IMPRACTICAL
PYTHON PROJECTS

IMPRACTICAL PYTHON PROJECTS

IMPRACTICAL
PYTHON
PROJECTS

Playful Programming Activitiea
to Make You Smarter

by Lee Vaughan

¢

no starch
press

IMPRACTICAL PYTHON PROJECTS. Copyright © 2019 by Lee Vaughan.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-890-X
ISBN-13: 978-1-59327-890-8

Publisher: William Pollock

Production Editor: Janelle Ludowise

Cover Illustration: Josh Ellingson

Interior Design: Octopod Studios

Developmental Editor: Zach Lebowski

Technical Reviewers: Jeremy Kun, Michael Contraveos, and Michele Pratusevich
Copyeditor: Rachel Monaghan

Compositor: David Van Ness

Proofreader: Paula L. Fleming

Indexer: Beth Nauman-Montana

The following images are reproduced with permission: Figure 4-1 courtesy of the Library of Congress;
Figure 7-1 created by vecteezy.com; rat silhouette in Figure 7-2 created by vecteezy.com; door image in Figures
11-1, 11-3, 11-4, 11-5, and 11-6 created by Dooder at Freepik.com; goat and moneybag images in Figures 11-1,
11-4, 11-5, and 11-6 created by Freepik.com; Figures 10-1, 10-7, 18-1, 14-21, and 15-1 from NASA; satellite im-
ages in Figures 14-13 and 14-24 courtesy of www.aha-soft.com/; output in Figure 12-5 supplied by ifa.com

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Vaughan, Lee, author.

Title: Impractical Python projects : playful programming activities to make
you smarter / Lee Vaughan.

Description: First edition. | San Francisco : No Starch Press, Inc., [2019]
| Includes bibliographical references and index.

Identifiers: LCCN 2018027576 (print) | LCCN 2018029119 (ebook) | ISBN
9781593278915 (epub) | ISBN 1593278918 (epub) | ISBN 9781593278908 (pbk.
alk. paper) | ISBN 159327890X (pbk. : alk. paper)

Subjects: LCSH: Python (Computer program language)

Classification: LCC QA76.73.P98 (ebook) | LCC QA76.73.P98 V38 2019 (print) |
DDC 005.13/3--dc23

LC record available at https://lccn.loc.gov/2018027576

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com
https://lccn.loc.gov/2018027576

For the Accidental Programmers,
the Dedicated Non-Specialists,
the Dibblers and Dabblers:
all the non-professionals who find
themselves writing code every day.
May this help you on your way.

About the Author

Lee Vaughan is a geologist with more than 30 years of experience in the
petroleum industry. As the Senior Technical Professional for Geological
Modeling at a major international oil company, he was involved in the
construction and review of computer models; the development, testing,
and commercialization of software; and the training of geoscientists and
engineers. An advocate for nonprogrammers who must use programming
in their careers, he wrote Impractical Python Projects to help self-learners
hone their skills with the Python language.

About the Technical Reviewer

Jeremy Kun graduated with his PhD in mathematics from the University
of Illinois at Chicago. He writes the blog Math N Programming (https://
jeremykun.com/) and currently works on datacenter optimization at
Google.

BRIEF CONTENTS

Acknowledgments L xix
Introduchiono xxi
Chapter 1: Silly Name Generator 1
Chapter 2: Finding Palingram Spells 19
Chapter 3: Solving Anagrams 35
Chapter 4: Decoding American Civil War Ciphers 63
Chapter 5: Encoding English Civil War Ciphers. 91
Chapter 6: Writing in Invisible Ink oo 105
Chapter 7: Breeding Giant Rats with Genetic Algorithms 125
Chapter 8: Counting Syllables for Haiku Poetry, 145
Chapter 9: Writing Haiku with Markov Chain Analysis. 161
Chapter 10: Are We Alone? Exploring the Fermi Paradox 187
Chapter 11: The Monty Hall Problem 217
Chapter 12: Securing Your NestEggo 239
Chapter 13: Simulating an Alien Volcano o 265
Chapter 14: Mapping Mars with the Mars Orbiter. 285
Chapter 15: Improving Your Astrophotography with Planet Stacking 325
Chapter 16: Finding Frauds with Benford’s Law. 347
Appendix: Practice Project Solutions. 367

CONTENTS IN DETAIL

ACKNOWLEDGMENTS xix
INTRODUCTION xXi
Who This Book Is For xxii
What's in This Book xxii
Python Version, Platform, and IDE, XXiV
The Code. . .ot XXiv
Coding Style XXV
Whereto GetHelp XXV
Onwardl. . .o XXV
1
SILLY NAME GENERATOR 1
Project #1: Generating Pseudonyms 1
Planning and Designing a Project. 2
The Strategy oot 3
The Pseudocode 3
The Codeo 4
Using the Python Community’s Style Guide. 6
Checking Your Code with Pylint 7
Describing Your Code with Docstrings. 10
Checking Your Code Style 11
SUMMArY . .o 14
FurtherReading o 14
Pseudocode 14
Style Guides.o 14
Third-Party Modules. 15
Practice Projects.o 15
Pig Latin. . . 15
Poor Man’s Bar Chart 15
Challenge Projectsot 16
Poor Foreign Man’s Bar Chart 16
The Middle. 17
Something Completely Different 17
2
FINDING PALINGRAM SPELLS 19
Finding and Opening a Dictionary. 20
Handling Exceptions When Opening Files 21
Loading the Dictionary File. 21
Project #2: Finding Palindromes., 23
The Strategy and Pseudocode. 23

The Palindrome Code 24

Project #3: Finding Palingrams 25

The Strategy and Pseudocode. 25
The Palingrams Code 28
Palingram Profiling 29
Palingram Optimization. 31
dnE ehT ..o 33
FurtherReading oo 33
Practice Project: Dictionary Cleanup. 33
Challenge Project: Recursive Approach. 34
3
SOLVING ANAGRAMS 35
Project #4: Finding SingleWord Anagrams. 36
The Strategy and Pseudocode. 36
Anagram-FinderCode 38
Project #5: Finding Phrase Anagrams. 39
The Strategy and Pseudocode. 40
The Anagram Phrase Code 43
Project #6: Finding Voldemort: The Gallic Gambit. 49
Project #7: Finding Voldemort: The British Brute-Force. 51
] =Y 51
The British BruteForce Code. 54
SUMMAIY o oo 61
Further Reading oo 61
Practice Project: Finding Digrams. 61
Challenge Project: Automatic Anagram Generator. 62
4
DECODING AMERICAN CIVIL WAR CIPHERS 63
Project #8: The Route Cipher. 64
The Strategy oot 66
The Pseudocodeo 69
The Route Cipher Decryption Code 69
Hacking the Route Cipher 72
Addinga UserInterface. 74
Project #9: The Rail Fence Cipher 80
The Strategy oot e 81
The Rail Fence Cipher EncryptionCode 82
The Rail Fence Cipher Decryption Code. 84
SUMMAIY « o oo 86
Further Reading oo 87
Practice Projects. 87
Hacking Lincoln 87
Identifying Cipher Types oo 88
Storing a Key as a Dictionary. 88
Automating Possible Keys. 88
Route Transposition Cipher: Brute-Force Attack 88
Challenge Projectsot 90
Route Cipher Encoder i 90
Three-Rail Fence Cipher. 90

xii Contents in Detail

5
ENCODING ENGLISH CIVIL WAR CIPHERS

Project #10: The Trevanion Cipher. i ..
Strategy and Pseudocode.
The Trevanion Cipher Code i
Project #11: Writing a Null Cipher o
The List Cipher Code
The List Cipher Output
SUMMAIY .
FurtherReading oo
Practice Projects.
Saving Mary . ..o
The Colchester Catch.

6
WRITING IN INVISIBLE INK

Project #12: Hiding a Vigenére Cipher.
The Platform . . . o
The Strategy oo
Creating Invisible Ink. L
Manipulating Word Documents with python-doex
Downloading the Assets.
The Pseudocode.ot
The Code . ..ot
Importing python-docx, Creating Lists, and Adding a Letterhead
Formatting and Interleaving the Messages
Adding the Vigenére Cipher.
Detecting the Hidden Message i
SUMMArY . .ot
Further Reading
Practice Project: Checking the Number of Blank Lines.
Challenge Project: Using Monospace Font

7
BREEDING GIANT RATS WITH GENETIC ALGORITHMS

Finding the Best of All Possible Solutions.
Project #13: Breeding an Army of SuperRats
SHTAtEgY . . v et
The SuperRats Code
SUMMArY . . e
Project #14: Cracking a High-Tech Safe
SIOtEGY .
The Safecracker Code o
SUMMArY . . o
Further Readingot
Challenge Projectso oo
Buildinga RatHarem
Creating a More Efficient Safecracker.,

Contents in Detail

105

106
107
107
108
110
112
113
114
114
115
118
119
122
122
122
123

xiii

8

COUNTING SYLLABLES FOR HAIKU POETRY 145
Japanese Haikuo 146
Project #15: Counting Syllables. 147
The Strategy oot 147
Using @ Corpus. . . . vttt 148
Installing NLTKo 148
Downloading CMUdlict 149
Counting Sounds Instead of Syllables., 150
Handling Words with Multiple Pronunciations. 150
Managing Missing Words 151
The Training Corpus oot 151
The Missing Words Code i 151
The Count Syllables Code 156
Prepping, Loading, and Counting 156
Defining the main() Function. 158
A Program to Check Your Program. 158
SUMMAIY o oo 159
Further Reading 160
Practice Project: Syllable Counter vs. Dictionary File. 160
9
WRITING HAIKU WITH MARKOV CHAIN ANALYSIS 161
Project #16: Markov Chain Analysis 162
The Strategy . . .« oot 164
Choosing and DiscardingWords 165
Continuing from One Lineto Another. 167
The Pseudocode.o 167
The Training Corpus. . . . o oottt e e e e 168
Debugging . . . oot 169
Building the Scaffolding. 170
Using the loggingModule 170
The Codeo 171
Setting Up . ..o 171
Building Markov Models 172
Choosing a RandomWord 173
Applying the Markov Models, 174
Generating the Haiku Lines 175
Writing the User Interface 178
The Resultso 181
Good Haiku.o 182
SeedHaiku 183
SUMMAIY .« oo 184
Further Reading 184
Challenge Projectso 184
New Word Generator. 184
Turing Test . . 185
Unbelievable! This Is Unbelievable! Unbelievable! 185
To Haiku, or Notto Haiku o 186
Markov Music.o 186

xiv Contents in Detail

10
ARE WE ALONE? EXPLORING THE FERMI PARADOX

Project #17: Modeling the Milky Way
The Strategyot
Estimating the Number of Civilizations
Selecting Radio Bubble Dimensions
Generating a Formula for the Probability of Detection.
The Probability-of-Detection Code.
Calculating Probability of Detection for a Range of Civilizations
Generating a Predictive Formula and Checking the Results.
Building the Graphical Model
Scaling the Graphical Model
The Galaxy Simulator Code
Results . ..o
SUMMAIY .
FurtherReading oo
Practice Projects.
A Galaxy Far, Far Away
Building a Galactic Empire.
A Roundabout Way to Predict Detectability
Challenge Projectsot
Creating a Barred-Spiral Galaxy.,
Adding Habitable Zones to Your Galaxy

11
THE MONTY HALL PROBLEM

Monte Carlo Simulation
Project #18: Verify vos Savant.
The Strategy oot
The vos Savant VerificationCode
Project #19: The Monty Hall Game
A Brief Introduction to Object-Oriented Programming
The Strategy and Pseudocode. L.
Game Assets
The Monty Hall Game Code.
SUMMArY . .o
FurtherReading o
Practice Project: The Birthday Paradox

12
SECURING YOUR NEST EGG

Project #20: Simulating Refirement Lifetimes
The Strategyot
Historical Returns Matter
The Greatest Uncertainty
A Qualitative Way to Present Results L
The Pseudocode. oo
Finding Historical Data.

Contents in Detail

187

188
189
190
191
192
194
195
198
199
201
202
211
212
212
212
212
213
214
214
214
215

217

218
220
220
221

223
223
226
227
228
238
238
238

XV

The Codeo 250
Importing Modules and Defining Functions to Load Data and Get User Input . 250

Gefting the User Input o 251
Checking for Other Erroneous Input. 253
Defining the Monte Carlo Engine 253
Simulating Each YearinaCase i 256
Calculating the Probability of Ruin. 257
Defining and Calling the main() Function 258
Using the Simulator 259
SUMMAIY .« o o 263
FurtherReading 263
Challenge Projectso 264
A Picture Is Worth a Thousand Dollars., 264
Mixand Match. 264
Just My Luck! oo 264
Allthe Marbles. 264
13
SIMULATING AN ALIEN VOLCANO 265
Project #21: The Plumesof lo 266
ASliceof pygame 267
The Strategy oot 268
Using a Game Sketchto Plan. 268
Planning the Particle Class 269
The Code . ..ot 271
Importing Modules, Initiating pygame, and Defining Colors 271
Defining the Particle Class 272
EjectingaParticle 274
Updating the Particle and Handling Boundary Conditions 276
Defining the main() Function. 277
Completing the main() Function. 278
Running the Simulation 280
SUMMAIY .« o oo 281
FurtherReading 281
Practice Project: Going the Distance. i 282
Challenge Projectso 283
Shock Canopyo 283
The Fountainhead 283
WithaBullet 284
14
MAPPING MARS WITH THE MARS ORBITER 285
Astrodynamics for Gamers 286
The Law of Universal Gravity 286
Kepler's Laws of Planetary Motion. 287
Orbital Mechanics 288
Project #22: The Mars Orbiter Game i 293
The Strategy oot 293
Game Assets 296

Xvi Contents in Detail

The Code . . .o o 297

Importing and Building a Color Table 297
Defining the Satellite Class Initialization Method 298
Setting the Satellite’s Initial Position, Speed, Fuel, and Sound 299
Firing Thrusters and Checking for Player Input. 300
Locating the Satellite 301
Rotating the Satellite and Drawing lts Orbit 302
Updating the Satellite Object 303
Defining the Planet Class Initialization Method 304
Rotating the Planet 306
Defining the gravity() and update() Methods. 307
Caleulating Eccentricity 308
Defining Functions o Make Labels. 309
Mapping Soil Moisture 311
Castinga Shadow 311
Defining the main() Function. 312
Instantiating Objects, Setting Up Orbit Verification, Mapping,
and Timekeeping L 314
Starting the Game Loop and Playing Sounds 315
Applying Gravity, Calculating Eccentricity, and Handling Failure 316
Rewarding Success and Updating and Drawing Sprites. 318
Displaying Instructions and Telemetry and Casting a Shadow. 318
SUMMAIY . .ot 320
Challenge Projectso oo 320
Game Title Screen. 320
Smart Gaugeso 320
Radio Blackouto 320
SCOMNG .« v et 320
Strategy Guide 321
Aerobraking. L 321
Intruder Alertlo 322
Overthe Top . . oot 322
15
IMPROVING YOUR ASTROPHOTOGRAPHY
WITH PLANET STACKING 325
Project #23: Stacking Jupiter. 326
The pillow Module 327
Working with Filesand Folders 327
Directory Paths 328
The Shell Utilities Module 329
The Video oo 330
The Strategy . . .« oot 331
The Code . .. oo 331
The Cropping and ScalingCode. 331
The StackingCode 337
The Enhancing Codeot 340
SUMMArY . .ot 343
Further Readingo 343
Challenge Project: Vanishing Act. 344

Contents in Detail

xvii

16
FINDING FRAUDS WITH BENFORD'’S LAW

Project #24: Benford’s Law of Leading Digits.
Applying Benford's Law.
Performing the Chi-Square Test.

The Dataset. . ..ot

The Strategy oot

TheCode
Importing Modules and loading Data
Counting First Digits
Getting the Expected Counts.
Determining Goodness of Fit.
Defining the Bar Chart Function
Completing the Bar Chart Function
Defining and Running the main() Function

SUMMAIY oot

FurtherReading

Practice Project: Beating Benford

Challenge Projects
Benfording the Battlegrounds
While No One Was looking

APPENDIX
PRACTICE PROJECT SOLUTIONS

Chapter 1: Silly Name Generator
Chapter 2: Finding Palingram Spells
Chapter 3: Solving Anagrams
Chapter 4: Decoding American Civil War Ciphers
Chapter 5: Encoding English Civil War Ciphers.
Chapter 6: Writing in Invisible Ink L
Chapter 8: Counting Syllables for Haiku Poetry
Chapter 10: Are We Alone? Exploring the Fermi Paradox
Chapter 11: The Monty Hall Problem
Chapter 13: Simulating an Alien Volcano
Chapter 16: Finding Frauds with Benford's Law.

INDEX

xviii Contents in Detail

347

348
350
352
353
354
355
355
356
357
357
358
359
361
363
364
364
366
366
366

367

367
368
369
370
375
377
378
379
384
385
387

389

ACKNOWLEDGMENTS

Writing a book is a family affair, and I couldn’t have
succeeded without the support of both my real fam-
ily and my surrogate family at No Starch Press. First,
thanks to my wife, Hannah, and daughters, Sarah and
Lora, for their understanding, patience, and endless

editing support.

At No Starch, thanks to Bill Pollock and Tyler Ortman for accepting
my proposal; Zach Lebowski for making sense of what I was trying to say;
Janelle Ludowise for a highly professional job of production editing; Rachel
Monaghan and Paula Fleming for taking on the difficult job of copyedit-
ing and proofing a technical book; David Van Ness for composition; and
Serena Yang and Josh Ellingson for the awesome cover design. Thanks also
to my technical reviewers, Jeremy Kun, Michael Contraveos, and Michele
Pratusevich, for significantly improving the book with invaluable sugges-
tions and corrections.

External to No Starch, Sarah Vaughan, Eric Evenchick, Xiao-Hui Wu,
Brooks Clark, Brian Proett, Brent Francis, and Glenn Krum provided sig-
nificant technical support.

Finally, thanks to Mark Nathern for introducing me to Python, and to
Guido van Rossum for inventing the thing in the first place!

XX Acknowledgments

INTRODUCTION

Welcome to Impractical Python Projects! Here,
you’ll use the Python programming lan-
guage to explore Mars, Jupiter, and the far-
thest reaches of the galaxy; the souls of poets;
the world of high finance; the underworld of espio-
nage and vote tampering; the trickery of game shows;
and more. You'll use techniques such as Markov chain

analysis to write haiku, Monte Carlo simulation to model financial markets,
image stacking to improve your astrophotography, and genetic algorithms
to breed an army of gigantic rats, all while gaining experience with mod-
ules like pygame, Pylint, pydocstyle, tkinter, python-docx, matplotlib, and pillow.
And most of all, you’ll have fun.

xxii

Who This Book Is For

You can think of this as your second Python book. It’s designed to fol-

low and complement either a complete beginner’s book or an introduc-
tory class. You’ll be able to continue self-training using a project-based
approach, without wasting your money or shelf space on a thorough rehash-
ing of concepts you've already learned. But don’t worry, I won’t leave you
hanging; all the code is annotated and explained.

These projects are for anyone who wants to use programming to con-
duct experiments, test theories, simulate nature, or just have fun. This
includes people who use programming as part of their jobs (like scientists
and engineers) but who aren’t programmers per se, as well as those I call
the “determined non-specialists"—dilettantes and dabblers who enjoy
programming problems as a fun pastime. If you’ve wanted to toy with the
concepts presented here but found starting potentially complicated proj-
ects from scratch too daunting or time-consuming, this book is for you.

What’s in This Book

Introduction

As you work through the projects, you’ll increase your knowledge of useful
Python libraries and modules; learn more shortcuts, built-in functions, and
helpful techniques; and practice designing, testing, and optimizing pro-
grams. Additionally, you’ll be able to relate what you're doing to real-world
applications, datasets, and issues.

To quote Ralph Waldo Emerson, “Nothing great was ever achieved
without enthusiasm.” This includes the learning experience. The ultimate
goal of this book is to spark your imagination and lead you to develop
interesting projects of your own. Don’t worry if they seem too ambitious at
first; a little diligence and a lot of googling can work miracles—and faster
than you think.

The following is an overview of the chapters in this book. You don’t
have to work through them sequentially, but the easiest projects are at the
beginning, and I explain new concepts, modules, and techniques more
thoroughly when they’re first introduced.

Chapter 1: Silly Name Generator This warm-up project introduces
the Python PEP 8 and PEP 257 style guides as well as the Pylint and
pydocstyle modules, which analyze your code’s conformance to these
guidelines. The end product is a goofy-name generator inspired by the
USA Network TV show Psych.

Chapter 2: Finding Palingram Spells Learn how to profile your
code while saving DC Comics sorceress Zatanna from a painful death.
Search online dictionaries for the magical palingrams that Zatanna
needs to beat a time-reversing villain.

Chapter 3: Solving Anagrams Write a program that helps a user
create a phrase anagram from their name; for example, Clint Eastwood
yields old west action. Then help Tom Marvolo Riddle derive his ana-
gram, “I am Lord Voldemort,” using linguistic sieves.

Chapter 4: Decoding American Civil War Ciphers Investigate and
crack one of the most successful military ciphers in history, the Union
route cipher. Then help spies on both sides send and decode secret
messages using the zig-zagging rail fence cipher.

Chapter 5: Encoding English Civil War Ciphers Read a message
hidden in plain sight by decoding a null cipher from the English Civil
War. Then save the head of Mary, Queen of Scots, by designing and
implementing code to accomplish the more difficult task of writing a
null cipher.

Chapter 6: Writing in Invisible Ink Help a corporate mole betray
Sherlock Holmes’s dad and evade detection with invisible electronic
ink. This chapter is based on an episode of the CBS television show
Elementary.

Chapter 7: Breeding Giant Rats with Genetic Algorithms Use genetic
algorithms—inspired by Darwinian evolution—to breed a race of
super-rats the size of female bullmastiffs. Then help James Bond crack
a safe with 10 billion possible combinations in the blink of an eye.

Chapter 8: Counting Syllables for Haiku Poetry Teach your com-
puter to count syllables in English as a prelude to writing Japanese
poetry, or haiku, in the next chapter.

Chapter 9: Writing Haiku with Markov Chain Analysis Teach your
computer to write haiku by combining the syllable-counting module

from Chapter 8 with Markov chain analysis and a training corpus of
several hundred ancient and modern haiku.

Chapter 10: Are We Alone? Exploring the Fermi Paradox Investigate
the absence of alien radio signals using Drake’s equation, the dimensions
of the Milky Way galaxy, and assumptions about the size of detectable
“emissions bubbles.” Learn and use the popular tkinter module to build
a graphical display of the galaxy and Earth’s own radio bubble.

Chapter 11: The Monty Hall Problem Help the world’s smartest
woman win the Monty Hall problem argument. Then use object-
oriented programming (OOP) to build a version of Monty’s famous
game with a fun graphical interface.

Chapter 12: Securing Your Nest Egg Plan your (or your parents’)
secure retirement using a Monte Carlo—based financial simulation.

Chapter 13: Simulating an Alien Volcano Use pygame to simulate a
volcanic eruption on Io, one of Jupiter's moons.

Chapter 14: Mapping Mars with the Mars Orbiter Build a gravity-
based arcade game and nudge a satellite into a circular mapping orbit
without running out of fuel or burning up in the atmosphere. Display
readouts of key parameters, track orbital paths, add the planet’s shadow,
and spin Mars slowly on its axis, all while learning orbital mechanics!

Chapter 15: Improving Your Astrophotography with Planet Stacking
Reveal Jupiter’s cloud bands and Great Red Spot by optically stacking

Introduction xxiii

XXiv

Introduction

poor-quality video images using the Python imaging library. Learn how
to work with files, folders, and directory paths using the built-in os and
shutil modules.

Chapter 16: Finding Frauds with Benford’s Law Use Benford’s law
to investigate vote tampering in the 2016 presidential election. Use
matplotlib to summarize the results in a chart.

Each chapter ends with at least one Practice Project or Challenge Project.
Each Practice Project comes with a solution. That doesn’t mean it’s the
best solution—you may come up with a better one on your own, so don’t
peek ahead!

With the Challenge Projects, however, you're truly on your own. When
Cortez invaded Mexico in 1519, he burned his caravels so that his conquis-
tadors would realize there was no going back; they would have to face the
Aztecs with grim and unwavering determination. Thus, the expression “burn
your boats” has come to represent wholeheartedness or full commitment to a
task. This is how you should face the Challenge Projects—as if your boat were
burned—and if you do, you're likely to learn more from these exercises than
from any other part of the book!

Python Version, Platform, and IDE

I constructed each of the projects in this book with Python v3.5 in a
Microsoft Windows 10 environment. If you're using a different operating
system, no problem: I suggest compatible modules for other platforms,
where appropriate.

The code examples and screen captures in this book are from either
the Python IDLE text editor or the interactive shell. IDLE stands for inte-
grated development and learning environment. It’s an integrated development
environment (IDE) with an L added so that the acronym references Eric Idle
of Monty Python fame. The interactive shell, also called the interpreter, is a
window that lets you immediately execute commands and test code without
needing to create a file.

IDLE has numerous drawbacks, such as the lack of a line-number col-
umn, but it is free and bundled with Python, so everyone has access to it. You
are welcome to use whichever IDE you wish. There are many choices avail-
able online, such as Geany (pronounced genie), PyCharm, and PyScripter.
Geany works with a wide range of operating systems, including Unix, macOS,
and Windows. PyCharm works with Linux, Windows, and macOS. PyScripter
works with Windows. For an extensive listing of available Python devel-
opment tools and compatible platforms, visit https://wiki.python.org/moin
/DevelopmentTools/.

The Code

Every line of code is provided for each project in this book, and I recom-
mend you enter it by hand whenever possible. A college professor once told
me that we “learn through our hands,” and I have to agree that keying in
code forces you to pay maximum attention to what’s going on.

https://wiki.python.org/moin/DevelopmentTools/
https://wiki.python.org/moin/DevelopmentTools/

But if you want to complete a project quickly or you accidentally delete
all your work, you can download all of the code, including solutions to the
Practice Projects, from https://www.nostarch.com/impracticalpython/. This
site also contains the book's errata sheet, in the event of future updates or
changes.

Coding Style

This book is about problem solving and beginner-level fun, so the code
may deviate at times from best practices and peak efficiency. Occasionally,
you may use list comprehension or a special operator, but for the most part,
you’ll focus on simple, approachable code that’s easy to learn.

Keeping things simple is important for the programming nonprogram-
mers who read this book. Much of their code may be “Kleenex code”—used
once or twice for a specific purpose and then thrown away. This is the type
of code that might be shared with colleagues, or thrust upon them during
staff changes, so it should be easy to pick up and understand.

All of the main project code is annotated and explained in a stand-
alone manner, and it generally follows the style recommendations from
Python Enhancement Proposal 8, otherwise known as PEP 8. Details on PEP 8,
and software to help you honor these guidelines, are in Chapter 1.

Where to Get Help

Taking on a programming challenge can be, well, challenging. Coding isn’t
always something that you can intuitively figure out—even with a language
as friendly as Python. Throughout the following chapters, I will provide
links and references to useful sources of information, but for projects you
formulate on your own, nothing can beat online searches.

The key to successful searching is knowing what to ask. This can be
quite frustrating at first, but think of it as a game of Twenty Questions.
Keep honing your keywords with each successive search until you find an
answer or reach a point of diminishing returns.

If books and online searches fail, then the next step is to ask someone.
You can do this online, either for a fee or at free forums like Stack Overflow
(https://stackoverflow.com/). But be warned: the members of these sites don’t
suffer fools gladly. Be sure to read their “How do I ask a good question?”
pages before posting; for example, you can find the one for Stack Overflow
at http://stackoverflow.com/help/how-to-ask/.

Onward!

Thanks for taking the time to read the Introduction! You clearly want to
get as much as possible from this book, and you're off to a good start. When
you reach the other end, you’ll be more adept at Python and better pre-
pared to solve challenging real-world problems. Let’s get to work.

Introduction XXV

https://www.nostarch.com/impracticalpython/
http://stackoverflow.com/help/how-to-ask

SILLY NAME GENERATOR

The USA Network television channel once
ran a detective dramedy called Psych, in

which hyper-observant amateur sleuth Sean
Spencer solved cases while pretending to use

psychic abilities. A trademark of the show was the

way he would introduce his sidekick, Gus, with goofy

names made up on the fly, like Galileo Humpkins, Lavender Gooms, and
Bad News Marvin Barnes. This made an impression on me because, years
ago, someone who worked at the Census Bureau gave me a list of real
names every bit as strange as those invented by Sean.

Project #1: Generating Pseudonyms

In this warm-up project, you’ll write a simple Python program that gen-
erates nutty names by randomly combining first names and surnames.
With any luck, you’ll produce a plethora of aliases that would make any

2

sidekick proud. You’ll also review best-practice coding guidelines and
apply external programs that will help you write code that conforms to
those guidelines.

Psych not your thing? Replace the names in my list in the code with
your own jokes or theme. You could just as easily turn this project into a
Game of Thrones name generator, or perhaps you want to discover your very
own “Benedict Cumberbatch” name; my favorite is Bendylick Cricketbat.

THE OBJECTIVE

Randomly generate funny sidekick names using Python code that conforms to established
style guidelines.

Planning and Designing a Project

Chapter 1

Planning time is never wasted time. It doesn’t matter whether you're pro-
gramming for fun or profit; at some point, you’'ll need to estimate—fairly
accurately—how long the project will take, what obstacles you may encoun-
ter, and what tools and resources you’ll need to do the work. And to accom-
plish that, you’ll need to know what you're trying to create in the first place!

A successful manager once told me that his secret was simply to ask lots
of questions: What are you trying to do? Why are you doing it? Why are you
doing it this way? How much time do you have? How much money? Answering
these questions is extremely helpful to the design process and gives you a
clear line of sight.

In his book Think Python, 2nd Edition (O’Reilly, 2015), Allen Downey
describes two types of software development plans: “prototype and patch”
and “designed development.” With prototype and patch, you start with a
simple program and then use patches, or edited code, to handle problems
encountered in testing. This can be a good approach when you’re work-
ing through a complex problem you don’t understand very well. But it can
also produce complicated and unreliable code. If you have a clear view
of the problem and how you want to solve it, you should use a designed
development plan to avoid future issues and their subsequent patches. This
approach can make coding easier and more efficient, and it typically leads
to stronger and more reliable code.

For all the projects in this book, you’ll start with a clearly defined prob-
lem or goal that will form the basis of your design decisions. Then we’ll
discuss strategy to better understand the issues and create a designed devel-
opment plan.

The Strategy

You'll start with two lists—first and last—of funny names. The lists will be
relatively short, so they won’t be memory intensive, won’t need to be dynam-
ically updated, and shouldn’t present any runtime issues. Since all you’ll
need to do is read names from the list, you’ll use a tuple as a container.

With your two tuples of names, you’ll generate new names—pairing a
first name with a last—at the touch of a button. That way, the user can eas-
ily repeat the process until a sufficiently funny name appears.

You should also highlight the name in the interpreter window some-
how so it stands out from the command prompts. The IDLE shell doesn’t
provide many font options, but you probably know—all too well—that
errors appear in red. The default for the print() function is the standard
output, but with the sys module loaded, you can redirect the output to the
error channel, with its trademark red coloring, using the file parameter:
print(something, file=sys.stderr).

Finally, you’ll determine what style recommendations exist for Python
programming. These guidelines should address not only the code but also
documentation embedded within the code.

The Pseudocode

“You can always count on the Americans to do the right thing after they
have tried everything else.” That quote, weakly linked to Winston Churchill,
sums up the way many people approach writing pseudocode.

Pseudocode is a high-level, informal way to describe computer programs
using structured English or any human language. It should resemble a sim-
plified programming language and include keywords and proper indenta-
tions. Developers use it to ignore all the arcane syntax of true programming
languages and focus on the underlying logic. Despite its widespread use,
pseudocode has no official standards—only guidelines.

If you find you’ve hacked your way into frustration, it may be because
you didn’t take the time to write pseudocode. I am a true believer in it, as
pseudocode has—without fail—guided me to solutions when I was other-
wise lost in the woods. Consequently, you’ll use some form of pseudocode
in most of the projects in this book. At the very least, I hope you’ll see its
utility, but I also hope you’ll develop the discipline to write it in your own
projects.

A very high-level pseudocode for our funny name generator could look
like this:

Load a list of first names
Load a list of surnames
Choose a first name at random
Assign the name to a variable
Choose a surname at random
Assign the name to a variable

Silly Name Generator 3

Print the names to the screen in order and in red font
Ask the user to quit or play again
If user plays again:
repeat
If user quits:
end and exit

Unless you're trying to pass a programming class or provide clear
instructions to others, focus on the purpose of the pseudocode; don’t worry
about slavishly complying with the (nonstandard) guidelines for writing it.
And don’t stop with programming—you can apply the pseudocode process
to much more. Once you get the hang of it, you might find it helps you com-
plete other tasks like doing your taxes, planning your investments, build-
ing a house, or getting ready for a camping trip. It’s a great way to focus
your thinking and carry programming successes over into real life. If only
Congress would use it!

The Code

pseudonyms.py

4 Chapter 1

Listing 1-1 is the code for the funny name generator, pseudonyms.py, which
compiles and prints a list of pseudonyms from two tuples of names. If you
don’t want to type all the names, you can type a subset or download the
code from https://nostarch.com/impracticalpython,/.

® import sys, random

® print("Welcome to the Psych 'Sidekick Name Picker.'\n")

print("A name just like Sean would pick for Gus:\n\n")

first = ('Baby 0il', 'Bad News', 'Big Burps', "Bill 'Beenie-Weenie'",
"Bob 'Stinkbug'", 'Bowel Noises', 'Boxelder', "Bud 'Lite' ",
'Butterbean', 'Buttermilk', 'Buttocks', 'Chad', 'Chesterfield',
"Chewy', 'Chigger", "Cinnabuns', 'Cleet', 'Cornbread', 'Crab Meat',
'Crapps', 'Dark Skies', 'Dennis Clawhammer', 'Dicman’, 'Elphonso’,
'Fancypants', 'Figgs', 'Foncy', 'Gootsy', 'Greasy Jim', 'Huckleberry',
'Huggy', 'Ignatious', 'Jimbo', "Joe 'Pottin Soil'", 'Johnny',
'Lemongrass', 'Lil Debil', 'Longbranch', '"Lunch Money"',
'Mergatroid', '"Mr Peabody"', '0Oil-Can', 'Oinks', 'Old Scratch',
'Ovaltine', 'Pennywhistle', 'Pitchfork Ben', 'Potato Bug',
"Pushmeet’, 'Rock Candy', 'Schlomo', 'Scratchensniff', 'Scut’,
"Sid 'The Squirts'", 'Skidmark', 'Slaps', 'Snakes', 'Snoobs',
"Snorki', 'Soupcan Sam', 'Spitzitout', 'Squids', 'Stinky',
'Storyboard', 'Sweet Tea', 'TeeTee', 'Wheezy Joe',
"Winston 'Jazz Hands'", 'Worms')

last = ('Appleyard', 'Bigmeat', 'Bloominshine', 'Boogerbottom',
'Breedslovetrout', 'Butterbaugh', 'Clovenhoof', 'Clutterbuck’,
'Cocktoasten', 'Endicott', 'Fewhairs', 'Gooberdapple', 'Goodensmith',
'Goodpasture', 'Guster', 'Henderson', 'Hooperbag', 'Hoosenater’,
'Hootkins', 'Jefferson', 'Jenkins', 'Jingley-Schmidt', 'Johnson',

'Kingfish', 'Listenbee', "M'Bembo", 'McFadden', 'Moonshine', 'Nettles',
'Noseworthy', 'Olivetti', 'Outerbridge', 'Overpeck', 'Overturf',
'Oxhandler', 'Pealike’, 'Pennywhistle', 'Peterson', 'Pieplow’,
'Pinkerton', 'Porkins', 'Putney', 'Quakenbush', 'Rainwater’,
'Rosenthal', 'Rubbins', 'Sackrider', 'Snuggleshine', 'Splern’,
'Stevens', 'Stroganoff', 'Sugar-Gold', 'Swackhamer', 'Tippins',
'Turnipseed', 'Vinaigrette', 'Walkingstick', 'Wallbanger', 'Weewax',
'Weiners', 'Whipkey', 'Wigglesworth', 'Wimplesnatch', 'Winterkorn',
"Woolysocks")

© while True:
O firstName = random.choice(first)

©® lastName = random.choice(last)

print("\n\n")
@ print("{} {}".format(firstName, lastName), file=sys.stderr)
print("\n\n")

©® try again = input("\n\nTry again? (Press Enter else n to quit)\n ")

if try_again.lower() == "n":
break

® input("\nPress Enter to exit.")

Listing 1-1: Generates silly pseudonyms from tuples of names

First, import the sys and random modules @. You’ll use sys to access the
system-specific error message functionality, so you can color your output an
eye-catching red in the IDLE window. And random lets you pick, at random,
items from your name lists.

The print statements at @ introduce the program to the user. The
newline command \n forces a new line, and single quotes "' allow you to
use quotes in the printout without having to resort to the backslash escape
character, which would reduce code readability.

Next, define your tuples of names. Then initiate the while loop ©.
Setting while = True basically means “Keep running until I tell you to stop.’
Eventually, you’ll use a break statement to end the loop.

The loop starts by choosing a name from the first tuple at random
and then assigns that name to the variable firstName @. It uses the random
module’s choice method to return a random element from a nonempty
sequence—in this case, the tuple of first names.

Next, choose a surname at random from the last tuple and assign it
to the variable lastName . Now that you have both names, print them and
trick IDLE into using the red “error” font by supplying the optional argu-
ment file=sys.stderr to the print statement @. Use the newer string format
method, rather than the older string format operator (%), to convert the name
variables to a string. To read more about the new method, see https://docs
python.org/3.7/libvary/string. html.

Once the name is displayed, ask the user to choose to play again or
quit, using input to provide the instruction in quotes. In this case, include a
few blank lines as well to make the funny name more obvious in the IDLE

3

Silly Name Generator 5

http://docs.python.org/3.7/library/string.html
http://docs.python.org/3.7/library/string.html

6

Chapter 1

window. If the user responds by pressing the ENTER key, nothing is returned
to the try_again variable @. With nothing returned, the condition on the if
statement isn’t met, the while loop continues, and a new name is printed. If
the user instead presses the N key, the if statement results in a break com-
mand, and the loop ends because the while statement no longer evaluates to
True. Use the lowercase string method .lower() to mitigate the player’s CAPS
LOCK key being engaged. In other words, it doesn’t matter whether the user
inputs a lowercase or uppercase N, because the program will always read it
as lowercase.

Finally, ask the user to exit by pressing the ENTER key ©. Pressing
ENTER doesn’t assign the return value of input() to a variable, the program
ends, and the console window closes. Pressing F5 in the IDLE editor win-
dow executes the completed program.

This code works, but working isn’t enough—programs in Python
should work with style.

Using the Python Community’s Style Guide

According to the Zen of Python (https://www.python.org/dev/peps/pep-0020/),
“There should be one—and preferably only one—obvious way to do some-
thing.” In the spirit of providing a single obvious “right way” of doing things
and building consensus around these practices, the Python community
releases Python Enhancement Proposals, which are coding conventions for the
Python code comprising the standard library in the main Python distribu-
tion. The most important of these is PEP 8, a style guide for Python pro-
gramming. PEP 8 evolves over time as new conventions are identified and
past ones are rendered obsolete by changes in the language.

PEP 8 (https://www.python.org/dev/peps/pep-0008/) sets standards for
naming conventions; use of blank lines, tabs, and spaces; maximum line
length; comments; and so on. The goal is to improve the readability of code
and make it consistent across a wide spectrum of Python programs. When
you start programming, you should strive to learn and follow the accepted
conventions, before bad habits become engrained. The code in this book
will conform closely to PEP 8, but I have overridden some conventions (by
using less commented code, fewer blank lines, and shorter docstrings, for
example) in deference to the publishing industry.

Standardized names and procedures are especially important when
you’re working in cross-functional teams. A lot can get lost in translation
between scientists and engineers, as in 1999, when engineers lost the Mars
Climate Orbiter because different teams used different measurement units.
For almost two decades, I built computer models of the earth that were
transferred to an engineering function. The engineers used scripts to load
these models into their own proprietary software. They would share these
scripts among projects for efficiency and to help the inexperienced. Since
these “command files” were customized to each project, the engineers were
understandably annoyed when attribute names changed during model
updates. In fact, one of their internal guidelines was “Beg, bribe, or bully
your modeler into using consistent property names!”

https://www.python.org/dev/peps/pep-0008/

Checking Your Code with Pylint

You should become familiar with PEP 8, but you’ll still make mistakes, and
comparing your code to the guide is a major drag. Luckily, programs such
as Pylint, pycodestyle, and Flake8 can help you easily follow the PEP 8 style
recommendations. For this project, you’ll use Pylint.

Installing Pylint

Pylint is a source code, bug, and quality checker for the Python program-
ming language. To download a free copy, go to https://www.pylint.org/#install
and find the install button for your platform. This button will show the com-
mand for installing Pylint. For example, in Windows, go to the folder that
contains your copy of Python (such as C:\Python35), use SHIFT-right-click to
open a context menu, and then click either open command window here

or open PowerShell window here, depending on which version of Windows
you're using. Run pip install pylint (pip3 if Python 2 and 3 are installed).

Running Pylint

In Windows, Pylint is run from a command window or, for newer systems,
the PowerShell (you open both by using sHIFT-right-click in the folder con-
taining the Python module you want to check). Type pylint filename to run
the program (see Figure 1-1). The .py extension is optional, and your direc-
tory path will vary from the one shown. On macOS or another Unix-based
system, use the terminal emulator.

C:\Python35\Python 3 Stuff>pylint pseudonyms.py

Figure 1-1: The Windows command window with the command to run Pylint

The command window will display the Pylint results. Here’s a sample of
a useful output:

C:\Python35\Python 3 Stuff\Psych>pylint pseudonyms.py
No config file found, using default configuration
FrkkkkRRRRR%% Module pseudonyms
C: 45, 0: No space allowed around keyword argument assignment
print(firstName, lastName, file = sys.stderr)
~ (bad-whitespace)

C: 1, 0: Missing module docstring (missing-docstring)

C: 2, 0: Multiple imports on one line (sys, random) (multiple-imports)
C: 7, 0: Invalid constant name "first" (invalid-name)

C: 23, 0: Invalid constant name "last" (invalid-name)

C: 40, 4: Invalid constant name "firstName" (invalid-name)

C: 42, 4: Invalid constant name "lastName" (invalid-name)

C: 48, 4: Invalid constant name "try again" (invalid-name)

Silly Name Generator 7

Chapter 1

The capital letter at the start of each line is a message code. For example,
C: 15, orefers to a coding standard violation in line 15, column 0. You can
reference the following key for the various Pylint message codes:

R Refactor for a “good practice” metric violation

C Convention for coding standard violation

W Warning for stylistic problems or minor programming issues

E Error for important programming issues (i.e., most probably a bug)

F Fatal for errors that prevent further processing

Pylint will end its report by grading your program’s conformance to
PEP 8. In this case, your code received a 4 out of 10:

Global evaluation

Your code has been rated at 4.00/10 (previous run: 4.00/10, +0.00)

Handling False Constant Name Errors

You might have noticed that Pylint incorrectly assumes all variable names
in the global space refer to constants, and should therefore be in all caps.
You can work around this shortcoming in a number of ways. The first is to
embed your code in a main() function (as shown in Listing 1-2); that way, it’s
out of the global space.

def main():
some indented code
some indented code
some indented code
if __name__ == "
® main()

__main__":

Listing 1-2: Defines and calls a main() function

The _ name__ variable is a special built-in variable that you can use to
evaluate whether a program is being run in stand-alone mode or as an
imported module; remember that a module is just a Python program used
inside of another Python program. If you run the program directly, _ name__
isset to _main__. In Listing 1-2 _ name__ is used to ensure that, when the pro-
gram is imported, the main() function isn’t run until you intentionally call it,
but when you run the program directly, the condition in the if statement is
met @ and main() is automatically called @. You don’t always need this con-
vention. For example, if your code just defines a function, you can load it as
a module and call it without the need for __name_ .

Let’s embed everything in pseudonyms.py, except for the import state-
ment, under a main() function and then embed the main() function call
under an if statement, as in Listing 1-2. You can make the changes yourself
or download the pseudonyms_main.py program from the website. Rerun
Pylint. You should get the following results in your command window.

C:\Python35\Python 3 Stuff\Psych>pylint pseudonyms_main
No config file found, using default configuration
FhkkkkRRRXR%% Module pseudonyms_main
C: 47, 0: No space allowed around keyword argument assignment
print(firstName, lastName, file = sys.stderr)
~ (bad-whitespace)

C: 1, 0: Missing module docstring (missing-docstring)

C: 2, 0: Multiple imports on one line (sys, random) (multiple-imports)
C: 4, 0: Missing function docstring (missing-docstring)

C: 42, 8: Invalid variable name "firstName" (invalid-name)

C: 44, 8: Invalid variable name "lastName" (invalid-name)

Now those annoying comments about invalid constant names have
disappeared, but you aren’t out of the woods yet. As much as I like them,
Python conventions don’t allow for camel case names, like firstName.

Configuring Pylint
When evaluating small scripts, I prefer to use the Pylint defaults and ignore
the false “constant name” errors. I also like to run the option -rn (short for

-reports=n) to suppress the large volume of extraneous statistics that Pylint
returns:

C:\Python35\Python 3 Stuff\Psych>pylint -rn pseudonyms_main.py

Note that using -rn will disable the code-grading option.

Another issue with Pylint is that its maximum line length default is
100 characters but PEP 8 recommends 79 characters. To comply with PEP 8,
you can run Pylint with the following option:

C:\Python35\Python 3 Stuff\Psych>pylint --max-line-length=79 pseudonyms_main

Now you’ll see that indenting the names for the main() function caused
some lines to exceed the guidelines:

C: 12, 0: Line too long (80/79) (1line-too-long)
C: 14, 0: Line too long (83/79) (line-too-long)
--snip--

You probably don’t want to configure Pylint every time you run it, and
fortunately, you don’t have to. Instead, you can make your own customized
configuration file using the command --generate-rcfile. For example, to
suppress reporting and set the maximum line length to 79, enter the follow-
ing into your command prompt:

your pathname>pylint -rn --max-line-length=79 --generate-rcfile > name.pylintrc

Put the changes you want before the --generate-rcfile > name.pylintrc
statement and provide your own name before the .pylintrc extension. You
can create a configuration file either stand-alone, as just shown, or at the

Silly Name Generator 9

same time you evaluate a Python program. The .pylintrc file is automatically
saved in your current working directory, though there is an option for add-
ing a directory path (see https://pylint.org and hitps://pylint.readthedocs.io/en/
latest/user_guide/run.html for more details).

To reuse your custom configuration file, use the --rcfile option fol-
lowed by the name of your personal configuration file and the name of
the program you're evaluating. For example, to run myconfig.pylintrc on the
pseudonyms_main.py program, enter the following:

C:\Python35\Python 3 Stuff\Psych>pylint --rcfile myconfig.pylintrc pseudonyms_main

Describing Your Code with Docstrings

Pylint identifies that the pseudonyms_main.py program is missing a docstring.
According to the PEP 257 style guide (hitps://www.python.org/dev/peps/pep
-0257/), a docstring is a string literal that occurs as the first statement in a
module, function, class, or method definition. A docstring is basically a short
description of what your code does, and it may include specifics on aspects
of the code such as required inputs. Here, in triple quotes, is an example of
a single-line docstring for a function:

def circ(r):
"""Return the circumference of a circle with radius of r.
c=2%r71 * math.pi
return c

The preceding docstring simply states what the function does, but
docstrings can be longer and include more information. For instance, the
following is a multiline docstring for the same function that displays infor-
mation about the function’s input and output:

def circ(r):
"""Return the circumference of a circle with radius of r.

Arguments:
r - radius of circle

Returns:

float: circumference of circle
c=2%*r * math.pi
return c

Unfortunately, docstrings are person-, project-, and company-specific
things, and you can find a lot of conflicting guidance. Google has its own
format and an excellent style guide. Some members of the scientific com-
munity use a NumPy docstring standard. And reStructuredlext is a popular

10 Chapter 1

https://pylint.org
https://pylint.readthedocs.io/en/latest/user_guide/run.html
https://pylint.readthedocs.io/en/latest/user_guide/run.html
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

format used mainly in conjunction with Sphinx—a tool that uses docstrings
to generate documentation for Python projects in formats such as HTML
and PDF. If you've ever read the docs (https://readthedocs.org/) for a Python
module, then you’ve seen Sphinx in action. You can find links to guides for
some of these different styles in “Further Reading” on page 14.

You can check how well your docstrings conform to the PEP 257 con-
ventions with a free tool called pydocstyle. To install it in Windows or any
other operating system, open a command window and run pip install
pydocstyle (use pip3 if both Python 2 and 3 are installed).

To run pydocstyle, open a command window in the folder containing
the code you want to check. If you don’t specify a filename, pydocstyle will
run on all the Python programs in the folder and give you feedback:

C:\Python35\Python 3 Stuff\Psych>pydocstyle
.\OLD_pseudonyms_main.py:1 at module level:

D100: Missing docstring in public module
.\OLD_pseudonyms_main.py:4 in public function “main”:

D103: Missing docstring in public function
.\ pseudonyms.py:1 at module level:

D100: Missing docstring in public module
.\ pseudonyms_main_broken.py:1 at module level:

D200: One-line docstring should fit on one line with quotes (found 2)
.\ pseudonyms_main_broken.py:6 in public function “main:

D205: 1 blank line required between summary line and description
(found 0)

If you specify a file with no docstring issues, pydocstyle will return
nothing:

C:\Python35\Python 3 Stuff\Psych>pydocstyle pseudonyms_main_fixed.py

C:\Python35\Python 3 Stuff\Psych>

I’ll use fairly simple docstrings in all of the projects in this book in
order to reduce visual noise in the annotated code. Feel free to expand
on these if you wish to practice. You can always check your results with
pydocstyle.

Checking Your Code Style

When I was growing up, my uncle would drive from our rural town to a
larger city to have his hair “styled.” I never understood how that was differ-
ent from a regular haircut, but I do know how to “style” our funny name
generator code so that it complies with PEP 8 and PEP 257.

Make a copy of pseudonyms_main.py called pseudonyms_main_fixed.py and
immediately evaluate it with Pylint using this command:

your_path>pylint --max-line-length=79 pseudonyms_main_fixed

Silly Name Generator 11

https://readthedocs.org/

Don’t suppress the report using -rn. You should see this output at the
bottom of the command window:

Global evaluation

Your code has been rated at 3.33/10

Now correct the code based on the Pylint output. In the following
example, I have provided the corrections in bold. I made changes to the
name tuples to correct for line-length issues. You can also download the
corrected code, pseudonyms_main_fixed.py, from the book’s resources at
hitps://www.nostarch.com/impracticalpython/.

pseudonyms Generate funny names by randomly combining names from 2 separate lists.
_main_fixed.py import sys
import random

def main():
"""Choose names at random from 2 tuples of names and print to screen.
print("Welcome to the Psych 'Sidekick Name Picker.'\n")
print("A name just like Sean would pick for Gus:\n\n")

first = ('Baby 0il', 'Bad News', 'Big Burps', "Bill 'Beenie-Weenie'",
"Bob 'Stinkbug'", 'Bowel Noises', 'Boxelder', "Bud 'Lite'",
'Butterbean’, 'Buttermilk', 'Buttocks', 'Chad', 'Chesterfield',
"Chewy', 'Chigger', 'Cinnabuns', 'Cleet', 'Cornbread’,
'Crab Meat', 'Crapps', 'Dark Skies', ‘Dennis Clawhammer',
'Dicman’, 'Elphonso’, 'Fancypants', 'Figgs', 'Foncy', 'Gootsy',
'Greasy Jim', 'Huckleberry', 'Huggy', 'Ignatious', 'Jimbo’,
"Joe 'Pottin Soil'", 'Johnny', 'Lemongrass', 'Lil Debil',
'Longbranch', '"Lunch Money"', 'Mergatroid', '"Mr Peabody"',
'0il-Can', 'Oinks', 'Old Scratch', 'Ovaltine', 'Pennywhistle’,
'Pitchfork Ben', 'Potato Bug', 'Pushmeet', 'Rock Candy',
'Schlomo', 'Scratchensniff', 'Scut', "Sid 'The Squirts'",
'Skidmark', 'Slaps', 'Snakes', 'Snoobs', 'Snorki', 'Soupcan Sam',
'Spitzitout', 'Squids', 'Stinky', 'Storyboard', 'Sweet Tea',
‘TeeTee', 'Wheezy Joe', "Winston 'Jazz Hands'", 'Worms')

last = ('Appleyard', 'Bigmeat', 'Bloominshine', 'Boogerbottom’,
'Breedslovetrout', 'Butterbaugh', 'Clovenhoof', 'Clutterbuck’,
'Cocktoasten', 'Endicott', 'Fewhairs', 'Gooberdapple',
'Goodensmith', 'Goodpasture', 'Guster', 'Henderson', 'Hooperbag',
'Hoosenater', 'Hootkins', 'Jefferson', 'Jenkins’,
'Jingley-Schmidt', 'Johnson', 'Kingfish', 'Listenbee’, "M'Bembo",
'McFadden', 'Moonshine', 'Nettles', 'Noseworthy', 'Olivetti’,
'Outerbridge’, 'Overpeck', 'Overturf', 'Oxhandler', 'Pealike’,
'Pennywhistle', 'Peterson’, 'Pieplow', 'Pinkerton', 'Porkins’,
'Putney’, 'Quakenbush', 'Rainwater', 'Rosenthal', 'Rubbins’,
'Sackrider', 'Snuggleshine', 'Splern', 'Stevens', 'Stroganoff',
'Sugar-Gold', ‘Swackhamer', 'Tippins', 'Turnipseed',

12 Chapter 1

'Vinaigrette', 'Walkingstick', 'Wallbanger', 'Weewax', 'Weiners',
'Whipkey', 'Wigglesworth', 'Wimplesnatch', 'Winterkorn',
'Woolysocks")

while True:
first_name = random.choice(first)
last_name = random.choice(last)

print("\n\n")

Trick IDLE by using "fatal error" setting to print name in red.
print("{} {}".format(first_name, last_name), file=sys.stderr)
print("\n\n")

try again = input("\n\nTry again? (Press Enter else n to quit)\n ")
if try again.lower() == "n":
break

input("\nPress Enter to exit.")

if _name_ == "_main_":

main()

Pylint gives the revised code a grade of 10 out of 10:

Global evaluation

Your code has been rated at 10.00/10 (previous run: 3.33/10, +6.67)

As you saw in the previous section, running pydocstyle on pseudonyms_
main_fixed.py yields no errors, but don’t be fooled into thinking that means
it’s good or even adequate. For example, this docstring also passes:
"""ksjkdls 1skjds kjs jdi wllk sijkljs dsdw noiu sss.™""

It’s hard to write sparse, succinct, and truly useful docstrings and
comments. PEP 257 will help with docstrings, but comments are more
freestyle and “open range.” Too many comments create visual noise, can
be off-putting to the user, and shouldn’t be needed, as well-written code
is largely self-documenting. Good reasons for adding comments include
clarifying intent and heading off potential user errors, such as when
specific measurement units or input formats are required. To find the
right balance in commenting, take note of good examples when you run
across them. Also, think about what you would want to see if you had to
pick up your own code after a five-year hiatus!

Pylint and pydocstyle are easy to install, are easy to run, and will help
you learn and comply with the accepted coding standards of the Python
community. Running your code through Pylint prior to posting it on
web forums is also a good practice when you'’re seeking help and should
prompt “kinder, gentler” responses!

Silly Name Generator

13

14

Summary

You should now know how to write code and documentation that conforms
to the Python community’s expectations. More importantly, you've gener-
ated some seriously funny names for a sidekick, gangster, informant, who-
ever. Here are a few of my favorites:

Pitchfork Ben Pennywhistle ‘Bad News' Bloominshine
Chewy Stroganoff ‘Sweet Tea’ Tippins
Spitzitout Winterkorn Wheezy Joe Jenkins

‘Big Burps’ Rosenthal Soupcan Sam Putney

Bill ‘Beenie-Weenie' Clutterbuck Greasy Jim Wigglesworth
Dark Skies Jingley-Schmidt Chesterfield Walkingstick
Potato Bug Quakenbush Jimbo Woolysocks
Worms Endicott Fancypants Pinkerton
Cleet Weiners Dicman Overpeck
Ignatious Outerbridge Buttocks Rubbins

Further Reading

Chapter 1

For a clickable version of these resources, visit Attps://www.nostarch.com/
impracticalpython/.

Pseudocode

Descriptions of some fairly formal pseudocode standards can be found at
hitp://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html and hitp://www.slideshare
.net/sabiksabz/pseudo-code-basics/.

Style Guides

Here’s a list of style guides you can reference when creating Python
programs.

e The PEP 8 style guide can be found at Attps://www.python.org/dev/peps/
pep-0008/.

e The PEP 257 guidelines can be found at https://www.python.org/dev/peps/
pep-0257/.

e Google has its own format and style guide at https://google.github.io/
styleguide/pyguide. himl.

¢ Examples of Google style can be found at hAttps://sphinxcontrib-napoleon
.readthedocs.io/en/latest/example_google. html.

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/
http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html
http://www.slideshare.net/sabiksabz/pseudo-code-basics
http://www.slideshare.net/sabiksabz/pseudo-code-basics
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html

e NumPy docstring standards are at Attps://numpydoc.readthedocs.io/en/latest/.

e NumPy docstrings examples can be found at Attps://sphinxcontrib-napoleon
.readthedocs.io/en/latest/example_numpy.html.

® You can find out about reStructuredText at https://docs.python.org/
devguide/documenting.html, https://docs.python.org/3.1/documenting/rest
himl, and hitps://wiki.python.org/moin/reStructuredText/.

e The Hitchhiker’s Guide to Python (hitp://docs.python-guide.org/en/latest/
writing/style/) contains a section on code styles and autopep8, which
will automatically reformat code for PEP 8 (to a point).

e [ffective Python by Brett Slatkin (Addison-Wesley, 2015) contains a useful
section on documenting programs.

Third-Party Modules

The following are some resources for using third-party modules.

e Details on Pylint are at https://docs.pylint.org/en/1.8/tutorial html.
e Details on pydocstyle can be found at http://www.pydocstyle.org/en/latest/.

Practice Projects

Try out these projects for working with strings. My own solutions are avail-
able in the appendix.

Pig Latin

To form Pig Latin, you take an English word that begins with a consonant,
move that consonant to the end, and then add “ay” to the end of the word.
If the word begins with a vowel, you simply add “way” to the end of the
word. One of the most famous Pig Latin phrases of all time is “ixnay on the
ottenray,” uttered by Marty Feldman in Mel Brooks’s comedic masterpiece
Young Frankenstein.

Write a program that takes a word as input and uses indexing and
slicing to return its Pig Latin equivalent. Run Pylint and pydocstyle on
your code and correct any style mistakes. You can find a solution in the
appendix or download pig_latin_practice.py from hitps://www.nostarch.com/
impracticalpython/.

Poor Man’s Bar Chart

The six most commonly used letters in the English language can be remem-
bered with the mnemonic “etaoin” (pronounced eh-tay-oh-in). Write a Python
script that takes a sentence (string) as input and returns a simple bar chart—
type display as in Figure 1-2. Hint: I used a dictionary data structure and two
modules that I haven’t covered yet, pprint and collections/defaultdict.

Silly Name Generator 15

https://numpydoc.readthedocs.io/en/latest/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://docs.python.org/devguide/documenting.html
https://docs.python.org/devguide/documenting.html
https://docs.python.org/3.1/documenting/rest.html
https://docs.python.org/3.1/documenting/rest.html
https://wiki.python.org/moin/reStructuredText
http://docs.python-guide.org/en/latest/writing/style/
http://docs.python-guide.org/en/latest/writing/style/
https://docs.pylint.org/en/1.8/tutorial.html
http://www.pydocstyle.org/en/latest/
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

[Python 3.5.2 Shell o
File Edit Shell Debug Options Window Help

You may need to streteh

ole window if text wrapping ocours.

Ln: 23 Col: 34

Figure 1-2: Bar chart-like output of the ETAOIN_practice.py program in the appendix

Challenge Projects

Chapter 1

No solutions are provided for challenge projects. You're on your own with
these!

Poor Foreign Man’s Bar Chart

Use an online translator to change your text into another Latin-based writ-
ing system (such as Spanish or French), rerun your code from the Poor
Man’s Bar Chart, and compare the results. For example, a Spanish version
of the text in Figure 1-2 yields the results in Figure 1-3.

T4 Pythan 352 Shell
File Edit Shell Debug Options Windaw Help
You may need to atretch console window if text wrapping occura. =

Lot Al igual que el cas lo en la esquina en un juege medieval, preves terribles problemas y me quedo
agqui lo mismo.

defaultdict {(<clasa 'list's,

Lnc31 Cet 4

Figure 1-3: The results of running EATOIN_challenge.py on a Spanish translation of the
text in Figure 1-2

Twice as many Ls and three times as many Us appear in the Spanish
sentence. To make the bar charts for different inputs directly comparable,
change the code so every letter of the alphabet has a key and is displayed
even if there are no values.

The Middle

Rewrite the funny name generator code to include middle names. First,
create a new middle_name tuple, then split apart existing first name—middle
name pairs (such as “Joe ‘Pottin Soil’” or “Sid ‘The Squirts’”) and add
them to the tuple. You should also move some obvious nicknames (like
“Oil Can”) to your middle_name tuple. Finally, add some new middle names
(such as “The Big News,” or “Grunts,” or “Tinkie Winkie”). Use Python’s
random module so that a middle name is chosen only one-half or one-third
of the time.

Something Completely Different

Start your own list of funny names and add to the funny name generator.
Hint: movie credits are a rich hunting ground!

Silly Name Generator 17

FINDING PALINGRAM SPELLS

Radar. Kayak. Rotator. Sexes. What do
these words all have in common? They’re
palindromes, words that are spelled the same

forward and backward. Even better are pal-
ingrams, whole phrases that behave the same way.
Napoleon is the author of the most famous palin-
gram. When he first saw Elba, the island of his exile,

he said, “Able was I ere I saw Elba.”

In 2011, DC Comics published an interesting story that made clever
use of palingrams. The superhero sorceress Zatanna was cursed so that she
could cast spells only by speaking palindromically. She managed to think up
just enough two-word phrases like nurses run, stack cats, and puff up to defeat
her sword-wielding attacker. This got me wondering: just how many “com-
bative” palingrams are there? And are there better choices for Zatanna?

20

In this chapter, you’ll load dictionary files from the internet and use
Python to discover first palindromes and then the more complex palin-
grams in those files. Then you’ll use a tool called cProfile to analyze your
palingram code so that you can make it more performant. Finally, you'll sift
through the palingrams to see how many have an “aggressive” nature.

Finding and Opening a Dictionary

Chapter 2

All the projects in this chapter require a listing of words in a text file for-
mat, commonly referred to as a dictionary file, so let’s start by learning how
to load one.

Despite their name, dictionary files contain only words—no pronun-
ciation, syllable count, definitions, and so on. This is good news, as those
things would just get in our way. And even better, dictionary files are avail-
able online for free.

You can find suitable dictionary files at the locations listed in Table 2-1.
Download one of the files or, if it opens directly, copy and paste the con-
tents into a text editor like Notepad or WordPad (TextEdit on macOS) and
save it as a .txt file. Keep the dictionary in the same folder as the Python
code. I used the 20f4brif.txt file to prepare this project. It can be found in
the downloadable 12dicts-6.0.2.zip file on the website listed first in Table 2-1.

Table 2-1: Downloadable Dictionary Files

File Number of words
http://wordlist.aspell.net/12dicts/ 60,388
https.//inventwithpython.com/dictionary.ixt 45,000
http://www-personal.umich.edu/~jlawler/wordlist.html 69903
http://greenteapress.com/thinkpython2/code/words.txt 113,809

In addition to the files in Table 2-1, Unix and Unix-like operating sys-
tems come packaged with a large newline-delimited word file of more than
200,000 words. It is usually stored in /usr/share/dict/words or /usr/dict/words.
On Debian GNU/Linux, word lists are in /usr/share/opendict/dictionaries.
The macOS dictionaries are generally found in /Library/Dictionaries, and
non-English dictionaries are included. You may need to do an online search
for your operating system and version to find the exact directory path if you
want to use one of these files.

Some dictionary files exclude a and I as words. Others may include
every letter in the dictionary as a single word “header” (such as d at the
start of words beginning with d). We’ll ignore one-letter palindromes in
these projects, so these issues shouldn’t be a problem.

Handling Exceptions When Opening Files

Whenever you load an external file, your program should automatically
check for I/O issues, like missing files or incorrect filenames, and let you
know if there is a problem.

Use the following try and except statements to catch and handle excep-
tions, which are errors detected during execution:

try:
® with open(file) as in_file:
do something
except IOError® as e:
O print("{}\nError opening {}. Terminating program.".format(e, file),
file=sys.stderr)
® sys.exit(1)

The try clause is executed first @. The with statement will automatically
close the file after the nested block of code, regardless of how the block
exits @. Closing files prior to terminating a process is a good practice. If
you don’t close those files, you could run out of file descriptors (mainly a
problem with large scripts that run for a long time), lock the file from fur-
ther access in Windows, corrupt the files, or lose data if you are writing to
the file.

If something goes wrong and if the type of error matches the excep-
tion named after the except keyword @, the rest of the try clause is skipped,
and the except clause is executed @. If nothing goes wrong, the try clause is
executed, and the except clause is skipped. The print statement in the except
clause lets you know there’s a problem, and the file=sys.stderr argument
colors the error statement red in the IDLE interpreter window.

The sys.exit(1) @ statement is used to terminate the program. The 1
in sys.exit(1) indicates that the program experienced an error and did not
close successfully.

If an exception occurs that doesn’t match the named exception in the
except clause, it is passed to any outer try statements or the main program
execution. If no handler is found, the unhandled exception causes the pro-
gram to stop with a standard “traceback” error message.

Loading the Dictionary File

Listing 2-1 loads a dictionary file as a list. Manually enter this script or
download it as load_dictionary.py from hitps://nostarch.com/impracticalpython/.
You can import this file into other programs as a module and run it
with a one-line statement. Remember, a module is simply a Python program

that can be used in another Python program. As you’re probably aware,
modules represent a form of abstraction. Abstraction means you don’t have
to worry about all the coding details. A principle of abstraction is encapsu-
lation, the act of hiding the details. We encapsulate the file-loading code
in a module so you don’t have to see or worry about the detailed code in
another program.

Finding Palingram Spells 21

load_dictionary.py

22

Chapter 2

Load a text file as a list.

Arguments:
-text file name (and directory path, if needed)

Exceptions:
-IOError if filename not found.

Returns:
-A list of all words in a text file in lower case.

Requires-import sys

import sys

def load(file):
"""Open a text file & return a list of lowercase strings.
try:
with open(file) as in_file:
©® loaded txt = in file.read().strip().split('\n")
O loaded txt = [x.lower() for x in loaded txt]
return loaded_txt
except IOError as e:
© print("{}\nError opening {}. Terminating program.".format(e, file),
file=sys.stderr)
sys.exit(1)

Listing 2-1: The module for loading a dictionary file as a list

After the docstring, we import system functions with sys so that our
error-handling code will work @. The next block of code defines a function
based on the previous file-opening discussion @. The function takes a file-
name as an argument.

If no exceptions are raised, the text file’s whitespace is removed, and its
items are split into separate lines and added to a list ®. We want each word
to be a separate item in the list, before the list is returned. And since case
matters to Python, the words in the list are converted to lowercase via /ist
comprehension @. List comprehension is a shorthand way to convert a list, or
other iterable, into another list. In this case, it replaces a for loop.

If an I/O error is encountered, the program displays the standard error
message, designated by the e, along with a message describing the event and
informing the user that the program is ending @. The sys.exit(1) command
then terminates the program.

This code example is for illustrative purposes, to show how these steps
work together. Generally, you wouldn’t call sys.exit() from a module, as
you may want your program to do something—Ilike write a log file—prior
to terminating. In later chapters, we’ll move both the try-except blocks and
sys.exit() into a main() function for clarity and control.

Project #2: Finding Palindromes

You’ll start by finding single-word palindromes in a dictionary and then
move on to the more difficult palindromic phrases.

THE OBJECTIVE

Use Python to search an English language dictionary file for palindromes.

The Strategy and Pseudocode

Before you get into the code, step back and think about what you want to
do conceptually. Identifying palindromes is easy: simply compare a word
to itself sliced backward. Here is an example of slicing a word front to back
and then back to front:

>>> word = 'NURSES'
>>> word[:]
"NURSES'

>>> word[::-1]
'SESRUN'

If you don’t provide values when slicing a string (or any sliceable type),
the default is to use the start of the string, the end of the string, and a posi-
tive step equal to 1.

Figure 2-1 illustrates the reverse slicing process. I've provided a start-
ing position of 2 and a step of -1. Because no end index is provided (there
is no index or space between the colons), the implication is to go backward
(because the index step is -1) until there are no more characters left.

End of
Start word Step
word[2::-1]
- mmmm——————————

0 1 2 3 4 5 6 Endpoints

0 1 2 3 4 5 Position values

-6 -5 -4 -3 -2 -1 Position values
-6 -5 -4 -3 -2 -1 Endpoints

Figure 2-1: An example of negative slicing for word = 'NURSES'

Finding Palingram Spells 23

palindromes.py

2

Chapter 2

© o000

Negative slicing doesn’t behave exactly the same way as forward slicing,
and the positive and negative position values and endpoints are asymmetri-
cal. This can lead to confusion, so let’s restrict our negative slicing to the
simple [::-1] format.

Finding palindromes in the dictionary will take fewer lines of code
than loading the dictionary file! Here’s the pseudocode:

Load digital dictionary file as a list of words
Create an empty list to hold palindromes
Loop through each word in the word list:
If word sliced forward is the same as word sliced backward:
Append word to palindrome list
Print palindrome list

The Palindrome Code

Listing 2-2, palindromes.py, reads in an English dictionary file, identifies
which words are palindromes, saves them to a list, and prints the list as
stacked items. You can download this code from the book’s resources
at https://www.nostarch.com/impracticalpython/. You will also need load_
dictionary.py and a dictionary file; save all three files in the same folder.

Find palindromes (letter palingrams) in a dictionary file.

import load_dictionary
word list = load_dictionary.load('2of4brif.txt")
pali list = []

for word in word list:
if len(word) > 1 and word == word[::-1]:
pali list.append(word)

print("\nNumber of palindromes found = {}\n".format(len(pali_ list)))
print(*pali_list, sep="\n")

Listing 2-2: Finds palindromes in loaded dictionary file

Start by importing load_dictionary.py as a module @. Note that the .py
extension is not used for importing. Also, the module is in the same folder
as this script, so we don’t have to specify a directory path to the module.
And since the module contains the required import sys line, we don’t need
to repeat it here.

To populate our word list with words from the dictionary, call the load()
function in the load_dictionary module with dot notation @. Pass it the name
of the external dictionary file. Again, you don’t need to specify a path if the
dictionary file is in the same folder as the Python script. The filename you
use may be different depending on the dictionary you downloaded.

Next, create an empty list to hold the palindromes ® and start loop-
ing through every word in word_list @, comparing the forward slice to the
reverse slice. If the two slices are identical, append the word to pali_list.
Notice that only words with more than one letter are allowed (len(word) >
1), which follows the strictest definition of a palindrome.

https://www.nostarch.com/impracticalpython/

Finally, print the palindromes in an attractive way—stacked and with
no quotation marks or commas ©. You can accomplish this by looping
through every word in the list, but there is a more efficient way to do it.
You can use the splat operator (designated by the *), which takes a list as
input and expands it into positional arguments in the function call. The
last argument is the separator used between multiple list values for print-
ing. The default separator is a space (sep=" '), but instead, print each item
on a new line (sep="\n").

Single-word palindromes are rare, at least in English. Using a 60,000-
word dictionary file, you’ll be lucky to find about 60, or only 0.1 percent of
all the words. Despite their rarity, however, they’re easy enough to find with
Python. So, let’s move on to the more interesting, and more complicated,
palingrams.

Project #3: Finding Palingrams

Finding palingrams requires a bit more effort than finding one-word
palindromes. In this section, we’ll plan and write code to find word-pair
palingrams.

THE OBJECTIVE

Use Python to search an English language dictionary for two-word palingrams. Analyze
and optimize the palingram code using the cProfile tool.

The Strategy and Pseudocode

Example word-pair palingrams are nurses run and stir grits. (In case you're
wondering, grits are a ground-corn breakfast dish, similar to Italian
polenta.)

Like palindromes, palingrams read the same forward and backward.
I like to think of these as a core word, like nurses, from which a palindromic
sequence and reversed word are derived (see Figure 2-2).

“Core” word “Core” word

I_I_I I_I_I
NURSES RUN STIR GRITS

L L
Second part is First part is a

a palindromic palindromic
First partis @ sequence sequence Second part is a
reversed word reversed word

Figure 2-2: Dissecting word-pair palingrams

Finding Palingram Spells 25

26

Chapter 2

Our program will examine the core word. Based on Figure 2-2, we can
make the following inferences about the core word:

& Stk o=

occupies the whole word).

It can have either an odd or even number of letters.

The two parts cannot overlap or share letters.

8. The sequence is reversible.

One contiguous part of the word spells a real word when read backward.
This contiguous part can occupy part or all of the core word.

The other contiguous part contains a palindromic sequence of letters.
The palindromic sequence can occupy part or all of the core word.

The palindromic sequence does not have to be a real word (unless it

1If the reversed word occupies the whole core word and is not a palindrome, it’s called a
semordnilap. A semordnilap is similar to a palindrome except for one key difference:
rather than spelling the same word when read backward, it spells a different word.
Examples are bats and stab, and wolf and flow. Semordnilap, by the way, is palin-

dromes spelled backward.

Figure 2-3 represents an arbitrary word of six letters. The Xs represent
the part of the word that might form a real word when read backward (like
run in nurses). The Os represent the possible palindromic sequence (like ses
in nurses). The word represented in the left column in Figure 2-3 behaves
like nurses in Figure 2-2, with the reversed word at the start. The word repre-
sented by the right column behaves like grits, with the reversed word at the
end. Note that the number of combinations in each column is the total
number of letters in the word plus one; note too that the top and bottom

rows represent an identical circumstance.

The top row in each column rep-
resents a semordnilap. The bottom
row in each represents a palindrome.
These are both reversed words, just
different types of reversed words.
Hence, they count as one entity and
both can be identified with a single
line of code in a single loop.

To see the diagram in action,
consider Figure 2-4, which shows the
palingrams devils lived and retro porter.
Devils and porter are both core words
and mirror images of each other with
respect to palindromic sequences
and reversed words. Compare this to
the semordnilap evil and the palin-
drome kayak.

XXXXXX
XXXXXO
XXXX00
XXX000
XX0000
X00000
000000

XXXXXX
00000X
0000XX
O0OXXX
OOXXXX
OXXXXX
000000

Figure 2-3: Possible positions for letters
of the reversed word (X] and the pal-
indromic sequence (O] in a six-letter

core word

DEVILS PORTER

XXXXXO OXXXXX

EVIL LIVE KAYAK KAYAK

XXXX XXXX XXXXX XXXXX
00000 00000

Figure 2-4: Reversed words (Xs] and palindromic sequences (Os) in words,
semordnilaps, and palindromes.

Palindromes are both reversed words and palindromic sequences. Since
they have the same pattern of Xs as in semordnilaps, they can be handled
with the same code used for semordnilaps.

From a strategy perspective, you'll need to loop through each word
in the dictionary and evaluate it for all of the combinations in Figure 2-3.
Assuming a 60,000-word dictionary, the program will need to take about
500,000 passes.

To understand the loops, take a look at the core word for the palingram
stack cats in Figure 2-5. Your program needs to loop through the letters in the
word, starting with an end letter and adding a letter with each iteration. To
find palingrams like stack cats, it will simultaneously evaluate the word for the
presence of a palindromic sequence at the end of the core word, stack, and a
reversed word at the start. Note that the first loop in Figure 2-5 will be suc-
cessful, as a single letter (k) can serve as a palindrome in this situation.

Fourth

Palindromic?

Reversed I_I_|

Word? Second

Figure 2-5: Example loops through a core word,
simultaneously looking for palindromes and
reversed words

Finding Palingram Spells 27

But you're not through yet. To capture the “mirror image” behavior in
Figure 2-3, you have to run the loops in reverse, looking for palindromic
sequences at the start of the word and reversed words at the end. This will
allow you to find palingrams like stir grits.

Here is the pseudocode for a palingram-finding algorithm:

Load digital dictionary as a list of words
Start an empty list to hold palingrams
For word in word list:
Get length of word
If length > 1:
Loop through the letters in the word:
If reversed word fragment at front of word is in word list and letters
after form a palindromic sequence:
Append word and reversed word to palingram list
If reversed word fragment at end of word is in word list and letters
before form a palindromic sequence:
Append reversed word and word to palingram list
Sort palingram list alphabetically
Print word-pair palingrams from palingram list

The Palingrams Code

Listing 2-3, palingrams.py, loops through a word list, identifies which words
form word-pair palingrams, saves those pairs to a list, and prints the list as
stacked items. You can download the code from https://www.nostarch.com/
impracticalpython/. 1 suggest you use the 2o0f4brif.txt dictionary file to start so
that your results will match mine. Store your dictionary and load_dictionary
.py in the same folder as the palingrams script.

palingrams.py """Find all word-pair palingrams in a dictionary file.
import load_dictionary

word list = load dictionary.load('2o0f4brif.txt")

find word-pair palingrams
©® def find_palingrams():
"""Find dictionary palingrams.
pali list = []
for word in word list:
® end = len(word)
© rev word = word[::-1]
O if end > 1:
® for i in range(end):
@ if word[i:] == rev_word[:end-i] and rev_word[end-i:] in word_ list:
pali list.append((word, rev word[end-i:]))
@ if word[:i] == rev_word[end-i:] and rev_word[:end-i] in word list:
pali list.append((rev_word[:end-i], word))
O return pali_list

© palingrams = find_palingrams()

28 Chapter 2

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

sort palingrams on first word
palingrams_sorted = sorted(palingrams)

display list of palingrams
print("\nNumber of palingrams = {}\n".format(len(palingrams_sorted)))
for first, second in palingrams_sorted:

print("{} {}".format(first, second))

Listing 2-3: Finds and prints word-pair palingrams in loaded dictionary

After repeating the steps you used in the palindromes.py code to load a
dictionary file, define a function to find palingrams @. Using a function
will allow you to isolate the code later and time how long it takes to process
all the words in the dictionary.

Immediately start a list called pali_list to hold all the palingrams the
program discovers. Next, start a for loop to evaluate the words in word_list.
For each word, find its length and assign its length to the variable end @.
The word’s length determines the indexes the program uses to slice
through the word, looking for every possible reversed word-palindromic
sequence combination, as in Figure 2-3.

Next, negatively slice through the word and assign the results to the
variable rev_word ©. An alternative to word[::-1] is ''.join(reversed(word)),
which some consider more readable.

Since you are looking for word-pair palingrams, exclude single-letter
words @. Then nest another for statement to loop through the letters in the
current word ©.

Now, run a conditional requiring the back end of the word to be pal-
indromic and the front end to be a reverse word in the word list (in other
words, a “real” word) @. If a word passes the test, it is appended to the pal-
ingram list, immediately followed by the reversed word.

Based on Figure 2-3, you know you have to repeat the conditional, but
change the slicing direction and word order to reverse the output. In other
words, you must capture palindromic sequences at the start of the word
rather than at the end @. Return the list of palingrams to complete the
function @.

With the function defined, call it ®@. Since the order in which diction-
ary words are added to the palingram list switches during the loop, the
palingrams won’t be in alphabetical order. So, sort the list so that the first
words in the word pair are in alphabetical order. Print the length of the
list @, then print each word-pair on a separate line.

As written, palingrams.py will take about three minutes to run on a
dictionary file with about 60,000 words. In the next sections, we’ll investi-
gate the cause of this long runtime and see what we can do to fix it.

Palingram Profiling

Profiling is an analytical process that gathers statistics on a program’s
behavior—for example, the number and duration of function calls—as

Finding Palingram Spells 29

30

Chapter 2

the program executes. Profiling is a key part of the optimization process.
It tells you exactly what parts of a program are taking the most time or
memory. That way, you’ll know where to focus your efforts to improve
performance.

Profiling with cProfile

A profileis a measurement output—a record of how long and how often
parts of a program are executed. The Python standard library provides a
handy profiling interface, cProfile, which is a C extension suitable for profil-
ing long-running programs.

Something in the find_palingrams() function probably accounts for the
relatively long runtime of the palingrams.py program. To confirm, let’s run
cProfile.

Copy the following code into a new file named cprofile_test.py and save
it in the same folder as palingrams.py and the dictionary file. This code
imports cProfile and the palingrams program, and it runs cProfile on the
find_palingrams() function—called with dot notation. Note again that you
don’t need to specify the .py extension.

import cProfile
import palingrams
cProfile.run('palingrams.find_palingrams()")

Run cprofile_test.py and, after it finishes (you will see the »>>> in the inter-
preter window), you should see something similar to the following:

62622 function calls in 199.452 seconds
Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 199.451 199.451 <string>:1(<module>)
1 199.433 199.433 199.451 199.451 palingrams.py:7(find_palingrams)
1 0.000 0.000 199.452 199.452 {built-in method builtins.exec}
60388 0.018 0.000 0.018 0.000 {built-in method builtins.len}
2230 0.001 0.000 0.001 0.000 {method 'append' of 'list' objects}

All that looping, slicing, and searching took 199.452 seconds on my
machine, but of course your times may differ from mine. You also get addi-
tional information on some of the built-in functions, and since each palin-
gram called the built-in append() function, you can even see the number of
palingrams found (2,230).

The most common way to run cProfile is directly in the interpreter. This lets you
dump your output to a text file and view it with a web viewer. For more information,

visit https://docs.python.org/3/library/profile.html.

Profiling with time

Another way to time the program is to use time.time(), which returns an
epoch timestamp—the number of seconds since 12 AM on January 1, 1970
UTC (the Unix epoch). Copy palingrams.py to a new file, save it as palingrams_
timed.py, and insert the following code at the very top:

import time
start_time = time.time()

Now go to the end of the file and add the following code:

end_time = time.time()
print("Runtime for this program was {} seconds.".format(end time - start time))

Save and run the file. You should get the following feedback at the bot-
tom of the interpreter window—give or take a few seconds:

Runtime for this program was 222.73954558372498 seconds.

The runtime is longer than before, as you are now evaluating the whole
program, including printing, rather than just the find_palingrams() function.

Unlike cProfile, time doesn’t provide detailed statistics, but like cProfile,
it can be run on individual code components. Edit the file you just ran,
moving the start and end time statements (as shown below in bold) so they
bracket our long-running find_palingrams() function. Leave the import and
print statements unchanged at the top and bottom of the file, respectively.

start_time = time.time()
palingrams = find_palingrams()
end_time = time.time()

Save and run the file. You should get the following feedback at the bot-
tom of the interpreter window:

Runtime for this program was 199.42786622047424 seconds.

This now matches the initial results using cProfile. You won’t get the
exact same time if you rerun the program or use a different timer, but don’t
get hung up on it. It’s the relative times that are important for guiding code
optimization.

Palingram Optimization

I'm sorry, but three minutes of my life is too long to wait for palingrams.
Armed with our profiling results, we know that the find_palingrams() function
accounts for most of the processing time. This probably has something to do
with reading and writing to lists, slicing over lists, or searching in lists. Using
an alternative data structure to lists—like tuples, sets, or dictionaries—might

Finding Palingram Spells 31

palingrams
_optimized.py

32

Chapter 2

speed up the function. Sets, in particular, are significantly faster than lists
when using the in keyword. Sets use a hashtable for very fast lookups. With
hashing, strings of text are converted to unique numbers that are much
smaller than the referenced text and much more efficient to search. With a
list, on the other hand, you have to do a linear search through each item.

Think of it this way: if you're searching your house for your lost cell
phone, you could emulate a list by looking through every room before find-
ing it (in the proverbial last place you look). But by emulating a set, you can
basically dial your cell number from another phone, listen for the ringtone,
and go straight to the proper room.

A downside to using sets is that the order of the items in the set isn’t
controllable and duplicate values aren’t allowed. With lists, the order is pre-
served and duplicates are allowed, but lookups take longer. Fortunately for
us, we don’t care about order or duplicates, so sets are the way to go!

Listing 2-4 is the find_palingrams() function from the original
palingrams.py program, edited to use a set of words rather than a list of
words. You can find it in a new program named palingrams_optimized.py,
which you can download from https://www.nostarch.com/impracticalpython/,
or just make these changes to your copy of palingrams_timed.py if you want
to check the new runtime yourself.

def find_palingrams():
"""Find dictionary palingrams.
pali list = []
©® words = set(word list)
® for word in words:
end = len(word)
rev_word = word[::-1]

if end > 1:
for i in range(end):
© if word[i:] == rev_word[:end-i] and rev_word[end-i:] in words:
pali list.append((word, rev_word[end-i:]))
® if word[:i] == rev_word[end-i:] and rev_word[:end-i] in words:

pali list.append((rev_word[:end-i], word))
return pali list

Listing 2-4: The find_palingrams() function optimized with sets

Only four lines change. Define a new variable, words, which is a set of
word_list @. Then loop through the set ®, looking for membership of word
slices in this set ® @, rather than in a list as before.

Here’s the new runtime for the find_palingrams() function in palingrams
_optimized.py:

Runtime for this program was 0.4858267307281494 seconds.

Wow! From over three minutes to under a second! That’s optimization!
And the difference is in the data structure. Verifying the membership of a
word in a list was the thing that was killing us.

Why did I first show you the “incorrect” way to do this? Because that’s
how things happen in the real world. You get the code to work, and then you
optimize it. This is a simple example that an experienced programmer would
have gotten right from the start, but it is emblematic of the overall concept of
optimization: get it to work as best as you can, then make it better.

dnE ehT

You’ve written code to find palindromes and palingrams, profiled code
using cProfile, and optimized code by using the appropriate data struc-
ture for the task. So how did we do with respect to Zatanna? Does she
have a fighting chance?

Here I've listed some of the more “aggressive” palingrams found in the
20f4brif dictionary file—everything from the unexpected sameness enemas to
the harsh torsos rot to my personal favorite as a geologist: eroded ore.

dump mud drowsy sword sameness enemas
legs gel denims mined lepers repel

sleet eels dairy raid slam mammals
eroded ore rise sir pots nonstop
strafe farts torsos rot swan gnaws
wolfs flow partner entrap nuts stun

slaps pals flack calf knobs bonk

Further Reading

Think Python, 2nd Edition (O’Reilly, 2015) by Allen Downey has a short and
lucid description of hashtables and why they are so efficient. It’s also an excel-
lent Python reference book.

Practice Project: Dictionary Cleanup

Data files available on the internet are not always “plug and play.” You may
find you need to massage the data a bit before applying it to your project.
As mentioned earlier, some online dictionary files include each letter of
the alphabet as a word. These will cause problems if you want to permit the
use of one-letter words in palingrams like acidic a. You could always remove
them by directly editing the dictionary text file, but this is tedious and for
losers. Instead, write a short script that removes these after the diction-
ary has been loaded into Python. To test that it works, edit your dictionary
file to include a few one-letter words like » and ¢. For a solution, see the
appendix, or find a copy (dictionary_cleanup_practice.py) online at hitps://
www.nostarch.com/impracticalpython/.

Finding Palingram Spells 33

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

34

Challenge Project: Recursive Approach

Chapter 2

With Python, there is usually more than one way to skin a cat. Take a look at
the discussion and pseudocode at the Khan Academy website (https://www
.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/
using-recursion-to-determine-whether-a-word-is-a-palindrome/). Then rewrite the
palindrome.py program so that it uses recursion to identify palindromes.

https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/using-recursion-to-determine-whether-a-word-is-a-palindrome
https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/using-recursion-to-determine-whether-a-word-is-a-palindrome
https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/using-recursion-to-determine-whether-a-word-is-a-palindrome

SOLVING ANAGRAMS

An anagramis a word formed by rearrang-
ing the letters of another word. For example,

Elvis yields the eerie trio evils, lives, and wveils.

Does this mean Elvis still lives but veils his evil
existence? In the book Harry Potter and the Chamber of
Secrets, “I am Lord Voldemort” is an anagram of the
evil wizard’s real name, Tom Marvolo Riddle. “Lord
Earldom Vomit” is also an anagram of Tom Marvolo
Riddle, but author J.K. Rowling had the good sense to
pass on that one.

In this chapter, first you’ll find all the anagrams for a given word
or name. Then, you’ll write a program that lets a user interactively build
an anagram phrase from their own name. Finally, you’ll play computer
wizard and see what it takes to extract “I am Lord Voldemort” from
“Tom Marvolo Riddle.”

36

Project #4: Finding Single-Word Anagrams

Chapter 3

You’ll start by analyzing simple single-word anagrams and figuring out how
to identify them programmatically. Having accomplished this, you’ll be
ready to take on anagram phrases in the following section.

THE OBJECTIVE

Use Python and a dictionary file to find all the single-word anagrams for a given English
word or single name. You can read instructions for finding and loading dictionary files at
the start of Chapter 2.

The Strategy and Pseudocode

More than 600 newspapers and 100 internet sites carry an anagram game
called Jumble. Created in 1954, it’s now the most recognized word-scramble
game in the world. Jumble can be really frustrating, but finding anagrams

is almost as easy as finding palindromes—you just need to know the com-
mon characteristic of all anagrams: they must have the same number of the
same letters.

Identifying an Anagram

Python doesn’t contain a built-in anagram operator, but you can easily
write one. For the projects in this chapter, you’ll load the dictionary file
from Chapter 2 as a list of strings. So the program needs to verify that
two strings are anagrams of each other.

Let’s look at an example. Pots is an anagram of stop, and you can verify
that stop and pots have the same number of letters with the len() function.
But there’s no way for Python to know whether two strings have the same
number of any single character—at least not without converting the strings
to another data structure or using a counting function. So, instead of look-
ing at these two words simply as strings, you can represent them as two lists
containing single-character strings. Create these lists in a shell, like IDLE,
and name them word and anagram, as I've done here:

>>> word = list('stop')
>>> word

[lsl, ltl, Iol, lpl]

>>> anagram = list('pots')
>>> anagram

[Ipl’ IOI’ Itl, ISI]

These two lists match our description of an anagram pair; that is, they
contain the same number of the same letters. But if you try to equate them
with the comparison operator ==, the result is False.

>>> anagram == word
False

The problem is that the operator (==) considers two lists equivalent
only if they have the same number of the same list items and those items
occur in the same order. You can easily solve this problem with the built-
in function sorted(), which can take a list as an argument and reorder its
contents alphabetically. So, if you call sorted() twice—once for each of the
lists—and then compare the sorted lists, they will be equivalent. In other
words, == returns True.

>>> word = sorted(word)

>>> word

['O‘, Ipl, 'S‘, I_tl]

>>> anagram = sorted(anagram)
>>> anagram

['O‘, Ipl’ ISIJ Itl]

>>> anagram == word

True

You can also pass a string to sorted() to create a sorted list like the ones
in the preceding code snippet. This will be useful for converting the words
from the dictionary file into sorted lists of single-character strings.

Now that you know how to verify that you've found an anagram, let’s
design the script in its entirety—from loading a dictionary and prompt-
ing the user for a word (or name) to searching for and printing all the
anagrams.

Using Pseudocode

Remember that planning with pseudocode will help you spot potential
issues and spotting those issues early will save you time. The following
pseudocode should help you better understand the script we’ll write in the
next section, anagrams.py.

Load digital dictionary file as a list of words
Accept a word from user
Create an empty list to hold anagrams
Sort the user-word
Loop through each word in the word list:
Sort the word
if word sorted is equal to user-word sorted:
Append word to anagrams list
Print anagrams list

The script will start by loading words from a dictionary file into a list as
strings. Before you loop through the dictionary in search of anagrams, you
need to know which word you want anagrams of, and you need a place to
store anagrams when you find them. So, first ask the user to input a word

Solving Anagrams 37

anagrams.py

38

Chapter 3

and then create an empty list to store the anagrams. Once the program
has looped through every word in the dictionary, it will print that list of
anagrams.

Anagram-Finder Code

Listing 3-1 loads a dictionary file, accepts a word or name specified within
the program, and finds all the anagrams in the dictionary file for that word
or name. You’ll also need the dictionary-loading code from Chapter 2.
You can download these from https://www.nostarch.com/impracticalpython/
as anagrams.py and load_dictionary.py, respectively. Keep both files in the
same folder. You can use the same dictionary file you used in Chapter 2
or download another one (see Table 2-1 on page 20 for suggestions).

import load_dictionary
word_list = load_dictionary.load('20f4brif.txt")
anagram list = []

input a SINGLE word or SINGLE name below to find its anagram(s):
name = 'Foster’

print("Input name = {}".format (name))

name = name.lower()

print("Using name = {}".format(name))

sort name & find anagrams
name_sorted = sorted(name)
for word in word list:
word = word.lower()
if word != name:
if sorted(word) == name_sorted:
anagram list.append(word)

print out list of anagrams
print()
if len(anagram_list) == o0:
print("You need a larger dictionary or a new name!")
else:
© print("Anagrams =", *anagram list, sep="\n')

Listing 3-1: Given a word (or name) and a dictionary file, this program searches for and
prints a list of anagrams.

You start by importing the load_dictionary module you created in
Chapter 2 @. This module will open a dictionary text file and, with its
load() function, load all the words into a list @. The *./xt file you use may
be different, depending on which dictionary file you downloaded (see
“Finding and Opening a Dictionary” on page 20).

Next, create an empty list, called anagram_list, to hold any anagrams
you find ©. Have the user add a single word, such as their first name @. This

doesn’t have to be a proper name, but we’ll refer to it as name in the code
to distinguish it from a dictionary word. Print this name so the user can see
what was entered.

The next line anticipates a problematic user action. People tend to
type their name with an uppercase first letter, but dictionary files may not
include uppercase letters, and that matters to Python. So, first convert all
letters to lowercase with the .lower() string method @.

Now sort the name ®. As mentioned previously, you can pass sorted() a
string as well as a list.

With the input sorted alphabetically in a list, it’s time to find anagrams.
Start a loop through each word in the dictionary word list @. To be safe, con-
vert the word to lowercase, as comparison operations are case-sensitive. After
the conversion, compare the word to the unsorted name, because a word
can’t be an anagram of itself. Next, sort the dictionary word and compare it
to the sorted name. If it passes, append that dictionary word to anagram_list.

Now display the results. First, check whether the anagram list is empty.
If it is, print a whimsical reply so you don’t just leave the user hanging @. If
the program found at least one anagram, print the list using the splat (*)
operator. Remember from Chapter 2 that splat lets you print each member
of a list on a separate line ©.

The following is example output for this program, using the input
name Foster:

Input name = Foster
Using name = foster

Anagrams =
forest
fortes
softer

If you’d like to use another input, change the value of the name variable
in the source code. As an exercise, try to adjust the code so that the user
is prompted to input the name (or word); you can do this with the input()
function.

Project #5: Finding Phrase Anagrams

In the previous project, you took a single name or word and rearranged all
the letters to find single-word anagrams. Now you will derive multiple words
from a name. The words in these phrase anagrams form only part of the input
name, and you will need several words to exhaust the available letters.

THE OBJECTIVE

Write a Python program that lets a user interactively build an anagram phrase from the
letters in their name.

Solving Anagrams 39

40

The Strategy and Pseudocode

The very best phrase anagrams are those that describe some well-known
characteristic or action associated with the name bearer. For example, the
letters in Clint Eastwood can be rearranged to form old west action, Alec
Guinness yields genuine class, Madam Curie produces radium came, George
Bush gives he bugs Gore, and Statue of Liberty contains built to stay free. My
own name yields a huge navel, which is not really one of my characteristics.

At this point, you may see a strategic challenge ahead: how does a com-
puter handle contextual content? The folks at IBM who invented Watson
seem to know, but for the rest of us, that boulder is a little hard to lift.

The brute-force method is a common approach used in online anagram
generators. These algorithms take a name and return lots of random ana-
gram phrases (generally, 100s to 10,000+). Most of the returned phrases
are nonsense, and scrolling through hundreds of these can be a chore.

An alternative approach is to acknowledge that humans are best at
contextual issues and write a program that helps the human work through
the problem. The computer can take the initial name and provide words
that can be made from some (or all) the letters in it; the user can then
choose a word that “makes sense.” The program will then recalculate the
word choices from the remaining letters in the name, repeating the pro-
cess until every letter is used or the possible word choices are exhausted.
This design plays to the strengths of both participants.

You'll need a simple interface that prompts the user to input the initial
name, displays potential word choices, and displays any remaining letters.
The program will also need to keep track of the growing anagram phrase
and let the user know when every letter has been used. There will likely be
lots of failed attempts, so the interface should allow the user to restart the
process at any time.

Since anagrams have the same number of the same letters, another way
to identify them is to count individual letters. If you think of your name as
a collection of letters, then a word can be built from your name if (1) all
its letters occur in your name and (2) they occur at the same frequency or less.
Obviously, if e occurs three times in a word and twice in your name, the
word can’t be derived from your name. So, if the collection of letters that
make up a word is not a subset of the collection of letters in your name,
then that word cannot be part of your name anagram.

Using Counter to Tally Letters

Fortunately for us, Python ships with a module named collections that
includes several container data types. One of these types, Counter, counts the
occurrences of an item. Python stores the items as dictionary keys and the
counts as dictionary values. For example, the following code snippet counts
how many of each bonsai tree type is in a list.

>>> from collections import Counter
® >>> my_bonsai_trees = ['maple', 'oak', 'elm', 'maple’, 'elm', 'elm', 'elm’', 'elm']
® >>> count = Counter(my_bonsai_trees)

Chapter 3

>>> print(count)
® Counter({'elm': 5, 'maple': 2, 'oak': 1})

The my_bonsai_trees list contains multiples of the same type of tree @.
Counter tallies up the trees @ and creates an easy-to-reference dictionary ©.
Note that the print() function is optional and is used here for clarity.
Entering count, alone, will also display the dictionary contents.

You can use Counter, instead of the sorted() method, to find single-word
anagrams. Rather than two sorted lists, the output will be two dictionaries,
which can also be directly compared with ==. Here’s an example:

>>> name = 'foster’
>>> word = 'forest’
>>> name_count = Counter(name)
>>> print(name_count)
O Counter({'f': 1, 't': 1, 'e': 1, '0o': 1, 'r': 1, 's': 1})
>>> word_count = Counter(word)
>>> print(word_count)
® Counter({'f': 1, 't': 1, '0o': 1, 'e': 1, 'r': 1, 's': 1})

Counter produces a dictionary for each word that maps each letter in the
word to the number of times it occurs @®. The dictionaries are unsorted,
but despite the lack of sorting, Python correctly identifies each dictionary
as being equal if the dictionaries contain the same letters and the same
counts:

>>> if word_count == name_count:
print("It's a match!")

It's a match!

A Counter gives you a wonderful way to find words that “fit” in a name. If
the count for each letter in a word is less than or equal to the count for the
same letter in the name, then the word can be derived from the name!

The Pseudocode

We’ve now made two important design decisions: (1) let the user interactively
build their anagram one word at a time and (2) use the Counter method to
find anagrams. This is enough to start thinking about high-level pseudocode:

Load a dictionary file
Accept a name from user
Set limit = length of name
Start empty list to hold anagram phrase
While length of phrase < limit:
Generate list of dictionary words that fit in name
Present words to user
Present remaining letters to user
Present current phrase to user
Ask user to input word or start over

Solving Anagrams 1

2

Chapter 3

If user input can be made from remaining letters:
Accept choice of new word or words from user
Remove letters in choice from letters in name
Return choice and remaining letters in name

If choice is not a valid selection:

Ask user for new choice or let user start over

Add choice to phrase and show to user

Generate new list of words and repeat process

When phrase length equals limit value:

Display final phrase

Ask user to start over or to exit

Divvying Up the Work

As procedural code becomes more complex, it becomes necessary to encap-
sulate much of it in functions. This makes it easier to manage input and
output, perform recursion, and read the code.

A main function is where a program starts its execution, and enables
high-level organization, such as managing all the bits and pieces of the
code, including dealing with the user. In the phrase anagram program,
the main function will wrap all the “worker bee” functions, take most of the
user input, keep track of the growing anagram phrase, determine when the
phrase is complete, and show the user the result.

Sketching out the tasks and their flow with pencil and paper is a great
way to figure out what you want to do and where (like “graphical pseudo-
code”). Figure 3-1 is a flowchart with function assignments highlighted. In
this case, three functions should be sufficient: main(), find_anagrams(), and
process_choice().

The main() function’s primary task is to set the letter count limit
and manage the while loop responsible for the general phrase anagram
build. The find_anagrams() function will take the current collection of let-
ters remaining in a name and return all possible words that can be made
from those letters. The words are then displayed for the user, along with
the current phrase, which is “owned” and displayed by the main() func-
tion. Then, the process_choice() function prompts the user to start over
or choose a word for the anagram phrase. If the user makes a choice, this
function determines whether the letters in the choice are available. If they
aren’t, the user is prompted to choose again or start over. If the user makes
a valid choice, the letters in the user’s choice are removed from the list of
remaining letters, and both the choice and list of leftovers are returned.
The main() function adds the returned choice to the existing phrase. If the
limit is reached, the completed phrase anagram is displayed, and the user
is asked to start over or exit.

Note that you ask for the initial name in the global scope, rather than
in the main() function. This allows the user to start over fresh at any time
without having to re-enter their name. For now, if the user wants to choose
a brand-new name, they’ll have to exit the program and start over. In
Chapter 9, you’ll use a menu system that lets users completely reset what
they’re doing without exiting,

Load
dictionary

Phrase length = 0
Name length = n

Limit = n

- Try again

Valid

~a{Phrase + Choice H Name — Choice H Choice |- True choice?

Process
choice False

Find all Disol Disol
True { words in < Ispiay >< 'spiay -
words phrase ch0|ce

name

False

B G
I:l Main function
I:l Get anagrams function

I:l Process choice function

Figure 3-1: Flowchart for finding phrase anagrams with function assignments highlighted

The Anagram Phrase Code

The code in this section takes a name from a user and helps them build
an anagram phrase of that name. You can download the entire script from
https://www.nostarch.com/impracticalpython/ as phrase_anagrams.py. You'll also
need to download the load_dictionary.py program. Save both files in the
same folder. You can use the same dictionary file you used in “Project #4:
Finding Single-Word Anagrams” on page 36.

Solving Anagrams 43

phrase

_anagrams.py,

part 1

44

Chapter 3

Setting Up and Finding Anagrams

Listing 3-2 imports the modules that phrase_anagrams.py uses, loads a dic-
tionary file, asks the user for an input name, and defines the find_anagrams()
function, which does most of the work related to finding anagrams.

import sys
from collections import Counter
import load dictionary

dict_file = load dictionary.load('2o0f4brif.txt")
ensure "a" & "I" (both lowercase) are included
dict file.append('a")

dict file.append('i")

dict_file = sorted(dict_file)

ini name = input("Enter a name: ")

def find_anagrams(name, word list):
"""Read name & dictionary file & display all anagrams IN name.
© name_letter map = Counter(name)
anagrams = []
@ for word in word list:
@ test = "'
® word letter map = Counter(word.lower())
O for letter in word:
if word_letter map[letter] <= name_letter map[letter]:
test += letter
if Counter(test) == word letter map:
anagrams . append (word)
® print(*anagrams, sep="\n")
print()
print("Remaining letters = {}".format(name))
print("Number of remaining letters = {}".format(len(name)))
print("Number of remaining (real word) anagrams = {}".format(len(anagrams)))

Listing 3-2: Imports modules, loads dictionary, and defines the find anagrams() function

Start with the import statements @, using the recommended order of
Python Standard Library, third-party modules, and then locally developed
modules. You need sys for coloring specific outputs red in the IDLE window
and for letting the user exit the program with a keystroke. You’ll use Counter
to help identify anagrams of the input name.

Next load the dictionary file using the imported module @. The file-
name argument should be the filename of the dictionary you're using.
Because some dictionary files omit a and 7, append these (if needed), and
sort the list so that they can be found at the proper alphabetical locations,
rather than at the end of the list.

Now get a name from the user and assign it to the variable ini_name (or
“initial name”) ©. You’ll derive a name variable from this initial name, and

phrase
_anagrams.py,
part 2

name will be progressively changed as the user builds up the name anagram.
Preserving the initial name as a separate variable will let you reset every-
thing if the user wants to start over or try again.

The next block of code is find_anagrams() @, the function for finding
anagrams in the name. The parameters for this function consist of a name
and a word list. The function starts by using Counter to count the number of
times a given letter appears in the name and then assigns the count to the
variable name_letter_map @; Counter uses a dictionary structure with the letter
as the key and the count as the value. The function then creates an empty
list to hold the anagrams and starts a for loop through each word in the
dictionary file ®.

The for loop starts by creating an empty string called test @. Use this
variable to accumulate all the letters in the word that “fit” in name. Then
make a Counter for the current word, as you did for name, and call it word_
letter_map ©. Loop through the letters in word @, checking that the count
of each letter is the same as, or less than, the count in name. If the letter
meets this condition, then it is added to the test string. Since some letters
might get rejected, end the loop by running Counter on test and comparing
it to word_letter_map. If they match, append the word to the anagrams list.

The function ends by displaying the list of words, using the splat
operator with print, along with some statistics for the user ®. Note that
find_anagrams() doesn’t return anything. This is where the human inter-
action part comes in. The program will continue to run, but nothing will
happen until the user chooses a word from the displayed list.

Processing the User’s Choice

Listing 3-3 defines process_choice(), the function in phrase_anagrams.py that
takes the user’s choice of word (or words), checks it against the remaining
letters in the name variable, and returns acceptable choices—along with any
leftover letters—to the main() function. Like main(), this function gets to talk
directly to the user.

©® def process_choice(name):

Check user choice for validity, return choice & leftover letters.
while True:
® choice = input('\nMake a choice else Enter to start over or # to end: ')
if choice == '':
main()
elif choice == '#':
sys.exit()
else:
© candidate = ''.join(choice.lower().split())
left_over_list = list(name)
for letter in candidate:
if letter in left_over list:
left over list.remove(letter)
@ if len(name) - len(left_over_ list) == len(candidate):
break

o0

Solving Anagrams 45

phrase

_anagrams.py,

part 3

46

Chapter 3

else:
print("Won't work! Make another choice!", file=sys.stderr)
@ name = ''.join(left_over list) # makes display more readable
® return choice, name

Listing 3-3: Defines the process_choice() function

Start by defining the function with one parameter called name @.

The first time the program is run, this parameter will be the same as the
ini_name variable—the full name entered by the user when the program
starts up. After the user has chosen a word (or words) to use in the ana-
gram phrase, it will represent the remaining letters in the name.

Start the function with a while loop that will run until the user makes
a valid choice and then get input from the user ®. The user has a choice of
entering one or more words from the current anagram list, pressing ENTER
to start over, or pressing # to quit. Use #, rather than a word or letter, so
that it can’t be confused for a valid choice.

If the user makes a choice, the string is assigned to the variable candidate,
stripped of whitespace, and converted to all lowercase ®. This is so it can be
directly compared to the name variable. After that, a list is built from the name
variable to hold any remaining letters @.

Now begin a loop to subtract the letters used in candidate @. If a chosen
letter is present in the list, it’s removed.

If the user entered a word that isn’t in the displayed list, or entered mul-
tiple words, a letter may not be present in the list. To check for this, subtract
the leftover letters from name and, if the result is the number of letters in
candidate, determine that the input is valid and break out of the while loop ®.
Otherwise, display a warning and color it red for those using the IDLE win-
dow. The while loop will keep prompting the user until an acceptable choice
is made.

If all the letters in the user’s choice pass the test, the list of leftovers
is converted back into a string and used to update the name variable @.
Converting the list into a string isn’t strictly necessary, but it keeps the
name variable type consistent and lets you display the remaining letters in
a clearly readable format without the need for additional print arguments.

Finish by returning both the user’s choice and the string of remaining
letters (name) to the main() function @.

Defining the main() Function

Listing 3-4 defines the main() function in phrase_anagrams.py. This function
wraps the previous functions, runs a while loop, and determines when the
user has successfully created an anagram phrase.

def main():
"""Help user build anagram phrase from their name."""
©® name = ''.join(ini_name.lower().split())

name = name.replace('-', '')

® limit = len(name)
phrase = "'
running = True

©® while running:
O temp_phrase = phrase.replace(’ ', '")
© if len(temp_phrase) < limit:
print("Length of anagram phrase = {}".format(len(temp_phrase)))

® find_anagrams(name, dict file)
print("Current anagram phrase =", end=" ")
print(phrase, file=sys.stderr)

@ choice, name = process_choice(name)
phrase += choice + ' '

© elif len(temp_phrase) == limit:
print("\n*kRRREINISHED! | I*kkks\n™)
print("Anagram of name =", end=" ")
print(phrase, file=sys.stderr)
print()
© try again = input('\n\nTry again? (Press Enter else "n" to quit)\n ')
if try again.lower() == "n":
running = False
sys.exit()
else:
main()
® if _name__ == '__main_ ':
main()

Listing 3-4: Defines and calls main() function

The first order of business is to turn the ini_name variable into a contin-
uous string of lowercase characters with no whitespace ®. Remember, case
matters to Python, so convert all strings to lowercase wherever they occur;
that way, comparisons will work as intended. Python also recognizes spaces
as characters, so you need to remove these, as well as hyphens in hyphen-
ated names, before doing any letter counts. By declaring this new name vari-
able, you preserve the initial name in case the user wants to start over. Only
name will be altered in the process_choice() function.

Next, get the length of the name @ to use as a limit in the while loop.
This will let you know when the anagram phrase has used all the letters in
the name and it’s time to end the loop. Do this outside the while loop to
ensure you are using the full initial name. Then assign a variable to hold the
anagram phrase and set a running variable to True to control the while loop.

Now begins the big loop that lets you iterate over the name and build
an anagram phrase ©. First, prepare a string to hold the growing phrase
and strip it of whitespace @. Spaces will count as letters and throw off the
operator when the length of the phrase is compared to the limit variable.

Solving Anagrams 47

48

Chapter 3

Next, make the comparison, and if the length of the phrase is less than the
limit, display the current length of the phrase as a prelude to engaging with
the user ©.

It’s time to put the other functions to work. Call find_anagrams() ® and
pass it the name and dictionary file to get the list of anagrams in the name.
At the bottom of the displayed list, show the user the current phrase. Use
the print() function’s end parameter to display two print statements on the
same line. This way, you can use a red font on the phrase in the IDLE win-
dow to distinguish it from all the other information in the display.

Next, call the process_choice() function @ to get the user’s word choice
and add it to the growing anagram phrase. This also gets the updated ver-
sion of the name variable so that the program can use it again in the while
loop in the event that the phrase isn’t complete.

If the length of the phrase is equal to the limit variable ©, the name
anagram is complete. Let the user know they’re finished and present
the phrase using red font. Note that you don’t have a conditional for the
length of the phrase being greater than the limit variable. That’s because
the process_choice() function is already handling this outcome (choosing
more letters than are available would not pass the validation criterion).

The main() function ends by asking the user whether they want to try
again. If they type n, the program ends; if they press ENTER, the main()
function is called again ©. As stated earlier, the only way for the user to
change the initial name is to exit and relaunch the program.

Outside of the main() function, end with the standard two lines for call-
ing the main() function when the program is not imported as a module @.

Running an Example Session

In this section, I've included an example interactive session, using phrase_
anagrams.py and the name Bill Bo. Bold font indicates user input, and italic
bold font indicates where red font is used in the display.

Enter a name: Bill Bo
Length of anagram phrase = 0
bib

bill

blob

bob

boil

boll

i

ill

1ib

lilo

lo

lob

oi

oil

Remaining letters = billbo

Number of remaining letters = 6

Number of remaining (real word) anagrams = 14
Current anagram phrase =

Make a choice else Enter to start over or # to end: ill
Length of anagram phrase = 3

bob

Remaining letters = bbo

Number of remaining letters = 3

Number of remaining (real word) anagrams = 1

Current anagram phrase = ill

Make a choice else Enter to start over or # to end: Bob

wkrk FINISHED! || ¥brk

Anagram of name = ill Bob

Try again? (Press Enter else "n" to quit)

The number of anagrams found depends on the dictionary file you use.
If you're having a hard time building anagram phrases, try using a larger
dictionary.

Project #6: Finding Voldemort: The Gallic Gambit

Did you ever wonder how Tom Riddle came up with the anagram “I am
Lord Voldemort”? Did he put quill to parchment or just wave a wand?
Could the magic of Python have helped?

Let’s pretend for a moment that you're the professor of computer wiz-
ardry at Hogwarts, and Tom Riddle, school prefect and model student, has
come to you for help. Using your phrase_anagrams.py spell from the previous
section, he could find I am Lord in the very first list of anagrams, much to
his delight. But the remaining letters, imvoordle, yield only trivial words like
dolt, drool, looter, and lover. Riddle would not be pleased.

In hindsight, the problem is apparent: Voldemort is French and won’t be
found in any English dictionary file. Vol de la mort means “flight of death”
in French, so Voldemort is loosely “death flight.” But Riddle is 100 percent
English, and so far, you have been working with English. Without reverse engi-
neering, you have no more reason to suddenly switch out your English diction-
ary for a French one than you have to use Dutch, German, Italian, or Spanish.

You could try randomly shuffling the remaining letters and seeing
what falls out. Unfortunately, the number of possible combinations is the
factorial of the number of letters divided by the factorial of the number of
repeats (o occurs twice): 9! / 2! = 181,440. If you were to scroll through all

Solving Anagrams 49

50

Chapter 3

© o0 ©

those permutations, taking only one second to review each, it would take
you over two days to complete the list! And if you asked Tom Riddle to do
this, he would probably use you to make a horcrux!

At this point, I would like to explore two logical paths ahead. One I
call the “Gallic Gambit” and the other the “British Brute-Force.” We’ll look
at the first one here and the second one in the next section.

Marvolo is clearly a fabricated word used to make the Voldemort anagram work.
J-K. Rowling could have gained additional latitude by using Thomas for Tom or by
leaving off the Lord or I am parts. Tricks like these are used when the book is trans-
lated into non-English languages. In some languages, one or both names may need to
be changed. In French, the anagram is “I am Voldemort.” In Norwegian, “Voldemort
the Great.” In Dutch, “My name is Voldemort.” In others, like Chinese, the anagram
can’t be used at all!

Tom Riddle was obsessed with beating death, and if you go looking for
death in tmwoordle, you will find both the old French morte (as in the famous
book Le Morte dArthur by Sir Thomas Malory) and the modern French mort.
Removing mortleaves vodle, five letters with a very manageable number of per-
mutations. In fact, you can easily find volde right in the interpreter window:

>>>
>>>
>>>
>>>
120
>>> print(perms)

['vodle', 'vodel', 'volde', 'voled', 'voedl', 'voeld', 'vdole', 'vdoel',
'vdloe', 'vdleo', 'vdeol', 'vdelo', 'vlode', 'vloed', 'vldoe', 'vldeo',
'vleod', 'vledo', 'veodl', 'veold', 'vedol', 'vedlo', 'velod', 'veldo',

from itertools import permutations

name = 'vodle’

perms = [''.join(i) for i in permutations(name)]
print(len(perms))

'ovdle', 'ovdel', 'ovlde', 'ovled', 'ovedl', 'oveld', 'odvle', 'odvel',
'odlve', 'odlev', 'odevl', 'odelv', 'olvde', 'olved', 'oldve', 'oldev',
'olevd', 'oledv', 'oevdl', 'oevld', 'oedvl', 'oedlv', 'oelvd', 'oeldv',
"dvole', 'dvoel', 'dvloe', 'dvleo', 'dveol', 'dvelo', 'dovle', 'dovel',
"dolve', 'dolev', 'doevl', 'doelv', 'dlvoe', 'dlveo', 'dlove', 'dloev',
'dlevo', 'dleov', 'devol', 'devlo', 'deovl', 'deolv', 'delvo', ‘'delov',
'lvode', 'lvoed', 'lvdoe', 'lvdeo', 'lveod', 'lvedo', 'lovde', 'loved',
'lodve', 'lodev', 'loevd', 'loedv', 'ldvoe', 'ldveo', 'ldove', 'ldoev',
‘ldevo', 'ldeov', 'levod', 'levdo', 'leovd', 'leodv', 'ledvo', 'ledov’,
'evodl', 'evold', 'evdol', 'evdlo', 'evlod', 'evldo', 'eovdl', 'eovld',
'eodvl', 'eodlv', 'eolvd', 'eoldv', 'edvol', 'edvlo', 'edovl', 'edolv',
‘edlvo', 'edlov', 'elvod', 'elvdo', 'elovd', 'elodv', 'eldvo', 'eldov']
>>>

>>> print(*perms, sep='\n")

vodle

vodel

volde

voled

voedl

--snip--

Start by importing permutations from itertools @. The itertools module
is a group of functions in the Python Standard Library that create iterators
for efficient looping. You generally think of permutations of numbers, but
the itertools version works on elements in an iterable, which includes letters.

After entering the name or, in this case, the remaining letters in the
name, use list comprehension to create a list of permutations of the name @.
Join each element in a permutation so each item in the final list will be a
unique permutation of vodle. Using join yields the new name as an element,
'vodle', versus a hard-to-read tuple of single-character elements,('v', 'o',
dr, o1, et

Get the length of the permutations as a check; that way, you can con-
firm that it is, indeed, the factorial of 5 ®. At the end, no matter how you
print it @@, volde is easy to find.

Project #7: Finding Voldemort: The British Brute-Force

Now let’s assume Tom Riddle is bad at anagrams (or French). He doesn’t
recognize mort or morte, and you're back to shuffling the remaining nine let-
ters thousands and thousands of times, looking for a combination of letters
that he would find pleasing.

On the bright side, this is a more interesting problem programmatically
than the interactive solution you just saw. You just need to whittle down all
the permutations using some form of filtering.

THE OBJECTIVE

Reduce the number of anagrams of tmvoordle to a manageable number that will still con-
tain Voldemort.

Strategy

Per the Oxford English Dictionary, 2nd Edition, there are 171,476 English
words currently in use, which is fewer than the total number of permuta-
tions in ¢mvoordle! Regardless of the language, you can surmise that most of
the anagrams generated by the permutations() function are nonsense.

With cryptography, the science of codes and ciphers, you can safely elimi-
nate many useless, unpronounceable combinations, such as ldtmvroeo, and
you won’t even have to inspect them visually. Cryptographers have long
studied languages and compiled statistics on recurring patterns of words
and letters. We can use many cryptanalytical techniques for this project,
but let’s focus on three: consonant-vowel mapping, trigram frequency, and
digram frequency.

Solving Anagrams 51

52

Chapter 3

Filtering with Consonant-Vowel Mapping

A consonant-vowel map (c-v map) simply replaces the letters in a word with a
cor a v, as appropriate. Riddle, for example, becomes cucccv. You can write
a program that goes through a dictionary file and creates c-v maps for each
word. By default, impossible combinations, like ccceccvvv, will be excluded.
You can further exclude membership by removing words with c-v maps that
are possible but that have a low frequency of occurrence.

C-v maps are fairly inclusive, but that’s good. An option for Riddle at
this point is to make up a new proper name, and proper names don’t have
to be words that occur in a dictionary. So you don’t want to be (oo exclusive
early in the process.

Filtering with Trigrams

Since the initial filter needs a relatively wide aperture, you’ll need to filter
again at a lower level to safely remove more anagrams from the permuta-
tions. Trigrams are triplets comprising three consecutive letters. It should
come as no surprise that the most common trigram in English is the word
the, followed closely by and and ing. At the other end of the scale are tri-
grams like zvg.

You can find statistics on the frequency of occurrence of trigrams online
at sites like http://norvig.com/ngrams/count_3l.txt. For any group of letters,
like tmwoordle, you can generate and use a list of the least common trigrams
to further reduce the number of permutations. For this project, you can use
the least-likely_trigrams.ixt file, downloadable from https://www.nostarch.com/
impracticalpython/. This text file contains the trigrams in tmvoordle that occur
in the bottom 10 percent of trigrams in the English language, based on fre-
quency of occurrence.

Filtering with Digrams

Digrams (also called bigrams) are letter pairs. Commonly occurring digrams
in English include an, st, and er. On the other hand, you rarely see pairs
like kg, vl, or og. You can find statistics on the frequency of occurrence of
digrams at websites such as https://www.math.cornell.edu/~mec/2003-2004/
cryptography/subs/digraphs.html and hitp://practicalcryptography.com/.

Table 3-1 was built from the ¢tmuvoordle collection of letters and a 60,000-
word English dictionary file. The letters along the left side of the chart are
the starting letters for the digrams; those along the top represent the end
letter. For example, to find vo, start with the v on the left and read across
to the column beneath the o. For the digrams found in tmvoordle, vo occurs
only 0.8 percent of the time.

http://norvig.com/ngrams/count_3l.txt
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/
https://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/digraphs.html
https://www.math.cornell.edu/~mec/2003-2004/cryptography/subs/digraphs.html
http://practicalcryptography.com/

Table 3-1: Relative Frequency of Digrams from the Letters tmvoordle in a

60,000-Word Dictionary (Black Squares Indicate No Occurrences)
d e I m o r t v

d 3.5% | 0.5% | 0.1%

e 6.6% 2.3% 1.4%

| 0.4% | 4.4% 0.1%

Lyl 0.0% 0.0%

o 1.5% | 05% | 37% | 3.2% | 53% 71% 2.4% 1.4%

r 09% | 6.0% | 04% | 0.7% | 57% 1.3% | 0.3%

t (X0 6.2%

o0 00

Assuming you're looking for “English-like” letter combinations, you
can use frequency maps like this to exclude letter pairs that are unlikely
to occur. Think of it as a “digram sieve” that lets only the unshaded
squares pass.

To be safe, just exclude digrams that occur less than 0.1 percent of the
time. I've shaded these in black. Notice that it would be very easy to elimi-
nate the required vo pairing in Voldemort, if you cut too close to the bone!

You can design your filter to be even more selective by tagging digrams
that are unlikely to occur at the start of a word. For example, while it’s not
unusual for the digram /m to occur within a word (as in almanac and balmy),
you’ll need a lot of luck finding a word that starts with Im. You don’t need
cryptography to find these digrams; just try to pronounce them! Some
starting-point choices for these are shaded gray in Table 3-2.

Table 3-2: Update of Table 3-1, Where Gray-Shaded Squares Indicate Digrams
Unlikely to Occur at the Start of a Word

d e | m
d 3.5% 0.5% 0.1%
e 6.6% 2.3% 1.4%
| 0.4% | 4.4% 0.1%

Lyl 0.0% 0.0%

o 1.5% | 05% | 3.7% | 32% | 53% 71% 2.4% 1.4%

r 09% | 6.0% | 04% | 0.7% | 57% 1.3% | 0.3%

t (RO 6.2%

o0 00

Solving Anagrams 53

You now have three filters you can use on the 181,440 permutations of
tmvoordle: c-v maps, trigrams, and digrams. As a final filter, you should give
the user the option of viewing only anagrams that start with a given letter.
This will let the user divide the remaining anagrams into more manageable
“chunks,” or focus on the more intimidating-sounding anagrams, like those
that begin with v!

The British Brute-Force Code

The upcoming code generates permutations of ¢mvoordle and passes them
through the filters just described. It then gives the user the option to view
either all the permutations or only those starting with a given letter.

You can download all the programs you’ll need from https://www.no
starch.com/impracticalpython/. The code in this section is one script named
voldemort_british.py. You’ll also need the load_dictionary.py program in the
same folder, along with the same dictionary file you used for the projects
earlier in this chapter. Finally, you’ll need a new file named least-likely
_trigrams.txt, a text file of trigrams with a low frequency of occurrence in
English. Download all these files into the same folder.

Defining the main() Function

Listing 3-5 imports the modules that voldemort_british.py needs and defines
its main() function. In the phrase_anagrams.py program, you defined the
main() function at the end of the code. Here we put it at the start. The
advantage is that you can see what the function is doing—how it’s running
the program—from the start. The disadvantage is that you don’t know what
any of the helper functions do yet.

voldemort ® import sys
_british.py, from itertools import permutations
part 1

54

from collections import Counter
import load_dictionary

@ def main():
"""Load files, run filters, allow user to view anagrams by 1st letter.
© name = 'tmvoordle’
name = name.lower()

O word_list ini = load dictionary.load('2o0f4brif.txt")
trigrams_filtered = load_dictionary.load('least-likely trigrams.txt')

® word list = prep words(name, word list ini)
filtered cv_map = cv_map_words(word list)
filter 1 = cv_map_filter(name, filtered cv_map)
filter 2 = trigram filter(filter 1, trigrams filtered)
filter 3 = letter pair filter(filter 2)
view by letter(name, filter 3)

Listing 3-5: Imports modules and defines the main() function

Chapter 3

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

Start by importing modules you’ve used in the previous projects ©.
Now define the main() function @. The name variable is a string of the
remaining letters tmvoordle . Set it to lowercase to guard against a user
input error. Next, use the load_dictionary module to load your dictionary
file and the trigrams file as lists @. Your dictionary filename may be differ-
ent from that shown.

Finally, call all the various functions in order ©. I'll describe each of
these functions momentarily, but basically, you need to prepare the word
list, prepare the c-v maps, apply the three filters, and let the user view all
the anagrams at once or view a subset based on the anagram’s first letter.

Preparing the Word List

Listing 3-6 prepares the word list by including just the words that have as
many letters as in the name variable (in this case, nine). You should also
ensure that all the words are lowercase, to be consistent.

voldemort O def prep words(name, word list ini):
_british.py, """Prep word list for finding anagrams."""
part 2 ® print("length initial word list = {}".format(len(word list ini)))

len_name = len(name)
©® word list = [word.lower() for word in word list ini
if len(word) == len_name]
O print("length of new word list = {}".format(len(word list)))
© return word_list

Listing 3-6: Creates lists of words that are equal in length to the name variable

Define the prep_words() function to take a name string and list of dic-
tionary words as arguments @. I suggest that you print the lengths of your
various word lists before and after they’ve gone through a filter; that way,
you can track how much impact the filters are having. So print the length of
the dictionary @. Assign a variable to hold the length of the name and then
use list comprehension to create a new list by looping through the words
in word_list_ini, keeping those whose length is the same as the number of
letters in name, and converting them to lowercase ©. Next, print the length
of this new word list @, and finally, return this new list for use in the next
function @.

Generating the -V Map

You need to convert the prepared word list to a c-v map. Remember that
you're no longer interested in actual words in the dictionary; those have
been reviewed and rejected. Your goal is to shuffle the remaining letters
until they form something that resembles a proper noun.

Listing 3-7 defines a function that generates c-v maps for each word in
word_list. The program, voldemort_british.py, will use the c-v map to judge
whether a shuffled letter combination is reasonable based on consonant-
vowel patterns in the English language.

Solving Anagrams 35

voldemort
_british.py,

part 3

56

Chapter 3

® def cv_map_words(word list):

Map letters in words to consonants & vowels.
® vowels = 'aeiouy'
® cv_mapped words = []
O for word in word list:
temp = "'
for letter in word:
if letter in vowels:
temp += 'v'
else:
temp += 'c’
cv_mapped_words.append(temp)

determine number of UNIQUE c-v patterns

total = len(set(cv_mapped_words))

target fraction to eliminate

target = 0.05

get number of items in target fraction

n = int(total * target)

count_pruned = Counter(cv_mapped words).most_common(total - n)

filtered cv_map = set()

for pattern, count in count_pruned:
filtered_cv_map.add(pattern)

print("length filtered cv map = {}".format(len(filtered cv_map)))

® return filtered cv_map

00 o o

Listing 3-7: Generates c-v maps from the words in word_list

Define the cv_map_words() function to take the prepped word list as an
argument @. Since consonants and vowels form a binary system, you can
define the vowels with a string ®. Create an empty list to hold the maps ©.
Then loop through the words and the letters in each word, converting the
letters to either a ¢ or v @. Use a variable called temp to accumulate the
map; then append it to the list. Note that temp is reinitialized each time
the loop repeats.

You want to know the frequency of occurrence of a given c-v map pat-
tern (for example, cucv), so you can remove those with a low likelihood of
occurrence. Before calculating the frequency, you need to collapse your list
down to unique c-v maps—as it is now, cvcv may be repeated many, many
times. So, turn the cv_mapped_words list into a set, to remove duplicates, and
get its length ©. Now you can define a target percentage to eliminate,
using fractional values @. Start with a low number like 0.05—equivalent
to b percent—so you're less likely to eliminate anagrams that can form
usable proper names. Multiply this target value by the total length of the
cv_mapped_words set and assign the result to the variable n @. Be sure to con-
vert n to an integer; since it will represent a count value, it can’t be a float.

The Counter module data type has a handy method, most_common(), that
will return the most common items in a list based on a count value that you
provide; in this case, that value will be the length of the c-v map list, total,
minus n. The value you pass most_common() must be an integer. If you pass

voldemort
_british.py,
part 4

o

the most_common() function the length of the list, it will return all the items
in the list. If you subtract the count for the least likely 5 percent, you will
effectively eliminate these c-v maps from the list ©.

Remember, Counter returns a dictionary, but all you need are the final
c-v maps, not their associated frequency counts. So initialize an empty
set called filtered-cv-map @ and loop through each key-value pair in count
_pruned(), adding only the key to the new set. Print the length of this set, so
you can see the impact of the filter. Then finish by returning the filtered
c-v map for use in the next function ®.

Defining the ¢-V Map Filter

Listing 3-8 applies the c-v map filter: anagrams are generated based on per-
mutations of the letters in the name variable, and then the program converts
them to c-v maps and compares those anagrams to the filtered c-v maps
built with the cv_map_words() function. If an anagram’s c-v map is found in
filtered_cv_map, then the program stores the anagram for the next filter.

def cv_map_filter(name, filtered cv_map):
"""Remove permutations of words based on unlikely cons-vowel combos.
® perms = {''.join(i) for i in permutations(name)}
print("length of initial permutations set = {}".format(len(perms)))
vowels = 'aeiouy’
filter 1 = set()
for candidate in perms:
temp = "'
for letter in candidate:
if letter in vowels:
temp += 'v'
else:
temp += 'c’
O if temp in filtered cv _map:
filter 1.add(candidate)
print("# choices after filter 1 = {}".format(len(filter_1)))
@ return filter 1

(<

Listing 3-8: Defines cv_map_filter() function

Define the function cv_map_filter() to take two arguments: the name,
followed by the set of c-v maps returned by cv_map_words() @. Use set compre-
hension and the permutations module to generate the set of permutations @.
I described this process in “Project #6: Finding Voldemort: The Gallic
Gambit” on page 49. Use a set here to permit later use of set operations,
like taking the difference between two filter sets. This also removes dupli-
cates, as permutations treats each o as a separate item, and returns 9!, rather
than 9! / 2!. Note that permutations considers tmwvoordle and tmvoordle differ-
ent strings.

Now initialize an empty set to hold the contents of the first filter ® and
begin looping through the permutations @. Use the term candidate, as most
of these aren’t words but just strings of random letters. For each candidate,

Solving Anagrams 57

voldemort
_british.py,

part 5

voldemort
_british.py,

part 6

58

Chapter 3

loop through the letters and map them to a c or a v, as you did with the
cv_words() function. Check each c-v map, temp, for membership in filtered_
cv_map. This is one reason for using sets: membership checks are very fast. If
the candidate meets the condition, add it to filter_1 @. Finish by returning
your new anagram set ©.

Defining the Trigram Filter

Listing 3-9 defines the trigram filter, which removes the permutations with
unlikely three-letter triplets. It uses a text file derived from various cryptog-
raphy websites that has been tailored to the letters in ¢mvoordle. This func-
tion will return only permutations that include one of these trigrams; the
main() function will pass the new set to the next filter function.

def trigram filter(filter 1, trigrams_filtered):
"""Remove unlikely trigrams from permutations.
® filtered = set()
® for candidate in filter 1:
O for triplet in trigrams_filtered:
triplet = triplet.lower()
if triplet in candidate:
filtered.add(candidate)
O filter 2 = filter 1 - filtered
print("# of choices after filter 2 = {}".format(len(filter 2)))
® return filter 2

Listing 3-9: Defines the trigram_filter() function

Parameters for the trigram filter include the output from the c-v map
filter and the external list of unlikely trigrams, trigrams_filtered @.

Initialize an empty set to hold permutations that contain one of the
forbidden trigrams @. Then start another for loop that looks through the
candidates that survived the last filter . A nested for loop looks at each
triplet in the trigrams list @. If the triplet is in the candidate, it is added to
the filter.

Now you can use set operations to subtract the new filter from
filter 1 @ and then return the difference for use with the next filter @.

Defining the Digram Filter

Listing 3-10 defines the digram filter, which removes unlikely letter pairs.
Some will trigger the filter if they occur anywhere within the permutation;
others will do so only if they occur at the start of the permutation. The dis-
allowed digrams are based on the shaded cells in Table 3-2. The function
returns the results of this filter for use in the final filter function.

def letter pair filter(filter 2):
"""Remove unlikely letter-pairs from permutations.
® filtered = set()
® rejects = ['dt', 'lr', 'md', 'ml', '‘mr', 'mt', 'mv',
"td', 'tv', 'vd', 'vl', 'vm', 'vr', 'vt']

voldemort
_british.py,
part 7

O first pair rejects = ['ld', 'Im', '1t', 'lv', 'xd’',
'r1', 'tm', 'rt', 'rv', 't1', "tm']
© for candidate in filter 2:
@ for r in rejects:
if r in candidate:
filtered.add(candidate)
@ for fp in first pair_rejects:
if candidate.startswith(fp):
filtered.add(candidate)
O filter 3 = filter 2 - filtered
print("# of choices after filter 3 = {}".format(len(filter 3)))
O if 'voldemort' in filter 3:
print("Voldemort found!", file=sys.stderr)
® return filter 3

Listing 3-10: Defines the letter pair filter() function

This filter accepts the results of the previous filter as an argument @.
An empty set is initialized to hold any discarded permutations @. Then
two lists of rejected pairs are assigned to the variables rejects ® and first_
pair_rejects @. Both lists were entered manually. The first represents cells
shaded black in Table 3-2; the second references cells shaded gray. Any
permutation that contains a member of the first list—anywhere—will be
discarded; permutations that start with a member of the second list will not
be allowed. You can add or remove digrams to these lists to change how the
filter behaves.

Begin looping through the permutations—continue to refer to these
as “candidates,” as they aren’t necessarily words ©. A nested for loop goes
through the pairs in rejects, determines whether any are in candidate, and
adds them to the filtered set @. A second nested for loop repeats this pro-
cess for the first pair rejects @. Subtract filtered from the set returned
from the previous function, filter 2 @.

For fun and to ensure you haven'’t filtered too far, check whether volde-
mort is included in filter_3 @ and print an announcement to highlight
the discovery, using eye-catching red font for IDLE users. Then finish by
returning the final filtered set @.

Letting the User Choose the Starting Letter

You don’t know ahead of time whether your filtering will be successful. You
may still end up with thousands of permutations. Providing the option to
look at only a subset of the output won’t reduce the overall number, but

it will make it psychologically easier to face. Listing 3-11 adds, to voldemort_
british.py, the ability to view a list of anagrams that begin with a certain
input letter.

© def view by letter(name, filter 3):

Filter to anagrams starting with input letter.
® print("Remaining letters = {}".format(name))

® first = input("select a starting letter or press Enter to see all: ")
O subset = []

Solving Anagrams 59

voldemort
_british.py,

part 8

60

Chapter 3

® for candidate in filter 3:
if candidate.startswith(first):
subset.append(candidate)
@ print(*sorted(subset), sep="\n")
print("Number of choices starting with {} = {}".format(first, len(subset)))
@ try again = input("Try again? (Press Enter else any other key to Exit):")
if try again.lower() == '':
©® view by letter(name, -Fllter 3)
else:
O sys.exit()

Listing 3-11: Defines the view_by letter() function

Define the view by letter() function to take both the name variable and
filter_3 as arguments @. You need the name so you can show the user the
available letter choices on which to filter ®. Get the user’s input on whether
they want to see all the remaining permutations or just those beginning
with a certain letter ®. Then start an empty list to hold the latter subset @.

A for loop, with a conditional, checks whether a candidate starts with
the chosen letter and appends those letters that pass to subset @. This list is
printed with the splat operator ®. Then the program asks the user whether
they want to try again or exit @. If they press ENTER, then view_by letter()
is called, recursively, and runs again from the start ®. Otherwise, the pro-
gram exits ©. Note that Python has a default recursion depth limit of 1,000,
which we’ll ignore in this project.

Running the main() Function

Back in the global space, Listing 3-12 completes the code by calling the
main() function if the user runs the program in stand-alone mode versus
importing into another program.

if _name_ =="'_main__":
main()

Listing 3-12: Calls the main() function

Example output from the completed program is shown below. After
the program applies the third filter, there are 248 permutations remaining,
of which a very manageable 73 start with v. I've omitted the printout of
the permutations for brevity. As noted in the output, voldemort survives the
filtering.

length initial word_list = 60388

length of new word_list = 8687

length filtered cv_map = 234

length of initial permutations set = 181440
choices after filter 1 = 123120

of choices after filter 2 = 674

of choices after filter 3 = 248

Voldemort found!

Remaining letters = tmvoordle

select a starting letter or Enter to see all: v

Interestingly, another surviving permutation is lovedmort. Given how
many people Voldemort killed—or had killed—this may be the most appro-
priate moniker of all.

Summary

In this chapter, you first wrote code that found the anagrams for a given
word or name. You then expanded on this to find phrasal name anagrams,
working interactively with the user. Finally, you employed cryptanalytical
techniques to tease Voldemort out of almost 200,000 possible anagrams.
Along the way, you applied useful functionality in the collections and
itertools modules.

Further Reading

The Jumble website is http://www.jumble.com/.
You can find some representative online anagram generators at the fol-
lowing sites:

o hitp://wordsmith.org/anagram/
e hitps://www.dcode.fr/anagram-generator

o hitp://www.wordplays.com/anagrammer/

More anagram programs are found in Think Python, 2nd Edition
(O’Reilly, 2015) by Allen Downey.

Cracking Codes with Python (No Starch Press, 2017) by Al Sweigart pro-
vides more code for computing word patterns, such as those used for filter-
ing in the voldemort_british.py program.

Practice Project: Finding Digrams

You could comb through cryptography websites looking for frequency
statistics, or you could derive them for yourself. Write a Python program
that finds all the digrams in ¢tmwvoordle and then counts their frequency

of occurrence in a dictionary file. Be sure to test your code on words like
volvo, so you don’t overlook repeating digrams in the same word. You can
find a solution in the appendix or download count_digrams_practice.py from
hitps://www.nostarch.com/impracticalpython/.

Solving Anagrams 61

http://www.jumble.com/
http://wordsmith.org/anagram/
https://www.dcode.fr/anagram-generator
http://www.wordplays.com/anagrammer
https://www.nostarch.com/impracticalpython/

62

Challenge Project: Automatic Anagram Generator

Chapter 3

Look at the online anagram generators I just referenced in “Further
Reading” and write a Python program that mimics one of these. Your pro-
gram should automatically generate phrase anagrams from an input name
and display a subset (for example, the first 500) for the user to review.

DECODING
AMERICAN CIVIL WAR CIPHERS

Cryptography is the science of secure com-
munication through the use of codes and

ciphers. A code replaces whole words with

other words; a cipher scrambles or replaces the
letters in words (so technically, Morse code is really
Morse cipher). One goal of cryptography is to use a
key to both encrypt readable plaintext into unreadable
ciphertext and then decrypt it back to plaintext. The goal
of cryptanalysis is to decode ciphers and codes without
knowing their key or encryption algorithm.

In this chapter, we’ll investigate two ciphers used in the American Civil
War: the route cipher, used by the North, and the rail fence cipher, used by
both sides. We’ll also look at what made one so successful and how we can
use lessons learned from its application to better write programs for inexpe-
rienced users and those unfamiliar with your Python code.

64

Project #8: The Route Cipher

Chapter 4

In the American Civil War, the Union had just about every advantage over
the Confederacy, including the field of cryptography. The Union had better
codes, better ciphers, and better-trained personnel. But perhaps its biggest
advantage was in leadership and organization.

The head of the US Military Telegraph Department was Anson Stager
(Figure 4-1). As the cofounder of Western Union, Stager knew from experi-
ence that telegraph operators made fewer mistakes when sending whole
words, as opposed to the strings of random letters and numbers common
to most ciphertext. He also knew that military dispatches only needed to
stay secret long enough for orders to be carried out. His secure solution was
a hybrid cryptosystem called the route transposition cipher, a combination of
transposed real words and code words that became one of the most success-
ful military ciphers of all time.

Figure 4-1: General Anson Stager, US Telegraph Corps, 1865

Transposition ciphers scramble the arrangement of letters or words,
unlike substitution ciphers, which replace the letters in the plaintext with
different characters or symbols. Figure 4-2 shows an example of a route
transposition cipher. The message is written left to right over a number of
predetermined columns and rows, important plaintext words are replaced
by code words, and the last row is filled with dummy placeholder words.
The reader determines the order of the rearranged words by traversing up
and down these columns, as shown. The starting word is REST, and then
the encryption route is shown with arrows.

Code Words

VILLAGE = Enemy ROANOKE = Cavalry
GODWIN = Tennessee SNOW = Rebels

Original Message in Encryption Matrix

Enemy cavalry heading to
Tennessee With Rebels gone
you are free to
transport your supplies south

Encryption Route + Code & Dummy Words

VILLAGE ROANOKE heading to]

GODWIN With SNOW gone]

you are free to]

transport your supplies south |

REST IS JUST FILLER
Cyphertext

REST TRANSPORT YOU GODWIN VILLAGE
ROANOKE WITH ARE YOUR IS JUST SUPPLIES FREE
SNOW HEADING TO GONE TO SOUTH FILLER

Figure 4-2: A route cipher using actual Union code words

To fully decode this message, you need to know both the starting point
and route used to traverse the message and create the final ciphertext and
the meaning of the code words.

In the early 20th century, the distinguished military cryptanalyst
William Friedman disparaged Stager’s route cipher. He considered it too
unsophisticated and found it highly improbable that the Confederates
never cracked it. But the fact remains that hundreds of thousands of route
ciphers sent during the war were apparently never decoded, and not from
lack of trying. In an early example of crowdsourcing, the Confederates

Decoding American Civil War Ciphers 65

66

Chapter 4

published the coded messages in newspapers, hoping for some help with
the decryption, but to no avail. While some historians speculate that this
cipher was broken at times, Stager’s design teaches several important
lessons:

Design for human error. Military ciphers have to be simple, as hun-
dreds might be sent in a day. The real words used in the route cipher
made it much less likely to be garbled by telegraph operators. Stager
knew his customer and designed for them. He recognized the limi-
tations of his workforce and tailored his product accordingly. The
Confederates, by contrast, had great difficulty deciphering their own
complex messages, sometimes giving up and riding around enemy lines
to talk face-to-face!

Innovation trumps invention. Sometimes you don’t need to invent
something new; you just need to rediscover something old. The short
word-transposition ciphers suitable for telegraph transmission were too
weak to use on their own, but combined with code names and disrup-
tive dummy words, they confounded the Confederates.

Share learning. Because everyone in the Telegraph Corps used the
same methodology, it was easy to build on existing techniques and share
lessons learned. This allowed the route cipher to evolve over time with
the introduction of slang and intentional misspellings, as well as a grow-
ing number of code words for places, people, and dates.

Stager’s practical cipher may not have pleased later “purists,” but it was
the perfect design for the time. The concepts behind it are timeless and
easily transferable to modern-day applications.

THE OBJECTIVE

In Harry Turtledove's award-winning 1992 novel Guns of the South, time travelers provide
Confederate armies with modern weaponry, changing the course of history. Instead of
AK-47s, let's pretend you've traveled back to 1864 with your laptop, a few extra bat-
teries, and Python to design an algorithm that will decrypt a route cipher based on an
assumed encryption matrix and path. In the spirit of Stager, you'll write a user-friendly
program that will reduce human error.

The Strategy

When it comes to solving ciphers, it’s a lot easier if you know what type you're
dealing with. In this case, you know it’s a transposition cipher, because it’s
composed of real words that are jumbled. You also know there are code
words and null words present. Your job is to figure out ways to decrypt the
transposition part of the route cipher and let someone else worry about code
words while you go have a well-deserved mint julep.

Creating a Control Message

To understand how to do this, create your own message and route cipher.
Call this your control message:

e Number of columns = 4

e Number of rows =5

e Start position = Bottom left

e Route = Alternating up and down columns

e Plaintext=01234567891011121314 15161718 19
e Ciphertext=16128401591317181410623 711 15 19
e Key=-12-34

Using a numeric progression for the plaintext allows you to instantly
tell whether you’ve gotten all or part of the decryption correct, at any place
within the message.

The transposition matrix is shown in Figure 4-3. The gray arrows indi-
cate the encryption route.

0 1 2 3
4 5 6 7
8 9 10 11

=16128 401591317 18 14 10 6 2 3 7 11 15 19

12 13 14 15

16 17 18 19

Figure 4-3: The transposition matrix for the control message with the route cipher path
and resulting ciphertext

The key keeps track of both the orderand direction of the route through
the columns. The route doesn’t have to move through the columns in order.
For instance, it can move down the first column, up the third, down the
fourth, and finally up the second. Negative numbers mean you start at the
bottom and read up a column; positive numbers mean the reverse. For the
control message, the final key used in the program will be a list: [-1, 2, -3, 4].
This list will instruct the program to start reading up from the bottom of col-
umn 1, move to the top of column 2 and read down, move to the bottom of
column 3 and read up, and move to the top of column 4 and read down.

Note that you shouldn’t use 0 in keys because the users, being human,
prefer to start counting at 1. Of course, Python prefers to start counting
at 0, so you’ll need to subtract 1 from the key values behind the scenes.
Everybody wins!

Decoding American Civil War Ciphers 67

68

Chapter 4

Later, in “Route Transposition Cipher: Brute-Force Attack” on
page 88, you can use this compact key structure to brute-force your way
through a route cipher, automatically trying hundreds of keys until the
plaintext is restored.

Designing, Populating, and Depopulating the Matrix

You'll input the ciphertext as a continuous string. For your program to
unravel the route through this string, you’ll first need to build and popu-
late a translation matrix. The ciphertext string is just the columns in the
transposition matrix in Figure 4-3 laid end to end, in the order they were
read. And as there are five rows in the transposition matrix, every group of
five elements in the ciphertext represents a separate column. You can repre-
sent this matrix with a list of lists:

>>> list_of lists = [['16', '12', '8', '4', '0'], ['1', '5', '9', '13', '17'],
['18', l14l’ Ilol, I6" lzl], [I3I, I7l’ l11I, I15I, I19l]]

The items in this new list now represent lists—with each list represent-
ing a column—and the five elements in each list represent the rows that
comprise that column. This is a little hard to see, so let’s print each of these
nested lists on a separate line:

>>> for i in range(len(list_of lists)):
print(list_of_lists[i])

[16, 12, 8, 4, 0]

[1, 5, 9, 13, 17]

[18, 14, 10, 6, 2]

[3, 7, 11, 15, 19]

If you read each list left to right, starting at the top, you follow the trans-
position route, which was up and down alternate columns (see Figure 4-3).
From Python’s point of view, the first column read is list-of-1ists[0], and
the starting point is 1list-of-lists[o][0].

Now, normalize the route by reading all columns in the same direction
as the starting column (up). This requires reversing the order of elements
in every other list, as shown in bold here:

[16, 12, 8, 4, 0]
[17, 13, 9, 5, 1]
[18, 14, 10, 6, 2]
[19, 15, 11, 7, 3]

A pattern emerges. If you start at the upper right and read down each
column, ending at the lower left, the numbers are in numerical order;
you’ve restored the plaintext!

To replicate this, your script can loop through every nested list, remov-
ing the last item in that list and adding the item to a new string, until the

translation matrix has been emptied. The script will know from the key
which nested lists it needs to reverse and the order in which to depopulate
the matrix. The output will be a string of the restored plaintext:

'0123456789 10 11 12 13 14 15 16 17 18 19'

You should now have a very general view of the strategy. Let’s get more
descriptive and write the pseudocode next.

The Pseudocode

The script can be broken up into three major parts: user input, translation
matrix population, and decryption to plaintext. You should be able to see
these parts in the following pseudocode:

Load the ciphertext string.
Convert ciphertext into a cipherlist to split out individual words.
Get input for the number of columns and rows.
Get input for the key.
Convert key into a list to split out individual numbers.
Create a new list for the translation matrix.
For every number in the key:
Create a new list and append every n items (n = # of rows) from the cipherlist.
Use the sign of key number to decide whether to read the row forward or backward.
Using the chosen direction, add the new list to the matrix. The index of each
new 1list is based on the column number used in the key.
Create a new string to hold translation results.
For range of rows:
For the nested list in translation matrix:
Remove the last word in nested list
Add the word to the translation string.
Print the translation string.

Everything before the first loop is essentially just collecting and refor-
matting the cipher data. The first loop is responsible for building and pop-
ulating the matrix, and the second loop creates a translation string from
that matrix. Finally, the translation string is printed.

The Route Cipher Decryption Code

Listing 4-1 takes a message encrypted with the route cipher, the number
of columns and rows in the transposition matrix, and a key and then dis-
plays the translated plaintext. It will decrypt all “common” route ciphers,
where the route starts at the top or bottom of a column and continues up
and/or down columns.

This is the prototype version; once you're sure it’s working, you’ll pack-
age it for others to use. You can download this code at https://www.nostarch
.com/impracticalpython/.

route_cipher O ciphertext = "16 12 8 40159 13 17 18 14 10 6 2 3 7 11 15 19"
_decrypt
—profotype.py # split elements into words, not letters

Decoding American Civil War Ciphers 69

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

70

Chapter 4

® cipherlist = list(ciphertext.split())

® # initialize variables

coLs = 4

ROWS = 5

key = '-1 2 -3 4' # neg number means read UP column vs. DOWN
translation matrix = [None] * COLS

plaintext = "'

start = 0

stop = ROWS

turn key int into list of integers:
key int = [int(i) for i in key.split()]

turn columns into items in list of lists:
for k in key_int:
@ if k < 0: # reading bottom-to-top of column
col items = cipherlist[start:stop]
elif k > 0: # reading top-to-bottom of columnn
col items = list((reversed(cipherlist[start:stop])))
translation_matrix[abs(k) - 1] = col items
start += ROWS
stop += ROWS

print("\nciphertext = {}".format(ciphertext))
print("\ntranslation matrix =", *translation matrix, sep="\n")
print("\nkey length = {}".format(len(key int)))

loop through nested lists popping off last item to new list:
for i in range(ROWS):
for col items in translation matrix:
® word = str(col items.pop())
O plaintext += word + ' '

print("\nplaintext = {}".format(plaintext))

Listing 4-1: Code for route_cipher_decrypt_prototype.py

Start by loading the ciphertext @ as a string. You want to deal with
words, not letters, so split the string apart based on empty spaces using the
split() string method to create a new list named cipherlist @. The split()
method is the inverse of the join() method, which you’ve seen before. You
can split on any string; the method just defaults to runs of consecutive
whitespace, deleting each whitespace before it moves to the next.

Now it’s time to input what you know about the cipher ©: the col-
umns and rows, which form the matrix, and the key, which contains the
route. Initialize the column and row numbers as constants. Then make
an empty list named translation_matrix to hold the contents of each
column as a (nested) list. Assign placeholders by multiplying the value
None by the number of columns. You can use the indexes of these empty
items to put columns back in their correct order for keys that are not in
numerical order.

An empty string named plaintext will hold the decrypted message.
Next are some slicing parameters. Note that some of these are derived from
the number of rows, which equates to the number of items in each column.

Now, convert the key variable, which is a string, into a list of integers using
list comprehension—a shorthand way of performing operations on lists @. You'll
use the numbers in the key as indexes later, so they need to be integers.

The next block of code is a for loop that populates the translation_
matrix, which is just a list of lists @. Since each column becomes a nested
list and the length of the key_int list is equal to the number of columns, the
range for the loop is the key, which also describes the route.

Inside the loop, use a conditional to check whether the key is positive or
negative @; if the key is positive, then the direction of the slice is reversed.
Assign the slice to the correct position in translation_matrix based on the
absolute key value and subtract 1 (since the keys don’t include 0, but the list
indexes do). Finish the loop by advancing the slice endpoints by the num-
ber of rows and printing some useful information.

The final block @ loops through the number of rows—which is equiva-
lent to the number of words in one of the nested lists—and through each
nested list. The first two of these loops are shown in Figure 4-4. As you stop
in each nested list, you get to employ one of my favorite Python functions,
the list pop() method ©. The pop() method removes and returns the last
item from a list, unless a specific index is provided. It destroys the nested
list, but you're done with it anyway.

First loop
[16, 12, 8, 4, 0] =—=——

[17) 13, 9, 5, 1] -

[18, 14, 10, 6, 2] —

[19) 15, 11, 7, 3] -

['0', '1', '2', '3', ...]

Second loop
[16) 12, 8, 4] _——

(17, 13, 9, 5] —

[18, 14, 10, 6] =

[19) 15, 11, 7] -

Y
['0', |1I, |2I, |3I, |4I, |5I, '6', |7I, -..]

Figure 4-4: First and second loop through the nested lists, removing
and appending each end item to the translation string

Decoding American Civil War Ciphers 71

72

Chapter 4

As soon as you pop off a word, concatenate it to the plaintext string and
add a space ©. All that’s left to do is display the decrypted ciphertext. The
output for the numeric test set looks like this:

plaintext = 012345678910 11 12 13 14 15 16 17 18 19

That looks like success!

Hacking the Route Gipher

The preceding code assumes you know the route through the encryption
matrix or have correctly guessed the key. If those assumptions aren’t true,
your only recourse is to try every possible key and matrix arrangement.
You'll get a chance to automate the key selection process—for a given num-
ber of columns—in “Route Transposition Cipher: Brute-Force Attack” on
page 88. But, as you’ll see, the Union route cipher is well fortified against
brute-force attacks. You can crack it, but you’ll end up with so much data,
you’ll feel like the dog that chased a car and caught it.

As messages get longer, the number of possible encryption paths in
a transposition cipher becomes too large for a brute-force solution, even
using modern computers. For example, if there are eight columns, and
you allow the route to skip to any column, the number of ways to combine
the columns is the factorial of eight: 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 40,320.
That’s 40,320 paths before you start choosing alternative routes through the
columns. If the route can change direction up or down a column, the num-
ber of combinations increases to 10,321,920. And if you consider starting
anywherein a column—instead of at the very top or bottom—and allow any
route through the matrix (such as spiraling), things will really start to get
out of hand!

For this reason, even short transposition ciphers can have thousands to
millions of possible paths. Even if the number of paths is manageable for a
computer and a brute-force attack may prevail, you’ll still need a way to sift
through the myriad outcomes and either choose a winner computationally
or select a small subset of candidates to visually examine.

For the more common [etter-transposition ciphers, it’s easy to write a
function that detects English by comparing each decryption attempt to
a dictionary file. If the number of decrypted words belonging to a dic-
tionary is greater than a certain threshold percentage, you've probably
cracked the cipher. Likewise, if there’s a high frequency of common letter
pairs (digrams)—like er, th, on, or an—you may have found the solution.
Unfortunately, this approach won’t work for a word-transposition cipher
like the one you’re using here.

Dictionaries can’t help you figure out whether words have been arranged
correctly. For word arrangement, you could try using approaches like gram-
matical rules and probabilistic language models, such as n-grams, combing
through thousands of decryptions and picking candidate outcomes program-
matically, but Stager’s wise use of code names and dummy words in his route
cipher will greatly complicate the process.

Cryptanalysts consider short, straight-up transposition ciphers to be
fairly easy to crack without a computer, despite the issues just described.
They look for common word or letter pairs that make sense, and use those
to guess the number of rows in the transposition matrix.

To illustrate, let’s use our control message composed of numbers. In
Figure 4-5, you can see the ciphertext outcomes for a 4x5 matrix, each pro-
duced by starting at one of the four corners of the grid, and following an
alternating, sequential route. All cases include repetition of adjacent num-
bers (shaded in Figure 4-5). These indicate where you’re moving laterally
through the grid, and they provide clues to the design of the matrix and the
route taken through it. You can immediately see that there were five rows,
because the first of each common pair is a fifth word. Moreover, knowing
there are 20 words in the message, you learn the number of columns was
four (20 / 5 = 4). Using the reasonable assumption that the plaintext mes-
sage was written left to right, you can even guess the route. For example, if
you start in the lower right, you go up to 3, then left to 2, then down to 18,
then left to 17, then up to 1 and left to 0. Of course, this would be more dif-
ficult with words, since the connection between words isn’t as explicit, but
using numbers really makes the point.

5 digits = 5 rows!
f_l_\

Lowerright=191511732610141817139510481216
Lower left =16 128401591317 18 1410 6 2 3 7 11 15 19
Upper right =3711151918 1410621591317 1612840
Upper left =04 81211617 1395126 10 141819 1511 7 3

Figure 4-5: Characters or words in logical order (shaded)
can be used to guess an encryption route.

Look at Figure 4-6, based on the message in Figure 4-2. End words and
possible linked words, like “is just” or “heading to,” are shaded.

REST TRANSPORT YOU GODWIN VILLAGE ROANOKE WITH ARE YOUR
IS JUST SUPPLIES FREE SNOW HEADING TO GONE TO SOUTH FILLER

Figure 4-6: Human hacking of the route cipher in Figure 4-2.
A five-row matrix is indicated.

There are 20 total words, for which there could be 4, 5, or 10 rows. It’s
doubtful that a two-column matrix would be used, so we are realistically
dealing with a 4x5 or a 5x4 arrangement. If the route cipher path is like
that in Figure 4-5, then we’d expect to see two nonshaded words between
shaded words for a four-row matrix and three nonshaded words for a five-
row matrix. It’s harder to come up with sensical word pairs that honor the

Decoding American Civil War Ciphers 73

74

Chapter 4

four-column pattern, regardless of which direction you read the ciphertext.

So, we’re probably dealing with a five-column solution that starts on the left

side of the matrix—since the linked words make sense read left to right.
Note how the shaded words in Figure 4-6 fill out the top and bot-

tom rows in the transposition matrix in Figure 4-7. This is what we would

expect, as the path is “turning around” at the top and bottom of every col-

umn. Graphical solutions: God’s gift to the innumerate!

VILLAGE ROANOKE heading to
GODWIN With SNOW gone
you are free to
transport your supplies south
REST IS JUST FILLER

Figure 4-7: Shaded words in Figure 4-6 placed in the transposition matrix

This seemed easy, but then again, we know how a route cipher works.
Confederate code breakers eventually discovered it too, but the use of
code words denied them full entry into the system. To hack the codes, they
needed a captured codebook or a large organization capable of acquiring
and analyzing big data, which was beyond the reach of the Confederacy in
the 19th century.

Adding a User Interface

The second goal of this project is to write the code in such a way as to reduce
human error, especially from those with less experience (including techni-
cians, interns, peers, and telegraph clerks in 1864). Of course, the best way
to make a program user-friendly is to include a graphical user interface (GUI),
but at times, this isn’t practical or possible. For example, code-cracking pro-
grams automatically loop through thousands of possible keys, and autogen-
erating these keys is easier than getting them directly from a user.

In this example, you’ll proceed with the assumption that the user will
crack open the program file and enter some input or even make minor
code changes. Here are some guidelines to follow:

Start with a useful docstring (see Chapter 1).

Place all required user input at the top.

Use comments to clarify input requirements.

Clearly separate user input from the remaining code.

Encapsulate most processes in functions.

SIS A N

Include functions to catch predictable user errors.

The nice thing about this approach is that no one’s intelligence gets
insulted. If a user wants to scroll down and look at the code, or even change
it, there’s nothing stopping them. If all they want to do is enter some values

and get a black box solution, then they’re happy, too. And we’ve honored
the spirit of Anson Stager by making things simple and reducing the
chance for error.

Instructing the User and Getting Input

Listing 4-2 shows the prototype code repackaged for sharing with others.
You can find this code at https://www.nostarch.com/impracticalpython/.

route_cipher ©® """Decrypt a path through a Union Route Cipher.

_decrypt.py,

part 1 @ Designed for whole-word transposition ciphers with variable rows & columns.
Assumes encryption began at either top or bottom of a column.
Key indicates the order to read columns and the direction to traverse.
Negative column numbers mean start at bottom and read up.
Positive column numbers mean start at top & read down.

Example below is for 4x4 matrix with key -1 2 -3 4.
Note "0" is not allowed.
Arrows show encryption route; for negative key values read UP.

1 2 3 4
™ |7 |~ | T | MESSAGE IS WRITTEN
V2 I
[1 || ~] | | ACROSS EACH ROW
[l v |1 | v_|
|~ ||~ | | IN THIS MANNER
V2 I
[~]|~] | LAST ROW IS FILLED WITH DUMMY WORDS
[l v |1 |_v_|
START END

Required inputs - a text message, # of columns, # of rows, key string

Prints translated plaintext

© import sys

#

O # USER INPUT:

© # the string to be decrypted (type or paste between triple-quotes):
ciphertext = """16 12 8 401 59 13 17 18 14 10 6 2 3 7 11 15 19

@ # number of columns in the transposition matrix:
COLS = 4

number of rows in the transposition matrix:
ROWS = 5

@ # key with spaces between numbers; negative to read UP column (ex = -1 2 -3 4):
key = """ 12 -34 """

Decoding American Civil War Ciphers 75

route_cipher
_decrypt.py,

part 2

76

Chapter 4

© # END OF USER INPUT - DO NOT EDIT BELOW THIS LINE!

#

Listing 4-2: Docstring, imports, and user input for route_cipher_decrypt.py

Start with a multiline docstring in triple quotes @. The docstring
informs the user that the program only decrypts a typical route cipher—
one that starts at either the top or bottom of a column—and how to enter
the key information @. A diagram is included to help make the point.

Next, import sys for access to system fonts and functions . You're
going to check the user’s input for acceptance criteria, so you need to dis-
play messages in the shell in eye-catching red. Putting this import statement
here is a catch-22. Since the strategic goal is to hide the working code from
the user, you really should apply this later in the program. But the Python
convention of putting all import statements at the top is too strong to ignore.

Now for the input section. How often have you seen or dealt with code
where inputs or changes have to be made throughout the program? This can
be confusing for the author and even worse for another user. So, move all
these important variables to the top for convenience, common courtesy,
and error prevention.

First, separate the input section with a line and then let the user know
that they’re on deck with an all-caps comment @. The required inputs
are clearly defined with comments. You can use triple quotes for the text
input to better accommodate long snippets of text. Note that I've entered
the string of numbers from Figure 4-3 ©. Next, the user needs to add the
number of columns and rows for the transposition matrix @, followed by
the proposed (or known) key @.

End the user input section with a declaration comment to that effect
and a caution to not edit anything below the following line ©. Then add
some extra spaces to more clearly separate the input section from the rest
of the program ©.

Defining the main() Function

Listing 4-3 defines the main() function, which runs the program and prints
out the plaintext after the cipher is decoded. The main() function can be
defined before or after the functions it calls, as long as it is the last function
called.

def main():
"""Run program and print decrypted plaintext.
©® print("\nCiphertext = {}".format(ciphertext))
print("Trying {} columns".format(COLS))
print("Trying {} rows".format(ROWS))
print("Trying key = {}".format(key))

split elements into words, not letters
® cipherlist = list(ciphertext.split())

route_cipher

_decrypt.py,
part 3

© validate col row(cipherlist)

O key_int = key_to_int(key)

® translation_matrix = build_matrix(key_int, cipherlist)
@ plaintext = decrypt(translation matrix)

@ print("Plaintext = {}".format(plaintext))

Listing 4-3: Defines the main() function

Start the main() function by printing the user input to the shell @. Then
turn the ciphertext into a list by splitting on whitespace, as you did in the
prototype code .

The next series of statements call functions you will define shortly. The
first checks whether the input rows and columns are valid for the message
length ©. The second converts the key variable from a string to a list of inte-
gers @. The third builds the translation matrix @, and the fourth runs the
decryption algorithm on the matrix and returns a plaintext string @. Finish
main() by printing the plaintext @.

Verifying Data

As you continue to package route_cipher_decrypt.py for the end user, you need
to verify that the input is valid. Listing 4-4 anticipates common user errors
and provides the user with helpful feedback and guidance.

©® def validate_col_row(cipherlist):

Check that input columns & rows are valid vs. message length."""
factors = []
len_cipher = len(cipherlist)
® for i in range(2, len_cipher): # range excludes 1-column ciphers
if len_cipher % i ==
factors.append(i)
© print("\nLength of cipher = {}".format(len_cipher))
print("Acceptable column/row values include: {}".format(factors))
print()
® if ROWS * COLS != len_cipher:
print("\nError - Input columns & rows not factors of length "
"of cipher. Terminating program.", file=sys.stderr)
sys.exit(1)

© def key to_int(key):

Turn key into list of integers & check validity.
@ key int = [int(i) for i in key.split()]
key_int_lo = min(key int)
key_int_hi = max(key_int)
@ if len(key int) != COLS or key_int_lo < -COLS or key int_hi > COLS \
or 0 in key_int:
® print("\nError - Problem with key. Terminating.", file=sys.stderr)
sys.exit(1)
else:
O return key int

Listing 4-4: Defines functions for checking and prepping user input

Decoding American Civil War Ciphers 77

route_cipher
_decrypt.py,

part 4

78

Chapter 4

The validate_col_row() function checks that the input column and row
numbers are appropriate for the length of the cipherlist, which you pass
as an argument @. The transposition matrix is always the same size as the
number of words in the message, so the number of columns and the num-
ber of rows have to be a factor of the message size. To determine all the per-
missible factors, first make an empty list to hold the factors and then get the
length of the cipherlist. Use the cipherlist, rather than the input ciphertext, as
the elements in the ciphertext are letters, not words.

Normally, to get the factors of a number, you would use a range of (1,
number + 1), but you don’t want these endpoints in the factors list, because
a translation matrix with these dimensions would just be the plaintext. So
exclude these values from the range @. Since a factor of a number divides
evenly into that number, use the modulo operator (%) to find the factors
and then append them to the factors list.

Next, display some useful information for the user: the length of the
cipherlist and the acceptable choices for rows and columns @. Finally, mul-
tiply the user’s two choices together and compare the product to the length
of the cipherlist. If they don’t match, print a red warning message in the
shell (using our old file=sys.stderr trick) and terminate the program @.
Use sys.exit(1), as the 1 indicates an abnormal exit.

Now define a function to check the key and convert it from a string to
a list ©. Pass it the key variable as an argument. Split out each item in key
and convert it to an integer; name the list key_int to distinguish it from the
user-entered key variable @. Next, determine the minimum and maximum
values in the key_int list. Then use an if statement to make sure the list con-
tains the same number of items as there are columns and none of the items
in key is too large, too small, or equal to 0 @. Terminate the program with
an error message if any of those criteria fail to pass ©. Otherwise, return
the key_int list ©.

Building and Decoding the Translation Matrix

Listing 4-5 defines two functions, one to build the translation matrix
and one to decode it, and calls the main() function as a module or in
stand-alone mode.

def build_matrix(key_int, cipherlist):
"""Turn every n items in a list into a new item in a list of lists.
translation_matrix = [None] * COLS
start = 0
stop = ROWS
for k in key int:
if k < 0: # read bottom-to-top of column
col_items = cipherlist[start:stop]
elif k > 0: # read top-to-bottom of columnn
col items = list((reversed(cipherlist[start:stop])))
translation_matrix[abs(k) - 1] = col items
start += ROWS
stop += ROWS
return translation_matrix

@ def decrypt(translation_matrix):
"""Loop through nested lists popping off last item to a string.
plaintext = ''
for i in range(ROWS):
for matrix_col in translation matrix:
word = str(matrix_col.pop())
plaintext += word + ' '
return plaintext

© if name__ == "'_main__':
main()

Listing 4-5: Defines the functions for building and decoding the translation matrix

These two functions represent encapsulation of code in the
route_cipher_decrypt_prototype.py program. See Listing 4-1 for a detailed
description.

First, define a function to build the translation matrix; pass it the
key_int and cipherlist variables as arguments @. Have the function return
the list of lists.

Next, bundle the decryption code, where you pop off the end of each
nested list, as a function that uses the translation_matrix list as an argu-
ment . Return the plaintext, which will be printed by the main() function.

End with the conditional statement that lets the program run as a mod-
ule or in stand-alone mode ©.

If youre an occasional or one-time user of this code, you’ll appreciate
how straightforward and approachable it is. If you plan to alter the code for
your own purposes, you’ll also appreciate that the key variables are accessi-
ble and the major tasks are modularized. You won’t have to dig through the
program to tease out what matters or understand the difference between
arcane variables like list1 and list2.

Here’s the output of the program, using the ciphertext from Figure 4-3:

Ciphertext = 16 12 8 40 1 59 13 17 18 14 10 6 2 3 7 11 15 19
Trying 4 columns

Trying 5 rows

Trying key = -1 2 -3 4

Length of cipher = 20
Acceptable column/row values include: [2, 4, 5, 10]

Plaintext =0123 456789 10 11 12 13 14 15 16 17 18 19

You should now be able to easily decrypt a route transposition cipher
with a known key or test suspected routes by using the script’s clear and
accessible interface to adjust the key. You’ll get a chance to truly crack
one of these ciphers, by automatically trying every possible key, in “Route
Transposition Cipher: Brute-Force Attack” on page 88.

Decoding American Civil War Ciphers 79

80

Project #9: The Rail Fence Cipher

Chapter 4

Confederate officers and spies were pretty much on their own when it came
to cryptography. This led to unsophisticated solutions, one of the favorites
being the rail fence cipher, so named due to its resemblance to the zigzag
pattern of a split-rail fence (shown in Figure 4-8).

Figure 4-8: A rail fence

The rail fence is a simple-to-use transposition cipher, like the Union’s
route cipher, but differs from the route cipher in that it transposes letters
rather than words, making it more error-prone. And since the number of
possible keys is much more restrictive than the number of paths through a
route cipher, the rail fence cipher is much easier to “tear down.”

Both the Union and Confederates used the rail fence as a field cipher,
and the spies probably didn’t use code words very often. Codebooks needed
to be tightly controlled, for obvious reasons, and were more likely to be
secured in a military telegraph office than carried around by easily compro-
mised undercover agents.

Sometimes the Confederates used the more complex Vigenére cipher
(see “Project #12: Hiding a Vigenére Cipher” on page 106) for important
messages—and some unimportant ones to mislead enemies—but it was
tedious work to decipher and equally laborious to encrypt and not suitable
for fast field communications.

Despite their lack of training in the mechanics of cryptography, the
Confederacy, and Southerners in general, were clever and innovative.
Among their more impressive accomplishments in the art of secret mes-
sages was the use of microphotography, 100 years before it was widely
adopted during the Cold War.

THE OBJECTIVE

Write Python programs that will help a spy encrypt and decrypt a “two-rail” (two-row)
rail fence cipher. You should write the programs in a way that will reduce potential errors

by inexperienced users.

The Strategy

To encrypt a message with the rail fence cipher, follow the steps in Figure 4-9.
Buy more Maine potatoes 1) Write plaintext

BUYMOREMAINEPOTATOES 2) Remove spaces and capitalize
BYOEANPTTE 3) Stack and stagger letters in
UMRMIEOAOS zigzag pattern

BYOEANPTTEUMRMIEOAQS 4) Merge the upper and lower rows

BYOEA NPTTE UMRMI EOAOS 5) Split into groups of five

Figure 4-9: Encryption process for a “two-rail” rail fence cipher

After the plaintext is written, the spaces are removed, and all the letters
are converted to uppercase (Step 2). Using uppercase is common conven-
tion in cryptography, as it obfuscates the presence of proper names and the
beginning of sentences, giving a cryptanalyst fewer clues for deciphering
the message.

The message is then written in stacked fashion, with every other letter
below the previous letter and shifted over one space (Step 3). This is where
the “rail fence” analogy becomes apparent.

The first row is then written, followed immediately by the second row
on the same line (Step 4), and then the letters are broken into groups of
five to create the illusion of distinct words and to further confuse the crypt-
analyst (Step 5).

To decrypt a rail fence cipher, reverse the process. Just remove the spaces,
divide the message in half, stack the second half below the first, offset by one
letter, and read the message using the zigzag pattern. If the ciphertext has an
odd number of letters, put the extra letter in the first (upper) half.

To make things easy for people who want to use a rail fence cipher, fol-
low the preceding steps to write two programs, one to encrypt and another
to decrypt. Figure 4-9 is essentially your pseudocode, so let’s get to it. And
since you now know how to package the code for inexperienced users, take
that approach from the start.

Decoding American Civil War Ciphers 81

rail_fence_cipher

_encrypt.py,

part 1

82

Chapter 4

The Rail Fence Cipher Encryption Code

The code in this section allows a user to enter a plaintext message and
have the encrypted results print in the interpreter window. This code is
available for download with the book’s resources at https://www.nostarch.com/
impracticalpython/.

Instructing the User and Getting Input

Listing 4-6, at the top of rail_fence_cipher_encrypt.py, provides the program’s
instructions and assigns the plaintext to a variable.

r"""Encrypt a Civil War 'rail fence' type cipher.
This is for a "2-rail" fence cipher for short messages.
Example text to encrypt: 'Buy more Maine potatoes'

Rail fence style: BYOEANPTTE
UMRMIEOAOS

Read zigzag: \/NININININININININT
Encrypted: BYOEA NPTTE UMRMI EO0SOS
USER INPUT:

the string to be encrypted (paste between quotes):
plaintext = """Let us cross over the river and rest under the shade of the trees

END OF USER INPUT - DO NOT EDIT BELOW THIS LINE!

Listing 4-6: Docstring and user input section for rail_fence_cipher_encrypt.py

Start with a multiline docstring, placing an r (which stands for “raw”)
prefix before the first set of triple quotes @. Without this prefix, Pylint
will complain bitterly about the \/\ slashes used further down. Fortunately,
pydocstyle points this out so you can fix it (read Chapter 1 to learn all
about Pylint and pydocstyle). If you want to know more about raw strings,
see Section 2.4.1 in the Python docs (https://docs.python.org/3.6/reference/
lexical_analysis. himl#string-and-bytes-literals) .

Next, separate the program’s docstring and import statements from
the input section with a line and let the user know they’re on deck with an
all-caps comment @. Clearly define the input requirement with comments
and place the plaintext inside triple quotes to better accommodate long
text strings ©.

Finally, end the user input section with a declaration to that effect and
caution to not edit anything below the following line @.

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/
https://docs.python.org/3.6/reference/lexical_analysis.html#string-and-bytes-literals
https://docs.python.org/3.6/reference/lexical_analysis.html#string-and-bytes-literals

rail_fence_cipher

_encrypt.py,
part 2

Encrypting a Message

Add Listing 4-7 to rail_fence_cipher_encrypt.py in order to handle the encryp-
tion processes.

def main():
"""Run program to encrypt message using 2-rail rail fence cipher.
message = prep_plaintext(plaintext)
rails = build_rails(message)
encrypt(rails)

def prep_plaintext(plaintext):

"""Remove spaces & leading/trailing whitespace.
message = "".join(plaintext.split())

message = message.upper() # convention for ciphertext is uppercase
print("\nplaintext = {}".format(plaintext))

return message

(-]

def build_rails(message):
"""Build strings with every other letter in a message.
evens = message[::2]
odds = message[1::2]
@ rails = evens + odds
return rails

def encrypt(rails):
"""Split letters in ciphertext into chunks of 5 & join to make string.
® ciphertext = ' '.join([rails[i:i+5] for i in range(0, len(rails), 5)])
print("ciphertext = {}".format(ciphertext))

if _name__ == ' _main__":
main()

Listing 4-7: Defines functions to encrypt the plaintext message

To start, define a main() function to run the program @®. Having a main()
function gives you the flexibility to use this program as a module in another
program later, should the need arise. This function calls three other func-
tions: one to prepare the input plaintext, one to build the “rails” used by
the cipher, and one to break the encrypted text into five-letter chunks.

Next, define a function to take the input string and prepare it for
encryption @. This involves removing spaces ® and converting letters to
uppercase (as in Step 2 in Figure 4-9) @. Then, after a newline, print the
plaintext to the screen and return it.

Now, define a function to build two strings, as in Step 3 of Figure 4-9,
by slicing message for evens (starting at 0 and stepping by 2) and for odds
(starting at 1 and stepping by 2) ©. The two strings are then concatenated
in a new string, named rails @, and returned.

Define an encryption function that takes the rails string as an argu-
ment @. Use list comprehension to split the ciphertext into chunks of five
(as in Step 5 of Figure 4-9) ®. The encrypted text is then printed to the
screen. Finish with the code to run the program as a module or in stand-
alone mode ©.

Decoding American Civil War Ciphers 83

Here is the output from this program:

plaintext = Let us cross over the river and rest under the shade of the trees
ciphertext = LTSRS OETEI EADET NETEH DOTER EEUCO SVRHR VRNRS UDRHS AEFHT ES

The Rail Fence Cipher Decryption Code

The code in this section allows a user to enter a message encrypted with
the rail fence cipher and have the plaintext printed in the interpreter win-
dow. This code is available for download along with the rest of the book’s
resources at https://www.nostarch.com/impracticalpython,/.

Importing Modules, Instructing the User, and Getting Input

Listing 4-8 starts with instructions similar to those in the rail_fence_cipher_
encrypt.py program (Listing 4-6), imports two modules, and gets the user

input.
rail_fence_cipher r"""Decrypt a Civil War 'rail fence' type cipher.
_decrypt.py,
part 1 This is for a 2-rail fence cipher for short messages.

Example plaintext: 'Buy more Maine potatoes'

Rail fence style: BYOEANPTTE
UMRMIEOAOS

Read zigzag: \N/NININININININININY

Ciphertext: BYOEA NPTTE UMRMI E0SOS

® import math
import itertools
USER INPUT:

the string to be decrypted (paste between quotes):
@ ciphertext = """LTSRS OETEI EADET NETEH DOTER EEUCO SVRHR VRNRS UDRHS AEFHT ES

END OF USER INPUT - DO NOT EDIT BELOW THIS LINE!

Listing 4-8: Imports modules, instructs the user, and gets user input

One difference here is that you need to import the math and itertools
modules @. You’ll use math for rounding. The itertools module is a group of

84 Chapter 4

rail_fence_cipher

_decrypt.py,
part 2

o

functions in the Python Standard Library that create iterators for efficient
looping. You’ll use itertool’s zip_longest() function during the decryption
process.

The only other change is that the user should enter ciphertext, rather
than plaintext @.

Decrypting a Message

Listing 4-9 defines the functions for preparing and decoding the ciphertext
and finishes off rail_fence_cipher_decrypt.py.

def main():
"""Run program to decrypt 2-rail rail fence cipher.
message = prep_ciphertext(ciphertext)
rowl, row2 = split rails(message)
decrypt(rowl, row2)

def prep_ciphertext(ciphertext):
"""Remove whitespace.
message = "".join(ciphertext.split())
print("\nciphertext = {}".format(ciphertext))
return message

def split_rails(message):

"""Split message in two, always rounding UP for 1st row.
row_1_len = math.ceil(len(message)/2)

rowl = (message[:row 1 len]).lower()

row2 = (message[row_1 len:]).lower()

return rowl, row2

o0

def decrypt(rowl, row2):
"""Build list with every other letter in 2 strings & print.
plaintext = []
for r1, r2 in itertools.zip longest(rowl, row2):
plaintext.append(r1)
plaintext.append(r2)
© if None in plaintext:
plaintext.pop()
print("rail 1 = {}".format(rowl))
print("rail 2 = {}".format(row2))
print("\nplaintext = {}".format(''.join(plaintext)))

9

if _name_ == "'_main_":
main()

Listing 4-9: Prepares, decodes, and prints the message

The main() function here @ is similar to the one used in the encryp-
tion program in Listing 4-7. Three functions are called: one to prepare the
input string, one to “split the rails” in the rail fence cipher, and one to stitch
the two rails back together into readable plaintext.

Decoding American Civil War Ciphers 85

Start with a function that repeats the preprocessing steps used during
encryption @. Remove the spaces between the five-letter chunks, as well
as any other whitespace created during the pasting of the ciphertext, and
print and return the ciphertext.

Next, you need to split the message back into two halves to reverse the
encryption process ©. As I mentioned in “The Strategy” on page 81, the
extra letter in a message with an odd number of characters is assigned to the
top row. To address the odd-numbered case, use the math.ceil() method @.
“Ceil” stands for “ceiling,” so when you divide by 2, the answer is always
rounded up to the nearest integer. Assign this number to the row_1_len vari-
able. Once you know the length of the first row, use that value and slicing to
divide the message variable into two strings representing the rows ©. End the
function by returning the row variables.

Now it’s just a matter of choosing and joining every other letter from the
rows to stitch the plaintext back together. Define a decrypt() function and
pass it the strings for row1 and row2 @. Start the translation process by mak-
ing an empty list to hold the results @. Next, you need an easy way to deal
with cases where the ciphertext has an odd number of letters—resulting in
two rows of different lengths—because Python prevents you from looping
through two uneven sequences by raising an index-out-of-range error. This
is why we’ve imported the itertools module—its functions help with looping
to circumvent this problem.

The itertools.zip_longest() function accepts two strings as arguments
and loops through them without complaint, appending a null value (None)
to the plaintext list when it gets to the end of the shorter string ©. You
don’t want to print this null value, so if it’s there, remove it using the pop()
method you applied in the route cipher code ©®. Complete the decryption
process by printing the two rows (rails) to the screen, followed by the
decrypted ciphertext.

End with the standard code for running the program as a module or in
stand-alone mode ®. The output from the program is as follows:

ciphertext = LTSRS OETEI EADET NETEH DOTER EEUCO SVRHR VRNRS UDRHS AEFHT ES

rail 1 = LTSRSOETEIEADETNETEHDOTERE
rail 2 = EUCOSVRHRVRNRSUDRHSAEFHTES

plaintext = letuscrossovertheriverandrestundertheshadeofthetrees

Note that there will be no spaces between words, but that’s okay—you
don’t want to leave the cryptanalyst feeling completely useless!

Summary

That completes our foray into Civil War ciphers. You wrote a program that
helps a user decrypt a route cipher, and you gained valuable insights into
how it works and how to hack it. You can implement an automated attack on

86 Chapter 4

the cipher in the following practice projects, but remember, with its many
possible paths and use of code words, the Union route cipher is a tough nut
to fully crack.

Next, you wrote programs to encrypt and decrypt two-rail fence
ciphers. Given how tedious and error-prone the manual encryption and
decryption processes are, having an automated way to do most of the work
would have been valuable to both sides in the war. And to further address
these types of issues, you wrote your code to be user-friendly to the inexpe-
rienced cryptanalyst or spy.

Further Reading

More beginner-level Python programs for working with transposition
ciphers are available in Cracking Codes with Python (No Starch Press, 2018)
by Al Sweigart.

Excellent and well-illustrated overviews of cryptography can be found
in Mysterious Messages: A History of Codes and Ciphers (The Penguin Group,
2009) by Gary Blackwood and The Code Book: The Science of Secrecy from
Ancient Egypt to Quantum Cryptography (Anchor, 2000) by Simon Singh.

The sites http://www.civilwarsignals.org/pages/crypto/crypto.html and http://
www.mathaware.org/mam/06/Sauerberg_route-essay.html include descriptions of
Edward Porter Alexander’s attempt to solve a route cipher. Alexander was
the father of the Confederate Army Signal Corps and a brilliant military
innovator with many impressive accomplishments.

Practice Projects

Hone your cryptography skills with these projects. Solutions are available in
the appendix and online.

Hacking Lincoln

In his book, Mysterious Messages: A History of Codes and Ciphers, Gary
Blackwood reproduces an actual message sent by Abraham Lincoln and
encrypted with a route cipher:

THIS OFF DETAINED ASCERTAIN WAYLAND CORRESPONDENTS
OF AT WHY AND IF FILLS IT YOU GET THEY NEPTUNE THE
TRIBUNE PLEASE ARE THEM CAN UP

Use the route_cipher_decrypt.py program to solve this cryptogram. The
number of columns and rows must be factors of the message length, and
the route starts in one of the corners, doesn’t skip columns, and alternates
direction with every column change. The code word definitions and plain-
text solution can be found in the appendix.

Decoding American Civil War Ciphers 87

http://www.civilwarsignals.org/pages/crypto/crypto.html
http://www.mathaware.org/mam/06/Sauerberg_route-essay.html
http://www.mathaware.org/mam/06/Sauerberg_route-essay.html

Chapter 4

Identifying Cipher Types

The sooner you know what type of cipher you're dealing with, the sooner
you can break it. Word-transposition ciphers are easy to spot, but letter-
transposition ciphers can look like letter-substitution ciphers. Fortunately,
you can distinguish between the two by using the frequency of occurrence
of letters in the ciphertext. Since the letters are just scrambled and not
replaced in transposition ciphers, their frequency distribution will be the
same as for the language in which the plaintext was written. An exception,
however, is military messages, which use jargon and omit many common
words. For these, you need a frequency table built from other military
messages.

Write a Python program that takes a string of ciphertext as input and
determines whether it is more likely to be a transposition cipher or a sub-
stitution cipher. Test it with the files cipher_a.txt and cipher_b.txt, download-
able from https://www.nostarch.com/impracticalpython/. A solution can be
found in the appendix and online at the book’s website in identify_cipher_

type_practice.py.

Storing a Key as a Dictionary

Write a short script to break a route cipher key into two parts: one to record
the column order and one to record the direction to read through the rows
in the column (up or down). Store the column number as a dictionary key
and the reading direction as the dictionary value. Have the program inter-
actively request the key value for each column from the user. A solution can
be found in the appendix and online in the file key_dictionary_practice.py.

Automating Possible Keys

To attempt to decipher a route cipher using any combination of columns in
its path, you need to know what those combinations are, so you can enter
them as arguments in a decryption function. Write a Python program

that accepts an integer (such as the number of columns) and returns a
collection of tuples. Each tuple should contain a unique ordering of col-
umn numbers, like (1, 2, 3, 4). Include negative values—for example,

(2, -3, 4, -1)—to capture encryption routes that go up columns versus
down. A solution is provided in the appendix, with a downloadable version
on the book’s website in permutations_practice.py.

Route Transposition Cipher: Brute-Force Attack

Copy and modify the route_cipher_decrypt.py program to hack the route cipher
in Figure 4-2. Rather than inputting a single key, loop through all possible
keys—for an assumed number of columns—and print the results (use the
earlier permutations code to generate the keys for this four-column cipher).
The impact of switching the order of columns and allowing up-and-down
paths through the transposition matrix is clearly illustrated in Figure 4-10.
The dashed line is the factorial of the number of columns; the solid line
captures the effect of reading up columns as well as down (captured by the

https://www.nostarch.com/impracticalpython/

inclusion of negative values in the key). If you only needed to deal with the
factorial of 4, your job as a cryptanalyst would be easy. But as the cipher gets
longer, the number of possible keys explodes. And some actual Union route
ciphers had 10 or more columns!

Number of Possible Keys vs. Number of Columns

N

645,120

o

[6,]

I

Number of Possible Keys (Log)

Number of Columns

=<9-=Factorial of # columns ~——@= Permutations including negative key values

Figure 4-10: Number of possible keys versus number of columns for a route cipher

Here are four translations out of the 384 produced for the ciphertext in
Figure 4-2:

using key = [-4, -1, -2, -3]
translated = IS HEADING FILLER VILLAGE YOUR SNOW SOUTH GODWIN ARE FREE TO YOU
WITH SUPPLIES GONE TRANSPORT ROANOKE JUST TO REST

using key = [1, 2, -3, 4]
translated = REST ROANOKE HEADING TO TRANSPORT WITH SNOW GONE YOU ARE FREE TO
GODWIN YOUR SUPPLIES SOUTH VILLAGE IS JUST FILLER

using key = [-1, 2, -3, 4]
translated = VILLAGE ROANOKE HEADING TO GODWIN WITH SNOW GONE YOU ARE FREE TO
TRANSPORT YOUR SUPPLIES SOUTH REST IS JUST FILLER

using key = [4, -1, 2, -3]
translated = IS JUST FILLER REST YOUR SUPPLIES SOUTH TRANSPORT ARE FREE TO YOU
WITH SNOW GONE GODWIN ROANOKE HEADING TO VILLAGE

The correct answer is present, but you can appreciate how hard it would
be to pick it out quickly, given the use of code words and dummy words.
Still, you did your job. Go have that mint julep or some sweet tea.

A solution to this project is provided in the appendix and at Atps://
www.nostarch.com/impracticalpython/ in route_cipher_hacker.py. You will also
need the perms.py program, which is based on the previous practice project.

Decoding American Civil War Ciphers 89

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

90

Challenge Projects

Chapter 4

No solutions are provided for challenge projects.

Route Cipher Encoder

A greenhorn Union telegraph clerk needs to encrypt the following mes-
sage, complete with code words (Table 4-1). Help them out by writing a
program that takes the message as input and automatically substitutes the
code words, fills the bottom row with dummy words, and transposes the
words using the key [-1, 3, -2, 6, 5, -4]. Use a 6x7 matrix and make up
your own dummy words.

We will run the batteries at Vicksburg the night of April 16 and
proceed to Grand Gulf where we will reduce the forts. Be pre-
pared to cross the river on April 25 or 29. Admiral Porter.

Table 4-1: Code Words
Batteries HOUNDS
Vicksburg ODOR
April CLAYTON
16 SWEET
Grand TREE
Gulf owlL
Forts BAILEY
River HICKORY
25 MULTIPLY
29 ADD
Admiral HERMES
Porter LANGFORD

Consider using a Python dictionary for the lexicon of code words in
this table.

Three-Rail Fence Cipher

Write a version of the rail fence cipher that uses three rails (rows) instead of
two. You can find a hint at https://en.wikipedia.org/wiki/Rail_fence_cipher.

https://en.wikipedia.org/wiki/Rail_fence_cipher

ENCODING
ENGLISH CIVIL WAR CIPHERS

In 1587, Mary, Queen of Scots, lost her
head due to a scrap of paper. Fifty-five

years later, Sir John Trevanion, a supporter

of another beheaded monarch, Charles the
First, had his head saved by a scrap of paper. What
made the difference? Steganography.

Steganography is the time-tested practice of concealing messages so well
that their existence isn’t even suspected. The name is based on the Greek
words for “covered writing,” and a very literal Grecian example was to take
wax-covered wooden tablets used for writing, scrape off the wax, write on
the wood, and then cover the board with a new coating of smooth wax. A
modern-day example is to embed a message in an image by subtly altering
its color components. Even a simple 8-bit JPEG image contains more colors
than the human eye can detect, so without digital processing or filtering,
the message is essentially invisible.

In this chapter, you’ll work with the null cipher, which isn’t a cipher at
all but a steganographic technique for concealing plaintext within other

strings of noncipher material. Null means “none,” so with a null cipher, you
have chosen not to encrypt the message. The following is an example of a
null cipher using the first letter in every word:

Nice uncleslive 1 Cruel. i people have eternal r

First, you'll write code that finds the hidden message that saved Sir
John, and then you’ll accomplish the much more difficult task of writing a
null cipher. Finally, you’ll get the opportunity to write a program that might
have saved Mary’s head, had she used the output.

Project #10: The Trevanion Cipher

Queen Mary relied on both steganography and encryption to protect
her messages. The strategy was sound, but her application was flawed.
Unknowingly, she relied on a double agent named Gilbert Gifford to
smuggle her messages. Gifford first delivered them to Queen Elizabeth’s
spymaster, who cracked the cipher and replaced it with a forged message
that enticed Mary to incriminate herself. The rest, as they say, is history.

For John Trevanion, the outcome was rosier. Sir John, a distinguished
cavalier who aided Charles I against Oliver Cromwell in the English Civil
War, was captured and imprisoned in Colchester Castle. The day before his
execution, he received a letter from one of his friends. The letter was not
smuggled in but delivered straight into the hands of his jailors, who exam-
ined it but didn’t notice any deception. After reading it, Sir John asked for
some time alone to pray in the chapel. When his jailors came back to fetch
him, he had vanished.

Here is the message Sir John received:

Worthie Sir John: Hope, that is the beste comfort of the afflicted,
cannot much, I fear me, help you now. That I would saye to you,
is this only: if ever I may be able to requite that I do owe you,
stand not upon asking me. "Tis not much I can do: but what I
can do, bee you verie sure I wille. I knowe that, if deathe comes,
if ordinary men fear it, it frights not you, accounting for it for a
high honour, to have such a rewarde of your loyalty. Pray yet that
you may be spared this soe bitter, cup. I fear not that you will
grudge any sufferings; onlie if bie submission you can turn them
away, 'tis the part of a wise man. Tell me, an if you can, to do for
you anythinge that you wolde have done. The general goes back
on Wednesday. Restinge your servant to command. R.T.

As you have probably guessed, this seemingly innocent letter contains a
hidden message, revealed below in bold:

92 Chapter 5

S

This null cipher uses every third letter after a punctuation mark to let
Sir John know that a “panel at east end of chapel slides.” It’s rumored that
the remains of a narrow stairway were later discovered in a recess in a wall
in the castle. The passage was blocked at the time of discovery, but it may
have been Sir John’s escape route around 1642.

This last-minute escape would not have been possible with a traditional
cipher. Only by expertly concealing the message with steganography was
its author able to get it so quickly into Sir John’s hands. And the beauty of a
null cipher is that, even if Sir John didn’t know the pattern but suspected a
message was present, he could have found it fairly quickly.

If Sir John’s friend had been more careful, concealing encrypted cipher-
text instead of plaintext, Sir John probably wouldn’t have deciphered the
message in the short time he had remaining—unless he’d been informed
beforehand of the cipher type and key.

THE OBJECTIVE

Write code that finds the letters hidden after punctuation marks in a null cipher and lets
the user choose the number of letters after a punctuation mark to search for a solution.

Strategy and Pseudocode

Null ciphers rely on a repeating pattern known to both the sender and
receiver. For example, every third word may be part of the real message or,
better, the last letter of every third word. In the Trevanion cipher, it’s the
third letter after a punctuation mark.

To find the Trevanion cipher, assume punctuation marks are the signal
to begin counting, and then write code that locates every nth letter after
the mark and saves those letters to a string or list. Once you’ve worked out
how to do this, you can easily edit the code to work with any starting point,
such as every capitalized word, every second letter per word, or the starting
letter of every third word.

The only real point of contention involves punctuation marks. For
instance, did the null cipher’s writer want punctuation marks to be included
in the plaintext? How do you handle a second punctuation mark within
the desired count range? What happens if two punctuation marks occur in
succession?

If you take a close look at the Trevanion cipher, you should see that
there are double punctuations caused by the repeated use of the word is.

Encoding English Civil War Ciphers 93

94

Chapter 5

There is also a jumble of punctuation marks at the end of the message,
where the writer provides his initials. To deal with this, Sir John and his
friend may have established some rules before Sir John’s incarceration, or
Sir John just used trial and error to work them out.

Based on the end of the message, punctuation marks aren’t included
in the letter count. If Sir John’s friend had intended them to be, then the
hidden message would end with a capital 7, because the T'is three characters
after a punctuation mark, and crucially not three letters after. This means
that, if the reader encounters a punctuation mark within the count limit,
they have to restart their count.

So these are the rules:

e Initiate a letter count with every punctuation mark.
e Reset the count if a punctuation mark is encountered.

e Punctuation marks cannot be part of the plaintext message.

Since you may not know what the letter count should be, write the
code so that it checks all counts up through a limit the user provides. The
pseudocode is fairly straightforward:

Load a text file and strip it of whitespace
Get user input on how many letters after punctuation to look ahead and examine
Loop through number of letters from 1 to this lookahead value
Start an empty string to hold the translation
Start a counter
Start a @first-found marker and set to False
Loop through characters in the text
If character is punctuation
Counter = 0
First-found = True
Otherwise, if @®first-found is True
Counter + 1
If counter = lookahead value
Add character to translation string
Display translation for this lookahead value

Note that the first-found variable @ will remain False until a punctua-
tion mark is encountered, after which it will be set to True ®. This prevents
the program from counting until the first punctuation mark is found.

Now you’re ready to write the code!

The Trevanion Cipher Code

The code in this section will find a Trevanion-type null cipher encoded
with a specific number of letters after each punctuation mark. You will also
need the text file containing the Trevanion cipher. You can download both
the script and the text file from https://www.nostarch.com/impracticalpython/
as null_cipher_finder.py and trevanion.txt, respectively. Keep these files in the
same folder.

https://www.nostarch.com/impracticalpython/

null_cipher
_finder.py,
part 1

null_cipher
_finder.py,
part 2

Loading the Text

Listing 5-1 imports some useful modules and loads the text file containing
the null cipher.

import sys
import string

def load text(file):
"""Load a text file as a string.
® with open(file) as f:
O return f.read().strip()

Listing 5-1: Imports modules and loads the null cipher text

First, import the now-familiar sys module so you can handle exceptions
that may occur during user input @. Also import the string module to gain
access to useful collections of constants, like letters and punctuation marks.

Next, define a function to load the text file containing the null cipher .
This function is similar to the one you used to load a dictionary file in
Chapter 2. It will be called by the main()function later to actually load the file.

Start the load_text() function by using with to open the file ©. By using
with, you know the file will be automatically closed after it is loaded. Use read()
to load the contents and strip() to remove leading and trailing whitespace.
Note that you can do this on the same line with the return statement @.

Finding the Hidden Message

Listing 5-2 defines the function that finds the hidden message. It takes two
arguments. The first is the message, which is the original text file as a string
stripped of whitespace, and the second is the number of letters to check
after a punctuation mark. This check value is obtained from the user as
part of the main() function.

def solve_null_cipher(message, lookahead):
"""Solve a null cipher based on number of letters after punctuation mark.

message = null cipher text as string stripped of whitespace
lookahead = endpoint of range of letters after punctuation mark to examine
©® for i in range(1, lookahead + 1):
® plaintext = "'
count = 0
found_first = False
©® for char in message:
® if char in string.punctuation:
count = 0
found_first = True
© elif found _first is True:
count += 1
® if count == i:
plaintext += char

Encoding English Civil War Ciphers 95

null_cipher
_finder.py,

part 3

96

Chapter 5

@ print("Using offset of {} after punctuation = {}".
format(i, plaintext))
print()

Listing 5-2: Searches for hidden letters

Treat the lookahead value as the endpoint of a range in a for loop so that
you can check all the intervening letters in the message for the presence of
a hidden message. Set the range as (1, lookahead + 1) @; that way, you start
with the first letter after a punctuation mark and include the user’s choice
in the evaluation.

Now, assign a few variables @. First, initialize an empty string to hold
the translated plaintext. Then set a counter to 0. Finally, set a found_first
variable to False. Remember that the program uses this variable to defer
counting until the first punctuation mark is encountered.

Next, begin looping through the characters in the message ©. If you
encounter a punctuation mark, reset the counter to 0 and set found_first to
True @. If you've found a punctuation mark already and the current charac-
ter isn’t punctuation, advance the counter by 1 ©. If you’ve found the letter
you’re looking for—meaning the count has reached the current lookahead
value (i)—add the letter to the plaintext string ©.

When you’ve examined all the characters in the message for the cur-
rent lookahead value, display the current key and the translation @.

Defining the main() Function

Listing 5-3 defines the main() function. You may remember from Chapter 3
that the main() function is like your program’s project manager: it takes
input, keeps track of progress, and tells the other functions when to work.

def main():
"""Load text, solve null cipher.
load & process message:
® filename = input("\nEnter full filename for message to translate: ")
8 try:
loaded _message = load_text(filename)
except IOError as e:
print("{}. Terminating program.".format(e), file=sys.stderr)
sys.exit(1)
© print("\nORIGINAL MESSAGE =")
print("{}".format(loaded message), "\n")
print("\nList of punctuation marks to check = {}".
format(string.punctuation), "\n")

remove whitespace:
O message = ''.join(loaded_message.split())

get range of possible cipher keys from user:
© while True:
@ lookahead = input("\nNumber of letters to check after " \
"punctuation mark: ")
@ if lookahead.isdigit():

null_cipher
_finder.py,
part 4

lookahead = int(lookahead)
break
else:
® print("Please input a number.", file=sys.stderr)
print()

run function to decode cipher
© solve_null _cipher(message, lookahead)

Listing 5-3: Defines the main() function

Start by asking the user for the name of the file (name + extension) @,
and then use try to call the load_text() function @. If the file can’t be found,
print the error in red—for those using the IDLE window—and exit the
program using sys.exit(1), where the 1 indicates termination with an error.

Print the message followed by the list of punctuation marks in the
string module . Only the characters in this list will be recognized by the
program as punctuation.

Next, take the loaded message and remove all spaces @. You're going
to count only letters and punctuation marks, so spaces would just get in the
way. Start a while loop that keeps asking the user for input in the event they
enter a bad value ©. Ask the user for the number of letters to check after
a punctuation mark @. This will be treated as a range, starting with 1 and
ending with the user’s choice plus 1. If the input value is a digit @, turn it
into an integer, since input returns a string. Then, use break to exit the loop.

If the user enters an invalid value, like “Bob,” use a print statement to
request a number and, for shell users, make the font red using sys.stderr ©.
The while loop will then repeat the request for input.

Pass the lookahead variable, along with the message, to the solve_null_
cipher function ©. Now all that’s left is to call the main() function.

Running the main() Function

Back in the global space, complete the code by calling main()—but only
if the program is run in stand-alone mode versus being imported into
another program (Listing 5-4).

if _name__ == "'_main_":
main()

Listing 5-4: Calls the main() function

The following is example output from the completed program, using
the Trevanion cipher as input:

Enter full filename for message to translate: trevanion.txt

ORIGINAL MESSAGE =

Worthie Sir John: Hope, that is the beste comfort of the afflicted, cannot
much, I fear me, help you now. That I would saye to you, is this only: if ever
I may be able to requite that I do owe you, stand not upon asking me. 'Tis not
much I can do: but what I can do, bee you verie sure I wille. I knowe that,

Encoding English Civil War Ciphers 97

98

if deathe comes, if ordinary men fear it, it frights not you, accounting for
it for a high honour, to have such a rewarde of your loyalty. Pray yet that
you may be spared this soe bitter, cup. I fear not that you will grudge any
sufferings; onlie if bie submission you can turn them away, 'tis the part of a
wise man. Tell me, an if you can, to do for you anythinge that you wolde have
done. The general goes back on Wednesday. Restinge your servant to command.
R.T.

List of punctuation marks to check = !"#$%&" ()*+,-./:;¢<=>2@[\]*_“{|}~

Number of letters to check after punctuation mark: 4

Using offset of 1 after punctuation = HtcIhTiisTbbIiiiatPcIotTatTRRT

Using offset of 2 after punctuation = ohafehsftiuekfftcorufnienohe
Using offset of 3 after punctuation = panelateastendofchapelslides

Using offset of 4 after punctuation = etnapthvnnwyoerroayaitlfogt

In this output, the program has checked up to the fourth letter after a
punctuation mark, but as you can see, it finds the solution using three let-
ters after a punctuation mark.

Project #11: Writing a Null Cipher

Here is an unfinished example of a very weak null cipher based on the start
of each word. Take a minute and try to complete the sentence:

e 1) m e

Chapter 5

You probably found it difficult, because whether you use letters or
even whole words, it takes hard work and time to produce a null cipher
that doesn’t read awkwardly and arouse suspicion. The heart of the prob-
lem is context. If the cipher is encapsulated within correspondence, that
correspondence has to be coherent to avoid suspicion. That means it has
to address a relevant topic and stay true to that topic for a reasonable num-
ber of sentences. As you probably saw, drafting even one sentence on any
topic is no easy task!

The key is to credibly avoid context, and a good way to do this is with a
list. No one expects a shopping list to be rigidly organized or make sense.
Lists can also be tailored to the receiver. For example, correspondents might
get into a discussion of books or movies and exchange lists of their favor-
ites. A prisoner might start studying a foreign language and receive regu-
lar vocabulary lists from their tutor. A businessperson might get monthly
inventories from one of their warehouses. With lists, context is honored even
while words are shuffled so the correct letter is found in the correct place.

list_cipher.py

o

Q0

THE OBJECTIVE

Write code that hides a null cipher within a list of words.

The List Cipher Code

The list_cipher.py code, in Listing 5-5, embeds a null cipher within a list of
dictionary words under the deception of vocabulary training. You’ll also
need the load_dictionary.py program you used in Chapters 2 and 3. You can
download this file, along with the following script, from https://www.nostarch
.com/impracticalpython/. Finally, you’ll need one of the dictionary files you
used in Chapters 2 and 3. You can find a list of suitable online dictionaries
in Table 2-1 on page 20. All of the aforementioned files should be kept in
the same folder.

from random import randint
import string
import load dictionary

write a short message that doesn't contain punctuation or numbers!
input_message = "Panel at east end of chapel slides"”
message = "'
for char in input_message:
® if char in string.ascii_letters:
message += char
print(message, "\n")

message = "".join(message.split())

open dictionary file
word_list = load_dictionary.load('2ofabrif.txt")

build vocabulary word list with hidden message
vocab_list = []
for letter in message:
size = randint(6, 10)
@ for word in word list:
if len(word) == size and word[2].lower() == letter.lower()\
and word not in vocab_list:
vocab_list.append(word)
break

if len(vocab_list) < len(message):

print("Word List is too small. Try larger dictionary or shorter message!")
else:

print("Vocabulary words for Unit 1: \n", *vocab _list, sep="\n")

Listing 5-5: Hides null cipher in a list

Encoding English Civil War Ciphers 99

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

100

Chapter 5

Start by importing the random module’s randint() function @. This
permits the (pseudo)random selection of an integer value. Then load
the string module, for access to ASCII letters. Finish by importing your
load_dictionary module.

Next, write a short secret message. Note that the associated comment
forbids punctuation marks or numbers. Trying to use these with a diction-
ary file’s contents would be problematic. So, filter out everything but letters
by checking for membership in string.ascii_letters, which contains both
uppercase and lowercase letters @:

'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVHXYZ '

Display the message and then remove the whitespace ©. Load your dic-
tionary file @ and start an empty list to hold the vocabulary words @.

Use a for loop to go through each letter in the message ®. Name a size
variable and assign it a random value between 6 and 10 using the randint()
function. This variable will ensure the words are long enough to be credible
as vocabulary words. You can set the maximum value higher if you wish.

Nest another for loop and use it to go through the dictionary words @,
checking their length against the size variable and comparing the (lower-
case) letter at index 2—the word’s third letter—to the current (lowercase)
letter in the message loop. You can change the index value on the word,
but make sure it doesn’t exceed the lowest possible size variable minus 1!

A final comparison prevents the same word from being used twice. If the
word passes the tests, append it to vocab_list and move on to the next letter
in the message.

A typical dictionary file should contain enough words to encrypt a short
message. But, to be safe, use a conditional to check that the length of vocab_
list is not shorter than the length of the message @. If it’s shorter, then you
ran out of words before reaching the end of the message, and you need to
print a warning for the user. Otherwise, print the list of words.

The List Cipher Output

Here is the output from the code (I've highlighted every third letter for
readability, though the message is pretty easy to spot without any aid):

Panelateastendofchapelslides
Vocabulary words for Unit 1:

alphabets
abandoning
annals
aberration
ablaze
abandoned

acting
abetted
abasement
abseil
activated
adequately
abnormal
abdomen
abolish
affecting
acceding
abhors
abalone
ampersands
acetylene
allegation
absconds
aileron
acidifying
abdicating
adepts
absent

Using a font with a consistent character width and stacking the words
really compromises the cipher. We’ll look at ways to deal with this in
“Saving Mary” on page 102.

Summary

In this chapter, you wrote a program that reveals the hidden message in a
Trevanion-type null cipher. Then, you wrote a second program that gener-
ates a null cipher and conceals it within a language learner’s vocabulary list.
In the following practice projects, you can explore ways to make this list
cipher more secure.

Further Reading

More details on Mary, Queen of Scots, and Sir John Trevanion can be
found in Mysterious Messages: A History of Codes and Ciphers (The Penguin
Group, 2009) by Gary Blackwood and The Code Book: The Science of Secrecy
Jfrom Ancient Egypt to Quantum Cryptography (Anchor, 2000) by Simon Singh.

Practice Projects

Now that you're an expert on the null cipher, see if you can change the fate
of Mary, Queen of Scots, and then sneak a look at Sir John’s most secret
correspondence.

Encoding English Civil War Ciphers 101

102

Chapter 5

Saving Mary

The best part of coding is thinking about problems and how to solve them.
Let’s revisit the sad case of Mary, Queen of Scots. Here’s what we know:

e Mary was not allowed correspondence, so letters had to be smuggled in.
This means that the traitorous Gilbert Gifford cannot be removed from
the equation. Gifford was the only person Mary knew with the means to
deliver her mail.

e Mary and her correspondents put too much faith in an insecure cipher
and thus spoke too freely. With less confidence, they might have shown
more forbearance.

e Mary’s jailors, having an obvious cipher in their possession, assumed it
contained incriminating material and kept working until they found it.

Gifford, the double agent, wasn’t privy to the details of the ciphers
Mary used. Now, assume Mary used a null cipher. If the correspondence
was somewhat seditious—though not treasonously so—the message might
have been overlooked by her captors. In the event a cursory examination
was made, the use of a variable pattern might have sufficed to stymie the
cryptanalysts.

As you have seen, it’s easier to hide a null cipher in a list than in a let-
ter. A list of families supporting Mary could serve the purpose. These could
be known supporters or, in a Machiavellian twist, a mix of friends and
enemies! This message wouldn’t be openly seditious, but would be close
enough so that a lack of encryption would suggest no form of encryption
was being used at all.

For this practice project, write a program that embeds the message
“Give your word and we rise” in a list of surnames. To hide the letters
in the message, start at the second letter in the second name, move to
the third letter in the third name, and then keep alternating between sec-
ond and third letters for the remaining words.

In addition to the unused first name, include “Stuart” and “Jacob” as
null words early in the list to help hide the presence of the cipher. Don’t
embed letters from the cipher in these null names and completely ignore
them when choosing the letter position for the cipher in the following
word; if the second letter was used in the word before the null name, use the
third letter in the word after the null name. The null cipher would occupy
the following bolded letters (the location of the null words is up to you, but
don’t let them affect the pattern):

e i o f i v i

The program can print the list either vertically or horizontally. The
name list should be credibly introduced with a short message, but that mes-
sage shouldn’t be part of the cipher.

The list of names can be downloaded from https://www.nostarch.com/
impracticalpython/ as supporters.txt and loaded as a standard dictionary file.
You can find a solution in the appendix and online as save_Mary_practice.py.

The Colchester Catch

Instead of some ale-sotted dimwit, you are left in charge of the prisoner
John Trevanion when the following letter arrives at Colchester Castle:

Sir John: Odd and too hard, your lot. Still, we will band together
and, like you, persevere. Who else could love their enemies, stand
firm when all others fail, hate and despair? While we all can, let
us feel hope. -R.T.

It seems clumsily phrased, even for the 17th century, and you decide to

examine it more closely before passing it to your inmate.

Write a Python program that takes an input, n, and checks for and dis-
plays a null cipher based on the nth letter after the start of every nth word.
For example, an input of 2 would find the bolded letters in this message:

h e 1 1 o

You can download the text file of the message from https://nostarch.com/
impracticalpython/ as colchester_message.txt. A solution can be found in the
appendix and online as colchester_practice.py. Keep the text and Python files
together in the same folder.

Encoding English Civil War Ciphers 103

https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

WRITING IN INVISIBLE INK

In the fall of 2012, the crime drama
Elementary debuted on the CBS television

network. A reimagining of the Sherlock
Holmes mythos set in 21st-century New York,

it starred Jonny Lee Miller as Holmes and Lucy Liu

as his sidekick, Dr. Joan Watson. In a 2016 episode

(“You've Got Me, Who’s Got Your”), Morland Holmes,

Sherlock’s estranged father, hires Joan to find a mole in his organization.
She quickly solves the case by discovering a Vigenére cipher in an email.
But some fans of the show were dissatisfied: the Vigenére cipher is hardly
subtle, so how could a man as intelligent as Morland Holmes miss finding it
on his own?

In this project, you'll reconcile this dilemma using steganography, but
not with a null cipher as in Chapter 5. To hide this message, you’ll use a
third-party module called python-docx that will allow you to conceal text by
directly manipulating Microsoft Word documents using Python.

Project #12: Hiding a Vigenére Cipher

In the Elementary episode, Chinese investors hire Morland Holmes’s consult-
ing company to negotiate with the Colombian government for petroleum
licenses and drilling rights. A year has passed, and at the last moment a
competitor swoops in and clinches the deal, leaving the Chinese investors
high and dry. Morland suspects betrayal by a member of his staff and asks
Joan Watson to investigate alone. Joan identifies the mole by finding a
Vigeneére cipher in one of his emails.

The decrypted contents of the cipher are never mentioned, and the mole is

106

Chapter 6

murdered in a subsequent episode.

The Vigenere cipher, also known as the unbreakable cipher, is arguably
the most famous cipher of all time. Invented in the 16th century by the
French scholar Blaise de Vigenére, it is a polyalphabetic substitution cipher
that, in the most commonly used version, employs a single keyword. This
keyword, such as BAGGINS, is printed repeatedly over the plaintext, as in
the message shown in Figure 6-1.

B
S

A
P

G
e

G
a

I
k

N
£

S
r

B
i

A
e

G
n

G
d

I
a

N
n

S
d

B
e

A
n

G
t

G
e

I
r

Figure 6-1: A plaintext message with the Vigenére
cipher keyword BAGGINS printed above

A table, or tableau, of the alphabet is then used to encrypt the message.
Figure 6-2 is an example of the first five rows of a Vigenére tableau. Notice
how the alphabet shifts to the left by one letter with each row.

abcdefghijklmnopgrstuvwxy?z
G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|A
I|J|K|L|M[N|O|P|Q|R|S|T|U|V|W|X|Y|Z|A|B
J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|A|B|C
K|L[M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|A|B|C|D

Figure 6-2: Portion of a Vigenére tableau

The keyword letter above the plaintext letter determines which row
to use for the encryption. For example, to encrypt the sin speak, note that
the keyword letter above it is B. Go down to the B row and read across to
where the plaintext sis at the top of the column. Use the T at the inter-
section for the ciphertext letter.

Figure 6-3 shows an example of the full message encrypted with the
Vigenere cipher. This kind of text would surely draw attention and become
an object of scrutiny if it were visible in a document!

TPKGS SJJETJ IAV FNZKZ

Figure 6-3: A message encrypted with the Vigenére cipher

The Vigenére cipher remained unbroken until the mid-19th century,
when Charles Babbage, inventor of the precursor to the computer, realized
that a short keyword used with a long message would result in repeating
patterns that could reveal the length of the keyword and, ultimately, the
key itself. The breaking of the cipher was a tremendous blow to professional
cryptography, and no significant advancements were made in the field dur-
ing the Victorian era of the original Holmes and Watson.

The presence of this cipher is what causes “suspension of disbelief”
issues with the Elementary episode. Why would an outside consultant be
needed to find such a clearly suspicious email? Let’s see if we can come up
with a plausible explanation using Python.

THE OBJECTIVE

Assume you are the corporate mole in the episode and use Python to hide a secret mes-
sage summarizing bid details within an official-looking text document. Start with an unen-
crypted message and finish with an encrypted version.

The Platform

Your program should work with ubiquitous word-processing software, as the
output needs to be sharable between different corporations. This implies
use of the Microsoft Office Suite for Windows or compatible versions for
macOS or Linux. And restricting the output to a standard Word document
makes hardware issues Microsoft’s responsibility!

Accordingly, this project was developed with Word 2016 for Windows,
and the results checked with Word for Mac v16.16.2. If you don’t have a
license for Word, you can use the free Microsoft Office Online app, avail-
able at https://products.office.com/en-us/office-online.

If you currently use alternatives to Word, like LibreOffice Writer or
OpenOffice Writer, you can open and view the Word (.docx) files used and
produced in this project; however, the hidden message will most likely be
compromised, as discussed in “Detecting the Hidden Message” on page 119.

The Strategy

You're an accountant with a beginner’s knowledge of Python, and you work
for a very intelligent and suspicious man. The project you work on is highly
proprietary, with controls—such as email filters—to maintain confidential-
ity. And if you manage to sneak out a message, a thorough investigation will

Writing in Invisible Ink 107

https://products.office.com/en-us/office-online

108

Chapter 6

surely follow. So, you need to hide a clearly suspicious message in an email,
either directly or as an attachment, yet evade initial detection and later
internal audits.

Here are some constraints:

¢ You can’t send the message directly to the competing corporation, only
to an intermediary.

¢ You need to scramble the message to evade the email filters that will
search for keywords.

¢ You need to hide the encrypted message from sight so as not to arouse
suspicion.

The intermediary would be easy to set up, and free encryption sites are
easy to find on the internet—but the last item is more problematic.

Steganography is the answer, but as you saw in the previous chapter,
hiding even a short message in a null cipher is no easy task. Alternative tech-
niques involve shifting lines of text vertically or words horizontally by small
amounts, changing the length of letters, or using the file’s metadata—but
you're an accountant with limited knowledge of Python and even less time.
If only there were an easy way, like invisible ink in the old days.

Creating Invisible Ink

Invisible ink, in this age of electronic ink, might be just crazy enough to
work! An invisible font would easily foil a visual perusal of online docu-
ments and won’t even exist in paper printouts. Since the contents would be
encrypted, digital filters looking for keywords like bid or the Spanish names
of the producing oil basins would find nothing. And best of all, invisible ink
is easy to use—just set the foreground text to the background color.

Formatting text and changing its color requires a word processor like
Microsoft Word. To make invisible electronic ink in Word, you just need to
select a character, word, or line and set the font color to white. The recipient
of the message would then need to select the whole document and use
the Highlighter tool (see Figure 6-4) to paint the selected text black, thus
concealing the standard black letters and bringing the hidden white letters
into view.

Home Insert Design Layout References Mailings

Times NewR-/12 - A A" Aa- f =-j=-'c- &

- A - - == =

Format Painter B I U-dex x' A 2 A- B == &
b w HEE W
e | | | | B

No Color

Stop Highlighting

Figure 6-4: The Text Highlight Color tool in Word 2016

Just selecting the document in Word won’t reveal the white text
(Figure 6-5), so someone would have to be very suspicious indeed to find
these hidden messages.

This is the fake message in black text. Nothing suspicious.

Nothing to see here, folks. Please move along!

in black text. Nothing

MNothing to see here. folks. Please move along!

Figure 6-5: Top: a portion of a Word document with the fake
message visible; middle: the document selected with CTRI-A;
bottom: the real message revealed using the Highlighter tool
with the highlight color set to black

Of course, you can accomplish all this in a word processor alone, but
there are two cases where a Pythonic approach is preferable: 1) when you
have to encrypt a long message and don’t want to manually insert and hide
all the lines and 2) when you need to send more than a few messages. As
you’ll see, a short Python program will greatly simplify the process!

Considering Font Types, Kerning, and Tracking

Placing the invisible text is a key design decision. One option is to use
the spaces between the visible words of the fake message, but this could
trigger spacing-related issues that would make the final product look
suspicious.

Proportional fonts use variable character widths to improve readability.
Example fonts are Arial and Times New Roman. Monospace fonts use a con-
stant character width to support the alignment of text and the recognition
of individual characters, especially thin ones such as the (or { characters. As
a result, monospace fonts are popular in programming interfaces. Example
fonts are Consolas and Courier New.

Kerningis a typographical process for adjusting the spacing and overlap
between individual character glyphs in order to improve their visual appeal.
A process called tracking is used to adjust the character spacing across entire
lines or blocks of text for the same purpose. These adjustments aid legibil-
ity and readability, ensuring that letters aren’t so close together that they’re
indistinguishable or so far apart that words aren’t recognizable. Note that
we read words, not letters. If you doubt it, read this: peopl raed wrds nt Ittrs.
Of corase, contxt hlps.

Writing in Invisible Ink 109

Kerning between pairs of letters is performed first, followed by track-
ing, during which the relative kerning of the letter pairs is preserved. As
mentioned earlier, these variable widths and automatic corrections can
cause problems when you'’re trying to hide characters between words that
use proportional fonts:

To a great mind nothing is little. Proportional font with no hidden letters
To a great mind nothing islittle. Proportional font with hidden letters between words
ToaBgreathmindBnothinglis little. Hidden letters revealed ($3.2K)

To a great mind nothing is little. Monospace font with no hidden letters
To a great mind nothing is little. Monospace font with hidden letters between words.
TofaflgreatfnindBnothinglis little. Hidden letters revealed ($3.2K]

If you use a monospace font, the consistent spacing provides a conve-
nient hiding place. But since professional correspondence is more likely
to use proportional fonts, the invisible ink technique should focus on the
more easily controlled spaces between lines.

Using empty lines between paragraphs is the easiest method to pro-
gram and to read, and it shouldn’t require a long fake message because
you can summarize the salient points of a bid succinctly. This is important
since you don’t want empty pages appended to your visible fake message.
Consequently, the footprint for your hidden message should be smaller
than for your fake one.

Avoiding Issues

When you’re developing software, a good question to ask repeatedly is “How
can the user screw this up?” One thing that can go wrong here is that the
encryption process will change the letters in your hidden message so that
kerning and tracking adjustments may push a word past the line break,
causing an automatic line wrap. This will result in uneven and suspicious-
looking spaces between paragraphs in the fake message. One way to avoid
this is to press ENTER a little early as you're typing in each line of the real
message. This will leave some space at the end of the line to accommodate
changes due to encryption. Of course, you’ll still need to verify the results.
Assuming code works is as risky as assuming James Bond is dead!

Manipulating Word Documents with python-docx

A free third-party module called python-docx allows Python to manipulate
Microsoft Word (.docx) files. To download and install the third-party modules
mentioned in this book, you’ll use the Preferred Installer Program (pip),

a package management system that makes it easy to install Python-based
software. For Python 3 on Windows and macOS, versions 3.4 and later
come with pip preinstalled; for Python 2, pip preinstallation starts with
version 2.7.9. Linux users may have to install pip separately. If you find you
need to install or upgrade pip, see the instructions at https://pip.pypa.io/en/
stable/installing/ or do an online search on installing pip on your particular
operating system.

110 Chapter 6

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

With the pip tool, you can install python-docx by simply running
pip install python-docx in a command, PowerShell, or terminal window,
depending on your operating system. Online instructions for python-docx
are available at https://python-docx.readthedocs.io/en/latest/.

For this project, you need to understand the paragraph and run objects.
The python-docx module organizes data types using three objects in the fol-
lowing hierarchy:

e document: The whole document with a list of paragraph objects

e paragraph: A block of text separated by the use of the ENTER key in
Word; contains a list of run object(s)

e run: A connected string of text with the same style

A paragraph is considered a block-level object, which python-docx defines
as follows: “a block-level item flows the text it contains between its left and
right edges, adding an additional line each time the text extends beyond
its right boundary. For a paragraph object, the boundaries are generally the
page margins, but they can also be column boundaries if the page is laid
out in columns, or cell boundaries if the paragraph occurs inside a table cell.
A table is also a block-level object.”

A paragraph object has a variety of properties that specify its placement
within a container—typically a page—and the way it divides its contents
into separate lines. You can access the formatting properties of a paragraph
with the ParagraphFormat object available through the ParagraphFormat prop-
erty of the paragraph, and you can set all the paragraph properties using a
paragraph style grouping or apply them directly to a paragraph.

A run is an inline-level object that occurs within paragraphs or other block-
level objects. A run object has a read-only font property providing access to a
font object. A font object provides properties for getting and setting the char-
acter formatting for that run. You’ll need this feature for setting your hidden
message’s text color to white.

Style refers to a collection of attributes in Word for paragraphs and
characters (run objects) or a combination of both. Style includes familiar
attributes such as font, color, indention, line spacing, and so on. You may
have noticed groupings of these displayed in the Styles pane on Word’s
Home ribbon (see Figure 6-6). Any change in style—to even a single let-
ter—requires the creation of a new run object. Currently, only styles that are
in the opened .docx file are available. This may change in future versions of
python-docx.

AaBbCc| AaBbCcDAE AaBbCcDdE AAB| ’ ‘ §

BoxHeader | BoxNormal T Caption Chap_name Chap_Num |+

-

Styles N

Figure 6-6: The Styles pane in Microsoft Word 2016

Writing in Invisible Ink m

https://python-docx.readthedocs.io/en/latest/
file:///C:\Users\jeremy\Dropbox\tech-reviews\impractical-python\docx.text.parfmt.ParagraphFormat

112

Chapter 6

You can find full documentation on the use of styles in python-docx at
http://python-docx.readthedocs.io/en/latest/user/styles-using. html.
Here’s an example of paragraphs and runs as python-docx sees them:

I am a single paragraph of one run because all my text is the same style.

I am a single paragraph with two runs. I am the second run because my style
changed to bold.

I am a single paragraph with three runs. I am the second run because my style
changed to bold. The third run is my last word.

If any of this seems unclear, don’t fret. You don’t need to know python-
docx in any detail. As with any piece of code, you mainly need to know what
you want to do. An online search should yield plenty of useful suggestions
and complete samples of code.

For this to work smoothly, don’t change styles within the real (hidden) message and
make sure you end every line in a hard return by manually pressing the ENTER

key. Unfortunately, Word doesn’t have a special character for soft returns caused

by automatic word wrapping. So, you can’t go into an existing Word document with
automatic line breaks and use Find and Replace to change them all to hard returns.
Such is the life of a mole.

Downloading the Assets

The external files you'll need are downloadable from https://www.nostarch
.com/impracticalpython/ and should be saved in the same folder as the code:

template.docx An empty Word doc formatted with official Holmes
Corporation styles, fonts, and margins

JfakeMessage.docx The fake message, without letterhead and date, in
a Word document

realMessage.docx The real message in plaintext, without letterhead
and date, in a Word document

realMessage_Vig.docx The real message encrypted with the Vigenere
cipher

example_template_prep.docx An example of the fake message used
to create the template document (the program doesn’t require this
file to run)

If yow’re using Word 2016, an easy way to make a blank template file is to write the
fake message (including letterhead) and save the file. Then delete all the text and save
the file again with a different name. When you assign this blank file to a variable
with python-docx, all the existing styles will be retained. Of course, you could use a
template file with the letterhead already included, but for the purpose of learning more
about python-docx, we’ll build the letterhead here using Python.

http://python-docx.readthedocs.io/en/latest/user/styles-using.html
https://www.nostarch.com/impracticalpython/
https://www.nostarch.com/impracticalpython/

Take a moment to view these first four documents in Word. These files
comprise the inputs to the elementary_ink.py program. The fake and real

messages—the second and third items listed—are also shown in Figures 6-7
and 6-8.

Dear Mr. Gerard:

| received your CV on Monday. It is very impressive, but | am sorry to inform you that Mr. Holmes is not
looking for additional staff at this time.

While we do not normally accept unsolicited applications, | will keep your CV on file for future
consideration. If it is convenient, please send me a list of references, especially those pertaining to skills
in negotiation, accounting, and data mining (preferably using the Python programming language). A
recent photograph is also recommended.

Best of luck to you. Feel free to check back at this time next year in the event a position becomes
available. Use this email address, and include your name and the word “check-back” in the subject line.

Sincerely yours,
Emil Kurtz

Associate Director
International Affairs

Figure 6-7: The “fake” text in the fakeMessage.docx file

The Colombian deal will be for 2 new venture wildcat wells, one each in the Llanos & Magdalena
Basins. These wells include a carry of thirty percent for the national oil company

and will test at least 3 K meters of vertical section. In return, the client will be permitted

to drill ten wells in the productive Putumayo province, earning a sixty % interest with a fifty
percent royalty rate, increasing to the standard eighty five percent royalty five years

after start of production in each well.

Figure 6-8: The real message in the realMessage.docx file

Note that the real message contains some numbers and special charac-
ters. These won’t be encrypted with the Vigenére tableau we’ll use, and I've
included them to make that point. Ideally, they would be spelled out (for
example, “three” for “3” and “percent” for “%”) for maximum secrecy when
we add the Vigenere cipher later.

The Pseudocode

The following pseudocode describes how to load the two messages and the
template document, interleave and hide the real message in blank lines
using a white font, and then save the hybrid message.

Build assets:

In Word, create an empty doc with desired formatting/styles (template)

In Word, create an innocuous fake message that will be visible & have enough
blank lines to hold the real message

In Word, create the real message that will be hidden

Writing in Invisible Ink 13

elementary_ink.py,

part 1

14

Import docx to allow manipulation of Word docs with Python
Use docx module to load the fake & real messages as lists
Use docx to assign the empty doc to a variable
Use docx to add letterhead banner to empty doc
Make counter variable for lines in real message
Define function to format paragraph spacing with docx
For line in fake message:
If line is blank and there are still lines in the real message:
Use docx & counter to fill blank with line from real message
Use docx to set real message font color to white
Advance counter for real message
Otherwise:
Use docx to write fake line
Run paragraph spacing function
Use docx to save final Word document

The Code

Chapter 6

The elementary_ink.py program in Listing 6-1 loads the real message, the
fake message, and the empty template document. It hides the real message
in the blank lines of the fake message using a white font, and then saves
the hybrid message as an innocuous and professional-looking piece of
correspondence that can be attached to an email. You can download the
code from https://www.nostarch.com/impracticalpython/.

Importing python-docx, Creating Lists, and Adding a Letterhead

Listing 6-1 imports python-docx, turns the lines of text in the fake and real
messages into list items, loads the template document that sets the styles,
and adds a letterhead.

import docx

® from docx.shared import RGBColor, Pt

get text from fake message & make each line a list item

fake_text = docx.Document('fakeMessage.docx")

fake_list = []

for paragraph in fake_text.paragraphs:
fake_list.append(paragraph.text)

get text from real message & make each line a list item
real_text = docx.Document('realMessage.docx")
real list = []
for paragraph in real_text.paragraphs:
O if len(paragraph.text) != 0: # remove blank lines
real list.append(paragraph.text)

load template that sets style, font, margins, etc.
doc = docx.Document('template.docx")

@ # add letterhead

https://www.nostarch.com/impracticalpython/

doc.add_heading('Morland Holmes', 0)
subtitle = doc.add_heading('Global Consulting & Negotiations', 1)
subtitle.alignment = 1
doc.add_heading('", 1)
@ doc.add_paragraph('December 17, 2015")
doc.add_paragraph('")

Listing 6-1: Imports python-docx, loads important .docx files, and adds a letterhead

After importing the docx module—not as “python-docx”—use docx. shared
to gain access to the color (RGBColor) and length (Pt) objects in the docx
module @. These will allow you to change the font color and set the spacing
between lines. The next two code blocks load the fake @ and real ® message
Word documents as lists. Where the ENTER key was pressed in each Word
document determines what items will be in these lists. For the real message
to be hidden, remove any blank lines so that your message will be as short
as possible @. Now you can use list indexes to merge the two messages and
keep track of which is which.

Next, load the template document that contains the preestablished
styles, fonts, and margins @. The docx module will write to this variable and
ultimately save it as the final document.

With the inputs loaded and prepped, format the letterhead of the final
document to match that of the Holmes Corporation ®. The add_heading()
function adds a heading style paragraph with text and integer arguments.
Integer o0 designates the highest-level heading, or Title style, inherited from
the template document. The subtitle is formatted with 1, the next heading
style available, and is center aligned, again with the integer 1 (0 = left justi-
fied, 2 = right justified). Note that, when you add the date, you don’t need
to supply an integer @. When you don’t provide an argument, the default
is to inherit from the existing style hierarchy, which in the template is left
justified. The other statements in this block just add blank lines.

Formatting and Interleaving the Messages

Listing 6-2 does the real work, formatting the spacing between lines and
interleaving the messages.

elementary_ink.py, ® def set_spacing(paragraph):

part 2 """Use docx to set line spacing between paragraphs.
paragraph_format = paragraph.paragraph_format
paragraph_format.space_before = Pt(0)
paragraph_format.space_after = Pt(0)

® length_real = len(real list)
count_real = 0 # index of current line in real (hidden) message

interleave real and fake message lines
for line in fake_list:
©® if count_real < length_real and line ==
® paragraph = doc.add_paragraph(real_list[count_real])
© paragraph_index = len(doc.paragraphs) - 1

Writing in Invisible Ink 115

116

Chapter 6

set real message color to white
run = doc.paragraphs[paragraph_index].runs[0]
font = run.font
@ font.color.rgb = RGBColor(255, 255, 255) # make it red to test
@ count_real += 1
else:
©® paragraph = doc.add_paragraph(line)

© set_spacing(paragraph)

® doc.save('ciphertext message letterhead.docx')

print("Done")

Listing 6-2: Formats paragraphs and interleaves lines of fake and real messages

Define a function that formats the spacing between paragraphs using
python-docx’s paragraph_format property @. Line spacing before and after the
hidden line is set to 0 points to ensure that the output doesn’t have suspi-
ciously large gaps between paragraphs, like the ones on the left-hand side
of Figure 6-9.

Dear Mr. Gerard: Dear Mr. Gerard:

| received your CV on Monday.

I received your CV on Monday. looking for additional staff at thi

looking for additional staff at thi
While we do not normally ac

consideration. If it is convenient
in negotiation, accounting and dg¢

While we do not normally ac
photograph is also recommende

consideration. If it is convenient
in negotiation, accounting and d

photograph is also recommende Best of luck to you. Feelfreetoc

Use this email address,and inclus

Sincerely yours
Best of luck to you. Feel freetoc v yours,

Use this email address,and inclu

Sincerely yours,

Figure 6-9: Fake message line spacing without python-docx
paragraph formatting (left] vs. with formatting (right)

Next, define the working space by getting the length of the list that holds
the real message . Remember that the hidden real message needs to be
shorter than the visible fake message so that there are sufficient blank lines
to hold it. Follow this by initiating a counter. The program will use it to keep
track of which line (list item) it’s currently processing in the real message.

Since the list made from the fake message is the longest and sets the
dimensional space for the real message, loop through the fake message

using two conditionals: 1) whether you've reached the end of the real mes-
sage and 2) whether a line in the fake list is blank ©. If there are still real
message lines and the fake message line is blank, use count_real as an index
for real_list and use python-docx to add it to the document @.

Get the index of the line you just added by taking the length of
doc.paragraphs and subtracting 1 ©. Then use this index to set the real mes-
sage line to a run object (it will be the first run item [0] in the list, as the
real message uses a single style) and set its font color to white @. Since the
program has now added a line from the real list in this block, the count_real
counter advances by 1 @.

The subsequent else block addresses the case where the line chosen
from the fake list in the for loop isn’t empty. In this case, the fake message
line is added directly to the paragraph . Finish the for loop by calling
the line spacing function, set_spacing() ©.

Once the length of the real message has been exceeded, the for loop
will continue to add the remainder of the fake message—in this case,

Mr. Kurtz’s signature info—and save the document as a Word .docx file in
the final line @. Of course, in real life, you’d want to use a less suspicious
filename than ciphertext_message_letterhead.docx!

Note that, because you're using a for loop based on the fake message,
appending any more hidden lines after the for loop ends—that is, after you
reach the end of the items in the fake list—is impossible. If you want more
space, you must enter hard returns at the bottom of the fake message, but
be careful not to add so many that you force a page break and create a mys-
terious empty page!

Run the program, open the saved Word document, use CTRL-A to select
all the text, and then set the Highlight color (see Figure 6-4) to dark gray
to see both messages. The secret message should be revealed (Figure 6-10).

he Colombian deal will be for 2 new venture wildcat wells, one each in the Llanos & Magdalena

asins. These wells include a carry of thirty percent for the national oil compan

and will test at least 3 K meters of vertical section. In return, the client will be permitted

o drill ten wells in the productive Putumayo province, earning a sixty % interest with a fi

percent royalty rate, increasing to the standard eighty five percent royalty five years

after start of production in each well |

Figure 6-10: Word document highlighted in dark gray to show both the fake message
and the unencrypted real message

Writing in Invisible Ink 117

18

Chapter 6

Adding the Vigenére Cipher

The code so far uses the plaintext version of the real message, so anyone
who changes the document’s highlight color will be able to read and under-
stand the sensitive information in it. Since you know Mr. Kurtz encrypted
this using the Vigeneére cipher, go back and alter the code to replace the
plaintext with the encrypted text. To do this, find the following line:

real text = docx.Document('realMessage.docx")

This line loads the real message as plaintext, so change the filename to
the one shown here in bold:

real_text = docx.Document('realMessage_Vig.docx")

Rerun the program and again reveal the hidden text by selecting the
whole document and setting the Highlight color to dark gray (Figure 6-11).

Fvr Gmxizfgmb giyx kvpj ns ssp 2 zsj zczh b i 0

[Zmgvrg. Fvrwc isypq ubppsps n gydfl sd fuwvrk drvagbg jmd hui Imhvsimz bmj ocztyzm|

nrb iwyp rggg er xsnwr 3 W arxcdg bj tqfgmamz fiatwbr. Gz frxsdb, glc ozvilf kvpj ns cipywgxcp|

Figure 6-11: Word document highlighted in dark gray to show both the fake message and
the encrypted real message

The secret message should be visible but unreadable to anyone who
cannot interpret the cipher. Compare the encrypted message in Figure 6-11
to the unencrypted version in Figure 6-10. Note that numbers and the %
sign occur in both versions. These were retained to demonstrate the poten-
tial pitfalls related to the encryption choice. You would want to augment the
Vigenere cipher to include these characters—or just spell them out. That
way, even if your message is discovered, you leave as few clues as possible as
to the subject matter.

If you want to encode your own message with the Vigenére cipher, do
an internet search for “online Vigenére encoder.” You’ll find multiple sites,
such as http://www.cs.du.edu/~snarayan/crypt/vigenere. html, that let you type

http://www.cs.du.edu/~snarayan/crypt/vigenere.html

or paste in plaintext. And if you want to write your own Python program
for encrypting with the Vigenére cipher, see Cracking Codes with Python (No
Starch Press, 2018) by Al Sweigart.

If you play around with your own real messages, encrypted or not,
make sure you're using the same font as in the fake message. A font is both
a typeface, like Helvetica Italic, and a size, such as 12. Remember from
“Considering Font Types, Kerning, and Tracking” on page 109 that if you
try to mix fonts, especially proportional and monospace fonts, the hidden
message lines may wrap, resulting in uneven spacing between paragraphs of
the real message.

Detecting the Hidden Message

Could Joan Watson, or any other detective, have found your hidden mes-
sage quickly? The truth is, probably not. In fact, as I write these words, I am
watching an episode of Elementary where Joan is busy investigating a com-
pany by reading through a box of email printouts! The use of the Vigenére
cipher may have been just a bit of lazy writing in an overall intelligently
crafted series. Still, we can speculate on what might give you away.

Since the final bid was probably not sent until close to the bid date, the
search could be limited to correspondence sent after the bid was finalized,
thereby eliminating a lot of noise. Of course, a detective won’t know exactly
what they’re looking for—or even if there is a mole—which leaves a large
search space. And there’s always the possibility that the information was
passed in a phone conversation or clandestine meeting.

Assuming there was a manageable volume of email and a hidden-
message hypothesis was being pursued, an investigator might detect your
invisible ink in several ways. For example, the Word spellchecker will not
flag the white, nonsensical encrypted words as long as they haven’t been
made visible. If, as a check, you swiped and reset the font color on some of
the hidden words, they will be permanently compromised, even after their
color has been restored to white. The spellchecker will underline them with
an incriminating red squiggly line (see Figure 6-12).

I received your CV on Monday. It is very impressive, but | am sorry to inform you that Mr. Holmes is not
looking for additional staff at this time.

MVMAAAAAY MAARAAAMAAAAN WIAAARAANY MRS WA VAR MAAARASAANAAAAS MAARAAAAAAAANS

While we do not normally accept unsolicited applications, | will keep your CV on file for future

consideration. If it is convenient, please send me a list of references, especially those pertaining to skills
in negotiation, accounting, and data mining (preferably using the Python programming language). A
recent photograph is also recommended.

Figure 6-12: Previously revealed invisible encrypted words underlined by the Word
Spelling and Grammar tool

If the investigating detective uses an alternative to Word to open the
document, the product’s spellchecker will most likely reveal the hidden
words (see Figure 6-13). This risk is mitigated somewhat by the dominance
of Microsoft Word in the marketplace.

Writing in Invisible Ink 19

120

Chapter 6

Dear Mr. Gerard:

| received your CV on Monday. It is very impressive, but | am sorry to inform you that Mr. Holmes is not
looking for additional staff at this time.

While we do not normally accept unsolicited applications, | will keep your CV on file for future
consideration. If it is convenient, please send me a list of references, especially those pertaining to skills
in negotiation, accounting, and data mining (preferably using the Python programming language). A
recent photograph is also recommended.

Best of luck to you. Feel free to check back at this time next year in the event a position becomes
available. Use this email address, and include your name and the word “check-back” in the subject line.

Sincerely yours,

Emil Kurtz
Associate Director
International Affairs

Figure 6-13: The spellchecker in LibreOffice Writer will highlight the invisible words.

Second, using CTRL-A to highlight all the text within Word won’t reveal
the hidden text, but it would indicate that some blank lines are longer than
others (see Figure 6-14), suggesting to the very observant that something
is amiss.

Morland Holmes

GLOBAL CONSULTANTING & NEGOTIATIONS

December 17, 2015

Dear Mr. Gerard:

| received your CV on Monday. It is very impressive, but | am sorry to inform you that Mr. Holmes is not

looking for additional staff at this time.

While we do not lly accept licited applications, | will keep your CV on file for future
Jeration. If it is ient, please send me a list of references, especially those pertaining to skills

in negotiation, accounting, and data mining (preferably using the Python programming language). A
recent photograph is also fed

Best of luck to you. Feel free to check back at this time next year in the event a position becomes available.
Use this email address, and include your name and the word “check-back” in the subject line.

Sincerely yours,
Emil Kurtz

Associate Director
International Affairs

Figure 6-14: Selecting the whole Word document reveals differences in the length of
blank lines.

Third, opening the Word document using the preview functionality
in some email software may reveal the hidden text when the contents are
selected through swiping or using CTRL-A (Figure 6-15).

Morland Holmes

December 17, 2015

Fvr Gmxizfgmb giyx kvpj ns ssp 2 zsj zczhhve iwyhambh jijxg, brc gopl gz hui Jxoasq & Yothyxsae

Figure 6-15: Selecting the whole document in the Yahoo! Mail Preview panel reveals the
hidden text.

But while selecting hidden text in the Yahoo! Mail Preview panel reveals
the text, the same is not true in the Microsoft Outlook Preview panel in
Figure 6-16.

Figure 6-16: Selecting the whole document in the Microsoft Outlook Preview panel does
not reveal the hidden text.

Finally, saving the Word document as a plain text (*.tx¢) file would
remove all formatting and leave the hidden text exposed (Figure 6-17).

Writing in Invisible Ink 121

122

Dear Mr. Gerard:

Fvr Gmxizfgmb qiyx kvpi ns ssp 2 zsj zczhhve iwyhamh jijxg, brc gopl gz hui Jxoasq & Yothyxsae

I received your CV on Monday. Tt is very impressive, but T am sorry to inform you that Mr. Holmes

is not looking for additional staff at this time.

Zmgvrg. Fvrwe isypg ubppsps n gydfl sd fvwvrk drvagbg jmd hui lmhvslmz bmj ocztyzm

While we do not normally accept unsolicited applications, I will keep your CV on file for future consideration.

If it is convenient, please send me a list of references, especially those pertaining to skills in negeotiation,

Figure 6-17: Saving the Word document as a plain text (*.txt) file reveals the hidden text.

To conceal a secret message with steganography, you have to conceal
not only the contents of the message but also the fact that a message even
exists. Our electronic invisible ink can’t always guarantee this, but from a
mole’s point of view, the weaknesses just listed involve either them mak-
ing a mistake, which could theoretically be controlled, or an investigator
taking a dedicated and unlikely action, such as swiping text, saving files
in a different format, or using a less-common word processor. Assuming
the mole in Elementary considered these acceptable risks, electronic invis-
ible ink provides a plausible explanation for why the internal company
investigation failed.

Summary

In this chapter, you used steganography to hide an encrypted message
within a Microsoft Word document. You used a third-party module, called
python-docx, to directly access and manipulate the document using Python.
Similar third-party modules are available for working with other popular
document types, like Excel spreadsheets.

Further Reading

You can find online documentation for python-docx at https://python-docx
.readthedocs.io/en/latest/ and hitps://pypi.python.org/pypi/python-docx.

Automate the Boring Stuff with Python (No Starch Press, 2015) by Al
Sweigart, covers modules that allow Python to manipulate PDFs, Word files,
Excel spreadsheets, and more. Chapter 13 contains a useful tutorial on
python-docx, and the appendix covers installing third-party modules with pip.

You can find beginner-level Python programs for working with ciphers
in Cracking Codes with Python (No Starch Press, 2018) by Al Sweigart.

Mysterious Messages (The Penguin Group, 2009) by Gary Blackwood is an
interesting and well-illustrated history of steganography and cryptography.

Practice Project: Checking the Number of Blank Lines

Chapter 6

Improve the hidden message program by writing a function that compares
the number of blank lines in the fake message to the number of lines in the
real message. If there is insufficient space to hide the real message, have the
function warn the user and tell them how many blank lines to add to the
fake message. Insert and call the function in a copy of the elementary_ink.py

https://python-docx.readthedocs.io/en/latest/
https://python-docx.readthedocs.io/en/latest/
https://pypi.python.org/pypi/python-docx

code, just before loading the template document. You can find a solution

in the appendix and online at Attps://www.nostarch.com/impracticalpython/ in
elementary_ink_practice.py. For testing, download realMessageChallenge.docx from
the same site and use it for the real message.

Challenge Project: Using Monospace Font

Rewrite the elementary_ink.py code for monospace fonts and hide your own
short message in the spaces between words. See “Considering Font Types,
Kerning, and Tracking” on page 109 for a description of monospace fonts.
As always with challenge projects, no solution is provided.

Writing in Invisible Ink 123

https://www.nostarch.com/impracticalpython/

BREEDING GIANT RATS WITH
GENETIC ALGORITHMS

Genetic algorithms are general-purpose
optimization programs designed to solve

complex problems. Invented in the 1970s,
they belong to the class of evolutionary algorithms,
so named because they mimic the Darwinian process
of natural selection. They are especially useful when
little is known about a problem, when you're dealing
with a nonlinear problem, or when searching for brute-
force-type solutions in a large search space. Best of all,
they are easy algorithms to grasp and implement.

In this chapter, you’ll use genetic algorithms to breed a race of super-
rats that can terrorize the world. After that, you’ll switch sides and help
James Bond crack a high-tech safe in a matter of seconds. These two proj-
ects should give you a good appreciation for the mechanics and power of
genetic algorithms.

126

Finding the Best of All Possible Solutions

Genetic algorithms optimize, which means that they select the best solution
(with regard to some criteria) from a set of available alternatives. For exam-
ple, if you're looking for the fastest route to drive from New York to Los
Angeles, a genetic algorithm will never suggest you fly. It can choose only
from within an allowed set of conditions that you provide. As optimizers,
these algorithms are faster than traditional methods and can avoid prema-
ture convergence to a suboptimal answer. In other words, they efficiently
search the solution space yet do so thoroughly enough to avoid picking a
good answer when a better one is available.

Unlike exhaustive search engines, which use pure brute force, genetic
algorithms don’t try every possible solution. Instead, they continuously
grade solutions and then use them to make “informed guesses” going for-
ward. A simple example is the “warmer-colder” game, where you search
for a hidden item as someone tells you whether you are getting warmer or
colder based on your proximity or search direction. Genetic algorithms use
a fitness function, analogous to natural selection, to discard “colder” solu-
tions and build on the “warmer” ones. The basic process is as follows:

Randomly generate a population of solutions.
Measure the fitness of each solution.

Select the best (warmest) solutions and discard the rest.

Ll

Cross over (recombine) elements in the best solutions to make new
solutions.

5. Mutate a small number of elements in the solutions by changing their
value.

6. Return to step 2 and repeat.

The select—cross over—-mutate loop continues until it reaches a
stop condition, like finding a known answer, finding a “good enough”
answer (based on a minimum threshold), completing a set number
of iterations, or reaching a time deadline. Because these steps closely
resemble the process of evolution, complete with survival of the fittest,
the terminology used with genetic algorithms is often more biological
than computational.

Project #13: Breeding an Army of Super-Rats

Chapter 7

Here’s your chance to be a mad scientist with a secret lab full of boiling
beakers, bubbling test tubes, and machines that go “BZZZTTT.” So pull on
some black rubber gloves and get busy turning nimble trash-eating scaven-
gers into massive man-eating monsters.

THE OBJECTIVE

Use a genetic algorithm to simulate breeding rats to an average weight of 110 pounds.

Strategy

Your dream is to breed a race of rats the size of bullmastiffs (we’ve already
established that you're mad). You’ll start with Rattus norvegicus, the brown
rat, then add some artificial sweeteners, some atomic radiation from the
1950s, a lot of patience, and a pinch of Python, but no genetic engineering—
you're old-school, baby! The rats will grow from less than a pound to a terri-
fying 110 pounds, about the size of a female bullmastiff (see Figure 7-1).

-,

Figure 7-1: Size comparison of a brown rat, a female bullmastiff,
and a human

Before you embark on such a huge undertaking, it’s prudent to simu-

late the results in Python. And you've drawn up something better than a
plan—you’ve drawn some graphical pseudocode (see Figure 7-2).

Breeding Giant Rats with Genetic Algorithms 127

% ‘/_} Mode
Populate: Establish
- A initial population and

range of weights.

fitness by comparing

. - 7{7{ @ Grode: Evaluot ‘

mean population weight

! ‘,—5 IIII fo a target weight.

Select: Cull smallest

! males and females.

Min Max Breed: Repopulate

with random weights
‘/._, based on weight range
% of the selected rats.

‘ Mutate: Randomly

. alter weights on a few

—_— —

rats. Most outcomes
E reduce weight.
/

—_— e — —_— —_— —_— —_— — e —_— —_— —_ -

Figure 7-2: Genetic algorithm approach to breeding super-rats

The process shown in Figure 7-2 outlines how a genetic algorithm
works. Your goal is to produce a population of rats with an average weight
of 110 pounds from an initial population weighing much less than that.
Going forward, each population (or generation) of rats represents a candi-
date solution to the problem. Like any animal breeder, you cull undesirable
males and females, which you humanely send to—for you Austin Powers
fans—an evil petting zoo. You then mate and breed the remaining rats, a
process known as crossover in genetic programming.

128 Chapter 7

The offspring of the remaining rats will be essentially the same size
as their parents, so you need to mutate a few. While mutation is rare and
usually results in a neutral-to-nonbeneficial trait (low weight, in this case),
sometimes you’ll successfully produce a bigger rat.

The whole process then becomes a big repeating loop, whether done
organically or programmatically, making me wonder whether we really are
just virtual beings in an alien simulation. At any rate, the end of the loop—
the stop condition—is when the rats reach the desired size or you just can’t
stand dealing with rats anymore.

For input to your simulation, you’ll need some statistics. Use the metric
system since you’re a scientist, mad or not. You already know that the aver-
age weight of a female bullmastiff is 50,000 grams, and you can find useful
rat statistics in Table 7-1.

Table 7-1: Brown Rat Weight and Breeding Statistics

Parameter Published values
Minimum weight 200 grams

Average weight (female) 250 grams

Average weight (male) 300-350 grams
Maximum weight 600 grams*

Number of pups per litter 8-12

Litters per year 4-13

Life span (wild, captivity) 1-3 years, 4-6 years

*Exceptional individuals may reach 1,000 grams in captivity.

Because both domestic and wild brown rats exist, there may be wide
variation in some of the stats. Rats in captivity tend to be better cared for
than wild rats, so they weigh more, breed more, and have more pups. So
you can choose from the higher end when a range is available. For this proj-
ect, start with the assumptions in Table 7-2.

Table 7-2: Input Assumptions for the Super-Rats Genetic Algorithm

Variable and value Comments
GOAL = 50000 Target weight in grams (female bullmastiff)
NUM_RATS = 20 Total number of adult rats your lab can support

INITIAL MIN_WT = 200 Minimum weight of adult rat, in grams, in initial population

INITIAL_MAX_WT = 600 Maximum weight of adult rat, in grams, in initial population
INITIAL_MODE_WT = 300 Most common adult rat weight, in grams, in initial population

MUTATE_ODDS = 0.01 Probability of a mutation occurring in a rat
MUTATE_MIN = 0.5 Scalar on rat weight of least beneficial mutation
MUTATE_MAX = 1.2 Scalar on rat weight of most beneficial mutation
LITTER_SIZE = 8 Number of pups per pair of mating rats

LITTERS_PER_YEAR = 10 Number of litters per year per pair of mating rats
GENERATION_LIMIT = 500 Generational cutoff to stop breeding program

Breeding Giant Rats with Genetic Algorithms 129

super_rats.py,

part 1

130

Chapter 7

Since rats breed so frequently, you shouldn’t have to factor in life span.
Even though you will retain some of the parents from a previous genera-
tion, they will be culled out quickly as their offspring increase in weight
from generation to generation.

The Super-Rats Code

The super_rats.py code follows the general workflow in Figure 7-2. You can
also download the code from https://www.nostarch.com/impracticalpython/.

Entering the Data and Assumptions

Listing 7-1, in the global space at the start of the program, imports modules
and assigns the statistics, scalars, and assumptions in Table 7-2 as constants.
Once the program is complete and working, feel free to experiment with
the values in that table and see how they affect your results.

import time
import random
import statistics

CONSTANTS (weights in grams)
GOAL = 50000

NUM_RATS = 20

INITIAL_MIN WT = 200
INITIAL_MAX_WT = 600
INITIAL_MODE_WT = 300
MUTATE_ODDS = 0.01

MUTATE_MIN = 0.5

MUTATE_MAX = 1.2
LITTER SIZE = 8
LITTERS_PER_YEAR
GENERATION_LIMIT

10
500

ensure even-number of rats for breeding pairs:
if NUM_RATS % 2 != o:
NUM_RATS += 1

Listing 7-1: Imports modules and assigns constants

Start by importing the time, random, and statistics modules @. You’ll use
the time module to record the runtime of your genetic algorithm. It’s inter-
esting to time genetic algorithms, if only to be awed by how quickly they
can find a solution.

The random module will satisfy the stochastic needs of the algorithm,
and youw’ll use the statistics module to get mean values. This is a weak use
for statistics, but I want you to be aware of the module, since it can be
quite handy.

Next, assign the input variables described in Table 7-2 and be sure to
note that the units are grams . Use uppercase letters for the names, as
these represent constants (32

super_rats.py,
part 2

o

Right now, we’re going to assume the use of breeding pairs, so check
that the user input an even number of rats and, if not, add a rat @. Later, in
“Challenge Projects” on page 144, you'll get to experiment with alternative
gender distributions.

Initializing the Population

Listing 7-2 is the program’s shopping representative. It goes to a pet
shop and picks out the rats for an initial breeding population. Since you
want mating pairs, it should choose an even number of rats. And since
you can’t afford one of those fancy volcano lairs with unlimited space,
you’ll need to maintain a constant number of adult rats through each
generation—though the number can swell temporarily to accommodate
litters. Remember, the rats will need more and more space as they grow
to the size of big dogs!

def populate(num_rats, min_wt, max_wt, mode wt):
"""Initialize a population with a triangular distribution of weights.
® return [int(random.triangular(min_wt, max_wt, mode_wt))\
for i in range(num_rats)]

Listing 7-2: Defines the function that creates the initial rat population

The populate() function needs to know the amount of adult rats you
want, the minimum and maximum weights for the rats, and the most com-
monly occurring weight @. Note that all of these arguments will use con-
stants found in the global space. You don’t have to pass these as arguments
for the function to access them. But I do so here and in the functions that
follow, for clarity and because local variables are accessed more efficiently.

You'll use the four arguments above with the random module, which
includes different types of distributions. You’ll use a triangular distribution
here, because it gives you firm control of the minimum and maximum sizes
and lets you model skewness in the statistics.

Because brown rats exist both in the wild and in captivity—in zoos,
labs, and as pets—their weights are skewed to the high side. Wild rats tend
to be smaller as their lives are nasty, brutish, and short, though lab rats may
contest that point! Use list comprehension to loop through the number
of rats and assign each one a weight. Bundle it all together with the return
statement @.

Measuring the Fitness of the Population

Measuring the fitness of the rats is a two-step process. First, grade the whole
population by comparing the average weight of all the rats to the bullmas-
tiff target. Then, grade each individual rat. Only rats whose weight ranks

in the upper n percent, as determined by the NUM_RATS variable, get to breed
again. Although the average weight of the population is a valid fitness mea-
surement, its primary role here is to determine whether it’s time to stop
looping and declare success.

Breeding Giant Rats with Genetic Algorithms 131

super_rats.py,

part 3

132

Chapter 7

Listing 7-3 defines the fitness() and select() functions, which together
form the measurement portion of your genetic algorithm.

©® def fitness(population, goal):

Measure population fitness based on an attribute mean vs target.
ave = statistics.mean(population)
return ave / goal

® def select(population, to retain):

Cull a population to retain only a specified number of members.
sorted population = sorted(population)

to_retain by sex = to_retain//2

members_per sex = len(sorted_population)//2

females = sorted population[:members_per sex]

males = sorted population[members per sex:]

selected females = females[-to retain by sex:]

selected_males = males[-to_retain_by sex:]

return selected_males, selected females

@ O 0000

Listing 7-3: Defines the measurement step of the genetic algorithm

Define a function to grade the fitness of the current generation @. Use
the statistics module to get the mean of the population and return this
value divided by the target weight. When this value is equal to or greater
than 1, you’ll know it’s time to stop breeding.

Next, define a function that culls a population of rats, based on weight,
down to the NUM_RATS value, represented here by the to_retain parameter @.
It will also take a population argument, which will be the parents of each
generation.

Now, sort the population so you can distinguish large from small ©.
Take the number of rats you want to retain and divide it by 2 using floor
division so that the result is an integer @. Do this step so you can keep the
biggest male and female rats. If you choose only the largest rats in the pop-
ulation, you will theoretically be choosing only males. You obtain the total
members of the current population, by sex, by dividing the sorted_population
by 2, again using floor division ©.

Male rats tend to be larger than females, so make two simplifying
assumptions: first, assume that exactly half of the population is female
and, second, that the largest female rat is no heavier than the smallest male
rat. This means that the first half of the sorted population list represents
females and the last half represents males. Then create two new lists by
splitting sorted_population in half, taking the bottom half for females ® and
the upper half for males. Now all that’s left to do is take the biggest rats
from the end of each of these lists @ —using negative slicing—and return
them @. These two lists contain the parents of the next generation.

The first time you run this function, all it will do is sort the rats by sex,
as the initial number of rats already equals the NUM_RATS constant. After that,
the incoming population argument will include both parents and children,
and its value will exceed NUM_RATS.

super_rats.py,
part 4

Breeding a New Generation

Listing 7-4 defines the program’s “crossover” step, which means it breeds
the next generation. A key assumption is that the weight of every child will
be greater than or equal to the weight of the mother and less than or equal
to the weight of the father. Exceptions to that rule will be handled in the
“mutation” function.

def breed(males, females, litter size):
"""Crossover genes among members (weights) of a population.
random. shuffle(males)
random. shuffle(females)
children = []
for male, female in zip(males, females):
® for child in range(litter size):
® child = random.randint(female, male)
@ children.append(child)
O return children

e o

Listing 7-4: Defines the function that breeds a new generation of rats

The breed() function takes as arguments the lists of weights of selected
males and females returned from the select() function along with the size
of a litter @. Next, randomly shuffle the two lists @, because you sorted
them in the select() function and iterating over them without shuffling
would result in the smallest male being paired with the smallest female,
and so on. You need to allow for love and romance; the largest male may
be drawn to the most petite female!

Start an empty list to hold their children ®. Now for the hanky-panky.
Go through the shuffled lists using zip() to pair a male and female from
each list @. Each pair of rats can have multiple children, so start another
loop that uses the litter size as a range @. The litter size is a constant, called
LITTER_SIZE, that you provided in the input parameters, so if the value is 8,
you’ll get eight children.

For each child, choose a weight at random between the mother’s and
father’s weights ®. Note that you don’t need to use male + 1, because randint()
uses all the numbers in the supplied range. Note also that the two values
can be the same, but the first value (the mother’s weight) can never be
larger than the second (the father’s weight). This is another reason for the
simplifying assumption that females must be no larger than the smallest
male. End the loop by appending each child to the list of children @, then
return children ©.

Mutating the Population

A small percentage of the children should experience mutations, and most
of these should result in traits that are nonbeneficial. That means lower-
than-expected weights, including “runts” that would not survive. But every
so often, a beneficial mutation will result in a heavier rat.

Breeding Giant Rats with Genetic Algorithms 133

super_rats.py,

part 5

super_rats.py,

part 6

134

Chapter 7

Listing 7-5 defines the mutate() function, which applies the mutation
assumptions you supplied in the list of constants. After mutate() is called, it
will be time to check the fitness of the new population and start the loop
over if the target weight hasn’t been reached.

def mutate(children, mutate odds, mutate min, mutate max):
"""Randomly alter rat weights using input odds & fractional changes.
® for index, rat in enumerate(children):
if mutate_odds >= random.random():
© children[index] = round(rat * random.uniform(mutate min,
mutate_max))

return children

Listing 7-5: Defines the function that mutates a small portion of the population

The function needs the list of children, the odds of a mutation occur-
ring, and the minimum and maximum impacts of a mutation @. The impacts
are scalars that you'll apply to the weight of a rat. In your list of constants at
the start of the program (and in Table 7-2), they are skewed to the minimum
side, as most mutations do not result in beneficial traits.

Loop through the list of children and use enumerate()—a handy built-in
function that acts as an automatic counter—to get an index @. Then use
the random() method to generate a random number between 0 and 1 and
compare it to the odds of a mutation occurring.

If the mutate_odds variable is greater than or equal to the randomly gen-
erated number, the rat (weight) at that index is mutated. Choose a mutation
value from a uniform distribution defined by the minimum and maximum
mutation values; this basically selects a value at random from the min-max
range. As these values are skewed to the minimum, the outcome is more
likely to be a loss in weight than a gain. Multiply the current weight by
this mutation scalar and round it to an integer ©. Finish by returning the
mutated children list.

With regard to the validity of mutation statistics, you can find studies that suggest
beneficial mutations are very rare and others that suggest they are more common than
we realize. The breeding of dogs has shown that achieving drastic variations in size
(for example, Chihuahuas vs. Great Danes) doesn’t require millions of years of evolu-
tion. In a famous 20th-century study, Russian geneticist Dmitry Belyayev started
with 130 silver foxes and, over a 40-year period, succeeded in achieving dramatic
physiological changes by simply selecting the tamest foxes in each generation.

Defining the main() Function

Listing 7-6 defines the main() function, which manages the other functions
and determines when you’ve met the stop condition. It will also display all
the important results.

def main():
"""Initialize population, select, breed, and mutate, display results.
® generations = 0

® parents = populate(NUM_RATS, INITIAL MIN WT, INITIAL MAX WT,
INITIAL_MODE_WT)
print("initial population weights = {}".format(parents))
popl_fitness = fitness(parents, GOAL)
print("initial population fitness = {}".format(popl fitness))
print("number to retain = {}".format(NUM_RATS))

© ave wt = []

® while popl_fitness < 1 and generations < GENERATION_LIMIT:
selected males, selected females = select(parents, NUM_RATS)
children = breed(selected males, selected females, LITTER_SIZE)
children = mutate(children, MUTATE_ODDS, MUTATE_MIN, MUTATE_MAX)
© parents = selected _males + selected_females + children
popl fitness = fitness(parents, GOAL)
@ print("Generation {} fitness = {:.4f}".format(generations,
popl fitness))
@ ave_wt.append(int(statistics.mean(parents)))
generations += 1
© print("average weight per generation = {}".format(ave wt))
print("\nnumber of generations = {}".format(generations))
print("number of years = {}".format(int(generations / LITTERS_PER_YEAR)))

Listing 7-6: Defines the main() function

Start the function by initializing an empty list to hold the number of
generations. You'll eventually use this to figure out how many years it took
to achieve your goal @.

Next, call the populate() function ® and immediately print the results.
Then, get the fitness of your initial population and print this along with the
number of rats to retain each generation, which is the NUM_RATS constant.

For fun, initialize a list to hold the average weight of each generation so
you can view it at the end @. If you plot these weights against the number of
years, you'll see that the trend is exponential.

Now, start the big genetic loop of select-mate-mutate. This is in the
form of a while loop, with the stop conditions being either reaching the tar-
get weight or reaching a large number of generations without achieving the
target weight @. Note that after mutating the children, you need to com-
bine them with their parents to make a new parents list ©. It takes the pups
about five weeks to mature and start breeding, but you can account for this
by adjusting the LITTERS_PER_YEAR constant down from the maximum pos-
sible value (see Table 7-1), as we’ve done here.

At the end of each loop, display the results of the fitness() function to
four decimal places so you can monitor the algorithm and ensure it is pro-
gressing as expected @. Get the average weight of the generation, append it
to the ave_wt list @, and then advance the generation count by 1.

Complete the main() function by displaying the list of average weights
per generation, the number of generations, and the number of years—
calculated using the LITTERS_PER_YEAR variable ©.

Breeding Giant Rats with Genetic Algorithms 135

super_rats.py,

part 7

136

Chapter 7

Running the main() Function

Finish up with the familiar conditional statement for running the program
either stand-alone or as a module. Get the ending time and print how long
it took the program to run. The performance information should print
only when the module is run in stand-alone mode, so be sure to place it
under the if clause. See Listing 7-7.

if _name__ == "'_main__"':
start_time = time.time()
main()

end_time = time.time()
duration = end_time - start_time
print("\nRuntime for this program was {} seconds.".format(duration))

Listing 7-7: Runs the main() function and time module if the program isn’t imported

Summary

With the parameters in Table 7-2, the super_rats.py program will take about
two seconds to run. On average, it will take the rats about 345 generations,
or 34.5 years, to reach the target weight of 110 pounds. That’s a long time for
a mad scientist to stay mad! But armed with your program, you can look for
ways to reduce the time to target.

Sensitivity studies work by making multiple changes to a single variable
and judging the results. You should take care in the event some variables
are dependent on one another. And since the results are stochastic (ran-
dom), you should make multiple runs with each parameter change in order
to capture the range of possible outcomes.

Two things you can control in your breeding program are the number of
breeding rats (NUM_RATS) and the odds of a mutation occurring (MUTATE_ODDS).
The mutation odds are influenced by factors like diet and exposure to radia-
tion. If you change these variables one at a time and rerun super_rats.py, you
can judge the impact of each variable on the project timeline.

An immediate observation is that, if you start with small values for
each variable and slowly increase them, you get dramatic initial results
(see Figure 7-3). After that, both curves decline rapidly and flatten out
in a classic example of diminishing returns. The point where each curve
flattens is the key to optimally saving money and reducing work.

For example, you get very little benefit from retaining more than about
300 rats. You’d just be feeding and caring for a lot of superfluous rats.
Likewise, trying to boost the odds of a mutation above 0.3 gains you little.

With charts like these, it’s easy to plan a path forward. The horizontal
dotted line marked “Baseline” represents the average result of using the
input in Table 7-2. You can potentially reduce this time by over 10 years just
by retaining 50 rats rather than 20. You should also focus on increasing the
number of beneficial mutations. This will be more rewarding, but riskier
and harder to control.

Sensitivity Study
60 60
50 50
40 40
........................... At e sghne Table 72 input].
2 30 2 30
8 ' 8 Improvement
> >
20 \ Improvement 20
\
10 S~ - 10
0 0
0 025 05 075 1 0 500 1000 1500 2000
Mutation probability Number rats

Figure 7-3: Impact of two parameters on the time required to reach the target weight

If you rerun the simulation using 50 rats and bumping the odds
of mutation up to 0.05, you can theoretically complete the project in
14 years, an improvement of 246 percent over the initial baseline. Now
that’s optimization!

Breeding super-rats was a fun and simple way to understand the basics
of genetic algorithms. But to truly appreciate their power, you need to
attempt something harder. You need a brute-force problem that’s too big
to brute-force, and the next project is that kind of problem.

Project #14: Cracking a High-Tech Safe

You are Q, and James Bond has a problem. He has to attend an elegant
dinner party at a villain’s mansion, slip away to the man’s private office,
and crack his wall safe. Child’s play for 007, except for one thing: it’s a
Humperdink BR549 digital safe that takes 10 digits, yielding 10 billion
possible combinations. And the lock wheels don’t start turning until after
all the numbers have been entered. There’ll be no putting a stethoscope
to this safe and slowly turning a dial!

As Q, you already have an autodialer device that can brute-force its
way through all possible solutions, but Bond simply won’t have time to use
it. Here’s why.

A combination lock should really be called a permutation lock, because it
requires ordered combinations, which are, by definition, permutations. More
specifically, locks rely on permutations with repetition. For example, a valid—
though insecure—combination could be 999999999.

You used the itertools module’s permutations() iterator when working
with anagrams in Chapter 3 and in “Practice Projects” on page 87 in
Chapter 4, but that won’t help here because permutations() returns permu-
tations without repetition. To generate the right kind of permutation for
alock, you need to use itertools’s product() iterator, which calculates the
Cartesian product from multiple sets of numbers:

Breeding Giant Rats with Genetic Algorithms 137

brute_force
_cracker.py

138

Chapter 7

>>> from itertools import product

>>> combo = (1, 2)

>>> for perm in product(combo, repeat=2):
print(perm)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

The optional repeat keyword argument lets you take the product of
an iterable multiplied by itself, as you need to do in this case. Note that
the product() function returns all the possible combinations, whereas the
permutations() function would return only (1, 2) and (2, 1). You can read
more about product() at Attps://docs.python.org/3.6/library/itertools. htmi#itertools
.product. Listing.

Listing 7-8 is a Python program, called brute_force_cracker.py, that uses
product() to brute-force its way to the right combination:

import time
from itertools import product

start_time = time.time()
combo = (9) 9, 7, 6, 5, 4, 3)

use Cartesian product to generate permutations with repetition
for perm in product([o, 1, 2, 3, 4, 5, 6, 7, 8, 9], repeat=len(combo)):
® if perm == combo:

print("Cracked! {} {}".format(combo, perm))

end_time = time.time()
print("\nRuntime for this program was {} seconds.".format
(end_time - start_time))

Listing 7-8: Uses a brute-force method to find a safe’s combination

Import time and the product iterator from itertools @. Get the start
time, and then enter the safe combination as a tuple @. Next use product(),
which returns tuples of all the permutations with repetition for a given
sequence. The sequence contains all the valid single-digit entries (0-9).
You should set the repeat argument to the number of digits in the combi-
nation ®. Compare each result to the combination and print "Cracked!"
if they match, along with the combination and matching permutation @.
Finish by displaying the runtime ®.

This works great for combinations up to eight digits long. After that,
the wait becomes increasingly uncomfortable. Table 7-3 is a record of run-
times for the program versus number of digits in the combination.

https://docs.python.org/3.6/library/itertools.html#itertools.product.Listing
https://docs.python.org/3.6/library/itertools.html#itertools.product.Listing

Table 7-3: Runtimes Versus Digits in Combination (2.3 GHz Processor)

Number of digits Runtime in seconds
0.035

0.147

1.335

12.811

133.270

0 1396.955

N O O

— 0 ©

Notice that adding a number to the combination increases the runtime
by an order of magnitude. This is an exponential increase. With 9 digits,
you’d wait over 2 minutes for an answer. With 10 digits, over 20 minutes!
That’s a long time for Bond to take an unnoticed “bathroom break.”

Fortunately, you're Q, and you know about genetic algorithms. All
you need is some way to judge the fitness of each candidate combination.
Options include monitoring fluctuations in power consumption, measur-
ing time delays in operations, and listening for sounds. Let’s assume use of
a sound-amplifying tool, along with a tool to prevent lockouts after a few
incorrect combinations have been entered. Because of the safeguards in the
BR549 safe, a sound tool can initially tell you only how many digits are cor-
rect, not which digits, but with very little time, your algorithm can zero in on
the solution.

THE OBJECTIVE

Use a genetic algorithm to quickly find a safe’s combination in a large search space.

Strategy

The strategy here is straightforward. You’ll generate a sequence of 10 num-
bers at random and compare it to the real combination, grading the result
based on matches; in the real world, you’d find the number of matches using
the sound detector clamped to the door of the safe. You then change one
value in your solution and compare again. If another match is found, you
throw away the old sequence and move forward with the new; otherwise, you
keep the old sequence and try again.

Since one solution completely replaces the other, this represents 100 per-
cent crossover of genetic material, so you are essentially using just selection
and mutation. Selection plus mutation alone generates a robust Aill-climbing
algorithm. Hill climbing is an optimization technique that starts with an
arbitrary solution and changes (mutates) a single value in the solution. If the
result is an improvement, the new solution is kept and the process repeats.

Breeding Giant Rats with Genetic Algorithms 139

safe_cracker.py,

part 1

140

Chapter 7

2]

A problem with hill climbing is that the algorithm can get stuck in local
minima or maxima and not find the optimal globalvalue. Imagine you are
looking for the lowest value in the wavelike function in Figure 7-4. The cur-
rent best guess is marked by the large black dot. If the magnitude of the
change you are making (mutation) is too small to “escape” the local trough,
the algorithm won’t find the true low point. From the algorithm’s point of
view, because every direction results in a worse answer, it must have found
the true answer. So it prematurely converges on a solution.

Mutation
Range

Current solution

Local minimum
Global minimum

Figure 7-4: Example of a hill-climbing algorithm “stuck” in a local minimum

Using crossover in genetic algorithms helps to avoid premature con-
vergence problems, as does allowing for relatively large mutations. Because
you’re not worried about honoring biological realism here, the mutation
space can encompass every possible value in the combination. That way you
can’t get stuck, and hill climbing is an acceptable approach.

The Safecracker Code

The safe_cracker.py code takes a combination of n digits and uses hill climb-
ing to reach the combination from a random starting point. The code can
be downloaded from https://www.nostarch.com/impracticalpython/.

Setting Up and Defining the fitness() Function

Listing 7-9 imports the necessary modules and defines the fitness()
function.

import time
from random import randint, randrange

def fitness(combo, attempt):
"""Compare items in two lists and count number of matches.
grade = 0
® for i, j in zip(combo, attempt):

safe_cracker.py,
part 2

if i ==3:
grade += 1
return grade

Listing 7-9: Imports modules and defines the fitness() function

After importing some familiar modules @, define a fitness() function
that takes the true combination and an attempted solution as arguments @.
Name a variable grade and set it to 0. Then use zip() to iterate through each
element in the combination and your attempt ©. If they’re the same, add 1
to grade and return it. Note that you aren’t recording the index that matches,
just that the function has found a match. This emulates output from the
sound detection device. All it can tell you initially is how many lock wheels
turned, not their locations.

Defining and Running the main() Function

Since this is a short and simple program, most of the algorithm is run in
the main() function, Listing 7-10, rather than in multiple functions.

def main():
"""Use hill-climbing algorithm to solve lock combination.
O combination = '6822858902'
print("Combination = {}".format(combination))
convert combination to list:
® combo = [int(i) for i in combination]

generate guess & grade fitness:
© best attempt = [0] * len(combo)
best attempt grade = fitness(combo, best attempt)

® count = 0

evolve guess
© while best_attempt != combo:
crossover
@ next_try = best attempt[:]

mutate
lock _wheel = randrange(0, len(combo))
@ next_try[lock wheel] = randint(o, 9)

grade & select
® next_try grade = fitness(combo, next_try)
if next_try grade > best_attempt_grade:
best_attempt = next_try[:]
best_attempt_grade = next_try grade
print(next_try, best_attempt)
count += 1

print()

© print("Cracked! {}".format(best_attempt), end=" ")
print("in {} tries!".format(count))

Breeding Giant Rats with Genetic Algorithms 141

if _name__ == "'_main__':
start_time = time.time()
main()
end_time = time.time()
duration = end_time - start_time
® print("\nRuntime for this program was {:.5f} seconds.".format(duration))

Listing 7-10: Defines the main() function and runs and times the program if it hasn't
been imported

Provide the true combination as a variable @ and use list comprehen-
sion to convert it into a list for convenience going forward @. Generate a list
of zeros equal in length to the combination and name it best_attempt ©. At
this point, any combination is as good as any other. You should retain this
name—best_attempt—because you need to preserve only the best solution
as you climb the hill. Once you’ve generated the initial attempt, grade it
with the fitness() function and then assign the value to a variable, called
best_attempt_grade.

Start a count variable at zero. The program will use this variable to
record how many attempts it took to crack the code @.

Now, start a while loop that continues until you've found the combi-
nation @. Assign a copy of best_attempt to a next_try variable @. You copy
it so you don’t run into aliasing problems; when you alter an element in
next_try, you don’t want to accidentally change best_attempt, because you
may continue to use it in the event next_try fails the fitness test.

It’s now time to mutate the copy. Each digit in the combination turns
a lock wheel in the safe, so name a variable lock_wheel and randomly set it
equal to an index location in the combination. This represents the location
of the single element to change in this iteration. Next, randomly choose a
digit and use it to replace the value at the location indexed by lock_wheel @.

Grade next_try, and if it’s fitter than the previous attempt, reset
both best_attempt and best_attempt_grade to the new values ©. Otherwise,
best_attempt will remain unchanged for the next iteration. Print both
next_try and best_attempt, side by side, so you can scroll through the
attempts when the program ends and see how they evolved. Finish the
loop by advancing the counter.

When the program finds the combination, display the best_attempt
value and the number of tries it took to find it ®. Remember, the end="
argument prevents a carriage return at the end of the printed line and
places a space between the end of the current line and the beginning of
the next line.

Complete the program with the conditional statement for running
main() stand-alone and display the runtime to five decimal places @®. Note
that the timing code comes after the conditional, and thus will not run if
the program is imported as a module.

142 Chapter 7

Summary

The last few lines of output from the safe_cracker.py program are shown
here. I've omitted most of the evolving comparisons for brevity. The run
was for a 10-digit combination.

[6) 8) 6) 2) 0) 5) 8) 9) 0) o] [6) 8) 2) 2’ 0) 5) 8) 9) 0) 0]
[6) 8) 2) 2) 0) 9) 8) 9) 0) 0] [6) 8) 2) 2’ 0) 5) 8) 9) 0) O]
[6) 8) 2} 2) 8) 5) 81 9) 0) O] [6) 8) 2} 2) 8) 5) 8) 9) O) 0]
[6) 8) 2) 2) 8) 5) 8! 9) 0) 2] [6) 8) 2) 2) 8) 5) 8) 9) O) 2]

Cracked! [6, 8, 2, 2, 8, 5, 8, 9, 0, 2] in 78 tries!

Runtime for this program was 0.69172 seconds.

Ten billion possible combinations, and the program found a solution
in only 78 tries and in less than a second. Even James Bond would be
impressed with that.

That does it for genetic algorithms. You've used an example workflow to
breed gigantic rodents, then trimmed it to hill climb through a brute-force
problem in no time flat. If you want to continue to play digital Darwin and
experiment with genetic algorithms, a long list of example applications can
be found on Wikipedia (https://en.wikipedia.org/wiki/List_of_genetic_algorithm
_applications). Examples include:

e Modeling global temperature changes
e Container-loading optimization

e Delivery vehicle-routing optimization
¢ Groundwater-monitoring networks

e Learning robot behavior

e Protein folding

e Rare-event analysis

e Code breaking

e Clustering for fit functions

e Filtering and signal processing

Further Reading

Genetic Algorithms with Python (Amazon Digital Services LLC, 2016) by
Clinton Sheppard is a beginner-level introduction to genetic algorithms
using Python. It is available in paperback or as an inexpensive ebook from
https://leanpub.com/genetic_algorithms_with_python/.

Breeding Giant Rats with Genetic Algorithms 143

https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications
https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications
https://leanpub.com/genetic_algorithms_with_python/

144

Challenge Projects

Chapter 7

Continue to breed super-rats and crack super-safes with these suggested
projects. As usual with challenge projects, you're on your own; no solutions
are provided.

Building a Rat Harem

Since a single male rat can mate with multiple females, there is no need to
have an equal number of male and female rats. Rewrite the super_rats.py
code to accommodate a variable number of male and female individuals.
Then rerun the program with the same total number of rats as before,
but use 4 males and 16 females. How does this impact the number of years
required to reach the target weight of 50,000 grams?

Creating a More Efficient Safecracker

As currently written, when a lock wheel match is found by the safe_cracker.py
code, that match is not explicitly preserved. As long as the while loop is run-
ning, there’s nothing to stop a correct match from being stochastically over-
written. Alter the code so that the indexes for correct guesses are excluded
from future changes. Do timing comparisons between the two versions of
the code to judge the impact of the change.

COUNTING SYLLABLES
FOR HAIKU POETRY

Poetry may be the supreme form of lit-
erature. It is, as Coleridge put it, “the best

words in the best order.” The poet must—

with great brevity—tell a story, promote an
idea, describe a scene, or evoke intensity of feeling, all
while obeying strict rules on rhythm and rhyme, style
and structure.

Computers love rules and structure and even have the potential to
evoke emotions. In his 1996 book Virtual Muse: Experiments in Computer Poetry,
author Charles Hartman describes early attempts to write algorithms that
could mimic human poetry. To quote Hartman, “The complexity of poetic
interaction, the tricky dance among poet and text and reader, causes a game
of hesitation. In this game, a properly programmed computer has a chance
to slip in some interesting moves.”

The early programs Hartman describes could, at best, produce bad
beatnik poetry. The goal at the time was to “introduce calculated bits
of mechanized anarchy into the language, put the results back into the

146

contingent world where language lives, and see how the dust settles.” As
we have touched on in several chapters, context is the weak link in pro-
gramming things like proper-name anagrams and null ciphers. To write
computer poems that pass the “supreme” test of literature, you cannot
ignore context.

Getting a computer to simulate this most human of human endeavors
is an intriguing challenge—and certainly not one we can pass up. In this
chapter and the next, you’ll teach your computer how to generate a tradi-
tional form of Japanese poetry called haiku.

Japanese Haiku

Chapter 8

Haiku consist of three lines of five, seven, and five syllables, respectively.
The poems rarely rhyme, and the subject matter usually addresses the natu-
ral world—mainly the seasons—either directly or indirectly. If done prop-
erly, a haiku can immerse you in the scene, as if evoking a memory.

I've provided three example haiku here. The first is by the master
Buson (1715-1783), the second by the master Issa (1763-1828), and the
third by yours truly, based on memories of childhood road trips.

Standing still at dusk

Listen . . . in far distances

The song of froglings!
—Buson

Good friend grasshopper
Will you play the caretaker
For my little grave?

—Issa

Faraway cloudbanks

That I let myself pretend

Are distant mountains
—Vaughan

Because of its evocative nature, every haiku has a built-in “exploitable
gap” for the programmer. This is summed up nicely by Peter Beilenson
in his 1955 book Japanese Haiku: “the haiku is not expected to be always a
complete or even a clear statement. The reader is supposed to add to the
words his own associations and imagery, and thus to become a co-creator
of his own pleasure in the poem.” Hartman adds, “The reader’s mind works
most actively on sparse materials. We draw the clearest constellations from
the fewest stars. So, the nonsense factor is low for a tiny collocation of words
that can be imbued with imagistic significance.” To put it simply, it’s harder
to mess up a short poem. Readers always assume the poet had a point and
will make one up themselves if they can’t find it.

Despite this advantage, training your computer to write poetry is no
mean feat, and you’ll need two whole chapters to get it done. In this chap-
ter, youw’ll write a program that counts the number of syllables in words
and phrases so that you can honor the syllabic structure of the haiku. In
Chapter 9, you’ll use a technique called Markov chain analysis to capture the
essence of haiku—the elusive evocative component—and transform exist-
ing poems into something new and, occasionally, arguably better.

Project #15: Counting Syllables

Counting syllables in English is difficult. The problem lies in, as Charles
Hartman put it, the quirky spelling and tangled linguistic history of English.
For example, a word like aged may be one syllable or two depending on
whether it describes a man or a cheese. How can a program count syllables
accurately without degenerating into an endless list of special cases?

The answer is that it can’t, at least not without a “cheat sheet.” Fortu-
nately, these cheat sheets exist, thanks to a branch of science known as
natural language processing (NLP), which deals with interactions between the
precise and structured language of computers and the nuanced, frequently
ambiguous “natural” language used by humans. Example uses for NLP
include machine translations, spam detection, comprehension of search
engine questions, and predictive text recognition for cell phone users. The
biggest impact of NLP is yet to come: the mining of vast volumes of previ-
ously unusable, poorly structured data and engaging in seamless conversa-
tions with our computer overlords.

In this chapter, you’ll use an NLP dataset to help count syllables in
words or phrases. You’ll also write code that finds words that are missing
from this dataset and then helps you build a supporting dictionary. Finally,
you’ll write a program to help you check your syllable-counting code. In
Chapter 9, you’ll use this syllable-counting algorithm as a module in a pro-
gram that helps you computationally produce the highest achievement in
literature: poetry.

THE OBJECTIVE

Write a Python program that counts the number of syllables in an English word or phrase.

The Strategy

For you and me, counting syllables is easy. Place the back of your hand

just below your chin and start talking. Every time your chin hits your hand
you've spoken a syllable. Computers don’t have hands or chins, but every
vowel sound represents a syllable—and computers can count vowel sounds.
It’s not easy, however, as there isn’t a simple rule for doing this. Some vowels
in written language are silent, such as the ein like, and some combine to

Counting Syllables for Haiku Poetry 147

148

Chapter 8

make a single sound, such as the oo in moo. Luckily, the number of words in
the English language isn’t infinite. Fairly exhaustive lists are available that
include much of the information you need.

A corpusis a fancy name for a body of text. In Chapter 9, you’ll use a
training corpus—composed of haiku—that teaches Python how to write new
haiku. In this chapter, you’ll use this same corpus to extract syllable counts.

Your syllable counter should evaluate both phrases and individual
words, since you will ultimately use it to count the syllables in entire /ines in
a haiku. The program will take some text as an input, count the number of
syllables in each word, and return the total syllable count. You’ll also have
to deal with things like punctuation, whitespace, and missing words.

The primary steps you need to follow are:

Download a large corpus with syllable-count information.

2. Compare the syllable-count corpus to the haiku-training corpus and
identify all the words missing from the syllable-count corpus.

3. Build a dictionary of the missing words and their syllable counts.

Write a program that uses both the syllable-count corpus and the
missing-words dictionary to count syllables in the training corpus.

5. Write a program that checks the syllable-counting program against
updates of the training corpus.

Using a Corpus

The Natural Language Toolkit (NLTK) is a popular suite of programs and
libraries for working with human language data in Python. It was created
in 2001 as part of a computational linguistics course in the Department

of Computer and Information Science at the University of Pennsylvania.
Development and expansion have continued with the help of dozens

of contributors. To learn more, check out the official NLTK website at
hitp://www.nltk.org/.

For this project, you will use NLTK to access the Carnegie Mellon
University Pronouncing Dictionary (CMUdict). This corpus contains almost
125,000 words mapped to their pronunciations. It is machine readable and
useful for tasks such as speech recognition.

Installing NLTK

You can find instructions for installing NLTK on Unix, Windows, and macOS
at http.//www.nltk.org/install. html. If you are using Windows, I suggest you start
by opening Windows Command Prompt or PowerShell and trying to install
with pip:

python -m pip install nltk

You can check the installation by opening the Python interactive shell
and typing:

>>> import nltk
>>>

If you don’t get an error, youre good to go. Otherwise, follow the
instructions on the website just cited.

Downloading CMUdict

To get access to CMUdict (or any of the other NLTK corpora), you have
to download it. You can do this using the handy NLTK Downloader. Once
you've installed NLTK, enter the following into the Python shell:

>>> import nltk
>>> nltk.download()

The NLTK Downloader window (Figure 8-1) should now be open. Click
the Corpora tab near the top, then click cmudict in the Identifier column.
Next, scroll to the bottom of the window and set the Download Directory;

I used the default, C:\nltk_data. Finally, click the Download button to load
CMUdict.

’ NLTK Downloader — O X
File View Sort Help
Corpora
Identifier Name Size Status -
abc Australian Broadcasting Commission 2006 14 MB not installed ﬂ
alpino Alpino Dutch Treebank 2.7 MB not installed
biocreative_ppi BioCreAtIvE (Critical Assessment of Information Extri 218.3 KB | not installed
brown Brown Corpus 3.2 MB not installed
brown_tei Brown Corpus (TEl XML Version) 8.3 MB not installed
cess_cat CESS-CAT Treebank 5.1 MB not installed
cess_esp CESS-ESP Treebank 2.1 MB not installed
chat80 Chat-80 Data Files 18.8 KB not installed
city_database City Database 1.7 KB not installed
emudict The Carnegie Mellon Pronouncing Dictionary (0.6) | 875.1KB | installed
comparative_sentence; Comparative Sentence Dataset 272.6 KB | not installed
comtrans ComTrans Corpus Sample 11.4 MB | not installed
conli2000 CONLL 2000 Chunking Corpus 7389KB | notinstalled
conli2002 CONLL 2002 Named Entity Recognition Corpus 1.8 MB not installed
conli2007 Dependency Treebanks from CoNLL 2007 (Catalan a| 1.2 MB not installed
crubadan Crubadan Corpus 5.0 MB not installed
Download Refresh
Server |ndex;‘https ://raw.githubusercontent.com/nltk/nltk data/gh-pages/inde:
Download Directory:IC: \nltk_data
D R |

Figure 8-1: The NLTK Downloader window with cmudict selected for download

Counting Syllables for Haiku Poetry 149

150

Chapter 8

When CMUdict has finished downloading, exit the Downloader and
enter the following into the Python interactive shell:

>>> from nltk.corpus import cmudict
>>>

If you don’t encounter an error, then the corpus has been successfully
downloaded.

Counting Sounds Instead of Syllables

The CMUdict corpus breaks words into sets of phonemes—perceptually dis-
tinct units of sound in a specified language—and marks vowels for lexical
stress using numbers (0, 1, and 2). The CMUdict corpus marks every vowel
with one, and only one, of these numbers, so you can use the numbers to
identify the vowels in a word.

Looking at words as a set of phonemes will help you sidestep a few prob-
lems. For one, CMUdict will not include vowels in the written word that are
unpronounced. For example, here’s how CMUdict sees the word scarecrow:

[[lsl, IK', lAEll, lRI, IK', lRI, IOWOI]]

Each item with a numerical suffix represents a pronounced vowel. Note
that the silent eat the end of scareis correctly omitted.

Second, sometimes multiple and consecutive written vowels are pro-
nounced as just a single phoneme. For example, this is how CMUdict repre-
sents house:

[['HH", "AW1', 'S']]

Note how the corpus treats the written double vowels ou as a single
vowel, 'AW1', for pronunciation purposes.

Handling Words with Multiple Pronunciations

As I'mention in the introduction, some words have multiple distinct pro-
nunciations; aged and learned are just two examples:

[['EY1', 'IH', 'D'], ['EY1', 'JH', 'TH0', 'D']]
[[ILI, IERll, INI’ IDI]’ [ILI, IERll, INI’ 'IHO" IDI]]

Note the nested lists. The corpus recognizes that both words can be
pronounced with one or two syllables. This means it will return more than
one syllable count for certain words, something you will have to account for
in your code.

Managing Missing Words

missing_words
_finder.py, part 1

o

(2]

(3]

CMUdict is very useful, but with a corpus, a word is either there or not. It
took only seconds to find more than 50 words—Ilike dewdrop, bathwater, dusky,
ridgeline, storks, dragonfly, beggar, and archways—missing from CMUdict in a
1,500-word test case. So, one of your strategies should be to check CMUdict
for missing words and then address any omissions by making a corpus for
your corpus!

The Training Corpus

In Chapter 9, you’ll use a training corpus of several hundred haiku to
“teach” your program how to write new ones. But you can’t count on
CMUdict to contain all the words in this corpus because some will be
Japanese words, like sake. And as you already saw, even some common
English words are missing from CMUdict.

So the first order of business is to check all the words in the training
corpus for membership in CMUdict. To do this, you’ll need to down-
load the training corpus, called train.txt, from hitps://www.nostarch.com/
impracticalpython/. Keep it in the same folder as all the Python programs
from this chapter. The file contains slightly under 300 haiku that have been
randomly duplicated around 20 times to ensure a robust training set.

Once you find words that aren’t in CMUdict, you’ll write a script to help
you prepare a Python dictionary that uses words as keys and syllable counts
as values; then youw’ll save this dictionary to a file that can support CMUdict
in the syllable-counting program.

The Missing Words Code

The code in this section will find words missing from CMUdict, help you
prepare a dictionary of the words and their syllable counts, and save the
dictionary to a file. You can download the code from https://nostarch.com/
impracticalpython/ as missing_words_finder.py.

Importing Modules, Loading CMUdict, and Defining the main() Function

Listing 8-1 imports modules, loads CMUdict, and defines the main() func-
tion that runs the program.

import sys

from string import punctuation
import pprint

import json

from nltk.corpus import cmudict

cmudict = cmudict.dict() # Carnegie Mellon University Pronouncing Dictionary
def main():

O haiku = load_haiku('train.txt")
® exceptions = cmudict_missing(haiku)

Counting Syllables for Haiku Poetry 151

https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython
https://www.nostarch.com/impracticalpython

missing_words
_finder.py, part 2

152 Chapter 8

® build_dict = input("\nManually build an exceptions dictionary (y/n)? \n")
if build dict.lower() == 'n':
sys.exit()
else:
@ missing words_dict = make_exceptions_dict(exceptions)
save_exceptions(missing words_dict)

Listing 8-1: Imports modules, loads CMUdlict, and defines main()

You start with some familiar imports and a few new ones. The pprint
module lets you “pretty print” your dictionary of missing words in an easy-
to-read format @. You’ll write out this same dictionary as persistent data
using JavaScript Object Notation (json), a text-based way for computers to
exchange data that works well with Python data structures; it’s part of the
standard library, standardized across multiple languages, and the data is
secure and human readable. Finish by importing the CMUdict corpus.

Next, call the cmudict module’s dict() method to turn the corpus into a
dictionary with the words as keys and their phonemes as values @.

Define the main() function that will call functions to load the training
corpus, find missing words in CMUdict, build a dictionary with the words
and their syllable counts, and save the results ©. You'll define these func-
tions after defining main().

Call the function to load the haiku-training corpus and assign the
returned set to a variable named haiku @. Then call the function that will
find the missing words and return them as a set ©. Using sets removes
duplicate words that you don’t need. The cmudict_missing() function will
also display the number of missing words and some other statistics.

Now, ask the user if they want to manually build a dictionary to address
the missing words and assign their input to the build_dict variable @. If they
want to stop, exit the program; otherwise, call a function to build the diction-
ary @ and then another one to save the dictionary. Note that the user isn’t
restricted to pressing y if they want to continue, though that’s the prompt.

Loading the Training Corpus and Finding Missing Words

Listing 8-2 loads and prepares the training corpus, compares its contents
to CMUdict, and keeps track of the differences. These tasks are divided
between two functions.

def load_haiku(filename):
"""Open and return training corpus of haiku as a set.
with open(filename) as in_file:
® haiku = set(in_file.read().replace('-', ' ').split())
© return haiku

def cmudict_missing(word_set):
"""Find and return words in word set missing from cmudict.
O exceptions = set()
for word in word set:
word = word.lower().strip(punctuation)
if word.endswith("'s") or word.endswith("’s"):

word = word[:-2]
@ if word not in cmudict:
exceptions.add(word)
print("\nexceptions:")
print(*exceptions, sep="\n")
@ print("\nNumber of unique words in haiku corpus = {}"
.format(len(word_set)))
print("Number of words in corpus not in cmudict = {}"
.format(len(exceptions)))
membership = (1 - (len(exceptions) / len(word set))) * 100
@ print("cmudict membership = {:.1f}{}".format(membership, '%'))
return exceptions

Listing 8-2: Defines functions to load the corpus and finds words missing from CMUdict

Define a function to read in the words from the haiku-training corpus @.
The haiku in train.txt have been duplicated many times, plus the original
haiku contain duplicate words, like moon, mountain, and the. There’s no
point in evaluating a word more than once, so load the words as a set to
remove repeats @. You also need to replace hyphens with spaces. Hyphens
are popular in haiku, but you need to separate the words on either side in
order to check for them in CMUdict. End the function by returning the
haiku set ©.

It’s now time to find missing words. Define a function, cmudict_missing(),
that takes as an argument a sequence—in this case, the set of words returned
by the load_haiku() function. Start an empty set called exceptions to hold
any missing words @. Loop through each word in the haiku set, converting
it to lowercase and stripping any leading or trailing punctuation. Note that
you don’t want to remove interior punctuation other than hyphens because
CMUdict recognizes words like wouldn’t. Possessive words typically aren’t in a
corpus, so remove the trailing ’, since this won’t affect the syllable count.

Be careful of curly apostrophes (°) produced by word-processing software. These are
different from the straight apostrophes (') used in simple text editors and shells and
may not be recognized by CMUdict. If you add new words to either the training or

JSON files, be sure to use a straight apostrophe for contractions or possessive nouns.

If the word isn’t found in CMUdict, add it to exceptions ©. Print these
words as a check, along with some basic information @, like how many
unique words, how many missing words, and what percentage of the train-
ing corpus are members of CMUdict. Set the percent value precision to one
decimal place @. End the function by returning the set of exceptions.

Building a Dictionary of Missing Words

Listing 8-3 continues the missing_words_finder.py code, now supplementing
CMUdict by assigning syllable counts to the missing words as values in a
Python dictionary. Since the number of missing words should be relatively
small, the user can assign the counts manually, so write the code to help
them interact with the program.

Counting Syllables for Haiku Poetry 153

missing_words
_finder.py, part 3

154

Chapter 8

© def make_exceptions dict(exceptions set):

Return dictionary of words & syllable counts from a set of words.
® missing words = {}
print("Input # syllables in word. Mistakes can be corrected at end. \n")
for word in exceptions_set:
while True:
® num_sylls = input("Enter number syllables in {}: ".format(word))
O if num_sylls.isdigit():

break
else:
print(" Not a valid answer!", file=sys.stderr)
© missing words[word] = int(num_sylls)

print()
® pprint.pprint(missing words, width=1)

@ print("\nMake Changes to Dictionary Before Saving?")
print("""
0 - Exit & Save
1 - Add a Word or Change a Syllable Count
2 - Remove a Word

)

O while True:

choice = input("\nEnter choice: ")

if choice == '0':
break

elif choice == '1':
word = input("\nWord to add or change: ")
missing words[word] = int(input("Enter number syllables in {}: "

.format(word)))

elif choice == '2':

word = input("\nEnter word to delete: ")
© missing words.pop(word, None)

print("\nNew words or syllable changes:")
® pprint.pprint(missing words, width=1)

return missing words

Listing 8-3: Allows the user to manually count syllables and builds a dictionary

Start by defining a function that takes the set of exceptions returned
by the cmudict_missing() function as an argument @. Immediately assign an
empty dictionary to a variable named missing_words @. Let the user know
that if they make a mistake, they’ll have a chance to fix it later; then, use a
for and while loop to go through the set of missing words and present each
word to the user, asking for the number of syllables as input. The word will
be the dictionary key, and the num_sylls variable will become its value ©. If
the input is a digit @, break out of the loop. Otherwise, warn the user and
let the while loop request input again. If the input passes, add the value to
the dictionary as an integer ©.

missing_words
_finder.py, part 4

o

Use pprint to display each key/value pair on a separate line, as a check.
The width parameter acts as a newline argument ©@.

Give the user the opportunity to make last-minute changes to the
missing_words dictionary before saving it as a file @. Use triple quotes to
present the options menu, followed by a while loop to keep the options
active until the user is ready to save @. The three options are exiting, which
invokes the break command; adding a new word or changing the syllable
count for an existing word, which requires the word and syllable count as
input; and removing an entry, which uses the dictionary pop() function ©.
Adding the None argument to pop() means the program won’t raise a KeyError
if the user enters a word that’s not in the dictionary.

Finish by giving the user a last look at the dictionary, in the event
changes were made @, and then return it.

Saving the Missing Words Dictionary

Persistent data is data that is preserved after a program terminates. To make
the missing words dictionary available for use in the count_syllables.py program
you’ll write later in this chapter, you need to save it to a file. Listing 8-4 does
just that.

def save_exceptions(missing_words):
"""Save exceptions dictionary as json file.
® json_string = json.dumps(missing words)
© f = open('missing words.json', 'w')
f.write(json_string)
f.close()
O print("\nFile saved as missing words.json")

if _name__ == ' _main__':
main()

Listing 8-4: Saves missing-words dictionary to a file and calls main()

Use json to save the dictionary. Define a new function that takes the set
of missing words as an argument @. Assign the missing_words dictionary to a
new variable named json_string @; then, open a file with a .json extension ©,
write the json variable, and close the file. Display the name of the file as a
reminder to the user @. End with the code that lets the program be run as
a module or in stand-alone mode ©.

The json.dumps() method serializes the missing_words dictionary into a
string. Serialization is the process of converting data into a more transmit-
table or storable format. For example:

>>> import json

>>> d = {'scarecrow': 2, 'moon': 1, 'sake': 2}
>>> json.dumps(d)

'{"sake": 2, "scarecrow": 2, "moon": 1}'

Note that the serialized dictionary is bound by single quotes, making it
a string.

Counting Syllables for Haiku Poetry 155

156

NOTE

I've provided a partial output from missing_words_finder.py here. The list
of missing words at the top and the manual syllable counts at the bottom
have both been shortened for brevity.

--snip--
froglings
scatters
paperweights
hibiscus
cumulus
nightingales

Number of unique words in haiku corpus = 1523
Number of words in corpus not in cmudict = 58
cmudict membership = 96.2%

Manually build an exceptions dictionary (y/n)?
y

Enter number syllables in woodcutter: 3

Enter number syllables in morningglory: 4
Enter number syllables in cumulus: 3

--snip--

Don’t worry—you won’t have to assign all the syllable counts. The missing
words.json file is complete and ready for download when you need it.

For words that have multiple pronunciations, like jagged or our, you can force the
program to use the one you prefer by manually opening the missing_words.json

[file and adding the key/value pair (at any location, since dictionaries are unordered).
I did this with the word sake so that it uses the two-syllable Japanese pronuncia-

tion. Because word membership is checked in this file first, it will override the
CMUdict value.

Now that you've addressed the holes in CMUdict, you're ready to write
the code that counts syllables. In Chapter 9, you’ll use this code as a module
in the markou_haiku.py program.

The Count Syllables Code

Chapter 8

This section contains the code for the count_syllables.py program. You'll also
need the missing_words.json file you created in the previous section. You can
download both from https://www.nostarch.com/impracticalpython/. Keep them
together in the same folder.

Prepping, Loading, and Counting

Listing 8-5 imports the necessary modules, loads the CMUdict and missing-
words dictionaries, and defines a function that will count the syllables in a
given word or phrase.

count_syllables.py,
part 1

import sys
from string import punctuation
import json
from nltk.corpus import cmudict

load dictionary of words in haiku corpus but not in cmudict
with open('missing words.json') as f:
missing words = json.load(f)

® cmudict = cmudict.dict()

® def count_syllables(words):

Use corpora to count syllables in English word or phrase.
prep words for cmudict corpus
words = words.replace('-", ' ')
words = words.lower().split()
© num sylls = 0
O for word in words:
word = word.strip(punctuation)
if word.endswith("'s") or word.endswith("’s"):
word = word[:-2]
© if word in missing words:
num_sylls += missing_words[word]
else:
@ for phonemes in cmudict[word][0]
for phoneme in phonemes:
@ if phoneme[-1].isdigit():
num_sylls += 1
O return num_sylls

Listing 8-5: Imports modules, loads dictionaries, and counts syllables

After some familiar imports, load the missing_words.json file that contains
all the words and syllable counts missing from CMUdict. Using json.load()
restores the dictionary that was stored as a string. Next, turn the CMUdict
corpus into a dictionary using the dict() method ©.

Define a function called count_syllables() to count syllables. It
should take both words and phrases, because you’ll ultimately want to
pass it lines from a haiku. Prep the words as you did previously in the
missing_words_finder.py program @.

Assign a num_sylls variable to hold the syllable count and set it to 0 ©.
Now start looping through the input words, stripping punctuation and s
from the ends. Note that you can get tripped up by the format of the apos-
trophe, so two versions are supplied: one with a straight apostrophe and
one with a curly apostrophe @. Next, check whether the word is a member
of the small dictionary of missing words. If the word is found, add the dic-
tionary value for the word to num_sylls @. Otherwise, start looking through
the phonemes, which represent a value in CMUdict; for each phoneme,
look through the strings that make it up @. If you find a digit at the end of
the string, then you know that phoneme is a vowel. To illustrate using the
word aged, only the first string (highlighted in gray here) ends with a digit,
so the word contains one vowel:

Counting Syllables for Haiku Poetry 157

count_syllables.py,
part 2

[[- l, IJHI, ‘DI], [IEYll’ ‘JH‘, IIHO‘, ‘D']]

Note that you use the first value ([0]) in case there are multiple pro-
nunciations; remember that CMUdict represents each pronunciation in a
nested list. This may result in the occasional error, as the proper choice will
depend on context.

Check whether the end of the phoneme has a digit, and if it does, add 1 to
num_sylls @. Finally, return the total syllable count for the word or phrase ©.

Defining the main() Function

Completing the program, Listing 8-6 defines and runs the main() function.
The program will call this function when the program is run in stand-alone
mode—for example, to spot-check a word or phrase—but it won’t be called if
you import syllable_counter as a module.

def main():
® while True:
print("Syllable Counter")
® word = input("Enter word or phrase; else press Enter to Exit: ")
© if word == '':
sys.exit()
O try:
num_syllables = count_syllables(word)
print("number of syllables in {} is: {}"
.format(word, num_syllables))
print()
except KeyError:
print("Word not found. Try again.\n", file=sys.stderr)
if __name__ =="
main()

__main__"':

Listing 8-6: Defines and calls the main() function

Define the main() function and then start a while loop @. Ask the user to
input a word or phrase @. If the user presses ENTER with no input, the pro-
gram exits ®. Otherwise, start a try-except block so the program won’t crash
if a user enters a word not found in either dictionary @. An exception should
be raised only in stand-alone mode, as you have already prepared the pro-
gram to run on the haiku-training corpus with no exceptions. Within this
block, the count_syllables() function is called and passed the input, and then
the results are displayed in the interactive shell. End with the standard code
that lets the program run stand-alone or as a module in another program ©.

A Program to Check Your Program

158 Chapter 8

You have carefully tailored the syllable-counting program to ensure it will
work with the training corpus. As you continue with the haiku program,
you may want to add a poem or two to this corpus, but adding new haiku

test_count_syllables
_w_full_corpus.py

might introduce a new word that isn’t in either the CMUdict or your excep-
tions dictionary. Before you go back and rebuild the exceptions dictionary,
check whether you really need to do so.

Listing 8-7 will automatically count the syllables in each word in
your training corpus and display any word (s) on which it failed. You can
download this program from https://www.nostarch.com/impracticalpython/
as test_count_syllables_w_full_corpus.py. Keep it in the same folder as
count_syllables.py, train.txt, and missing_words.json.

import sys
import count_syllables

with open('train.txt.') as in_file:
©® words = set(in_file.read().split())

missing = []

for word in words:
try:
num_syllables = count_syllables.count_syllables(word)
##tprint (word, num_syllables, end='\n') # uncomment to see word counts
O except KeyError:
missing.append(word)

print("Missing words:", missing, file=sys.stderr)

Listing 8-7: Attempts to count syllables in words in a training corpus and lists all failures

Open your updated train.txt training corpus and load it as a set to
remove duplicates @. Start an empty list, called missing, to hold any new
words for which syllables can’t be counted ®. Words in missing won’t be in
CMUdict or in your missing_words dictionary.

Loop through the words in the new training corpus © and use a
try-except block to handle the KeyError that will be raised if count_syllables.py
can’t find the word @. Append this word to the missing list and then display
the list ©.

If the program displays an empty list, then all the words in the new
haiku are already present in either CMUdict or missing_words.json, so you
don’t need to make any adjustments. Otherwise, you have the choice of
manually adding the words to the missing_words.json file or rerunning
missing_words_finder.py to rebuild missing_words.json.

Summary

In this chapter, you've learned how to download NLTK and use one of its
datasets, the Carnegie Mellon Pronouncing Dictionary (CMUdict). You
checked the CMUdict dataset against a training corpus of haiku and built a
supporting Python dictionary for any missing words. You saved this Python

Counting Syllables for Haiku Poetry 159

160

dictionary as persistent data using JavaScript Object Notation (JSON).
Finally, you wrote a program that can count syllables. In Chapter 9, you'll
use your syllable-counting program to help you generate novel haiku.

Further Reading

Virtual Muse: Experiments in Computer Poetry (Wesleyan University Press, 1996)
by Charles O. Hartman is an engaging look at the early collaboration
between humans and computers to write poetry.

Natural Language Processing with Python: Analyzing Text with the Natural
Language Toolkit (O’Reilly, 2009) by Steven Bird, Ewan Klein, and Edward
Loper is an accessible introduction to NLP using Python, with lots of exer-
cises and useful integration with the NLTK website. A new version of the
book, updated for Python 3 and NLTK 3, is available online at http://www
.nltk.org/book/.

“The Growing Importance of Natural Language Processing” by Stephen
F. DeAngelis is a Wired magazine article on the expanding role of NLP in big
data. An online version is available at https://www.wired.com/insights/2014/02
/growing-importance-natural-language-processingy.

Practice Project: Syllable Counter vs. Dictionary File

Chapter 8

Write a Python program that lets you test count_syllables.py (or any other
syllable-counting Python code) against a dictionary file. After allowing the
user to specify how many words to check, choose the words at random and
display a listing of each word and its syllable count on separate lines. The
output should look similar to this printout:

ululation 4
intimated 4
sand 1

worms 1
leatherneck 3
contenting 3
scandals 2
livelihoods 3
intertwining 4
beaming 2
untruthful 3
advice 2
accompanying 5
deathly 2
hallos 2

Downloadable dictionary files are listed in Table 2-1 on page 20.
You can find a solution in the appendix that can be downloaded from
hitps://www.nostarch.com/impracticalpython/ as test_count_syllables_w_dict.py.

http://www.nltk.org/book/
http://www.nltk.org/book/
https://www.wired.com/insights/2014/02/growing-importance-natural-language-processing/
https://www.wired.com/insights/2014/02/growing-importance-natural-language-processing/
https://www.nostarch.com/impracticalpython/

WRITING HAIKU WITH
MARKOV CHAIN ANALYSIS

Computers can write poetry by rearrang-
ing existing poems. This is basically what
humans do. You and I didn’t invent the
language we speak—we learned it. To talk or
write, we just recombine existing words—and rarely

in a truly original manner. As Sting once said about
writing music, “I don’t think there’s such a thing as
composition in pop music. I think what we do in pop
music is collate . . . I'm a good collator.”

In this chapter, you're going to write a program that puts the “best
words in the best order” in the form of haiku. But to do this, Python needs
good examples, so you'll need to provide a training corpus of haiku by the
Japanese masters.

To rearrange these words in a meaningful manner, you will use Markov
chains, named after Russian mathematician Andrey Markov. Markov chain
analysis, an important part of probability theory, is a process that attempts

162

to predict the subsequent state based on the properties of the current state.

Modern-day applications include speech and handwriting recognition, com-
puter performance evaluation, spam filtering, and Google’s PageRank algo-
rithm for searching the web.

With Markov chain analysis, a training corpus, and the syllable-counting
program from Chapter 8, you’ll be able to produce new haiku that follow
the syllabic rules of the genre and stay “on subject” to a large degree. You’ll
also learn how to use Python’s logging module to help monitor the behav-
ior of your program with easy on-and-off feedback. And in “Challenge
Projects” on page 184, you can enlist your friends on social media to see if
they can distinguish your simulated haiku from the real thing.

Project #16: Markov Chain Analysis

Chapter 9

Like the genetic algorithms in Chapter 7, Markov chain analysis sounds
impressive but is easy to implement. You do it every day. If you hear some
one say, “Elementary, my dear . . .,” you automatically think, “Watson.”
Every time your brain has heard this phrase, it has taken a sample. Based
on the number of samples, it can predict the answer. On the other hand,
if you heard someone say, “I want to go to . . .,” you might think “the bath-
room” or “the movies” but probably not “Houma, Louisiana.” There are
many possible solutions, but some are more likely than others.

Back in the 1940s, Claude Shannon pioneered the use of Markov
chains to statistically model the sequences of letters in a body of text. For
example, for every occurrence of the digram ¢ in an English-language
book, the next most likely letter is e.

But you don’t just want to know what the most likely letter is; you want
to know the actual probability of getting that letter, as well as the odds of
getting every other letter, which is a problem tailor-made for a computer.
To solve this problem, you need to map each two-letter digram in a piece
of text to the letter that immediately follows it. This is a classic dictionary
application, with the digrams as the keys and the letters as the values.

When applied to letters in words, a Markov model is a mathematical
model that calculates a letter’s probability of occurrence based on the previ-
ous k consecutive letters, where kis an integer. A model of order 2 means that
the probability of a letter occurring depends on the two letters that precede
it. A model of order 0 means that each letter is independent. And this same
logic applies to words. Consider these two haiku examples:

A break in the clouds Glorious the moon
The moon a bright mountaintop Therefore our thanks dark clouds come
Distant and aloof To rest our tired necks

A Python dictionary that maps each haiku word to each subsequent
word looks like this:

'a':t ['break', 'bright'],
"aloof': ['glorious'],

‘and': ['aloof'],

'break': ['in'],

'bright': ['mountaintop'],
'clouds': ['the', 'come'],
‘come': ['to'],

"dark': ['clouds'],
'distant': ['and'],
'glorious': ['the'],

'in': ["the'],

'moon': ['a', 'therefore'],
'mountaintop’: ['distant'],
‘our': ["thanks', 'tired'],
'rest': ['our'],

"thanks': ['dark'],

"the': ['clouds', 'moon', 'moon'],
"therefore': ['our'],
"tired': ['necks'],

"to': ['rest']

Since there are only two haiku, most of the dictionary keys have only
one value. But look at the near the bottom of the list: moon occurs twice.
This is because the Markov model stores every occurrence of a word as a
separate, duplicate value. So, for the key the, if you choose a value at ran-
dom, the odds of selecting moon versus clouds are 2:1. Conversely, the model
will automatically screen out extremely rare or impossible combinations.
For example, many words can potentially follow the, but not another the!

The following dictionary maps every pair of words to the word immedi-
ately after; that means it’s a model of order 2.

'a break': ['in'],

'a bright': ['mountaintop'],
'aloof glorious': ['the'],

'and aloof': ['glorious'],
'break in': ['the'],

'bright mountaintop': ['distant'],
'clouds come': ['to'],

'clouds the': ['moon'],

'come to': ['rest'],

'dark clouds': ['come'],
'distant and': ['aloof'],
'glorious the': ['moon'],

'in the': ['clouds'],

'moon a': ['bright'],

'moon therefore': ['our'],
'mountaintop distant': ['and'],
'our thanks': ['dark'],

'our tired': ['necks'],

'rest our': ['tired'],

"thanks dark': ['clouds'],

"the clouds': ['the'],

"the moon': ['a', 'therefore'],
"therefore our': ['thanks'],
"to rest': ['our']

Writing Haiku with Markov Chain Analysis 163

164

Note that the mapping continues from the first haiku to the second
so the dictionary contains the items 'and aloof': ['glorious'] and 'aloof
glorious': ['the']. This behavior means your program can jump from
one haiku to another and is not restricted to just the word pairs within a
single haiku. It is free to form new word pairs that the masters may never
have conceived.

Because of the very short training corpus, the moon is the only word
pair with multiple keys. For all the others, you are “locked in” to a single
outcome. In this example, the size of the training corpus greatly deter-
mines the number of values per key, but with a larger corpus, the value of
kin the Markov model will have a larger influence.

The size of k determines whether you produce poppycock, commit
plagiarism, or produce a perspicuous piece of originality. If k equals 0,
then you’ll be choosing words at random based on that word’s overall
frequency in the corpus, and you'll likely produce a lot of gibberish. If &
is large, the results will be tightly constrained, and you’ll begin to repro-
duce the training text verbatim. So small values of k promote creativity,
and large values promote duplication. The challenge is finding the
proper balance between the two.

To illustrate, if you use a Markov model of order 3 on the previous
haiku, all the resulting keys will have one value. The two values associated
with the word pair the moon are lost because the former word pair becomes
two keys, each with a unique value:

"the moon a': ['bright'],
"the moon therefore': ['our']

Since haiku are short—only 17 syllables long—and available training
corpora are relatively small, using a & of 2 should be sufficient to enforce some
order while still allowing for creative word substitutions in your program.

THE OBJECTIVE

Write a program that generates haiku using Markov chain analysis. Allow the user to
modify the haiku by independently regenerating lines two and three.

The Strategy

Chapter 9

Your general strategy for simulating haiku will be to build Markov models
of orders 1 and 2 with a training corpus of haiku written by humans. You’ll
then use those models and the count_syllables.py program from Chapter 8 to
generate novel haiku that meet the required syllabic structure of 5-7-5 for
the three lines of the haiku.

The program should build the haiku one word at a time, initiating (or
seeding) the haiku with a random word drawn from the corpus; selecting
the haiku’s second word using a Markov model of order 1; and then select-
ing each subsequent word with the order 2 model.

Each word is derived from a prefix—a word or word pair that deter-
mines which word will be picked to go in the haiku; the key in the word-
mapping dictionaries represents the prefix. As a consequence, the word
that the prefix determines is the sujffix.

Choosing and Discarding Words

When the program selects a word, it first counts the word’s syllables, and if
the word doesn’t fit, it chooses a new word. If there are no possible words
based on the prefix in the poem, then the program resorts to what I call a
ghost prefix, which is a prefix that doesn’t occur in the haiku. For example,
if a word pair in a haiku is temple gong, and all the words that follow in the
Markov model have too many syllables to complete the line, the program
selects a new word pair at random and uses it to pick the next word in the
haiku. The new word-pair prefix should not be included in the line—that is,
temple gong will not be replaced. Although you could choose a suitable new
word in a number of ways, I prefer this technique because it allows you to
simplify by maintaining a consistent process throughout the program.

You can accomplish these steps with the functions in Figures 9-1 and
9-2. Assuming you’re working on a five-syllable line, Figure 9-1 is an exam-
ple of what will happen, at a high level, if all the chosen words match the
syllable target.

Markov model

order I Markov model Markov model
order 2 order 2
Choose
word Choose Choose
Choose after word word
random single after after T
word word word pair | | word pair | [3
F
a

| Count syllables |

| Build haiku line |
: The | | bright | autumn | moon
Seed SeTed First Second
word suffix suffix suffix
First Second

word pair word pair

Figure 9-1: High-level graphical pseudocode for a
five-syllable haiku line

Writing Haiku with Markov Chain Analysis 165

166

Chapter 9

The program randomly selects the seed word the from the corpus, and
then counts its syllables. Next, it chooses bright from the model of order 1,
based on the prefix the. Then it counts the number of syllables in bright and
adds that number to the number of syllables in the line. Since the sum of
syllables doesn’t exceed five, the program adds bright to the line, moves on
to select autumn from the model of order 2 based on the prefix The bright,
and then repeats the syllable-counting process. Finally, the program selects
moon based on the prefix bright autumn, counts the syllables, and—since
the line’s total number of syllables is equal to five—adds moon to the line,
completing it.

Figure 9-2 demonstrates a case where the program needs to utilize a
ghost prefix to successfully complete a five-syllable line.

Markov model

order 1 Markov model Markov model
order 2 order 2
Choose
word Choose Choose
Choose after word word
random single affer after I
word word word pair | | word pair | [&
2

| Count syllables |

| Build haiku line |]

1 ,-—==zz- to------- N |

' The | temple! gong | glorious

TT _____ T T

Seed Seed First Second
word suffix suffix suffix

First Second
word pair word pair

moon

New word pair New suffix

N~ The temple gong moon } Finalhaiku line

Figure 9-2: Choosing a new suffix with a randomly selected ghost
prefix (full white)

Let’s assume that the only word that follows the prefix temple gongin the
Markov model is glorious. This word has too many syllables for the line, so
the program selects a ghost prefix, full white, at random. The word moon fol-
lows the ghost prefix and satisfies the remaining syllable count in the line,
so the program adds it to the line. The program then discards the full white
prefix, and the line is complete. With this ghost prefix technique, you can’t
guarantee that the new suffix will make sense contextually, but at the same
time, this is one way to incorporate creativity into the process.

Continving from One Line to Another

The Markov model is the “special sauce” that allows you to imbue the haiku
with context and meaning that continue from one line to another. The
Japanese masters generally wrote haiku in which each line is a stand-alone
phrase but the contextual thread continues across lines, as in this haiku
from Bon Cho:

In silent midnight
Our old scarecrow topples down
Weird hollow echo

—DBon Cho

Even though the masters preferred that each line of a haiku represent a
complete thought, they didn’t strictly follow the rule. Here’s an example in
Buson’s haiku:

My two plum trees are

So gracious see, they flower

One now, one later
—Buson

The first line of Buson’s haiku is not grammatical on its own, so the
reader must continue to the next line without a break. When a phrase in
poetry moves from one line to the next without a pause or syntactic break,
it is said to be enjambed. According to Charles Hartman, author of Virtual
Muse, enjambment is what gives metrical lines much of their supple liveli-
ness. That’s a good thing, since it’s very hard to get an algorithm to write
a coherent poem without some grammatical spillover from line to line. To
get your program to continue a “thought” through multiple lines, you need
to use the word pair from the end of the previous line as the starting prefix
for the current line.

Finally, you should give the user the opportunity to not only build the
poem but also to edit it interactively by regenerating lines two and three.
Most of writing is rewriting, and it would be unconscionable to leave the
user hanging with two perfect lines and no way to throw the dice again on
an uncooperative line.

The Pseudocode

If you follow the strategy I've just laid out, your high-level pseudocode
should look like this:

Import count_syllables module

Load a training-corpus text file

Process the training corpus for spaces, newline breaks, and so on

Map each word in corpus to the word after (Markov model order 1)

Map each word pair in corpus to the word after (Markov model order 2)

Give user choice of generating full haiku, redoing lines 2 or 3, or exiting

Writing Haiku with Markov Chain Analysis 167

168

If first line:
Target syllables = 5
Get random word from corpus <= 4 syllables (no 1-word lines)
Add word to line
Set random word = prefix variable
Get mapped words after prefix
If mapped words have too many syllables
Choose new prefix word at random & repeat
Choose new word at random from mapped words
Add the new word to the line
Count syllables in word and calculate total i