrams
In the previous project, you took a single name or word and rearranged all
the letters to find single-word anagrams. Now you will derive multiple words
from a name. The words in these phrase anagrams form only part of the input
name, and you will need several words to exhaust the available letters.

T HE OBJEC T I V E

Write a Python program that lets a user interactively build an anagram phrase from the
letters in their name.

40 Chapter 3

The Strategy and Pseudocode
The very best phrase anagrams are those that describe some well-known
characteristic or action associated with the name bearer. For example, the
letters in Clint Eastwood can be rearranged to form old west action, Alec
Guinness yields genuine class, Madam Curie produces radium came, George
Bush gives he bugs Gore, and Statue of Liberty contains built to stay free. My
own name yields a huge navel, which is not really one of my characteristics.

At this point, you may see a strategic challenge ahead: how does a com-
puter handle contextual content? The folks at IBM who invented Watson
seem to know, but for the rest of us, that boulder is a little hard to lift.

The brute-force method is a common approach used in online anagram
generators. These algorithms take a name and return lots of random ana-
gram phrases (generally, 100s to 10,000+). Most of the returned phrases
are nonsense, and scrolling through hundreds of these can be a chore.

An alternative approach is to acknowledge that humans are best at
contextual issues and write a program that helps the human work through
the problem. The computer can take the initial name and provide words
that can be made from some (or all) the letters in it; the user can then
choose a word that “makes sense.” The program will then recalculate the
word choices from the remaining letters in the name, repeating the pro-
cess until every letter is used or the possible word choices are exhausted.
This design plays to the strengths of both participants.

You’ll need a simple interface that prompts the user to input the initial
name, displays potential word choices, and displays any remaining letters.
The program will also need to keep track of the growing anagram phrase
and let the user know when every letter has been used. There will likely be
lots of failed attempts, so the interface should allow the user to restart the
process at any time.

Since anagrams have the same number of the same letters, another way
to identify them is to count individual letters. If you think of your name as
a collection of letters, then a word can be built from your name if (1) all
its letters occur in your name and (2) they occur at the same frequency or less.
Obviously, if e occurs three times in a word and twice in your name, the
word can’t be derived from your name. So, if the collection of letters that
make up a word is not a subset of the collection of letters in your name,
then that word cannot be part of your name anagram.

Using Counter to Tally Letters

Fortunately for us, Python ships with a module named collections that
includes several container data types. One of these types, Counter, counts the
occurrences of an item. Python stores the items as dictionary keys and the
counts as dictionary values. For example, the following code snippet counts
how many of each bonsai tree type is in a list.

>>> from collections import Counter
u >>> my_bonsai_trees = ['maple', 'oak', 'elm', 'maple', 'elm', 'elm', 'elm', 'elm']
 >>> count = Counter(my_bonsai_trees)

Solving Anagrams 41

>>> print(count)
 Counter({'elm': 5, 'maple': 2, 'oak': 1})

The my_bonsai_trees list contains multiples of the same type of tree .
Counter tallies up the trees  and creates an easy-to-reference dictionary .
Note that the print() function is optional and is used here for clarity.
Entering count, alone, will also display the dictionary contents.

You can use Counter, instead of the sorted() method, to find single-word
anagrams. Rather than two sorted lists, the output will be two dictionaries,
which can also be directly compared with ==. Here’s an example:

>>> name = 'foster'
>>> word = 'forest'
>>> name_count = Counter(name)
>>> print(name_count)

 Counter({'f': 1, 't': 1, 'e': 1, 'o': 1, 'r': 1, 's': 1})
>>> word_count = Counter(word)
>>> print(word_count)

 Counter({'f': 1, 't': 1, 'o': 1, 'e': 1, 'r': 1, 's': 1})

Counter produces a dictionary for each word that maps each letter in the
word to the number of times it occurs . The dictionaries are unsorted,
but despite the lack of sorting, Python correctly identifies each dictionary
as being equal if the dictionaries contain the same letters and the same
counts:

>>> if word_count == name_count:
 print("It's a match!")

It's a match!

A Counter gives you a wonderful way to find words that “fit” in a name. If
the count for each letter in a word is less than or equal to the count for the
same letter in the name, then the word can be derived from the name!

The Pseudocode

We’ve now made two important design decisions: (1) let the user interactively
build their anagram one word at a time and (2) use the Counter method to
find anagrams. This is enough to start thinking about high-level pseudocode:

Load a dictionary file
Accept a name from user
Set limit = length of name
Start empty list to hold anagram phrase
While length of phrase < limit:
 Generate list of dictionary words that fit in name
 Present words to user
 Present remaining letters to user
 Present current phrase to user
 Ask user to input word or start over

42 Chapter 3

 If user input can be made from remaining letters:
 Accept choice of new word or words from user
 Remove letters in choice from letters in name
 Return choice and remaining letters in name
 If choice is not a valid selection:
 Ask user for new choice or let user start over
 Add choice to phrase and show to user
 Generate new list of words and repeat process
When phrase length equals limit value:
 Display final phrase
 Ask user to start over or to exit

Divvying Up the Work

As procedural code becomes more complex, it becomes necessary to encap-
sulate much of it in functions. This makes it easier to manage input and
output, perform recursion, and read the code.

A main function is where a program starts its execution, and enables
high-level organization, such as managing all the bits and pieces of the
code, including dealing with the user. In the phrase anagram program,
the main function will wrap all the “worker bee” functions, take most of the
user input, keep track of the growing anagram phrase, determine when the
phrase is complete, and show the user the result.

Sketching out the tasks and their flow with pencil and paper is a great
way to figure out what you want to do and where (like “graphical pseudo-
code”). Figure 3-1 is a flowchart with function assignments highlighted. In
this case, three functions should be sufficient: main(), find_anagrams(), and
process_choice().

The main() function’s primary task is to set the letter count limit
and manage the while loop responsible for the general phrase anagram
build. The find_anagrams() function will take the current collection of let-
ters remaining in a name and return all possible words that can be made
from those letters. The words are then displayed for the user, along with
the current phrase, which is “owned” and displayed by the main() func-
tion. Then, the process_choice() function prompts the user to start over
or choose a word for the anagram phrase. If the user makes a choice, this
function determines whether the letters in the choice are available. If they
aren’t, the user is prompted to choose again or start over. If the user makes
a valid choice, the letters in the user’s choice are removed from the list of
remaining letters, and both the choice and list of leftovers are returned.
The main() function adds the returned choice to the existing phrase. If the
limit is reached, the completed phrase anagram is displayed, and the user
is asked to start over or exit.

Note that you ask for the initial name in the global scope, rather than
in the main() function. This allows the user to start over fresh at any time
without having to re-enter their name. For now, if the user wants to choose
a brand-new name, they’ll have to exit the program and start over. In
Chapter 9, you’ll use a menu system that lets users completely reset what
they’re doing without exiting.

Solving Anagrams 43

Load
dictionary

Get
name

Phrase length = 0
Name length = n

While
phrase < Limit

Process
choice

Valid
choice?ChoiceName − Choice

False

True

Try again

Start over? Exit

Display
final phrase

False

True

Global

Main function

Get anagrams function

Process choice function

Find all
words in

name

Display
phrase

Display
words

Limit = n

True False

Phrase + Choice

Get
choice

Exit

Figure 3-1: Flowchart for finding phrase anagrams with function assignments highlighted

The Anagram Phrase Code
The code in this section takes a name from a user and helps them build
an anagram phrase of that name. You can download the entire script from
https://www.nostarch.com/impracticalpython/ as phrase_anagrams.py. You’ll also
need to download the load_dictionary.py program. Save both files in the
same folder. You can use the same dictionary file you used in “Project #4:
Finding Single-Word Anagrams” on page 36.

44 Chapter 3

Setting Up and Finding Anagrams

Listing 3-2 imports the modules that phrase_anagrams.py uses, loads a dic-
tionary file, asks the user for an input name, and defines the find_anagrams()
function, which does most of the work related to finding anagrams.

 import sys
from collections import Counter
import load_dictionary

 dict_file = load_dictionary.load('2of4brif.txt')
ensure "a" & "I" (both lowercase) are included
dict_file.append('a')
dict_file.append('i')
dict_file = sorted(dict_file)

 ini_name = input("Enter a name: ")

 def find_anagrams(name, word_list):
 """Read name & dictionary file & display all anagrams IN name."""

  name_letter_map = Counter(name)
 anagrams = []

  for word in word_list:
  test = ''
  word_letter_map = Counter(word.lower())
  for letter in word:

 if word_letter_map[letter] <= name_letter_map[letter]:
 test += letter
 if Counter(test) == word_letter_map:
 anagrams.append(word)

  print(*anagrams, sep='\n')
 print()
 print("Remaining letters = {}".format(name))
 print("Number of remaining letters = {}".format(len(name)))
 print("Number of remaining (real word) anagrams = {}".format(len(anagrams)))

Listing 3-2: Imports modules, loads dictionary, and defines the find_anagrams() function

Start with the import statements , using the recommended order of
Python Standard Library, third-party modules, and then locally developed
modules. You need sys for coloring specific outputs red in the IDLE window
and for letting the user exit the program with a keystroke. You’ll use Counter
to help identify anagrams of the input name.

Next load the dictionary file using the imported module . The file-
name argument should be the filename of the dictionary you’re using.
Because some dictionary files omit a and I, append these (if needed), and
sort the list so that they can be found at the proper alphabetical locations,
rather than at the end of the list.

Now get a name from the user and assign it to the variable ini_name (or
“initial name”) . You’ll derive a name variable from this initial name, and

phrase
_anagrams.py,
part 1

Solving Anagrams 45

name will be progressively changed as the user builds up the name anagram.
Preserving the initial name as a separate variable will let you reset every-
thing if the user wants to start over or try again.

The next block of code is find_anagrams() , the function for finding
anagrams in the name. The parameters for this function consist of a name
and a word list. The function starts by using Counter to count the number of
times a given letter appears in the name and then assigns the count to the
variable name_letter_map ; Counter uses a dictionary structure with the letter
as the key and the count as the value. The function then creates an empty
list to hold the anagrams and starts a for loop through each word in the
dictionary file .

The for loop starts by creating an empty string called test . Use this
variable to accumulate all the letters in the word that “fit” in name. Then
make a Counter for the current word, as you did for name, and call it word_​
letter_map . Loop through the letters in word , checking that the count
of each letter is the same as, or less than, the count in name. If the letter
meets this condition, then it is added to the test string. Since some letters
might get rejected, end the loop by running Counter on test and comparing
it to word_letter_map. If they match, append the word to the anagrams list.

The function ends by displaying the list of words, using the splat
operator with print, along with some statistics for the user . Note that
find_anagrams() doesn’t return anything. This is where the human inter
action part comes in. The program will continue to run, but nothing will
happen until the user chooses a word from the displayed list.

Processing the User’s Choice

Listing 3-3 defines process_choice(), the function in phrase_anagrams.py that
takes the user’s choice of word (or words), checks it against the remaining
letters in the name variable, and returns acceptable choices—along with any
leftover letters—to the main() function. Like main(), this function gets to talk
directly to the user.

 def process_choice(name):
 """Check user choice for validity, return choice & leftover letters."""
 while True:

  choice = input('\nMake a choice else Enter to start over or # to end: ')
 if choice == '':
 main()
 elif choice == '#':
 sys.exit()
 else:

  candidate = ''.join(choice.lower().split())
  left_over_list = list(name)
  for letter in candidate:

 if letter in left_over_list:
 left_over_list.remove(letter)

  if len(name) - len(left_over_list) == len(candidate):
 break

phrase
_anagrams.py,
part 2

46 Chapter 3

 else:
 print("Won't work! Make another choice!", file=sys.stderr)

  name = ''.join(left_over_list) # makes display more readable
  return choice, name

Listing 3-3: Defines the process_choice() function

Start by defining the function with one parameter called name .
The first time the program is run, this parameter will be the same as the
ini_name variable—the full name entered by the user when the program
starts up. After the user has chosen a word (or words) to use in the ana-
gram phrase, it will represent the remaining letters in the name.

Start the function with a while loop that will run until the user makes
a valid choice and then get input from the user . The user has a choice of
entering one or more words from the current anagram list, pressing enter
to start over, or pressing # to quit. Use #, rather than a word or letter, so
that it can’t be confused for a valid choice.

If the user makes a choice, the string is assigned to the variable candidate,
stripped of whitespace, and converted to all lowercase . This is so it can be
directly compared to the name variable. After that, a list is built from the name
variable to hold any remaining letters .

Now begin a loop to subtract the letters used in candidate . If a chosen
letter is present in the list, it’s removed.

If the user entered a word that isn’t in the displayed list, or entered mul-
tiple words, a letter may not be present in the list. To check for this, subtract
the leftover letters from name and, if the result is the number of letters in
candidate, determine that the input is valid and break out of the while loop .
Otherwise, display a warning and color it red for those using the IDLE win-
dow. The while loop will keep prompting the user until an acceptable choice
is made.

If all the letters in the user’s choice pass the test, the list of leftovers
is converted back into a string and used to update the name variable .
Converting the list into a string isn’t strictly necessary, but it keeps the
name variable type consistent and lets you display the remaining letters in
a clearly readable format without the need for additional print arguments.

Finish by returning both the user’s choice and the string of remaining
letters (name) to the main() function .

Defining the main() Function

Listing 3-4 defines the main() function in phrase_anagrams.py. This function
wraps the previous functions, runs a while loop, and determines when the
user has successfully created an anagram phrase.

def main():
 """Help user build anagram phrase from their name."""

  name = ''.join(ini_name.lower().split())
 name = name.replace('-', '')

phrase
_anagrams.py,
part 3

Solving Anagrams 47

  limit = len(name)
 phrase = ''
 running = True

  while running:
  temp_phrase = phrase.replace(' ', '')
  if len(temp_phrase) < limit:

 print("Length of anagram phrase = {}".format(len(temp_phrase)))

  find_anagrams(name, dict_file)
 print("Current anagram phrase =", end=" ")
 print(phrase, file=sys.stderr)

  choice, name = process_choice(name)
 phrase += choice + ' '

  elif len(temp_phrase) == limit:
 print("\n*****FINISHED!!!*****\n")
 print("Anagram of name =", end=" ")
 print(phrase, file=sys.stderr)
 print()

  try_again = input('\n\nTry again? (Press Enter else "n" to quit)\n ')
 if try_again.lower() == "n":
 running = False
 sys.exit()
 else:
 main()

 if __name__ == '__main__':
 main()

Listing 3-4: Defines and calls main() function

The first order of business is to turn the ini_name variable into a contin-
uous string of lowercase characters with no whitespace . Remember, case
matters to Python, so convert all strings to lowercase wherever they occur;
that way, comparisons will work as intended. Python also recognizes spaces
as characters, so you need to remove these, as well as hyphens in hyphen-
ated names, before doing any letter counts. By declaring this new name vari-
able, you preserve the initial name in case the user wants to start over. Only
name will be altered in the process_choice() function.

Next, get the length of the name  to use as a limit in the while loop.
This will let you know when the anagram phrase has used all the letters in
the name and it’s time to end the loop. Do this outside the while loop to
ensure you are using the full initial name. Then assign a variable to hold the
anagram phrase and set a running variable to True to control the while loop.

Now begins the big loop that lets you iterate over the name and build
an anagram phrase . First, prepare a string to hold the growing phrase
and strip it of whitespace . Spaces will count as letters and throw off the
operator when the length of the phrase is compared to the limit variable.

48 Chapter 3

Next, make the comparison, and if the length of the phrase is less than the
limit, display the current length of the phrase as a prelude to engaging with
the user .

It’s time to put the other functions to work. Call find_anagrams()  and
pass it the name and dictionary file to get the list of anagrams in the name.
At the bottom of the displayed list, show the user the current phrase. Use
the print() function’s end parameter to display two print statements on the
same line. This way, you can use a red font on the phrase in the IDLE win-
dow to distinguish it from all the other information in the display.

Next, call the process_choice() function  to get the user’s word choice
and add it to the growing anagram phrase. This also gets the updated ver-
sion of the name variable so that the program can use it again in the while
loop in the event that the phrase isn’t complete.

If the length of the phrase is equal to the limit variable , the name
anagram is complete. Let the user know they’re finished and present
the phrase using red font. Note that you don’t have a conditional for the
length of the phrase being greater than the limit variable. That’s because
the process_choice() function is already handling this outcome (choosing
more letters than are available would not pass the validation criterion).

The main() function ends by asking the user whether they want to try
again. If they type n, the program ends; if they press enter, the main()
function is called again . As stated earlier, the only way for the user to
change the initial name is to exit and relaunch the program.

Outside of the main() function, end with the standard two lines for call-
ing the main() function when the program is not imported as a module .

Running an Example Session

In this section, I’ve included an example interactive session, using phrase_
anagrams.py and the name Bill Bo. Bold font indicates user input, and italic
bold font indicates where red font is used in the display.

Enter a name: Bill Bo
Length of anagram phrase = 0
bib
bill
blob
bob
boil
boll
i
ill
lib
lilo
lo
lob
oi
oil

Solving Anagrams 49

Remaining letters = billbo
Number of remaining letters = 6
Number of remaining (real word) anagrams = 14
Current anagram phrase =

Make a choice else Enter to start over or # to end: ill
Length of anagram phrase = 3
bob

Remaining letters = bbo
Number of remaining letters = 3
Number of remaining (real word) anagrams = 1
Current anagram phrase = ill

Make a choice else Enter to start over or # to end: Bob

***** FINISHED!!! *****

Anagram of name = ill Bob

Try again? (Press Enter else "n" to quit)

The number of anagrams found depends on the dictionary file you use.
If you’re having a hard time building anagram phrases, try using a larger
dictionary.

Project #6: Finding Voldemort: The Gallic Gambit
Did you ever wonder how Tom Riddle came up with the anagram “I am
Lord Voldemort”? Did he put quill to parchment or just wave a wand?
Could the magic of Python have helped?

Let’s pretend for a moment that you’re the professor of computer wiz-
ardry at Hogwarts, and Tom Riddle, school prefect and model student, has
come to you for help. Using your phrase_anagrams.py spell from the previous
section, he could find I am Lord in the very first list of anagrams, much to
his delight. But the remaining letters, tmvoordle, yield only trivial words like
dolt, drool, looter, and lover. Riddle would not be pleased.

In hindsight, the problem is apparent: Voldemort is French and won’t be
found in any English dictionary file. Vol de la mort means “flight of death”
in French, so Voldemort is loosely “death flight.” But Riddle is 100 percent
English, and so far, you have been working with English. Without reverse engi-
neering, you have no more reason to suddenly switch out your English diction-
ary for a French one than you have to use Dutch, German, Italian, or Spanish.

You could try randomly shuffling the remaining letters and seeing
what falls out. Unfortunately, the number of possible combinations is the
factorial of the number of letters divided by the factorial of the number of
repeats (o occurs twice): 9! / 2! = 181,440. If you were to scroll through all

50 Chapter 3

those permutations, taking only one second to review each, it would take
you over two days to complete the list! And if you asked Tom Riddle to do
this, he would probably use you to make a horcrux!

At this point, I would like to explore two logical paths ahead. One I
call the “Gallic Gambit” and the other the “British Brute-Force.” We’ll look
at the first one here and the second one in the next section.

N o t e 	 Marvolo is clearly a fabricated word used to make the Voldemort anagram work.
J.K. Rowling could have gained additional latitude by using Thomas for Tom or by
leaving off the Lord or I am parts. Tricks like these are used when the book is trans-
lated into non-English languages. In some languages, one or both names may need to
be changed. In French, the anagram is “I am Voldemort.” In Norwegian, “Voldemort
the Great.” In Dutch, “My name is Voldemort.” In others, like Chinese, the anagram
can’t be used at all!

Tom Riddle was obsessed with beating death, and if you go looking for
death in tmvoordle, you will find both the old French morte (as in the famous
book Le Morte d’Arthur by Sir Thomas Malory) and the modern French mort.
Removing mort leaves vodle, five letters with a very manageable number of per-
mutations. In fact, you can easily find volde right in the interpreter window:

u >>> from itertools import permutations
>>> name = 'vodle'

v >>> perms = [''.join(i) for i in permutations(name)]
w >>> print(len(perms))

120
x >>> print(perms)

['vodle', 'vodel', 'volde', 'voled', 'voedl', 'voeld', 'vdole', 'vdoel',
'vdloe', 'vdleo', 'vdeol', 'vdelo', 'vlode', 'vloed', 'vldoe', 'vldeo',
'vleod', 'vledo', 'veodl', 'veold', 'vedol', 'vedlo', 'velod', 'veldo',
'ovdle', 'ovdel', 'ovlde', 'ovled', 'ovedl', 'oveld', 'odvle', 'odvel',
'odlve', 'odlev', 'odevl', 'odelv', 'olvde', 'olved', 'oldve', 'oldev',
'olevd', 'oledv', 'oevdl', 'oevld', 'oedvl', 'oedlv', 'oelvd', 'oeldv',
'dvole', 'dvoel', 'dvloe', 'dvleo', 'dveol', 'dvelo', 'dovle', 'dovel',
'dolve', 'dolev', 'doevl', 'doelv', 'dlvoe', 'dlveo', 'dlove', 'dloev',
'dlevo', 'dleov', 'devol', 'devlo', 'deovl', 'deolv', 'delvo', 'delov',
'lvode', 'lvoed', 'lvdoe', 'lvdeo', 'lveod', 'lvedo', 'lovde', 'loved',
'lodve', 'lodev', 'loevd', 'loedv', 'ldvoe', 'ldveo', 'ldove', 'ldoev',
'ldevo', 'ldeov', 'levod', 'levdo', 'leovd', 'leodv', 'ledvo', 'ledov',
'evodl', 'evold', 'evdol', 'evdlo', 'evlod', 'evldo', 'eovdl', 'eovld',
'eodvl', 'eodlv', 'eolvd', 'eoldv', 'edvol', 'edvlo', 'edovl', 'edolv',
'edlvo', 'edlov', 'elvod', 'elvdo', 'elovd', 'elodv', 'eldvo', 'eldov']
>>>

y >>> print(*perms, sep='\n')
vodle
vodel
volde
voled
voedl
--snip--

Solving Anagrams 51

Start by importing permutations from itertools . The itertools module
is a group of functions in the Python Standard Library that create iterators
for efficient looping. You generally think of permutations of numbers, but
the itertools version works on elements in an iterable, which includes letters.

After entering the name or, in this case, the remaining letters in the
name, use list comprehension to create a list of permutations of the name .
Join each element in a permutation so each item in the final list will be a
unique permutation of vodle. Using join yields the new name as an element,
'vodle', versus a hard-to-read tuple of single-character elements,('v', 'o',
'd', 'l', 'e').

Get the length of the permutations as a check; that way, you can con-
firm that it is, indeed, the factorial of 5 . At the end, no matter how you
print it , volde is easy to find.

Project #7: Finding Voldemort: The British Brute-Force
Now let’s assume Tom Riddle is bad at anagrams (or French). He doesn’t
recognize mort or morte, and you’re back to shuffling the remaining nine let-
ters thousands and thousands of times, looking for a combination of letters
that he would find pleasing.

On the bright side, this is a more interesting problem programmatically
than the interactive solution you just saw. You just need to whittle down all
the permutations using some form of filtering.

T he Objec t i v e

Reduce the number of anagrams of tmvoordle to a manageable number that will still con-
tain Voldemort.

Strategy
Per the Oxford English Dictionary, 2nd Edition, there are 171,476 English
words currently in use, which is fewer than the total number of permuta-
tions in tmvoordle! Regardless of the language, you can surmise that most of
the anagrams generated by the permutations() function are nonsense.

With cryptography, the science of codes and ciphers, you can safely elimi-
nate many useless, unpronounceable combinations, such as ldtmvroeo, and
you won’t even have to inspect them visually. Cryptographers have long
studied languages and compiled statistics on recurring patterns of words
and letters. We can use many cryptanalytical techniques for this project,
but let’s focus on three: consonant-vowel mapping, trigram frequency, and
digram frequency.

52 Chapter 3

Filtering with Consonant-Vowel Mapping

A consonant-vowel map (c-v map) simply replaces the letters in a word with a
c or a v, as appropriate. Riddle, for example, becomes cvcccv. You can write
a program that goes through a dictionary file and creates c-v maps for each
word. By default, impossible combinations, like ccccccvvv, will be excluded.
You can further exclude membership by removing words with c-v maps that
are possible but that have a low frequency of occurrence.

C-v maps are fairly inclusive, but that’s good. An option for Riddle at
this point is to make up a new proper name, and proper names don’t have
to be words that occur in a dictionary. So you don’t want to be too exclusive
early in the process.

Filtering with Trigrams

Since the initial filter needs a relatively wide aperture, you’ll need to filter
again at a lower level to safely remove more anagrams from the permuta-
tions. Trigrams are triplets comprising three consecutive letters. It should
come as no surprise that the most common trigram in English is the word
the, followed closely by and and ing. At the other end of the scale are tri-
grams like zvq.

You can find statistics on the frequency of occurrence of trigrams online
at sites like http://norvig.com/ngrams/count_3l.txt. For any group of letters,
like tmvoordle, you can generate and use a list of the least common trigrams
to further reduce the number of permutations. For this project, you can use
the least-likely_trigrams.txt file, downloadable from https://www.nostarch.com/
impracticalpython/. This text file contains the trigrams in tmvoordle that occur
in the bottom 10 percent of trigrams in the English language, based on fre-
quency of occurrence.

Filtering with Digrams

Digrams (also called bigrams) are letter pairs. Commonly occurring digrams
in English include an, st, and er. On the other hand, you rarely see pairs
like kg, vl, or oq. You can find statistics on the frequency of occurrence of
digrams at websites such as https://www.math.cornell.edu/~mec/2003-2004/
cryptography/subs/digraphs.html and http://practicalcryptography.com/.

Table 3-1 was built from the tmvoordle collection of letters and a 60,000-
word English dictionary file. The letters along the left side of the chart are
the starting letters for the digrams; those along the top represent the end
letter. For example, to find vo, start with the v on the left and read across
to the column beneath the o. For the digrams found in tmvoordle, vo occurs
only 0.8 percent of the time.

http://norvig.com/ngrams/count_3l.txt
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/
https://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/digraphs.html
https://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/digraphs.html
http://practicalcryptography.com/

Solving Anagrams 53

Table 3-1: Relative Frequency of Digrams from the Letters tmvoordle in a
60,000-Word Dictionary (Black Squares Indicate No Occurrences)

d e l m o r t v

d 3.5% 0.5% 0.1% 1.7% 0.5% 0.0% 0.1%

e 6.6% 2.3% 1.4% 0.7% 8.9% 2.0% 0.6%

l 0.4% 4.4% 0.1% 4.2% 0.0% 0.4% 0.1%

m 0.0% 2.2% 0.0% 2.8% 0.0% 0.0% 0.0%

o 1.5% 0.5% 3.7% 3.2% 5.3% 7.1% 2.4% 1.4%

r 0.9% 6.0% 0.4% 0.7% 5.7% 1.3% 0.3%

t 0.0% 6.2% 0.6% 0.1% 3.6% 2.3% 0.0%

v 0.0% 2.5% 0.0% 0.0% 0.8% 0.0% 0.0%

Assuming you’re looking for “English-like” letter combinations, you
can use frequency maps like this to exclude letter pairs that are unlikely
to occur. Think of it as a “digram sieve” that lets only the unshaded
squares pass.

To be safe, just exclude digrams that occur less than 0.1 percent of the
time. I’ve shaded these in black. Notice that it would be very easy to elimi-
nate the required vo pairing in Voldemort, if you cut too close to the bone!

You can design your filter to be even more selective by tagging digrams
that are unlikely to occur at the start of a word. For example, while it’s not
unusual for the digram lm to occur within a word (as in almanac and balmy),
you’ll need a lot of luck finding a word that starts with lm. You don’t need
cryptography to find these digrams; just try to pronounce them! Some
starting-point choices for these are shaded gray in Table 3-2.

Table 3-2: Update of Table 3-1, Where Gray-Shaded Squares Indicate Digrams
Unlikely to Occur at the Start of a Word

d e l m o r t v

d 3.5% 0.5% 0.1% 1.7% 0.5% 0.0% 0.1%

e 6.6% 2.3% 1.4% 0.7% 8.9% 2.0% 0.6%

l 0.4% 4.4% 0.1% 4.2% 0.0% 0.4% 0.1%

m 0.0% 2.2% 0.0% 2.8% 0.0% 0.0% 0.0%

o 1.5% 0.5% 3.7% 3.2% 5.3% 7.1% 2.4% 1.4%

r 0.9% 6.0% 0.4% 0.7% 5.7% 1.3% 0.3%

t 0.0% 6.2% 0.6% 0.1% 3.6% 2.3% 0.0%

v 0.0% 2.5% 0.0% 0.0% 0.8% 0.0% 0.0%

54 Chapter 3

You now have three filters you can use on the 181,440 permutations of
tmvoordle : c-v maps, trigrams, and digrams. As a final filter, you should give
the user the option of viewing only anagrams that start with a given letter.
This will let the user divide the remaining anagrams into more manageable
“chunks,” or focus on the more intimidating-sounding anagrams, like those
that begin with v!

The British Brute-Force Code
The upcoming code generates permutations of tmvoordle and passes them
through the filters just described. It then gives the user the option to view
either all the permutations or only those starting with a given letter.

You can download all the programs you’ll need from https://www​.no
starch.com/impracticalpython/. The code in this section is one script named
voldemort_british.py. You’ll also need the load_dictionary.py program in the
same folder, along with the same dictionary file you used for the projects
earlier in this chapter. Finally, you’ll need a new file named least-likely​
_trigrams.txt, a text file of trigrams with a low frequency of occurrence in
English. Download all these files into the same folder.

Defining the main() Function

Listing 3-5 imports the modules that voldemort_british.py needs and defines
its main() function. In the phrase_anagrams.py program, you defined the
main() function at the end of the code. Here we put it at the start. The
advantage is that you can see what the function is doing—how it’s running
the program—from the start. The disadvantage is that you don’t know what
any of the helper functions do yet.

 import sys
from itertools import permutations
from collections import Counter
import load_dictionary

 def main():
 """Load files, run filters, allow user to view anagrams by 1st letter."""

  name = 'tmvoordle'
 name = name.lower()

  word_list_ini = load_dictionary.load('2of4brif.txt')
 trigrams_filtered = load_dictionary.load('least-likely_trigrams.txt')

  word_list = prep_words(name, word_list_ini)
 filtered_cv_map = cv_map_words(word_list)
 filter_1 = cv_map_filter(name, filtered_cv_map)
 filter_2 = trigram_filter(filter_1, trigrams_filtered)
 filter_3 = letter_pair_filter(filter_2)
 view_by_letter(name, filter_3)

Listing 3-5: Imports modules and defines the main() function

voldemort
_british.py,
part 1

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

Solving Anagrams 55

Start by importing modules you’ve used in the previous projects .
Now define the main() function . The name variable is a string of the
remaining letters tmvoordle . Set it to lowercase to guard against a user
input error. Next, use the load_dictionary module to load your dictionary
file and the trigrams file as lists . Your dictionary filename may be differ-
ent from that shown.

Finally, call all the various functions in order . I’ll describe each of
these functions momentarily, but basically, you need to prepare the word
list, prepare the c-v maps, apply the three filters, and let the user view all
the anagrams at once or view a subset based on the anagram’s first letter.

Preparing the Word List

Listing 3-6 prepares the word list by including just the words that have as
many letters as in the name variable (in this case, nine). You should also
ensure that all the words are lowercase, to be consistent.

 def prep_words(name, word_list_ini):
 """Prep word list for finding anagrams."""

  print("length initial word_list = {}".format(len(word_list_ini)))
 len_name = len(name)

  word_list = [word.lower() for word in word_list_ini
 if len(word) == len_name]

  print("length of new word_list = {}".format(len(word_list)))
  return word_list

Listing 3-6: Creates lists of words that are equal in length to the name variable

Define the prep_words() function to take a name string and list of dic-
tionary words as arguments . I suggest that you print the lengths of your
various word lists before and after they’ve gone through a filter; that way,
you can track how much impact the filters are having. So print the length of
the dictionary . Assign a variable to hold the length of the name and then
use list comprehension to create a new list by looping through the words
in word_list_ini, keeping those whose length is the same as the number of
letters in name, and converting them to lowercase . Next, print the length
of this new word list , and finally, return this new list for use in the next
function .

Generating the C-V Map

You need to convert the prepared word list to a c-v map. Remember that
you’re no longer interested in actual words in the dictionary; those have
been reviewed and rejected. Your goal is to shuffle the remaining letters
until they form something that resembles a proper noun.

Listing 3-7 defines a function that generates c-v maps for each word in
word_list. The program, voldemort_british.py, will use the c-v map to judge
whether a shuffled letter combination is reasonable based on consonant-
vowel patterns in the English language.

voldemort
_british.py,
part 2

56 Chapter 3

 def cv_map_words(word_list):
 """Map letters in words to consonants & vowels."""

  vowels = 'aeiouy'
  cv_mapped_words = []
  for word in word_list:

 temp = ''
 for letter in word:
 if letter in vowels:
 temp += 'v'
 else:
 temp += 'c'
 cv_mapped_words.append(temp)

 # determine number of UNIQUE c-v patterns
  total = len(set(cv_mapped_words))

 # target fraction to eliminate
  target = 0.05

 # get number of items in target fraction
  n = int(total * target)
  count_pruned = Counter(cv_mapped_words).most_common(total - n)
  filtered_cv_map = set()

 for pattern, count in count_pruned:
 filtered_cv_map.add(pattern)
 print("length filtered_cv_map = {}".format(len(filtered_cv_map)))

  return filtered_cv_map

Listing 3-7: Generates c-v maps from the words in word_list

Define the cv_map_words() function to take the prepped word list as an
argument . Since consonants and vowels form a binary system, you can
define the vowels with a string . Create an empty list to hold the maps .
Then loop through the words and the letters in each word, converting the
letters to either a c or v . Use a variable called temp to accumulate the
map; then append it to the list. Note that temp is reinitialized each time
the loop repeats.

You want to know the frequency of occurrence of a given c-v map pat-
tern (for example, cvcv), so you can remove those with a low likelihood of
occurrence. Before calculating the frequency, you need to collapse your list
down to unique c-v maps—as it is now, cvcv may be repeated many, many
times. So, turn the cv_mapped_words list into a set, to remove duplicates, and
get its length . Now you can define a target percentage to eliminate,
using fractional values . Start with a low number like 0.05—equivalent
to 5 percent—so you’re less likely to eliminate anagrams that can form
usable proper names. Multiply this target value by the total length of the
cv_mapped_words set and assign the result to the variable n . Be sure to con-
vert n to an integer; since it will represent a count value, it can’t be a float.

The Counter module data type has a handy method, most_common(), that
will return the most common items in a list based on a count value that you
provide; in this case, that value will be the length of the c-v map list, total,
minus n. The value you pass most_common() must be an integer. If you pass

voldemort
_british.py,
part 3

Solving Anagrams 57

the most_common() function the length of the list, it will return all the items
in the list. If you subtract the count for the least likely 5 percent, you will
effectively eliminate these c-v maps from the list .

Remember, Counter returns a dictionary, but all you need are the final
c-v maps, not their associated frequency counts. So initialize an empty
set called filtered-cv-map  and loop through each key-value pair in count​
_pruned(), adding only the key to the new set. Print the length of this set, so
you can see the impact of the filter. Then finish by returning the filtered
c-v map for use in the next function .

Defining the C-V Map Filter

Listing 3-8 applies the c-v map filter: anagrams are generated based on per-
mutations of the letters in the name variable, and then the program converts
them to c-v maps and compares those anagrams to the filtered c-v maps
built with the cv_map_words() function. If an anagram’s c-v map is found in
filtered_cv_map, then the program stores the anagram for the next filter.

 def cv_map_filter(name, filtered_cv_map):
 """Remove permutations of words based on unlikely cons-vowel combos."""

  perms = {''.join(i) for i in permutations(name)}
 print("length of initial permutations set = {}".format(len(perms)))
 vowels = 'aeiouy'

  filter_1 = set()
  for candidate in perms:

 temp = ''
 for letter in candidate:
 if letter in vowels:
 temp += 'v'
 else:
 temp += 'c'

  if temp in filtered_cv_map:
 filter_1.add(candidate)
 print("# choices after filter_1 = {}".format(len(filter_1)))

  return filter_1

Listing 3-8: Defines cv_map_filter() function

Define the function cv_map_filter() to take two arguments: the name,
followed by the set of c-v maps returned by cv_map_words() . Use set compre-
hension and the permutations module to generate the set of permutations .
I described this process in “Project #6: Finding Voldemort: The Gallic
Gambit” on page 49. Use a set here to permit later use of set operations,
like taking the difference between two filter sets. This also removes dupli-
cates, as permutations treats each o as a separate item, and returns 9!, rather
than 9! / 2!. Note that permutations considers tmvoordle and tmvoordle differ-
ent strings.

Now initialize an empty set to hold the contents of the first filter  and
begin looping through the permutations . Use the term candidate, as most
of these aren’t words but just strings of random letters. For each candidate,

voldemort
_british.py,
part 4

58 Chapter 3

loop through the letters and map them to a c or a v, as you did with the
cv_words() function. Check each c-v map, temp, for membership in filtered_
cv_map. This is one reason for using sets: membership checks are very fast. If
the candidate meets the condition, add it to filter_1 . Finish by returning
your new anagram set .

Defining the Trigram Filter

Listing 3-9 defines the trigram filter, which removes the permutations with
unlikely three-letter triplets. It uses a text file derived from various cryptog-
raphy websites that has been tailored to the letters in tmvoordle. This func-
tion will return only permutations that include one of these trigrams; the
main() function will pass the new set to the next filter function.

 def trigram_filter(filter_1, trigrams_filtered):
 """Remove unlikely trigrams from permutations."""

  filtered = set()
  for candidate in filter_1:
  for triplet in trigrams_filtered:

 triplet = triplet.lower()
 if triplet in candidate:
 filtered.add(candidate)

  filter_2 = filter_1 - filtered
 print("# of choices after filter_2 = {}".format(len(filter_2)))

  return filter_2

Listing 3-9: Defines the trigram_filter() function

Parameters for the trigram filter include the output from the c-v map
filter and the external list of unlikely trigrams, trigrams_filtered .

Initialize an empty set to hold permutations that contain one of the
forbidden trigrams . Then start another for loop that looks through the
candidates that survived the last filter . A nested for loop looks at each
triplet in the trigrams list . If the triplet is in the candidate, it is added to
the filter.

Now you can use set operations to subtract the new filter from
filter_1  and then return the difference for use with the next filter .

Defining the Digram Filter

Listing 3-10 defines the digram filter, which removes unlikely letter pairs.
Some will trigger the filter if they occur anywhere within the permutation;
others will do so only if they occur at the start of the permutation. The dis-
allowed digrams are based on the shaded cells in Table 3-2. The function
returns the results of this filter for use in the final filter function.

 def letter_pair_filter(filter_2):
 """Remove unlikely letter-pairs from permutations."""

  filtered = set()
  rejects = ['dt', 'lr', 'md', 'ml', 'mr', 'mt', 'mv',
 'td', 'tv', 'vd', 'vl', 'vm', 'vr', 'vt']

voldemort
_british.py,
part 5

voldemort
_british.py,
part 6

Solving Anagrams 59

  first_pair_rejects = ['ld', 'lm', 'lt', 'lv', 'rd',
 'rl', 'rm', 'rt', 'rv', 'tl', 'tm']
  for candidate in filter_2:
  for r in rejects:

 if r in candidate:
 filtered.add(candidate)

  for fp in first_pair_rejects:
 if candidate.startswith(fp):
 filtered.add(candidate)

  filter_3 = filter_2 - filtered
 print("# of choices after filter_3 = {}".format(len(filter_3)))

  if 'voldemort' in filter_3:
 print("Voldemort found!", file=sys.stderr)

  return filter_3

Listing 3-10: Defines the letter_pair_filter() function

This filter accepts the results of the previous filter as an argument .
An empty set is initialized to hold any discarded permutations . Then
two lists of rejected pairs are assigned to the variables rejects  and first_
pair_rejects . Both lists were entered manually. The first represents cells
shaded black in Table 3-2; the second references cells shaded gray. Any
permutation that contains a member of the first list—anywhere—will be
discarded; permutations that start with a member of the second list will not
be allowed. You can add or remove digrams to these lists to change how the
filter behaves.

Begin looping through the permutations—continue to refer to these
as “candidates,” as they aren’t necessarily words . A nested for loop goes
through the pairs in rejects, determines whether any are in candidate, and
adds them to the filtered set . A second nested for loop repeats this pro-
cess for the first_pair_rejects . Subtract filtered from the set returned
from the previous function, filter_2 .

For fun and to ensure you haven’t filtered too far, check whether volde-
mort is included in filter_3  and print an announcement to highlight
the discovery, using eye-catching red font for IDLE users. Then finish by
returning the final filtered set .

Letting the User Choose the Starting Letter

You don’t know ahead of time whether your filtering will be successful. You
may still end up with thousands of permutations. Providing the option to
look at only a subset of the output won’t reduce the overall number, but
it will make it psychologically easier to face. Listing 3-11 adds, to voldemort_​
british.py, the ability to view a list of anagrams that begin with a certain
input letter.

 def view_by_letter(name, filter_3):
 """Filter to anagrams starting with input letter."""

  print("Remaining letters = {}".format(name))
  first = input("select a starting letter or press Enter to see all: ")
  subset = []

voldemort
_british.py,
part 7

60 Chapter 3

  for candidate in filter_3:
 if candidate.startswith(first):
 subset.append(candidate)

  print(*sorted(subset), sep='\n')
 print("Number of choices starting with {} = {}".format(first, len(subset)))

  try_again = input("Try again? (Press Enter else any other key to Exit):")
 if try_again.lower() == '':

  view_by_letter(name, filter_3)
 else:

  sys.exit()

Listing 3-11: Defines the view_by_letter() function

Define the view_by_letter() function to take both the name variable and
filter_3 as arguments . You need the name so you can show the user the
available letter choices on which to filter . Get the user’s input on whether
they want to see all the remaining permutations or just those beginning
with a certain letter . Then start an empty list to hold the latter subset .

A for loop, with a conditional, checks whether a candidate starts with
the chosen letter and appends those letters that pass to subset . This list is
printed with the splat operator . Then the program asks the user whether
they want to try again or exit . If they press enter, then view_by_letter()
is called, recursively, and runs again from the start . Otherwise, the pro-
gram exits . Note that Python has a default recursion depth limit of 1,000,
which we’ll ignore in this project.

Running the main() Function

Back in the global space, Listing 3-12 completes the code by calling the
main() function if the user runs the program in stand-alone mode versus
importing into another program.

if __name__ == '__main__':
 main()

Listing 3-12: Calls the main() function

Example output from the completed program is shown below. After
the program applies the third filter, there are 248 permutations remaining,
of which a very manageable 73 start with v. I’ve omitted the printout of
the permutations for brevity. As noted in the output, voldemort survives the
filtering.

length initial word_list = 60388
length of new word_list = 8687
length filtered_cv_map = 234
length of initial permutations set = 181440
choices after filter_1 = 123120
of choices after filter_2 = 674

voldemort
_british.py,
part 8

Solving Anagrams 61

of choices after filter_3 = 248
Voldemort found!
Remaining letters = tmvoordle
select a starting letter or Enter to see all: v

Interestingly, another surviving permutation is lovedmort. Given how
many people Voldemort killed—or had killed—this may be the most appro-
priate moniker of all.

Summary
In this chapter, you first wrote code that found the anagrams for a given
word or name. You then expanded on this to find phrasal name anagrams,
working interactively with the user. Finally, you employed cryptanalytical
techniques to tease Voldemort out of almost 200,000 possible anagrams.
Along the way, you applied useful functionality in the collections and
itertools modules.

Further Reading
The Jumble website is http://www.jumble.com/.

You can find some representative online anagram generators at the fol-
lowing sites:

•	 http://wordsmith.org/anagram/

•	 https://www.dcode.fr/anagram-generator

•	 http://www.wordplays.com/anagrammer/

More anagram programs are found in Think Python, 2nd Edition
(O’Reilly, 2015) by Allen Downey.

Cracking Codes with Python (No Starch Press, 2017) by Al Sweigart pro-
vides more code for computing word patterns, such as those used for filter-
ing in the voldemort_british.py program.

Practice Project: Finding Digrams
You could comb through cryptography websites looking for frequency
statistics, or you could derive them for yourself. Write a Python program
that finds all the digrams in tmvoordle and then counts their frequency
of occurrence in a dictionary file. Be sure to test your code on words like
volvo, so you don’t overlook repeating digrams in the same word. You can
find a solution in the appendix or download count_digrams_practice.py from
https://www.nostarch.com/impracticalpython/.

http://www.jumble.com/
http://wordsmith.org/anagram/
https://www.dcode.fr/anagram-generator
http://www.wordplays.com/anagrammer
https://www.nostarch.com/impracticalpython/

62 Chapter 3

Challenge Project: Automatic Anagram Generator
Look at the online anagram generators I just referenced in “Further
Reading” and write a Python program that mimics one of these. Your pro-
gram should automatically generate phrase anagrams from an input name
and display a subset (for example, the first 500) for the user to review.

4
D e c o d i n g

A m e r i c a n C i v i l W a r C i p h e r s

Cryptography is the science of secure com-
munication through the use of codes and

ciphers. A code replaces whole words with
other words; a cipher scrambles or replaces the

letters in words (so technically, Morse code is really
Morse cipher). One goal of cryptography is to use a
key to both encrypt readable plaintext into unreadable
ciphertext and then decrypt it back to plaintext. The goal
of cryptanalysis is to decode ciphers and codes without
knowing their key or encryption algorithm.

In this chapter, we’ll investigate two ciphers used in the American Civil
War: the route cipher, used by the North, and the rail fence cipher, used by
both sides. We’ll also look at what made one so successful and how we can
use lessons learned from its application to better write programs for inexpe-
rienced users and those unfamiliar with your Python code.

64 Chapter 4

Project #8: The Route Cipher
In the American Civil War, the Union had just about every advantage over
the Confederacy, including the field of cryptography. The Union had better
codes, better ciphers, and better-trained personnel. But perhaps its biggest
advantage was in leadership and organization.

The head of the US Military Telegraph Department was Anson Stager
(Figure 4-1). As the cofounder of Western Union, Stager knew from experi-
ence that telegraph operators made fewer mistakes when sending whole
words, as opposed to the strings of random letters and numbers common
to most ciphertext. He also knew that military dispatches only needed to
stay secret long enough for orders to be carried out. His secure solution was
a hybrid cryptosystem called the route transposition cipher, a combination of
transposed real words and code words that became one of the most success-
ful military ciphers of all time.

Figure 4-1: General Anson Stager, US Telegraph Corps, 1865

Decoding American Civil War Ciphers 65

Transposition ciphers scramble the arrangement of letters or words,
unlike substitution ciphers, which replace the letters in the plaintext with
different characters or symbols. Figure 4-2 shows an example of a route
transposition cipher. The message is written left to right over a number of
predetermined columns and rows, important plaintext words are replaced
by code words, and the last row is filled with dummy placeholder words.
The reader determines the order of the rearranged words by traversing up
and down these columns, as shown. The starting word is REST, and then
the encryption route is shown with arrows.

REST TRANSPORT YOU GODWIN VILLAGE

ROANOKE WITH ARE YOUR IS JUST SUPPLIES FREE

SNOW HEADING TO GONE TO SOUTH FILLER

VILLAGE = Enemy ROANOKE = Cavalry

GODWIN = Tennessee SNOW = Rebels

VILLAGE ROANOKE heading to

GODWIN With SNOW gone

you are free to

transport your supplies south

REST IS JUST FILLER

Enemy cavalry heading to

Tennessee With Rebels gone

you are free to

transport your supplies south

Code Words

Original Message in Encryption Matrix

Encryption Route + Code & Dummy Words

Cyphertext

Figure 4-2: A route cipher using actual Union code words

To fully decode this message, you need to know both the starting point
and route used to traverse the message and create the final ciphertext and
the meaning of the code words.

In the early 20th century, the distinguished military cryptanalyst
William Friedman disparaged Stager’s route cipher. He considered it too
unsophisticated and found it highly improbable that the Confederates
never cracked it. But the fact remains that hundreds of thousands of route
ciphers sent during the war were apparently never decoded, and not from
lack of trying. In an early example of crowdsourcing, the Confederates

66 Chapter 4

published the coded messages in newspapers, hoping for some help with
the decryption, but to no avail. While some historians speculate that this
cipher was broken at times, Stager’s design teaches several important
lessons:

Design for human error.  Military ciphers have to be simple, as hun-
dreds might be sent in a day. The real words used in the route cipher
made it much less likely to be garbled by telegraph operators. Stager
knew his customer and designed for them. He recognized the limi-
tations of his workforce and tailored his product accordingly. The
Confederates, by contrast, had great difficulty deciphering their own
complex messages, sometimes giving up and riding around enemy lines
to talk face-to-face!

Innovation trumps invention.  Sometimes you don’t need to invent
something new; you just need to rediscover something old. The short
word-transposition ciphers suitable for telegraph transmission were too
weak to use on their own, but combined with code names and disrup-
tive dummy words, they confounded the Confederates.

Share learning.  Because everyone in the Telegraph Corps used the
same methodology, it was easy to build on existing techniques and share
lessons learned. This allowed the route cipher to evolve over time with
the introduction of slang and intentional misspellings, as well as a grow-
ing number of code words for places, people, and dates.

Stager’s practical cipher may not have pleased later “purists,” but it was
the perfect design for the time. The concepts behind it are timeless and
easily transferable to modern-day applications.

T he Objec t i v e

In Harry Turtledove’s award-winning 1992 novel Guns of the South, time travelers provide
Confederate armies with modern weaponry, changing the course of history. Instead of
AK-47s, let’s pretend you’ve traveled back to 1864 with your laptop, a few extra bat-
teries, and Python to design an algorithm that will decrypt a route cipher based on an
assumed encryption matrix and path. In the spirit of Stager, you’ll write a user-friendly
program that will reduce human error.

The Strategy
When it comes to solving ciphers, it’s a lot easier if you know what type you’re
dealing with. In this case, you know it’s a transposition cipher, because it’s
composed of real words that are jumbled. You also know there are code
words and null words present. Your job is to figure out ways to decrypt the
transposition part of the route cipher and let someone else worry about code
words while you go have a well-deserved mint julep.

Decoding American Civil War Ciphers 67

Creating a Control Message

To understand how to do this, create your own message and route cipher.
Call this your control message :

•	 Number of columns = 4

•	 Number of rows = 5

•	 Start position = Bottom left

•	 Route = Alternating up and down columns

•	 Plaintext = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

•	 Ciphertext = 16 12 8 4 0 1 5 9 13 17 18 14 10 6 2 3 7 11 15 19

•	 Key = –1 2 –3 4

Using a numeric progression for the plaintext allows you to instantly
tell whether you’ve gotten all or part of the decryption correct, at any place
within the message.

The transposition matrix is shown in Figure 4-3. The gray arrows indi-
cate the encryption route.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

= 16 12 8 4 0 1 5 9 13 17 18 14 10 6 2 3 7 11 15 19

Figure 4-3: The transposition matrix for the control message with the route cipher path
and resulting ciphertext

The key keeps track of both the order and direction of the route through
the columns. The route doesn’t have to move through the columns in order.
For instance, it can move down the first column, up the third, down the
fourth, and finally up the second. Negative numbers mean you start at the
bottom and read up a column; positive numbers mean the reverse. For the
control message, the final key used in the program will be a list: [–1, 2, –3, 4].
This list will instruct the program to start reading up from the bottom of col-
umn 1, move to the top of column 2 and read down, move to the bottom of
column 3 and read up, and move to the top of column 4 and read down.

Note that you shouldn’t use 0 in keys because the users, being human,
prefer to start counting at 1. Of course, Python prefers to start counting
at 0, so you’ll need to subtract 1 from the key values behind the scenes.
Everybody wins!

68 Chapter 4

Later, in “Route Transposition Cipher: Brute-Force Attack” on
page 88, you can use this compact key structure to brute-force your way
through a route cipher, automatically trying hundreds of keys until the
plaintext is restored.

Designing, Populating, and Depopulating the Matrix

You’ll input the ciphertext as a continuous string. For your program to
unravel the route through this string, you’ll first need to build and popu-
late a translation matrix. The ciphertext string is just the columns in the
transposition matrix in Figure 4-3 laid end to end, in the order they were
read. And as there are five rows in the transposition matrix, every group of
five elements in the ciphertext represents a separate column. You can repre-
sent this matrix with a list of lists:

>>> list_of_lists = [['16', '12', '8', '4', '0'], ['1', '5', '9', '13', '17'],
['18', '14', '10', '6', '2'], ['3', '7', '11', '15', '19']]

The items in this new list now represent lists—with each list represent-
ing a column—and the five elements in each list represent the rows that
comprise that column. This is a little hard to see, so let’s print each of these
nested lists on a separate line:

>>> for i in range(len(list_of_lists)):
 print(list_of_lists[i])
[16, 12, 8, 4, 0]
[1, 5, 9, 13, 17]
[18, 14, 10, 6, 2]
[3, 7, 11, 15, 19]

If you read each list left to right, starting at the top, you follow the trans-
position route, which was up and down alternate columns (see Figure 4-3).
From Python’s point of view, the first column read is list-of-lists[0], and
the starting point is list-of-lists[0][0].

Now, normalize the route by reading all columns in the same direction
as the starting column (up). This requires reversing the order of elements
in every other list, as shown in bold here:

[16, 12, 8, 4, 0]
[17, 13, 9, 5, 1]
[18, 14, 10, 6, 2]
[19, 15, 11, 7, 3]

A pattern emerges. If you start at the upper right and read down each
column, ending at the lower left, the numbers are in numerical order;
you’ve restored the plaintext!

To replicate this, your script can loop through every nested list, remov-
ing the last item in that list and adding the item to a new string, until the

Decoding American Civil War Ciphers 69

translation matrix has been emptied. The script will know from the key
which nested lists it needs to reverse and the order in which to depopulate
the matrix. The output will be a string of the restored plaintext:

'0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19'

You should now have a very general view of the strategy. Let’s get more
descriptive and write the pseudocode next.

The Pseudocode
The script can be broken up into three major parts: user input, translation
matrix population, and decryption to plaintext. You should be able to see
these parts in the following pseudocode:

Load the ciphertext string.
Convert ciphertext into a cipherlist to split out individual words.
Get input for the number of columns and rows.
Get input for the key.
Convert key into a list to split out individual numbers.
Create a new list for the translation matrix.
For every number in the key:
 Create a new list and append every n items (n = # of rows) from the cipherlist.
 Use the sign of key number to decide whether to read the row forward or backward.
 Using the chosen direction, add the new list to the matrix. The index of each
 new list is based on the column number used in the key.
Create a new string to hold translation results.
For range of rows:
 For the nested list in translation matrix:
 Remove the last word in nested list
 Add the word to the translation string.
Print the translation string.

Everything before the first loop is essentially just collecting and refor-
matting the cipher data. The first loop is responsible for building and pop-
ulating the matrix, and the second loop creates a translation string from
that matrix. Finally, the translation string is printed.

The Route Cipher Decryption Code
Listing 4-1 takes a message encrypted with the route cipher, the number
of columns and rows in the transposition matrix, and a key and then dis-
plays the translated plaintext. It will decrypt all “common” route ciphers,
where the route starts at the top or bottom of a column and continues up
and/or down columns.

This is the prototype version; once you’re sure it’s working, you’ll pack-
age it for others to use. You can download this code at https://www.nostarch​
.com/impracticalpython/.

 ciphertext = "16 12 8 4 0 1 5 9 13 17 18 14 10 6 2 3 7 11 15 19"

split elements into words, not letters

route_cipher
_decrypt
_prototype.py

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

70 Chapter 4

 cipherlist = list(ciphertext.split())

 # initialize variables
COLS = 4
ROWS = 5
key = '-1 2 -3 4' # neg number means read UP column vs. DOWN
translation_matrix = [None] * COLS
plaintext = ''
start = 0
stop = ROWS

turn key_int into list of integers:
 key_int = [int(i) for i in key.split()]

turn columns into items in list of lists:
 for k in key_int:
  if k < 0: # reading bottom-to-top of column

 col_items = cipherlist[start:stop]
 elif k > 0: # reading top-to-bottom of columnn
 col_items = list((reversed(cipherlist[start:stop])))
 translation_matrix[abs(k) - 1] = col_items
 start += ROWS
 stop += ROWS

print("\nciphertext = {}".format(ciphertext))
print("\ntranslation matrix =", *translation_matrix, sep="\n")
print("\nkey length = {}".format(len(key_int)))

loop through nested lists popping off last item to new list:
 for i in range(ROWS):

 for col_items in translation_matrix:
  word = str(col_items.pop())
  plaintext += word + ' '

print("\nplaintext = {}".format(plaintext))

Listing 4-1: Code for route_cipher_decrypt_prototype.py

Start by loading the ciphertext  as a string. You want to deal with
words, not letters, so split the string apart based on empty spaces using the
split() string method to create a new list named cipherlist . The split()
method is the inverse of the join() method, which you’ve seen before. You
can split on any string; the method just defaults to runs of consecutive
whitespace, deleting each whitespace before it moves to the next.

Now it’s time to input what you know about the cipher : the col-
umns and rows, which form the matrix, and the key, which contains the
route. Initialize the column and row numbers as constants. Then make
an empty list named translation_matrix to hold the contents of each
column as a (nested) list. Assign placeholders by multiplying the value
None by the number of columns. You can use the indexes of these empty
items to put columns back in their correct order for keys that are not in
numerical order.

Decoding American Civil War Ciphers 71

An empty string named plaintext will hold the decrypted message.
Next are some slicing parameters. Note that some of these are derived from
the number of rows, which equates to the number of items in each column.

Now, convert the key variable, which is a string, into a list of integers using
list comprehension—a shorthand way of performing operations on lists . You’ll
use the numbers in the key as indexes later, so they need to be integers.

The next block of code is a for loop that populates the translation_
matrix, which is just a list of lists . Since each column becomes a nested
list and the length of the key_int list is equal to the number of columns, the
range for the loop is the key, which also describes the route.

Inside the loop, use a conditional to check whether the key is positive or
negative ; if the key is positive, then the direction of the slice is reversed.
Assign the slice to the correct position in translation_matrix based on the
absolute key value and subtract 1 (since the keys don’t include 0, but the list
indexes do). Finish the loop by advancing the slice endpoints by the num-
ber of rows and printing some useful information.

The final block  loops through the number of rows—which is equiva-
lent to the number of words in one of the nested lists—and through each
nested list. The first two of these loops are shown in Figure 4-4. As you stop
in each nested list, you get to employ one of my favorite Python functions,
the list pop() method . The pop() method removes and returns the last
item from a list, unless a specific index is provided. It destroys the nested
list, but you’re done with it anyway.

[16, 12, 8, 4, 0]

[17, 13, 9, 5, 1]

[18, 14, 10, 6, 2]

[19, 15, 11, 7, 3]

['0', '1', '2', '3', ...]

First loop

Second loop
[16, 12, 8, 4]

[17, 13, 9, 5]

[18, 14, 10, 6]

[19, 15, 11, 7]

['0', '1', '2', '3', '4', '5', '6', '7', ...]

Figure 4-4: First and second loop through the nested lists, removing
and appending each end item to the translation string

72 Chapter 4

As soon as you pop off a word, concatenate it to the plaintext string and
add a space . All that’s left to do is display the decrypted ciphertext. The
output for the numeric test set looks like this:

plaintext = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

That looks like success!

Hacking the Route Cipher
The preceding code assumes you know the route through the encryption
matrix or have correctly guessed the key. If those assumptions aren’t true,
your only recourse is to try every possible key and matrix arrangement.
You’ll get a chance to automate the key selection process—for a given num-
ber of columns—in “Route Transposition Cipher: Brute-Force Attack” on
page 88. But, as you’ll see, the Union route cipher is well fortified against
brute-force attacks. You can crack it, but you’ll end up with so much data,
you’ll feel like the dog that chased a car and caught it.

As messages get longer, the number of possible encryption paths in
a transposition cipher becomes too large for a brute-force solution, even
using modern computers. For example, if there are eight columns, and
you allow the route to skip to any column, the number of ways to combine
the columns is the factorial of eight: 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40,320.
That’s 40,320 paths before you start choosing alternative routes through the
columns. If the route can change direction up or down a column, the num-
ber of combinations increases to 10,321,920. And if you consider starting
anywhere in a column—instead of at the very top or bottom—and allow any
route through the matrix (such as spiraling), things will really start to get
out of hand!

For this reason, even short transposition ciphers can have thousands to
millions of possible paths. Even if the number of paths is manageable for a
computer and a brute-force attack may prevail, you’ll still need a way to sift
through the myriad outcomes and either choose a winner computationally
or select a small subset of candidates to visually examine.

For the more common letter-transposition ciphers, it’s easy to write a
function that detects English by comparing each decryption attempt to
a dictionary file. If the number of decrypted words belonging to a dic-
tionary is greater than a certain threshold percentage, you’ve probably
cracked the cipher. Likewise, if there’s a high frequency of common letter
pairs (digrams)—like er, th, on, or an—you may have found the solution.
Unfortunately, this approach won’t work for a word -transposition cipher
like the one you’re using here.

Dictionaries can’t help you figure out whether words have been arranged
correctly. For word arrangement, you could try using approaches like gram-
matical rules and probabilistic language models, such as n-grams, combing
through thousands of decryptions and picking candidate outcomes program-
matically, but Stager’s wise use of code names and dummy words in his route
cipher will greatly complicate the process.

Decoding American Civil War Ciphers 73

Cryptanalysts consider short, straight-up transposition ciphers to be
fairly easy to crack without a computer, despite the issues just described.
They look for common word or letter pairs that make sense, and use those
to guess the number of rows in the transposition matrix.

To illustrate, let’s use our control message composed of numbers. In
Figure 4-5, you can see the ciphertext outcomes for a 4×5 matrix, each pro-
duced by starting at one of the four corners of the grid, and following an
alternating, sequential route. All cases include repetition of adjacent num-
bers (shaded in Figure 4-5). These indicate where you’re moving laterally
through the grid, and they provide clues to the design of the matrix and the
route taken through it. You can immediately see that there were five rows,
because the first of each common pair is a fifth word. Moreover, knowing
there are 20 words in the message, you learn the number of columns was
four (20 / 5 = 4). Using the reasonable assumption that the plaintext mes-
sage was written left to right, you can even guess the route. For example, if
you start in the lower right, you go up to 3, then left to 2, then down to 18,
then left to 17, then up to 1 and left to 0. Of course, this would be more dif-
ficult with words, since the connection between words isn’t as explicit, but
using numbers really makes the point.

5 digits = 5 rows!

Lower right =

Lower left =

Upper right =

Upper left =

19 15 11 7 3 2 6 10 14 18 17 13 9 5 1 0 4 8 12 16

16 12 8 4 0 1 5 9 13 17 18 14 10 6 2 3 7 11 15 19

3 7 11 15 19 18 14 10 6 2 1 5 9 13 17 16 12 8 4 0

0 4 8 12 16 17 13 9 5 1 2 6 10 14 18 19 15 11 7 3

Figure 4-5: Characters or words in logical order (shaded)
can be used to guess an encryption route.

Look at Figure 4-6, based on the message in Figure 4-2. End words and
possible linked words, like “is just” or “heading to,” are shaded.

REST TRANSPORT YOU GODWIN VILLAGE ROANOKE WITH ARE YOUR
IS JUST SUPPLIES FREE SNOW HEADING TO GONE TO SOUTH FILLER

Figure 4-6: Human hacking of the route cipher in Figure 4-2.
A five-row matrix is indicated.

There are 20 total words, for which there could be 4, 5, or 10 rows. It’s
doubtful that a two-column matrix would be used, so we are realistically
dealing with a 4×5 or a 5×4 arrangement. If the route cipher path is like
that in Figure 4-5, then we’d expect to see two nonshaded words between
shaded words for a four-row matrix and three nonshaded words for a five-
row matrix. It’s harder to come up with sensical word pairs that honor the

74 Chapter 4

four-column pattern, regardless of which direction you read the ciphertext.
So, we’re probably dealing with a five-column solution that starts on the left
side of the matrix—since the linked words make sense read left to right.

Note how the shaded words in Figure 4-6 fill out the top and bot-
tom rows in the transposition matrix in Figure 4-7. This is what we would
expect, as the path is “turning around” at the top and bottom of every col-
umn. Graphical solutions: God’s gift to the innumerate!

VILLAGE ROANOKE heading to

GODWIN With SNOW gone

you are free to

transport your supplies south

REST IS JUST FILLER

Figure 4-7: Shaded words in Figure 4-6 placed in the transposition matrix

This seemed easy, but then again, we know how a route cipher works.
Confederate code breakers eventually discovered it too, but the use of
code words denied them full entry into the system. To hack the codes, they
needed a captured codebook or a large organization capable of acquiring
and analyzing big data, which was beyond the reach of the Confederacy in
the 19th century.

Adding a User Interface
The second goal of this project is to write the code in such a way as to reduce
human error, especially from those with less experience (including techni-
cians, interns, peers, and telegraph clerks in 1864). Of course, the best way
to make a program user-friendly is to include a graphical user interface (GUI),
but at times, this isn’t practical or possible. For example, code-cracking pro-
grams automatically loop through thousands of possible keys, and autogen-
erating these keys is easier than getting them directly from a user.

In this example, you’ll proceed with the assumption that the user will
crack open the program file and enter some input or even make minor
code changes. Here are some guidelines to follow:

1.	 Start with a useful docstring (see Chapter 1).

2.	 Place all required user input at the top.

3.	 Use comments to clarify input requirements.

4.	 Clearly separate user input from the remaining code.

5.	 Encapsulate most processes in functions.

6.	 Include functions to catch predictable user errors.

The nice thing about this approach is that no one’s intelligence gets
insulted. If a user wants to scroll down and look at the code, or even change
it, there’s nothing stopping them. If all they want to do is enter some values

Decoding American Civil War Ciphers 75

and get a black box solution, then they’re happy, too. And we’ve honored
the spirit of Anson Stager by making things simple and reducing the
chance for error.

Instructing the User and Getting Input

Listing 4-2 shows the prototype code repackaged for sharing with others.
You can find this code at https://www.nostarch.com/impracticalpython/.

 """Decrypt a path through a Union Route Cipher.

 Designed for whole-word transposition ciphers with variable rows & columns.
Assumes encryption began at either top or bottom of a column.
Key indicates the order to read columns and the direction to traverse.
Negative column numbers mean start at bottom and read up.
Positive column numbers mean start at top & read down.

Example below is for 4x4 matrix with key -1 2 -3 4.
Note "0" is not allowed.
Arrows show encryption route; for negative key values read UP.

 1 2 3 4
 ___ ___ ___ ___
| ^ | | | ^ | | | MESSAGE IS WRITTEN
|_|_|_v_|_|_|_v_|
| ^ | | | ^ | | | ACROSS EACH ROW
|_|_|_v_|_|_|_v_|
| ^ | | | ^ | | | IN THIS MANNER
|_|_|_v_|_|_|_v_|
| ^ | | | ^ | | | LAST ROW IS FILLED WITH DUMMY WORDS
|_|_|_v_|_|_|_v_|
START END

Required inputs - a text message, # of columns, # of rows, key string

Prints translated plaintext
"""

 import sys

#==
 # USER INPUT:

 # the string to be decrypted (type or paste between triple-quotes):
ciphertext = """16 12 8 4 0 1 5 9 13 17 18 14 10 6 2 3 7 11 15 19
"""

 # number of columns in the transposition matrix:
COLS = 4

number of rows in the transposition matrix:
ROWS = 5

 # key with spaces between numbers; negative to read UP column (ex = -1 2 -3 4):
key = """ -1 2 -3 4 """

route_cipher
_decrypt.py,
part 1

76 Chapter 4

 # END OF USER INPUT - DO NOT EDIT BELOW THIS LINE!
#==

}

Listing 4-2: Docstring, imports, and user input for route_cipher_decrypt.py

Start with a multiline docstring in triple quotes . The docstring
informs the user that the program only decrypts a typical route cipher—
one that starts at either the top or bottom of a column—and how to enter
the key information . A diagram is included to help make the point.

Next, import sys for access to system fonts and functions . You’re
going to check the user’s input for acceptance criteria, so you need to dis-
play messages in the shell in eye-catching red. Putting this import statement
here is a catch-22. Since the strategic goal is to hide the working code from
the user, you really should apply this later in the program. But the Python
convention of putting all import statements at the top is too strong to ignore.

Now for the input section. How often have you seen or dealt with code
where inputs or changes have to be made throughout the program? This can
be confusing for the author and even worse for another user. So, move all
these important variables to the top for convenience, common courtesy,
and error prevention.

First, separate the input section with a line and then let the user know
that they’re on deck with an all-caps comment . The required inputs
are clearly defined with comments. You can use triple quotes for the text
input to better accommodate long snippets of text. Note that I’ve entered
the string of numbers from Figure 4-3 . Next, the user needs to add the
number of columns and rows for the transposition matrix , followed by
the proposed (or known) key .

End the user input section with a declaration comment to that effect
and a caution to not edit anything below the following line . Then add
some extra spaces to more clearly separate the input section from the rest
of the program .

Defining the main() Function

Listing 4-3 defines the main() function, which runs the program and prints
out the plaintext after the cipher is decoded. The main() function can be
defined before or after the functions it calls, as long as it is the last function
called.

def main():
 """Run program and print decrypted plaintext."""

  print("\nCiphertext = {}".format(ciphertext))
 print("Trying {} columns".format(COLS))
 print("Trying {} rows".format(ROWS))
 print("Trying key = {}".format(key))

 # split elements into words, not letters

  cipherlist = list(ciphertext.split())

route_cipher
_decrypt.py,
part 2

Decoding American Civil War Ciphers 77

  validate_col_row(cipherlist)
  key_int = key_to_int(key)
  translation_matrix = build_matrix(key_int, cipherlist)
  plaintext = decrypt(translation_matrix)

  print("Plaintext = {}".format(plaintext))

Listing 4-3: Defines the main() function

Start the main() function by printing the user input to the shell . Then
turn the ciphertext into a list by splitting on whitespace, as you did in the
prototype code .

The next series of statements call functions you will define shortly. The
first checks whether the input rows and columns are valid for the message
length . The second converts the key variable from a string to a list of inte-
gers . The third builds the translation matrix , and the fourth runs the
decryption algorithm on the matrix and returns a plaintext string . Finish
main() by printing the plaintext .

Verifying Data

As you continue to package route_cipher_decrypt.py for the end user, you need
to verify that the input is valid. Listing 4-4 anticipates common user errors
and provides the user with helpful feedback and guidance.

 def validate_col_row(cipherlist):
 """Check that input columns & rows are valid vs. message length."""
 factors = []
 len_cipher = len(cipherlist)

  for i in range(2, len_cipher): # range excludes 1-column ciphers
 if len_cipher % i == 0:
 factors.append(i)

  print("\nLength of cipher = {}".format(len_cipher))
 print("Acceptable column/row values include: {}".format(factors))
 print()

  if ROWS * COLS != len_cipher:
 print("\nError - Input columns & rows not factors of length "
 "of cipher. Terminating program.", file=sys.stderr)
 sys.exit(1)

 def key_to_int(key):
 """Turn key into list of integers & check validity."""

  key_int = [int(i) for i in key.split()]
 key_int_lo = min(key_int)
 key_int_hi = max(key_int)

  if len(key_int) != COLS or key_int_lo < -COLS or key_int_hi > COLS \
 or 0 in key_int:

  print("\nError - Problem with key. Terminating.", file=sys.stderr)
 sys.exit(1)
 else:

  return key_int

Listing 4-4: Defines functions for checking and prepping user input

route_cipher
_decrypt.py,
part 3

78 Chapter 4

The validate_col_row() function checks that the input column and row
numbers are appropriate for the length of the cipherlist, which you pass
as an argument . The transposition matrix is always the same size as the
number of words in the message, so the number of columns and the num-
ber of rows have to be a factor of the message size. To determine all the per-
missible factors, first make an empty list to hold the factors and then get the
length of the cipherlist. Use the cipherlist, rather than the input ciphertext, as
the elements in the ciphertext are letters, not words.

Normally, to get the factors of a number, you would use a range of (1,
number + 1), but you don’t want these endpoints in the factors list, because
a translation matrix with these dimensions would just be the plaintext. So
exclude these values from the range . Since a factor of a number divides
evenly into that number, use the modulo operator (%) to find the factors
and then append them to the factors list.

Next, display some useful information for the user: the length of the
cipherlist and the acceptable choices for rows and columns . Finally, mul-
tiply the user’s two choices together and compare the product to the length
of the cipherlist. If they don’t match, print a red warning message in the
shell (using our old file=sys.stderr trick) and terminate the program .
Use sys.exit(1), as the 1 indicates an abnormal exit.

Now define a function to check the key and convert it from a string to
a list . Pass it the key variable as an argument. Split out each item in key
and convert it to an integer; name the list key_int to distinguish it from the
user-entered key variable . Next, determine the minimum and maximum
values in the key_int list. Then use an if statement to make sure the list con-
tains the same number of items as there are columns and none of the items
in key is too large, too small, or equal to 0 . Terminate the program with
an error message if any of those criteria fail to pass . Otherwise, return
the key_int list .

Building and Decoding the Translation Matrix

Listing 4-5 defines two functions, one to build the translation matrix
and one to decode it, and calls the main() function as a module or in
stand-alone mode.

 def build_matrix(key_int, cipherlist):
 """Turn every n items in a list into a new item in a list of lists."""
 translation_matrix = [None] * COLS
 start = 0
 stop = ROWS
 for k in key_int:
 if k < 0: # read bottom-to-top of column
 col_items = cipherlist[start:stop]
 elif k > 0: # read top-to-bottom of columnn
 col_items = list((reversed(cipherlist[start:stop])))
 translation_matrix[abs(k) - 1] = col_items
 start += ROWS
 stop += ROWS
 return translation_matrix

route_cipher
_decrypt.py,
part 4

Decoding American Civil War Ciphers 79

 def decrypt(translation_matrix):
 """Loop through nested lists popping off last item to a string."""
 plaintext = ''
 for i in range(ROWS):
 for matrix_col in translation_matrix:
 word = str(matrix_col.pop())
 plaintext += word + ' '
 return plaintext

 if __name__ == '__main__':
 main()

Listing 4-5: Defines the functions for building and decoding the translation matrix

These two functions represent encapsulation of code in the
route_cipher_decrypt_prototype.py program. See Listing 4-1 for a detailed
description.

First, define a function to build the translation matrix; pass it the
key_int and cipherlist variables as arguments . Have the function return
the list of lists.

Next, bundle the decryption code, where you pop off the end of each
nested list, as a function that uses the translation_matrix list as an argu-
ment . Return the plaintext, which will be printed by the main() function.

End with the conditional statement that lets the program run as a mod-
ule or in stand-alone mode .

If you’re an occasional or one-time user of this code, you’ll appreciate
how straightforward and approachable it is. If you plan to alter the code for
your own purposes, you’ll also appreciate that the key variables are accessi-
ble and the major tasks are modularized. You won’t have to dig through the
program to tease out what matters or understand the difference between
arcane variables like list1 and list2.

Here’s the output of the program, using the ciphertext from Figure 4-3:

Ciphertext = 16 12 8 4 0 1 5 9 13 17 18 14 10 6 2 3 7 11 15 19

Trying 4 columns
Trying 5 rows
Trying key = -1 2 -3 4

Length of cipher = 20
Acceptable column/row values include: [2, 4, 5, 10]

Plaintext = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

You should now be able to easily decrypt a route transposition cipher
with a known key or test suspected routes by using the script’s clear and
accessible interface to adjust the key. You’ll get a chance to truly crack
one of these ciphers, by automatically trying every possible key, in “Route
Transposition Cipher: Brute-Force Attack” on page 88.

80 Chapter 4

Project #9: The Rail Fence Cipher
Confederate officers and spies were pretty much on their own when it came
to cryptography. This led to unsophisticated solutions, one of the favorites
being the rail fence cipher, so named due to its resemblance to the zigzag
pattern of a split-rail fence (shown in Figure 4-8).

Figure 4-8: A rail fence

The rail fence is a simple-to-use transposition cipher, like the Union’s
route cipher, but differs from the route cipher in that it transposes letters
rather than words, making it more error-prone. And since the number of
possible keys is much more restrictive than the number of paths through a
route cipher, the rail fence cipher is much easier to “tear down.”

Both the Union and Confederates used the rail fence as a field cipher,
and the spies probably didn’t use code words very often. Codebooks needed
to be tightly controlled, for obvious reasons, and were more likely to be
secured in a military telegraph office than carried around by easily compro-
mised undercover agents.

Sometimes the Confederates used the more complex Vigenère cipher
(see “Project #12: Hiding a Vigenère Cipher” on page 106) for important
messages—and some unimportant ones to mislead enemies—but it was
tedious work to decipher and equally laborious to encrypt and not suitable
for fast field communications.

Despite their lack of training in the mechanics of cryptography, the
Confederacy, and Southerners in general, were clever and innovative.
Among their more impressive accomplishments in the art of secret mes-
sages was the use of microphotography, 100 years before it was widely
adopted during the Cold War.

Decoding American Civil War Ciphers 81

T he Objec t i v e

Write Python programs that will help a spy encrypt and decrypt a “two-rail” (two-row)
rail fence cipher. You should write the programs in a way that will reduce potential errors
by inexperienced users.

The Strategy
To encrypt a message with the rail fence cipher, follow the steps in Figure 4-9.

Buy more Maine potatoes 1) Write plaintext

BUYMOREMAINEPOTATOES 2) Remove spaces and capitalize

B Y O E A N P T T E 3) Stack and stagger letters in
 zigzag patternU M R M I E O A O S

BYOEANPTTEUMRMIEOAOS 4) Merge the upper and lower rows

BYOEA NPTTE UMRMI EOAOS 5) Split into groups of five

Figure 4-9: Encryption process for a “two-rail” rail fence cipher

After the plaintext is written, the spaces are removed, and all the letters
are converted to uppercase (Step 2). Using uppercase is common conven-
tion in cryptography, as it obfuscates the presence of proper names and the
beginning of sentences, giving a cryptanalyst fewer clues for deciphering
the message.

The message is then written in stacked fashion, with every other letter
below the previous letter and shifted over one space (Step 3). This is where
the “rail fence” analogy becomes apparent.

The first row is then written, followed immediately by the second row
on the same line (Step 4), and then the letters are broken into groups of
five to create the illusion of distinct words and to further confuse the crypt-
analyst (Step 5).

To decrypt a rail fence cipher, reverse the process. Just remove the spaces,
divide the message in half, stack the second half below the first, offset by one
letter, and read the message using the zigzag pattern. If the ciphertext has an
odd number of letters, put the extra letter in the first (upper) half.

To make things easy for people who want to use a rail fence cipher, fol-
low the preceding steps to write two programs, one to encrypt and another
to decrypt. Figure 4-9 is essentially your pseudocode, so let’s get to it. And
since you now know how to package the code for inexperienced users, take
that approach from the start.

82 Chapter 4

The Rail Fence Cipher Encryption Code
The code in this section allows a user to enter a plaintext message and
have the encrypted results print in the interpreter window. This code is
available for download with the book’s resources at https://www.nostarch.com/
impracticalpython/.

Instructing the User and Getting Input

Listing 4-6, at the top of rail_fence_cipher_encrypt.py, provides the program’s
instructions and assigns the plaintext to a variable.

 r"""Encrypt a Civil War 'rail fence' type cipher.

This is for a "2-rail" fence cipher for short messages.

Example text to encrypt: 'Buy more Maine potatoes'

Rail fence style: B Y O E A N P T T E
 U M R M I E O A O S

Read zigzag: \/\/\/\/\/\/\/\/\/\/

Encrypted: BYOEA NPTTE UMRMI EOSOS

"""
#--

 # USER INPUT:

the string to be encrypted (paste between quotes):
 plaintext = """Let us cross over the river and rest under the shade of the trees

"""

 # END OF USER INPUT - DO NOT EDIT BELOW THIS LINE!
#--

Listing 4-6: Docstring and user input section for rail_fence_cipher_encrypt.py

Start with a multiline docstring, placing an r (which stands for “raw”)
prefix before the first set of triple quotes . Without this prefix, Pylint
will complain bitterly about the \/\ slashes used further down. Fortunately,
pydocstyle points this out so you can fix it (read Chapter 1 to learn all
about Pylint and pydocstyle). If you want to know more about raw strings,
see Section 2.4.1 in the Python docs (https://docs.python.org/3.6/reference/
lexical_analysis.html#string-and-bytes-literals).

Next, separate the program’s docstring and import statements from
the input section with a line and let the user know they’re on deck with an
all-caps comment . Clearly define the input requirement with comments
and place the plaintext inside triple quotes to better accommodate long
text strings .

Finally, end the user input section with a declaration to that effect and
caution to not edit anything below the following line .

rail_fence_cipher
_encrypt.py,
part 1

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/
https://docs.python.org/3.6/reference/lexical_analysis.html#string-and-bytes-literals
https://docs.python.org/3.6/reference/lexical_analysis.html#string-and-bytes-literals

Decoding American Civil War Ciphers 83

Encrypting a Message

Add Listing 4-7 to rail_fence_cipher_encrypt.py in order to handle the encryp-
tion processes.

 def main():
 """Run program to encrypt message using 2-rail rail fence cipher."""
 message = prep_plaintext(plaintext)
 rails = build_rails(message)
 encrypt(rails)

 def prep_plaintext(plaintext):
 """Remove spaces & leading/trailing whitespace."""

  message = "".join(plaintext.split())
  message = message.upper() # convention for ciphertext is uppercase

 print("\nplaintext = {}".format(plaintext))
 return message

 def build_rails(message):
 """Build strings with every other letter in a message."""
 evens = message[::2]
 odds = message[1::2]

  rails = evens + odds
 return rails

 def encrypt(rails):
 """Split letters in ciphertext into chunks of 5 & join to make string."""

  ciphertext = ' '.join([rails[i:i+5] for i in range(0, len(rails), 5)])
 print("ciphertext = {}".format(ciphertext))

 if __name__ == '__main__':
 main()

Listing 4-7: Defines functions to encrypt the plaintext message

To start, define a main() function to run the program . Having a main()
function gives you the flexibility to use this program as a module in another
program later, should the need arise. This function calls three other func-
tions: one to prepare the input plaintext, one to build the “rails” used by
the cipher, and one to break the encrypted text into five-letter chunks.

Next, define a function to take the input string and prepare it for
encryption . This involves removing spaces  and converting letters to
uppercase (as in Step 2 in Figure 4-9) . Then, after a newline, print the
plaintext to the screen and return it.

Now, define a function to build two strings, as in Step 3 of Figure 4-9,
by slicing message for evens (starting at 0 and stepping by 2) and for odds
(starting at 1 and stepping by 2) . The two strings are then concatenated
in a new string, named rails , and returned.

Define an encryption function that takes the rails string as an argu-
ment . Use list comprehension to split the ciphertext into chunks of five
(as in Step 5 of Figure 4-9) . The encrypted text is then printed to the
screen. Finish with the code to run the program as a module or in stand-
alone mode .

rail_fence_cipher
_encrypt.py,
part 2

84 Chapter 4

Here is the output from this program:

plaintext = Let us cross over the river and rest under the shade of the trees
ciphertext = LTSRS OETEI EADET NETEH DOTER EEUCO SVRHR VRNRS UDRHS AEFHT ES

The Rail Fence Cipher Decryption Code
The code in this section allows a user to enter a message encrypted with
the rail fence cipher and have the plaintext printed in the interpreter win-
dow. This code is available for download along with the rest of the book’s
resources at https://www.nostarch.com/impracticalpython/.

Importing Modules, Instructing the User, and Getting Input

Listing 4-8 starts with instructions similar to those in the rail_fence_cipher_
encrypt.py program (Listing 4-6), imports two modules, and gets the user
input.

r"""Decrypt a Civil War 'rail fence' type cipher.

This is for a 2-rail fence cipher for short messages.

Example plaintext: 'Buy more Maine potatoes'

Rail fence style: B Y O E A N P T T E
 U M R M I E O A O S

Read zigzag: \/\/\/\/\/\/\/\/\/\/

Ciphertext: BYOEA NPTTE UMRMI EOSOS

"""
 import math

import itertools

#--
USER INPUT:

the string to be decrypted (paste between quotes):
 ciphertext = """LTSRS OETEI EADET NETEH DOTER EEUCO SVRHR VRNRS UDRHS AEFHT ES

"""

END OF USER INPUT - DO NOT EDIT BELOW THIS LINE!
#--

Listing 4-8: Imports modules, instructs the user, and gets user input

One difference here is that you need to import the math and itertools
modules . You’ll use math for rounding. The itertools module is a group of

rail_fence_cipher
_decrypt.py,
part 1

Decoding American Civil War Ciphers 85

functions in the Python Standard Library that create iterators for efficient
looping. You’ll use itertool’s zip_longest() function during the decryption
process.

The only other change is that the user should enter ciphertext, rather
than plaintext .

Decrypting a Message

Listing 4-9 defines the functions for preparing and decoding the ciphertext
and finishes off rail_fence_cipher_decrypt.py.

 def main():
 """Run program to decrypt 2-rail rail fence cipher."""
 message = prep_ciphertext(ciphertext)
 row1, row2 = split_rails(message)
 decrypt(row1, row2)

 def prep_ciphertext(ciphertext):
 """Remove whitespace."""
 message = "".join(ciphertext.split())
 print("\nciphertext = {}".format(ciphertext))
 return message

 def split_rails(message):
 """Split message in two, always rounding UP for 1st row."""

  row_1_len = math.ceil(len(message)/2)
  row1 = (message[:row_1_len]).lower()

 row2 = (message[row_1_len:]).lower()
 return row1, row2

 def decrypt(row1, row2):
 """Build list with every other letter in 2 strings & print."""

  plaintext = []
  for r1, r2 in itertools.zip_longest(row1, row2):

 plaintext.append(r1)
 plaintext.append(r2)

  if None in plaintext:
 plaintext.pop()
 print("rail 1 = {}".format(row1))
 print("rail 2 = {}".format(row2))
 print("\nplaintext = {}".format(''.join(plaintext)))

 if __name__ == '__main__':
 main()

Listing 4-9: Prepares, decodes, and prints the message

The main() function here  is similar to the one used in the encryp-
tion program in Listing 4-7. Three functions are called: one to prepare the
input string, one to “split the rails” in the rail fence cipher, and one to stitch
the two rails back together into readable plaintext.

rail_fence_cipher
_decrypt.py,
part 2

86 Chapter 4

Start with a function that repeats the preprocessing steps used during
encryption . Remove the spaces between the five-letter chunks, as well
as any other whitespace created during the pasting of the ciphertext, and
print and return the ciphertext.

Next, you need to split the message back into two halves to reverse the
encryption process . As I mentioned in “The Strategy” on page 81, the
extra letter in a message with an odd number of characters is assigned to the
top row. To address the odd-numbered case, use the math.ceil() method .
“Ceil” stands for “ceiling,” so when you divide by 2, the answer is always
rounded up to the nearest integer. Assign this number to the row_1_len vari-
able. Once you know the length of the first row, use that value and slicing to
divide the message variable into two strings representing the rows . End the
function by returning the row variables.

Now it’s just a matter of choosing and joining every other letter from the
rows to stitch the plaintext back together. Define a decrypt() function and
pass it the strings for row1 and row2 . Start the translation process by mak-
ing an empty list to hold the results . Next, you need an easy way to deal
with cases where the ciphertext has an odd number of letters—resulting in
two rows of different lengths—because Python prevents you from looping
through two uneven sequences by raising an index-out-of-range error. This
is why we’ve imported the itertools module—its functions help with looping
to circumvent this problem.

The itertools.zip_longest() function accepts two strings as arguments
and loops through them without complaint, appending a null value (None)
to the plaintext list when it gets to the end of the shorter string . You
don’t want to print this null value, so if it’s there, remove it using the pop()
method you applied in the route cipher code . Complete the decryption
process by printing the two rows (rails) to the screen, followed by the
decrypted ciphertext.

End with the standard code for running the program as a module or in
stand-alone mode . The output from the program is as follows:

ciphertext = LTSRS OETEI EADET NETEH DOTER EEUCO SVRHR VRNRS UDRHS AEFHT ES

rail 1 = LTSRSOETEIEADETNETEHDOTERE
rail 2 = EUCOSVRHRVRNRSUDRHSAEFHTES

plaintext = letuscrossovertheriverandrestundertheshadeofthetrees

Note that there will be no spaces between words, but that’s okay—you
don’t want to leave the cryptanalyst feeling completely useless!

Summary
That completes our foray into Civil War ciphers. You wrote a program that
helps a user decrypt a route cipher, and you gained valuable insights into
how it works and how to hack it. You can implement an automated attack on

Decoding American Civil War Ciphers 87

the cipher in the following practice projects, but remember, with its many
possible paths and use of code words, the Union route cipher is a tough nut
to fully crack.

Next, you wrote programs to encrypt and decrypt two-rail fence
ciphers. Given how tedious and error-prone the manual encryption and
decryption processes are, having an automated way to do most of the work
would have been valuable to both sides in the war. And to further address
these types of issues, you wrote your code to be user-friendly to the inexpe-
rienced cryptanalyst or spy.

Further Reading
More beginner-level Python programs for working with transposition
ciphers are available in Cracking Codes with Python (No Starch Press, 2018)
by Al Sweigart.

Excellent and well-illustrated overviews of cryptography can be found
in Mysterious Messages: A History of Codes and Ciphers (The Penguin Group,
2009) by Gary Blackwood and The Code Book: The Science of Secrecy from
Ancient Egypt to Quantum Cryptography (Anchor, 2000) by Simon Singh.

The sites http://www.civilwarsignals.org/pages/crypto/crypto.html and http://
www​.mathaware.org/mam/06/Sauerberg_route-essay.html include descriptions of
Edward Porter Alexander’s attempt to solve a route cipher. Alexander was
the father of the Confederate Army Signal Corps and a brilliant military
innovator with many impressive accomplishments.

Practice Projects
Hone your cryptography skills with these projects. Solutions are available in
the appendix and online.

Hacking Lincoln
In his book, Mysterious Messages: A History of Codes and Ciphers, Gary
Blackwood reproduces an actual message sent by Abraham Lincoln and
encrypted with a route cipher:

THIS OFF DETAINED ASCERTAIN WAYLAND CORRESPONDENTS
OF AT WHY AND IF FILLS IT YOU GET THEY NEPTUNE THE

TRIBUNE PLEASE ARE THEM CAN UP

Use the route_cipher_decrypt.py program to solve this cryptogram. The
number of columns and rows must be factors of the message length, and
the route starts in one of the corners, doesn’t skip columns, and alternates
direction with every column change. The code word definitions and plain-
text solution can be found in the appendix.

http://www.civilwarsignals.org/pages/crypto/crypto.html
http://www.mathaware.org/mam/06/Sauerberg_route-essay.html
http://www.mathaware.org/mam/06/Sauerberg_route-essay.html

88 Chapter 4

Identifying Cipher Types
The sooner you know what type of cipher you’re dealing with, the sooner
you can break it. Word-transposition ciphers are easy to spot, but letter-
transposition ciphers can look like letter-substitution ciphers. Fortunately,
you can distinguish between the two by using the frequency of occurrence
of letters in the ciphertext. Since the letters are just scrambled and not
replaced in transposition ciphers, their frequency distribution will be the
same as for the language in which the plaintext was written. An exception,
however, is military messages, which use jargon and omit many common
words. For these, you need a frequency table built from other military
messages.

Write a Python program that takes a string of ciphertext as input and
determines whether it is more likely to be a transposition cipher or a sub-
stitution cipher. Test it with the files cipher_a.txt and cipher_b.txt, download-
able from https://www.nostarch.com/impracticalpython/. A solution can be
found in the appendix and online at the book’s website in identify_cipher_
type_practice.py.

Storing a Key as a Dictionary
Write a short script to break a route cipher key into two parts: one to record
the column order and one to record the direction to read through the rows
in the column (up or down). Store the column number as a dictionary key
and the reading direction as the dictionary value. Have the program inter-
actively request the key value for each column from the user. A solution can
be found in the appendix and online in the file key_dictionary_practice.py.

Automating Possible Keys
To attempt to decipher a route cipher using any combination of columns in
its path, you need to know what those combinations are, so you can enter
them as arguments in a decryption function. Write a Python program
that accepts an integer (such as the number of columns) and returns a
collection of tuples. Each tuple should contain a unique ordering of col-
umn numbers, like (1, 2, 3, 4). Include negative values—for example,
(2, -3, 4, -1)—to capture encryption routes that go up columns versus
down. A solution is provided in the appendix, with a downloadable version
on the book’s website in permutations_practice.py.

Route Transposition Cipher: Brute-Force Attack
Copy and modify the route_cipher_decrypt.py program to hack the route cipher
in Figure 4-2. Rather than inputting a single key, loop through all possible
keys—for an assumed number of columns—and print the results (use the
earlier permutations code to generate the keys for this four-column cipher).
The impact of switching the order of columns and allowing up-and-down
paths through the transposition matrix is clearly illustrated in Figure 4-10.
The dashed line is the factorial of the number of columns; the solid line
captures the effect of reading up columns as well as down (captured by the

https://www.nostarch.com/impracticalpython/

Decoding American Civil War Ciphers 89

inclusion of negative values in the key). If you only needed to deal with the
factorial of 4, your job as a cryptanalyst would be easy. But as the cipher gets
longer, the number of possible keys explodes. And some actual Union route
ciphers had 10 or more columns!

Number of Possible Keys vs. Number of Columns

N
um

be
r

of
 P

os
si

bl
e

Ke
ys

 (L
og

)

Number of Columns

7

6

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8

Factorial of # columns Permutations including negative key values

384

645,120

5,040

24

Figure 4-10: Number of possible keys versus number of columns for a route cipher

Here are four translations out of the 384 produced for the ciphertext in
Figure 4-2:

using key = [-4, -1, -2, -3]
translated = IS HEADING FILLER VILLAGE YOUR SNOW SOUTH GODWIN ARE FREE TO YOU
WITH SUPPLIES GONE TRANSPORT ROANOKE JUST TO REST

using key = [1, 2, -3, 4]
translated = REST ROANOKE HEADING TO TRANSPORT WITH SNOW GONE YOU ARE FREE TO
GODWIN YOUR SUPPLIES SOUTH VILLAGE IS JUST FILLER

using key = [-1, 2, -3, 4]
translated = VILLAGE ROANOKE HEADING TO GODWIN WITH SNOW GONE YOU ARE FREE TO
TRANSPORT YOUR SUPPLIES SOUTH REST IS JUST FILLER

using key = [4, -1, 2, -3]
translated = IS JUST FILLER REST YOUR SUPPLIES SOUTH TRANSPORT ARE FREE TO YOU
WITH SNOW GONE GODWIN ROANOKE HEADING TO VILLAGE

The correct answer is present, but you can appreciate how hard it would
be to pick it out quickly, given the use of code words and dummy words.
Still, you did your job. Go have that mint julep or some sweet tea.

A solution to this project is provided in the appendix and at https://
www.nostarch.com/impracticalpython/ in route_cipher_hacker.py. You will also
need the perms.py program, which is based on the previous practice project.

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

90 Chapter 4

Challenge Projects
No solutions are provided for challenge projects.

Route Cipher Encoder
A greenhorn Union telegraph clerk needs to encrypt the following mes-
sage, complete with code words (Table 4-1). Help them out by writing a
program that takes the message as input and automatically substitutes the
code words, fills the bottom row with dummy words, and transposes the
words using the key [-1, 3, -2, 6, 5, -4]. Use a 6×7 matrix and make up
your own dummy words.

We will run the batteries at Vicksburg the night of April 16 and
proceed to Grand Gulf where we will reduce the forts. Be pre-
pared to cross the river on April 25 or 29. Admiral Porter.

Table 4-1: Code Words

Batteries HOUNDS

Vicksburg ODOR

April CLAYTON

16 SWEET

Grand TREE

Gulf OWL

Forts BAILEY

River HICKORY

25 MULTIPLY

29 ADD

Admiral HERMES

Porter LANGFORD

Consider using a Python dictionary for the lexicon of code words in
this table.

Three-Rail Fence Cipher
Write a version of the rail fence cipher that uses three rails (rows) instead of
two. You can find a hint at https://en.wikipedia.org/wiki/Rail_fence_cipher.

https://en.wikipedia.org/wiki/Rail_fence_cipher

5
E n c o d i n g

E n g l i s h C i v i l W a r C i p h e r s

In 1587, Mary, Queen of Scots, lost her
head due to a scrap of paper. Fifty-five

years later, Sir John Trevanion, a supporter
of another beheaded monarch, Charles the

First, had his head saved by a scrap of paper. What
made the difference? Steganography.

Steganography is the time-tested practice of concealing messages so well
that their existence isn’t even suspected. The name is based on the Greek
words for “covered writing,” and a very literal Grecian example was to take
wax-covered wooden tablets used for writing, scrape off the wax, write on
the wood, and then cover the board with a new coating of smooth wax. A
modern-day example is to embed a message in an image by subtly altering
its color components. Even a simple 8-bit JPEG image contains more colors
than the human eye can detect, so without digital processing or filtering,
the message is essentially invisible.

In this chapter, you’ll work with the null cipher, which isn’t a cipher at
all but a steganographic technique for concealing plaintext within other

92 Chapter 5

strings of noncipher material. Null means “none,” so with a null cipher, you
have chosen not to encrypt the message. The following is an example of a
null cipher using the first letter in every word:

Nice uncles live longer. Cruel, insensitive people have eternal regrets.

First, you’ll write code that finds the hidden message that saved Sir
John, and then you’ll accomplish the much more difficult task of writing a
null cipher. Finally, you’ll get the opportunity to write a program that might
have saved Mary’s head, had she used the output.

Project #10: The Trevanion Cipher
Queen Mary relied on both steganography and encryption to protect
her messages. The strategy was sound, but her application was flawed.
Unknowingly, she relied on a double agent named Gilbert Gifford to
smuggle her messages. Gifford first delivered them to Queen Elizabeth’s
spymaster, who cracked the cipher and replaced it with a forged message
that enticed Mary to incriminate herself. The rest, as they say, is history.

For John Trevanion, the outcome was rosier. Sir John, a distinguished
cavalier who aided Charles I against Oliver Cromwell in the English Civil
War, was captured and imprisoned in Colchester Castle. The day before his
execution, he received a letter from one of his friends. The letter was not
smuggled in but delivered straight into the hands of his jailors, who exam-
ined it but didn’t notice any deception. After reading it, Sir John asked for
some time alone to pray in the chapel. When his jailors came back to fetch
him, he had vanished.

Here is the message Sir John received:

Worthie Sir John: Hope, that is the beste comfort of the afflicted,
cannot much, I fear me, help you now. That I would saye to you,
is this only: if ever I may be able to requite that I do owe you,
stand not upon asking me. 'Tis not much I can do: but what I
can do, bee you verie sure I wille. I knowe that, if deathe comes,
if ordinary men fear it, it frights not you, accounting for it for a
high honour, to have such a rewarde of your loyalty. Pray yet that
you may be spared this soe bitter, cup. I fear not that you will
grudge any sufferings; onlie if bie submission you can turn them
away, 'tis the part of a wise man. Tell me, an if you can, to do for
you anythinge that you wolde have done. The general goes back
on Wednesday. Restinge your servant to command. R.T.

As you have probably guessed, this seemingly innocent letter contains a
hidden message, revealed below in bold:

Worthie Sir John: Hope, that is the beste comfort of the afflicted,
cannot much, I fear me, help you now. That I would saye to you,
is this only: if ever I may be able to requite that I do owe you,
stand not upon asking me. 'Tis not much I can do: but what I
can do, bee you verie sure I wille. I knowe that, if deathe comes,

Encoding English Civil War Ciphers 93

if ordinary men fear it, it frights not you, accounting for it for a
high honour, to have such a rewarde of your loyalty. Pray yet that
you may be spared this soe bitter, cup. I fear not that you will
grudge any sufferings; onlie if bie submission you can turn them
away, 'tis the part of a wise man. Tell me, an if you can, to do for
you anythinge that you wolde have done. The general goes back
on Wednesday. Restinge your servant to command. R.T.

This null cipher uses every third letter after a punctuation mark to let
Sir John know that a “panel at east end of chapel slides.” It’s rumored that
the remains of a narrow stairway were later discovered in a recess in a wall
in the castle. The passage was blocked at the time of discovery, but it may
have been Sir John’s escape route around 1642.

This last-minute escape would not have been possible with a traditional
cipher. Only by expertly concealing the message with steganography was
its author able to get it so quickly into Sir John’s hands. And the beauty of a
null cipher is that, even if Sir John didn’t know the pattern but suspected a
message was present, he could have found it fairly quickly.

If Sir John’s friend had been more careful, concealing encrypted cipher-
text instead of plaintext, Sir John probably wouldn’t have deciphered the
message in the short time he had remaining—unless he’d been informed
beforehand of the cipher type and key.

T he Objec t i v e

Write code that finds the letters hidden after punctuation marks in a null cipher and lets
the user choose the number of letters after a punctuation mark to search for a solution.

Strategy and Pseudocode
Null ciphers rely on a repeating pattern known to both the sender and
receiver. For example, every third word may be part of the real message or,
better, the last letter of every third word. In the Trevanion cipher, it’s the
third letter after a punctuation mark.

To find the Trevanion cipher, assume punctuation marks are the signal
to begin counting, and then write code that locates every nth letter after
the mark and saves those letters to a string or list. Once you’ve worked out
how to do this, you can easily edit the code to work with any starting point,
such as every capitalized word, every second letter per word, or the starting
letter of every third word.

The only real point of contention involves punctuation marks. For
instance, did the null cipher’s writer want punctuation marks to be included
in the plaintext? How do you handle a second punctuation mark within
the desired count range? What happens if two punctuation marks occur in
succession?

If you take a close look at the Trevanion cipher, you should see that
there are double punctuations caused by the repeated use of the word ’tis.

94 Chapter 5

There is also a jumble of punctuation marks at the end of the message,
where the writer provides his initials. To deal with this, Sir John and his
friend may have established some rules before Sir John’s incarceration, or
Sir John just used trial and error to work them out.

Based on the end of the message, punctuation marks aren’t included
in the letter count. If Sir John’s friend had intended them to be, then the
hidden message would end with a capital T, because the T is three characters
after a punctuation mark, and crucially not three letters after. This means
that, if the reader encounters a punctuation mark within the count limit,
they have to restart their count.

So these are the rules:

•	 Initiate a letter count with every punctuation mark.

•	 Reset the count if a punctuation mark is encountered.

•	 Punctuation marks cannot be part of the plaintext message.

Since you may not know what the letter count should be, write the
code so that it checks all counts up through a limit the user provides. The
pseudocode is fairly straightforward:

Load a text file and strip it of whitespace
Get user input on how many letters after punctuation to look ahead and examine
Loop through number of letters from 1 to this lookahead value
 Start an empty string to hold the translation
 Start a counter
 Start a ufirst-found marker and set to False
 Loop through characters in the text
 If character is punctuation
 Counter = 0
 First-found = True
 Otherwise, if vfirst-found is True
 Counter + 1
 If counter = lookahead value
 Add character to translation string
 Display translation for this lookahead value

Note that the first-found variable  will remain False until a punctua-
tion mark is encountered, after which it will be set to True . This prevents
the program from counting until the first punctuation mark is found.

Now you’re ready to write the code!

The Trevanion Cipher Code
The code in this section will find a Trevanion-type null cipher encoded
with a specific number of letters after each punctuation mark. You will also
need the text file containing the Trevanion cipher. You can download both
the script and the text file from https://www.nostarch.com/impracticalpython/
as null_cipher_finder.py and trevanion.txt, respectively. Keep these files in the
same folder.

https://www.nostarch.com/impracticalpython/

Encoding English Civil War Ciphers 95

Loading the Text

Listing 5-1 imports some useful modules and loads the text file containing
the null cipher.

 import sys
import string

 def load_text(file):
 """Load a text file as a string."""

  with open(file) as f:
  return f.read().strip()

Listing 5-1: Imports modules and loads the null cipher text

First, import the now-familiar sys module so you can handle exceptions
that may occur during user input . Also import the string module to gain
access to useful collections of constants, like letters and punctuation marks.

Next, define a function to load the text file containing the null cipher .
This function is similar to the one you used to load a dictionary file in
Chapter 2. It will be called by the main()function later to actually load the file.

Start the load_text() function by using with to open the file . By using
with, you know the file will be automatically closed after it is loaded. Use read()
to load the contents and strip() to remove leading and trailing whitespace.
Note that you can do this on the same line with the return statement .

Finding the Hidden Message

Listing 5-2 defines the function that finds the hidden message. It takes two
arguments. The first is the message, which is the original text file as a string
stripped of whitespace, and the second is the number of letters to check
after a punctuation mark. This check value is obtained from the user as
part of the main() function.

def solve_null_cipher(message, lookahead):
 """Solve a null cipher based on number of letters after punctuation mark.

 message = null cipher text as string stripped of whitespace
 lookahead = endpoint of range of letters after punctuation mark to examine
 """

  for i in range(1, lookahead + 1):
  plaintext = ''

 count = 0
 found_first = False

  for char in message:
  if char in string.punctuation:

 count = 0
 found_first = True

  elif found_first is True:
 count += 1

  if count == i:
 plaintext += char

null_cipher
_finder.py,
part 1

null_cipher
_finder.py,
part 2

96 Chapter 5

  print("Using offset of {} after punctuation = {}".
 format(i, plaintext))
 print()

Listing 5-2: Searches for hidden letters

Treat the lookahead value as the endpoint of a range in a for loop so that
you can check all the intervening letters in the message for the presence of
a hidden message. Set the range as (1, lookahead + 1) ; that way, you start
with the first letter after a punctuation mark and include the user’s choice
in the evaluation.

Now, assign a few variables . First, initialize an empty string to hold
the translated plaintext. Then set a counter to 0. Finally, set a found_first
variable to False. Remember that the program uses this variable to defer
counting until the first punctuation mark is encountered.

Next, begin looping through the characters in the message . If you
encounter a punctuation mark, reset the counter to 0 and set found_first to
True . If you’ve found a punctuation mark already and the current charac-
ter isn’t punctuation, advance the counter by 1 . If you’ve found the letter
you’re looking for—meaning the count has reached the current lookahead
value (i)—add the letter to the plaintext string .

When you’ve examined all the characters in the message for the cur-
rent lookahead value, display the current key and the translation .

Defining the main() Function

Listing 5-3 defines the main() function. You may remember from Chapter 3
that the main() function is like your program’s project manager: it takes
input, keeps track of progress, and tells the other functions when to work.

def main():
 """Load text, solve null cipher."""
 # load & process message:

  filename = input("\nEnter full filename for message to translate: ")
  try:

 loaded_message = load_text(filename)
 except IOError as e:
 print("{}. Terminating program.".format(e), file=sys.stderr)
 sys.exit(1)

  print("\nORIGINAL MESSAGE =")
 print("{}".format(loaded_message), "\n")
 print("\nList of punctuation marks to check = {}".
 format(string.punctuation), "\n")

 # remove whitespace:
  message = ''.join(loaded_message.split())

 # get range of possible cipher keys from user:
  while True:
  lookahead = input("\nNumber of letters to check after " \

 "punctuation mark: ")
  if lookahead.isdigit():

null_cipher
_finder.py,
part 3

Encoding English Civil War Ciphers 97

 lookahead = int(lookahead)
 break
 else:

  print("Please input a number.", file=sys.stderr)
 print()

 # run function to decode cipher
  solve_null_cipher(message, lookahead)

Listing 5-3: Defines the main() function

Start by asking the user for the name of the file (name + extension) ,
and then use try to call the load_text() function . If the file can’t be found,
print the error in red—for those using the IDLE window—and exit the
program using sys.exit(1), where the 1 indicates termination with an error.

Print the message followed by the list of punctuation marks in the
string module . Only the characters in this list will be recognized by the
program as punctuation.

Next, take the loaded message and remove all spaces . You’re going
to count only letters and punctuation marks, so spaces would just get in the
way. Start a while loop that keeps asking the user for input in the event they
enter a bad value . Ask the user for the number of letters to check after
a punctuation mark . This will be treated as a range, starting with 1 and
ending with the user’s choice plus 1. If the input value is a digit , turn it
into an integer, since input returns a string. Then, use break to exit the loop.

If the user enters an invalid value, like “Bob,” use a print statement to
request a number and, for shell users, make the font red using sys.stderr .
The while loop will then repeat the request for input.

Pass the lookahead variable, along with the message, to the solve_null_
cipher function . Now all that’s left is to call the main() function.

Running the main() Function

Back in the global space, complete the code by calling main()—but only
if the program is run in stand-alone mode versus being imported into
another program (Listing 5-4).

if __name__ == '__main__':
 main()

Listing 5-4: Calls the main() function

The following is example output from the completed program, using
the Trevanion cipher as input:

Enter full filename for message to translate: trevanion.txt

ORIGINAL MESSAGE =
Worthie Sir John: Hope, that is the beste comfort of the afflicted, cannot
much, I fear me, help you now. That I would saye to you, is this only: if ever
I may be able to requite that I do owe you, stand not upon asking me. 'Tis not
much I can do: but what I can do, bee you verie sure I wille. I knowe that,

null_cipher
_finder.py,
part 4

98 Chapter 5

if deathe comes, if ordinary men fear it, it frights not you, accounting for
it for a high honour, to have such a rewarde of your loyalty. Pray yet that
you may be spared this soe bitter, cup. I fear not that you will grudge any
sufferings; onlie if bie submission you can turn them away, 'tis the part of a
wise man. Tell me, an if you can, to do for you anythinge that you wolde have
done. The general goes back on Wednesday. Restinge your servant to command.
R.T.

List of punctuation marks to check = !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

Number of letters to check after punctuation mark: 4

Using offset of 1 after punctuation = HtcIhTiisTbbIiiiatPcIotTatTRRT

Using offset of 2 after punctuation = ohafehsftiuekfftcorufnienohe

Using offset of 3 after punctuation = panelateastendofchapelslides

Using offset of 4 after punctuation = etnapthvnnwyoerroayaitlfogt

In this output, the program has checked up to the fourth letter after a
punctuation mark, but as you can see, it finds the solution using three let-
ters after a punctuation mark.

Project #11: Writing a Null Cipher
Here is an unfinished example of a very weak null cipher based on the start
of each word. Take a minute and try to complete the sentence:

H__________ e__________ l__________ p__________ m__________ e__________.

You probably found it difficult, because whether you use letters or
even whole words, it takes hard work and time to produce a null cipher
that doesn’t read awkwardly and arouse suspicion. The heart of the prob-
lem is context. If the cipher is encapsulated within correspondence, that
correspondence has to be coherent to avoid suspicion. That means it has
to address a relevant topic and stay true to that topic for a reasonable num-
ber of sentences. As you probably saw, drafting even one sentence on any
topic is no easy task!

The key is to credibly avoid context, and a good way to do this is with a
list. No one expects a shopping list to be rigidly organized or make sense.
Lists can also be tailored to the receiver. For example, correspondents might
get into a discussion of books or movies and exchange lists of their favor-
ites. A prisoner might start studying a foreign language and receive regu-
lar vocabulary lists from their tutor. A businessperson might get monthly
inventories from one of their warehouses. With lists, context is honored even
while words are shuffled so the correct letter is found in the correct place.

Encoding English Civil War Ciphers 99

T he Objec t i v e

Write code that hides a null cipher within a list of words.

The List Cipher Code
The list_cipher.py code, in Listing 5-5, embeds a null cipher within a list of
dictionary words under the deception of vocabulary training. You’ll also
need the load_dictionary.py program you used in Chapters 2 and 3. You can
download this file, along with the following script, from https://www.nostarch​
.com/impracticalpython/. Finally, you’ll need one of the dictionary files you
used in Chapters 2 and 3. You can find a list of suitable online dictionaries
in Table 2-1 on page 20. All of the aforementioned files should be kept in
the same folder.

 from random import randint
import string
import load_dictionary

write a short message that doesn't contain punctuation or numbers!
input_message = "Panel at east end of chapel slides"

message = ''
for char in input_message:

  if char in string.ascii_letters:
 message += char
print(message, "\n")

 message = "".join(message.split())

 # open dictionary file
word_list = load_dictionary.load('2of4brif.txt')

build vocabulary word list with hidden message
 vocab_list = []
 for letter in message:

 size = randint(6, 10)
  for word in word_list:

 if len(word) == size and word[2].lower() == letter.lower()\
 and word not in vocab_list:
 vocab_list.append(word)
 break

 if len(vocab_list) < len(message):
 print("Word List is too small. Try larger dictionary or shorter message!")
else:
 print("Vocabulary words for Unit 1: \n", *vocab_list, sep="\n")

Listing 5-5: Hides null cipher in a list

list_cipher.py

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

100 Chapter 5

Start by importing the random module’s randint() function . This
permits the (pseudo)random selection of an integer value. Then load
the string module, for access to ASCII letters. Finish by importing your
load_dictionary module.

Next, write a short secret message. Note that the associated comment
forbids punctuation marks or numbers. Trying to use these with a diction-
ary file’s contents would be problematic. So, filter out everything but letters
by checking for membership in string.ascii_letters, which contains both
uppercase and lowercase letters :

'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'

Display the message and then remove the whitespace . Load your dic-
tionary file  and start an empty list to hold the vocabulary words .

Use a for loop to go through each letter in the message . Name a size
variable and assign it a random value between 6 and 10 using the randint()
function. This variable will ensure the words are long enough to be credible
as vocabulary words. You can set the maximum value higher if you wish.

Nest another for loop and use it to go through the dictionary words ,
checking their length against the size variable and comparing the (lower-
case) letter at index 2—the word’s third letter—to the current (lowercase)
letter in the message loop. You can change the index value on the word,
but make sure it doesn’t exceed the lowest possible size variable minus 1!
A final comparison prevents the same word from being used twice. If the
word passes the tests, append it to vocab_list and move on to the next letter
in the message.

A typical dictionary file should contain enough words to encrypt a short
message. But, to be safe, use a conditional to check that the length of vocab_
list is not shorter than the length of the message . If it’s shorter, then you
ran out of words before reaching the end of the message, and you need to
print a warning for the user. Otherwise, print the list of words.

The List Cipher Output
Here is the output from the code (I’ve highlighted every third letter for
readability, though the message is pretty easy to spot without any aid):

Panelateastendofchapelslides

Vocabulary words for Unit 1:

alphabets
abandoning
annals
aberration
ablaze
abandoned

Encoding English Civil War Ciphers 101

acting
abetted
abasement
abseil
activated
adequately
abnormal
abdomen
abolish
affecting
acceding
abhors
abalone
ampersands
acetylene
allegation
absconds
aileron
acidifying
abdicating
adepts
absent

Using a font with a consistent character width and stacking the words
really compromises the cipher. We’ll look at ways to deal with this in
“Saving Mary” on page 102.

Summary
In this chapter, you wrote a program that reveals the hidden message in a
Trevanion-type null cipher. Then, you wrote a second program that gener-
ates a null cipher and conceals it within a language learner’s vocabulary list.
In the following practice projects, you can explore ways to make this list
cipher more secure.

Further Reading
More details on Mary, Queen of Scots, and Sir John Trevanion can be
found in Mysterious Messages: A History of Codes and Ciphers (The Penguin
Group, 2009) by Gary Blackwood and The Code Book: The Science of Secrecy
from Ancient Egypt to Quantum Cryptography (Anchor, 2000) by Simon Singh.

Practice Projects
Now that you’re an expert on the null cipher, see if you can change the fate
of Mary, Queen of Scots, and then sneak a look at Sir John’s most secret
correspondence.

102 Chapter 5

Saving Mary
The best part of coding is thinking about problems and how to solve them.
Let’s revisit the sad case of Mary, Queen of Scots. Here’s what we know:

•	 Mary was not allowed correspondence, so letters had to be smuggled in.
This means that the traitorous Gilbert Gifford cannot be removed from
the equation. Gifford was the only person Mary knew with the means to
deliver her mail.

•	 Mary and her correspondents put too much faith in an insecure cipher
and thus spoke too freely. With less confidence, they might have shown
more forbearance.

•	 Mary’s jailors, having an obvious cipher in their possession, assumed it
contained incriminating material and kept working until they found it.

Gifford, the double agent, wasn’t privy to the details of the ciphers
Mary used. Now, assume Mary used a null cipher. If the correspondence
was somewhat seditious—though not treasonously so—the message might
have been overlooked by her captors. In the event a cursory examination
was made, the use of a variable pattern might have sufficed to stymie the
cryptanalysts.

As you have seen, it’s easier to hide a null cipher in a list than in a let-
ter. A list of families supporting Mary could serve the purpose. These could
be known supporters or, in a Machiavellian twist, a mix of friends and
enemies! This message wouldn’t be openly seditious, but would be close
enough so that a lack of encryption would suggest no form of encryption
was being used at all.

For this practice project, write a program that embeds the message
“Give your word and we rise” in a list of surnames. To hide the letters
in the message, start at the second letter in the second name, move to
the third letter in the third name, and then keep alternating between sec-
ond and third letters for the remaining words.

In addition to the unused first name, include “Stuart” and “Jacob” as
null words early in the list to help hide the presence of the cipher. Don’t
embed letters from the cipher in these null names and completely ignore
them when choosing the letter position for the cipher in the following
word; if the second letter was used in the word before the null name, use the
third letter in the word after the null name. The null cipher would occupy
the following bolded letters (the location of the null words is up to you, but
don’t let them affect the pattern):

First Second Third STUART Fourth Fifth JACOB Sixth Seventh Eighth

The program can print the list either vertically or horizontally. The
name list should be credibly introduced with a short message, but that mes-
sage shouldn’t be part of the cipher.

Encoding English Civil War Ciphers 103

The list of names can be downloaded from https://www.nostarch.com/
impracticalpython/ as supporters.txt and loaded as a standard dictionary file.
You can find a solution in the appendix and online as save_Mary_practice.py.

The Colchester Catch
Instead of some ale-sotted dimwit, you are left in charge of the prisoner
John Trevanion when the following letter arrives at Colchester Castle:

Sir John: Odd and too hard, your lot. Still, we will band together
and, like you, persevere. Who else could love their enemies, stand
firm when all others fail, hate and despair? While we all can, let
us feel hope. -R.T.

It seems clumsily phrased, even for the 17th century, and you decide to
examine it more closely before passing it to your inmate.

Write a Python program that takes an input, n, and checks for and dis-
plays a null cipher based on the nth letter after the start of every nth word.
For example, an input of 2 would find the bolded letters in this message:

So, the cold tea didn’t please the old finicky woman.

You can download the text file of the message from https://nostarch​.com/
impracticalpython/ as colchester_message.txt. A solution can be found in the
appendix and online as colchester_practice.py. Keep the text and Python files
together in the same folder.

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

6
W r i t i n g i n I n v i s i b l e I n k

In the fall of 2012, the crime drama
Elementary debuted on the CBS television

network. A reimagining of the Sherlock
Holmes mythos set in 21st-century New York,

it starred Jonny Lee Miller as Holmes and Lucy Liu
as his sidekick, Dr. Joan Watson. In a 2016 episode
(“You’ve Got Me, Who’s Got You?”), Morland Holmes,
Sherlock’s estranged father, hires Joan to find a mole in his organization.
She quickly solves the case by discovering a Vigenère cipher in an email.
But some fans of the show were dissatisfied: the Vigenère cipher is hardly
subtle, so how could a man as intelligent as Morland Holmes miss finding it
on his own?

In this project, you’ll reconcile this dilemma using steganography, but
not with a null cipher as in Chapter 5. To hide this message, you’ll use a
third-party module called python-docx that will allow you to conceal text by
directly manipulating Microsoft Word documents using Python.

106 Chapter 6

Project #12: Hiding a Vigenère Cipher
In the Elementary episode, Chinese investors hire Morland Holmes’s consult-
ing company to negotiate with the Colombian government for petroleum
licenses and drilling rights. A year has passed, and at the last moment a
competitor swoops in and clinches the deal, leaving the Chinese investors
high and dry. Morland suspects betrayal by a member of his staff and asks
Joan Watson to investigate alone. Joan identifies the mole by finding a
Vigenère cipher in one of his emails.

S P O ILER A LERT 	� The decrypted contents of the cipher are never mentioned, and the mole is
murdered in a subsequent episode.

The Vigenère cipher, also known as the unbreakable cipher, is arguably
the most famous cipher of all time. Invented in the 16th century by the
French scholar Blaise de Vigenère, it is a polyalphabetic substitution cipher
that, in the most commonly used version, employs a single keyword. This
keyword, such as BAGGINS, is printed repeatedly over the plaintext, as in
the message shown in Figure 6-1.

B
s
A
p
G
e
G
a
I
k
N
f
S
r i ne d a n d e n t e r
B A G G I N S B A G G I

Figure 6-1: A plaintext message with the Vigenère
cipher keyword BAGGINS printed above

A table, or tableau, of the alphabet is then used to encrypt the message.
Figure 6-2 is an example of the first five rows of a Vigenère tableau. Notice
how the alphabet shifts to the left by one letter with each row.

A
B
C
D
E

A
B
C
D
E

B
C
D
E

C
D
E

D
E
E
F
G
H
I

F
G
H

F
GF

F
G
H
I

G
H
I

H
I
I J
K
L

J
M
N

J
K
L
M

J
K
L

J
K

K
L
M
N
O

OL
M
N
O

M
N
O

N
O

P

P
Q
R
SQP

P
Q
R

P
Q
R
S

Q
R
S

R
S
S
T

T

U
T
U

V
T
U
V W

T
U
V
W

U
V
W

V
W
W

X

X
Y

X
Y

Z
A

X
Y
Z

X
Y
Z
A

Y
Z
A

B
B
C

Z
A
B
C
D

a b c d e f g h i j k ol m n p q r s t u v w x y z

Figure 6-2: Portion of a Vigenère tableau

The keyword letter above the plaintext letter determines which row
to use for the encryption. For example, to encrypt the s in speak, note that
the keyword letter above it is B. Go down to the B row and read across to
where the plaintext s is at the top of the column. Use the T at the inter
section for the ciphertext letter.

Figure 6-3 shows an example of the full message encrypted with the
Vigenère cipher. This kind of text would surely draw attention and become
an object of scrutiny if it were visible in a document!

Writing in Invisible Ink 107

TPKGS SJJETJ IAV FNZKZ

Figure 6-3: A message encrypted with the Vigenère cipher

The Vigenère cipher remained unbroken until the mid-19th century,
when Charles Babbage, inventor of the precursor to the computer, realized
that a short keyword used with a long message would result in repeating
patterns that could reveal the length of the keyword and, ultimately, the
key itself. The breaking of the cipher was a tremendous blow to professional
cryptography, and no significant advancements were made in the field dur-
ing the Victorian era of the original Holmes and Watson.

The presence of this cipher is what causes “suspension of disbelief”
issues with the Elementary episode. Why would an outside consultant be
needed to find such a clearly suspicious email? Let’s see if we can come up
with a plausible explanation using Python.

T he Objec t i v e

Assume you are the corporate mole in the episode and use Python to hide a secret mes-
sage summarizing bid details within an official-looking text document. Start with an unen-
crypted message and finish with an encrypted version.

The Platform
Your program should work with ubiquitous word-processing software, as the
output needs to be sharable between different corporations. This implies
use of the Microsoft Office Suite for Windows or compatible versions for
macOS or Linux. And restricting the output to a standard Word document
makes hardware issues Microsoft’s responsibility!

Accordingly, this project was developed with Word 2016 for Windows,
and the results checked with Word for Mac v16.16.2. If you don’t have a
license for Word, you can use the free Microsoft Office Online app, avail-
able at https://products.office.com/en-us/office-online.

If you currently use alternatives to Word, like LibreOffice Writer or
OpenOffice Writer, you can open and view the Word (.docx) files used and
produced in this project; however, the hidden message will most likely be
compromised, as discussed in “Detecting the Hidden Message” on page 119.

The Strategy
You’re an accountant with a beginner’s knowledge of Python, and you work
for a very intelligent and suspicious man. The project you work on is highly
proprietary, with controls—such as email filters—to maintain confidential-
ity. And if you manage to sneak out a message, a thorough investigation will

https://products.office.com/en-us/office-online

108 Chapter 6

surely follow. So, you need to hide a clearly suspicious message in an email,
either directly or as an attachment, yet evade initial detection and later
internal audits.

Here are some constraints:

•	 You can’t send the message directly to the competing corporation, only
to an intermediary.

•	 You need to scramble the message to evade the email filters that will
search for keywords.

•	 You need to hide the encrypted message from sight so as not to arouse
suspicion.

The intermediary would be easy to set up, and free encryption sites are
easy to find on the internet—but the last item is more problematic.

Steganography is the answer, but as you saw in the previous chapter,
hiding even a short message in a null cipher is no easy task. Alternative tech-
niques involve shifting lines of text vertically or words horizontally by small
amounts, changing the length of letters, or using the file’s metadata—but
you’re an accountant with limited knowledge of Python and even less time.
If only there were an easy way, like invisible ink in the old days.

Creating Invisible Ink
Invisible ink, in this age of electronic ink, might be just crazy enough to
work! An invisible font would easily foil a visual perusal of online docu-
ments and won’t even exist in paper printouts. Since the contents would be
encrypted, digital filters looking for keywords like bid or the Spanish names
of the producing oil basins would find nothing. And best of all, invisible ink
is easy to use—just set the foreground text to the background color.

Formatting text and changing its color requires a word processor like
Microsoft Word. To make invisible electronic ink in Word, you just need to
select a character, word, or line and set the font color to white. The recipient
of the message would then need to select the whole document and use
the Highlighter tool (see Figure 6-4) to paint the selected text black, thus
concealing the standard black letters and bringing the hidden white letters
into view.

Figure 6-4: The Text Highlight Color tool in Word 2016

Writing in Invisible Ink 109

Just selecting the document in Word won’t reveal the white text
(Figure 6-5), so someone would have to be very suspicious indeed to find
these hidden messages.

Figure 6-5: Top: a portion of a Word document with the fake
message visible; middle: the document selected with ctrl-A;
bottom: the real message revealed using the Highlighter tool
with the highlight color set to black

Of course, you can accomplish all this in a word processor alone, but
there are two cases where a Pythonic approach is preferable: 1) when you
have to encrypt a long message and don’t want to manually insert and hide
all the lines and 2) when you need to send more than a few messages. As
you’ll see, a short Python program will greatly simplify the process!

Considering Font Types, Kerning, and Tracking

Placing the invisible text is a key design decision. One option is to use
the spaces between the visible words of the fake message, but this could
trigger spacing-related issues that would make the final product look
suspicious.

Proportional fonts use variable character widths to improve readability.
Example fonts are Arial and Times New Roman. Monospace fonts use a con-
stant character width to support the alignment of text and the recognition
of individual characters, especially thin ones such as the (or { characters. As
a result, monospace fonts are popular in programming interfaces. Example
fonts are Consolas and Courier New.

Kerning is a typographical process for adjusting the spacing and overlap
between individual character glyphs in order to improve their visual appeal.
A process called tracking is used to adjust the character spacing across entire
lines or blocks of text for the same purpose. These adjustments aid legibil-
ity and readability, ensuring that letters aren’t so close together that they’re
indistinguishable or so far apart that words aren’t recognizable. Note that
we read words, not letters. If you doubt it, read this: peopl raed wrds nt lttrs.
Of corase, contxt hlps.

110 Chapter 6

Kerning between pairs of letters is performed first, followed by track-
ing, during which the relative kerning of the letter pairs is preserved. As
mentioned earlier, these variable widths and automatic corrections can
cause problems when you’re trying to hide characters between words that
use proportional fonts:

To a great mind nothing is little.	 Proportional font with no hidden letters
To$a3great.mind2nothingKis little.	 Proportional font with hidden letters between words
To$a3great.mind2nothingKis little.	 Hidden letters revealed ($3.2K)

To a great mind nothing is little.	 Monospace font with no hidden letters
To$a3great.mind2nothingKis little.	 Monospace font with hidden letters between words.
To$a3great.mind2nothingKis little.	 Hidden letters revealed ($3.2K)

If you use a monospace font, the consistent spacing provides a conve-
nient hiding place. But since professional correspondence is more likely
to use proportional fonts, the invisible ink technique should focus on the
more easily controlled spaces between lines.

Using empty lines between paragraphs is the easiest method to pro-
gram and to read, and it shouldn’t require a long fake message because
you can summarize the salient points of a bid succinctly. This is important
since you don’t want empty pages appended to your visible fake message.
Consequently, the footprint for your hidden message should be smaller
than for your fake one.

Avoiding Issues

When you’re developing software, a good question to ask repeatedly is “How
can the user screw this up?” One thing that can go wrong here is that the
encryption process will change the letters in your hidden message so that
kerning and tracking adjustments may push a word past the line break,
causing an automatic line wrap. This will result in uneven and suspicious-
looking spaces between paragraphs in the fake message. One way to avoid
this is to press enter a little early as you’re typing in each line of the real
message. This will leave some space at the end of the line to accommodate
changes due to encryption. Of course, you’ll still need to verify the results.
Assuming code works is as risky as assuming James Bond is dead!

Manipulating Word Documents with python-docx
A free third-party module called python-docx allows Python to manipulate
Microsoft Word (.docx) files. To download and install the third-party modules
mentioned in this book, you’ll use the Preferred Installer Program (pip),
a package management system that makes it easy to install Python-based
software. For Python 3 on Windows and macOS, versions 3.4 and later
come with pip preinstalled; for Python 2, pip preinstallation starts with
version 2.7.9. Linux users may have to install pip separately. If you find you
need to install or upgrade pip, see the instructions at https://pip.pypa.io/en/
stable/installing/ or do an online search on installing pip on your particular
operating system.

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

Writing in Invisible Ink 111

With the pip tool, you can install python-docx by simply running
pip install python-docx in a command, PowerShell, or terminal window,
depending on your operating system. Online instructions for python-docx
are available at https://python-docx.readthedocs.io/en/latest/.

For this project, you need to understand the paragraph and run objects.
The python-docx module organizes data types using three objects in the fol-
lowing hierarchy:

•	 document: The whole document with a list of paragraph objects

•	 paragraph: A block of text separated by the use of the enter key in
Word; contains a list of run object(s)

•	 run: A connected string of text with the same style

A paragraph is considered a block-level object, which python-docx defines
as follows: “a block-level item flows the text it contains between its left and
right edges, adding an additional line each time the text extends beyond
its right boundary. For a paragraph object, the boundaries are generally the
page margins, but they can also be column boundaries if the page is laid
out in columns, or cell boundaries if the paragraph occurs inside a table cell.
A table is also a block-level object.”

A paragraph object has a variety of properties that specify its placement
within a container—typically a page—and the way it divides its contents
into separate lines. You can access the formatting properties of a paragraph
with the ParagraphFormat object available through the ParagraphFormat prop-
erty of the paragraph, and you can set all the paragraph properties using a
paragraph style grouping or apply them directly to a paragraph.

A run is an inline-level object that occurs within paragraphs or other block-
level objects. A run object has a read-only font property providing access to a
font object. A font object provides properties for getting and setting the char-
acter formatting for that run. You’ll need this feature for setting your hidden
message’s text color to white.

Style refers to a collection of attributes in Word for paragraphs and
characters (run objects) or a combination of both. Style includes familiar
attributes such as font, color, indention, line spacing, and so on. You may
have noticed groupings of these displayed in the Styles pane on Word’s
Home ribbon (see Figure 6-6). Any change in style—to even a single let-
ter—requires the creation of a new run object. Currently, only styles that are
in the opened .docx file are available. This may change in future versions of
python-docx.

Figure 6-6: The Styles pane in Microsoft Word 2016

https://python-docx.readthedocs.io/en/latest/
file:///C:\Users\jeremy\Dropbox\tech-reviews\impractical-python\docx.text.parfmt.ParagraphFormat

112 Chapter 6

You can find full documentation on the use of styles in python-docx at
http://python-docx.readthedocs.io/en/latest/user/styles-using.html.

Here’s an example of paragraphs and runs as python-docx sees them:

I am a single paragraph of one run because all my text is the same style.

I am a single paragraph with two runs. I am the second run because my style
changed to bold.

I am a single paragraph with three runs. I am the second run because my style
changed to bold. The third run is my last word.

If any of this seems unclear, don’t fret. You don’t need to know python-
docx in any detail. As with any piece of code, you mainly need to know what
you want to do. An online search should yield plenty of useful suggestions
and complete samples of code.

No t e 	 For this to work smoothly, don’t change styles within the real (hidden) message and
make sure you end every line in a hard return by manually pressing the enter
key. Unfortunately, Word doesn’t have a special character for soft returns caused
by automatic word wrapping. So, you can’t go into an existing Word document with
automatic line breaks and use Find and Replace to change them all to hard returns.
Such is the life of a mole.

Downloading the Assets
The external files you’ll need are downloadable from https://www.nostarch​
.com/impracticalpython/ and should be saved in the same folder as the code:

template.docx  An empty Word doc formatted with official Holmes
Corporation styles, fonts, and margins

fakeMessage.docx  The fake message, without letterhead and date, in
a Word document

realMessage.docx  The real message in plaintext, without letterhead
and date, in a Word document

realMessage_Vig.docx  The real message encrypted with the Vigenère
cipher

example_template_prep.docx  An example of the fake message used
to create the template document (the program doesn’t require this
file to run)

No t e 	 If you’re using Word 2016, an easy way to make a blank template file is to write the
fake message (including letterhead) and save the file. Then delete all the text and save
the file again with a different name. When you assign this blank file to a variable
with python-docx, all the existing styles will be retained. Of course, you could use a
template file with the letterhead already included, but for the purpose of learning more
about python-docx, we’ll build the letterhead here using Python.

http://python-docx.readthedocs.io/en/latest/user/styles-using.html
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

Writing in Invisible Ink 113

Take a moment to view these first four documents in Word. These files
comprise the inputs to the elementary_ink.py program. The fake and real
messages—the second and third items listed—are also shown in Figures 6-7
and 6-8.

Figure 6-7: The “fake” text in the fakeMessage.docx file

Figure 6-8: The real message in the realMessage.docx file

Note that the real message contains some numbers and special charac-
ters. These won’t be encrypted with the Vigenère tableau we’ll use, and I’ve
included them to make that point. Ideally, they would be spelled out (for
example, “three” for “3” and “percent” for “%”) for maximum secrecy when
we add the Vigenère cipher later.

The Pseudocode
The following pseudocode describes how to load the two messages and the
template document, interleave and hide the real message in blank lines
using a white font, and then save the hybrid message.

Build assets:
In Word, create an empty doc with desired formatting/styles (template)
In Word, create an innocuous fake message that will be visible & have enough
blank lines to hold the real message
In Word, create the real message that will be hidden

114 Chapter 6

Import docx to allow manipulation of Word docs with Python
Use docx module to load the fake & real messages as lists
Use docx to assign the empty doc to a variable
Use docx to add letterhead banner to empty doc
Make counter variable for lines in real message
Define function to format paragraph spacing with docx
For line in fake message:
 If line is blank and there are still lines in the real message:
 Use docx & counter to fill blank with line from real message
 Use docx to set real message font color to white
 Advance counter for real message
 Otherwise:
 Use docx to write fake line
 Run paragraph spacing function
Use docx to save final Word document

The Code
The elementary_ink.py program in Listing 6-1 loads the real message, the
fake message, and the empty template document. It hides the real message
in the blank lines of the fake message using a white font, and then saves
the hybrid message as an innocuous and professional-looking piece of
correspondence that can be attached to an email. You can download the
code from https://www.nostarch.com/impracticalpython/.

Importing python-docx, Creating Lists, and Adding a Letterhead
Listing 6-1 imports python-docx, turns the lines of text in the fake and real
messages into list items, loads the template document that sets the styles,
and adds a letterhead.

import docx
 from docx.shared import RGBColor, Pt

 # get text from fake message & make each line a list item
fake_text = docx.Document('fakeMessage.docx')
fake_list = []
for paragraph in fake_text.paragraphs:
 fake_list.append(paragraph.text)

 # get text from real message & make each line a list item
real_text = docx.Document('realMessage.docx')
real_list = []
for paragraph in real_text.paragraphs:

  if len(paragraph.text) != 0: # remove blank lines
 real_list.append(paragraph.text)

 # load template that sets style, font, margins, etc.
doc = docx.Document('template.docx')

 # add letterhead

elementary_ink.py,
part 1

https://www.nostarch.com/impracticalpython/

Writing in Invisible Ink 115

doc.add_heading('Morland Holmes', 0)
subtitle = doc.add_heading('Global Consulting & Negotiations', 1)
subtitle.alignment = 1
doc.add_heading('', 1)

 doc.add_paragraph('December 17, 2015')
doc.add_paragraph('')

Listing 6-1: Imports python-docx, loads important .docx files, and adds a letterhead

After importing the docx module—not as “python-docx”—use docx.shared
to gain access to the color (RGBColor) and length (Pt) objects in the docx
module . These will allow you to change the font color and set the spacing
between lines. The next two code blocks load the fake  and real  message
Word documents as lists. Where the enter key was pressed in each Word
document determines what items will be in these lists. For the real message
to be hidden, remove any blank lines so that your message will be as short
as possible . Now you can use list indexes to merge the two messages and
keep track of which is which.

Next, load the template document that contains the preestablished
styles, fonts, and margins . The docx module will write to this variable and
ultimately save it as the final document.

With the inputs loaded and prepped, format the letterhead of the final
document to match that of the Holmes Corporation . The add_heading()
function adds a heading style paragraph with text and integer arguments.
Integer 0 designates the highest-level heading, or Title style, inherited from
the template document. The subtitle is formatted with 1, the next heading
style available, and is center aligned, again with the integer 1 (0 = left justi-
fied, 2 = right justified). Note that, when you add the date, you don’t need
to supply an integer . When you don’t provide an argument, the default
is to inherit from the existing style hierarchy, which in the template is left
justified. The other statements in this block just add blank lines.

Formatting and Interleaving the Messages
Listing 6-2 does the real work, formatting the spacing between lines and
interleaving the messages.

 def set_spacing(paragraph):
 """Use docx to set line spacing between paragraphs."""
 paragraph_format = paragraph.paragraph_format
 paragraph_format.space_before = Pt(0)
 paragraph_format.space_after = Pt(0)

 length_real = len(real_list)
count_real = 0 # index of current line in real (hidden) message

interleave real and fake message lines
for line in fake_list:

  if count_real < length_real and line == "":
  paragraph = doc.add_paragraph(real_list[count_real])
  paragraph_index = len(doc.paragraphs) - 1

elementary_ink.py,
part 2

116 Chapter 6

 # set real message color to white
 run = doc.paragraphs[paragraph_index].runs[0]
 font = run.font

  font.color.rgb = RGBColor(255, 255, 255) # make it red to test
  count_real += 1

 else:
  paragraph = doc.add_paragraph(line)

  set_spacing(paragraph)

 doc.save('ciphertext_message_letterhead.docx')

print("Done")

Listing 6-2: Formats paragraphs and interleaves lines of fake and real messages

Define a function that formats the spacing between paragraphs using
python-docx’s paragraph_format property . Line spacing before and after the
hidden line is set to 0 points to ensure that the output doesn’t have suspi-
ciously large gaps between paragraphs, like the ones on the left-hand side
of Figure 6-9.

Figure 6-9: Fake message line spacing without python-docx
paragraph formatting (left) vs. with formatting (right)

Next, define the working space by getting the length of the list that holds
the real message . Remember that the hidden real message needs to be
shorter than the visible fake message so that there are sufficient blank lines
to hold it. Follow this by initiating a counter. The program will use it to keep
track of which line (list item) it’s currently processing in the real message.

Since the list made from the fake message is the longest and sets the
dimensional space for the real message, loop through the fake message

Writing in Invisible Ink 117

using two conditionals: 1) whether you’ve reached the end of the real mes-
sage and 2) whether a line in the fake list is blank . If there are still real
message lines and the fake message line is blank, use count_real as an index
for real_list and use python-docx to add it to the document .

Get the index of the line you just added by taking the length of
doc.paragraphs and subtracting 1 . Then use this index to set the real mes-
sage line to a run object (it will be the first run item [0] in the list, as the
real message uses a single style) and set its font color to white . Since the
program has now added a line from the real list in this block, the count_real
counter advances by 1 .

The subsequent else block addresses the case where the line chosen
from the fake list in the for loop isn’t empty. In this case, the fake message
line is added directly to the paragraph . Finish the for loop by calling
the line spacing function, set_spacing() .

Once the length of the real message has been exceeded, the for loop
will continue to add the remainder of the fake message—in this case,
Mr. Kurtz’s signature info—and save the document as a Word .docx file in
the final line . Of course, in real life, you’d want to use a less suspicious
filename than ciphertext_message_letterhead.docx!

Note that, because you’re using a for loop based on the fake message,
appending any more hidden lines after the for loop ends—that is, after you
reach the end of the items in the fake list—is impossible. If you want more
space, you must enter hard returns at the bottom of the fake message, but
be careful not to add so many that you force a page break and create a mys-
terious empty page!

Run the program, open the saved Word document, use ctrl-A to select
all the text, and then set the Highlight color (see Figure 6-4) to dark gray
to see both messages. The secret message should be revealed (Figure 6-10).

Figure 6-10: Word document highlighted in dark gray to show both the fake message
and the unencrypted real message

118 Chapter 6

Adding the Vigenère Cipher
The code so far uses the plaintext version of the real message, so anyone
who changes the document’s highlight color will be able to read and under-
stand the sensitive information in it. Since you know Mr. Kurtz encrypted
this using the Vigenère cipher, go back and alter the code to replace the
plaintext with the encrypted text. To do this, find the following line:

real_text = docx.Document('realMessage.docx')

This line loads the real message as plaintext, so change the filename to
the one shown here in bold:

real_text = docx.Document('realMessage_Vig.docx')

Rerun the program and again reveal the hidden text by selecting the
whole document and setting the Highlight color to dark gray (Figure 6-11).

Figure 6-11: Word document highlighted in dark gray to show both the fake message and
the encrypted real message

The secret message should be visible but unreadable to anyone who
cannot interpret the cipher. Compare the encrypted message in Figure 6-11
to the unencrypted version in Figure 6-10. Note that numbers and the %
sign occur in both versions. These were retained to demonstrate the poten-
tial pitfalls related to the encryption choice. You would want to augment the
Vigenère cipher to include these characters—or just spell them out. That
way, even if your message is discovered, you leave as few clues as possible as
to the subject matter.

If you want to encode your own message with the Vigenère cipher, do
an internet search for “online Vigenère encoder.” You’ll find multiple sites,
such as http://www.cs.du.edu/~snarayan/crypt/vigenere.html, that let you type

http://www.cs.du.edu/~snarayan/crypt/vigenere.html

Writing in Invisible Ink 119

or paste in plaintext. And if you want to write your own Python program
for encrypting with the Vigenère cipher, see Cracking Codes with Python (No
Starch Press, 2018) by Al Sweigart.

If you play around with your own real messages, encrypted or not,
make sure you’re using the same font as in the fake message. A font is both
a typeface, like Helvetica Italic, and a size, such as 12. Remember from
“Considering Font Types, Kerning, and Tracking” on page 109 that if you
try to mix fonts, especially proportional and monospace fonts, the hidden
message lines may wrap, resulting in uneven spacing between paragraphs of
the real message.

Detecting the Hidden Message
Could Joan Watson, or any other detective, have found your hidden mes-
sage quickly? The truth is, probably not. In fact, as I write these words, I am
watching an episode of Elementary where Joan is busy investigating a com-
pany by reading through a box of email printouts! The use of the Vigenère
cipher may have been just a bit of lazy writing in an overall intelligently
crafted series. Still, we can speculate on what might give you away.

Since the final bid was probably not sent until close to the bid date, the
search could be limited to correspondence sent after the bid was finalized,
thereby eliminating a lot of noise. Of course, a detective won’t know exactly
what they’re looking for—or even if there is a mole—which leaves a large
search space. And there’s always the possibility that the information was
passed in a phone conversation or clandestine meeting.

Assuming there was a manageable volume of email and a hidden-
message hypothesis was being pursued, an investigator might detect your
invisible ink in several ways. For example, the Word spellchecker will not
flag the white, nonsensical encrypted words as long as they haven’t been
made visible. If, as a check, you swiped and reset the font color on some of
the hidden words, they will be permanently compromised, even after their
color has been restored to white. The spellchecker will underline them with
an incriminating red squiggly line (see Figure 6-12).

Figure 6-12: Previously revealed invisible encrypted words underlined by the Word
Spelling and Grammar tool

If the investigating detective uses an alternative to Word to open the
document, the product’s spellchecker will most likely reveal the hidden
words (see Figure 6-13). This risk is mitigated somewhat by the dominance
of Microsoft Word in the marketplace.

120 Chapter 6

Figure 6-13: The spellchecker in LibreOffice Writer will highlight the invisible words.

Second, using ctrl-A to highlight all the text within Word won’t reveal
the hidden text, but it would indicate that some blank lines are longer than
others (see Figure 6-14), suggesting to the very observant that something
is amiss.

Figure 6-14: Selecting the whole Word document reveals differences in the length of
blank lines.

Writing in Invisible Ink 121

Third, opening the Word document using the preview functionality
in some email software may reveal the hidden text when the contents are
selected through swiping or using ctrl-A (Figure 6-15).

Figure 6-15: Selecting the whole document in the Yahoo! Mail Preview panel reveals the
hidden text.

But while selecting hidden text in the Yahoo! Mail Preview panel reveals
the text, the same is not true in the Microsoft Outlook Preview panel in
Figure 6-16.

Figure 6-16: Selecting the whole document in the Microsoft Outlook Preview panel does
not reveal the hidden text.

Finally, saving the Word document as a plain text (*.txt) file would
remove all formatting and leave the hidden text exposed (Figure 6-17).

122 Chapter 6

Figure 6-17: Saving the Word document as a plain text (*.txt) file reveals the hidden text.

To conceal a secret message with steganography, you have to conceal
not only the contents of the message but also the fact that a message even
exists. Our electronic invisible ink can’t always guarantee this, but from a
mole’s point of view, the weaknesses just listed involve either them mak-
ing a mistake, which could theoretically be controlled, or an investigator
taking a dedicated and unlikely action, such as swiping text, saving files
in a different format, or using a less-common word processor. Assuming
the mole in Elementary considered these acceptable risks, electronic invis-
ible ink provides a plausible explanation for why the internal company
investigation failed.

Summary
In this chapter, you used steganography to hide an encrypted message
within a Microsoft Word document. You used a third-party module, called
python-docx, to directly access and manipulate the document using Python.
Similar third-party modules are available for working with other popular
document types, like Excel spreadsheets.

Further Reading
You can find online documentation for python-docx at https://python-docx​
.readthedocs.io/en/latest/ and https://pypi.python.org/pypi/python-docx.

Automate the Boring Stuff with Python (No Starch Press, 2015) by Al
Sweigart, covers modules that allow Python to manipulate PDFs, Word files,
Excel spreadsheets, and more. Chapter 13 contains a useful tutorial on
python-docx, and the appendix covers installing third-party modules with pip.

You can find beginner-level Python programs for working with ciphers
in Cracking Codes with Python (No Starch Press, 2018) by Al Sweigart.

Mysterious Messages (The Penguin Group, 2009) by Gary Blackwood is an
interesting and well-illustrated history of steganography and cryptography.

Practice Project: Checking the Number of Blank Lines
Improve the hidden message program by writing a function that compares
the number of blank lines in the fake message to the number of lines in the
real message. If there is insufficient space to hide the real message, have the
function warn the user and tell them how many blank lines to add to the
fake message. Insert and call the function in a copy of the elementary_ink.py

https://python-docx.readthedocs.io/en/latest/
https://python-docx.readthedocs.io/en/latest/
https://pypi.python.org/pypi/python-docx

Writing in Invisible Ink 123

code, just before loading the template document. You can find a solution
in the appendix and online at https://www.nostarch.com/impractical​python/ in
elementary_ink_practice.py. For testing, download realMessageChallenge.docx from
the same site and use it for the real message.

Challenge Project: Using Monospace Font
Rewrite the elementary_ink.py code for monospace fonts and hide your own
short message in the spaces between words. See “Considering Font Types,
Kerning, and Tracking” on page 109 for a description of monospace fonts.
As always with challenge projects, no solution is provided.

https://www.nostarch.com/impracticalpython/

7
B r e e d i n g G i a n t R a t s w i t h

G e n e t i c A l g o r i t h m s

Genetic algorithms are general-purpose
optimization programs designed to solve

complex problems. Invented in the 1970s,
they belong to the class of evolutionary algorithms,

so named because they mimic the Darwinian process
of natural selection. They are especially useful when
little is known about a problem, when you’re dealing
with a nonlinear problem, or when searching for brute-
force-type solutions in a large search space. Best of all,
they are easy algorithms to grasp and implement.

In this chapter, you’ll use genetic algorithms to breed a race of super-
rats that can terrorize the world. After that, you’ll switch sides and help
James Bond crack a high-tech safe in a matter of seconds. These two proj-
ects should give you a good appreciation for the mechanics and power of
genetic algorithms.

126 Chapter 7

Finding the Best of All Possible Solutions
Genetic algorithms optimize, which means that they select the best solution
(with regard to some criteria) from a set of available alternatives. For exam-
ple, if you’re looking for the fastest route to drive from New York to Los
Angeles, a genetic algorithm will never suggest you fly. It can choose only
from within an allowed set of conditions that you provide. As optimizers,
these algorithms are faster than traditional methods and can avoid prema-
ture convergence to a suboptimal answer. In other words, they efficiently
search the solution space yet do so thoroughly enough to avoid picking a
good answer when a better one is available.

Unlike exhaustive search engines, which use pure brute force, genetic
algorithms don’t try every possible solution. Instead, they continuously
grade solutions and then use them to make “informed guesses” going for-
ward. A simple example is the “warmer-colder” game, where you search
for a hidden item as someone tells you whether you are getting warmer or
colder based on your proximity or search direction. Genetic algorithms use
a fitness function, analogous to natural selection, to discard “colder” solu-
tions and build on the “warmer” ones. The basic process is as follows:

1.	 Randomly generate a population of solutions.

2.	 Measure the fitness of each solution.

3.	 Select the best (warmest) solutions and discard the rest.

4.	 Cross over (recombine) elements in the best solutions to make new
solutions.

5.	 Mutate a small number of elements in the solutions by changing their
value.

6.	 Return to step 2 and repeat.

The select–cross over–mutate loop continues until it reaches a
stop condition, like finding a known answer, finding a “good enough”
answer (based on a minimum threshold), completing a set number
of iterations, or reaching a time deadline. Because these steps closely
resemble the process of evolution, complete with survival of the fittest,
the terminology used with genetic algorithms is often more biological
than computational.

Project #13: Breeding an Army of Super-Rats
Here’s your chance to be a mad scientist with a secret lab full of boiling
beakers, bubbling test tubes, and machines that go “BZZZTTT.” So pull on
some black rubber gloves and get busy turning nimble trash-eating scaven-
gers into massive man-eating monsters.

Breeding Giant Rats with Genetic Algorithms 127

T he Objec t i v e

Use a genetic algorithm to simulate breeding rats to an average weight of 110 pounds.

Strategy
Your dream is to breed a race of rats the size of bullmastiffs (we’ve already
established that you’re mad). You’ll start with Rattus norvegicus, the brown
rat, then add some artificial sweeteners, some atomic radiation from the
1950s, a lot of patience, and a pinch of Python, but no genetic engineering—
you’re old-school, baby! The rats will grow from less than a pound to a terri-
fying 110 pounds, about the size of a female bullmastiff (see Figure 7-1).

Figure 7-1: Size comparison of a brown rat, a female bullmastiff,
and a human

Before you embark on such a huge undertaking, it’s prudent to simu-
late the results in Python. And you’ve drawn up something better than a
plan—you’ve drawn some graphical pseudocode (see Figure 7-2).

128 Chapter 7

Mode
Populate: Establish
initial population and
range of weights.

Grade: Evaluate
fitness by comparing
mean population weight
to a target weight.

Select: Cull smallest
males and females.

Breed: Repopulate
with random weights
based on weight range
of the selected rats.

Min

Mutate: Randomly
alter weights on a few
rats. Most outcomes
reduce weight.

Loop

Min Max

Max

Figure 7-2: Genetic algorithm approach to breeding super-rats

The process shown in Figure 7-2 outlines how a genetic algorithm
works. Your goal is to produce a population of rats with an average weight
of 110 pounds from an initial population weighing much less than that.
Going forward, each population (or generation) of rats represents a candi-
date solution to the problem. Like any animal breeder, you cull undesirable
males and females, which you humanely send to—for you Austin Powers
fans—an evil petting zoo. You then mate and breed the remaining rats, a
process known as crossover in genetic programming.

Breeding Giant Rats with Genetic Algorithms 129

The offspring of the remaining rats will be essentially the same size
as their parents, so you need to mutate a few. While mutation is rare and
usually results in a neutral-to-nonbeneficial trait (low weight, in this case),
sometimes you’ll successfully produce a bigger rat.

The whole process then becomes a big repeating loop, whether done
organically or programmatically, making me wonder whether we really are
just virtual beings in an alien simulation. At any rate, the end of the loop—
the stop condition—is when the rats reach the desired size or you just can’t
stand dealing with rats anymore.

For input to your simulation, you’ll need some statistics. Use the metric
system since you’re a scientist, mad or not. You already know that the aver-
age weight of a female bullmastiff is 50,000 grams, and you can find useful
rat statistics in Table 7-1.

Table 7-1: Brown Rat Weight and Breeding Statistics

Parameter Published values

Minimum weight 200 grams

Average weight (female) 250 grams

Average weight (male) 300–350 grams

Maximum weight 600 grams*

Number of pups per litter 8–12

Litters per year 4–13

Life span (wild, captivity) 1–3 years, 4–6 years
*Exceptional individuals may reach 1,000 grams in captivity.

Because both domestic and wild brown rats exist, there may be wide
variation in some of the stats. Rats in captivity tend to be better cared for
than wild rats, so they weigh more, breed more, and have more pups. So
you can choose from the higher end when a range is available. For this proj-
ect, start with the assumptions in Table 7-2.

Table 7-2: Input Assumptions for the Super-Rats Genetic Algorithm

Variable and value Comments

GOAL = 50000 Target weight in grams (female bullmastiff)
NUM_RATS = 20 Total number of adult rats your lab can support
INITIAL_MIN_WT = 200 Minimum weight of adult rat, in grams, in initial population
INITIAL_MAX_WT = 600 Maximum weight of adult rat, in grams, in initial population
INITIAL_MODE_WT = 300 Most common adult rat weight, in grams, in initial population
MUTATE_ODDS = 0.01 Probability of a mutation occurring in a rat
MUTATE_MIN = 0.5 Scalar on rat weight of least beneficial mutation
MUTATE_MAX = 1.2 Scalar on rat weight of most beneficial mutation
LITTER_SIZE = 8 Number of pups per pair of mating rats
LITTERS_PER_YEAR = 10 Number of litters per year per pair of mating rats
GENERATION_LIMIT = 500 Generational cutoff to stop breeding program

130 Chapter 7

Since rats breed so frequently, you shouldn’t have to factor in life span.
Even though you will retain some of the parents from a previous genera-
tion, they will be culled out quickly as their offspring increase in weight
from generation to generation.

The Super-Rats Code
The super_rats.py code follows the general workflow in Figure 7-2. You can
also download the code from https://www.nostarch.com/impracticalpython/.

Entering the Data and Assumptions

Listing 7-1, in the global space at the start of the program, imports modules
and assigns the statistics, scalars, and assumptions in Table 7-2 as constants.
Once the program is complete and working, feel free to experiment with
the values in that table and see how they affect your results.

 import time
import random
import statistics

 # CONSTANTS (weights in grams)
 GOAL = 50000

NUM_RATS = 20
INITIAL_MIN_WT = 200
INITIAL_MAX_WT = 600
INITIAL_MODE_WT = 300
MUTATE_ODDS = 0.01
MUTATE_MIN = 0.5
MUTATE_MAX = 1.2
LITTER_SIZE = 8
LITTERS_PER_YEAR = 10
GENERATION_LIMIT = 500

ensure even-number of rats for breeding pairs:
 if NUM_RATS % 2 != 0:

 NUM_RATS += 1

Listing 7-1: Imports modules and assigns constants

Start by importing the time, random, and statistics modules . You’ll use
the time module to record the runtime of your genetic algorithm. It’s inter-
esting to time genetic algorithms, if only to be awed by how quickly they
can find a solution.

The random module will satisfy the stochastic needs of the algorithm,
and you’ll use the statistics module to get mean values. This is a weak use
for statistics, but I want you to be aware of the module, since it can be
quite handy.

Next, assign the input variables described in Table 7-2 and be sure to
note that the units are grams . Use uppercase letters for the names, as
these represent constants .

super_rats.py,
part 1

Breeding Giant Rats with Genetic Algorithms 131

Right now, we’re going to assume the use of breeding pairs, so check
that the user input an even number of rats and, if not, add a rat . Later, in
“Challenge Projects” on page 144, you’ll get to experiment with alternative
gender distributions.

Initializing the Population

Listing 7-2 is the program’s shopping representative. It goes to a pet
shop and picks out the rats for an initial breeding population. Since you
want mating pairs, it should choose an even number of rats. And since
you can’t afford one of those fancy volcano lairs with unlimited space,
you’ll need to maintain a constant number of adult rats through each
generation—though the number can swell temporarily to accommodate
litters. Remember, the rats will need more and more space as they grow
to the size of big dogs!

 def populate(num_rats, min_wt, max_wt, mode_wt):
 """Initialize a population with a triangular distribution of weights."""

  return [int(random.triangular(min_wt, max_wt, mode_wt))\
 for i in range(num_rats)]

Listing 7-2: Defines the function that creates the initial rat population

The populate() function needs to know the amount of adult rats you
want, the minimum and maximum weights for the rats, and the most com-
monly occurring weight . Note that all of these arguments will use con-
stants found in the global space. You don’t have to pass these as arguments
for the function to access them. But I do so here and in the functions that
follow, for clarity and because local variables are accessed more efficiently.

 You’ll use the four arguments above with the random module, which
includes different types of distributions. You’ll use a triangular distribution
here, because it gives you firm control of the minimum and maximum sizes
and lets you model skewness in the statistics.

Because brown rats exist both in the wild and in captivity—in zoos,
labs, and as pets—their weights are skewed to the high side. Wild rats tend
to be smaller as their lives are nasty, brutish, and short, though lab rats may
contest that point! Use list comprehension to loop through the number
of rats and assign each one a weight. Bundle it all together with the return
statement .

Measuring the Fitness of the Population

Measuring the fitness of the rats is a two-step process. First, grade the whole
population by comparing the average weight of all the rats to the bullmas-
tiff target. Then, grade each individual rat. Only rats whose weight ranks
in the upper n percent, as determined by the NUM_RATS variable, get to breed
again. Although the average weight of the population is a valid fitness mea-
surement, its primary role here is to determine whether it’s time to stop
looping and declare success.

super_rats.py,
part 2

132 Chapter 7

Listing 7-3 defines the fitness() and select() functions, which together
form the measurement portion of your genetic algorithm.

 def fitness(population, goal):
 """Measure population fitness based on an attribute mean vs target."""
 ave = statistics.mean(population)
 return ave / goal

 def select(population, to_retain):
 """Cull a population to retain only a specified number of members."""

  sorted_population = sorted(population)
  to_retain_by_sex = to_retain//2
  members_per_sex = len(sorted_population)//2
  females = sorted_population[:members_per_sex]

 males = sorted_population[members_per_sex:]
  selected_females = females[-to_retain_by_sex:]

 selected_males = males[-to_retain_by_sex:]
  return selected_males, selected_females

Listing 7-3: Defines the measurement step of the genetic algorithm

Define a function to grade the fitness of the current generation . Use
the statistics module to get the mean of the population and return this
value divided by the target weight. When this value is equal to or greater
than 1, you’ll know it’s time to stop breeding.

Next, define a function that culls a population of rats, based on weight,
down to the NUM_RATS value, represented here by the to_retain parameter .
It will also take a population argument, which will be the parents of each
generation.

Now, sort the population so you can distinguish large from small .
Take the number of rats you want to retain and divide it by 2 using floor
division so that the result is an integer . Do this step so you can keep the
biggest male and female rats. If you choose only the largest rats in the pop-
ulation, you will theoretically be choosing only males. You obtain the total
members of the current population, by sex, by dividing the sorted_population
by 2, again using floor division .

Male rats tend to be larger than females, so make two simplifying
assumptions: first, assume that exactly half of the population is female
and, second, that the largest female rat is no heavier than the smallest male
rat. This means that the first half of the sorted population list represents
females and the last half represents males. Then create two new lists by
splitting sorted_population in half, taking the bottom half for females  and
the upper half for males. Now all that’s left to do is take the biggest rats
from the end of each of these lists —using negative slicing—and return
them . These two lists contain the parents of the next generation.

The first time you run this function, all it will do is sort the rats by sex,
as the initial number of rats already equals the NUM_RATS constant. After that,
the incoming population argument will include both parents and children,
and its value will exceed NUM_RATS.

super_rats.py,
part 3

Breeding Giant Rats with Genetic Algorithms 133

Breeding a New Generation

Listing 7-4 defines the program’s “crossover” step, which means it breeds
the next generation. A key assumption is that the weight of every child will
be greater than or equal to the weight of the mother and less than or equal
to the weight of the father. Exceptions to that rule will be handled in the
“mutation” function.

 def breed(males, females, litter_size):
 """Crossover genes among members (weights) of a population."""

  random.shuffle(males)
 random.shuffle(females)

  children = []
  for male, female in zip(males, females):
  for child in range(litter_size):
  child = random.randint(female, male)
  children.append(child)
  return children

Listing 7-4: Defines the function that breeds a new generation of rats

The breed() function takes as arguments the lists of weights of selected
males and females returned from the select() function along with the size
of a litter . Next, randomly shuffle the two lists , because you sorted
them in the select() function and iterating over them without shuffling
would result in the smallest male being paired with the smallest female,
and so on. You need to allow for love and romance; the largest male may
be drawn to the most petite female!

Start an empty list to hold their children . Now for the hanky-panky.
Go through the shuffled lists using zip() to pair a male and female from
each list . Each pair of rats can have multiple children, so start another
loop that uses the litter size as a range . The litter size is a constant, called
LITTER_SIZE, that you provided in the input parameters, so if the value is 8,
you’ll get eight children.

For each child, choose a weight at random between the mother’s and
father’s weights . Note that you don’t need to use male + 1, because randint()
uses all the numbers in the supplied range. Note also that the two values
can be the same, but the first value (the mother’s weight) can never be
larger than the second (the father’s weight). This is another reason for the
simplifying assumption that females must be no larger than the smallest
male. End the loop by appending each child to the list of children , then
return children .

Mutating the Population

A small percentage of the children should experience mutations, and most
of these should result in traits that are nonbeneficial. That means lower-
than-expected weights, including “runts” that would not survive. But every
so often, a beneficial mutation will result in a heavier rat.

super_rats.py,
part 4

134 Chapter 7

Listing 7-5 defines the mutate() function, which applies the mutation
assumptions you supplied in the list of constants. After mutate() is called, it
will be time to check the fitness of the new population and start the loop
over if the target weight hasn’t been reached.

 def mutate(children, mutate_odds, mutate_min, mutate_max):
 """Randomly alter rat weights using input odds & fractional changes."""

  for index, rat in enumerate(children):
 if mutate_odds >= random.random():

  children[index] = round(rat * random.uniform(mutate_min,
 mutate_max))
 return children

Listing 7-5: Defines the function that mutates a small portion of the population

The function needs the list of children, the odds of a mutation occur-
ring, and the minimum and maximum impacts of a mutation . The impacts
are scalars that you’ll apply to the weight of a rat. In your list of constants at
the start of the program (and in Table 7-2), they are skewed to the minimum
side, as most mutations do not result in beneficial traits.

Loop through the list of children and use enumerate()—a handy built-in
function that acts as an automatic counter—to get an index . Then use
the random() method to generate a random number between 0 and 1 and
compare it to the odds of a mutation occurring.

If the mutate_odds variable is greater than or equal to the randomly gen-
erated number, the rat (weight) at that index is mutated. Choose a mutation
value from a uniform distribution defined by the minimum and maximum
mutation values; this basically selects a value at random from the min-max
range. As these values are skewed to the minimum, the outcome is more
likely to be a loss in weight than a gain. Multiply the current weight by
this mutation scalar and round it to an integer . Finish by returning the
mutated children list.

NOTE 	 With regard to the validity of mutation statistics, you can find studies that suggest
beneficial mutations are very rare and others that suggest they are more common than
we realize. The breeding of dogs has shown that achieving drastic variations in size
(for example, Chihuahuas vs. Great Danes) doesn’t require millions of years of evolu-
tion. In a famous 20th-century study, Russian geneticist Dmitry Belyayev started
with 130 silver foxes and, over a 40-year period, succeeded in achieving dramatic
physiological changes by simply selecting the tamest foxes in each generation.

Defining the main() Function

Listing 7-6 defines the main() function, which manages the other functions
and determines when you’ve met the stop condition. It will also display all
the important results.

def main():
 """Initialize population, select, breed, and mutate, display results."""

  generations = 0

super_rats.py,
part 5

super_rats.py,
part 6

Breeding Giant Rats with Genetic Algorithms 135

  parents = populate(NUM_RATS, INITIAL_MIN_WT, INITIAL_MAX_WT,
 INITIAL_MODE_WT)
 print("initial population weights = {}".format(parents))
 popl_fitness = fitness(parents, GOAL)
 print("initial population fitness = {}".format(popl_fitness))
 print("number to retain = {}".format(NUM_RATS))

  ave_wt = []

  while popl_fitness < 1 and generations < GENERATION_LIMIT:
 selected_males, selected_females = select(parents, NUM_RATS)
 children = breed(selected_males, selected_females, LITTER_SIZE)
 children = mutate(children, MUTATE_ODDS, MUTATE_MIN, MUTATE_MAX)

  parents = selected_males + selected_females + children
 popl_fitness = fitness(parents, GOAL)

  print("Generation {} fitness = {:.4f}".format(generations,
 popl_fitness))

  ave_wt.append(int(statistics.mean(parents)))
 generations += 1

  print("average weight per generation = {}".format(ave_wt))
 print("\nnumber of generations = {}".format(generations))
 print("number of years = {}".format(int(generations / LITTERS_PER_YEAR)))

Listing 7-6: Defines the main() function

Start the function by initializing an empty list to hold the number of
generations. You’ll eventually use this to figure out how many years it took
to achieve your goal .

Next, call the populate() function  and immediately print the results.
Then, get the fitness of your initial population and print this along with the
number of rats to retain each generation, which is the NUM_RATS constant.

For fun, initialize a list to hold the average weight of each generation so
you can view it at the end . If you plot these weights against the number of
years, you’ll see that the trend is exponential.

Now, start the big genetic loop of select-mate-mutate. This is in the
form of a while loop, with the stop conditions being either reaching the tar-
get weight or reaching a large number of generations without achieving the
target weight . Note that after mutating the children, you need to com-
bine them with their parents to make a new parents list . It takes the pups
about five weeks to mature and start breeding, but you can account for this
by adjusting the LITTERS_PER_YEAR constant down from the maximum pos-
sible value (see Table 7-1), as we’ve done here.

At the end of each loop, display the results of the fitness() function to
four decimal places so you can monitor the algorithm and ensure it is pro-
gressing as expected . Get the average weight of the generation, append it
to the ave_wt list , and then advance the generation count by 1.

Complete the main() function by displaying the list of average weights
per generation, the number of generations, and the number of years—​
calculated using the LITTERS_PER_YEAR variable .

136 Chapter 7

Running the main() Function

Finish up with the familiar conditional statement for running the program
either stand-alone or as a module. Get the ending time and print how long
it took the program to run. The performance information should print
only when the module is run in stand-alone mode, so be sure to place it
under the if clause. See Listing 7-7.

if __name__ == '__main__':
 start_time = time.time()
 main()
 end_time = time.time()
 duration = end_time - start_time
 print("\nRuntime for this program was {} seconds.".format(duration))

Listing 7-7: Runs the main() function and time module if the program isn’t imported

Summary
With the parameters in Table 7-2, the super_rats.py program will take about
two seconds to run. On average, it will take the rats about 345 generations,
or 34.5 years, to reach the target weight of 110 pounds. That’s a long time for
a mad scientist to stay mad! But armed with your program, you can look for
ways to reduce the time to target.

Sensitivity studies work by making multiple changes to a single variable
and judging the results. You should take care in the event some variables
are dependent on one another. And since the results are stochastic (ran-
dom), you should make multiple runs with each parameter change in order
to capture the range of possible outcomes.

Two things you can control in your breeding program are the number of
breeding rats (NUM_RATS) and the odds of a mutation occurring (MUTATE_ODDS).
The mutation odds are influenced by factors like diet and exposure to radia-
tion. If you change these variables one at a time and rerun super_rats.py, you
can judge the impact of each variable on the project timeline.

An immediate observation is that, if you start with small values for
each variable and slowly increase them, you get dramatic initial results
(see Figure 7-3). After that, both curves decline rapidly and flatten out
in a classic example of diminishing returns. The point where each curve
flattens is the key to optimally saving money and reducing work.

For example, you get very little benefit from retaining more than about
300 rats. You’d just be feeding and caring for a lot of superfluous rats.
Likewise, trying to boost the odds of a mutation above 0.3 gains you little.

With charts like these, it’s easy to plan a path forward. The horizontal
dotted line marked “Baseline” represents the average result of using the
input in Table 7-2. You can potentially reduce this time by over 10 years just
by retaining 50 rats rather than 20. You should also focus on increasing the
number of beneficial mutations. This will be more rewarding, but riskier
and harder to control.

super_rats.py,
part 7

Breeding Giant Rats with Genetic Algorithms 137

0

10

20

30

40

50

60

0 0.25 0.5 0.75 1

Ye
ar

s

Mutation probability

0

10

20

30

40

50

60

0 500 1000 1500 2000

Ye
ar

s

Number rats

Baseline (Table 7-2 input)

Improvement

Sensitivity Study

Improvement

Figure 7-3: Impact of two parameters on the time required to reach the target weight

If you rerun the simulation using 50 rats and bumping the odds
of mutation up to 0.05, you can theoretically complete the project in
14 years, an improvement of 246 percent over the initial baseline. Now
that’s optimization!

Breeding super-rats was a fun and simple way to understand the basics
of genetic algorithms. But to truly appreciate their power, you need to
attempt something harder. You need a brute-force problem that’s too big
to brute-force, and the next project is that kind of problem.

Project #14: Cracking a High-Tech Safe
You are Q, and James Bond has a problem. He has to attend an elegant
dinner party at a villain’s mansion, slip away to the man’s private office,
and crack his wall safe. Child’s play for 007, except for one thing: it’s a
Humperdink BR549 digital safe that takes 10 digits, yielding 10 billion
possible combinations. And the lock wheels don’t start turning until after
all the numbers have been entered. There’ll be no putting a stethoscope
to this safe and slowly turning a dial!

As Q, you already have an autodialer device that can brute-force its
way through all possible solutions, but Bond simply won’t have time to use
it. Here’s why.

A combination lock should really be called a permutation lock, because it
requires ordered combinations, which are, by definition, permutations. More
specifically, locks rely on permutations with repetition. For example, a valid—
though insecure—combination could be 999999999.

You used the itertools module’s permutations() iterator when working
with anagrams in Chapter 3 and in “Practice Projects” on page 87 in
Chapter 4, but that won’t help here because permutations() returns permu-
tations without repetition. To generate the right kind of permutation for
a lock, you need to use itertools’s product() iterator, which calculates the
Cartesian product from multiple sets of numbers:

138 Chapter 7

>>> from itertools import product
>>> combo = (1, 2)
>>> for perm in product(combo, repeat=2):
 print(perm)
(1, 1)
(1, 2)
(2, 1)
(2, 2)

The optional repeat keyword argument lets you take the product of
an iterable multiplied by itself, as you need to do in this case. Note that
the product() function returns all the possible combinations, whereas the
permutations() function would return only (1, 2) and (2, 1). You can read
more about product() at https://docs.python.org/3.6/library/itertools.html#itertools​
.product.Listing.

Listing 7-8 is a Python program, called brute_force_cracker.py, that uses
product() to brute-force its way to the right combination:

 import time
from itertools import product

start_time = time.time()

 combo = (9, 9, 7, 6, 5, 4, 3)

use Cartesian product to generate permutations with repetition
 for perm in product([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], repeat=len(combo)):
  if perm == combo:

 print("Cracked! {} {}".format(combo, perm))

end_time = time.time()
 print("\nRuntime for this program was {} seconds.".format

 (end_time - start_time))

Listing 7-8: Uses a brute-force method to find a safe’s combination

Import time and the product iterator from itertools . Get the start
time, and then enter the safe combination as a tuple . Next use product(),
which returns tuples of all the permutations with repetition for a given
sequence. The sequence contains all the valid single-digit entries (0–9).
You should set the repeat argument to the number of digits in the combi-
nation . Compare each result to the combination and print "Cracked!"
if they match, along with the combination and matching permutation .
Finish by displaying the runtime .

This works great for combinations up to eight digits long. After that,
the wait becomes increasingly uncomfortable. Table 7-3 is a record of run-
times for the program versus number of digits in the combination.

brute_force
_cracker.py

https://docs.python.org/3.6/library/itertools.html#itertools.product.Listing
https://docs.python.org/3.6/library/itertools.html#itertools.product.Listing

Breeding Giant Rats with Genetic Algorithms 139

Table 7-3: Runtimes Versus Digits in Combination (2.3 GHz Processor)

Number of digits Runtime in seconds

5 0.035

6 0.147

7 1.335

8 12.811

9 133.270

10 1396.955

Notice that adding a number to the combination increases the runtime
by an order of magnitude. This is an exponential increase. With 9 digits,
you’d wait over 2 minutes for an answer. With 10 digits, over 20 minutes!
That’s a long time for Bond to take an unnoticed “bathroom break.”

Fortunately, you’re Q, and you know about genetic algorithms. All
you need is some way to judge the fitness of each candidate combination.
Options include monitoring fluctuations in power consumption, measur-
ing time delays in operations, and listening for sounds. Let’s assume use of
a sound-amplifying tool, along with a tool to prevent lockouts after a few
incorrect combinations have been entered. Because of the safeguards in the
BR549 safe, a sound tool can initially tell you only how many digits are cor-
rect, not which digits, but with very little time, your algorithm can zero in on
the solution.

T he Objec t i v e

Use a genetic algorithm to quickly find a safe’s combination in a large search space.

Strategy
The strategy here is straightforward. You’ll generate a sequence of 10 num-
bers at random and compare it to the real combination, grading the result
based on matches; in the real world, you’d find the number of matches using
the sound detector clamped to the door of the safe. You then change one
value in your solution and compare again. If another match is found, you
throw away the old sequence and move forward with the new; otherwise, you
keep the old sequence and try again.

Since one solution completely replaces the other, this represents 100 per-
cent crossover of genetic material, so you are essentially using just selection
and mutation. Selection plus mutation alone generates a robust hill-climbing
algorithm. Hill climbing is an optimization technique that starts with an
arbitrary solution and changes (mutates) a single value in the solution. If the
result is an improvement, the new solution is kept and the process repeats.

140 Chapter 7

A problem with hill climbing is that the algorithm can get stuck in local
minima or maxima and not find the optimal global value. Imagine you are
looking for the lowest value in the wavelike function in Figure 7-4. The cur-
rent best guess is marked by the large black dot. If the magnitude of the
change you are making (mutation) is too small to “escape” the local trough,
the algorithm won’t find the true low point. From the algorithm’s point of
view, because every direction results in a worse answer, it must have found
the true answer. So it prematurely converges on a solution.

Mutation

Range

Current solution

Local minimum
Global minimum

Figure 7-4: Example of a hill-climbing algorithm “stuck” in a local minimum

Using crossover in genetic algorithms helps to avoid premature con-
vergence problems, as does allowing for relatively large mutations. Because
you’re not worried about honoring biological realism here, the mutation
space can encompass every possible value in the combination. That way you
can’t get stuck, and hill climbing is an acceptable approach.

The Safecracker Code
The safe_cracker.py code takes a combination of n digits and uses hill climb-
ing to reach the combination from a random starting point. The code can
be downloaded from https://www.nostarch.com/impracticalpython/.

Setting Up and Defining the fitness() Function

Listing 7-9 imports the necessary modules and defines the fitness()
function.

 import time
from random import randint, randrange

 def fitness(combo, attempt):
 """Compare items in two lists and count number of matches."""
 grade = 0

  for i, j in zip(combo, attempt):

safe_cracker.py,
part 1

Breeding Giant Rats with Genetic Algorithms 141

 if i == j:
 grade += 1
 return grade

Listing 7-9: Imports modules and defines the fitness() function

After importing some familiar modules , define a fitness() function
that takes the true combination and an attempted solution as arguments .
Name a variable grade and set it to 0. Then use zip() to iterate through each
element in the combination and your attempt . If they’re the same, add 1
to grade and return it. Note that you aren’t recording the index that matches,
just that the function has found a match. This emulates output from the
sound detection device. All it can tell you initially is how many lock wheels
turned, not their locations.

Defining and Running the main() Function

Since this is a short and simple program, most of the algorithm is run in
the main() function, Listing 7-10, rather than in multiple functions.

def main():
 """Use hill-climbing algorithm to solve lock combination."""

  combination = '6822858902'
 print("Combination = {}".format(combination))
 # convert combination to list:

  combo = [int(i) for i in combination]

 # generate guess & grade fitness:
  best_attempt = [0] * len(combo)

 best_attempt_grade = fitness(combo, best_attempt)

  count = 0

 # evolve guess
  while best_attempt != combo:

 # crossover
  next_try = best_attempt[:]

 # mutate
 lock_wheel = randrange(0, len(combo))

  next_try[lock_wheel] = randint(0, 9)

 # grade & select
  next_try_grade = fitness(combo, next_try)

 if next_try_grade > best_attempt_grade:
 best_attempt = next_try[:]
 best_attempt_grade = next_try_grade
 print(next_try, best_attempt)
 count += 1

 print()
  print("Cracked! {}".format(best_attempt), end=' ')

 print("in {} tries!".format(count))

safe_cracker.py,
part 2

142 Chapter 7

if __name__ == '__main__':
 start_time = time.time()
 main()
 end_time = time.time()
 duration = end_time - start_time

  print("\nRuntime for this program was {:.5f} seconds.".format(duration))

Listing 7-10: Defines the main() function and runs and times the program if it hasn’t
been imported

Provide the true combination as a variable  and use list comprehen-
sion to convert it into a list for convenience going forward . Generate a list
of zeros equal in length to the combination and name it best_attempt . At
this point, any combination is as good as any other. You should retain this
name—best_attempt—because you need to preserve only the best solution
as you climb the hill. Once you’ve generated the initial attempt, grade it
with the fitness() function and then assign the value to a variable, called
best_attempt_grade.

Start a count variable at zero. The program will use this variable to
record how many attempts it took to crack the code .

Now, start a while loop that continues until you’ve found the combi-
nation . Assign a copy of best_attempt to a next_try variable . You copy
it so you don’t run into aliasing problems; when you alter an element in
next_try, you don’t want to accidentally change best_attempt, because you
may continue to use it in the event next_try fails the fitness test.

It’s now time to mutate the copy. Each digit in the combination turns
a lock wheel in the safe, so name a variable lock_wheel and randomly set it
equal to an index location in the combination. This represents the location
of the single element to change in this iteration. Next, randomly choose a
digit and use it to replace the value at the location indexed by lock_wheel .

Grade next_try, and if it’s fitter than the previous attempt, reset
both best_attempt and best_attempt_grade to the new values . Otherwise,
best_attempt will remain unchanged for the next iteration. Print both
next_try and best_attempt, side by side, so you can scroll through the
attempts when the program ends and see how they evolved. Finish the
loop by advancing the counter.

When the program finds the combination, display the best_attempt
value and the number of tries it took to find it . Remember, the end=' '
argument prevents a carriage return at the end of the printed line and
places a space between the end of the current line and the beginning of
the next line.

Complete the program with the conditional statement for running
main() stand-alone and display the runtime to five decimal places . Note
that the timing code comes after the conditional, and thus will not run if
the program is imported as a module.

Breeding Giant Rats with Genetic Algorithms 143

Summary
The last few lines of output from the safe_cracker.py program are shown
here. I’ve omitted most of the evolving comparisons for brevity. The run
was for a 10-digit combination.

[6, 8, 6, 2, 0, 5, 8, 9, 0, 0] [6, 8, 2, 2, 0, 5, 8, 9, 0, 0]
[6, 8, 2, 2, 0, 9, 8, 9, 0, 0] [6, 8, 2, 2, 0, 5, 8, 9, 0, 0]
[6, 8, 2, 2, 8, 5, 8, 9, 0, 0] [6, 8, 2, 2, 8, 5, 8, 9, 0, 0]
[6, 8, 2, 2, 8, 5, 8, 9, 0, 2] [6, 8, 2, 2, 8, 5, 8, 9, 0, 2]

Cracked! [6, 8, 2, 2, 8, 5, 8, 9, 0, 2] in 78 tries!

Runtime for this program was 0.69172 seconds.

Ten billion possible combinations, and the program found a solution
in only 78 tries and in less than a second. Even James Bond would be
impressed with that.

That does it for genetic algorithms. You’ve used an example workflow to
breed gigantic rodents, then trimmed it to hill climb through a brute-force
problem in no time flat. If you want to continue to play digital Darwin and
experiment with genetic algorithms, a long list of example applications can
be found on Wikipedia (https://en.wikipedia.org/wiki/List_of_genetic_algorithm​
_applications). Examples include:

•	 Modeling global temperature changes

•	 Container-loading optimization

•	 Delivery vehicle–routing optimization

•	 Groundwater-monitoring networks

•	 Learning robot behavior

•	 Protein folding

•	 Rare-event analysis

•	 Code breaking

•	 Clustering for fit functions

•	 Filtering and signal processing

Further Reading
Genetic Algorithms with Python (Amazon Digital Services LLC, 2016) by
Clinton Sheppard is a beginner-level introduction to genetic algorithms
using Python. It is available in paperback or as an inexpensive ebook from
https://leanpub.com/genetic_algorithms_with_python/.

https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications
https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications
https://leanpub.com/genetic_algorithms_with_python/

144 Chapter 7

Challenge Projects
Continue to breed super-rats and crack super-safes with these suggested
projects. As usual with challenge projects, you’re on your own; no solutions
are provided.

Building a Rat Harem
Since a single male rat can mate with multiple females, there is no need to
have an equal number of male and female rats. Rewrite the super_rats.py
code to accommodate a variable number of male and female individuals.
Then rerun the program with the same total number of rats as before,
but use 4 males and 16 females. How does this impact the number of years
required to reach the target weight of 50,000 grams?

Creating a More Efficient Safecracker
As currently written, when a lock wheel match is found by the safe_cracker.py
code, that match is not explicitly preserved. As long as the while loop is run-
ning, there’s nothing to stop a correct match from being stochastically over-
written. Alter the code so that the indexes for correct guesses are excluded
from future changes. Do timing comparisons between the two versions of
the code to judge the impact of the change.

8
C o u n t i n g S y l l a b l e s

f o r H a i k u P o e t r y

Poetry may be the supreme form of lit-
erature. It is, as Coleridge put it, “the best

words in the best order.” The poet must—
with great brevity—tell a story, promote an

idea, describe a scene, or evoke intensity of feeling, all
while obeying strict rules on rhythm and rhyme, style
and structure.

Computers love rules and structure and even have the potential to
evoke emotions. In his 1996 book Virtual Muse: Experiments in Computer Poetry,
author Charles Hartman describes early attempts to write algorithms that
could mimic human poetry. To quote Hartman, “The complexity of poetic
interaction, the tricky dance among poet and text and reader, causes a game
of hesitation. In this game, a properly programmed computer has a chance
to slip in some interesting moves.”

The early programs Hartman describes could, at best, produce bad
beatnik poetry. The goal at the time was to “introduce calculated bits
of mechanized anarchy into the language, put the results back into the

146 Chapter 8

contingent world where language lives, and see how the dust settles.” As
we have touched on in several chapters, context is the weak link in pro-
gramming things like proper-name anagrams and null ciphers. To write
computer poems that pass the “supreme” test of literature, you cannot
ignore context.

Getting a computer to simulate this most human of human endeavors
is an intriguing challenge—and certainly not one we can pass up. In this
chapter and the next, you’ll teach your computer how to generate a tradi-
tional form of Japanese poetry called haiku.

Japanese Haiku
Haiku consist of three lines of five, seven, and five syllables, respectively.
The poems rarely rhyme, and the subject matter usually addresses the natu-
ral world—mainly the seasons—either directly or indirectly. If done prop-
erly, a haiku can immerse you in the scene, as if evoking a memory.

I’ve provided three example haiku here. The first is by the master
Buson (1715–1783), the second by the master Issa (1763–1828), and the
third by yours truly, based on memories of childhood road trips.

Standing still at dusk
Listen . . . in far distances
The song of froglings!

—Buson

Good friend grasshopper
Will you play the caretaker
For my little grave?

—Issa

Faraway cloudbanks
That I let myself pretend
Are distant mountains

—Vaughan

Because of its evocative nature, every haiku has a built-in “exploitable
gap” for the programmer. This is summed up nicely by Peter Beilenson
in his 1955 book Japanese Haiku: “the haiku is not expected to be always a
complete or even a clear statement. The reader is supposed to add to the
words his own associations and imagery, and thus to become a co-creator
of his own pleasure in the poem.” Hartman adds, “The reader’s mind works
most actively on sparse materials. We draw the clearest constellations from
the fewest stars. So, the nonsense factor is low for a tiny collocation of words
that can be imbued with imagistic significance.” To put it simply, it’s harder
to mess up a short poem. Readers always assume the poet had a point and
will make one up themselves if they can’t find it.

Counting Syllables for Haiku Poetry 147

Despite this advantage, training your computer to write poetry is no
mean feat, and you’ll need two whole chapters to get it done. In this chap-
ter, you’ll write a program that counts the number of syllables in words
and phrases so that you can honor the syllabic structure of the haiku. In
Chapter 9, you’ll use a technique called Markov chain analysis to capture the
essence of haiku—the elusive evocative component—and transform exist-
ing poems into something new and, occasionally, arguably better.

Project #15: Counting Syllables
Counting syllables in English is difficult. The problem lies in, as Charles
Hartman put it, the quirky spelling and tangled linguistic history of English.
For example, a word like aged may be one syllable or two depending on
whether it describes a man or a cheese. How can a program count syllables
accurately without degenerating into an endless list of special cases?

The answer is that it can’t, at least not without a “cheat sheet.” Fortu
nately, these cheat sheets exist, thanks to a branch of science known as
natural language processing (NLP), which deals with interactions between the
precise and structured language of computers and the nuanced, frequently
ambiguous “natural” language used by humans. Example uses for NLP
include machine translations, spam detection, comprehension of search
engine questions, and predictive text recognition for cell phone users. The
biggest impact of NLP is yet to come: the mining of vast volumes of previ-
ously unusable, poorly structured data and engaging in seamless conversa-
tions with our computer overlords.

In this chapter, you’ll use an NLP dataset to help count syllables in
words or phrases. You’ll also write code that finds words that are missing
from this dataset and then helps you build a supporting dictionary. Finally,
you’ll write a program to help you check your syllable-counting code. In
Chapter 9, you’ll use this syllable-counting algorithm as a module in a pro-
gram that helps you computationally produce the highest achievement in
literature: poetry.

Th e Objec t i v e

Write a Python program that counts the number of syllables in an English word or phrase.

The Strategy
For you and me, counting syllables is easy. Place the back of your hand
just below your chin and start talking. Every time your chin hits your hand
you’ve spoken a syllable. Computers don’t have hands or chins, but every
vowel sound represents a syllable—and computers can count vowel sounds.
It’s not easy, however, as there isn’t a simple rule for doing this. Some vowels
in written language are silent, such as the e in like, and some combine to

148 Chapter 8

make a single sound, such as the oo in moo. Luckily, the number of words in
the English language isn’t infinite. Fairly exhaustive lists are available that
include much of the information you need.

A corpus is a fancy name for a body of text. In Chapter 9, you’ll use a
training corpus—composed of haiku—that teaches Python how to write new
haiku. In this chapter, you’ll use this same corpus to extract syllable counts.

Your syllable counter should evaluate both phrases and individual
words, since you will ultimately use it to count the syllables in entire lines in
a haiku. The program will take some text as an input, count the number of
syllables in each word, and return the total syllable count. You’ll also have
to deal with things like punctuation, whitespace, and missing words.

The primary steps you need to follow are:

1.	 Download a large corpus with syllable-count information.

2.	 Compare the syllable-count corpus to the haiku-training corpus and
identify all the words missing from the syllable-count corpus.

3.	 Build a dictionary of the missing words and their syllable counts.

4.	 Write a program that uses both the syllable-count corpus and the
missing-words dictionary to count syllables in the training corpus.

5.	 Write a program that checks the syllable-counting program against
updates of the training corpus.

Using a Corpus
The Natural Language Toolkit (NLTK) is a popular suite of programs and
libraries for working with human language data in Python. It was created
in 2001 as part of a computational linguistics course in the Department
of Computer and Information Science at the University of Pennsylvania.
Development and expansion have continued with the help of dozens
of contributors. To learn more, check out the official NLTK website at
http://www.nltk.org/.

For this project, you will use NLTK to access the Carnegie Mellon
University Pronouncing Dictionary (CMUdict). This corpus contains almost
125,000 words mapped to their pronunciations. It is machine readable and
useful for tasks such as speech recognition.

Installing NLTK
You can find instructions for installing NLTK on Unix, Windows, and macOS
at http://www.nltk.org/install.html. If you are using Windows, I suggest you start
by opening Windows Command Prompt or PowerShell and trying to install
with pip:

python -m pip install nltk

Counting Syllables for Haiku Poetry 149

You can check the installation by opening the Python interactive shell
and typing:

>>> import nltk
>>>

If you don’t get an error, you’re good to go. Otherwise, follow the
instructions on the website just cited.

Downloading CMUdict
To get access to CMUdict (or any of the other NLTK corpora), you have
to download it. You can do this using the handy NLTK Downloader. Once
you’ve installed NLTK, enter the following into the Python shell:

>>> import nltk
>>> nltk.download()

The NLTK Downloader window (Figure 8-1) should now be open. Click
the Corpora tab near the top, then click cmudict in the Identifier column.
Next, scroll to the bottom of the window and set the Download Directory;
I used the default, C:\nltk_data. Finally, click the Download button to load
CMUdict.

Figure 8-1: The NLTK Downloader window with cmudict selected for download

150 Chapter 8

When CMUdict has finished downloading, exit the Downloader and
enter the following into the Python interactive shell:

>>> from nltk.corpus import cmudict
>>>

If you don’t encounter an error, then the corpus has been successfully
downloaded.

Counting Sounds Instead of Syllables
The CMUdict corpus breaks words into sets of phonemes—perceptually dis-
tinct units of sound in a specified language—and marks vowels for lexical
stress using numbers (0, 1, and 2). The CMUdict corpus marks every vowel
with one, and only one, of these numbers, so you can use the numbers to
identify the vowels in a word.

Looking at words as a set of phonemes will help you sidestep a few prob-
lems. For one, CMUdict will not include vowels in the written word that are
unpronounced. For example, here’s how CMUdict sees the word scarecrow:

[['S', 'K', 'AE1', 'R', 'K', 'R', 'OW0']]

Each item with a numerical suffix represents a pronounced vowel. Note
that the silent e at the end of scare is correctly omitted.

Second, sometimes multiple and consecutive written vowels are pro-
nounced as just a single phoneme. For example, this is how CMUdict repre-
sents house :

[['HH', 'AW1', 'S']]

Note how the corpus treats the written double vowels ou as a single
vowel, 'AW1', for pronunciation purposes.

Handling Words with Multiple Pronunciations
As I mention in the introduction, some words have multiple distinct pro-
nunciations; aged and learned are just two examples:

[['EY1', 'JH', 'D'], ['EY1', 'JH', 'IH0', 'D']]
[['L', 'ER1', 'N', 'D'], ['L', 'ER1', 'N', 'IH0', 'D']]

Note the nested lists. The corpus recognizes that both words can be
pronounced with one or two syllables. This means it will return more than
one syllable count for certain words, something you will have to account for
in your code.

Counting Syllables for Haiku Poetry 151

Managing Missing Words
CMUdict is very useful, but with a corpus, a word is either there or not. It
took only seconds to find more than 50 words—like dewdrop, bathwater, dusky,
ridgeline, storks, dragonfly, beggar, and archways—missing from CMUdict in a
1,500-word test case. So, one of your strategies should be to check CMUdict
for missing words and then address any omissions by making a corpus for
your corpus!

The Training Corpus
In Chapter 9, you’ll use a training corpus of several hundred haiku to
“teach” your program how to write new ones. But you can’t count on
CMUdict to contain all the words in this corpus because some will be
Japanese words, like sake. And as you already saw, even some common
English words are missing from CMUdict.

So the first order of business is to check all the words in the training
corpus for membership in CMUdict. To do this, you’ll need to down-
load the training corpus, called train.txt, from https://www.nostarch.com/​
impracticalpython/. Keep it in the same folder as all the Python programs
from this chapter. The file contains slightly under 300 haiku that have been
randomly duplicated around 20 times to ensure a robust training set.

Once you find words that aren’t in CMUdict, you’ll write a script to help
you prepare a Python dictionary that uses words as keys and syllable counts
as values; then you’ll save this dictionary to a file that can support CMUdict
in the syllable-counting program.

The Missing Words Code
The code in this section will find words missing from CMUdict, help you
prepare a dictionary of the words and their syllable counts, and save the
dictionary to a file. You can download the code from https://nostarch.com/
impracticalpython/ as missing_words_finder.py.

Importing Modules, Loading CMUdict, and Defining the main() Function

Listing 8-1 imports modules, loads CMUdict, and defines the main() func-
tion that runs the program.

import sys
from string import punctuation

 import pprint
import json
from nltk.corpus import cmudict

 cmudict = cmudict.dict() # Carnegie Mellon University Pronouncing Dictionary

 def main():
  haiku = load_haiku('train.txt')
  exceptions = cmudict_missing(haiku)

missing_words
_finder.py, part 1

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

152 Chapter 8

  build_dict = input("\nManually build an exceptions dictionary (y/n)? \n")
 if build_dict.lower() == 'n':
 sys.exit()
 else:

  missing_words_dict = make_exceptions_dict(exceptions)
 save_exceptions(missing_words_dict)

Listing 8-1: Imports modules, loads CMUdict, and defines main()

You start with some familiar imports and a few new ones. The pprint
module lets you “pretty print” your dictionary of missing words in an easy-
to-read format . You’ll write out this same dictionary as persistent data
using JavaScript Object Notation (json), a text-based way for computers to
exchange data that works well with Python data structures; it’s part of the
standard library, standardized across multiple languages, and the data is
secure and human readable. Finish by importing the CMUdict corpus.

Next, call the cmudict module’s dict() method to turn the corpus into a
dictionary with the words as keys and their phonemes as values .

Define the main() function that will call functions to load the training
corpus, find missing words in CMUdict, build a dictionary with the words
and their syllable counts, and save the results . You’ll define these func-
tions after defining main().

Call the function to load the haiku-training corpus and assign the
returned set to a variable named haiku . Then call the function that will
find the missing words and return them as a set . Using sets removes
duplicate words that you don’t need. The cmudict_missing() function will
also display the number of missing words and some other statistics.

Now, ask the user if they want to manually build a dictionary to address
the missing words and assign their input to the build_dict variable . If they
want to stop, exit the program; otherwise, call a function to build the diction-
ary  and then another one to save the dictionary. Note that the user isn’t
restricted to pressing y if they want to continue, though that’s the prompt.

Loading the Training Corpus and Finding Missing Words

Listing 8-2 loads and prepares the training corpus, compares its contents
to CMUdict, and keeps track of the differences. These tasks are divided
between two functions.

 def load_haiku(filename):
 """Open and return training corpus of haiku as a set."""
 with open(filename) as in_file:

  haiku = set(in_file.read().replace('-', ' ').split())
  return haiku

def cmudict_missing(word_set):
 """Find and return words in word set missing from cmudict."""

  exceptions = set()
 for word in word_set:
 word = word.lower().strip(punctuation)
 if word.endswith("'s") or word.endswith("’s"):

missing_words
_finder.py, part 2

Counting Syllables for Haiku Poetry 153

 word = word[:-2]
  if word not in cmudict:

 exceptions.add(word)
 print("\nexceptions:")
 print(*exceptions, sep='\n')

  print("\nNumber of unique words in haiku corpus = {}"
 .format(len(word_set)))

 print("Number of words in corpus not in cmudict = {}"
 .format(len(exceptions)))
 membership = (1 - (len(exceptions) / len(word_set))) * 100

  print("cmudict membership = {:.1f}{}".format(membership, '%'))
 return exceptions

Listing 8-2: Defines functions to load the corpus and finds words missing from CMUdict

Define a function to read in the words from the haiku-training corpus .
The haiku in train.txt have been duplicated many times, plus the original
haiku contain duplicate words, like moon, mountain, and the. There’s no
point in evaluating a word more than once, so load the words as a set to
remove repeats . You also need to replace hyphens with spaces. Hyphens
are popular in haiku, but you need to separate the words on either side in
order to check for them in CMUdict. End the function by returning the
haiku set .

It’s now time to find missing words. Define a function, cmudict_missing(),
that takes as an argument a sequence—in this case, the set of words returned
by the load_haiku() function. Start an empty set called exceptions to hold
any missing words . Loop through each word in the haiku set, converting
it to lowercase and stripping any leading or trailing punctuation. Note that
you don’t want to remove interior punctuation other than hyphens because
CMUdict recognizes words like wouldn’t. Possessive words typically aren’t in a
corpus, so remove the trailing ’s, since this won’t affect the syllable count.

N o t e 	 Be careful of curly apostrophes (’) produced by word-processing software. These are
different from the straight apostrophes (') used in simple text editors and shells and
may not be recognized by CMUdict. If you add new words to either the training or
JSON files, be sure to use a straight apostrophe for contractions or possessive nouns.

If the word isn’t found in CMUdict, add it to exceptions . Print these
words as a check, along with some basic information , like how many
unique words, how many missing words, and what percentage of the train-
ing corpus are members of CMUdict. Set the percent value precision to one
decimal place . End the function by returning the set of exceptions.

Building a Dictionary of Missing Words

Listing 8-3 continues the missing_words_finder.py code, now supplementing
CMUdict by assigning syllable counts to the missing words as values in a
Python dictionary. Since the number of missing words should be relatively
small, the user can assign the counts manually, so write the code to help
them interact with the program.

154 Chapter 8

 def make_exceptions_dict(exceptions_set):
 """Return dictionary of words & syllable counts from a set of words."""

  missing_words = {}
 print("Input # syllables in word. Mistakes can be corrected at end. \n")
 for word in exceptions_set:
 while True:

  num_sylls = input("Enter number syllables in {}: ".format(word))
  if num_sylls.isdigit():

 break
 else:
 print(" Not a valid answer!", file=sys.stderr)

  missing_words[word] = int(num_sylls)
 print()

  pprint.pprint(missing_words, width=1)

  print("\nMake Changes to Dictionary Before Saving?")
 print("""
 0 - Exit & Save
 1 – Add a Word or Change a Syllable Count
 2 - Remove a Word
 """)

  while True:
 choice = input("\nEnter choice: ")
 if choice == '0':
 break
 elif choice == '1':
 word = input("\nWord to add or change: ")
 missing_words[word] = int(input("Enter number syllables in {}: "
 .format(word)))
 elif choice == '2':
 word = input("\nEnter word to delete: ")

  missing_words.pop(word, None)

 print("\nNew words or syllable changes:")
  pprint.pprint(missing_words, width=1)

 return missing_words

Listing 8-3: Allows the user to manually count syllables and builds a dictionary

Start by defining a function that takes the set of exceptions returned
by the cmudict_missing() function as an argument . Immediately assign an
empty dictionary to a variable named missing_words . Let the user know
that if they make a mistake, they’ll have a chance to fix it later; then, use a
for and while loop to go through the set of missing words and present each
word to the user, asking for the number of syllables as input. The word will
be the dictionary key, and the num_sylls variable will become its value . If
the input is a digit , break out of the loop. Otherwise, warn the user and
let the while loop request input again. If the input passes, add the value to
the dictionary as an integer .

missing_words
_finder.py, part 3

Counting Syllables for Haiku Poetry 155

Use pprint to display each key/value pair on a separate line, as a check.
The width parameter acts as a newline argument .

Give the user the opportunity to make last-minute changes to the
missing_words dictionary before saving it as a file . Use triple quotes to
present the options menu, followed by a while loop to keep the options
active until the user is ready to save . The three options are exiting, which
invokes the break command; adding a new word or changing the syllable
count for an existing word, which requires the word and syllable count as
input; and removing an entry, which uses the dictionary pop() function .
Adding the None argument to pop() means the program won’t raise a KeyError
if the user enters a word that’s not in the dictionary.

Finish by giving the user a last look at the dictionary, in the event
changes were made , and then return it.

Saving the Missing Words Dictionary

Persistent data is data that is preserved after a program terminates. To make
the missing_words dictionary available for use in the count_syllables.py program
you’ll write later in this chapter, you need to save it to a file. Listing 8-4 does
just that.

 def save_exceptions(missing_words):
 """Save exceptions dictionary as json file."""

  json_string = json.dumps(missing_words)
  f = open('missing_words.json', 'w')

 f.write(json_string)
 f.close()

  print("\nFile saved as missing_words.json")

 if __name__ == '__main__':
 main()

Listing 8-4: Saves missing-words dictionary to a file and calls main()

Use json to save the dictionary. Define a new function that takes the set
of missing words as an argument . Assign the missing_words dictionary to a
new variable named json_string ; then, open a file with a .json extension ,
write the json variable, and close the file. Display the name of the file as a
reminder to the user . End with the code that lets the program be run as
a module or in stand-alone mode .

The json.dumps() method serializes the missing_words dictionary into a
string. Serialization is the process of converting data into a more transmit-
table or storable format. For example:

>>> import json
>>> d = {'scarecrow': 2, 'moon': 1, 'sake': 2}
>>> json.dumps(d)
'{"sake": 2, "scarecrow": 2, "moon": 1}'

Note that the serialized dictionary is bound by single quotes, making it
a string.

missing_words
_finder.py, part 4

156 Chapter 8

I’ve provided a partial output from missing_words_finder.py here. The list
of missing words at the top and the manual syllable counts at the bottom
have both been shortened for brevity.

--snip--
froglings
scatters
paperweights
hibiscus
cumulus
nightingales

Number of unique words in haiku corpus = 1523
Number of words in corpus not in cmudict = 58
cmudict membership = 96.2%

Manually build an exceptions dictionary (y/n)?
y
Enter number syllables in woodcutter: 3
Enter number syllables in morningglory: 4
Enter number syllables in cumulus: 3
--snip--

Don’t worry—you won’t have to assign all the syllable counts. The missing_
words.json file is complete and ready for download when you need it.

N o t e 	 For words that have multiple pronunciations, like jagged or our, you can force the
program to use the one you prefer by manually opening the missing_words.json
file and adding the key/value pair (at any location, since dictionaries are unordered).
I did this with the word sake so that it uses the two-syllable Japanese pronuncia-
tion. Because word membership is checked in this file first, it will override the
CMUdict value.

Now that you’ve addressed the holes in CMUdict, you’re ready to write
the code that counts syllables. In Chapter 9, you’ll use this code as a module
in the markov_haiku.py program.

The Count Syllables Code
This section contains the code for the count_syllables.py program. You’ll also
need the missing_words.json file you created in the previous section. You can
download both from https://www.nostarch.com/impracticalpython/. Keep them
together in the same folder.

Prepping, Loading, and Counting
Listing 8-5 imports the necessary modules, loads the CMUdict and missing-
words dictionaries, and defines a function that will count the syllables in a
given word or phrase.

Counting Syllables for Haiku Poetry 157

import sys
from string import punctuation
import json
from nltk.corpus import cmudict

load dictionary of words in haiku corpus but not in cmudict
with open('missing_words.json') as f:
 missing_words = json.load(f)

 cmudict = cmudict.dict()

 def count_syllables(words):
 """Use corpora to count syllables in English word or phrase."""
 # prep words for cmudict corpus
 words = words.replace('-', ' ')
 words = words.lower().split()

  num_sylls = 0
  for word in words:

 word = word.strip(punctuation)
 if word.endswith("'s") or word.endswith("’s"):
 word = word[:-2]

  if word in missing_words:
 num_sylls += missing_words[word]
 else:

  for phonemes in cmudict[word][0]:
 for phoneme in phonemes:

  if phoneme[-1].isdigit():
 num_sylls += 1

  return num_sylls

Listing 8-5: Imports modules, loads dictionaries, and counts syllables

After some familiar imports, load the missing_words.json file that contains
all the words and syllable counts missing from CMUdict. Using json.load()
restores the dictionary that was stored as a string. Next, turn the CMUdict
corpus into a dictionary using the dict() method .

Define a function called count_syllables() to count syllables. It
should take both words and phrases, because you’ll ultimately want to
pass it lines from a haiku. Prep the words as you did previously in the
missing_words_finder.py program .

Assign a num_sylls variable to hold the syllable count and set it to 0 .
Now start looping through the input words, stripping punctuation and ’s
from the ends. Note that you can get tripped up by the format of the apos-
trophe, so two versions are supplied: one with a straight apostrophe and
one with a curly apostrophe . Next, check whether the word is a member
of the small dictionary of missing words. If the word is found, add the dic-
tionary value for the word to num_sylls . Otherwise, start looking through
the phonemes, which represent a value in CMUdict; for each phoneme,
look through the strings that make it up . If you find a digit at the end of
the string, then you know that phoneme is a vowel. To illustrate using the
word aged, only the first string (highlighted in gray here) ends with a digit,
so the word contains one vowel:

count_syllables.py,
part 1

158 Chapter 8

[['EY1', 'JH', 'D'], ['EY1', 'JH', 'IH0', 'D']]

Note that you use the first value ([0]) in case there are multiple pro-
nunciations; remember that CMUdict represents each pronunciation in a
nested list. This may result in the occasional error, as the proper choice will
depend on context.

Check whether the end of the phoneme has a digit, and if it does, add 1 to
num_sylls . Finally, return the total syllable count for the word or phrase .

Defining the main() Function
Completing the program, Listing 8-6 defines and runs the main() function.
The program will call this function when the program is run in stand-alone
mode—for example, to spot-check a word or phrase—but it won’t be called if
you import syllable_counter as a module.

def main():
  while True:

 print("Syllable Counter")
  word = input("Enter word or phrase; else press Enter to Exit: ")
  if word == '':

 sys.exit()
  try:

 num_syllables = count_syllables(word)
 print("number of syllables in {} is: {}"
 .format(word, num_syllables))
 print()
 except KeyError:
 print("Word not found. Try again.\n", file=sys.stderr)

 if __name__ == '__main__':
 main()

Listing 8-6: Defines and calls the main() function

Define the main() function and then start a while loop . Ask the user to
input a word or phrase . If the user presses enter with no input, the pro-
gram exits . Otherwise, start a try-except block so the program won’t crash
if a user enters a word not found in either dictionary . An exception should
be raised only in stand-alone mode, as you have already prepared the pro-
gram to run on the haiku-training corpus with no exceptions. Within this
block, the count_syllables() function is called and passed the input, and then
the results are displayed in the interactive shell. End with the standard code
that lets the program run stand-alone or as a module in another program .

A Program to Check Your Program
You have carefully tailored the syllable-counting program to ensure it will
work with the training corpus. As you continue with the haiku program,
you may want to add a poem or two to this corpus, but adding new haiku

count_syllables.py,
part 2

Counting Syllables for Haiku Poetry 159

might introduce a new word that isn’t in either the CMUdict or your excep-
tions dictionary. Before you go back and rebuild the exceptions dictionary,
check whether you really need to do so.

Listing 8-7 will automatically count the syllables in each word in
your training corpus and display any word(s) on which it failed. You can
download this program from https://www.nostarch.com/impracticalpython/
as test_count_syllables_w_full_corpus.py. Keep it in the same folder as
count_syllables.py, train.txt, and missing_words.json.

import sys
import count_syllables

with open('train.txt.') as in_file:
  words = set(in_file.read().split())

 missing = []

 for word in words:
 try:
 num_syllables = count_syllables.count_syllables(word)
 ##print(word, num_syllables, end='\n') # uncomment to see word counts

  except KeyError:
 missing.append(word)

 print("Missing words:", missing, file=sys.stderr)

Listing 8-7: Attempts to count syllables in words in a training corpus and lists all failures

Open your updated train.txt training corpus and load it as a set to
remove duplicates . Start an empty list, called missing, to hold any new
words for which syllables can’t be counted . Words in missing won’t be in
CMUdict or in your missing_words dictionary.

Loop through the words in the new training corpus  and use a
try-except block to handle the KeyError that will be raised if count_syllables.py
can’t find the word . Append this word to the missing list and then display
the list .

If the program displays an empty list, then all the words in the new
haiku are already present in either CMUdict or missing_words.json, so you
don’t need to make any adjustments. Otherwise, you have the choice of
manually adding the words to the missing_words.json file or rerunning
missing_words_finder.py to rebuild missing_words.json.

Summary
In this chapter, you’ve learned how to download NLTK and use one of its
datasets, the Carnegie Mellon Pronouncing Dictionary (CMUdict). You
checked the CMUdict dataset against a training corpus of haiku and built a
supporting Python dictionary for any missing words. You saved this Python

test_count_syllables
_w_full_corpus.py

160 Chapter 8

dictionary as persistent data using JavaScript Object Notation (JSON).
Finally, you wrote a program that can count syllables. In Chapter 9, you’ll
use your syllable-counting program to help you generate novel haiku.

Further Reading
Virtual Muse: Experiments in Computer Poetry (Wesleyan University Press, 1996)
by Charles O. Hartman is an engaging look at the early collaboration
between humans and computers to write poetry.

Natural Language Processing with Python: Analyzing Text with the Natural
Language Toolkit (O’Reilly, 2009) by Steven Bird, Ewan Klein, and Edward
Loper is an accessible introduction to NLP using Python, with lots of exer-
cises and useful integration with the NLTK website. A new version of the
book, updated for Python 3 and NLTK 3, is available online at http://www​
.nltk.org/book/.

“The Growing Importance of Natural Language Processing” by Stephen
F. DeAngelis is a Wired magazine article on the expanding role of NLP in big
data. An online version is available at https://www.wired.com/insights/2014/02
/growing-importance-natural-language-processing/.

Practice Project: Syllable Counter vs. Dictionary File
Write a Python program that lets you test count_syllables.py (or any other
syllable-counting Python code) against a dictionary file. After allowing the
user to specify how many words to check, choose the words at random and
display a listing of each word and its syllable count on separate lines. The
output should look similar to this printout:

ululation 4
intimated 4
sand 1
worms 1
leatherneck 3
contenting 3
scandals 2
livelihoods 3
intertwining 4
beaming 2
untruthful 3
advice 2
accompanying 5
deathly 2
hallos 2

Downloadable dictionary files are listed in Table 2-1 on page 20.
You can find a solution in the appendix that can be downloaded from
https://www.nostarch.com/impracticalpython/ as test_count_syllables_w_dict.py.

http://www.nltk.org/book/
http://www.nltk.org/book/
https://www.wired.com/insights/2014/02/growing-importance-natural-language-processing/
https://www.wired.com/insights/2014/02/growing-importance-natural-language-processing/
https://www.nostarch.com/impracticalpython/

9
W r i t i n g H a i k u w i t h

M a r k o v C h a i n A n a ly s i s

Computers can write poetry by rearrang-
ing existing poems. This is basically what

humans do. You and I didn’t invent the
language we speak—we learned it. To talk or

write, we just recombine existing words—and rarely
in a truly original manner. As Sting once said about
writing music, “I don’t think there’s such a thing as
composition in pop music. I think what we do in pop
music is collate . . . I’m a good collator.”

In this chapter, you’re going to write a program that puts the “best
words in the best order” in the form of haiku. But to do this, Python needs
good examples, so you’ll need to provide a training corpus of haiku by the
Japanese masters.

To rearrange these words in a meaningful manner, you will use Markov
chains, named after Russian mathematician Andrey Markov. Markov chain
analysis, an important part of probability theory, is a process that attempts

162 Chapter 9

to predict the subsequent state based on the properties of the current state.
Modern-day applications include speech and handwriting recognition, com-
puter performance evaluation, spam filtering, and Google’s PageRank algo-
rithm for searching the web.

With Markov chain analysis, a training corpus, and the syllable-counting
program from Chapter 8, you’ll be able to produce new haiku that follow
the syllabic rules of the genre and stay “on subject” to a large degree. You’ll
also learn how to use Python’s logging module to help monitor the behav-
ior of your program with easy on-and-off feedback. And in “Challenge
Projects” on page 184, you can enlist your friends on social media to see if
they can distinguish your simulated haiku from the real thing.

Project #16: Markov Chain Analysis
Like the genetic algorithms in Chapter 7, Markov chain analysis sounds
impressive but is easy to implement. You do it every day. If you hear some
one say, “Elementary, my dear . . . ,” you automatically think, “Watson.”
Every time your brain has heard this phrase, it has taken a sample. Based
on the number of samples, it can predict the answer. On the other hand,
if you heard someone say, “I want to go to . . . ,” you might think “the bath-
room” or “the movies” but probably not “Houma, Louisiana.” There are
many possible solutions, but some are more likely than others.

Back in the 1940s, Claude Shannon pioneered the use of Markov
chains to statistically model the sequences of letters in a body of text. For
example, for every occurrence of the digram th in an English-language
book, the next most likely letter is e.

But you don’t just want to know what the most likely letter is; you want
to know the actual probability of getting that letter, as well as the odds of
getting every other letter, which is a problem tailor-made for a computer.
To solve this problem, you need to map each two-letter digram in a piece
of text to the letter that immediately follows it. This is a classic dictionary
application, with the digrams as the keys and the letters as the values.

When applied to letters in words, a Markov model is a mathematical
model that calculates a letter’s probability of occurrence based on the previ-
ous k consecutive letters, where k is an integer. A model of order 2 means that
the probability of a letter occurring depends on the two letters that precede
it. A model of order 0 means that each letter is independent. And this same
logic applies to words. Consider these two haiku examples:

A break in the clouds
The moon a bright mountaintop
Distant and aloof

Glorious the moon
Therefore our thanks dark clouds come
To rest our tired necks

A Python dictionary that maps each haiku word to each subsequent
word looks like this:

 'a': ['break', 'bright'],
 'aloof': ['glorious'],

Writing Haiku with Markov Chain Analysis 163

 'and': ['aloof'],
 'break': ['in'],
 'bright': ['mountaintop'],
 'clouds': ['the', 'come'],
 'come': ['to'],
 'dark': ['clouds'],
 'distant': ['and'],
 'glorious': ['the'],
 'in': ['the'],
 'moon': ['a', 'therefore'],
 'mountaintop': ['distant'],
 'our': ['thanks', 'tired'],
 'rest': ['our'],
 'thanks': ['dark'],
 'the': ['clouds', 'moon', 'moon'],
 'therefore': ['our'],
 'tired': ['necks'],
 'to': ['rest']

Since there are only two haiku, most of the dictionary keys have only
one value. But look at the near the bottom of the list: moon occurs twice.
This is because the Markov model stores every occurrence of a word as a
separate, duplicate value. So, for the key the, if you choose a value at ran-
dom, the odds of selecting moon versus clouds are 2:1. Conversely, the model
will automatically screen out extremely rare or impossible combinations.
For example, many words can potentially follow the, but not another the!

The following dictionary maps every pair of words to the word immedi-
ately after; that means it’s a model of order 2.

 'a break': ['in'],
 'a bright': ['mountaintop'],
 'aloof glorious': ['the'],
 'and aloof': ['glorious'],
 'break in': ['the'],
 'bright mountaintop': ['distant'],
 'clouds come': ['to'],
 'clouds the': ['moon'],
 'come to': ['rest'],
 'dark clouds': ['come'],
 'distant and': ['aloof'],
 'glorious the': ['moon'],
 'in the': ['clouds'],
 'moon a': ['bright'],
 'moon therefore': ['our'],
 'mountaintop distant': ['and'],
 'our thanks': ['dark'],
 'our tired': ['necks'],
 'rest our': ['tired'],
 'thanks dark': ['clouds'],
 'the clouds': ['the'],
 'the moon': ['a', 'therefore'],
 'therefore our': ['thanks'],
 'to rest': ['our']

164 Chapter 9

Note that the mapping continues from the first haiku to the second
so the dictionary contains the items 'and aloof': ['glorious'] and 'aloof
glorious': ['the']. This behavior means your program can jump from
one haiku to another and is not restricted to just the word pairs within a
single haiku. It is free to form new word pairs that the masters may never
have conceived.

Because of the very short training corpus, the moon is the only word
pair with multiple keys. For all the others, you are “locked in” to a single
outcome. In this example, the size of the training corpus greatly deter-
mines the number of values per key, but with a larger corpus, the value of
k in the Markov model will have a larger influence.

The size of k determines whether you produce poppycock, commit
plagiarism, or produce a perspicuous piece of originality. If k equals 0,
then you’ll be choosing words at random based on that word’s overall
frequency in the corpus, and you’ll likely produce a lot of gibberish. If k
is large, the results will be tightly constrained, and you’ll begin to repro-
duce the training text verbatim. So small values of k promote creativity,
and large values promote duplication. The challenge is finding the
proper balance between the two.

To illustrate, if you use a Markov model of order 3 on the previous
haiku, all the resulting keys will have one value. The two values associated
with the word pair the moon are lost because the former word pair becomes
two keys, each with a unique value:

 'the moon a': ['bright'],
 'the moon therefore': ['our']

Since haiku are short—only 17 syllables long—and available training
corpora are relatively small, using a k of 2 should be sufficient to enforce some
order while still allowing for creative word substitutions in your program.

Th e Objec t i v e

Write a program that generates haiku using Markov chain analysis. Allow the user to
modify the haiku by independently regenerating lines two and three.

The Strategy
Your general strategy for simulating haiku will be to build Markov models
of orders 1 and 2 with a training corpus of haiku written by humans. You’ll
then use those models and the count_syllables.py program from Chapter 8 to
generate novel haiku that meet the required syllabic structure of 5-7-5 for
the three lines of the haiku.

Writing Haiku with Markov Chain Analysis 165

The program should build the haiku one word at a time, initiating (or
seeding) the haiku with a random word drawn from the corpus; selecting
the haiku’s second word using a Markov model of order 1; and then select-
ing each subsequent word with the order 2 model.

Each word is derived from a prefix—a word or word pair that deter-
mines which word will be picked to go in the haiku; the key in the word-
mapping dictionaries represents the prefix. As a consequence, the word
that the prefix determines is the suffix.

Choosing and Discarding Words
When the program selects a word, it first counts the word’s syllables, and if
the word doesn’t fit, it chooses a new word. If there are no possible words
based on the prefix in the poem, then the program resorts to what I call a
ghost prefix, which is a prefix that doesn’t occur in the haiku. For example,
if a word pair in a haiku is temple gong, and all the words that follow in the
Markov model have too many syllables to complete the line, the program
selects a new word pair at random and uses it to pick the next word in the
haiku. The new word-pair prefix should not be included in the line—that is,
temple gong will not be replaced. Although you could choose a suitable new
word in a number of ways, I prefer this technique because it allows you to
simplify by maintaining a consistent process throughout the program.

You can accomplish these steps with the functions in Figures 9-1 and
9-2. Assuming you’re working on a five-syllable line, Figure 9-1 is an exam-
ple of what will happen, at a high level, if all the chosen words match the
syllable target.

The bright autumn moon

Choose
word
after
single
word

Markov model
order 1 Markov model

order 2
Markov model

order 2

Count syllables

Functions

Build haiku line

Choose
random
word

Seed
word

Seed
suffix

First
suffix

Second
suffix

First
word pair

Second
word pair

Choose
word
after

word pair

Choose
word
after

word pair

Figure 9-1: High-level graphical pseudocode for a
five-syllable haiku line

166 Chapter 9

The program randomly selects the seed word the from the corpus, and
then counts its syllables. Next, it chooses bright from the model of order 1,
based on the prefix the. Then it counts the number of syllables in bright and
adds that number to the number of syllables in the line. Since the sum of
syllables doesn’t exceed five, the program adds bright to the line, moves on
to select autumn from the model of order 2 based on the prefix The bright,
and then repeats the syllable-counting process. Finally, the program selects
moon based on the prefix bright autumn, counts the syllables, and—since
the line’s total number of syllables is equal to five—adds moon to the line,
completing it.

Figure 9-2 demonstrates a case where the program needs to utilize a
ghost prefix to successfully complete a five-syllable line.

The temple gong glorious

The temple gong moon

full white moon

Choose
word
after
single
word

Markov model
order 1 Markov model

order 2
Markov model

order 2

Count syllables

Functions

Final haiku line

Build haiku line

Choose
random
word

Seed
word

Seed
suffix

First
suffix

Second
suffix

First
word pair

New word pair New suffix

Second
word pair

Choose
word
after

word pair

Choose
word
after

word pair

Figure 9-2: Choosing a new suffix with a randomly selected ghost
prefix (full white)

Let’s assume that the only word that follows the prefix temple gong in the
Markov model is glorious. This word has too many syllables for the line, so
the program selects a ghost prefix, full white, at random. The word moon fol-
lows the ghost prefix and satisfies the remaining syllable count in the line,
so the program adds it to the line. The program then discards the full white
prefix, and the line is complete. With this ghost prefix technique, you can’t
guarantee that the new suffix will make sense contextually, but at the same
time, this is one way to incorporate creativity into the process.

Writing Haiku with Markov Chain Analysis 167

Continuing from One Line to Another
The Markov model is the “special sauce” that allows you to imbue the haiku
with context and meaning that continue from one line to another. The
Japanese masters generally wrote haiku in which each line is a stand-alone
phrase but the contextual thread continues across lines, as in this haiku
from Bon Cho:

In silent midnight
Our old scarecrow topples down
Weird hollow echo

—Bon Cho

Even though the masters preferred that each line of a haiku represent a
complete thought, they didn’t strictly follow the rule. Here’s an example in
Buson’s haiku:

My two plum trees are
So gracious see, they flower
One now, one later

—Buson

The first line of Buson’s haiku is not grammatical on its own, so the
reader must continue to the next line without a break. When a phrase in
poetry moves from one line to the next without a pause or syntactic break,
it is said to be enjambed. According to Charles Hartman, author of Virtual
Muse, enjambment is what gives metrical lines much of their supple liveli-
ness. That’s a good thing, since it’s very hard to get an algorithm to write
a coherent poem without some grammatical spillover from line to line. To
get your program to continue a “thought” through multiple lines, you need
to use the word pair from the end of the previous line as the starting prefix
for the current line.

Finally, you should give the user the opportunity to not only build the
poem but also to edit it interactively by regenerating lines two and three.
Most of writing is rewriting, and it would be unconscionable to leave the
user hanging with two perfect lines and no way to throw the dice again on
an uncooperative line.

The Pseudocode
If you follow the strategy I’ve just laid out, your high-level pseudocode
should look like this:

Import count_syllables module
Load a training-corpus text file
Process the training corpus for spaces, newline breaks, and so on
Map each word in corpus to the word after (Markov model order 1)
Map each word pair in corpus to the word after (Markov model order 2)
Give user choice of generating full haiku, redoing lines 2 or 3, or exiting

168 Chapter 9

If first line:
 Target syllables = 5
 Get random word from corpus <= 4 syllables (no 1-word lines)
 Add word to line
 Set random word = prefix variable
 Get mapped words after prefix
 If mapped words have too many syllables
 Choose new prefix word at random & repeat
 Choose new word at random from mapped words
 Add the new word to the line
 Count syllables in word and calculate total in line
 If syllables in line equal target syllables
 Return line and last word pair in line
Else if second or third line:
 Target = 7 or 5
 Line equals last word pair in previous line
 While syllable target not reached:
 Prefix = last word pair in line
 Get mapped words after word-pair prefix
 If mapped words have too many syllables
 Choose new word-pair prefix at random and repeat
 Choose new word at random from mapped words
 Add the new word to the line
 Count syllables in word and calculate total in line
 If total is greater than target
 Discard word, reset total, and repeat
 Else if total is less than target
 Add word to line, keep total, and repeat
 Else if total is equal to target
 Add word to line
 Return line and last word pair in line
Display results and choice menu

The Training Corpus
Markov models are built from a corpus, so they are unique to that corpus.
A model built from the complete works of Edgar Rice Burroughs will be
different and distinguishable from one built from the works of Anne Rice.
We all have a signature style, or voice, and given a large enough sample, a
Markov approach can produce a statistical model of your style. Like finger-
prints, this model can link you to a document or manuscript.

To build the Markov models, the corpus you’ll use is a text file con-
sisting of almost 300 ancient and modern haiku, more than 200 of which
were written by the masters. Ideally, your training corpus would consist
of thousands of haiku, all by the same author (for a consistent voice), but
these are difficult to find, particularly since many of the old Japanese
haiku don’t obey the syllabic rules, either intentionally or as a result of
translation into English.

Writing Haiku with Markov Chain Analysis 169

To increase the number of values per key in the Markov model, the
haiku in the initial corpus were duplicated 18 times and randomly distrib-
uted throughout the file. This has no impact on word associations within
haiku but increases the interactions between haiku.

To illustrate, assume the word pair at the end of the following haiku is
unique, mapping only to the starting word of the second haiku; this results
in the fairly useless key/value pair of 'hollow frog': ['mirror-pond']:

Open mouth reveals
Your whole wet interior
Silly hollow frog!

Mirror-pond of stars
Suddenly a summer shower
Dimples the water

If you duplicate and shuffle the haiku, you may introduce a preposition
into the mix, greatly increasing the odds of linking the odd hollow frog to
something sensible:

Open mouth reveals
Your whole wet interior
Silly hollow frog!

In the city fields
Contemplating cherry trees
Strangers are like friends

The Markov model now assigns two values to 'hollow frog': 'mirror-pond'
and 'in'. And each time you duplicate the haiku, you’ll see an increase in
the number of values per key for haiku-ending words or word pairs. But this
is helpful only to a point; after a while, diminishing returns set in, and you
start adding the same values over and over again, gaining nothing.

Debugging
Debugging is the process of finding and fixing errors (bugs) in computer
hardware and software. When you’re trying to code a solution to a complex
problem, you need to keep a tight rein on your program in order to find the
source of an issue when something unexpected arises. For example, if you
end up with seven syllables rather than five in the first line of your haiku,
you’ll want to know if the syllable-counting function failed, if there was a
problem mapping words to words, or if the program thought it was on line
two. To find out what went wrong, you need to monitor what your program
is returning at each key step, and this calls for either scaffolding or logging.
I’ll discuss each of these techniques in the following two sections.

170 Chapter 9

Building the Scaffolding
Scaffolding, as defined here, is temporary code you write to help develop
your programs, then delete when you’re done. The name is an allusion
to the scaffolding used in construction—necessary, but nobody wants it
around forever.

One common piece of scaffolding is a print() statement that checks
what a function or calculation returns. The user doesn’t need to see the
output, so you delete it after you confirm the program is working properly.

Useful scaffolding output includes things like the type of a value or vari-
able, the length of a dataset, and the results of incremental calculations. To
quote Allen Downey in Think Python, “Time you spend building scaffolding
can reduce the time you spend debugging.”

The downside to using print() statements for debugging is that you
have to go back and delete (or comment out) all these statements later, and
you risk accidentally removing a print() statement that’s useful to the end
user. Fortunately, there’s an alternative to scaffolding that lets you avoid
these problems. It’s called the logging module.

Using the logging Module
The logging module is part of the Python Standard Library (https://docs​.python​
.org/3/library/logging.html). With logging, you can get a customized report on
what your program is doing at any location you choose. You can even write
the reports to a permanent logfile. The following interactive shell example
uses logging to check that a vowel-counting program is working correctly:

 >>> import logging
 >>> logging.basicConfig(level=logging.DEBUG,
 format='%(levelname)s - %(message)s')

>>> word = 'scarecrow'
>>> VOWELS = 'aeiouy'
>>> num_vowels = 0
>>> for letter in word:
 if letter in VOWELS:
 num_vowels += 1

  logging.debug('letter & count = %s-%s', letter, num_vowels)

DEBUG - letter & count = s-0
DEBUG - letter & count = c-0
DEBUG - letter & count = a-1
DEBUG - letter & count = r-1
DEBUG - letter & count = e-2
DEBUG - letter & count = c-2
DEBUG - letter & count = r-2
DEBUG - letter & count = o-3
DEBUG - letter & count = w-3

To use the logging module, first import it . Then set up what debug-
ging information you want to see and in what format . The DEBUG level
is the lowest level of information and is used for diagnosing the details.

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html

Writing Haiku with Markov Chain Analysis 171

Note that the output uses string formatting with %s. You can include
more information—for example, the date and time are shown using
format='%(asctime)s'—but for this snippet of code, all you really need to
check is whether the program is counting vowels correctly.

For each letter evaluated, enter the custom text message to display along
with the variable values. Note that you have to convert nonstring objects,
such as integers and lists, to strings . The logging output follows. You can
see the cumulative count, along with which letters actually change the count.

Like scaffolding, logging is for the developer, not the user. And like the
print() function, logging can slow down your program. To disable the logging
messages, simply insert the logging.disable(logging.CRITICAL) call after you
import the module, as follows:

>>> import logging
>>> logging.disable(logging.CRITICAL)

Placing the disable call near the top of the program will allow you to
find it easily and toggle messages on and off. The logging.disable() function
will suppress all messages at the designated level or lower. Since CRITICAL is
the highest level, passing it to the logging.disable() function turns all mes-
sages off. This is a far better solution than manually finding and comment-
ing out print() statements!

The Code
The markov_haiku.py code in this section will take a training corpus called
train.txt, prepare Markov models as dictionaries, and generate a haiku one
word at a time. The count_syllables.py program and missing_words.json file
from Chapter 8 will ensure markov_haiku.py uses the correct number of
syllables for each line. You can download all these files from https://www​
.nostarch​.com/impracticalpython/ (Chapter 9 folder). Be sure to keep them
together in the same directory.

Setting Up
Listing 9-1 imports the necessary modules, then loads and prepares exter-
nal files.

 import sys
import logging
import random
from collections import defaultdict
from count_syllables import count_syllables

 logging.disable(logging.CRITICAL) # comment out to enable debugging messages
logging.basicConfig(level=logging.DEBUG, format='%(message)s')

 def load_training_file(file):
 """Return text file as a string."""
 with open(file) as f:

markov_haiku.py,
part 1

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

172 Chapter 9

  raw_haiku = f.read()
 return raw_haiku

 def prep_training(raw_haiku):
 """Load string, remove newline, split words on spaces, and return list."""
 corpus = raw_haiku.replace('\n', ' ').split()
 return corpus

Listing 9-1: Imports, loads, and prepares the training corpus

Start with the imports listed on separate lines . You’ll need logging in
order to receive debugging messages, and defaultdict will help you build
a dictionary from a list by creating a new key automatically, rather than
throwing an error. You also import the count_syllables function from the
count_syllables.py program you wrote in Chapter 8. You should be familiar
with the rest of these imports.

Put the statement to disable logging right after the imports so you
can find it easily. To see logging messages, you need to comment out this
statement . The following statement configures what you will see, as
described in the previous section. I chose to omit the level designation
from the display.

Next, define a function to load the training-corpus text file . Use the
built-in read() function to read the data as a string that the program can
prepare before converting it to a list . Return this string for use in the
next function.

The prep_training() function  takes the output from the load_training
_file() function as an argument. It then replaces newline characters with
spaces and splits the words into list items based on spaces. Finally, the func-
tion returns the corpus as a list.

Building Markov Models
The Markov models are simply Python dictionaries that use a word or word
pair as a key and the word that immediately follows them as a value. The sta-
tistical frequency of trailing words is captured by repetition of the trailing
word in the list of values—similar to sets, dictionaries can’t have duplicate
keys, but they can have duplicate values.

Listing 9-2 defines two functions. Both functions take the corpus as an
argument and return a Markov model.

 def map_word_to_word(corpus):
 """Load list & use dictionary to map word to word that follows."""

  limit = len(corpus) - 1
  dict1_to_1 = defaultdict(list)
  for index, word in enumerate(corpus):

 if index < limit:
  suffix = corpus[index + 1]

 dict1_to_1[word].append(suffix)
  logging.debug("map_word_to_word results for \"sake\" = %s\n",
 dict1_to_1['sake'])
  return dict1_to_1

markov_haiku.py,
part 2

Writing Haiku with Markov Chain Analysis 173

 def map_2_words_to_word(corpus):
 """Load list & use dictionary to map word-pair to trailing word."""

  limit = len(corpus) - 2
 dict2_to_1 = defaultdict(list)
 for index, word in enumerate(corpus):
 if index < limit:

  key = word + ' ' + corpus[index + 1]
 suffix = corpus[index + 2]
 dict2_to_1[key].append(suffix)
 logging.debug("map_2_words_to_word results for \"sake jug\" = %s\n",
 dict2_to_1['sake jug'])
 return dict2_to_1

Listing 9-2: Defines functions that build Markov models of order 1 and 2

First, define a function to map every single word to its trailing word .
The program will use this function only to select the haiku’s second word from
the seed word. Its only parameter is the corpus list that the prep_training()
function returns.

Set a limit so you can’t pick the last word in the corpus , because
doing so would result in an index error. Now initialize a dictionary using
defaultdict . You want the dictionary values to be lists that hold all the
suffixes you find, so use list as the argument.

Start looping through every word in the corpus, using enumerate to turn
each word’s index into an object . Use a conditional and the limit variable
to prevent choosing the last word as a key. Assign a variable named suffix
that will represent the trailing word . The value will be the index location
of the current word plus 1—the next word in the list. Append this variable
to the dictionary as a value of the current word.

To check that everything is working as planned, use logging to show the
results for a single key . There are thousands of words in the corpus, so you’re
not going to want to print them all. Choose a word that you know is in the
corpus, like sake. Note that you are using the old string formatting with %, as it
fits the current design of the logger. Finish by returning the dictionary .

The next function, map_2_words_to_word(), is basically the same func-
tion, except it uses two consecutive words as the key and maps to trailing
single words . Important changes are to set the limit two words back from
the end of the corpus , make the key consist of two words with a space
between them , and add 2 to the index for the suffix.

Choosing a Random Word
The program won’t be able to utilize a Markov model without a key, so either
the user or the program must supply the first word in a simulated haiku.
Listing 9-3 defines a function that picks a first word at random, facilitating
automated seeding.

 def random_word(corpus):
 """Return random word and syllable count from training corpus."""

  word = random.choice(corpus)
  num_syls = count_syllables(word)

markov_haiku.py,
part 3

174 Chapter 9

  if num_syls > 4:
 random_word(corpus)
 else:

  logging.debug("random word & syllables = %s %s\n", word, num_syls)
 return (word, num_syls)

Listing 9-3: Randomly chooses a seed word to initiate the haiku

Define the function and pass it the corpus list . Then assign a word vari-
able and use the random choice() method to pick a word from the corpus .

Use the count_syllables() function from the count_syllables module to
count the syllables in the word; store the count in the num_syls variable .
I’m not a fan of single-word lines in haiku, so don’t allow the function to
choose a word with more than four syllables (recall that the shortest haiku
lines have five syllables). If this occurs, call the random_word() function recur-
sively until you get an acceptable word . Note that Python has a default
maximum recursion depth of 1,000, but as long as you’re using a proper
haiku-training corpus, there’s little chance you’ll exceed that prior to find-
ing a suitable word. If that were not the case, you could address this condi-
tion later by calling the function using a while loop.

If the word has fewer than five syllables, use logging to display the word
and its syllable count ; then return the word and syllable count as a tuple.

Applying the Markov Models
To choose the single word that follows the seed word, use the Markov model
of order 1. After that, the program should select all subsequent words using
the order 2 model, which uses word pairs as keys. Listing 9-4 defines a sepa-
rate function for each of these actions.

 def word_after_single(prefix, suffix_map_1, current_syls, target_syls):
 """Return all acceptable words in a corpus that follow a single word."""

  accepted_words = []
  suffixes = suffix_map_1.get(prefix)
  if suffixes != None:
  for candidate in suffixes:

 num_syls = count_syllables(candidate)
 if current_syls + num_syls <= target_syls:

  accepted_words.append(candidate)
  logging.debug("accepted words after \"%s\" = %s\n",

 prefix, set(accepted_words))
 return accepted_words

 def word_after_double(prefix, suffix_map_2, current_syls, target_syls):
 """Return all acceptable words in a corpus that follow a word pair."""
 accepted_words = []

  suffixes = suffix_map_2.get(prefix)
 if suffixes != None:
 for candidate in suffixes:
 num_syls = count_syllables(candidate)
 if current_syls + num_syls <= target_syls:
 accepted_words.append(candidate)

markov_haiku.py,
part 4

Writing Haiku with Markov Chain Analysis 175

 logging.debug("accepted words after \"%s\" = %s\n",
 prefix, set(accepted_words))

  return accepted_words

Listing 9-4: Two functions that select a word given a prefix, Markov model, and
syllable count

Define a function named word_after_single() to select the next word in
the haiku based on the preceding single seed word. For arguments, this
function takes the preceding word, the Markov order 1 model, the current
syllable count, and the target syllable count .

Start an empty list to hold the acceptable words, which are the words
that both follow the prefix and whose syllable count doesn’t exceed the
syllable target . Call these trailing words suffixes and use the dictionary
get() method, which returns a dictionary value given a key, to assign them
to the variable . Rather than raising a KeyError, the get() method will
return None if you request a key that isn’t in the dictionary.

There is the extremely rare chance that the prefix will be the last word
in a corpus and that it will be unique. In that case, there will be no suffixes.
Use an if statement to anticipate this . If there are no suffixes, the func-
tion that calls word_after_single(), which you’ll define in the next section,
chooses a new prefix.

Each of the suffixes represents a candidate word for the haiku, but the
program hasn’t yet determined whether a candidate will “fit.” So use a for
loop, the count_syllables module, and an if statement to determine whether
adding the word to the line violates the target number of syllables per line .
If the target isn’t exceeded, append the word to the list of accepted words .
Display the acceptable words in a logging message and then return it .

The next function, word_after_double(), is like the previous function except
that you pass it word pairs and the Markov order 2 model (suffix_map_2)  and
get the suffixes from this dictionary . But just like the word_after_single()
function, word_after_double() returns a list of acceptable words .

Generating the Haiku Lines
With all the helper functions ready, you can define the function that actu-
ally writes the lines of the haiku. The function can build either the whole
haiku or just update lines two or three. There are two paths to take: one
to use when the program has at most a one-word suffix to work with and
another for every other situation.

Building the First Line

Listing 9-5 defines the function that writes haiku lines and initiates the
haiku’s first line.

 def haiku_line(suffix_map_1, suffix_map_2, corpus, end_prev_line, target_syls):
 """Build a haiku line from a training corpus and return it."""

  line = '2/3'
 line_syls = 0
 current_line = []

markov_haiku.py,
part 5

176 Chapter 9

  if len(end_prev_line) == 0: # build first line
  line = '1'
  word, num_syls = random_word(corpus)

 current_line.append(word)
 line_syls += num_syls

  word_choices = word_after_single(word, suffix_map_1,
 line_syls, target_syls)

  while len(word_choices) == 0:
 prefix = random.choice(corpus)
 logging.debug("new random prefix = %s", prefix)
 word_choices = word_after_single(prefix, suffix_map_1,
 line_syls, target_syls)

  word = random.choice(word_choices)
 num_syls = count_syllables(word)
 logging.debug("word & syllables = %s %s", word, num_syls)

  line_syls += num_syls
 current_line.append(word)

  if line_syls == target_syls:
 end_prev_line.extend(current_line[-2:])
 return current_line, end_prev_line

Listing 9-5: Defines the function that writes haiku lines and initiates the first line

Define a function that takes as arguments both Markov models, the
training corpus, the last word pair from the end of the preceding line, and
the target number of syllables for the current line . Immediately use a vari-
able to specify which haiku lines are being simulated . Most of the process-
ing will be for lines two and three (and possibly the last part of line one),
where you will be working with an existing word-pair prefix, so let these
represent the base case. After this, start a counter for the running total of syl-
lables in the line and start an empty list to hold the words in the current line.

Use an if statement that’s True under the condition that the end_prev_line
parameter’s length—the number of syllables in the previous line’s last two
words—is 0, meaning there was no preceding line and you are on line one .
The first statement in that if block changes the line variable to 1 .

Choose the initial seed word and get its syllable count by calling the
random_word() function . By assigning the word and num_syls variables together,
you are “unpacking” the (word, num_sylls) tuple that the random_word() func-
tion returns. Functions end at return statements, so returning tuples is a
great way to return multiple variables. In a more advanced version of this
program, you could use generator functions with the yield keyword, as
yield returns a value without relinquishing control of execution.

Next, append the word to current_line and add the num_syls to the run-
ning total. Now that you have a seed, collect all the seed’s possible suffixes
with the word_after_single() function .

If there are no acceptable words, start a while loop to handle this situ-
ation. This loop will continue until a non-empty list of acceptable word
choices has been returned . The program will choose a new prefix—a
ghost prefix—using the random module’s choice method. (Remember that
this prefix will not become part of the haiku but is used only to reaccess

Writing Haiku with Markov Chain Analysis 177

the Markov model.) Inside the while loop, a logging message will let you
know which ghost prefix has been chosen. Then the program will call
word_after_single() function once more.

Once the list of acceptable words is built, use choice again to select a
word from the word_choices list . Because the list may include duplicate
words, this is where you see the statistical impact of the Markov model.
Follow by counting the syllables in the word and logging the results.

Add the syllable count to the line’s running total and append the word
to the current_line list .

If the number of syllables in the first two words equals 5 , name a
variable end_prev_line and assign it the last two words of the previous line;
this variable is the prefix for line two. Finally, return the whole line and the
end_prev_line variable.

If the target number of syllables for the first line hasn’t been reached, the
program will jump to the while loop in the next section to complete the line.

Building the Remaining Lines

In Listing 9-6, the last part of the haiku_line() function addresses the case
where the haiku already contains a word-pair prefix that the program can
use in the Markov order 2 model. The program uses it to complete line
one—assuming the first two words didn’t already total five syllables—and
to build lines two and three. The user will also be able to regenerate lines
two or three, after a complete haiku has been written.

  else: # build lines 2 and 3
  current_line.extend(end_prev_line)

  while True:
 logging.debug("line = %s\n", line)

  prefix = current_line[-2] + ' ' + current_line[-1]
  word_choices = word_after_double(prefix, suffix_map_2,

 line_syls, target_syls)
  while len(word_choices) == 0:

 index = random.randint(0, len(corpus) - 2)
 prefix = corpus[index] + ' ' + corpus[index + 1]
 logging.debug("new random prefix = %s", prefix)
 word_choices = word_after_double(prefix, suffix_map_2,
 line_syls, target_syls)
 word = random.choice(word_choices)
 num_syls = count_syllables(word)
 logging.debug("word & syllables = %s %s", word, num_syls)

  if line_syls + num_syls > target_syls:
 continue
 elif line_syls + num_syls < target_syls:
 current_line.append(word)
 line_syls += num_syls
 elif line_syls + num_syls == target_syls:
 current_line.append(word)
 break

markov_haiku.py,
part 6

178 Chapter 9

  end_prev_line = []
 end_prev_line.extend(current_line[-2:])

  if line == '1':
 final_line = current_line[:]
 else:
 final_line = current_line[2:]

 return final_line, end_prev_line

Listing 9-6: Uses a Markov order 2 model to complete the function that writes haiku lines

Start with an else statement that’s executed if there is a suffix . Since
the last part of the haiku_line() function has to handle line one as well as
lines two and three, use a trick where you add the end_prev_line list (built
outside the conditional at step ) to the current_line list . Later, when you
add the finalized line to the haiku, you’ll discard this leading word pair.

Start a while loop that continues until the target syllable count for the
line has been reached . The start of each iteration begins with a debugging
message that informs you of the path the loop is evaluating: '1' or '2/3'.

With the last two words of the previous line added to the start of the cur-
rent line, the last two words of the current line will always be the prefix .

Using the Markov order 2 model, create a list of acceptable words . In
the event the list is empty, the program uses the ghost prefix process .

Evaluate what to do next using the syllable count . If there are too
many syllables, use a continue statement to restart the while loop. If there
aren’t enough syllables, append the word and add its syllable count to the
line’s syllable count. Otherwise, append the word and end the loop.

Assign the last two words in the line to the end_prev_line variable so the
program can use it as a prefix for the next line . If the current path is
line '1', copy the current line to a variable called final_line; if the path
is line '2/3', use index slicing to exclude the first two words before assign-
ing to final_line . This is how you remove the initial end_prev_line word
pair from lines two or three.

Writing the User Interface
Listing 9-7 defines the markov_haiku.py program’s main() function, which
runs the setup functions and the user interface. The interface presents the
user with a menu of choices and displays the resulting haiku.

def main():
 """Give user choice of building a haiku or modifying an existing haiku."""
 intro = """\n
 A thousand monkeys at a thousand typewriters...
 or one computer...can sometimes produce a haiku.\n"""
 print("{}".format(intro))

  raw_haiku = load_training_file("train.txt")
 corpus = prep_training(raw_haiku)
 suffix_map_1 = map_word_to_word(corpus)

markov_haiku.py,
part 7

Writing Haiku with Markov Chain Analysis 179

 suffix_map_2 = map_2_words_to_word(corpus)
 final = []

 choice = None
  while choice != "0":

  print(
 """
 Japanese Haiku Generator

 0 - Quit
 1 - Generate a Haiku
 2 - Regenerate Line 2
 3 - Regenerate Line 3
 """
)

  choice = input("Choice: ")
 print()

 # exit
  if choice == "0":

 print("Sayonara.")
 sys.exit()

 # generate a full haiku
  elif choice == "1":

 final = []
 end_prev_line = []
 first_line, end_prev_line1 = haiku_line(suffix_map_1, suffix_map_2,
 corpus, end_prev_line, 5)
 final.append(first_line)
 line, end_prev_line2 = haiku_line(suffix_map_1, suffix_map_2,
 corpus, end_prev_line1, 7)
 final.append(line)
 line, end_prev_line3 = haiku_line(suffix_map_1, suffix_map_2,
 corpus, end_prev_line2, 5)
 final.append(line)

 # regenerate line 2
  elif choice == "2":

 if not final:
 print("Please generate a full haiku first (Option 1).")
 continue
 else:
 line, end_prev_line2 = haiku_line(suffix_map_1, suffix_map_2,
 corpus, end_prev_line1, 7)
 final[1] = line

 # regenerate line 3
  elif choice == "3":

 if not final:
 print("Please generate a full haiku first (Option 1).")
 continue

180 Chapter 9

 else:
 line, end_prev_line3 = haiku_line(suffix_map_1, suffix_map_2,
 corpus, end_prev_line2, 5)
 final[2] = line

 # some unknown choice
  else:

 print("\nSorry, but that isn't a valid choice.", file=sys.stderr)
 continue

  # display results
 print()
 print("First line = ", end="")
 print(' '.join(final[0]), file=sys.stderr)
 print("Second line = ", end="")
 print(" ".join(final[1]), file=sys.stderr)
 print("Third line = ", end="")
 print(" ".join(final[2]), file=sys.stderr)
 print()

 input("\n\nPress the Enter key to exit.")

if __name__ == '__main__':
 main()

Listing 9-7: Starts the program and presents a user interface

After the introduction message, load and prep the training corpus and
build the two Markov models. Then create an empty list to hold the final
haiku . Next, name a choice variable and set it to None. Start a while loop
that continues until the user chooses choice 0 . By entering 0, the user has
decided to quit the program.

Use a print() statement with triple quotes to display a menu , and then
get the user’s choice . If the user chooses 0, exit and say goodbye . If the
user chooses 1, they want the program to generate a new haiku, so reinitial-
ize the final list and the end_prev_line variable . Then call the haiku_line()
function for all three lines and pass it the correct arguments—including
the target syllable count for each line. Note that the end_prev_line variable
name changes with each line; for example, end_prev_line2 holds the final two
words of line two. The last variable, end_prev_line3, is just a placeholder so
you can reuse the function; in other words, it is never put to use. Each time
the haiku_line() function is called, it returns a line that you need to append
to the final list.

If the user chooses 2, the program regenerates the second line .
There needs to be a full haiku before the program can rebuild a line, so
use an if statement to handle the user jumping the gun. Then call the
haiku_line() function, making sure to pass it the end_prev_line1 variable to
link it to the preceding line, and set the syllable target to seven syllables.
Insert the rebuilt line in the final list at index 1.

Repeat the process if the user chooses 3, only make the syllable target
5 and pass end_prev_line2 to the haiku_line() function . Insert the line at
index 2 in final.

Writing Haiku with Markov Chain Analysis 181

If the user enters anything not on the menu, let them know and then
continue the loop . Finish by displaying the haiku. Use the join() method
and file=sys.stderr for an attractive printout in the shell .

End the program with the standard code for running the program as a
module or in stand-alone mode.

The Results
To evaluate a poetry-writing program, you need a way to measure something
subjective—whether or not poems are “good”—using objective criteria. For
the markov_haiku.py program, I propose the following categories based on
two criteria, originality and humanness:

Duplicate  Verbatim duplication of a haiku in the training corpus.

Good  A haiku that is—at least to some people—indistinguishable
from a haiku written by a human poet. It should represent the initial
result or the result of regenerating line two or three a few times.

Seed  A haiku that has merit but that many would suspect was written
by a computer, or a haiku that you could transform into a good haiku by
changing or repositioning no more than two words (described in more
detail later). It may require multiple regenerations of lines two or three.

Rubbish  A haiku that is clearly a random amalgam of words and has
no merit as a poem.

If you use the program to generate a large number of haiku and place
the results in these categories, you’ll probably end up with the distribution in
Figure 9-3. About 5 percent of the time, you’ll duplicate an existing haiku
in the training corpus; 10 percent of the time, you’ll produce a good haiku;
around 25 percent will be passable or fixable haiku; and the rest will be
rubbish.

Seed
24%

Good
10%

Duplicate
5%

Rubbish
61%

Figure 9-3: Subjective results of generating
500 haiku using markov_haiku.py

182 Chapter 9

Considering how simple the Markov process is, the results in Figure 9-3
are impressive. To quote Charles Hartman once again, “Here is language
creating itself out of nothing, out of mere statistical noise. . . . We can watch
sense evolve and meaning stagger up onto its own miraculous feet.”

Good Haiku
The following are some examples of simulated haiku classified as “good.”
In the first example, the program has subtly—you might say “skillfully,”
if you didn’t know an algorithm was responsible—altered my haiku from
Chapter 8 to produce a new haiku with the same meaning.

Cloudbanks that I let
Myself pretend are distant
Mountains faraway

In the next example, the program has managed to duplicate a common
theme in traditional haiku: the juxtaposition of images or ideas.

The mirror I stare
Into shows my father’s face
An old silent pond

In this case, you find out that the mirror is really the surface of a still
pond, though you may interpret the face itself as the pond.

Running the program is a little like panning for gold: sometimes you
find a nugget. The haiku on the left was written by Ringai over 300 years
ago. In the haiku on the right, the program has made subtle changes so
that the poem now evokes images of a late spring freeze—a setback for the
progress of the season.

In these dark waters
Drawn up from my frozen well
Glittering of Spring

—Ringai

Waters drawn up from
My frozen well glittering
Of Spring standing still

—Python

The following are examples of a few more “good” haiku. The first one is
remarkable since it was built from three separate haiku in the training cor-
pus, yet maintains a clear contextual thread throughout.

As I walk the path
Eleven brave knights canter
Through the stormy woods

Cool stars enter the
Window this hot evening all
Heaven and earth ache

Writing Haiku with Markov Chain Analysis 183

Such a thing alive
Rusted gate screeches open
Even things feel pain

The stone bridge! Sitting
Quietly doing nothing
Yet Spring comes grass grows

Dark sky oh! Autumn
Snowflakes! A rotting pumpkin
Collapsed and covered

Desolate moors fray
Black cloudbank, broken, scatters
In the pines, the graves

Seed Haiku
The concept of computers helping humans write poetry has been around
for some time. Poets often “prime the pump” by imitating earlier poems,
and there’s no reason a computer can’t provide first drafts as part of a cyber-
partnership. Even a fairly poor computer creation has the potential to “seed”
the creative process and help a human overcome writer’s block.

The following are three examples of seed haiku from the markov_haiku.py
program. On the left is the not-quite-right computer-generated haiku. On
the right is the version that I adjusted. I changed only a single word, high-
lighted in bold, in each.

My life must end like
Another flower what a
Hungry wind it is

The dock floating in
The hot caressing night just
Before the dawn old

Moonrise on the grave
And my old sadness a sharp
Shovel thrust the stars

My life must end like
Another flower what a
Hungry wind is death

The dock floating in
The hot caressing night just
Before the dawn rain

Moonrise on the grave
And my old sadness a sharp
Shovel thrust of stars

The last has cryptic meaning but seems to work, as it is filled with
natural associations (moon and stars, grave and shovel, grave and sadness).
At any rate, you shouldn’t fret too much over meaning. To paraphrase
T.S. Eliot: meaning is like the meat the burglar throws the dog, to keep
the mind diverted while the poem does its work!

184 Chapter 9

Summary
It took two chapters, but you now have a program that can simulate Japanese
haiku written by the masters—or at least provide a useful starting point for
a human poet. In addition, you applied the logging module to monitor what
the program was doing at key steps.

Further Reading
Virtual Muse: Experiments in Computer Poetry (Wesleyan University Press,
1996) by Charles O. Hartman is an engaging look at the early collaboration
between humans and computers to write poetry.

If you want to know more about Claude Shannon, check out A Mind
at Play: How Claude Shannon Invented the Information Age (Simon & Schuster,
2017) by Jimmy Soni and Rod Goodman.

You can find a digital version of Japanese Haiku: Two Hundred Twenty
Examples of Seventeen-Syllable Poems (The Peter Pauper Press, 1955), translated
by Peter Beilenson, online at Global Grey (https://www.globalgreyebooks.com/).

In the paper “Gaiku: Generating Haiku with Word Association Norms”
(Association for Computational Linguistics, 2009), Yael Netzer and coau-
thors explore the use of word association norms (WANs) to generate haiku.
You can build WAN corpora by submitting trigger words to people and
recording their immediate responses (for example, house to fly, arrest, keeper,
and so on). This results in the kind of tightly linked, intuitive relationships
characteristic of human-generated haiku. You can find the paper online
at http://www.cs.brandeis.edu/~marc/misc/proceedings/naacl-hlt-2009/CALC-09​
/pdf/CALC-0905.pdf.

Automate the Boring Stuff with Python (No Starch Press, 2015) by Al Sweigart
has a useful overview chapter on debugging techniques, including logging.

Challenge Projects
I’ve described some suggestions for spin-off projects in this section. As with
all challenge projects, you’re on your own—no solutions are provided.

New Word Generator
In his award-winning 1961 sci-fi novel, Stranger in a Strange Land, author
Robert A. Heinlein invented the word grok to represent deep, intuitive under-
standing. This word moved into the popular culture—especially the culture
of computer programming—and is now in the Oxford English Dictionary.

Coming up with a new word that sounds legitimate is not easy, in part
because humans are so anchored to the words we already know. But com-
puters don’t suffer from this affliction. In Virtual Muse, Charles Hartman
observed that his poetry-writing program would sometimes create intrigu-
ing letter combinations, such as runkin or avatheformitor, that could easily
represent new words.

https://www.globalgreyebooks.com/
http://www.cs.brandeis.edu/~marc/misc/proceedings/naacl-hlt-2009/CALC-09/pdf/CALC-0905.pdf
http://www.cs.brandeis.edu/~marc/misc/proceedings/naacl-hlt-2009/CALC-09/pdf/CALC-0905.pdf

Writing Haiku with Markov Chain Analysis 185

Write a program that recombines letters using Markov order 2, 3, and 4
models and use the program to generate interesting new words. Give them
a definition and start applying them. Who knows—you may coin the next
frickin, frabjous, chortle, or trill!

Turing Test
According to Alan Turing, “A computer would deserve to be called intel-
ligent if it could deceive a human into believing that it was human.” Use
your friends to test haiku generated by the markov_haiku.py program. Mix
the computer haiku with a few haiku written by the masters or yourself.
Since computer haiku are often enjambed, be careful to choose human
haiku that are also enjambed in order to deny your cleverer friends a free
ride. Using lowercase letters and minimal punctuation for all the haiku
also helps. I’ve provided an example, using Facebook, in Figure 9-4.

Figure 9-4: Example Turing test experiment post on Facebook

Unbelievable! This Is Unbelievable! Unbelievable!
President Trump is famous for speaking in short, simple sentences that use
“the best words,” and short, simple sentences are great for haiku. In fact,
the Washington Post published some inadvertent haiku found in some of his
campaign speeches. Among these were:

He’s a great, great guy.
I saw him the other day.
On television.

They want to go out.
They want to lead a good life.
They want to work hard.

186 Chapter 9

We have to do it.
And we need the right people.
So Ford will come back.

Use online transcripts of Donald Trump’s speeches to build a new train-
ing corpus for the markov_haiku.py program. Remember that you’ll need to
revisit Chapter 8 and build a new “missing words” dictionary for any words
not in the Carnegie Mellon University Pronouncing Dictionary. Then rerun the
program and generate haiku that capture this moment in history. Save the
best ones and revisit the Turing test challenge to see if your friends can
separate your haiku from true Trump quotes.

To Haiku, or Not to Haiku
William Shakespeare wrote many famous phrases that fit the syllabic struc-
ture of haiku, such as “all our yesterdays,” “dagger of the mind,” and “part-
ing is such sweet sorrow.” Use one or more of the Bard’s plays as a training
corpus for the markov_haiku.py program. The big challenge here will be
counting the syllables for all that olde English.

Markov Music
If you’re musically inclined, perform an online search for “composing music
with Markov chains.” You should find a wealth of material on using Markov
chain analysis to compose music, using the notes from existing songs as a
training corpus. The resulting “Markov music” is used like our seed haiku—
as inspiration for human songwriters.

10
A r e W e A l o n e ? E x p l o r i n g

t h e F e r m i Pa r a d o x

Scientists use the Drake equation to estimate
the possible number of civilizations in the

galaxy currently producing electromagnetic
emissions, such as radio waves. In 2017, the equa-

tion was updated to account for new exoplanet discov-
eries by NASA’s Kepler satellite. The result, published
in the scientific journal Astrobiology, was astonishing.
For humanity to be the first and only technologically advanced species,
the probability of an advanced civilization developing on a habitable
alien planet would have to be less than 1 in 10 billion trillion! And yet, as
Nobel Prize–winning physicist Enrico Fermi famously observed, “Where
is everybody?”

Fermi was more skeptical about interstellar travel than the existence
of extraterrestrials, but his question became known as Fermi’s paradox, and
it morphed into the conjecture “If they were out there, they’d be here.”
According to the SETI Institute, even with modest rocket technology, an

188 Chapter 10

eager civilization could explore the entire galaxy, if not colonize it, within
10 million years. That may sound like a long time, but it’s only 1/1,000
the age of the Milky Way! As a result, some have come to accept Fermi’s
paradox as proof we are alone in the cosmos. Others find holes in the
argument.

In this chapter, you’ll investigate the absence of alien radio transmis-
sions by calculating the probability of one civilization detecting another
based on the volume of their transmissions and output from the Drake
equation. You’ll also use Python’s de facto standard GUI package, tkinter,
to quickly and easily create a graphical model of the Milky Way.

Project #17: Modeling the Milky Way
Our galaxy, the Milky Way, is a fairly common spiral galaxy, like the one
shown in Figure 10-1.

Figure 10-1: Spiral galaxy NGC 6744, “Big Brother” to the Milky Way

Are We Alone? Exploring the Fermi Paradox 189

In cross-sectional view, the Milky Way is a flattened disc with a central
bulge that most likely contains a supermassive black hole at its core. Four
“spiral arms”—comprising relatively densely packed gas, dust, and stars—
radiate from this central mass. The dimensions of the Milky Way are shown
in Figure 10-2.

Galactic bulge
6,000 – 30,000 LY

~1,000 LY

~50,000 LY
Galactic model

Galactic core

Figure 10-2: Schematic profile (edge view) of the Milky Way galaxy (LY = Light-Years) and
a simplified model

The center of the galaxy is considered fairly inhospitable to life due to
high levels of radiation associated with the more closely packed stars. So, for
this project, you can treat the galaxy as a simple disc to discount some of the
volume associated with the bulge but still leave room for some advanced civi-
lizations near the core (see the Galactic Model in Figure 10-2).

T he Objec t i v e

For a given number of advanced galactic civilizations and an average radio bubble size,
estimate the probability of any civilization detecting the radio transmissions of any other
civilization. For perspective, post the size of Earth’s current radio bubble on a 2D graphi-
cal representation of the Milky Way.

The Strategy
Here are the steps needed to complete this project:

1.	 Estimate the number of transmitting civilizations using the Drake
equation.

2.	 Choose a size range for their radio bubbles.

3.	 Generate a formula for estimating the probability of one civilization
detecting another.

4.	 Build a graphical model of the galaxy and post Earth’s radio
emissions bubble.

190 Chapter 10

In order to keep the description close to the code, each of these tasks
will be described in detail in its own section. Note that the first two steps
don’t require the use of Python.

Estimating the Number of Civilizations
You can manually estimate the number of advanced civilizations using the
Drake equation:

N = R* · fp · ne · f l · fi · fc · L

where:

N = The number of civilizations in our galaxy whose electromagnetic
emissions are detectable

R* = The average rate of star formation in the galaxy (new stars
per year)

fp = The fraction of stars with planets

ne = For stars with planets, the average number of planets with an envi-
ronment suitable for life

f l = The fraction of planets that develop life

fi = The fraction of life-bearing planets with intelligent, civilized life

fc = The fraction of civilizations that release detectable signs of their
existence into space

L = The length of time—in years—over which the civilizations release
the detectable signals

Thanks to recent advances in the detection of exoplanets, the first
three components (R*, fp, ne) are becoming increasingly constrained. For
ne , recent studies suggest that 10 to 40 percent of all planets may be suitable
for some form of life.

For the remaining components, Earth is the only example. In the Earth’s
4.5-billion-year history, Homo sapiens has existed for only 200,000 years, civi-
lization for only 6,000 years, and radio transmissions for only 112 years. With
respect to L, wars, plagues, ice ages, asteroid impacts, super-volcanoes, super-
novas, and coronal mass ejections can disrupt a civilization’s ability to trans-
mit radio signals. And the shorter the time of transmission, the less likely it is
for civilizations to coexist.

According to the Wikipedia article on the Drake equation (https://
en.wikipedia.org/wiki/Drake_equation), in 1961, Drake and his colleagues
estimated the number of communicating civilizations in the galaxy to be
between 1,000 and 100,000,000. More recent updates have set the range
from 1 (just us) to 15,600,000 (Table 10-1).

Are We Alone? Exploring the Fermi Paradox 191

Table 10-1: Some Drake Equation Inputs and Results

Parameter Drake 1961** Drake 2017 Your choices

R* 1 3

fp 0.35 1

ne 3 0.2

fl 1 0.13

fi 1 1

fc 0.15 0.2

L 50 × 106 1 × 109

N 7.9 × 106 15.6 × 106

**midpoint of ranges shown

For input to your program, you can use the estimates in the table,
those you find online, or those you calculate yourself (in the final column
of the table).

Selecting Radio Bubble Dimensions
Radio waves that aren’t focused into a beam for targeted transmission
are incidental. Think of these as “planet leakage.” Because we choose not
to broadcast our presence to aliens who might come and eat us, almost
all of our transmissions are incidental. These transmissions currently
form an expanding sphere around Earth with a diameter of around
225 light-years (LY).

A 225 LY bubble sounds impressive, but it is the detectable size that really
matters. A radio wave front is subject to the inverse square law, which means
it continuously loses power density as it expands. Additional power loss can
result from absorption or scattering. At some point, the signal becomes too
weak to separate from background noise. Even with our best technology—
the radio telescopes of the Breakthrough Listen program—we could detect
our own radio bubble only out to about 16 LY.

Since we’re really investigating why we haven’t detected aliens, you should
assume, for this project, that other civilizations have technology similar to
our own. Another assumption should be that, like us, all aliens have a para-
noid planetary consciousness and aren’t broadcasting “here we are” signals
that would announce their presence. Investigating incidental bubble sizes
ranging from a little smaller than those currently detectable to those a little
larger than our own transmissions should be a reasonable place to start.
This would suggest a diameter range of 30 to 250 LY. Although we can’t
detect a 250 LY bubble, it will be interesting to see what the odds would be
if we could.

192 Chapter 10

Generating a Formula for the Probability of Detection
As the number of advanced civilizations in the galaxy increases, the prob-
ability that one will detect another also increases. This is intuitive, but how
do you assign the actual probabilities?

The nice thing about computers is that they allow us to brute-force our
way to solutions that may or may not be intuitive. One approach here would
be to make a 3D model of the Milky Way disc, randomly distribute civiliza-
tions throughout, and measure the distances between them using one of
Python’s many tools for calculating Euclidian distance. But with potentially
hundreds of millions of civilizations to analyze, this method would be com-
putationally expensive.

Since we’re dealing with huge unknowns, there’s no need to be super-
accurate or precise. We just want to be in the ballpark, so an easy simpli-
fication is to compartmentalize the galaxy into a series of radio bubble
“equivalent volumes” by dividing the volume of the galactic disc by the vol-
ume of a radio bubble (see Figure 10-3).

200 LY 161 LY
4.19 M LY3 4.17 M LY3

Radio
bubble

Equivalent
volume
cube

Galactic disc area = 7.85 x 10 9 LY2

Plan view
(cells not to scale)

Cross section view
(vertically exaggerated)

(not to scale)

Galactic disc height = 1,000 LY

Figure 10-3: Modeling the galaxy using cubes with volumes equivalent to a 200 LY
radio bubble

You can find the volumes using the following equations, where R is the
radius of the galactic disc and r is the radius of a radio bubble:

disc volume = π × R 2 × disc height
radio bubble volume = 4/3 × π × r 3

scaled disc volume = disc volume / radio bubble volume

The scaled disc volume is the number of equivalent volumes that “fit”
in the galaxy. Think of these as boxes numbered from 1 to the maximum
number of volumes.

Are We Alone? Exploring the Fermi Paradox 193

To place civilizations, you simply choose a box number at random.
Duplicate picks indicate multiple civilizations within the same box. Assume
civilizations in the same box can detect each other. This isn’t strictly true
(see Figure 10-4), but because you’ll be using large numbers of civiliza-
tions, the discrepancies will tend to cancel each other out, just as when you
sum a lot of rounded numbers.

Equivalent
volume 2

Radio bubble

Civilizations (+) that should be detected aren’t Civilizations (+) that shouldn’t be detected are

+

Equivalent
volume 3

Radio bubble

+

+

+

Equivalent
volume 1

Figure 10-4: Detection problems at the individual equivalent volume level

To avoid having to repeat this exercise every time you change the num-
ber of civilizations and/or radio bubble dimensions, you can capture the
results as a formula—a polynomial equation—that can be used to generate
all future probability estimates. A polynomial is the sum or difference of a
collection of algebraic terms. The famous quadratic equation we all learned
in school is a polynomial equation of the second degree (meaning that the
exponents of the variables are no greater than 2):

ax 2 + bx + c = 0

Polynomials make nice curves, so they’re tailor-made for this problem.
But for the formula to work with variable numbers of civilizations and bubble
sizes, you’ll need to use the ratio of the number of civilizations to the total
volume. The total volume is represented by the scaled disc volume, which is
the same as the total number of equivalent volumes.

In Figure 10-5, each dot represents the probability of detection for the
ratio below it. The equation shown in the figure is the polynomial expres-
sion, which generates the line connecting the dots. With this formula, you
can predict the probability for any ratio of civilizations per volume, up to a
value of 5 (above this, we’ll just assume the probability is 1.0).

194 Chapter 10

y = −0.00476x4 + 0.06681x3 − 0.3605x2 + 0.9215x + 0.00826

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6
Ratio of civilizations to scaled galactic volume

Probability of Detection

Pr
ob

ab
ili

ty

Figure 10-5: Probability of detection versus ratio of number of civilizations to scaled
galactic volume

In Figure 10-5, the civilizations-to-volume ratios are posted on the
x-axis. A ratio of 0.5, for example, means that there are half as many civi-
lizations as available radio bubble equivalent volumes, a ratio of 2 means
there are twice as many civilizations as volumes, and so on. The y-axis is the
probability that an equivalent volume contains more than one civilization.

Another thing to note from Figure 10-5 is that it takes a lot of civiliza-
tions to ensure that they all have a roommate. Imagine that 999,999 out
of 1,000,000 equivalent volumes contain at least two civilizations and you
use your God-like powers to randomly place one new civilization. The odds
are one in a million that this new civilization will end up in the remaining
volume with a single occupant. That last equivalent volume is the proverbial
needle in the haystack!

N o t e 	 An axiom of computer modeling is to start simple and add complexity. The simplest
“base case” assumption is that advanced civilizations are randomly distributed
throughout the galaxy. In “Challenge Projects” on page 214, you’ll get a chance to
challenge this assumption using the concept of galactic habitable zones.

The Probability-of-Detection Code
The probability-of-detection code randomly chooses locations (radio bubble
equivalent volumes) for a set number of locations and civilizations, counts
how many locations occur only once (that is, contain only one civilization),
and repeats the experiment multiple times to converge on a probability esti-
mate. The process is then repeated for a new number of civilizations. The
output is presented as probability versus the ratio of civilizations per volume,

Are We Alone? Exploring the Fermi Paradox 195

rather than the actual number of civilizations, and turned into a polynomial
expression so that the results are easily portable. This means this program
only needs to be run once.

To generate the polynomial equation and check that it fits the data,
you’ll use NumPy and matplotlib. The NumPy library adds support for large,
multidimensional arrays and matrices, and it includes many mathematical
functions that operate on them. The matplotlib library supports 2D plotting
and rudimentary 3D plotting, and NumPy represents its numerical mathemat-
ics extension.

There are several ways to install these scientific Python distributions.
One way is to use SciPy, an open source Python library used for scientific
and technical computing (see https://scipy.org/index.html). If you’re going
to do a lot of data analysis and plotting, you may want to download and
use a free package like Anaconda or Enthought Canopy, which works with
Windows, Linux, and macOS. These packages spare you the task of finding
and installing all the required data science libraries in the correct version.
A listing of these types of packages, along with links to their websites, can
be found at https://scipy.org/install.html.

Alternatively, you may want to download the products directly, using
pip. I did this using the instructions at https://scipy.org/install.html. Because
matplotlib requires a large number of dependencies, these need to be
installed at the same time. For Windows, I ran the following Python 3–​
specific command from the PowerShell, launched from within my Python35
folder (you can leave off the 3 in python3 unless you have multiple versions
installed):

$ python3 -m pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose

All the other modules you’ll need come bundled with Python. As for
the code in Listings 10-1 and 10-2, you can type it in or download a copy
from https://www.nostarch.com/impracticalpython/.

Calculating Probability of Detection for a Range of Civilizations
Listing 10-1 imports modules and does all the work just described except
for fitting the polynomial and displaying the matplotlib quality check.

 from random import randint
from collections import Counter
import numpy as np
import matplotlib.pyplot as plt

 NUM_EQUIV_VOLUMES = 1000 # number of locations in which to place civilizations
MAX_CIVS = 5000 # maximum number of advanced civilizations
TRIALS = 1000 # number of times to model a given number of civilizations
CIV_STEP_SIZE = 100 # civilizations count step size

probability_of
_detection.py,
part 1

https://scipy.org/install.html
https://scipy.org/install.html

196 Chapter 10

 x = [] # x values for polynomial fit
y = [] # y values for polynomial fit

 for num_civs in range(2, MAX_CIVS + 2, CIV_STEP_SIZE):
 civs_per_vol = num_civs / NUM_EQUIV_VOLUMES
 num_single_civs = 0

  for trial in range(TRIALS):
 locations = [] # equivalent volumes containing a civilization

  while len(locations) < num_civs:
 location = randint(1, NUM_EQUIV_VOLUMES)
 locations.append(location)

  overlap_count = Counter(locations)
 overlap_rollup = Counter(overlap_count.values())
 num_single_civs += overlap_rollup[1]

  prob = 1 - (num_single_civs / (num_civs * TRIALS))

 # print ratio of civs-per-volume vs. probability of 2+ civs per location
  print("{:.4f} {:.4f}".format(civs_per_vol, prob))
  x.append(civs_per_vol)

 y.append(prob)

Listing 10-1: Imports modules, randomly chooses radio-bubble-equivalent-volume loca-
tions, and calculates the probability of multiple civilizations per location

Import the familiar random module and Counter, for counting the num-
ber of civilizations at each location (designated by how many times a loca-
tion has been chosen) . How Counter works will be explained in a moment.
You’ll use the NumPy and matplotlib imports to fit and display the polynomial.

Assign some constants that represent user input for the number of
equivalent volumes, the maximum number of civilizations, the number of
trials—that is, how many times to repeat the experiment for a given num-
ber of civilizations—and a step size for the count . Because the results are
predictable, you can use a large step value of 100 without compromising
accuracy. Note that you’ll get very similar results whether the number of
equivalent volumes is 100 or 100,000+.

You’ll need a series of paired (x, y) values for the polynomial expres-
sion, so start two lists to hold these . The x-value will be the ratio of civili-
zations per volume, and the y-value will be the corresponding probability of
detection.

Start a series of nested loops, with the highest loop representing the
number of civilizations to model . You need at least two civilizations for
one to detect the other, and set the maximum to MAX_CIVS plus 2, to over-
shoot when calculating the polynomial. Use the CIV_STEP_SIZE constant for
the step value.

Next, calculate the overall civs_per_vol ratio and start a counter named
num_single_civs to keep track of the number of locations containing a single
civilization.

You’ve chosen how many civilizations to distribute, so now use a for loop
to go through the number of trials . For each trial, you distribute the same

Are We Alone? Exploring the Fermi Paradox 197

number of civilizations. Assign an empty list to the variable locations and
then, for each civilization , pick a location number at random and append
it to the list. Duplicate values in the list will represent locations containing
multiple civilizations.

Run Counter on this list  and get the values. End the loop by getting the
number of locations that occur only once and add them to the num_single_civs
counter. Here’s an example of how these three statements work:

>>> from collections import Counter
>>> alist = [124, 452, 838, 124, 301]
>>> count = Counter(alist)
>>> count
Counter({124: 2, 452: 1, 301: 1, 838: 1})
>>> value_count = Counter(count.values())
>>> value_count
Counter({1: 3, 2: 1})
>>> value_count[1]
3

The alist list contains five numbers, with one (124) duplicated. Running
Counter on this list produces a dictionary with the numbers as the keys and
the number of times they occur as the values. Passing Counter the values in
count—with the values() method—creates another dictionary with the pre-
vious values as keys and the number of times they occur as the new values.
You want to know how many numbers occur only once, so use the diction-
ary method value_count[1] to return the number of nonduplicated numbers.
These, of course, would represent radio-bubble-equivalent volumes contain-
ing a single civilization.

Now use the results from Counter to calculate the probability of multiple
civilizations per location for the current number of civilizations being distrib-
uted . This is 1 minus the number of single-occupancy locations divided by
the number of civilizations in each trial times the number of trials.

Follow this by printing the ratio of civilizations to volume and the prob-
ability that multiple civilizations share a location . The first few lines of
this output are as follows:

0.0020 0.0020
0.1020 0.0970
0.2020 0.1832
0.3020 0.2607
0.4020 0.3305
0.5020 0.3951
0.6020 0.4516
0.7020 0.5041

This printout serves as an initial QC step and is optional; comment it
out if you want to speed up the runtime. Finish by appending the values to
the x and y lists .

198 Chapter 10

Generating a Predictive Formula and Checking the Results
Listing 10-2 uses NumPy to perform polynomial regression on the probabil-
ity of detection versus the ratio of civilizations per volume calculated in
Listing 10-1. You’ll use this polynomial equation in the next program to
obtain probability estimates. To check that the resulting curve fits the data
points, matplotlib displays the actual and predicted values.

 coefficients = np.polyfit(x, y, 4) # 4th order polynomial fit
 p = np.poly1d(coefficients)

print("\n{}".format(p))
 xp = np.linspace(0, 5)
 _ = plt.plot(x, y, '.', xp, p(xp), '-')
 plt.ylim(-0.5, 1.5)
 plt.show()

Listing 10-2: Performs polynomial regression and displays a QC plot

Start by assigning a variable, coefficients, to the output from the NumPy
polyfit() method . This method takes as arguments the x and y lists and
an integer representing the degree of the fitting polynomial. It returns a
vector of coefficients, p, that minimizes the squared error.

If you print the coefficients variable, you get the following output:

[-0.00475677 0.066811 -0.3605069 0.92146096 0.0082604]

To get the full expression, pass the coefficients variable to poly1d and
assign the results to a new variable . Print this variable, and you’ll see a
similar equation to that shown in Figure 10-5:

 4 3 2
-0.004757 x + 0.06681 x - 0.3605 x + 0.9215 x + 0.00826

To check that the polynomial adequately reproduces the input, you’ll
want to plot the ratio of civilizations to volume on the x-axis, with probabil-
ity on the y-axis. To get the x-axis values, you can use the NumPy linspace()
method, which returns evenly spaced numbers over a specified interval. Use
a range of (0, 5), as this will cover almost the full probability range.

To post symbols for the calculated and predicted values, first pass the
plot() method the x and y lists, plotting them using a period (dot), which
is equivalent to the dots in Figure 10-5 . Then pass the predicted x-axis
values (xp) and, to get the predicted y-axis probability, pass p the same vari-
able, plotting the results using a dash.

Finish by limiting the y-axis to values of –0.5 and 1.5  and use the
show() method to actually display the graph (Figure 10-6) . The resultant
plot is simple and sparse, as its only purpose is to confirm that the poly
nomial regression is working as intended. You can alter the polynomial fit
by increasing or decreasing the third argument in step .

probability_of
_detection.py,
part 2

Are We Alone? Exploring the Fermi Paradox 199

Figure 10-6: Calculated results (dots) versus results
predicted by the polynomial (line)

Armed with these results, you can now estimate the probability of
detection for any number of civilizations in the blink of an eye. All Python
needs to do is solve a polynomial equation.

Building the Graphical Model
The graphical model will be a 2D, top-down view of the galactic disc. Plotting
the size of Earth’s present emissions bubble on this display will put in per-
spective both the size of the galaxy and our diminutive place within it.

Modeling the Milky Way is all about modeling the spiral arms. Each
spiral arm represents a logarithmic spiral, a geometric feature so common in
nature it has been dubbed spira mirabilis—“miraculous spiral.” If you com-
pare Figure 10-7 to Figure 10-1, you can see how closely the structure of a
hurricane resembles that of a galaxy. The eye of the hurricane can even be
thought of as a supermassive black hole, with the eyewall representing the
event horizon!

Figure 10-7: Hurricane Igor

200 Chapter 10

Because spirals radiate out from a cen-
tral point, or pole, you’ll more easily graph
them with polar coordinates (Figure 10-8).
With polar coordinates, the (x, y) coordi-
nates used in the more familiar Cartesian
coordinate system are replaced by (r, ϴ),
where r is the distance from the center and
ϴ is the angle made by r and the x-axis. The
coordinates for the pole are (0, 0).

The polar equation for a logarithmic
spiral is:

r = aebϴ

where r is the distance from the origin,
ϴ is the angle from the x-axis, e is the
base of natural logarithms, and a and b are arbitrary constants.

You can use this formula to draw a single spiral; then, rotate and
redraw the spiral three times to produce the four arms of the Milky Way.
You’ll build the spirals out of circles of various sizes, which will represent
stars. Figure 10-9 is an example of one realization of the graphical model.
Because the simulations are stochastic, each will be slightly different, and
there are multiple variables you can tweak to change the appearance.

Figure 10-9: The Milky Way, modeled using logarithmic spirals

I generated the image in Figure 10-9 with tkinter (pronounced “tee-kay-​
inter”), the default GUI library for developing desktop applications in Python.
Although primarily designed for GUI elements such as windows, buttons,
scroll bars, and so on, tkinter can also generate graphs, charts, screensavers,
simple games, and more. Among its advantages is that, as part of the standard
Python distribution, it’s portable across all operating systems and there’s no
need to install external libraries. It’s also well documented and easy to use.

(0,–y)

(–x,0) (x,0)

(0,0)

r

(0,y)

Figure 10-8: Example polar
coordinate system

Are We Alone? Exploring the Fermi Paradox 201

Most Windows, macOS, and Linux machines come with tkinter already
installed. If you don’t have it or need the latest version, you can download
and install it from https://www.activestate.com/. As always, if the module is
already installed, you should be able to import it in the interpreter window
with no errors:

>>> import tkinter
>>>

Introductory Python books sometimes include overviews of tkinter, and
you can find the official online documentation at https://docs.python.org/3​
/library/tk.html. Some other references on tkinter are included in “Further
Reading” on page 212.

Scaling the Graphical Model
The scale of the graphical model is in light-years per pixel, and the width of
each pixel will equate to the diameter of a radio bubble. As a result, when
the radio bubble being investigated changes diameter, the scale units will
change, and the graphical model will need to be rebuilt. The following
equation will scale the model to the bubble:

scaled disc radius = disc radius / bubble diameter

where the disc radius is 50,000 and the length unit is light-years.
When the selected radio bubble is small, the graphical model “zooms

in,” and when it is large, it “zooms out” (Figure 10-10).

Radio bubble diameter = 500 LY Radio bubble diameter = 350 LY

Radio bubble diameter = 200 LY Radio bubble diameter = 20 LY

Figure 10-10: Impact of radio bubble diameter on the appearance of the
galactic model

https://www.activestate.com/
https://docs.python.org/3/library/tk.html
https://docs.python.org/3/library/tk.html

202 Chapter 10

The Galaxy Simulator Code
The galaxy simulator code will calculate the probability of detection for
any number of civilizations and radio bubble sizes, and then generate
a graphical model of the galaxy. When a bubble the size of our current
emissions bubble is used, it will post and annotate our bubble in red, in
the approximate location of our solar system. You can download the code
from https://​www.nostarch.com/impracticalpython/.

Entering Inputs and Key Parameters

Listing 10-3 starts galaxy_simulator.py by importing modules and putting the
frequently accessed user input near the top.

 import tkinter as tk
from random import randint, uniform, random
import math

#===
 # MAIN INPUT

scale (radio bubble diameter) in light-years:
 SCALE = 225 # enter 225 to see Earth's radio bubble

number of advanced civilizations from the Drake equation:
 NUM_CIVS = 15600000

#===

Listing 10-3: Imports modules and assigns constants

Import tkinter as tk, so you don’t have to type the full name when call-
ing tkinter classes . If you’re using Python 2, use Tkinter—with an upper-
case T. You’ll also need the random and math modules.

Use a comment to highlight the main user-input section  and assign
the two inputs. Use SCALE for the diameter, in light-years, of the detectable
electromagnetic bubble around each civilization ; NUM_CIVS is the number
of civilizations to model, which you can determine using anything from the
Drake equation to a total guess .

Setting Up the tkinter Canvas and Assigning Constants

The code in Listing 10-4 instantiates a tkinter window object with a canvas
on which you can draw things. This is where the galaxy map, or graphical
model, will appear. It also assigns constants related to the dimensions of the
Milky Way.

set up display canvas
 root = tk.Tk()

root.title("Milky Way galaxy")
 c = tk.Canvas(root, width=1000, height=800, bg='black')

galaxy
_simulator.py,
part 1

galaxy
_simulator.py,
part 2

Are We Alone? Exploring the Fermi Paradox 203

 c.grid()
 c.configure(scrollregion=(-500, -400, 500, 400))

actual Milky Way dimensions (light-years)
 DISC_RADIUS = 50000

DISC_HEIGHT = 1000
 DISC_VOL = math.pi * DISC_RADIUS**2 * DISC_HEIGHT

Listing 10-4: Sets up tkinter window and canvas and assigns constants

Start by creating a window with the conventional name root . This is a
top-level window that will hold everything else. In the next line, give the win-
dow a title—“Milky Way galaxy”—which will appear in the upper left of the
window frame (see Figure 10-9 for an example).

Next, add a component, known as a widget, to the root window. Widget
stands for “Windows gadget.” There are 21 core widgets in tkinter, includ-
ing labels, frames, radio buttons, and scroll bars. Assign a Canvas widget
to contain all the drawing objects . This is a general-purpose widget
intended for graphics and other complex layouts. Specify the parent win-
dow, the screen width and height, and the background color. Name the
canvas c, for canvas.

You can divide the Canvas widget into rows and columns, like a table or
spreadsheet. Each cell in this grid can hold a different widget, and these
widgets can span multiple cells. Within a cell, you can align a widget using
the STICKY option. To manage each widget in a window, you’ll need to use the
grid geometry manager. Since you’re using only one widget in this project,
you don’t need to pass the manager anything .

Finish by configuring the canvas to use a scrollregion . This sets the
origin coordinates (0, 0) to the center of the canvas. You need this to draw
the galaxy’s spiral arms with polar coordinates. Without it, the default ori-
gin would be the top-left corner of the canvas.

The arguments passed to configure set the limits of the canvas. These
should be half of the canvas width and height; for example, scroll limits of
600, 500 will require canvas dimensions of 1200, 1000. The values shown here
work well on a small laptop, but feel free to alter them later if you find you
need a larger window.

Follow the input section with dimensional constants for the galaxy .
You could assign some of these variables within functions, but having
them in the global space allows for a more logical flow to the code expla-
nation. The first two are the radius and height of the galactic disc from
Figure 10-2. The final constant represents the disc volume .

Scaling the Galaxy and Calculating the Probability of Detection

Listing 10-5 defines functions to scale the galaxy dimensions based on
the diameter of the radio bubble in use and to calculate the probability of
one civilization detecting another. The latter function is where you apply
the polynomial equation built with the probability_of_detection.py program
described previously.

204 Chapter 10

 def scale_galaxy():
 """Scale galaxy dimensions based on radio bubble size (scale)."""
 disc_radius_scaled = round(DISC_RADIUS / SCALE)

  bubble_vol = 4/3 * math.pi * (SCALE / 2)**3
  disc_vol_scaled = DISC_VOL/bubble_vol
  return disc_radius_scaled, disc_vol_scaled

 def detect_prob(disc_vol_scaled):
 """Calculate probability of galactic civilizations detecting each other."""

  ratio = NUM_CIVS / disc_vol_scaled # ratio of civs to scaled galaxy volume
  if ratio < 0.002: # set very low ratios to probability of 0

 detection_prob = 0
 elif ratio >= 5: # set high ratios to probability of 1
 detection_prob = 1

  else:
 detection_prob = -0.004757 * ratio**4 + 0.06681 * ratio**3 - 0.3605 * \
 ratio**2 + 0.9215 * ratio + 0.00826

  return round(detection_prob, 3)

Listing 10-5: Scales galactic dimensions and calculates detection probability

Define a function called scale_galaxy() to scale the galactic dimensions
to the radio bubble size . It will use the constants from the global space, so
there is no need to pass it any arguments. Calculate the scaled disc radius
and then the radio bubble volume, using the equation for the volume of a
sphere, and assign the results to bubble_vol .

Next, divide the actual disc volume by bubble_vol to get the scaled disc
volume . This is the number of radio bubble “equivalent volumes” that can
fit in the galaxy. Each bubble constitutes a possible location for a civilization.

End the function by returning the disc_radius_scaled and disc_vol_scaled
variables .

Now, define a function called detect_prob() to calculate the probability
of detection, which takes the scaled disc volume as an argument . For the
x term in the polynomial, calculate the ratio of the number of civilizations
to the scaled disc volume . Since the polynomial regression can have prob-
lems at the endpoints, use conditionals to set very small ratios to 0 and large
ratios to 1 . Otherwise, apply the polynomial expression generated by the
probability_of_detection.py code , then return the probability rounded to
three decimal places .

Using Polar Coordinates

Listing 10-6 defines a function to select random (x, y) locations using polar
coordinates. This function will choose the locations of some of the stars
posted in the graphical model. Because the display is 2D, there’s no need to
choose a z location.

 def random_polar_coordinates(disc_radius_scaled):
 """Generate uniform random (x, y) point within a disc for 2D display."""

  r = random()
  theta = uniform(0, 2 * math.pi)

galaxy
_simulator.py,
part 3

galaxy
_simulator.py,
part 4

Are We Alone? Exploring the Fermi Paradox 205

  x = round(math.sqrt(r) * math.cos(theta) * disc_radius_scaled)
 y = round(math.sqrt(r) * math.sin(theta) * disc_radius_scaled)

  return x, y

Listing 10-6: Defines a function to randomly pick an (x, y) pair with polar coordinates

The function takes the scaled disc radius as an argument . Use the
random() function to choose a float value between 0.0 and 1.0 and assign it to
the variable r . Next, randomly choose theta from a uniform distribution
between 0 and 360 degrees (2π is the radian equivalent of 360 degrees) .

The transformation to generate points evenly over a unit disc is:

x r

y r

�

�

* cos

* sin

�

�

The equations yield (x, y) values between -1 and 1. To scale the results
to the galactic disc, multiply by the scaled disc radius . End the function
by returning x and y .

Building Spiral Arms

Listing 10-7 defines a function that builds the spiral arms using the loga-
rithmic spiral equation. This spiral may be miraculous, but a large part
of the magic is tinkering with the initial bare-bones spiral to flesh out the
arm. You’ll accomplish this by varying the size of stars, randomly altering
their positions a tiny amount, and duplicating the spiral for each arm in
order to shift it slightly backward and dim its stars.

 def spirals(b, r, rot_fac, fuz_fac, arm):
 """Build spiral arms for tkinter display using logarithmic spiral formula.

 b = arbitrary constant in logarithmic spiral equation
 r = scaled galactic disc radius
 rot_fac = rotation factor
 fuz_fac = random shift in star position in arm, applied to 'fuzz' variable
 arm = spiral arm (0 = main arm, 1 = trailing stars)
 """

  spiral_stars = []
  fuzz = int(0.030 * abs(r)) # randomly shift star locations

 theta_max_degrees = 520
  for i in range(theta_max_degrees): # range(0, 600, 2) for no black hole

 theta = math.radians(i)
 x = r * math.exp(b * theta) * math.cos(theta + math.pi * rot_fac)\
 + randint(-fuzz, fuzz) * fuz_fac
 y = r * math.exp(b * theta) * math.sin(theta + math.pi * rot_fac)\
 + randint(-fuzz, fuzz) * fuz_fac
 spiral_stars.append((x, y))

  for x, y in spiral_stars:
  if arm == 0 and int(x % 2) == 0:

 c.create_oval(x-2, y-2, x+2, y+2, fill='white', outline='')
 elif arm == 0 and int(x % 2) != 0:
 c.create_oval(x-1, y-1, x+1, y+1, fill='white', outline='')

galaxy
_simulator.py,
part 5

206 Chapter 10

  elif arm == 1:
 c.create_oval(x, y, x, y, fill='white', outline='')

Listing 10-7: Defines the spirals() function

Define a function called spirals() . Its parameters are listed in the
function docstring. The first two parameters, b and r, are from the loga-
rithmic spiral equation. The next, rot_fac, is the rotation factor that lets
you move the spiral around the center point so you can produce a new
spiral arm. The fuzz factor, fuz_fac, lets you tweak how far you move stars
away from the center of the spiraling line. Finally, the arm parameter lets
you specify either the leading arm or the trailing arm of faint stars. The
trailing arm will be shifted—that is, plotted a little behind the leading
arm—and its stars will be smaller.

Initialize an empty list to hold the locations of the stars that will make up
the spiral . Assign a fuzz variable, where you multiply an arbitrary constant
by the absolute value of the scaled disc radius . The spiral equation alone
produces stars that are lined up (see the left two panels in Figure 10-11).
Fuzzing will move stars in the spiral back and forth a little, to either side of
the spiral line. You can see the effect on the bright stars in the rightmost
panel in Figure 10-11. I determined these values through trial and error;
feel free to play with them if you like.

Logarithmic
spiral only

With shifting
and fuzzing

Figure 10-11: Filling out the spiral arms by shifting spirals and randomly changing star
positions

Now it’s time to build the spiral lines. First, use a range of values to rep-
resent ϴ in the logarithmic spiral equation . A range of about 520 will pro-
duce the galaxy in Figure 10-9, which has a central “black hole.” Otherwise,
use a range of (0, 600, 2)—or similar—to produce a bright central core
fully packed with stars (Figure 10-12). You can tinker with these values until
you get your preferred result. Loop through the values in theta and apply
the logarithmic spiral equation, using cosine for the x-value and sine for the
y-value. Note that you add the fuzz value, multiplied by the fuzz factor, to
the result. Append each (x, y) pair to the spiral_stars list.

Are We Alone? Exploring the Fermi Paradox 207

Figure 10-12: Graphical model without the central black hole
(compare to Figure 10-9)

Later, in the main() function, you’ll specify the rot_fac variable, which
will move the spiral around the center. After the program builds the four
main arms, it will use rot_fac to build four new arms, slightly offset from the
first four, to produce the band of dim, trailing stars seen to the left of each
arc of bright stars in Figure 10-11.

Now that you have the list of star locations, start a for loop through the
(x, y) coordinates . Then use a conditional statement to choose the main,
leading arm and locations for which x is even . For these, use the canvas
widget’s create_oval() method to create a star object to post. This method’s
first four arguments define a bounding box into which the oval fits. The
larger the number after x and y, the larger the oval. Make the fill white
and don’t use an outline; the default outline is a thin black line.

If the x-value is odd, make the star a step smaller. And if the arm value
is 1, the star is in the shifted arm, so make it as small as possible .

N o t e 	 The star objects are for visual impact only. Neither their size nor number is to scale.
To be realistic, they would be much, much smaller and much more numerous (over
100 billion!).

Scattering Star Haze

The space between the spiral arms isn’t devoid of stars, so the next function
(Listing 10-8) randomly casts points across the galactic model, with no
regard for spiral arms. Think of this as the glow you see in photographs of
distant galaxies.

208 Chapter 10

 def star_haze(disc_radius_scaled, density):
 """Randomly distribute faint tkinter stars in galactic disc.

 disc_radius_scaled = galactic disc radius scaled to radio bubble diameter
 density = multiplier to vary number of stars posted
 """

  for i in range(0, disc_radius_scaled * density):
  x, y = random_polar_coordinates(disc_radius_scaled)
  c.create_text(x, y, fill='white', font=('Helvetica', '7'), text='.')

Listing 10-8: Defines the star_haze() function

Define the star_haze() function and pass it two arguments: the scaled
disc radius and an integer multiplier that the function will use to increase
the base number of random stars . So, if you prefer a thick fog rather than
a light haze, increase the value of the density value when you call the func-
tion in main().

Start a for loop where the maximum range value is equal to the scaled
disc radius multiplied by density . By using the radius value, you scale the
number of stars to the size of the disc being displayed. Then call the random_
polar_coordinates() function to get an (x, y) pair .

End by creating a display object for the canvas using the (x, y) pair .
Since you’ve already used the smallest oval size for the stars along and
around the spiral, use the create_text() method instead of create_oval().
With this method, you can use a period to represent a star. The font size
parameter will allow you to scale the haze stars until you find something
aesthetically pleasing.

Figure 10-13 is a comparison between the galactic model without the
star haze (left) and with the star haze (right).

Figure 10-13: Galactic model without star haze (left) versus with star haze (right)

You can be creative with the haze. For example, you can make the stars
more numerous and color them gray, or use a loop to vary both their size and
color. Don’t use green, however, as there are no green stars in the universe!

galaxy
_simulator.py,
part 6

Are We Alone? Exploring the Fermi Paradox 209

Defining the main() Function

Listing 10-9 defines the main() function in galaxy_simulator.py. It will make
the calls to scale the galaxy, calculate the probability of detection, build the
galaxy display, and post statistics. It will also run the tkinter main loop.

def main():
 """Calculate detection probability & post galaxy display & statistics."""

  disc_radius_scaled, disc_vol_scaled = scale_galaxy()
 detection_prob = detect_prob(disc_vol_scaled)

 # build 4 main spiral arms & 4 trailing arms
  spirals(b=-0.3, r=disc_radius_scaled, rot_fac=2, fuz_fac=1.5, arm=0)

 spirals(b=-0.3, r=disc_radius_scaled, rot_fac=1.91, fuz_fac=1.5, arm=1)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=2, fuz_fac=1.5, arm=0)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=-2.09, fuz_fac=1.5, arm=1)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=0.5, fuz_fac=1.5, arm=0)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=0.4, fuz_fac=1.5, arm=1)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=-0.5, fuz_fac=1.5, arm=0)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=-0.6, fuz_fac=1.5, arm=1)
 star_haze(disc_radius_scaled, density=8)

 # display legend
  c.create_text(-455, -360, fill='white', anchor='w',

 text='One Pixel = {} LY'.format(SCALE))
 c.create_text(-455, -330, fill='white', anchor='w',
 text='Radio Bubble Diameter = {} LY'.format(SCALE))
 c.create_text(-455, -300, fill='white', anchor='w',
 text='Probability of detection for {:,} civilizations = {}'.
 format(NUM_CIVS, detection_prob))

 # post Earth's 225 LY diameter bubble and annotate
  if SCALE == 225:
  c.create_rectangle(115, 75, 116, 76, fill='red', outline='')

 c.create_text(118, 72, fill='red', anchor='w',
 text="<---------- Earth's Radio Bubble")
 # run tkinter loop

  root.mainloop()

 if __name__ == '__main__':
 main()

Listing 10-9: Defines and calls the main() function

Start main() by calling the scale_galaxy() function to get the scaled
disc volume and radius . Then call the detect_prob() function and pass
it the disc_vol_scaled variable. Assign the results to a variable named
detection_prob.

 Now build the galaxy display (graphical model) . This calls the
spirals() function multiple times, with small changes to each call. The arm
parameter designates the bright main arms and the faint trailing arms. The
rot_fac (rotation factor) variable determines where the spiral plots. The slight
change in rotation factor between arms 0 and 1 (for example, 2 to 1.91) is

galaxy
_simulator.py,
part 8

210 Chapter 10

what causes the faint arm to plot slightly offset from the bright arm. Finish
the display by calling the star_haze() function. Again, feel free to experiment
with any of these parameters.

Next, display a legend and statistics. Start with the scale  and radio
bubble diameter followed by the probability of detection for the given num-
ber of civilizations. Arguments include the x and y coordinates, a fill (text)
color, a justification anchor—with left represented by w for “west”—and the
text. Note the use of {:,} to insert a comma as a thousand separator. This is
part of the newer string format method. You can read more about it at https://
docs.python.org/3/library/string.html#string-formatting.

If the user has selected a radio bubble diameter of 225 LY , then the
display is at the same scale as our own emissions bubble, so post a red pixel
at the approximate location of our solar system and annotate it . There
are a number of ways to display a single pixel using tkinter. Here, you use
the create_rectangle() method, but you can also make a line that is one pixel
long with the following statement:

c.create_line(115, 75, 116, 75, fill='red')

With the create_rectangle() method, the first two arguments are points
(x0, y0), which correspond to the top-left corner, and (x1, y1), the location
of the pixel just outside of the bottom-right corner. With the create_line()
method, the arguments are for the starting and ending points. The default
line width is one pixel.

End the main() function by executing the tkinter mainloop() function, also
known as the event loop . This keeps the root window open until you close it.

Back in the global space, end the program by allowing it to be run
stand-alone or called as a module in another program .

The final display will look like Figure 10-14, shown with the Earth’s
radio bubble and a central black hole.

Figure 10-14: The final display, with Earth’s 225 LY
diameter radio bubble posted on the galactic map

Are We Alone? Exploring the Fermi Paradox 211

Note that, despite the fact that our radio bubble is no bigger than a pin-
prick at this scale, if civilizations had a detection range of 112.5 light-years,
and if there were as many of these civilizations as predicted by current high-
side parameters for the Drake equation, the probability of detection is 1!

Results
Given the enormous uncertainty in the inputs and the use of simplifying
assumptions, you’re not looking for accuracy here. What you’re looking for
is directionality. Should we (or anyone like us) expect to detect another civi-
lization that isn’t actively trying to contact us? Based on Figure 10-15, prob-
ably not.

Detection Probability vs.
Number of Civilizations by Radio Bubble Diameter

Number of civilizations

50,000,0000

250 LY

100 LY

50 LY

30 LY

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

100,000,000

Figure 10-15: Probability of one civilization detecting another for different radio
bubble diameters and different numbers of civilizations in the galaxy

With our current technology, we could detect emissions from a civiliza-
tion as far away as 16 LY, which equates to a 32 LY diameter radio bubble.
Even if the galaxy is filled with 15.6 million advanced civilizations, as pre-
dicted by the updated Drake equation in the Wikipedia article, the chance
of detecting 32 LY radio bubbles is less than 4 percent!

Take another look at Figure 10-14, and you can begin to appreciate the
sheer enormity and emptiness of our galaxy. Astronomers even have a word
for this: Laniakea, Hawaiian for “immeasurable heaven.”

Earth is, as Carl Sagan described it, just a “mote of dust, suspended in
a sunbeam.” And recent studies suggest that the window of opportunity for
detecting civilizations with radio waves is much smaller than we thought. If
other civilizations follow our lead and switch to digital signals and satellite
communications, then their incidental radio leakage will drop by at least a
factor of four. We all become unintentionally stealthy, blooming for a hun-
dred years or so, then fading away.

Given these facts, it’s not surprising that the government no longer
funds the search for extraterrestrial intelligence using radio telescopes.

212 Chapter 10

These days, efforts are shifting to optical methods that look for signature
gases in the atmospheres of exoplanets, such as the waste products of life
and industrial activity.

Summary
In this chapter, you gained experience using tkinter, matplotlib, and NumPy.
You generated a polynomial expression for making reasonable estimates
of the likelihood of detecting incidental alien radio transmissions, and you
used the always-available tkinter module to add a cool visual component to
the analysis.

Further Reading
Are We Alone? Philosophical Implications of the Discovery of Extraterrestrial Life
(BasicBooks, 1995) by Paul Davies is a thoughtful look at the search for
alien life, told by an eminent scientist and award-winning science writer.

“A New Formula Describing the Scaffold Structure of Spiral Galaxies”
(Monthly Notices of the Royal Astronomical Society, July 21, 2009) by Harry I.
Ringermacher and Lawrence R. Mead (https://arxiv.org/abs/0908.0892v1)
provides formulas for modeling the shapes of spiral galaxies observed by
the Hubble telescope.

“Tkinter 8.5 Reference: A GUI for Python” (New Mexico Tech Computer
Center, 2013) by John W. Shipman is a useful supplement to the official
tkinter docs. It can be found at http://infohost.nmt.edu/tcc/help/pubs​/tkinter​
/tkinter.pdf.

Another useful online tkinter resource is https://wiki.python.org/moin​
/TkInter/.

Tkinter GUI Application Development HOTSHOT (Packt Publishing, 2013)
by Bhaskar Chaudhary uses a project-based approach to teach tkinter.

Practice Projects
Try these three spin-off projects. You can find them in the appendix or
download them from https://www.nostarch.com/impracticalpython/.

A Galaxy Far, Far Away
Tired of living in the Milky Way galaxy? Heck, who isn’t? Fortunately,
there’s more in heaven and earth than just logarithmic spirals. Use Python
and tkinter to build us a new home—but not necessarily a realistic home.
For inspiration, visit online articles like Alexandre Devert’s post on his
Marmakoide’s Blog, “Spreading Points on a Disc and on a Sphere” (http://
blog.marmakoide.org/). The example shown in Figure 10-16 was built with
galaxy_practice.py.

https://arxiv.org/abs/0908.0892v1
http://infohost.nmt.edu/tcc/help/pubs/tkinter/tkinter.pdf
http://infohost.nmt.edu/tcc/help/pubs/tkinter/tkinter.pdf
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
http://blog.marmakoide.org/
http://blog.marmakoide.org/

Are We Alone? Exploring the Fermi Paradox 213

Figure 10-16: Galaxy produced by the
galaxy_practice.py program

Building a Galactic Empire
Pick a location in the galaxy, an average travel speed of 5 to 10 percent of
the speed of light, and a time step of 500,000 years. Then model the expan-
sion of a space-faring empire. At each time step, calculate the size of the
expanding colonization bubble and update the galaxy map. Check your results
by placing the home-world location at the center of the galaxy, setting the
speed to 1, and confirming that it takes 50,000 years to reach the edge of
the galaxy.

When you have the program up and running, you can perform interest-
ing experiments. For example, you can test how fast we would need to go to
explore the galaxy in 10 million years, as mentioned in the introduction to
this chapter (see Figure 10-17).

Figure 10-17: A core-located empire’s expansion using
travel below light speed over 10 million years

214 Chapter 10

You could also estimate how much of the galaxy the Star Trek Federation
could have explored in its first 100 years, assuming they averaged 100x light
speed at warp 4 (Figure 10-18).

Figure 10-18: Expansion of the Star Trek Federation in
first 100 years under warp factor 4

These figures were built with the empire_practice.py program.

A Roundabout Way to Predict Detectability
Another way to predict the probability of detection is to use polar coordi-
nates to distribute civilizations—as xyz points—in the galactic disc and then
round the points to the nearest radio bubble radius. Points that share the
same location represent civilizations that could detect each other. But be
careful—this method rounds using cubes rather than spheres, so you’ll need
to convert the radius to the side of a cube that produces the same volume.

Write the program so that it predicts the probability of detecting 16 LY
radius bubbles (the limit of our current technology) given 15,600,000 trans-
mitting civilizations randomly distributed throughout the galaxy (updated
Drake equation output from Wikipedia). Use the full 50,000 LY radius and
1,000 LY height of the galactic model when distributing the civilizations.

For a solution, see rounded_detection_practice.py. Note that the program
will take several minutes to run.

Challenge Projects
Here are a few follow-up projects to try on your own. Remember that I don’t
provide solutions to challenge projects.

Creating a Barred-Spiral Galaxy
Our understanding of the Milky Way evolves as we obtain and analyze
new astronomical data. Scientists now believe that the core of the galaxy is

Are We Alone? Exploring the Fermi Paradox 215

elongated and bar shaped. Use the equations provided in the Ringermacher
and Mead paper, cited in “Further Reading” on page 212, to create a new
tkinter visual model of the galaxy that honors the barred-spiral concept.

Adding Habitable Zones to Your Galaxy
Solar systems have Goldilocks zones that are favorable for the development of
life. Planets orbiting in these zones stay warm enough for at least some of
their water to remain in liquid state.

There is also a theory that galaxies, like solar systems, have habitable
zones in which life is more likely to develop. One definition of the habit-
able zone for the Milky Way places its inner boundary about 13,000 LY
from the galactic center and its outer boundary about 33,000 LY from the
center (Figure 10-19). The core is excluded due to the high levels of radia-
tion, large number of supernovas, and complex orbit-disrupting gravita-
tional fields resulting from all the closely spaced stars. The rim areas are
condemned due to low metallicity, which is crucial to the development of
planets.

Figure 10-19: Approximate galactic habitable zone (shaded) superimposed on
the Milky Way model

216 Chapter 10

A refinement of the habitable zone model excludes spiral arms, for
reasons similar to those applied to the core. Our own existence doesn’t con-
tradict this. Earth is located in the Orion “spur,” a relatively small feature
between the Sagittarius and Perseus arms.

Edit the galaxy_simulation.py program so that it uses only the volume in
the galactic habitable zone, however you define it. You should research what
these volumes may be and what effect they’ll have on the number of civiliza-
tions (N) that the Drake equation calculates. Consider using regions, such
as the core, spirals, outer rim, and so on, within which N is different but
civilizations are still randomly distributed. Highlight these regions on the
galactic map and post their probability-of-detection estimates.

11
T h e M o n t y H a l l P r o b l e m

As host of the TV game show Let’s Make a
Deal, Monty Hall would show contestants

three closed doors and ask them to choose
one. Behind one door was a valuable prize;

behind the other two were smelly old goats. As soon
as the contestant chose a door, Monty would open
one of the remaining doors to reveal a goat. The con-
testant was then given a final choice: switch doors or
stay with their initial pick.

In 1990, Marilyn vos Savant, “the world’s smartest woman,” stated in
her weekly Parade magazine column, “Ask Marilyn,” that the contestant
should choose to switch doors. Though her answer was correct, it ignited a
firestorm of hate mail, gender profiling, and academic persecution. Many
math professors embarrassed themselves in the process, but there was a
bright side to the ugly affair. The heated discussion exposed the public to

218 Chapter 11

the science of statistics, and an exercise that vos Savant proposed found its
way into thousands of classrooms. These manual tests—later duplicated by
computers—all vindicated her derided “female logic.”

In this chapter, you’ll use Monte Carlo simulation (MCS), a method for
modeling the probability of different outcomes from a range of random
inputs, to verify that vos Savant was right. After that, you’ll use tkinter to
build a fun graphical interface that addresses her request for schoolchil-
dren to help with the experiment.

Monte Carlo Simulation
Imagine you want to know the probability of rolling a die six times and get-
ting a different face with each roll. If you’re a math whiz, you’d probably just
compute this using the deterministic equation 6! / 66 or

6
6
× 5

6
× 4

6
× 3

6
× 2

6
× 1

6

yielding 0.015. If you’re not so mathematically inclined, you could get the
same answer with Python and a lot of rolls:

>>> from random import randint
>>> trials = 100000
>>> success = 0
>>> for trial in range(trials):
 faces = set()
 for rolls in range(6):
 roll = randint(1, 6)
 faces.add(roll)
 if len(faces) == 6:
 success += 1
>>> print("probability of success = {}".format(success/trials))
probability of success = 0.01528

This example uses a for loop and randint to randomly pick a number
between 1 and 6, representing one of the faces on the die, six times in a
row. It adds each result to a set named faces, which doesn’t permit dupli-
cates. The only way for the length of the set to reach 6 is if each roll yields
a unique number, which equals a success case. An outer for loop performs
the six-roll trial 100,000 times. Dividing the number of successes by the
number of trials yields the same probability, 0.015, as the deterministic
equation.

Monte Carlo simulation uses repeated random sampling—in this case, each
roll of the die is a random sample—to predict different outcomes under
a specified range of conditions. For this example, the range of conditions
was one six-faced die, six rolls with no repeats per trial, and 100,000 trials.

The Monty Hall Problem 219

Of course, MCS is usually applied to more complex problems—those with
lots of variables and wide ranges of uncertainty, where the results cannot be
easily predicted.

There are multiple types of MCS, but most applications follow these
basic steps:

•	 List the input variables.

•	 Provide a probability distribution for each variable.

•	 Start a loop:

•	 Randomly select a value from the distributions for each input.

•	 Use the values in a deterministic calculation, which is a calculation
that will always produce the same output from the same input.

•	 Repeat a specified number of times.

•	 Aggregate the results and generate statistics, such as the average out-
come for the calculation.

For the die-roll example, these steps were:

•	 Input variables = the results of six die rolls.

•	 Probability distribution for roll = uniform (1/6 for each face).

•	 Loop:

•	 Randomly selected value = die roll (draw from distribution).

•	 Calculation = add the six values to a set and, if set length equals 6,
add 1 to success variable.

•	 Repeat = 100,000 times.

•	 Aggregate: divide success variable by 100,0000 for probability
calculation.

Nassim Taleb, the critically acclaimed author of The Black Swan and
Fooled by Randomness, is a fan of MCS. He posits that our brains are designed
to get us out of trouble quickly, rather than handle complicated uncertainty
or probability problems. We aren’t cut out for highly skewed distributions
and nonlinearities, but some people’s brains are inherently more capable of
understanding risks using MCS than other methods. In real life, we don’t
observe probability distributions; we just observe events.

Each MCS run represents a single event, such as whether you run out
of money in retirement. For many of us, MCS makes risk real. It helps us
understand how bad or good things can be—something we can’t always
glean from mathematical abstractions. With the insight from MCS, we can
prepare to both defend against the downside and exploit the upside.

To support the math behind the Monty Hall problem, you’ll use an
MCS application like the preceding die-roll example. Then, in Chapter 12,
you’ll use MCS to build a nest-egg simulator to plan your (or your parents’)
secure retirement.

220 Chapter 11

Project #18: Verify vos Savant
To verify that vos Savant was right, use a Monte Carlo approach and simu-
late tens of thousands of “games” in order to see how things shake out. This
can be a bare-bones program, since the goal is a simple confirmation with
no embellishments.

T he Objec t i v e

Write a simple Python program that uses Monte Carlo simulation to determine the prob-
ability of winning the Monty Hall problem by changing the initial pick.

The Strategy
The correct response to the Monty Hall problem is to switch doors after
Monty reveals the goat. Statistically, this will double your chances of
winning!

Look at Figure 11-1. At the start of the game, all the doors are closed,
and the odds of a given door hiding the prize are 1 in 3. The user can choose
only one door, which means the odds of the prize being behind one of the
other two doors are 2 in 3. After the goat is revealed, the odds remain 2 in 3,
but they revert to the remaining door. Remember, Monty knows where the
prize is hidden, and he will never reveal that door. So the probability of suc-
cess is 1/3 for staying with your first choice versus 2/3 for switching.

1/3 1/3 1/3

2/3

Contestant’s
choice

1/3

Contestant’s
choice

2/31/3

Reveal

Figure 11-1: Odds of winning the Monty Hall problem before and after a goat is revealed

If you’re dubious about the math, you can use MCS to provide corrobo-
rating evidence, just as we did with the die-roll example. You simply need to
pick a winning door at random, choose a contestant’s pick at random, and
record how many times the two coincide. Repeat this thousands of times,
and you will converge on the deterministic mathematical solution.

The Monty Hall Problem 221

The vos Savant Verification Code
The monty_hall_mcs.py program described in this section will automate the
process of choosing doors and recording the results so that you can run
thousands of trials and evaluate them in less than a second. You can down-
load the code from https://www.nostarch.com/impracticalpython.com/.

Getting the Number of Runs Input

Listing 11-1 starts the monty_hall_mcs.py program by asking the user how
many runs—or games—they want to simulate. You’ll also provide the user
with a default value. This is a great way to guide a user to a reasonable first
response, as well as save them a few keystrokes.

 import random

 def user_prompt(prompt, default=None):
 """Allow use of default values in input."""

  prompt = '{} [{}]: '.format(prompt, default)
  response = input(prompt)
  if not response and default:

 return default
 else:
 return response

input number of times to run simulation
 num_runs = int(user_prompt("Input number of runs", "20000"))

Listing 11-1: Imports modules and defines the user_prompt() function

Start by importing the random module to run MCS . Next, define a
function, called user_prompt(), that asks the user to either input the num-
ber of games to run or else accept a default value, if provided . This
function takes two arguments; the first is the text prompt that tells the
user what to do, and the second is the default value, which will start out
as None. Immediately redefine the prompt variable so that it will display with
the default value in brackets, per convention . Assign the user’s input to a
variable named response . If the user presses enter without providing any
input and a default value exists, the user_prompt() function will return the
default value . Otherwise, the function returns the user’s input. Use
the function to determine the number of runs to make by assigning the
returned value to the num_runs variable . Each run will represent a contes-
tant playing the game once.

Running MCS and Displaying the Results

Listing 11-2 picks the winning door and the user’s first choice at random,
then aggregates and presents the statistics. Interestingly, the user’s second
choice—to switch doors or not—isn’t required to get the correct answer. If
the initial choice is the winning door, the correct answer is to not change

monty_hall
_mcs.py, part 1

https://www.nostarch.com/impracticalpython.com/

222 Chapter 11

doors. Likewise, if the initial choice and the winning door differ, the cor-
rect answer is to change doors. There’s no reason to model what a contes-
tant might or might not do.

assign counters for ways to win
 first_choice_wins = 0

pick_change_wins = 0
 doors = ['a', 'b', 'c']

run Monte Carlo
 for i in range(num_runs):

 winner = random.choice(doors)
 pick = random.choice(doors)

  if pick == winner:
 first_choice_wins += 1
 else:
 pick_change_wins += 1

 print("Wins with original pick = {}".format(first_choice_wins))
print("Wins with changed pick = {}".format(pick_change_wins))
print("Probability of winning with initial guess: {:.2f}"
 .format(first_choice_wins / num_runs))
print("Probability of winning by switching: {:.2f}"
 .format(pick_change_wins / num_runs))

 input("\nPress Enter key to exit.")

Listing 11-2: Runs the Monte Carlo simulation and displays the results

Assign two variables to keep track of whether switching or staying put is
the winning outcome . Then, create a list to represent the three doors .

MCS starts with a for loop that goes through the number of runs .
Inside that loop, choose the winning door and the user’s first choice from
the doors list, using random.choice(), and assign them to variables.

Since this is a binary system—the user switches or doesn’t—you’ll only
need a conditional that adds to the counters based on the relationship of
the pick variable to the winning variable .

Finish the program by presenting the final results. Display the actual
counts, plus the calculated probabilities . Then let the user know the pro-
gram is finished .

Here’s an example output for the default 20,000 runs:

Input number of runs [20000]:
Wins with original pick = 6628
Wins with changed pick = 13372
Probability of winning with initial guess: 0.33
Probability of winning by switching: 0.67

Press Enter key to exit.

monty_hall
_mcs.py, part 2

The Monty Hall Problem 223

Some people aren’t impressed with a computer printout. They need
something more convincing, so in the next project, you’ll repackage your
code in a more hands-on format—one that’s complete with doors, prizes,
and goats. This will also satisfy Marilyn vos Savant’s appeal for schoolchil-
dren to join in and help restore her honor.

Project #19: The Monty Hall Game
The three-door game used in the Monty Hall problem is simple enough
for you to build with tkinter. You began working with tkinter graphics
in Chapter 10. Now you’ll build on this knowledge by adding interactive
buttons for the user to click.

T he Objec t i v e

Simulate the Monty Hall problem using a GUI built with tkinter. Keep track of whether
switching doors or staying put results in a win. In addition, update and display these sta-
tistics as the game is played.

A Brief Introduction to Object-Oriented Programming
The tkinter module was written using object-oriented programming (OOP).
OOP is a language model built around data structures, known as objects,
consisting of data and methods and the interactions between them—as
opposed to the actions and logic used in procedural programming. Objects
are built from classes, which are like blueprints for the objects.

OOP is an abstract concept and easier to appreciate when you’re writ-
ing large, complex programs. It reduces code duplication and makes code
easier to update, maintain, and reuse. As a result, most commercial soft-
ware is now built using OOP.

If you implemented OOP in small programs, like the ones we’ve written
so far, most of them would feel overengineered. In fact, one of my all-time
favorite quotes, attributed to British computer scientist Joe Armstrong, con-
cerns this aspect of OOP: “The problem with object-oriented languages is
they’ve got all this implicit environment that they carry around with them.
You wanted a banana, but what you got was a gorilla holding the banana
and the entire jungle!”

Despite this, the objects produced by OOP lend themselves very well to
GUIs and gaming, even for some small projects. Let’s look at an example
using a Dungeons and Dragons–type board game in which players can be
different characters, such as dwarves, elves, and wizards. These games use
character cards to list important information for each character type. If you
let your playing piece represent a dwarf, it inherits the characteristics on
the card (see Figure 11-2).

224 Chapter 11

Throw 3 Combat Dice

Throw 4 Combat Dice

Attack

Defend

Throw 2 Standard Dice

Move

Body Points
5

Dwarf
You are the dwarf. You are a small

but tough fighter with your broadax. You
are skilled at finding and disarming traps.

Untitled-1 1 7/3/18 2:45 PM

Figure 11-2: A dwarf character card from a role-
playing board game

Listings 11-3 and 11-4 reproduce board game–style play, letting you cre-
ate virtual cards for a dwarf and an elf, name your pieces, and have them
fight. The outcome of the fight will impact one of the character’s body points,
which represent the character’s health. Be sure to note how OOP can allow
you to easily create many identical objects—in this case, dwarves or elves—
by “stamping” them out of the predefined template, called a class.

 >>> import random
 >>> class Dwarf(object):
  def __init__(self, name):
  self.name = name

 self.attack = 3
 self.defend = 4
 self.body = 5

  def talk(self):
 print("I'm a blade-man, I'll cut ya!!!")

 >>> lenn = Dwarf("Lenn")
>>> print("Dwarf name = {}".format(lenn.name))
Dwarf name = Lenn
>>> print("Lenn's attack strength = {}".format(lenn.attack))
Lenn's attack strength = 3
>>>

 >>> lenn.talk()
I'm a blade-man, I'll cut ya!!!

Listing 11-3: Imports random module, creates a Dwarf class, and instantiates a dwarf object

The Monty Hall Problem 225

Start by importing random to simulate rolling a die ; this is how your
character will fight. Now define a class for a dwarf character, capitalizing
the first letter of the class name, and pass it an object argument, which will
be the name of your dwarf . A class is a template for creating objects of a
certain type. For example, when you create a list or dictionary, you are cre-
ating them from a class.

The Dwarf class definition is like the card in Figure 11-2; it is basically
the genetic blueprint for a dwarf. It will assign attributes, like strength and
vitality, and methods, like how the character moves or talks. Attributes are
variables scoped to an instance of the class, and methods are attributes that
also happen to be functions, which are passed a reference to their instance
when they run. A class is a data type, and when you create an object of that
data type, it is also known as an instance of that class. The process of setting
the initial values and behaviors of the instance is called instantiation.

Next, define a constructor method, also referred to as the initialization
method. It sets up the initial attribute values for your object . The
__init__() method is a special built-in method that Python automatically
invokes as soon as a new object is created. In this case, you’ll pass two
arguments: self and the name of your object.

The self parameter is a reference to the instance of this class that is
being created, or a reference to the instance a method was invoked on,
technically referred to as a context instance. If you create a new dwarf and
name it “Steve,” self will become Steve behind the scenes. For example,
self.attack becomes “Steve’s attack.” If you create another dwarf named
“Sue,” self for that object will become “Sue.” This way, the scope of Steve’s
health attribute is kept separate from Sue’s.

Next, list some attributes for a dwarf beneath the constructor defini-
tion . You’ll want a name so you can tell one dwarf from another, as well
as the value of key combat characteristics. Notice how this list resembles the
card in Figure 11-2.

Define a talk() method and pass it self . By passing it self, you link
the method to the object. In more comprehensive games, methods might
include behaviors like movement and the ability to disarm traps.

With the class definition complete, create an instance of the Dwarf class
and assign this object to the local variable lenn, the dwarf’s name . Now,
print the name and attack attributes to demonstrate that you have access to
them. Finish by invoking the talk() method . This should display a message.

Listing 11-4 creates an elf character, using the same process you used in
Listing 11-3, and has it fight the dwarf. The elf’s body attribute is updated to
reflect the outcome of the battle.

 >>> class Elf(object):
 def __init__(self, name):
 self.name = name
 self.attack = 4
 self.defend = 4
 self.body = 4
>>> esseden = Elf("Esseden")

226 Chapter 11

>>> print("Elf name = {}".format(esseden.name))
Elf name = Esseden
>>> print("Esseden body value = {}".format(esseden.body))
Esseden body value = 4
>>>

 >>> lenn_attack_roll = random.randrange(1, lenn.attack + 1)
>>> print("Lenn attack roll = {}".format(lenn_attack_roll))
Lenn attack roll = 3

 >>> esseden_defend_roll = random.randrange(1, esseden.defend + 1)
>>> print("Esseden defend roll = {}".format(esseden_defend_roll))
Esseden defend roll = 1
>>>

 >>> damage = lenn_attack_roll - esseden_defend_roll
>>> if damage > 0:
 esseden.body -= damage

 >>> print("Esseden body value = {}".format(esseden.body))
Esseden body value = 2

Listing 11-4: Creates an Elf class, instantiates an elf object, simulates a battle, and
updates an object attribute

Define an Elf class and provide some attributes . Make them slightly
different from the dwarf’s and well balanced, like an elf. Instantiate an elf
named Esseden and access his name and body attributes using print.

Have your two characters interact using the roll of a virtual die with
a maximum value equal to the character’s attack or defend value. Use the
random module to choose a roll value in a range of 1 to Lenn’s attack attri-
bute plus 1 , then repeat this process to get Esseden’s defense . Calculate
the damage to Esseden by subtracting Esseden’s roll value from Lenn’s roll
value , and if the damage is a positive number, subtract it from Esseden’s
body attribute. Use print() to confirm the elf’s current health .

As you can imagine, building many similar characters and keeping track
of their changing attributes could quickly get complicated with procedural
programming. OOP provides a modular structure for your program, makes
it easy to hide complexity and ownership of scope with encapsulation, per-
mits problem solving in bite-sized chunks, and produces sharable templates
that can be modified and used elsewhere.

The Strategy and Pseudocode
Now back to our three-door game. The rules for the game form the bulk of
the pseudocode for the program:

Initialize game window and show closed doors and instructions
Choose winning door at random
Get player's door choice
Reveal a door that isn't the winning door or the player's choice
Get player's choice to switch doors or not
If player switches:
 Reveal new door

The Monty Hall Problem 227

 If winner:
 Record as win for switching
 Otherwise:
 Record as win for staying put
Else if player stays with first choice:
 Reveal chosen door
 If winner:
 Record as win for staying put
 Otherwise:
 Record as win for switching
Display number of wins for each strategy in game window
Reset game and close all doors

It’s useful to start designing a game by sketching out how the game
window should look, complete with instructions, messages, and button
types. I doubt you want to see my crude scribblings, so instead check out
Figure 11-3.

Figure 11-3: View of the game window after the first round of play

This is how the finished game will look after the first round, with the
win statistics visible at the far right. Note that the radio buttons for chang-
ing doors are grayed out until an initial pick has been made.

Game Assets
Game assets is a fancy term for things that you’ll need to build the game.
These will consist of a series of images to represent the doors, goats, and
prize (Figure 11-4).

228 Chapter 11

Figure 11-4: Building-block images for the monty_hall_gui.py program

I used Microsoft PowerPoint to composite the 3 base images into 10
images that represent all the possible states of the game (Figure 11-5). This
was a design decision; with extra lines of code, I could have obtained the
same results using only the base images.

Figure 11-5: Composited images for the monty_hall_gui.py program

The Monty Hall Game Code
The monty_hall_gui.py program described in this section turns the Monty
Hall problem into a fun and educational game. You will also need the
10 game assets shown in Figure 11-5. Download them from https://www​
.nostarch.com/impracticalpython/ and keep all the files in the same folder.

Importing Modules and Defining the Game Class

Listing 11-5 imports modules and defines the Game class and the initializa-
tion method, __init__().

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

The Monty Hall Problem 229

 import random
import tkinter as tk

 class Game(tk.Frame):
 """GUI application for Monty Hall Problem game."""

  doors = ('a', 'b', 'c')

  def __init__(self, parent):
 """Initialize the frame."""

  super(Game, self).__init__(parent) # parent will be the root window
  self.parent = parent

 self.img_file = 'all_closed.png' # current image of doors
 self.choice = '' # player's door choice
 self.winner = '' # winning door
 self.reveal = '' # revealed goat door

  self.first_choice_wins = 0 # counter for statistics
 self.pick_change_wins = 0 # counter for statistics

  self.create_widgets()

Listing 11-5: Imports modules and defines the Game class and _ _init_ _() method

Start by importing the random and tkinter modules . Next, define a
class called Game . The ancestor for this class, shown in parentheses, will be
a tkinter Frame class. This means that the Game class is derived from the exist-
ing Frame “base” class and will conveniently inherit useful methods from it.
The Frame widget mainly serves as a geometry master for other widgets, help-
ing to group them into complex layouts.

Note that classes have their own docstring conventions, which you can
find at https://www.python.org/dev/peps/pep-0257/. As stated in Chapter 1, I will
mainly show single-line docstrings in this book for brevity.

Every instance of Game will use the same three doors, so you can use a
class attribute for this . Any variable assigned a value outside of a method
becomes a class attribute, much as variables assigned outside of functions in
procedural programs become global variables. You don’t want this attribute
to get changed inadvertently, so make it immutable by using a tuple. Later,
you’ll make lists from this tuple whenever you want to manipulate the doors.

Now, just as with the earlier dwarf and elf examples, define an initial-
izer method for the game object . A self parameter is required, but you’ll
also need a parent, which will be the root window that will hold the game.

A base class can also be called a superclass, and the super() function lets
you invoke the method of a superclass to gain access to inherited methods—
in this case, from a parent class. First, pass Game to super(), which means you
want to invoke a method of the superclass of Game, which is Frame . Then
pass it self as an argument to reference the newly instantiated Game object.
The __init__(parent) part of the statement invokes the initializer method of
Frame with parent (the root window) as the argument. Now attributes in the
prebuilt tkinter Frame class can be used by your Game object. Note that this
statement can be simplified to super().__init__().

monty_hall
_gui.py, part 1

https://www.python.org/dev/peps/pep-0257/

230 Chapter 11

Next, assign values to a series of instance attributes . It is best to ini-
tialize attributes through the __init__() method, as it is the first method
called after an object is created. This way, these attributes will be imme-
diately available to any other methods in the class. Start by assigning the
parent, which will be the root window, to the instance. Then name an attri-
bute to hold one of the image files (shown in Figure 11-5) and assign it the
image with all the doors closed, which is what the player will see at the start
of each game. Next, name attributes for the player’s door choice, the win-
ning door, and the door used to reveal the first goat.

Use a counter to keep track of the number of wins achieved if the
player sticks with the first door choice and another to record wins achieved
when the player switches doors . Finally, call a method that will create the
label, button, and text widgets needed to run the game .

Creating Widgets for Images and Instructions

Listing 11-6 defines the first part of the create_widgets() method, used to
build the labels, buttons, and text widgets for the game. The first two wid-
gets will be tkinter labels used to display the images in Figure 11-5 and to
provide game instructions.

  def create_widgets(self):
 """Create label, button, and text widgets for game."""
 # create label to hold image of doors

  img = tk.PhotoImage(file='all_closed.png')
  self.photo_lbl = tk.Label(self.parent, image=img,

 text='', borderwidth=0)
  self.photo_lbl.grid(row=0, column=0, columnspan=10, sticky='W')
  self.photo_lbl.image = img

 # create the instruction label
  instr_input = [

 ('Behind one door is CASH!', 1, 0, 5, 'W'),
 ('Behind the others: GOATS!!!', 2, 0, 5, 'W'),
 ('Pick a door:', 1, 3, 1, 'E')
]

  for text, row, column, columnspan, sticky in instr_input:
 instr_lbl = tk.Label(self.parent, text=text)
 instr_lbl.grid(row=row, column=column, columnspan=columnspan,
 sticky=sticky, ipadx=30)

Listing 11-6: Defines a method to create widgets

Define a method, called create_widgets(), that takes self as an argu-
ment . Then assign an attribute to hold an image of the doors . Note
that you don’t have to precede this attribute name with self, as it will be
used only locally within the method. The PhotoImage class, which takes
the image filename as an argument, is used by tkinter to display images
in canvas, label, text, or button widgets. After this step, you can use the
image in a tkinter label, so assign a photo_lbl variable, pass it the parent
and image as arguments, and specify no text and a thin border .

monty_hall
_gui.py, part 2

The Monty Hall Problem 231

To place the label in the parent window, use the grid() method and
pass it the first row and first column, let the image span 10 columns, and
left-justify it using W . This will fill the top part of the window with the
image of the closed doors. The columnspan option lets the widget span more
than one column. The value won’t affect the image size but will change the
number of locations available for placing the instruction text and other wid-
gets below the image. For example, if you set columnspan=2, you’ll have only
two columns available for placing instructions, buttons, and messages.

Finish the photo label by creating a reference to the image object . If
you don’t do this, the image won’t always show up.

According to the tkinter documentation, tkinter is a layer built over
another product (Tk), and the interface between the two doesn’t handle
references to image objects properly. The Tk widget holds a reference to the
internal object, but tkinter doesn’t. Python uses a garbage-collector module
to automatically reclaim memory from objects no longer needed. When the
garbage collector in Python’s memory allocator discards the tkinter object,
tkinter tells Tk to release the image. But because it’s in use, Tk can’t, so it sets
it to transparent instead. Suggestions for solving the problem include using
a global variable, using an instance attribute, or as you did here, adding an
attribute to the widget instance (photo_lbl.image = img). For more informa-
tion, see http://effbot.org/tkinterbook/photoimage.htm.

Finally, add the instruction text as label widgets. The process is to pro-
vide a list of parameters and then loop through them to build the widgets.
Start with a list of tuples , where each tuple contains the options for mak-
ing a Label object; you can see what each represents in the next statement .
As you progress through the for loop, create each label in the parent window
and assign it some text. Then use the grid() method to place the text, based
on the information in the list of tuples, into the window.

Use the ipadx option with grid() . This option refers to internal pad-
ding in the x-direction within the label, so you can play with it to tweak the
appearance of the text in the window. In this case, you add 30 pixels to the
label so that the text will align in a visually pleasing way.

Creating Radio Buttons and Text Widgets

Listing 11-7 continues the definition of the create_widgets() method by
creating radio button widgets for the three doors. The player makes their
initial door choice by selecting the A, B, or C radio button. Their choice is
then processed by the win_reveal() method, which you’ll build later. This
method will determine the winning door and reveal a goat.

Another set of radio buttons is created to get the player’s choice to switch
doors or not. The result will be processed by the show_final() method, also
defined later. Besides revealing what’s behind the player’s final door choice,
this method will update the win statistics, using Text widgets defined at the
end of this listing.

 # create radio buttons for getting initial user choice
  self.door_choice = tk.StringVar()

 self.door_choice.set(None)

monty_hall
_gui.py, part 3

http://effbot.org/tkinterbook/photoimage.htm

232 Chapter 11

  a = tk.Radiobutton(self.parent, text='A', variable=self.door_choice,
 value='a', command=self.win_reveal)
 b = tk.Radiobutton(self.parent, text='B', variable=self.door_choice,
 value='b', command=self.win_reveal)
 c = tk.Radiobutton(self.parent, text='C', variable=self.door_choice,
 value='c', command=self.win_reveal)

 # create widgets for changing door choice
  self.change_door = tk.StringVar()

 self.change_door.set(None)

  instr_lbl = tk.Label(self.parent, text='Change doors?')
 instr_lbl.grid(row=2, column=3, columnspan=1, sticky='E')

  self.yes = tk.Radiobutton(self.parent, state='disabled', text='Y',
 variable=self.change_door, value='y',
 command=self.show_final)
 self.no = tk.Radiobutton(self.parent, state='disabled', text='N',
 variable=self.change_door, value='n',
 command=self.show_final)

 # create text widgets for win statistics
  defaultbg = self.parent.cget('bg')
  self.unchanged_wins_txt = tk.Text(self.parent, width=20,

 height=1, wrap=tk.WORD,
 bg=defaultbg, fg='black',
 borderwidth=0)
 self.changed_wins_txt = tk.Text(self.parent, width=20,
 height=1, wrap=tk.WORD, bg=defaultbg,
 fg='black', borderwidth=0)

Listing 11-7: Builds radio buttons and text widgets for the create_widgets() method

Start by creating radio buttons for doors A, B, and C. When a user
interacts with a tkinter widget, the result is an event. You can use variables
to track these events, such as when the player selects a door by pressing
a radio button. For widget-specific variables, tkinter has a variable class.
Use the string variable class, StringVar, and assign it to a variable named
door_choice . Immediately use the set() method to assign the variable a
value of None.

Next, set up the button widgets for the three doors . The player will
click on one of these for their first door pick. Use the Radiobutton class and
pass it the parent window, the text to display, the door_choice variable you
just assigned, a value equal to the door name, and a command. The com-
mand calls the win_reveal() method, which you’ll define shortly. Note that
you don’t include the parentheses after the method name.

Repeat this process for buttons B and C. This is mainly a cut-and-paste
exercise, because all you need to change are the door designations.

Now, build the radio buttons for switching doors. Start by making
another string variable, as you did for the initial door choice . This will
hold either y or n, depending on which radio button is selected.

The Monty Hall Problem 233

Build an instruction label using the Label class . Then build the self.yes
radio button . Use the Radiobutton class, pass it the parent window, and set
its state to disabled. This way, the window will initialize with the yes/no but-
tons grayed out, so the player can’t jump the gun and try to change a door
before first choosing one. The text parameter is the button name; use an
abbreviated Y for yes. Set the widget’s variable argument to the change_door
variable, set its value to y, and call the show_final() function. Repeat the pro-
cess for the no button.

The last widgets you’ll need are Text widgets to show the counts for
switching doors versus staying put. Use the Text class to display the sta-
tistics and set the text box color to match the parent window. To do this,
use cget() to get the background (bg) color of parent and then assign it to
a variable . The cget() method returns the current value for a tkinter
option as a string.

Create a text object to display the wins for sticking with the first choice .
You need to pass the widget the parent window, a width and height, how
to wrap text if it extends beyond a row, a background color, a foreground
color—the text color—and a border width for the text box. Note that you
don’t include any actual text; this will be added later by the show_final()
method.

Finish with another text widget to display the number of wins attrib-
uted to switching doors.

Arranging the Widgets

Listing 11-8 completes the create_widgets() method by using the tkinter Grid
geometry manager to position the remaining nongridded widgets in the
game window.

 # place the widgets in the frame
  a.grid(row=1, column=4, sticky='W', padx=20)

 b.grid(row=1, column=4, sticky='N', padx=20)
 c.grid(row=1, column=4, sticky='E', padx=20)
 self.yes.grid(row=2, column=4, sticky='W', padx=20)
 self.no.grid(row=2, column=4, sticky='N', padx=20)

  self.unchanged_wins_txt.grid(row=1, column=5, columnspan=5)
 self.changed_wins_txt.grid(row=2, column=5, columnspan=5)

Listing 11-8: Calls the grid() method on the widgets to position them in the frame

Use grid() to position the door buttons in the parent window . Group
the three door buttons together in the same row and column and separate
them using the sticky justification: W means left, N is center, and E is right.
Use padx to tweak the positions laterally. Repeat this process for the remain-
ing buttons, then position the win statistics text widgets and allow them to
span the five columns on the right side of the window .

monty_hall
_gui.py, part 4

234 Chapter 11

Updating the Door Image

You’ll need to open and close doors throughout the game, so Listing 11-9
defines a helper method to update the door image as appropriate. Note
that, with OOP, you don’t need to pass a filename to the method as an argu-
ment. All the methods for an object have direct access to attributes that
begin with self.

  def update_image(self):
 """Update current doors image."""

  img = tk.PhotoImage(file=self.img_file)
  self.photo_lbl.configure(image=img)
  self.photo_lbl.image = img

Listing 11-9: Defines a method to update the current door image

Define a function, called update_image(), that takes self as an argument .
Then use the PhotoImage class as you did in Listing 11-6 . The filename,
self.img_file, will be updated in other methods.

Because you’ve already created the label that holds the door image,
use the configure() method to change the label—in this case, by loading a
new image . You can use either configure() or config(). Finish by assign-
ing the image to a widget attribute to fend off garbage collection , as
described for Listing 11-6.

Selecting the Winning Door and Revealing a Goat

Listing 11-10 defines a method that selects the winning door and the reveal
door and then opens and closes the reveal door. It also activates the yes/no
buttons, which are grayed out until the player makes their first door choice.

  def win_reveal(self):
 """Randomly pick winner and reveal unchosen door with goat."""

  door_list = list(self.doors)
  self.choice = self.door_choice.get()

 self.winner = random.choice(door_list)

  door_list.remove(self.winner)

  if self.choice in door_list:
 door_list.remove(self.choice)
 self.reveal = door_list[0]
 else:
 self.reveal = random.choice(door_list)

  self.img_file = ('reveal_{}.png'.format(self.reveal))
 self.update_image()

 # turn on and clear yes/no buttons
  self.yes.config(state='normal')

 self.no.config(state='normal')
 self.change_door.set(None)

monty_hall
_gui.py, part 5

monty_hall
_gui.py, part 6

The Monty Hall Problem 235

 # close doors 2 seconds after opening
  self.img_file = 'all_closed.png'

 self.parent.after(2000, self.update_image)

Listing 11-10: Defines a method to randomly select the winning door and reveal door

Define a method, called win_reveal(), that takes self as an argument .
Immediately make a list of the doors from the class attribute doors . You’ll
alter this list based on the player’s first door choice and then the winning
door, picked at random by the program.

Now, assign a self.choice attribute to the self.door_choice string vari-
able, accessed with the get() method . The value of this attribute was
determined by the door radio button that the user clicked as their first
choice. Next, choose the winning door, at random, from the door list.

Remove the winning door from the door list . Then use a conditional
to see whether the player’s choice is still in the door list; if it is, remove it so
that it can’t be revealed . This will leave only one door in the list, so assign
it to the self.reveal attribute.

If the player picked the winning door, there are two doors left in the
list, so randomly choose one of them and assign it to self.reveal. Update the
self.img_file attribute for this door , then call the method that updates
the photo label to show the new image. Figure 11-6 is an example of the
reveal image for door B.

Figure 11-6: The reveal image for Door B

Next, set the state of the yes and no buttons to normal . After this, they
will no longer be grayed out. End the method by changing the image file to
all_closed.png and calling the self.update_image() method on the parent win-
dow after 2,000 milliseconds have elapsed . This will ensure the doors stay
open no longer than 2 seconds.

236 Chapter 11

Revealing the Player’s Final Choice

Listing 11-11 defines the first part of a function that takes the player’s final
door choice and reveals what’s behind it. The function will also keep track
of the number of wins for switching doors or staying put.

  def show_final(self):
 """Reveal image behind user's final door choice & count wins."""

  door_list = list(self.doors)

  switch_doors = self.change_door.get()

  if switch_doors == 'y':
 door_list.remove(self.choice)
 door_list.remove(self.reveal)

  new_pick = door_list[0]
  if new_pick == self.winner:

 self.img_file = 'money_{}.png'.format(new_pick)
 self.pick_change_wins += 1
 else:
 self.img_file = 'goat_{}.png'.format(new_pick)
 self.first_choice_wins += 1

  elif switch_doors == 'n':
  if self.choice == self.winner:

 self.img_file = 'money_{}.png'.format(self.choice)
 self.first_choice_wins += 1
 else:
 self.img_file = 'goat_{}.png'.format(self.choice)
 self.pick_change_wins += 1

 # update door image
  self.update_image()

Listing 11-11: Defines a method to reveal the player’s final choice and update win lists

Define a method, called show_final(), that takes—you guessed it—
self as an argument . Make a new copy of the door list , then get the
self.change_doors variable and assign it to an attribute named switch_doors .
This variable will hold either a 'y' or an 'n', depending on which radio but-
ton the player clicked.

If the player chose to switch doors , remove their first choice and the
revealed door from the list and assign a new_pick attribute to the remaining
door . If this new pick is the winning door , reference the proper image
and advance the self.pick_change_wins counter. Otherwise, set the image to a
goat and advance the self.first_choice_wins counter.

If the player decides to not change doors  and if their first choice was
the winning door , reveal the money bag and advance the self.first_choice_
wins counter. Otherwise, show a goat and advance the self.pick_change_wins
counter.

Finish by calling the update_image() method to update the image .
Again, you don’t need to pass it the name of the new image file, as it can
access the self.img_file attribute that you changed in the preceding code.

monty_hall
_gui.py, part 7

The Monty Hall Problem 237

Displaying Statistics

Listing 11-12 completes the show_final() method by updating the game
window for the number of wins statistics, disabling the yes/no buttons, and
closing all the doors.

 # update displayed statistics
  self.unchanged_wins_txt.delete(1.0, 'end')
  self.unchanged_wins_txt.insert(1.0, 'Unchanged wins = {:d}'

 .format(self.first_choice_wins))
 self.changed_wins_txt.delete(1.0, 'end')
 self.changed_wins_txt.insert(1.0, 'Changed wins = {:d}'
 .format(self.pick_change_wins))

 # turn off yes/no buttons and clear door choice buttons
  self.yes.config(state='disabled')

 self.no.config(state='disabled')
  self.door_choice.set(None)

  # close doors 2 seconds after opening
 self.img_file = 'all_closed.png'
 self.parent.after(2000, self.update_image)

Listing 11-12: Displays win statistics, disables the yes/no buttons, and closes all the doors

Start by deleting any text in the self.unchanged_wins_txt text widget .
Begin deleting at a text index of 1.0. The format is line.column, so you are
specifying the first line and first column of the text widget (line numbering
starts at 1, column numbering at 0). Finish with 'end', which will ensure
that all the text after the starting index is deleted.

Next, use the insert() method to add the self.first_choice_wins attri-
bute value, along with some descriptive text, to the text widget . Begin
inserting at text index 1.0.

Repeat this process for the self.changed_wins_txt text widget, and then
disable the yes/no buttons by setting their config state to 'disabled' . Set
the self.door_choice string variable back to None, and you’re ready to start a
new game .

End the method by closing the doors, as you did in Listing 11-10 .

Setting Up the Root Window and Running the Event Loop

Listing 11-13 completes the monty_hall_gui.py program by setting up the
tkinter root window, instantiating the game object, and running mainloop().
Alternatively, this code could be encapsulated in a main() function.

set up root window & run event loop
 root = tk.Tk()
 root.title('Monty Hall Problem')
 root.geometry('1280x820') # pics are 1280 x 720
 game = Game(root)

root.mainloop()

Listing 11-13: Sets up the root window, creates a game object, and runs mainloop()

monty_hall
_gui.py, part 8

monty_hall
_gui.py, part 9

238 Chapter 11

The Tk class is instantiated without arguments . This creates a top-
level tkinter widget, which will be the main window of the game applica-
tion. Assign it to a variable named root.

Give the window a title  and a size in pixels . Note that the size of
the images influences the geometry so that they fit attractively in the win-
dow, with ample room below for instructions and messages.

Now, create the game . Pass it the root window, which will be the
master that will contain the game. This results in a new game being
placed inside the root window.

Finish by invoking the mainloop() method on root, which keeps the
window open and waiting to handle events.

Summary
In this chapter, you used a simple Monte Carlo simulation to confirm
that switching doors is the best strategy for the Monty Hall problem. You
then used tkinter to build a fun interface to let schoolchildren test this
conclusion manually, game by game. Best of all, you learned how to use
object-oriented programming to build interactive widgets that respond to
user input.

Further Reading
Useful tkinter references can be found in “Further Reading” on page 212.

You can find a summary of the 1990 Monty Hall problem controversy
online at http://marilynvossavant.com/game-show-problem/.

Practice Project: The Birthday Paradox
How many people need to be in a room for there to be a 50/50 chance that
two of them share the same birth month and day? According to the birthday
paradox, not that many! As with the Monty Hall problem, the outcome is
counterintuitive.

Use MCS to determine how many people it takes to reach the 50 per-
cent mark. Have the program print out the number of people and the
probability for a range of room occupants. If you find yourself looking up
how to format dates, stop and simplify! You can find a solution, birthday​
_paradox_practice.py, in the appendix or online at https://www.nostarch.com​
/​impracticalpython/.

http://marilynvossavant.com/game-show-problem/
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

12
S e c u r i n g Y o u r N e s t E g g

Baby boomers are Americans born between
1946 and 1964. They form a large demo-

graphic cohort—about 20 percent of the
American population—so they’ve had a huge

influence on all aspects of American culture. The
financial industry was quick to cater to their needs,
which for decades concerned investment growth. But
in 2011, the oldest boomers reached age 65 and began retiring in droves,
at the rate of 10,000 per day! With an average life span longer than that
of preceding generations, a boomer may enjoy a retirement as long as
their career. Funding this 30- to 40-year period is a big problem and a big
business.

In the years when financial advisers were mainly focused on growing
boomers’ wealth, they relied on the simple “4 Percent Rule” for retire-
ment planning. Simply stated, for every year you’re retired, if you spend
an amount no larger than 4 percent of the savings you had in the first year
of retirement, you’ll never run out of money. But as Mark Twain observed,

240 Chapter 12

“All generalizations are false, including this one!” The value of our invest-
ments and the amount we spend are constantly in flux, often due to forces
outside of our control.

As a more sophisticated alternative to the 4 Percent Rule, the financial
industry adopted Monte Carlo simulation (see Chapter 11 for an overview
of MCS). With MCS, you can test and compare retirement strategies over
thousands of lifetimes. The goal is to identify how much money you can
spend each year in retirement, given your life expectancy, without exhaust-
ing your savings.

The advantage of MCS over other methods increases as the sources of
uncertainty increase. In Chapter 11, you applied MCS to a single variable
with a simple probability distribution. Here you’ll look at uncertainty around
life spans, while capturing the true cyclicity and interdependency of the
stock and bond markets and inflation. This will allow you to evaluate and
compare different strategies for achieving a secure and happy retirement.

Project #20: Simulating Retirement Lifetimes
If you think you’re too young to worry about retirement, think again.

The baby boomers thought the same thing, and now over half of them have
insufficient savings for retirement. For most people, the difference between
eating Kobe beef or dog food in retirement is how soon they start saving.
Due to the magic of compounding interest, even modest savings can add up
over decades. Knowing early the numbers you’ll need later enables you to
set realistic goals for a painless transition to your golden years.

T he Objec t i v e

Build a Monte Carlo simulation for estimating the probability of running out of money in
retirement. Treat years in retirement as a key uncertainty and use historical stock, bond,
and inflation data to capture the observed cyclicity and dependency of these variables.

The Strategy
To plan your project, don’t hesitate to check out the competition. Numerous
nest-egg calculators are available online for free. If you play with these, you’ll
see that they display a high level of input-parameter variability.

Calculators with many parameters may seem better (see Figure 12-1),
but with each added detail, you start going down rabbit holes, especially
when it comes to the US’s complex tax code. When you’re predicting out-
comes 30 to 40 years into the future, details can become noise. So, you’re
better off keeping it simple, focusing on the most important and control-
lable issues. You can control when you retire, your investment asset alloca-
tion, how much you save, and how much you spend, but you can’t control
the stock market, interest rates, and inflation.

Securing Your Nest Egg 241

vanguard.com

bankrate.com smart401k.com

Figure 12-1: Example input panels for three online nest-egg calculators

When you can’t know the “correct” answer to a problem, looking at a
range of scenarios and making decisions based on probabilities is best. For
decisions that involve a “fatal error,” like running out of money, desirable
solutions are those that lower the likelihood of that event.

Before you get started, you need to speak the language, so I put
together a list of the financial terms you’ll use in this project:

Bonds  A bond is debt investment in which you loan money to an
entity—usually a government or corporation—for a set length of time.
The borrower pays you an agreed-upon rate of interest (the bond’s
yield) and, at the end of the term, returns the full value of the loan,
assuming the issuing entity doesn’t go broke and default. The value of
bonds can go up and down over time, so you may lose money if you sell
a bond early. Bonds are appealing to retirees, as they offer safe, steady,
predictable returns. Treasury bonds, issued by the US government, are
considered the safest of all. Unfortunately, most bond returns tend to
be low, so they are vulnerable to inflation.

Effective tax rate  This is the average rate at which an individual
or married couple is taxed. It includes local, state, and federal taxes.
Taxes can be complicated, with large variances in state and local tax
rates, many opportunities for deductions and adjustments, and vari-
able rates for different types of income (such as short- versus long-term

242 Chapter 12

capital gains). The tax code is also progressive, which means you pay
proportionally more as your income increases. According to The
Motley Fool, a financial services company, the average American’s
overall income-based tax rate was 29.8 percent in 2015. And this
excludes sales and property taxes! You can also count on Congress to
tinker with these rates at least once in a 30-year retirement. Due to
these complexities, for this project you should adjust your withdrawal
(spending) parameter to account for taxes.

Index  It is safest to invest in many assets, rather than putting all your
(nest) eggs in one basket. An index is a hypothetical portfolio of securi-
ties, or group of baskets, designed to represent a broad part of a financial
market. The Standard & Poor (S&P) 500, for example, represents the
500 largest US companies, which are mostly dividend-paying companies.
Index-based investments—such as an index mutual fund—allow an inves-
tor to conveniently buy one thing that contains the stocks of hundreds of
companies.

Inflation  This is the increase in prices over time due to increasing
demand, currency devaluation, rising energy costs, and so on. Inflation
is an insidious destroyer of wealth. The inflation rate is variable, but has
averaged about 3 percent annually since 1926. At that rate, the value of
money is halved every 24 years. A little inflation (1 to 3 percent) gen-
erally indicates that the economy is growing and wages are going up.
Higher inflation and negative inflation are both undesirable.

Number of cases  These are the trials or runs performed during MCS;
each case represents a single retirement lifetime and is simulated with
a new set of randomly selected values. For the simulations you will be
running, somewhere between 50,000 and 100,000 cases should provide
a suitably repeatable answer.

Probability of ruin  This is the probability of running out of money
before the end of retirement. You can calculate it as the number of
cases that end with no money divided by the total number of cases.

Start value  The starting value is the total value of liquid investments,
including checking accounts, brokerage accounts, tax-deferred Individual
Retirement Accounts (IRAs), and so on, that are held at the start of retire-
ment. It doesn’t equate to net worth, which includes assets like houses, cars,
and Fabergé eggs.

Stocks  A stock is a security that signifies ownership in a corporation
and represents a claim on part of the corporation’s assets and earnings.
Many stocks pay dividends, a regular payment similar to the interest paid
by a bond or a bank account. For the average person, stocks are the
quickest way to grow wealth, but they’re not without risk. The price of a
stock can go up and down rapidly over a short time—both because of the
company’s performance and because of speculation arising from inves-
tor greed or fear. Retirees tend to invest in the largest dividend-paying
US companies because they offer regular income and a less volatile stock
price than do smaller companies.

Securing Your Nest Egg 243

Total returns  The sum of capital gains (changes in asset value, like
stock price), interest, and dividends is considered the total return of an
investment. It is usually quoted on an annual basis.

Withdrawal  Also referred to as costs or spending, withdrawal is the
pretax, gross income you’ll need to cover all expenses in a given year.
For the 4 Percent Rule, this would represent 4 percent of the start value
in the first year of retirement. This number should be adjusted for infla-
tion in each subsequent year.

Historical Returns Matter
Nest-egg simulators that use constant values for investment returns and
inflation (see Figure 12-1) grossly distort reality. Predictive ability is only
as good as the underlying assumptions, and returns can be highly volatile,
interdependent, and cyclical. This volatility impacts retirees the most when
the start of retirement—or a large unexpected expense—coincides with the
beginning of a big market downturn.

The chart in Figure 12-2 displays the annual returns for both the S&P
500 index of the largest US companies and the 10-year Treasury bond,
which is a reasonably safe, medium-risk, fixed-income investment. It also
includes annual inflation rates and significant financial events like the
Great Depression.

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

60

19
26

19
28

19
30

19
32

19
34

19
36

19
38

19
40

19
42

19
44

19
46

19
48

19
50

19
52

19
54

19
56

19
58

19
60

19
62

19
64

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

10-yr T. Bond S&P 500 Infl Rate

The Great
Depression

The American
Dream

Irrational
Exuberance

The Great
Recession

Bust

Annual Total Returns

The Great
Inflation

WW II

Oil
Embargo

1926–2013

Go-Go ‘80s

Dot-com

Figure 12-2: Annual rate of inflation plus total returns for stock and bond markets, 1926 to 2013

Financial scholars’ long study of the trends in Figure 12-2 have led
to some useful observations about US markets:

•	 Upward-moving (bull) markets tend to last five times as long as
downward-moving (bear) markets.

244 Chapter 12

•	 Harmful high inflation rates can persist for as long as a decade.

•	 Bonds tend to deliver low returns that struggle to keep up with inflation.

•	 Stock returns outpace inflation easily, but at the cost of great volatility
in prices.

•	 Stock and bond returns are often inversely correlated; this means that
bond returns decrease as stock returns increase, and vice versa.

•	 Neither the stocks of large companies nor Treasury bonds can guaran-
tee you a smooth ride.

Based on this information, financial advisers recommend that most
retirees hold a diversified portfolio that includes multiple investment types.
This strategy uses one investment type as a “hedge” against another, damp-
ening the highs but raising the lows, theoretically reducing volatility.

In Figure 12-3, annual investment returns are plotted using both the
S&P 500 and a hypothetical 40/50/10 percent blend of, respectively,
the S&P 500, the 10-year Treasury bond, and cash. The three-month
Treasury bill, which is a very short-term bond with a stable price and low
yield (like money stuffed in your mattress), represents cash.

−50

−40

−30

−20

−10

0

10

20

30

40

50

19
26

19
29

19
32

19
35

19
38

19
41

19
44

19
47

19
50

19
53

19
56

19
59

19
62

19
65

19
68

19
71

19
74

19
77

19
80

19
83

19
86

19
89

19
92

19
95

19
98

20
01

20
04

20
07

20
10

20
13

Annual Total Returns

S&P 500 40-50-10 Blend

1926–2013

Figure 12-3: Annual returns of the S&P 500 versus a blend of the S&P 500, 10-year Treasury bond, and
cash, 1926 to 2013

This diversified portfolio provides a smoother ride than the stock mar-
ket alone, while still providing protection from inflation. But it will clearly
produce different results than online calculators that assume returns are
always constant and positive in value.

Securing Your Nest Egg 245

By using historical data, you capture the true measured duration of
good times and bad, along with the highest highs and the lowest lows. You
also account for something completely ignored by the 4 Percent Rule: the
black swan.

Black swans are consequential, improbable events. These can be good,
like meeting your spouse, or bad, like Black Monday, the stock market crash
of October 1987. An advantage of MCS is that it can factor in these unex-
pected events; a disadvantage is that you have to program them, and if they
are truly unforeseeable, how can you know what to include?

Black swans that have already occurred, like the Great Depression, are
captured in the annual values in lists of historical returns. So, a common
approach is to use historical results and assume that nothing worse—or bet-
ter—will occur in the future. When a simulation uses data from the Great
Depression, the modeled portfolio will experience the same stock, bond,
and inflation behavior as real portfolios at the time.

If using past data seems too restrictive, you can always edit the past
results to reflect lower lows and higher highs. But most people are practical
and are happier dealing with events they know have occurred—as opposed
to zombie apocalypses or alien invasions—so true historical results offer a
credible way to inject reality into financial planning.

Some economists argue that inflation and returns data before 1980 are
of limited use, because the Federal Reserve now takes a more active role
in monetary policy and the control of inflation. On the other hand, that is
exactly the kind of thinking that leaves us exposed to black swans!

The Greatest Uncertainty
The greatest uncertainty in retirement planning is the date you—or your
surviving spouse—die, euphemistically referred to as “end of plan” by finan-
cial advisers. This uncertainty affects every retirement-related decision,
such as when you retire, how much you spend in retirement, when you start
taking Social Security, how much you leave your heirs, and so on.

Insurance companies and the government deal with this uncertainty with
actuarial life tables. Based on the mortality experience of a population, actu-
arial life tables predict the life expectancy at a given age, expressed as the
average remaining number of years expected prior to death. You can find the
Social Security table at https://www.ssa.gov/oact/STATS/table4c6.html. Based on
this table, a 60-year-old woman in 2014 would have a life expectancy of 24.48
years; this means end of plan would occur during her 84th year.

Actuarial tables work fine for large populations, but for individuals,
they’re just a starting point. You should examine a range of values, tailored
to family history and personal health issues, when preparing your own
retirement plan.

To handle this uncertainty in your simulation, consider years in retire-
ment a random variable, whose values are chosen at random from a fre-
quency distribution. For example, you can enter the most likely, minimum,
and maximum number of years you expect to be retired and use these

246 Chapter 12

values to build a triangular distribution. The most-likely value can come
from an actuarial table, but the endpoints should be based on your per-
sonal health outlook and family history.

An example outcome, based on a triangular distribution for years
in retirement for a 60-year-old man, is shown in Figure 12-4. The mini-
mum retirement period was set to 20 years, the most likely to 22 years, and
the maximum to 40 years. The number of draws from the distribution
was 1,000.

0

20

40

60

80

100

120

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Years in retirement

Years in Retirement for 1,000 Lifetimes

N
um

be
r o

f l
ife

tim
es

Figure 12-4: Number of lifetimes versus years in retirement based on 1,000 draws
from a triangular distribution

As you can see, every possible time interval between the minimum and
maximum values is available for simulation, but the intervals taper off in
frequency from the most likely value to the maximum value, indicating that
living to 100 is possible but unlikely. Note also that the plot is significantly
skewed to the high side. This will ensure conservative results, since—from a
financial perspective—dying early is an optimistic outcome and living lon-
ger than expected represents the greatest financial risk.

A Qualitative Way to Present Results
An issue with MCS is making sense of thousands of runs and presenting
the results in an easily digestible manner. Most online calculators present
outcomes using a chart like the one in Figure 12-5. In this example, for a
10,000-run simulation, the calculator plots a few selected outcomes with age
on the x-axis and investment value on the y-axis. The curves converge on
the left at the starting value of the investments at retirement, and they end
on the right with their value at end of plan. The overall probability of the
money’s lasting through retirement may also be presented. Financial advis-
ers consider probabilities below 80 to 90 percent risky.

Securing Your Nest Egg 247

Figure 12-5: Example display from a typical financial industry retirement simulator

The most important piece of information from this type of analysis
is the probability of running out of money. It is also interesting to see the
endpoint and average outcomes and a summary of the input parameters.
In your Python simulator, you can print these in the interpreter window, as
shown here:

Investment type: bonds
Starting value: $1,000,000
Annual withdrawal: $40,000
Years in retirement (min-ml-max): 17-25-40
Number of runs: 20,000

Odds of running out of money: 36.1%

Average outcome: $883,843
Minimum outcome: $0
Maximum outcome: $7,607,789

For a graphical presentation, rather than duplicate what others have
done, let’s find a new way to present the outcomes. A subset of the results of
each case—that is, the money remaining at the end of retirement—can be
presented as a vertical line in a bar chart, as in Figure 12-6.

248 Chapter 12

Figure 12-6: The outcomes of simulated retirement periods displayed as vertical columns in a bar chart

In this chart, each bar represents the retirement portion of a single sim-
ulated lifetime, and the height of each bar represents the money remaining
at the end of that life. Because each bar represents an individual category
rather than intervals for continuous measurement, you can arrange the
bars in any order without affecting the data. Gaps, representing cases that
ran out of money, can be included in the order they occurred in the simu-
lation. With the quantitative statistics recorded in the interpreter window,
this diagram provides a qualitative way to present the results.

The peaks and valleys of this chart represent the changing fortunes
of many possible futures. In one lifetime, you can die destitute; in the
next, you’re a multimillionaire. It’s evocative of the old saying “There but
for the grace of God go I.” But, on the other hand, it reinforces General
Eisenhower’s observation that “plans are useless, but planning is indispens-
able.” Through financial planning, you can “raise the valleys” in the chart
and eliminate or greatly reduce your odds of going broke in retirement.

To make this chart, you’ll use matplotlib, a library that supports 2D plot-
ting and rudimentary 3D plotting. To learn more about matplotlib and how
to install it, see “The Probability-of-Detection Code” on page 194.

The Pseudocode
Based on the preceding discussion, the program design strategy should be
to focus on a few important retirement parameters and simulate outcomes
using the historical behavior of the financial markets. Here’s the high-level
pseudocode:

Get user input for investment type (all stocks, all bonds, or a blend)
Map investment type choice to a list of historical returns
Get user input for the starting value of investments
Get user input for the initial yearly withdrawal amount
Get user input for the minimum, most likely, and maximum duration of retirement
Get user input on number of cases to run
Start list to hold outcomes

Securing Your Nest Egg 249

Loop through cases:
 For each case:
 Extract random contiguous sample of returns list for duration period
 Extract same interval from inflation list
 For each year in sample:
 If year not equal to year 1:
 Adjust withdrawal for inflation
 Subtract withdrawal from investments
 Adjust investments for returns
 If investments <= 0:
 Investments = 0
 Break
 Append investments value to outcomes list
Display input parameters
Calculate and display the probability of ruin
Calculate and display statistics
Display a subset of outcomes as a bar chart

Finding Historical Data
You can find returns and inflation information on numerous websites (see
“Further Reading” on page 263 for some examples), but I have already
compiled the information you need as a series of downloadable text files. If
you choose to compile your own lists, be aware that estimates of both infla-
tion and returns may vary slightly from site to site.

For returns, I used three investment vehicles: the S&P 500 stock index,
the 10-year Treasury bond, and the three-month Treasury bill, all for the
period 1926 to 2013 (1926–1927 values for the Treasury bill are estimates).
I used this data to generate additional blended returns for the same period.
The following list describes the filenames and contents:

SP500_returns_1926-2013_pct.txt  Total returns for the S&P 500
(1926–2013)

10-yr_TBond_returns_1926-2013_pct.txt  Total returns for the 10-year
Treasury bond (1926–2013)

3_mo_TBill_rate_1926-2013_pct.txt  Rate of three-month Treasury bill
(1926–2013)

S-B_blend_1926-2013_pct.txt  50/50 percent mix of S&P 500 and 10-year
Treasury bond (1926–2013)

S-B-C_blend_1926-2013_pct.txt  40/50/10 percent mix of S&P 500,
10-year Treasury bond, three-month Treasury bill (1926–2013)

annual_infl_rate_1926-2013_pct.txt  Average annual US inflation rate
(1926–2013)

Here’s an example of the first seven lines of the S&P 500 text file:

11.6
37.5
43.8
-8.3

250 Chapter 12

-25.1
-43.8
-8.6

The values are percentages, but you’ll change them to decimal values
when you load them in the code. Note that years aren’t included, as the val-
ues are in chronological order. If all the files cover the same time interval,
the actual years are irrelevant, though you should include them in the file-
name for good bookkeeping.

The Code
Name your retirement nest-egg simulator nest_egg_mcs.py. You’ll need the
text files described in “Finding Historical Data” on page 249. Download
these files from https://www.nostarch.com/impracticalpython/ and keep them
in the same folder as nest_egg_mcs.py.

Importing Modules and Defining Functions to Load Data and Get User Input
Listing 12-1 imports modules and defines a function to read the historical
returns and inflation data, as well as another function to get the user’s input.
Feel free to alter or add to the historical data to conduct experiments after
the program is up and running.

import sys
import random

 import matplotlib.pyplot as plt

 def read_to_list(file_name):
 """Open a file of data in percent, convert to decimal & return a list."""

  with open(file_name) as in_file:
  lines = [float(line.strip()) for line in in_file]
  decimal = [round(line / 100, 5) for line in lines]
  return decimal

 def default_input(prompt, default=None):
 """Allow use of default values in input."""

 prompt = '{} [{}]: '.format(prompt, default)
 response = input(prompt)
 if not response and default:

 return default
 else:
 return response

Listing 12-1: Imports modules and defines functions to load data and get user input

The import statements should all be familiar. The matplotlib library is
needed to build the bar chart of results. You only need the plotting func-
tionality, as specified in the import statement .

Next, define a function called read_to_list() to load a data file and pro-
cess its contents . You’ll pass it the name of the file as an argument.

nest_egg_mcs.py,
part 1

https://www.nostarch.com/impracticalpython/

Securing Your Nest Egg 251

Open the file using with, which will automatically close it , and then
use list comprehension to build a list of the contents . Immediately convert
the list items, which are in percents, to decimal values rounded to five deci-
mal places . Historical returns are usually presented to two decimal places
at most, so rounding to five should be sufficient. You may notice more accu-
racy in the values of some of the data files used here, but that’s just the result
of some preprocessing in Excel. End by returning the decimal list .

Now, define a function called default_input() to get the user’s input .
The function takes a prompt and a default value as arguments. The prompt
and default will be specified when the function is called, and the program
will display the default in brackets . Assign a response variable to the user’s
input . If the user enters nothing and a default value exists, the default
value is returned; otherwise, the user’s response is returned .

Getting the User Input
Listing 12-2 loads the data files, maps the resulting lists to simple names
using a dictionary, and gets the user’s input. The dictionary will be used to
present the user with multiple choices for an investment type. Overall, user
input consists of:

•	 The type of investment to use (stocks, bonds, or a blend of both)

•	 The starting value of their retirement savings

•	 A yearly withdrawal, or spending, amount

•	 The minimum, most likely, and maximum number of years they expect
to live in retirement

•	 The number of cases to run

load data files with original data in percent form
 print("\nNote: Input data should be in percent, not decimal!\n")

try:
 bonds = read_to_list('10-yr_TBond_returns_1926-2013_pct.txt')
 stocks = read_to_list('SP500_returns_1926-2013_pct.txt')
 blend_40_50_10 = read_to_list('S-B-C_blend_1926-2013_pct.txt')
 blend_50_50 = read_to_list('S-B_blend_1926-2013_pct.txt')
 infl_rate = read_to_list('annual_infl_rate_1926-2013_pct.txt')
except IOError as e:
 print("{}. \nTerminating program.".format(e), file=sys.stderr)
 sys.exit(1)

get user input; use dictionary for investment-type arguments
 investment_type_args = {'bonds': bonds, 'stocks': stocks,

 'sb_blend': blend_50_50, 'sbc_blend': blend_40_50_10}

 # print input legend for user
print(" stocks = SP500")
print(" bonds = 10-yr Treasury Bond")
print(" sb_blend = 50% SP500/50% TBond")
print("sbc_blend = 40% SP500/50% TBond/10% Cash\n")

nest_egg_mcs.py,
part 2

252 Chapter 12

print("Press ENTER to take default value shown in [brackets]. \n")

get user input
 invest_type = default_input("Enter investment type: (stocks, bonds, sb_blend,"\

 " sbc_blend): \n", 'bonds').lower()
 while invest_type not in investment_type_args:

 invest_type = input("Invalid investment. Enter investment type " \
 "as listed in prompt: ")

start_value = default_input("Input starting value of investments: \n", \
 '2000000')

 while not start_value.isdigit():
 start_value = input("Invalid input! Input integer only: ")

 withdrawal = default_input("Input annual pre-tax withdrawal" \
 " (today's $): \n", '80000')
while not withdrawal.isdigit():
 withdrawal = input("Invalid input! Input integer only: ")

min_years = default_input("Input minimum years in retirement: \n", '18')
while not min_years.isdigit():
 min_years = input("Invalid input! Input integer only: ")

most_likely_years = default_input("Input most-likely years in retirement: \n",
 '25')
while not most_likely_years.isdigit():
 most_likely_years = input("Invalid input! Input integer only: ")

max_years = default_input("Input maximum years in retirement: \n", '40')
while not max_years.isdigit():
 max_years = input("Invalid input! Input integer only: ")

num_cases = default_input("Input number of cases to run: \n", '50000')
while not num_cases.isdigit():
 num_cases = input("Invalid input! Input integer only: ")

Listing 12-2: Loads data, maps choices to lists, and gets user input

After printing a warning that input data should be in percent form,
use the read_to_list() function to load the six data files . Use try when
opening the files to catch exceptions related to missing files or incorrect
filenames. Then handle the exceptions with an except block. If you need a
refresher on try and except, refer to “Handling Exceptions When Opening
Files” on page 21.

The user will have a choice of investment vehicles to test. To allow them
to type in simple names, use a dictionary to map the names to the lists of
data you just loaded . Later, you’ll pass a function this dictionary and its
key to serve as an argument: montecarlo(investment_type_args[invest_type]).
Before asking for input, print a legend to aid the user .

Next, get the user’s investment choice . Use the default_input() func-
tion and list the names of the choices, which are mapped back to the
data lists. Set the default to 'bonds', in order to see how this supposedly

Securing Your Nest Egg 253

“safe” choice performs. Be sure to tack on the .lower() method in case
the user accidently includes an uppercase letter or two. For other possible
input errors, use a while loop to check the input versus the names in the
investment_type_args dictionary; if you don’t find the input, prompt the user
for a correct answer .

Continue gathering the input and use the default values to guide the
user to reasonable inputs. For example, $80,000 is 4 percent of the starting
value of $2,000,000; also, 25 years is a good most-likely value for women
entering retirement at 60, a maximum value of 40 will allow them to reach
100, and 50,000 cases should quickly yield a good estimate of the probabil-
ity of ruin.

For numerical inputs, use a while loop to check that the input is a digit,
just in case the user includes a dollar sign ($) or commas in the number .
And for the withdrawal amount, use the prompt to guide the user by letting
them know to input today’s dollars and not to worry about inflation .

Checking for Other Erroneous Input
Listing 12-3 checks for additional input errors. The order of the minimum,
most likely, and maximum years in retirement should be logical, and a max-
imum length of 99 years is enforced. Allowing for a long time in retirement
permits the optimistic user to evaluate cases where medical science makes
significant advances in anti-aging treatments!

check for other erroneous input
 if not int(min_years) < int(most_likely_years) < int(max_years) \

 or int(max_years) > 99:
  print("\nProblem with input years.", file=sys.stderr)

 print("Requires Min < ML < Max with Max <= 99.", file=sys.stderr)
 sys.exit(1)

Listing 12-3: Checks for errors and sets limits in the retirement years input

Use a conditional to ensure that the minimum years input is less than
the most likely, the most likely is less than the maximum, and the maxi-
mum does not exceed 99 . If a problem is encountered, alert the user ,
provide some clarifying instructions, and exit the program.

Defining the Monte Carlo Engine
Listing 12-4 defines the first part of the function that will run the Monte
Carlo simulation. The program uses a loop to run through each case, and
the number of years in retirement inputs will be used to sample the historical
data. For both the returns and inflation lists, the program chooses a starting
year, or index, at random. The number of years in retirement, assigned to a
duration variable, is drawn from a triangular distribution built from the user’s
input. If 30 is chosen, then 30 is added to this starting index to create the
ending index. The random starting year will determine the retiree’s financial
fortunes for the rest of their life! Timing is everything, as they say.

nest_egg_mcs.py,
part 3

254 Chapter 12

 def montecarlo(returns):
 """Run MCS and return investment value at end-of-plan and bankrupt count."""

  case_count = 0
 bankrupt_count = 0
 outcome = []

  while case_count < int(num_cases):
 investments = int(start_value)

  start_year = random.randrange(0, len(returns))
  duration = int(random.triangular(int(min_years), int(max_years),

 int(most_likely_years)))
  end_year = start_year + duration
  lifespan = [i for i in range(start_year, end_year)]

 bankrupt = 'no'

 # build temporary lists for each case
  lifespan_returns = []

 lifespan_infl = []
 for i in lifespan:

  lifespan_returns.append(returns[i % len(returns)])
 lifespan_infl.append(infl_rate[i % len(infl_rate)])

Listing 12-4: Defines the Monte Carlo function and starts a loop through cases

The montecarlo() function takes a returns list as an argument . The
first step is to start a counter to keep track of which case is being run .
Remember that you don’t need to use actual dates; the first year in the lists
is index 0, rather than 1926. In addition, start a counter for the number
of cases that run out of money early. Then start an empty list to hold the
outcomes of each run, which will be the amount of money remaining at
the end of the run.

Begin the while loop that will run through the cases . Assign a new
variable, called investments, to the starting investment value that the user
specified. Since the investments variable will change constantly, you need to
preserve the original input variable to reinitialize each case. And since all
the user input came in as strings, you need to convert the values to integers
before using them.

Next, assign a start_year variable and pick a value at random from
the range of available years . To get the time spent in retirement for this
simulated life, use the random module’s triangular() method to draw from a
triangular distribution defined by the user’s min_years, most_likely_years, and
max_years inputs . According to the documentation, triangular() returns a
random floating-point number N such that low <= N <= high and with the
specified mode between those bounds.

Add this duration variable to the start_year variable and assign the
result to an end_year variable . Now, make a new list, named lifespan, that
captures all the indexes between the starting year and the ending year .
These indexes will be used to match the retirement period to the historical

nest_egg_mcs.py,
part 4

Securing Your Nest Egg 255

data. Next, assign a bankrupt variable to 'no'. Bankrupt means you’ve run
out of money, and later this outcome will end the while loop early, using a
break statement.

Use two lists to store the applicable returns and inflation data for the
chosen lifespan . Populate these lists using a for loop that uses each item in
lifespan as the index for the returns and inflation lists. If the lifespan index is
out of range compared to the other lists, use the modulo (%) operator to wrap
the indexes .

Let’s cover a little more background on this listing. The randomly
selected start_year variable and the calculated end_year variable determine
how the returns and inflation lists are sampled. The sample is a continu-
ous piece of financial history and constitutes a case. Selecting an interval at
random distinguishes this program from online calculators that select indi-
vidual years at random and may use a different year for each asset class and
inflation! Market results aren’t pure chaos; bull and bear markets are cyclic,
as are inflationary trends. The same events that cause stocks to decline also
impact the price of bonds and the rate of inflation. Picking years at random
ignores this interdependency and disrupts known behaviors, leading to
unrealistic results.

In Figure 12-7, the retiree (known as Case 1) has chosen to retire in
1965—at the start of the Great Inflation—and to invest in bonds. Because
the end year occurs before the end of the returns list, the retirement span
fits nicely in the list. Both returns and inflation are sampled over the same
interval.

−15

−10

−5

0

5

10

15

20

25

30

35

40

19
26

19
29

19
32

19
35

19
38

19
41

19
44

19
47

19
50

19
53

19
56

19
59

19
62

19
65

19
68

19
71

19
74

19
77

19
80

19
83

19
86

19
89

19
92

19
95

19
98

20
01

20
04

20
07

20
10

20
13

Annual inflation 10-yr T. bond

Case 1: 1965–1995

199
65

199
6688

199
71

199
7477

199
777

199
8800

199
83

199
8866

199
89

199
92

11999
9955

To
ta

l r
et

ur
n

%

Figure 12-7: Graph of bond and inflation lists, with a retirement starting in 1965
annotated

In Figure 12-8, the retiree, or Case 2, has chosen to retire in 2000.
Because the list ends in 2013, the 30-year sample taken by the MCS func-
tion must “wrap around” and cover years 1926 through 1941. This forces
the retiree to endure two recessions and a depression.

256 Chapter 12

−15

−10

−5

0

5

10

15

20

25

30

35

40

19
26

19
29

19
32

19
35

19
38

19
41

19
44

19
47

19
50

19
53

19
56

19
59

19
62

19
65

19
68

19
71

19
74

19
77

19
80

19
83

19
86

19
89

19
92

19
95

19
98

20
01

20
04

20
07

20
10

20
13

Annual inflation 10-yr T. bond

Case 2: 2000–2013, 1926–1941

To
ta

l r
et

ur
n

%

199
266

199
299

1199
3322

199
35

199
388

199
411

200
01

200
04

200
07

2200000
1100

2200000
1133

Figure 12-8: Graph of bonds and inflation lists, with segments used in Case 2 annotated

The program will need to simulate the wrap-around segment you see
in Case 2—hence the use of the modulo operator, which allows you to treat
the lists as endless loops.

Simulating Each Year in a Case
Listing 12-5 continues the montecarlo() function and loops through each year
of retirement for a given case, increasing or decreasing the investment value
based on the returns for that year, subtracting the inflation-adjusted with-
drawal amount from the investments, and checking whether the investments
are exhausted. The program saves the final investment value—representing
the savings remaining at death—to a list so that the overall probability of
ruin can be calculated at the end.

 # loop through each year of retirement for each case run
  for index, i in enumerate(lifespan_returns):
  infl = lifespan_infl[index]

  # don't adjust for inflation the first year
 if index == 0:
 withdraw_infl_adj = int(withdrawal)
 else:
 withdraw_infl_adj = int(withdraw_infl_adj * (1 + infl))

  investments -= withdraw_infl_adj
 investments = int(investments * (1 + i))

  if investments <= 0:
 bankrupt = 'yes'
 break

  if bankrupt == 'yes':
 outcome.append(0)
 bankrupt_count += 1
 else:

nest_egg_mcs.py,
part 5

Securing Your Nest Egg 257

 outcome.append(investments)

  case_count += 1

  return outcome, bankrupt_count

Listing 12-5: Simulates results for each year in retirement (per case)

Start the for loop that will run through all the years in a case . Use
enumerate() on the returns list and use the index that enumerate() produced
to get the year’s average inflation value from the inflation list . Use a
conditional to start applying inflation after the first year . This will slowly
increase or decrease the withdrawal amount over time, depending on
whether you’re in inflationary or deflationary times.

Subtract the inflation-adjusted withdrawal value from the investments
variable, then adjust investments for the year’s returns . Check that the
value of investments is greater than 0. If it’s not, set the bankrupt variable
to 'yes' and end the loop . For a bankrupt case, append 0 to the outcome
list . Otherwise, the loop continues until the duration of retirement is
reached, so you append the remaining value of investments to outcome.

A human life has just ended: 30 to 40 years’ worth of vacations, grand-
kids, bingo games, and illnesses gone in much less than a second. So,
advance the case counter before looping through the next lifetime . End
the function by returning the outcome and bankrupt_count variables .

Calculating the Probability of Ruin
Listing 12-6 defines a function that calculates the probability of running
out of money, also known as the “probability of ruin.” If you’re risk averse
or want to leave a sizeable sum to your heirs, you probably want this number
to be less than 10 percent. Those with a greater appetite for risk may be
content with up to 20 percent or more. After all, you can’t take it with you!

 def bankrupt_prob(outcome, bankrupt_count):
 """Calculate and return chance of running out of money & other stats."""

  total = len(outcome)
  odds = round(100 * bankrupt_count / total, 1)

  print("\nInvestment type: {}".format(invest_type))
 print("Starting value: ${:,}".format(int(start_value)))
 print("Annual withdrawal: ${:,}".format(int(withdrawal)))
 print("Years in retirement (min-ml-max): {}-{}-{}"
 .format(min_years, most_likely_years, max_years))
 print("Number of runs: {:,}\n".format(len(outcome)))
 print("Odds of running out of money: {}%\n".format(odds))
 print("Average outcome: ${:,}".format(int(sum(outcome) / total)))
 print("Minimum outcome: ${:,}".format(min(i for i in outcome)))
 print("Maximum outcome: ${:,}".format(max(i for i in outcome)))

  return odds

Listing 12-6: Calculates and displays the “probability of ruin” and other statistics

nest_egg_mcs.py,
part 6

258 Chapter 12

Define a function called bankrupt_prob() that takes the outcome list and
bankrupt_count variable returned from the montecarlo() function as argu-
ments . Assign the length of the outcome list to a variable named total .
Then, calculate the probability of running out of money as a percentage
rounded to one decimal place by dividing the number of bankrupt cases by
the total number of cases .

Now, display the input parameters and results of the simulation .
You saw an example of this text printout in “A Qualitative Way to Present
Results” on page 246. Finish by returning the odds variable .

Defining and Calling the main() Function
Listing 12-7 defines the main() function that calls the montecarlo() and
bankrupt_count() functions and creates the bar chart display. The outcomes
for the various cases can have a large variance—sometimes you go broke,
and other times you’re a multimillionaire! If the printed statistics don’t
make this clear, the bar chart certainly will.

 def main():
 """Call MCS & bankrupt functions and draw bar chart of results."""

  outcome, bankrupt_count = montecarlo(investment_type_args[invest_type])
 odds = bankrupt_prob(outcome, bankrupt_count)

  plotdata = outcome[:3000] # only plot first 3000 runs

  plt.figure('Outcome by Case (showing first {} runs)'.format(len(plotdata)),
 figsize=(16, 5)) # size is width, height in inches

  index = [i + 1 for i in range(len(plotdata))]
  plt.bar(index, plotdata, color='black')

 plt.xlabel('Simulated Lives', fontsize=18)
 plt.ylabel('$ Remaining', fontsize=18)

  plt.ticklabel_format(style='plain', axis='y')
  ax = plt.gca()

 ax.get_yaxis().set_major_formatter(plt.FuncFormatter(lambda x, loc: "{:,}"
 .format(int(x))))
 plt.title('Probability of running out of money = {}%'.format(odds),
 fontsize=20, color='red')

  plt.show()

run program
 if __name__ == '__main__':

 main()

Listing 12-7: Defines and calls the main() function

Define a main() function, which requires no arguments , and imme
diately call the montecarlo() function to get the outcome list and the bankrupt
_count() function . Use the dictionary mapping of investment names to
returns lists that you made in Listing 12-2. The argument you pass to the
montecarlo() function is the dictionary name, investment_type_args, with
the user’s input, invest_type, as the key. Feed the returned values to the
bankrupt_prob() function to get the odds of running out of money.

nest_egg_mcs.py,
part 7

Securing Your Nest Egg 259

Assign a new variable, plotdata, to the first 3,000 items in the outcome
list . The bar chart can accommodate many more items, but displaying
them will be slow as well as unnecessary. As the results are stochastic, you
won’t gain a lot of extra information by showing more cases.

Now you’ll use matplotlib to create and show the bar chart. Start by
making a plot figure . The text entry will be the title of the new window.
The figsize parameter is the width and height of the window, in inches.
You can scale this by adding a dots-per-inch argument, such as dpi=200.

Next, use list comprehension to build indexes, starting with 1 for
year one, based on the length of the plotdata list . The x-axis location
of each vertical bar will be defined by the index, and the height of each
bar will be the corresponding plotdata item, which represents the money
remaining at the end of each simulated life. Pass these to the plt.bar()
method and set the bar color to black . Note that there are additional
display options for bars, such as changing the color of the bar outline
(edgecolor='black') or its thickness (linewidth=0).

Provide labels for the x- and y-axes and set the font size to 18. Outcomes
can reach into the millions, and by default, matplotlib will use scientific nota-
tion when it annotates the y-axis. To override this, call the ticklabel_format()
method and set the y-axis style to 'plain' . This takes care of scientific
notation, but there are no thousand separators, making the numbers hard
to read. To fix this, first get the current axes using plt.gca() . Then, in the
next line, get the y-axis and use the set_major_formatter() and Func_Formatter()
methods and a lambda function to apply Python’s string-formatting tech-
nique for comma separators.

For the plot’s title, display the probability of running out of money—
captured in the odds variable—with a large font in eye-catching red. Then
draw the chart to the screen with plt.show() . Back in the global space,
finish with the code that allows the program to be imported as a module
or run in stand-alone mode .

Using the Simulator
The nest_egg_mcs.py program greatly simplifies the complex world of retire-
ment planning, but don’t hold that against it. Simple models add value by
challenging assumptions, raising awareness, and focusing questions. It’s easy
to get lost in the details of retirement planning—or any complex issue—so
you’re better off starting with a lay of the land.

Let’s work an example that assumes a starting value of $2,000,000, a
“safe and secure” bond portfolio, a 4 percent withdrawal rate (equal to
$80,000 per year), a 29-30-31 retirement range, and 50,000 cases. If you run
this scenario, you should get results similar to those in Figure 12-9. You run
out of money almost half the time! Because of relatively low yields, bonds
can’t keep pace with inflation—remember, you can’t blindly apply the 4
Percent Rule, because your asset allocation matters.

260 Chapter 12

Figure 12-9: Bar chart made with matplotlib to represent a Monte Carlo simulation of a bond-only portfolio

Note that the $80,000 withdrawal is pretax. Assuming a 25 percent
effective tax rate, this leaves a net income of only $60,000. According to
the Pew Research Center, the median disposable (after-tax) income of the
American middle class is currently $60,884, so you’re hardly living high
on the hog, despite being a millionaire. If you want $80,000 in disposable
income, you must divide by 1 minus the effective tax rate; in this case, that’s
$80,000 / (1 – 0.25) = $106,667. This requires withdrawing slightly over
5 percent per year, with a 20 to 70 percent chance of going broke, depend-
ing on the investment type!

Table 12-1 records the results of varying the previous scenario for asset
type and withdrawal rate. Results that would be widely considered safe
are shaded in gray. If you avoid an all-bond portfolio, the 4 Percent Rule
holds up well. Above 4 percent, the growth potential of stocks offers the
best chance—of the options considered—to reduce the probability of ruin,
and with less risk than most people assume. That’s why financial advisers
recommend including a healthy dose of stocks in your retirement portfolio.

Table 12-1: Probability of Ruin by Asset Type and Withdrawal Rate for 30-Year
Retirement

Asset type Annual (pretax) withdrawal percentage

3% 4% 5% 6%

10-year Treasury bond 0.135 0.479 0.650 0.876

S&P 500 stocks 0 0.069 0.216 0.365

50/50 blend 0 0.079 0.264 0.466

40/50/10 blend 0 0.089 0.361 0.591

Financial advisers also advise against overdoing it in the early years of
retirement. A few cruises for the extended family, a posh new house, or an
expensive new hobby can push you over the cliff in your later years. To inves-
tigate this, copy nest_egg_mcs.py and name the copy nest_egg_mcs_1st_5yrs.py;
adjust the code as described in Listings 12-8, 12-9, and 12-10:

Securing Your Nest Egg 261

start_value = default_input("Input starting value of investments: \n", \
 '2000000')
while not start_value.isdigit():
 start_value = input("Invalid input! Input integer only: ")

 withdrawal_1 = default_input("Input annual pre-tax withdrawal for " \
 "first 5 yrs(today's $): \n", '100000')
while not withdrawal_1.isdigit():
 withdrawal_1 = input("Invalid input! Input integer only: ")

 withdrawal_2 = default_input("Input annual pre-tax withdrawal for " \
 "remainder (today's $): \n", '80000')
while not withdrawal_2.isdigit():
 withdrawal_2 = input("Invalid input! Input integer only: ")

min_years = default_input("Input minimum years in retirement: \n", '18')

Listing 12-8: Breaks the user’s withdrawal input into two parts

In the user-input section, replace the original withdrawal variable with
two withdrawal variables, and edit the prompt to request the first five years
in the first  and the remainder of retirement in the second . Set the
defaults to indicate that the user should expect higher withdrawals in the
first five years. Include the while loops that validate user input.

In the montecarlo() function, change the code that adjusts the with-
drawal amount for inflation.

 # don't adjust for inflation the first year
 if index == 0:

  withdraw_infl_adj_1 = int(withdrawal_1)
  withdraw_infl_adj_2 = int(withdrawal_2)

 else:
  withdraw_infl_adj_1 = int(withdraw_infl_adj_1 * (1 + infl))
  withdraw_infl_adj_2 = int(withdraw_infl_adj_2 * (1 + infl))

  if index < 5:
  withdraw_infl_adj = withdraw_infl_adj_1

 else:
 withdraw_infl_adj = withdraw_infl_adj_2

 investments -= withdraw_infl_adj
 investments = int(investments * (1 + i))

Listing 12-9: Adjusts the two withdrawal variables for inflation and determines which to use

Set the inflation-adjusted withdrawal equal to the input withdrawal for
just the first year . Otherwise, adjust both for inflation . This way,
the second withdrawal amount will be “ready” when you switch to it after
five years.

Use a conditional to specify when to apply each inflation-adjusted with
drawal . Assign these to the existing withdraw_infl_adj variable so you won’t
have to alter any more code .

nest_egg_mcs_1st
_5yrs.py, part 1

nest_egg_mcs_1st
_5yrs.py, part 2

262 Chapter 12

Finally, update the printed statistics in the bankrupt_prob() function to
include the new withdrawal values, as shown in Listing 12-10. These should
replace the old withdrawal print statement.

 print("Annual withdrawal first 5 yrs: ${:,}".format(int(withdrawal_1)))
 print("Annual withdrawal after 5 yrs: ${:,}".format(int(withdrawal_2)))

Listing 12-10: Prints the withdrawal values for the two withdrawal periods

You can now run the new experiment (see Table 12-2).

Table 12-2: Probability of Ruin by Asset Type and Multiple Withdrawal Rates for 30-Year Retirement

Asset allocation Annual (pretax) withdrawal percentage (first five years / remainder)

4% / 4% 5% / 4% 6% / 4% 7% / 4%

10-year Treasury bond 0.479 0.499 0.509 0.571

S&P 500 stocks 0.069 0.091 0.116 0.194

50/50 blend 0.079 0.115 0.146 0.218

40/50/10 blend 0.089 0.159 0.216 0.264

Safe outcomes are shaded in gray in Table 12-2, and the first column
repeats the constant 4 percent results, as a control. With enough stocks in
your portfolio, you can tolerate some early spending, and for this reason,
some advisers replace the 4 Percent Rule with either the 4.5 Percent or
5 Percent Rule. But if you retire early—say, between age 55 and 60—your risk
of going broke will be greater, whether you experience any high-spending
years or not.

If you run the simulator for the 50/50 blend of stocks and bonds,
using different years in retirement, you should get results similar to those
in Table 12-3. Only one outcome (shaded gray) has a probability of ruin
below 10 percent.

Table 12-3: Probability of Ruin vs. Retirement Duration
for 4% Withdrawal Rate (50/50 Stock-Bond Blend)

Years in retirement 4% withdrawal

30 0.079

35 0.103

40 0.194

45 0.216

Running simulations like these forces people to face hard decisions
and form realistic plans for a large segment of their lives. While the simula-
tion “sells” assets every year to fund retirement, a better real-life solution
is the guardrail strategy, where interest and dividends are spent first and a

nest_egg_mcs_1st
_5yrs.py, part 3

Securing Your Nest Egg 263

cash reserve is maintained to avoid having to sell assets during market lows.
Assuming you can remain disciplined as an investor, this strategy will allow
you to stretch your withdrawals a bit beyond what the simulator calculates
as safe.

Summary
In this chapter, you wrote a Monte Carlo–based retirement calculator that
realistically samples from historical financial data. You also used matplotlib
to provide an alternative way of viewing the calculator output. While the
example used could have been modeled deterministically, if you add more
random variables—like future tax rates, Social Security payments, and
health care costs—MCS quickly becomes the only practical approach for
modeling retirement strategies.

Further Reading
The Intelligent Investor: The Definitive Book on Value Investing, Revised Edition
(HarperBusiness, 2006) by Benjamin Graham is considered by many,
including billionaire investor Warren Buffet, the greatest book on investing
ever written.

Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets,
Revised Edition (Random House Trade Paperbacks, 2005) by Nassim
Nicholas Taleb is “an engaging look at the history and reasons for our pre-
dilection for self-deception when it comes to statistics.” It includes discus-
sions on the use of Monte Carlo simulation in financial analysis.

The Black Swan: The Impact of the Highly Improbable, 2nd Edition (Random
House Trade Paperbacks, 2010) by Nassim Nicholas Taleb is a “delightful
romp through history, economics, and the frailties of human nature” that
also includes discussion of the use of Monte Carlo simulation in finance.

You can find an overview of the 4 Percent Rule at https://www.investopedia​
.com/terms/f/four-percent-rule.asp.

Possible exceptions to the 4 Percent Rule are discussed at https://www​
.cnbc.com/2015/04/21/the-4-percent-rule-no-longer-applies-for-most-retirees.html.

You can find historical financial data at the following websites:

•	 http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/histretSP.html

•	 http://www.econ.yale.edu/~shiller/data.htm

•	 http://www.moneychimp.com/features/market_cagr.htm

•	 http://www.usinflationcalculator.com/inflation/historical-inflation-rates/

•	 https://inflationdata.com/Inflation/Inflation_Rate/HistoricalInflation.aspx

https://www.investopedia.com/terms/f/four-percent-rule.asp
https://www.investopedia.com/terms/f/four-percent-rule.asp
https://www.cnbc.com/2015/04/21/the-4-percent-rule-no-longer-applies-for-most-retirees.html
https://www.cnbc.com/2015/04/21/the-4-percent-rule-no-longer-applies-for-most-retirees.html
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/histretSP.html
http://www.econ.yale.edu/~shiller/data.htm
http://www.moneychimp.com/features/market_cagr.htm
http://www.usinflationcalculator.com/inflation/historical-inflation-rates/
https://inflationdata.com/Inflation/Inflation_Rate/HistoricalInflation.aspx

264 Chapter 12

Challenge Projects
Become a chartered Certified Financial Analyst (CFA)1 by completing these
challenge projects.

A Picture Is Worth a Thousand Dollars
Imagine you’re a CFA and your prospective client, a wealthy Texas oil pros-
pector, doesn’t understand your MCS results on his $10 million portfolio.
“Tarnation, boy! What kind of durn fool contraption could have me goin’
broke in one case and worth 80 million in the next?”

Make it clearer to him by editing the nest_egg_mcs.py program so it
runs single, 30-year cases using historical intervals that will result in bad
and good results, such as starting at the beginning of the Great Depression
versus the end of WWII, but only run the extreme cases. For each year in
each case, print out the year, the returns rate, the inflation rate, and the
outcome. Even better, edit the bar chart display to use each year’s outcome
rather than each case’s outcome, for a convincing visual explanation.

Mix and Match
Edit nest_egg_mcs.py so that the user can generate their own blend of invest-
ments. Use the S&P 500, 10-year Treasury bond, and three-month Treasury
bill text files that I provided at the start of the chapter and add anything
else you like, such as small-cap stocks, international stocks, or even gold.
Just remember that the time intervals should be the same in each file or list.

Have the user pick the investment types and percentage of each. Make
sure their input adds up to 100 percent. Then create a blended list by
weighting and adding the returns for each year. Finish it off by displaying
the investment types and percentages at the top of the bar chart display.

Just My Luck!
Edit nest_egg_mcs.py to calculate the probability of encountering a Great
Depression (1939–1949) or a Great Recession (2007–2009) during a 30-year
retirement. You’ll need to identify which index numbers in the returns lists
correspond to these events, then tally how many times they occur over how-
ever many cases are run. Display the results in the shell.

All the Marbles
For a different way to view the results, copy and edit nest_egg_mcs.py so that
the bar chart displays all the outcomes sorted from smallest to largest.

1. Not really.

13
S i m u l a t i n g a n A l i e n V o l c a n o

Quick! Name the most volcanically
active body in the solar system! If you

thought Earth, then you’d be mistaken—
it’s Io (“EYE-oh”), one of Jupiter’s four

Galilean moons.
The first evidence of volcanism on Io came in 1979, when Voyager 1

made its famous fly-by of the Jovian system. But the spectacular photo-
graphs it recorded were no real surprise. Astrophysicist Stan Peale and two
coauthors had already published this result based on models of Io’s interior.

Computer modeling is a powerful tool for understanding nature and
making predictions. Here’s the general workflow:

1.	 Gather data.

2.	 Analyze, interpret, and integrate the data.

3.	 Generate numerical equations that explain the data.

4.	 Construct a computer model that best “fits” the data.

5.	 Use the model to make predictions and investigate error ranges.

266 Chapter 13

Applications of computer modeling are far-reaching and include such
areas as wildlife management, weather forecasts, climate predictions, hydro-
carbon production, and black-hole simulations.

In this chapter, you’ll use a Python package called pygame—normally
used to create games—to simulate one of Io’s volcanoes. You’ll also experi-
ment with different types of ejecta (erupted particles) and compare their
simulated behaviors to a photo of Io’s mammoth Tvashtar plume.

Project #21: The Plumes of Io
Tidal heating is responsible for the volcanism on Io. As its elliptical orbit
carries it through the gravity fields of Jupiter and its sister moons, Io experi-
ences variations in tidal pull. Its surface flexes up and down by as much as
100 meters, resulting in significant friction-related heating and melting in its
interior. Hot magma migrates to the surface and forms great lava lakes from
which degassing sulfur (S2) and sulfur dioxide (SO2) are sprayed skyward
with speeds of 1 km/s. Because of Io’s low gravity and lack of atmosphere,
these plumes of gas can reach heights of hundreds of kilometers (see the
Tvashtar plume in Figure 13-1a).

Tvashtar

a)

Tvashtar

b)

Figure 13-1: a) Io with the 330 km Tvashtar plume at the top and the shorter Prometheus
plume at the 9 o’clock position; b) Io with volcanic ring deposits (NASA images)

The plumes’ pleasing umbrella shape is produced as gas and dust shoot
upward, then fall back in every direction. The resulting surface deposits
form concentric rings of red, green, black, and yellow. If Figure 13-1b were
in color, it would look a bit like a moldy pepperoni pizza.

Simulating an Alien Volcano 267

A Slice of pygame
The pygame package is a cross-platform set of Python modules that are typi-
cally used to program 2D arcade-style video games. It supports graphics,
animations, sound effects, music, and multiple input devices, such as the
keyboard and mouse. Learning pygame is more than just a fun way to learn
programming. Arcade-style games have seen a resurgence in popularity
thanks to the proliferation of smartphones and tablets, and mobile gaming
now earns almost as much as console and PC gaming combined.

The pygame package uses the Simple DirectMedia Library (SDL), which is an
application programming interface (API). APIs are reusable code libraries that
make handling graphics fairly easy, allowing you to focus on game design
while using a high-level language like Python. The Microsoft DirectX API is
used for creating games and multimedia apps for the Windows platform.
For working across multiple platforms, two open source libraries are SDL,
mainly for 2D work, and OpenGL (Open Graphics Library) for 3D applica-
tions. As mentioned, you’ll be working with SDL, which officially supports
Windows, macOS, Linux, iOS, and Android.

The pygame package also uses object-oriented programming (OOP). If
you are unfamiliar with OOP or need a refresher, see “A Brief Introduction
to Object-Oriented Programming” on page 223. Additionally, introduc-
tory books on Python often include a section on pygame, and there are
whole books written on the package (see “Further Reading” on page 281
for some examples).

Before you can continue, you’ll need to install pygame onto your system.
Instructions for installing a free copy on your preferred platform are avail-
able at http://pygame.org/wiki/GettingStarted#Pygame%20Installation.

Video tutorials on how to install pygame are also available online. To
ensure a video is appropriate to your situation, be sure to check the date of
the video, the platform discussed, and the versions of pygame and Python in
use. You can find additional instructions for Mac users with older Python
installs at http://brysonpayne.com/2015/01/10/setting-up-pygame-on-a-mac/.

T he Objec t i v e

Use pygame to build a 2D, gravity-based simulation of Io’s Tvashtar volcanic plume.
Calibrate the plume dimensions using a NASA image. Use multiple particle types in
the plume, trace the particles’ flight paths and allow the eruption to run automatically
until stopped.

http://brysonpayne.com/2015/01/10/setting-up-pygame-on-a-mac/

268 Chapter 13

The Strategy
Building a comprehensive, full-physics simulation of one of Io’s plumes is
best accomplished with a supercomputer. Since you probably don’t have one
of those and since your goal is to make a cool pygame display, you’re going to
cheat by reverse-engineering the parameters you need to make SO2 fit the
Tvashtar plume. Remember, cheating is the gift humans give ourselves; it’s
what separates us from the animals—except for the cheetahs!

Since the composition of Io’s plumes is already known, you’re going to
calibrate your gravity field to SO2 and sulfur (S2) gas, which conveniently
have the same atomic weight. When the flight paths of these particles match
the dimensions of the Tvashtar plume in the NASA photograph, you will
scale the velocity of other ejected particles, based on the difference in atomic
weight between the new particle and SO2, to see how particle type affects
plume dimensions. Lighter particles will be ejected higher and vice versa.

Using a Game Sketch to Plan
I suggest you begin any pygame project with a sketch of how the game should
look and how the action should progress. Even the simplest arcade games
can become complicated, and a sketch will help you manage the complex-
ity. Among the many things you must consider in a typical game are player
actions, scorekeeping, messages and instructions, game entities and their
interactions (such as collisions, sound effects, and music), and game-ending
conditions.

Sketching the game—or in this case, the simulation—is best done on a
whiteboard, either real or digital. My layout for the Io volcano simulator is
shown in Figure 13-2.

X

Image of Io with plume

Path color = Particle color

Launch point
randomly pivots
left and right

SO2 path will fit
plume photo Particles stop

where SO2

hits Io

plume

Particle type
chosen at

random

Legend overprints
particle paths

— H2O
— H2S
— CO2

— SO2/S2

Color-coded legend
in upper-left corner

Multiple particles
launch per second
for fountain effect

Lighter particles
fly higher

Figure 13-2: Game sketch of Io volcano simulator

Simulating an Alien Volcano 269

The sketch in Figure 13-2 contains guidelines and key behaviors for the
volcano simulator:

•	 No direct player interactions. You’ll control the simulation by editing
the Python code, not through the mouse or keyboard.

•	 The background will be a NASA image of a plume. To calibrate the
simulation to SO2/S2 particles, you’ll need a backdrop of the actual
Tvashtar plume.

•	 The launch point pivots. The particles should be ejected from the
central base of the plume image and should spray out over a range of
angles, rather than just straight up.

•	 Particles are chosen at random. The program will choose the type of
particle at random. Each particle will have a unique color that distin-
guishes it from others.

•	 The particle flight path should be visible and persistent. The flight of
each particle should be recorded as a line that remains visible through-
out the simulation, and the line color should match the particle color.

•	 A color-coded legend lists the particle types. The program should post
a legend with the particle names in the upper-left corner of the screen.
The font colors should match the particle colors, and the legend should
print on top of particle paths so that it’s always visible.

•	 Particle motion should stop at the level at which SO2 particles inter-
sect the surface of Io. The simulation is tuned to the behavior of SO2,
so falling particles should stop at the appropriate location for an SO2
plume.

•	 There are no sound effects. In space, no one can hear you scream.

Once you complete your diagram, you can begin picking parts from it
and listing them in logical order; this breaks the plan into a series of man-
ageable steps. For example, you’ll need to find and prepare an appropriate
background image, decide which particles you want to simulate and look up
their atomic weights, locate a launch point, calibrate SO2 behavior to the
plume image, and so on. You’re still writing pseudocode, but a game sketch
makes it a much more enjoyable process!

Planning the Particle Class
Since this simulation is based on particles, it makes sense to have an OOP
Particle class to serve as a blueprint for multiple particle types. The class
should support the random generation of particle types, and constants
and other attributes common to all particles can be stored as class attributes.
These are attributes assigned at the same indentation level as methods. The
Particle class should also contain methods that allow instances of the class to
be ejected, affected by gravity, made visible, and destroyed when they move
beyond the boundaries of the simulation.

270 Chapter 13

The attributes and methods used in the class are shown in Tables 13-1
and 13-2, respectively. Class attributes—that is, those shared by all instances
of the class—are shown in italics; otherwise, instance attributes are shown.

Table 13-1: Attributes of the Particle Class (Italics = Class Attribute)

Attributes Attribute description

gases_colors Dictionary of available particle types and their colors

VENT_LOCATION_XY x- and y-location of mouth of Tvashtar volcano in image

IO_SURFACE_Y Io surface y-value at SO2 plume margin in image

VELOCITY_SO2 Speed (pixels per frame) of SO2 particle

GRAVITY Acceleration of gravity in pixels per frame

vel_scalar Dictionary of ratios of SO2/particle atomic weights

screen The game screen

background A NASA image of the Tvashtar plume

image A square pygame surface representing a particle

rect A rectangular object used to get surface dimensions

gas The type of an individual particle (SO2, CO2, etc.)

color Color of an individual particle type

vel Particle’s velocity relative to SO2 velocity

x Particle’s x-location

y Particle’s y-location

dx Particle’s delta-x

dy Particle’s delta-y

Table 13-2: Methods of the Particle Class

Method Method description

__init__() Initializes and sets up parameters for randomly selected particle
type

vector() Randomly selects ejection orientation and calculates motion vector
(dx and dy)

update() Adjusts particle trajectory for gravity, draws path behind particle,
and destroys particles that move beyond the boundaries of the
simulation

I will explain each of these attributes and methods in more detail in
the next section.

Simulating an Alien Volcano 271

The Code
The tvashtar.py code will generate a pygame-based simulation of Io’s Tvashtar
plume. You will also need the background image, tvashtar_plume.gif. Down
load both files from https://www.nostarch.com/impracticalpython/ and keep
them in the same folder.

Importing Modules, Initiating pygame, and Defining Colors
Begin with several set-up steps, such as choosing colors, as shown in
Listing 13-1.

 import sys
import math
import random
import pygame as pg

 pg.init() # initialize pygame

 # define color table
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
LT_GRAY = (180, 180, 180)
GRAY = (120, 120, 120)
DK_GRAY = (80, 80, 80)

Listing 13-1: Imports modules, initiates pygame, and defines a table of colors

Start with some familiar imports and one for pygame . Next, call the
pygame.init() function. This initializes the pygame module and starts up
all the underlying parts that let it use sounds, check keyboard input, run
graphics, and so on . Note that pygame can be initialized from multiple
places, such as the first line in a main() function:

def main():
 pg.init()

or at the end of the program when main() is called in stand-alone mode:

if __name__ == "__main__":
 pg.init()
 main()

Stop and assign some color variables using the RGB color model .
This model mixes red, green, and blue, where each color consists of values
from 0 to 255. If you do an online search for “RGB color codes,” you can
find the numerical codes for millions of colors. But since the NASA image
you’ll calibrate against is in grayscale, stick with black, white, and shades
of gray. Defining this table now will allow you to simply enter a name when
pygame needs a color defined later.

tvashtar.py,
part 1

272 Chapter 13

Defining the Particle Class
Listing 13-2 defines the Particle class and its initializer method. You’ll use
these to instantiate a particle object. The particle’s key attributes, such as
type, velocity, color, and so on, are established with the initializer method.

 class Particle(pg.sprite.Sprite):
 """Builds ejecta particles for volcano simulation."""

  gases_colors = {'SO2': LT_GRAY, 'CO2': GRAY, 'H2S': DK_GRAY, 'H2O': WHITE}

  VENT_LOCATION_XY = (320, 300)
 IO_SURFACE_Y = 308
 GRAVITY = 0.5 # pixels-per-frame; added to dy each game loop
 VELOCITY_SO2 = 8 # pixels-per-frame

 # scalars (SO2 atomic weight/particle atomic weight) used for velocity
  vel_scalar = {'SO2': 1, 'CO2': 1.45, 'H2S': 1.9, 'H2O': 3.6}

  def __init__(self, screen, background):
 super().__init__()
 self.screen = screen
 self.background = background

  self.image = pg.Surface((4, 4))
 self.rect = self.image.get_rect()

  self.gas = random.choice(list(Particle.gases_colors.keys()))
 self.color = Particle.gases_colors[self.gas]

  self.vel = Particle.VELOCITY_SO2 * Particle.vel_scalar[self.gas]
  self.x, self.y = Particle.VENT_LOCATION_XY
  self.vector()

Listing 13-2: Defines the Particle class and the Particle initializer method

Define a class called Particle to represent any molecule of gas that might
form the volcanic plume . The ancestor for this class, shown in parentheses,
will be a Sprite class. This means that the Particle class is derived from a
built-in pygame type called Sprite. Sprites are just 2D bitmaps that represent
discrete game objects, like missiles or asteroids. You inherit from the Sprite
class—that is, add its attributes and methods to your new class—by passing
pg.sprite.Sprite to your Particle class, just as you would pass an argument to
a function.

Assign properties common to all particles as class attributes. The first is
a dictionary that maps particle types to a color, so that you can differentiate
the particles during the simulation . These colors will be used for the par-
ticle, its path, and its name in the legend.

Now, assign four constants, VENT_LOCATION_XY, IO_SURFACE_Y, GRAVITY, and
VELOCITY_SO2 . The first constant is the x- and y-coordinates for the mouth of
the Tvashtar volcano in the image, which will represent the “launch point”
for all the particles (see Figure 13-3). I initially guessed at these values and
then fine-tuned them when the simulation was up and running.

tvashtar.py,
part 2

Simulating an Alien Volcano 273

Launch Point

Tvashtar Plume

Figure 13-3: Background image for the simulation with the particle launch point
annotated

The second constant is the y-value for the highest point on Io’s surface
(in the image) that intersects with the outer edge of the SO2 plume (see
Figure 13-2). You will stop all the falling particles at this y-value, so the view
will be optimized for SO2.

The third constant represents the acceleration of gravity, which on
Earth is 9.86 m/s2 and on Io is 1.796 m/s2. But you’re dealing with pixels and
frames here, not real-world units, so you need to experiment to find a value
that looks good at the scale of your game/simulation. My choice of 0.5 was
arbitrary, though guided by knowledge of what works well in arcade games.

The fourth constant is the speed, in pixels per frame, of an SO2 particle
when it is ejected. Remember, the plumes are composed primarily of SO2,
so you want to use parameters that will allow the SO2 particles to “fit” the
image of the Tvashtar plume, then adjust the speed of the remaining par-
ticles relative to SO2. Neither the GRAVITY nor the VELOCITY_SO2 value is unique.
Had I chosen a larger value for GRAVITY, I would’ve needed to increase
VELOCITY_SO2 so that the SO2 particles still “fill out” the area of the plume in
the NASA image.

Next, build a dictionary of scalars for particle velocity . For each par-
ticle, dividing the atomic weight of SO2 (64) by the atomic weight of the
particle gives you the scalar. Since SO2 is the reference particle, its scalar
is 1. Later, to get the velocity of non-SO2 particles, you will multiply the
VELOCITY_SO2 constant by the scalar. As you can see, all of the other particles
are lighter than SO2 and should produce a larger plume.

Define a constructor method for the particle object . You’ll need a
self parameter and screen to draw on and check the simulation's boundar-
ies, and you’ll need a background, which will be an image of the Tvashtar
plume. You’ll assign screen and background later in the main() function,
defined near the end of the program. Note that while I’m using one-line

274 Chapter 13

docstrings in this book for brevity, you would want to include these types of
parameters in the class docstring. For more guidelines on class docstrings,
see https://www.python.org/dev/peps/pep-0257/.

Inside the __init__() method, immediately invoke the initialization
method for the built-in Sprite class using super. This will initialize the sprite
and establish the rect and image attributes it needs. With super, you don’t
need to refer to the base class (Sprite) explicitly. For more on super, visit the
docs at https://docs.python.org/3/library/functions.html#super.

Next, let the particle (self) know that it will be using the screen and
background variables by assigning them to attributes.

The images and drawings are placed on a rectangular surface by pygame.
In fact, the Surface object is the heart and soul of pygame; even the screen
attribute represents an instance of Surface. Assign the particle image to a
Surface object and make it a square with 4-pixel-length sides .

Next, you need to get a rect object for your image surface. This is basi-
cally a rectangle associated with the Surface object, which pygame needs to
determine the dimensions and position of your Surface object.

Choose a particle (gas) type by randomly choosing from the keys in the
gases_colors dictionary . Note that you turn it into a list to do this. Since it’s
possible to assign an instance attribute named gases_colors from within the
__init__() method, include the class name—rather than self—to ensure the
class attribute is being referenced.

Once you have a type, you can use it as the key in the dictionaries you
built earlier to access things like colors and scalars. Start by getting the cor-
rect color for the chosen particle, then get its vel_scalar value and use that
to determine the particle’s velocity .

The particle object will be instantiated in the mouth of the volcano, so
get its initial x- and y-location by unpacking the VENT_LOCATION_XY tuple .
Finish by calling the vector() method, which will calculate the particle’s
motion vector .

Ejecting a Particle
Listing 13-3 defines the vector() method, which determines a particle’s
launch orientation and calculates its initial delta-x and delta-y vector
components.

  def vector(self):
 """Calculate particle vector at launch."""

  orient = random.uniform(60, 120) # 90 is vertical
  radians = math.radians(orient)
  self.dx = self.vel * math.cos(radians)

 self.dy = -self.vel * math.sin(radians)

Listing 13-3: Defines the vector() method of the Particle class

The vector() method  calculates the motion vector for a particle. Start
by choosing a launch direction for the particle and assigning it to an orient

tvashtar.py,
part 3

https://www.python.org/dev/peps/pep-0257/
https://docs.python.org/3/library/functions.html#super

Simulating an Alien Volcano 275

variable . Because explosive volcanic eruptions blast material in multiple
directions rather than straight up, choose the direction at random, using a
range that is 30 degrees to either side of 90 degrees, where 90 represents a
vertical launch.

The range for the orient variable was chosen through trial and error.
This parameter, along with the VELOCITY_SO2 and GRAVITY constants, rep
resents the “knobs” you can turn to calibrate the behavior of the SO2
particle to the plume image. After you’ve adjusted the constants so that
the particle’s maximum
height corresponds to
the apex of the plume,
you can adjust the range
of angles so that the SO2
particles reach—but
don’t exceed—the lateral
limits of the plume (see
Figure 13-4).

The math module
uses radians rather than
degrees, so convert orient
to radians . A radian is a
standard unit of angular
measurement equal to
the angle made when the
radius is wrapped around a circle (see the left-hand side of Figure 13-5).
One radian is slightly less than 57.3 degrees. The right-hand side of
Figure 13-5 is a comparison of radians and degrees for some common
angles. To convert degrees to radians, you can either multiply the degrees
by π and divide by 180—like a chump—or just use the math module!

π/2
(90°)

π/4
(45°)

0 (2π)π
(0°)(180°)

3π/4
(135°)

6π/4
(315°)

5π/4
(225°)

3π/2
(270°)

Radius

Radius

1 Radian

Figure 13-5: Definition of a radian (left) and common angles in radians and
degrees (right)

Figure 13-4: Calibrating the orient variable to the
Tvashtar plume

276 Chapter 13

Objects move in pygame by increments of x and y. The direction and
speed of a particle are used to get its delta-x (dx) and delta-y (dy) vector com-
ponents. These represent the difference between a particle’s initial position
and its position after completion of a single game loop.

You calculate vector components using trigonometry. Useful trigono-
metric equations are provided in Figure 13-6.

θ

Opposite = dy

Adjacent = dx

(x1, y1)

(x0, y0)

tan(θ) = opp/adj = dy/dx

r 2 = dx 2 + dy 2

r =

sin(θ) = opp/hyp = dy/r
dy = r × sin(θ)

cos(θ) = adj/hyp = dx/r
dx = r × cos(θ)

Hypoten
use

 = r

dx 2 + dy 2

Figure 13-6: Common trigonometric equations used in gaming

For the angle ϴ, you use the orient variable. The self.vel attribute
equates to r. Knowing these two components, you can use a trigonometric
equation to derive self.dx and self.dy . To derive self.dx, multiply self.vel
by the cosine of orient, and to derive self.dy, multiply self.vel by the sine
of orient. Note that you must make self.dy negative, as the particles are
ejected upward and y-values in pygame increase downward.

Updating the Particle and Handling Boundary Conditions
Listing 13-4 completes the Particle class by defining a method to update
particles as they move across the screen. This includes applying the force of
gravity, drawing a line to trace the particle’s path, and “killing” the particle
when it moves offscreen or below the surface of Io.

  def update(self):
 """Apply gravity, draw path, and handle boundary conditions."""

  self.dy += Particle.GRAVITY
  pg.draw.line(self.background, self.color,(self.x, self.y),

 (self.x + self.dx, self.y + self.dy))
  self.x += self.dx

 self.y += self.dy

  if self.x < 0 or self.x > self.screen.get_width():
  self.kill()

tvashtar.py,
part 4

Simulating an Alien Volcano 277

  if self.y < 0 or self.y > Particle.IO_SURFACE_Y:
 self.kill()

Listing 13-4: Defines the update() method and completes the Particle class

Define the update() method, which takes self as an argument . Apply
the force of gravity by adding the GRAVITY class attribute to self.dy during
each game loop . Gravity is a force vector that works only in the vertical
direction, so only self.dy is affected.

To draw a path behind the particle, use pygame’s draw.line() method,
which takes the background image of Io, the color of the particle, and the
coordinates for the previous and current locations of the particle as argu-
ments . To get the current location, you add the self.dx and self.dy attri-
butes to self.x and self.y.

Next, update the particle’s self.x and self.y attributes by adding self.dx
and self.dy, just as you did in the draw.line() method .

Now, check to see if the particle has passed the left or right boundar-
ies of the screen . Use a self.x equal to zero for the left side and get the
width of the screen attribute for the right side. If the particle has passed off
either side of the screen, use the built-in kill() method to remove it from all
the groups that contain it . As you will see later, pygame uses containers—
called groups—to manage sprites, and removing a sprite from a group takes
it out of play.

Repeat this process for the y-direction , but for a maximum value, use
the IO_SURFACE_Y constant of the Particle class, which will stop the particle
near the surface of Io, where an SO2 particle would stop (see Figures 13-2
and 13-4).

Defining the main() Function
Listing 13-5 defines the first part of the main() function that sets up the game
screen, the window caption, the legend, the sprite group, and the game clock.

def main():
 """Set up and run game screen and loop."""

  screen = pg.display.set_mode((639, 360))
  pg.display.set_caption('Io Volcano Simulator')
  background = pg.image.load('tvashtar_plume.gif')

 # Set up color-coded legend
  legend_font = pg.font.SysFont('None', 24)
  water_label = legend_font.render('--- H2O', True, WHITE, BLACK)

 h2s_label = legend_font.render('--- H2S', True, DK_GRAY, BLACK)
 co2_label = legend_font.render('--- CO2', True, GRAY, BLACK)
 so2_label = legend_font.render('--- SO2/S2', True, LT_GRAY, BLACK)

  particles = pg.sprite.Group()

  clock = pg.time.Clock()

Listing 13-5: Defines the first part of the main() function

tvashtar.py,
part 5

278 Chapter 13

The first step is to assign the screen variable using pygame’s display.set​
_mode() method . The arguments are pixel dimensions; in this case, you
use values slightly smaller than those for the NASA image to ensure a good
fit. Note that the dimensions must be provided as a tuple, so you need to
include two sets of parentheses.

Next, name your game window using pygame’s display.set_caption()
method , then assign the background variable to the NASA photo of the
Tvashtar plume . Use pygame’s image.load() method to create a new Surface
object from the image. The pygame package supports several image formats,
including PNG, JPG, and GIF. The returned Surface will inherit color and
transparency information from the image file. Since you’re importing a
grayscale image here, your color choices will be limited.

Now, add some code to build the legend that will be displayed in the
upper left of the screen.

Name a legend_font variable and use pygame’s font.SysFont() method
to choose None at size 24 . You will use this when you render the text.
The pygame package’s font module lets you render a new set of fonts, called
TrueType fonts, onto a new Surface object. If you don’t want to specify a
font, pygame comes with a built-in default font, which you can access by
passing None as the font name.

Post the particle names in order of weight, with the lightest on the top.
To make a label, call render() on the legend_font object you made earlier to
generate a new surface object . Pass it some text, then True (to turn on
anti-aliasing so the text looks smoother), and then the color of the par-
ticle being described. The last argument, BLACK, is optional and sets the
background color of the label to black so the text will be legible above all
the particle paths drawn on the screen. Repeat this process for the three
remaining particles and add S2 to the so2_label, as both gases share the
same atomic weight and will behave the same in the simulation.

Now, start a sprite group named particles . Since games typically have
multiple sprites moving around the screen, pygame uses a container—the
sprite group—to manage them. In fact, you must put sprites in a group or
else they won’t do anything.

Finish this section by creating a Clock object to track and control the
frame rate of the simulation . A pygame “clock” controls how fast the game
runs, based on the number of frames per second (fps) being displayed. You’ll
set this value in the next section.

Completing the main() Function
Listing 13-6 completes main() by setting the speed the simulation will run—
in frames per second—and starting the while loop that actually runs the
simulation. It also handles events, which occur when a user exerts control
on the program using a mouse, joystick, or keyboard. Since this is a simula-
tion and not a true game, user control is limited to closing the window. The
listing ends in the global scope with the standard code for running the pro-
gram as a module or in stand-alone mode.

Simulating an Alien Volcano 279

  while True:
  clock.tick(25)
  particles.add(Particle(screen, background))
  for event in pg.event.get():

 if event.type == pg.QUIT:
 pg.quit()
 sys.exit()

  screen.blit(background, (0, 0))
 screen.blit(water_label, (40, 20))
 screen.blit(h2s_label, (40, 40))
 screen.blit(co2_label, (40, 60))
 screen.blit(so2_label, (40, 80))

  particles.update()
 particles.draw(screen)

  pg.display.flip()

 if __name__ == "__main__":
 main()

Listing 13-6: Starts the game clock and loop and handles events in the main() function

Start a while loop to run the simulation . Then use the clock.tick()
method to set the speed limit for the simulation . Pass it 25, which sets the
maximum frame rate at 25 frames per second. Feel free to increase this
value if you want a more energetic volcano.

It’s now time for the star of the show to make its appearance. Instantiate
a particle using the Particle class, passing it the screen and background as argu-
ments, and add the new particle to the particles sprite group . With each
frame, a new particle will be created at random and launched from the vol-
canic vent, producing a pleasing spray of particles (see Figure 13-7).

Figure 13-7: Startup of the simulation, with random particles being
generated at the rate of 25 frames per second

tvashtar.py,
part 6

280 Chapter 13

Start a for loop to handle events . All the events that happened dur-
ing the current frame are recorded by pygame and kept in an event buffer.
Its event.get() method creates a list of all these events so that you can
evaluate them in turn. If a QUIT event occurs (when a user closes the game
window), the pygame quit() and system exit() methods are called to end the
simulation.

To render the game objects and update the visual display, pygame uses
a process called blitting. Blit stands for block transfer, which is just copying
pixels from one rectangular Surface object onto another. By blitting the
background onto the screen, you cover the screen with the Io image. With
blitting, you can take the same image and draw it multiple times at different
places on the screen. It can be a slow process, so game developers use clever
techniques to address this deficiency, such as blitting only around areas that
are currently being updated, rather than blitting the whole screen in every
game loop.

To blit the background onto the screen, call the blit() method on the
screen and pass it the required arguments for source and destination . In
the first example, the background variable is the source, and the destination
is the coordinates for where you want the upper left-hand corner of the back-
ground. Since the background will cover the whole screen, use the origin
point for the screen, which is (0, 0). Repeat this for the legend labels, plac-
ing them in the upper-left corner of the screen.

Next, call the update() method on the particles group . This method
doesn’t update the screen but has the sprites run their own self.update()
methods. After this, you use the draw() method to blit the sprites onto the
screen based on each sprite’s rect attributes. This method needs a drawing
surface, so pass it the screen.

The draw() method took care of blitting sprites, so all you need to
do now is use the flip() method to update the actual game graphics .
Flipping is a type of double buffering where you blit everything from the
screen object to the actual display. Flipping gets around the inherently slow
process of displaying graphics, which can cause the screen to flicker, by
doing the work on a behind-the-scenes rectangle and then using a version
of the blit() method to copy to the final display

The listing ends outside the main() function with the code that lets the
program run as a module or in stand-alone mode .

Running the Simulation
Figure 13-8 shows the result of running the simulator for about a minute.
The water vapor plume extends beyond the top of the window. The next
highest plume is formed by hydrogen sulfide, followed by carbon dioxide,
and then sulfur dioxide/sulfur (S2) gas, which by design perfectly matches
the Tvashtar plume.

Simulating an Alien Volcano 281

Figure 13-8: Results of running tvashtar.py for one minute

To run the simulator with only SO2, go to the __init__ method of the
Particle class and change the lines where you select the gas and color
instance attributes:

 self.gas = 'SO2'
 self.color = random.choice(list(Particle.gases_colors.values()))

By choosing a color at random, you maintain a sense of movement in the
plume after all of the possible self.orient angles have been exhausted. And
if you want to speed up or slow down the eruption, go to the main() function
and experiment with the clock.tick() method’s frames-per-second parameter.

In real life, the composition of plume material was inferred with spectros-
copy, a measurement technique that analyzes how light interacts with matter.
This includes both visible and nonvisible wavelengths that are absorbed,
emitted, or scattered. The “spectra of the ejecta,” together with the colors
painted on the surface, provided the key evidence for sulfur-rich plumes.

Summary
In this chapter, you learned how to use the pygame package to simulate grav-
ity and build an animation of an extraterrestrial volcano. In the next chap-
ter, you’ll use pygame to build a true arcade game with player interactions
and win-lose conditions.

Further Reading
Game Programming: The L-Line, The Express Line to Learning (Wiley, 2007) by
Andy Harris is a tremendously useful and thorough 570-page introduction
to pygame.

282 Chapter 13

More Python for the Absolute Beginner (Cengage Learning Course Tech
nology, 2012) by Jonathon Harbour builds on the prequel, Python for the
Absolute Beginner, using a (py)game-focused approach.

Invent Your Own Computer Games with Python, 4th Edition (No Starch Press,
2016) by Al Sweigart is a good introduction to both Python and game design
for beginners.

An online “newbie guide” for pygame is available at https://www.pygame​
.org/docs/tut/newbieguide.html, and a “cheat sheet” can be found at http://​www​
.cogsci.rpi.edu/~destem/gamedev/pygame.pdf.

Three-Dimensional Simulation of Gas and Dust in Io’s Pele Plume, by William
J. McDoniel and others, documents the simulation of Io’s Pele Plume using
direct Monte Carlo simulation and supercomputers at the Texas Advanced
Computing Center at the University of Texas. The article is available at
http://cfpl.ae.utexas.edu/wp-content/uploads/2016/01/McDoniel_PeleDust.pdf.

Practice Project: Going the Distance
You’re one of King Henry’s archers at the battle of Agincourt. The French
are charging, and you want to strike them as far away as possible. At what
angle do you hold your longbow?

If you’ve ever had a physics class, you probably know the answer is
45 degrees. But can you trust that pencil-necked physicist? Better run a
quick computer simulation to check it out. Copy and edit the tvashtar.py
code to randomly fire particles at 25, 35, 45, 55, and 65 degrees. Set self.
color to WHITE for 45 degrees and GRAY for all other angles (see Figure 13-9).

Figure 13-9: Io volcano simulator modified for ejection angles of 25,
35, 45, 55, and 65 degrees

You can find a solution, practice_45.py, in the appendix or for download
at https://www.nostarch.com/impracticalpython/. Keep it in the same folder as
the tvashtar_plume.gif file.

https://www.pygame.org/docs/tut/newbieguide.html
https://www.pygame.org/docs/tut/newbieguide.html
http://www.cogsci.rpi.edu/~destem/gamedev/pygame.pdf
http://www.cogsci.rpi.edu/~destem/gamedev/pygame.pdf
http://cfpl.ae.utexas.edu/wp-content/uploads/2016/01/McDoniel_PeleDust.pdf
https://www.nostarch.com/impracticalpython/

Simulating an Alien Volcano 283

Challenge Projects
Continue your experiments with these challenge projects. No solutions are
provided.

Shock Canopy
The visibility of Io’s giant plumes is believed to be enhanced by gas con-
densing into dust in the shock canopy, the point where the gas particles reach
their apex and begin falling back to the surface. Use the self.dy attribute to
edit the path colors in a copy of the tvashtar.py program. Paths in the apex
of the plume should be brighter than those below (see Figure 13-10). As
with all Challenge Projects, no solution is provided.

Figure 13-10: Highlighting the shock canopy using lighter path colors

The Fountainhead
Copy and edit tvashtar.py so that only SO2 is simulated and particles are rep-
resented by small white circles with no trailing paths (see Figure 13-11).

Figure 13-11: Screenshot of SO2 simulation with circles representing
individual particles

284 Chapter 13

With a Bullet
If you fire a gun straight up on a planet with no atmosphere, will the bul-
let hit the ground with the same velocity as when it left the muzzle? Many
people struggle with this question, but you can answer it with Python. Copy
and edit the tvashtar.py code so that it ejects a single SO2 particle with an
orientation of 90 degrees. Print the particle’s self.y attribute and the abso-
lute value of self.dy at the launch point coordinate (y = 300). Compare the
starting and ending velocity values at this point to see whether they are the
same or similar.

N o t e 	 Episode 50 of the TV show MythBusters addressed the myth that bullets fired into the
air maintain their lethal capability when they eventually fall back down. They found
that bullets fired perfectly vertical on Earth would tumble and slow on their way back
down due to wind resistance. If fired slightly off-vertical, the bullets would maintain
their spin and ballistic trajectory and return to Earth at lethal speed. It was the only
myth that ever received all three ratings (Busted, Plausible, and Confirmed)!

14
M a p p i n g M a r s

w i t h t h e M a r s O r b i t e r

The Mars Orbiter space probe has been
successfully injected into Martian orbit,

but all is not well. The orbit is highly ellip-
tical, and the project’s mapping objectives

require a low-altitude circular orbit. Fortunately,
there’s just enough propellant on board to correct
things, assuming the eggheads at Mission Control
have the patience and skill to pull it off!

In this chapter, you’ll design and build a game based on this scenario.
You’ll use pygame again (for an overview of pygame, see “A Slice of pygame” on
page 267), and you’ll do your part to advance STEM (science, technology,
engineering, and mathematics) education by making the game real enough
to teach players the fundamentals of orbital mechanics.

286 Chapter 14

No t e 	 Although they share the same name, the Mars Orbiter space probe in the game bears
no direct relationship to the Mars Orbiter Mission launched by the Indian Space
Research Organization (ISRO) in 2014. The game probe is patterned after the
Mars Global Surveyor, launched by NASA in 1996.

Astrodynamics for Gamers
Because you’ll want your game to be as realistic as possible, a quick review
of some of the basic science underlying spaceflight is in order. This will be
short, sweet, and tailored to game development and play.

The Law of Universal Gravity
The theory of gravity states that massive objects—like stars and planets—
warp both space and time around them, similar to how a heavy bowling ball
placed on a mattress causes a depression that is sudden and sharp near the
ball but quickly levels off. This behavior is captured mathematically by Isaac
Newton’s law of universal gravitation:

F =
m 1 m 2

d 2
G

where F is the force of gravity, m1 is the mass of object 1, m2 is the mass of
object 2, d is the distance between objects, and G is the gravitational con-
stant (6.674 × 10−11 N · m2· kg−2).

Two objects pull on each other according to the product of their masses
divided by the square of the distance between them. So, gravity is much
stronger when objects are close together, like the deep bowing of the mat-
tress just beneath the bowling ball. To illustrate, a 220-pound (100 kg) man
would weigh over half a pound less on top of Mt. Everest than he would at
sea level, where he would be 8,848 m closer to the center of Earth. (This
assumes the mass of the planet is 5.98 × 1024 kg and sea level is 6.37 × 106 m
from the center.)

Today, we generally think of gravity as a field—like the mattress in the
bowling ball analogy—rather than as Newton’s point of attraction. This
field is still defined with Newton’s law and results in acceleration, usually
expressed in m/sec2.

According to Newton’s second law of motion, force is equal to mass ×
acceleration. You can calculate the force exerted by object 1 (m1) on
object 2 (m2) by rewriting the gravitational equation as:

a = G m 1

d 2

where a = acceleration, G is the gravitational constant, m1 is the mass of one
of the objects, and d is the distance between objects. The direction of force
is from object 2 toward the center of mass of object 1 (m1).

Mapping Mars with the Mars Orbiter 287

The pull of very small objects on large ones is generally ignored.
For example, the force exerted by a 1,000 kg satellite on Mars is about
1.6 × 10–21 times smaller than the force exerted by Mars on the satellite!
Thus, you can safely ignore the satellite’s mass in your simulation.

No t e 	 As a simplification in this project, distance is calculated from the center points of
objects. In real life, an orbiting satellite would experience subtle changes in gravita-
tional acceleration due to changes in a planet’s shape, topography, crustal density,
and so on. According to the Encyclopedia Britannica, these changes cause gravita-
tional acceleration at Earth’s surface to vary by about 0.5 percent.

Kepler’s Laws of Planetary Motion
In 1609, astronomer Johann Kepler discovered that planetary orbits are
ellipses, allowing him to explain and predict the motion of the planets.
He also found that a line segment drawn between the sun and an orbiting
planet sweeps out equal areas in equal time intervals. This idea, known as
Kepler’s second law of planetary motion, is demonstrated in Figure 14-1,
where a planet is shown at different points in its orbit.

Sun

A1

A2

Orbital
direction T1

T2

T1

T2

Area A1 = Area A2

(T2 – T1 in A1) = (T2 – T1 in A2)

Figure 14-1: Kepler’s second law of planetary motion: orbital speed
increases as planets near the sun.

This law applies to all celestial bodies, and it means that an orbiting
object speeds up as it gets close to the body it is orbiting and slows down as
it travels farther away.

288 Chapter 14

Orbital Mechanics
Orbiting is basically free-falling forever.
You’re falling into the core of a planet’s grav-
ity well—located at its literal core—but your
tangential velocity is fast enough that you
keep missing the planet (see Figure 14-2).
As long as you balance your momentum with
the force of gravity, the orbit will never end.

Some counterintuitive things can hap-
pen when you orbit a planet in the vacuum
of space. With no friction or wind resistance,
spacecraft can behave in unexpected ways.

Flying Backward

If you’ve ever watched an episode
of Star Trek, you’ve probably noticed
how the orbiting Enterprise seems
to steer its way around planets, like
a car going around a track. This is
certainly possible to do—and defi-
nitely looks cool—but it requires
the expenditure of precious fuel.
If there’s no need to continuously
point a specific part of a spacecraft
at a planet, then the nose of the
spacecraft will always point in the
same direction throughout its orbit.
As a result, there will be times in
each orbit when it appears to fly
backward (see Figure 14-3).

You can blame this on Newton and his law of inertia, which states that
an object at rest stays at rest and an object in motion stays in motion with
the same speed and in the same direction unless acted upon by an unbal-
anced force.

Raising and Lowering Orbits

Brakes don’t work in space, there’s no friction, and inertia takes itself very
seriously. To lower a spacecraft’s orbit, you have to fire thrusters to reduce
its velocity so that it falls farther into a planet’s gravity well. To accomplish
this, you have to retrograde your spacecraft so that its nose faces away from
the present velocity vector—a fancy way of saying you have to fly tail-first.
This assumes, of course, that the main thrusters are at the back of the
spacecraft. Conversely, if you want to raise the orbit, you have to prograde
the spacecraft, so that its nose will be pointed in the direction you are trav-
eling. These two concepts are shown in Figure 14-4.

Gravity

Velocity

Orbit

Figure 14-2: Orbit is achieved
when a spacecraft’s velocity
keeps it “free-falling” around
a celestial body.

Orbital
direction

Figure 14-3: Spacecraft retain the same
attitude in orbit unless forced to do
otherwise.

Mapping Mars with the Mars Orbiter 289

Orbital
direction

Prograde

Orbital
direction

Retrograde

Figure 14-4: Prograde and retrograde are defined
by the orientation of a spacecraft’s nose with
respect to the direction it is traveling around the
body it is orbiting.

Taking the Inside Track

If you’re chasing another spacecraft in orbit, do you speed up or slow down
to catch it? According to Kepler’s second law, you slow down. This will lower
your orbit, resulting in a faster orbital velocity. Just as in horse racing, you
want to take the inside track.

On the left side of Figure 14-5, two space shuttles are side by side in
essentially the same orbit, traveling at the same velocity.

Orbital direction

V ≈ 4 km/sec

Prograde Retrograde

V ≈ 2 km/sec

V = 3 km/sec

Figure 14-5: The orbital paradox: slow down to speed up!

The shuttle closest to the planet rotates 180 degrees and does a retro-
grade thrust to slow its immediate velocity. The outer shuttle performs a
prograde thrust that increases its immediate velocity. They simultaneously
stop thrusting, and the inner shuttle drops to a lower orbit while the outer
shuttle transfers to a higher orbit. After an hour or so, the inner shuttle is
traveling much faster, due to its closer proximity to the planet, and is well
on its way to catch and lap the outer shuttle.

290 Chapter 14

Circularizing an Elliptical Orbit

You can make highly elliptical orbits circular by applying engine impulses
at either the apoapsis or periapsis, depending on the situation. The apoapsis
(called the apogee if the object is orbiting Earth) is the highest point in an
elliptical orbit—the point where the object is the farthest away from the
body it is orbiting (Figure 14-6). The periapsis (perigee if the object’s orbit-
ing Earth) is the point lowest in an orbit.

PeriapsisApoapsis

Figure 14-6: Location of the apoapsis and periapsis in an elliptical orbit

To raise the periapsis, the spacecraft performs a prograde thrust at the
apoapsis (see the left-hand side of Figure 14-7). To lower the orbit while cir-
cularizing, the spacecraft must perform a retrograde thrust at the periapsis
(see the right-hand side of Figure 14-7).

A somewhat counterintuitive part of this maneuver is that the initial
orbit—that’s the orbit that would have been—and the final, or actual, orbit
will coincide at the point the engine impulse was applied.

Orbital

direction

Prograde thrust
at apoapsis

Initial
orbit

Final
orbit

Orbital

direction
Initial
orbit

Final
orbit

Retrograde thrust
at periapsis

Figure 14-7: Circularizing and raising an orbit at apoapsis (left) and circularizing and
lowering an orbit at periapsis (right)

Mapping Mars with the Mars Orbiter 291

Raising and Lowering Orbits with the Hohmann Transfer

A Hohmann transfer orbit
uses an elliptical orbit to
switch between two circular
orbits in the same plane
(see Figure 14-8). The
orbit can be either raised
or lowered. The maneu-
ver is relatively slow, but it
consumes the least possible
amount of fuel.

To change to an orbit
with both a different peri-
apsis and apoapsis, a space-
craft requires two engine
impulses. One impulse
moves the spacecraft onto
the transfer orbit, and
another moves it onto the
final, destination orbit. When raising an orbit, the spacecraft applies the
change in velocity in the direction of motion, and when lowering an orbit,
it applies the change of velocity opposite to the direction of motion. The
velocity changes have to occur at opposite sides of the orbit, as shown in
Figure 14-8. Without the second thrust, the orbits will still intersect at the
point of the first thrust, as shown on the right side of Figure 14-7.

Raising and Lowering Orbits with the One-Tangent Burn

The One-Tangent Burn technique transfers a spacecraft between orbits faster
but less efficiently than a Hohmann transfer. A burn is just another term for
thrust or impulse. As with
the Hohmann transfer,
orbits can be either raised
or lowered.

The maneuver requires
two engine impulses, the
first tangential to the orbit
and the second nontangen-
tial (see Figure 14-9). If the
initial orbit is circular, as in
the figure, then all points
along it represent both
the apoapsis and the peri-
apsis, and the spacecraft
can apply its first burn at
any time.

Orbital
direction

Retrograde thrust 1

Transfer
ellipse

Initial
orbit

Final
orbit

Retrograde thrust 2

Figure 14-8: Transferring to a lower circular orbit
with the Hohmann transfer technique

Transfer
ellipse

Initial
orbit

Final
orbit

Second burn

Orbital
direction

First burn

Figure 14-9: Transferring to a higher circular orbit
with the One-Tangent Burn

292 Chapter 14

Just as with the Hohmann transfer, a prograde burn raises the orbit,
and a retrograde burn lowers it. If the orbit is elliptical, the first burn would
be a prograde burn at the apoapsis to raise the orbit, or a retrograde burn
at periapsis to lower it.

Executing a Spiral Orbit with the Spiral Transfer

A spiral transfer uses a continuous, low-thrust burn to change the size of
an orbit. In gameplay, you can simulate this using retrograde or prograde
burns that are short and regularly spaced, like those shown in Figure 14-10.

Orbital
direction

Figure 14-10: Executing a spiral orbit using short
retrograde burns at regular intervals

To lower an orbit, all the burns must be retrograde; to raise an orbit,
the spacecraft uses prograde burns.

Executing Synchronous Orbits

In a synchronous orbit, a spacecraft takes the same amount of time to make
one revolution around a planet as it takes the planet to make one rotation
around its axis. If a synchronous orbit is parallel to the equator, with no
orbital inclination, it is a stationary orbit; to an observer on the orbited body,
the satellite appears motionless in a fixed position in the sky. Communica
tions satellites commonly use geostationary orbits, which have an altitude of
22,236 miles around Earth. A similar orbit would be called aerostationary
around Mars and selenostationary around the moon.

Mapping Mars with the Mars Orbiter 293

Project #22: The Mars Orbiter Game
In real life, a series of equations is used to precisely execute orbital maneu-
vers. In gameplay, you’ll use your intuition, patience, and reflexes! You’ll
also need to fly by instruments to a certain extent, using mainly the space-
craft’s altitude readout and a measure of the orbit’s circularity.

T he Objec t i v e

Use pygame to build an arcade game that teaches the fundamentals of orbital mechanics.
The game’s goal is to nudge a satellite into a circular mapping orbit without running out
of fuel or burning up in the atmosphere.

The Strategy
Start the design phase with a game sketch, as you did in Chapter 13. This
sketch should capture all of the salient points of the game, like how it will
look, how it will sound, how things will move, and how the game will com-
municate with the player (Figure 14-11).

Velocity Altitude Fuel Eccentricity

Left arrow . . .
Right arrow . . .
Up arrow . . .
Down arrow . . .
Clear path . . .

Altitude 69–120 miles
Orbital deviation < 0.05
Avoid top atmosphere at 68 miles

. . . correct to circular mapping orbit without running
out of fuel or burning up in the atmosphere . . .

Mars slowly rotates

Satellite orbital direction
chosen at random

“Gauges” display pertinent info at top

Intro text shown at
startup for 15secs

Permanent legend for key
controls at bottom rightPermanent reminder of win

conditions at bottom left

Orbital path recorded

Satellite dish
always
points

toward Mars

Sound effects:
Thruster hiss

Mars’s shadow
covers satellite

Figure 14-11: Sketch of the main gameplay of the Mars Orbiter game

294 Chapter 14

The sketch in Figure 14-11 describes the main gameplay. You’ll need a
separate sketch to describe the win-lose conditions. For the main gameplay,
the key points are:

•	 The viewpoint is Mission Control. The game screen should resemble
a monitor at Mission Control from which the player can operate the
errant space probe.

•	 Mars is at front and center. Everybody loves the Red Planet, so it will
occupy the center of the jet-black screen.

•	 Mars is animated. The Martian globe will slowly rotate around its axis
and cast a shadow. The satellite will dim appreciably when it passes
through this shadow.

•	 The satellite’s initial orbit is chosen at random. The satellite will
appear at startup with a randomized—but constrained—orientation
and velocity. On rare occasions, this may result in an instant game loss.
That’s still better than real missions, which fail 47 percent of the time!

•	 There’s no need to prograde or retrograde the satellite. Constantly
rotating the space probe before firing its thrusters greatly diminishes
gameplay. Assume that attitudinal thrusters are arrayed around the
fuselage and use the arrow keys to choose which thrusters to fire.

•	 Firing thrusters causes an audible hiss. Despite the fact that there’s no
sound in space, give the player the satisfaction of hearing a nice hiss
whenever they fire the thrusters.

•	 The satellite dish always points toward Mars. The satellite will slowly
and automatically rotate so that its remote-sensing dish is always aimed
at Mars.

•	 The satellite’s orbital path is visible. A thin white line will trail out
from behind the satellite and persist until the player clears it by press-
ing the space bar.

•	 The data readouts are placed at the top of the screen. You will display
information useful for gameplay in boxes at the top of the window. Key
data are the space probe’s velocity, altitude, fuel, and orbital eccentric-
ity (a measure of the orbit’s circularity).

•	 A short introduction is shown at startup. Text introducing the game
will appear at the center of the screen when the game starts and stay up
for about 15 seconds. The text will not disrupt gameplay, so the player
can start manipulating the satellite immediately.

•	 Win conditions and key controls are shown in permanent legends.
Critical information, like mission objectives and control keys, will be
displayed permanently in the lower-left and -right corners of the screen.

The game sketch in Figure 14-12 describes what happens in success and
failure cases. The player needs a reward when they win and an interesting
outcome when they lose.

Mapping Mars with the Mars Orbiter 295

Velocity Altitude

Left Arrow . . .
Right Arrow . . .
Up Arrow . . .
Down Arrow . . .
Clear Path . . .

Altitude 60–120 miles
Orbital Deviation < 0.05
Avoid top atmosphere at 68 miles

Press ‘M’ to map soil moisture

Low altitude fail
Satellite stops on
Mars & turns red

Fuel fail causes
satellite to fly
off screen

Mappable Mars has
color overlay for wet
(blues) & dry (reds)

Fuel Eccentricity

Win condition
permits mapping

Figure 14-12: Game sketch of winning versus losing outcomes in the Mars
Orbiter game

For winning and losing outcomes, the key points are:

•	 Change the satellite image for crash and burn. If the satellite’s alti-
tude drops below 68 miles, it burns up in the atmosphere. The moving
satellite image will be replaced with a glowing red version that sticks
to the side of Mars; this is similar to something you might see on a real
Mission Control display.

•	 The satellite is lost in space if it runs out of fuel. Although unrealistic,
have the satellite fly off the screen and into the depths of space if it
runs out of fuel. This really rubs the player’s nose in it!

•	 Win conditions unlock a prize. If the satellite achieves a circular orbit
within the target altitude range, new text will urge the player to press
the M key.

•	 Pressing M changes the Mars image. When the M key is unlocked,
pressing it causes the Mars image to change to a rainbow image where
cool colors represent areas of high soil moisture and warm colors repre-
sent drier areas.

For gameplay, the size of the satellite and its orbital speed won’t be
realistic, but the overall behavior will be correct. You should be able to cor-
rectly execute all of the orbital maneuvers described in “Astrodynamics for
Gamers” on page 286.

296 Chapter 14

Game Assets
The assets you’ll need for the Mars Orbiter game are two satellite images,
two planet images, and a sound file. You can prepare these together at the
start of the process or build them when you need them. The latter approach
lets you take episodic breaks from coding, which some people prefer.

Finding good, copyright-free graphics and sound files can be a chal-
lenge. You can find suitable assets online—either for free or for a fee—but
it’s best to make your own whenever possible. This lets you avoid any legal
issues down the road.

The sprites (2D icons or images) I used for this project are shown in
Figure 14-13. You need a satellite, a red “burned” version of the satellite, a
view of Mars with a polar cap centered, and the same view with a colorful
overlay that will represent mapped soil-moisture gradations. I found the sat-
ellite sprite at the free icon site AHA-SOFT (http://www.aha-soft.com/) and
then copied and recolored it to make the crashed version. Both of the Mars
sprites are NASA images modified for the game.

Figure 14-13: The satellite, crashed satellite, Mars, and Mars overlay images
used as game sprites

I made a sound file for when the satellite is firing its thrusters using the
white noise generator in the open source program Audacity. You can down-
load a free copy of Audacity at https://www.audacityteam.org/. I saved the file
in Ogg Vorbis format, an open source standard audio compression format
that is free and works well with Python and pygame. You can use other for-
mats, like MP3 and WAV, with pygame, but some have documented problems
or have proprietary components that can raise legal issues if you try to com-
mercialize your game.

You can download these files from this book’s website at https://www​
.nostarch.com/impracticalpython/ as satellite.png, satellite_crash_40x33.png,
mars.png, mars_water.png, and thrust_audio.ogg. Download them, preserving
the filenames, into the same folder as the code.

http://www.aha-soft.com/
https://www.audacityteam.org/
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

Mapping Mars with the Mars Orbiter 297

The Code
Figure 14-14 is an example of the final game screen you’ll be building. You
can refer back to this figure to get an idea of what the code is doing.

Figure 14-14: Example startup game screen for the final version of mars_orbiter.py

You can download the complete program (mars_orbiter.py) at https://
www.nostarch.com/impracticalpython/.

Importing and Building a Color Table
Listing 14-1 imports the required modules and builds a color table.

 import os
import math
import random
import pygame as pg

 WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
LT_BLUE = (173, 216, 230)

Listing 14-1: Imports modules and builds a color table

mars_orbiter.py,
part 1

298 Chapter 14

First, import the operating system, designated by os . The game will
launch in full-screen mode, but the player will have the option of escaping
out of full screen. This module will let you control the location of the game
window after the player presses esc.

You’ll use the math module for gravity and trigonometric calculations
and random to start the satellite off with a random position and velocity.
Import pygame as you did in Chapter 13, using pg, rather than pygame, to
reduce typing.

Finish by building an RGB color table  as you did in Chapter 13. This
lets you type in color names, rather than RGB-value tuples, when you need
to assign one of these colors.

Defining the Satellite Class Initialization Method
Listing 14-2 defines the Satellite class and its initialization method, which
you’ll use to instantiate a satellite object in the game. Since this method
definition is long, it’s split over two listings.

 class Satellite(pg.sprite.Sprite):
 """Satellite object that rotates to face planet & crashes & burns."""

  def __init__(self, background):
  super().__init__()
  self.background = background
  self.image_sat = pg.image.load("satellite.png").convert()

 self.image_crash = pg.image.load("satellite_crash_40x33.png").convert()
  self.image = self.image_sat
  self.rect = self.image.get_rect()
  self.image.set_colorkey(BLACK) # sets transparent color

Listing 14-2: Defines the first part of the Satellite class initialization method

Define a class for a Satellite object ; if you need a refresher on object-
oriented programming, read Chapter 11. Pass it the pygame Sprite class, as
objects instantiated from the Satellite class will be sprites. As described
in Chapter 13, Sprite is a built-in class that serves as a template for making
sprites. Your new class will inherit features that your sprites will need from
this base class. These include important attributes like rect and image, which
you’ll deal with shortly.

Next, define the __init__() method for the Satellite object  and pass it
self, which—by convention—is a special name within a class definition that
refers to the current object. You also need to pass the method a background
object. The satellite’s path will be drawn on this object.

Inside the __init_() method, immediately invoke the initialization
method for the built-in Sprite class using super . This will initialize the
sprite and establish the rect and image attributes it needs. With super, you
don’t need to refer to the base class (Sprite) explicitly. For more on super,
see Listing 11-5 on page 229 or visit the docs at https://docs.python.org/3​
/library/functions.html?highlight=super#super.

mars_orbiter.py,
part 2

https://docs.python.org/3/library/functions.html?highlight=super#super
https://docs.python.org/3/library/functions.html?highlight=super#super

Mapping Mars with the Mars Orbiter 299

Next, assign the background to self as an object attribute . Then use
pygame’s image.load() method to load your two satellite images—one opera-
tional and one crashed—and in the same step, run the convert() method
on them . This converts the object into a graphic format that pygame can
use efficiently once the game loop starts. Without this step, the game may
slow noticeably as the png format is converted, on the fly, 30 or more times
per second.

You’ll use only one of the satellite images at a time, depending on
whether or not the player burned up in the atmosphere, so use a generic
self.image attribute to hold the loaded and converted image . The
unburned satellite image will be the default image; it will be replaced with
the red crashed image if the satellite object gets too close to Mars.

Now, get the rectangle information for the image . Remember that
pygame places the sprites on rectangular surface objects, and it needs to
know the dimensions and location of these rectangles as the game runs.

Finally, make the black parts of the satellite image invisible . The satel-
lite icon is on a field of black (see Figure 14-13), and you want the crashed-
and-burned image to plot partially over Mars, so use the BLACK constant with
the image object’s colorkey() method in order to make the icon’s background
transparent. Otherwise, you’ll see a black box with a red satellite overlap-
ping the Red Planet. Note that if you want to type in the RGB equivalent for
black, you need to enter it as a tuple: (0, 0, 0).

Setting the Satellite’s Initial Position, Speed, Fuel, and Sound
Listing 14-3 completes the definition of the Satellite class initialization
method. The satellite object’s initial position and velocity are chosen at ran-
dom from a limited range of choices; the orientation of the remote-sensing
dish is initialized, the fuel tank topped off, and sound effects added.

  self.x = random.randrange(315, 425)
 self.y = random.randrange(70, 180)

  self.dx = random.choice([-3, 3])
  self.dy = 0
  self.heading = 0 # initializes dish orientation
  self.fuel = 100

 self.mass = 1
 self.distance = 0 # initializes distance between satellite & planet

  self.thrust = pg.mixer.Sound('thrust_audio.ogg')
  self.thrust.set_volume(0.07) # valid values are 0-1

Listing 14-3: Completes the Satellite class initialization method by initializing parameters

When the game starts, the satellite will appear at a random point near
the top of the screen. You’ll choose the exact location from a range of x-
and y-values .

You’ll also choose the satellite’s velocity at random, but it will be slow
enough that the satellite can’t escape from orbit. Randomly set the velocity
to either –3 or 3. Negative values result in a counterclockwise orbit, and vice
versa. Use the delta-x (dx) attribute only  and let gravity take care of dy. As

mars_orbiter.py,
part 3

300 Chapter 14

discussed in Chapter 13, pygame moves sprites around the screen using incre-
mental changes in the x-location (called delta-x or dx) and incremental
changes in the y-location (called delta-y or dy). These vector components
are calculated and added to the sprite’s current position (self.x, self.y)
with each game loop.

Next, set the dy attribute to 0 . Later, the gravity() method will estab-
lish an initial dy value when it accelerates the newly instantiated satellite
downscreen toward the planet.

Assign an attribute for the satellite’s heading . The remote-sensing
dish, which will read soil moisture on the planet’s surface, should always
point toward Mars, and if you remember from Figure 14-3, this won’t occur
unless you overcome inertia. You’ll use a method to actually rotate the satel-
lite, so for now, just initialize the heading attribute with 0.

Now, top off the fuel tank with 100 units of fuel . If you want to relate
this to real life, it would probably represent 100 kilograms of hydrazine,
similar to what was used in the Magellan probe that mapped Venus.

Next, set the object’s mass to 1. This basically means you’ll just use the
mass of Mars in the gravity equation, because you multiply the masses of
two objects together. As stated earlier, the pull of the satellite on Mars is
inconsequential, so you don’t need to calculate it. The satellite’s mass attri-
bute is included for completeness and as a placeholder in case you want to
experiment with different values later.

The following distance attribute stores the distance between the satellite
and the body it is orbiting. The actual value will be calculated by a method
you’ll define later.

It’s time to add sound effects. You’ll initialize pygame’s sound mixer in
the main() function, but for now, name a thrust attribute for the thrusting
sound effect . Pass the mixer’s Sound class the short clip of white noise
in Ogg Vorbis format (.ogg). Finally, set the playback volume, using values
between 0 and 1 . You may need to calibrate this to your PC. Ideally, you
want a value that every player will be able to at least hear and then fine-tune
with their own computer’s volume control.

Firing Thrusters and Checking for Player Input
Listing 14-4 defines the thruster() and check_keys() methods of the Satellite
class. The first determines the actions taken if one of the satellite’s thrusters
is fired. The second checks whether a player has interacted with the thrust-
ers by pressing an arrow key.

  def thruster(self, dx, dy):
 """Execute actions associated with firing thrusters."""

  self.dx += dx
 self.dy += dy

  self.fuel -= 2
  self.thrust.play()

  def check_keys(self):
 """Check if user presses arrow keys & call thruster() method."""

  keys = pg.key.get_pressed()

mars_orbiter.py,
part 4

Mapping Mars with the Mars Orbiter 301

 # fire thrusters
  if keys[pg.K_RIGHT]:
  self.thruster(dx=0.05, dy=0)

 elif keys[pg.K_LEFT]:
 self.thruster(dx=-0.05, dy=0)
 elif keys[pg.K_UP]:
 self.thruster(dx=0, dy=-0.05)
 elif keys[pg.K_DOWN]:
 self.thruster(dx=0, dy=0.05)

Listing 14-4: Defines the thruster() and check_keys() methods for the Satellite class

The thruster() method takes self, dx, and dy as arguments . The last
two arguments, which can be positive or negative, are immediately added to
the satellite’s self.dx and self.dy velocity components . Next, the fuel level
is decreased by two units . Altering this value is one way to make the game
either harder or easier. Finish by calling the play() method on the thrust
audio attribute to make the hissing sound . Note that, instead of returning
values, OOP methods update existing object attributes.

The check_keys() method takes self as an argument . First you use the
pygame key module to determine whether the player has pressed a key . The
get_pressed() method returns a tuple of Boolean values—1 for True and 0 for
False—that represent the current state of each key on the keyboard. True
means a key has been pressed. You can index this tuple by using the key con-
stants. You can find a list of all the keyboard constants at https://www.pygame​
.org/docs/ref/key.html.

For example, the right arrow key is K_RIGHT. If this key has been pressed ,
call the thruster() method and pass it dx and dy values . In pygame, x-values
increase toward the right of the screen, and y-values increase toward the
bottom of the screen. So, if the user presses the left arrow key, subtract
from dx; likewise, if the up arrow is pressed, decrement the dy value. The
right arrow will increase dx, and the down arrow will increase dy. Readouts
at the top of the screen will help the player relate the satellite’s movements
to the underlying dx and dy values (see Figure 14-14).

Locating the Satellite
Still in the Satellite class, Listing 14-5 defines the locate() method. This
method calculates the distance of the satellite from the planet and deter-
mines the heading for pointing the dish at the planet. You’ll use the dis-
tance attribute later when calculating the force of gravity and the eccentricity
of the orbit. Eccentricity is a measurement of the deviation of an orbit from
a perfect circle.

  def locate(self, planet):
 """Calculate distance & heading to planet."""

  px, py = planet.x, planet.y
  dist_x = self.x - px

 dist_y = self.y - py
 # get direction to planet to point dish

  planet_dir_radians = math.atan2(dist_x, dist_y)

mars_orbiter.py,
part 5

https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html

302 Chapter 14

  self.heading = planet_dir_radians * 180 / math.pi
  self.heading -= 90 # sprite is traveling tail-first
  self.distance = math.hypot(dist_x, dist_y)

Listing 14-5: Defines the locate() method for the Satellite class

To locate the satellite, you need to pass the locate() method the
satellite (self) and planet objects . First, determine the distance between
the objects in x-y space. Get the planet’s x- and y-attributes ; then subtract
them from the satellite’s x- and y-attributes .

Now, use these new distance variables to calculate the angle between
the satellite’s heading and the planet so you can rotate the satellite dish
toward the planet. The math module uses radians, so assign a local variable
called planet_dir_radians to hold the direction in radians and pass dist_x
and dist_y to the math.atan2() function to calculate the arc tangent . Since
pygame uses degrees (sigh), convert the angle from radians to degrees using
the standard formula; alternatively, you could use math to do this, but some-
times it’s good to see the man behind the curtain . This should be a shar-
able attribute of the satellite object, so name it self.heading.

In pygame, the front of a sprite is to the east by default, which means the
satellite sprite is orbiting tail-first (see the satellite icon in Figure 14-13).
To get the dish to point toward Mars, you need to subtract 90 degrees from
the heading, because negative angles result in clockwise rotation in pygame .
This maneuver will use none of the player’s fuel allotment.

Finally, get the Euclidian distance between the satellite and Mars
by using the math module to calculate the hypotenuse from the x- and
y-components . You should make this an attribute of the satellite object
since you will use it later in other functions.

No t e 	 In real life, there are multiple ways to keep the dish of a satellite pointed toward a planet
without expending large amounts of fuel. Techniques include slowly tumbling or spin-
ning the satellite, making the dish end heavier than the opposite end, using magnetic
torque, or using internal flywheels—also known as reaction wheels or momentum
wheels. Flywheels use electric motors that can be powered by solar panels, eliminating
the need for heavy and toxic liquid propellant.

Rotating the Satellite and Drawing Its Orbit
Listing 14-6 continues the Satellite class by defining methods for rotating
the satellite dish toward the planet and drawing a path behind it. Later,
in the main() function, you’ll add code that lets the player erase and restart
the path by pressing the space bar.

  def rotate(self):
 """Rotate satellite using degrees so dish faces planet."""

  self.image = pg.transform.rotate(self.image_sat, self.heading)
  self.rect = self.image.get_rect()

  def path(self):

mars_orbiter.py,
part 6

Mapping Mars with the Mars Orbiter 303

 """Update satellite’s position & draw line to trace orbital path."""
  last_center = (self.x, self.y)
  self.x += self.dx

 self.y += self.dy
  pg.draw.line(self.background, WHITE, last_center, (self.x, self.y))

Listing 14-6: Defines the rotate() and path() methods of the Satellite class

The rotate() method will use the heading attribute, which you calculate
in the locate() method, to turn the satellite dish toward Mars. Pass self to
rotate() , which means rotate() will automatically take the name of the
satellite object as an argument when it is called later.

Now, rotate the satellite image using pygame’s transform.rotate() method .
Pass it the original image followed by the heading attribute; assign these to
the self.image attribute so you don’t degrade the original master image.
You’ll need to transform the image with each game loop, and transforming
an image rapidly degrades it. So always keep a master image and work off a
new copy every time you do a transformation.

End the function by getting the transformed image’s rect object .
Next, define a method called path() and pass it self . This will draw

a line marking the satellite’s path, and since you need two points to draw a
line, assign a variable to record the satellite’s center location as a tuple prior
to moving it . Then increment the x- and y-locations with the dx and dy
attributes . Finish by using pygame’s draw.line() method to define the line .
This method needs a drawing object, so pass it the background attribute, fol-
lowed by the line color and the previous and current x-y location tuples.

Updating the Satellite Object
Listing 14-7 updates the satellite object and completes the class definition.
Sprite objects almost always have an update() method that is called once
per frame as the game runs. Anything that happens to the sprite, such as
movement, color changes, user interactions, and so on, is included in this
method. To keep them from becoming too cluttered, update() methods
mostly call other methods.

  def update(self):
 """Update satellite object during game."""

  self.check_keys()
  self.rotate()
  self.path()
  self.rect.center = (self.x, self.y)

 # change image to fiery red if in atmosphere
  if self.dx == 0 and self.dy == 0:

 self.image = self.image_crash
 self.image.set_colorkey(BLACK)

Listing 14-7: Defines the update() method for the Satellite class

Start by defining the update() method and passing it the object, or self .
Next, call the methods that you defined earlier. The first of these checks

mars_orbiter.py,
part 7

304 Chapter 14

for player interactions made through the keyboard . The second rotates
the satellite object so that the dish keeps pointing toward the planet . The
final method updates the satellite’s x-y location and draws a path behind it
so you can visualize the orbit .

The program needs to keep track of the satellite sprite’s location as it
orbits Mars, so assign a rect.center attribute and set it to the satellite’s cur-
rent x-y location .

The final bit of code changes the satellite image in the event the player
crashes and burns in the atmosphere . The top of the Martian atmosphere
is about 68 miles above its surface. For reasons I’ll explain later, assume that
an altitude value of 68—which is measured in pixels from the center of the
planet—equates to the top of the atmosphere. If the satellite dips below
this altitude during gameplay, the main() function will set its velocity—
represented by dx and dy—to 0. Check that these values are both 0, and if so,
change the image to image_crash and set its background to transparent (as
you did previously for the main satellite image).

Defining the Planet Class Initialization Method
Listing 14-8 defines the Planet class, which you’ll use to instantiate a planet
object.

 class Planet(pg.sprite.Sprite):
 """Planet object that rotates & projects gravity field."""

  def __init__(self):
 super().__init__()

  self.image_mars = pg.image.load("mars.png").convert()
 self.image_water = pg.image.load("mars_water.png").convert()

  self.image_copy = pg.transform.scale(self.image_mars, (100, 100))
  self.image_copy.set_colorkey(BLACK)
  self.rect = self.image_copy.get_rect()

 self.image = self.image_copy
  self.mass = 2000
  self.x = 400

 self.y = 320
 self.rect.center = (self.x, self.y)

  self.angle = math.degrees(0)
 self.rotate_by = math.degrees(0.01)

Listing 14-8: Begins definition of the Planet class

You are probably very familiar with the initial steps to creating the Planet
class by now. First, you name the class with a capital letter, then pass it the
Sprite class so it will conveniently inherit features from this built-in pygame
class . Next, you define an __init__(), or initialization, method for your
planet object . Then you call the super() initialization method, as you did
for the Satellite class.

Load the images as attributes and convert them to pygame’s graphic
format at the same time . You need both the normal Mars image and the

mars_orbiter.py,
part 8

Mapping Mars with the Mars Orbiter 305

one for mapped soil moisture. You were able to use the satellite sprite at its
native size, but the Mars image is too large. Scale the image to 100 pixels ×
100 pixels  and assign the scaled image to a new attribute so repeated
transformations won’t degrade the master image.

Now, set the transformed image’s transparent color to black, as you
did earlier with the satellite image . Sprites in pygame are all “mounted”
on rectangular surfaces, and if you don’t make black invisible, the corners
of the planet surface may overlap and cover the white-colored orbital path
drawn by the satellite (see Figure 14-15).

Figure 14-15: Corners of Mars rect
covering orbital path

As always, get the sprite’s rect object . There’s another transformation
to come, so copy the image attribute again and assign it the logical name of
self.image.

To apply the force of gravity, the planet needs mass, so name a mass
attribute and assign it a value of 2000 . Earlier, you assigned the satellite a
mass of 1; this means that Mars is only 2,000 times as massive as a satellite!
That’s okay, because you aren’t working in real-world units, and the time
and distance scales differ from reality. If you scale distances so that the satel-
lite is only a few hundred pixels from Mars, you have to scale gravity as well.
Despite this, the satellite will still behave realistically with respect to gravity.

The planet’s mass value was determined through experimentation. To
scale the force of gravity, you can either change this mass value or use the
gravitational constant (G) variable later.

Set the planet object’s x and y attributes to the center point of the
screen—you’ll use a screen size of 800 × 645 in the main() function—and
assign these values to the rect object’s center .

Finally, assign the attributes you’ll need to slowly rotate Mars about
its axis . You’ll use the same transform.rotate() method you used to turn
the satellite, so you need to create an angle attribute. Then, use a rotate_by
attribute to assign the increment—in degrees—by which this rotation angle
changes with each game loop.

306 Chapter 14

Rotating the Planet
Listing 14-9 continues the Planet class by defining its rotate() method. This
method rotates the planet around its axis, making small changes with each
game loop.

  def rotate(self):
 """Rotate the planet image with each game loop."""

  last_center = self.rect.center
  self.image = pg.transform.rotate(self.image_copy, self.angle)

 self.rect = self.image.get_rect()
  self.rect.center = last_center
  self.angle += self.rotate_by

Listing 14-9: Defines a method to rotate the planet around its axis

The rotate() method also takes the object as an argument . As
the square Mars image is rotating, the bounding rectangle object (rect)
remains stationary and must expand to accommodate the new configura-
tion (see Figure 14-16). This change in size can affect the center point of
the rect, so assign a last_center variable and set it to the planet’s current
center point . If you don’t do this, Mars will wobble around its axis as the
game runs.

New bounding rectangle
Pre-rotation

bounding rectangle

Figure 14-16: The bounding rectangle changes size to accommodate rotating images.

Next, rotate the copied image using pygame’s transform.rotate() method
and assign it to the self.image attribute ; you need to pass the method the
copied image and the angle attribute. Immediately after rotating, reset the
image’s rect attribute and move its center location back to last_center in
order to mitigate any shifting of rect that occurred during rotation .

When the planet object is instantiated, the angle attribute will start at
0 degrees, then increase by 0.1—assigned in the rotate_by attribute—with
each frame .

mars_orbiter.py,
part 9

Mapping Mars with the Mars Orbiter 307

Defining the gravity() and update() Methods
Listing 14-10 completes the Planet class by defining the gravity() and update()
methods. In Chapter 13, you treated gravity as a constant applied in the
y-direction. The method applied here is slightly more sophisticated, because
it takes into account the distance between two objects.

  def gravity(self, satellite):
 """Calculate impact of gravity on satellite."""

  G = 1.0 # gravitational constant for game
  dist_x = self.x - satellite.x

 dist_y = self.y - satellite.y
 distance = math.hypot(dist_x, dist_y)
 # normalize to a unit vector

  dist_x /= distance
 dist_y /= distance
 # apply gravity (dx & dy represent pixels/frame)

  force = G * (satellite.mass * self.mass) / (math.pow(distance, 2))
  satellite.dx += (dist_x * force)

 satellite.dy += (dist_y * force)

  def update(self):
 """Call the rotate method."""
 self.rotate()

Listing 14-10: Defines the gravity() and update() methods of the Planet class

Define the gravity() method and pass it self and the satellite object .
You’re still in the Planet class, so self here represents Mars.

Start by naming a local variable G; an uppercase G is the universal gravita-
tional constant, also known as the constant of proportionality . In real life, this
is a very small, empirically derived number, which is basically a conversion
number to get all the units to work out correctly. You’re not using real-world
units in the game, so set this to 1; this way, it won’t have an impact on the
gravity equation. During game development, you can tweak this constant up
or down to fine-tune the force of gravity and its effect on orbiting objects.

You need to know how far apart the two objects are, so get their distance
in the x-direction and the y-direction . Then, use the math module’s hypot()
method to get the Euclidian distance. This will represent the r in the gravity
equation.

Since you’re going to directly address the magnitude of the distance
between the satellite and Mars in the gravity equation, all you need from
the distance vector is direction. So, divide dist_x and dist_y by distance to
“normalize” the vector to a unit vector with a magnitude of 1 . You are
basically dividing the length of each side of a right triangle by its hypot-
enuse. This preserves the vector’s direction, represented by the relative
differences in dist_x and dist_y, but sets its magnitude to 1. Note that if you
don’t perform this normalization step, the results will be unrealistic but
interesting (see Figure 14-17).

mars_orbiter.py,
part 10

308 Chapter 14

Figure 14-17: “Spirograph” orbit resulting from use of an unnormalized
distance vector

Calculate the force of gravity using Newton’s equation, which I described
in “The Law of Universal Gravity” on page 286 . Finish by multiplying
the normalized distances by force—to calculate by how much acceleration
changes velocity in each step—and add these amounts to the satellite object’s
dx and dy attributes .

Note that you don’t assign most of these variables as attributes of self.
These just represent intermediate steps within a method that don’t need to
be shared with other methods, and you can treat them as you would local
variables in procedural programming.

Finally, define a method that will be called every game loop to update
the planet object . Use it to call the rotate() method.

Calculating Eccentricity
You’re through defining classes. Now it’s time to define some functions that
will help with running the game. Listing 14-11 defines a function to calcu-
late the eccentricity of the satellite’s orbit. The player will need to achieve a
circular orbit within a certain altitude range, and this function will provide
the measurement of circularity.

 def calc_eccentricity(dist_list):
 """Calculate & return eccentricity from list of radii."""

  apoapsis = max(dist_list)
 periapsis = min(dist_list)

  eccentricity = (apoapsis - periapsis) / (apoapsis + periapsis)
 return eccentricity

Listing 14-11: Defines a function to measure orbital eccentricity

mars_orbiter.py,
part 11

Mapping Mars with the Mars Orbiter 309

Define the calc_eccentricity() function and pass it a list of distances .
In the main() function, you’ll append the sat.distance attribute—which
records the satellite’s altitude—to this list during every game loop. To cal-
culate eccentricity, you need to know both the apoapsis and periapsis of
the orbit. Get these by finding the maximum and minimum values in this
list . Then, calculate eccentricity . Later, in the main() function, you’ll
display this number to eight decimal places, just to look cool and precise in
the readout.

Note that circular orbits will have the same value for both apoapsis and
periapsis, and so the calculation will yield 0 for a perfect circle. End the
function by returning the eccentricity variable.

Defining Functions to Make Labels
The game will need a fair amount of text for instructions and telemetry
readouts. Displaying this text one string at a time can result in a lot of code
redundancy, so Listing 14-12 will define two functions—one to post instruc-
tions and another for the streams of velocity, altitude, fuel, and eccentricity
data you’ll need to share with the player.

 def instruct_label(screen, text, color, x, y):
 """Take screen, list of strings, color, & origin & render text to screen."""

  instruct_font = pg.font.SysFont(None, 25)
  line_spacing = 22
  for index, line in enumerate(text):

 label = instruct_font.render(line, True, color, BLACK)
 screen.blit(label, (x, y + index * line_spacing))

 def box_label(screen, text, dimensions):
 """Make fixed-size label from screen, text & left, top, width, height."""
 readout_font = pg.font.SysFont(None, 27)

  base = pg.Rect(dimensions)
  pg.draw.rect(screen, WHITE, base, 0)
  label = readout_font.render(text, True, BLACK)
  label_rect = label.get_rect(center=base.center)
  screen.blit(label, label_rect)

Listing 14-12: Defines functions to make instruction and readout labels

Define a function called instruct_label() for displaying instructions on
the game screen . Pass it the screen, a list containing the text, a text color,
and the coordinates for the upper-left corner of the pygame surface object
that will hold the text.

Next, tell pygame which font to use . The arguments for the font.SysFont()
method are the typeface and size. Using None for the typeface invokes pygame’s
built-in default font, which should work on multiple platforms. Note that the
method accepts both None and 'None'.

The introduction and instruction text will take up multiple lines (see
the example in Figure 14-14). You’ll need to specify the line spacing, in pix-
els, between the text strings, so assign a variable for this and set it to 22 .

mars_orbiter.py,
part 12

310 Chapter 14

Now, start looping through the list of text strings . Use enumerate() to
get an index, which you’ll use with the line_spacing variable to post the strings
in the correct locations. The text will need to be placed on a surface. Name
this surface label, pass the font.render() method the line of text you want to
display, set antialiasing to True for smoother text, color the text, and set the
background color to black. Finish by blitting the surface to the screen. Pass
the method the label variable and the upper-left-corner coordinates, with y
defined as y + index * line_spacing.

Next, define a function called box_label() for the data readout labels
that will appear as gauges at the top of the screen (see Figure 14-18) .
Parameters for this function are the screen, some text, and a tuple con-
taining the dimensions of the rectangular surface that will form the
gauge.

Figure 14-18: Readout labels at the top of the game window (header label
above and data label below)

The surfaces made by the instruct_label() function will automatically
change size to accommodate the amount of text being displayed. This works
fine for static displays, but the readout data will change constantly, causing
your gauges to expand and shrink as they adjust to fit the text inside them.
To mitigate this, you’ll use a stand-alone rect object of a specified size to
form a base for your text object.

Start the function by setting the font, as you did in . Assign a vari-
able called base to a pygame rect object; use the dimensions argument for
the size . This argument lets you precisely place the position of the box
by specifying the left and top coordinates of the rectangle, followed by
its width and height. The resulting rectangle should be wide enough to
handle the longest possible readout the game will produce for the data
type being displayed.

Now, draw the base using the draw_rect() method . The arguments
are the drawing surface, a fill color, the name of the rect, and a width of 0,
which fills the rectangle rather than drawing a border. You’ll post your text
object on top of this white rectangle.

Repeat the code that renders the text , then get the rect for the label .
Note that in the get_rect() method there’s a parameter that sets the center
equal to the center of base. This lets you place the text label on top of the
white base rectangle. Finally, blit to the screen, specifying the source and
destination rects .

Mapping Mars with the Mars Orbiter 311

Mapping Soil Moisture
Listing 14-13 defines functions that allow the player to “map” Mars if the
game’s winning conditions have been met. When the player presses the M
key, these functions will be called by the main() function, and the planet’s
image will be replaced with a colorful overlay we’ll pretend represents
soil moisture content. When the player releases the key, the normal view
of Mars will return. The key checks will also be performed in the main()
function.

 def mapping_on(planet):
 """Show soil moisture image of planet."""

  last_center = planet.rect.center
  planet.image_copy = pg.transform.scale(planet.image_water, (100, 100))
  planet.image_copy.set_colorkey(BLACK)

 planet.rect = planet.image_copy.get_rect()
 planet.rect.center = last_center

 def mapping_off(planet):
 """Restore normal planet image."""

  planet.image_copy = pg.transform.scale(planet.image_mars, (100, 100))
 planet.image_copy.set_colorkey(BLACK)

Listing 14-13: Defines functions to let the player make a soil moisture map of Mars

Start by defining a function that takes as an argument the planet object .
Start by assigning a last_center variable as you did in Listing 14-9; this will be
used to keep the planet from wobbling on its axis .

Next, scale the water image of Mars to the same size as the normal
image and assign this to the planet’s image_copy attribute, because trans-
formations degrade an image if used repeatedly . Set the image’s back-
ground to transparent , get its rect, and set the center of the rect equal
to the last_center variable; that way Mars will stay put at the center of the
screen.

Now, define another function for when the player stops actively map-
ping Mars . It also takes the planet object as an argument. All you need to
do is reset the planet image to the original version . Because you’re still
using the image_copy attribute, you don’t need to get the rect again, but you
do need to set the transparent color.

Casting a Shadow
Listing 14-14 defines a function that gives Mars a “dark side” and casts a
shadow behind the planet. The shadow will be a black, semitransparent
rectangle with its right edge coincident with the center of the planet sprite
(see Figure 14-19). This assumes the sun is to the right of the screen and
that it is either the vernal or autumnal equinox on Mars.

mars_orbiter.py,
part 13

312 Chapter 14

Figure 14-19: Shadow rectangle in semitransparent white (left) and final semitransparent black (right)

 def cast_shadow(screen):
 """Add optional terminator & shadow behind planet to screen."""

  shadow = pg.Surface((400, 100), flags=pg.SRCALPHA) # tuple is w,h
  shadow.fill((0, 0, 0, 210)) # last number sets transparency

 screen.blit(shadow, (0, 270)) # tuple is top left coordinates

Listing 14-14: Defines a function to give Mars a dark side and let it cast a shadow

The cast_shadow() function takes the screen object as an argument .
Assign a 400 pixel × 100 pixel pygame surface to an object named shadow .
Use pygame’s SRCALPHA flag—for “source alpha”—to indicate you will use per
pixel alpha (transparency). Fill the object with black and set alpha—rep-
resented by the last number—to 210 . Alpha is part of the RGBA color
system and has valid values of 0 through 255, so this is very dark but not
completely opaque. Finally, blit the surface to the screen, along with the
coordinates for its top-left corner. To turn off the shadow, just comment out
the function call in main() or set the alpha value to 0.

Defining the main() Function
Listing 14-15 begins the definition of the main() function that runs the
game. The pygame package and the sound mixer are initialized, the game
screen is set up, and instructions for the player are stored as lists.

def main():
 """Set up labels & instructions, create objects & run the game loop."""

  pg.init() # initialize pygame

 # set up display:
  os.environ['SDL_VIDEO_WINDOW_POS'] = '700, 100' # set game window origin
  screen = pg.display.set_mode((800, 645), pg.FULLSCREEN)

mars_orbiter.py,
part 14

mars_orbiter.py,
part 15

Mapping Mars with the Mars Orbiter 313

  pg.display.set_caption("Mars Orbiter")
  background = pg.Surface(screen.get_size())

  pg.mixer.init() # for sound effects

  intro_text = [
 ' The Mars Orbiter experienced an error during Orbit insertion.',
 ' Use thrusters to correct to a circular mapping orbit without',
 ' running out of propellant or burning up in the atmosphere.'
]

 instruct_text1 = [
 'Orbital altitude must be within 69-120 miles',
 'Orbital Eccentricity must be < 0.05',
 'Avoid top of atmosphere at 68 miles'
]

 instruct_text2 = [
 'Left Arrow = Decrease Dx',
 'Right Arrow = Increase Dx',
 'Up Arrow = Decrease Dy',
 'Down Arrow = Increase Dy',
 'Space Bar = Clear Path',
 'Escape = Exit Full Screen'
]

Listing 14-15: Starts the main() function by initializing pygame and the sound mixer and by
setting up the game screen and instructions

Start the main() function by initializing pygame . Then, use the os mod-
ule’s environ() method to assign the coordinates of the upper-left corner of
the game window . This step is not strictly necessary, but I wanted to dem-
onstrate that you have control over where windows appear on the desktop.

Next, assign a variable to hold the screen object and set the display
mode to full screen . Use the tuple (800, 645) to specify the screen size to
use if the player escapes from full-screen mode.

Now use pygame’s display.set_caption() method to name the game window
“Mars Orbiter” . Then, use pygame’s Surface class to create a background
object for the game that’s the same size as the screen .

Initialize pygame’s sound mixer so you can play the thruster sound
effect . You defined this sound earlier in the satellite’s initialization
method.

The game will start with a short introduction that will vanish after
15 seconds. Permanent legends describing keyboard controls and win con-
ditions occupy the bottom corners of the screen. Enter the text for these as
lists . Later, you will pass these lists to the instruct_label() function you
wrote in Listing 14-12. Each item in the list, delineated by a comma, will
appear as a separate line in the game window (see Figure 14-19).

314 Chapter 14

Instantiating Objects, Setting Up Orbit Verification, Mapping,
and Timekeeping
Listing 14-16, still in the main() function, instantiates the planet and satellite
objects, assigns some useful variables for determining orbital eccentricity,
prepares the game clock within the function, and assigns a variable to track
the state of the mapping functionality.

 # instantiate planet and satellite objects
  planet = Planet()
  planet_sprite = pg.sprite.Group(planet)
  sat = Satellite(background)
  sat_sprite = pg.sprite.Group(sat)

 # for circular orbit verification
  dist_list = []
  eccentricity = 1
  eccentricity_calc_interval = 5 # optimized for 120 mile altitude

 # time keeping
  clock = pg.time.Clock()

 fps = 30
 tick_count = 0

 # for soil moisture mapping functionality
  mapping_enabled = False

Listing 14-16: Instantiates objects and assigns useful variables in main()

Continue the main() function by creating a planet object from the Planet
class , then place it in a sprite group . Remember from Chapter 13 that
pygame manages sprites using containers called groups.

Next, instantiate a satellite object, passing the Satellite class’s initializa-
tion method the background object . The satellite needs the background for
drawing its path.

After creating the satellite, put it in its own sprite group . You should
generally keep radically different sprite types in their own containers. This
makes it easy to manage things like display order and collision handling.

Now, assign some variables to help with calculating eccentricity. Start
an empty list to hold the distance values calculated in each game loop ,
then assign an eccentricity variable a placeholder value of 1 , indicating a
noncircular starting orbit.

You’ll want to update the eccentricity variable regularly to evaluate
any changes the player makes to the orbit. Remember, you need the orbit’s
apoapsis and periapsis to calculate eccentricity, and for large, elliptical
orbits, it may take a while to actually sample these. The good news is that you
only need to consider “winning” orbits between 69 and 120 miles. So, you
can optimize the sampling rate for orbits below 120 miles, which generally
take the satellite sprite less than 6 seconds to complete. Use 5 seconds and
assign this value to an eccentricity_calc_interval variable . This means that,

mars_orbiter.py,
part 16

Mapping Mars with the Mars Orbiter 315

for orbits with altitudes above 120 miles, the calculated eccentricity may
not be technically correct, but it will be good enough considering the orbit
doesn’t satisfy the winning conditions at that altitude.

Address timekeeping next. Use a clock variable to hold pygame’s game
clock, which will control the speed of the game in frames per second .
Each frame will represent one tick of the clock. Assign a variable named fps
a value of 30, which means the game will update 30 times per second. Next,
assign a tick_count variable that you’ll use to determine when to clear the
introduction text and when to call the calc_eccentricity() function.

Finish the section by naming a variable to enable the mapping func-
tionality and set it to False . If the player achieves the winning conditions,
you’ll change this to True.

Starting the Game Loop and Playing Sounds
Listing 14-17, still in the main() function, starts the game clock and while
loop, also referred to as the game loop. It also receives events, such as a player
firing thrusters using the arrow keys. If the player fires the thrusters, the
Ogg Vorbis audio file plays, and the player hears a satisfying hiss.

  running = True
 while running:

  clock.tick(fps)
 tick_count += 1

  dist_list.append(sat.distance)

 # get keyboard input
  for event in pg.event.get():
  if event.type == pg.QUIT: # close window

 running = False
  elif event.type == pg.KEYDOWN and event.key == pg.K_ESCAPE:

 screen = pg.display.set_mode((800, 645)) # exit full screen
  elif event.type == pg.KEYDOWN and event.key == pg.K_SPACE:

 background.fill(BLACK) # clear path
  elif event.type == pg.KEYUP:
  sat.thrust.stop() # stop sound

 mapping_off(planet) # turn off moisture map view
  elif mapping_enabled:

 if event.type == pg.KEYDOWN and event.key == pg.K_m:
 mapping_on(planet)

Listing 14-17: Starts the game loop, gets events, and plays sounds in main()

First assign a running variable for use with the while loop that runs the
game , then start the loop. Set the game speed using the clock’s tick()
method and pass it the fps variable you named in the previous listing .
If the game feels slow to you, set the speed to 40 fps. For each loop—or
frame—increment the clock-based counter by 1.

Next, append the satellite object’s sat.distance value to dist_list . This
is the distance between the satellite and the planet, calculated each game
loop by the satellite’s locate() method.

mars_orbiter.py,
part 17

316 Chapter 14

Now, gather player input made through the keyboard . As described
in the previous chapter, pygame records every user interaction—called an
event—in an event buffer. The event.get() method creates a list of these
events that you can evaluate, in this case, with if statements. Start by check-
ing if the player closed the window to quit the game . If this is True, set
running to False to end the game loop.

If the player presses esc, they are exiting full-screen mode, so reset the
screen size to 800 × 645 pixels using the display.set_mode() method that you
called at the start of main() . If the player presses the space bar, fill the back-
ground with black, which will erase the white orbital path of the satellite .

When the player presses an arrow key, the satellite object plays the hiss-
ing sound, but nothing in its check_keys() method tells it to stop. So, pass
pygame any KEYUP events ; when pygame reads that the player has released the
arrow key, call the stop() method on thrust to stop the sound from playing .

To map Mars, the player will have to hold down the M key, so use the
same KEYUP event to call the mapping_off() function. This will reset the planet
image to its normal, nonmapped state.

Finally, check whether the mapping_enabled variable is True, meaning the
player has achieved the winning conditions and is ready to map Mars . If
they press the M key, call the mapping_on() function to show the soil moisture
overlay in place of the normal view of the planet.

Applying Gravity, Calculating Eccentricity, and Handling Failure
Listing 14-18 continues the while loop of the main() function by exerting
a gravity force on the satellite and then calculating the eccentricity of its
orbit. The eccentricity value will determine whether the orbit is circular or
not, one of the game’s winning conditions. The listing also blits the back-
ground and responds to the fail conditions of running out of fuel or burn-
ing up in the atmosphere.

 # get heading & distance to planet & apply gravity
  sat.locate(planet)

 planet.gravity(sat)

 # calculate orbital eccentricity
  if tick_count % (eccentricity_calc_interval * fps) == 0:

 eccentricity = calc_eccentricity(dist_list)
  dist_list = []

 # re-blit background for drawing command - prevents clearing path
  screen.blit(background, (0, 0))

 # Fuel/Altitude fail conditions
  if sat.fuel <= 0:
  instruct_label(screen, ['Fuel Depleted!'], RED, 340, 195)

 sat.fuel = 0
 sat.dx = 2

  elif sat.distance <= 68:
 instruct_label(screen, ['Atmospheric Entry!'], RED, 320, 195)

mars_orbiter.py,
part 18

Mapping Mars with the Mars Orbiter 317

 sat.dx = 0
 sat.dy = 0

Listing 14-18: Applies gravity, calculates eccentricity, and addresses fail conditions

Call the satellite’s locate() method and pass it the planet object as an
argument . This method computes the heading and distance to Mars,
which you use to point the dish, calculate orbital eccentricity, and apply
gravity. Then, to apply the force of gravity, call the planet’s gravity()
method and pass it the satellite object.

If the modulus of the tick_count and the eccentricity_calc_interval
* fps is 0 , call the function that calculates eccentricity and pass it the ​
dist_list variable. Then, reset the dist_list variable to 0 to restart the
distance sampling .

Next, call the screen’s blit() method and pass it the background and
coordinates for the upper-left corner . The placement of this statement
matters. For example, if you move it after the code that updates the sprites,
you won’t see the satellite or Mars on the game screen.

Now, handle the case where the player runs out of fuel before achiev-
ing a circular orbit. First, get the current fuel level from the satellite object’s
fuel attribute . If the level is at or below 0, use the instruct_label() func-
tion to announce that the fuel is spent , then set the satellite’s dx attribute
to 2. This will cause the satellite sprite to quickly fly off the screen and into
the depths of space, with the altitude readout getting larger and larger.
Though unrealistic, this ensures the player knows they have failed!

The last failure case is when the player burns up in the atmosphere. If
the satellite’s distance attribute is less than or equal to 68 , make a label
near the center of the screen that lets the player know they have entered
the atmosphere and then set the satellite’s velocity attributes equal to 0.
This will cause gravity to lock the sprite against the planet (Figure 14-20).
Also, when dx and dy are 0, the satellite’s update() method (Listing 14-7) will
switch the satellite’s image to the red “crashed” version.

Figure 14-20: Satellite in crash configuration

The altitude parameter is a bit of a cheat, as altitude equates to the
distance attribute, which is measured from the centers of the planet and

318 Chapter 14

satellite sprites, rather than from the surface of the planet to the satellite. It
all comes down to scale. Planetary atmospheres are very thin veneers—at
the scale of the game, the Martian atmosphere would be less than 2 pixels
thick! As the game is designed, when the tip of the satellite dish scrapes the
planet, the satellite will burn up, but since the size of the satellite sprite is
unrealistically large, the sprite’s 68-mile center point must be pushed far-
ther out.

Rewarding Success and Updating and Drawing Sprites
Listing 14-19, still in the while loop of the main() function, rewards the win-
ning player by enabling functionality that lets them map the moisture con-
tent in the Martian soil. In real life, this might be accomplished with radar
or microwave resonators, which can remotely measure moisture in bare soil
down to a depth of a few inches. The listing also updates the planet and sat-
ellite sprites and draws them to the screen.

 # enable mapping functionality
  if eccentricity < 0.05 and sat.distance >= 69 and sat.distance <= 120:
  map_instruct = ['Press & hold M to map soil moisture']

 instruct_label(screen, map_instruct, LT_BLUE, 250, 175)
  mapping_enabled = True

 else:
 mapping_enabled = False

  planet_sprite.update()
  planet_sprite.draw(screen)

 sat_sprite.update()
 sat_sprite.draw(screen)

Listing 14-19: Enables mapping functionality and updates sprites in the game loop

If the orbit is circular and meets the altitude requirements , display a
message instructing the player to press the M key to map soil moisture .
Put the text in brackets, as the instruct_label() function expects a list. Make
the text color light blue and place it near the center of the screen.

Next, set the mapping_enabled variable to True ; otherwise, if the orbit
strays outside of the target parameters, set it to False.

Finish by calling the planet sprite’s update() method, through the sprite
group , then actually draw it to the screen . The argument for the draw()
method is the screen, the object on which to draw the sprites. Repeat these
steps for the satellite sprite.

Displaying Instructions and Telemetry and Casting a Shadow
Listing 14-20 completes the while loop and the main() function by displaying
instructions, data readouts, and the planet’s shadow. The game introduc-
tion text will be shown only for a short time at startup.

 # display intro text for 15 seconds
  if pg.time.get_ticks() <= 15000: # time in milliseconds

mars_orbiter.py,
part 19

mars_orbiter.py,
part 20

Mapping Mars with the Mars Orbiter 319

 instruct_label(screen, intro_text, GREEN, 145, 100)

 # display telemetry and instructions
  box_label(screen, 'Dx', (70, 20, 75, 20))

 box_label(screen, 'Dy', (150, 20, 80, 20))
 box_label(screen, 'Altitude', (240, 20, 160, 20))
 box_label(screen, 'Fuel', (410, 20, 160, 20))
 box_label(screen, 'Eccentricity', (580, 20, 150, 20))

  box_label(screen, '{:.1f}'.format(sat.dx), (70, 50, 75, 20))
 box_label(screen, '{:.1f}'.format(sat.dy), (150, 50, 80, 20))
 box_label(screen, '{:.1f}'.format(sat.distance), (240, 50, 160, 20))
 box_label(screen, '{}'.format(sat.fuel), (410, 50, 160, 20))
 box_label(screen, '{:.8f}'.format(eccentricity), (580, 50, 150, 20))

  instruct_label(screen, instruct_text1, WHITE, 10, 575)
 instruct_label(screen, instruct_text2, WHITE, 570, 510)

 # add terminator & border
  cast_shadow(screen)
  pg.draw.rect(screen, WHITE, (1, 1, 798, 643), 1)

  pg.display.flip()

 if __name__ == "__main__":
 main()

Listing 14-20: Displays text and planet’s shadow and calls the main() function

The text summarizing the game should hover near the middle of the
screen just long enough to be read, then vanish. Control this using an if
statement and the pygame tick.get_ticks() method, which returns the num-
ber of milliseconds that have elapsed since the game started. If fewer than
15 seconds have passed, use the instruct_label() function to display the list
of text strings from Listing 14-15 in green.

Next, make the gauges for the data readouts, starting with the header
boxes. Use the box_label() function and call it for each of the five readout
gauges . Repeat this for the data readouts . Note that you can use the
string format method when you pass the function the text.

Use the instruct_label() function to place the instructions made in
Listing 14-15 in the bottom corners of the screen . Feel free to change the
text color if you want to distinguish between those that describe the win-
ning conditions and those that define the key functions.

Now, call the function that displays the planet’s shadow  and then, as
a finishing touch, add a border using pygame’s draw.rect() method . Pass it
the screen object, the border color, the corner coordinates, and a line width.

Finish the main() function and its game loop by flipping the display .
As described in the preceding chapter, the flip() method blits everything
from the screen object to the visual display.

Finally, call main() in the global space, using the standard syntax for
running it stand-alone or as a module .

320 Chapter 14

Summary
In this chapter, you used pygame to build a 2D, arcade-style game with image
sprites, sound effects, and keyboard game controls. You also created a fun,
heuristic method for learning orbital mechanics. All of the techniques
shown in “Astrodynamics for Gamers” on page 286 should work in the
game. In the following section, “Challenge Projects,” you can continue to
improve both the game and the player experience.

Challenge Projects
Make the Mars Orbiter game your own by improving it and adding new
challenges based on the following suggestions. As always, no solutions are
provided to challenge projects.

Game Title Screen
Copy and edit the mars_orbiter.py pro-
gram so that a title screen appears for a
short time before the main game screen.
Have the title screen display a NASA-
type mission patch, like the one for the
Mars Global Surveyor (Figure 14-21), but
make it unique to the Mars Orbiter in
the game. You can see some other NASA
patches, in color, at https://space.jpl.nasa​
.gov/art/patches.html.

Smart Gauges
Copy and edit the mars_orbiter.py program so that the altitude and eccentric-
ity readouts use either a red background or red text color when their values
are outside of the target ranges. But be careful: a circular eccentricity value
should stay red until the altitude value is in range!

Radio Blackout
Copy and edit the mars_orbiter.py program so that keyboard controls are
locked when the satellite is within the shadow rectangle.

Scoring
Copy and edit the mars_orbiter.py program so that it scores the player and
keeps the best results in a displayable high-scores list. Highest scores go to
those achieving the lowest allowable orbit while using the least amount of
fuel in the least amount of time. For example, the fuel component of the
score could be the amount of remaining fuel; for the orbit component, the
maximum allowable altitude (120) minus the altitude of the circular orbit;

Figure 14-21: Mars Global Surveyor
mission patch

https://space.jpl.nasa.gov/art/patches.html
https://space.jpl.nasa.gov/art/patches.html

Mapping Mars with the Mars Orbiter 321

and for the time component, the inverse of the time taken to achieve the
circular orbit multiplied by 1,000. Add the three components together for
the final score.

Strategy Guide
Copy and edit the mars_orbiter.py program so it includes a pop-up strategy
guide, or help file, by incorporating some of the figures in “Astrodynamics
for Gamers” on page 286. For example, add a line to the instructions tell-
ing the player to press and hold the H key for help. This could bring up
and cycle through the images of different orbital maneuvers, such as the
Hohmann transfer or the One-Tangent Burn. Be sure to include comments
on the strengths and weaknesses of each technique and pause the game
while the guide is open.

Aerobraking
Aerobraking is a fuel-saving technique that uses atmospheric friction to
slow down a spacecraft (Figure 14-22). Copy and edit the mars_orbiter.py
program to include aerobraking. In the main() function, set the lowest
winning altitude to 70 miles and the lowest safe altitude to 60 miles. If
the satellite’s altitude is between 60 and 70 miles, reduce its velocity by
a small amount.

Aerobraking

Atmosphere

Initial
orbit

Orbit after
first aerobrake

Figure 14-22: Circularizing an orbit using the atmosphere
in place of a retrograde burn

Figure 14-23 is an example of using aerobraking in the game to cir-
cularize an elliptical orbit. The top of the atmosphere was set at 80 miles.
Aerobraking serves the same purpose as a retrograde burn at periapsis,
but you have to be cautious and patient and raise the orbit out of the
atmosphere before it becomes circular.

322 Chapter 14

Figure 14-23: Circularizing an orbit using aerobraking. Note the
low fuel consumption.

NASA used a similar technique to move the Mars Global Surveyor from
its elliptical capture orbit to its final mapping orbit. This process took many
months to accomplish, because they needed to protect the spacecraft from
overheating in the atmosphere.

Intruder Alert!
Copy and edit the mars_orbiter.py program so that a new planet object is
instantiated and flies across the screen, disrupting the satellite’s orbit with
its gravity. Make a new sprite to represent a comet or asteroid and launch
it at random intervals (but not too often!). Don’t apply Mars’s gravity()
method to the object so that it doesn’t enter Martian orbit, but apply the
new object’s gravity() method to the satellite. Play with the new object’s
mass so that it noticeably perturbs the satellite’s orbit from 100 or so pixels
away. Allow the object to pass Mars or the satellite without colliding.

Over the Top
The Mars Orbiter currently uses an equatorial orbit. This is for easy coding,
since you only need to rotate a single Mars image. But true mapping orbits
use polar orbits—oriented perpendicular to equatorial orbits—and pass
over the planet’s poles (Figure 14-24). As the planet rotates beneath the
orbit, the satellite can map its entire surface. With equatorial orbits, high
latitudes are essentially unmappable due to curvature of the planet’s sur-
face (see the dashed line in Figure 14-24).

Mapping Mars with the Mars Orbiter 323

Polar
orbit

Equatorial
orbit

Figure 14-24: Polar versus equatorial orbits; notional
north and south mapping limits for an equatorial orbit
are represented by the dashed line.

Copy and edit the mars_orbiter.py program so that the satellite follows a
polar orbit. All this involves is changing the Mars image. But you can’t use
a single top-down image anymore; the view will need to be perpendicular
to the planet’s axis of rotation. For a video example, see https://youtu.be/
IP2SDbhFbXk; for an animated gif of Mars, see http://gph.is/2caBKKS. You
can’t use animated gifs directly in pygame, but you can split out and use the
individual frames. Tools for splitting out frames can be found online, and
in the next chapter, you’ll use one of these products to extract images from
a video.

http://gph.is/2caBKKS
https://youtu.be/IP2SDbhFbXk
https://youtu.be/IP2SDbhFbXk

15
I m p r o v i n g Y o u r

A s t r o p h o t o g r a p h y w i t h
P l a n e t S t a c k i n g

If you’ve ever looked through a telescope at
Jupiter, Mars, or Saturn, you were probably

a little disappointed. The planets appeared
small and featureless. You wanted to zoom in

and crank up the magnification, but it didn’t work.
Anything bigger than about 200x magnification tends
to be blurry.

The problem is air turbulence, or what astronomers call seeing. Even
on a clear night, the air is constantly in motion, with thermal updrafts and
downdrafts that can easily blur the pinpoints of light that represent celestial
objects. But with the commercialization of the charge-coupled device (CCD)
in the 1980s, astronomers found a way to overcome the turbulence. Digital
photography permits a technique known as image stacking, in which many
photos—some good, some bad—are averaged together, or stacked, into
a single image. With enough photos, the persistent, unchanging features

326 Chapter 15

(like a planet’s surface) dominate transient features (like a stray cloud).
This allows astrophotographers to increase magnification limits, as well as
compensate for less-than-optimal seeing conditions.

In this chapter, you’ll use a third-party Python module called pillow to
stack hundreds of images of Jupiter. The result will be a single image with
a higher signal-to-noise ratio than any of the individual frames. You’ll also
work with files in different folders than your Python code and manipulate
both the files and folders using the Python operating system (os) and shell
utilities (shutil) modules.

Project #23: Stacking Jupiter
Large, bright, and colorful, the gas giant Jupiter is a favorite target of astro-
photographers. Even amateur telescopes can resolve its orange striping,
caused by linear cloud bands, and the Great Red Spot, an oval-shaped storm
so large it could swallow the Earth (see Figure 15-1).

T

NEB

SEB

GRS

NTB = Northern Temperate Belt

NEB = Northern Equatorial Belt

SEB = Southern Equatorial Belt

GRS = Great Red Spot

T = Turbulence Downwind of GRS

NTB

Figure 15-1: Jupiter as photographed by the Cassini spacecraft

Improving Your Astrophotography with Planet Stacking 327

Jupiter is a great subject for studying image stacking. Its linear cloud
bands and Great Red Spot provide the eye with calibration points for judg-
ing improvements in edge definition and clarity, and its relatively large size
makes it easy to detect noise.

Noise manifests itself as “graininess.” Each color band has its own arti-
facts, resulting in colored speckles across an image. The main sources of
noise are the camera (electronic readout noise and thermal signal) and
photon noise from the light itself, as a variable number of photons strike
the sensor over time. Noise artifacts are fortunately random in nature and
can be largely canceled out by stacking images.

T he Objec t i v e

Write programs that crop, scale, stack, and enhance images to create a clearer photo-
graph of Jupiter.

The pillow Module
To work with images, you’ll need a free third-party Python module called
pillow. It’s the successor project to the Python Imaging Library (PIL), which
was discontinued in 2011. The pillow module “forked” the PIL repository
and upgraded the code for Python 3.

You can use pillow on Windows, macOS, and Linux, and it supports
many image formats including PNG, JPEG, GIF, BMP, and TIFF. It offers
standard image-manipulation procedures, such as altering individual pixels,
masking, handling transparency, filtering and enhancing, and adding text.
But the real strength of pillow is its ability to edit many images with ease.

Installing pillow is easy with the pip tool (for more about pip, see
“Manipulating Word Documents with python-docx” on page 110). From the
command line, enter pip install pillow.

Most major Linux distributions include pillow in packages that
previously contained PIL, so you may already have pillow on your system.
Regardless of your platform, if PIL is already installed, you’ll need to
uninstall it before installing pillow. For more installation instructions, see
http://pillow.readthedocs.io/en/latest/installation.html.

Working with Files and Folders
In all the previous projects in this book, you’ve kept supporting files and
modules in the same folder as your Python code. This was handy for simple
projects, but not very realistic for broad use, and it’s certainly not good
when you’re dealing with the hundreds of image files you’ll generate in this
project. Fortunately, Python ships with several modules that can help with
this, like os and shutil. But first, I’ll briefly discuss directory paths.

http://pillow.readthedocs.io/en/latest/installation.html

328 Chapter 15

Directory Paths
The directory path is the address to a file or folder. It starts with a root
directory, which is designated with a letter (such as C:\) in Windows, and
a forward slash (/) in Unix-based systems. Additional drives in Windows
are assigned a different letter than C, those in macOS are placed under
/volume, and those in Unix under /mnt (for “mount”).

N o t e 	 I use the Windows operating system for the examples in this chapter, but you can
achieve the same result on macOS and other systems. And as is commonly done, I
use the terms directory and folder interchangeably here.

Pathnames appear differently depending on the operating system.
Windows separates folders with a backslash (\), while macOS and Unix sys-
tems use a forward slash (/). Also, in Unix, folder and file names are case
sensitive.

If you’re writing your program in Windows and type in pathnames with
backslashes, other platforms won’t recognize the paths. Fortunately, the
os.path.join() method will automatically ensure your pathname is suitable
for whatever operating system Python is running on. Let’s take a look at
this, and other examples, in Listing 15-1.

 >>> import os
 >>> os.getcwd()

'C:\\Python35\\Lib\\idlelib'
 >>> os.chdir('C:\\Python35\\Python 3 Stuff')

>>> os.getcwd()
'C:\\Python35\\Python 3 Stuff'

 >>> os.chdir(r'C:\Python35\Python 3 Stuff\Planet Stacking')
>>> os.getcwd()

 'C:\\Python35\\Python 3 Stuff\\Planet Stacking'
 >>> os.path.join('Planet Stacking', 'stack_8', '8file262.jpg')

'Planet Stacking\\stack_8\\8file262.jpg'
 >>> os.path.normpath('C:/Python35/Python 3 Stuff')

'C:\\Python35\\Python 3 Stuff'
 >>> os.chdir('C:/Python35')

>>> os.getcwd()
'C:\\Python35'

Listing 15-1: Working with Windows pathnames using the os module

After importing the os module for access to operating system–dependent
functionality , get the current working directory, or cwd . The cwd is assigned
to a process when it starts up; that is, when you run a script from your
shell, the cwd of the shell and the script will be the same. For a Python pro-
gram, the cwd is the folder that contains the program. When you get the
cwd, you’re shown the full path. Note that you must use extra backslashes in
order to escape the backslash characters used as file separators.

Next, you change the cwd using the os.chdir() method , passing it the
full path in quotes, using double backslashes. Then you get the cwd again
to see the new path.

Improving Your Astrophotography with Planet Stacking 329

If you don’t want to type the double backslash, you can enter an
r before the pathname argument string to convert it to a raw string .
Raw strings use different rules for backslash escape sequences, but even a
raw string can’t end in a single backslash. The path will still be displayed
with double backslashes .

If you want your program to be compatible with all operating systems,
use the os.path.join() method and pass it the folder names and filenames
without a separator character . The os.path methods are aware of the
system you’re using and return the proper separators. This allows for
platform-independent manipulation of filenames and folder names.

The os.path.normpath() method corrects separators for the system you
are using . In the Windows example shown, incorrect Unix-type separa-
tors are replaced with backslashes. Native Windows also supports use of the
forward slash and will automatically make the conversion .

The full directory path—from the root down—is called the absolute path.
You can use shortcuts, called relative paths, to make working with directories
easier. Relative paths are interpreted from the perspective of the current
working directory. Whereas absolute paths start with a forward slash or drive
label, relative paths do not. In the following code snippet, you can change
directories without entering an absolute path—Python is aware of the new
location because it is within the cwd. Behind the scenes, the relative path is
joined to the path leading to the cwd to make a complete absolute path.

>>> os.getcwd()
'C:\\Python35\\Python 3 Stuff'
>>> os.chdir('Planet Stacking')
>>> os.getcwd()
'C:\\Python35\\Python 3 Stuff\\Planet Stacking'

You can identify folders and save more typing with dot (.) and dot-dot
(..). For example, in Windows, .\ refers to the cwd, and ..\ refers to the
parent directory that holds the cwd. You can also use a dot to get the abso-
lute path to your cwd:

>>> os.path.abspath('.')
'C:\\Python35\\Python 3 Stuff\\Planet Stacking\\for_book'

Dot folders can be used in Windows, macOS, and Linux. For more on
the os module, see https://docs.python.org/3/library/os.html.

The Shell Utilities Module
The shell utilities module, shutil, provides high-level functions for working
with files and folders, such as copying, moving, renaming, and deleting.
Since it’s part of the Python standard library, you can load shutil simply by
typing import shutil. You’ll see example uses for the module in this chap-
ter’s code sections. Meanwhile, you can find the module’s documentation at
https://docs.python.org/3.7/library/shutil.html.

https://docs.python.org/3/library/os.html
https://docs.python.org/3.7/library/shutil.html

330 Chapter 15

The Video
Brooks Clark recorded the color video of Jupiter used in this project on a
windy night in Houston, Texas. It consists of a 101 MB .mov file with a run-
time of about 16 seconds.

The length of the video is intentionally short. Jupiter’s rotation period
is about 10 hours, which means still photos may blur with exposure times
of only a minute, and features you want to reinforce through stacking video
frames can change positions, greatly complicating the process.

To convert the video frames to individual images, I used Free Studio,
a freeware set of multimedia programs developed by DVDVideoSoft. The
Free Video to JPG Converter tool permits the capture of images at constant
time or frame intervals. I set the interval to sample frames across the full
length of the video, to improve the odds of capturing some images when
the air was still and the seeing good.

A few hundred images should be enough for stacking to show demon-
strable improvement. In this case, I captured 256 frames.

You can find the folder of images, named video_frames, online with the
book’s resources at https://www.nostarch.com/impracticalpython/. Download
this folder and retain the name.

An example frame from the video, in grayscale, is shown in Figure 15-2.
Jupiter’s cloud bands are faint and fuzzy, the Great Red Spot isn’t apparent,
and the image suffers
from low contrast, a
common side effect of
magnification. Noise
artifacts also give
Jupiter a grainy
appearance.

In addition to those
issues, the wind shook
the camera, and impre-
cise tracking caused the
planet to drift laterally
to the left-hand side of
the frame. You can see
an example of lateral
drift in Figure 15-3, in
which I have overlaid
five randomly chosen
frames with the black
background set to
transparent.

Movement isn’t
necessarily a bad thing,
because shifting the
image around can

Figure 15-2: Example frame from the video of Jupiter

Figure 15-3: An example of shake and drift in the Jupiter
video based on five randomly chosen frames

Improving Your Astrophotography with Planet Stacking 331

smooth defects associated with the CCD sensor surface, dust on the lens
or sensor, and so on. But the key assumption in image stacking is that the
images perfectly align so that persistent features, like Jupiter’s cloud bands,
reinforce each other as you average the images. For the signal-to-noise ratio
to be high, the images must be registered.

Image registration is the process of transforming data to the same coor-
dinate system so that it can be compared and integrated. Registration is
arguably the hardest part of image stacking. Astronomers typically use
commercial software—such as RegiStax, RegiStar, Deep Sky Stacker, or
CCDStack—to help them align and stack their astrophotos. You’ll get your
hands dirty, however, and do this yourself using Python.

The Strategy
The steps required to stack the images are as follows (the first one has
already been completed):

1.	 Extract images from video recording.

2.	 Crop images around Jupiter.

3.	 Scale cropped images to the same size.

4.	 Stack images into a single image.

5.	 Enhance and filter the final image.

The Code
You can incorporate all the steps into one program, but I chose to distrib-
ute them across three programs. This is because you generally want to stop
and check results along the way, plus you may want to run later processes,
such as enhancement, without having to completely rerun the whole work-
flow. The first program will crop and scale the images, the second will stack
them, and the third will enhance them.

The Cropping and Scaling Code
First, you need to register the images. For large, bright objects like the moon
and Jupiter, one approach in astrophotography is to crop each image so
that its four borders are tangent with the surface of the body. This removes
most of the sky and mitigates any shake and drift issues. Scaling the cropped
images will ensure they are all the same size and will smooth them slightly
to reduce noise.

You can download crop_n_scale_images.py from https://www.nostarch.com/
impracticalpython/. Keep it in the directory that holds the folder of captured
video frames.

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

332 Chapter 15

Importing Modules and Defining the main() Function

Listing 15-2 performs imports and defines the main() function that runs the
crop_n_scale_images.py program.

 import os
import sys

 import shutil
 from PIL import Image, ImageOps

def main():
 """Get starting folder, copy folder, run crop function, & clean folder."""
 # get name of folder in cwd with original video images

  frames_folder = 'video_frames'

 # prepare files & folders
  del_folders('cropped')
  shutil.copytree(frames_folder, 'cropped')

 # run cropping function
 print("start cropping and scaling...")

  os.chdir('cropped')
 crop_images()

  clean_folder(prefix_to_save='cropped') # delete uncropped originals

 print("Done! \n")

Listing 15-2: Imports modules and defines the main() function

Start by importing both the operating system (os) and system (sys) .
The os import already includes an import of sys, but this feature may go
away in the future, so it’s best to manually import sys yourself. The shutil
module contains the shell utilities described earlier . From the imaging
library, you’ll use Image to load, crop, convert, and filter images; you’ll also
use ImageOps to scale images . Note you must use PIL, not pillow, in the
import statement.

Start the main() function by assigning the name of the starting folder
to the frames_folder variable . This folder contains all the original images
captured from the video.

You’ll store the cropped images in a new folder named cropped, but
the shell utilities won’t create this folder if it already exists, so call the
del_folders() function that you’ll write in a moment . As written, this
function won’t throw an error if the folder doesn’t exist, so it can be run
safely at any time.

You should always work off a copy of original images, so use the
shutil​.copytree() method to copy the folder containing the originals to
a new folder named cropped . Now, switch to this folder  and call the
crop_images() function, which will crop and scale the images. Follow this
with the clean_folder() function, which removes the original video frames
that were copied into the cropped folder and are still hanging around .

crop_n_scale
_images.py,
part 1

Improving Your Astrophotography with Planet Stacking 333

Note that you use the parameter name when you pass the argument to
the clean_folder() function, since this makes the purpose of the function
more obvious.

Print Done! to let the user know when the program is finished.

Deleting and Cleaning Folders

Listing 15-3 defines helper functions to delete files and folders in crop_n
_scale_images.py. The shutil module will refuse to make a new folder if
one with the same name already exists in the target directory. If you want
to run the program more than once, you first have to remove or rename
existing folders. The program will also rename images once they have
been cropped, and you’ll want to delete the original images before you
start stacking them. Since there will be hundreds of image files, these
functions will automate an otherwise laborious task.

 def del_folders(name):
 """If a folder with a named prefix exists in directory, delete it."""

  contents = os.listdir()
  for item in contents:
  if os.path.isdir(item) and item.startswith(name):
  shutil.rmtree(item)

 def clean_folder(prefix_to_save):
 """Delete all files in folder except those with a named prefix."""

  files = os.listdir()
 for file in files:

  if not file.startswith(prefix_to_save):
  os.remove(file)

Listing 15-3: Defines functions to delete folders and files

Define a function called del_folders() for deleting folders . The only
argument will be the name of a folder you want to remove.

Next, list the contents of the folder , then start looping through the
contents . If the function encounters an item that starts with the folder
name and is also a directory , use shutil.rmtree() to delete the folder . As
you’ll see in a moment, a different method is used to delete a folder than to
delete a file.

N o t e 	 Always be careful when using the rmtree() method, as it permanently deletes fold-
ers and their contents. You can wipe much of your system, lose important documents
unrelated to Python projects, and break your computer!

Now, define a helper function to “clean” a folder and pass it the name
of files that you don’t want to delete . This is a little counterintuitive at first,
but since you only want to keep the last batch of images you’ve processed,
you don’t have to worry about explicitly listing any other files in the folder.
If the files don’t start with the prefix you provide, such as cropped, then they
are automatically removed.

crop_n_scale
_images.py,
part 2

334 Chapter 15

The process is similar to the last function. List the contents of the
folder  and start looping through the list. If the file doesn’t start with
the prefix you provided , use os.remove() to delete it .

Cropping, Scaling, and Saving Images

Listing 15-4 registers the frames captured from the video by fitting a box
around Jupiter and cropping the image to the box (Figure 15-4). This
technique works well with bright images on a field of black (see “Further
Reading” on page 343 for another example).

Original video frame Cropped image

Figure 15-4: Cropping the original video frame to Jupiter to align
the images

By cropping the images tightly around Jupiter, you resolve all of the
drift and shake issues.

Each cropped image is also scaled to a larger and consistent size and
smoothed slightly to reduce noise. The cropped and scaled images will be
kept in their own folder, which the main() function creates, later.

 def crop_images():
 """Crop and scale images of a planet to box around planet."""

  files = os.listdir()
  for file_num, file in enumerate(files, start=1):
  with Image.open(file) as img:
  gray = img.convert('L')
  bw = gray.point(lambda x: 0 if x < 90 else 255)
  box = bw.getbbox()

 padded_box = (box[0]-20, box[1]-20, box[2]+20, box[3]+20)
  cropped = img.crop(padded_box)

 scaled = ImageOps.fit(cropped, (860, 860),
 Image.LANCZOS, 0, (0.5, 0.5))
 file_name = 'cropped_{}.jpg'.format(file_num)

  scaled.save(file_name, "JPEG")

if __name__ == '__main__':
 main()

Listing 15-4: Crops initial video frames to a box around Jupiter and rescales

crop_n_scale
_images.py,
part 3

Improving Your Astrophotography with Planet Stacking 335

The crop_images() function takes no argument  but will ultimately
work on a copy—named cropped—of the folder containing the original
video frames. You made this copy in the main() function prior to calling
this function.

Start the function by making a list of the contents of the current
(cropped) folder . The program will number each image sequentially,
so use enumerate() with the for loop and set the start option to 1 . If you
haven’t used enumerate() before, it’s a handy built-in function that acts as an
automatic counter; the count will be assigned to the file_num variable.

Next, name a variable, img, to hold the image and use the open() method
to open the file .

To fit the borders of a bounding box to Jupiter, you need all the non-
Jupiter parts of an image to be black (0, 0, 0). Unfortunately, there are
stray, noise-related, nonblack pixels beyond Jupiter, and the edge of the
planet is diffuse and gradational. These issues result in nonuniform box
shapes, as shown in Figure 15-5. Fortunately, you can easily resolve these by
converting the image to black and white. You can then use this converted
image to determine the proper box dimensions for each color photo.

Figure 15-5: Irregularly sized cropped images due to problems defining the bounding box dimensions

To eliminate the noise effects that compromise the bounding-box tech-
nique, convert the loaded image to the “L” mode—consisting of 8-bit black
and white pixels—and name the variable gray, for grayscale . With this
mode there is only one channel (versus the three channels for RGB color
images), so you only need to decide on a single value when thresholding—
that is, setting a limit above or below which an action occurs.

Assign a new variable, called bw, to hold a true black-and-white image .
Use the point() method, used to change pixel values, and a lambda function

336 Chapter 15

to set any value below 90 to black (0) and all other values to white (255). The
threshold value was determined through trial and error. The point() method
now returns a clean image for fitting the bounding box (Figure 15-6).

Figure 15-6: Screen capture of one of the original video frames converted to
pure black and white

Now, call the Image module’s getbox() method on bw . This method
prunes off black borders by fitting a bounding box to the nonzero regions
of an image. It returns a tuple with the left, upper, right, and lower pixel
coordinates of the box.

If you use box to crop the video frames, you get an image with borders
tangent to Jupiter’s surface (see the middle image in Figure 15-7). This is
what you want, but it’s not visually pleasing. So, add some black padding
by assigning a new box variable, named padded_box, with its edges extended
20 pixels in all four directions (see the rightmost image in Figure 15-7).
Because the padding is consistent and applied to all images, it doesn’t com-
promise the results of cropping.

Original video frame Cropped image
(box)

Cropped with padding
(padded_box)

Figure 15-7: Initial crop tangent to Jupiter’s surface (box) and final crop with padding
(padded_box)

Improving Your Astrophotography with Planet Stacking 337

Continue by cropping each image with the crop() method . This
method takes padded_box as an argument.

To scale the image, use the ImageOps.fit() method. This takes the image,
a size as a pixel width-and-height tuple, a resampling method, a border
(0 = no border), and even cropping from the center, designated by the tuple
(0.5, 0.5). The pillow module has several algorithm choices for resizing
an image, but I chose the popular Lanczos filter. Enlarging an image tends
to reduce its sharpness, but Lanczos can produce ringing artifacts along
strong edges; this helps increase perceived sharpness. This unintended edge
enhancement can help the eye focus on features of interest, which are faint
and blurry in the original video frames.

After scaling, assign a file_name variable. Each of the 256 cropped
images will start with cropped_ and end with the number of the image,
which you pass to the replacement field of the format() method. End the
function by saving the file .

Back in the global scope, add the code that lets the program run as a
module or in stand-alone mode.

N o t e 	 I save the files using JPEG format because it is universally readable, handles grada-
tions in color well, and takes up very little memory. JPEG uses “lossy” compression,
however, which causes a tiny bit of image deterioration each time a file is saved; you
can adjust the degree of compression at the expense of storage size. In most cases,
when working with astrophotographs, you’ll want to use one of the many lossless for-
mats available, such as TIFF.

At this point in the workflow, you’ve cropped the original video frames
down to a box around Jupiter; then you scaled the cropped images to a
larger, consistent size (Figure 15-8).

Original video frame Cropped image Scaled image

Figure 15-8: Relative sizes of images after cropping and scaling

In the next section, you write the code that stacks the cropped and
scaled images.

The Stacking Code
The stack_images.py code takes the images produced by the last program and
averages them so that a single stacked image is produced. You can download
it from the book’s resources at https://www.nostarch.com​/impracticalpython/.
Keep it in the same folder as the crop_n_scale_images.py program.

https://www.nostarch.com/impracticalpython/

338 Chapter 15

Listing 15-5 imports modules, loads images, creates lists of color chan-
nels (red, blue, green), averages the channels, recombines the channels,
and creates and saves the final stacked image. It’s simple enough that we
won’t bother with a main() function.

 import os
from PIL import Image

print("\nstart stacking images...")

list images in directory
 os.chdir('cropped')

images = os.listdir()

loop through images and extract RGB channels as separate lists
 red_data = []

green_data = []
blue_data = []

 for image in images:
 with Image.open(image) as img:
 if image == images[0]: # get size of 1st cropped image
 img_size = img.size # width-height tuple to use later

  red_data.append(list(img.getdata(0)))
 green_data.append(list(img.getdata(1)))
 blue_data.append(list(img.getdata(2)))

 ave_red = [round(sum(x) / len(red_data)) for x in zip(*red_data)]
ave_blue = [round(sum(x) / len(blue_data)) for x in zip(*blue_data)]
ave_green = [round(sum(x) / len(green_data)) for x in zip(*green_data)]

 merged_data = [(x) for x in zip(ave_red, ave_green, ave_blue)]
 stacked = Image.new('RGB', (img_size))
 stacked.putdata(merged_data)

stacked.show()

 os.chdir('..')
stacked.save('jupiter_stacked.tif', 'TIFF')

Listing 15-5: Splits out and averages color channels, then recombines into a single image

Start by repeating some of the imports you used in the previous pro-
gram . Next, change the current directory to the cropped folder, which
contains the cropped and scaled images of Jupiter , and immediately
make a list of the images in the folder using os.listdir().

With pillow, you can manipulate individual pixels or groups of pixels,
and you can do this for individual color channels, such as red, blue, and
green. To demonstrate this, you’ll work on individual color channels to
stack the images.

Create three empty lists to hold the RGB pixel data , then start
looping through the images list . First, open the image. Then, get the
width and height of the first image, in pixels, as a tuple. Remember, in the

stack_images.py

Improving Your Astrophotography with Planet Stacking 339

previous program, you scaled all the small cropped images to a larger size.
You’ll need these dimensions later for creating the new stacked image, and
size automatically retrieves this info for you.

Now use the getdata() method to get the pixel data for the selected
image . Pass the method the index of the color channel you want: 0 for
red, 1 for green, and 2 for blue. Append the results to a data list, as appro-
priate. The data from each image will form a separate list in the data lists.

To average the values in each list, use list comprehension to sum the
pixels in all the images and divide by the total number of images . Note
that you use zip with the splat (*) operator. Your red_data list, for example,
is a list of lists, with each nested list representing one of the 256 image files.
Using zip with * unpacks the contents of the lists so that the first pixel in
image1 is summed with the first pixel in image2, and so on.

To merge the averaged color channels, use list comprehension with
zip . Next, create a new image, named stacked, using Image.new() . Pass
the method a color mode ('RGB') and the img_size tuple containing the
desired width and height of the image in pixels, which was obtained ear-
lier from one of the cropped images.

Populate the new stacked image using the putdata() method and pass it
the merged_data list . This method copies data from a sequence object into
an image, starting at the upper-left corner (0, 0). Display the final image
using the show() method. Finish by changing the folder to the parent direc-
tory and saving the image as a TIFF file named jupiter_stacked.tif .

If you compare one of the original video frames to the final stacked
image (jupiter_stacked.tif), as in Figure 15-9, you’ll see a clear improvement in
edge definition and the signal-to-noise ratio. This is best appreciated in color,
so if you haven’t run the program, take the time to download Figure 15-9.pdf
from the website. When the image is viewed in color, the benefits of the stack-
ing include smoother, “creamier” white bands, better-defined red bands, and
a more obvious Great Red Spot. There is still room for improvement, how-
ever, so next you’ll write a program to enhance the final stacked image.

Figure 15-9: An original video frame compared to final stacked image (jupiter_stacked.tif)

340 Chapter 15

N o t e 	 If the Great Red Spot looks pinkish to you in the stacked image, that’s because it is!
It fades from time to time, and many published pictures of Jupiter have exaggerated
colors due to processing, so this subtle coloration gets lost. This is probably for the best,
as “Great Pink Spot” just doesn’t have the same ring to it.

The Enhancing Code
You’ve successfully stacked all the video frames, but Jupiter is still crooked,
and its features are faint. You can further improve the stacked image using
filters, enhancers, and transforms found in pillow. As you enhance images,
you get further and further from the “ground truth” raw data. For this rea-
son, I chose to isolate the enhancement process in a separate program.

In general, the first steps after stacking are to enhance details, using
high-pass filters or an unsharp mask algorithm, and then to fine-tune
brightness, contrast, and color. The code will use pillow’s image enhance-
ment capability to apply these steps—though in a different order. You can
download the code as enhance_image.py from https://nostarch.com/impractical​
python/. Keep it in the same folder as the previous Python programs.

N o t e 	 The processing of astronomical images can be quite involved, and whole books have
been written on the subject. Some of the standard steps have been omitted in this work-
flow. For instance, the original video was not calibrated, and distortion effects due
to turbulence were not corrected. Advanced software, such as RegiStax or AviStack,
can prevent blurring by warping individual images so that distorted features, like the
edges of cloud bands, overlap properly in all images.

Listing 15-6 imports pillow classes and opens, enhances, and saves the
stacked image generated by the previous code. Because there are many
possible options for enhancing images, I chose to modularize this program
despite its small size.

 from PIL import Image, ImageFilter, ImageEnhance

 def main():
 """Get an image and enhance, show, and save it."""

  in_file = 'jupiter_stacked.tif'
 img = Image.open(in_file)

  img_enh = enhance_image(img)
 img_enh.show()
 img_enh.save('enhanced.tif', 'TIFF')

 def enhance_image(image):
 """Improve an image using pillow filters & transforms."""

  enhancer = ImageEnhance.Brightness(image)
  img_enh = enhancer.enhance(0.75) # 0.75 looks good

  enhancer = ImageEnhance.Contrast(img_enh)
 img_enh = enhancer.enhance(1.6)

enhance
_image.py

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

Improving Your Astrophotography with Planet Stacking 341

 enhancer = ImageEnhance.Color(img_enh)
 img_enh = enhancer.enhance(1.7)

  img_enh = img_enh.rotate(angle=133, expand=True)

  img_enh = img_enh.filter(ImageFilter.SHARPEN)

 return img_enh

if __name__ == '__main__':
 main()

Listing 15-6: Opens an image, enhances it, and saves it using a new name

The import is familiar except for the last two . These new modules,
ImageFilter and ImageEnhance, contain predefined filters and classes that can
be used to alter images with blurring, sharpening, brightening, smoothing,
and more (see https://pillow.readthedocs.io/en/5.1.x/ for a full listing of what’s
in each module).

Start by defining the main() function . Assign the stacked image to a
variable named in_file, then pass it to Image.open() to open the file . Next,
call an enhance_image() function and pass it the image variable . Show the
enhanced image and then save it as a TIFF file, which results in no deterio-
ration in image quality.

Now, define an enhancement function, enhance_image(), that takes an
image as an argument . To paraphrase the pillow documentation, all
enhancement classes implement a common interface containing a single
method, enhance(factor), that returns an enhanced image. The factor param-
eter is a floating-point value controlling the enhancement. A value of 1.0
returns a copy of the original; lower values diminish color, brightness, con-
trast, and so on; and higher values increase these qualities.

To change the brightness of an image, you first create an instance of
the ImageEnhance module’s Brightness class, passing it the original image .
Mimic the pillow docs and name this object enhancer. To make the final,
enhanced image, you call the object’s enhance() method and pass it the
factor argument . In this case, you decrease brightness by 0.25. The # 0.75
comment at the end of the line is a useful way to experiment with different
factors. Use this comment to store values you like; that way, you can remem-
ber and restore them if other test values don’t yield pleasing results.

Continue enhancing the image, moving to contrast . If you don’t
want to adjust the contrast manually, you can take a chance and use pillow’s
automatic contrast method. First, import ImageOps from PIL. Then, replace
the two lines starting with step  with the single line: img_enh = ImageOps​
.autocontrast(img_enh).

Next, punch up the color. This will help to make the Great Red Spot
more visible.

No one wants to look at a tilted Jupiter, so transform the image by
rotating it to a more “conventional” view, where the cloud bands are hori-
zontal and the Great Red Spot is to the lower right. Call the Image module’s

https://pillow.readthedocs.io/en/5.1.x/

342 Chapter 15

rotate() method on the image and pass it an angle, measured counter
clockwise in degrees, and have it automatically expand the output image
to make it large enough to hold the entire rotated image .

Now, sharpen the image. Even on high-quality images, sharpening
may be needed to ameliorate the interpolation effects of converting data,
resizing and rotating images, and so on. Although some astrophotography
resources recommend placing it first, in most image-processing workflows,
it comes last. This is because it is dependent on the final size of the image
(viewing distance), as well as the media being used. Sharpening can also
increase noise artifacts and is a “lossy” operation that can remove data—
things you don’t want to happen prior to other edits.

Sharpening is a little different from the previous enhancements, as you
use the ImageFilter class. No intermediate step is needed; you can build the
new image with a single line by calling the filter() method on the image
object and passing it the predefined SHARPEN filter . The pillow module has
other filters that help define edges, such as UnsharpMask and EDGE_ENHANCE, but
for this image, the results are indiscernible from SHARPEN.

Finish by returning the image and applying the code to run the pro-
gram as a module or in stand-alone mode.

The final enhanced image is compared to a random video frame and
the final stacked image in Figure 15-10. All the images have been rotated
for ease of comparison.

Individual image Enhanced stackStacked

Figure 15-10: A random video frame, the results of stacking 256 frames, and the final
enhanced image

You can see the improvement best when you view it in color. If you want
to see a color version prior to running the program, view or download
Figure 15-10.pdf from the website.

N o t e 	 If you’re familiar with pillow, you may be aware that you can use the Image.blend()
method to stack images with only a few lines of code. To my eye, however, the result-
ing image is noticeably noisier than that obtained by breaking out and averaging the
individual color channels, as you did with the stack_images.py program.

Improving Your Astrophotography with Planet Stacking 343

Summary
The final image in Figure 15-10 will never win any awards or be featured
in Sky & Telescope magazine, but the point was to take on a challenge. And
the result is a marked improvement over a single image captured from the
video. The colors are brighter, the cloud bands sharper, and the Great Red
Spot better defined. You can also make out the turbulent zone downwind of
the Great Red Spot (refer to Figure 15-1).

Despite starting with rough input, you were able to register the images,
remove noise through stacking, and enhance the final image using filters
and transforms. And all these steps were accomplished with the freely avail-
able pillow fork of the Python Imaging Library. You also gained experience
with the Python shutil and os modules, which you used to manipulate files
and folders.

For more advanced image processing, you can use OpenSource Computer
Vision (OpenCV), which you implement by installing and importing the
cv2 and NumPy modules. Other options involve matplotlib, SciPy, and NumPy. As
always with Python, there’s more than one way to skin a cat!

Further Reading
Automate the Boring Stuff with Python: Practical Programming for Total Beginners
(No Starch Press, 2015) by Al Sweigart includes several useful chapters on
working with files, folders, and pillow.

Online resources for using Python with astronomy include Python
for Astronomers (https://prappleizer.github.io/) and Practical Python for
Astronomers (https://python4astronomers.github.io/).

If you want to learn more about the OpenCV-Python library, you can
find tutorials at https://docs.opencv.org/3.4.2/d0/de3/tutorial_py_intro.html.
Note that knowledge of NumPy is a prerequisite for the tutorials and for writ-
ing optimized OpenCV code. Alternatively, SimpleCV lets you get started
with computer vision and image manipulation with a smaller learning curve
than OpenCV but only works with Python 2.

Astrophotography (Rocky Nook, 2014) by Thierry Legault is an indispens-
able resource for anyone interested in serious astrophotography. A com-
prehensive and readable reference, it covers all aspects of the subject, from
equipment selection through image processing.

“Aligning Sun Images Using Python” (LabJG, 2013), a blog by James
Gilbert, contains code for cropping the sun using the bounding-box tech-
nique. It also includes a clever method for realigning rotated images of
the sun using sunspots as registration points. You can find it at https://labjg​
.wordpress.com/2013/04/01/aligning-sun-images-using-python/.

A Google research team figured out how to use stacking to remove water-
marks from images on stock photography websites and how the websites
could better protect their property. You can read about it at https://research​
.googleblog.com/2017/08/making-visible-watermarks-more-effective.html.

https://labjg.wordpress.com/2013/04/01/aligning-sun-images-using-python/
https://labjg.wordpress.com/2013/04/01/aligning-sun-images-using-python/
https://research.googleblog.com/2017/08/making-visible-watermarks-more-effective.html
https://research.googleblog.com/2017/08/making-visible-watermarks-more-effective.html

344 Chapter 15

Challenge Project: Vanishing Act
Image-stacking techniques can do more than just remove noise—they
can remove anything that moves at a photo site, including people. Adobe
Photoshop, for example, has a stack script that makes nonstationary
objects magically vanish. It relies on a statistical average known as the
median, which is simply the “middle” value in a list of numbers arranged
from smallest to largest. The process requires multiple photos—prefer-
ably taken with a tripod-mounted camera—so that the objects you want
to remove change positions from one image to the next, while the back-
ground remains constant. You typically need 10 to 30 pictures taken about
20 seconds apart, or similarly spaced frames extracted from a video.

With the mean, you sum numbers and divide by the total. With the
median, you sort numbers and choose the middle value. In Figure 15-11, a
row of five images is shown with the same pixel location outlined in each.
In the fourth image, a blackbird has flown by and ruined the splendid
white background. If you stack with the mean, the bird’s presence lingers.
But do a median stack on the images—that is, sort the red, green, and blue
channels and take the middle values—and you get the background value
for each channel (255). No trace of the bird remains.

(12, 13, 11)(255, 255, 255) (255, 255, 255) (255, 255, 255) (255, 255, 255)

Red median =
Green median =

Blue median =

Red mean =
Green mean =

Blue mean =

(255 + 255 + 255 + 12 + 255) / 5 = 206
(255 + 255 + 255 + 13 + 255) / 5 = 207
(255 + 255 + 255 + 11 + 255) / 5 = 206

(12, 255, 255, 255, 255) = 255
(13, 255, 255, 255, 255) = 255
(11, 255, 255, 255, 255) = 255

Figure 15-11: Five white images with the same pixel highlighted and its RGB values
displayed. Median-stacking removes the black pixel.

When you average using the median, spurious values get pushed to the
ends of the list. This makes it easy to remove outliers, such as satellites or
airplanes in astrophotos, so long as the number of images containing the
outlier is less than half the number of images.

Armed with this knowledge, write an image-stacking program that will
remove unwanted tourists from your vacation happy snaps. For testing, you
can download the moon_cropped folder from the website, which contains
five synthetic images of the moon, each “ruined” by a passing plane (see
Figure 15-12).

Improving Your Astrophotography with Planet Stacking 345

moon_1.png moon_2.png moon_3.png moon_4.png moon_5.png

Figure 15-12: Synthetic moon photos for testing the median averaging approach

Your final stacked image should contain no evidence of the plane
(Figure 15-13).

Figure 15-13: Result of stacking the images in the
moon_cropped folder using median averaging

As this is a challenge project, no solution is provided.

16
F i n d i n g F r a u d s w i t h

B e n f o r d’ s L a w

Prior to the invention of electronic calcula-
tors, if you needed to take the log of a num-

ber, you looked it up in a table. Astronomer
Simon Newcomb used such tables, and in 1881,

he noticed that the pages in the front, used for num-
bers beginning with the lowest digits, were more worn
than those in the back. From this mundane observation, he realized that—
at least for measurements and constants in nature—the leading digits were
much more likely to be small than large. He published a short article about
it and moved on.

For decades, this statistical curiosity, like Tolkien’s One Ring, “passed
out of all knowledge.” Then, in 1938, physicist Frank Benford rediscovered
and confirmed the phenomenon by collecting over 20,000 samples of real-
world numbers, using data sources as diverse as the measurements of rivers,
street addresses, numbers contained in Reader’s Digest magazine, molecular
weights, baseball statistics, death rates, and more. As the person who popu-
larized this scientific discovery, he got all the credit.

348 Chapter 16

According to Benford’s law, also known as the first-digit law, the frequency
of occurrence of the leading digits in naturally occurring numerical distri-
butions is predictable and nonuniform. In fact, a given number is six times
more likely to start with a 1 than a 9! This is very counterintuitive, as most
people would expect a uniform distribution, with each number having a one
in nine (11.1 percent) chance of occupying the first slot. Due to this cogni-
tive disconnect, Benford’s law has become a useful tool for fraud detection
in financial, scientific, and election data.

In this chapter, you’ll write a Python program that compares real-life
datasets to Benford’s law and determines whether they appear fraudulent
or not. You’ll also dust off matplotlib one last time to add a useful visual
component to the analysis. For a dataset, you’ll use votes cast in the conten-
tious 2016 US presidential election.

Project #24: Benford’s Law of Leading Digits
Figure 16-1 depicts a bar chart of the leading significant digits in a set
of numbers following Benford’s law. Surprisingly, scale doesn’t matter.
A tabulation of the length of Australian roads will follow Benford’s law
whether it is in miles, kilometers, or cubits! As a statistical principle, it is
scale invariant.

30.1%

17.6%

12.5%

9.7%

7.9%

6.7%

5.8%

5.1%

4.6%

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%

1

2

3

4

5

6

7

8

9

Figure 16-1: The frequency of occurrence of leading digits according to Benford’s law

It took mathematicians about a hundred years to come up with an
explanation for Benford’s law that they found satisfactory. For the rest of
us, let’s just say that there are more little things in the universe than large
things. Frank Benford used the analogy that owning one acre of land is
easier than owning nine acres. In fact, you can closely duplicate the fre-
quency produced by Benford’s law by simply assuming that there are twice
as many 1s as 2s, three times as many 1s as 3s, and so on. You just take

Finding Frauds with Benford’s Law 349

the inverse of each of the nine digits (1 / d) and divide by the sum of
all the inverses (2.83). Then multiply the results by 100 to get the percent-
age (see Figure 16-2).

30.1%

17.6%

12.5%

9.7%

7.9%

6.7%

5.8%

5.1%

4.6%

35.3%

17.7%

11.8%

8.8%

7.1%

5.9%

5.0%

4.4%

3.9%

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%

1

2

3

4

5

6

7

8

9

Benford’s law

1/1st digit approximation

Figure 16-2: Comparison of Benford’s law with an approximation proportional to the inverse of the first digit

Because of the size relationships just discussed, Benford’s law can be
visualized with a logarithmic scale, which is used to graph data that are related
according to an exponential relationship. In semilogarithmic (“semilog”)
plots, one variable tends to be restricted, like the set of leading digits (1–9),
while the other covers a wide range of values that includes several orders of
magnitude.

On semilog graph paper, the horizontal x-axis values are log values,
and the vertical y-axis values, represented by horizontal lines, are not (see
Figure 16-3). On the x-axis, the horizontal divisions aren’t regular, and this
nonlinear pattern repeats with powers of 10. For every decade on the log
paper, such as 1 through 10 or 10 through 100, the width of the divisions
between numbers is proportional to the length of the bars in Figure 16-1.
For example, the distance between the 1 and 2 in Figure 16-3 is 30.1 per-
cent of the distance between 1 and 10. As one author put it, you could
derive Benford’s law by simply throwing darts at a piece of log paper!

1 2 3 4 5 6 7 8 9 10 20 30 40 50 100

Figure 16-3: Example of two-decade semilogarithmic graph paper

For a collection of numeric data to conform to Benford’s law, certain
conditions have to be met. The numbers need to be random and not
assigned, with no imposed minimums or maximums. The numbers should

350 Chapter 16

cover several orders of magnitude, and the dataset should be large; recom-
mendations in the literature call for 100 to 1,000 samples as a minimum,
though Benford’s law has been shown to hold true for datasets containing
as few as 50 numbers. Examples of distributions that won’t follow Benford’s
law are the heights of professional basketball players, US telephone numbers
(for which only the last four digits are truly random), prices influenced by
psychological barriers ($1.99 versus $2.00), and medical copayments.

Applying Benford’s Law
Most financial and accounting data conform to naturally occurring num-
bers and are thus subject to Benford’s law. For example, assume you own
a stock mutual fund with a value of $1,000. For your fund to reach $2,000
in value, it would have to double by growing 100 percent. To increase from
$2,000 to $3,000, it would only need to grow by 50 percent. For the first
digit to be a 4, it needs to grow by another 33 percent. As Benford’s law pre-
dicts, for the leading digit 1 to become 2, there needs to be more growth
than for the 3 to become 4, and so on. Because a Benford distribution is a
“distribution of distributions,” financial datasets tend to conform, as they
result from combining numbers—though exceptions do occur.

Because people are generally unaware of Benford’s law, they don’t
account for it when falsifying numerical records. This gives forensic accoun-
tants a powerful tool for quickly identifying datasets that may be fraudulent.
In fact, comparisons to Benford’s law are legally admissible as evidence in
US criminal cases at the federal, state, and local levels.

In the 1993 case of State of Arizona v. Nelson, the accused diverted nearly
$2 million to bogus vendors in an attempt to defraud the state. Despite tak-
ing care to make the fake checks look legitimate, the first-digit distribution
clearly violated Benford’s law (Figure 16-4), leading to a conviction.

1 2 3 4 5 6 7 8 9

Benford AZ v. Nelson

Figure 16-4: Comparison of the frequency of first digits in fraudulent checks to
anticipated Benford’s law frequency, State of Arizona v. Wayne James Nelson
(CV92-18841)

Finding Frauds with Benford’s Law 351

Benford’s law is also useful for internal business audits. Imagine a
case where any travel and entertainment expenses over $10,000 must be
approved by the company vice president. This type of financial threshold
can tempt employees to do things like split invoices to game the system.
Figure 16-5 is based on a group of expenses ranging from $100 to $12,000,
where all values greater than $9,999 were split into two equal halves. As you
can guess, there is a spike in first-digit frequencies around 5 and 6, in clear
violation of Benford’s law.

1 2 3 4 5 6 7 8 9

Benford Invoices

Figure 16-5: Splitting invoices over $9,999 for a dataset ranging from $100 to
$12,000 violates Benford’s law.

On a grander scale, Benford’s law has revealed irregularities in the
financial data—such as revenue numbers—of large corporations. An
example from Enron, which practiced institutionalized accounting fraud,
is shown in Figure 16-6. Enron’s bankruptcy in 2001 was the largest in his-
tory at the time, and it resulted in the jailing of several top executives. The
scandal also brought about the dissolution of Arthur Andersen, a “Big Five”
accounting firm and one of the world’s largest multinational corporations.

1 2 3 4 5 6 7 8 9

Benford Enron 2000 financial data

Figure 16-6: Frequency of first digits from Enron’s year 2000 financial data versus
anticipated frequency based on Benford’s law (after the Wall Street Journal)

352 Chapter 16

Obviously, Benford’s law works best for fraud detection when the
criminals are unaware of it. If you know how the law works, you can fool it,
which we’ll do in a practice project at the end of this chapter. As a result,
you can use Benford’s law to flag datasets that might be fraudulent, but you
can’t use it to prove the opposite.

Performing the Chi-Square Test
Auditors and investigators use multiple statistical methods to verify that a
dataset obeys Benford’s law. In this project, you’ll use the chi-square goodness-
of-fit test, which is a commonly used method for determining whether an
empirical (observed) distribution differs significantly from a theoretical
(expected) distribution. A significance level, or p-value, is used as the dis-
criminator. The most common significance level is 0.05, but other common
ones include 0.01 and 0.10. A significance level of 0.05 indicates a 5 percent
risk of erroneously concluding that a difference exists when it doesn’t.

Here are the steps for performing a chi-square goodness-of-fit test:

1.	 Find the degrees of freedom (df), defined as the number of categories (k)
minus 1:

df = k – 1

For Benford’s law, the categorical levels are the first digits (1–9),
so df = 8.

2.	 Calculate the expected frequency count at each level by multiplying the
sample size by the theoretical proportions at each level:

Ei = npi

where E is the expected frequency at the ith level, n is the sample size,
and p is the theoretical probability at the ith level. For 1,000 samples,
the number of samples expected to start with 1 in a Benford’s law distri-
bution would be 1,000 × 0.301 = 301 (see Figure 16-1).

3.	 Calculate the chi-square random variable (X 2), also known as the test
statistic, which will allow you to judge whether the two distributions are
the same:

=
i = 1

n

X (Oi – Ei)2
2
df Ei

where O is the observed frequency count for the ith level of the categor-
ical variable, E is the expected frequency count for the ith level of the
categorical variable, and df represents the degrees of freedom.

4.	 Refer to the chi-square distribution table (Table 16-1), reading across the
row corresponding to the calculated degrees of freedom. If the test
statistic is less than the value shown in the p -value column considered
significant, then you can’t reject the hypothesis that the observed and
theoretical distributions are the same.

Finding Frauds with Benford’s Law 353

Table 16-1: Chi-Square Distribution Table

Degrees of
freedom

Probability of exceeding the critical value

0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01

1 0.000 0.004 0.016 0.102 0.455 1.32 2.71 3.84 6.63

2 0.020 0.103 0.211 0.575 1.386 2.77 4.61 5.99 9.21

3 0.115 0.352 0.584 1.212 2.366 4.11 6.25 7.81 11.34

4 0.297 0.711 1.064 1.923 3.357 5.39 7.78 9.49 13.28

5 0.554 1.145 1.610 2.675 4.351 6.63 9.24 11.07 15.09

6 0.872 1.635 2.204 3.455 5.348 7.84 10.64 12.59 16.81

7 1.239 2.167 2.833 4.255 6.346 9.04 12.02 14.07 18.48

8 1.647 2.733 3.490 5.071 7.344 10.22 13.36 15.51 20.09

9 2.088 3.325 4.168 5.899 8.343 11.39 14.68 16.92 21.67

10 2.558 3.940 4.865 6.737 9.342 12.55 15.99 18.31 23.21

Not significant Significant

In Table 16-2, the critical value for a p -value of 0.05—at 8 degrees of
freedom—is 15.51. If your calculated test statistic is less than 15.51, then the
corresponding p -value is greater than 0.05, and you would conclude that
there is no statistically significant difference between the observed distribution
and the one predicted by Benford’s law. The p -value here is the probability
that a test statistic having 8 degrees of freedom is more extreme than 15.51.

Note that you should perform the chi-square test on counts. If your data
is in percentages, averages, ratios, or so on, then you’ll need to convert the
values to counts before running the test.

T he Objec t i v e

Write a Python program that loads numerical data, records the frequency of occurrence
of the first digits, compares these to Benford’s law using the chi-square goodness-of-fit
test, and presents the comparison in both tabular and graphical form.

The Dataset
The 2016 US presidential election was rife with allegations of voter fraud.
Most famously, the Russians were accused of supporting Donald Trump,
and the Democratic National Committee was accused of favoring Hillary
Clinton over Bernie Sanders in that party’s nomination process. President
Trump also alleged that 5 to 6 million people voted illegally, and in May
2017, he signed an executive order that launched a commission to review
voter fraud and voter suppression.

For this project, you’ll use a dataset of voting records from the 2016
presidential election. This consists of the final by-county votes for the

354 Chapter 16

102 counties in the state of Illinois, which was won by Hillary Clinton.
Starting in June 2016, the Illinois Voter Registration System database was
the victim of a malicious cyberattack of unknown origin. Illinois election
officials confirmed that hackers had accessed thousands of records but
apparently didn’t alter any data.

There were a surprising number of candidates on the Illinois ballot for
president, so the dataset has been parsed to include only Hillary Clinton,
Donald Trump, Gary Johnson, and Jill Stein. Votes for these candidates
have been lumped together in a 408-line text file, with these first 5 lines:

962
997
1020
1025
1031

You can find the complete tally of candidates and votes online at https://
www.elections.il.gov/ElectionInformation/DownloadVoteTotals.aspx.

For this project, you need only the votes, which can be downloaded
from https://www.nostarch.com/impracticalpython/ as Illinois_votes.txt. You’ll
need to keep this file in the same folder as your Python code.

The Strategy
Let’s pretend you’re an investigator looking into allegations of voter fraud in
the 2016 presidential election and you’ve been assigned the state of Illinois.
Before doing a deep dive into the data, you’ll want to flag any obvious
anomalies. Benford’s law can’t help you determine whether people are vot-
ing illegally, but it’s a good place to start for detecting vote tampering—that
is, changing votes after they are cast.

In cases like this, the ability to communicate the results is every bit as
important as the quantitative analysis. Voting commissions don’t just include
experts but also many laypeople with limited knowledge of statistics. And
juries probably will not include a single expert. To convince yourself—and
others—that the vote counts are valid (or not), you’ll want to show multiple
comparisons, like a table, a graph, and the quantitative chi-square variable
(test statistic).

The individual steps involved in the analysis lend themselves well to
encapsulation in functions. So, instead of pseudocode, let’s look at what
functions you may need:

load_data()  Load the data as a list.

count_first_digits()  Tabulate the first digits in each county’s observed
vote total.

get_expected_counts()  Determine the counts for each first digit as pre-
dicted by Benford.

chi_square_test()  Run a chi-square goodness-of-fit test on the observed
versus expected counts.

https://www.elections.il.gov/ElectionInformation/DownloadVoteTotals.aspx
https://www.elections.il.gov/ElectionInformation/DownloadVoteTotals.aspx

Finding Frauds with Benford’s Law 355

bar_chart()  Generate a bar chart to compare observed first-digit per-
centages to those expected.

main()  Get the dataset filename, call the functions, and print the
statistics.

The Code
You’ll use the benford.py code in this section to investigate voter fraud, but
it’s flexible enough to be used on any dataset where categorical values
have been counted, such as medical test results, income tax revenues, or
customer refunds. Non-fraud-related applications are also possible, such
as detecting process inefficiencies caused by a large number of low-value
transactions; problems with data collection and handling, such as missing
data, truncated values, or typos; and bias in measurement strategies or sur-
veys, such as favoring best-case or worst-case sampling.

You can download the code from https://www.nostarch.com/impractical​
python/. You’ll also need the Illinois_votes.txt text file described in “The
Dataset” on page 353.

Importing Modules and Loading Data
Listing 16-1 imports modules and defines a function to load data. For this
project, you’ll use data in the form of a tab-delimited text file exported
from Microsoft Excel, which you load as a list of strings.

import sys
import math

 from collections import defaultdict
 import matplotlib.pyplot as plt

Benford's law percentages for leading digits 1-9
 BENFORD = [30.1, 17.6, 12.5, 9.7, 7.9, 6.7, 5.8, 5.1, 4.6]

 def load_data(filename):
 """Open a text file & return a list of strings."""

  with open(filename) as f:
 return f.read().strip().split('\n')

Listing 16-1: Imports modules and defines a function for loading data

Most of the imports should be familiar at this point. The collections
module provides specialized alternatives to standard Python containers like
sets, tuples, lists, and dictionaries . For counting first-digit frequencies,
you’ll need defaultdict, which is a dict subclass that calls a factory function
to supply missing values. With defaultdict, you can build a dictionary using
a loop, and it will automatically create new keys rather than throwing an
error. It returns a dictionary object.

The final import is for plotting with matplotlib . For more informa-
tion on matplotlib and how to install it, see “The Probability-of-Detection
Code” on page 194.

benford.py, part 1

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

356 Chapter 16

Now, assign a variable to a list containing the Benford’s law percent-
ages, ordered from 1 to 9 . Then, define a function to read a text file and
return a list . As you’ve done before, use with, as it will automatically close
the file when done .

Counting First Digits
Listing 16-2 defines a function to count the first digits and store the results
in a dictionary data structure. The final counts, and the frequency of each
count as a percentage, are returned as lists to use in subsequent functions.
The function will also run quality control on the data.

 def count_first_digits(data_list):
 """Count 1st digits in list of numbers; return counts & frequency."""

  first_digits = defaultdict(int) # default value of int is 0
  for sample in data_list:
  if sample == '':

 continue
 try:
 int(sample)
 except ValueError as e:
 print(e, file=sys.stderr)
 print("Samples must be integers. Exiting", file=sys.stderr)
 sys.exit(1)

  first_digits[sample[0]] += 1
 # check for missing digits
 keys = [str(digit) for digit in range(1, 10)]
 for key in keys:
 if key not in first_digits:
 first_digits[key] = 0

  data_count = [v for (k, v) in sorted(first_digits.items())]
 total_count = sum(data_count)
 data_pct = [(i / total_count) * 100 for i in data_count]

  return data_count, data_pct, total_count

Listing 16-2: Defines a function to count first digits and return counts and frequency

The count_first_digits() function takes the list of strings returned from
the load_data() function as an argument . You’ll call it in main().

Start a dictionary, named first_digits, using defaultdict . This step
just sets up the dictionary for later population. The first argument for
defaultdict is any callable (with no arguments). In this case, the callable is
the type constructor for int, as you want to count integers. With defaultdict,
whenever an operation encounters a missing key, a function named default​
_factory is called with no arguments, and the output is used as the value.
Nonexistent keys get the value returned by default_factory.

Now start a for loop and go through the samples in data_list . If the
sample is empty—that is, if the text file contains a blank line —skip it
with continue. Otherwise, use try to convert the sample to an integer. If an
exception occurs, the sample isn’t a proper count value, so let the user know
and exit the program. In the following output example, the input file con-
tains a float value (0.01) and the main() function prints the filename.

benford.py, part 2

Finding Frauds with Benford’s Law 357

Name of file with COUNT data: bad_data.txt
invalid literal for int() with base 10: '0.01'
Samples must be integers. Exiting.

If the sample passes the test, make its first element (leading digit) the
dictionary key and add 1 to the value . Because you used defaultdict with
int, the key is initially assigned a default value of 0 on the fly.

Like all Python dictionaries, first_digits is unordered. To compare the
counts to a Benford’s law distribution, you need the keys listed in numeri-
cal order, so use list comprehension and sorted to make a new version of
first_digits, named data_count . This will yield the values sorted by key, as
shown here:

[129, 62, 45, 48, 40, 25, 23, 21, 15]

Next, sum the counts, then make a new list and convert the counts to
percentages. End the function by returning these two lists and the summed
counts . Because the counts in the lists are sorted from 1 to 9, you don’t
need the associated first digit—it is implicit in the ordering.

Getting the Expected Counts
Listing 16-3 defines the get_expected_counts() function that takes the observed
data and calculates what the expected counts should be for the leading dig-
its, based on Benford’s law. These expected counts are returned as a list that
you’ll use later with the chi-square goodness-of-fit test to see how well the
observed data conform to Benford’s law.

 def get_expected_counts(total_count):
 """Return list of expected Benford's law counts for a total sample count."""

  return [round(p * total_count / 100) for p in BENFORD]

Listing 16-3: Defines a function to calculate expected Benford’s law counts for a dataset

The argument for this function is the summed count that you returned
from the count_first_digits() function in Listing 16-2 . To get the counts
you would expect for Benford’s law, you’ll need to use the frequency prob-
ability of each digit, so convert the percentages in the BENFORD list by dividing
by 100. Then multiply the total_count variable by this probability. You can
do all this with list comprehension as part of the return statement .

Determining Goodness of Fit
Listing 16-4 defines a function to implement the chi-square test described
in “Performing the Chi-Square Test” on page 352. This test calculates the
goodness of fit of the observed counts to the expected counts predicted
by Benford’s law. The function will first calculate the chi-square test statis-
tic, then compare it to the chi-square distribution table entry at a p -value
of 0.05 for 8 degrees of freedom. Based on the comparison, the function
returns either True or False.

benford.py, part 3

358 Chapter 16

 def chi_square_test(data_count, expected_counts):
 """Return boolean on chi-square test (8 degrees of freedom & P-val=0.05)."""

  chi_square_stat = 0 # chi-square test statistic
  for data, expected in zip(data_count, expected_counts):
  chi_square = math.pow(data - expected, 2)

 chi_square_stat += chi_square / expected
  print("\nChi Squared Test Statistic = {:.3f}".format(chi_square_stat))

 print("Critical value at a P-value of 0.05 is 15.51.")

  return chi_square_stat < 15.51

Listing 16-4: Defines a function to measure goodness of fit of observed data versus
Benford’s law

The chi-square test works on counts, so the function needs the lists
of data counts and expected counts that the count_first_digits() and get​
_expected_counts() functions returned . Assign a variable, named chi​_square​
_stat, to hold the chi-square test statistic, and assign it a value of 0 .

Use zip to loop through the nine values in data_count and expected​
_counts; zip will pair the first item in one list with the first item in the sec-
ond list, and so on . To calculate the chi-square statistic, first subtract the
counts for each digit and square the result . Then, divide this value by
the expected count for the digit and add the result to the chi_square_stat
variable. Then print the result to three decimal places .

Return the boolean test for the chi_square_stat variable versus 15.51,
which is the critical value corresponding to a p -value of 0.05 at 8 degrees
of freedom (see Table 16-1) . If chi_square_stat is less than this value, the
function will return True; otherwise, it will return False.

Defining the Bar Chart Function
Listing 16-5 defines the first part of a function to display the observed
count percentages as a matplotlib bar chart. You used similar code in
Chapter 12 to graph the outcomes of the retirement nest-egg simulations.
This function will also plot the Benford’s law percentages as red dots,
so you can visually estimate how well the observed data fit the expected
distribution.

The matplotlib website contains many code examples for building a
wide variety of plots. This code is partly based on the demo example at
https://matplotlib.org/examples/api/barchart_demo.html.

 def bar_chart(data_pct):
 """Make bar chart of observed vs expected 1st-digit frequency (%)."""

  fig, ax = plt.subplots()

  index = [i + 1 for i in range(len(data_pct))] # 1st digits for x-axis

 # text for labels, title, and ticks
  fig.canvas.set_window_title('Percentage First Digits')
  ax.set_title('Data vs. Benford Values', fontsize=15)
  ax.set_ylabel('Frequency (%)', fontsize=16)

benford.py, part 4

benford.py, part 5

https://matplotlib.org/examples/api/barchart_demo.html

Finding Frauds with Benford’s Law 359

  ax.set_xticks(index)
 ax.set_xticklabels(index, fontsize=14)

Listing 16-5: Defines the first part of the bar_chart() function

Define the bar_chart() function that takes as an argument the list of fre-
quencies—as percentages—of the first digits in the observed data . The
plt.subplots() function returns a tuple of figure and axes objects; unpack
this tuple into variables named fig and ax .

Next, use list comprehension to make a list of digits from 1 to 9 . This
index variable will define the x-axis location of each of the nine vertical bars
in the chart.

Set up the plot’s title, labels, and so on. Name the plot window 'Percentage
First Digits' , then display a title within the plot . I am using generic
titles, but you can customize these to be more specific. Use the fontsize
keyword argument to set the text size to 15. Note that the window title is an
attribute of fig, but the other labels will be attributes of ax.

Use set_ylabel() to name the y-axis “Frequency (%)” , then set the x-axis
tick marks based on the index variable . The tick labels will be the num-
bers 1 through 9, so use the index variable again and set the font size to 14.

Completing the Bar Chart Function
Listing 16-6 completes the bar_chart() function by defining the bars, anno-
tating the top of each bar with its frequency value, and plotting the Benford
distribution values as red-filled circles.

 # build bars
  rects = ax.bar(index, data_pct, width=0.95, color='black', label='Data')

 # attach a text label above each bar displaying its height
  for rect in rects:
  height = rect.get_height()
  ax.text(rect.get_x() + rect.get_width()/2, height,

 '{:0.1f}'.format(height), ha='center', va='bottom',
 fontsize=13)

 # plot Benford values as red dots
  ax.scatter(index, BENFORD, s=150, c='red', zorder=2, label='Benford')

 # Hide the right and top spines & add legend
  ax.spines['right'].set_visible(False)

 ax.spines['top'].set_visible(False)
  ax.legend(prop={'size':15}, frameon=False)

  plt.show()

Listing 16-6: Completes the function for generating a bar chart

Name a variable, called rects, for rectangles, and use it to hold the
bars for the bar chart . You generate these with the bar() method, which
returns a container with all the bars. Pass it the index variable and list of

benford.py, part 6

360 Chapter 16

frequency counts as percentages, set the width of each bar to 0.95, fill them
with black, and set the label argument to 'Data'. The last parameter is a very
handy way to autogenerate a legend. You’ll take advantage of this near the
end of the function.

I’m a fan of plotting the actual bar value just above the bar so you
don’t have to squint over at the y-axis and try to guess it. To do this, start
by looping through each bar (rect) in rects  and get its height , which
is its y-axis value. Then, call the ax object’s text() method  and pass it
the x-location of the left-hand side of the bar—obtained with the get_x()
method—and add to it half the width of the bar in order to center the
label over the bar. Because you use the get_width() method, you only have
to assign the bar width once, which you did in step . Next comes the bar
height—formatted to one decimal place—followed by the horizontal and
vertical alignments. Set these to the center and the bottom of the text
bounding box, respectively. Finish by assigning the text size.

Now, start building the matplotlib “markers”—in this case, dots—that
will flag the location of the Benford distribution frequencies for each first
digit. Do this using the scatter() method, which builds scatterplots .

The first two arguments for scatter() are the x-y locations for each
marker, represented by consecutive pairs from the index and BENFORD lists.
Next is the marker size, set at 150, followed by a color. Both red and DodgerBlue
work well. You want the markers to post on top of the bars, so set the zorder
to 2. Elements in the figure are referred to as matplotlib “artists,” and artists
with higher zorder values will plot over those with lower values. Finish with
the label argument used to make a legend.

The next two statements are for aesthetics. By default, matplotlib will
draw a box around the interior of the plot, and the upper border may inter-
fere with the labels posted at the top of each bar. So, remove the top and
right borders by setting their visibility to False .

Use legend() to build
a legend for the plot .
This will work with no
arguments, but set its size
property to 15 and turn off
the frame around the leg-
end for an arguably more
attractive result. End by
calling plt.show() to display
the chart . An example
bar chart is shown in
Figure 16-7.

In the main() function,
you will display additional
information as text in the
interpreter window. This
will include the value of
the chi-square test statistic.

Figure 16-7: Example output of the bar_chart()
function

Finding Frauds with Benford’s Law 361

Defining and Running the main() Function
Listing 16-7 defines the main() function and runs the program as a module
or stand-alone. Since most of the work is done in the individual functions,
main() “mainly” calls these functions and prints some statistics.

def main():
 """Call functions and print stats."""
 # load data
 while True:

  filename = input("\nName of file with COUNT data: ")
 try:
 data_list = load_data(filename)
 except IOError as e:
 print("{}. Try again.".format(e), file=sys.stderr)
 else:
 break

  data_count, data_pct, total_count = count_first_digits(data_list)
  expected_counts = get_expected_counts(total_count)

 print("\nobserved counts = {}".format(data_count))
 print("expected counts = {}".format(expected_counts), "\n")

  print("First Digit Probabilities:")
  for i in range(1, 10):

 print("{}: observed: {:.3f} expected: {:.3f}".
 format(i, data_pct[i - 1] / 100, BENFORD[i - 1] / 100))

  if chi_square_test(data_count, expected_counts):
 print("Observed distribution matches expected distribution.")
 else:
 print("Observed distribution does not match expected.",
 file=sys.stderr)

  bar_chart(data_pct)

 if __name__ == '__main__':
 main()

Listing 16-7: Defines the main() function and runs the program as a module or stand-alone

Start by asking the user to input the name of the file with the count
data to be analyzed ; embed this request in a while loop that will continue
until the user enters a valid filename or closes the window. The user can
enter a filename or a full pathname if they want to load a dataset that isn’t
stored in the current working directory. For example, in Windows:

Name of file with COUNT data: C:\Python35\Benford\Illinois_votes.txt

Use a try statement to call the load_data() function you built earlier and
pass the function the filename. If the filename is valid, the returned list is
assigned to the data_list variable. If an exception occurs, catch it and print
the error. Otherwise, break from the while loop.

benford.py, part 7

362 Chapter 16

Next, pass the returned list of data counts to the count_first_digits()
function and unpack the results as the variables data_count, data_pct, and
total_count, which are lists of the first-digit counts, percentages, and total
number of counts, respectively . Then, generate a list of the counts
expected for a Benford’s law distribution by calling the get_expected_counts()
function and passing it the total_count variable . Print the lists of observed
and expected counts.

Now, make a table that compares the first-digit frequency in the data
with the expected values. Use probabilities, as decimal values are easy to
keep attractively aligned in the shell. Start with a header print statement ,
then loop through the numbers 1 to 9, printing the results for the observed
counts (data), followed by the expected counts, each to three decimal
places . Note that the indexes in the two lists start with zero, so you have
to subtract 1 from i.

Pass the two count lists to the chi_square_test() function in order to
calculate how well the observed data fit the expected distribution . If
the function returns True, use a print statement to let the user know the
observed distribution matches Benford’s law (or, more technically, there is
no significant difference between the two). Otherwise, report that they don’t
match, and for shell users, color the font red.

The chi_square_test() function will display its results in the interpreter
window, so call the bar_chart() function to generate a bar chart . Pass it
the list of data counts as percentages.

Back in the global space, end the program with the code for running it
as a module or in stand-alone mode .

If you run the program on the Illinois_votes.txt dataset, you will see the
output shown in Figure 16-8. There is no apparent anomaly in the voting
results, based on Benford’s law.

Figure 16-8: Output of benford.py for the dataset Illinois_votes.txt

Finding Frauds with Benford’s Law 363

If you run the program using only the Trump votes, then only the
Clinton votes, you get the results shown in Figure 16-9. Trump’s distribu-
tion, with a test statistic of 15.129, barely passes the chi-square test.

Trump Votes Clinton Votes

Figure 16-9: Comparison of Trump results (left) versus Clinton results (right) for the state of Illinois

In cases like this, you should be careful about drawing immediate con-
clusions. The dataset is small—only 102 samples per candidate—and the
results may be influenced by things like demographic and voter turnout
differences between rural and urban areas. An interesting article on this
urban-rural divide can be found at http://www.chicagotribune.com/news/data/
ct-illinois-election-urban-rural-divide-2016-htmlstory.html.

In “Practice Project: Beating Benford” on page 364, you’ll get a
chance to tamper with the Illinois vote counts and alter the outcome.
You’ll then use the preceding code to see how well the results conform to
Benford’s law.

Summary
Way back in Chapter 1, we used the “Poor Man’s Bar Chart” practice project
on page 15 and the “Poor Foreign Man’s Bar Chart” challenge project on
page 16 to look at how the frequency of occurrence of letters in a language
is both irregular and predictable. This provides a powerful tool for crypt-
analysis. Here at the end of the book, we’ve come full circle and found that
even numbers share this trait, resulting in a powerful tool for fraud detection.
With a short and simple Python program, you can shake the very pillars of
heaven and bring the high and mighty crashing down to earth—all because
someone noticed that the front pages of a book were dirty.

Well, that does it for Impractical Python Projects. I hope you had fun,
learned something new, and were inspired to create your own set of imprac-
tical projects!

http://www.chicagotribune.com/news/data/ct-illinois-election-urban-rural-divide-2016-htmlstory.html
http://www.chicagotribune.com/news/data/ct-illinois-election-urban-rural-divide-2016-htmlstory.html

364 Chapter 16

Further Reading
Benford’s Law: Applications for Forensic Accounting, Auditing, and Fraud Detection
(John Wiley & Sons, 2012) by Mark Nigrini covers the mathematics, theory,
and testing of Benford’s law together with example applications, including
fraud, tax evasion, and Ponzi schemes.

Practice Project: Beating Benford
Test your skill at rigging an election using this practice project. You can
find a solution, beat_benford_practice.py, in the appendix or download it from
https://www.nostarch.com/impracticalpython/.

A dataset shouldn’t be considered valid just because it follows Benford’s
law. The reason is simple: if you know about Benford’s law, then you can
beat it.

To prove this, pretend you’re a high-level hacker for a nefarious foreign
government with access to all the voting records in the state of Illinois.
Write a Python program that tampers with county-wide votes so that Donald
Trump wins the state, but the vote counts still obey Benford’s law. Be care-
ful; Illinois is a “blue” state, so you don’t want to engineer a landslide victory
(loosely defined as a 10–15 percentage point advantage in the popular vote).
To avoid suspicion, Trump should squeak by with a few percentage points.

N o t e 	 States have rules regarding the recount of votes. Before manipulating an election,
a fraudster would want to be aware of these to avoid the scrutiny a recount would
bring. The actual statutory rules for each state are no fun to read, but the Citizens for
Election Integrity Minnesota provides approachable summaries. The one for Illinois
can be found at https://ceimn.org/searchable-databases/recount-database/
illinois/.

Your program should steal votes from the other candidates, while pre-
serving the by-county totals; that way, the total number of votes cast doesn’t
change. As a quality-control step, print out the old and new vote totals by
county for Trump and Clinton, as well as their old and new statewide totals.
Then, write out a text file that you can input into benford.py so you can check
how you did with respect to Benford’s law.

Datasets for each candidate are already prepared and listed here; you
can download them from https://www.nostarch.com/impracticalpython/. Each
of these datasets is just a column of numbers, representing votes, that has
been sorted alphabetically by county (so don’t change the order!).

Clinton_votes_Illinois.txt

Johnson_votes_Illinois.txt

Stein_votes_Illinois.txt

Trump_votes_Illinois.txt

https://ceimn.org/searchable-databases/recount-database/illinois/
https://ceimn.org/searchable-databases/recount-database/illinois/

Finding Frauds with Benford’s Law 365

Figure 16-10 shows the results of running benford.py on the output from
my attempt, beat_benford_practice.py, which used the preceding datasets. The
distribution passes the chi-square test and yields a visually convincing—but
plausibly imperfect—fit to the values predicted by Benford’s law.

Figure 16-10: Results of running the distribution from beat_benford_practice.py in benford.py. Mischief
managed!

Shown here are a few lines of output from beat_benford_practice.py, with
the old and new vote totals by county:

old Trump: 12412 new Trump: 13223 old Clinton: 3945 new Clinton: 3290

old Trump: 13003 new Trump: 14435 old Clinton: 7309 new Clinton: 6096

old Trump: 453287 new Trump: 735863 old Clinton: 1611946 new Clinton: 1344496

old Trump: 6277 new Trump: 6674 old Clinton: 1992 new Clinton: 1661

old Trump: 4206 new Trump: 4426 old Clinton: 1031 new Clinton: 859

The third line from the top represents Cook County, which contains
Chicago. Note that Clinton still wins here, but by a lower margin. For
Trump to win this blue county outright would be a tremendous red flag
that vote tampering had occurred, even if he won the whole state by only
a small margin!

366 Chapter 16

Challenge Projects
Try your hand at these challenge projects. No solutions are provided.

Benfording the Battlegrounds
No candidate needs to cheat in a state they’re guaranteed to win. If you’re
an investigator looking into voter fraud, you would most likely start with
the battleground states. These could swing either way, and candidates
spend much of their war chest—and time—on these places. According to
Ballotpedia (https://ballotpedia.org), Trump’s battleground states in 2016 were
Arizona, Iowa, Michigan, Wisconsin, Ohio, Pennsylvania, North Carolina,
and Florida. Clinton’s were Colorado, Nevada, New Hampshire, and Virginia.

The online voting records for states are commonly provided in a num-
ber of formats, such as Microsoft Excel spreadsheets. Gather the ones for
the battleground states, convert them to text files, and run them through
benford.py. To get you started, you can find the Ohio records here: https://
www.sos.state.oh.us/elections/.

While No One Was Looking
Former Speaker of the US House of Representatives Tip O’Neill was
famous for saying, “All politics is local.” Take this to heart and use the
benford.py program to check out some of your local area races, such as for
judges, mayors, county supervisors, sheriffs, and city council members.
These events generally attract less scrutiny than do races for Senate seats,
governor, or president. If you find an irregularity, make sure the voting
dataset is a valid application for Benford’s law before raising a stink!

https://ballotpedia.org
https://www.sos.state.oh.us/elections/
https://www.sos.state.oh.us/elections/

P r a c t i c e P r o j e c t S o l u t i o n s

This appendix provides the solutions to the
practice projects in each chapter. Digital

versions are available on the book’s website
at https://www.nostarch.com/impracticalpython/.

Chapter 1: Silly Name Generator

Pig Latin

"""Turn a word into its Pig Latin equivalent."""
import sys

VOWELS = 'aeiouy'

while True:
 word = input("Type a word and get its Pig Latin translation: ")

 if word[0] in VOWELS:
 pig_Latin = word + 'way'

pig_Latin
_practice.py

368 Practice Project Solutions

 else:
 pig_Latin = word[1:] + word[0] + 'ay'
 print()
 print("{}".format(pig_Latin), file=sys.stderr)

 try_again = input("\n\nTry again? (Press Enter else n to stop)\n ")
 if try_again.lower() == "n":
 sys.exit()

Poor Man’s Bar Chart

"""Map letters from string into dictionary & print bar chart of frequency."""
import sys
import pprint
from collections import defaultdict

Note: text should be a short phrase for bars to fit in IDLE window
text = 'Like the castle in its corner in a medieval game, I foresee terrible \
trouble and I stay here just the same.'

ALPHABET = 'abcdefghijklmnopqrstuvwxyz'

defaultdict module lets you build dictionary keys on the fly!
mapped = defaultdict(list)
for character in text:
 character = character.lower()
 if character in ALPHABET:
 mapped[character].append(character)

pprint lets you print stacked output
print("\nYou may need to stretch console window if text wrapping occurs.\n")
print("text = ", end='')
print("{}\n".format(text), file=sys.stderr)
pprint.pprint(mapped, width=110)

Chapter 2: Finding Palingram Spells

Dictionary Cleanup

"""Remove single-letter words from list if not 'a' or 'i'."""
word_list = ['a', 'nurses', 'i', 'stack', 'b', 'c', 'cat']
word_list_clean = []

permissible = ('a', 'i')

for word in word_list:

EATOIN
_practice.py

dictionary
_cleanup
_practice.py

Practice Project Solutions 369

 if len(word) > 1:
 word_list_clean.append(word)
 elif len(word) == 1 and word in permissible:
 word_list_clean.append(word)
 else:
 continue

print("{}".format(word_list_clean))

Chapter 3: Solving Anagrams

Finding Digrams

"""Generate letter pairs in Voldemort & find their frequency in a dictionary.

Requires load_dictionary.py module to load an English dictionary file.

"""
import re
from collections import defaultdict
from itertools import permutations
import load_dictionary

word_list = load_dictionary.load('2of4brif.txt')

name = 'Voldemort' #(tmvoordle)
name = name.lower()

generate unique letter pairs from name
digrams = set()
perms = {''.join(i) for i in permutations(name)}
for perm in perms:
 for i in range(0, len(perm) - 1):
 digrams.add(perm[i] + perm[i + 1])
print(*digrams, sep='\n')
print("\nNumber of digrams = {}\n".format(len(digrams)))

use regular expressions to find repeating digrams in a word
mapped = defaultdict(int)
for word in word_list:
 word = word.lower()
 for digram in digrams:
 for m in re.finditer(digram, word):
 mapped[digram] += 1

print("digram frequency count:")
count = 0
for k in mapped:
 print("{} {}".format(k, mapped[k]))

count_digrams
_practice.py

370 Practice Project Solutions

Chapter 4: Decoding American Civil War Ciphers

Hacking Lincoln

Code word Plaintext

WAYLAND captured

NEPTUNE Richmond

Plaintext: correspondents of the Tribune captured at Richmond please
ascertain why they are detained and get them off if you can this fills it up

Identifying Cipher Types

"""Load ciphertext & use fraction of ETAOIN present to classify cipher type."""
import sys
from collections import Counter

set arbitrary cutoff fraction of 6 most common letters in English
ciphertext with target fraction or greater = transposition cipher
CUTOFF = 0.5

load ciphertext
def load(filename):
 """Open text file and return list."""
 with open(filename) as f:
 return f.read().strip()

try:
 ciphertext = load('cipher_a.txt')
except IOError as e:
 print("{}. Terminating program.".format(e),
 file=sys.stderr)
 sys.exit(1)

count 6 most common letters in ciphertext
six_most_frequent = Counter(ciphertext.lower()).most_common(6)
print("\nSix most-frequently-used letters in English = ETAOIN")
print('\nSix most frequent letters in ciphertext =')
print(*six_most_frequent, sep='\n')

convert list of tuples to set of letters for comparison
cipher_top_6 = {i[0] for i in six_most_frequent}

TARGET = 'etaoin'
count = 0
for letter in TARGET:
 if letter in cipher_top_6:
 count += 1

if count/len(TARGET) >= CUTOFF:

identify_cipher
_type_practice.py

Practice Project Solutions 371

 print("\nThis ciphertext most-likely produced by a TRANSPOSITION cipher")
else:
 print("This ciphertext most-likely produced by a SUBSTITUTION cipher")

Storing a Key as a Dictionary

"""Input cipher key string, get user input on route direction as dict value."""
col_order = """1 3 4 2"""
key = dict()
cols = [int(i) for i in col_order.split()]
for col in cols:
 while True:
 key[col] = input("Direction to read Column {} (u = up, d = down): "
 .format(col).lower())
 if key[col] == 'u' or key[col] == 'd':
 break
 else:
 print("Input should be 'u' or 'd'")

 print("{}, {}".format(col, key[col]))

Automating Possible Keys

"""For a total number of columns, find all unique column arrangements.

Builds a list of lists containing all possible unique arrangements of
individual column numbers, including negative values for route direction
(read up column vs. down).

Input:
-total number of columns

Returns:
-list of lists of unique column orders, including negative values for
route cipher encryption direction

"""
import math
from itertools import permutations, product

#------BEGIN INPUT---

Input total number of columns:
num_cols = 4

#------DO NOT EDIT BELOW THIS LINE--

generate listing of individual column numbers

key_dictionary
_practice.py

permutations
_practice.py

372 Practice Project Solutions

columns = [x for x in range(1, num_cols+1)]
print("columns = {}".format(columns))

build list of lists of column number combinations
itertools product computes the Cartesian product of input iterables
def perms(columns):
 """Take number of columns integer & generate pos & neg permutations."""
 results = []
 for perm in permutations(columns):
 for signs in product([-1, 1], repeat=len(columns)):
 results.append([i*sign for i, sign in zip(perm, signs)])
 return results

col_combos = perms(columns)
print(*col_combos, sep="\n") # comment-out for num_cols > 4!
print("Factorial of num_cols without negatives = {}"
 .format(math.factorial(num_cols)))
print("Number of column combinations = {}".format(len(col_combos)))

Route Transposition Cipher: Brute-Force Attack
This practice project uses two programs. The second, perms.py, is used as
a module in the first program, route_cipher_hacker.py. It was built from
the permutations_practice.py program previously described in “Automating
Possible Keys” on page 371.

route_cipher_hacker.py

"""Brute-force hack a Union route cipher (route_cipher_hacker.py).

Designed for whole-word transposition ciphers with variable rows & columns.
Assumes encryption began at either top or bottom of a column.
Possible keys auto-generated based on number of columns & rows input.
Key indicates the order to read columns and the direction to traverse.
Negative column numbers mean start at bottom and read up.
Positive column numbers means start at top & read down.

Example below is for 4x4 matrix with key -1 2 -3 4.
Note "0" is not allowed.
Arrows show encryption route; for negative key values read UP.

 1 2 3 4
 ___ ___ ___ ___
| ^ | | | ^ | | | MESSAGE IS WRITTEN
|_|_|_v_|_|_|_v_|
| ^ | | | ^ | | | ACROSS EACH ROW
|_|_|_v_|_|_|_v_|
| ^ | | | ^ | | | IN THIS MANNER
|_|_|_v_|_|_|_v_|
| ^ | | | ^ | | | LAST ROW IS FILLED WITH DUMMY WORDS
|_|_|_v_|_|_|_v_|
START END

route_cipher
_hacker.py

Practice Project Solutions 373

Required inputs - a text message, # of columns, # of rows, key string
Requires custom-made "perms" module to generate keys
Prints off key used and translated plaintext
"""
import sys
import perms

#==
USER INPUT:

the string to be decrypted (type or paste between triple-quotes):
ciphertext = """REST TRANSPORT YOU GODWIN VILLAGE ROANOKE WITH ARE YOUR IS JUST
SUPPLIES FREE SNOW HEADING TO GONE TO SOUTH FILLER
"""

the number of columns believed to be in the transposition matrix:
COLS = 4

the number of rows believed to be in the transposition matrix:
ROWS = 5

END OF USER INPUT - DO NOT EDIT BELOW THIS LINE!
#==

def main():
 """Turn ciphertext into list, call validation & decryption functions."""
 cipherlist = list(ciphertext.split())
 validate_col_row(cipherlist)
 decrypt(cipherlist)

def validate_col_row(cipherlist):
 """Check that input columns & rows are valid vs. message length."""
 factors = []
 len_cipher = len(cipherlist)
 for i in range(2, len_cipher): # range excludes 1-column ciphers
 if len_cipher % i == 0:
 factors.append(i)
 print("\nLength of cipher = {}".format(len_cipher))
 print("Acceptable column/row values include: {}".format(factors))
 print()
 if ROWS * COLS != len_cipher:
 print("\nError - Input columns & rows not factors of length "
 "of cipher. Terminating program.", file=sys.stderr)
 sys.exit(1)

def decrypt(cipherlist):
 """Turn columns into items in list of lists & decrypt ciphertext."""
 col_combos = perms.perms(COLS)
 for key in col_combos:
 translation_matrix = [None] * COLS
 plaintext = ''
 start = 0

374 Practice Project Solutions

 stop = ROWS
 for k in key:
 if k < 0: # reading bottom-to-top of column
 col_items = cipherlist[start:stop]
 elif k > 0: # reading top-to-bottom of columnn
 col_items = list((reversed(cipherlist[start:stop])))
 translation_matrix[abs(k) - 1] = col_items
 start += ROWS
 stop += ROWS
 # loop through nested lists popping off last item to a new list:
 for i in range(ROWS):
 for matrix_col in translation_matrix:
 word = str(matrix_col.pop())
 plaintext += word + ' '
 print("\nusing key = {}".format(key))
 print("translated = {}".format(plaintext))
 print("\nnumber of keys = {}".format(len(col_combos)))

if __name__ == '__main__':
 main()

perms.py

"""For a total number of columns, find all unique column arrangements.

Builds a list of lists containing all possible unique arrangements of
individual column numbers including negative values for route direction

Input:
-total number of columns

Returns:
-list of lists of unique column orders including negative values for
route cipher encryption direction

"""
from itertools import permutations, product

build list of lists of column number combinations
itertools product computes the Cartesian product of input iterables
def perms(num_cols):
 """Take number of columns integer & generate pos & neg permutations."""
 results = []
 columns = [x for x in range(1, num_cols+1)]
 for perm in permutations(columns):
 for signs in product([-1, 1], repeat=len(columns)):
 results.append([i*sign for i, sign in zip(perm, signs)])
 return results

perms.py

Practice Project Solutions 375

Chapter 5: Encoding English Civil War Ciphers

Saving Mary

"""Hide a null cipher within a list of names using a variable pattern."""
import load_dictionary

write a short message and use no punctuation or numbers!
message = "Give your word and we rise"
message = "".join(message.split())

open name file
names = load_dictionary.load('supporters.txt')

name_list = []

start list with null word not used in cipher
name_list.append(names[0])

add letter of null cipher to 2nd letter of name, then 3rd, then repeat
count = 1
for letter in message:
 for name in names:
 if len(name) > 2 and name not in name_list:
 if count % 2 == 0 and name[2].lower() == letter.lower():
 name_list.append(name)
 count += 1
 break
 elif count % 2 != 0 and name[1].lower() == letter.lower():
 name_list.append(name)
 count += 1
 break

add two null words early in message to throw off cryptanalysts
name_list.insert(3, 'Stuart')
name_list.insert(6, 'Jacob')

display cover letter and list with null cipher
print("""
Your Royal Highness: \n
It is with the greatest pleasure I present the list of noble families who
have undertaken to support your cause and petition the usurper for the
release of your Majesty from the current tragical circumstances.
""")

print(*name_list, sep='\n')

save_Mary
_practice.py

376 Practice Project Solutions

The Colchester Catch

"""Solve a null cipher based on every nth letter in every nth word."""
import sys

def load_text(file):
 """Load a text file as a string."""
 with open(file) as f:
 return f.read().strip()

load & process message:
filename = input("\nEnter full filename for message to translate: ")
try:
 loaded_message = load_text(filename)
except IOError as e:
 print("{}. Terminating program.".format(e), file=sys.stderr)
 sys.exit(1)

check loaded message & # of lines
print("\nORIGINAL MESSAGE = {}\n".format(loaded_message))

convert message to list and get length
message = loaded_message.split()
end = len(message)

get user input on interval to check
increment = int(input("Input max word & letter position to \
 check (e.g., every 1 of 1, 2 of 2, etc.): "))
print()

find letters at designated intervals
for i in range(1, increment + 1):
 print("\nUsing increment letter {} of word {}".format(i, i))
 print()
 count = i - 1
 location = i - 1
 for index, word in enumerate(message):
 if index == count:
 if location < len(word):
 print("letter = {}".format(word[location]))
 count += i
 else:
 print("Interval doesn't work", file=sys.stderr)

colchester
_practice.py

Practice Project Solutions 377

Chapter 6: Writing in Invisible Ink

Checking the Number of Blank Lines

"""Add code to check blank lines in fake message vs lines in real message."""
import sys
import docx
from docx.shared import RGBColor, Pt

get text from fake message & make each line a list item
fake_text = docx.Document('fakeMessage.docx')
fake_list = []
for paragraph in fake_text.paragraphs:
 fake_list.append(paragraph.text)

get text from real message & make each line a list item
real_text = docx.Document('realMessageChallenge.docx')
real_list = []
for paragraph in real_text.paragraphs:
 if len(paragraph.text) != 0: # remove blank lines
 real_list.append(paragraph.text)

define function to check available hiding space:
def line_limit(fake, real):
 """Compare number of blank lines in fake vs lines in real and
 warn user if there are not enough blanks to hold real message.

 NOTE: need to import 'sys'

 """
 num_blanks = 0
 num_real = 0
 for line in fake:
 if line == '':
 num_blanks += 1
 num_real = len(real)
 diff = num_real - num_blanks
 print("\nNumber of blank lines in fake message = {}".format(num_blanks))
 print("Number of lines in real message = {}\n".format(num_real))
 if num_real > num_blanks:
 print("Fake message needs {} more blank lines."
 .format(diff), file=sys.stderr)
 sys.exit()

line_limit(fake_list, real_list)

load template that sets style, font, margins, etc.
doc = docx.Document('template.docx')

add letterhead
doc.add_heading('Morland Holmes', 0)

elementary_ink
_practice.py

378 Practice Project Solutions

subtitle = doc.add_heading('Global Consulting & Negotiations', 1)
subtitle.alignment = 1
doc.add_heading('', 1)
doc.add_paragraph('December 17, 2015')
doc.add_paragraph('')

def set_spacing(paragraph):
 """Use docx to set line spacing between paragraphs."""
 paragraph_format = paragraph.paragraph_format
 paragraph_format.space_before = Pt(0)
 paragraph_format.space_after = Pt(0)

length_real = len(real_list)
count_real = 0 # index of current line in real (hidden) message

interleave real and fake message lines
for line in fake_list:
 if count_real < length_real and line == "":
 paragraph = doc.add_paragraph(real_list[count_real])
 paragraph_index = len(doc.paragraphs) - 1

 # set real message color to white
 run = doc.paragraphs[paragraph_index].runs[0]
 font = run.font
 font.color.rgb = RGBColor(255, 255, 255) # make it red to test
 count_real += 1

 else:
 paragraph = doc.add_paragraph(line)

 set_spacing(paragraph)

doc.save('ciphertext_message_letterhead.docx')

print("Done"))

Chapter 8: Counting Syllables for Haiku Poetry

Syllable Counter vs. Dictionary File

"""Load a dictionary file, pick random words, run syllable-counting module."""
import sys
import random
from count_syllables import count_syllables

def load(file):
 """Open a text file & return list of lowercase strings."""
 with open(file) as in_file:
 loaded_txt = in_file.read().strip().split('\n')
 loaded_txt = [x.lower() for x in loaded_txt]
 return loaded_txt

test_count
_syllables
_w_dict.py

Practice Project Solutions 379

try:
 word_list = load('2of4brif.txt')
except IOError as e:
 print("{}\nError opening file. Terminating program.".format(e),
 file=sys.stderr)
 sys.exit(1)

test_data = []
num_words = 100
test_data.extend(random.sample(word_list, num_words))

for word in test_data:
 try:
 num_syllables = count_syllables(word)
 print(word, num_syllables, end='\n')
 except KeyError:
 print(word, end='')
 print(" not found", file=sys.stderr)

Chapter 10: Are We Alone? Exploring the Fermi Paradox

A Galaxy Far, Far Away

"""Use spiral formula to build galaxy display."""
import math
from random import randint
import tkinter

root = tkinter.Tk()
root.title("Galaxy BR549")
c = tkinter.Canvas(root, width=1000, height=800, bg='black')
c.grid()
c.configure(scrollregion=(-500, -400, 500, 400))
oval_size = 0

build spiral arms
num_spiral_stars = 500
angle = 3.5
core_diameter = 120
spiral_stars = []
for i in range(num_spiral_stars):
 theta = i * angle
 r = math.sqrt(i) / math.sqrt(num_spiral_stars)
 spiral_stars.append((r * math.cos(theta), r * math.sin(theta)))
for x, y in spiral_stars:
 x = x * 350 + randint(-5, 3)
 y = y * 350 + randint(-5, 3)
 oval_size = randint(1, 3)
 c.create_oval(x-oval_size, y-oval_size, x+oval_size, y+oval_size,
 fill='white', outline='')

galaxy
_practice.py

380 Practice Project Solutions

build wisps
wisps = []
for i in range(2000):
 theta = i * angle
 # divide by num_spiral_stars for better dust lanes
 r = math.sqrt(i) / math.sqrt(num_spiral_stars)
 spiral_stars.append((r * math.cos(theta), r * math.sin(theta)))
for x, y in spiral_stars:
 x = x * 330 + randint(-15, 10)
 y = y * 330 + randint(-15, 10)
 h = math.sqrt(x**2 + y**2)
 if h < 350:
 wisps.append((x, y))
 c.create_oval(x-1, y-1, x+1, y+1, fill='white', outline='')

build galactic core
core = []
for i in range(900):
 x = randint(-core_diameter, core_diameter)
 y = randint(-core_diameter, core_diameter)
 h = math.sqrt(x**2 + y**2)
 if h < core_diameter - 70:
 core.append((x, y))
 oval_size = randint(2, 4)
 c.create_oval(x-oval_size, y-oval_size, x+oval_size, y+oval_size,
 fill='white', outline='')
 elif h < core_diameter:
 core.append((x, y))
 oval_size = randint(0, 2)
 c.create_oval(x-oval_size, y-oval_size, x+oval_size, y+oval_size,
 fill='white', outline='')

root.mainloop()

Building a Galactic Empire

"""Build 2-D model of galaxy, post expansion rings for galactic empire."""
import tkinter as tk
import time
from random import randint, uniform, random
import math

#===
MAIN INPUT

location of galactic empire homeworld on map:
HOMEWORLD_LOC = (0, 0)

maximum number of years to simulate:
MAX_YEARS = 10000000

empire
_practice.py

Practice Project Solutions 381

average expansion velocity as fraction of speed of light:
SPEED = 0.005

scale units
UNIT = 200

#==

set up display canvas
root = tk.Tk()
root.title("Milky Way galaxy")
c = tk.Canvas(root, width=1000, height=800, bg='black')
c.grid()
c.configure(scrollregion=(-500, -400, 500, 400))

actual Milky Way dimensions (light-years)
DISC_RADIUS = 50000

disc_radius_scaled = round(DISC_RADIUS/UNIT)

def polar_coordinates():
 """Generate uniform random x,y point within a disc for 2-D display."""
 r = random()
 theta = uniform(0, 2 * math.pi)
 x = round(math.sqrt(r) * math.cos(theta) * disc_radius_scaled)
 y = round(math.sqrt(r) * math.sin(theta) * disc_radius_scaled)
 return x, y

def spirals(b, r, rot_fac, fuz_fac, arm):
 """Build spiral arms for tkinter display using Logarithmic spiral formula.

 b = arbitrary constant in logarithmic spiral equation
 r = scaled galactic disc radius
 rot_fac = rotation factor
 fuz_fac = random shift in star position in arm, applied to 'fuzz' variable
 arm = spiral arm (0 = main arm, 1 = trailing stars)
 """
 spiral_stars = []
 fuzz = int(0.030 * abs(r)) # randomly shift star locations
 theta_max_degrees = 520
 for i in range(theta_max_degrees): # range(0, 700, 2) for no black hole
 theta = math.radians(i)
 x = r * math.exp(b*theta) * math.cos(theta + math.pi * rot_fac)\
 + randint(-fuzz, fuzz) * fuz_fac
 y = r * math.exp(b*theta) * math.sin(theta + math.pi * rot_fac)\
 + randint(-fuzz, fuzz) * fuz_fac
 spiral_stars.append((x, y))
 for x, y in spiral_stars:
 if arm == 0 and int(x % 2) == 0:
 c.create_oval(x-2, y-2, x+2, y+2, fill='white', outline='')
 elif arm == 0 and int(x % 2) != 0:
 c.create_oval(x-1, y-1, x+1, y+1, fill='white', outline='')
 elif arm == 1:
 c.create_oval(x, y, x, y, fill='white', outline='')

382 Practice Project Solutions

def star_haze(scalar):
 """Randomly distribute faint tkinter stars in galactic disc.

 disc_radius_scaled = galactic disc radius scaled to radio bubble diameter
 scalar = multiplier to vary number of stars posted
 """
 for i in range(0, disc_radius_scaled * scalar):
 x, y = polar_coordinates()
 c.create_text(x, y, fill='white', font=('Helvetica', '7'), text='.')

def model_expansion():
 """Model empire expansion from homeworld with concentric rings."""
 r = 0 # radius from homeworld
 text_y_loc = -290
 x, y = HOMEWORLD_LOC
 c.create_oval(x-5, y-5, x+5, y+5, fill='red')
 increment = round(MAX_YEARS / 10)# year interval to post circles
 c.create_text(-475, -350, anchor='w', fill='red', text='Increment = {:,}'
 .format(increment))
 c.create_text(-475, -325, anchor='w', fill='red',
 text='Velocity as fraction of Light = {:,}'.format(SPEED))

 for years in range(increment, MAX_YEARS + 1, increment):
 time.sleep(0.5) # delay before posting new expansion circle
 traveled = SPEED * increment / UNIT
 r = r + traveled
 c.create_oval(x-r, y-r, x+r, y+r, fill='', outline='red', width='2')
 c.create_text(-475, text_y_loc, anchor='w', fill='red',
 text='Years = {:,}'.format(years))
 text_y_loc += 20
 # update canvas for new circle; no longer need mainloop()
 c.update_idletasks()
 c.update()

def main():
 """Generate galaxy display, model empire expansion, run mainloop."""
 spirals(b=-0.3, r=disc_radius_scaled, rot_fac=2, fuz_fac=1.5, arm=0)
 spirals(b=-0.3, r=disc_radius_scaled, rot_fac=1.91, fuz_fac=1.5, arm=1)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=2, fuz_fac=1.5, arm=0)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=-2.09, fuz_fac=1.5, arm=1)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=0.5, fuz_fac=1.5, arm=0)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=0.4, fuz_fac=1.5, arm=1)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=-0.5, fuz_fac=1.5, arm=0)
 spirals(b=-0.3, r=-disc_radius_scaled, rot_fac=-0.6, fuz_fac=1.5, arm=1)
 star_haze(scalar=9)

 model_expansion()

 # run tkinter loop
 root.mainloop()

if __name__ == '__main__':
 main()

Practice Project Solutions 383

A Roundabout Way to Predict Detectability

"""Calculate probability of detecting 32 LY-diameter radio bubble given 15.6 M
randomly distributed civilizations in the galaxy."""
import math
from random import uniform, random
from collections import Counter

length units in light-years
DISC_RADIUS = 50000
DISC_HEIGHT = 1000
NUM_CIVS = 15600000
DETECTION_RADIUS = 16

def random_polar_coordinates_xyz():
 """Generate uniform random xyz point within a 3D disc."""
 r = random()
 theta = uniform(0, 2 * math.pi)
 x = round(math.sqrt(r) * math.cos(theta) * DISC_RADIUS, 3)
 y = round(math.sqrt(r) * math.sin(theta) * DISC_RADIUS, 3)
 z = round(uniform(0, DISC_HEIGHT), 3)
 return x, y, z

def rounded(n, base):
 """Round a number to the nearest number designated by base parameter."""
 return int(round(n/base) * base)

def distribute_civs():
 """Distribute xyz locations in galactic disc model and return list."""
 civ_locs = []
 while len(civ_locs) < NUM_CIVS:
 loc = random_polar_coordinates_xyz()
 civ_locs.append(loc)
 return civ_locs

def round_civ_locs(civ_locs):
 """Round xyz locations and return list of rounded locations."""
 # convert radius to cubic dimensions:
 detect_distance = round((4 / 3 * math.pi * DETECTION_RADIUS**3)**(1/3))
 print("\ndetection radius = {} LY".format(DETECTION_RADIUS))
 print("cubic detection distance = {} LY".format(detect_distance))

 # round civilization xyz to detection distance
 civ_locs_rounded = []

 for x, y, z in civ_locs:
 i = rounded(x, detect_distance)
 j = rounded(y, detect_distance)
 k = rounded(z, detect_distance)
 civ_locs_rounded.append((i, j, k))

 return civ_locs_rounded

rounded_
detection_
practice.py

384 Practice Project Solutions

def calc_prob_of_detection(civ_locs_rounded):
 """Count locations and calculate probability of duplicate values."""
 overlap_count = Counter(civ_locs_rounded)
 overlap_rollup = Counter(overlap_count.values())
 num_single_civs = overlap_rollup[1]
 prob = 1 - (num_single_civs / NUM_CIVS)

 return overlap_rollup, prob

def main():
 """Call functions and print results."""
 civ_locs = distribute_civs()
 civ_locs_rounded = round_civ_locs(civ_locs)
 overlap_rollup, detection_prob = calc_prob_of_detection(civ_locs_rounded)
 print("length pre-rounded civ_locs = {}".format(len(civ_locs)))
 print("length of rounded civ_locs_rounded = {}".format(len(civ_locs_rounded)))
 print("overlap_rollup = {}\n".format(overlap_rollup))
 print("probability of detection = {0:.3f}".format(detection_prob))

 # QC step to check rounding
 print("\nFirst 3 locations pre- and post-rounding:\n")
 for i in range(3):
 print("pre-round: {}".format(civ_locs[i]))
 print("post-round: {} \n".format(civ_locs_rounded[i]))

if __name__ == '__main__':
 main()

Chapter 11: The Monty Hall Problem

The Birthday Paradox

"""Calculate probability of a shared birthday per x number of people."""
import random

max_people = 50
num_runs = 2000

print("\nProbability of at least 2 people having the same birthday:\n")

for people in range(2, max_people + 1):
 found_shared = 0
 for run in range(num_runs):
 bdays = []
 for i in range(0, people):
 bday = random.randrange(0, 365) # ignore leap years
 bdays.append(bday)
 set_of_bdays = set(bdays)
 if len(set_of_bdays) < len(bdays):
 found_shared += 1
 prob = found_shared/num_runs

birthday
_paradox
_practice.py

Practice Project Solutions 385

 print("Number people = {} Prob = {:.4f}".format(people, prob))

print("""
According to the Birthday Paradox, if there are 23 people in a room,
there's a 50% chance that 2 of them will share the same birthday.
""")

Chapter 13: Simulating an Alien Volcano

Going the Distance

import sys
import math
import random
import pygame as pg

pg.init() # initialize pygame

define color table
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
LT_GRAY = (180, 180, 180)
GRAY = (120, 120, 120)
DK_GRAY = (80, 80, 80)

class Particle(pg.sprite.Sprite):
 """Builds ejecta particles for volcano simulation."""

 gases_colors = {'SO2': LT_GRAY, 'CO2': GRAY, 'H2S': DK_GRAY, 'H2O': WHITE}

 VENT_LOCATION_XY = (320, 300)
 IO_SURFACE_Y = 308
 GRAVITY = 0.5 # pixels-per-frame
 VELOCITY_SO2 = 8 # pixels-per-frame

 # scalars (SO2 atomic weight/particle atomic weight) used for velocity
 vel_scalar = {'SO2': 1, 'CO2': 1.45, 'H2S': 1.9, 'H2O': 3.6}

 def __init__(self, screen, background):
 super().__init__()
 self.screen = screen
 self.background = background
 self.image = pg.Surface((4, 4))
 self.rect = self.image.get_rect()
 self.gas = 'SO2'
 self.color = ''
 self.vel = Particle.VELOCITY_SO2 * Particle.vel_scalar[self.gas]
 self.x, self.y = Particle.VENT_LOCATION_XY
 self.vector()

practice_45.py

386 Practice Project Solutions

 def vector(self):
 """Calculate particle vector at launch."""
 angles = [65, 55, 45, 35, 25] # 90 is vertical
 orient = random.choice(angles)
 if orient == 45:
 self.color = WHITE
 else:
 self.color = GRAY
 radians = math.radians(orient)
 self.dx = self.vel * math.cos(radians)
 self.dy = -self.vel * math.sin(radians) # negative as y increases down

 def update(self):
 """Apply gravity, draw path, and handle boundary conditions."""
 self.dy += Particle.GRAVITY
 pg.draw.line(self.background, self.color, (self.x, self.y),
 (self.x + self.dx, self.y + self.dy))
 self.x += self.dx
 self.y += self.dy
 if self.x < 0 or self.x > self.screen.get_width():
 self.kill()
 if self.y < 0 or self.y > Particle.IO_SURFACE_Y:
 self.kill()

def main():
 """Set up and run game screen and loop."""
 screen = pg.display.set_mode((639, 360))
 pg.display.set_caption("Io Volcano Simulator")
 background = pg.image.load("tvashtar_plume.gif")

 # Set up color-coded legend
 legend_font = pg.font.SysFont('None', 26)
 text = legend_font.render('White = 45 degrees', True, WHITE, BLACK)

 particles = pg.sprite.Group()

 clock = pg.time.Clock()

 while True:
 clock.tick(25)
 particles.add(Particle(screen, background))
 for event in pg.event.get():
 if event.type == pg.QUIT:
 pg.quit()
 sys.exit()

 screen.blit(background, (0, 0))
 screen.blit(text, (320, 170))

 particles.update()
 particles.draw(screen)

 pg.display.flip()

Practice Project Solutions 387

if __name__ == "__main__":
 main()

Chapter 16: Finding Frauds with Benford’s Law

Beating Benford

"""Manipulate vote counts so that final results conform to Benford's law."""

example below is for Trump vs. Clinton, Illinois, 2016 Presidental Election

def load_data(filename):
 """Open a text file of numbers & turn contents into a list of integers."""
 with open(filename) as f:
 lines = f.read().strip().split('\n')
 return [int(i) for i in lines] # turn strings to integers

def steal_votes(opponent_votes, candidate_votes, scalar):
 """Use scalar to reduce one vote count & increase another, return as lists.

 Arguments:
 opponent_votes – votes to steal from
 candidate_votes - votes to increase by stolen amount
 scalar - fractional percentage, < 1, used to reduce votes

 Returns:
 list of changed opponent votes
 list of changed candidate votes

 """
 new_opponent_votes = []
 new_candidate_votes = []
 for opp_vote, can_vote in zip(opponent_votes, candidate_votes):
 new_opp_vote = round(opp_vote * scalar)
 new_opponent_votes.append(new_opp_vote)
 stolen_votes = opp_vote - new_opp_vote
 new_can_vote = can_vote + stolen_votes
 new_candidate_votes.append(new_can_vote)
 return new_opponent_votes, new_candidate_votes

def main():
 """Run the program.

 Load data, set target winning vote count, call functions, display
 results as table, write new combined vote total as text file to
 use as input for Benford's law analysis.

 """
 # load vote data
 c_votes = load_data('Clinton_votes_Illinois.txt')

beat_benford
_practice.py

388 Practice Project Solutions

 j_votes = load_data('Johnson_votes_Illinois.txt')
 s_votes = load_data('Stein_votes_Illinois.txt')
 t_votes = load_data('Trump_votes_Illinois.txt')

 total_votes = sum(c_votes + j_votes + s_votes + t_votes)

 # assume Trump amasses a plurality of the vote with 49%
 t_target = round(total_votes * 0.49)
 print("\nTrump winning target = {:,} votes".format(t_target))

 # calculate extra votes needed for Trump victory
 extra_votes_needed = abs(t_target - sum(t_votes))
 print("extra votes needed = {:,}".format(extra_votes_needed))

 # calculate scalar needed to generate extra votes
 scalar = 1 - (extra_votes_needed / sum(c_votes + j_votes + s_votes))
 print("scalar = {:.3}".format(scalar))
 print()

 # flip vote counts based on scalar & build new combined list of votes
 fake_counts = []
 new_c_votes, new_t_votes = steal_votes(c_votes, t_votes, scalar)
 fake_counts.extend(new_c_votes)
 new_j_votes, new_t_votes = steal_votes(j_votes, new_t_votes, scalar)
 fake_counts.extend(new_j_votes)
 new_s_votes, new_t_votes = steal_votes(s_votes, new_t_votes, scalar)
 fake_counts.extend(new_s_votes)
 fake_counts.extend(new_t_votes) # add last as has been changing up til now

 # compare old and new vote counts & totals in tabular form
 # switch-out "Trump" and "Clinton" as necessary
 for i in range(0, len(t_votes)):
 print("old Trump: {} \t new Trump: {} \t old Clinton: {} \t " \
 "new Clinton: {}".
 format(t_votes[i], new_t_votes[i], c_votes[i], new_c_votes[i]))
 print("-" * 95)
 print("TOTALS:")
 print("old Trump: {:,} \t new Trump: {:,} \t old Clinton: {:,} " \
 "new Clinton: {:,}".format(sum(t_votes), sum(new_t_votes),
 sum(c_votes), sum(new_c_votes)))

 # write out a text file to use as input to benford.py program
 # this program will check conformance of faked votes to Benford's law
 with open('fake_Illinois_counts.txt', 'w') as f:
 for count in fake_counts:
 f.write("{}\n".format(count))

if __name__ == '__main__':
 main()

Symbols and Numbers
== (comparison) operator, 36–37
% (modulo) operator, 78, 255–256
* (splat) operator, 25
2of4brif.txt file, 20
4 Percent Rule, 239–240, 263

A
absolute paths, 329
abstractions, 21
acceleration, 286
actions, 223
actuarial life tables, 245
Adding Habitable Zones to Your

Galaxy project, 215–216
aerobraking, 321–322
Alexander, Edward Porter, 87
All the Marbles problem, 264
Anaconda, 195
anagrams, defined, 35
ancestors, 229, 272
apoapsis, 290
apogee, 290
application programming interfaces

(APIs), 267
artists, 360
assets, 296
attributes, 225
Audacity, 296
Automatic Anagram Generator

project, 62
Automating Possible Keys project, 88,

371–372

B
Babbage, Charles, 107
bar_chart() function, 355, 359, 358–360
Beating Benford project, 364–365,

387–388
Belyayev, Dmitry, 134
Benford, Frank, 347

Benfording the Battlegrounds
project, 366

Benford’s law, 348–363
bigrams, 52
Birthday Paradox problem, 238
The Black Swan: The Impact of the Highly

Improbable, 2nd Edition
(Taleb), 263

black swans, 245
blitting and blit() method, 280, 317
block transfer, 280
block-level objects, 111
British brute-force code, 54–55
brute-force method, 40, 54–55
Building a Galactic Empire project,

213–214, 380–382
Building a Rat Harem project, 144

C
calculators, 240
candidates, 175
Canvas widget, 203
Carnegie Mellon University

Pronouncing Dictionary
(CMUdict), 148–153

case sensitive letters, 39
CCDs (charge-coupled devices), 325
CCDStack, 331
challenge projects

Adding Habitable Zones to Your
Galaxy, 215–216

All the Marbles, 264
Automatic Anagram Generator, 62
Benfording the Battlegrounds, 366
Building a Rat Harem, 144
With a Bullet, 284
Creating a Barred-Spiral Galaxy,

214–215
Creating a More Efficient

Safecracker, 144
The Fountainhead, 283
To Haiku, or Not to Haiku, 186

I n d e x

390 Index

Just My Luck! 264
Markov Music, 186
Mars Orbiter game modifications,

320–323
The Middle, 17
Mix and Match, 264
New Word Generator, 184
A Picture Is Worth a Thousand

Dollars, 264
Poor Foreign Man’s Bar Chart,

16–17
Recursive Approach, 34
Route Cipher Encoder, 90
Shock Canopy, 283
Three-Rail Fence Cipher, 90
Turing Test, 185
Unbelievable! This Is Unbelievable!

Unbelievable! 185–186
Using Monospace Font, 123
Vanishing Act, 344–345
While No One Was Looking, 366

charge-coupled devices (CCDs), 325
check_keys() method, 301
Checking the Number of Blank Lines

project, 122–123, 377–378
chi-square goodness-of-fit test, 352–353
Churchill, Winston, 3
cipherlist, 78
ciphertext, 78
Clark, Brooks, 330
Class attributes, 269–270
classes, 223, 229, 298–299
clean_folder() function, 333
Clinton, Hillary, 353–354
CMUdict (Carnegie Mellon University

Pronouncing Dictionary),
148–153

The Code Book: The Science of Secrecy from
Ancient Egypt to Quantum
Cryptography (Singh), 87, 101

coding conventions, 6
coding style, xxv
Colchester Catch project, 103, 376
collections module, 40
color tables, 297–298
command window, 7
columnspan, 231
comparison operator (==), 36–37
computer modeling, 194
computer performance evaluation, 162
consonant-vowel maps (c-v maps), 52–58
constant of proportionality, 307

continue statements, 178
control messages, 67
corpus, 148
count_first_digits() function, 356
Counter module, 40–41, 56–57, 197
counting syllables, 147–159
cProfile, 20, 30
Cracking Codes with Python (Sweigart),

61, 87, 119
Creating a Barred-Spiral Galaxy

project, 214–215
Creating a More Efficient Safecracker

project, 144
crossover process, 128, 133
cryptography, 51
current working directory (cwd), 328
c-v maps (consonant-vowel maps), 52–58
cv_map_filter() function, 57
cv_words() function, 58

D
data

loading, 355–356
object-oriented programming

(OOP) and, 223
data verfication, 77–78
debugging, 169–171
Deep Sky Stacker, 331
defaultdict container type, 172–173,

355–357
default_input() function, 251–252
del_folders() function, 333
designed development, 2
Dictionary Cleanup project, 33, 368–369
dictionary files, 20–22, 160
digrams, 52–54, 72
directionality, 211
directory paths, 328–329
DirectX API, 267
docstrings, 10–11
Downey, Allen, 2
Drake equation, 187, 190–191
draw() method, 280
duration variable, 254
DVDVideoSoft, 330

E
eccentricity, 301
eccentricity variable, 308–309, 314, 316
Effective Python (Slatkin), 15
electronic ink, 108

Index 391

Elementary (television show), 105
Emerson, Ralph Waldo, xxii
encapsulations, 21
enjambment, 167
enter key, 5
Enthought Canopy, 195
enumerate() function, 134
epoch timestamps, 31
errata, xxv
errors. See also debugging

checking for, 253
false, 8

events, 278
evolutionary algorithms, 125
exceptions, 21
exhaustive search engines, 126
expected counts, 357

F
Fermi’s paradox, 187–211
files and folders, 327–329, 333–334
Finding Digrams project, 61, 369
first digits, 356–357
first-digit law. See Benford’s law
Flake8, 7
flipping and flip() method, 280
font objects, 111
fonts

color, 108
types of, 109–110
using, 119

Fooled by Randomness: The Hidden Role
of Chance in Life and in the
Markets, Revised Edition
(Taleb), 263

for loops, 257
Fountainhead project, 283
4 Percent Rule, 239–240, 263
Frame class, 229
frames per second (fps), 278–280
Frame widget, 229
Free Studio, 330
Free Video to JPG Converter tool, 330
Friedman, William, 65
functions, defining, 250, 309–310

G
A Galaxy Far, Far Away project, 212–213,

379–380
game assets, 227
game loops, 299–300, 315–316

game sketches, 268–269, 293–295
Geany, xxiv
generations, 128–129
genetic algorithms, 125–142
Genetic Algorithms with Python

(Sheppard), 143
get_expected_counts() function, 357
getdata() method, 339
global minima and maxima, 140
global scope, 42
Going the Distance project, 282,

385–387
goodness-of-fit test, 352–353, 357–358
Google

PageRank algorithm, 162
style guide, 10–11, 14

graphical models, 199–201
graphical user interface (GUI), 74
gravity, 286–287, 307
groups, 314
Guns of the South (Turtledove), 66

H
Hacking Lincoln project, 87, 370
haiku, 146–147
To Haiku, or Not to Haiku project, 186
handwriting recognition, 162
Hartman, Charles, 145–146, 160, 167,

182, 184
Highlighter tool, 108
hill-climbing algorithm, 139
Hitchhiker’s Guide to Python, 15
Hohmann transfer orbit, 291
human error, 66

I
Identifying Cipher Types project, 88,

370–371
IDLE shell, 3
IDLE text editor, xxiv
image registration, 331
image stacking, 325
images, 334–337
import statements, 250
inline-level objects, 111
instantiation, 314
integrated development environment

(IDE), xxiv
invisible electronic ink, 108
ipadx option, 231
itertools module, 51

392 Index

J
Japanese Haiku (Beilenson), 146
JavaScript Object Notation (json), 152
Jumble, 36, 61
Just My Luck! problem, 264

K
Kepler, Johann, 287
kerning, 109–110
KEYUP event, 316
keys, 172

L
.lower() method, 6
Lanczos filter, 337
letter_pair_filter() function, 58–59
letter-transposition ciphers, 72
LibreOffice Writer, 107
line breaks, 110
list ciphers, 99–101
list comprehension, 22, 71
local minima and maxima, 140
logarithmic scale, 349
logarithmic spiral, 199
logging module, 170–171
logic, 223
loops

game loops, 299–300, 315–316
for loops, 257
while loops, 5, 135, 254, 318

lower case, displaying characters as, 39

M
machine translations, 147
main() function, 42, 46–48, 60–61,

76–79, 258–259, 277–278,
278–280, 312–313, 361–363

Markov chain analysis, 147, 161–182
Markov Music project, 186
Mars Climate Orbiter, 6
Mars Orbiter game modifications

project, 320–323
Mary (queen of Scotland), 91
matplotlib library, 195–196, 198, 248,

250, 355
MCS (Monte Carlo simulation), 218–238
median, 344
methods, 223, 225
microphotography, 80

Microsoft
DirectX API, 267
Office Suite, 107
Outlook, 121

The Middle project, 15–16, 17
Milky Way, 188–189
Mix and Match problem, 264
model of order 0, 162
model of order 2, 162–163
modules, xxi, 21

importing, 250, 355–356
matplotlib, 195–196, 198, 248,

250, 355
pillow, 326–327
pydocstyle, 11, 15
pygame, 267, 281–282, 296–319
Pylint, 7–13, 15
python-docx, 110–111
tkinter, 200–202, 212, 229–231

modulo operator (%), 78, 255–256
monospace fonts, 109–110
Monte Carlo simulation (MCS), 218–238
most_common() method, 56–57
Mysterious Messages: A History of Codes

and Ciphers (Blackwood),
87, 101

Myth Busters, 284

N
natural language processing (NLP), 147
Natural Language Processing with Python:

Analyzing Text with the Natural
Language Toolkit (Bird, Klein
and Loper), 155–156

Natural Language Toolkit (NLTK),
148–149

New Word Generator project, 184
Newcomb, Simon, 347
Newton, Isaac, 286–287
Nigrini, Mark, 364
null, defined, 92
null ciphers

defined, 91–92
writing, 98–101

NumPy docstring standards, 10
NumPy library, 195–196, 198

O
object-oriented programming (OOP),

223, 267

Index 393

Ogg Vorbis format (.ogg), 296, 300
O’Neill, Tip, 366
One-Tangent Burn, 291
OpenGL (Open Graphics Library), 267
OpenOffice Writer, 107
OpenSource Computer Vision

(OpenCV), 343
operating systems, xxiv
optimization, 126, 139
orbital mechanics, 288–292
os.chdir() method, 328–329
os.getcwd() method, 328–329
os.listdir() method, 333
os.path.abspath() method, 329
os.path.isdir() method, 333
os.path.join() method, 328–329
os.path.normpath() method, 328–329
os.remove() method, 333–334
Oxford English Dictionary, 2nd Edition, 51

P
PageRank algorithm, 162
palindromes, 19, 23–25
palingrams, 19, 25–33
paragraph objects, 111
patches, 2
path() method, 303
pathnames, 328–329
Peale, Stan, 265
PEP 8, 6, 14
PEP 257, 10–11, 14
periapsis, 290
perigee, 290
permutations, 51
permutations with repetition, 137
persistent data, 155
phonemes, 150
phrase anagrams, 39
phrase_anagrams.py, 43–44
A Picture Is Worth a Thousand Dollars

problem, 264
Pig Latin project, 15, 367–368
pillow module, 326–327
PIL (Python Imaging Library), 327
pip (Preferred Installer Program), 7,

11, 110–111
plaintext, 63, 68
planetary motion, 287
planning, importance of, 2
polar coordinates, 200
polynomial equations, 193

Poor Foreign Man’s Bar Chart project,
16–17

Poor Man’s Bar Chart project,
15–16, 368

pop() function, 71, 86, 155
PowerShell, 7
practice projects

Automating Possible Keys, 88,
371–372

Beating Benford, 364–365, 387–388
The Birthday Paradox, 238
Building a Galactic Empire,

213–214, 380–382
Building a Rat Harem, 144
Checking the Number of Blank

Lines, 122–123, 377–378
The Colchester Catch, 103, 376
Creating a More Efficient

Safecracker, 144
Dictionary Cleanup, 33, 368–369
Finding Digrams, 61, 369
A Galaxy Far, Far Away, 212–213,

379–380
Going the Distance, 282, 385–387
Hacking Lincoln, 87, 370
Identifying Cipher Types, 88,

370–371
Pig Latin, 15, 367–368
Poor Man’s Bar Chart, 15–16, 368
A Roundabout Way to Predict

Detectability, 214, 383–385
Route Transposition Cipher:

Brute-Force Attack, 88–89,
372–374

Saving Mary, 102–103, 375
Storing a Key as a Dictionary,

88, 371
Syllable Counter vs. Dictionary File,

160, 378–379
predictive text, 147
Preferred Installer Program (pip), 7,

11, 110–111
prep_words()function, 55
print() function, 3
print statements, 5
probability theory, 161. See also Markov

chain analysis
process_choice() function, 45–46
product() iterator, 137–138
profiles, 29–31
prograde, 288–289

394 Index

project code, xxiv–xxv. See also
source code

Benford’s Law of Leading Digits,
355–363

Breeding an Army of Super-Rats,
130–136

Counting Syllables
Count Syllables, 156–158
Missing Words, 151–156

Cracking a High-Tech Safe, 140–142
Finding Palindromes, 24–25
Finding Palingrams, 28–29
Finding Phrase Anagrams, 43–49
Finding Single-Word Anagrams,

38–39
Finding Voldemort

British Brute-Force, 54–61
Gallic Gambit, 50

Generating Pseudonyms, 4–6
Hiding a Vigenère Cipher, 114–119
Markov Chain Analysis, 171–181
Mars Orbiter Game, 297–319
Modeling the Milky Way

Galaxy Simulator, 202–211
Probability-of-Detection,

194–199
Monty Hall Game, 228–238
Plumes of Io, 271–280
Rail Fence Cipher

Decryption, 84–86
Encryption, 82–84

Route Cipher Decryption, 69–79
Simulating Retirement Lifetimes,

250–259
Stacking Jupiter

Cropping and Scaling, 331–337
Enhancing, 340–342
Stacking, 337–340

Trevanion Cipher, 94–98
Verify vos Savant, 221–223
Writing a Null Cipher, 99–101

proportional fonts, 109–110
prototype and patch, 2
pseudocode

defined, 3–4
graphical example, 127–128

pseudonym generator, 1–13
pseudonyms.py, 4–5
Psych, 1
PyCharm, xxiv
pycodestyle, 7
pydocstyle, 11, 15

pygame, 267, 281–282, 296–319
Pylint, 7–13, 15
PyScripter, xxiv
Python Enhancement Proposals, 6
Python IDLE text editor, xxiv
Python Imaging Library (PIL), 327
Python Standard Library, 170
python-docx, 110–111

Q
quadratic equation, 193
QUIT event, 280

R
radians, 275
rail fence cipher, 80–86
random module, 5, 134
raw string, 82
Recursive Approach project, 34
RegiStar, 331
RegiStax, 331
relative paths, 329
repeated random sampling, 218
reStructuredText, 10–11, 15
retrograde, 288–289
rotate() method, 303, 305–306
Roundabout Way to Predict

Detectability project, 214,
383–385

Route Cipher Encoder project, 90
route transposition cipher, 64–79
Route Transposition Cipher: Brute-

Force Attack project, 88–89,
372–374

run objects, 111

S
Sagan, Carl, 211
Saving Mary project, 102–103, 375
scaffolding, 170
scale invariant, 348
SciPy, 195
SDL (Simple DirectMedia Library), 267
semilogarithmic plots, 349
semordnilap, 26
sensitivity studies, 136
serialization, 155–156
Shakespeare, William, 186
Shannon, Claude, 162, 184

Index 395

SHARPEN filter, 342
shell utilities module, 329
Sheppard, Clinton, 143
Shock Canopy project, 283
shutil module, 329
shutil.rmtree() method, 333
Simple DirectMedia Library (SDL), 267
Slatkin, Brett, 15
slicing, 23–24
sorted() function, 37
sounds, 315–316
source code. See also project code

anagrams.py, 38
benford.py, 355–361
brute_force_cracker.py, 138
count_syllables.py, 157–158
crop_n_scale_images.py, 332–334
elementary_ink.py, 114–116
enhance_image.py, 340–341
galaxy_simulator.py, 202–209
load_dictionary.py, 22
list_cipher.py, 99
markov_haiku.py, 171–180
mars_orbiter.py, 297–319
missing_words_finder.py, 151–156
monty_hall_gui.py, 229–237
monty_hall_mcs.py, 221–222
nest_egg_mcs.py, 250–258
nest_egg_mcs_1st_5yrs.py, 261–262
null_cipher_finder.py, 95–98
palindromes.py, 24
palingrams.py, 28–29
palingrams_optimized.py, 32
phrase_anagrams.py, 44–47
probability_of_detection.py, 195–198
pseudonyms.py, 4–5
pseudonyms_main_fixed.py, 12–13
Pylint, 7–13
rail_fence_cipher_decrypt.py, 84–86
rail_fence_cipher_encrypt.py, 82–84
route_cipher_decrypt_prototype.py,

69–72
safe_cracker.py, 140–142
stack_images.py, 338
super_rats.py, 130–136
test_count_syllables_w_full_corpus​

.py, 159
tvashtar.py, 271–279
voldemort_british.py, 54–61

spam detection, 147
spam filtering, 162

speech recognition, 162
Sphinx, 11
spiral galaxies, 188–189
spiral transfer, 292
splat operator (*), 25
split() function, 70
Sprite class, 272, 274, 298, 304, 314
Stager, Anson, 64
standardized names and procedures, 6
statistics, 217
steganography, 91, 108
stop conditions, 126
Storing a Key as a Dictionary project,

88, 371
string format method, 210
string.punctuation constant, 95–96
strings, 5–6
strip() function, 65
style guide, 6
styles, 111–112

statistical models of, 168
substitution cipher, 65, 88, 106
superclasses, 229
Syllable Counter vs. Dictionary File

project, 160, 378–379
syllables, counting, 147–159
synchronous orbits, 292
sys module, 5
sys.exit(1), 21

T
tableau, 106
Taleb, Nassim, 219, 263
terminal window, 111
text editors, 20
“The Growing Importance of Natural

Language Processing”
(DeAngelis), 155–156

Think Python, 2nd Edition (Downey), 2,
33, 61, 170

third-party modules
pillow, 326–327
python-docx, 110–111
resources for, 15

Three-Rail Fence Cipher project, 90
time.time(), 31
Tk widget, 231
tkinter, 200–202, 212, 229–231
tracking, 109–110
training corpus, 148, 151

396 Index

transposition cipher, 65
Trevanion cipher, 91–98
trigram_filter() function, 58
trigrams, 52
Trump, Donald, 185–186, 353–354
try statement, 21
Turing, Alan, 185
Turing Test project, 185
Turtledove, Harry, 66
Twain, Mark, 239–240
2of4brif.txt file, 20

U
Unbelievable! This Is Unbelievable!

Unbelievable! project,
185–186

unbreakable cipher. See Vigenère cipher
uncertainty, 245
universal gravity, 286–287, 307
Unix epoch, 31
unpacking, 176
update() method, 277, 303
user interfaces, writing, 178–181
Using Monospace Font project, 123

V
validate_col_row() function, 78
values, 172
Vanishing Act project, 344–345

variables, 136
duration variable, 254
eccentricity variable, 308–309,

314, 316
video, 330–331
Vigenère cipher, 106–121
Virtual Muse: Experiments in Computer

Poetry (Hartman), 145,
167, 184

vos Savant, Marilyn, 217–218

W
while loops, 5, 135, 254, 318
While No One Was Looking

project, 366
widget, defined, 203
With a Bullet project, 284
with statement, 21
word association norms (WANs), 184
word lists, 20

Y
Yahoo! Mail, 121

Z
Zatara, Zatanna, 19, 33
Zen of Python, 6
zip() function, 133, 141
zip_longest() function, 85–86
zorder attribute, 360

RESOURCES
Visit https://www.nostarch.com/impracticalpythonprojects/ for resources, errata, and
more information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

python flash cards
Syntax, Concepts, and Examples
by eric matthes

winter 2019, 101 cards, $27.95
isbn 978-1-59327-896-0
full color

Python Crash Course
A Hands-On, Project-Based
Introduction to Programming
by eric matthes

november 2015, 560 pp., $39.95
isbn 978-1-59327-603-4

Cracking Codes
with Python
An Introduction to Building
and Breaking Ciphers
by al sweigart

january 2018, 424 pp., $29.95
isbn 978-1-59327-822-`9

Python Playground
Geeky Projects for the
Curious Programmer
by mahesh venkitachalam

october 2015, 352 pp., $29.95
isbn 978-1-59327-604-1

More no-nonsense books from No Starch Press

Serious Python
Black-Belt Advice on Deployment,
Scalability, Testing, and More
by julien danjou

fall 2018, 300 pp., $34.95
isbn 978-1-59327-878-6

Math Adventures
with Python
Fractals, Automata, 3D Graphics,
and More!
by peter farrell

fall 2018, 304 pp., $29.95
isbn 978-1-59327-867-0
full color

https://nostarch.com/impracticalpythonprojects

P L A Y F U L P R O G R A M M I N G A C T I V I T I E S

T O M A K E Y O U S M A R T E R

I M P R A C T I C A L
P Y T H O N P R O J E C T S

I M P R A C T I C A L
P Y T H O N P R O J E C T S

L E E V A U G H A N

SHELVE IN
: PRO

GRAM
M

ING
LANGUAGES/PYTHO

N

$29.95 ($39.95 CDN)

Python undeniably makes programming easier than
ever to learn. But once you understand the basics,
what do you do next? Maybe you just need some
inspiration for your next weekend project.

With Impractical Python Projects, you’ll explore the
farthest reaches of the galaxy, the souls of poets,
the world of high finance, the trickery of spies, and
more—using modules like tkinter, matplotlib, cProfile,
Pylint, pygame, pillow, and python-docx.

Follow along and flex your problem-solving skills to:

• Help James Bond crack a high-tech safe with a
hill-climbing algorithm

• Write poems using Markov chain analysis

• Breed a race of gigantic rats with genetic algorithms

• Plan a secure retirement with a Monte Carlo
simulation

• Model the Milky Way and calculate our odds of
detecting alien civilizations

• Map Mars and learn orbital mechanics with your own
personal space probe

And so much more! Whether you’re looking to pick
up some new Python skills or just want some creative
programming exercises, you’ll find endless educational
and geeky fun with Impractical Python Projects.

A B O U T T H E A U T H O R

Lee Vaughan is a programmer, pop culture enthusiast,
and educator. Lee’s professional work involves the
construction and review of computer models; the devel-
opment, testing, and commercialization of software;
and the training of geoscientists and engineers. He
wrote Impractical Python Projects to help self-learners
hone their Python skills and have fun doing it!

M O D E L ,
E X P E R I M E N T ,

S I M U L A T E ,
P L A Y

M O D E L ,
E X P E R I M E N T ,

S I M U L A T E ,
P L A Y

COVERS
PYTHON 3 IM

P
R

A
C

T
IC

A
L

 P
Y

T
H

O
N

 P
R

O
JE

C
T

S
IM

P
R

A
C

T
IC

A
L

 P
Y

T
H

O
N

 P
R

O
JE

C
T

S
V

A
U

G
H

A
N

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

	Brief Contents
	Contents In Detail
	Acknowledgments
	Introduction
	Who This Book Is For
	What’s in This Book
	Python Version, Platform, and IDE
	The Code
	Coding Style

	Where to Get Help
	Onward!

	Chapter 1: Silly Name Generator
	Project #1: Generating Pseudonymns
	Planning and Designing a Project
	The Strategy
	The Pseudocode

	The Code
	Using the Python Community’s Style Guide
	Checking Your Code with Pylint
	Describing Your Code with Docstrings
	Checking Your Code Style

	Summary
	Further Reading
	Pseudocode
	Style Guides
	Third-Party Modules

	Practice Projects
	Pig Latin
	Poor Man’s Bar Chart

	Challenge Projects
	Poor Foreign Man’s Bar Chart
	The Middle
	Something Completely Different

	Chapter 2: Finding Palingram Spells
	Finding and Opening a Dictionary
	Handling Exceptions When Opening Files
	Loading the Dictionary File

	Project #2: Finding Palindromes
	The Strategy and Pseudocode
	The Palindrome Code

	Project #3: Finding Palingrams
	The Strategy and Pseudocode
	The Palingrams Code
	Palingram Profiling
	Palingram Optimization

	dnE ehT
	Further Reading
	Practice Project: Dictionary Cleanup
	Challenge Project: Recursive Approach

	Chapter 3: Solving Anagrams
	Project #4: Finding Single-Word Anagrams
	The Strategy and Pseudocode
	Anagram-Finder Code

	Project #5: Finding Phrase Anagrams
	The Strategy and Pseudocode
	The Anagram Phrase Code

	Project #6: Finding Voldemort: The Gallic Gambit
	Project #7: Finding Voldemort: The British Brute-Force
	Strategy
	The British Brute-Force Code

	Summary
	Further Reading
	Practice Project: Finding Diagrams
	Challenge Project: Automatic Anagram Generator

	Chapter 4: Decoding American Civil War Ciphers
	Project #8: The Route Cipher
	The Strategy
	The Pseudocode
	The Route Cipher Decryption Code
	Hacking the Route Cipher
	Adding a User Interface

	Project #9: The Rail Fence Cipher
	The Strategy
	The Rail Fence Cipher Encryption Code
	The Rail Fence Cipher Decryption Code

	Summary
	Further Reading
	Practice Projects
	Hacking Lincoln
	Identifying Cipher Types
	Storing a Key as a Dictionary
	Automating Possible Keys
	Route Transposition Cipher: Brute-Force Attack

	Challenge Projects
	Route Cipher Encoder
	Three-Rail Fence Cipher

	Chapter 5: Encoding English Civil War Ciphers
	Project #10: The Trevanion Cipher
	Strategy and Pseudocode
	The Trevanion Cipher Code

	Project #11: Writing a Null Cipher
	The List Cipher Code
	The List Cipher Output

	Summary
	Further Reading
	Practice Projects
	Saving Mary
	The Colchester Catch

	Chapter 6: Writing in Invisible Ink
	Project #12: The Vigenère Cipher
	The Platform
	The Strategy
	Creating Invisible Ink
	Manipulating Word Documents with python-docx
	Downloading the Assets

	The Pseudocode
	The Code
	Importing python-docx, Creating Lists, and Adding a Letterhead
	Formatting and Interleaving the Messages
	Adding the Vigenère Cipher

	Detecting the Hidden Message
	Summary
	Further Reading
	Practice Project: Checking the Number of Blank Lines
	Challenge Project: Using Monospace Font

	Chapter 7: Breeding Giant Rats with Genetic Algorithms
	Finding the Best of All Possible Solutions
	Project #13: Breeding an Army of Super-Rats
	Strategy
	The Super-Rats Code
	Summary

	Project #14: Cracking a High-Tech Safe
	Strategy
	The Safecracker Code
	Summary

	Further Reading
	Challenge Projects
	Building a Rat Harem
	Creating a More Efficient Safecracker

	Chapter 8: Counting Syllables for Haiku Poetry
	Japanese Haiku
	Project #15: Counting Syllables
	The Strategy
	Using a Corpus
	Installing NLTK
	Downloading CMUdict
	Counting Sounds Instead of Syllables
	Handling Words with Multiple Pronunciations

	Managing Missing Words
	The Training Corpus
	The Missing Words Code

	The Count Syllables Code
	Prepping, Loading, and Counting
	Defining the main() Function

	A Program to Check Your Program
	Summary
	Further Reading
	Practice Project: Syllable Counter Vs. Dictionary File

	Chapter 9: Writing Haiku with Markov Chain Analysis
	Project #16: Markov Chain Analysis
	The Strategy
	Choosing and Discarding Words
	Continuing from One Line to Another

	The Pseudocode
	The Training Corpus
	Debugging
	Building the Scaffolding
	Using the logging Module

	The Code
	Setting Up
	Building Markov Models
	Choosing a Random Word
	Applying the Markov Models
	Generating the Haiku Lines
	Writing the User Interface

	The Results
	Good Haiku
	Seed Haiku

	Summary
	Further Reading
	Challenge Projects
	New Word Generator
	Turing Test
	Unbelievable! This Is Unbelievable! Unbelievable!
	To Haiku, or Not to Haiku
	Markov Music

	Chapter 10: Are We Alone? Exploring the Fermi Paradox
	Project #17: Modeling the Milky Way
	The Strategy
	Estimating the Number of Civilizations
	Selecting Radio Bubble Dimensions
	Generating a Formula for the Probability of Detection
	The Probability-of-Detection Code
	Calculating Probability of Detection for a Range of Civilizations
	Generating a Predictive Formula and Checking the Results

	Building the Graphical Model
	Scaling the Graphical Model
	The Galaxy Simulator Code

	Results
	Summary
	Further Reading
	Practice Projects
	A Galaxy Far, Far Away
	Building a Galactic Empire
	A Roundabout Way to Predict Detectability

	Challenge Projects
	Creating a Barred-Spiral Galaxy
	Adding Habitable Zones to Your Galaxy

	Chapter 11: The Monty Hall Problem
	Monte Carlo Simulation
	Project #18: Verify vos Savant
	The Strategy
	The vos Savant Verification Code

	Project #19: The Monty Hall Game
	A Brief Introduction to Object-Oriented Programming
	The Strategy and Pseudocode
	Game Assets
	The Monty Hall Game Code

	Summary
	Further Reading
	Practice Problem: The Birthday Paradox

	Chapter 12: Securing Your Nest Egg
	Project #20: Simulating Retirement Lifetimes
	The Strategy
	Historical Returns Matter
	The Greatest Uncertainty
	A Qualitative Way to Present Results

	The Pseudocode
	Finding Historical Data
	The Code
	Importing Modules and Defining Functions to Load Data and Get User Input
	Getting the User Input
	Checking for Other Erroneous Input
	Defining the Monte Carlo Engine
	Simulating Each Year in a Case
	Calculating the Probability of Ruin
	Defining and Calling the main() Function

	Using the Simulator
	Summary
	Further Reading
	Challenge Problems
	A Picture Is Worth a Thousand Dollars
	Mix and Match
	Just My Luck!
	All the Marbles

	Chapter 13: Simulating an Alien Volcano
	Project #21: The Plumes of Io
	A Slice of pygame
	The Strategy
	Using a Game Sketch to Plan
	Planning the Particle Class

	The Code
	Importing Modules, Initiating pygame, and Defining Colors
	Defining the Particle Class
	Ejecting a Particle
	Updating the Particle and Handling Boundary Conditions
	Defining the main() Function
	Completing the main() Function

	Running the Simulation
	Summary
	Further Reading
	Practice Project: Going the Distance
	Challenge Project: Shock Canopy
	Challenge Project: The Fountainhead
	Challenge Project: With a Bullet

	Chapter 14: Mapping Mars with the Mars Orbiter
	Astrodynamics for Gamers
	The Law of Universal Gravity
	Kepler’s Laws of Planetary Motion
	Orbital Mechanics

	Project #22: The Mars Orbiter Game
	The Strategy
	Game Assets
	The Code
	Importing and Building a Color Table
	Defining the Satellite Class Initialization Method
	Setting the Satellite’s Initial Position, Speed, Fuel, and Sound
	Firing Thrusters and Checking for Player Input
	Locating the Satellite
	Rotating the Satellite and Drawing Its Orbit
	Updating the Satellite Object
	Defining the Planet Class Initialization Method
	Rotating the Planet
	Defining the gravity() and update() Methods
	Calculating Eccentricity
	Defining Functions to Make Labels
	Mapping Soil Moisture
	Casting a Shadow
	Defining the main() Function
	Instantiating Objects, Setting Up Orbit Verification, Mapping, and Timekeeping
	Starting the Game Loop and Playing Sounds
	Applying Gravity, Calculating Eccentricity, and Handling Failure
	Rewarding Success and Updating and Drawing Sprites
	Displaying Instructions and Telemetry and Casting a Shadow

	Summary
	Challenge Projects
	Game Title Screen
	Smart Gauges
	Radio Blackout
	Scoring
	Strategy Guide
	Aerobraking
	Intruder Alert!
	Over the Top

	Chapter 15: Improving Your Astrophotography with Planet Stacking
	Project #23: Stacking Jupiter
	The pillow Module
	Working with Files and Folders
	Directory Paths
	The Shell Utilities Module

	The Video
	The Strategy
	The Code
	The Cropping and Scaling Code
	The Stacking Code
	The Enhancing Code

	Summary
	Further Reading
	Challenge Project: Vanishing Act

	Chapter 16: Finding Frauds with Benford’s Law
	Project #24: Benford’s Law of Leading Digits
	Applying Benford’s Law
	Performing the Chi-Square Test

	The Dataset
	The Strategy
	The Code
	Importing Modules and Loading Data
	Counting First Digits
	Getting the Expected Counts
	Determining Goodness of Fit
	Defining the Bar Chart Function
	Completing the Bar Chart Function
	Defining and Running the main() Function

	Summary
	Further Reading
	Practice Project: Beating Benford
	Challenge Projects
	Benfording the Battlegrounds
	While No One Was Looking

	Appendix: Practice Problem Solutions
	Chapter 1: Silly Name Generator
	Chapter 2: Finding Palingram Spells
	Chapter 3: Solving Anagrams
	Chapter 4: Decoding American Civil War Ciphers
	Chapter 5: Encoding English Civil War Ciphers
	Chapter 6: Writing in Invisible Ink
	Chapter 8: Counting Syllables for Haiku Poetry
	Chapter 10: Are We Alone? Exploring the Fermi Paradox
	Chapter 11: The Monty Hall Problem
	Chapter 13: Simulating an Alien Volcano
	Chapter 16: Finding Frauds with Benford’s Law

	Index

